PUBLISHED VERSION

Kalloniatis, Alexander Constantine; Nedelko, Sergei N.
Chirality of quark modes Physical Review D, 2002; 66(7):074020

© 2002 American Physical Society
http://link.aps.org/doi/10.1103/PhysRevD.66.074020

PERMISSIONS

http://publish.aps.org/authors/transfer-of-copyright-agreement

“The author(s), and in the case of a Work Made For Hire, as defined in the U.S.
Copyright Act, 17 U.S.C.

8101, the employer named [below], shall have the following rights (the “Author Rights”):
[...]

3. The right to use all or part of the Article, including the APS-prepared version without
revision or modification, on the author(s)’ web home page or employer’s website and to
make copies of all or part of the Article, including the APS-prepared version without
revision or modification, for the author(s)’ and/or the employer’s use for educational or
research purposes.”

9th April 2013

http://hdl.handle.net/2440/11147



http://hdl.handle.net/2440/11147�
http://link.aps.org/doi/10.1103/PhysRevD.66.074020�
http://link.aps.org/doi/10.1103/PhysRevD.62.093023�
http://hdl.handle.net/2440/11147�
http://publish.aps.org/authors/transfer-of-copyright-agreement�

PHYSICAL REVIEW D 66, 074020(2002

Chirality of quark modes
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A model for the QCD vacuum based on a domainlike structured background gluon field with a definite
duality attributed to the domains has been shown elsewhere to give confinement of static quarks, a reasonable
value for the topological susceptibility, and indications that chiral symmetry is spontaneously broken. In this
paper, we study in detail the eigenvalue problem for the Dirac operator in such a gluon mean field. A study of
the local chirality parameter shows that the lowest nonzero eigenmodes possess a definite mean chirality
correlated with the duality of a given domain. A probability distribution of the local chirality qualitatively
reproduces histograms seen in lattice simulations.
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[. INTRODUCTION eters, a mean-field strength per domBiand a mean size for
domainsR, which is sufficient for an adequate description of
In a previous papefl], we formulated a model which the pure glue characteristics of the QCD vacuum—the gluon
characterizes the QCD vacuum by a “lumpy” distribution of condensate, topological susceptibility, and string tension.
field strength and topological charge density. For lack of arhe Wilson loop in such a gluonic background was found to
better name, we shall refer to the model as “the domairexhibit an area law dependence for large loops. Thus a con-
model.” The formulation is given concretely in terms of a finement of static fundamental charges is captured by the
partition function which describes a statistical ensemble ofmodel; some dynamical gluon degrees of freedom turn out
domains, each of which is characterized by a set of internahlso to be nonpropagating. The absolute value of the under-
parameters associated with the mean background gluon fieltyjing average topological charge per domain was determined
and the internal dynamics are represented by fluctuatioto be approximatelyy=0.15 and the density of domains to
fields. Correlation functions in this model can be calculatecbe as high as 42 faf. Although tentative signals of sponta-
by taking the mean field into account explicitly and decom-neous chiral symmetry breaking were also obtainefdlina
posing over the fluctuations. We briefly review the detailsmore rigorous consideration of the fermionic spectrum and
and assumptions behind the model in the next section buiigenmodes as well as the calculation of the quark determi-
state here unambiguously that the “domains” in question arenant is required, which was missed|i.
assumed to be purely quantum in nature. They are not semi- In this paper, we solve the eigenvalue problem for the
classical solutions of Yang-Mills theory and are not argued tdDirac operator for the gluonic background and boundary
exist as topologically stable classical configurations, ratheconditions adopted in the model and examine the chirality
they seek to characterize the average bulk properties of theroperties of the eigenmodes. This is a necessary step for
ensemble of fields that determine the gluonic vacuum. Irchecking the status of chiral symmetry breaking in the do-
particular, it is not assumed that the topological charge assanain model. But in view of recent lattice results, this prob-
ciated with a domain should be an integer. The rationale ofem is valuable also in its own right.
such an extremely simplified construction can be understood There are strong hints in lattice Monte Carlo simulations
as an attempt to implicitly incorporate effects of the presenceat intermediate-range structures in individual gluon configu-
of singular pure gauge configurations in the QCD Euclideamrations once fluctuations are filtered out by some means. For
functional integral into a practical calculational scheme withexample, cooling or relaxation algorithms are well estab-
a mean-field description of the QCD ground state. A selfdished now{ 2], and can reveal instantoniclike structures after
consistent mean-field approach requires nonperturbative caseveral sweeps of a given lattice configuration. However, as
culation of the free energy as a functional of the mean fieldhese algorithms are designed precisely to locally minimize
whose minima should determine its form, but this is beyondhe action, it is natural they should bring objects with integer
the reach of analytical methods. Nevertheless, there is atopological charge into relief. Alternately, and more relevant
accumulation of semiqualitative argumeft$in favor of the  to the present work, low-lying and zero modes of the mass-
ansatz for the mean field we have chosen. less Dirac operator can be used as a probe of long-range
In the gluonic sector, the model depends on two paramgluonic structured 3], although only recently did this be-
come more reliable with lattice fermions with good chirality
properties. For example, exact index theorems are found to
*Electronic address: akalloni@physics.adelaide.edu.au be satisfied on the lattidd,5] and the zero modes are seen to
"Electronic address: nedelko@thsund.jinr.ru correlate precisely with instantonic structures in the raw lat-
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tice configuration, in the absence of coolif§]. However, where the(anti-)self-dual tensorB,, is constant, and the
the exact zero modes of any finite volume simulation cannoEuclideany matrices are in an anti-Hermitean representa-
be those relevant to spontaneous chiral symmetry breakingion.

