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Gluon propagator on coarse lattices in Laplacian gauges
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The Laplacian gauge is a nonperturbative gauge fixing that reduces to the Landau gauge in the asymptotic
limit. Like the Landau gauge, it respects Lorentz invariance, but it is free of Gribov copies; the gauge fixing is
unambiguous. In this paper we study the infrared behavior of the lattice gluon propagator in the Laplacian
gauge by using a variety of lattices with spacings fram0.125 to 0.35 fm, to explore finite volume and
discretization effects. Three different implementations of the Laplacian gauge are defined and compared. The
Laplacian gauge propagator has already been claimed to be insensitive to finite volume effects and this is tested
on lattices with large volumes.
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[. INTRODUCTION In this report we explore three implementations of the
Laplacian gauge and their application to the gluon propaga-
The lattice provides a useful tool for studying the gluontor on coarse, large lattices, using an improved action as has
propagator because it is a first principles treatment that cafpeen done for the Landau gauge in Réf]. We study the
in principle, access any momentum window. There is tre-gluon propagator in quenched QGpure SU3) Yang-Mills
mendous interest in the infrared behavior of the gluon propatheony, using anO(a®) mean-field improved gauge action.
gator as a probe into the mechanism of confinerighand To assess the effects of finite lattice spacing, we calculate the
lattice studies focusing on its ultraviolet behavior have beePropagator on a set of lattices from>:020 at=3.92 hav-
used to calculate the running QCD coupli®. Such studies INg a=0.353fm to 16x32 at B=4.60 having a
can also inform model hadron calculatiof3]. Although =0.125 fm. To assist us in observing possible finite volume
there has recently been interest in the Coulomb gduge effects, we add to this set a 1632 lattice atB=3.92 with
and generic covariant gaugfs), the usual gauge for these @=0.353, which has the very large physical size of 8.65
studies has been the Landau gauge, because itlatie) X 11.30 fnf.
Lorentz covariant gauge that is easy to implement on the The infrared behavior of the Laplacian gauge gluon
lattice, and its popularity means that results from the latticePropagator is found to be qualitatively similar to that seen in
can be easily compared to studies that use different method#le Landau gauge. As in Refdl5,16], little volume depen-
Finite volume effects and discretization errors have been exdence is seen in the propagator, but, unlike the Landau
tensively explored in lattice Landau gaufe-8]. Unfortu-  gauge, the Laplacian gauge displays strong sensitivity to lat-
nately, the lattice Landau gauge suffers from the well-knowrfice spacing, making large volume simulations difficult. We
problem of Gribov copies. Although the ambiguity originally conclude that further work involving an improved gauge fix-
noticed by Gribo[9] is not present on the lattice, the maxi- ing is desirable.
mization procedure used for gauge fixing does not uniquely
fix the gauge. There are, in general, many local maxjma for Il. THE LAPLACIAN GAUGES
the algorithm to choose from, each one corresponding to a
Gribov copy, and no local algorithm can choose the global The Laplacian gauge is a nonlinear gauge fixing that re-
maximum from among them. While various remedies havespects rotational invariance, has been seen to be smooth, yet
been proposefl0,11], they are either unsatisfactory or com- is free of the Gribov ambiguity. It reduces to the Landau
putationally very intensive. For a recent discussion of thegauge in the asymptotic limit, yet is computationally cheaper
Gribov problem in lattice gauge theory, see Hé2)]. than the Landau gauge. There is, however, more than one
An alternative approach is to operate in the so-called Laway of obtaining such a gauge fixing in SN). The three
placian gaug€13]. This gauge is “Landau like” in that it has implementations of Laplacian gauge fixing discussed(are
similar smoothness and Lorentz invariance propeffties, d%(1) gauge(QR decomposition used by Alexandroet al.
but it involves a nonlocal gauge fixing procedure that avoidsn Ref. [15], (2) ¢3(ll) gauge (maximum tracg where the
lattice Gribov copies. Laplacian gauge fixing also has the_aplacian gauge transformation is projected ontd 3y
virtue of being rather faster than Landau gauge fixing on thenaximizing its trace, also used in R¢L7], and(3) %(lll)
lattice. The gluon propagator has already been studied in thgauge (polar decomposition the original prescription de-
Laplacian gauge in Reff15,16 and the improved staggered scribed in Ref[13] and tested in Ref14]. All three versions
guark propagator in the Laplacian gauge in R&f)]. reduce to the same gauge in @Y
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The gauge transformations employed in Laplacian gaugetegra). Note that if we perform a random gauge transfor-
fixing are constructed from the lowest eigenvectors of themation G,(x) on the initial gauge field used to define our
covariant lattice Laplacian Laplacian operator, then we will have(x)*—uv’(x)®

