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Abstract

Since the early 2000s, improvement of the student learning experience in university level
laboratory activities in Australia has been sought by the Advancing Science by Enhancing
Learning in the Laboratory (ASELL) project. The nation-wide project has made use of the ASELL
Student Learning Experience (ASLE) survey to gather data and draw conclusions regarding
student perspectives of their learning experiences, using trends observed in the data to inform
pedagogy. Analyses of rating scale response format items on the ASLE survey have typically
involved an integer value scoring system applied to the response categories. The
appropriateness of such integer scoring techniques and the subsequent application of
parametric statistical methods to ordered categorical data in this way is contested in statistical
literature, which raises questions regarding the validity of ASELL project conclusions drawn in
the past.

In this thesis, Rasch measurement is applied to a data set of ASLE survey responses, using the
true interval scale measures gained to test the validity of the scoring techniques and
parametric methods more typically applied to ASLE data. The role of student biases in survey
response and ‘objectivity’ of any measures associated with learning experience quality are
explored, yielding quantitative models of the student perception of laboratory learning
experiences. The thesis culminates in the use of factor analysis to develop a Linear Logistic Test
Model for a data set of over 9000 completed ASLE surveys, explaining the responses received
as linear combinations of a small number of major factors in the student laboratory learning
experience. The model is used to draw pedagogical conclusions from the ASLE survey data set
uninfluenced by limitations of the integer scoring techniques usually applied.

The work has major implications for valid interpretation of ASLE survey data received both in
the past and in future, suggesting that whilst integer scoring methods may be amenable to
parametric statistics, the conflation of student dependent and student independent factors
limits the generality of any conclusions drawn. Student independent measures obtained from
Rasch analysis, however, reveal that the perceived relative quality of a laboratory exercise is
largely consistent through the student population sampled. The Linear Logistic Test Model
generated reveals a wide range of connections between different facets of the laboratory
learning experience and this general perceived learning experience quality, informing effective
science pedagogy. Pedagogical conclusions include strong connections between group work
and understanding of theoretical content, the advantages of data analysis and individual work
in development of more technical or practical skills, evidence for the importance of structuring
activities appropriate to the ability level of the students, as well as ways to generate student
interest and foster perceptions of a positive overall laboratory learning experience. A need for
compromise between teaching objectives and learner preferences is highlighted, noting that
the “best” way to design a laboratory activity largely depends on the intended purpose of the
exercise.
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1 Introduction




1.1 The Advancing Science by Enhancing Learning in the
Laboratory (ASELL) project

1.1.1 Laboratory work in science education and history of the ASELL project

For more than a century,! the laboratory has served as a key component of university level
science education. Despite queries as to whether benefits of laboratory sessions outweigh the
costs,? 3 suggested key roles of laboratory activity in science education have persisted.*®
Development of hands-on practical skills, development of scientific and critical thinking skills,
supporting learning of the subject matter as well as fostering more generic skills such as time
management and effective work in teams are all frequent suggested benefits of laboratory
activities.’ These claims have been largely supported to varying extents, with more authentic
research activities in undergraduate science additionally shown to act as powerful affective,
behavioural and personal discovery experiences.®

Laboratories have historically been viewed as providing the opportunity for a strong inquiry-
based environment, where inquiry is an integral part of the scientific process.'* 2 Using
laboratories as a tool to engage students with scientific concepts at a concrete, macroscopic
level,% 13 students are allowed to forge connections between real world experimental
observations and underpinning scientific concepts'* whilst strengthening their scientific
reasoning and broader grasp of how the scientific process works.'®> Developing skills in
scientific writing has also been viewed as heavily dependent on laboratory work for this
reason, since only in the laboratory are students able to “do” science rather than merely “learn
about” science.'®

Stimulation of student engagement and interest in science is also a key function of laboratory
activities, notably since student interest levels have a powerful influence on learning.t”- 8 The
appeal of laboratory experiments has previously been identified as one of the most prominent
reasons for initial enrolment in chemistry,® justifying observations that positive laboratory
experiences help encourage student retention in chemistry (and other science) majors.?% %
Despite this, difficulties in effectively implementing inquiry-based laboratories have meant
that more expository “cook-book” laboratories?? are prevalent, which miss out on many
desirable (and potentially enjoyable) features of the experience.?

During the late 1990s, anecdotal evidence presented by academics attending research
conferences around Australia suggested that increasing numbers of students were finding their
physical chemistry laboratory sessions neither interesting nor motivating. These observations,
coupled with associated decreases in enrolment and retention in physical chemistry courses,
prompted the Committee for University Teaching and Staff Development (CUTSD) at the time
to fund the Australian Physical Chemistry Enhanced Laboratory Learning (APCELL) project,
which aimed to address the issue.?*

Adopting a “research-led teaching” philosophy, the APCELL plan was initially formulated by
researching the relevant education literature on laboratory learning and teaching, inquiring
into the nature of the barriers to improvement, and gathering data on students’ perceptions of
their teaching and learning experiences. Data gathered on students’ perceptions of their
teaching and learning experiences in laboratories suggested that laboratory sessions could be
perceived to lack relevance and be little help in achieving useful learning outcomes,
reminiscent of other findings on effective laboratory teaching at the time.? % Given the pre-
existence of education literature on effective laboratory teaching, the question arose as to
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why the relevant recommendations had not already been adopted. It became apparent that
despite attempts by individual institutions to improve their practice, each faced a variety of
resource constraints which impeded their progress.?” Individual institutions’ limited access to
physical resources (such as equipment), specialist expertise, pedagogical expertise and active
student involvement meant that a multi-institution approach was necessary. The APCELL
project therefore gained participation from multiple Australian universities, pooling the
resources of individual institutions to collectively improve practice. The project’s overarching
objective to “measurably improve the learning, motivation and enjoyment of chemistry
laboratory experiences by students”* was henceforth pursued in three ways:

1. Establishment of a network of physical chemistry educators and students to share
expertise in on-going curriculum development

2. Development of a suite of physical chemistry experiments, based on sound pedagogy,
that could facilitate improved student learning

3. Creation of an internet database including all of these experiments, complete with
associated demonstrator notes and other documentation required to deliver the
laboratory activity to students

Because of its student-centred philosophy and intended outcomes, the project sought to
develop a template for considering existing laboratory teaching practices from a learner-
focused perspective. At a workshop held in Canberra during July of 2000, academics from over
30 participating institutions were asked to reflect on and challenge their existing ideas and
conceptions of teaching, addressing the issue at the level of their underlying ideas about
teaching and learning rather than at the level of their teaching behaviours. The result was the
refinement of the ‘Educational Template’ document,? which became central to the APCELL
project and its successors. This template was designed to accompany experiments submitted
to the APCELL review process, for potential inclusion in the online APCELL database of
pedagogically sound experiments. The template was not designed to prescribe practice, but
instead designed to promote consideration of existing practices from a learner perspective.

Following its review and subsequent amendments, the Educational Template document
included several sections to be completed by the submitter as part of the experiment
evaluation process. These sections included information on the context in which the
experiment is run, the educational goals of the activity, how those objectives could be met and
how both students and teachers could recognise they had been met. The template document
was also designed to include an analysis of feedback provided by students who had conducted
the experiment, in keeping with the learner-centred focus of the project. The student feedback
contained within this final section of the completed template was to be gathered during hands
on laboratory sessions, held during APCELL workshops.

Held in Sydney in February of 2001, the first APCELL workshop was principally designed around
the “peer review” of experiments submitted to APCELL, largely scaffolded by the Educational
Template. Both students and academics were provided the facilities to physically conduct the
laboratory activities submitted to APCELL, providing feedback on their experiences. Submitters
of the experiment acted as the “demonstrator” for each laboratory activity. The laboratory
sessions held as part of the workshop not only gathered data on learner perspectives of each
experiment, but additionally it placed academics in the ‘shoes’ of the students, opening up a
dialogue between teachers and learners. Workshop delegates were also provided time to
discuss the submitted experiments at length, evaluating strengths and weaknesses of the task
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design, potential improvements which could be made or amendments to the completed
Educational Template document submitted along with the experiment.

Attendees at the first APCELL workshop responded very positively to the experience, reporting
their heightened awareness of what the student experience constitutes and the issues in
running an effective laboratory learning exercise from the student perspective. The value and
necessity of evaluating experiments in a hands-on, interactive environment in this way was
acknowledged strongly by the workshop delegates, and it was agreed that all experiments
submitted to APCELL should be put through an extensive and rigorous review, incorporating
this process.

Additional APCELL workshops were organised subsequent to the workshop in Sydney, largely
to facilitate the review of large numbers of submitted experiments in bulk whilst also
reinforcing the student-centred learning concept with participating academics. Because
APCELL experiments now had a structured ‘peer review’ process associated with their
evaluation, submitters could elect to pursue publication of the experiment details and
evaluation results in a peer-reviewed education journal subsequent to their acceptance into
the APCELL database. A partnership was established with the Australian Journal of Education in
Chemistry,? which published numerous APCELL experiments and their evaluations.3%*

Following the success of APCELL, the project was expanded in 2006 to involve chemistry more
broadly and relabelled as ACELL: The Australian Chemistry Enhanced Laboratory Learning
project.*%% Over the course of its development, the review process for experiments submitted
to A(P)CELL had evolved to incorporate evaluation at the submitter’s home institution,
gathering survey feedback from students completing the experiment as part of a course in
which they are enrolled. A standard recommended procedure for analysing the survey
feedback was developed,*” and this data (both qualitative and quantitative) could be
presented in the published form of the evaluated experiment. This process was incorporated
into the ACELL experiment review scheme, as outlined in Figure 1.

Recycle

ACELL In-semester Analysis & Peer
workshop data collection write up review Published

| 7// ) 7 I
7 % T % |

Return Return

w/s student R -
i ol dat eanalyse
kg o Stop Point o “Stop Point” rewrite

Figure 1: Experiment review process

Experiments submitted to the review process undergo a workshop review by both students and
academics, an in-semester review by the student cohort of the home institution and a peer review
process prior to publication. Stop points exist between these phases where the experiment may be
modified and re-evaluated based on feedback. Image is reproduced with permission from Pyke et al.8

This scheme has been utilised for the evaluation of a number of experiments, some of which
have been published in peer reviewed journals alongside their associated student feedback at
both the workshop and at the home institution, as well as their evaluation using the
Educational Template document.*>->1
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ACELL's success continued, with numerous workshops run across Australia. Following calls for
even further expansion into other disciplines of science*® 2 the project eventually evolved into
the current Advancing Science by Enhancing Learning in the Laboratory (ASELL) project,*® 5354
which has now seen involvement from outside of Australia® and is beginning to also
encompass education in schools.>>>” The increased volume of data generated from workshop
evaluations and home institution evaluations also allowed the project to begin contributing to
education research more broadly, using survey response data to investigate large scale trends
in laboratory learning experiences.*®>° To date, ASELL and its predecessors have gathered data
from over 120 experiments, with contribution from over 25,000 students, 350 academics and
30 deans affiliated with 28 universities across Australia.>® Additional unknown volumes of data
gathered using ASELL surveys across a variety of institutions also exist separately to the ASELL
project database, such as data presented within this thesis.

The project has maintained its experiment review structure (Figure 1), and still presents
accepted experiments (both from current and past forms of the project) in the ASELL online
database, available on what is now the ASELL website.>® Experiments may also still be
evaluated using surveys designed by ASELL at home institutions, where students conducting
the experiment may provide feedback. Data gathered using these surveys, much like data
previously gathered by ACELL and APCELL, has also been used to contribute to laboratory
learning education research beyond the experiment review process, in both comparative® and
correlational studies.®® 5!

1.1.2 Data analysis and interpretation

Whilst the experiment review process used by ASELL and its predecessors involves multiple
stages, this thesis will primarily have its focus on survey data received during workshops and
most notably home institution analyses. The ASELL Student Learning Evaluation (ASLE) survey
instrument, used for home institution analyses, was designed with the intent of providing
academics with a simple, easy to analyse tool for capturing key elements of the student
experience during laboratory activities. The survey is comprised of fourteen Likert-type (rating
scale) response format items, each of which allows students to respond in one of five ordered
response categories, as well as five open response format items (Table 1). Survey items were
initially formulated based on recurring themes evident in original open response comments
gathered during early APCELL workshops,®! as well as education literature regarding benefits of
inquiry based laboratory exercises®? and teamwork.? The precise phrasing of the questions
included on ASELL project surveys has continually evolved with the project; however the
content of the questions has remained generally equivalent. The rating scale or ‘Likert-style’
response format items are typically used for quantitative analysis, whilst open response format
items are used for more qualitative purposes.

Responses to ASLE surveys (used for home institution analyses) and to analogous surveys used
in ASELL workshops are used to gauge the relative quality of the experiment from the student
perspective. Likert-type data in particular may be more easily subjected to statistical
comparisons, revealing any differences between evaluations of different experiments or
between separate evaluations of the same experiment in different contexts. Often these
investigations are treated as exploratory in nature, due to small sample sizes and hence poor
generality of conclusions and little statistical power. This limitation is especially an issue for the
workshop surveys, the responses for which are limited by small numbers of workshop
participants. Studies capable of drawing more generalised and less informal conclusions
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require large numbers of responses, typically available only from in-semester survey collection,
or from the full collated data set of many evaluated experiments.

Table 1: Items included in the ASELL Student Learning Experience (ASLE) survey

# ltem Response
Format
1 This experiment helped me to develop my data interpretation skills Likert - style
2 This experiment helped me to develop my laboratory skills Likert - style
3 | found this to be an interesting experiment Likert - style
4 It was clear to me how this laboratory exercise would be assessed Likert - style
5 It was clear to me what | was expected to learn from completing this experiment Likert - style
6 Completing this experiment has increased my understanding of chemistry Likert - style
7 Sufficient background information, of an appropriate standard, is provided in the introduction Likert - style
8 The demonstrators offered effective supervision and guidance Likert - style
9 The experimental procedure was clearly explained in the lab manual or notes Likert - style
10 | can see the relevance of this experiment to my chemistry studies Likert - style
11 Working in a team to complete this experiment was beneficial Likert - style
12 The experiment provided me with the opportunity to take responsibility for my own learning Likert - style
13 | found the time available to complete this experiment was Likert - style
14 Overall, as a learning experience, | would rate this experiment as Likert - style
15 Did you enjoy doing the experiment? Why or why not? Open
16 What did you think was the main lesson to be learnt from the experiment? Open
17 What aspects of the experiment did you find most enjoyable and interesting? Open
18 What aspects of the experiment need improvement and what changes would you suggest? Open
19 Please provide any additional comments on this experiment here. Open
Response categories: Iltems 1-12:  “Strongly Agree”, “Agree”, “Neutral”, Disagree”, “Strongly Disagree”

Item 13:  “Way Too Much”, “Too Much”, “About Right”, “Not Enough”, “Nowhere Near Enough”

Item 14:  “Excellent”, “Good”, “Average”, “Poor”, “Very Poor”

The workshop survey for experiment evaluation and the ASLE survey are similar in their

content, despite some differences in the questions posed. For this reason, responses obtained

from both surveys yield comparable information and are typically treated using identical
analysis strategies. The ASLE survey exclusively represents the views of students at the home

institution, whilst the workshop survey is completed by ASELL workshop delegates,

predominantly inclusive of academics. Information such as this may be used in conjunction
with open response comments received to gauge the quality of an experiment from the
student perspective, identifying areas of possible strength or weakness. Work conducted by

Crisp et al.>! in evaluating student and staff perceptions of the same experiment illustrates the

complementarity of the workshop survey and the ASLE survey, whilst also showcasing the way

in which Likert-type data may be used as an indicator of participant perceptions (Figure 2,
page 7).
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by Waorkshop: 7 expect that stwedents will find this experiment interesting”
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and “This experiment has helped wie to develop my dara interpretation skills”
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Figure 2: Exploration and contrast of perceptions using Likert-type response data obtained
using the workshop survey and ASLE survey
The frequency of responses observed in each of the rating scale categories gives a general insight into
perceived quality of the experiment. In this figure, reproduced with permission from Crisp et al.5, the

workshop survey is used to illustrate the perceptions of academics, whilst the ASLE survey is used to
gauge the perspectives of students.

Over time, a standard technique for the analysis of survey responses has been developed with
the project. For open response items, a procedure of categorising comments based on their
content and enumerating the number of comments which fall into each category is employed®
(Figure 3). For Likert-type items, a scoring system is implemented whereby each of the five
successive response categories are assigned successive integer values. As an example,
response categories “strongly disagree”, “disagree”, “neutral”, “agree” and “strongly agree”
(available for items 1 — 12) would be assigned scores of -2, -1, +0, +1 and +2 respectively.
Response options for item 13 and for item 14 are treated similarly. The average scored
response may then be reported for each item (Figure 4).
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Figure 3: An example of the recommend analysis of ASLE survey open response items

Open response comments have been classified into researcher-defined categories based on their
content. Frequencies of comments in each category have then been enumerated for the purposes of
comparisons (in this case, between three iterations of the same experiment run in three different years).
Image has been reproduced with permission from Southam et al.®0
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Figure 4: An example of typical 'scoring’ of ASLE survey Likert-type response format items

Successive integer value scores have been assigned to individual Likert-type item responses, enabling
mean scores for each survey item to be tallied and used for comparisons (ASLE items 1 — 12 are shown).
In this case, student perceptions have been contrasted between different years the same experiment was
run. Image has been reproduced with permission from Southam et al.80
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Similar techniques have also been applied with other surveys utilised over the course of the
existence of the ASELL project and its predecessors. Other surveys used at ASELL workshops to
gauge the perceptions of participants have been subjected to similar treatments, contrasting
perceptions between staff and students as well as comparing responses between different
workshops. Yeung et al*® extensively applied both techniques described above in evaluating
the success of the first ASELL workshop, identifying key themes in qualitative comments
received and applying the same integer scoring methodology to survey responses, yielding
mean scores as a measure of perception.

However, Yeung et al. take the integer scoring technique a step further than previous ASELL
based studies by using the calculated mean scores in parametric statistical tests. In the study,
responses to individual Likert-type items are assigned successive integer scores in the usual
way, then used to calculate both mean scores and standard deviations. These values, in
conjunction with sample sizes, were used multiple times to conduct both Student’s t-test and
ANOVA,; practices generally restricted to interval scale data rather than ordered categorical
data such as rating scale responses. The distribution of student responses shown in Figure 5
below was characterised as having a mean score of +1.52 (o = 0.57), concluded not to
significantly differ from the distribution of staff responses, characterised by mean score of
+1.33 (0 = 0.76), using Student’s t-test (t = 1.21, df =77, p = 0.231).

70% - Participating in the ASELL workshop has increased my
understanding of educational issues

60% A

50% A mStaff (n = 46)

40% A oStudent(n =33)

30% A

20% A

| l:l

0% ‘ T T T — T 1
Strongly Agree Neutral Disagree Strongly
Agree Disagree
(¥2) (+1) (+0) 1) (-2)

Figure 5: Assignment of scores for the purpose of statistical testing.

Image is reproduced with permission from Yeung Et al,%® with the addition of scores associated with each
response category (shown in red in parentheses).

Standard deviations had been reported alongside mean ASELL scores previously as a rough
measure of the spread of responses (see the characterisation of the “thermodynamics think-
in” experiment by Kable and Read,* for an example). However, they had never before been
used to explicitly quantify probabilities associated with statistical tests. Procedures such as this
represent a shift from interpreting response scores as a rough indicator of perception to
interpreting them as a quantified, interval scale measures fit for parametric statistical
comparisons. Other ASELL papers have chosen not to use scores in statistical tests, instead
resorting to non-parametric methods such as the Wilcoxon rank sum test, as is more usual for
the analysis of ordered categorical data.
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Whilst ASELL survey results have commonly been used for the purposes of evaluating
individual experiments, student perception data in the form of mean scores have also been
used to probe the laboratory learning experience more deeply. Large volumes of data are
available from the multitude of workshop evaluations and home institution evaluations
conducted over the course of the ASELL project and its predecessors’ existence. This has
enabled more reliable and generalizable statistical conclusions to be drawn, meaning ASELL
survey data has emerged as a tool to investigate more fundamental questions about
generating a positive student experience in the laboratory.

A notable example of the use of larger volumes of ASELL data is the correlation of scored
responses received for one survey item against the scores received for another, in pursuit of
identifying factors contributing to a positive laboratory experience. The role of ‘interest’ in
generating a positive ‘overall learning experience’ was exemplified by George et al.>® in this
way, using both mean scores and scored individual responses to the ‘interest’ and ‘overall
learning experience’ Likert-type items from a large number of ASELL evaluated experiments
(Figure 6). Similar correlations were evaluated between the “overall” item and the other
Likert-type response format items of the survey, yielding correlations between overall
experience and items 1, 3, 6 and 12 of the ASLE survey.
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Figure 6: Correlated scored ASLE survey responses for item 14 (overall) and item 3 (interest)

LEFT: The mean values of scored responses have been correlated, with each data point representing
values from a different experiment in the ASELL database. RIGHT: Individual responses received for two
different Likert type items of the ASLE survey have been plotted against one another. Data point sizes
are proportional to the frequency of response. The slope value, indicative of the rate at which the “overall”
rating changes as the “interest” rating changes, has been calculated based on assigning successive
integer values to the five rating scale categories, here labelled as A (the most positive response) through
to E (the least positive response). Images have been reproduced with permission from George et al.5

Correlations such as these were stated to “provide a valuable insight into the factors that
significantly influence students’ learning experiences”.> In this specific instance, because items
1, 3, 6 and 12 concern factors reflecting affective and cognitive engagement, this result was
taken to show that “students’ evaluations of the learning aspects of a laboratory activity
appear to derive from the high-level engagement and deep learning for which we strive” >
Conclusions such as these rest on the validity of the integer scoring method applied, as well as
the valid interpretation of the meaning of survey responses by researchers utilising ASLE

surveys.
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1.2 Validity and ASELL

1.2.1 Quantitative methods: categorical data, parametric statistics

Strictly speaking, Likert “scales”, for which Likert-type response format items are usually used,
emerge from summating or averaging scores obtained from an entire set of items, rather than
the individual items themselves within that set as ASELL and its predecessors have done.%
Many studies have shown that Likert scales emerging from multiple summated items can
validly be treated as interval scale and are fit for parametric statistics, but not in the case of
analysing individual items — a practice recommended against.®* > Recommendations in the
literature suggest that Likert-type response format data should be treated as ordinal rather
than interval scale, implying that non-parametric methods should be used®% such as the chi-
squared test®, Mann-Whitney U test (also known as the Wilcoxon rank sum test),”73 the
Kruskall-Wallis test,”* Kendall’s tau”® and Spearman’s Rho,”® whilst parametric methods such
as reporting means and standard deviations, use of Student’s t-test for equal’” or unequal’®®
variances, ANOVA28 and Pearson’s correlation coefficient®* should be avoided and
considered invalid.®> Parametric comparisons of mean values such as t-tests and ANOVA are
said to be inadvisable for individual items due to difficulties in obtaining normally distributed
data, whilst use of Pearson’s correlation is considered particularly inappropriate because it is
influenced by the range of the score values used.8®

However, some statisticians have no issue with scoring ordered categorical data for the
purposes of correlations®” and other parametric methods. F-tests, specifically those utilised by
ANOVA, have long been demonstrated as being extremely robust to violations of the interval
data assumption®® and Pearson’s correlation has been shown to be “insensitive to extreme
violations of the basic assumptions of normality and the type of scale”.®° As such, some
disagree that these methods are inappropriate for Likert-type data. Some even go so far as to
claim that scoring Likert-type data for the sake of conducting t-tests is not only acceptable, but
is superior to using rank-based tests such as the Wilcoxon, which should be avoided.*®
Norman®! concludes:

“Parametric statistics can be used with Likert data, with small sample sizes,
with unequal variances, and with non-normal distributions, with no fear of
““coming to the wrong conclusion”. These findings are consistent with
empirical literature dating back nearly 80 years. The controversy can cease
(but likely won’t).”

Perceived key limitations in the integer scoring technique concern the lack of sample
independence of scored rating scale responses, as well as the difficult interpretation of scores
and differences between them. A difference between two scores may mean a certain
magnitude of difference in the evaluated attribute at one location on the scale, whereas the
exact same score difference may imply an attribute difference of an entirely different
magnitude at another point on the scale. For example, the progression from “agree” to
“strongly agree” may not reflect an improvement of equal magnitude to the progression from
“disagree” to “neutral”, as the equal score difference would appear to suggest. Related to this
idea is the fact that averaging or summating two scores may not make qualitative sense.
Paraphrasing Kuzon Jr et al.%?, Jamieson®” states:

“the average of ‘fair’ and ‘good’ is not ‘fair-and-a-half’; this is true even
when one assigns integers to represent ‘fair’ and ‘good’!”
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It is objections like these which are used to justify the usual recommendations that Likert-type
response format data should not be treated with simple scoring techniques or parametric
statistical methods, as ASELL and its predecessors have done.

Barrie et al.5! employed the technique of correlating scored responses to individual Likert-type
items in a recent publication. The authors subjected scored ASLE response data to principal
component analysis: a procedure which uses observed (Pearson) correlations between scale
variables to extract a number of major dimensions characterising the full data set. These
extracted dimensions or ‘principal components’ are linear combinations of the original
dimensions of the data set (in this case, the individual ASLE survey items). One of the principal
components extracted from the ASLE data was identified by the authors to be a “resources”
factor, comprised of the survey questions relating to the demonstrators, laboratory notes and
background material provided. The authors presented the following analysis (Figure 7) of the
items comprising this “resources” factor, this time using mean scores obtained from a variety
of experiments.

Demonstrators

TR T T A T

Item score
Laboratory notes

Background material

0.0 0.5 1.0 15
Overall score

Figure 7: Example of scored ASLE data being treated as an interval scale measurement

Mean scored responses calculated for different items of the ASLE survey have been plotted against one
another in order to show evident correlations. Lines shown in red indicate the inferred rates of change in
responses given for the item on the vertical axis with respect to change in mean score for the overall
learning experience item, making the assumption that the calculated mean scores can be treated as
interval scale measures of the subject of the survey items. Circled number values indicate the number of
data points in the relevant quadrant of the plot. Image reproduced with permission from Barrie et al.6!
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Not only are Pearson correlations used in this technique, but the individual data points
involved are also presumed to be interval scale variables, for each singular survey item: both
are issues of contention in suggested practice with ordered categorical data, as discussed
previously. The caption to this figure presented in the original paper included the statement:
“A break in the regression line is evident at an overall score of 1.0, indicating that improvement
in the overall laboratory experience no longer depends on resources once a certain standard is
reached”. Such a statement inherently presumes that the mean scored response is linearly
related to the variable underpinning that response. Conceivably, however, it may be the case
that a much larger improvement is needed to shift from “good”(scored +1) to
“excellent”(scored +2) than is required to shift from “average”(scored +0) to “good”(scored
+1). In the figure above, the apparent lack of improvement could therefore simply be an
artefact of the response scale used, rather than a genuine plateau in perception. This
illustrates the way typical analyses of ASLE survey responses inherently assume an
‘equidistant’ nature of the response categories, influencing the conclusions drawn from the
data.

The validity of treating the ASLE rating scale data in the usual manner is therefore unclear, and
investigation needs to be conducted in order to establish the appropriateness or otherwise of
these methods, which have been applied to a vast array of data spanning back over a decade.
The reliability of past conclusions drawn from data to which these methods have been applied
rests on the validity of treating ASLE survey rating scale item responses with this scoring
methodology. More fundamental questions additionally exist, however, concerning the ability
to validly measure experiment quality in the first place.

1.2.2 Qualitative interpretations: what does ASLE data really reflect?

The earliest, simplest concept of “valid” measurement is simply that the instrument used (in
this case the ASLE survey) measures what it purports to measure.®® Since the statement of this
simple definition, multiple types and perspectives of validity emerged. A number of these
came to be commonly viewed as facets of “construct validity”; broadly defined as whether
empirical relations between observed outcomes are consistent with theoretical relations
within a nomological network.%* Others still argued the topic covered a broader range of ideas
than this,®® such as the social and ethical consequences of test use.?® This expansion of the
validity concept and the defining of various different types of validity continued to persist,97-1%°
leading Shaw and Newton to recently conclude that agreement over the meaning of the term
is unlikely, therefore recommending the term “validity” be abandoned.

Borsboom, Mellenbergh and van Heerden have attempted to consolidate and simplify this
convoluted and expansive understanding of valid measurement by reducing it down to two
essential criteria; a measure of an attribute is valid if and only if (a) the attribute exists and (b)
variations in the attribute cause variation in the outcome.%? On this understanding, the
concept of valid measurement involves both the mathematical techniques used to obtain
numerical values from observed data, as well as truth of the presumed correspondence
between those number values and the trait purported to be measured with those numbers.
There must exist some attribute which may consistently be assigned a meaningful numerical
value, which can be said to be a “measure” of that attribute. Further, changes in that
measurable attribute, if it exists, must change the observed outcomes of surveys (or other
measurement instruments) from which the researcher obtains the purported measures of that
attribute.
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In the case of the ASLE surveys’ Likert-type items, what the survey “purports to measure” is
intimately tied to the surveys’ common uses. These surveys have, since their creation, been
distributed and analysed with the intention to evaluate the quality of an experiment as
experienced by students, with each different Likert-type item’s responses often taken to
reflect student perspectives of different experiment qualities. Of note here is that it is the
quality of the experiment that is inferred from survey responses, not the disposition of the
student cohort performing the evaluation. The fact that variation in student dispositions
towards positive response could in theory alter the responses obtained was recognised well by
Southam et a/,*° who stated:

“There are limitations with this study, most obviously the convenience
sample at a single institution using a self-report instrument. This brings
forth issues of equivalence as data from different samples are compared,
combined and inferences drawn.”

What is being recognised here is the lack of sample independence in survey responses
obtained. It is acknowledged here, explicitly, that responses obtained do not exclusively reflect
properties of the experiment itself: measurement of experiment quality is confounded by
student dispositions. This is potentially problematic, as conclusions drawn from ASLE survey
data often use survey responses to gauge experiment quality in a more sample independent
sense. For example, Read and Kable make the following statements about the
“thermodynamics think-in” experiment, following evaluation using ASLE surveys> (emphasis
and added commentary is shown in bold):

“Analysis of the data shows that students enjoy working on the practical,
and report it [the practical] to be a beneficial learning experience that
effectively develops their understanding of thermodynamic principles. The
practical also fosters significant interest, and through a process of
collaboration and cooperation aids the students in further developing their
generic thinking skills.”

“Clear evidence has been presented that this experiment fosters
cooperative learning and teamwork, triggers and maintains student
engagement and interest, and is perceived to be highly relevant.”

It is clear here that survey data has been used to draw conclusions about the experiment itself
as a tool of education. Further, there is an implied sense that this experiment, if run with other
students, could be used to elicit similar educational benefits.

In the case of the ASLE surveys, the attributes which must be shown to exist in order to satisfy
Borsboom, Mellenbergh and van Heerden's first requirement of valid measurement are
therefore the (measurable) experiment qualities targeted by each specific Likert-type item of
the survey, as true for most students. Unless these attributes have a broadly student-
independent component, they cannot be said to be qualities of the experiment itself, but
rather qualities of the student body selected to perform the evaluation. Establishing measure
validity in this case therefore requires the demonstration that experiment quality can
reasonably be said to exist in a student-independent and somewhat “objective” sense, to
which a number value can consistently be ascribed. Scored ASLE responses need not reflect
this “objective” experiment quality exclusively, but certainly must reflect this predominantly if
mean scores are to be used as presented above. For scores to be treated as reflecting a
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generalizable measure of experiment quality, there must exist a generalizable sense of
experiment quality for scores to reflect. Further, factors specific to the student sample must
not confound survey responses so extensively as to obscure the “objective” experiment quality
beyond retrieval.

A related issue is the presumed correspondence between a change in experiment quality and a
change in observed survey response. For example, it is often presumed that student
perception outcomes could be improved by making amendments to the design of the exercise
evaluated. An experiment may be subjected to the ASELL review process, then may be revised
and ideally improved based on the suggestions or comments made. This assumption that
changing the experiment design may improve survey outcomes is reflective of Borsboom,
Mellenbergh and van Heerden’s second requirement of valid measurement: that variation in
the measured attribute must cause variation in the outcome. The “outcome” here is the
(scored) set of ASLE survey responses received, whilst the relevant “attribute” is an attribute of
the student learning experience, theoretically emerging from the exercise’s design. The
theoretical connections between experimental design and the (measurable) attributes of the
experiment targeted by the items of the survey are the nomological network discussed in the
concept of “construct validity”; similarities and differences in observed survey outcomes must
directly map to the predictions of these theoretical connections. Changing experiment design
should in theory change the measured attributes, which should therefore change the observed
outcomes. Failing this, recommended practice suggested by ASELL project research may not
yield the benefits it claims. Unfortunately, a detailed theoretical understanding of the
connection between experiment design and measured attributes of the student learning
experience is not yet understood. For this reason, the ability to satisfy Borsboom, Mellenbergh
and van Heerden’s second requirement of valid measurement is limited for the ASLE survey
Likert-type item scores. It is not yet possible to confidently and precisely predict an expected
change in survey outcomes, given a specific change in experiment design. Some crude,
qualitative expectations may currently be possible; however, the experiments evaluated using
ASLE surveys frequently differ in multiple respects, making expectations based on these crude
understandings alone less clear and lacking in certainty.

Strictly speaking, to validly claim interval scale measurement, (the measurement presumed in
applying parametric methods to scored ordered categorical data) changes in observed scores
should occur in fixed proportion to the magnitude of changes in the underlying trait they are
claimed to reflect. For example, a change in score of magnitude +1 should reflect a fixed
magnitude of change in the underlying trait; a progression from a “good” experiment to an
“excellent” experiment should only yield the identical change in score as the progression from
a “poor” experiment to an “average” experiment if those progressions are in fact of the
identical magnitude. Verifying this would require a quantitative understanding of both the
underlying “objective” experiment quality attributes themselves as well as their precise
connection to the scored responses observed. Quantitative models of survey responses, able
to make more specific and testable predictions, need to be formulated in order to probe these
connections further. One technique of obtaining such quantitative models is the use of Rasch
analysis.
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1.3 Rasch analysis

1.3.1 Measures as opposed to scores

In the administration of tests and in the field of psychometrics, a stark distinction is made
between “scores” and “measures”. A wealth of literature exists discussing “classical test
theory”10% 1% and “latent trait theory”% (often referred to as item response theory).106 107
Classical test theory is based upon the integer scoring techniques commonly applied to tests
(in the form of adding “marks” to obtain a final score) and survey results (for example in the
case of the ASLE surveys), whilst item response theory takes the observed outcome to be a
result of some latent trait underpinning respondents’ propensity to provide various different
responses. Whilst it has often been shown that little difference exists between the values
obtained from either theory,%®112 ”scores” of classical test theory are viewed as having
limitations that the “measures” of latent trait theory do not possess. The fact that scores
theoretically cannot be treated as interval scale whilst measures can is one such limitation.

Rasch measurement provides a means of avoiding the controversies of bridging the gap
between observations in ordered categories and interval scale measurements!*1® and has
been claimed to be the only mathematical formulation capable of converting observed counts
into true “measures” as opposed to mere “scores”.'** The Rasch model has been recognised as
useful in educational research because of this property!*!'® and has been used for survey
validation in this field previously.1?>122 Based upon the works of Georg Rasch,'?* 24 the model
was initially developed for dichotomous responses (yes/no , correct/incorrect etc) allowing for
the estimation of measurements associated with survey or test items independent of the
persons sampled and similarly, person associated measures independent of the survey or test
items posed.'125 The model has since been expanded beyond dichotomous responses,
though all types of Rasch model still express the probability of response in each available
category as a function of some latent trait measure underpinning the response, usually broken
up into a person specific term and an item specific term.1*> 126 The Rasch model (both the
original dichotomous response model and its extensions) may be derived directly from the
need to maintain “specific objectivity” of each facet of the model (eg. person, survey or test
item, etc).1?”7128 On a test, for example, the measure of ability for one person relative to the
measure of ability for another must be independent of the question asked. Similarly, the
measure of difficulty for one question relative to that of another question must be
independent of the person responding. The Rasch model has been demonstrated to be the
only rating scale model capable of this measure objectivity, which is necessary for scientific
comparisons.'?

Generally, parameters of the model include a measure for each separate person, each of which
reflects that individual’s “objective” propensity to respond higher or lower on the rating scale,
and an item parameter for each survey item which reflects the “objective” difficulty of
responding in higher categories faced by persons responding to that item. Parameters defining
the point of equal probability of responding in either of two adjacent categories are also
included where the rating scale has more than two options. The clear advantage of this
treatment of the response scale over the usual scoring methods is that response categories are
no longer assumed to be equidistant. Rather, the category structure is estimated based on the
observed data. Because of this, values obtained from Rasch modelling are not subject to the
same controversies as scored responses when parametric statistics are applied to them.
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Rasch models may also be constructed in a variety of different ways, each reflecting a different
conceptualised interaction between observed responses and underlying latent variables
(discussed later in section 2.2). Rasch models therefore not only provide an alternate, more
sophisticated means of quantitative analysis for the ASLE surveys, but additionally enable the
exploration of more qualitative aspects of survey data interpretation. Crucially, an array of fit
statistics may be used to test the fit of observed data to any given Rasch model, opening the
possibility to explicitly test the construct validity of any model posed. This means Rasch
measurement permits the ability to test whether “objective” measures associated with survey
responders or items can reasonably be assigned in almost any manner suggested.

1.3.2 The Rasch model as a tool of validation

Drawing on the concept of an equation relating attribute measures to some substantive
theory, as well as a measurement mechanism relating the attribute measures to observed
outcomes,*? Stenner et al. advocate a similar view of validity to Borsboom, Mellenbergh and
van Heerden in presenting the benefits of considering causal rather than merely descriptive
Rasch models.’3! That is, models where the observed responses are interpreted to be caused
by the fact that person and item measures take the value that they do, as opposed to the
measures merely being descriptive of general trends in the observed data. In justifying this
interpretation, techniques have been implemented to demonstrate that item parameter
values are a direct function of the features of the task at hand. That is, the measure is
validated: changes in attributes of the task are shown to cause a change in the observed
measures and outcomes obtained. Through experimentation, an equation may be determined
which derives the value of the measure directly from the attribute. This is known as a
“specification equation”.'®? Because such an equation may be used to make quantitative
predictions, accuracy of the equation can be explicitly tested using observed data, as is the
case for all Rasch models.

An example of the successful use of a specification equation is the derivation of text readability
measures (termed “Lexiles”) computed directly from the text, which are able to predict
student reading test scores.’®313° |n this example, the (Rasch) item measures reflecting text
readability are shown to be a mathematical function of elementary features of the text itself:
the log mean sentence length and mean log of word frequencies. Because of this direct
relationship between the text and the Rasch measures, Rasch measures are known to reflect
the trait they are purported to reflect and are therefore, by definition, valid measures.
Changing the text results in changing the Rasch measure by a known quantity, thus reading
test scores may also be predicted to change by a quantifiable degree. This case exemplifies the
power of developing a specification equation for a data set.

Figure 8 illustrates the role of the specification equation and causal Rasch model as integral
components of the theoretical construct connecting laboratory activity design and responses
students provide on the ASLE surveys. The act of the researcher is to infer latent trait
measures from observed data, then seek patterns in these measures to discern which features
of laboratory activity design influence their values (and hence the observed responses). This is
achieved by estimating latent trait measures through Rasch modelling (ensuring construct
validity of those measures), then discerning how these measures vary given the experiment
design via either controlled experimentation or observational studies. The specification
equation and causal Rasch model then constitute the theorised connection between activity
design and measurable experiment attribute, and between measurable experiment attribute
and observed survey responses respectively.
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Design features relevant to experiment Latent trait measures estimated from
quality measures inferred through observed data using
controlled experimentation or descriptive Rasch models
observational studies

Measurable

latent trait /

experiment
attribute

Laboratory
activity design
features

Observations
/ survey
responses

Activity design dictates the value of Latent trait causes specific responses in
measurable attributes in accordance accordance with the causal Rasch model
with the specification equation

Figure 8: Perspectives on the connection between laboratory activity design and observed
student response data

The requirements of measure validation for the ASLE surveys, that measures exist and are a
function of the laboratory design, are inherently met if a specification equation and causal
Rasch model are determined. Establishing this connection between observations and
measures via the measurement mechanism (causal Rasch model), and developing a
substantive theory of why the measures take on the values that they do (expressed in the
specification equation) not only serves to validate the measurement techniques and
interpretations, but also allows an in-depth, quantitative model of the measured attributes of
interest, able to be used predictively and therefore able to be experimentally supported or
refuted. A complete mathematical formulation connecting laboratory activity design and
observed survey response such as this would allow the quantitative prediction of ASLE survey
outcomes for any proposed laboratory activity design. This would not only be of practical use
in designing or improving laboratory activities, but it would also allow scientific investigation of
the way laboratory experience operates via the testing of predictions made from the current
model.
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1.4 Outline of this thesis

1.4.1 Immediate aims and hypotheses

The primary aim of this thesis is to investigate the validity of using ASLE survey Likert-type data
to draw inferences regarding students’ perceived laboratory learning experience. In so doing,
an additional aim is to establish and characterise how relevant features of experiment design
influence perceptions of the laboratory learning experience from the student perspective.
Pursuing these aims, the work presented in this thesis can be described as addressing three
core hypotheses, each of which can be tested using Rasch measurement.

Hypothesis 1:

Conclusions drawn from the ASLE survey data using typical scoring techniques
resemble conclusions drawn using sample independent, interval scale measures
extracted from the same data.

This hypothesis underpins a large quantity of work that has been performed using the ASLE
surveys in the past, most notably the analyses which utilise parametric statistical techniques
such as calculation of mean scores, standard deviations and correlations. As Rasch modelling
provides the only means of converting ordered categorical counts into sample independent,
interval scale measures, this hypothesis must be tested by contrasting Rasch measures for a
specific experiment and survey question with their corresponding ASELL scores. This major
theme will be addressed in multiple ways within this thesis.

In the first instance, a typical score-based investigation into laboratory learning experience
using the ASLE surveys will be presented. This study will then be revisited with Rasch modelling
techniques, critically evaluating the validity of the score-based study conclusions. A more in
depth analysis of the mathematical relationships between score and measures will also be
presented. Rasch models embodying the usual presumptions underpinning ASLE survey data
may be formulated, thereby estimating interval scale measures associated with the data,
presuming those measures are valid. These measures may then be contrasted with their
corresponding mean ASELL scores, evaluating the relationship between the two. Additionally,
the distribution of scored responses expected for any given Rasch measure may be generated
directly from Rasch model parameters, enabling an assessment of the appropriateness or
otherwise of parametric statistical methods when applied to scored data. All of these
techniques, collectively, test Hypothesis 1 from various perspectives.

Hypothesis 2:
Student independent contributions to the ASLE survey responses exist and are
measurable.

This hypothesis, as well as the next, is drawn directly from the requirements of measure
validity. Even if scored ASLE responses resemble interval scale measures estimated via Rasch
analysis, it is still presumed that the Rasch model is a valid description of the way the observed
data operates. Given that the Rasch model is (as previously described in section 1.3.1) the only
mathematical formulation capable of converting observed counts in a set of ordered
categories into interval scale measures, the fit of the observed data to the Rasch model
provides a means of assessing whether any valid interval scale measures of quality can be
assigned to the surveyed experiments in the first place. Other means of testing Hypothesis 2
also exist, and these may be employed concurrently with methods which also test the third
hypothesis of these works. The presumption that ASLE data reflect properties of the
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experiments evaluated and therefore properties independent of the students responding,
which can reasonably be assigned a single number value, rests on these hypotheses.

Hypothesis 3:
Student independent measures obtained from ASLE survey data reflect qualities of the
experiment evaluated.

A great deal of flexibility in the construction of Rasch-type models is permissible, thereby
allowing for most conceivable hypotheses concerning the connection between experiment
design and student perception to be incorporated into Rasch models and evaluated. This not
only means that a Rasch model which embodies the way student, survey question and
experiment are presumed to interact may be tested, but so can other Rasch models reflecting
different conceptualisations. Formulating different Rasch models for the observed data and
calculating corresponding fit statistics for each therefore allows for the assessment of which
model best explains the data observed. The best model may or may not contain student
independent facet(s), thereby testing Hypothesis 2 above. The experiment specificity of any
student independent measures identified in the best explanatory model determined may also
support or refute the third hypothesis of this work.

1.4.2 Longterm goals

Some Rasch models, such as the Linear Logistic Test Model (LLTM, detailed in later sections:
see section 2.2.2) achieve direct mathematical links between experiment structure and likely
student perception, thereby enabling student responses to be predicted quantitatively. These
predictions can then be empirically contrasted with observation, leading to reformulation of
the Rasch model such that it provides more accurate predictions. Utilising statistical
techniques to compare various models for their efficacy as an explanation of the observed
responses, it is conceivable that iterated re-formulation of Rasch models in this way could lead
to the generation of a specification equation for the ASLE surveys. That is, an equation
expressing the measures of quality for an experiment (as true for most students) as a direct
mathematical function of the design of the experiment itself.

