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The Laplacian gauge is a nonperturbative gauge fixing that reduces to the Landau gauge in the asymptotic
limit. Like the Landau gauge, it respects Lorentz invariance, but it is free of Gribov copies; the gauge fixing is
unambiguous. In this paper we study the infrared behavior of the lattice gluon propagator in the Laplacian
gauge by using a variety of lattices with spacings froma50.125 to 0.35 fm, to explore finite volume and
discretization effects. Three different implementations of the Laplacian gauge are defined and compared. The
Laplacian gauge propagator has already been claimed to be insensitive to finite volume effects and this is tested
on lattices with large volumes.
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I. INTRODUCTION

The lattice provides a useful tool for studying the glu
propagator because it is a first principles treatment that
in principle, access any momentum window. There is t
mendous interest in the infrared behavior of the gluon pro
gator as a probe into the mechanism of confinement@1# and
lattice studies focusing on its ultraviolet behavior have be
used to calculate the running QCD coupling@2#. Such studies
can also inform model hadron calculations@3#. Although
there has recently been interest in the Coulomb gauge@4#
and generic covariant gauges@5#, the usual gauge for thes
studies has been the Landau gauge, because it is a~lattice!
Lorentz covariant gauge that is easy to implement on
lattice, and its popularity means that results from the latt
can be easily compared to studies that use different meth
Finite volume effects and discretization errors have been
tensively explored in lattice Landau gauge@6–8#. Unfortu-
nately, the lattice Landau gauge suffers from the well-kno
problem of Gribov copies. Although the ambiguity original
noticed by Gribov@9# is not present on the lattice, the max
mization procedure used for gauge fixing does not uniqu
fix the gauge. There are, in general, many local maxima
the algorithm to choose from, each one corresponding
Gribov copy, and no local algorithm can choose the glo
maximum from among them. While various remedies ha
been proposed@10,11#, they are either unsatisfactory or com
putationally very intensive. For a recent discussion of
Gribov problem in lattice gauge theory, see Ref.@12#.

An alternative approach is to operate in the so-called
placian gauge@13#. This gauge is ‘‘Landau like’’ in that it has
similar smoothness and Lorentz invariance properties@14#,
but it involves a nonlocal gauge fixing procedure that avo
lattice Gribov copies. Laplacian gauge fixing also has
virtue of being rather faster than Landau gauge fixing on
lattice. The gluon propagator has already been studied in
Laplacian gauge in Refs.@15,16# and the improved staggere
quark propagator in the Laplacian gauge in Ref.@17#.
0556-2821/2002/66~7!/074505~8!/$20.00 66 0745
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In this report we explore three implementations of t
Laplacian gauge and their application to the gluon propa
tor on coarse, large lattices, using an improved action as
been done for the Landau gauge in Ref.@8#. We study the
gluon propagator in quenched QCD@pure SU~3! Yang-Mills
theory#, using anO(a2) mean-field improved gauge action
To assess the effects of finite lattice spacing, we calculate
propagator on a set of lattices from 103320 atb53.92 hav-
ing a50.353 fm to 163332 at b54.60 having a
50.125 fm. To assist us in observing possible finite volu
effects, we add to this set a 163332 lattice atb53.92 with
a50.353, which has the very large physical size of 5.63

311.30 fm4.
The infrared behavior of the Laplacian gauge glu

propagator is found to be qualitatively similar to that seen
the Landau gauge. As in Refs.@15,16#, little volume depen-
dence is seen in the propagator, but, unlike the Lan
gauge, the Laplacian gauge displays strong sensitivity to
tice spacing, making large volume simulations difficult. W
conclude that further work involving an improved gauge fi
ing is desirable.

II. THE LAPLACIAN GAUGES

The Laplacian gauge is a nonlinear gauge fixing that
spects rotational invariance, has been seen to be smooth
is free of the Gribov ambiguity. It reduces to the Land
gauge in the asymptotic limit, yet is computationally cheap
than the Landau gauge. There is, however, more than
way of obtaining such a gauge fixing in SU(N). The three
implementations of Laplacian gauge fixing discussed are~1!
]2(I) gauge~QR decomposition!, used by Alexandrouet al.
in Ref. @15#, ~2! ]2(II) gauge ~maximum trace!, where the
Laplacian gauge transformation is projected onto SU~3! by
maximizing its trace, also used in Ref.@17#, and~3! ]2(III)
gauge ~polar decomposition!, the original prescription de-
scribed in Ref.@13# and tested in Ref.@14#. All three versions
reduce to the same gauge in SU~2!.
©2002 The American Physical Society05-1
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BOWMAN, HELLER, LEINWEBER, AND WILLIAMS PHYSICAL REVIEW D 66, 074505 ~2002!
The gauge transformations employed in Laplacian ga
fixing are constructed from the lowest eigenvectors of
covariant lattice Laplacian

(
y

(
j

D~U !~x,y! i j v~y! j
s5lsv~x! i

s , ~1!

where

D~U !~x,y! i j

[(
m

@2d~x2y!d i j 2Um~x! i j d~x1m̂2y!