= Gr(xzrv(xl)lz andM (x)—M'(x)=G,(x)M(x). We see that
ij S_\s s P=(M"M)"“—=P'=P and hence G(x)—G'(x)
; 2 ALY (=0 007, @) =G(x)G/(x). When this is applied to the transformed gauge
field it will be taken to exactly the same point on the gauge
where orbit as the original gauge field went to when gauge fixed.
i Thus all points on the gauge orbit will be mapped to the
AU)(xy) same single point on the gauge orbit after Laplacian gauge
- - ~ fixing and so it is a completé.e., Gribov-copy-freggauge
=> [26(x—y) 8" —U (X)) 6(x+u—y) fixing. This method was investigated fai(1) and SU2)
m [14]. 1t i;s clear that any prescription for projecting onto
_ 1ij ~ some G'(x), which preserves the proper$(x)—G’'(x)
Uuy) oyt u=xl, @ =G(x)GI(x) under an arbitrary gauge transformation
i,j=1,... N for SU(N), ands labels the eigenvalues and G:(X), will also be a Gribov-copy-free Laplacian gauge fix-

eigenvectors. Under gauge transformations of the gaugd. Every different projection method with this property is
field, an equally valid but distinct form of Laplacian gauge fixing.

The next approach was used in REE5], and we shall
Uﬂ(x)—>US(x)=G(x)UM(x)GT(er m, 3 refer to it as thes?(l) gauge. There it was noted that only
_ . _ N—1 eigenvectors are actually required. To be concrete, we
the eigenvectors of the covariant Laplacian transform as  discussN= 3. First, apply a gauge transformati@(x)* to
the first eigenvector such that
0 ()= G(X)u(X)°, (4 ?

and this property enables us to construct a gauge fixing that [GOX) (%) 1 =]lv ()| 7
is independent of our starting place in the orbit of gauge
equivalent configurations.

The three implementations discussed differ in the wayand
that the gauge transformation is constructed from the above
eigenvectors. In all cases the resulting gauge should be un-
ambiguous so long as tidth and (N+ 1)th eigenvectors are
not degenerate and the eigenvectors can be satisfactorily pro-
jected onto SUK). A complex 2<2 matrix can be uniquely \here the subscripts label the vector elements, i.e., the
projected onto S2), but this is not the case for SMj.  gigenvector—with dimension 3—is rotated so that its mag-
Here we can think of the projection method as defining itsjyde is entirely in its first element. Another gauge transfor-

own, unambiguous, Laplacian gauge fixing. _ mation G(x)? rotates the second eigenvectwfx)?, such
In the original formulation13], #=(1ll) in our notation,

the lowestN eigenvectors are required to gauge fix an
SU(N) gauge theory. These form the columns of a complex

NXN matrix, [G(X)%0(X)%],=V(v5)%+ (v3)? 9
M) =v(x)!, (5)

[G() 0 (x)']2=[G(X)'v(x)']s=0, ®

and
which is then projected onto SN by polar decomposition.