Development of a specification equation would not only entirely validate the notion that
measures obtained genuinely do reflect qualities of the experiment, but far more crucially
would reveal why some experiments are perceived more or less positively than others. This
would be invaluable to educators, as the specification equation could be exploited to structure
laboratory exercises which produce the circumstances most likely to be appealing to most
students. This has uses ranging from improving student engagement and potentially therefore
improving knowledge retention in laboratory activities, through to improving student
enrolment and retention in science courses. These objectives were primary goals of the ASELL
project at its inception, and are potentially achievable through the use of Rasch modelling in
the manner described.

Investigations presented in this thesis therefore address the topic of connections between
laboratory activity design and estimated Rasch measures, inherently also investigating the
truth or falsity of Hypothesis 3 above. This is to be pursued firstly by investigating whether
student independent Rasch measures may validly be interpreted as specific to the experiment
conducted (as described above) and secondly, if possible, by identifying the components of
experiment design which contribute to the value of those measures. This may be facilitated by
formulating models such as the LLTM, provided those models serve as an adequate

1.4 Introduction| Outline of this thesis 20



explanatory model of the observations. By investigating connections between ASLE survey
responses and components of experiment design quantitatively via the Rasch models, it is
hoped that this work may lay the foundation for future investigations identifying and refining a
specification equation for the ASLE survey responses.
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2.1 Data collection: surveying first year chemistry laboratory
sessions

2.1.1 Ethical approval

Approval to gather ASLE survey data discussed throughout this thesis was granted by the
University of Adelaide Human Research Ethics Committee on the 25™ of July, 2012 (Approval
number H-2012-097). Copies of the information presented to participants are available in the
supporting information (see section 7.1).

2.1.2 Student cohorts

Data utilised in the analyses presented in this thesis originate from two distinct cohorts of first
year undergraduate chemistry students at the University of Adelaide. Students enrolled in the
courses Chemistry IA and Chemistry IB (run in semesters 1 and 2 respectively) are required to
have attained prerequisite levels of achievement in high school chemistry, whereas students
enrolled in the courses Foundations of Chemistry IA and Foundations of Chemistry IB (again in
semester 1 and 2 respectively) are not. Typically, approximately 550 students are enrolled in
Chemistry IA or B courses, whilst approximately 450 students enrol in the Foundations of
Chemistry courses from a diverse range of backgrounds, though these numbers vary from year
to year.

Students enrolled in these courses were provided with the opportunity to complete the ASLE
survey (see Table 1 in section 1.1.1) at the end of their laboratory sessions. Surveys were
presented to students as optional, and in the early stages of data collection, anonymous.
During latter stages of data collection, surveys provided students with the opportunity to
supply their student identification number, assured that the number would never be used to
directly identify them by name. In the case the student’s laboratory demonstrator was also an
analyst of the survey data, student provision of an identification number was not made
possible, and anonymity was ensured. All students who chose to complete the survey had the
option of not providing their identification if they wished.

2.1.3 Experiments surveyed

Experiments were conducted by students during fortnightly laboratory sessions, in which they
were allocated 3 hours to complete the experiment procedure and accompanying laboratory
booklet questions for assessment. Online pre-laboratory questions were also required to be
completed for each experiment prior to that experiment’s laboratory session.

In the earlier years in which data used in this thesis were collected (prior to 2012), both the
Chemistry IA/B and Foundations of Chemistry IA/B shared a number of experiments in
common, with no alignment with lecture material and a randomised sequence of experiments
during the semester. Students enrolled in these courses were randomly assigned practical
groups, with each group conducting experiments in a different sequence during fortnightly
laboratory sessions. Chemistry IA/B courses included six laboratory activities per semester,
whilst Foundations of Chemistry courses included only five. However, the first laboratory
session in each semester for the Foundations of Chemistry courses was not a ‘wet’ lab session,
leaving four practical laboratory experiments conducted each semester by the Foundations of
Chemistry cohort. These four experiments were all experiments also conducted by the
Chemistry IA/B students. The original list of experiments conducted during the earlier years of
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data collection is given in Table 2, including descriptions of the laboratory activities, semester
in which they were conducted and whether students worked in pairs or individually.

Table 2: Initial list of laboratory experiments conducted by students

Experiment title

Description

Conducted by

Biological buffers
(Experiment 1)

Thermochemistry
(Experiment 2)

Vapour pressure
(Experiment 3)

Melting points and
recrystallization
(Experiment 4)

Quantitative
techniques
(Experiment 5)

Reaction kinetics
(Experiment 6)

Liquid-liquid
extraction and TLC
(Experiment 8)

Synthesis of aspirin
(Experiment 9)

Students generate titration curves with the aid of
technology to graphically investigate the pKa and effective
range of buffer solutions, including histidine.

Students conduct simple calorimetry experiments and
perform the appropriate calculations in order to calculate
the enthalpy of formation of ammonium chloride using
Hess' law.

Students measure the vapour pressure of a number of
mixtures of cyclohexane and ethanol at a range of
different mole fractions with the aid of technology. The
results, in conjunction with the application of Raoult’s law
and Dalton’s law, are used to show the mixture is non-
ideal and hence that the two substances have differing
intermolecular forces.

Acetanilide is recrystallised from a crude sample, and the
melting points of both the crude and purified samples are
obtained and used to briefly assess purity.

Students test the precision and accuracy of a volumetric
pipette by using the measured mass of water pipetted.
Students then determine the concentration of a sulfuric
acid solution by titration against sodium hydroxide,
including associated error calculations.

Students react iodide and persulfate ions a number of
times, varying reactant concentrations, temperature and
the presence of a catalyst. This is used to draw inferences
about the rate of the reaction, including determination of
the rate law. The experimentally derived rate law is used
to support or refute proposed reaction mechanisms.

Students perform an acid-base liquid-liquid extraction in
order to separate an acidic compound (salicylic acid) and a
neutral compound (3-nitroacetophenone). The results are
then analysed by thin-layer chromatography (TLC)

Aspirin is synthesised from salicylic acid and acetic
anhydride. The product is then recrystallised and analysed
against pure aspirin and pure salicylic acid samples by
Thin-layer chromatography to test for purity.

Both cohorts,
semester 1

pairs
Chemistry IA
students only

pairs

Chemistry 1A
students only

pairs

Both cohorts,
semester 2

individuals
Both cohorts,
semester 1

individuals

Both cohorts,
semester 2

pairs

Both cohorts,
semester 2

individuals

Chemistry IB
students only

individuals
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Experiment title

Description

Conducted by

Coloured complexes
of iron
(Experiment 10)

Analysis of spinach
extracts
(Experiment 11)

lon exchange
chromatography
(Experiment 12)

Determination of
copper(ll) ion
concentration
(Experiment 13)

Complexation between iron(lll) and the acetyl acetonate
(acac) bidentate ligand is used as an example to
demonstrate equilibrium and Le Chatalier’s principle. The
addition of sodium acetate is shown to shift equilibrium in
favour of the formation of the tris acac complex,
demonstrated using pH measurements as well as visual
inspection of solutions. Solubility of the different iron
complexes in polar or non-polar solvents is used as a tool
to observe the equilibrium shift visually.

Liquid-liquid extraction is used to isolate coloured organic
compounds from spinach leaves, with the resulting green
solution analysed by thin-layer chromatography.

Iron complexes are prepared in the presence of three
different conditions: dilute hydrochloric acid,
concentrated hydrochloric acid and concentrated
hydrochloric acid with added heat. Students perform ion
exchange chromatography on the coloured products,
rationalising the differences in observed results
depending on the reaction conditions used.

Students use a standard solution of copper sulphate and
perform serial dilutions to obtain a variety of different
concentrations, each of which has its absorbance
measured at a selected wavelength of light. With the aid
of technology, students generate a calibration plot with
these measurements, then use their plot to determine the
concentration of a solution from its absorbance by
applying Beer’s law. Students also briefly observe the
relationship between wavelength and colour by adjusting
a bench top spectrophotometer and observing the colour
of a laser beam.

Both cohorts,
semester 1

pairs

Chemistry IB
students only

individuals
Both cohorts,
semester 1

pairs

Both cohorts,
semester 1

pairs

At the beginning of 2012, the Foundations of Chemistry courses were modified. Practicals
(experiments) were no longer randomised, but conducted in the same sequence for all

students in an order designed to align with lecture content as closely as feasible. Some specific
experiments were modified to suit the Foundations of Chemistry cohort in small ways,
including small alterations to experimental procedures, questions asked in the answer booklet

and information provided in the instruction document for the experiment. The specific
experiments conducted were also changed in some instances, with the Foundations cohort

being presented with experiments they had not been in previous years. Three new
experiments were also devised explicitly for the Foundations of Chemistry cohort. The

laboratory components of the Chemistry IA/B courses remained as they had been in previous
years.

A list of experiments conducted by the Foundations of Chemistry cohort from 2012 onwards is
provided in Table 3, all of which had small alterations to the introductory material provided in
the laboratory instruction manual for the experiment. Some small further revisions were also
made to some of these experiments after 2012, and these changes are also noted. The order
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in which these experiments were presented also changed from one year to the next in a small
number of cases. Experiments are listed in their initial 2012 order in Table 3, with later
amendments noted.

Table 3: Foundations of Chemistry cohort experiments from 2012 onwards

Experiment title Description Notes
Introductory Students complete a number of questions Conducted individually.
experiment involving basic chemistry concepts such as

Later revised (2013) to include
a video of some possible
laboratory observations
students were asked to
comment on.

A second, later revision (2014)
included the pipetting section
previously a part of
“Quantitative techniques”,
and no longer this
observations video.

atomic structure and simple calculations.
Initially not a ‘wet’ lab session.

Quantitative Initially equal to the experiment of the same Conducted individually.
techniques title described previously, however students .
I were not re uifed to e:/%orm error Later revised (2014) not to
. q P include the section related to
calculations. . .
pipetting.
Presented second in semester
1 during 2012 and 13,
presented third in 2014.
Determination of Students determine the concentration of Conducted individually.
vitamin C vitamin C in a commercial brand of apple juice _
. L . p.p J Presented third in semester 1
concentration by redox titration against iodine solution.

during 2012 and 13, presented

Students must standardise the iodine solution fourth in 2014.

first by titration against a known solution of
vitamin C they make themselves, then use the
iodine solution of now known concentration to
determine the concentration of vitamin Cin
the commercial juice by titration.

Equilibrium and Le Equivalent to the experiment previously Conducted in pairs.
Chatelier’s principle  labelled “Coloured complexes of iron”, with

. Presented fourth in semester
some amendments to the question booklet.

1 during 2012, presented fifth
in 2013 onwards.

Visible absorption Equivalent to the experiment previously titled Conducted in pairs.

spectrophotometry “Determination of copper(ll) ion
concentration”, with some modifications.
Students record absorbance values from
communal machines rather than each working
pair having access to their own, and construct
their calibration curve on paper rather than
using technology. Students also do not observe
the relation between wavelength and colour.

Presented fifth in semester 1
during 2012, presented fourth
in 2013, presented second in
2014.
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Experiment title

Description

Notes

Aromachemistry

Analysis of spinach

extracts

Thermochemistry

Metal activity series

Reaction kinetics

Students are provided with a number of
sample vials containing unknown compounds,
and are asked to identify which vials
correspond to which molecules, having been
told the list of compounds and their aromas.
Students then answer questions regarding the
systematic nomenclature of organic molecules
and regarding basic reactions such as oxidation
of organic compounds.

Equivalent to the experiment previously
described under the same title, with the
exception that students work in pairs rather
than individually.

Equivalent to the experiment previously
described under the same title, with the
exception that students are not asked one final
guestion about entropy in the answer booklet.

Students place a number of solid metals into a
range of solutions containing metal ions,
observing which cases result in metal
displacement reactions. From these results, a
metal activity series is derived. Students
perform a similar process using halogen waters
and halide solutions to derive an activity series
for halogens.

Equivalent to the experiment previously
described under the same title.

New as of 2012. First
experiment in semester 2.

Conducted individually.

Conducted in pairs.

Conducted in pairs.

New as of 2012.

Conducted in pairs.

Conducted in pairs.

The order and phrasing of
some questions in this
experiment’s answer booklet
were later revised for 2013
onwards.

2.1 General methods| Data collection: surveying first year chemistry laboratory sessions 27



2.2 Rasch model formulations

2.2.1 Unidimensional Rasch models

A substantial amount of research presented in this thesis involves fitting data to various forms
of the Rasch model. A generalised Rasch-type partial credit model may be expressed as the
following:

l P(X—xk) _ 1
PX = x| 77 Tk

Where P(X=xx) denotes the probability that the observed response X, is equal to the k"
category of the rating scale xi, the parameter @is the latent trait measure and 7, is the Rasch-
Andrich threshold between the k' category and the (k-1)" category of the rating scale, for the
g'" scale group (a scale group being a set of items all with the same rating scale structure). The
latent trait measure ¢ thus determines the probability of responding in each category of the
rating scale. The 7 parameters would be absent from a model with only two possible responses
for each item.

The above expression has collapsed the latent trait measure g@into a single term. However,
Rasch models generally express this term as a difference between respondent “ability” fand
item “difficulty” &; the person and item specific measures previously mentioned (see section
1.3.1). This produces a two-facet partial credit model (if using a response scale of more than
two options):

Tll(X xk) 2
ln[ Tll(X = Xg-— 1)] B

Where the subscripts n and i identify the variables as being specific to the n respondent or i
item respectively, and the it item is part of the g™ scale group. The partial credit model by
Masters'*® would be one in which all items have their own scale group, whilst the Andrich
rating scale model**’” 13 would be one in which all items are within the same scale group.

Splitting the latent trait parameter into only person and item terms is not the only possibility,
however. Many facet Rasch models'® 13 ytilise multiple different terms, with each term
specific to a different “facet”. The multiple different facets interact to generate the latent trait
measure, which interacts with the rating scale (or partial credit scale) to predict the probability
of observing each category of response. A typical example is a scenario in which students are
graded by multiple different judges, for a number of tasks.}*® Student, judge and task would
each be assigned their own facet, splitting the latent trait measure ¢ from Equation 1 into
three separate terms:

_Sn_]m_Tj 3

Where S, is the “ability” of the n student, J», is the “harshness” of the m*judge, and T; is the
“difficulty” of the j task. The sum of the effect of these measures then interacts with the
rating scale threshold parameters to determine the probability that the n' student, rated by
the m™ judge on the j* task will result in an observation in each of the rating scale categories.
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The way in which the latent trait parameter ¢ is split helps define the theoretical construct
underpinning the observed responses by establishing which variables contribute to the final
resultant observation in the rating scale. The latent trait underpinning responses to the ASELL
surveys, for example, could be conceptualised in a number of ways. By changing the different
facets included in the Rasch model used to explain the observed data, the factors theorised to
be contributing to observed responses are correspondingly changed and thus so is the
theorised mathematical mechanism connecting latent trait measures to observed responses.

2.2.2 Multidimensional Rasch models

Some types of Rasch model are able to express the measures described previously as a
function of smaller, elementary components. That is, rather than expressing survey responses
as a function of a singular latent trait varying along a singular dimension, the model may be
reformulated such that multiple different measurable dimensions contribute to responses.
Person measures, for example, may be explained as a linear combination of smaller variables.
The Multidimensional Partial Credit Model (MPCM)!*! expresses each person measure 3 as a
linear combination of M different person attributes. Here, a multitude of person attributes
apply differently to different survey items/circumstances. This reflects the notion that students
draw on different predispositions in response to different questions (and in different
circumstances).

M
— 4
Bi,n - Z Wi,men,m
m=1

In the expression above, wim serves as a weighting factor, scaling the degree of contribution of
the m™ student attribute to the response of the question/circumstance assigned the it § value.
The values of 0, reflect the relative magnitude of the n™ student’s m™ attribute, when
applicable. This model may be of use in reflecting the fact that a student may, for example,
have a different tendency to provide positive response 0,1 in the case an experiment contains
mathematics, compared with their tendency to provide positive response 0, in cases the
experiment does not.

Another example is the Linear Logistic Test Model (LLTM),%*?14% where the item parameters are
broken down in the following way:

J
6; :Z‘h’,jnj >

J=1

Here, the & value is expressed as a linear combination of J many smaller components. Each
component has a parameter 1 reflecting its relative contribution to d if applicable, whilst the q
values act as scalar ‘weighting’ factors reflecting the degree to which each component
contributes to the measure for the i" § value.

A very simple example of the LLTM, where & values correspond to a measure of quality of the
it" experiment (with respect to some specific ASLE survey question for simplicity of the
example), would be a case where q; takes the value 1 if the j'" component is relevant to the
quality of the i*" experiment, and 0 otherwise. Component j could, for example, concern
mathematical content. If the i" experiment has mathematical content, g;; would take the value
1, and so there would be an additional contribution of magnitude n; to the experiment quality
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(0i) because it contains mathematical content. A more nuanced example could be where the q
values take different values reflecting the relative amount of mathematical content in the
experiment, with experiment quality changing linearly as degree of mathematical content
changes. Examples like this demonstrate this model’s capability to clearly link the experiment
quality measures (9) directly to the design of the experiment.

The difficulty of applying this model lies in the identification of the different components
which contribute to the measure of the 6 facet and the assignment of the various q values
weighting their contribution. Developing a matrix of jxi different q values (weighting j
components linearly combining to explain i different 8 measures) is not an issue unique to the
LLTM. Establishment of “Q-matrices” as they are called has historically been relevant in the
categorisation of test questions and the study of student misconceptions.}* These matrices
can in fact be estimated from observed data through generation and testing of random Q-
matrices until an optimal Q-matrix is found,*® however this procedure is computationally
demanding. Steps for developing a Q-matrix commonly involve the following:47 148

1. Identification of a set of components contributing to the response, usually informed by
experts in the relevant field

2. Coding each item based on which components contribute to it and which do not. This
develops the initial Q-matrix

3. Analyse the data with reference to the Q-matrix (for example using cognitive
diagnostic models*® or the LLTM)

4. Modify the initial Q-matrix based on observed output statistics associated with the
modelled parameters, as well as theory

5. Repeat steps 3 and 4 until an acceptable Q-matrix is determined

However, for the ASLE surveys, this approach would require prior knowledge regarding the
features of a positive laboratory experience, and the degree to which they contribute to each
of the ASLE survey question topics. A large part of the ASELL project’s purpose is to determine
these contributing factors in the first place, and therefore any expert suggestion of likely
contributing factors to include in the Q-matrix may be somewhat speculative in nature. A
technique is needed to identify the factors of a positive laboratory experience and their
relative contribution to each item of the ASLE survey before a meaningful Q-matrix can be
constructed.

Both of these variations of the Rasch model: the decomposition of both person measures and
item measures into linear combinations of many attributes or components respectively, are
incorporated into the Multidimensional Random Coefficients Multinomial Logit Model
(MRCMLM),**® also known as the ConQuest model (implemented in the ConQuest Rasch
measurement software).’® As such, this model represents a general form of a large family of
Rasch models; all models mentioned thus far are in fact specific cases of this general model,
achievable by imposing various constraints on the MRCMLM.*>? The notation below expresses
the parameters using the dot product of two vectors as opposed to summation notation, and
expresses the model at the individual category probability level as opposed to the common
log-odds form used thus far.

exp (Wi, - 6 - Gij 1) 6
11511 exp(Wiy - 0 — Gix - 77)

P(X =x) =
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Here, the 0 vector contains the M many different student attributes which sum linearly to the
student measure (previously 3), whilst the w vector contains the scalar weighting factors which
apply to each respective 0 value for a specific survey item/circumstance (indexed by i ).
Similarly, the n vector contains the relative contribution of the J many different components of
experiment quality which sum linearly to provide the experiment quality measure (previously
8), whilst the vector q specifies the weightings applied to each of these components
respectively, depending on the survey item/circumstance (again, indexed by i ).

A notable additional feature of this model is that it allows for variation in the weighting of the
0 and n parameters depending on which category of response is being considered, indicated
by the subscript k next to the w and g vectors (where K; is the number of response categories
possible for the i" item). The rating scale category specificity of the q values incorporates the
rating scale category structure in this model, achieved using a series of 1« parameters in
previously described Rasch models. The rating scale category specificity of both the w and q
vectors is also of great use in modelling tests. For example, person trait 6; may be far more
significant a contributor to obtaining the second mark of a question as compared to the first,
whilst person trait 6, may contribute equally to both. This could be incorporated into the
Rasch model by changing the value of w for different marks in the same question;
progressively higher marks achieved being directly analogous to progressively higher scored
response categories. Similar cases could be conceived for the different components
contributing to the difficulty of those items (n).

These nuances, however, can reasonably be presumed not to contribute to the ASLE survey
responses. The main purpose of introducing the existence of the MRCMLM here is that it
serves as the general model of which a wide array of diverse Rasch models may be considered
specific cases. It justifies the simultaneous decomposition of both the person measures and
experiment quality measures of the ASLE surveys into several component parts or facets, some
of which may take on different (or equivalent) values based on complex considerations. Rules
defining when different facets apply and whether they take different values can be explained
as different formulations of the matrices of w and q vectors in the MRCMLM.
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2.3 Data treatment: generation of Rasch models

2.3.1 Rasch measurement software

Studies presented in this thesis make use of two programs designed specifically for Rasch
measurement. The Winsteps program®>? is designed exclusively for two-facet Rasch models,
akin to those described by Equation 2. It provides a comprehensive set of associated statistics
with the model generated, including bias analyses and variance decomposition. The Facets
program®>* is capable of many-facet Rasch measurement (see section 2.2.1) and therefore able
to model a much broader array of conceptualisations of the ASLE data than the Winsteps
program. Facets is also capable of generating accurate measure estimations for other models
such as the Linear Logistic Test Model (section 2.2.2, Equation 5) by carefully defining and
structuring the facets included.'® The ConQuest program®®% 1% often used for these models
was therefore not required, though may prove useful for future extensions to the work
presented in this thesis.

The Winsteps and Facets programs both converge to optimised measure estimates in two
phases. The first phase, PROX, obtains an initial rough estimate by assuming normally
distributed measures.’” 1°8 These estimates are then used as the initial values for joint
maximum likelihood estimation (JMLE), which produces measures for each facet ‘independent’
of the other facets in the analysis.'?

2.3.2 Confirmatory and exploratory applications: treatment of misfit

Whilst Rasch models are often considered a specific type of item response theory model, the
conceptualisation of the relationship between data and theory differs substantially between
item response theory and Rasch theory.™ In contrast to item response theory’s emphasis on
structuring models which fit the data, Rasch modelling typically analyses data in the context of
a pre-specified model (a Rasch model), assessing the fit of the data to the model as opposed to
the reverse.'® The reason for this is intimately tied to the question of validity: purported
measures must be verified to fulfil the relevant criteria of appropriately being labelled a
measure of a trait. Given that the Rasch model is the only mathematical formulation capable
of converting observed counts into true “measures” as previously discussed (see section 1.3.1),
misfit to the Rasch model is therefore interpreted as evidence of poor construct validity as
opposed to inaccurate formulation of the mathematical model itself.16% 162

Consequently, response patterns exhibiting poor agreement between observation and Rasch
model predictions may be removed from consideration as a matter of routine practice in Rasch
measurement, as the inclusion of “misfitting” responses may compromise the measurement
properties of the scale generated and perturb the estimated category structure of the
instrument.'®? In the context of ASLE survey analysis, misfitting students are essentially
interpreted as “donkey votes”: those which do not follow a pattern which makes sense in light
of the way most others respond to the array of experiments surveyed, given the Rasch model.
This may occur because the student treats the response scale significantly differently to other
students, views the set of experiments significantly unlike the way the other students do, or
possibly even because their responses reflect nothing to do with the experiment at all. Once
these misfitting students are removed, the results reflect the best estimates of the category
structure and experiment measures that appear to be the case for most students. It is,
however, important to note the number of misfitting students who do not adhere to this
resulting model. tem measures in the Rasch model may also misfit, and in this case the
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interpretation would be that the item cannot be assigned a true measure that appears to be
reflective of any trend consistent for most students responding, in the context of the Rasch
model utilised. Broadly speaking, poor fit in Rasch measurement implies invalidity of the
measure construct: the values purported to be measures appear not to provide a true
‘measure’ of some consistently evident attribute.

Because of these considerations, Rasch analysis is typically confirmatory in nature: a specific
Rasch model is presumed to be the correct expression of the measurement construct, in the
case the attributes in question are measurable, and the fit statistics of the model generated
are used to confirm this presumption. This does not, however, preclude studies which aim to
determine which Rasch model is most appropriate for modelling the data. Use of the LLTM,
MPCM and MDRCMLM mentioned previously (section 2.2.2) are often justified by statistically
comparing these models to much simpler analogous Rasch models which do not model the
measures obtained as linear combinations of multiple elementary variables. The initial
descriptive Rasch model is contrasted with the more parsimonious model (such as the LLTM)
to ensure that the data still fit the model to a comparative degree despite the decomposition
of the person or item measures into smaller component parts.?>% 183 Section 2.5.4 describes
the statistical techniques often used for these comparisons.

Comparative studies like those mentioned above are examples of cases where different
formulations of the Rasch model are tested for their efficacy of explaining the observed data,
despite the usual confirmatory nature of Rasch techniques. In cases such as these, the removal
of misfitting observations would be in error. Removal of misfitting students during a study
explicitly designed to contrast the fit of two alternate models would introduce bias into the
comparative test, in favour of the model for which misfits had been removed. For this reason,
misfitting data points were only removed from consideration in studies presented in this thesis
in the cases where the objective was to determine the best estimate of the measurement
construct, under the presumption that a particular model or interpretation is known to be
appropriate and valid. Studies described where alternate models were compared did not
remove misfitting data points.

2.3.3 Measurement construct issues: extreme and disconnected responses

It is feasible that all observed data points relevant to the estimation of a given measure may lie
in the extreme positive or extreme negative response category. In cases such as this, the latent
trait measure which gives rise to the observed responses cannot be precisely measured, as an
infinite number of values beyond a certain point would all predict the same extreme set of
observations. Assigning definite measures in these cases is therefore problematic!®* and as
such, persons, items or other facet elements for which all observed data points are at the
same extreme do not contribute to the measure estimation procedure and do not contribute
to the model’s various fit statistics. For this reason, the removal of extreme persons or items
from consideration is common in the analyses discussed in this thesis.

All measurements output from Rasch model estimation are ideally within one frame of
reference, and can be understood as being in a definite location on the scale relative to the
other measures. This ideal, however, is not always realised. The possibility exists for different
subsets of the observed data to be entirely disconnected?!®® from one another. A simple
example may be a case where one group of students (group A) provides survey responses for
items 1 to 5, whereas an entirely different set of students (group B) provides responses only
for items 6 to 10. In this case, measures for items 1 to 5 would not be directly comparable to
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measures for items 6 to 10, as nowhere in the analysis does there exist a student who
provided responses in both subsets of the data, which would otherwise enable the measures
for these items to be assigned a numerical value relative to one another. Relative location of
the measures on the scale is only assured within each of the two isolated subsets of data
(group A and items 1 to 5, or group B and items 6 to 10). Scenarios akin to this may exist purely
as a result of unfortunate patterns in sampling, or may exist as an artefact of the way various
facets of the Rasch model are defined. Because measures are not comparable across subsets,
data points appearing within small, isolated subsets separate from the connected bulk are on
occasion (where stated) removed from consideration in the analyses described here.

In the event isolated subsets of data need to be made comparable, techniques are available.
“Equating” techniques,®® 17 3s they are known, have the goal of placing the previously
isolated measurement subsets into the same reference frame. Often this necessitates
“anchoring” some measures to have specific values reasonably selected by the researcher,
though this often comes at the cost of making an assumption. For example, two isolated
subsets may be equated by presuming some items to have equivalent measures in the two
different subsets, or it may be presumed that the distribution of student measures in each
subset has the same centre (requiring both student measure subsets to be “group anchored”
at the same value). Alternately, data sets may be ensured to be within the same reference
frame for measurement if they share common persons responding, items the respondents are
posed with, or common elements of another facet.
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2.4 Data analysis: general statistical procedures

2.4.1 Statistical testing and family-wise error

Typically, statistical tests are conducted by reporting probability (p) values of the observed
data being sampled under the presumed truth of some “null hypothesis”. Individual statistical
tests are deemed to refute the null hypothesis at p<a, where the value of o reflects the
probability of a type | error: the incorrect rejection of a true null hypothesis.

An important issue which arises when multiple different hypothesis tests are conducted is the
problem of “multiple comparisons”. In the case where multiple statistical tests are conducted
on the same data set, the chances of incorrectly rejecting at least one true null hypothesis are
raised, purely by virtue of the fact many tests are conducted. In general, if k many statistical
tests are conducted, each deeming significant results at significance level a, then the
probability of at least one type | error occurring, also known as the “family wise error rate” is
given by:

a=1-—(1-a) 7

This implies that, for example, if fourteen statistical tests are used to detect difference in
responses to any one of fourteen Likert-type items of the ASLE survey between two different
evaluated experiments, the probability of inferring at least one significant difference at p<0.05,
in the case the two experiments are in truth equal, is as high as 51%. This is one reason why
the “shotgun approach” of testing for any difference between each singular Likert-type item
individually when contrasting two different survey evaluations is heavily criticised.** 3

A way of controlling for this highly undesirable effect is the application of the Bonferroni
correction.'®® The Bonferroni correction operates by reducing the selected value of o simply
and conveniently in such a way as to ensure the family wise error rate is at least as low as
desired by the analyst. For a specified “family” of k hypotheses, the Bonferroni correction
recommends deeming significant difference at a/k, where a here is the significance criterion
which would ordinarily be applied were only a single test being conducted. As @ is always less
than or equal to a/k, this ensures the family wise error rate is sufficiently small, and is in fact
conservative methodology. This technique is applied in numerous cases, by necessity, in this
thesis.

2.4.2 The normal distribution assumption

A number of statistical procedures, namely “parametric” methods, require data to follow a
normal distribution. That is, the data are distributed as follows:

_ 1 —(X _.ux)2
pe) = — mexp( 702 )

Where p(x) yields the probability density function of the variable of interest x, distributed with
mean value p (also known as the “expected value”) and standard deviation G. That is, given
possible values of x are normally distributed, Equation 8 yields the probability that an
observation randomly sampled from the population of x values will yield that specified value of
x. Similarly, the integral of the function from -oo to some specified x value gives the probability
of observing that specific value of x or less (a one-sided test). This can be used to evaluate the
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probability that the observed value of x will lie between or outside of specified values (a two-
sided test), as well as “confidence intervals” defining the range at which x is likely to be
observed with a specified level of probability. A more convenient, equivalent notation is to
simply state x ~ N'(ux , 6x2),where c,? (the square of the standard deviation), is often called the
variance.

The value L, termed the population mean, reflects the central location of the normal
distribution. The mean is simply the average of all possible x values weighted by their
probability density, and may be estimated from a finite sample of n observations by obtaining
the sample mean, labelled X, given in Equation 9.

n
1
pe=Yap® = F=>x 9

The value oy, termed the standard deviation, gives a measure of the spread of the distribution
about the mean value, equal to the root-mean square difference between the mean and each
possible x value, weighted by the probability density. This value may be estimated from a finite
number of observations n to yield the sample standard deviation, labelled sy:

10

One reason the normal distribution is assumed by a number of comparative statistical tests is
due to the distribution of sample mean values expected to be achieved from repeated
experiments. This relationship is expressed by the central limit theorem,® which roughly
states that as the sample size n of each of the individual experiments increases (in which n
many observations of the variable of interest x are made), the distribution of the sample
means (X , estimated from each of the repeated experiments) approaches a normal
distribution V'(ux, 6x2/n). That is, a normal distribution centred about the population mean of
the observed variable x, with standard deviation in the estimated sample means of cx/\/n,
known as the “standard error” (SE) in the mean value of x.

o
X~N(ug, SEC)?) 5 pr=pe , SEE =-—%= 11
Vn
This is true regardless of whether the distribution of the sampled variable x is normal.
However if x is not normally distributed, larger values of n are required before the distribution
of expected mean estimates is sufficiently normal.

Measures of skewness and kurtosis may be used to quantify departure from a normal
distribution, with skewness roughly expressing a difference between the mean value and the
centre of the distribution (the median)!”® and kurtosis roughly expressing non-normal
proportions between the centre and tails of the distribution.’* Equations commonly used for
calculating skewness (y1) and excess kurtosis (y2), both of which are zero for the normal
distribution, are given by the following:
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Skewness may be used to calculate the sample size required for expected sample means to be
sufficiently normally distributed. Cochran’s rough guideline’? of 25xskewness and Boos and
Hughes-Oliver’s'’® suggestion of (5.66 xskewness)? for a two-sided test may be used to justify
common rules of thumb that sample sizes greater than 25 — 30 observations are usually
sufficient for moderately skewed or unskewed data (presuming the magnitude of skewness is
1 or less). Meeting this sufficient sample size implies the distribution of expected sample
means obtained from repeated experimentation is approximately normal, and therefore
“confidence intervals” of the true population mean’s likely location may be estimated based
on the sample mean and standard deviation estimates. Kurtosis and skewness are both
individually used to assess departure from the normal distribution here, in conjunction with
their standard error values (used as described in the next section, 2.4.3).

Three main statistical tests are implemented here to test for normally distributed data; the
Kolmogorov-Smirnov test,'7417¢ the Shapiro-Wilk test’”” and Rasch measurement based chi
squared tests output by Rasch measurement software for each facet. All three of these
methods test the null hypothesis that the values or measures observed or estimated are
sampled from a normal distribution. Probability (p) values reported correspond to the
probability that this is true, given the observed values. Visual techniques for the assessment of
whether data appear normally distributed also include the use of Q-Q plots,*”® which should
appear as a straight line in the case of normally distributed data. With the exception of Rasch-
based chi squared tests, the assessments of normality mentioned here are briefly and
effectively explained by Ghasemi and Zahediasl.'”® Of note, the Shapiro-Wilk test is
recommended as being more powerful than the Kolmogorov-Smirnov test, both of which have
low power at small sample sizes.'® Conversely, as with most statistical tests, larger sample
sizes will imply smaller departures from normality are reported as significant. These
considerations justify the use of multiple different assessments of normality in this thesis.

2.4.3 Z and T statistics

Discussed in the previous section (2.4.2) was the ability to use the normal distribution to
construct confidence intervals in which the observed variable may be observed with a
specified probability. This, coupled with standard error values, can be used to obtain the
probability that a calculated variable estimate is equal to, less than or greater than a specific
value as desired. A convenient technique is to use z values, which converts values of the
variable of interest to their location on a scale transformed to be distributed N'(0,1) rather
than their original values distributed V'(p,0x%). This is convenient because confidence intervals
may then be simply defined by stating the number of standard deviations about the mean the
observed value may fall between. For an observed variable x expected to be distributed V'
(Lx,0x%), the corresponding z-value may be computed simply as:
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This may be used to test the probability that the observed value of x is equal to the expected
value L, under the “null hypothesis” that estimates of x are normally distributed about the
value L. In a two-sided test, the regions of the normal distribution outside of . + zG, are
summated, yielding the probability that the observed value of x would be randomly sampled
outside of the region of L« £ zo if the null hypothesis were true. A variety of statistics are
qguoted in this thesis along with their standard error values and z tests like the above may be
used to test their difference from, or equality to, specified values in this way.

Typically, values of 1 and G are not known, but rather estimated from sample data. In this case
the procedure for computing z stated in Equation 14 produces a variable which approaches
normality as larger samples are used for the estimates, but strictly speaking is not exactly
normally distributed. The variable is instead said to follow a t-distribution of a specific number
of “degrees of freedom”. The degrees of freedom directly relate to the sample size used to
estimate the relevant values, with the t-distribution approximating a normal distribution more
closely as sample size (and therefore the degrees of freedom) increases. The t distribution may
be used in a similar manner to the z statistic for computing the probability that an observed
value x, estimated from a sample of size n, is equivalent to some expected value k. Here, the
test statistic follows a t distribution with degrees of freedom n-1.7” As previously discussed
with reference to the central limit theorem, the standard deviation in the sample estimate
distribution is termed the standard error value, and hence takes its place in Equation 14.

t_x—k
"~ SE(x)

15

The z and t distributions may thus both be used for statistical comparisons, with the z statistic
being appropriate when the sampling distribution is known to be sufficiently normal, and the t
statistic appropriate more generally. A key example is the testing of skewness and kurtosis
values, which are quoted in this thesis alongside their standard errors to evaluate whether
data are normally distributed. Approximations to the standard error in a proportion also exist,
and this may be used to test whether an observed proportion (p) is equal to an expected
value.

SE(®) =p(1 —p)/n 16

The normal approximation to the standard error in a proportion p estimated from a random
sample of size n is given by Equation 16, which is often stated to be approximately accurate
provided pxn and (p-1)xn are both greater than 5. Despite the prevalence of this
approximation, there are superior methods, however.8! A more accurate formulation is the
use of the Wilson score interval,'8 whereby a desired value of z may be input into Equation 17
to yield the upper and lower bounds of the desired confidence interval of the proportion
observed.

1 N L D
E p+%Z + Ep(l—p)+mz 17
—Z
n
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Generally, observed values greater than 1.96 standard deviations away from their expected
value (therefore |z|>1.96) reject the null hypothesis at p<0.05 in accordance with the normal
distribution. Other statistics are also commonly converted to their “z-standardised”
equivalents for easy interpretation. Infit and outfit statistics, quoted commonly in Rasch
analysis, are good examples (see section 2.5.2.1).

It is also possible to use the normal distribution approximation to compare one value to
another, if the sampling distribution of both has been estimated. The difference between two
observed variables, x; and x; estimated from independent samples, may be evaluated using
Student’s t-test. The test makes use of the standard error in the two values to compute the
probability that x1-x, is equal to zero, thereby testing the null hypothesis that the two values
are equal. As before, because the standard error estimates in each value are dependent on the
sample sizes used to estimate the values in question, the t distribution (from which p values
are computed) varies depending on its “degrees of freedom” (df). Though forms of the t-test
exist which presume the variances (and hence standard deviations) about the two values
compared to be equal,”’ statistics literature recommends the unequal variances form of the t-
test, also known as Welch’s test’® 7° unconditionally when sample sizes are unequal, forgoing
common tests of equality of variance.’®® 184 The test has degrees of freedom given by the
Welch-Satterthwaite equation,® where SE(x) is the standard error in x, given by the usual
relation between standard deviation and sample size in the case x is a mean value estimated
from a sample of n observations (Equation 11).

" _ X1 — X . df = (SE(x1)* + SE(x3)?)?
Weteh) = [SEG)? + SE()?2 . SE@)*/(ny— 1) + SE(xp)*/(n, — 1)
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An extension of this technique to test the equality of more than two values simultaneously is
one way ANOVA .81 8 This method tests the equality of the “within group variance” and the
“between group variance”, each of which have their own associated degrees of freedom, using
an F statistic; equal to the t statistic squared in the case of only two values being compared.
This typical technique again presumes equal variances of the individual samples compared,
however. An alternative which does not make this presumption is Welch’s ANOVA®. These
techniques are all applied in various contexts within this thesis. In each case, however, the p-
values reported reflect the probability that the values being compared are equivalent.

2.4.4 Chi squared statistics and nonparametric comparisons

Variables which follow chi squared (y?) distributions are common within Rasch analysis and
within many other general statistical methods. A variable composed of the sum of the squares
of k independent standard normal variables (i.e., squared z values) follows a chi squared
distribution with k degrees of freedom. These statistics are often used to assess degrees of fit
and to quantify the extent of deviation from a predicted or expected value, often across entire
models or data sets. This may be the assessment of the fit of observed data to the Rasch
model (see for example infit and outfit values or global fit statistics discussed in section 2.5.2)
or the fit of the distribution of observed measure estimates to a hypothesised trend. Key
examples of the latter include the “random(normal) chi square” and “fixed(all same) chi
square” values reported by Rasch measurement software, which test whether the measures
estimated for the elements of a specific facet appear to be randomly sampled from a normal
distribution or whether they appear to be of equivalent values respectively. Probability values
can be obtained from chi squared values using the relevant number of degrees of freedom
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(similar to other statistics discussed) and used to perform hypothesis tests. In all cases, the
probability value obtained corresponds to the probability that the obtained chi squared value
be observed under the null hypothesis that the observed data is equivalent to the expected
model or model being tested against (such as the normal distribution, Rasch model predictions
etc). Chi squared distributed values can also be derived from the likelihood that the obtained
data is observed given a specified model, as discussed in sections 2.5.2.2 and 2.5.4.1. Detailed
discussion of a variety of applications of Chi squared statistics and the appropriate associated
methodology is provided by Delucchi.®®

Chi squared values can also be converted to approximately standard normal (z) statistics via
the Wilson-Hilferty transformation.® If Y is a statistic following a chi squared distribution with
degrees of freedom df, then the corresponding approximately standard normal (z) value is
given by the transformation (W) shown in Equation 19. This transformation is often performed
on chi squared values used to assess fit to the Rasch model (see section 2.5.2.1).1%°

#"-(-03)
df 9/ \df
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9/ \df
A particular application of variables following the chi squared distribution is the chi squared
test of independence, which tests the null hypothesis that one categorical variable is
independent to another. The test is conducted by structuring a “contingency table” with each
column corresponding to a specific category of one variable (the column variable) and each
row corresponding to a specific category of another (the row variable). In each cell of the table
is the number of sampled data points observed in the relevant category of both the
appropriate row and column variable. The test uses the observed numbers of responses to
generate expected values for each cell in the event the row variable and column variable are
statistically independent (i.e. the expected frequencies under the null hypothesis). The
difference between these expectations E and the observation O are then used to generate a

7 value. From this value the probability that the row variable is statistically independent to
the column variable is obtained. For each observed count O; ; in row i and column j of the

w(y) = 19

table, in a table with r rows and ¢ columns, with N total observations, the calculation of
expected values E; j and the test statistic 12 are given as follows, where the chi squared value
has degrees of freedom (r-1)x(c-1).°

V=1 Oik Yk=1 Ok, N (Oi,j B Ei.j)z
Eij = N A=) ) 20
i=1j=1 LJ
One notable case in which the chi squared test of independence is performed in this thesis is in
the application of Mood’s median test,’®® which tests whether the frequency of observed data
points either above or below the “grand median” (the median taken using all sample groups
compared) is independent of the sample group. This provides a non-parametric means to test
for difference between the central point of two distributions of observed data. The chi squared
test of independence may be improved upon, however, in the case that either the row or
column variable only has two possible categories. Whilst the above technique only yields
approximate probability values, Fisher’s exact test'® yields exact probability values, though is
more computationally intensive. The exact test is at times utilised in this thesis, notably in the
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comparison of categorised responses to open response format ASLE survey items between
sample groups (see section 3.1).

Other non-parametric methods of contrasting two data sets include the Mann-Whitney U
test,’? equivalently known as the Wilcoxon Rank Sum test,’® 7! and their extension to more
than two data sets being compared, the Kruskall-Wallis test.”* These non-parametric methods
utilise methods of assigning ranks to observed data points and do not make assumptions of
normally distributed data. This makes them useful alternatives to the parametric methods
described previously when testing for equality between two or more independent samples of
data.

2.4.5 Correlation and linear models

Statistics of the normal distribution are used commonly in structuring models associating two
or more variables. Given two variables x and y, modelled as being related by some
mathematical function f (x;) = 7; (where J; is predicted value of the i'" observed y value, y;
corresponding to the it observed x value, x;), a commonly quoted statistic is the coefficient of
determination, labelled R2.

2 AN2 —N\2
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As can be seen in Equation 21 above, the R? value subtracts the proportion of the total
variance in y unexplained by the model from 1, yielding the proportion of observed variance in
y explained by the model. In the case x and y are related by a linear model, the coefficient of
determination is equal to the square of Pearson’s correlation coefficient.'® Pearson’s
correlation coefficient® (py,) is calculated as:

n
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where oy, is the covariance of x and y. This value, much like the mean and standard deviation,
may be estimated from a sample of finite size n as shown in Equation 22. The E() operator
represents the “expected value”: in this case the mean value of the term within the
parentheses. The sample correlation coefficient, which approximates pyy whilst maintaining its
relationship to R?, may therefore be calculated as follows:

(i - D - )
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In the case it is required to statistically compare sample correlations to specific values, or to
other correlations, the Fisher z transformation may be performed.®%%° The value of ry is
transformed to a new value which approximately follows a normal distribution as shown in
Equation 24. The Fisher transformed correlation may therefore be compared with specific
values or other Fisher transformed correlations, using its standard error of 1/\/(n—3).