2Um~y!†i j d~y1m̂2x!#, ~2!

i , j 51, . . . ,N for SU(N), ands labels the eigenvalues an
eigenvectors. Under gauge transformations of the ga
field,

Um~x!→Um
G~x!5G~x!Um~x!G†~x1m!, ~3!

the eigenvectors of the covariant Laplacian transform as

v~x!s→G~x!v~x!s, ~4!

and this property enables us to construct a gauge fixing
is independent of our starting place in the orbit of gau
equivalent configurations.

The three implementations discussed differ in the w
that the gauge transformation is constructed from the ab
eigenvectors. In all cases the resulting gauge should be
ambiguous so long as theNth and (N11)th eigenvectors are
not degenerate and the eigenvectors can be satisfactorily
jected onto SU(N). A complex 232 matrix can be uniquely
projected onto SU~2!, but this is not the case for SU(N).
Here we can think of the projection method as defining
own, unambiguous, Laplacian gauge fixing.

In the original formulation@13#, ]2(III) in our notation,
the lowest N eigenvectors are required to gauge fix
SU(N) gauge theory. These form the columns of a comp
N3N matrix,

M ~x! i j [v~x! i
j , ~5!

which is then projected onto SU(N) by polar decomposition
Specifically, it is possible to expressM in terms of a unitary
matrix and a positive Hermitian matrix:M5UP. This de-
composition is unique ifP5(M†M )1/2 is invertible, which
will be true if M is nonsingular, i.e., if the eigenvectors us
to constructM are linearly independent. The gauge transf
mation G(x) is then obtained by factoring out the determ
nant of the unitary matrix

G†~x!5U~x!/det@U~x!#. ~6!

The gauge transformationG(x) obtained in this way is used
to transform the gauge field~i.e., the links! to give the La-
placian gauge-fixed gauge field.G(x) can be uniquely de-
fined by this prescription except on a set of gauge orbits w
measure zero~with respect to the the gauge field function
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integral!. Note that if we perform a random gauge transfo
mation Gr(x) on the initial gauge field used to define o
Laplacian operator, then we will havev(x)s→v8(x)s

5Gr(x)v(x)s andM (x)→M 8(x)5Gr(x)M (x). We see that
P[(M†M )1/2→P85P and hence G(x)→G8(x)
5G(x)Gr

†(x). When this is applied to the transformed gau
field it will be taken to exactly the same point on the gau
orbit as the original gauge field went to when gauge fix
Thus all points on the gauge orbit will be mapped to t
same single point on the gauge orbit after Laplacian ga
fixing and so it is a complete~i.e., Gribov-copy-free! gauge
fixing. This method was investigated forU(1) and SU~2!
@14#. It is clear that any prescription for projectingM onto
some G†(x), which preserves the propertyG(x)→G8(x)
5G(x)Gr

†(x) under an arbitrary gauge transformatio
Gr(x), will also be a Gribov-copy-free Laplacian gauge fi
ing. Every different projection method with this property
an equally valid but distinct form of Laplacian gauge fixin

The next approach was used in Ref.@15#, and we shall
refer to it as the]2(I) gauge. There it was noted that on
N21 eigenvectors are actually required. To be concrete,
discussN53. First, apply a gauge transformationG(x)1 to
the first eigenvector such that

@G~x!1v~x!1#15iv~x!1i ~7!

and

@G~x!1v~x!1#25@G~x!1v~x!1#350, ~8!

where the subscripts label the vector elements, i.e.,
eigenvector—with dimension 3—is rotated so that its ma
nitude is entirely in its first element. Another gauge transf
mation G(x)2 rotates the second eigenvectorv(x)2, such
that

@G~x!2v~x!2#25A~v2
2!21~v3

2!2 ~9!

and

@G~x!2v~x!2#350. ~10!