Specifically, it is possible to express in terms of a unitary
matrix and a positive Hermitian matrit =UP. This de- [G(x)?v(x)?]3=0. (10)
composition is unique iP=(MTM)¥? is invertible, which
will be true if M is nonsingular, i.e., if the eigenvectors used
to constructM are linearly independent. The gauge transfor-
mation G(x) is then obtained by factoring out the determi-
nant of the unitary matrix

This second rotation is an $2) subgroup, which does not
act onvi(x). The gauge fixing transformation is th&{x)
=G(x)°G(x)!. Compare this to QR decomposition, where a
matrix A is rewritten as the product of an orthogonal matrix

GT(x)=U(x)/defU(x)]. (6) and an upper triangular matrix. The gauge transformations
are thus like Householder transformations.
The gauge transformatid@(x) obtained in this way is used In addition, we explore a third version, ti#é(ll) gauge,

to transform the gauge field.e., the links to give the La- whereG(x) is obtained by projectin/l (x) onto SUN) by
placian gauge-fixed gauge fiel&(x) can be uniquely de- trace maximizationM (x) is again composed of the lowest
fined by this prescription except on a set of gauge orbits witteigenvectors and the trace 6i(x)M(x)" is maximized by
measure zerdwith respect to the the gauge field functional iteration over Cabibbo-Marinari subgroups.
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TABLE I. Details of the lattices used to calculate the gluon propagator. Lattice 2w was generated with the
Wilson gauge action.

Dimensions B a(fm) Volume (frf") Configurations
1 12x24 4.60 0.125 1.50<3.00 100
2i 16°% 32 4.60 0.125 2.00< 4.00 100
2w 16°% 32 5.85 0.130 2.08<4.16 80
3 168 32 4.38 0.166 2.64x5.28 100
4 12x24 4.10 0.270 3.4 6.48 100
5 10°%x 20 3.92 0.353 3.53%7.06 100
6 168 32 3.92 0.353 5.65<11.30 89

. THE GLUON PROPAGATOR IN THE LAPLACIAN
GAUGE D(o)—

1
T2 N, & Die=0, @7
a /2

We extract the gluon field from the lattice links by

where N, is the number of colors andlly the number of
——{U,(x)— ut (%) }racetess  (11) space—time dimensions. In a eovariant gabdg?) — £,/9>
2igoUo whereé, is the bare gauge fixing parameter.

On the lattice the bare propagator is measured, which is
which differs from the continuum field by terms 6¥(a?). related to the renormahzedpprgpggator by

Here we use the plaquette definition for the tadpole factor
Uo. A, is then transformed into momentum space, D(9?) =Z4(;2)Dr(q% 1?)

AL X+ pl2)= 5——

~ 1 -~ - -
ALO)=y 2 e DA (xt pl2), (12 F(0%) = Za(pia)Fr(a% 1), (18)

. whereu is the renormalization point aralthe regularization
where the available momentpare given by parameter(attice spaciny In a renormalizable theory such
as QCD, the renormalized quantities become independent of
(13) the regularization parameter in the limit where it is removed.
Z5 is then defined by some renormalization prescription,
such as the off-shell subtractigMOM) scheme, where the

L, is the number of lattice sites in. the direction. The renormalized propagator is required to satisfy
momentum space gluon propagator is then

L, L

A_271'n'M 0 Ly Ly
22

9= aL, ' *#

Dab a 2.,.2 _i
(@) =(A%L(—a)AXQ)). (14) Dr(psu%)= e (19

Note that this definition includes a factor af ? from Eq.
(11): this is the same normalization that was used in fgjf. It follows that
In the continuum, the gluon propagator has the tensor 5
structure[18] a°D(Q)|q2= u2=Z3(u; ). (20)

q,d, With covariant gauge fixing, the longitudinal part is usually
” 5%PF (g?). treated by absorbing the renormalization into the gauge pa-
rameter, £{,=23¢. We shall not discuss the renormalized
(19 propagator in this paper, but only consider relative normal-
izations for the purpose of comparing different data sets.
The ensembles studied are listed in Table I. To help us
explore lattice artifacts, some of the following figures will
distinguish data on the basis of its momentum components.
Data points that come from momenta lying entirely along a
A Mv(q)qv = 5%F (g?) (16) spatial Cartesian direction are indicated with a square while
q? points from momenta entirely in the temporal direction are
marked with a triangle. As the time direction is longer than
and use this to project out the longitudinal part. This, unfor-the spatial directions, any difference between squares and
tunately, makes it impossible to directly measure the scalatriangles may indicate that the propagator is affected by the
propagator at zero four-momentud(0). Weare, however, finite volume of the lattice. Data points from momenta en-
able to measure the full propagator, tirely on the four-diagonal are marked with a diamond. A