rather the discrete spectrum of low-lying non-zero modes The outcomes of this study are the peculiar chiral proper-
should, in the infinite volume limit, go over to a continuous ties of eigenspinorg/(x): there are no zero modes and none
band at zero, saturating the Banks-Casher relationstlip  of the modes is chiral but at the center of a domain the local
Such modes are sometimes called “pseudo-zero-modeschirality parameteiX(x) is found to be

Low-lying nonzero modes with strong signs of chirality in

regions of high action and topological charge densities would X(0)==1

be a tool for identification of the properties of gluonic con-

figurations relevant to chiral symmetry breaking. Indeed, affgr all modes with zero orbital momentum. The sign of
ter an initial negative resu[8], recent results have emerged chirality and the duality of the tensoB,, are locked:
showing precisely this: low-lying nonzero modes of the over-(4+1)—1 for an (anti-)self-dual field. Simultaneously the
lap Dirac operator which seem to gxhibit strong chirality, aspormal density for these modes is maximal at the center. At
measured by the local parametérintroduced in[8] and  the poundary the local chiralitX is equal to zero for all
defined by modes. The chirality of the lowest mode is a monotonic
function inside the region while for the higher radial excita-
_ [ (x)] tions the chirality alternates. The detailed form Xx)
RISk () changes with the variation of an arbitrary anglein the
boundary condition. This angle is treated as a random vari-

in regions where the probability densi#y/ (x) /(x) of these ablg. Calculating _chiralities averaged over a small c_entral
modes is maximal6,9—11. The verification of the instan- €9ion for the various lowest modes, and operating in the
tonic nature of these objects and their relevance to spontan¥10lé ensemble of domains, we end up with a histogram
ous chiral symmetry breaking in the infinite volume are still Which represents the probability of finding a given smeared
being argued in the literaturesee, for example, the recent chirality among the set of lowest modes. The histogram
studies of{11,17 and[13]). qualltatlvely reproduces the lattice results for the chirality of
An unbiased summary of the totality of available lattice 0W-lying Dirac modes such as those [&] and others.
results can be formulated as follows: that they support the After reviewing the domain model in the next section, we
importance of gluon configurations producing regions of apPresent details of the squtlon of the abovg—formulated .prob—
proximately “locked” chromoelectric/magnetic fields for 1€m and then study the chirality properties of the eigen-
chiral symmetry breaking but do not yet confirm or rule outModes. We conclude with a discussion and future prospects.
a specifically instantonic nature for these configuratidis. Technical details of calculations and conventions for this pa-
A potential test which might clarify this would be a compari- PEr are relegated to the Appendixes.
son of hadronic correlation functions between vacuum mod-
els and lattice simulations. Such results are already available Il. REVIEW OF THE MODEL
for instanton-based moddl$5]. A search for complementary o
scenarios for the vacuum consistent with lattice results and !t has been suggest¢i6] that the restrictive influence of
incorporating confinemer(missed in the instanton modgls Pure gauge singularitiggresent in instanton, monopole, and
is evidently timely. This paper is a step in that direction for Vortex configurationson surrounding quantum fluctuations
the domain scenario. may be used for an approximate treatment of QCD dynam-
The core of this paper is the Dirac eigenvalue/functionicS- Due to the complex structure of the manifold of gauge
problem for a spherical four-dimensional Euclidean region oforbits in QCD, singular gauge fields may be unavoidable in

radius R with baglike boundary conditions on the fermions the course of the elimination of redundant variables. Ob-

gauge field monopoles are two examples of this potentially more general
statement. This has also long been advocated by van Baal
D () =\ h(X), [17] in hig studies of the fundamental domain.in small vol-
ume studies on the torus and sphere. In particular, the pro-
) _ posal has been made that “domain formation” at larger vol-
i (x)€*sy(x)=(x), X*=RZ (20 umes can be driven essentially by the nontrivial topology of
the gauge field manifold. Moreover, it is stressedlif] that
Here 7,(x)=x,/|x|, D, is the covariant derivative in the the full set of singular fields, instantons, monopoles, and vor-
fundamental representation, tices must play a role in this. One can also add to this hier-
archy domain-wall singularitiesl 8] which are not topologi-
i cally stable on their own but can be part of a complicated
EHBWXW object: a domain wall can start and end on a lower-
dimensional topologically nontrivial singularity of lower di-
R 5 mension, namely a vortex, and in this sense should not be
n=tn% B,,=*B,,, neglected also.

o
tar(z[l—X(x)])