1+
F(Txy) = %ln ‘1 Ty

, F(ryy) ~N(F(pxy) '%> 24
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In simple linear regression, the sample correlation coefficient (Equation 23) is of use in
computing the line of best fit expressing a modelled linear relationship between variables x
and y. Given a set of observed values of x and y, the linear relationship which expresses the it"

estimated y value (¥;) from the i" x value (x;) may be formulated as shown in Equation 25.18
191, 192

b=r S—y a=y—bx 25
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The standard error in the slope of the line b is also known, enabling comparative statistical
tests between the slope and a specified value, or between two different estimated slopes. The
degrees of freedom for t-tests (see section 2.4.3) comparing a slope value (estimated from
sample size n) to a specific number and for comparing two slopes to each other (estimated
from sample sizes n; and n; respectively) are n-2 and ni+n,-2 respectively.

_ o
SO = [o-256 - 27 %

2.4.6 Factor analysis

Linear models may be formulated not only for the association of two variables, but also for
multiple observed variables. Methods of formulating linear associations between a set of
observed variables include principal components analysis (PCA) %1% and factor analysis.
Though similar, a number of key differences exist between PCA and factor analysis,**® the most
notable of which is that unlike the results of factor analysis, the results of PCA may not be
interpreted as representing an underlying construct of the data.?’® 2! Rather, PCA serves as a
data reduction technique. In PCA, the set of responses to an array of observed variables are
reduced to a smaller number of principal components, where each component is a linear
combination of the initial observed variables. Factor analysis, however, expresses the observed
variables as a linear combination of underlying factors. Additionally, PCA accounts for the
totality of observed variance in the observed data, whereas factor analysis only accounts for
the shared variance between observed variables.?%? In keeping with the objectives of this
thesis, which involve exploring the factors underpinning observed ASLE survey responses,
factor analysis is the more appropriate of these alternatives in this instance.

196-198

For an array of observed cases (indexed by i), each consisting of observations of N different
variables (indexed by n), the factor model seeks to explain each observed variable as a linear
combination of F underlying factors, where F<N. This is achieved by converting the observed
variables into their z standardised forms (see section 2.4.3), then fitting the data to Equation
27 below. The value of z,; corresponds to the z standardised form of the i*" case of the n™"
variable (xn;), whilst each value of &;; represents the measure of the f" underlying factor in the
i'" observed case. The I, ¢ values, termed “factor loadings”, weight the contribution of the ft"
factor to the n' observed variable. The E,; parameter is simply an error term, equivalent to
zero for a perfectly fitting model.

F
Zni = Z ln,fgf,i + En,i 27
=1
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A number of techniques are available for factor “extraction”. That is, techniques used to
isolate the underlying factors of the model and estimate their loadings. These techniques
include (but are not limited to) canonical factor analysis?® (which utilises the same model as
PCA), common factor analysis,?** alpha factoring?® and image factoring.?°® Many extraction
methods may result in nonsensical so-called “Heywood cases”, where the modelled factors are
computed to explain more than 100% of the variance in the observed data in some
instances.?’” This does not occur for image factoring, however.?%® The number of factors
extracted during the analysis may be specified by the researcher or may be selected based on
various statistical considerations?®® such as eigenvalues?'® (not recommended) or scree
plots.?!! Following extraction, “rotation” methods may be employed in order to reformulate
the extracted factors in a manner more easily interpreted by the analyst.?'? Orthogonal
rotation methods, which maintain that estimated factors are uncorrelated, include varimax
and quartimax.?** Oblique rotation methods, which permit factors to be correlated, include
direct oblimin?*> and promax.?'® Rotation methods are not limited to those listed here.
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Two common statistical techniques used to assess the adequacy of correlated sample data for
factor analysis are Bartlett’s test of sphericity and the Kaiser-Myer-Olkin (KMO) measure of
sample adequacy.?” KMO measure of sample adequacy?*® ?'° ranges from zero to one and is
deemed unacceptable at values below 0.5, whilst Bartlett’s test of sphericity??® 22! tests the
null hypothesis that all variables are uncorrelated. The rejection of this null hypothesis implies
the data are appropriate for factor analysis.??!
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2.5 Data analysis: Rasch model related statistics

2.5.1 Observed, expected and fair scores

If implementing the traditional integer scoring methods applied to the ASLE survey data, the
observed average score A corresponding to a set of observed counts in each of the K many

available response categories (described by the vector X= [c1,cz2,...,ck]) may be computed
using the following:

K

A()?) :iz aCr 28

N
k=1

Where ay is the score value assigned to the k' response category, whilst N is the total number
of observations: the sum of the ci values. Usually, the five score values utilised for the five
ASLE item response categories are the integer values from -2 to 2, however Rasch
measurement software often reports score results using a scoring system beginning with the
value zero for the first category, then proceeding with successive integer values for
progressively higher categories. This is not problematic, as the usual ASELL-type score may be
obtained directly from the score reported by Rasch software by subtracting 2, however it is
worth noting for the purposes of reading and interpreting “observed average scores” as
reported by Rasch measurement programs.

Once a Rasch model has been estimated for the data, expected average response scores
associated with individual persons, items or elements of other facets may be computed. This is
achieved by taking P(X = xi) values obtained from the Rasch model directly (Equation 1) to
obtain the expected count of responses in each category c, then applying Equation 28 to
obtain a mean score based on expected response counts, rather than observed response
counts. A value labelled as the “fair average” score may be also reported in the case of using
the Facets program, and this is approximately equivalent to taking Rasch measures of all other
facets as being their average value, then applying this technique.??

The point-measure correlation gives the observed correlation (see section 2.4.5) between
observed scores and the associated Rasch measures.?? Values of these correlations expected
under the presumption that the data perfectly fit the Rasch model can also be computed and
used to assess whether the observed values are excessively high or low. The observed and
expected correlation values between score and measure are often labelled as “ptmea” and
“ptexp” respectively in Winsteps or Facets outputs.

2.5.2 Rasch model fit statistics and descriptive values

2.5.2.1 Infit, outfit and discrimination

A variety of statistics are available for describing the fit of data to the Rasch model. These
include both local and global fit statistics including Infit (inlier-fit) and outfit (outlier-fit) values.
Infit and outfit statistics’® 77 provide measures of how closely the data fit model predictions,
with respect to inlying and outlying observations respectively.'®® They are computed first by
contrasting the observed response score (X,) for each individual data point (indexed by n) and
contrasting with the expected mean response (E.) for that single data point, computed using
procedures described previously (see section 2.5.1). The standard deviation in the expected
mean value (S») is also calculated, using the population standard deviation formula (Equation
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10, section 2.4.2) and the expected frequencies of scored responses in each category for that
data point. The observed score, expected mean score and standard deviation in the expected
mean are then used to obtain a z score (see Equation 14, section 2.4.3), termed the
“standardised residual” value for that data point (Z,). Infit and outfit mean square values
(MnSqiner and MnSqoutar respectively) are then computed using these standardised residuals,
which are evaluated for each data point relevant to the facet element number the statistics
are being quoted for (for example all data points contributed to by a specific person, specific
survey question, etc, of which there are N).

Zgzl(Xn - En)z

29
Xn=15n

N
1
MnSqoyrrir = N Z an , MnSqinpir =

n=1

Values quoted for infit and outfit may be mean-square values calculated as shown above, or
may be corresponding standard normal z values obtained using the Wilson-Hilferty
transformation?®3® 22%(see sections 2.4.3 and 2.4.4, Equation 19). Because the mean square
values are chi squared statistics (see section 2.4.4) divided by their degrees of freedom, they
therefore have expected values of 1. The corresponding z values may be interpreted as per
other z statistics.

Values substantially above expectation (termed “underfit” ) may imply measures do not
behave in the manner presumed by the construct of the Rasch model generated, indicating
inconsistency between prediction and observation; a key component of construct validity.
Conversely, values below expectation imply data accords with model predictions so closely as
to be unexpected (termed “overfit”).162 The z statistic may be preferable to the use of the
mean square value in some cases due to the mean square’s insensitivity to variance in the
measures.??> However, z statistics reflect the statistical significance of the departure from
expectation rather than its magnitude, and as such studies with vast numbers of responses
may show significant values of z despite very small deviations from Rasch model prediction.?%
This justifies use of the mean-square values, however this is also problematic as there are no
clear ‘rules’ defining which values are extreme and which are acceptable (though ranges of
roughly 0.6 to 1.4 would be acceptable for ASLE survey purposes).??’” Generally, z statistics are
useful for determining whether data fit the model perfectly, whilst mean squares are useful for
determining whether data fit the model ‘usefully’.??® A statistic related to the infit and outfit
values is the RMSR or root mean square residual, where the residual is equivalent to the
difference between expected scored response based on the Rasch model and observed scored
response.

The estimated discrimination values reported are in this instance best interpreted as a
measure of model fit: the Rasch model uses discrimination values of 1, and these statistics
describe what value the discrimination would take were this variable allowed to change. It
expresses the degree of change in observed response relative to the change in the latent trait
variable. Values below one suggest that observed responses change less drastically than
expected as the latent trait (Rasch) measure changes, whilst values above one indicate
observed responses change more drastically than expected as the latent trait measure
changes. The latter may be indicative of a second, undesirable variable which correlates to the
latent trait of interest influencing responses.??
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2.5.2.2 Global fit and variance explained

Other statistics reflecting the fit of observed data to the model are the log-probability value
and the log-likelihood chi-square value. The log-probability value is equivalent to the natural
logarithm of the probability of sampling the relevant observed data points given the estimated
Rasch model parameters, whilst the log-likelihood chi square value is simply -2 x the log-
probability value.?° Both of these statistics may be quoted locally for individual data points,
for measures relevant to a large set of data points, or for the Rasch model as a whole. The log-
likelihood chi-square value is a common measure of global fit, and a key component of
statistical tests contrasting the fit of different Rasch models of the same data (see section
2.5.4). It may also be used to test whether the observed data fits the Rasch model perfectly,
though perfect fit is generally unexpected.?*! The value is approximately chi-squared
distributed with degrees of freedom approximately equal to the number of free parameters
estimated subtracted from the number of (non-extreme) data points in the analysis.

Rasch measurement software is also capable of reporting the proportion of variance in
observed data explained by the Rasch measures estimated via variance decomposition
techniques.?? This can be useful in assessing the degree to which various specific facets (such
as persons or items) or the Rasch model as a whole contributes to variation in the observed
data. This proportion is influenced by a variety of factors such as the inherent imprecision in
the categorical response scale, the relative degree of variation in some facets compared to
others, random error and other factors, so care must be taken in drawing conclusions from
these values.

2.5.2.3 Separation and reliability

Each facet in a Rasch model may be assigned separation and reliability values. The separation
statistic is related to the number of statistically different performance strata identifiable in the
sample,?*3 whilst the reliability value (which ranges from zero to one, one being optimal)
provides a measure of the reproducibility of the observed order of measures estimated.?3% 23°
These values improve given an increased number of data points.2%®

In the context of the usual two-facet Rasch models (see Equation 2 in section 2.2.1), low
person separation implies the hierarchy of person measures cannot be distinguished well given
the data available, and low item separation generally implies that the person sample is not
large enough to confirm the item measure hierarchy. If the reliability value is low this can be
improved chiefly by increasing the sample size, by making the survey instrument better
targeted (the mean person measure and the mean item measure are close) or by gathering
data from a broader range of the other measure. For example, item measure reliability can be
improved by gathering data from a group of persons with a broader range of person measures,
or conversely, person measure reliability can be improved by gathering data from items with a
wider range of item measures.

2.5.2.4 Rating scale associated statistics

Both Winsteps and Facets report a range of statistical values associated with the rating scale
structures estimated. Each Andrich threshold listed corresponds to the T parameter (see
Equations 1 and 2) defining the point at which a student is equally likely to respond in either of
the two relevant adjacent categories, whilst the Thurstone threshold is the measure at which a
student has a 50% probability of responding in the lower of these two categories or below, and
a 50% probability of responding in the upper category or above.?®’
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The category measure is the point on the latent trait variable at which the expected score (see
section 2.5.1) is equal to the assigned score for that category. These values are useful for
assessing the equidistant nature of the categories or otherwise, as are the category “ranges”,
which are defined at the “half point thresholds”: the points at which the expected score is
equal to the average of the two assigned scores of adjacent categories. Also reported may be
the observed average latent trait measure for observations in that category, or the expected
value of this statistic presuming the Rasch model (labelled as observed and expected average
measure respectively).?*® The Facets program also reports the category peak probability, which
is simply the measure at which the probability of observing that category is at its maximum.

The coherence statistics are also available, and describe the ability to draw inferences between
the observed response category and the Rasch measure for the latent trait variable. The C=>M
(category implies measure) value describes how frequently the observed response category
correctly predicts the latent trait measure, whilst the M=>C (measure implies category) value
describes how frequently the latent trait measure correctly predicts the observed response
category.?®®

2.5.3 Analysis of bias interactions

Differential Item Functioning (DIF) and Differential Person Functioning (DPF) are examples of
bias evident in data modelled using Rasch analysis. DIF refers to cases where items appear to
adopt significantly different measures for different persons or person groups, whilst DPF refers
to cases where person measures appear significantly different when estimated using different
items or sets of items. Similar bias interactions can also occur between other facets in the case
of many facet Rasch models.

Two statistical techniques of assessing bias interactions such as these are available in the
Winsteps and Facets programs. Mantel statistics,?*° a multiple response category extension of
Mantel-Haenszel statistics,?** are computed via a procedure of dividing the data into strata
based on the measures associated. In the case of incomplete data these statistics are less
accurate and in some cases not able to be estimated, with alternative methods therefore
preferable.?*? Both Facets and Winsteps also provide alternative Bias analysis statistics using a
Rasch-based methodology. These statistics, reported as the results of t-tests (see section
2.4.3), have been shown to be superior to Mantel-Haenszel statistics.?**2%¢ For this reason, and
also due to the high prevalence of missing data in the ASLE survey responses, these t-test
statistics were used to assess bias interactions in the studies described in this thesis. The
probability (p) values reported by these tests correspond to the probability of obtaining the
observed data under the null hypothesis of no bias. Reported alongside these likelihood based
statistics are group-level fit statistics,?*”- 2*¢ which test the hypothesis that observed responses
to entire groups of facet elements (for example groups of persons) accord with Rasch model
expectations.

Whilst bias analyses such as DIF may determine that bias is present, a phenomenon known as
‘artificial DIF’ exists whereby the presence of bias in one item results in statistical tests
reporting bias for other items artificially. This means that whilst bias analyses are useful for
detecting the presence or absence of bias in a facet generally, it may be unclear which specific
elements of the facet (eg. which persons or which items) take different values as a result of
bias interactions and which do not. Differentiating ‘real’ from ‘artificial’ bias interactions may
be achieved by “resolving” the differential measures.?*
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For example, a series of items may appear to exhibit DIF depending on which of two person
groups is responding. The item exhibiting the most significant DIF may be ‘resolved’ by
assigning it two measures as opposed to one: one measure applicable to each person group.
This is equivalent to treating it as two separate items: one item for which only one person
group responds, and a second item for which only the second person group responds.
Following this resolution, any artificial DIF induced by this item’s real DIF would no longer be
evident. It is therefore possible to differentiate between real and artificial bias interactions in
this way, though the analysis required to do so completely may be extensive.

2.5.4 Model selection

2.5.4.1 Variance explained and the likelihood ratio test

Given two alternate models of the ASLE survey data, the need may arise to contrast the
models’ capability to explain the observed data. In the case of nested models, those where
one model formulation is obtained by restricting the parameters of the other (the parent
model), the likelihood ratio test may be used to contrast the proportion of observed variance
explained by the two models. The test statistic:

D=xi-x3 ; x*=-2In() 30

where 12 and y,? refer to the log-likelihood chi square values of the parent and restricted
model respectively and L is the likelihood of observing the data given the estimated model
parameters, approaches a chi squared distribution with degrees of freedom equal to the
difference between the degrees of freedom of the two original %2 values (dfparent model — Ufrestricted
model) @5 More data points are included.?° This may be useful to test the null hypothesis that
both models explain the same proportion of the observed data. In general, the degrees of
freedom associated with log-likelihood chi square values are given by df = n-k, where n is the
number of data points, all of which must be common to both models and k is the number of
free parameters estimated.

“Free” parameters are those for which values are estimated rather than mathematically
necessitated. In general, the free parameters associated with a model include one parameter
for each element of each facet, minus the number of “centred facets” (those for which the
average measure is defined as zero, therefore meaning one element’s measure is the negative
sum of the measures for the other elements), plus the number of free parameters estimated in
calculation of the Andrich thresholds. As the Andrich threshold values for each scale group are
defined as summating to zero and threshold values exist between categories, the number of
free parameters estimated for each scale group is two less than the number of rating scale
categories.

Though often applied to establish that no explained data is lost when applying the LLTM in
place of less simplified Rasch models,'#* 2°! 3 limitation of the likelihood ratio test is that it
does not take into account the number of parameters required to achieve the observed
proportion of data explained by the models proposed. Estimating a larger number of
parameters in a model will invariably explain a greater proportion of the variance in observed
data points, even if those extra parameters do not reflect any genuine trends in the data
previously unaccounted for. Additional parameters allow models to fit better to random
“noise”, thereby reporting a higher proportion of variance explained. An improvement to the
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use of the likelihood ratio test is therefore the implementation of a procedure which takes the
parsimony of the model proposed into account.

2.5.4.2 Parsimony and the corrected Akaike Information Criterion

The Akaike Information Criterion,?2 and its corrected form?>3 (AlCc) provide a means of

selecting the best explanatory model of the observed data in a statistical manner. The statistic
takes into account the global fit of the model to the data (in the form of the log-likelihood chi
square value) as well as the parsimony of the model (related to the number of free parameters
needed to be estimated) to yield an AICc value for each proposed model. The model with the
lowest AlCc value is taken to be the best explanatory model for the data, for reasons outlined
well by Burnham and Anderson.?** Specifically, the difference in AlCc value from that of the
minimum AICc model (AAICc) corresponds to the Kullback-Leibler information?* loss
experienced if working under the alternative model rather than that with the lower AlCc,
whilst exp(AAICc/2) yields the likelihood of the proposed model given the data, relative to the
best model proposed. In comparison to the lowest AlCc model, alternate models with AAICc <
2 have “substantial” comparative support, alternate models with 4 < AAICc £ 7 have
“considerably less” support, whilst those with AAICc = 10 have “essentially no support”,
irrespective of the actual magnitude of AlCc values being compared.?** The formula for the
corrected Akaike Information Criterion is given in Equation 31, where L is the likelihood of the
estimated parameter values given the observed outcomes (equivalent to the probability of the
observed data given those parameter values), k is the number of free parameters estimated in
the model and n is the number of data points used.

2k(k+1
AlCc = —21n(£)+2k+¥ 31
n—k—1

The value of -2In(£) is often labelled as the log-likelihood chi square value and is commonly
used as a measure of global fit of the observed data to the Rasch model as described
previously (see section 2.5.2.2). The remaining terms in the AlCc equation serve to penalise a
large number of parameters used to estimate a comparatively small number of data points,
meaning sufficient parsimony is a key factor in determination of the best model. The statistic
has been applied to the selection of appropriate Rasch models previously.*°
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3 Quantitative methods and the
ASLE survey data

In this section the application of common integer value scoring techniques to ASLE survey data
is explored from a range of perspectives, contrasting the conclusions able to be drawn with
those which would be suggested through Rasch modelling. Results presented in this section
collectively serve to test the first primary hypothesis of this thesis:

Hypothesis 1:

Conclusions drawn from the ASLE survey data using typical scoring techniques
resemble conclusions drawn using sample independent, interval scale measures
extracted from the same data.

Section 3.1 presents a study reminiscent of typical ASLE survey use. Rating scale items of the
ASLE survey are analysed with the usual integer value scoring methodology,
supporting any conclusions drawn using comments received on open response
items of the survey. This score-based study will serve as a point of comparison in
the subsequent section.

Section 3.2 includes an in-depth analysis of the identical data used for the previous section,
this time using Rasch analysis. The student independence or otherwise of score-
based data is particularly highlighted, testing the datasets gathered for evidence of
sampling bias. The impacts of these effects on conclusions of the initial score-
based study are identified and discussed, in so doing contrasting scoring
methodology with Rasch methodology. This study, in conjunction with the
previous, serve as a specific example of how any limitations in score-based
methods may impact research conclusions.

Much of the data and discussion presented in sections 3.1 and 3.2 have been published
(though with some differences ) in the Journal of Chemical Education,?® presenting an
investigation contrasting student perceptions of two different technological interfaces used in
laboratory activities.

Section 3.3 presents a far more generalised investigation into the measurement properties of
integer value scored data. Unidimensional Rasch models are generated for each
item of the ASLE survey, using these models to contrast sample independent,
interval scale Rasch measures of with the analogous score-based values expected.
The relationship between scores and measures is revealed both at the level of
individual responses and group level statistics. The validity of applying parametric
statistical methods to scored data is also investigated.
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3.1 Typical score-based analysis of ASLE survey data: an example

3.1.1 Outline

Rasch analysis, whilst revealing information of much more depth than traditional scoring
methodologies, is not readily accessible to all researchers and has not been applied to the
ASLE surveys prior to the works presented in this thesis. The study documented in this section
serves as an example of the way traditional scoring methods may be applied to a data set,
despite their suggested limitations. This study makes use of the usual integer scoring
techniques applied to Likert-type items of the ASLE survey, heavily drawing upon qualitative
comments received on the same set of survey responses to provide additional support to any
conclusions. In this way, pedagogical implications may still be confidently drawn, whilst
illustrating a typical study conducted using ASLE survey data. In the section following this study
(3.2), Likert-type data used to draw conclusions here will be re-analysed using Rasch analysis.
This study and the next will thereby serve to contrast the conclusions of integer scoring
methods and Rasch methods, testing the first primary hypothesis of this thesis: that
“conclusions drawn from the ASLE survey data using typical scoring techniques resemble
conclusions drawn using sample independent, interval scale measures extracted from the same
data”.

Though the primary objectives of this thesis concern validity of ASLE survey methodology and
past conclusions, the specific investigation presented in this section as a vehicle for later
investigating scoring methodology validity has its own notable implications. Investigation into
the validity of the scoring methods implemented is reserved for the section following (3.2),
using the conclusions of this study as a baseline for comparison. Consequently, the discussion
of results here will exclusively focus on conclusions revealed about student perceptions and
effective design of experiments, not the validity of scoring methods used to draw those
conclusions. The study presented involves a contrast between two technological interfaces
which students may be required to use as part of laboratory activities: a handheld graphing
data logger and analogous software installed on a laptop computer. It is conclusions regarding
these technological interfaces which will be discussed here, reserving an analysis of the validity
of the scoring methodology used for section 3.2.

3.1.2 Background: Microcomputer based laboratories

Laboratory work provides a wide range of benefits for learning in chemistry. 7 Practical
laboratory work has historically been claimed to be beneficial for multiple reasons, > °
including exposing students to concrete experiences with objects and concepts mentioned in
the classroom. # 2 Connecting concrete, macroscopic observations to the abstract
representations and symbolisations used in science is well understood to be a key hurdle in the
understanding of chemistry concepts®’2%° and is a task hailed as being one of the most
difficult challenges facing science teachers, as well as one of the most important.?! In part to
assist in the teaching of abstract concepts, and to engage students with technology they may
use as working scientists, technology plays an increasingly large role in science education,
including data collection and display in the laboratory setting.?®? A large body of research exists
concerning activities in which computing devices are used in conjunction with measurement
devices (probeware) to gather and display data in laboratory teaching exercises. Students may
be required to use handheld graphing data logger devices?%32%> specifically designed to display
and analyse data collected from associated probeware, or alternately the probeware may be
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connected to a laptop or desktop computer equipped with the necessary software. 266-26°

These activities have been termed microcomputer based laboratory (MBL) activities.

Because of their ability to pair events with their graphical representation in real time, MBL
activities have been suggested to assist in making the connection between the concrete and
the abstract,?’%?’2 notably in the form of improving students’ graph interpretation skills. More
active student engagement in constructing understanding has been suggested as an additional
benefit, arising from increased focus on data interpretation instead of data collection, and
increased student collaboration.?’* 27 These MBL activities have been said to have the ability
to “transform” laboratory activities due to these advantages.?’”®

Whilst a number of studies have supported these claims,2%> 276282 particularly in the context of
inquiry based learning,2% 283 284 gyerall the results of implementing MBL activities appear
mixed?® and successful implementation of MBL activities appears to be a complex issue.?8% 287
Studies exist which counter the suggested benefits concerning student understanding of
graphs?® and the connection between the macroscopic and more abstract.?® Other prominent
issues appear to be the possibility that students may watch uncritically as the computer ‘does
all the work for them’, as well as students encountering difficulty using the computing devices
themselves. 286 20

Studies documenting student perspectives of this technology reveal that student views of MBL
vary to a great extent.?®! Negative issues raised again include students feeling disengaged as
the data logger does all the work, as well as a lack of technical familiarity.?®? Students are
reported to claim the technology is complex and difficult to use?** and that they do not have
the time to ‘play’ with the technology and undergo trial and error processes of learning like
they would do with home computers.?®? These issues, including that students have difficulty
manipulating and using MBL technology, notably in “older” forms, have also been recognized
in teacher views.?° The disadvantages of having to learn how to use the technology as well as
the exercise’s learning objectives has been observed to outweigh the advantages of MBL in the
past,?** and it has been suggested that MBL activities may be better suited to those who have
a better idea of both content and the handling of sensor technology associated with the
microcomputer devices.?®® This is reminiscent of classroom based studies suggesting students
benefit more from computer-based exercises if they are comfortable with their use?*® and it is
not unreasonable to expect that the same is true of computing devices in the laboratory
setting. Recent review of studies concerning MBL activities in secondary school chemistry
suggests more research needs to be conducted to discover what can be done to assist students
in overcoming these issues they express.?!

This study reports differences in student perception data received from two different cohorts
of students in their first year undergraduate chemistry laboratory sessions; one cohort using a
handheld data logger device to collect and display data in the experiments studied, and the
other cohort performing the identical tasks, instead using a laptop computer. This change in
technological interface was made in response to negative views expressed by students
regarding the data logger devices, gathered using ASLE surveys distributed with original
intentions other than this specific study. ASLE surveys were then used to monitor student
perceptions the following year after the change had been made, and the results are presented
in the following discussion. The observations made are suggested to be of use in moving
towards overcoming the reported student difficulties associated with so called
“microcomputer based laboratories”.
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3.1.3 Specific methods

3.1.3.1 Experiments Conducted

During the year 2011 at the University of Adelaide, experiments studied within this research
involved student use of the PASCO Xplorer GLX handheld graphing data logger device. 26% 26°
Student feedback data, collected for other research purposes using the ASLE instrument,
revealed negative perceptions of these devices, which had been utilised in the teaching
laboratory for a number of years prior. In response to this feedback, the devices were replaced
with laptop computers equipped with software replicating the capabilities of the data loggers;
PASCO DataStudio.?®® The only differences between the two years, aside from this
technological interface change, include the laboratory demonstrators and the portion of the
instruction manual devoted to use of the technology implemented (in the form of an isolated
appendix to the rest of the manual). All other features of the relevant experiments remained
identical, including the tasks performed using either the data logger or the laptop computer. A
total of three experiments were studied, with the perception of each contrasted between the
two years. The utilised data measurement tools and functions of the data loggers or laptops
were different in each of these three experiments. Experiments studied include “Vapour
pressure”, “Biological buffers” and “Determination of copper(ll) ion concentration”, described
previously in Table 2 (section 2.1.3).

3.1.3.2 Data Treatment

Qualitative comments received in response to the open response items on the ASLE
instrument (items 15-19) were assigned codes based on their content, and also whether the
comment was of a positive, negative or neutral nature. The thirteen content-specific codes
used for all survey items except item 16 were pre-established; devised for the purposes of
separate research conducted in previous years (unpublished data). Codes used for item 16, in
the case this item was used in this research, were devised as appropriate for the specific
experiment’s learning objectives. Frequencies of comments which were and were not assigned
each of these pre-established codes were enumerated for each survey item. Fisher’s exact test
(see section 2.4.4) was used to compare these frequencies between the two forms of each
experiment individually.

Responses to Likert-style items were assigned scores corresponding to their position on the
five point scale. Responses to items 1 — 12 of the ASLE instrument were assigned successive
integer scores from +2 to -2 (“strongly agree” to “strongly disagree”) with zero (“neutral”) as
the midpoint, +2 being the optimal response. Item 13 responses, concerning time availability,
were also scored from +2 to -2 (“way too much” to “nowhere near enough”) with zero (“about

I”

right”) as the midpoint and optimal response. The final Likert-style item, concerning overall
learning experience, was similarly scored from +2 to -2 (“excellent” to “very poor”) with zero
(“average”) as the midpoint and +2 as the optimal response. Mean values of response scores
received from each student cohort, from each year, for each experiment, for each Likert-type
response format item on the surveys were calculated for the purposes of comparison (labelled
as Mzo1z and, Moz for mean values from 2011 and 2012 data respectively). This is in line with
standard methodology of the ASELL project (see section 1.1.2).

Mean scored responses to the Likert-type response format items were compared between
years for each of the three experiments using the T-test for unequal variances (Equation 18,
section 2.4.3), using this test in preference to the equal variances test in all cases as
recommended in the statistics literature for data sets of unequal sample size. The value of
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alpha (a) was selected to be 0.05 for the purposes of statistical testing, and two tailed
probability values were obtained for all comparisons made. In order to account for the issue of
multiple comparisons and control the family-wise error rate, the unweighted Bonferroni
method was applied (see section 2.4.1). All hypothesis tests conducted to compare the same
experiment between the two years of study were taken to be of the same family of
hypotheses, thereby yielding one family of hypotheses tests for each of the three experiments
in the study. Consequently, statistically significant difference was inferred at p < a/n, where n
is the number of hypothesis tests conducted to compare the relevant experiment’s two
different forms. Statistical tests and values were calculated using Microsoft® Excel® 2010, with
the exception of Fisher’s exact test, which was conducted using VassarStats.?’

3.1.3.3 Student Cohorts Sampled

Data featured in this study were obtained from students enrolled in the first year
undergraduate courses Chemistry IA and Chemistry IB (see section 2.1.1 for a more detailed
description). The number of students sampled was variable between experiments and
between years, with students presented with the non-compulsory ASLE instrument at the end
of their laboratory sessions. Given the sample-dependence of scored ASLE survey data, this
sampling technique presents the possibility of introducing bias in the sample: deviating from a
true representation of the student population. An investigation of the same data set using
more sample independent analysis techniques (Rasch analysis) is to be presented in the
following section (3.2) to overcome this limitation in the scoring methods used and evaluate
the validity of conclusions drawn (see section 3.2.4.1: Summary of sample adequacy
implications).

3.1.4 Results and discussion

3.1.4.1 Improved Perception of Overall Learning Experience

Details of all statistical tests conducted and frequencies of responses received for both
qualitative and quantitative items of the survey are presented in the supporting information
(section 7.2).

The effects of replacing the data logger interface with the laptop interface appear to have
yielded noticeable improvements in student perception of overall learning experience. When
responding to the Likert-type item “Overall, as a learning experience, | would rate this
experiment as”, students conducting the vapour pressure experiment responded significantly
more positively (mMzo11 = -0.02, M1 = 0.69, t(149.0) = -5.06, p = 1.22 x 10°°). Once the data
logger interface was replaced, this experiment in particular showed apparent improvement in
a large number of respects judging by Likert-type item responses. These improvements,
displayed in Figure 9, will be elaborated upon throughout the discussion. Change in overall
perception of the vapour pressure experiment was also clearly evident in the open response
comments. When asked if they enjoyed the vapour pressure experiment (item 15), a
significantly greater number of students gave positive responses (18 of 55 in 2011, 54 of 79 in
2012, p = 5.34 x 10”°) and fewer gave negative responses (39 of 55 in 2011, 31 of 79 in 2012,
p =4.09 x 10%). The biological buffers experiment may also have been perceived more
positively overall judging by responses to item 14 (mzg11= 0.60, Mz = 0.88, t(185.3) = -2.52,
p =1.26 x 10%), however this result could not be deemed statistically significant when
accounting for family-wise error.
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Figure 9: Mean Likert-type item response scores for “Vapour Pressure”

Mean response scores obtained using the laptop interface appear significantly higher than mean scores
obtained using the data logger interface. Error bars represent the standard error in the mean value.
Further statistical details for these comparisons are available in the supporting information (see section
7.2.1)

In the case of “Vapour pressure” specifically, data presented later in this thesis (section 4.3.3.2,
p.126) can be used to show that students not only found the data logger form of the
experiment to be poor, but gave noticeably unfair ratings compared to all other experiments
(Figure 43, p.127). A drop in approximately 0.5 score units across all ASLE survey questions for
this experiment appears to be due solely to negative student bias, adding to the already low
“fair” mean score values. Whilst this effect is not revealed by traditional integer scoring
techniques alone, it is still supportive of the general pedagogical implications of the study
discussed in this section. This large scale negative bias is only evident for this single
experiment, and disappears once the data logger is replaced with the laptop.

3.1.4.2 Reduced Negativity about the Equipment

Examining the qualitative comments received for the three experiments, there are a number
of indicators that the laptop interface was better received than the data logger interface.
During 2011, of the 24 students who stated they did not enjoy the experiment in response to
the question “Did you enjoy the experiment? Why or why not?”, 21 of those referenced the
equipment used. A number of these comments mentioned that the data logger devices were
prone to error and difficult to use. Some examples from the biological buffers experiment
include:

“It was ok, the GLX thing was difficult to use”; “it was annoying using the
GLX”; “No. The explorer GLX is hard to use”; “I do not like the pasco”; “no
glx do not work well, most people had problems”

Comments from the vapour pressure experiment for this same question further reveal issues
with the use of the data loggers:
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“yes however | found the xplorer GLX difficult to use and very frustrating.
The video, written instructions and demonstrator could not supply sufficient
information on using the xplorer GLX”; “No. | do not like using the explorer
GLX”

Once the handheld data loggers had been replaced, students conducting the biological buffers
experiment made negative comments about the equipment used significantly less often in
response to this same survey item, both amongst all comments received for this item (21 of 51
comments in 2011, 4 of 54 comments in 2012, p = 5.96 x 10°) and also when considering only
those comments which were negative (21 of 24 comments in 2011, 4 of 19 comments in 2012,
p = 2.44 x 10°). However, this was not clearly evident in the other two experiments, potentially
due to the fact that different functions of the technology were used in each experiment.

When the question “What aspects of the experiment need improvement, and what changes
would you suggest?” was asked of students, significantly fewer equipment related negative
comments were received for the biological buffers experiment (25 of 35 comments in 2011, 6
of 32 comments in 2012, p = 2.16 x 10-°). There was also some indication of a similar effect in
the copper(ll) ion concentration experiment, (18 of 43 comments in 2011, 12 of 66 in 2012,

p =4.61 x 10?) however this could be attributed to family-wise error. Amongst the negative
comments which were received for this question about the copper ion experiment, the
equipment was mentioned significantly less frequently amongst the improvements listed (25
of 31 negative comments in 2011, 6 of 25 negative comments in 2012, p = 3.38 x 10).

In the case of the vapour pressure experiment, comments viewing the equipment negatively
could not be said to differ significantly. However, there appeared to be a positive shift in the
number of students who found the equipment appealing, often due to the new and unfamiliar
use of technology (in this context, ‘unfamiliar’ refers to students not having seen technology
used in this manner in the laboratory previously). In response to item 15, the level of
familiarity or unfamiliarity was mentioned more frequently as a reason for liking the
experiment (1 of 55 total comments in 2011, 15 of 79 comments in 2012, p = 2.20 x 10°3).
Although this difference could be attributed to family-wise error, these comments almost
exclusively made very positive reference to the enjoyable experience of the novel use of
technology, and this was something not seen when using the data logger interface.

Additionally, these comments cite the ability to watch the graph change in real time in a
number of cases. Some examples of most enjoyable aspects of the experiment students
described include:

“Working with the computer program to see live data of changes in temp
(of water bath) and vapour pressure”; “watching the graph on the screen as
it changed”; “recording the pressure of a system onto a real time computer

graph”.

These comments are reminiscent of some of the benefits suggested in the literature of the use
of microcomputers in laboratories, and no comments referenced this until 2012 when the data
logger devices were replaced with the laptop computers. Citing the equipment as the most
enjoyable aspect of this experiment (in response to item 17), though increased, did not
increase to a level able to be deemed statistically significant (14 of 43 total comments in 2011,
35 of 79 comments in 2012, p = 7.82 x 107?).
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3.1.4.3 Greater Sense of Understanding

A broad range of indicators across all three experiments show evidence that students who
used the laptops felt a greater sense of understanding the experiments than those using the
data loggers. The vapour pressure experiment in particular shows clear improvement.
Significant positive changes in the mean response scores for items 5 and 6 were observed in
this experiment, providing reason to suspect a potential increase in student perception of
clarity of the expected learning outcomes (mzp11 = 0.28, Mzp1> = 0.91, t(138.4) =-4.15,

p =5.76 x 10”°) and an increased sense that the experiment increased the students’
understanding of chemistry (mzo11 = 0.33, M012 = 0.98, t(142.9) = -4.21, p = 4.58 x 107).

Open response comments for this same experiment corroborate this finding. In response to
the question “Did you enjoy the experiment? Why or why not?”, the relative occurrence of
positive and negative comments relating to understanding appeared to shift in favour of more
positive comments in 2012 (1 positive and 11 negative in 2011, 6 positive and 2 negative in
2012, p = 4.44 x 107%). Understanding was also negatively mentioned less frequently in
response to this question, both in the context of all item 15 comments received ( 11 of 55
comments in 2011, 2 of 79 in 2012, p = 1.69 x 10), and considered amongst the negative
responses only (11 of 39 in 2011, 2 of 31in 2012, p = 2.91 x 10). The copper(ll) ion
concentration experiment also shows some indication of an increased understanding, with
positive comments related to understanding stated as a reason for liking the experiment (item
15) more often in 2012 (8 of 81 in 2011, 21 of 95 in 2012, p = 4.05 x 10%). Whilst these
differences may reasonably be attributed to family-wise error, these observations collectively
serve to reinforce the significant differences already observed in the Likert-type data.
Considering the multitude of indicators of increased understanding, in the vapour pressure
experiment at the very least, there is clear evidence that student perception of understanding
increased when the laptops were used in place of the data logger devices.

Whether this improved sense of understanding is a genuine reflection of deeper learning
remains unknown. A significant increase in perception of data interpretation skills
development (mMzo11 = 0.36, Mao12 = 1.06, t(131.7) = -4.90, p = 2.76 x 10°°) was detected in
responses to the first survey item for the vapour pressure experiment, however the truth of
this increased perception is unknown. In response to the question “What did you think was the
main lesson to be learnt from the experiment?”, students conducting the vapour pressure
experiment in 2012 did cite at least one of the main concepts (Dalton’s law or Raoult’s law and
when it applies, intermolecular forces, non-ideal mixtures) in their responses more frequently
(20 of 45 comments in 2011, 47 of 71 in 2012, p = 3.33 x 10°%). Comments including Raoult’s
law or Dalton’s law were also more frequent (14 of 45 comments in 2011, 37 of 71 in 2012,

p = 3.48 x 10%). However, both of these results may be attributed to family-wise error and
hence are inconclusive.

3.1.4.4 Increased Perceived Simplicity

In addition to the improvement in student perception of understanding, the students using the
laptop computers also appear to have reported a view that the experiment was “simple” (a
term commonly used by students in their open responses) more frequently than the cohort
using the data logger devices. In response to being asked if they liked the experiment and why
(item 15) students conducting the vapour pressure experiment using the data logger interface
made no positive comments about the level of simplicity of the experiment, whereas 7
negative comments were received stating the lack of simplicity was their reason for disliking
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the experiment. In 2012, using the laptop interface, this perception was entirely reversed. No
students mentioned a lack of simplicity, and 12 listed the experiment’s simplicity as their
reason for liking the experiment, a clear significant improvement (p = 1.99 x 10°).

As a consequence of this, the vapour pressure experiment exhibits a number of differences in
the tests comparing frequency of reasons for liking and disliking the experiment between the
two years regarding the experiment’s simplicity. In response to item 15, simplicity was more
frequent amongst reasons given for liking the experiment (0 of 18 comments in 2011, 12 of 54
in 2012, p = 2.99 x 10) and was less frequent amongst reasons given for disliking the
experiment (7 of 39 comments in 2011, 0 of 31 in 2012, p = 1.50 x 10°?). When considering all
comments received for this survey item, simplicity was mentioned positively more often (0 of
55 comments in 2011, 12 of 79 in 2012, p = 1.45 x 10°) and mentioned negatively less often (7
of 55 comments in 2011, 0 of 79 in 2012, p = 1.55 x 103). These differences are not significant
beyond attribution to family wise error, but may well be genuine since they are reminiscent of
the significant difference already confirmed.

There is also some evidence that students conducting the copper(ll) ion concentration
experiment in 2012 when using the laptop interface reported a perception of simplicity more
frequently than the 2011 cohort, though it is possible that there exists a degree of bias in
samples taken for this experiment. Simplicity was mentioned as a reason for liking the
experiment more often in response to item 15, both relative to all responses received (12 of 81
comments in 2011, 32 of 95 in 2012, p = 4.98 x 107%), as well relative to other reasons given for
liking the experiment (12 of 66 comments in 2011, 32 of 86 in 2012, p = 1.18 x 10?). These
differences are not large enough to exclude the possibility of being artefacts of family-wise
error, but again are reminiscent of effects already seen elsewhere.

3.1.4.5 Further Comments

Following the technological user interface change made, student perception of the vapour
pressure experiment in particular was subject to widespread improvement, with students
reporting a greater perception of understanding of the experiment and clarity of the learning
outcomes, a complete reversal in the initial perceived lack of simplicity of the experiment and
a more positive perception of overall learning experience. The novel equipment was seen in a
more positive light, and students began making comments more reminiscent of the usual
benefits of real time graphing technology in MBL exercises. The biological buffers experiment
also received fewer negative comments about the equipment, showing the laptop interface to
be the more positively received option. The copper(ll) ion concentration experiment did not
show any clear difference between the two forms of the experiment, but the data do show
some signs of improvement in students’ perceived understanding and the perceived simplicity
of the experiment.

Reasons for the lack of major difference observed in the copper(ll) ion concentration
experiment are unclear, although it is possible that sampling bias could prevent any
differences being detectable. It is also possible that differences for this experiment were not
observable as the microcomputer technology is used in a comparatively smaller portion of the
task in this case. Relative portions of the task in which the microcomputer technology was
used could also explain why widespread significant improvement was more evident in the
vapour pressure experiment than for the biological buffers experiment.
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It is conceivable that these observed improvements arose because a portion of the instructions
were re-written to accommodate the different technology in 2012, but there is little data to
suggest this is the case. An exception to this is the case of the vapour pressure experiment, in
which the manual was reported as a reason for disliking the experiment (item 15) less often in
2012 (12 negative comments of 55 total comments in 2011, 5 of 79 in 2012, p = 1.53 x 10?).
However, this difference is not significant to the degree that it could not be attributed to
family-wise error. Far stronger evidence exists that changing the manual was in fact
detrimental rather than beneficial in the case of the biological buffers experiment. The
material provided for the experiment was negatively mentioned significantly more frequently
when asking students for potential improvements to the experiment (item 18), both in the
context of all comments made (3 of 35in 2011, 17 of 32in 2012, p =1.10 x 10#), and
considering only those improvements listed (3 of 31in 2011, 17 of 25in 2012, p = 1.11 x 10”).
It is possible that without this detrimental change in the instructions, some of the positive
effects of replacing the handheld graphing data loggers seen in the vapour pressure
experiment would also have become apparent in the biological buffers experiment. In any
case, the changes in the manual do not appear clearly responsible for the significant
improvements observed, meaning these effects are reasonably concluded to be genuine
consequences of the technological change.

The influence of having different practical demonstrators between years is not known with
certainty. However, responses to item 8 of the survey, asking students about effective
supervision and guidance of the demonstrator, do not differ between years in any case even if
multiple comparisons are unaccounted for. From this it appears reasonable to conclude that
demonstrators were similarly effective in the students’ views, and are unlikely to have
differently influenced the perceptions of students in the two different years compared.

3.1.5 Conclusion

When conducting experiments in 2011 using the PASCO Xplorer GLX handheld graphing data
logger, a number of negative student comments were received about the devices, often
concerning difficulty of their use. Replacing these with laptop computers equipped with PASCO
DataStudio software in 2012 resulted in numerous improvements in student perception data
as compared with the previous year’s cohort, including a significant reduction in these
comments amongst other benefits. Based on the reduction in comments about the difficulty of
using the technology, and the fact that the user interface was the only facet of the procedure
altered, the data suggest that a more easily used technological interface plays a key role in
positive student perception of these experiments. A recognition of the fact that the user
interface of technology can influence student perceptions as strongly as has been observed
here may significantly assist in alleviating student issues with microcomputer based laboratory
activities reported in the literature. It is suggested that a familiar user interface is a vital
element of the teaching laboratory when computers are used, and that in order to allow full
access to the potential benefits of microcomputer based laboratory activities from the student
perspective, handheld graphic data logging devices are far less preferable than alternatives
equipped with the same capabilities that are more easily used by students, such as laptop
computers.