Dab(q) ( ql’-q”> 5abD( 2)+
g

In the Landau gauge the longitudinal part will be zero for all
g2, but this will not be the case in the Laplacian gauge. We
note that
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FIG. 1. The momentum-enhanced propagator indhé) gauge 6

for the Wilson gauge action #=16.0 (open circles data from Ref.

[15]) and the improved gauge action At 4.60 (filled triangles. 5 o Land

- : 5 L] andau .
Both lattices are 16x 32. Data have been cylinder cut. The two are & %g s Laplacian 1II
in excellent agreement. In R€B] the difference in normalization

between the Wilson and improved actions was seen te- hed8. 4 r
After taking this into account, the relative normalization here is
Z3(B=4.60)=1.07Z5(B3=6.0).

q*D(q%)
W
T

systematic separation of data points taken on the diagonal o |
from those in other directions indicates a violation of rota-
tional symmetry. E
In the continuum, the scalar function is rotationally in- .
variant. Although the hypercubic lattice break$4Dinvari-
ance, it does preserve the subgroup of discrete rotatichs Z
In our case, this symmetry is reduced tB¥as one dimen- g (GeV)
sion will be twice as long as the other three in each of the
cases studied. We exploit this discrete rotational symmetry to FIG. 2. Comparison of the gluon propagator in the Landau and
improve statistics through (&) averaging6,8]. #?(Il) gauges for lattice 2i(top) and 3 (bottom (16°x32, im-
As has become standard practice in lattice gluon propagaoved action,3=4.60 and 4.38, respectivelyData have been
tor studies, we select our lattice momentum in accordanceylinder cut. The relative normalizations aZe(B=4.60)=1.075
with the tree-level behavior of the action. With this improved @ndZg(8=4.38)=1.20.

action,

momentum-enhanced propagatqfD(q). We define the

2 q.a| 1 q,a relative Z; renormalization constant

qﬂz—\/sinz(q% +§sin4<q%); (21
a Zs(Landay
o . . Ip=g o, (22)

this is discussed in more detail in RE8)]. Z3(Laplacian

IV. RESULTS and choose to perform this matching @t=4.0 GeV. The

purpose of this is simply to make tlibare gluon propaga-
tors agree in the ultraviolet for easy comparison between the
We start by checking that our finest lattice, at gauges.
=0.125 fm, is “fine enough,” by comparing the propagator = We show the gluon propagator in the both Landau and
with that of Alexandrouet al. [15]. Figure 1 shows the #2(ll) gauges in Fig. 2. In this figure, the data are for the
momentum-enhanced propagatdD (q?) in #°(1) gauge for  largest finer lattices, 2i and 3. The data have been cylinder
ensemble 2iimproved actioh compared to the data from cut[6,8] to make comparison easier. As was seen in Refs.
Ref.[15] for the Wilson action a8=6.0[19]. The two are in  [15,16], the gluon propagator in the Laplacian gauge looks
excellent agreement. very similar to the Landau gauge case, matching up in the
As the gluon propagator has been extensively studied inltraviolet, but with a somewhat lower infrared hump.
Landau gauge, it makes sense to understand the Laplacian Having compared the gluon propagator in taé(ll)
gauge propagator by comparing it to that in the Landawauge to the Landau gauge, we now compare it to other
gauge. In accordance with custom, we will discuss th@mplementations of the Laplacian gauge. We expect each