This second rotation is an SU~2! subgroup, which does no
act onv1

2(x). The gauge fixing transformation is thenG(x)
5G(x)2G(x)1. Compare this to QR decomposition, where
matrix A is rewritten as the product of an orthogonal mat
and an upper triangular matrix. The gauge transformati
are thus like Householder transformations.

In addition, we explore a third version, the]2(II) gauge,
whereG(x) is obtained by projectingM (x) onto SU(N) by
trace maximization.M (x) is again composed of theN lowest
eigenvectors and the trace ofG(x)M (x)† is maximized by
iteration over Cabibbo-Marinari subgroups.
5-2
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TABLE I. Details of the lattices used to calculate the gluon propagator. Lattice 2w was generated w
Wilson gauge action.

Dimensions b a(fm) Volume (fm4) Configurations

1 123324 4.60 0.125 1.50333.00 100
2i 163332 4.60 0.125 2.00334.00 100
2w 163332 5.85 0.130 2.08334.16 80
3 163332 4.38 0.166 2.64335.28 100
4 123324 4.10 0.270 3.24336.48 100
5 103320 3.92 0.353 3.53337.06 100
6 163332 3.92 0.353 5.653311.30 89
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III. THE GLUON PROPAGATOR IN THE LAPLACIAN
GAUGE

We extract the gluon field from the lattice links by

Am~x1m̂/2!5
1

2ig0u0
$Um~x!2Um

† ~x!% traceless, ~11!

which differs from the continuum field by terms ofO(a2).
Here we use the plaquette definition for the tadpole fac
u0 . Am is then transformed into momentum space,

Am~ q̂!5
1

V (
x

e2 i q̂•(x1m̂/2)Am~x1m̂/2!, ~12!

where the available momentaq̂ are given by

q̂m5
2pnm

aLm
, nmPS 2

Lm

2
,
Lm

2 G . ~13!

Lm is the number of lattice sites in them direction. The
momentum space gluon propagator is then

Dmn
ab~ q̂!5^Am

a ~2q̂!An
b~ q̂!&. ~14!

Note that this definition includes a factor ofu0
22 from Eq.

~11!; this is the same normalization that was used in Ref.@8#.
In the continuum, the gluon propagator has the ten

structure@18#

Dmn
ab~q!5S dmn2

qmqn

q2 D dabD~q2!1
qmqn

q2
dabF~q2!.

~15!

In the Landau gauge the longitudinal part will be zero for
q2, but this will not be the case in the Laplacian gauge.
note that

qmDmn
ab~q!qn

q2
5dabF~q2! ~16!

and use this to project out the longitudinal part. This, unf
tunately, makes it impossible to directly measure the sc
propagator at zero four-momentum,D(0). Weare, however,
able to measure the full propagator,
07450
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D~0!5
1

Nc
221

(
a

1

Nd
(
m

Dmm
aa ~q250!, ~17!

where Nc is the number of colors andNd the number of
space-time dimensions. In a covariant gaugeF(q2)→j0 /q2

wherej0 is the bare gauge fixing parameter.
On the lattice the bare propagator is measured, whic

related to the renormalized propagator by

D~q2!5Z3~m;a!DR~q2;m2!,

F~q2!5Z3~m;a!FR~q2;m2!, ~18!

wherem is the renormalization point anda the regularization
parameter~lattice spacing!. In a renormalizable theory suc
as QCD, the renormalized quantities become independen
the regularization parameter in the limit where it is remove
Z3 is then defined by some renormalization prescriptio
such as the off-shell subtraction~MOM! scheme, where the
renormalized propagator is required to satisfy

DR~m2;m2!5
1

m2
. ~19!

It follows that

q2D~q!uq25m25Z3~m;a!. ~20!

With covariant gauge fixing, the longitudinal part is usua
treated by absorbing the renormalization into the gauge
rameter,j05Z3j. We shall not discuss the renormalize
propagator in this paper, but only consider relative norm
izations for the purpose of comparing different data sets.

The ensembles studied are listed in Table I. To help
explore lattice artifacts, some of the following figures w
distinguish data on the basis of its momentum compone
Data points that come from momenta lying entirely along
spatial Cartesian direction are indicated with a square w
points from momenta entirely in the temporal direction a
marked with a triangle. As the time direction is longer th
the spatial directions, any difference between squares
triangles may indicate that the propagator is affected by
finite volume of the lattice. Data points from momenta e
tirely on the four-diagonal are marked with a diamond.
5-3
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BOWMAN, HELLER, LEINWEBER, AND WILLIAMS PHYSICAL REVIEW D 66, 074505 ~2002!
systematic separation of data points taken on the diag
from those in other directions indicates a violation of ro
tional symmetry.