The study presented in this section exemplifies a typical ASLE survey-based study utilising
common integer value scoring of Likert-type items. Using the conclusions drawn here as a
baseline for comparison, alternate techniques may now be applied to the same data set to

3.1 Quantitative methods and the ASLE survey data| Typical score-based analysis of ASLE survey data: an 59
example



confirm that the same conclusions may be drawn, despite limitations of integer scoring
methodology. Such a comparison is presented in the section following.
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3.2 Justifying the conclusions of a scored analysis: Rasch
techniques applied to the technological interfaces study

3.2.1 Outline

The previous section states its conclusions in such a way as to imply the observed differences
in survey response were caused by a change in a feature of experiment design: the use of a
laptop computer in place of a handheld data logger (see section 3.1). The claim made at the
study’s conclusion is not that the improvements reported were due to a more easily satisfied
student cohort. Rather, there is presumed to be some “objective” measure of experiment
quality which has been raised, leading students to broadly report a better outcome.
Ultimately, ASLE scores obtained for an experiment are presumed to act as measurements of
this “objective” experiment quality, which may be considered independent of the particular
students surveyed. Rasch analysis presents an opportunity to explicitly test the
correspondence between scored ASLE data and more sample independent measures, as it has
the capacity to separate student dependent and student independent contributions to survey
response. The present section therefore re-analyses the identical data set that was used in the
previous section, this time using Rasch modelling techniques. Errors introduced due to the
scoring techniques’ lack of sample independence are investigated, inherently testing the first
primary hypothesis of this thesis: that “conclusions drawn from the ASLE survey data using
typical scoring techniques resemble conclusions drawn using sample independent, interval
scale measures extracted from the same data”.

It was claimed in section 3.1 that the data logger interface studied was less preferable to a
laptop equipped with equivalent software, implying that use of the laptop interface was a
superior way to design the experiments. Claims like these, typical of ASLE survey research,
convey the idea that one experiment design is better than another design, in a sense true for
students generally (see section 1.2.2). In this way the conclusion is implied to hold a degree of
“objectivity”: whilst it is acknowledged that some variation in student preferences may exist,
there is a broader sense in which one option is claimed to be preferable to the other once
individual student variations are ‘averaged out’.

As discussed previously in the introductory material to this thesis (see section 1.3.1), requiring
this “objectivity” of any measurements estimated is one means of deriving the Rasch model.
Rasch recognised this requirement for the items students respond to, but also for measures
assigned to students themselves, notably test scores. He termed this requirement of valid
comparisons “specific objectivity”, stating:**

""comparisons between individuals become independent of which particular
instruments -- tests or items or other stimuli -- have been used.
Symmetrically, it ought to be possible to compare stimuli belonging to the
same class -- measuring the same thing -- independent of which particular
individuals, within a class considered, were instrumental for comparison."

In an ASLE survey context, the “stimuli” Rasch refers to above are the experiments students
conduct and the survey question to which they respond; Rasch states it ought to be possible to
compare different experiment designs in a way that is independent of the student responding.
This is exactly the presumption discussed above, where it is presumed there is an “objective”
sense in which one experiment design is better or worse than another. Because ASLE survey
mean scores are currently used as the measures of quality for an experiment, it is these scores
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which must embody this specific objectivity. As such, mean scores should remain roughly
equivalent regardless of the students providing the survey responses. Failing this, scores must
either be inaccurate or unreliable estimates of “objective” experiment quality, or experiment
quality cannot be assigned a numerical value in any objective sense in the first place. The
possibility of the latter of these two options will be addressed in subsequent studies of this
thesis (see section 4.1). The accuracy and reliability of scores as measures, however, can be
evaluated in part by testing the extent to which student dependent variables influence the
scored results observed. This is the primary objective of the study presented here.

Because Rasch measurement is the only means of estimating student dependent and student
independent measures separately, Rasch analysis is required in order to explicitly test the
contribution (or lack thereof) of student dependent effects on ASLE mean scores observed. To
this end, the following investigation uses Rasch measurement to evaluate the distributions of
student “biases” in the gathered samples used to conduct the previous, score-based study.
Samples are analysed for their comparability between years, as well as their probable
resemblance to a representative sample of the student population. If the results of score-
based analyses are to resemble the results obtained using Rasch measures as per the first
primary hypothesis of this thesis (see section 1.4.1), then these student biases must not
confound the results obtained by score-based methods to a substantial degree.

3.2.2 Specific methods

The same data used to conduct the previous investigation (section 3.1) were used in this study.
Sample sizes were adequate for Rasch analysis, as measures defining the item-response
construct are reasonably informative for polychotomous survey items (such as is the case in
this study) for sample sizes above approximately 50.2® Cases in which students responded
exclusively in the most extreme positive or negative categories of the survey were removed
from consideration in these analyses, as justified previously (see section 2.3.3). The number of
these cases for each data set is noted, with commentary on the likely impact of their presence.
Data obtained from different sample groups were disconnected (see section 2.3.3) owing to a
lack of student identification on survey responses gathered. This requires that whilst student
bias distributions can be examined for each sample group in this study (defined by year and
experiment conducted), it is not possible to contrast the distributions obtained from two
sample groups directly. Similarly, it is not possible to directly contrast the absolute values of
any student independent measures estimated from Rasch modelling directly between sample
groups. However, as will be seen, this limitation does not imply that the influence of student
dependent effects on scored results cannot be assessed.

To gain a measure of each student’s bias towards answering positively, a separate “rating
scale” Rasch model (see Equation 2 presented previously in section 2.2.1) was generated for
each of the two cohorts, for each experiment, using the Winsteps Rasch measurement
software. Student “ability” measures (B) specific to the person responding on that occasion
and item “difficulty” measures () specific to the question asked for that experiment were
estimated in each model,’ then used to test the apparent adequacy of student samples and
their comparability across different occasions. The rating scale model was used rather than a
partial credit model (see section 2.2.1) due to the small number of data points.

"This formulation of B and & measures is later determined to be the best general explanatory
model of the ASLE data. See section 4.1.3.
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In order for data collected to be representative of the broader student population, it should be
the case that the sample does not include a disproportionately high number of students biased
towards providing either especially negative or especially positive responses. That is, the
distribution of student measures (biases) within the sample should not be skewed and should
represent the extremities and centre of the distribution of student biases with appropriate
proportion. In a Rasch measurement context, this ‘bias’ towards positive response in general
corresponds to the student “ability” measure (). The distribution of student measures was
therefore examined for normality in each case.

Presuming a representative sample to be distributed normally (a presumption made in the
initial stages of Rasch model estimation; see section 2.3.1), skew in the distribution of student
measures was taken to indicate that that the more positively biased students and the more
negatively biased students were potentially represented disproportionately in the sample,
whilst kurtosis was taken to suggest that the middle of the distribution and/or the extremities
of the distribution could be represented in inappropriate proportion. It is acknowledged that
this methodology presumes that non-normal distributions of student biases would not be
expected to occur at the population level.

In order to test the comparability of the 2011 and 2012 student groups, an experiment which
had not been altered between the two years was selected to act as a “negative control”. Data
from both the 2011 and 2012 iterations of the Analysis of Spinach Extracts experiment were
accordingly merged, then used to generate another (single) rating scale Rasch model. Given
the structure of this experiment remained unchanged between the two years, the “objective”’
quality of the experiment (modelled by the & measures) may be reasonably presumed
identical. Presuming equality of student independent measures in this way allows data
connectivity between the two years in the case of this specific experiment, unlike for other
experiments. The student measures ([3) obtained were compared for the 2011 and 2012
groups to test comparability of the student cohorts sampled in the two years , whilst DIF
analysis (see section 2.5.3) was performed to confirm equality of the item measures (9)
between the two years as assumed in the analysis.

Differential item functioning (DIF) analysis is robust against large differences in student
propensity to respond positively when coupled with Rasch analysis.?® In the cases where the
week of the semester in which surveys were collected was known, DIF analysis was used to
identify any inconsistencies in student independent measures (8) between different weeks of
the semester. However, it was not inferred which specific items differed between weeks, as
significant DIF has the potential to be “artificial” rather than genuine (see section 2.5.3 for a
more detailed discussion of DIF). The distribution of student dependent measures () was
subsequently contrasted between weeks in light of the DIF analysis results, in order to test
whether student samples from different weeks appeared to have equal propensity toward
positive response.

3.2.3 Results

3.2.3.1 2011 Vapour pressure experiment

One student responded in the most extreme negative category for every question posed in this
sample. Consequently, the Rasch analysis assigned them an arbitrarily low “ability” measure,
such that their predicted responses all appear at the extreme low categories. For this reason,
responses from this person were excluded from consideration in the data presented.
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Figure 10: Student measures for the 2011 Vapour pressure experiment

It is possible that this student’s response is a “donkey vote”, given they are well outside the
distribution of the other students (assigned “ability” measure of -6.11, well beyond three
standard deviations about the mean). Given the magnitude of significant differences observed
in the Likert-style data for this experiment, it is not expected that this single student would
impact the results of the main comparative study in such a way as to alter the conclusions
drawn.

The distribution of student measures observed appears approximately normal, as is evident
not only in the results of the Kolmogorov-Smirnov (D =0.074, df = 83, p > 0.200) and Shapiro-
Wilk (W =0.983, df = 83, p = 0.363) tests, but also by graphical inspection (see Figure 10 and
Figure 11). The distribution exhibits neither significant skew (skewness = -0.082, S.E. = 0.264),
nor significant kurtosis (kurtosis = 0.505, S.E. = 0.523). Overall, with the exception of one
outlying student response, the sample of students appears not to favour either positively
biased or negatively biased students excessively, and the centre of the distribution and tails of
the distribution of student biases are represented in keeping with a normal distribution.
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Figure 11: Q-Q plot of student measures for “Vapour pressure” in 2011
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3.2.3.2 2012 Vapour pressure experiment

The overall student bias distribution for this data set was found not to be normally distributed
by the Kolmogorov-Smirnov (D = 0.102, df = 102,p = 0.010) and Shapiro-Wilk (W = 0.949,
df =102, p = 0.001) tests.
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Figure 12: Person measures obtained for the Vapour pressure experiment in 2012

Contributing to non-normality is the presence of a highly negatively biased student, most
clearly visible to the bottom left of the Q-Q plot (Figure 13). However, unlike in the 2011
version of the experiment, this student’s response does not appear to be a possible “donkey
vote”, as they have not responded in the extreme negative category in every case, and should
be left in the analysis.
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Figure 13: Q-Q plot of student measures from “Vapour pressure” in 2012

In order to investigate the possibility that the week in which experiments were conducted
influenced the results obtained, the Rasch model for this experiment was examined for
differential item functioning (DIF). Three person groups were compared: those who completed
the experiment in Week 6, those who completed the experiment in Week 8, and those who
completed the experiment in Week 10. This comprises the full data set of responses received
for this experiment. Results detailed below in Table 4 show that no survey item’s “difficulty”
(8) measure significantly differed based on the week the student conducted the experiment.
The item closest to the occurrence of this was question 12, however the fit statistics show that
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this is well within expectation based on the Rasch model generated for this data. It does
appear that an unexpected degree of similarity between weeks exists for questions 1 and 2,
however the reason for this is unclear. This is not problematic, as it represents an unexpected
lack of variation in responses received, rather than an unexpected degree of variation and
error.

Table 4: DIF between weeks for the 2012 “Vapour pressure” experiment

Survey Summary DIF Between group fit statistics
Item y? d.f. p Mean-square t=ZSTD
Q1 0.000 2 1.000 0.000 -2.460
Q2 0.035 2 0.984 0.006 -2.119
Q3 2.794 2 0.244 0.487 -0.307
Q4 1.642 2 0.437 0.320 -0.615
Q5 0.435 2 0.805 0.055 -1.524
Q6 2.191 2 0.331 0.423 -0.415
Q7 0.219 2 0.898 0.028 -1.753
Q8 1.343 2 0.508 0.201 -0.908
Q9 0.441 2 0.802 0.074 -1.408
Q10 4.035 2 0.131 0.558 -0.197
Ql1 3.230 2 0.196 0.513 -0.266
Q12 5.839 2 0.053 1.045 0.378
Q13 0.439 2 0.803 0.060 -1.492
Ql4 0.828 2 0.659 0.113 -1.216

ANOVA was used to test the equality of the distribution of student measures (biases) between
these weeks, with a significant difference detected (F(2,99) = 4.067, p = 0.020). However, the
descriptive statistics show that student measures in Week 10 were not normally distributed,
displaying significant kurtosis (Table 5). This could be due to the small number of students
sampled in that week.

Table 5: 2012 Vapour pressure experiment: Distribution of student measures (biases)

Week Standard Kurtosis Skewness
Mean N L
conducted Deviation value  Std. Error| value Std. Error
6 1.6143 30 1.04016 -.685 .833 374 427
8 1.5745 51 1.20966 .252 .656 .555 .333
10 7124 21 1.61062 5.294 .972 -.550 .501
Total 1.4087 102 1.29460 2.929 474 -.197 .239

The non-normality of the overall distribution appears to arise because of kurtosis, generated in
part by differences in the distribution of student biases collected in week 10 compared to data
collected in other weeks. The distribution of student biases corresponding to those sampled in
Week 10 appears to be centred more towards negative responses than for the other two
weeks. Evident in the histogram displaying the full distribution of student biases (Figure 12) is
an unexpectedly high frequency of responses at student measure of approximately 0.7,
corresponding to the location of the mean of the Week 10 samples (see Table 5). Were the
different weeks sampled in equal proportion, the Week 10 responses would appear more
frequently and the mean student bias would shift further in favour of negative response.
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One data point was identified as an outlier to the overall distribution (outliers are depicted as
stars in Figure 14 below). However, it does not appear that removal of this outlying data point
would alter the conclusions of the data above, as the Week 10 samples still have a visibly lower
median value when viewed separately.
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Figure 14: Identification of outlying student measures in the 2012 “Vapour pressure”
experiment
(left: full data set, right: week specific data)

Even with this outlying negatively biased respondent removed from consideration, the overall
distribution still appears non-normal. The non-normality, however, now manifests itself as
significant skewness rather than kurtosis (Table 6), and is less evident in the Shapiro-Wilk test
of normality (W = 0.967, df = 101, p = 0.012). It is, however, slightly more evident judging by
the Kolmogorov-Smirnov test (D = 0.115, df = 101,p = 0.002).

Table 6: Effect of removing the outlier from the 2012 vapour pressure experiment data

Standard Kurtosis Skewness
Data set Mean N Lo
Deviation value Std. Error| value  Std. Error
Outlier removed | 1.4633 | 101 1.17741 575 476 .639 .240
Outlier included | 1.4087 | 102 1.29460 2.929 474 -.197 .239

Overall, the data show that the 2012 sample taken from the vapour pressure experiment
shows some evidence of potentially misrepresenting the broader population. A better
representation of responses generated in Week 10 would have produced a higher propensity
for students to respond negatively, and by implication, the current sample appears biased
towards positive responses from early in the semester. Depending on the magnitude of this
effect, this could theoretically alter the conclusions of the initial score-based study.

Given the parameters of the Rasch model generated, it is possible to computationally simulate
the expected frequency of responses under a theoretical, more negatively biased sample. This
is useful for determining the likely magnitude of the difference between the positively biased
sample collected and a more equally representative sample. Figure 15 shows the “item
characteristic curve” (ICC) corresponding to the Rasch model generated for this data. It
displays the expected (average) response score as a function of student measure minus item
measure (displayed on the plot as the “latent trait measure”). The unexpectedly high empirical
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value at a latent trait measure of -6 Logits is due to the very low number of data points
available at this extreme.
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Figure 15: Item characteristic curve (ICC) for the 2012 Vapour pressure experiment Rasch
model

Using this plot, it is possible to roughly estimate the magnitude of the expected change in
average scored response, were the distribution of student biases (p values) shifted. It is
expected that under a more equal representation of each of the three weeks sampled, the
population mean bias could not possibly be lower than the current observed Week 10 mean
bias (rather, it would be somewhere between the low Week 10 mean bias and the higher
Week 6 and 8 mean bias values).

The Week 10 average student measure (B) is 0.7124 logits, whilst the observed sample overall
has an average measure of 1.4087 logits (both including the outlier previously discussed).
Assuming a model unbiased sample to have an average student measure intermediate
between these two values, an unbiased sample would have an average student measure of
approximately 1.06 logits; only approximately 0.35 logits lower than the observed sample.
Using the ICC plot, a change in student ability measure of only 0.35 logits (from 1.41 to 1.06)
corresponds to a change in average scored response of only approximately 0.15 score units.
This gives a rough approximation to the size of the difference that would be expected in
observed average response scores if the sample reflected Week 10 responses as opposed to
the observed, positively biased sample.

Displayed in Table 7 is a replication of the statistical comparisons made between the observed
data for the 2011 and 2012 versions of the vapour pressure experiment, and alongside, the
comparisons corresponding to a case in which the mean scores of 2012 items were shifted
0.15 units lower.
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Table 7: Observed bias in 2012 Vapour pressure sample - Magnitude of the impact on

responses
Observed 2011 sample compared to Observed 2011 sample compared to
observed 2012 sample hypothetical unbiased 2012 sample
Amean df t p Amean df t p

Q1 0.70 131.65 -490 0.000003 0.55 13165 -3.85 0.000181
Q2 0.55 137.85 -3.64 0.000388 0.4 137.85 -2.64 0.009209
Q3 0.61 161.51 -3.53  0.000533 0.46 161.51 -2.67 0.008430
Q4 0.40 169.52  -2.62  0.009497 0.25 169.52 -1.64 0.103801
Q5 0.64 138.36 -4.15  0.000058 0.49 138.36  -3.17 0.001870
Q6 0.65 142.86 -4.21  0.000046 0.5 142.86  -3.23 0.001531
Q7 0.29 167.99 -1.94 0.054108 0.14 167.99 -0.92 0.357564
Qs 0.14 169.00 -1.07 0.284552 -0.01 169.00 0.08 0.936486
Q9 0.39 179.09 -2.34 0.020224 0.24 179.09 -1.45 0.150128
Q10 0.14 162.76  -0.95 0.341206 -0.01 162.76 0.10 0.922074
Ql1 0.04 172.69 -0.28 0.783503 -0.11 172.69 0.90 0.367410
Q12 0.43 147.63 -3.27 0.001352 0.28 147.63  -2.13 0.034877
Q13 0.49 138.19 -4.89  0.000003 0.34 138.19 -3.38 0.000929
Q14 0.71 149.03 -5.06 = 0.000001 0.56 149.03 -4.00 0.000101

Shaded red are the cells containing probability values deemed statistically significant,
accounting for the multiple comparisons correction used in the original comparative study. As
can be seen above, in a hypothetical sample without the bias imparted by an
underrepresentation of students who conducted the vapour pressure experiment in Week 10,
significant differences in responses to survey questions 5, 6 and 13 are no longer evident.
Significant differences in responses to questions 1 and 14, however, remain.

Based on this rough analysis, it is expected that the differences in scored responses to survey
items 5, 6 and 13 for the vapour pressure experiment could feasibly be attributed to bias in the
sample, introduced by underrepresentation of students conducting the 2012 experiment in
Week 10. Some indication of difference in these items still exists after accounting for this bias,
however the differences are small enough to possibly be attributed to the issue of multiple
comparisons.

To further corroborate this conclusion, the 2011 and 2012 “Vapour pressure” samples were
merged and entered into a single rating scale model Rasch analysis. Each item of the survey
was tested for DIF between the two years. Since DIF compares the “difficulty” (8) of
responding positively to an item independent of student propensity to respond positively (B),
it provides a means of testing for significant differences independent of student biases. As
stated in the introductory material to this study, no single student provided responses in both
years for this same experiment, and therefore no common point of reference exists to
establish the relative ‘central location’ of the measures for each group (p or 8). DIF analysis
can, however, still be used to reveal differences in the relative locations of each of the &
measures with respect to the others within each group since, as mentioned in the introductory
material, DIF is robust against large differences in student propensity to respond positively
when coupled with Rasch analysis.?®® Entering the two disconnected subsets into a single
Rasch model, it can be initially assumed that the & measures are equivalent for the two groups
in order to “connect” the data. Significant DIF detected would indicate falsity of this
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assumption, though would not clearly indicate which items differed between groups
specifically. The results of such an analysis, performed on a merged model of the 2011 and
2012 vapour pressure experiment data, are presented in Table 8.

Table 8: DIF between the 2011 and 2012 forms of the Vapour pressure experiment

Survey Summary DIF Between group fit statistics
Item x> d.f. p Mean-square t=ZSTD
Q1 6.8875 1 0.0087 3.5327 1.5809
Q2 1.2245 1 0.2685 0.6179 0.1569
Q3 0.9657 1 0.3258 0.4847 0.0164
Q4 0.4314 1 0.5113 0.2167 -0.3757
Q5 2.5762 1 0.1085 1.3049 0.6682
Q6 3.7287 1 0.0535 1.895 0.9752
Q7 1.7904 1 0.1809 0.9047 0.4018
Q8 4.1944 1 0.0406 2.1367 1.0823
Q9 1.0124 1 0.3143 0.5085 0.0432
Q10 8.1537 1 0.0043 4.1969 1.7718
Ql1 10.4717 1 0.0012 5.4435 2.0817
Q12 0 1 1 0.0114 -1.173
Q13 0 1 1 0.015 -1.1268
Ql4 3.9268 1 0.0475 1.9938 1.02

The data clearly evidences cases where item difficulty measures significantly differ (p < 0.05
highlighted) between the two cohorts. That is, after accounting for student propensity to
respond positively, it appears some items appear either more or less difficult to answer
positively in the different years. Questions 1, 8, 10, 11 and 14 show significant DIF, with
guestion 11 so different as to be outside expectations of this merged data Rasch model. The
between group fit statistics for other items showing significant DIF do not reveal confident
difference, but do appear slightly elevated (notably for questions 1 and 10). It is important to
note that items exhibiting significant DIF are not necessarily the specific items which have
changed between years.

Person (bias) measures estimated in this merged analysis were, by necessity, estimated under
the initial presumption that all item measures (8) were equivalent for the two years. The
results presented above demonstrate this presumption to be a false one. Differences in
measures of experiment quality (8) appear to exist between the two years, independent of any
student dependent contributions. It appears that significant differences between the data
logger form of the experiment and the laptop form of the experiment exist independent of the
fact the 2012 sample is likely to be positively biased.

3.2.3.3 2011 Biological buffers experiment

Two extreme responses, where the student provided the extreme positive response for all
survey items, were removed from consideration in the following analysis. These two students,
being a small fraction of the broader sample, are not expected to significantly impact on any
conclusions.
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Figure 16: Person measures obtained for the Biological Buffers experiment in 2011

Results demonstrate that the 2011 sample from the biological buffers experiment contains a
non-normal distribution of student biases, arising from a significant degree of kurtosis. Both
the Kolmogorov-Smirnov (D = 0.106, df = 134, p = 0.001) and Shapiro-Wilk (W = 0.965,

df = 134, p = 0.002) tests reject the null-hypothesis of normality. Kurtosis is significant, yet
skewness remains acceptable (Table 9, presented on page 72). Kurtosis is easily visible upon
visual inspection of the distribution (Figure 16). There also appears to be an outlying negatively
biased student, as displayed in the box plot below (shown using a star, Figure 17) and also
visible to the far left of the Q-Q plot (Figure 18).
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Figure 17: Outlier identification for the 2011 Biological buffers experiment student measure
data
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Figure 18: Q-Q plot of student measures for the 2011 Biological Buffers experiment

Removal of this outlying student from consideration does not alter any conclusions, as the
distribution remains non-normal as judged by the Kolmogorov-Smirnov (D = 0.106, df = 133,
p = 0.001) and Shapiro-Wilk (W = 0.972, df = 133, p = 0.008) tests. The degree of kurtosis does
appear less significant, however (Table 9).

Table 9: Effect of removing the outlier from the 2011 Biological Buffers experiment data

Standard Kurtosis Skewness
Data set Mean N Lo
Deviation value Std. Error| value  Std. Error
Outlier included | 1.6254 | 134 1.52497 1.495 416 -.224 .209
Outlier removed | 1.6674 | 133 1.45059 0.777 0.417 0.090 0.210

Overall, the distribution of student biases in this sample does not show evidence of overall bias
in either the positive or negative direction. However, its shape (judging by kurtosis) may not be
representative of the broader population. It is not expected that this would influence the
results of the main study, as the distribution does not appear to be significantly skewed. That
is, there does not appear to be a disproportionate number of students responding positively or
responding negatively. There is simply an overrepresentation of the students with more
extreme biases (both positive and negative, equally so), or an overrepresentation of those with
average bias, or both.

3.2.3.4 2012 Biological buffers experiment

The Kolmogorov-Smirnov test for normality marginally rejects the hypothesis of normality for
this sample (D = 0.100, df = 80, p = 0.046), whilst the Shapiro-Wilk test does not (W = 0.975,
df = 80, p = 0.116). Given the lack of skew or kurtosis, as well as the reasonable appearance of
the histogram (Figure 19) and Q-Q plot (Figure 20), the majority of evidence suggests that the
distribution is sufficiently close to normality, and the sample does not appear to represent
positively and negatively biased students in unequal proportion. Any departures from
normality appear minimal, and therefore would be unlikely to influence conclusions drawn.

3.2 Quantitative methods and the ASLE survey data| Justifying the conclusions of a scored analysis: Rasch 72
techniques applied to the technological interfaces study



25— — Mormal
MMean = 1.61
20 ] St Dev. =1.136
= =280
= A
o 157
=5 /
o
2 04
L
5-—
0= T T T
-2.00 oo 2.00 4.00

Ability measure (bias)

Figure 19: Distribution of person measures for the 2012 Biological buffers experiment
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Figure 20: Q-Q plot of student measures for the 2012 Biological buffers experiment

In order to investigate the possibility that the week experiments were conducted influenced
the results obtained, the Rasch model for this experiment was examined for differential item
functioning (Table 10). Four person groups were compared: those who completed the
experiment in Week 4, those in Week 6, those in Week 8 and those in Week 10. This comprises
the full data set from this sample. No DIF was detected, indicating no single item appeared to
be more or less “difficult” to answer positively in the different weeks sampled.
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Table 10: DIF between weeks for the 2012 Biological buffers experiment

Survey Summary DIF Between group fit statistics
Item x> d.f. p Mean-square t=ZSTD
Q1 3.309 3 0.345 0.264 -1.044
Q2 3.348 3 0.340 0.291 -0.966
Q3 4.568 3 0.205 0.387 -0.725
Q4 2.133 3 0.544 0.206 -1.232
Q5 3.022 3 0.387 0.228 -1.158
Q6 1.726 3 0.630 0.159 -1.413
Q7 1.326 3 0.723 0.117 -1.603
Q8 2.316 3 0.508 0.208 -1.225
Q9 4.199 3 0.240 0.387 -0.725
Qio 2.837 3 0.416 0.223 -1.175
Ql1 3.642 3 0.302 0.337 -0.846
Q12 2.333 3 0.505 0.174 -1.352
Q13 0.404 3 0.940 0.035 -2.199
Q14 1.600 3 0.659 0.150 -1.452

Student “ability” measures (bias) were compared between weeks by ANOVA, with no
significant difference detected (F(3,76) = 0.136, p = 0.938). The distribution of biases within
each week sampled appears normally distributed, with the exception that the Week 10
samples exhibit a significant degree of kurtosis. This could be attributed to the small number
of samples when considering each week separately. The distribution of biases within the total
sample for the 2012 Biological buffers experiment appears not to have a significant degree of
skew or kurtosis, and generally appears normal (Table 11).

Table 11: Distribution of ability measures (biases) for the 2012 Biological buffers experiment

Week conducted | Mean | N Star.mda.\rd Kurtosis Skewness
Deviation | value Std. Error value Std. Error
4 1.6947 | 15| .84574 -.978 1.121 .090 .580
6 1.6579 | 24 | 1.09054 -.104 .918 .002 472
8 1.6419 | 21| 1.40130 .559 .972 -.262 .501
10 1.4755 | 20| 1.14374 2.163 .992 .306 .512
Total 1.6150 | 80 | 1.13650 .664 .532 -.052 .269

3.2.3.5 2011 Copper(ll) ion concentration experiment

The distribution of student biases in this case appears marginally non-normal, arising from a
degree of skewness (skewness = 0.439, S.E. = 0.218; kurtosis = 0.195, S.E. = 0.433), visible most
prominently in Figure 21. This is suggestive of slight bias in the sample. Whether this bias is
towards more positive responses or more negative responses is unknown, as it is not clear
whether the skewness arises from an underrepresentation of responses at one extreme, or an
overrepresentation of responses slightly off-centre of the distribution.
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Figure 21: Distribution of student measures for the 2011 Copper(ll) ion concentration
experiment

Three extreme positive responses were excluded from consideration in these analyses. Were
they included and were their contribution substantial, the overall distribution of biases would
be more positive. This would not impact on the conclusions of the initial score-based study, as
this effect would make improvements from 2011 to 2012 less evident, as opposed to more.

The non-normality of the distribution obtained is only slight, with the Q-Q-plot appearing
largely reasonable (Figure 22), and tests of normality rejecting only marginally if at all
(Kolmogorov-Smirnov: D = 0.078, df = 123, p = 0.064 ; Shapiro-Wilk: W = 0.979, df = 123,
p = 0.048). Any overall bias is therefore likely to be only slight and of little consequence.
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Figure 22: Q-Q plot of student measures for the 2011 Copper(ll) ion concentration
experiment

3.2.3.6 2012 Copper(ll) ion concentration experiment

In order to investigate the possibility that the week in which experiments were conducted
influenced the results obtained, the Rasch model for this experiment was examined for
differential item functioning (DIF). Three person groups were compared: those who completed
the experiment in week 6, those in week 8 and those in week 10. This comprises the full set of
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responses collected for this sample. No DIF was detected, indicating no single item appeared
to be more or less difficult to answer positively in the different weeks sampled.

Table 12: DIF between weeks for the 2012 Copper(ll) ion concentration experiment

Survey Summary DIF Between group fit statistics
Item y? d.f. p Mean-square t=ZSTD
Q1 0.7459 2 0.6873 0.1227 -1.176
Q2 3.0938 2 0.2098 0.5578 -0.1972
Q3 3.099 2 0.2093 0.5609 -0.1926
Q4 3.2753 2 0.1915 0.5431 -0.2191
Q5 0.144 2 0.9324 0.0253 -1.7865
Q6 3.0705 2 0.2123 0.5317 -0.2362
Q7 0.3802 2 0.8275 0.063 -1.4732
Q8 5.1171 2 0.0759 0.8591 0.1852
Q9 0.3498 2 0.8403 0.0546 -1.5286
Qlo 1.6299 2 0.4391 0.291 -0.6786
Ql1 4.4028 2 0.1086 0.7655 0.0777
Q12 3.8376 2 0.1443 0.6571 -0.0585
Q13 1.7273 2 0.418 0.306 -0.645
Q14 0.7195 2 0.6965 0.1231 -1.1743

There is an extreme response used to generate the Rasch model used to conduct the above
analysis; however their inclusion would not impact upon the results of the DIF analysis. As
extreme responses necessarily fit the Rasch model optimally, they do not contribute to DIF
statistics and are excluded from the analysis. This extreme response was excluded from
consideration in the subsequent analyses for reasons described in the introduction (see

section 2.3.3).
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Figure 23: Distribution of student measures for the 2012 Copper(ll) ion concentration

experiment

Student propensity to answer positively (bias) was also examined. The measures appear not to
be normally distributed (Kolmogorov-Smirnov: D = 0.125, df = 119, p < 0.001 ; Shapiro-Wilk:
W =0.967, df =119, p = 0.005), primarily due to a degree of skewness (see Table 13, presented
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on page 78), visible in the distribution itself (Figure 23) as well as to some extent in the Q-Q
plot (Figure 24).
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Figure 24: Q-Q plot of student measures for the 2012 Copper(ll) ion concentration
experiment

The samples from different weeks appear not to significantly differ as judged by ANOVA
(F(2,116) = 2.379, p = 0.098) and the additional removal of an identified outlier (indicated as a
star in Figure 25) does not alter this conclusion (F(2,115) = 2.733, p = 0.069). However, the data
from Week 6 appear to exhibit significant skew and kurtosis when the outlying response is
included (but not otherwise), and this may influence the validity of the ANOVA test (see details
in Table 13).
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Figure 25: Outlying student identification for the 2012 Copper(ll) ion concentration
experiment

The mean “ability” measure (bias) of the total sample from this experiment appears roughly at
the midpoint between the three mean measures taken from each sampled week. As such,
uneven sampling between weeks seems to ‘balance out’ in terms of the central location of the
distribution of biases. However, skew of the distribution of all results remains, possibly
originating primarily from the Week 6 data, likely generating the observed non-normality. The
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skewness is far less significant upon removal of the outlier, however the overall distribution
remains non-normal as judged using statistical tests. (Kolmogorov-Smirnov: D = 0.114,
df =118, p = 0.001 ; Shapiro-Wilk: W = 0.970, df = 118, p = 0.009).

Table 13: Week-specific bias statistics for the 2012 Copper(ll) ion concentration experiment

Extreme response removed only

Standard Kurtosis Skewness
Week conducted | Mean N Deviation value Std. Error|value Std. Error
6 2.5057 | 44 1.10600 2.380 .702 |1.063 .357
8 2.8119 | 37 1.13227 -.035 .759 .299 .388
10 2.2321 | 38 1.22410 .780 .750 .649 .383
Total 2.5135 | 119 1.16627 .686 440 .592 222
Extreme response and outlier removed
Week conducted | Mean N Star.lda.\rd Kurtosis Skewness
Deviation value Std. Error|value Std. Error
6 2.4151 | 43 93962 -.223 .709 .303 .361
8 2.8119 | 37 1.13227 -.035 .759 .299 .388
10 2.2321 | 38 1.22410 .780 .750 .649 .383
Total 2.4806 | 118 1.11428 192 442 .406 223

Overall, this sample appears to be biased. Positively biased and negatively biased students
have been sampled disproportionately in Week 6, notably due to a substantially outlying
response, and this has translated into skew of the overall distribution of biases in the total
sample. However, even the removal of this outlier does not entirely resolve the issue. It is
unclear which students, those positively biased or those negatively biased, were sampled in
inappropriate proportion.

Based on the analysis of both the 2011 and 2012 samples from the Copper(ll) ion
concentration experiment, sampling bias may perturb results obtained. It is uncertain whether
this would over-exaggerate or under-exaggerate any differences in student perception of
learning experience studied, though if the outlying student in 2012 is the exception to the
general trend, scored results calculated with its inclusion may report more positive perception
that warranted. This would exaggerate reported improvements, though not to a large degree
provided the rest of the sample may be considered representative. Given very few differences
were actually observed for this experiment in the initial score-based study, the apparent bias
of these samples does not impact the broader initial conclusions.

3.2.3.7 Analysis of spinach extracts as a “negative control”

In order to establish comparability between the 2011 and 2012 student cohorts, a Rasch
model was generated for the Analysis of spinach extracts experiment; an experiment which
remained unchanged between the two years, and from which a relatively large sample was
gathered (144 in 2011 and 77 in 2012). The data from both years was grouped into the same
Rasch model, testing for DIF between the item measures estimated from each year’s
responses.
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Table 14: Analysis of spinach extracts item measures compared between years

Survey Summary DIF? Between group fit statistics®

Item x> d.f. p Mean-square t=ZSTD
Q1 3.8564 1 0.0496 1.7746 0.9183
Q2 1.303 1 0.2537 0.5816 0.1208
Q3 0.7015 1 0.4023 0.3118 -0.2115
Q4 0.6171 1 0.4321 0.2747 -0.271
Q5 3.7627 1 0.0524 1.7378 0.9005
Q6 0 1 1 0.0011 -1.4323
Q7 2.3871 1 0.1223 1.0778 0.5251
Q8 8.3175 1 0.0039 3.84 1.672

Q9 2.9865 1 0.084 1.3614 0.7012
Q10 0.6448 1 0.422 0.2975 -0.2338
Ql1 19.1133 1 <0.0001 9.6979 2.8738
Q12 0.1138 1 0.7358 0.0543 -0.8468
Q13 0.499 1 0.48 0.2294 -0.3514
Ql4 0.1031 1 0.7481 0.0446 -0.8976

The DIF analysis shows that a degree of differential item functioning exists. Large, significant
differences exist for questions 8 and 11, with question 11 showing DIF outside of Rasch model
expectations. Questions 1 and 5 also show difference of marginal significance.

Question 11 asks students to rate whether working in a team to complete the experiment was
beneficial. In the case of this experiment, students worked individually, rather than in groups
or pairs. As a consequence, this survey item was often not answered at all, and was not
responded to in any consistent manner. Apparent DIF for this survey item’s responses is
therefore neither unexpected nor problematic. Question 8 asks students about the efficacy of
their practical demonstrator’s supervision and guidance. This is the one aspect of the
laboratory environment which changed between the two years, and again it is unsurprising
that this specific item may show significant difference. It is possible that the two items showing
marginal difference are cases of “artificial DIF” induced by the presence of other survey items
with a large and significant genuine DIF, such as item 11. The issue of multiple comparisons
(see section 2.4.1) may also play a part in the presence of some significant differences.

The majority of items report no substantial DIF, and it is reasonable to presume that the two
sets of item measures for the two years are broadly similar in their location. As such, little
error in the location of student measures estimated would be introduced, making a
comparison of student biases between the two years viable. The distribution of student biases
sampled in 2011 appears not to be normally distributed (Kolmogorov-Smirnov: D = 0.090,

df = 141, p = 0.008 ; Shapiro-Wilk: W = 0.971, df = 141, p = 0.005). The 2012 data, however,
appears to have a normal distribution of sampled student biases (Kolmogorov-Smirnov:

D =0.098, df =77, p = 0.064 ; Shapiro-Wilk: W = 0.976, df = 77, p = 0.150). The significant non-
normality of the 2011 data appears to arise because of a significant degree of kurtosis, and
skew in the distribution appears not to be an issue (Table 15). The centre and extremities of
the distribution of student biases therefore appear to have been sampled disproportionately in
2011, however, this should not influence the location of the centre of the distribution. The
three extreme responses in 2011 removed from consideration in these analyses correspond to
persons responding in the extreme positive category in every case. Even if these three
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students were a significant enough proportion to generate an overall bias in the sample taken
as a whole, this bias would be a positive one, masking significant improvements in 2012 rather
than exaggerating them. The results of the main study (section 3.1) would therefore not be
compromised.

Table 15: Student bias distribution statistics for the Analysis of spinach extracts experiment

vear | Median | Mean | N Std. Kurtosis Skewness
Deviation | value Std. Error| Skewness Std. Error

2011 1.46 1.5653 [141| 1.15439 1.014 .406 .386 .204

2012 1.61 1.7962 | 77 | 1.12784 -.539 541 .308 274

Because the distribution of the 2011 data appears significantly non-normal, the distributions of
student “ability” measures were compared using non-parametric statistical tests. Both the
mean “ability” measure and the shape of the overall distribution of these measures were
compared. The data clearly show that the median and distribution of student biases may be
considered equivalent between the two years, as judged by Mood’s median test (grand
median = 1.61, x> = 0.432, df = 1, p = 0.5108) and the Mann-Whitney U test (standardised test
statistic = 1.285, p = 0.1988). Fitted normal distributions are displayed in Figure 26 using black

lines.
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Figure 26: Student bias distributions for the Analysis of spinach extracts experiment

Overall, the distributions of broad-scale student biases for samples taken from the two
different years appear equal, as judged using responses to this unchanged experiment. Though
some items appear to be more “difficult” to answer positively for the 2012 cohort, potentially

indicating a finer level of bias applicable to these questions only, this would mask significant

improvements rather than exaggerate them. For this reason, the conclusions drawn in the
main study appear valid.

3.2.4 Discussion

3.2.4.1 Summary of sample adequacy implications

A major outcome of this investigation is the evaluation of the adequacy of samples gathered

for the initial score-based study (section 3.1), with particular focus on their representative
nature or otherwise and their comparability between the two years. These two features are
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required for the conclusions of the initial study to be valid and as such are summarised for
each studied experiment individually below.

Vapour Pressure

The 2011 data appear unbiased, with the exception of one response which may be a
‘donkey vote’. This response is not expected to influence results significantly.

The 2012 data appear significantly biased towards positive responses. This appears to
have arisen because responses collected from Week 6 and Week 8 of the semester
appear more positive than data from Week 10, and these were more frequently
represented in the sample. It has been shown, however, that the magnitude of the
bias present in the 2012 distribution is not sufficient to account for all differences
observed in the main study data comparisons. It was also shown that the difficulty of
responding positively to some (unidentified) items of the survey significantly differs
between the two years, independent of student biases.

Biological Buffers

The 2011 data appear unbiased towards more positive or negative responses overall.
Whilst the distribution of student biases in this sample does not show evidence of
overall bias in either the positive or negative direction, its shape may not be
representative of the broader population, as some kurtosis is evident.

The 2012 data appear unbiased. Neither student propensity to respond positively, nor
the difficulty of responding to any item positively independent of bias, changes
between the weeks in which the experiment may have been conducted. The majority
of evidence suggests that the distribution of student biases sampled for this
experiment approximates normality.

Copper (II) lon Concentration

The 2011 data appear biased, but it is unknown whether the bias is positive or
negative in nature.

The 2012 data appear biased, caused by skew in the distribution of biases sampled
from Week 6 of the semester. It is unknown whether this bias is in the positive or
negative direction. The “difficulty” of responding to any given item positively,
independent of student bias, did not appear to differ between weeks of the semester.

The significant bias in the samples taken from the two cohorts for this experiment may
potentially explain why no significant differences were detected in survey responses
between the two years for this experiment in the main study, despite the fact clear
differences between years are apparent in the case of the other two experiments.

Negative control: Analysis of spinach extracts

The student cohorts from 2011 and 2012 appear comparable. The distributions of
student biases sampled from each year are equivalent. Some items appear more
“difficult” to respond to positively for the 2012 cohort, potentially masking
improvements in 2012 as opposed to exaggerating them.
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3.2.4.2 Scores versus measures: incongruent results

As can be seen from the summary presented above, consideration of student bias effects has
the potential to perturb the conclusions drawn from a score-based study. Whilst in this specific
case the student samples obtained appear roughly acceptable, it needed to be confirmed that
various features observed were not problematic numerous times over the course of the
analysis. Even with typically greater than 50 observations for each sample, the distribution of
biases often appeared skewed, opening the possibility that this bias could have perturbed the
scored results obtained.

The case of the vapour pressure experiment highlights this point: scored results yielded an
exaggeration of the actual cohort difference, thus it needed to be confirmed using Rasch
measurement techniques that any genuine differences in experiment quality persisted after
taking this into account. Once Rasch measurement was used to estimate the impact of student
bias differences, only items 1 (concerning data interpretation skills development) and 14
(concerning overall learning experience) are confidently reported to differ between years.
“False positives” were reported for three other survey items by the scored results prior to this
amendment. It is conceivable that shifts in the distribution of student biases could similarly
produce “false negatives” in other analyses, counteracting genuine differences in experiment
quality which would otherwise be evident if using student independent measurements (i.e.
Rasch measures).

Based on these observations, it appears that scored results do not necessarily yield the same
conclusions as sample independent measures (Rasch measures) would. The fact that scores
conflate student dependent and student independent effects allows the biases of individual
student responses to perturb the results observed. A substantial problem is faced by
researchers who observe a difference in scored results: it could be that experiment quality has
changed or it could be that the students sampled have a different bias, but it is not a simple
matter to tell the difference between the two. Further, when using scoring techniques, shifts
in student bias could mask genuine differences in experiment quality which would otherwise
be evident. The use of the traditional integer scoring method, therefore, places the researcher
at risk of both type | and type Il errors in absence of demonstrably comparable student
samples.

Fortunately in this specific case, open response data was also available to affirm or refute the
conclusions implied by the scored Likert-type data. It is unfortunate that this particular study
could not make use of student identification numbers in order to connect subsets of the data
gathered in different years, in order to make the same comparisons using Rasch measurement
instead of scores. The fact remains, however, that genuine student independent measures and
scores do not necessarily yield the same conclusions. Making more accurate comparisons
requires student biases to be estimated from other data, such that the locations of student
independent measures for each group compared can be estimated relative to them. Achieving
this requires the identification of cases where the same student (presumably of the same bias)
responds on multiple different occasions, allowing any differences in the ‘bulk’ distribution of
student biases to be identifiable and able to be controlled for. Subsequent studies presented
in this thesis will make use of student identification numbers to achieve this. Additionally, it
remains unknown from this study precisely how much student bias varies. It may be the case
that the observations of this study are a rare exception, whereas student biases typically may
remain reasonably invariant overall. A more generalised approach to this topic is therefore
needed, beyond this specific case. A general relationship between the Rasch measure for a
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survey item and the corresponding mean scored response expected from the student
population is needed to shed light on this issue.