A. Finer lattices
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5 T T 2.5 T T
f%z
4 Laplacian I | |
4 r g s Laplacian II N 2.0 %
8
~3 2 el 1.5 } &§ ,
= M \E i
g 5 %o
m@g B &M | > 10 b %@Q |
g
2
05 4
1 — —
0.0 I I \ i \ !
0 ! I ! ! ! 1 ! 0 1 2 3 4 5 6
0 1 3 4 5 7 8 q (GeV)

q (GeV)

FIG. 3. The momentum-enhanced propagator from ensemble 2i 1.0 I I
(B=4.60,16x 32, improved actionin the 3%(1) and#3(ll) gauges.
Data have been cylinder cut. The two gauges produce nearly iden-
tical gluon propagators, up to a small relative normalizati@y (
=0.98).

~ 086 |
implementation to provide a well-defined, unambiguous, but &
different gauge. As we saw when comparing the Landau and=, 0.4
#%(Il) gauges, there is some difference in normalization be- '

tween the propagators in the different gauges, so we define, 3
again atu=4.0 GeV, 0.2 |
Z3(5%(1)) 0.0 ' ' ‘ ‘ w
523—2- (23) 0 1 2 3 4 5 6
Z3(9%(1)) q (GeV)

; ; G. 4. Comparison of the longitudinal part of the gluon propa-
In Fig. 3, the momentum-enhanced propagator is plotted FIC : .
in the 42(I) and #2(Il) gauges for one of the fine lattices gator in thed?(l) (above and #?(ll) (below) gauges for lattice 2i

. . . o (,8=4.60,16‘><32, improved action There have been no data cuts
(ensemble 2i There is a small relative normalizatioZ { S ) .
—0.98). but otherwise there is no sianificant difference be or renormalization. Note that the vertical scales are different, so the
=0.98), bu rwis reis signiti ! Tongitudinal component is smaller in th#(ll) gauge than in the

tv;/een them in either the ultraviolet or the Infrar@a(l) and #?(l). The data have been sorted into points where all the momen-
*(Il) also show comparable performance in terms of rota+m js in the temporal direction, spatial Cartesian direction, four-
tional symmetry. ) diagonal, and the rest. The separation of temporal pdingngles

One difference between the Landau and Laplacian gaugggm spatial Cartesian pointsquaressuggests that this part of the
is that, in the former, the gluon propagator has no longitudigluon propagator has stronger volume dependence instti)
nal component. We see in Fig. 4 that the longitudinal part ofgauge than in the?(l) gauge. In a standard covariant gauge this
the propagator does indeed vanish in the ultraviolet, which isvould be a constarg (zero, for the Landau gauge
consistent with approaching the Landau gauge, but gains
strength in the infrared. Comparing the&(l) and d3(ll)
gauges we note that, while the transverse parts look alike, the When comparing results from ensembles with different
longitudinal behavior is quite distinct. The separation ofsimulation parameters we need to consider three possible ef-
squares and triangles in t#é(1l) gauge suggests th&t(q?) fects: (1) The dependence 5 on the lattice spacing2)
has stronger volume dependence in that gauge. For a coratrors due to the finite lattice spacing, especially when prob-
parison between the Landaif(l), and#*(ll) gauges for the ing momenta near the cutoff, ar{@) finite volume effects,
guark propagator, see R¢f.7]. especially in the infrared.

The #%(lll) gauge works badly, failing even to reproduce  In the Landau gauge, the dependence of the gluon propa-
the correct asymptotic behavior. Figure 5 shows data frongator renormalizatio@;(a) on the cutoff is very weakZ; is
only 76 configurations as the gauge fixing failed entirely onapproximately constant with respect to the lattice spacing
four of them. In SUW3), the polar decomposition involves [8]. In this case it is easy to compare propagators produced
calculating determinants which, to our numerical precisionon a wide range of lattice spacings. In Fig. 6 we plot the
can become vanishingly small, in some cases even turninmiomentum-enhanced propagator on four lattices, which have
negative at some sites. T@&(1ll) gauge was also seen to be a=0.125, 0.166, 0.270, and 0.353 fm. We see a very differ-
a very poor gauge for studying the quark propagétai. ent situation from the one observed in the Landau g48ge