In the continuum, the scalar function is rotationally i
variant. Although the hypercubic lattice breaks O~4! invari-
ance, it does preserve the subgroup of discrete rotations Z~4!.
In our case, this symmetry is reduced to Z~3! as one dimen-
sion will be twice as long as the other three in each of
cases studied. We exploit this discrete rotational symmetr
improve statistics through Z~3! averaging@6,8#.

As has become standard practice in lattice gluon propa
tor studies, we select our lattice momentum in accorda
with the tree-level behavior of the action. With this improv
action,

qm5
2

a
Asin2S q̂ma

2
D 1

1

3
sin4S q̂ma

2
D ; ~21!

this is discussed in more detail in Ref.@8#.

IV. RESULTS

A. Finer lattices

We start by checking that our finest lattice, ata
50.125 fm, is ‘‘fine enough,’’ by comparing the propagat
with that of Alexandrouet al. @15#. Figure 1 shows the
momentum-enhanced propagatorq2D(q2) in ]2(I) gauge for
ensemble 2i~improved action! compared to the data from
Ref. @15# for the Wilson action atb56.0 @19#. The two are in
excellent agreement.

As the gluon propagator has been extensively studie
Landau gauge, it makes sense to understand the Lapla
gauge propagator by comparing it to that in the Land
gauge. In accordance with custom, we will discuss

FIG. 1. The momentum-enhanced propagator in the]2(I) gauge
for the Wilson gauge action atb56.0 ~open circles data from Ref
@15#! and the improved gauge action atb54.60 ~filled triangles!.
Both lattices are 163332. Data have been cylinder cut. The two a
in excellent agreement. In Ref.@8# the difference in normalization
between the Wilson and improved actions was seen to be;1.08.
After taking this into account, the relative normalization here
Z3(b54.60)51.07Z3(b56.0).
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momentum-enhanced propagatorq2D(q). We define the
relativeZ3 renormalization constant

ZR[
Z3~Landau!

Z3~Laplacian!
, ~22!

and choose to perform this matching atm54.0 GeV. The
purpose of this is simply to make the~bare! gluon propaga-
tors agree in the ultraviolet for easy comparison between
gauges.

We show the gluon propagator in the both Landau a
]2(II) gauges in Fig. 2. In this figure, the data are for t
largest finer lattices, 2i and 3. The data have been cylin
cut @6,8# to make comparison easier. As was seen in R
@15,16#, the gluon propagator in the Laplacian gauge loo
very similar to the Landau gauge case, matching up in
ultraviolet, but with a somewhat lower infrared hump.

Having compared the gluon propagator in the]2(II)
gauge to the Landau gauge, we now compare it to ot
implementations of the Laplacian gauge. We expect e

FIG. 2. Comparison of the gluon propagator in the Landau a
]2(II) gauges for lattice 2i~top! and 3 ~bottom! (163332, im-
proved action,b54.60 and 4.38, respectively!. Data have been
cylinder cut. The relative normalizations areZR(b54.60)51.075
andZR(b54.38)51.20.
5-4
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GLUON PROPAGATOR ON COARSE LATTICES IN . . . PHYSICAL REVIEW D66, 074505 ~2002!
implementation to provide a well-defined, unambiguous,
different gauge. As we saw when comparing the Landau
]2(II) gauges, there is some difference in normalization
tween the propagators in the different gauges, so we de
again atm54.0 GeV,

Z]5
Z3„]

2~ II !…

Z3„]
2~ I!…

. ~23!

In Fig. 3, the momentum-enhanced propagator is plo
in the ]2(I) and ]2(II) gauges for one of the fine lattice
~ensemble 2i!. There is a small relative normalization (Z]

50.98), but otherwise there is no significant difference
tween them in either the ultraviolet or the infrared.]2(I) and
]2(II) also show comparable performance in terms of ro
tional symmetry.

One difference between the Landau and Laplacian gau
is that, in the former, the gluon propagator has no longitu
nal component. We see in Fig. 4 that the longitudinal par
the propagator does indeed vanish in the ultraviolet, whic
consistent with approaching the Landau gauge, but g
strength in the infrared. Comparing the]2(I) and ]2(II)
gauges we note that, while the transverse parts look alike
longitudinal behavior is quite distinct. The separation
squares and triangles in the]2(II) gauge suggests thatF(q2)
has stronger volume dependence in that gauge. For a c
parison between the Landau,]2(I), and]2(II) gauges for the
quark propagator, see Ref.@17#.