D,=d,~iB,=d,+
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An arbitrary gauge field configuratiopl containing a Domains are taken to be hyperspherical with a mean ralius
pure gauge singularity can be represented in the vicinity ofind centered at random poirts. For a detailed motivation
the singularity as of these steps, we refer the readef 1¢

In this way, consideration is reduced to a model with es-
A,=S,+Q, sentially two free parameters: the mean-field strerigy#nd

) ) ] ) _ the mean domain radiuB. The partition function for this
with S, a pure gauge singular field. If we now substitute thisgimplified system can be written down as

into the Yang-Mills Lagrangian, we will see that the require-

ment of finiteness of the action density imposes specific con- N .
ditions on the behavior d@ in the vicinity of the singularity Z=Nlim [] doif Dyt Dy

in S. The model we consider focuses on domain-wall singu- VIN—ei=1 /% Fu

lar hypersurfaces which are the most restrictive @ran

inclusion of lower-dimensional singularities is a complicated xf DQ'S[D(BMQMIAH BY, Q1]
task beyond the scope of the present work. In the case of a Fq

domain wall, the constraining influence 8fon gluon fluc-

—gQCD ()4 5 (D) (D) )
tuationsQ and quark fieldsy is expressed via the boundary x e~ S, 1T BT (6)
conditions - -
" where the functional spaces of integratiﬁ‘f’b and F [,, are
[Q,S]=0, (3)  specified by the boundary conditionsz)*=R?,
Yx) 7 () P(x)=0 (@) nQY(x)=0, )
for x being on the singular hypersurface of the pure gauge i ()€ 75y (x) = (), (8)
field S. These conditions ensure a nonvanishing weight for _ _
such fields in the functional integral. Yl irsigf (x)=—y(x). 9

Domain-wall singular pure gauge configurations are topo- .
logically trivial. This implies that the fiel® can be charac- Here n;=nft?® with the color generator$? in the adjoint
terized by a definite color direction® and the matrixn®?  representation. The conditions E¢R) and(9) represent spe-
can always be tuned to belong to the Cartan subalgebra affic (though not uniquechoices for the implementation of
SUL(3). The of-diagonal (or, equivalently, orthogonal to Eq. (4) which manifest the explicit breaking of chiral sym-
n?) components of the fluctuatior® must then satisfy Di- metry by the boundary condition, as occurs, for example, in
richlet boundary conditions, while those fluctuations longitu-bag models for the nucleon. The thermodynamic limit as-
dinal to n? are not restricted at the domain wall. A typical sumesV,N—o but with the density ~1=N/V taken fixed
configuration of this type looks like a system of domainsand finite. The partition function is formulated in a back-
which are coupled in a sense that fluctuations inside neighground field gauge with respect to the domain mean field.
boring domains interact with each other via exchange by th&he measure of integration over parameters characterizing
gluon modes longitudinal to the color direction of the do-domains is
main boundaries. It should be stressed that unavoidably there
are obstructions of color direction at the domain-wall junc- 1 d*z (2vi+1)m
tions where lower-dimensional topologically nontrivial sin- L gt = 4872y V. 5 f
gularities are situated. g .

To be specific and to deal with an analytically tractable 27 - 27
model, we introduce several drastic simplifications: we dis- XJ d‘Pif dé; sin GiJ déi
engage ourselves from the obstructions in the color direction 0 0 0

@;
vi-1)7

and substitute the coupling between domains by the presence 34,5 (21+1)7
of a mean field. Inside and on the boundary of the domain, X 2 ( i~ )
the field is taken to be covariantly constganti-)self-dual 1=0.12 6
such that the strength over the whole Euclidean space reads -
| xfo dwik2015(wi—7rk)-~~, (10)

F2,(x)= 2, nBM) o(1—(x—2z)%R?), _
=1 where @, ,¢;) are the spherical angles of the chromomag-
o netic field, w; is the angle between chromoelectric and chro-
B)B)=B%5,,. (5  momagnetic fields, ang is an angle parametrizing the color
orientation. It should be noted that because of the axial
The individual color and space orientations in each domairgnomaw and that nothing priori constrains the top0|ogica|
are random. In particular, effective action arguments wergharge per domain to be integral, the fermion determinant is
used In[l] to constrain the form ('XfI(J)a such that the matrix a single-valued function Ohi only if an appropriate Rie-
nt) =¢3 cos§j+t85in§j with angles §&je{n/6(2k+1)k mann surface is constructed. Here enumerates the Rie-
=0, ...,5 corresponding to the discrete Weyl subgroup.mann sheets to be taken into account.
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This partition function describes a statistical system oftails given in the Appendixes. The Dirac matrices in Euclid-
density v ! composed of extended domainlike structures,ean space are chosen to be anti-Hermitean and taken in the
each of which is characterized by a set of internal parametershiral representation.
and whose internal dynamics are represented by the fluctua- For boundary conditions on a hypersphere and covariantly
tion fields. It respects all the symmetries of the QCD La-constant background field of definite duality, it is natural to
grangian, since the statistical ensemble is invariant undause hyperspherical coordinatasQ), given in detail in Ap-
space-time and color gauge symmetries. For the same rependix A. In such coordinates, rather than work with the
son, if the quarks are massless, then the chiral invariance variant derivative itself, it is more convenient to introduce
respected. the operatonj D which can be easily expanded into intrinsic

Field eigenmodes satisfying the above boundary condiand orbital angular momentum generators. Any spinor can be
tions in the presence of afanti-)self-dual gluon field and represented in the form
corresponding Green functions can be calculated explicitly.