B. Coarser lattices
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FIG. 5. Momentum-enhanced propagator from 76 configurations FIG. 7. The mczamentum-enhanced propagator from ensembles 3,
in the 42(1Il) gauge from lattice 1w 3=5.85,16x 32, Wilson ac- % and_5 in theg<(Il) gauge. Data have been cylinder cut and
tion). There have been no data cuts. This is clearly a very bad gaugéPrmalized at 0.6 GeV.
fixing.

Also, as the lattice spacing is increased, the relative nor-

the propagators appear to agree in the the deep infrared, i?alization between the gluon propagators in #iel) and

diverge as the momentum increases. The difference is sm Il:
for the two finest lattices—and nonexistent in Fig. 1—but
quite dramatic for the coarsest.

The correct way to compare the propagators is to norma blotted in thed?(l) and 33(Il) gauges for ensembles 4—6 in
ize them at some common, “safe” momentum, i.e., one

- : ; - Fig. 8, using the same normalization determined for the
where we expect finite lattice spacing and finite volume ef'transverse arts. Interestingly, the longitudinal part appears
fects to both be small. We chooge=0.6 GeV and show the parts. gy, 9 X PP

results in Fig. 7. Multiplying the propagator fiy? in con- to be more affected by the finite volume of the lattice than

2 2
structing the momentum-enhanced propagafib(q?) re- the transverse part. In th#(Il) gaugeq?F(g?) may return

veals a rapid divergence in the ultraviolet. Yet normalizin atto zero agy’—0, while in thed*(l) gauge a small, nonzero
P 9 : 98 alue appears likely; however, more work is required.

higher momenta reS.U'FS in da_ta sets that agree nowhere ex- In previous studie§l5,16 it was observed that the infra-
cept at the scalg. It is interesting that the propagators from 4
red gluon propagator saturates at a small volumd fm®).

Eg\s,grgﬁlisﬂ 5 d?f?edre%t \r,1vcr>]rlr(i1halihzaa\t/iir1t2e same lattice SPACINGy turther explore this, we also study the propagator at zero
gntly ' four-momentum. As previously discussed, only the full
propagatorD(0) can be calculated at zero four-momentum.

() gauges slowly diverges from 1. As was seen above
ig. 4), these two Laplacian gauges produce gluon propaga-
tors with rather different longitudinal components. The lon-

Igitudinal part of the gluon propagator, multiplied kb, is

s In order to compare results on all of our lattices we normal-
ize the data at 1 GeV. This represents a compromise and is
61 - iy certainly not ideal for all the data sets; hence there is some
= 4.10 systematic error. These results are shown in Table II.
51 = 392 ] If we restrict ourselves to ensembles 1-5, we see that,
ca L | given the uncertainties discussed, the sensitivityP6d) to
= the volume is indeed small. We also see the trend, already
@3 B . | noted above, for the?(l) and #%(Il) gauges to become more
ammgg%;m different as the lattice spacing increases, another example of
o L #Re88000e0| the discretization sensitivity of the Laplacian gauge. In the
case of the very large lattice, ensemble 6, this sensitivity has
1+, s become extreme.
& We examine this in another way through the transverse
0 ' ‘ : ‘ : ropagator, shown in Fig. 9 for ensembles 2i and 3—6. The
propag g
0 1 E (Sev) 4 5 6 data here correspond to Table II, having been normalized at 1
9 GeV. The propagators are consistent down to low momenta,
FIG. 6. The momentum-enhanced propagator in &R€ll) ~200 MeV, where we strike trouble. Not only is there a