The ]2(III) gauge works badly, failing even to reproduc
the correct asymptotic behavior. Figure 5 shows data fr
only 76 configurations as the gauge fixing failed entirely
four of them. In SU~3!, the polar decomposition involve
calculating determinants which, to our numerical precisi
can become vanishingly small, in some cases even tur
negative at some sites. The]2(III) gauge was also seen to b
a very poor gauge for studying the quark propagator@17#.

FIG. 3. The momentum-enhanced propagator from ensemb
(b54.60,163332, improved action! in the]2(I) and]2(II) gauges.
Data have been cylinder cut. The two gauges produce nearly i
tical gluon propagators, up to a small relative normalization (Z]

50.98).
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B. Coarser lattices

When comparing results from ensembles with differe
simulation parameters we need to consider three possible
fects: ~1! The dependence ofZ3 on the lattice spacing,~2!
errors due to the finite lattice spacing, especially when pr
ing momenta near the cutoff, and~3! finite volume effects,
especially in the infrared.

In the Landau gauge, the dependence of the gluon pro
gator renormalizationZ3(a) on the cutoff is very weak.Z3 is
approximately constant with respect to the lattice spac
@8#. In this case it is easy to compare propagators produ
on a wide range of lattice spacings. In Fig. 6 we plot t
momentum-enhanced propagator on four lattices, which h
a50.125, 0.166, 0.270, and 0.353 fm. We see a very diff
ent situation from the one observed in the Landau gauge@8#:

2i

n-

FIG. 4. Comparison of the longitudinal part of the gluon prop
gator in the]2(I) ~above! and ]2(II) ~below! gauges for lattice 2i
(b54.60,163332, improved action!. There have been no data cu
or renormalization. Note that the vertical scales are different, so
longitudinal component is smaller in the]2(II) gauge than in the
]2(I). The data have been sorted into points where all the mom
tum is in the temporal direction, spatial Cartesian direction, fo
diagonal, and the rest. The separation of temporal points~triangles!
from spatial Cartesian points~squares! suggests that this part of th
gluon propagator has stronger volume dependence in the]2(II)
gauge than in the]2(I) gauge. In a standard covariant gauge th
would be a constantj ~zero, for the Landau gauge!.
5-5
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BOWMAN, HELLER, LEINWEBER, AND WILLIAMS PHYSICAL REVIEW D 66, 074505 ~2002!
the propagators appear to agree in the the deep infrared
diverge as the momentum increases. The difference is s
for the two finest lattices—and nonexistent in Fig. 1—b
quite dramatic for the coarsest.

The correct way to compare the propagators is to norm
ize them at some common, ‘‘safe’’ momentum, i.e., o
where we expect finite lattice spacing and finite volume
fects to both be small. We choosem50.6 GeV and show the
results in Fig. 7. Multiplying the propagator byq2 in con-
structing the momentum-enhanced propagatorq2D(q2) re-
veals a rapid divergence in the ultraviolet. Yet normalizing
higher momenta results in data sets that agree nowhere
cept at the scalem. It is interesting that the propagators fro
ensembles 5 and 6, which have the same lattice spac
have slightly different normalizations.

FIG. 5. Momentum-enhanced propagator from 76 configurati
in the ]2(III) gauge from lattice 1w (b55.85,163332, Wilson ac-
tion!. There have been no data cuts. This is clearly a very bad ga
fixing.

FIG. 6. The momentum-enhanced propagator in the]2(II)
gauge atb54.60, 4.38, 4.10, and 3.92~ensembles 2i, 3, 4, and 5!.
Data have been cylinder cut. This figure shows the large sensit
of Z3 to lattice spacing in the Laplacian gauge, quite unlike
Landau gauge.
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Also, as the lattice spacing is increased, the relative n
malization between the gluon propagators in the]2(I) and
]2(II) gauges slowly diverges from 1. As was seen abo
~Fig. 4!, these two Laplacian gauges produce gluon propa
tors with rather different longitudinal components. The lo
gitudinal part of the gluon propagator, multiplied byq2, is
plotted in the]2(I) and ]2(II) gauges for ensembles 4–6 i
Fig. 8, using the same normalization determined for
transverse parts. Interestingly, the longitudinal part appe
to be more affected by the finite volume of the lattice th
the transverse part. In the]2(II) gaugeq2F(q2) may return
to zero asq2→0, while in the]2(I) gauge a small, nonzero
value appears likely; however, more work is required.