For gluons, this was shown iri]. For quarks, this will be b=if x+o, v=ixd +o, (13
shown in this paper. On this basis one can compute any

correlation function taking the mean field into account ex-where ¢ and y have the same chirality. This is simply a
actly and decomposing the integrand over fluctuations. Irlecomposition into a sum of chiral components. The eigen-
particular, correlation functions of the mean field itself havevalue equatior(2) can be rewritten then identically as

a finite radiusR, which is more or less obvious and is dis-

cussed if1] in detail. 1 5 5

Within this framework the gluon condensate to lowest or- X=70N 1 Do, D=\ (14)
der in fluctuations is immediately obtained in the form

In these terms the boundary conditions take the form

g*x(F3,(0F3,(x))=4B?, (11)
—_ Fia L AFia 2_p2
and the topological susceptibility reads x=—e"'%, x=¢e’", Xx°=R" (15
. B4R* where uppeflower) signs correspond t@ andy with chiral-
X:f d™x(Q(X)Q(0))= 1552 ity T1.

A solution of Egs.(14) is achieved by separating the an-
Less trivial is the manifestation of an area law for staticgular and radial coordinates. To do this one has to represent,

quarks. Computation of the Wilson loop for a circular con-respectivelyD? and+ D in terms of momentum generators

tour of a large radiusL>R gives a string tension0  and projectors onto the various spin and color polarization
=Bf(7BR?) with the function subspaces. In four-dimensional Euclidean space, the angular

momentum operators can be represented as
J3 (2z.3dx 23 (zv3dx )

f(z)=5=| 3— —SsinX— —— —sinx

(2) 32( 2z )o X Z Jo X K1,2=%(Li|\/|)

Estimations of the values of these quantities are known from

lattice calculation or phenomenological approaches and cawith L the usual three-dimensional angular momentum op-

be used to fiB andR. As described ifi1], these parameters erator andM the Euclidean version of the boost operator.

are fixed to be These correspond to the decomposition of the four-
dimensional rotational grougO(4) into a product of two

VB=947 MeV, R=(760 MeV) 1=0.26 fm (12  SO(3) groups. They lead to Casimir operators and eigenval-

ues
with the average absolute value of topological charge per

domain turning out to bg~0.15 and the density of domains k(K

v~ 1=42 fm 4. The topological susceptibility then turns out K§=K§—>§(§+l , k=01,...¢,
to be y~ (197 MeV)*, comparable to the Witten-Veneziano

value[19].

KI,—My,  Mp=—k2—ki2+1, ... ki2—1ki2,

IIl. SPECTRUM OF THE DIRAC OPERATOR

IN A DOMAIN and the correponding angular eigenfunctioBgm, m,(£2),

given explicitly in Appendix A, are labeled by orbital mo-

We have mentioned already that the boundary conditionsnentumk and two azimuthal numbens; and m,. Eigen-
on fermions violate chiral symmetry explicitly, which can states are also characterized by the color-spin polarization
only be restored by a random assignment of values ofer  related to the projectors
the complete ensemble of domains in Euclidean space.

In this section, we address the eigenvalue problem for the O.=N,X,+N_3- (16
massless Dirac operator as it is stated in Egs. Here we
give the scheme for solving the problem, with technical dewith

074020-4
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itself as a restriction on the values of one of the azimuthal
(1+=3B/B) quantum numbers, nameiy,= *+k/2 for the self-dual case
and m; = +k/2 for the anti-self-dual one. The sign in front
being, respectively, the separate projectors for color and spiaf k/2 is correlated with the spin polarization of the state
polarizations. Below we denote the polarization with respechs seen in the explicit expressions for the eigenspinors
to O by k==, below.
It is shown in Appendix B that if the background field is  Thus for the self-dual casege=— @, ysx=— x SO that
(anti-)self-dual, the boundary condition can only be imple-the eigenspinors in the self-dual field can be labeled as

mented if spinorsp and y are(right-) left-handed. Also the Pt (x) while in the anti-self-dual field they arg,, (x)
presence of the homogeneous background field reduces t

spherical symmetry of the problem down to an axial symme-
try. In the representation implemented here, this manifest

I\)IH

1 ~ i
Nt=§(1tn/|n|), 2.

th details in Appendix B, we simply write down here the
gesult for the self-dual case,

Yiem, =17 X, T @rcm, »
0

kt2-A%  kra-AZk+a °
k+2 M(k+3-A%k+32) N Cim, (ki2)(€2)

N+ Ckm, — (ki2) (£2)

Xim, = — (1A) 712 D™ M (k+2— A% k+22) -

(17)
0
0
Prm, = 2% M (k+2—- A% k+22) N Cumyg(@) | (18)
N+ Cim, — (ki2)(£2)
0
(k+1)i2a-z2 2 0
Xkmy = 2 € kJrZM(:L A%k+32) N+ Cimy (ki2)(2)
N_Ckm, - (ki2)(£2)
0
0
2% M (— A% k+22) (19
Picm, = ’ ’ N+ Ckm, (ki2)(2) |

N_Cim, - (ki2)(£2)
whereM(a,b,x) is the confluent hypergeometric function and
z=Br?2, A=\/\2B, B=|n|B.