3.2.5 Conclusion

Data presented here reveals the potential for scored ASLE survey Likert-type data to yield
inaccurate conclusions. Whilst the broader scale conclusions of the previously presented
research (section 3.1) appear to hold, the results of the Likert-type item comparisons need
some degree of revision. Commonly utilised mean scoring techniques appear susceptible to
the effects of student biases, conflating these effects with any changes in sample-independent
factors, such as the “objective” quality of the experiment. Following the observation of this
specific case of scores yielding subtly different conclusions to genuine interval scale measures,
a more generalised investigation into the relationship between scored results and sample
independent measures is needed. The extent to which student biases confound scored results
in a general sense remains an open question, and achieving a more valid means to contrast
experiments evaluated using the ASLE survey remains as a future goal. These two points are
addressed in subsequent sections of this thesis.
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3.3 Scoring responses to individual Likert-type items on the ASLE
survey

3.3.1 Outline

Following the previous study’s illustration that student biases may confound the results of
comparisons made using integer scoring methods, the extent to which these effects are likely
to be problematic in a more general sense became a pressing question. The research
presented in this section now explores the relationship between traditional scores and
corresponding Rasch measures far more explicitly, investigating the precise mathematical
relationships between the two. This topic will be explored both at the level of individual
response data, as well as mean scores obtained from entire samples. Through these analyses,
the relative contribution of student bias effects on the variance in observed survey responses
can be known, shedding light on whether mean scores are likely to be a valid means of
indicating change in the “objective” quality of experiments evaluated. Knowledge of the
relationship between scores and sample independent, interval scale (Rasch) measures will be
used to explore the validity of the statistical treatment of ASLE response data, including the
application of the integer scoring technique as well as parametric statistical methods.

At this stage, it will still be presumed that “objective” experiment quality can validly be
attributed a numerical value. That is, it is presumed that valid interval scale measures of
student independent experiment quality exist. The accuracy or otherwise of this supposition is
necessary for these preliminary investigations, but will be addressed subsequently in this
thesis (see section 4.1). Working under this presumption, Rasch models can be generated
describing the relationship between score and measure for each item of the ASLE survey and
from this, population level expectations can be extrapolated. In this way the relationship
between Rasch measure and expected score can be known, more conclusively answering the
guestion of whether integer scoring methods are a valid means of measuring experiment
quality in general, presuming such a thing can be measured. The first primary hypothesis of
this thesis:

Conclusions drawn from the ASLE survey data using typical scoring techniques
resemble conclusions drawn using sample independent, interval scale measures
extracted from the same data.

will thus be supported or refuted at the conclusion of this study. It will also be determined
whether parametric statistical techniques are appropriate for data treated using integer
scoring techniques, if traditional integer scoring techniques are valid. Broadly speaking, this
study evaluates the adequacy of the current methods used to extract measurements from
survey responses. In generating Rasch models for the ASLE data based on current assumptions
of the way ASLE surveys function, the presumed “measurement mechanism” by which
observed responses are related to underlying latent traits may also begin to be explored.

3.3.2 Specific methods

3.3.2.1 Assumptions of ASLE survey use and Rasch model construction

Rasch models estimated during the course of this study were constructed based on the
assumptions required for the usual uses of the ASLE survey data. These assumptions and their
implications for the construction of Rasch models for the data are outlined below.
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Assumption 1: Responses given by the same student are comparable between different
occasions, and between different experiments.

For example, if a student responds “agree” to item three in Experiment A, and also responds
“agree” to the same survey item in Experiment B, these responses may be interpreted
equivalently in terms of what they imply regarding experiment quality. In terms of constructing
a Rasch model of the data, this implies student measures; each student’s propensity to provide
positive response, must remain constant for all occasions. This assumption also requires that
the structure of the rating scale remain constant for all occasions (experiments).

Assumption 2: Different survey items concern different topics, and responses to them therefore
reflect different latent variables.

This implies two things for the construction of Rasch models. Firstly, if student independent
factors are presumed to exist, a different measure must exist for each of the fourteen survey
items. Secondly, students must each have fourteen different measures; one contributing to
each of the fourteen different question specific latent variables. For example, a student’s
tendency to find experiments interesting is presumed independent to their tendency to report
that the experiment provided them with the opportunity to take responsibility for their own
learning, as these are fundamentally different topics. In general, any given student may (but
not necessarily) have a different tendency to respond positively to a different survey item for
similar reasons, and must therefore be assigned a different Rasch measure for each.

Assumption 3: Student independent measures of experiment quality exist and influence ASLE
survey responses for the relevant experiment.

This assumption requires that there is some student independent component to observed
responses: a measure of experiment quality, generally true for all students. Coupling this with
the requirements of assumption 2 above, these measures must be specific to the question
asked as well as the experiment being evaluated. Each experiment evaluated is thus presumed
to have 14 different quality measures associated with it: one targeted by each Likert-type
survey item.

Overall, these assumptions necessitate that a Rasch model of the ASLE data be constructed in
the following way:

n[ Pq,n,i(X = xk)
Pq,n,i(X = xk—l)

where the subscripts g, n and i denote specificity to the gth survey question, nth student
responding and ith experiment evaluated respectively. The variable X is the observed
response, equal to one of the five available response categories x; to xs and the values 3 and o
correspond to student dependent (bias/ “ability”) and student independent (experiment
quality/”difficulty”) measures respectively. The T parameters define the rating scale structure.

An interesting feature of this model is that no variable is independent of the question asked.
From a measurement perspective, this implies there is no common point of reference for
which measures specific to different questions may be assigned values relative to one another
and relative to the common reference. This means that data obtained for different survey
questions is necessarily disconnected (see section 2.3.3) and not directly comparable. For this
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reason, fourteen distinct question specific Rasch models exist under these presumptions, and
this is therefore how the data were modelled in the investigation discussed.

This model of the data is also intuitively sensible, given the deliberate multidimensionality of
the ASLE survey instrument; each Likert-type item, by design, targets a different dimension of
the laboratory learning experience. Here, a different unidimensional Rasch model is generated
for the measurement of each distinct dimension of the survey, each with student “ability”
measures and experiment “difficulty” measures specific to that dimension. The result is one
Rasch model for each of the fourteen survey questions asked: the “items” within each Rasch
model are simply the different circumstances (experiments) in which the identical question
was asked of the students, with each circumstance having a different “difficulty” of providing
positive response to that same question.

3.3.2.2 Data collection

Responses to ASLE surveys (Table 1) utilised in this investigation were gathered from first year
undergraduate chemistry students at the University of Adelaide nearing the end of their
laboratory sessions from late 2012 through to the end of 2013. These surveys were presented
as optional, and allowed for the voluntary inclusion of the student’s identification number.
Responses from the 1127 different students who freely chose to provide these numbers were
collated and used to estimate Rasch models for each of the ASLE survey’s fourteen Likert-type
guestions. Those without identification were excluded out of practical necessity. A total of 33
experiments were evaluated using survey responses from these students, listed in the
supporting information (Table S 40, section 7.3.1). Surveys were gathered from both the
Chemistry IA/B and Foundations of Chemistry IA/B cohorts.

Experiments of the same title conducted by the two different student cohorts were not
necessarily identical, with the Foundations of Chemistry forms of the experiments having been
modified to suit the different student cohort in some cases (see section 2.1.3). Though the
same experiments were present in both of the two years, small changes had been made in
some cases and therefore each was considered a different experiment (with a different set of
“difficulty” measures) for the purposes of the Rasch analyses. This data is consolidated in
subsequent investigations, only after establishing it is valid to do so (see section 4).

The number of responses received from each experiment contributing to the analyses in this
study is detailed in the supporting information (Table S 40, section 7.3.1) as well as the total
number of responses received, not all of which could be used for these purposes owing to the
lack of provision of a student identification number. Far more students provided responses in
2013, and of those, a higher proportion chose to provide their identification numbers.

3.3.2.3 Data cleaning process

Each separate question of the ASLE survey was analysed in isolation from the others, yielding a
separate two-facet (experiments, students) rating scale Rasch model specific to each Likert-
type survey question. Rasch models were generated using the Winsteps Rasch measurement
software.'® For each question separately, survey responses received which included a student
identification number were collated and entered into the Winsteps software. Persons or items
(experiments) which were reported by the software to be disconnected from the bulk of the
data and present in isolated “subsets” were removed, as were students providing all responses
in the extreme positive category or all responses in the extreme negative category (for
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justification of these procedures, see section 2.3.3). This procedure was repeated until all
remaining data points appeared connected as reported by Winsteps.

At this point, two different Rasch models were generated for the data remaining: one model in
which the rating scale structure was constant for all experiments, and a second model in which
the rating scale structure was allowed to differ between Chemistry IA/B experiments and
Foundations of Chemistry IA/B experiments. The model which best explained the data as
judged by the corrected Akaike Information Criterion (see section 2.5.4.2) was then used for
subsequent data preparation and analysis.

In order to achieve the best estimates of the Rasch model, students significantly misfitting the
model were, at this point, removed from the analysis (see section 2.3.2 for justification).
Students selected to be removed were those for which the infit or outfit z value was outside of
the +2 to -2 range. The z value was used to identify misfit as opposed to the mean square value
due to the mean square’s insensitivity to variance in the measures. It is acknowledged,
therefore, that whilst those students removed misfit the model to a statistically significant
degree, the actual magnitude of their misfit was not necessarily large. For this reason more
students may have been removed than was necessary due to this conservative methodology.
However, this is unlikely to cause significant issues as Rasch modelling is useful even with small
sample sizes, preferably a minimum of 10 observations per response category.?3% 3%

Following this removal of misfitting students, the data were further examined for connectivity,
and persons or items (experiments) appearing to be present in separate subsets to the rest of
the data were removed. Extreme responding students were also again removed at this stage
(see section 2.3.3 for information on both disconnected and extreme responses). Rasch
models generated from the data remaining were used for the subsequent analyses presented.
Details of the results of these models, as well as the numbers removed during data
preparation steps previously described, are available in the supporting information (sections
7.3.4-73.17).

3.3.2.4 Generating score to measure relationships

For each Rasch model (one for each Likert-type survey question), the probability of observing
each possible response (of score x) as reported by a student of measure [ in response to an
experiment of measure 0 is calculated directly from the Rasch model. By modelling student
measures as being normally distributed, an assumption made by initial estimation methods of
the Winsteps software (see section 2.3.1), the probability P* of observing each given response
(xx) when sampling randomly from the whole student population, all of whom are responding
to an experiment of quality measure o with respect to the question being asked, was derived
using the law of total probability.3*!

PG din) = [ POC=x)x P48 5 P(®)~N(F.0f) 33
Equation 33 results from taking the probability that a specific student of measure 3 will
provide response xi (obtained directly from the Rasch model, see Equation 1), multiplying that
value by the probability of sampling a student of that specific B measure, then summating

across the entire distribution of possible 3 measures. These functions, like the Rasch model
equations from which they are derived, are specific to the survey item posed.
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From these functions, evaluated using the Matlab software,3% the distribution of expected
mean ASELL scores as a function of the experiment measure & were derived for each of the 14
Likert-type items of the ASLE survey. The population level probabilities of observing a response
in each category, computed via Equation 33, were taken to approximate the expected
population level proportion of responses in each category (the observed count c for the
category divided by the total number of responses N).

% < P* (x4, 8) 34
N

These values were then used to compute the mean ASELL score in the usual way (see Equation
28). The expected mean ASELL score provided by the average student (the “fair average”
associated with the relevant 6 value) was also calculated, the mathematics of which has
previously been described (see section 2.5.1). Standard error values (and subsequently 95%
confidence intervals) for the expected population level mean ASELL scores were calculated at
various sample sizes using standard statistical formulae previously discussed (see sections
2.4.1 and 2.4.3), again utilising the approximation shown in Equation 34.

3.3.2.5 Simulation of population level distributions

Population level probabilities generated using Equation 33 were used to simulate 5000
samples of 100 observations each for item 2 of the ASLE survey: “This experiment helped me
to develop my laboratory skills”, selected from the fourteen Likert-type items of the survey for
reasons detailed in the subsequent discussion (see section 3.3.3.3). This simulation study was
conducted in order to test the assumption that the mean scores obtained from random
samples appear normally distributed about the true population mean; a requirement of
parametric statistical methods. The population level proportion of responses in each of the
five response categories for this item were evaluated at experiment measure 6=0, as this is by
definition the measure of the average experiment in the sample. Random numbers ranging
from zero to one were generated using Microsoft Excel’s RAND() function, and from these
random numbers, simulated responses in one of the five categories were assigned based on
the random number values. The range of random number values corresponding to each
assigned response was, in each case, selected such that the size of the random number range
corresponded to the relative probability of that response category being observed.

Given the central limit theorem, sample mean scores will more closely approximate a normal
distribution as sample size increases (see section 2.4.2, Equation 11). The task is therefore
simply to evaluate the sample size at which the approximation is sufficiently close, and this
was done based on Muthén and Muthén’s criteria®® for deciding sufficient sample size using
randomly simulated data. Accordingly, the sample size was deemed to be sufficient once
coverage (the proportion of the data falling within the expected 95% confidence interval) was
consistently between 0.91 and 0.98, and the bias in the estimated standard error in the mean
score was less than 5% in magnitude. Muthén and Muthén also recommend that bias in any
parameters estimated (in this case the mean score) should not exceed 10%, however given
that the location of the zero point of the scale influences this bias value and that the zero point
on the ASELL scoring scale is arbitrary, this was not investigated. The estimated and true
population means were, however, still compared.
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3.3.3 Results

3.3.3.1 Features of models generated

Statistical details of the fourteen rating scale Rasch models generated, one model for each
Likert-type survey item, are available in the supporting information (sections 7.3.4 - 7.3.17).
This information includes the number of data points received in each response category,
separation and reliability values for both persons and experiments, the raw variance in
observed responses explained by the person and experiment measures as evaluated by
Winsteps’ variance decomposition, fit statistics for the response categories and for each model
globally, measures and ranges for response categories, estimated Rasch-Andrich thresholds
with associated standard errors as well as Rasch-Thurstone thresholds and estimated local
discrimination values for each pair of adjacent response categories, histograms displaying
distributions of estimated person and item measures and figures displaying empirical and
observed response category probability curves. The interpretation of these statistics is
described extensively in section 2.5.2: “Rasch model fit statistics and descriptive values”.

Person measure reliability values in all fourteen models are very low. This is most likely a
consequence of the fact that any given student only responded to a small number of
experiments, making estimation of their Rasch measure imprecise. Experiment measures show
better reliability values, though these vary broadly from high values near 0.95 through to low
values closer to 0.6 in some cases. This variation may have arisen for a broad array of reasons.
Regardless, this should not be problematic for this study, as the main focus here is the
response scale structure. Sample sizes achieved appear adequate for the most part, however
the most negative category received less than the recommended 10 data points for a number
of survey items. The practical implication of this is that score to measure relationships
presented here are imprecise for the extreme negative end of the response scales presented.
This imprecision is reflected in large standard error values seen for the lowest Rasch-Andrich
threshold parameter in each model. Poor alighment between person measures and
experiment measures (poor targeting) in most cases may have contributed to this issue as well
as the issues with reliability previously described. Better survey targeting could yield more
accurate results than presented here, notably by including survey responses gathered from
experiments which illicit more negative responses than the experiments studied in this
research.

Poor survey targeting is also a likely contributor to the low proportions of observed variance
explained by the experiment measures. Variance explained by experiment measures is under
10% for almost all survey items; a small fraction of the total variance explained by both
student and experiment measures combined, often near 50% (which is acceptable). Most
experiments have measures with substantially lower values than most person measures,
making positive responses far more likely and therefore reducing the amount of variation in
observed data attributable to measurement differences. This makes the relative contribution
of random effects (such as the inherent imprecision of the five-point response scale)
comparatively larger, reducing the precision and reliability of measurements achieved.
Additionally, the distribution of student measures in each case appears much broader than the
distribution of experiment measures, reducing the relative contribution of experiment-specific
factors to the observed responses and depleting the variance explained by experiment
measures. This could potentially mean that large samples need to be gathered in order to
‘average out’ these student factors and random effects when using scoring methods. The need
for further investigation into the nature of these undesirable contributions to the ASLE survey
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responses therefore warrants subsequent research, discussed later in this thesis (see section
4.1).

Despite these effects, fit statistics appear acceptable and the numbers of students removed
due to misfit were not excessive, meaning that Rasch models generated likely provide a good
representation of expectations for the bulk of the student population. The narrow range of
experiment measures and the poor targeting achieved here is a property of this specific
sample and not necessarily to be expected in all cases. Category structures and threshold
parameters estimated should still be generalizable, despite the fact their associated errors
could have been reduced if the experiments surveyed were more varied and better aligned
with the distribution of student measures.

3.3.3.2 Relationship between mean ASELL scores and Rasch measures

Estimation of Rasch models for each survey item revealed the rating scale category structure
for each item of the survey. An example is displayed below in Figure 27, and similar graphs are
available for all items of the ASLE survey in the supporting information (sections 7.3.4 - 7.3.17).
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Figure 27: Response structure for item 3: “I found this to be an interesting experiment”

Colours of red, yellow, green, blue and purple have been used to illustrate the probability that a given
student will provide response in the five available response categories (strongly disagree, disagree,
neutral, agree and strongly agree respectively). The category threshold parameters of the Rasch model
(t) mark the boundaries between most probable response categories for the given latent trait measure
(B - & on the horizontal axis). Either higher student measure (B3, reflecting bias) or lower experiment
measure (9, reflecting “difficulty” of providing positive response) imply that more positive responses
become more probable.

A key feature of most rating scale category structures is that the categories do not appear
“equidistant”: more positive response categories typically gather a broader range of
perceptions. The lack of consistency in the width of each category explains why the more
positive categories are often associated with higher coherence values; it is more often
accurate to infer a measure of perception from the category observed (and vice versa) in these
cases, because in these ranges of perception the probability of responding in other categories
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remains relatively low. By contrast, drawing inferences between observed response category
and measure of perception may be inaccurate for the lower categories, as a high degree of
overlap exists between category probability values. Shown below in Figure 27, for example,
even at the most probable point of responding in the “disagree” category (P - 5 = -2.5), there is
still only a 50% chance the student will respond with “disagree” rather than the adjacent
response options. For reasons such as these, the frequency of accurate inference from
response category to measure of perception often drops below 50%, with the exception of the
second to most positive response category. This category, except in the case of item 13,
universally gathers the most responses and covers the broadest range of perceptions, making
inference from observed category to measure of perception accurate typically more than 70%
of the time for this category.
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Evaluated using Chemistry (C) and Foundations of chemistry (F) student cohort experiments

Figure 28: Category measures and ranges for the ASLE survey items

Solid lines indicate category measures: the measure (j3 - 3, see Figure 27) at which responses observed
would be expected to receive an average score of the value displayed in the legend. Boundaries between
shaded regions reflect half-point thresholds: the measures (3 - 8) at which the expected average scored
response is mid-way between integer value scores assigned to the response categories.

Category measures and ranges reported by Winsteps for the models generated were obtained
for each item of the survey (Figure 28). Survey items 4, 5, 11 and 12 were best modelled as
having a different response scale structure for the two different student cohorts, usually with
slightly wider categories for the Foundations of Chemistry student cohort model. One key
feature of the response scales highlighted by these measures is the fact that the measure of
the centre category is typically a negative value. The zero-point of the category structure is the
point of equal probability of responding in the two most extreme categories, and in all cases
observed here, the centre category appears lower than this point. Figure 28 above again
displays the lack of consistency in the width of the five available response categories, for each
item of the survey. The relationship between Rasch measures and corresponding score values
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for each category shows a clear lack of equivalence between the magnitude of a change in
score and the magnitude of a chance in perception. The category structure also appears to
vary between different items of the survey instrument. For example, item 13 shows a category
structure with a very wide centre category compared to the other items.

The impact of this variation and the inequality of the spacing between categories of response
on the generation of mean ASELL scores was investigated further, by generating the
relationships between experiment measure (8) and expected mean score. An example of this is
displayed in Figure 29.
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Figure 29: Expected mean ASELL scores for item 14: “Overall, as a learning experience, |
would rate this experiment as”

The “Experiment measure” corresponds to the & value referenced continually throughout this study: the
student independent measure of “difficulty” in providing a positive response to the item. The plot shows a
non-linear relationship between this truly interval-scale measure of objective experiment quality and the
mean score value expected to be observed when following typical ASELL data treatment methods.
Dotted lines display the variation in expected mean scores at a variety of sample sizes, with less variation
observed when more samples are gathered.

The change in mean ASELL score as a function of the Rasch experiment measure does not
appear to be strictly linear, though appears roughly so in the region in which non-extreme
ASELL scores (-1.5 to 1.5) would be received. A roughly sigmoidal curve is observed in most
cases, with the maximum and minimum mean ASELL scores of plus and minus two observed
beyond approximately -5 or +10 logits respectively from the measure of this sample’s average
experiment (experiment measure & = 0). ltem 13, regarding the time available, appears
different; the expected mean ASELL score plateaus and does not substantially change from
zero for approximately 3 logits either side of the average experiment’s measure (Figure S 48,
p.259). The standard deviation in experiment measures for this item is roughly two logits
based on this sample, meaning that ASELL scores for item 13 are extremely insensitive to
changes. This is a limitation of the scoring system when applied to this item. Non-linearity in
the relationship between ASELL score and measure is not unique to item 13, however. The
expected mean ASELL score received from the average student does not always align with the
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expected mean score received from the whole student population, suggesting possible skew in
the distribution of expected mean ASELL scores at locations where these values differ. This
may be important for obtaining the sample sizes required. Regions of the scale which produce
a more skewed distribution of mean ASELL scores would require larger sample sizes for the
purposes of statistical comparisons.'”®

In order to investigate the degree to which the non-linear relationship between score and
measure impacts the validity of the use of scores, the correlation between mean ASELL score
and estimated Rasch measure was calculated (Figure 30). Scores were calculated using both
the traditional ASELL integer scores and by using the category measures obtained by Rasch
modelling as “optimised” scores. This was conducted using data points used for the Rasch
measure estimations and repeated using all data points collected prior to the data cleaning
process. Because of the small number of responses received in 2012, correlations between
scores measures were also separately evaluated for the 2013 data only.
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Figure 30: Observed similarity between mean score values and estimated Rasch measures

Data cleaning processes noted in the legend include removal of extreme, disconnected and substantially
misfitting responses. Data points remaining after these cleaning processes reflect those which may be
adequately described by Rasch models (thus presumed not to be “donkey votes” or inconsistent with the
maijority). The “optimised” scores referred to in the figure utilise category measures (see Figure 28) in
place of the usual integer score values assigned in order to better reflect the true magnitude of difference
between the five rating scale options.
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Results show that scores generally correlate reasonably strongly to the interval scale Rasch
measures, with little difference between the integer scoring system and the optimal scores
obtained from using category measures. The data cleaning process does not appear to have
altered this. However, small sample sizes appear to severely deteriorate this correlation
between score and measure. This can also be seen in the broadening of the 95% confidence
intervals of expected mean ASELL scores in the score to measure relationship plots for each
item’s Rasch model (such as the example shown in Figure 29). Data misfitting the Rasch model,

such as “donkey votes” and students dissenting from the majority, appear to severely enhance
the lack of correlation for small samples.

3.3.3.3 Simulation study: the appropriateness of parametric statistics

A simulated distribution of mean ASELL scores received for an average experiment (8 = 0) in
response to item 2 of the ASLE survey: “this experiment allowed me to develop my laboratory
skills” is shown in Figure 31. Simulations have been repeated for a range of sample sizes to
obtain the distributions shown (5000 simulated samples of the relevant size in each case).
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Figure 31: Distribution of mean ASELL scores obtained from samples of various size, in
response to item 2 of the ASLE survey

Alignment between the observed simulated distributions (shaded red and orange) and the predictions of
a normally distributed data set (dotted lines) indicate that the presumptions of parametric statistical
methods are closely met. Results were generated using parameters estimated for item 2 of the ASLE

survey: “This experiment helped me to develop my laboratory skills”, detailed in Table S 42 of the
supporting information (section 7.3.5).
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Survey item 2 was chosen for this simulation study for a number of reasons. Empirically, this
question shows the highest variance in observed responses explained by the experiment
measures (as opposed to student factors) of all questions examined (23.8%), and also one of
the highest total proportions of variance explained by the Rasch model as a whole (55.2%). The
person measures also appear at least roughly normally distributed, meaning the normal
distribution approximation used to generate the measure to expected mean ASELL score
relationships is more likely accurate. The category structure also appears to have good fit
statistics, with a sufficient number of samples gathered in each category to give an acceptable
approximation of the category parameters. This survey item also shows one of the highest
experiment measure reliability values (0.94).

The average mean ASELL score obtained in the simulations closely aligns with the true
population mean score of 0.98 for all sample sizes. The average estimate of the standard error,
however, appears smaller than the true standard error for small sample sizes. The bias in the
average standard error estimate reaches acceptable criteria (below 5% bias) by a sample size
of eight (precise values not shown). The 95% confidence interval assumed by parametric
statistics (assuming normal distribution of mean scores) aligns well with the empirical region
containing 95% of all simulated means obtained for all sample sizes, improving as sample size
increases as expected. The proportion of simulated means falling within the 95% confidence
interval assumed by parametric statistics reaches acceptable levels (between 0.91 and 0.98)
after only two samples. Methods of calculating the sample size required for a normal
distribution in population means based on the skewness of the distribution of observed data,
such as Boos and Hughes-Oliver’s'’? suggestion of (5.66 xskew)? for a two-sided test or
Cochran’s rough guideline!”? of 25 xskew? appear roughly accurate, recommending sample
sizes greater than approximately 5 and 4 respectively. Criteria recommended by Boos and
Hughes-Oliver!”® are suggested based on achieving coverage of at least 0.94, and this is
achieved in all but few cases beyond the sample size recommended by their method.

3.3.4 Discussion

The structure of the response scale categories yielded by Rasch models reveals a number of
important results. Firstly, the variation in category structure between the different survey
items removes the ability to interpret scores in the same way for different items of the survey.
For example, a mean score of +1.2 on item 3 (interest) and mean score of 0.8 on item 6
(understanding) does not necessarily imply that students responded more positively regarding
their interest than they did regarding their understanding. It could be that the position of a
truly “neutral” perception on each item’s response scale differs, or that the five response
categories for one item gather different ranges of student perceptions than is the case for
other survey items. The fact that response categories for all items are not equidistant also
implies that at the level of individual responses the integer scoring system is strictly inaccurate.
Given the variation in category structure between different survey items, the most accurate
scoring system for one survey item is also not necessarily the same as for another.

The relationship between mean ASELL score and the interval scale Rasch measure is not linear,
implying that changes in mean ASELL scores reflect different sized changes in the variable of
interest depending on the scale location. This reflects the non-additive nature of scores as
opposed to measures often referenced in the literature advocating Rasch modelling over
scoring systems. Mean ASELL scores do, however, strictly increase as the latent variable of
interest increases, and for this reason are of practical use as an indicator of change. Changes in
an experiment’s tendency to illicit positive responses can validly be inferred from observing a
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change in mean ASELL score, but the magnitude of the change in ASELL score cannot be used
to infer the magnitude of the change in the latent variable of interest.

However, despite the strictly inaccurate nature of the integer scoring system, taking the
average ASELL score still appears to be useful. Using ideal category measures in place of the
usual integer values does not appear to greatly improve the validity of using scores as
measures, and scores generally tend to correlate highly to the measures of interest provided
sample size is sufficient. This congruence between Rasch measure and observed mean score
aligns with the pre-existing statistics literature showing good agreement between item
response theory based measures and scores assigned using classical test theory.

Scored individual student responses, however, appear to have highly variable meaning. One
student’s response scoring +1 could feasibly correspond to a less positive perception of the
experiment compared to another student’s response scoring +0, based on the high degree of
overlap in the rating scale categories (see Figure 27 previously). It is unclear how much this
compromises the validity of rank-based non-parametric statistical tests, which have previously
been used to avoid the controversies of using parametric methods on ordered categorical
data. It appears that at the level of individual responses, the data may not even classify as
being consistently ordered.

The validity of using scores as if they were a true measure of the variable of interest appears to
be the key problem with small sample sizes, rather than the validity of using parametric
statistics. Correlations between scores and Rasch measures drop sharply if including data
points of small sample size, likely due to the large variation in student measures which would
otherwise be ‘averaged out’ over a large sample. Parametric statistics, however, appear
entirely appropriate for mean ASELL scores from very low samples, as the assumption of
normally distributed mean values is met. Mean ASELL scores are therefore fit for t-tests,
ANOVA and other parametric techniques. Again, however, it should be emphasised that
change in mean ASELL scores cannot be used to infer the actual magnitude of the change in
the variable of interest. The non-linear relationship between scores and measures also means
some differences in the trait of interest may not be detected in the mean scores. Using scores
instead of measures therefore appears to put the researcher at risk of “type two errors”:
inferring no difference when in fact there is one.

3.3.5 Conclusion

Despite common criticisms of using successive integer score values for the analysis of
individual Likert-type items, it has been shown here that using mean scores in the case of the
ASLE survey provides some practical use. Presence of differences in the latent variable of
interest may be validly inferred from differences in mean scores, and mean scores appear to
be fit for parametric statistical methods such as t-tests and ANOVA. Researchers using scores
rather than more sophisticated measures such as those obtained through Rasch modelling
should, however, be conscious of the non-linear relationship between mean scores and the
underlying variable of interest they are intended to reflect. Mean scores generally correlate
well to Rasch measures if sample size is large, however the magnitude of mean score
differences is not informative of the true magnitude of any difference in the underlying
variable. The presence of experiment independent factors such as a wide variety of student
biases appears to threaten the validity of using mean scores as experiment-specific
measurements at small sample sizes, warranting further investigation into the nature of these
effects.
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4 Qualitative interpretations and
the ASLE survey data

In this section, the appropriate interpretation of ASLE survey data is explored in a more
gualitative sense, exploring questions regarding the connection between survey data and any
measures of experiment quality which may be considered largely student independent. These
guestions are investigated by refining different models of survey response, seeking the best
explanatory model of the observed data. In so doing, this section tests the second and third
primary hypotheses of this thesis:

Hypothesis 2:
Student independent contributions to the ASLE survey responses exist and are
measurable.

Hypothesis 3:
Student independent measures obtained from ASLE survey data reflect qualities of the
experiment evaluated.

Section 4.1 considers an array of possible different interactions between students and the
ASLE surveys, encapsulating each as a different Rasch model. The observed data
are then fit to each Rasch model, using both fit to the model and parsimony of the
model to determine the best explanation of the observed data. A principal
question answered within this section is whether any student independent
qualities, emergent from experiment design, can be said to contribute.

Section 4.2 makes use of the best explanatory model of the ASLE data determined in the
previous study, comparing the perceptions of male and female students. Whilst
this section does not directly test either of the hypotheses reproduced above, it
was considered worthwhile to answer questions regarding gender equality in the
course given the opportunity. The study exemplifies the ability of Rasch
methodology to investigate more deeply than scored analyses are capable,
separately investigating student dependent and student independent measures.

Section 4.3 probes the relationship between student independent measures associated with
ASLE survey data and factors of the learning experience. A technique is developed
and implemented to explain ASLE survey student independent measures as a
function of more basic elements of the laboratory experience, encapsulating the
relationships within a Linear Logistic Test Model (LLTM). Notably, the LLTM
structure is estimated from observed data rather than stipulated a priori, as would
usually be the case.

Section 4.4 examines the relationships between different facets of the laboratory learning
experience, as revealed by the LLTM derived in the previous section. Particular
focus is given to the connection between generalisable measures of quality and
the design features of the learning activity, addressing Hypothesis 3 above.
Relationships uncovered reveal important conclusions for the pedagogy of science
in the laboratory setting.
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4.1 Valid measurement of experiment quality using the ASELL
project surveys

41.1 Outline

In the previous study, the ASLE surveys were analysed using Rasch measurement techniques,
presuming the validity of assigning interval scale measures. Estimates of experiment and
guestion specific measures were found to contribute very little to the variance in observed
responses, whilst a broad range of different student specific effects was the dominant source
of variation. Whilst gathering large student samples may average out these student variations,
the small contribution of the assumed experiment and question specific factors raises the
qguestion of whether it would serve as a better explanation of the data to disregard these
factors entirely. This study therefore employs a number of Rasch measurement techniques to
test a critical assumption of the ASLE surveys: that survey responses gathered from a particular
experiment genuinely reflect some quality of that specific experiment. Rather than making
assumptions regarding what the survey responses reflect and regarding their comparability
between different survey occasions, a broader data set of ASLE responses is modelled under
an array of different interpretations, varying the question specific and/or experiment specific
nature of student dependent and student independent factors. Accounting for both the fit and
parsimony of these different models, the Rasch model which serves as the best explanation of
the ASLE survey responses is determined. The best model established here provides a
foundation to begin more detailed investigations into why experiment measures take on the
values that they do, allowing for the development and refinement of a specification equation
deriving experiment quality measures directly from empirical features of laboratory activity
design. Results obtained in this study also reveal information about the comparability of data
obtained on different occasions, and the errors likely to be introduced by these effects are
discussed.

4.1.2 Specific methods

4.1.2.1 Data collection and initial treatment

The same data set used to conduct the statistical techniques validation study (section 3.3) was
used to generate a variety of separate two-facet and three-facet Rasch models, each
explaining the observed responses in a different way. These models were then statistically
contrasted in order to determine which model served as the best explanation of the data
available (using techniques to be discussed). In order to allow for comparative statistical tests
between these models, the same exact data points must be used for each. Data points which
contributed to an ‘extreme’ measure in any of these models were therefore removed from
consideration by practical necessity, as these responses have indefinite associated statistics
(see section 2.3.3). Additionally, it was ensured that all data points used did not appear
disconnected from the bulk of the other data gathered for the same survey item, or from the
same experiment (unless this was an artefact of the model used). This resulted in a total of
45,641 data points being used to generate each of these Rasch models, gathered over a period
of time from the second half of 2012 through to the end of 2013. Surveys gathered include
responses from both the Chemistry IA/B and Foundations of Chemistry IA/B cohorts, some of
which are associated with student identification numbers.
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4.1.2.2 Facets of the explanatory models generated

The generation of ASLE responses was conceptualised as the interaction of three basic
components: the student responding, the experiment conducted and the questions asked.
Building on this notion, a total of six possible facets which may contribute to an explanatory
model of the ASLE data were identified. Of these facets, those which take different values
depending on which student is responding were deemed ‘student dependent’ facets, whereas
those which take the same value regardless of which student is responding were deemed
‘student independent’ facets. An initial presumption was made that the best explanatory
model of the data would include at least one student dependent facet and at least one student
independent facet, though this presumption was subsequently tested following the generation
and analyses of these models, as described in this study’s results.

Table 16 and Table 17 provide a description of each facet potentially included in explanatory
models explored. Displayed are generalised descriptions of the manner in which different facet
element numbers were assigned, using example element numbers. Each different facet
element number corresponds to a different assigned measure value for that facet under the
relevant circumstances, and conversely the same facet element number implies the
assignment of the same measure value. More rigorous mathematical justification of Rasch
model formulations including facets which vary in this manner are provided in the supporting
information (section 7.4.1). Notations used for each facet here highlight the manner in which
each facet is assigned different element numbers, whilst notations used in the supporting
information are selected to best highlight the mathematics underpinning the facets’

derivations.
Table 16: Student independent facets
E Q )
Specific to: Independent of: | Specific to: Independent of: | Specific to: Independent of:
Experiment Question Question Experiment Experiment Student
Student Student Question
Question Question Question
- - -
c c c
[ [] [
£ = £ = £ =
2 § ql1l g2 q.3 g § ql g2 q.3 2 § ql g2 q.3
Pl b o b Pl b
ExA  Stl 1 1 1 Ex.A  Stl 1 2 3 ExA | St.1 1 2 3
Ex.A | St.2 1 1 1 Ex.A  St.2 1 2 3 Ex.A  St.2 1 2 3
Ex.B  St.1 2 2 2 Ex.B  St.1 1 2 3 Ex.B  St.1 4 5
Ex.B | St.2 2 2 2 Ex.B  St.2 1 2 3 Ex.B | St.2 4 5
Each experiment is assigned a Each question is assigned a Each experiment is assigned a
different measure. These different measure. These different measure for each
values remain the same values remain the same different question. These
regardless of which student is regardless of which student is values remain the same
responding or which question responding or which regardless of which student is
is asked. experiment is being evaluated. | responding.

4.1 Qualitative interpretations and the ASLE survey data| Valid measurement of experiment quality using 99

the ASELL project surveys



Table 17: Student dependent facets

p Be Ba
Specific to: Independent of: | Specific to: Independent of: | Specific to: Independent of:
Student Experiment Student Question Student Experiment
Question Experiment Question
Question Question Question
€ € €
Q (] [
£ = £ = £ €
g g qgl q2 q.3 :‘:.’_ § q1l g2 q.3 21;»_ § gl g2 q3
o 2 o] b o 3
ExA Stl 1 1 1 ExA  Stl 1 1 1 ExA St1 1 2 3
ExA  St2 2 2 2 Ex.A  St2 2 2 2 ExA  St2 4 5 6
Ex.B  St1 1 1 1 Ex.B  St1 3 3 3 Ex.B  St1 1 2 3
Ex.B  St.2 2 2 2 Ex.B  St.2 4 4 4 Ex.B  St.2 4 5 6
Each student is assigned a Each student is assigned a Each student is assigned a
different measure. These different measure for each different measure for each
values remain the same different experiment different survey question.
regardless of which experiment | evaluated. These values remain | These values remain the same
is being evaluated or which the same regardless of which regardless of which experiment
question is asked. guestion asked. is being evaluated.

An array of nine possible two —facet models for the ASLE data was therefore determined by
modelling the latent trait underpinning responses as the interaction of one student dependent
facet and one student independent facet. Two other possible models were also identified; one
three facet model containing all three broadly specific facets (those specific only to students,
only to experiments or only to questions), as well as another three-facet model comprised of
all three jointly specific facets (experiment and question specific, experiment and student
specific, question and student specific). All models aside from these would contain
redundancies and be reducible to one of these eleven, leaving these eleven models to be the
full range of possibilities. All Rasch models generated were of the form displayed in Equation 2
(section 2.2.1), with the Andrich threshold (t) parameters differing for different survey
questions (i.e. 14 scale groups, one for each survey item). Table 18 displays the way the latent
trait variable ¢ was modelled under each explanatory model. A Rasch model was generated for
the observed data under each of these interpretations, recording the log-likelihood chi-square
value and the number of free parameters estimated for each. These values were used to
calculate the corrected Akaike Information Criterion (AlCc) for each model, and the model with
the lowest AlCc value was taken to be the best explanatory model for the observed data (see
section 2.5.4.2).

i For example, a three-facet model B-56-Q would be equivalent to a two-facet model B-§, as the &
measures, jointly specific to both experiment and question, would already embody any broad scale
guestion specific variation otherwise encompassed by the Q measures. This arises for any model in
which one facet, broadly specific to one component contributing to responses, is paired with another
facet already jointly specific to that same component and another (for this reason, the Bo-Q model and
the Be-E model are actually equivalent to one-facet models Ba and e respectively). Further details are
available in the Rasch model derivations provided in the supporting information (section 7.4.1)
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Table 18: Mathematical form of the latent trait variable @ in each explanatory model

Student independent factors

Experiment and Question Experiment
question specific specific specific
Student Broad (non-specific) -8 B-Q B-E
dependent | Question specific Ba-0 Ba-Q Ba-E
factors Experiment specific Be- o Be-Q Be-E
Other models _ ,(BQ+BE)_f8 E B-(E +9)
[all jointly specific facets] [all broadly specific facets]

Each Rasch model in the table above is derived from first principles in the supporting information (section
7.4.1). Labels shown at the right of each model formulation (for example ) also appear next to the
appropriate corresponding equation in the model derivations. Notations for each facet used in the main
body (those shown above) are not the same as the more complex notations used in the model
derivations. Notation here is based on how the factors vary and the way in which facet element numbers
are assigned, whilst notation in the model derivations is based on the mathematical structure of each
facet's derivation.

4.1.2.3 Further investigation using an expanded data set

Upon determination of the best explanatory model, further investigation was conducted using
an expanded data set, consisting of survey responses gathered from many experiments
conducted at the University of Adelaide from times ranging from 2010 to mid-2014. A broader
data set of survey responses was used for this subsequent investigation due to the fact that
not only had more responses been collected by this time, but also because the best
explanatory model determined allows for the use of survey responses without associated
student identification (for reasons to be discussed). The use of these responses was not
possible in the initial investigation due to the nature of some possible models (e.g. those
where student measures remained constant throughout all experiments). This expanded data
set made use of 9,287 surveys gathered after removal of extreme responses, composed of
128,811 data points. More details regarding this expanded data set are available in Table S 56,
presented in the supporting information (section 7.4.2). Fit statistics associated with measure
estimates in the model determined to be the best explanation of the data were recorded to
further assess construct validity.

4.1.3 Best explanation of ASLE data

Modelling student dependent factors to be question specific appears to be the worst
explanation of the data, as demonstrated by the fact such models have the highest AlCc values
of all (Figure 32). A significant improvement is gained by assuming the bias of each student to
be non-specific; constant regardless of which question is asked or which experiment is being
conducted. However, the best, most parsimonious explanations of the ASLE survey data
appear to be provided by models which allow the bias of each student to differ between
different experiments. The model explaining the highest portion of observed data (66.64%) is
the Be+Paq-6 model, in which student dependent factors are modelled as having both an
experiment specific component and a separate question specific component, whilst student
independent factors are modelled as being jointly specific to both question and experiment.
The high portion of data explained is not worth the substantial lack of parsimony imparted by
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the many modelled parameters needed to do so, however. The extra variance explained here
appears not to be due to the model accounting for consistent and significantly evident trends
in the data, but rather the model’s extra parameters allowing predictions to fit more closely to
random ‘noise’.

Student independent Corrected Akaike Information Criterion
factors specific to: 0 50000 100000 150000
- Experiment and Question (single-facet) 46.80% explained = 4139 parameters
S o
EE . )
= = Question 40.40% explained = 3701 parameters
Qo
< 0
| .
) Experiment 37.46% explained = 3720 parameters
S
i)
% Experiment and Question (single-facet) 30.16% explained | 1597 parameters
Y
)
O —0o Experiment and Question (two-facet) 24.18% explained | 1191 parameters
()
2 Sg
8_ & g Question 23.62% explained | 1159 parameters
%) c
3 £
€ Experiment 22.10% explained | 1178 parameters
T TT
2 8 % Experiment and Question (single-facet) 66.64% explained 16624 parameters
n =8
Experiment and Question (single-facet) 48.90% explained ~ 12979 parameters
e
29 Experiment 43.85% explained 12560 parameters
5%
Question 43.26% explained = 12541 parameters

* the two-facet model of student dependent factors includes one question specific student term and
a separate experiment specific student term

Deviation from prediction (log-likelihood chi squared) Penalty for lack of parsimony

Figure 32: Explanatory Rasch models for the ASLE survey data

Models are arranged from best explanation of the observed data to worst, grouped based on the way in
which students dependent factors appear to vary. Model descriptions correspond to those presented in
Table 18. For each model, student dependent factors are modelled as either “broad (non-specific)”,

“‘question specific”, “experiment specific’ or “two-facet”, using B, Ba, Be or (BatPe) respectively (see
Table 17). Student independent factors are modelled as specific to “experiment”, “question”, “experiment
and question (single-facet)” or “experiment and question (two-facet)” using E, Q, & or (E+Q) respectively

(see Table 16).

Both the question specific and experiment specific interpretations of student factors drastically
increase the proportion of observed data explained by the models, as compared to modelling
each student’s bias as broad and non-specific. However, only the experiment-specific student
factor models achieve this in a sufficiently parsimonious manner. Assuming each student to
have fourteen different bias parameters, one for each different question they may be asked, is
extremely costly in terms of parsimony. Thousands of extra parameters need to be modelled
under this interpretation compared to simply assuming a single bias parameter per student,
and the extra portion of the data explained does not make up for this substantial cost.
Assuming each student has a different bias value for each experiment they conduct, on the
other hand, achieves a similar amount of extra observed data explained by the model whilst
modelling far, far fewer extra parameters to do so. Crucially, the fact that the AICc values for
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these models (those where student factors are experiment specific) are lower than the
alternatives where student measures are broad and non-specific demonstrates conclusively
that the additional parameters are explaining real, consistent variations in the data. Modelling
student biases as if they differ for each experiment the student conducts, rather than
remaining constant, provides a better explanation of ASLE survey results.

Based on this assessment, student dependent contributions to the ASLE survey responses
appear to vary from experiment to experiment, and do so in a manner not equivalent between
different students. One student’s tendency to respond positively may increase from one
experiment to the next, whilst another student’s may decrease between the exact same two
experiments. This appears to be the case regardless of how student independent factors are
conceptualised, and is present to such a significant degree that ignoring these effects sharply
decreases the proportion of observed data able to be accounted for.