gauge ai3=4.60, 4.38, 4.10, and 3.92nsembles 2i, 3, 4, and.5 Spread between the data sets, but for ensemble 6 the point
Data have been cylinder cut. This figure shows the large sensitivitffom purely temporal momentum is much lower than that
of Z, to lattice spacing in the Laplacian gauge, quite unlike thefrom spatial momentum. The situation is the same in the
Landau gauge. #(l) gauge.
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3.0 T T 18
16 - f
25 + % X g =410 - %§ o 8 =460
1 14 « B =438 |
T 3 g = 3.92, small § a 5 = 4.10
2.0 - fﬁ 1 o g = 3.92, large — 12 F ‘ * g = 3.92 _
s £ t i; = B = 3.92, big
= <10 - i
T 18 : % i\g
o QN 8 r B
1.0 6 L 4
0.5 47 1
2 _ —
0.0 | | »
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 c
0 1 2 3 4
q (GeV)
g (GeV)
12 l l FIG. 9. Comparison of the transverse part of the gluon propa-
gator in thed?(ll) gauge for ensembles 2i, 3—6. Data have been
1.0 } x g =410 . cylinder cut. The propagators have been normalized at 1 GeV.

. 8 = 3.92, small
B = 3.92, large

At sufficiently small lattice spacing, the transverse part of

0.8 - g ‘

@ | § i the gluon propagator is very similar in the Laplacian gauge
& 0.6 Sf to that in the Landau gauge. The Laplacian gauge, however,

= 04 - 5‘ | exhibits great sensitivity to the lattice spacing, making re-

’ g sults gained from coarse lattices difficult to compare with

0z - ? | those from finer lattices. This is very different from the situ-
ation in the Landau gauge. By comparing the coarse data sets

0.0 ! | | ! | | at sufficiently low momentum, however, we have seen a

00 05 10 15 20 25 30 35 great deal of consistency. In the deep infrared, the results
q (GeV) from the largest lattice are difficult to reconcile with the

other data. Excluding that lattice, the total propagator shows
little sign of volume dependence. The most likely explana-
tion of the (unimproved Laplacian gauge results seen here is
éhat on our coarsest lattice6mproved lattices withg
=3.92, 4.10, and to some extent evgr 4.38), the lattice
artifacts are much more severe than in the improved Landau
gauge case. On the very coaBe 3.92 and 4.10 lattices, it
seems very likely that finite volume and discretization errors

We have made a detailed study of the gluon propagator oare actually being coupled together by the Laplacian gauge
coarse lattices with an improved action in Laplacian gaugedixing. By implementing an improved Laplacian gauge fixing
We have described and tested three implementations of then these lattices we anticipate that these errors will decouple
Laplacian gauge. Thé?(l) (QR decompositionand 92(1l) on these lattices, and we will be in a better position to esti-
(maximum tracg gauges produce similar results for the sca-mate the infinite volume and continuum limits of the differ-
lar transverse gluon propagator, but rather different longituent implementations of Laplacian gauge fixing. Further stud-
dinal components. Thé?(lll) gauge for numerical reasons ies, including an improved Laplacian gauge fixing, will
works very poorly in SU3). hopefully clarify these issues.

FIG. 8. Comparison of the longitudinal part of the gluon propa-
gator in thes?(1) (top) anda?(ll) (bottom gauges for ensembles 4,
5, and 6. Data have been cylinder cut. The small and l@ge
=3.92 lattices give diverging results even at large momenta in th
#%(ll) gauge.

V. CONCLUSIONS

TABLE Il. The full propagator at zero four-momentum in th&l) and #%(ll) gauges, normalized at 1
GeV for comparison.

Dimensions B a (fm) Volume (frrf") D(0)—-d%(1) D(0)-3%(I1)
1 12x24 4.60 0.125 10.1 16(6) 16.34)
2i 16°x 32 4.60 0.125 32.0 17(%) 16.04)
3 16°x 32 4.38 0.166 99.5 16(8) 14.1(3)
4 1% 24 4.10 0.270 220 19(8) 14.62)
5 1% 20 3.92 0.353 300 20(9) 14.64)
6 16°x 32 3.92 0.353 2040 53) 35(2)
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