The projectorsN.. act on the color vectors which are implicit in the above equations. The eigenfun@tifpﬁ;sfor the

anti-self-dual case are obtained by the chamge-m, and the shift of nonzero elements of the angular part to the first two
positions of the spinor.

The eigenvalues are determined by the boundary conditiarra=BR?/2, which forA, " takes the form

2

- - A2 _
2 M(k+3—A%k+3,z5) |=0, (20

) Z
e'“M(k+2—A2,k+2,zo)—i—\/E M(k+2— A2 k+2.z0)—

and forA, —,
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; /\| /'\\/
A4 N

Local chirality parameter X

Distance from the center (fm)

FIG. 1. Graphical representation of the left-hand side of(E#).
for k=0, a self-dual domain, angl= 7/2. Zeros of the function are

Ty &S e FIG. 3. Chirality parameter for the three lowest radial modes
the radial eigenvalued,, .

Yoo » self-dual domaing= /2.

B ) iAVzZo ) We stress that the definition of here does not include an
e ' M(— A% k+220) +- 5 M(1— A% k+320)=0. imaginary unity in front of the Dirac operator.
(21) As seen from Fig. 1, in contradistinction to the eigenvalue

problem in infinite volume on the space of square integrable

functions, the spectrum is not symmetric under reflections
The equations for the eigenvalues in an anti'self'dual domailﬂ_, —\. This comes from the fact th@"5 does not commute
are the same as above but with- — « as follows from Egs.  jith the boundary condition so that is not an eigenfunc-
(15). The eigenvalues can be calculated numerically. Thejon if 4 is an eigenfunction. An asymmetry of the spectrum
form a discrete set. Zero modes are absent, which is to bg typical for the Dirac operator in odd-dimensional spaces
expected for these types of boundary conditi¢@d]. A (see[20] and references thersirmnd has important conse-
graphical solution of Eq(21) at «=m/2 is presented in Fig. quences there for the effective action. In our case, the un-
1 to illustrate the structure of the spectrum. In general, thisyal boundary conditions are responsible for the asymmetry
eigenvalues are complex. The spectrum is real dor in four-dimensional Euclidean spaf21].
+m/2, which is the only value for which the boundary con-  The most interesting feature of the fermionic eigenmodes
dition Eq. (7) imposed orlmfn’]‘lz is Hermitean conjugated to becomes manifest if one considers the local chiraify) of

the condition for«/qfnflz and the general fermion fiela can the lowest eigenmodes as defined by &,

be decomposed in terms of the basis of conjugate eigenfunc-
tions l//fnffz- For other values ofx, a biorthogonal basis

should be introduced. In particular, at=0 eigenvalues are It is obvious that none of the solutions are eigenstates of
complex and come in complex conjugated pairs. The partiys. However, at the domain centef=0 [or (x—zj)2=0 in

tion function is nevertheless real since\if{«) is an eigen- genera] all the purely radial modes witk=0 have a maxi-
value for the self-dual case, then for the anti-self-dual do-mum in the probability density, they are chiral, and the sign
main there is an eigenvalue,{ «) such that of their chirality is determined by the duality of the mean
field in a domain which is illustrated in Figs. 2 and 3. The
probability density naturally vanishes at the domain center
for the modes wittk>0, as is seen in Fig. 4. To demonstrate

IV. CHIRALITY OF LOW-LYING MODES

)\astfa)z_)\:cﬁa)- (22

1 0.2

joucl
oo
T
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4
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w
|
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T
|
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Density distribution
=)
=
=
”’
”
d
4
|
Density distribution
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T
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=
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o
=]
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I

O S T 0= T =Y
0 0.05 0.1 0.15 0.2 0.25 0 0.05 0.1 0.15 0.2 0.25

Distance from the center (fm) Distance from the center (fm)

FIG. 2. Normal density distribution for modes witt=0 and FIG. 4. Plot of the radial dependence of the normal density
n=1,23. distribution for the modes witk=1 andn=1,3,5.
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this analytically, let us turn to the local chirality parameter
given in the Introduction, which we rewrite here in a more
detailed form,

- A= 7990
ta%z[l_x(x)]) - \/¢*<x><1+ SRPE)
—1=X(x)=<1,

ot
)

S
)
T

=]
~
T

e
[\
I

which takes the extremal valugs= = 1 at positionsx where
#(x) is purely right(left) -handed. Becausge and y have the