Student independent factors contributing to ASLE survey responses appear to be best
modelled as being both experiment and question specific. Removing the experiment specific
nature of these factors consistently provides a worse explanation of the data, as does the
removal of the question specific nature of the data. This trend is true regardless of how
student dependent factors are conceptualised. The null-hypothesis that these student
independent factors are non-existent was firmly rejected in the best explanatory model of the
data (y?= 7324.9, df=451, p<<0.001), and modelling the student effects on their own (B)
yielded a worse explanatory model by comparison (log-likelihood %*=80729.9, 3688 free
parameters, 37.47% of variance explained, AAICc=+5476.4 compared to the Be-0 model). This
data collectively provides strong support for the hypothesis that ASLE survey data reflects
student independent factors which are specific to both the experiment evaluated and the
question asked.

Given this aligns with what would be expected if the usual assumptions about the way the
ASLE survey works were true (see section 3.3.2.1), this is a promising result. However, the
matter is complicated by the way the student dependent effects appear to function. The
previous study discussed the usual assumptions of utilising the ASLE surveys, and the
necessary implications these assumptions had for the construct of Rasch models of the data.
One assumption discussed was the comparability of data across various different occasions,
and it was described that this assumption requires that student measures remain invariant
between different survey occasions (see section 3.3.2.1). As seen in Figure 32, the best model
of all possible models is the model in which student dependent effects vary from experiment
to experiment, whilst student independent factors not only vary from question to question but
also vary differently in different experiments. Utilising the notation introduced in this
investigation to specify the different facets, the relevant Rasch model is given in Equation 35,
where the T parameter is specific to the survey question asked as well as the relevant category
threshold. This is highly problematic, as it results in a model where nothing remains constant
between different experiments evaluated.

P(X = x) 35
n [P(X = Xi 1)] Pe =

When modelled in this way, the data are split up into 33 isolated subsets, each of which
contains the data gathered from one specific student group sampled. Different sample groups
correspond either to different years, different student cohorts (Foundations of Chemistry IA/IB
or Chemistry IA/IB), or different practical exercises conducted. Measures are not comparable
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across different subsets when data sets lack connectivity in this way (see section 2.3.3),
meaning that if this genuinely is the way the data are best modelled, data gathered from one
experiment cannot easily be validly compared to data gathered from another. Practically
speaking, this corresponds to an interpretation of the data where something a student thinks
is “good” on one occasion could be the same as what they consider “poor” on another
occasion. Even if the identical students are used to evaluate two experiments on two
occasions, there is no reason to assume their responses can be considered as meaning the
same thing each time; in fact it appears that, based on these results, they most likely will not.
This could potentially ruin any ability to use student evaluations as a tool of comparing the
qualities of each experiment, conflicting with the entire purpose of the ASLE instrument as a
tool of evaluation and comparison.

4.1.4 Investigating comparability between different sample scores

Rasch models of the data may be made comparable using ‘equating’ techniques, however such
techniques are not available to researchers using the usual ASELL scoring procedure. For
scores to be comparable between different occasions under this explanatory model, the same
overall distribution of student measures needs to be assumed. The hypothesis that the overall
student measure distribution remains constant despite variation in individual students was
tested here by equating the Rasch measurement scales of the different experiment specific
subsets, and comparing the distribution of student measures observed for each.

The different experiment-specific subsets of data were equated using two techniques. First,
experiments which were structured identically despite being presented at different times and
to different students were assumed to have the identical student independent (3 ) measures.
This reduced the number of isolated subsets from 76 down to only 29, and resulted in a better
explanatory model of the data (log-likelihood ¥?=217851.8, 9734 free parameters, 49.03% of
variance explained, AAICc=-76.6 compared to the unequated -8 model). Secondly, the
remaining measurement subsets were equated by identifying 82 students who appear to have
invariant bias (both infit and outfit mean square values <0.8 for the 3-6 model of the same
data, with responses for at least five experiments) and modelling them to have the same (B)
measure for every experiment in which they responded. All other students were still modelled
to have a measure different for each experiment, as per the best explanation of the ASLE data.
This new model proved to be a better explanation of the data than the previous equated
model, due to the fact it accounted for the consistency in these students’ responses and
avoided the need to model multiple bias parameters for each (log-likelihood %?=218693.7,
9286 free parameters, 48.68% of variance explained, AAICc = -202.6 compared to the previous
partially equated model). This validates the selection of students to consider as having
invariant BE measures for the purposes of equating.

Following application of these equating techniques, the data set contained only 7 isolated
subsets. The largest of these subsets (subset 1) was used to assess the comparability of the
student bias (experiment-specific student measure) distributions gathered from each separate
sampling occasion. The distributions of measures from each of the separate groups of students
are shown in Figure 33, where sample groups are labelled by student cohort (C for Chemistry
IA/B, F for Foundations of Chemistry IA/B or u for an unknown or mixed cohort), then labelled
by year, then labelled the title of the experiment conducted. A more positive bias measure ()
reflects a greater propensity to provide a positive response to all fourteen Likert-type items
posed.
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Invariant students used for equating] —a—

C-11-Ex.10 - coloured complexes of iron] - — o0 *
C-"11-Ex.11 - analy=is of spinach extracts— I am o
C-11-Ex.12 - lon exchange chromatography =] g ——r3—00
C-"11-Ex.2 - Thermochemistry— I — Qo
C-"11-Ex 4 - Melting points and recrystallisation= I oo
C-'"11-Ex 5 - Quantitative technigues I — o
C-'"11-Ex B - Reaction kinetics= —_—{T 0
C-"11-Ex & - Liguid-liquid extraction and TLC oo I — o0 O
C-"11-Ex 9 - Synthesis of aspirin— I oo
C-"12-Ex.11 - Analysis of spinach extracts— I E—
C-"12-Ex.1 - Biological buffers— e I — o]
C-"M2-Ex 4 - Melting points and recrystallisation= 1 o
C-"12-Ex 6 - Reaction kinetics—] Q—{r—— 00
C-"2-Ex .8 - Liguid-ligquid extraction and TLCT 1
C-"12-Ex 9 - Synthesiz of aspirin—| — a9
C-"12-Ex 10 - Equilibrium & Le Chatelier's principle=] (o] L oo *
C-2-Ex 12 - lon exchange chromatography -] T (s e}
C-"12-Ex 13 - Copper(ll) ion absorption spectrophotometry= —_—{ 00 *
C-"12-Ex 2 - Thermochemistry—] I E— 0
o C-"12-Ex 3 - Wapour pressure— - — o0
E C-12-Ex 5 - Quartitative technigues— o - — oo o
E. C-"13-Ex 10 - Equilibrium & Le Chatelier's principle=] I o
o C-"13-Ex 11 - Analysis of spinach extracts— a I o
‘E’- C-13-Ex 12 - lon exchange chromatography—] w (E E— o0
m  C-"13-Ex 13 - Copper(ll) ion absorption spectrophotometry= o —— 0
w C-'"13-Ex 1 - Biological buffers o0 0
2-"13-Ex 2 - Thermochemistry— I o
C-'"13-Ex 3 - Wapour pressure] L o
C-"13-Ex 4 - Melting points and recrystallisation=| 1
C-"13-Ex & - Quantitative techniguesT] I o
-"13-Ex & - Reaction kinetics— e o O
C-"13-Ex 8 - Liguic-liqud extraction and TLC 1 o o
2-"13-Ex 9 - Synthesis of aspirin—| - — o
C-"14-Equilibrium & Le Chatelier's principla—] o — e
C-"14-lon Exchange Chromatography = L c o
C-"14-Quantitative Technigues= o] | o O
C-"14-Thermochemistry =] T ¢ o]
C-"14-Yapour Pressure= I o0
C-'"14-Visible Ahsorption Spectrophotometry— —_—tT 33— O
F-"11-Ex.10 - Coloured complexes of iron— —— o
F-"11-Ex.12 - lon exchange chromatography ] —1
F-"11-Ex.4 - Mekting points and recrystally=ation— o I o
F-11-Ex.5 - Quartitative technigues] —Tr— o *
F-"11-Ex & - Reaction kineticz— Q L] o000
F-"11-Ex.8 - Liguid-liguid extraction and TLC=] O o I o o
u-"10-Expt.o] N —
T T T T T
-2.50 .0a 250 5.00 7.50

Bias measure

Figure 33: Comparison of the distribution of student biases samples on different occasions

The distributions appear quite variable, and almost all appear to significantly deviate from the
normal distribution (see Table S 57 in the supporting information, section 7.4.2). Both the
shape and centre of the distributions appear to significantly differ as judged by the Kruskal-
Wallis test (test statistic = 164.855, df = 45, p<0.001) and Mood’s median test (grand

median = 1.510, test statistic = 135.545, df: 45, p<0.001). The students used for the purposes
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of equating appear to have a much smaller range of bias values, reflecting the fact that those
students who appear to respond in a consistent manner tend not to do so in an extremely
positive or negative way. They were not included in the comparative statistical tests.

4.1.5 Other notable features of the equated model

Final results were split into seven isolated measurement subsets. Subset 1 contained most
experiments conducted by the Chemistry IA/B cohort, whilst subset 6 contained most
experiments conducted by the Foundations of chemistry cohort. The other subsets include
experiments which could not be connected to the rest of the data. These experiments included
the original form of the three experiments which made use of handheld data loggers®® (as
opposed to using laptop computers in their revised forms), the initial form of the Foundations
of chemistry “introductory experiment” and the original form of the Foundations of chemistry
version of the “Reaction kinetics” experiment before revising the order and phrasing of the
guestions presented. Experiment quality measures for the connected data are presented in
the supporting information (Table S 58, section 7.4.2).

The reliability of the experiment quality measures obtained in this equated model is very high
(separation = 5.87; reliability = 0.97), whilst student bias measure reliability could be improved,
yet is still acceptably high (separation = 2.70; reliability = 0.88). These values are promising,
particularly given that misfitting students were not removed from consideration as is often
common practice in Rasch measurement. Fit statistics for the question-specific experiment
measures reveal that in the majority of cases, questions 11 and 13 (concerning teamwork and
time availability respectively) fit the Rasch model poorly. This is true for both inlying data
points and for outlying data points (judging by infit and outfit respectively). Question 12,
concerning students’ opportunity to take responsibility for their own learning, also appears to
misfit, but to a lesser degree. This may mean that perceptions for questions 11, 12 and 13 are
poorly modelled under this interpretation of the data. The general overfit observed in other
survey items may indicate the presence of confounding factors forcing student responses to
align more than expected. A description of the variety of statistics described in Table 19 is
available in sections 2.5.1 and 2.5.2.1.

Table 19: Fit statistics associated with ASLE survey items in the equated model

Data Infit Outfit Estim. Correlations
#  Survey item topic . )

points MnSq ZStd MnSq ZStd Discrm  ptMea PtExp
1 data interpretation 9250  0.93 -3.8 094 36 1.06 0.64 0.61
2 laboratory skills 9276  0.95 -3.0 0.92 -4.7 1.08 0.68 0.65
3 interest 9264 0.95 -3.4 0.94 -35 1.08 0.68 0.66
4 clear assessment 9263 0.91 -5.7 0.89 -6.4 1.10 0.66 0.62
5 expected learning 9260 0.83 -9.0 0.81 -9.0 1.17 0.69 0.61
6 increased understanding 9258  0.79 -9.0 0.77 -9.0 1.22 0.71 0.62
7 background in introduction 9244  0.95 -2.8 0.94 -3.4 1.06 0.64 0.62
8 demonstrators 9253 1.07 3.9 1.00 0.0 0.96 0.51 0.53
9 procedure in manual 9247 1.03 1.7 1.01 0.6 0.99 0.62 0.63
10 relevance to chemistry studies | 9254  0.90 -6.5 0.87 -7.8 1.13 0.67 0.62
11 teamwork 8628 1.53 9.0 1.64 9.0 0.51 0.55 0.68
12 responsibility for own learning | 9207  1.11 7.1 1.18 9.0 0.86 0.54 0.60
13 time availability 9196 1.64 9.0 1.77 9.0 0.61 0.38 0.61
14 overall learning experience 9211 082 -9.0 081 -9.0 1.14 0.68 0.61
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4.1.6 Discussion

4.1.6.1 Responses do reflect qualities of the experiment

Broadly speaking, it appears clearly evident from these analyses that student independent
factors play a significant role in the generation of ASLE survey question responses. A clear
guestion-specific element to the survey responses is present, reflecting qualities that both
appear generally true for most students and also appear to be specific to the design of the
experiment being evaluated. This is evidenced by the fact that removing the experiment-
specific or question-specific nature of student independent factors (or removing student
independent factors entirely) invariably results in a worse explanatory model of the observed
data, regardless of how student dependent factors are conceptualised. The ability to simplify
the Rasch model by presuming all experiments with the same design have the identical
student independent, question-specific measures (as seen during the equating procedure)
lends considerable validity to the usual interpretation and practical use of ASLE survey results.
Based on these results, the ASLE surveys do indeed appear to target the ‘objective’ quality of
the experiment designs being evaluated, with respect to the questions being asked.

The misfit of survey items 11 and 13, and to an extent item 12, suggests that the manner in
which the data were modelled here does not align with the way in which the data appear to
behave for these specific items. This suggests survey item 11, pertaining to the benefit of
teamwork, item 12, pertaining to the opportunity to take responsibility for one’s own learning
and survey item 13, concerning time availability, exhibit poor construct validity under this
interpretation of the data. A model in which student bias remains constant for different survey
items yet differs between occasions, whilst experiment quality measures are specific to each
experiment and survey item posed, appears not to explain responses to these specific items
well. Factor analysis previously conducted on an entirely separate set of ASLE data®* has
previously revealed that items 11 and 13 appeared independent to other questions of the
instrument, potentially suggesting that student dependent factors for these two items may not
be equal to those applying to other survey items, as was modelled here. A future refinement
to the current best explanation of the ASLE data would therefore be to model student bias
parameters differently for these two items specifically, maintaining the current model for the
others. The validity of measurements obtained from these survey items remains unknown
until these further analyses are conducted. The other survey items, however, appear to be
well explained by the current best model determined.

4.1.6.2 ASELL scores obtained from few different cohorts contain inherent error

Despite the fact that ASLE responses do reflect the qualities of the experiment being
evaluated, these factors are clouded by the influences of student biases on the responses
given. Student predisposition towards positive response appears to vary widely between
individuals, and individuals mostly appear not to have the same predisposition from one
occasion to the next. This interpretation of student factors appears to be the best way of
modelling responses, irrespective of the way student independent factors are conceptualised.

Student bias towards positive response appears best modelled as if it is constant for all
guestions on a given occasion, but changes from one occasion to the next. This means that
even using the exact same student group, results from one experiment may not be
comparable to another given that the same student’s responses may mean fundamentally
different things. These effects, being the major contribution to individual responses, are liable
to perturb overall scored data received unless the sample size gathered is sufficient to

4.1 Qualitative interpretations and the ASLE survey data| Valid measurement of experiment quality using 107
the ASELL project surveys



‘average out’ this variability. Achieving this, however, is problematic. There are two sources of
student bias variation here: within group variation, which may be minimised by gathering a
large number of samples from each single student group, and between group variation, which
may only be minimised by gathering a representative sample of many different groups of
students. Gathering a vast array of data from a single student group will naturally minimise any
student sampling effects caused by variation in student biases within that sampled group, but
because variation in the average bias occurs between different student groups (eg. from
different years of sampling in the case of this study), error introduced by sampling effects can
never be minimised unless a large number of groups are sampled, not just a large number of
students from each one. This is the reason why results of this study still exhibit errors
introduced by student bias variation, despite the fact some ASELL scores have been calculated
from over 700 responses. These responses still emerged from a small number of different
groups, and so the between group variation has not been minimised.

Because of the presence of between cohort bias variation, scored responses gathered from a
single cohort or few cohorts contain an inherent degree of unreliability beyond that imparted
by low sample sizes or imprecision in the response scale. The inability to separate student bias
effects from measures of experiment quality in scored data serves as a constant limitation to
the use and interpretation of the ASLE survey data. Advanced techniques such as Rasch
analysis are capable of separating these effects, though such methods are not nearly so simple
and available to educators as the usual scoring methods of survey analysis. A practical
implication for researchers utilising scoring methods would be to only infer a genuine
difference in experiment quality once score differences appear to be large, even if calculated
standard errors are small. Statistical tests conducted on scored data cannot differentiate
between genuine change in the experiment quality as opposed a change in the average bias of
the broad student cohort, and this should be acknowledged in all ASELL survey research. Due
to the fact student bias distributions may unavoidably differ between sampling occasions,
small variations in scores between two ASLE evaluations should be dismissed as expected
variability, even if statistical tests reveal a significant difference.

4.1.6.3 Experiment quality correlations cannot be revealed by correlating scores

The fact that student bias values remain constant between different survey items, and the fact
they also contribute to the vast majority of variation between responses provided means that
correlations between individual response scores for different questions are most likely due to
person biases staying constant between questions, not relationships between the actual
experiment qualities. Correlations based on individual response scores are therefore mostly
unrelated to anything able to be altered by restructuring the experiment and therefore not of
any practical use whatsoever in designing appealing laboratory activities. The correlations are
most likely revealing factors “beyond our control”. In the case of correlating mean scores
rather than scored individual responses, this problem would become less prevalent as more
responses were used to generate each data point. Increasing the number of students whose
scores are averaged to compute the mean allows the student bias effects to be further
‘averaged out’, meaning the scores more closely reflect the student independent experiment
quality measures.

Further research needs to be conducted using sample independent means of measurement,
such as Rasch analysis, in order to determine which experiment qualities correlate to the
overall broadly appealing nature of the experiment, in a sense true for most students. A wider
variety of different experiments needs to be sampled than was the case in this study.
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4.1.6.4 Future model refinements and deeper understandings

During the course of this investigation, the best explanatory model of the ASLE survey data
studied here was determined. As a consequence of the nature of this model, namely the fact
that student bias terms appear to vary between occasions, yet remain constant for all items on
each occasion, the generation of Rasch models of the ASLE data including students who have
not provided their identification, or who have only completed a small number of experiments
has become possible. This is a substantial improvement upon previous models, which
presumed the necessity of tracking student identifiers, consequently severely limiting data
availability.

Additionally, the model determined here to be the current best explanation can be used as a
starting point in subsequent studies to test further refinements. As discussed in the
introductory material, it is not currently possible to confidently predict the theoretical
expectation of the way perception measurements should change, given a specific change in
experiment design. Given a sufficiently wide array of different experimental designs and
accompanying ASLE response data, this goal now appears obtainable. Further refinements to
the way experiment quality measures are modelled, connecting their value to the design
features of the experiment, could be tested similarly to the manner implemented here, using
AlCc values. Using the current best explanatory model as a starting point, a refinement could
be hypothesised, and AlCc values could be used to contrast the current best explanation with
the newly proposed explanation. The best model of the two could then be taken to be the new
best explanatory model, iterating this process continually as progressively more data becomes
available and more hypotheses are able to be tested. With the knowledge that experiment
quality measures for the identical procedure do remain constant for different student cohorts,
this process could feasibly utilise any and all ASLE survey data that has ever been collected, as
it is now known that student bias is entirely occasion specific and hence tracking student
identification between occasions is unnecessary for bias measure estimation.

Ways to probe the reasons experiment quality measures take the values they do could
potentially involve the development of a specification equation;!*? an equation deriving the
value of 3 as a function of other components, based on some theoretical framework. This
could include expressing 8 as the sum of a number of facets each related to some aspect of
experiment design, or using other similar methods such as using the linear logistic test
model*? 143 or multidimensional Rasch models.'*" 12 Establishing a specification equation
using techniques such as these would not only serve to further complete the process of
validating the ASLE survey measurements, but more importantly would establish a
quantitative, predictive and testable model of student perception outcomes as a direct
function of experiment design. Such a model would be invaluable knowledge for any educator
implementing, designing or researching laboratory learning exercises.

4.1.7 Conclusion

Throughout the course of this investigation, the ASLE survey responses have been clearly
demonstrated to contain a student independent component, specific to both the experiment
being evaluated and the survey item posed. This establishes that these surveys can validly be
used to compare the quality of different laboratory learning exercises, in a sense that is
generally true for most students. It is however, necessary to conduct further investigation to
establish this for both the time availability question and the teamwork benefit question of the
survey. Student bias effects appear to be inconsistent between different sampling occasions,
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meaning that scored ASLE survey data should be assumed to contain an inherent and expected
error, unless a representative sample of different student cohorts is used. Gathering many
samples from the same student cohort does not alleviate this effect, and differences in
experiment quality should only be inferred from scored data if differences are large, even
when small differences appear statistically significant. Correlations between scores obtained
for different survey items are more likely to reflect similarity in student biases than factors
which may be exploited by educators to develop more generally appealing laboratory sessions.
This is certain for correlated individual responses, and progressively less of an issue as more
responses are used for each data point if mean scores are correlated. The current model
serving as the best explanation of the ASLE survey data determined in this research could
feasibly be used as a starting point to develop other models, potentially connecting
experiment quality measures directly to facets of the experiment design.
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4.2 Gender differences in the perception of laboratory learning
experiences in chemistry

4.2.1 Outline

Given the determined best explanatory model of the ASLE data, the opportunity arises to
investigate finer level trends in both the person measures and the experiment quality
measures. Given Rasch analysis’ ability to estimate these measures separately, analyses are
possible here which would not be achievable if a scoring method were implemented. This
section utilises these advanced techniques to contrast the perceptions of male and female
students during their chemistry laboratory sessions. This is investigated from two different
perspectives: identification of any difference in the average general tendency to provide
positive response to any given laboratory exercise, as well as investigation of experiment and
guestion specific differences consistent across all students.

4.2.2 Specific methods

All data utilised for this analysis includes the data used to estimate the previously determined
best explanatory model for the ASLE data (see section 4.1). For those students who provided

their identification numbers on the survey, the gender of the student was recorded and used
for comparative purposes. Responses which were unable to be identified were excluded from
the comparative tests, but still contributed to formulation of the Rasch model.

A difference between genders in the tendency to provide positive response as broadly
applicable to any experiment in general was tested by taking the average of all person
measures estimated for a specific individual, for each individual in turn, then contrasting the
distribution of these measures between genders. Because of the connectivity issues of the
determined best explanatory model, this procedure was repeated for two distinct subsets of
the data: “subset 1” containing experiments conducted by Chemistry IA/B students (or in some
cases both by Chemistry IA/B and Foundations of Chemistry IA/B students), and “subset 6”
containing experiments conducted by the Foundations of chemistry IA/B cohort. More specific
details regarding which experiments are contained in these subsets and how many survey
responses contributed to estimating their measures is available in the supporting information
relevant to determination of the best explanatory model of the ASLE data (Table S 56 and
Table S 58 in section 7.4.2). Student measures specific to subset 1 experiments were
disregarded when finding average measures for the subset 6 comparison and vice versa, as
measures are not comparable across subsets (see section 2.3.3).

Experiment quality measures were tested for differential item functioning (see section 2.5.3)
between the two genders using the Facets software, aiming to reveal any experiment or
question specific differences between genders. Specific experiment quality measures for which
no students who listed their ID number provided response were not compared, meaning that
of the 406 experiment quality measures estimated in the equated model (one measure for
each of the 14 survey items, for 29 equated experiments), only 350 were able to be tested for
significant differential item functioning (DIF). Because this analysis therefore involves 350
distinct hypothesis tests, multiple comparisons are an issue in this study. Under the null
hypothesis of no evident DIF in any case, it would be expected that 5% of the 350 tests
performed would reject the null hypothesis at p<0.05 (by definition) as a simple consequence
of natural random variation. Therefore, the proportion of DIF tests resulting in p<0.05 was
tallied, and was tested using the normal approximation to the standard error of a proportion
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(see section 2.4.3) to determine whether the observed proportion of rejecting hypothesis tests
was significantly greater than the expected 5%. The Bonferroni correction to the significance

level was also considered in order to correct for family-wise error, when interpreting results of
isolated hypotheses within the full set.

4.2.3 Results

4.2.3.1 General predisposition toward positive response

Non-parametric statistical tests were required for the comparison of student measures

between genders, as the distribution of values obtained appeared to significantly deviate from
normality as judged by the Shapiro-Wilk and Kolmogorov-Smirnov tests (Table 20).

Table 20: Normality tests for distribution of students’ average measures

Data set

Kolmogorov-Smirnov test

Shapiro-Wilk test

Statistic df p Statistic df p
Subset 1 Female students .056 471 .001 .980 471 <0.001
Male students .055 502 .001 .982 502 <0.001
Subset 6 Female students .047 325 .075 .990 325 .023
Male students 110 317 <0.001 .963 317 <0.001

The general predisposition toward positive response for any given experiment was not found

to differ between genders for either the subset 1 data or the subset 6 data. As is evident in
both Figure 34 and Figure 35, the centre and breadth of distributions of student measures
appears invariant between genders. Tests revealed that neither the distribution nor the

median differed significantly between genders for either subset, as judged by Mood’s median

test (grand median = 1.667, ¥ = 3.116, df = 1, p = 0.078 for subset 1; grand median = 1.586,
x?=0.399, df = 1, p = 0.528 for subset 6) and the Mann-Whitney U test (standardised test

statistic=1.619, p = 0.105 for subset 1; standardised test statistic = 0.794, p = 0.427 for subset

6) respectively.

Gender

Female

Male
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Figure 34: Distribution of student predispositions toward positive response in subset 1
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Figure 35: Distribution of student predispositions toward positive response in subset 6

From this data, male and female students appear not to differ in their general tendency to
provide positive responses to ASLE survey items for the experiments evaluated.

4.2.3.2 Student independent measures of experiment quality

Following the performance of DIF analysis on the student independent measures of
experiment quality, a number of tests reported significant difference between genders at

p < 0.05. However, no single hypothesis test was so significant as to avoid attribution to family-
wise error (p < 0.05/350). This means that no individual test of DIF may be used to definitively
claim a difference between genders for that specific experiment and survey item in this case.
Regardless, the use of a Z test revealed that the proportion of tests suggesting a difference
between genders at p < 0.05 was significantly higher than the 5% which would be expected
under a scenario of total equality. A total of 31 out of the 350 tests conducted (8.86%)
reported p values less than 0.05, meaning that the statistical tests conducted indicated gender
differences in significantly more cases than would be expected if no true DIF existed in any
case (Z=2.54, p=0.011). This result was affirmed by use of an improved approximation to the
confidence interval of a proportion, with similar results: the Wilson score interval reports a
95% confidence interval of 6.3% to 12.3% in the observed data, which does not overlap with
the expected 5% proportion. The evidence therefore suggests that some degree of difference
does exist in the quality of some experiments between genders, however identifying what the
specific points of difference are is highly problematic. A full table of all DIF tests conducted is
provided in the supporting information (Table S 59, section 7.5).

In order to investigate which specific facets of the laboratory experience genuinely differ
between genders, and for which laboratory experiments, the number of DIF tests suggesting
inequality between genders at p < 0.05 was tallied for each item of the survey, and additionally
for each experiment conducted in order to observe where differences are detected most
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frequently. Whether the test revealed significantly greater difficulty of providing a positive
response for male students or for female students was also recorded.

Significant differences (p < 0.05) in
student independent measure (8) found

0 1 2 3 4 5 6

B more difficult for males
m more difficult for females

data interpretation

laboratory skills

interest

clear assessment

expected learning

increased understanding

background in introduction

demonstrators

procedure in manual

relevance to chemistry studies

teamwork

responsibility for own learning
time availability I

overall learning experience

Figure 36: Possible gender differences grouped by survey item

As can be seen in Figure 36, neither the perception of increased understanding nor the
perceived sufficiency of the background information provided ever consistently differed
between the male and female student groups. All other items exhibit at least one difference
significant to p < 0.05 detected in one of the 25 equated experiments able to be compared,
with some survey items exhibiting differences exclusively in favour of a single gender.
Providing a positive response to survey item 11; “working in a team to complete this
experiment was beneficial”, appears significantly more difficult for males in the case of five
different experiments, and evidently equivalent between genders for the other experiments.
This result should, however, be taken with extreme caution: it has been shown previously that
this survey item significantly misfits this Rasch model of the data (see Table 19, section 4.1.5)
and therefore measures may not even be validly attributable to this survey item, let alone any
gender differences in those measures. Many other survey items are not subject to this
problem, however, and do exhibit multiple occasions of evident DIF. Survey item 3 for
example, concerning interest, consistently appears either more difficult to provide positive
response for males (in 4 cases) or exhibits no gender difference (the other 21 cases). It should
again be emphasised, however, that the issue of multiple comparisons implies that no single
test result here was significant to the degree it could not be attributed to family-wise error.
The differences at p < 0.05 enumerated and displayed in Figure 36 are easily attributable to
random chance. These results therefore represent grounds for further investigation more than
they reflect a conclusive characterisation of precise differences between genders.

Differences at p < 0.05 were similarly enumerated and grouped based on the experiment in
which they occur (Figure 37). No specific experiment appears to exhibit possible gender
difference in any more than three of the fourteen survey items, and again any differences
reported here are attributable to family-wise error regardless.
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Vitamin C content Titration

Equilibrium and Le Chatalier's Principle (revised: for...
Visible Absorption Spectrophotometry
Aromachemistry
Analysis of Spinach Extracts (revised: for foundation - in pairs)
Metal Activity Series
Thermochemistry (revised: for foundations)
Reaction Kinetics (revised: for foundations)
Introductory experiment (revised: observations video)
Reaction Kinetics (revised: question order and phrasing)
Biological Buffers (revised: laptop)

Vapour Pressure (revised: laptop)

Copper(ll) lon Absorption Spectrophotometry (revised: laptop)
Introductory Experiment (revised: pipetting)

Quantitative Techniques (revised: no pipetting)

Figure 37: Possible gender differences grouped by experiment

Given that it is known that at least some degree of DIF is likely real as judged by the results of
the group level Z-test described earlier, an effort was made to identify any particularly large
differences amongst those detected as significant to p < 0.05. Here a ‘large’ difference
between genders was deemed at a difference in gender-specific  measure greater than or
equal to In(2); that is, cases in which the odds of one gender responding in the next highest
category is twice the odds of the other gender doing the same.

Large gender differences where males were substantially less likely to provide positive
response were detected twice in the case of item 13 and once in the case of item 11, both of
which fit poorly to the Rasch model and may therefore not be meaningful comparisons due to
construct invalidity (see Table 19, section 4.1.5). Four large differences were found where
female students were substantially less likely to provide positive response; one case for item
13, again possibly not a meaningful comparison, and the other three all concerning different
iterations of the “Reaction Kinetics” experiment. These differences, however, were not in the
same survey item in every case. Figure 38 shows the observed difference between estimated
gender-specific experiment quality measures (8), with error bars representing standard error
values.
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Figure 38: Gender specific DIF analysis for different forms of the “Reaction Kinetics”
experiment

Whilst cases of DIF in the “Reaction Kinetics” experiment occasionally appear large and
significant, there appears to be little consistency in these occurrences across occasions which
could not be equated due to subtle differences in the experiment structure. The largest
difference appears to be that once the experiment was revised for the Foundations of
Chemistry cohort, the odds of male students responding in the next highest category became
seven times that of the female students when posed with item 5: “It was clear to me what |
was expected to learn from completing this experiment” (odds exp(1.97) times as high, as
determined by a difference of 1.97 logits in the gender-specific 6 values). This test was,
however, one of the few which were based on a small sample of responses, and so has a wider
margin of error than in other cases. Consequently this difference only appears significant at
p = 0.0415.

This experiment was not the only one to be revised to suit the Foundations of Chemistry IA/B
cohort, however. Numerous experiments, all of which appear in subset 6 of the equated data
set, were revised in similar ways. These revisions included aligning the timing of experiments
with the lecture material as much as possible rather than having different student groups
conducting different experiments at different times in the semester, as well as slightly
modifying the laboratory manual and question booklet accompanying each experiment.
Modifications include some small procedural simplifications or amendments (such as working
in pairs rather than individually) and rephrasing or amendment to the background information
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provided, often in the form of “chemistry connections”: small paragraphs giving extra
assistance or connecting theory presented to other theory previously encountered.
Hypothesising that these changes made to the “Reaction Kinetics” experiment were the cause
of the evident DIF of survey item 5, it would be expected that similar changes to the
experiment and manual in other cases would result in a similar observation of DIF. However,
this expectation is not evident in the data.

As can be seen in Figure 39, gender difference in survey item 5 is not consistently observed in
all cases where the experiment was revised for the Foundations of Chemistry cohort, meaning
these revisions are unlikely to be the cause of the large difference observed in the revised
form of the “Reaction Kinetics” experiment discussed previously. The fact that the large DIF
observed is absent without these revisions, however, means the DIF of item 5 in the revised
“Reaction kinetics” experiment is not attributable to any difference in the structure of the
experiment itself, and is likely an artefact of random error. This illustrates the difficulty of
making multiple comparisons simultaneously: it is expected that some large significant
differences will be reported falsely (type 1 error) as an artefact of random error, and more
comparisons inevitably means more chances for these errors to occur. Regardless, the number
of null hypotheses rejected here remains significantly higher than the expectation presuming
no DIF, as previously discussed. It simply remains problematic to identify which DIF is genuine
and which is a result of random error.

Measure difference (male - female)
-4 -3 -2 -1 0 1 2

Reaction Kinetics (revised: for foundations)

Quantitative Techniques (revised: no pipetting)

Introductory Experiment (revised: pipetting)

Reaction Kinetics (revised: question order and phrasing)
Introductory experiment (revised: observations video)
Thermochemistry (revised: for foundations)

Metal Activity Series

Analysis of Spinach Extracts (revised: for foundation - in pairs)
Aromachemistry

Visible Absorption Spectrophotometry

Equilibrium and Le Chatalier's Principle (revised: for foundations)
Vitamin C content Titration

Quantitative Techniques (revised: for foundations)

Figure 39: Gender DIF observed in item 5 for Foundations of Chemistry revised experiments

4.2.4 Discussion

Whilst this investigation was unable to pinpoint any specific cases of gender differences in the
perception of the laboratory exercises evaluated, it would be incorrect to claim no significant
gender difference was detected. The fact that more significant differences were detected than
expected under the null hypothesis of perfect equality suggests at least some small cases of
genuine difference are likely to exist in this data set. The issue is that the problem of multiple
comparisons necessitates very strict criteria for identifying a confident conclusion of genuine
difference, with many false positives at usual significance criteria expected for so many
hypothesis tests conducted on the same data set. Vast sample sizes are needed to draw
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conclusions of difference not attributable to family wise error in this way. Regardless of this
difficulty, it can still be concluded that some differences between genders exist in the student
independent measures of experiment quality, though those differences which are present
appear not to be particularly prominent. It could feasibly be the case that multiple small yet
ultimately inconsequential differences exist, summating to produce what is a detectable effect
in this study when observing the data overall. Given the small proportion of cases which
showed difference even at p<0.05, it appears that presuming genders to behave differently as
a general rule would be a poor explanation of the data. Rather, what differences exist are likely
small and/or infrequent. In terms of more general, broad scale predisposition towards
laboratory experiences, rather than specific cases, there also appears to be no detectable
difference between genders.

4.2.5 Conclusion

Whilst this analysis was unable to pinpoint any specific, conclusive differences between male
and female students’ perception of the laboratory experience, it has been shown that some
small differences are likely to exist. Any differences present appear not to be due to a general
tendency of one gender to be less positive toward chemistry laboratory sessions than the
other. Instead, any differences present appear to occur in a manner specific to the experiment
conducted and survey item posed. The vast majority of cases appear not to be detectably
different between the two genders.
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4.3 Empirical estimation of a Linear Logistic Test Model Q-matrix

4.3.1 Outline

Previous research presented in this thesis has yielded the best general explanatory model for
the ASLE data, based on observed response patterns. Whilst this model reveals several notable
features of the way students interact with experiments to give rise to ASLE survey responses,
the model is not informative as to why some experiments are associated with more preferable
measures whilst others are not. As such, a deeper understanding of which features of
experiment design elicit positive responses remains to be determined.

The Linear Logistic Test Model (LLTM, see section 2.2.2) allows student independent measures
to be expressed as a linear combination of more basic components. That is, the model
“explains” the observed item parameters as the sum of several underlying factors. In the
context of the ASLE surveys, a LLTM formulation may explain the fourteen question-specific
quality measures associated with an experiment to be directly resultant of a small number of
elementary features of the laboratory experience. Most notably, it may express the measure
for survey item 14: the “overall learning experience”, as a direct function of other facets of the
laboratory experience.

Ex1 Ex2 Ex3
Ex1 Ex2 Ex3

qlz:.mlter-eSt o1 4z O3 10 M, M2 M3y interest 36
q2:clarity |61 a2 3 =10 1]X [772,1 M2,2 772,3] clarity
2 1

q3:overall |8, S35  O33

Equation 36 above is an example of a simple Linear Logistic Test Model. Three survey
questions (g1, g2 and g3) have been asked of three different experiments (Ex1, Ex2 and Ex3)
and student independent measures for each have been obtained (). The example above
explains the nine observed & measures as linear combinations of only six underlying n
measures. For example, the 5 measure for question 3 (“overall”) is always twice the 1 measure
associated with “interest” plus the 1 measure associated with “clarity”. As a result, only six
parameters (n) would need to be estimated to explain the observed data rather than the
original nine (d). In this way the model is made more parsimonious, whilst providing an
explanation for all 3 measures in terms of more fundamental factors.

The matrix of weighting coefficients in the above example is known as a “Q-matrix”. Typically,
the Q-matrix is stipulated a priori by the analyst, since the LLTM is often used when an
explanatory model is already established. Unfortunately, an underlying model of the ASLE
survey items similar to the above example is currently unknown. Attempts have been made to
evaluate the extent to which other survey items are relevant to the “overall learning
experience” rating associated with question 14, but these past attempts have been based on
integer scoring methodologies. Addressing this question from a Rasch modelling perspective
requires formulation of a Linear Logistic Test Model (or similar), either based on theory or
based on data. Given little theory exists concerning student perceptions and their
interrelationships, a priori stipulation of a Q-matrix for the ASLE surveys would require a
substantial degree of ‘trial and error’ before a successful matrix was found. As such, a method
of estimating a satisfactory Q-matrix directly from observed data is needed. Such a method is
described in this section. A method for deriving a satisfactory Q-matrix for the ASLE survey
data is presented, then applied to the existing data set of survey responses. Adequacy of the
Q-matrix estimated as an improved explanation of the observed data is also demonstrated.
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Features of the model obtained and their pedagogical implications are to be discussed
separately in a subsequent section of this thesis.

4.3.2 Specific methods

4.3.2.1 Estimation of a Q-matrix using factor analysis

Factor analysis (see section 2.4.6) expresses Z-standardisations (see section 2.4.3) of the
observed variables as a linear combination of F latent factors. In the case of the ASLE surveys,
an example of this would be the expression of the 14 different question-specific quality
measures for each experiment as estimated using a partial credit model (Jpcp), as being linear
combinations of underlying, basic experiment qualities (factors).

r— F

SPCM' - SPCM'

im i

Zim = . = li,fgf,m 37
PCM =

In Equation 37 above, subscripts i and m indicate specificity to the i" survey item and m®™"
experiment respectively. The mi term denotes the mean value of the set of all 5PCMi,m
values for the i" survey item, whilst Opcum; represents the standard deviation in the set of
6PCMl._m values for the it survey item. There are F many factors (indexed by f) underpinning
the responses to the 14 survey items for any given experiment evaluated. The factor loading of
the fi" factor onto the i" survey item is given by li g, With & ,,, acting as the measure of the fth
factor for the m™ experiment.

This equation may be rearranged to express the 8pcy; ,,, value in terms of the factor model

loadings and measures:
F

Spcmm = Opcm; Z lif&rm + Opcm; 38
F=1
Which in turn may be rewritten to incorporate the 8pcpy; and gpcy; values into the summation
term as follows:

opemilipy J<F
Spcmim = Z]F-LM Uijgm ; Uij= 1, j=F+i ,YM, &gpyiym = Opcm, 39
0, otherwise

This equation now resembles a linear logistic test model (LLTM). The !’ values are analogous to
the weighting values in the LLTM Q-matrix, whilst the € values are analogous to measures of
the basic underlying variables, of which the observed variables are a linear combination. Subtle
differences do, however, exist between this formulation and an estimated LLTM.

A key issue is that the 6PCMl.,m values above are estimated such that they sum to zero, but
there is no guarantee this will eventuate if the data are modelled using an LLTM structure.
Rather, it is the basic parameters of the LLTM, analogous to the ¢ values in Equation 39, which
are instead defined to sum to zero. This has the implication that any estimated LLTM
parameters analogous to the &, ., term will not necessarily be equivalent to the Ml.
values (as Equation 39 would otherwise appear to suggest). Instead, the estimated values
serve to define the location of one item’s set of experiment specific measures relative to those
of another item, after accounting for the different linear combinations of the underlying
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factors. Their sum would equate to the negative sum of the set of all other factor measures
estimated. For these reasons, a LLTM analogous to this formulation is therefore best expressed
using different variables, as shown in Equation 40.

kopcm;lip, J < F

SLLrmim = Yt amim o4y = 1, j=F+i M, Npviym =4 40
0, otherwise

The above model may more simply be stated in matrix form, to illustrate the fact it is directly
analogous to the LLTM example presented in the introductory material (Equation 36). In
Equation 41 below, Q is the matrix of g; ; values (which serve as the LLTM weighting factors)
and H is the matrix of 17 ,,, values. Note that values within matrix Q may be calculated from the
results of a factor analysis, whilst values within matrix H require estimation using Rasch
modelling software.

[6LLTMi,m] =QxH 41

In Equation 40 above, a scalar value k is also introduced in order to allow the matrix of
weighting factors to be scaled up or down such that all Q-matrix values (q;;) approximate
integers. This is necessary for running the LLTM within the Facets software, which is only
capable of using integer values for the q;; weightings, but unnecessary within other more
capable Rasch measurement programs. The value k may be selected arbitrarily such that all g
values satisfy this constraint approximately, and g values may then be rounded to the nearest
whole number to generate a matrix Q" used in the analysis in the Facets software. Larger
values of k would allow Q" to more closely approximate the matrix of unrounded values Q,
however this would also be more taxing on the Facets software.

Constructing the LLTM Q-matrix in this way, it can be seen that the 1, , values serve the same
purpose as the factor measures & ,,,, though are not equivalent in value to them. The value of
1jm is a measure of the j™ basic factor for the m™ experiment, and can be estimated based on
observed data. The value opcy; is the standard deviation in the 5PCMi,m measures for the it"
survey item, estimated from the previous, non-LLTM Rasch model. Working this value into the
q;,; parameters allows one survey item to have more variable measures than another survey
item without the need of working this item specific variation into the ; ,,, measures, which are
desired not to be survey item specific. For easier interpretation of the estimated measures
assigned to the basic underlying factors (7 ), it is also convenient to define the LLTM
measures to have the opposite orientation to the PCM measures thusly:

SLirMim = —Opcmm + 7 42
The 5LLTMi’m measures are redefined in this way such that a more positive measure implies

increased likelihood of more positive response. That is, the Rasch model is reformulated such
that:

Pnim = B’E nm + 6LLTMi,m 43

where @ is the latent trait measure input into Equation 1, which is modelled as giving rise to
the observed responses for the n™ student, i survey item and m™ experiment. The B’c term
here is the experiment specific student bias facet discussed in previous investigations (see
section 4.1.2.2, Table 17), shifted in value because of the differences between d,.1m and dpcm.

4.3 Qualitative interpretations and the ASLE survey data| Empirical estimation of a Linear Logistic Test 121
Model Q-matrix



The equating procedures previously detailed for both the student dependent and student
independent measures are also maintained: some students are defined to have the same pB’e
measure regardless of the experiment conducted, whilst the d..rm measures are defined to be
equivalent for the identical experiment (see section 4.1.4). The value y in Equation 42
translates measures by an amount specific to the measurement subset (indexed by s), owing
to differences between the partial credit model and LLTM formulations described previously.

4.3.2.2 Resolving disconnected subset issues

The ASLE survey data, as analysed thus far, contains a number of subset disconnects. This
implies that the absolute location of measures estimated from one subset relative to the
absolute location of measures in another is unknown. This is problematic, as the factor analysis
necessary for the procedure above requires all measures for each given ASLE survey question
to be correlated against all measures for each other ASLE survey question. This is impossible
unless the absolute location of each measure relative to the others associated with the same
survey question is known. As such, all subsets of the data must be equated prior to application
of this LLTM estimation technique.

One way to achieve this equating of subsets is to artificially force §pcp measures in one subset
to be equal to 8pcy Measures in another subset. As such, analysis was carried out to identify
cases where all §p¢p; measures associated with a specific experiment in subset one of the
current model were likely equivalent to all §p¢y; measures associated with another experiment
in subset six of the current model (see section 4.1.5). This was achieved though correlating the
fourteen estimated &py measures for each experiment with those for every other.