In previous studies@15,16# it was observed that the infra
red gluon propagator saturates at a small volume (;1fm4).
To further explore this, we also study the propagator at z
four-momentum. As previously discussed, only the f
propagatorD(0) can be calculated at zero four-momentu
In order to compare results on all of our lattices we norm
ize the data at 1 GeV. This represents a compromise an
certainly not ideal for all the data sets; hence there is so
systematic error. These results are shown in Table II.

If we restrict ourselves to ensembles 1–5, we see t
given the uncertainties discussed, the sensitivity ofD(0) to
the volume is indeed small. We also see the trend, alre
noted above, for the]2(I) and]2(II) gauges to become mor
different as the lattice spacing increases, another examp
the discretization sensitivity of the Laplacian gauge. In t
case of the very large lattice, ensemble 6, this sensitivity
become extreme.

We examine this in another way through the transve
propagator, shown in Fig. 9 for ensembles 2i and 3–6. T
data here correspond to Table II, having been normalized
GeV. The propagators are consistent down to low mome
;200 MeV, where we strike trouble. Not only is there
spread between the data sets, but for ensemble 6 the p
from purely temporal momentum is much lower than th
from spatial momentum. The situation is the same in
]2(I) gauge.

s

ge

ty

FIG. 7. The momentum-enhanced propagator from ensemble
4, and 5 in the]2(II) gauge. Data have been cylinder cut an
normalized at 0.6 GeV.
5-6
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V. CONCLUSIONS

We have made a detailed study of the gluon propagato
coarse lattices with an improved action in Laplacian gaug
We have described and tested three implementations o
Laplacian gauge. The]2(I) ~QR decomposition! and ]2(II)
~maximum trace! gauges produce similar results for the sc
lar transverse gluon propagator, but rather different long
dinal components. The]2(III) gauge for numerical reason
works very poorly in SU~3!.

FIG. 8. Comparison of the longitudinal part of the gluon prop
gator in the]2(I) ~top! and]2(II) ~bottom! gauges for ensembles 4
5, and 6. Data have been cylinder cut. The small and largb
53.92 lattices give diverging results even at large momenta in
]2(II) gauge.
07450
n
s.
he

-
-

At sufficiently small lattice spacing, the transverse part
the gluon propagator is very similar in the Laplacian gau
to that in the Landau gauge. The Laplacian gauge, howe
exhibits great sensitivity to the lattice spacing, making
sults gained from coarse lattices difficult to compare w
those from finer lattices. This is very different from the sit
ation in the Landau gauge. By comparing the coarse data
at sufficiently low momentum, however, we have seen
great deal of consistency. In the deep infrared, the res
from the largest lattice are difficult to reconcile with th
other data. Excluding that lattice, the total propagator sho
little sign of volume dependence. The most likely explan
tion of the~unimproved! Laplacian gauge results seen here
that on our coarsest lattices~improved lattices withb
53.92, 4.10, and to some extent evenb54.38), the lattice
artifacts are much more severe than in the improved Lan
gauge case. On the very coarseb53.92 and 4.10 lattices, i
seems very likely that finite volume and discretization err
are actually being coupled together by the Laplacian ga
fixing. By implementing an improved Laplacian gauge fixin
on these lattices we anticipate that these errors will decou
on these lattices, and we will be in a better position to e
mate the infinite volume and continuum limits of the diffe
ent implementations of Laplacian gauge fixing. Further st
ies, including an improved Laplacian gauge fixing, w
hopefully clarify these issues.

-

e

FIG. 9. Comparison of the transverse part of the gluon pro
gator in the]2(II) gauge for ensembles 2i, 3–6. Data have be
cylinder cut. The propagators have been normalized at 1 GeV.
TABLE II. The full propagator at zero four-momentum in the]2(I) and ]2(II) gauges, normalized at 1
GeV for comparison.

Dimensions b a ~fm! Volume (fm4) D(0) –]2(I) D(0) –]2(II)

1 123324 4.60 0.125 10.1 16.6~5! 16.3~4!

2i 163332 4.60 0.125 32.0 17.1~5! 16.0~4!

3 163332 4.38 0.166 99.5 16.7~6! 14.1~3!

4 123324 4.10 0.270 220 19.0~8! 14.6~2!

5 103320 3.92 0.353 300 20.8~9! 14.6~4!

6 163332 3.92 0.353 2040 52~5! 35~2!
5-7
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