Probability distribution N(X)/N

same chirality, the representation Efj7) immediately gives, 0_1— _0' 5 6 - 0 3
for the self-dual domain, Averaged chirality near the centre
ta z[l_x—x( )| = | @00 (X FIG. 5. Histogram of chirality parametét averaged over the
sd | X0 (X)]’ central region with radius 0.025 fm. Plots given in solid, dashed,

and dot-dashed lines incorporate all modes with2, n<4, and
while for the anti-self-dual case the local chirality reads  n<#6, respectively.

tar( —[1- xasd( )]) |X ol given value ofX, the smeare, among the chiralities for
| 0 (" the lowest modes. The result given in Fig. 5 was obtained for
; three sets of modes: with<=2 k=0 (solid line), n<4k=0
Moreover, due to the relation E22), (dashed ling andn=6k=0 (dot-dashed ling and all pos-
|<P “(X)| =] @go ()], |X§oK(X)| =|xog(X)|. sible values ofx and spin-color polarizations. The solid line,
formed from the lowest modes, evidently indicates two nar-
Representations Eqél8) and(19) show that row peaks withX~ +0.87. This double peaking is not un-
0< lim | g(x)| <o0 lim [x&(x)] =0, expected in view of the above-discussed chirality properties.
) ¥oo ’ Xoo Including higher modes broadens the peaks and shifts their
x7=0 x?-0 maxima. This feature as well as the above-mentioned values
which finally results in for the half-width and the density of domains is in qualitative
and quantitative agreement with recent lattice reqt9—
X (0)=—1, Xi&0)=1. 11]. It should be stressed that orbital excitatioks>Q) are

not included in the histograms because the probability den-
The local chirality parametet as a function of distance from sity for orbital modes vanishes at the center. However, there
the domain center for the lowest few modes is plotted in Figare maxima in the probability density for these modes in
3. There is a peak i at the domain center. Away from the peripheral regions of the domain. The local chiraliyis
centerX decreases due to a competition of left and rightsignificantly smaller in peak value than those for the radial
components of the eigenmodes as theomponent becomes modes at the center. Inclusion of orbital modes will broaden

nonvanishing. As is seen from Fig. 3, the chirality of thethe peaks more and build up the central plateau.
lowest mode §=1) monotonically decreases with distance

from the center. The chirality parameter for the excited
modes alternates between extremal values, the number of
alternations is correlated with the radial numiperand the The statement that signals for spontaneous chiral symme-
half-width decreases with growing The chirality parameter try breaking should be identifiable in the specific chirality
X'is zero at the boundary for all modes. Qualitatively thisproperties of fermionic eigenmodes for some “dominant”
picture does not depend on the angleThe “width” of the  gluonic background field is generally accepted. Such signals
peaks at half-maximum for the lowest£0) radial modes are now being seen on the lattice, but nevertheless there are
varies for different valuesy and is of the order of 0.12 not very many analytically explicit examples of this relation-
—0.14 fm if the values oB andR are fixed from the gluon ship available. Instanton-motivated models are certainly the
condensate and the string tension, consistent with the lattiomost advanced example of this kind.
observations of11]. We have studied the spectrum of quark modes in a do-
We can now study the chirality characteristics of the en-mainlike structured gluon background field. Such a back-
semble of fermion fields entering the partition function Eq.ground is argued to characterize the bulk average properties
(6) with all values ofa treated with equal probability con- of the vacuum in the presence of strong intermediate range
sistent with an explicit chiral symmetry. On the latti@&8],  fluctuations and is not the result of a semiclassical approxi-
peaks inX or ¢' would only be localizeable within a size mation. The spectrum exhibits definite chirality properties. In
corresponding to the lattice spacing. To take this into acparticular, there are no zero modes because of the conditions
count, we averag&(x) over a small neighborhood of the which fermion fields must satisfy on the boundaries of do-
domain center. Thus we compute the probability to find amains. Nonetheless, at the center of domains all radial modes

V. DISCUSSION AND CONCLUSIONS
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are purely chiral and the sign of their chirality depends on . 1.

whether the underlying gluon field is self-dual or anti-self- B.(X)=—5nB,X,

dual. Moreover, the sign of chirality at the center persists

over the whole domain for the lowest modes. Studying the 1

local chirality parameteK in a chirally symmetric ensemble Bij=&ijkBx, B :EsijkBjk1 Ei=Bi,= £B;,

of domains, we obtain qualitatively similar results to those

seen in lattice calculations. We stress that this comparison

with lattice results takes place at the level of an ensembleof g B —s B2

configurations not on a configuration-by-configuration basis. vk e
Insofar as these lattice results for chirality are argued af dditi the followi i d relati h

supporting the evidence for spontaneous chiral symmetré a ||on., € following conventions and refations have

breaking, the same can be said of the domain model. We no een used:

the absence of any explicit zero modes in achieving this. 1 1

Namely, the range of conflgura_tlon_s needed Fo produ_ce the ‘TWZE[?’M*%]' 2i=§sijkajk,

types of effects seen on the lattice is not restricted to instan-

tonlike fields. It suffices that a given gluon background admit

B,U.VZES,U,V(IEB(I,B: + B;LV'

strongly chiral low-lying nonzero modes. In this respect, the 0ijBij=23B;, §+:£( 1i@),

more significant property of the gluon background is the 2 B

“locking” of chromoelectric and chromomagnetic fields into 1 1

self-dual or anti-self-dual fields in relatively large but finite T e _
regions of space restricted by the hypersurfaces on which Jia= T 3 V5EiauTuv™ T 5 Ve¥ijk Tk Ysi,

pure gauge singularities are assumed to be situated. It should B
be stressed that in the thermodynamic limit, the number of  yso,5=—0as, Trv,7,YaYpY5= 48 urap,
domains is growing but their sizes stay fixed around some _
finite mean value. and in particular