Under the assumption that two experiments have identical measures, two key expectations
exist. If the set of measures associated with each of the two experiments were estimated
separately, and a linear relationship were drawn between the two, then:

(1) A strong correlation would be observed between the two sets of measure estimates
(2) The slope of the line would be approximately one

Prediction (1) is trivially the case, given that the separate sets of measures, if truly equivalent,
would observably yield a set of estimates in the same order and the same relative difference
from one another. Prediction (2) is justified by the fact that if the two sets of measures were
equal, the magnitude of the differences between any given pair of measures within each set
should be the same as the differences observed in the analogous measures of the other set.
For example, if measures for items 1 and 2 differ by 0.5 logits in one experiment, the measures
for items 1 and 2 should also differ by 0.5 logits in the other experiment, if the two
experiments are equal. Experiments with sufficiently similar measures for equating purposes
were identified in this way and stipulated to have equal 6pc) measures prior to factor analysis
and subsequent LLTM formulation.

4.3.2.3 Features of the factor analysis

Following the forced equating of two experiments described above, the remaining
disconnected data subsets were removed from consideration. The & measures from the
remaining 23 connected experiments were then used for the purposes of conducting factor
analysis. Image factoring was chosen as the factor extraction method for two reasons. Firstly,
image factoring operates via linear regression techniques, which are appropriate for deriving
linear models as desired. Secondly, only image factoring was capable of yielding sensible
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results for larger numbers of underlying factors. Other factor extraction techniques resulted in
so called “Haywood cases” in multiple instances (data not reported), whereas image factoring
is not susceptible to this issue (see section 2.4.6). Varimax rotation was used to obtain more
easily interpretable factors, maintaining their orthogonal nature.

The method of deriving a Q-matrix described above relies on a factor model having been
performed on the dpcp measures. It is at this stage of the analysis that the number of basic
underlying factors explaining the observed responses is defined. A different number of factors
stipulated at the outset of the analysis would result in a different Q-matrix estimated, and
therefore a procedure is needed to select the most appropriate number of factors modelled.

A range of techniques are typically applied in factor analysis to select the appropriate number
of factors. In this study, the appropriate number of factors was selected based on the
adequacy of the LLTM model generated from that factor model. A new Q-matrix was
generated for each possible number of factors stipulated, then the most appropriate Q-matrix
was identified as the Q-matrix which yielded a LLTM with the minimum corrected Akaike
Information Criterion value (see section 2.5.4.2).

4.3.3 Results

4.3.3.1 Model estimation

A small number of disconnected experiments with very strong correlations between &
measures were observed (see supporting information: section 7.6.1). The strongest
correlation, between “Coloured complexes of iron” and “Equilibrium and LeChatelier’s
principle (revised: for foundations)” (r=0.975), may be somewhat expected, as these two
experiments are equivalent except for minor changes to the instruction manual. The
verification that their measures align is useful, however, in that it may imply the two forms of
the experiment can reasonably be assumed equivalent, thereby allowing equating between
the Chemistry IA/B and Foundations of Chemistry IA/B cohorts, at present divided into distinct
measurement subsets in the current best model. Considering these experiments equivalent
would not only be a more parsimonious model, but would also therefore allow direct
comparisons between experiments which could otherwise not be contrasted. However,
treating these two experiments as equivalent in the Rasch model resulted in a poorer
explanation of the observed data (AAICc = +3.78) due to the proportion of observed data
explained by the model lost in making this simplification (y? = 36.2969, df = 14, p = 0.0009).
Regardless, these two experiments were the most similar of any pair contrasted, and therefore
equated for the purposes of the following factor analysis. Data which remained disconnected
from the bulk of the data after this equating procedure were removed from consideration, and
a partial credit Rasch model (formulated in the same manner as the current best explanatory
model, section 4.1.3) was estimated using the remaining equated data set of 120 701
individual data points, gathered from 23 experiments.

The 322 dpcm measures obtained from the initial partial credit model were organised by
experiment (row) and survey item (column) in preparation to conduct the factor analyses. The
KMO measure of sampling adequacy and Bartlett’s test of sphericity were used to confirm the
data were adequate for factor analysis, revealing the sample size was marginally adequate at
best (KMO = 0.511) but contained a significant degree of correlation (y? = 195.186, d.f. = 91,

p < 0.001). As will be seen, the poor sample adequacy appears not to compromise the final
results obtained. Factor models were generated for 9, 10, 11, 12 and 13 factors underpinning
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the fourteen observed survey item measures for each experiment. Modelling lower numbers
of factors became unnecessary based on results (discussed in conjunction with Figure 40
below).

Following the computation of Q-matrices from factor models as described in the specific
methods section, one for every different number of latent factors modelled, the Facets
software was used to estimate a corresponding LLTM for each (see section 7.6.1 for the
structure of the specification files). The corrected Akaike Information Criterion (see section
2.5.4.2) was used to identify which of the different LLTM formulations generated provided the
best explanation of the observed data.
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Figure 40: Efficacy of Linear Logistic Test Models formulated using factor analysis results

Modelling a greater number of factors underpinning ASLE survey responses is less parsimonious (lower
right) but explains a greater proportion of observed data variance (upper right). An optimum balance
between these two competing considerations is found when 12 underlying factors are modelled,
corresponding to a minimum on the “surface” of AlCc values (left). This model explains the observed data
better than all other models, including the previous best explanatory model of the ASLE data discussed in
section 4.1.3. As can be seen, modelling fewer than 9 factors would likely produce progressively less
desirable models, extrapolating from the data presented.

Figure 40 (left) displays the AlCc values corresponding to different numbers of latent factors
modelled as explaining the survey item specific measures for each experiment. The plots
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displayed to the right of the figure break down these AlCc values into their deviation from
observed data and lack of parsimony components. Shown in red are the values obtained for
the unsimplified (partial credit) model: the model up until this point deemed to be the best
explanation of the observed data (see section 4.1.3). The best explanatory model of the data
was observed to be a LLTM with 12 latent factors explaining response to the 14 ASLE survey
items for each experiment. Following the identification of the 12-factor model as optimal, the
Q-matrix for the 12 factor model was used to estimate a LLTM for the full data set (128,881
data points) without artificially equating “Coloured complexes of iron” and “Equilibrium and Le
Chatelier’s principle (revised: for foundations)”, as these were only equated previously to
enable the factor analysis to be performed. This LLTM proved to be the best proposed
explanatory model of the full data set thus far (log-likelihood y>=218807.7, 9213 free
parameters, 48.62% of variance explained, AAICc = -55.5 compared to the previous best
model).

The parsimony of the LLTM appears not to have resulted in a loss of explained data variance.
The raw estimated &..tm values approximate non-LLTM estimates for the same data closely, as
seen in Figure 41. As can be seen, there is a very high level of agreement between the LLTM
measures and the analogous non-LLTM measures. The more parsimonious LLTM accounts for
99.56% of the variance in the non-LLTM measures. The “displacement” value in Figure 41 is a
simple error term reflecting the difference between the LLTM model prediction and the

“optimal” value.

1
(6,1

1
IS

LLTM measure ( 8,1y / Logits )

y = 0.9953x - 0.0036
R2=0.9956 -4 A

-5

non-LLTM measure ( (8,1, + displacement)/Logits)

Figure 41: Accuracy of Linear Logistic Test Model approximatons

The LLTM’s linear combinations of the estimated factor measures estimated do not necessarily sum to
values which would explain the data optimally. The difference between the LLTM estimate (S..tv) and
this optimal value is expressed as the “displacement”. Thus, adding the displacement value back to the
LLTM model’s estimates yields the optimal measure which would otherwise be reported in a non-LLTM
model. The strong correlation between ditm and dutm + displacement reflects the fact that very little
variance in the observed measure estimates is lost in the LLTM approximation.

Performing a likelihood ratio test (see section 2.5.4.1) reveals that some degree of explained
variance is lost when this LLTM is applied to the full data set (%*(73) = 113.98, p = 0.002), but
when applying this LLTM to the somewhat restricted data set used to generate the factor

4.3 Qualitative interpretations and the ASLE survey data| Empirical estimation of a Linear Logistic Test 125
Model Q-matrix



analysis results, no significant loss of explained data is observed (x?(55) = 27.01, p = 0.999).
The LLTM obtained appears to be a definitively superior model to the partial credit model,
when applied to the exact data set used for estimation. The model also appears somewhat
generalizable beyond the estimation data set, given the AlCc value still affirms it as the
superior model in the wider data set. An even better LLTM may therefore have been possible
for the broader data set, were it better connected and able to be used for Q-matrix estimation.

4.3.3.2 Data connectivity and errors in typical scored data

A useful feature of the LLTM applied to the full data set is that the data now appear fully
connected, where disconnects otherwise existed. Experiments which were previously in
isolated subsets of the data and unable to be contrasted now appear in the same subset of
measurement, because the d.mv values are necessarily composed of the same underlying
factor dimensions. As can be seen in Figure 42, each previously isolated subset within the
original set of 8pcm Mmeasures appears offset from the other subsets, rendering comparison
between different subsets of data invalid. Connectivity is achieved with the LLTM, however,
and the artificial offsets in measure values reported due to subset disconnects (ys, see
Equation 42) are now known.
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Figure 42: Previous measure offsets in disconnected subsets of data revealed by the LLTM

Linear relationships observed are the linear relationship between Siitv and dpem described previously by
Equation 42, presented in the introductory material for this section. The original dpcm estimates appear in
seven disconnected subsets of the full data set, each visualised as a separate trendline. Vertical
translation of the different trendlines results from a lack of ability to assign drcm measure values relative
to those in other subsets previously. The y =mx + ¢ equations shown directly emulate Equation 42,
where the slope value m is always approximately -1 and the intercept value ¢ is the subset specific offset
vs. The ditm term featuring in Equation 42 is replaced here by oitm + displacement, where the
displacement is simply an “error” term resulting from imperfect approximation of the LLTM summations to
their optimal (non-LLTM) values. These error corrected values were used here to better estimate the
subset offset parameters. Lack of perfect correlation observed within each subset likely results from
subtly different Rasch model optimisation when the Facets software specification file is structured to
accommodate an underlying LLTM as opposed to a simple Partial credit Model (PCM).
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The comparability of measures afforded through this connectivity allows for broad scale
statistics to be drawn, quantifying the average error introduced in typical ASELL integer score
values. Mean scores calculated from observed responses can be contrasted with the “fair”
scores which would be expected in absence of any sampling errors (computed from LLTM
predicted category frequencies). As can be seen in Figure 43, the bulk of the data closely fit to
a singular linear relationship, with a high correlation. However, data from the original (data
logger) variant of “Vapour Pressure” deviate from this trend, exhibiting far lower calculated
scores than would be expected without sampling bias.
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Figure 43: Effects of student biases on calculated ASELL mean scores

Scores here refer to values calculated using the typical technique of assigning successive integer values
to the successive rating scale categories, associated with the final 29 equated experiments of the full
data set (see Table S 56 in section 7.4.2). Statistics shown associated with the linear relationship drawn
are relevant to the bulk of the data only (excluding “Vapour Pressure”). Mean scores for the “Vapour
pressure” experiment are substantially offset, indicating unfair evaluation compared to the other
experiments.

It is known that this offset for the “Vapour pressure” experiment values is not due to data
connectivity issues. Because all basic parameters in the LLTM were included in a single facet
(see section 7.6.2 in the supporting information), n parameters for each LLTM factor
associated with “Vapour pressure” have known position relative to the item locations u, which
in turn have known location relative to the n measures for all other experiments. This
observation therefore suggests that students evaluating the “Vapour pressure” experiment
had a broad scale negative bias against the experiment as a whole, to a degree which never
occurred for other experiments evaluated. Given this experiment was received poorly, it
therefore appears that this variant of the “Vapour pressure” experiment was received so
poorly that students began to judge it unfairly. The trendlines shown in Figure 43 illustrate that
for the data logger variation of “Vapour Pressure”, students provided responses approximately
0.7 score units lower than would be fair, for all items of the survey. The fact that such an effect
can exist is important both for the interpretation of survey data and for the design of
laboratory activities.
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Discounting “unfair” evaluations like this, the rest of the data can be used to quantify expected
sampling errors present in calculated score values. Based on the central limit theorem, it may
seem intuitive that increasing the number of observations used to calculate a mean score
would reduce the error observed. However, this does not appear to be the case.
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Figure 44: Sample size independence of ASELL mean score errors

A “baseline” level of systematic error remains for samples of any size, due to between sample variance.
Average disposition towards positive response for entire sample groups changes from occasion to
occasion and may differ between different groups, and this is not eliminated by simply increasing the
number of observed cases sampled from a single group, at a singular time. The “absolute error” is the
magnitude of difference between the observed mean score and the fair mean score, calculated from
LLTM measures.

As shown in Figure 44, the size of the errors in the bulk data set appears largely independent
of the sample size. This can be explained using an observation made previously in sections
4.1.4 and 4.1.6.2: errors in ASELL score arise not only from variance in student biases within
individual sample groups, but also variance in the average bias between different sample
groups. Here the term “sample group” is used to refer to a subset of the total observed data
set, defined by the specific set of circumstances in which surveys were gathered. For example,
all surveys gathered in the morning may form one sample group, whilst all surveys gathered in
the afternoon may form another. Alternately, surveys gathered from students enrolled in
Foundations of Chemistry may form one group, whilst students enrolled in Chemistry IA/B may
form another. Different student circumstances and contexts (for example time of day, course
enrolled) influence broad scale student disposition, as was noted previously as an explanation
for the fact that student specific measures (3e) change from occasion to occasion (see section
4.1). This affects the location of mean score value large sample sizes converge to, meaning
different sample groups converge to different population means. It is differences between
these population level means particular to the different groups which remain present,
independent of the sample sizes used for each group.

A very narrow diversity of sample groups was combined in these analyses, therefore meaning
that the between sample variance has been reduced very little. Sample sizes used are very
large, however, meaning the within sample variance has little to no effect in most cases. As
such, variance in ASELL mean score error appears constant, due almost entirely to the inherent
differences between the small variety of sample groups combined in these data. Reducing the
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impact of these constant errors would not only require large numbers of observations from
each group, but also a diverse range of different sample groups.

Drawing a histogram of the errors observed (which reflect between sample variance), it can be
seen that the distribution of errors for the bulk of the data appears roughly normal, with a
standard deviation of approximately 0.1 (see Figure 45). It is this value which may be used as a
guantification of the average size of any “baseline” level of error in these ASELL mean scores.
Observations made here suggest that this constant margin of inherent error should be
presumed to exist in ASELL mean score values, and should be included in any statistical
analyses of ASELL mean score data.
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Figure 45: Distribution of errors in ASELL mean score

The unfairly judged “Vapour pressure” experiment appears as an outlier to the rest of the data gathered.
The bulk of the calculated error margins in mean ASELL scores follow an approximately normal
distribution with =~ 0.1. Because these errors are due almost entirely to between sample variance, this
error margin should be considered as an expected level of variation in ASELL survey data, regardless of
sample size.

4.3.3.3 Major identifiable factors

The now comparable values of du.rm are merely combinations of the more fundamental
underlying factors, and it is measures associated with these factors which become the focus of
comparative studies when using the LLTM. The relative contribution of each of these
estimated factors to the variance in ASLE survey responses can be roughly gauged by referring
to the results of the factor analysis used to generate the final LLTM, shown in Table 21. As can
be seen the vast majority of variance in dpcm Values is explained by the first seven extracted
factors only, whereas factors 8 through 12 all explain less than 1% of the variance in these
measures (the other factors all explaining at least greater than 6% each). Were the number of
factors to be retained decided using a scree plot, only these first seven factors would be
retained judging by these values. The often used, but problematic factor extraction technique
of retaining only those factors with eigenvalues of 1 or above would advise retaining only the
first five factors. Here, in contrast, 12 factors have been retained based on an optimal balance
between parsimony and proportion of observed data explained by the model (Figure 40
previously). Factors beyond factor 7 are thus considered necessary for a full explanation of the
observed data, but show little substantial contribution in comparison to the other factors of
the model. Factor numbers have been assigned based on relative proportion of variance in the
initial dpcm Measures explained.
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Table 21: Variance in student independent measures explained by LLTM factors

S Extraction Sums of Squared Rotation Sums of Squared
Initial Eigenvalues . ;
Loadings Loadings
Factor
Total % of Cumulative Total % of Cumulative Total % of Cumulative
Variance % Variance % Variance %

1 3.583  25.590 25.590 3.065 21.895 21.895 2540 18.144 18.144
2 3.133 22.377 47.967 2.811 20.077 41.972 2.313 16.519 34.663
3 2.020 14.431 62.399 1726 12.331 54.303 1.249 8.921 43.584
4 1.599 11.423 73.821 1.195 8.532 62.836 1.172 8.373 51.957
5 1.213 8.663 82.485 917 6.550 69.385 1.158 8.269 60.225
6 784 5.600 88.084 .402 2.869 72.254 .927 6.618 66.844
7 .618 4.411 92.496 221 1.578 73.832 .869 6.205 73.049
8 .356 2.543 95.039 .056 .403 74.235 119 .848 73.897
9 217 1.550 96.589 .004 .026 74.261 .098 .698 74.595
10 .155 1.110 97.699 .019 132 74.393 .071 .510 75.105
11 124 .884 98.583 .036 .260 74.653 .036 .260 75.364
12 .096 .687 99.270 .104 741 75.394 .004 .029 75.394
13 .066 471 99.740

14 .036 .260 100.000

“Initial eigenvalues” reflect the relative variance explained by each factor as estimated by
preliminary principal component analysis, prior to factor extraction. Totals sum to the number of
initial variables (14). “Extraction sums of squared loadings” refer only to the shared variance
among the 12 factors retained following extraction by image factoring. “Rotation sums of squared
loadings” are similar values computed following factor rotation. It can be seen that a sharp drop in
the % variance explained occurs for factors 8 to 12 as compared with the seven major factors (1-
7), particularly in the final rotated solution.

It should be noted that proportions of variance explained in Table 21 above were not
calculated using all 128,881 individual data points following LLTM estimation, but instead refer
to calculations performed only on the limited number of artificially equated dpcm values used
to initially estimate the factor loading matrix. As such, these values serve as rough indicators
rather than reflections of the properties of the final LLTM estimated. As was seen in Figure 41
previously, the final estimated LLTM was able to explain 99.56% of variance in non-LLTM
values, rather than the 75.394% explained in the factor analysis results. The discrepancy is
likely due to the re-estimation of non-LLTM measures (S.mm + displacement, analogous to dpcm)
during the Facets software Rasch model optimisation process and the increase in number of
data points included.

The loadings of each factor onto each of the ASLE survey items further support the conclusion
that first seven factors are responsible for the majority of variance in observed responses,
whilst the remaining five factors contribute little. Table 22 displays the factor loadings
associated with each factor, reflecting the correlation between factor measures and dpcm
measures associated with the original fourteen survey items. It is these loading values which
were utilised to generate the final Q matrix for the 12 factor LLTM, via Equation 40.
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Table 22: Annotated factor loading matrix (L = [l,-_f]) for the 12 factor model

Factor number ( f)

i Survey item 3 4 5 6 7 8 9 10 11 12

1 This experiment helped me
to develop my data
interpretation skills

0.08 -0.10  0.19 0.02 0.01 0.01 -0.01  -0.01 0.00

2 This experiment helped me
to develop my laboratory
skills

-0.07 0.46 0.33 -0.05 0.07  -0.01 -0.03  0.16 0.01 0.02

3 | found this to be an

. . . 0.33 0.07 0.07 -0.18 0.24 0.05 0.15 0.04 -0.07 0.01
interesting experiment

4 It was clear to me how this
laboratory exercise would
be assessed

0.13 0.01 -0.03 0.10 0.23 -005 018 -0.05  0.02 0.01

5 It was clear to me what |
was expected to learn from 0.69 050 0.07 014 009 018 0.19 0.08 014 -006 0.03 -0.03
completing this experiment

6 Completing this experiment
has increased my 0.06 0.06 0.03 -0.12 -0.08 0.05 -0.05 0.01 0.00 0.00 0.00
understanding of chemistry

7 Sufficient background
information, of an
appropriate standard, is
provided in the introduction

-0.27 = 0.70 -0.09 0.30 0.16 0.14 0.12 -010 -001 0.15 -0.03 -0.03

8 The demonstrators offered
effective supervision and 0.12 010 -004 023 -002 069 0.13 002 000 000 -001 0.00
guidance

9 The experimental procedure
was clearly explained in the 0.07 -0.06 -0.14 021 -002 -0.04 006 -015 -0.02 0.00 0.01
lab manual or notes

10 Ican see the relevance of
this experiment to my 0.10 0.27 0.15 -0.13 -0.01 -0.17 0.02 0.00 0.11 -0.05 0.04
chemistry studies

11 Working in a team to
complete this experiment 0.07 -0.18 0.56 0.09 -0.48 0.10 -0.21 0.29 -0.01 -0.01 -0.01 0.00
was beneficial

12 The experiment provided
me with the opportunity to

o -0.16 0.18 -0.19 -0.06 -0.03 0.06 0.02 0.00 0.00 -0.01 0.00
take responsibility for my
own learning
13 | found the time available to
complete this experiment 0.50 0.04 -0.07 -0.26 -0.25 0.46 0.40 -0.08 0.01 -0.02 0.16 0.00

was

14 Overall, as a learning
experience, | would rate this | -027 029 001 009 020 031  0.67 -001 001 001 -002 0.00
experiment as

Factor loading values in the table above reflect correlations between factor measures and survey item
measures. Negative correlations are shown in blue, whilst positive correlations are shown in red, with
darker colours reflecting correlations of greater magnitude. These values therefore reflect the “character”
of each factor, described in terms of the original survey items: what each factor resembles.

These loading values may be used to identify what features of the laboratory experience each
factor generally appears to reflect. That is, the loading values reflect the identity or “character”
of each factor. A summary of the strongest observed loadings for each of the first seven
factors and hence the assigned character of each is provided in Table 23. Factors 8 to 12 show
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minimal loadings only for any given survey item, and their character is therefore unknown.
This is not problematic, however, as these factors contribute very little to variance in observed
data as discussed.

Table 23: Character of major factors contributing to ASLE survey responses

Strong negative loadings Strong positive loadings

Factor . . . "
Characterise more negative values Characterise more positive values

Assigned character

Relevance to chemistry studies

i Theory focus
1 :':::;Zttory skills development Clear expected learning i );/fl b
Time availability (vs practical/ lab focus)
Clear assessment criteria
Clear procedure in manual .
- . . Instruction
2 Sufficient background information structions
Clear expected learning outcomes
3 Increased understanding of chemistry Collaborative
Teamwork beneficial understanding
Data interpretation skills . .
4 P Data interpretation
development
5 Teamwork beneficial Responsibility for own learning Independent learning
Demonstrator supervision and
6 g . Demonstrators
guidance
7 Positive overall learning experience Unexplained overall

A number of factors appear to load strongly on singular survey items and have therefore been
assigned a character reflective of the content of those items (factors 4, 6 and 7 loading on
survey items 2, 8 and 14 respectively). This does not necessarily imply that it is only these
factors which contribute to each of these respective survey items, merely that these factors
are primarily characterised by singular aspects of the laboratory experience and not others
targeted by the survey. Factor 7, for example, is not the only factor to contribute to the overall
learning experience: it is simply a factor that has no other clear defining characteristic, and
appears unexplained by characteristics targeted by other survey items.

Other factors appear to have more complex character. The loadings of factor 1 appear to
suggest a dimension whereby a stimulation of interest and development of laboratory skills
comes at the cost of a perceived lack of relevance and clarity of learning objectives, as well as
a lack of time to complete the experiment. Conversely, for learning objectives to be clear and
relevant with ample time to address them, the task evidently typically lacks a development of
laboratory skills and is less interesting. These characteristics appear to resemble the
differences between hands-on “skills-based” experiments and experiments intended to
reinforce lecture content rather than technical skills. Factor 1 has therefore been labelled as
the spectrum from lecture theory focus to practical/ laboratory skills focus to reflect this. The
quality of the instructional material provided appears to be a singular factor, with factor 2
loading on four separate survey items all concerned with the information provided to
students. The character of factor 2 has therefore been assigned accordingly as the
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“instructional material” factor. Factor 3 primarily loads on the perceived increase in
understanding, but also has a prominent loading on the perceived benefit of teamwork. Factor
3 has been assigned as “collaborative understanding” to reflect this. This factor does not
negatively load on responsibility for own learning, however, meaning it may therefore be more
accurately characterised primarily by the increase in understanding. Another factor, factor 5,
does appear to represent the contrast between independence and collaboration, loading
positively on responsibility for own learning and negatively on the benefit of teamwork. Factor
5 has therefore been assigned as relating to “independent learning”.

4.3.3.4 Identity of remaining low contribution factors

Despite the fact that factors 8 — 12 have little contribution to the variance in observed
responses overall, their identity may still be useful information if it can be determined.
However, their very low correlation with (and therefore resemblance to) aspects of the
laboratory experience targeted by the ASLE survey makes characterisation of these factors
problematic.

A clue as to the role of one of these factors, factor 8, can be gained from examining the effects
of excluding factor 8 from the model. Factor 8 has no clearly discernible identity based on its
factor loadings, but does appear to have some role in determining response to item 11 of the
survey: “working in a team to complete this experiment was beneficial”. The final LLTM
computes the measure for item 11 as a sum of various contributions from the first 8 factors,
with no contribution from factors 9 and onwards (see Table 24 later discussed). Computing
the measures for this item by only considering the seven primary identified factors discussed
previously therefore gives insight into the role of factor 8. Such a comparison is displayed in
Figure 46.
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Figure 46: Role of factor 8 in determining the "benefit of teamwork" measure

The left of the figure shows student independent measures for item 11 of the ASLE survey, as computed
using all factors involved. The right of the figure shows measures computed for the same item, this time
only using the first seven identifiable factors in the model. Factors 9 onwards had no contribution in either
case, meaning any change in the distributions observed is solely due to the exclusion of factor 8.

As can be seen, student independent measures for item 11 appear in two clusters when all
factors of the model are included. When observing which experiments’ measures appear in
which cluster, it is quickly discovered that all values in the upper cluster (6 > -1) are, without
exception, the experiments conducted in pairs. Conversely, again without exception, all values
in the lower cluster (6 < -1) are from experiments conducted individually. This demonstrates
quite clearly that item 11 of the ASLE survey yields an effectively binary response: when asked
if teamwork was beneficial, students respond positively in all cases they worked in pairs,
whereas they respond negatively if they worked individually.

Curiously, however, this binary response is entirely absent unless factor 8 is included in the
calculation. Computing measures for item 11 using only the first 7 factors, a single cluster of
measurements is observed. Reasons for this are speculative, but the conclusion must be drawn
that factor 8 “corrects” the measure for item 11 back to a binary response once the effects of
the first 7 factors have been accounted for. As has been seen in the identity of the first seven
factors, teamwork or lack thereof is an inherent defining feature of at least two factors
underpinning ASLE survey responses (factors 3 and 5), and therefore a full range of (non-
binary) perceptions regarding the role of teamwork is accounted for by the students. However,
it appears that despite a tacit acknowledgement of this full spectrum when answering other
items of the ASLE survey, students are still compelled to respond to item 11: “working in a
team to complete this experiment was beneficial”, as if it simply asked “did you work in a
team?” The correcting of the full spectrum of possible perceived levels of teamwork back to a
binary response is the observed role of factor 8, judging by this analysis.

|”
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Behaviour such as this could never be expected to correlate strongly to any item asked on the
ASLE survey, and therefore never manifest as a substantial factor loading value which could be
used to “characterise” the factor’s identity. Factors 9 through to 12 could have similarly
obscure roles in survey response, however this remains unknown. It is effects such as this,
which could never have manifested in the results of any simple factor analysis, which justify
the inclusion of factors beyond those which are clearly identifiable (the first seven here). The
identity of factors contributing to ASLE survey responses which cannot resemble any question
asked on any survey, such as factor 8, could be a problem unable to be rectified easily.

4.3.3.5 Factor impacts

The true advantage of the LLTM generated is not the identification of the key factors involved
in ASLE survey response, as this could largely be achieved from a simple factor analysis alone.
Rather, the greater advantage is the quantification of each of these factors’ contribution to
each individual ASLE survey item. The final Q-matrix estimated from this factor loading matrix
is shown in Table 24. These values are the “weightings” of each factor’s contribution to the
original ASLE survey items’ measures. Of note, the pattern in weightings does not necessarily
match the patterns observed in the factor loadings. This is because of different observed
variances in item measures estimated in the Partial Credit Model for each question. These
weightings reflect the “impact” of each factor, rather than reflecting the “character” of each
factor like the factor loadings. Negative impacts are coloured blue, whilst positive impacts are
coloured red, with darker colours indicating higher magnitude of impact. Of note, factor 12 has
zero impact on any survey item, and can therefore be discounted from consideration entirely.
It’s inclusion in the model seems to be an advantage only in that it allows more accurate
estimation of the other 11 factor weightings. It should be noted that Rasch measurement
software other than Facets could accommodate non-integer values in the Q-matrix, giving
factor 12 some small degree of impact.

A wealth of information regarding how to improve all fourteen specific aspects of the
laboratory learning experience targeted by the ASLE surveys is contained within the Q-matrix.
The Rasch measure reflecting “objective” quality of the experiment with respect to any given
survey item can be known by making use of the Q-matrix coefficients and measures associated
with each of the twelve basic factors identified above, for the experiment concerned (Equation
40). Impacts of altering any of these twelve factors of the laboratory learning experience can
also be known and quantified using the Q-matrix coefficients. The full breadth of conclusions
regarding best practice in structuring laboratory learning exercises gained from this
investigation is therefore highly extensive and to be discussed separately (see section 4.4).
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Table 24: Annotated weighting matrix (Q = [q;;]) for the 12 factor model

Factor number (j=f)

i Survey item 1 2 3 4 5 6 7 8 9 10 11 12
This experiment helped me to

1 develop my data interpretation 0 0 1 7 -1 2 0 0 0 0 0 0
skills

) This experiment helped rr.1e to 1 1 10 7 1 ) 0 1 3 0 0
develop my laboratory skills
| found this to be an interesting

) -10 5 5 1 1 =3 3 1 2 1 =l 0
experiment

It was clear to me how this
4 laboratory exercise would be 1 6 1 0 0 1 2 0 1 0 0 0
assessed

It was clear to me what | was
5 expected to learn from 5 3 1 1 1 1 1 1 1 0 0 0
completing this experiment

Completing this experiment has
6 increased my understanding of 1 1 7 0 -1 -1 0 0 0 0 0 0
chemistry

Sufficient background
information, of an appropriate
standard, is provided in the
introduction

The demonstrators offered
8 effective supervision and 1 1 0 1 0 3 1 0 0 0 0 0
guidance

The experimental procedure was
9 clearly explained in the lab 1 8 -1 -1 2 0 0 1 -2 0 0 0
manual or notes

| can see the relevance of this

10 experiment to my chemistry 7 1 2 1 -1 0 -1 0 0 1 0 0
studies

1 W.orkmg |r.1 ateam to complgte ) a 2 11 2 5 7 0 0 0 0
this experiment was beneficial
The experiment provided me with

12 the opportunity to take -1 1 -1 0 5 0 0 0 0 0 0 0

responsibility for my own learning
13 | found the t.|me ava.llable to 1 2 8 7 13 12 2 0 1 5 0
complete this experiment was

Overall, as a learning experience,

14
| would rate this experiment as

-2 2 0 1 1 2 5 0 0 0 0 0

Note that the matrix shown above is not the full Q-matrix. The full matrix has matrix elements for columns
j=13 to j=26 as described in Equation 40 and can be seen in full in the supporting information (section
7.6.3). The matrix elements shown are those relevant to the twelve basic experiment specific factors
(indexed by f) underpinning survey question responses.

4.3.4 Discussion

4.3.4.1 Successful model estimation

The fact that the 12-factor LLTM model yields an AlCc value lower than the initial partial credit
model definitively establishes that this technique of Q-matrix estimation achieves the desired
outcome. For the data set used to estimate the matrix, the explanatory model of the data has
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been successfully reduced to a smaller number of factors for each experiment (7 major factors,
12 factors total) than the initial fourteen, with no evident loss in the proportion of observed
data explained. Generalising the model to a slightly wider data set, the estimated LLTM still
appears superior to the initial partial credit model.

The outstanding success of this technique was achieved despite two key sources of error in the
Q-matrix estimation:

1) Artificial equating of two experiments to resolve data connectivity issues
2) Rounding errors in the conversion of factor loadings to Q-matrix weightings

Utilising Rasch measurement software capable of using non-integer values for Q-matrix
weights and estimating the Q-matrix from a fully connected data set would resolve these
sources of error, generating a model which fits the data even more closely than the one
presented here. A model such as this would be capable of modelling even more than the
observed 99.56% of variance in dpcm Values obtained here. Further, this study’s success was
achieved with a near inadequate number of data points for the factor analysis. Evidently this
method is capable of estimating a superior model for a given data set despite this. The use of
data points obtained from a small number of experiments limits only the generalizability of the
model obtained, not the capability of estimating a superior model for the given data set.

The fact that the final model estimated here was generated from the measures associated
with only 23 experiments is a substantial limit on the generalizability of any conclusions drawn
from the model features. However, the LLTM estimated still represents a significant
improvement in understanding: the previous partial credit model contained no inherent
information about why each experiment is associated with the set of quality measures
observed (8). The final LLTM, however, explicitly reveals patterns in the quality measures
observed, explaining them as combinations of more basic factors which are identifiable
through their factor loading values on the initial survey items. The LLTM therefore represents
an advance in knowledge.

4.3.4.2 Corrected standard error in a fair mean ASELL score

Due to the data connectivity afforded by the LLTM, observed ASELL mean score results could
be easily contrasted with fair predictions of the LLTM, which eliminate errors introduced
through broad scale biases in individual samples.

Data presented here can be used to derive a corrected, more accurate formulation for the
standard error in any given ASELL score. The fair mean ASELL score (Asir) can be considered as
the observed mean score (Aopserved) Minus the error introduced due to broad scale bias in the
sampled group (Ebias):

Afair = Aobserved — Ebias 44

Through the variance sum law, this therefore implies that the expected variance in a fair ASELL
mean score can be described by the following, presuming the observed mean score and the
bias present are independent:

var(Afair) = var(Aopservea) + var (Epiqs) 45
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Given that the standard error is simply the square root of the sample variance, Equation 45 is
effectively an equation for the most appropriate error margin in any sampled ASELL score. The
var(A,pservea) t€rm is the variance in the observed mean score calculated: the within sample
variance. The var(E};4s) term is the variance introduced through differences between the
biases of separate samples: the between sample variance. These two terms sum to give the
total variance in a fair ASELL mean score var(Afair). Using the central limit theorem to obtain
var(Aypservea) anNd Figure 45 to obtain var(Ey;,,), the standard error in a fair ASELL mean score
may be given as follows:

2
94

SE(Apair) = +0.01 46

n

Where SE is the standard error, g7 is the observed variance in scored ASELL survey responses
and n is the sample size. This corrected standard error value could be used in T-tests
conducted on ASELL mean score data, which are far more accessible to most ASELL survey
researchers. It can also be inferred that an error margin of approximately 0.1 score units is to
be expected for any ASELL score obtained, regardless of sample size. This can be used to
suggest a simple rule of thumb that no significant difference in two ASELL mean scores can be
claimed unless those two means differ by at least 0.1 score units.

This specific minimum error value of 0.1 score units may well be particular to this data set: the
value is a reflection of the degree of difference between the variety of sampling occasions and
contexts combined in these analyses. Notably, the two student cohorts: Foundations of
Chemistry IA/B and Chemistry IA/B, are expected to have different perspectives and biases
towards the experiments, due to differences in their backgrounds. Similarly, students
conducting experiments at different times of day or at different times during the week may
have consistent differences in their average predispositions. It would be unexpected, however,
to observe differences in average bias greater than these in most cases: the two separate
cohorts particularly are quite dissimilar, and most cases in which data sets are compared are
liable to use cohorts more similar than these in the comparison by design. If cohorts of a
greater degree of dissimilarity are used, however, the value of var(E;,;) used above (0.01)
may need to be increased.

The corrected standard error formula presented above may prove useful for more rigorous
statistical testing, but use of ASELL surveys in practice does not often need to be this precise.
Surveys are often used for exploratory purposes, and rough guidelines for significant
differences are usually sufficient. By considering the maximum possible value of g2 in the
formula above, a guideline for the expected maximum standard error value for an ASELL mean
score gathered from n samples can be estimated. Assuming the distribution of scored
responses gathered has a singular peak, the maximum possible variance in the observed
scored responses (g7) arises from a distribution whereby each response category has the same
proportion of responses: a uniform distribution. Calculating the population variance in this
case (as per Equation 10) yields a value of 2. This value can be substituted for ¢ in either the
corrected (Equation 46) or uncorrected (Equation 11) formula of the standard error value to
yield an expected maximum error margin (SEmax) in the mean ASELL score. As can be seen in
Figure 47, the correction for between group variance has little practical significance. Standard
error values at sufficient sample sizes appear not to exceed approximately 0.25 score units,
regardless of the inclusion of any correction.
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Figure 47: Maximum expected standard error values in calculated ASELL mean scores

The corrected standard error value differs little from the uncorrected value. At appreciable sample sizes
(n > 30), the standard error in a mean ASELL score is not expected to exceed approximately 0.25 score
units. This can be used as a rough guideline for exploratory comparisons.

4.3.4.3 Student independence of results

Recently, Barrie et al.5! also conducted a factor analysis on ASLE survey response data,
discussing the role of various factors in generating a positive overall learning experience.
Factors reported in this previous study differ substantially from those reported in the new
analysis presented here, and this is to be expected for a number of reasons. The differences
may partly be due to the fact this study exclusively made use of data from a single year level at
a single university (as opposed to the broader scope of the Barrie et al. study), but the
differences are far more prominently due to different estimation methodology.

Because Barrie et al. base their factor analysis on scored individual responses, they conflate
student dependent and student independent effects (see section 3.2). As the majority of
variance in individual ASLE survey data points is due to student dependent effects (as
identified in section 3.3), correlations underpinning the factor analysis in the Barrie et al. paper
will reflect correlations between student dependent factors (biases) far more than they reflect
correlations between student independent factors (experiment quality) (see section 4.1.6.3).
In contrast, the study presented here exclusively analyses student independent measures,
meaning the factors estimated reflect properties of the experiments evaluated, not the
students doing the evaluation.

As an example, in the Barrie et al. study, scored individual responses to survey item 14 (overall
learning experience) correlate with scored responses to survey item 7 (concerning background
material provided). In this study, Rasch measures for these same items also correlate.
However, the conclusions which can be drawn are very different. From the score based study,
an appropriate conclusion would be:

Students who rate their overall experience highly also commonly rate the background
information to be sufficient.

Whereas from the Rasch based study, an appropriate conclusion would be:
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Experiments for which the overall learning experience measure is high also commonly
have a high background information sufficiency measure.

The former conclusion, most appropriate for the Barrie et al. study, could feasibly be the case

even if background information quality were irrelevant to genuine overall experience: it could

be that students in a “good mood” typically answer both questions more positively regardless.
The latter conclusion, able to be drawn from this LLTM formulation, has controlled for student
dependent factors such as this.

What becomes apparent is that the conclusion able to be drawn from the score based study is
not necessarily informative of good experiment design: the correlation could appear simply
because students who have a high positive bias to one question also happen to have a high
positive bias to other questions, regardless of the experiment conducted at the time. In fact,
based on results presented in section 4.1, this is precisely the way student responses operate.
The use of the Barrie et al. study in informing best practice for design of experiments is, for
this reason, highly questionable. In contrast, the Rasch technique used here exclusively makes
use of measures that have been shown (see section 4.1) to reflect ‘objective’ measures of
quality for the experiments themselves, independent of the biases of students responding.

Factors extracted in the Barrie et al. paper are therefore expected to reflect factors
underpinning student disposition towards positive response, not factors underpinning
experiment quality. Had the factor analysis been conducted on mean scores — which “average
out” student bias effects to a degree — this would be less of an issue. However, doing so would
have reduced the study to having only 784 data points for the factor analysis as opposed to the
reported 3153. Additionally, even in the case of using mean scores, only 56 responses per
experiment on average may not have been sufficient to overcome all student bias variations
within each group. Even if it were sufficient to do so, this would still not remedy the remaining
between-group variation in student biases (see section 4.1.4).

The use of a larger number of data points in the Barrie et al. study highlights one substantial
difficulty with the methodology used here: data from a large number of experiments are
needed for this type of analysis to be generalizable. Though generation of the LLTM here made
use of nearly three times as many individual responses, the factor analysis was based on only
322 Rasch measures, which was seen to be barely adequate at best. As has been discussed,
however, the model generated still represents an improvement in understanding.

4.3.4.4 Factor extraction: objectivity and quantification

Another advantage of this technique over the previous score-based factor analysis is the
identification of how many factors to extract via statistical means rather than judgement by
the researcher. In the previous study by Barrie et al., the appropriate number of factors in
model was decided by retaining the smallest number of factors whilst meeting somewhat
arbitrary (though common) researcher-chosen criteria. The method of selecting for
eigenvalues = 1 was used, which has been shown to be less preferable than other alternate
methods.?” The technique used in the study discussed here requires no input by the
researcher as to the number of factors extracted: the number of factors is determined
objectively by the algorithms involved, which are based on well-established statistical
considerations of parsimony and fit of data to the model. This also means that factors with
unconventional characteristics necessary for the model’s accuracy are retained where they
would otherwise be dismissed inappropriately. The retention of factor 8 in this model is a
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prime example. This is possible here because the factor extraction is unaffected by the
expectations or predispositions of the researcher.

A drawback of this methodology, however, is the substantial amount of time needed for the
estimation: each data point corresponding to a different LLTM in the plot at the right of Figure
40 required approximately 10 to 13 hours of computing time. This is partly due to the
complexity of the model, but more likely due to the fact that the “landscape” of possible
solutions to each LLTM is a very “flat” surface, meaning the optimal solution differs very little
from many other solutions, thereby increasing the time needed to find the global minimum
during the optimisation.

The final LLTM obtained in this study also has the advantage of explicitly quantifying the
effects of each factor on the experiment’s quality with respect to each item of the survey. In
this way, measures such as those for the “overall learning experience” item are directly
explained in terms of the experiment’s basic properties. Moreover, they are explained in a
guantitative manner: it is known which factors contribute the most, which contribute the least
and the proportion yet to be explained. As an example, the LLTM formulation for the “overall
learning experience” measure (associated with survey item 14) is expressed below in Equation
47 (discounting the item location parameter pi4). The column vector containing integer value
coefficients is lifted directly from the appropriate row of the Q matrix (Table 24), whilst the
vector of n values contains measures of the seven major factors identified, each labelled using
their assigned character (see Table 23). The integer weightings are constant for all
experiments, whereas the factor measures (n) are all experiment specific. The final measure
value 3 can be input into Equation 43 (as d.rm), which in turn can be substituted into Equation
1 to give the probability of observing a student to respond in each of the five response
categories on the ASLE survey.

—Z27 [ Ntheory focus
614 (overall learning experience) 2 vr
Ninstructions
Ncollaborative understanding

Ndata interpretation 47

Ndemonstrators

2
0
1
1 77L'ndependent learning
2
5

4 L nunexplained overall i

Here the Q-matrix reveals the relative weighting of each factor’s contribution to the overall
learning experience. Included is a contribution of 5 x factor 7, which itself is characterised as
mostly resembling overall learning experience. This shows and explicitly quantifies a
substantial contribution to overall learning experience which is not explained by the topics of
other items within the ASLE survey. The model estimated here thereby identifies a gap in
knowledge, revealing a goal for future research. A substantial portion of the overall learning
experience measures are explained in this model, however. As previously stated, the extent of
these contributions are explicitly quantified in the model, advancing understanding further
than merely a “yes or no” answer to the question of whether various considerations are of
importance. A full spectrum of partial contributions is recognised in this model, as opposed to
only identifying full, partial or absent factoring as was the case in the study by Barrie et al.
Equations similar to Equation 47 are obtained for all fourteen items of the ASLE survey through
this model.
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Having obtained this model, the results can now be analysed in depth to determine how
experiments should be structured to be received as positively as possible by students, which
positive features of the laboratory experience are more important than others, and the likely
effects of changing various features of the laboratory experience both qualitatively and
guantitatively.