The solutions obtained in this paper provide a basis for
computation of chiral condensaté ), in particular in the
presence of an explic€ P-violating 6 term. This work is in =4BP.(X,. -3 ).
progress.

a-aﬁBaB:a-ijBij+20—i4Bi4:22iBiIZBiY52i24PIEiBi

We use the following hyperspherical coordinate system in
R*:
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APPENDIX A: NVENTION . . .
co ONS which generates the following Lie algebra:
We use a chiral representation for the anti-Hermitian 1 iikik i ik ]
Dirac matrices in four Euclidean space, [Ky,Ki]=ie"Ky, [K3 K3]=iel*Ks, [Ki,K3]=0.

{ 1= 25 + Thus the ladder operators
’)/l,Ll‘yV y7A Rl ’}’M 7;41 . N i 5
Ki2=(Ki,miK1 )

0 aj 0 1 .
- _ satisfy the algebra
& (—oi 0)' v '(1 0)' e
[Ki2:Kio]=*=Ky,
¥5=7172Ysy4=diag1,1-1,-1). and correspond to raising and lowering operatorspfm,.
The angular eigenfunctions corresponding toKhe gen-
The background field is specified as erators are
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Ckmlmz(ﬂ!¢!x) 2| 2 .
¥uB X, P+, =1 —B[x?—(B;x|)%/B?]—iB [ XP.3
_ [my+m,)| —1@Mi—Mmz,my+m; i pomeTe x2
=(-1)™M M(2m) "0, (m) X expi[(my

_ 2i
m2)X+(m1+ m2)¢]! YMBﬂpoPtE— _ _|;B[Xi2_ (BiXi)lez]_iB] XP:E_ ,
@kfrfs,sfr
“ () which can be straightforwardly derived by expanding both
=2(k+1)(k—r)!(k—s)!r!s! sides over a complete set of Dirac matrices, the baglike
; e rsion e on boundary condition can be satisfied only for the trivial solu-
D (—1)" "cos nsin ] tion ®y(x)=0. The significance of this observation is that
X &y (k=r—s+n)Inl(r—n)!(s—n)! ’ for (anti-)self-dual domains, the boundary condition can only
be implemented on eigenspinafs=i 7% x+ ¢ for (positive
s=(k+my)/2, r=(k—my)/2, negative chiralityy and y. The functiony in turn is not an

eigenspinor ofys, which is natural because the boundary
wherek,m; ,m, are, respectively, the orbital angular momen-condition violates chiral symmetry. Furthermore, zero modes
tum and the two azimuthal quantum numbers, relevant for ag"® removed from the spectrum because they must be chiral,
0(4)=0(3)x 0(3) symmetry. They take the following val- but this is forbidden by boundary conditions. And, finally, if

ues: ¢ is an eigenfunction with eigenvalue thenysy is not an
eigenfunction anymore, and there is no eigenvatiein the
k k spectrum.
k=0,1,2..., my,m,= oy In order to find equations for componerig’ of the cor-
responding spinors, we use that
APPENDIX B: DIRAC EIGENVALUE PROBLEM ¢_.=P_0.®.;=(0,0N-®%, N. 0% )T,
IN A DOMAIN 1

(P+i:P+Oiq)il:(N:q)il’Ni(I)zilloio)T' (BZ)
Here we give further details of the solution of E@). ) ) )
Using the notation given in the main body of the text, we can? hyPerspherical coordinates Eq@l), the equations for

decompose the field> over a set of chiral and color-spin 1€ SPinor components redtlere and below we write down
equations for the self-dual case only

projectors,
1 4 . .n. 1, .
¢=P.®o+P:0,®+P-0 D 4, —| a3 — 5K+ ZﬁBKZZ— ZBZrZ +2B—\?
r r n
where (lower) upper signs correspond to tienti-)self-dual 3
field background field, and fieldb, must satisfy the second- XN_®%,=0,
order equation -
. B TPV ULl PN
(—D?+2{B—\?)P.0,d,=0. (B1) 3T 2T T 4
We remind the reader that implicit " is the color vector in X N+‘1’11:0,
the fundamental representation. .

If we were solving the problem for square-integrable | |1, 4 , n. 1. .1 _~
eigenfunctions in infinite volume, then all three components r_s‘?'r I r_2K1+2ﬁBKZZ ZB r*|=2B=x
®, would enter the final set of eigenfunctions. Moreover, as ) ;
is seen from Eq(B1), the equation for the componedt_; XN, ®3,=0,

would produce zero modes with chiralityl. The spectrum

in this case would be discrete and all nonzero eigenvalues of
the Dirac operator come in pairs: if is an eigenfunction
with eigenvaluen, thenysys is an eigenfunction with eigen-
value —\—quite a standard state of affairs. XN_®*,=0. (B3)

However, the baglike boundary conditions E&) we
must satisfy in the present case change the structure of eigefbe anti-self-dual case is reconstructed by the chafige
functions and eigenvalues drastically. First of all, because of>Ki, and®}—d;, ®7—dZ2. In [1], we derived the gen-
the identities eral solution for equations of this type. The requirement of
regularity at the origin then gives

1 4 n 1
3 2 B 02,2

— o, r°d,— —K7+2—BK —B“r

rg[?l' ﬁr r2 1 |n| 2z 4

—2@;—7\2]

¥,BuX,P+3, =iBXP.3 .,

k
dHMM=N_M%ZM| S +m,— A%+ 2k+22
VuBuX,P=3_=—iBXP.3_, o 2 "

upipt +

and Xckmlmz(‘PuXu 7),
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k
MM\ K2g—22\ §+m2—A2,k+ 27

-1

k
cpi"imlm?:N+zk/2e_”2M(§—m2—A2+ 2,k+ 27

Xckmlmz((»ovxvn)! XCkmlmz(()D!X!n)!

k
¥ MMe= N, % 72M (E —my—A? k+ 2,2)

where A=\/2B, z=Br?2. Thus the two independent

X Ciemymy(@2X, 7). mutually orthogonal solutions are
0
0
-+ k/2—2/2 k 2
¢ "= N_Z% M| S+ my- AP 2k+22|Chmm, | (B4)
k' 12— 2/2 k' ’ 12 ’
N, z" “e”““M ?—mz—A +2k'+2z2 Ck’mimé
0
0
- kl2n—2/2 k 2
¢ =|  N.Z%e M| 5 -my- A%K+27|Chmm, | (BS)
, k'
N_zK2e=22\ 7+m§—A’2,k’+2,z Curmym,

where a “prime” indicates that angular quantum numbersAs well as the ladder operatoks®, we also have analogous
and eigenvalues in the third line need not coincide with thos@perators for the spin,
in the fourth in order that these spinors be eigenmodes of Eq.

(14). 1
~ To obtain an explicit representation far, we use the E(i)=§(21ii22).
identity
— (X)D=0,+2R Y2 -K,P, +3-K,P_)
. For B;=Bé;3, the following identities are also useful for
. n implementing the above:
~i% 57,85, @) P g
where the action of the last term (Fh;OgI)g can be deter- A
mined via the identity 3,0.=+—0., M0, =N.3*), 3690, =N.30),
A BR n|
EY;LB/.LVXVPiO{:Ig# TPIOg,
and the action of th&-K terms via and
P_3(MW¥=(0,0-¥40T,
2~K1,22( Og(I)(=(EgKizﬂLE(+)K£2+E(’)KI2)E§ 0P,
. P_3()w=(0,0,0-V3T,
n
:TKi,2(0+(b+1_O—¢)—1)
In| P, 3MW¥=(-1v20,0,0T,

+NLSOK D +N_SIKT D

P,.>)w=(0,—¥10,0". B8

+N_SOKT P +NLSOKD . - ( ) (B8)
(B7) We thus get for the self-dual case
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0
Br

_ 7 N_Zk/Ze—Z/ZM

2 3 k 2
_FKZ §+m2—A +2k+2z2 Ckm1m2

!

, k
N, z¥ ’ZeZ’ZM(g—mé—A’ZJr 2k'+27

2 3
J __+FK2 Ck/mimé

0

(B9)

C/ m!
kmlm2 ’

1 : k'
——| —KyN.Z /Ze‘”zM(——mé—A’2+2,k’+2,z
r |)\’ 2

1 k
—KIN_Z%e 22\ 5+ m,— A2+2k+2z

in

Ckmlmz

and

0
Br
2

1

= — +
X |)\ al’

2 k
—FKS N+zk/2e‘z’2M(E—mz—Az,kwLZ,z Cemym,

!

k ! 12 1,1
S Hmy— AP K 422

1
N

Br 2 ,
Gt o+ FK?}N_ZK lzg=22)

C I
k'mlm2

0
0

!

2| 1 , k
- TKZ;N,zk PeT M| S A m— A2 K 422 (B10)
|

C/ 'm!
kmlm2

in Ckmlmz

1 k
—K2+N+zk’2ez’2M(§— m,— A% k+2z

By inspection, the boundary conditiop=—e '“¢ can only be fulfilled if terms with raising/lowering operators of the
azimuthal quantum numbers vanish since these terms contain the projRctongiile the rest of the terms entering the
boundary condition contaiN - [see Eqs(B4) and(B5)]. In particular,m;= —k/2, m,=k/2. Finally, evaluating the deriva-
tives of the confluent hypergeometric functions with the help of relation

a
M,(a,b,z)= BM(aJr 1b+172)

leads to the solutions given in the main body of the paper.
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