4.3.5 Conclusion

A technique has been devised and implemented here to yield a Linear Logistic Test Model for
the ASLE survey data. The method yielded the best explanatory model of the data to date,
resulting in a more parsimonious solution without sacrificing the proportion of data explained
by the model. The objective, sample independent nature of the model means conclusions can
now be drawn regarding best practice for the design of laboratory exercises, independent of
the specific students conducting the activity. This topic is to be discussed in the next section of
the results presented in this thesis. Formulation of the model has also allowed for the
derivation of a correction to the standard error in a given mean score value calculated using
more typical integer scoring methods. This correction is readily usable for the majority of
ASELL survey practitioners.
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4.4 Recipes for a positive laboratory experience: pedagogical
implications of the ASLE data LLTM

4.4.1 Outline

The previous study described a method for using observed data to derive a Linear Logistic Test
Model (LLTM) capable of adequately explaining ASLE survey response patterns. Application of
this procedure resulted in the generation of a factor loading matrix, detailing the character of
12 factors: seven major interpretable factors (Table 25) and 5 factors with little clear
contribution or identity. As part of the LLTM, a Q matrix was also estimated, detailing how
each factor contributes to responses for each ASLE survey question. This section will now
discuss the key features of the estimated model, revealing more practical interpretations of
the results able to inform future teaching practice. A summary of the seven interpretable
factors and the symbols used to refer to them in the following discussion is presented in Table
25 below. The low-contribution factors, factors 8 through 11 (not presented in Table 25), will
be referred to as ns where f is the factor number.

Table 25: interpretable factors contributing to laboratory perceptions

# Symbol Factor description

Positive values for this factor reflect a focus on (lecture) theory,

1 Ntheory focus whereas negative values reflect a focus instead on practical
activity.
2 Positive values for this factor reflect high quality of the
Ninstructions instructional notes provided
Positive values for this factor reflect an increase in perceived
3 TNcoutaborative understanding understanding of chemistry, associated with the benefit of
teamwork
4 ' ' Positive values for this factor are associated with perceived
Ndata interpretation development of data interpretation skills
Positive values for this factor are associated with perceived
opportunity to take responsibility for own learning, whereas
5 nindependent learning

negative values are instead associated with a sense that
teamwork was beneficial

Positive values for this factor are associated with students
6 Ndemonstrators frequently reporting effective supervision and guidance by
their demonstrator.

Positive values for this factor are associated with a more
7 Nunexplained overall positive reported overall learning experience, unexplained by
other factors

Refer to Table 22 for more precise characterisation of each factor's defining features and Table 24 for
quantifications of their impacts on each ASLE survey item.

4.4.2 Skills-based versus theory-based laboratory activities

The fact that N¢peory rocus appears as the first factor (explaining 18% of the variance in Spcm
estimates, see Table 21 previously) appears to suggest that an experiment’s focus on (lecture)
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theory or on practical activity is the single most important consideration in designing an
experiment which will rate positively with students. Student interest and “overall laboratory
experience” as reported in items 3 and 14 of the ASLE survey respectively appear to improve
as focus is directed away from theory and instead towards practical activity. However, this
appears to come at the cost of reduced clarity of the learning objectives and a lack of time
availability. Measurements for this factor associated with each surveyed experiment are
displayed in Figure 48.
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Figure 48: LLTM basic parameter measures for factor 1 (theory focus)

More positive values correlate with perceived relevance, clarity of expected learning outcomes and time
availability whilst negative values correlate to increased interest and perceived development of laboratory
skills. Error bars represent the standard error value of the measure. Experiment titles are sequenced from
lowest measure to highest measure. A summary of experiment descriptions has previously been
presented in section 2.1.3.

Given pre-existing chemistry education literature detailing the importance of practical activity
for engaging with chemistry at the “macroscopic” and concrete level,3 257, 259,260, 304-306 54 \yg||
as the substantial importance of bridging the gap between concrete observations and formal
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theory in science education,?®%-307. 3% jt js tempting to interpret this factor as a measure of
whether students perceive the experiment (or the concepts involved) to be more concrete and
hands on or more abstract and theoretical in nature. However, interpreting N¢peory focus as @
measure of concrete versus formal interaction with the relevant concepts would lead to some
very complex rationalisations of the observed factor values.

For example, the “Metal activity series” experiment has one of the higher N¢nc0ry focus
measures, despite the fact that students work almost exclusively with direct experimental
observations in this practical. Interpreting ¢peory focus @s @ concrete vs abstract measure, the
concrete nature of “Metal activity series” would suggest a low N¢peory focus Measure, not a
high one. A clearer understanding of the N¢peory rocus factor values comes from recognition of
the factor’s defining characteristics: clear, relevant learning objectives as opposed to high
development of laboratory skills, from the perspective of the students. The explanation for the
“Metal activity series” experiment’s high N¢peory rocus Measure comes from the fact that
“Metal activity series” is aligned with lecture content, as part of the Foundations of Chemistry
course. The experiment therefore has a high focus on theory that students recognise from
lectures, leading to perceptions of relevance and clarity of the intended learning outcomes:
primary components of the N¢peory rocus factor. It is also reasonable to expect that students
therefore recognise the purpose of the practical to be about exploring the lecture content as
opposed to development of any laboratory skills. Under this interpretation, a high value of
Ntheory focus 1S logical.

Other experiments of high N¢peory focus Measure are also predominantly experiments
conducted as part of the Foundations of Chemistry course, which are similarly aligned well
with lecture content. In contrast, many experiments of loW N¢peory focus Measure are those
without lecture content alignment, often conducted by the Chemistry IA/IB cohort, whose
practical activities were randomly sequenced. One apparent exception to this broad
explanation of the observed values appears to be “Equilibrium and Chatelier’s principle” as
first revised for the Foundations of Chemistry cohort. From the teacher’s perspective this
experiment aligns well with the lecture content, and therefore should have a high 1¢peory focus
measure. However, the experiment is observed to have a IoW N¢peory focus Value despite this.
The measure assigned also appears to explain the observed responses well given the fit
statistics (see Table 26), and cannot be dismissed as a statistical anomaly given its narrow error
margin.

Recalling that ASLE data reflects student perceptions rather than teacher intentions may
resolve this apparent problem. The low N¢peory focus Measure of “Equilibrium and Chatelier’s
principle” as first revised for the Foundations of Chemistry cohort may be interpreted to
suggest students typically do not see the connection to the lecture content, despite teacher
intent. This interpretation is sensible in light of the conceptual complexity and abstract
reasoning required to draw conclusions from the observations made in the experiment; the
topic of equilibrium is known to be problematic with respect to connecting concrete
experiences with abstract theory,26% 305309312 3nd this may explain why students might “miss
the point” of the experiment. Observations made in “Equilibrium and Chatelier’s principle”
largely consist of changes in pH and colour, with conclusions about equilibria only accessible
through subsequent deductions and correct interpretation in light of more abstract theory.
Disconnects between macroscopic phenomena and the unseen “sub-microscopic” level of
chemistry such as this have often been cited as cause for students being unclear about what
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intended learning outcomes they are supposed to gain from their observations,?>7: 259 260,306,313

and such a reduced clarity of intended learning outcomes is a defining characteristic of low
Ntheory focus Measures (see Table 22).

Generally speaking, the existence of this factor and the trends in its observed values appear to
suggest that a clear connection to lecture content, from the perspective of the students, is the
primary (known) factor in laboratory experience perceptions. Sequencing of the experiment
with lecture content appears not to be sufficient in achieving this, however: the connection
must be readily apparent to the students, not just the teacher. This connection may be
achieved through careful design of experiments such that the relevant theory is clearly
associated with the experimental observations and procedures; the macroscopic observations
need to be illustrative of the abstract concept to achieve a high measure of N¢peory focus, in
conjunction with the experiment’s sequencing with the appropriate lecture material. Achieving
this effectively lends itself to promoting clarity of the learning objectives of the practical and a
perception of relevance (as seen in the Q-matrix, Table 24).

Unfortunately, this also has the consequences of decreasing student interest and reducing
perceived development of laboratory skills. The explanation for the impacts on student
interest could simply be that students find lecture theory boring, or alternately that they find
novel material interesting; reasons are not clear from the model alone. In either case the trend
is somewhat unsurprising, as is the fact that students perceive the experiment to be less about
developing laboratory skills if they perceive a stronger connection to lecture content. Similarly,
increased time availability for practicals more concerned with lecture theory may be intuitively
explained by the fact that practicals more directed towards technical skills typically require
more time consuming manual “work” to complete.

Additionally, benefits of having a clear connection to lecture content seem only to involve
increased clarity of the intended learning outcomes, with only a small impact on actually
attaining them. The Q-matrix weighting coefficient of this factor on the survey item
“completing this experiment has increased my understanding of chemistry” is only +1, whereas
other factors appear to have far more substantial contribution. Again, however, the
perceptions of students may not necessarily align with teacher perspectives or indeed with the
actual objective gains in student learning resulting from the practical. The implication for
teachers here simply appears to be that a stronger and easily recognised connection to lecture
content clarifies learning goals for students, but at the cost of students liking the exercise
(both in terms of their interest and perceived “overall learning experience”). In this way,
student preference appears to lean towards “skills-based” laboratory tasks rather than
“lecture theory-based” laboratory tasks.

4.4.3 Collaborative and independent learning

The notion that learning is a social process is a very familiar concept in education, often viewed
as being at the heart of constructivist ideologies. The views of Vygotsky3* 31> notably
emphasise the significance of social interactions during the learning process, whilst past and
current trends in pedagogy of science (and other disciplines) have emphasised the benefits of
small group discovery activities,*¢318 guided inquiry activities involving group work3!*32! and
the benefits of involving peers in problem based learning activities.3?2-326
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The appearance of the third factor in the ASLE data LLTM: o 1aporative understanding, SE€MS
to suggest that interaction with peers is relevant to student enjoyment of their activities as
well as in their learning, as suggested in the literature. This factor appears most strongly
characterised as relating to perceived understanding of chemistry (item 6) and also has a
slightly less strong association with perceived benefits of teamwork (item 11), as seen in Table
22. However, the impacts of high values for this factor appear reversed to this: item 11
(concerning teamwork) displays the most improvement as N¢ouaborative understanding 1S
increased (Q-matrix weight of +14), with perceived understanding slightly less so, but still
substantially improved (Q-matrix weigh of +7). A possible explanation for this could be that
increasing understanding (through groupwork) is the heart of the factor’s definition (hence the
factor loadings observed), whereas in practice, students notice the fact they are now working
together more than they notice the gains in understanding achieved (hence the Q-matrix
coefficients observed). Regardless of which of these features can most accurately be described
as the primary description of this factor, it seems clear that a perception of increased
understanding of chemistry and a perception of teamwork being beneficial are so strongly
associated that they manifest as one singular indistinguishable factor.

Perceived increase in the understanding of chemistry as reported by students on ASLE surveys
seems almost entirely due to this single factor, with little contribution from any other factors
identified in the LLTM (see Equation 48 below, discounting item location parameter ). The
only other ways to promote understanding appear to be clear focus on lecture theory, well
written instructional material, less responsibility for the student’s own learning and reduced
guidance from demonstrators, though these factors each appear far less important by
comparison.

66 (understanding of chemistry) ERNI ntheory focus ]
1 Ninstructions
7 Ncollaborative understanding
0 Ndata interpretation 48
-1 nindependent learning
-1 Ndemonstrators
L1 L nunexplained overall .

The reasons behind the strong association between perceived increase in understanding and
perceived benefits of teamwork are not made clear by the model itself. It could be that an
experiment which improves student understanding often tends to elicit (or even require)
conversation with peers, or that peers are more likely to be of assistance when needed. It
could also be that experiments which require teamwork naturally assist with student
understanding. The “direction” of causality here is unknown, but it seems reasonable to
suggest that the existence of the Nco1aporative understanding factor was not unexpected based
on existing education literature. Not only does the value of this factor influence the two survey
items reflecting its primary characteristics (items 6 and 11 concerning understanding and
teamwork respectively), but also positively influences student interest in the activity (Q-matrix
weight of +5).

The role of teamwork (or lack thereof) on student perceptions of learning is further revealed
by another factor; Ningependent tearning- This factor appears much more directly characterised
as the spectrum from independent work (for positive values) to collaborative work (for
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negative values). Somewhat confirming the conclusions drawn from the

Nlcollaborative understanding factor’s behaviour, Nindependent learning reveals a slightly negative
impact on understanding as students report they are more able to take responsibility for their
own learning (see Equation 48 above). Positive values of Ningependent tearning also show a
small positive impact on perceived overall learning experience (Q-matrix weighting of +1),
which was not observed for the 1¢oiiaborative understanding factor. This suggests students
prefer individual work to group work, aligning with the previous conclusion that “skills-based”
practicals (which benefit from independent learning) are preferred to “theory-based”
practicals (which benefit from collaborative understanding), seen when analysing the

Ntheory focus factor previously. More independent learning also appears to lead to a decrease
in perceived availability of time (Q-matrix weighting of -7), again in keeping with what was
seen for “skills-based” practicals generally when analysing n¢heory focus-

One of the largest impacts of the Ningependent tearning factor, however, is the substantial
increase in reported development of laboratory skills as Ningependent tearning iS increased (Q-
matrix weighting of +7, see Equation 49 in later discussion). Evidently, students perceive their
laboratory skills to be better developed in the experiments where they report teamwork to be
of little benefit and instead have responsibility for their own learning. The argument could be
made, therefore, that skills-based practicals are more beneficial when conducted
independently.

However, this initially seems to conflict with the pedagogical implications of promoting
“increased understanding of chemistry”, which was seen to be improved when group work is
seen to be beneficial (seen analysing the 1coiaporative understanding factor). The apparent
conflict may be reconciled if “understanding of chemistry” is primarily interpreted by students
to mean understanding of chemistry theory, not laboratory skills. Rather than the model
presented here containing any contradiction, this interpretation would then simply imply that
the most appropriate pedagogy depends on the primary learning objectives of the practical:
skills development is promoted by independent learning, whereas understanding of theory is
promoted by teamwork.

4.4.4 Different factors may apply for different student groups

Given the hypothesis that individual work is beneficial for “skills-based” practicals as suggested
in the preceding discussion, it is a natural next stage of research to examine the changes
observed when the identical “skills-based” experiment is conducted in pairs as opposed to
individually. The “Analysis of spinach extracts” experiment is one such experiment, and is in
fact the only case in this study where whether students worked individually or in pairs was
ever modified. The experiment appears to be perceived as one of the more “skills-based”
experiments, with the relatively Iow 1¢peory focus measures of 1.12 + 0.1 Logits and 1.13 £ 0.01
Logits for the Chemistry IB (individual work) and Foundations of Chemistry IB (working in pairs)
iterations respectively (see Figure S 59 in the supporting information). Given the preceding
discussion, it would therefore be expected that perceived development of laboratory skills and
overall learning experience would receive more positive responses in the case of working
individually. The empirical Rasch measures associated with each survey item (3), reflecting
“objective” quality of the learning experience, were compared to test this prediction.
Measures estimated when students conduct the experiment in pairs as opposed to the
measures estimated when students conduct the experiment individually are contrasted in
Figure 49.
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As would be expected, the measure for the item pertaining to the perceived benefit of
teamwork appears greatly decreased when working individually. The next greatest affected

facet of the learning experience is the perceived time availability, with group work appearing

to be associated with less available time. This is in direct contrast to the implications of the
behaviour of the Ningependent tearning factor described previously. Skills development also

behaves contrary to prediction: the student group working in pairs appeared to broadly report
a greater perceived development of laboratory skills, in contrast to the prediction made based
on the effects of the Ningependent tearning factor. This specific “skills-based” practical appears

not to have benefited from individual work as hypothesised. Patterns in the measures for thi
experiment appear to differ from the behaviour more generally observed in the full data set.

Disagreement/ Agreement/ B Working individually (Chemistry IB)
Less positive More positive
-3 -2 1

— —
— —

B Working in pairs (Foundations of Chemistry IB)

'
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Data interpretation skills development

Laboratory skills development

Interest

Clarity of assessment

Clarity of expected learning outcomes

Increased understanding of chemistry

Background information provided in the introduction
Effective demonstrator supervision and guidance
Clear procedure in manual or notes

Relevance to chemistry studies

Benefit of teamwork

Opportunity to take responsibility for own learning
Time availability

Overall learning experience

Experiment quality measure (5,,1) ASLE Survey item topic

Figure 49: Measures of laboratory learning experience quality associated with different
forms of the Analysis of Spinach extracts experiment

Here the experiment quality measures presented are the empirical values as would be estimated from a
partial credit Rasch model, not the LLTM approximation (corrected by adding the “displacement” value).
This is to ensure that observed values are contrasted rather than values simply predicted from the
theoretical model. Error bars represent standard error values. Note that the position of the “zero” value is
arbitrary. The student group “working individually” were Chemistry IB students, whilst the student group
‘working in pairs” were Foundations of Chemistry IB students (see section 2.1.1).

It is important to note that although the experiment conducted here is equivalent, different
cohorts of students were involved for the two groups. Despite the fact that student bias
measures have been controlled for, the possibility of differential item functioning between t
two student cohorts still exists. That is, all other factors being equal, objective measures of
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learning experience quality (8) may be the same for all students within a single student cohort,
but differ between the two cohorts. Possibilities such as this confound any conclusions drawn
from the comparison displayed in Figure 49. This could explain why time availability appears to
be less of an issue for the students working individually in this case: that group is also the
group of students with past experience in chemistry, who may objectively execute procedures
more quickly as a general rule, because of their past experience. Likewise, the experiment’s
learning objectives appear slightly less discernible for the “in pairs / Foundations of chemistry”
group, possibly for similar reasons. The “individual workers / Chemistry IB” group may also
have had lower perceived development of laboratory skills simply because they already had
the required skills through previous chemistry experience, unlike the Foundations cohort.

A valid comparison of working in pairs as opposed to working individually cannot yet be made
here. This observation raises a critical issue: if the quality of an experiment can objectively
differ depending on the capability of the student cohort, then so too must the Q-matrix. In real
world terms, this means that the relative importance factors determining the quality of an
experiment differ based on the student group to which the experiment is presented. As
currently presented, the LLTM does not incorporate potential differences in the factors
contributing to a positive student learning experience for the two different student cohorts:
“Foundations of Chemistry IA/B” and “Chemistry IA/B”. Inherent differences in the appropriate
pedagogy applicable to each student group therefore confound the Q-matrix weighting
coefficients estimated.

Differences in the design of the experiments conducted which, by chance, happen to correlate
with differences in the student cohort conducting those experiments may alter the
correlations observed in the factor analysis, hence also the factors extracted and the
associated Q-matrix. For example, it was previously suggested that the (often) more
experienced “Chemistry IA/B” cohort may be more likely to finish their experiments quickly
than the (often) inexperienced “Foundations of Chemistry IA/B” cohort. Experiments where
students work individually are in many cases the experiments exclusively conducted by the
Chemistry IA/IB cohort, suggesting that this could be one reason why the perceived benefit of
teamwork appears to be associated with increased time availability more generally in the final
LLTM; it may be the cohort difference which impacts time availability rather than teamwork,
but the two just happen to correlate. Likewise, experiments with greater theory focus were
noted to often be the experiments conducted by the Foundations of Chemistry cohort,
possibly helping to explain Why N¢peory focus @appears to control a large proportion of the
variance observed in experiment quality measures estimated for the ASLE survey items. The
fact that experiments conducted individually were almost exclusively conducted by the more
experienced Chemistry IA/B cohort could also explain why teamwork showed such a strong
association with the increase in understanding. The actual extent to which to cohort difference
confounds the results of this investigation is unknown. Rectifying this issue would require
estimating a separate Q-matrix for each student group; something not possible with this data
set due to the low number of experiments investigated.

The fit statistics associated with some LLTM measure estimates appear to support the
possibility of different factor models applying to different student groups. Many N¢peory focus
measures which appear contrary to intuition can often be attributed to misfitting (specifically
underfitting) the model generated. In cases such as these, reported student perceptions
appear not to be modelled well by the Q matrix and Rasch model proposed here, suggesting
that factors contributing to the observed perceptions are either weighted differently or are
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different in nature to those modelled. Table 26 provides a summary of fit statistics associated
with each measure for the N¢peory rocus factor.

Table 26: Fit statistics for Ntheory focus measures

. Data Infit Outfit Estim. Correlations

# Experiment int i

pointS  Mnsq  zStd  MnSq  ZStd I5CMM  ptMea  PtExp

3 Vapour Pressure 5141 1.17 7.5 1.54 9.0 0.68 0.72 0.74

10 Coloured Complexes of Iron 32971 1.04 3.8 1.12 9.0 0.94 0.74 0.75

13 Copper(ll) lon Absorption 12750 0.98 -1.2 1.07 4.1 1.00 0.62 0.63

Spectrophotometry

16  Equilibrium and Le Chatalier's Principle 17902 1.00 -0.3 1.07 4.4 0.96 0.75 0.76
(revised: for foundations)

8 Liquid-Liquid Extraction and TLC 22860 0.92 -7.6 0.92 -6.0 1.08 0.72 0.71

9  Synthesis of Aspirin 15637 0.96 -3.1 1.02 1.5 0.99 0.75 0.76

11 Analysis of Spinach Extracts 26703 1.02 2.4 1.11 9.0 0.97 0.59 0.61

17  Visible Absorption Spectrophotometry 23596 1.07 6.3 1.16 9.0 0.94 0.56 0.60

26  Vapour Pressure (revised: laptop) 24331 0.98 -1.5 1.07 53 1.00 0.70 0.71

12 lon exchange Chromatography 46824 1.07 9.0 1.11 9.0 0.94 0.63 0.66

19  Analysis of Spinach Extracts (revised: for 19020 0.83 -9.0 0.89 -7.9 1.14 0.71 0.69

foundation - in pairs)
1 Biological Buffers 12322 0.89 -7.3 0.91 -4.9 1.08 0.71 0.72
4  Melting Points and Recrystallisation 29207 0.96 -4.1 0.99 -1.0 1.03 0.67 0.67

22  Reaction Kinetics (revised: for 4561 0.81 -8.3 0.85 -5.3 1.06 0.74 0.74

foundations)

27  Copper(ll) lon Absorption 33347 0.97 -2.8 1.06 5.2 0.98 0.62 0.65

Spectrophotometry (revised: laptop)

15 Determination of Vitamin C 16109 0.98 -1.4 1.04 2.6 1.01 0.76 0.76

concentration

29 Quantitative Techniques (revised: no 10914 0.98 -1.5 1.04 2.3 1.02 0.69 0.69

pipetting)
7 Introductory experiment 1149 1.14 3.1 1.20 4.4 0.81 0.66 0.69

21  Thermochemistry (revised: for 17253 1.11 8.3 1.32 9.0 0.85 0.64 0.68

foundations)

25 Biological Buffers (revised: laptop) 15165 0.99 -0.5 1.03 1.8 1.02 0.68 0.69
5 Quantitative techniques 40666 1.12 9.0 1.16 9.0 0.90 0.71 0.72
6  Reaction Kinetics 32704 1.03 3.5 1.07 6.5 0.96 0.64 0.67

20 Metal Activity Series 14348 0.89 -8.2 0.92 -5.0 1.07 0.70 0.70

28 Introductory Experiment (revised: 8822 1.19 9.0 1.33 9.0 0.81 0.49 0.54

pipetting)

14 Quantitative Techniques (revised: for 9903 1.05 3.0 1.12 6.1 0.92 0.73 0.75

foundations)

18 Aromachemistry 21530 1.23 9.0 141 9.0 0.71 0.51 0.57

24  Reaction Kinetics (revised: question 4984 0.99 -0.5 1.08 2.5 0.99 0.70 0.70

order and phrasing)
2 Thermochemistry 43480 1.23 9.0 1.44 9.0 0.70 0.56 0.62

23 Introductory experiment (revised: 7797 1.22 9.0 1.45 9.0 0.68 0.55 0.63

observations video)

Numbers (#) associated with experiments are equivalent to those listed in Table S 56 (section 7.4.2)
following previously described equating procedures. Cases shaded in orange exhibit statistically
significant underfit of a large magnitude. Experiments have been ordered from lowest measure to
highest measure, as displayed in Figure 48. Elaborations on the statistics quoted and their

interpretations are presented in section 2.5.2).
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Many of the 29 experiments appear to underfit the model significantly (ZStd > 2, see section
2.5.2.1). It is important to note, however, that statistical significance of the misfit does not
reflect the magnitude of the misfit; many experiments have several thousand data points
associated, leading to significance of even very small misfit to the model. Only seven
experiments show underfit of any substantial magnitude (mean square values above
approximately 1.2, see section 2.5.2.1). Of the experiments which do show significant misfit,
many are different variants of the same experiments. “Thermochemistry” and “Introductory
experiment” each have multiple different variants, yet consistently show some misfit to the
model in each case. This lends some assurance to the idea that the observed misfit is
characteristic of the experiment design itself rather than being chance variation within the
data set.

Using the mean square values as an indicator of the magnitude of the misfit, outlying data
points appear to deviate from the model more than inlying data points in all cases, suggesting
that most student perceptions for survey items relevant to N¢peory focus are well explained by
the model, but extreme perceptions are explained poorly. This is additionally observable in
the fact that misfitting experiments (shaded in Table 26) are at the edges of the distribution of
measures rather than being closer to the average. Differential item function may exist here;
the objective quality of experiments may differ depending on the specific student group
performing the evaluation, for reasons independent of the students’ broad scale tendency to
provide positive response on the survey. The “Thermochemistry” experiment, for example,
may have an objectively less clear connection to the lecture content for students of a specific
learning style (or of other particular characteristics). In such a case, those specific students
would then respond in a manner substantially different to the bulk of the student population,
as the factors determining learning experience quality for them differ from the factors
determining learning experience quality for other students. These students’ response patterns
would then misfit the LLTM, manifesting as the high outfit values observed (since their
perceptions would be outlying rather than inlying).

This issue highlights a limitation of analysing large scale datasets of ASLE survey responses: the
student population is presumed to be “homogeneous”. Correlating responses, either using
Rasch measures such as in this study or using scores as previous research has done, reveal
conclusions only about the average behaviour of the bulk student sample. The nuances which
arise when considering how to appeal to a specific cohort of students are lost when observing
broad scale correlations or average responses. Conclusions drawn from large scale studies of
ASLE survey data about the definitive factors contributing to a positive laboratory experience
may therefore encourage “teaching to the centre”, whilst neglecting students with atypical
learning requirements or capabilities. This raises consequential validity issues for the use of
ASLE survey data; something to be explored further in later discussion.

4.45 Supporting laboratory skills development through data interpretation

A means of improving the vast majority of aspects of the laboratory learning experience
targeted by the ASLE survey appears to be the effective development of data interpretation
skills within practicals. The only survey items not impacted by 044t interpretation are items 4,
6 and 12, concerning clarity of assessment criteria, increased understanding and responsibility
for own learning respectively. Increasing Nqatq interpretation d0€s also appear to have a large
negative impact on perceived time availability (Q-matrix weighting of -8), likely because extra
data interpretation requires more time for the analysis. However, all other items see at least a
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small improvement as Ngqtq interpretation 1S iNCreased, with substantial gains seen in the
perceived development of laboratory skills (Q-matrix weighting of +10, see Equation 49
below). This suggests that the ability to interpret the data gained from executing practical
procedures may improve the ability to execute the procedure itself, at least from the
perception of the learner. Intuitively this is sensible, given that understanding the data to be
gained from a procedure (and hence how to interpret them), helps in executing the procedure
with an understanding in mind as opposed to ‘blind’ recipe following. Equation 49 shows the
composition of the data interpretation skills item measure, as modelled in the LLTM
(discounting item 2 relative location Wy).

62 (laboratory skills development) 151 [ Mltheory focus ]
1 Ninstructions
-1 Ncollaborative understanding
10 Ndata interpretation
7 . Nindependent learning 49
-2 Ndemonstrators
2 nunexplained overall
0 UE
-1 Mo
L34 L M10 .

As can be seen, Nqatq interpretation @PPEArS as a prominent contributor to the perception of
laboratory skills development. The two other most prominent contributors are W¢peory rocus
and Ningependent learning, POth of which could theoretically be manifestations of cohort
difference issues already noted. Chemistry IA/B experiments lacked lecture synchronisation
(oW Ntheory Focus ) @and were often the only experiments to be conducted individually (high
Nindependent learning), Meaning a cohort difference in the perceived development of
laboratory skills would be expected to manifest as heavy weightings in these two factors.
However, the contribution of these two factors appears to be opposite to what would be
expected, were this the case: Chemistry IA/B students have increased prior experience and
therefore would develop fewer new laboratory skills, meaning the factor weightings observed
would be positive for Ntpeory rocus and negative for N gependent tearningrespectively under
this interpretation. If the observed heavy weightings are indeed a result of cohort differences,
it appears the more experienced cohort generally perceives more skill development, not less.
This is in direct contrast with reasonable expectation, suggesting that the large weightings of
these factors cannot be dismissed merely as cohort differences confounding the data.
Independent work and a low focus on lecture content can therefore reasonably be concluded
to support the development of laboratory skills generally.

A cohort difference may, however, contribute in other ways. The measures for

Ndata interpretation, Which also strongly contributes to laboratory skills development, appear
to be dependent on students’ ability to interpret the data as required. Measures also appear
to be dependent on the improvement of data interpretation skills, which could feasibly differ
depending on the skills students have to begin with. The reaction kinetics experiment
exemplifies this fact well: as initially presented, “Reaction kinetics” shows a 044t interpretation
measure of -0.32 + 0.01 Logits. When revised and presented to the Foundations of chemistry
cohort, Ngata interpretation iMproved slightly to -0.27 + 0.03 Logits, suggesting the Foundations
cohort’s data interpretation skills were developed more than for the Chemistry IA cohort,
using this same practical exercise. This could sensibly be attributed to differences in past
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chemistry experience. Anecdotally, some students from Chemistry IA noted that they had
conducted the essentially identical experiment in high school; something which would
decrease any data interpretation skills gained from the experiment. This was typically not an
issue for the Foundations cohort.

Further, when initially modified to suit the Foundations of chemistry cohort, the questions
asked of the students in “Reaction kinetics” were mistakenly re-ordered, changing the way
students were guided through the data analysis process. This change is observable as a
decrease in quality of the material provided (Minstructions Shifted from 0.50 + 0.01 down to
0.44 £ 0.03 Logits). When this was noticed and amended such that the questions were asked in
their original, more intuitive order, the increased quality of the provided material (instructions
= 0.56 * 0.03) allowed a more easily followed interpretation of the data, seen in an improved
Ndata interpretation Measure from the original -0.27 + 0.03 Logits up to -0.19 + 0.03 logits.
Again, these observations illustrate that measures for Ng4tq interpretation aPpear to be related
to student ability to interpret the data as required, not just the extent to which it is required of
them. Quality of data interpretation activities appears to outweigh quantity here.

The role of the Ngqtq interpretation factor as a measure of students’ ability to interpret their
data, rather than merely be required to do so, is further corroborated using measures for
experiments previously studied in depth. Section 3.1: “Typical score-based analysis of ASLE
survey data: an example” discussed the effects of replacing a handheld data logger with a
more likely intuitive laptop interface for the purpose of data analysis. Improving the means by
which data was gathered and viewed by students would intuitively alter the students’
development of data interpretation skills as a result of the practical, meaning this study
presents an opportunity to examine the behaviour and validity of the N4t interpretation
factor. All three of the experiments discussed in section 3.1, which were amended to be
conducted using a laptop rather than a handheld data logger, show similarly improved

Ndata interpretation Values with the laptop interface (Table 27). This further validates
conclusions presented earlier about the laptop interface being superior to the data logger
interface: all three experiments show a greater perceived development of data interpretation
skills with the laptop interface, presumably because the laptop interface (where data is
gathered and analysed) is more often intuitive and more easily understood.

Table 27: Data interpretation skills development measures for different technological
interfaces

Ndata interpretation /(Logits)

Experiment
Data logger interface  Laptop interface
Vapour pressure -0.45+£0.03 -0.28 £ 0.02
Biological buffers -0.36+0.02 -0.26 £ 0.02
Copper (ll) ion absorption spectrophotometry -0.32+£0.02 -0.30+£0.01
Visible absorption spectrophotometry -0.26 £ 0.02

The first three experiments presented in the table above were previously studied in depth, described in
section 3.1. “Visible absorption spectrophotometry” was not discussed at length previously, but is a
version of “Copper (Il) ion absorption spectrophotometry” presented exclusively to the Foundations of
Chemistry cohort.

Perhaps even more encouraging, however, is the high degree of similarity in the measures
obtained for each experiment. Values for Ngqtq interpretation USing the laptop interface are
highly consistent between all relevant experiments, each with a measure of approximately

4.4 Qualitative interpretations and the ASLE survey data| Recipes for a positive laboratory experience: 154
pedagogical implications of the ASLE data LLTM



0.28 Logits. This is a substantial validation of the qualitative meaning of the 1g4¢q interpretation
factor: factor measures take on the same value when students interact with their data in the
same way, suggesting a direct connection between the 0g4tq interpretation Measure value and
real world concepts pertaining to data interpretation. Values associated with the handheld
data logger vary to some extent, though again appear comparable for two of the three
experiments listed. This variation may be due to the different purposes for which the
technology was used in each case.

4.4.6 High quality written material is broadly beneficial

During the initial discussion of experiments in which the technological interface was changed,
it was suggested that a change in the instructional material for the three experiments may
have been a contributor to the reason for the observed improvements, rather than the change
in technological interface (see section 3.1.4.5). This concern was dismissed, given little
evidence existed to suggest the new instructions were any better than the originals, and if
anything may have been of lesser quality given the qualitative comments received. The LLTM
offers the possibility of quantifying the quality of the provided material, using Ninstructions
measures. This single factor encompasses all ASLE survey items concerning materials provided
to the students, including background information (item 7), experimental procedure (item 9)
assessment criteria (item 4) and to some extent the intended learning outcomes (item 5).

Table 28: Changes in quality of the provided material when using different technological

interfaces
. Ninstructions /(LOgitS)
Experiment
Data logger interface Laptop interface
Vapour pressure 0.48 £0.02 0.47 £0.01
Biological buffers 0.44 +£0.02 0.42 £0.02
Copper (ll) ion absorption 0.52 +0.02 0.55 + 0.01
spectrophotometry

As can be seen, improvement for any the three experiments is minimal at best (Table 28). Error
mMargins in Nipstructions Measures for the two forms of each experiment overlap except in the
case of the Copper (Il) ion absorption spectrophotometry experiment, which shows some small
improvement in the instructional material once the laptop was introduced. Again, the fact that
any improvement observed is minimal matches the prediction which would be made from the
fact the instructional notes were only changed minimally: the only section altered in each case
was a small appendix containing instructions for the technology. The suggestion that a change
in quality of the instructions was unlikely to be the cause of the observed improvements
appears sound.

Had the Ninstructions Measures been substantially different, however, this could have had
large scale impacts on the responses observed. The n;nstructions factor is the second most
prominent factor in the LLTM, and appears as one of the equal largest contributors to positive
responses to the question “l found this to be an interesting experiment”, with a Q-matrix
weighting of +5 (the other equally strong contributor being 1conaporative understanding)- The
Ninstructions factor also appears as one of the strongest identifiable contributors to the
“overall learning experience” item, with a Q-matrix weighting of +2. At least small
improvements to every item on the ASLE survey appear likely with greater quality of the
provided materials (reflected in a high 1jpstructions Measure), only with the exceptions of item
1 (development of data interpretation skills) which appears unaffected by the ninstructions
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factor, as well as item 11 (concerning the benefits of teamwork). Item 11 “working in a team to
complete this experiment was beneficial” appears as the only item whose responses are
negatively impacted by Ninstructions, With @ Q-matrix weighting of -4. This seems to suggest
that a higher quality of instructional notes for an experiment leads students to see less benefit
in teamwork, perhaps explained by a lowered need for assistance by their peers. This may not
necessarily be a bad thing, given that it may indicate students can grasp the intended
messages within the notes more easily without assistance.

Again, however, the effect of student cohort differences can be seen in this factor. The
identical instructional notes can evidently be objectively better for one student group than
another. The Quantitative techniques experiment is a revealing example: when presented to
the Chemistry IA cohort, “Quantitative Techniques” has a Ni,structions Measure of 0.55 + 0.01
Logits, whereas when the same experiment was presented to the Foundations of chemistry
cohort, the perceived quality of the provided material dropped t0 Ninstructions = 0-44 + 0.02
Logits. A similar value was seen even after the experiment was further amended for the
Foundations of chemistry cohort, removing the pipetting section of the activity (N;nstructions =
0.46 + 0.02). Once again, however, the fact that the same notes can be more useful to one
student cohort than for another is intuitively sensible. Different student cohorts likely have
different learning styles, cognitive abilities, background knowledge and an array of other
differing predispositions, meaning the same set of notes may not be read, interpreted or
understood equivalently. Pitching the written material at a level appropriate to the abilities of
the reader is naturally advisable, and this is seen in the behaviours of 1;,structions @s
described.

4.4.7 Engaging the students: interest and positive overall experience

One of the major goals of the ASELL project and its predecessors has been to improve the
student experience of their laboratory activities, promoting interest and a positive overall
learning experience. The LLTM now reveals how to achieve this, based on patterns present in
the data set analysed. A wide array of factors appear to contribute to student interest in a
laboratory activity, as seen in Equation 50 (discounting item 3 relative location ps).

6‘3 (interest) — —107 1 77theory focus )
5 Ninstructions
5 Ncollaborative understanding
1 Ndata interpretation
1 nindependent learning
-3 1 Ndemonstrators 50
3 nunexplained overall
1 Ns
2 Mo
1 Mo
L —14 L N11 :

By far the strongest contributor to student interest in the activity is a decreased connection to
lecture content. Naturally this is undesirable for many laboratory activities from the
perspective of the teacher, since laboratory activities are often intended to strengthen content
knowledge through concrete interactions. Student preference naturally appears to lie with
“skills-based” rather than “theory-based” experiments.
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As it was previously discussed, however, low 7N¢peory focus Measure does not necessarily imply
more concrete interaction with the material. Heavily concrete practicals can occasionally be
observed to have high N¢tpeory rocus Measures, and this was previously explained by suggesting
that a clear connection to current theory from the perspective of the students was the key
consideration (see section 4.4.2). This raises an unusual situation: it is not necessarily the
inclusion of theory students are opposed to, but the fact that they can recognise the theory as
relevant to the course. Theory recognisably connected to the lecture content appears to
drastically decrease student interest, where it apparently may not if it were absent from
lectures. Reasons for this effect are speculative at best, but this may simply be a “knee-jerk”
reaction of boredom to any theory which has been laboured upon as part of the course.

The only possible remedy to this problem appears to be to “disguise” the theory in any
practical which also appears in the lecture content. Lecture content to be reinforced by the
practical activity should, by this logic, be addressed differently to the way it is in other
components of the course. In this way it may not be quite as recognisable to students, ideally
reducing this “boredom” response. Alternately, practicals could be used as a means of
introducing the lecture theory rather than reinforcing it. This would have the effect that
students still gain the educational benefits of the practical relevant to the theory, but without
the risk of students losing interest because of the lecture content connection. Students would,
ideally, not be able to be “bored” by the material if they had not been extensively exposed to
it yet. Using practical activity as introductory rather than to reinforce content already
presented also follows recommendations in the education literature, keeping the laboratory as
the place to explore the “macro” aspects of chemistry,* 3 then shifting from the concrete to
the abstract as recommended by Johnstone?7-260:304,306 3 in |ine with cognitive development
described by Piaget.26% 307, 308,327

Other strong contributors to interest in the activity appear to be well constructed written
material (high Minstructions ) @and understanding through teamwork (high

Ncollaborative understanding)- Interestingly, this creates another problem for educators:
understanding through teamwork was previously seen to be beneficial for highly theory
focussed practicals, whilst more skills-based practicals, conducive to student interest, were
seen to benefit from individual work. The decision whether students work in teams or not
therefore presents a dilemma to the teacher when running a skills-based practical: working in
teams makes the experiment more interesting, but working individually promotes laboratory
skills development. Strengthening the learning objectives appears to be at odds with
maintaining student interest.

A more moderate contribution to student interest is to reduce perceptions of effective
demonstrator guidance. This seems unintuitive if the demonstrator guidance item of the ASLE
survey (item 8) is taken to reflect the teaching ability of the demonstrator, however, correct
interpretation of the Ngemonstrators factor is problematic. The factor measures can not
possibly reflect the quality of specific demonstrators, since the specific demonstrator was not
constant for each practical. Rather, the demonstrator was specific to the practical group
students were assigned to: each experiment was conducted by a range of student groups in
each semester, each group with a potentially different demonstrator. At best, values for this
factor could be attributed to the “average” quality of demonstrators for each given practical.
However, there is reason to suggest that values for this factor may also depend on students’
reliance on their demonstrators, and hence greater appreciation of their assistance.
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Before “Vapour Pressure” was amended to utilise the laptop as opposed to the handheld data
logger, the value of Ngemonstrators Was far higher than for any other experiment at a value of
0.92 + 0.03 Logits. For the entire suite of 28 other experiments studied, 7emonstrators ©NY
ranges between values of 0.29 + 0.02 and 0.67 + 0.02 Logits (for the revised “Vapour pressure”
using the laptop and “Determination of Vitamin C concentration” respectively). A conclusion
that quality of the demonstrators’ teaching abilities drastically rose for one specific experiment
seems unlikely, particularly since their teaching abilities would then have to be interpreted as
returning to normal again once the identical experiment used a different technological
interface. The demonstrator measure seems to reflect something about the design of the
activity, not the demonstrators themselves. A likely candidate for correct interpretation of
Ndemonstrators 1S that it measures students’ broad scale appreciation for the fact they have a
demonstrator there to help and guide them: the extent to which students require and
appreciate help, not the quality of the demonstrator irrespective of how needed they were.
Under this interpretation, it makes sense that student interest would be improved under low
Ndemonstrators Measures: it simply means that experiments are more interesting if students do
not need to rely on their demonstrators to complete or understand the exercise.

The role of Ngemonstrators SE€MS to be opposite for the overall learning experience, however.
Increasing reliance on demonstrators may decrease student interest in the activity, but it
promotes a better overall perception of the activity as a whole. Equation 47, which has been
previously presented, is replicated below to show the LLTM model for the overall learning
experience item of the ASLE survey.

—27 I Ntheory focus
614 (overall learning experience) 2 yr
Ninstructions

Ncollaborative understanding

nindependent learning

Ndemonstrators
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11 Ndata interpretation 47
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Again it is seen that students show a preference for less lecture theory connection in their
practical activities, indicated by the -2 weighting coefficient for 1¢peory focus- This factor, as
well as assistance by the demonstrators and high quality instructional material appear to carry
equal weight in generating a positive overall learning experience. Independent learning also
appears to play a small role, leaving understanding of the theory through groupwork with no
discernible contribution. This does not mean group work need not be included in practical
activities — it was seen to be highly beneficial for understanding of chemistry. However, it does
suggest students have a slight preference towards individual work. Given student preferences
for “skills-based” practicals discussed at length previously, this is perhaps unsurprising. It
appears that constructive alignment32®3% plays a role here: the laboratory activity needs to be
designed to suit the key learning objectives, either increased theoretical understanding or
increased technical skills. Skills oriented practicals are likely to be perceived well overall
regardless, but attainment of the learning objectives is likely to be improved using individual
work and the inclusion of some data interpretation (see section 4.4.5). However, theory
oriented practicals are unlikely to be perceived well unless connection to lecture content is
well hidden (section 4.4.3) and understanding is most liable to be increased through group
work, in contrast to the recommendation for skills development.
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More concerning, however, is the fact that ncoaporative understanding has no discernible
weighting on the overall learning experience. Given that this factor’s primary defining
characteristic is the perception of increased understanding of chemistry, the question arises as
to whether students are generally ignoring the word “learning” in the phrase “overall learning
experience”. Certainly ASLE survey researchers would typically interpret responses to this
survey item as incorporating, at least in part, some learning gained from the exercise. The
observations made here suggest this may be in error, however. A serious issue is now apparent
for the consequential validity of the ASLE survey: if experiments are structured such that the
“overall learning experience” item receives the most positive response possible, this has
evidently no connection to increased student understanding. The pursuit of optimal
perceptions by the students (pursued using ASLE surveys) needs to be appropriately balanced
with the educational goals of the course. If students were to receive their preferences, judging
by Equation 47, experiments would be entirely disconnected from the lecture content,
students would not have to develop group work skills, demonstrators would guide students
through any thinking processes required and whether any understanding was gained would be
considered irrelevant. This difference between student preference and teacher intentions may
explain the evident disconnects between staff expectations of what would promote a positive
overall learning experience and the results observed in student feedback.>* >’

? u

This is by no means a full explanation of students’ “overall learning experience” rating,
however. The largest contribution of all to this survey item’s response is from the seventh
factor, interpreted only as “overall learning experience” unable to be explained as connected
with the other 13 items of the ASLE survey. The vast majority of variance in “overall learning
experience” appears to occur for reasons unknown. It may be that these reasons are
connected to attainment of learning objectives, but it also may not. It could also be that this
seventh factor has unusual “corrective” behaviour as factor 8 was previously seen to exhibit
(see section 4.3.3.4). The identity of this factor, and hence the identity of the current
unidentified sources of variance in perceived overall learning experience, remains as a goal for
future research.

4.4.8 Conclusion

The ASLE data LLTM reveals a wide range of insights into the laboratory experience from the
student perspective. Trends observed in student preferences appear to suggest that individual
work and more skills-based practical activities are preferred by students. Activities like these
appear to benefit from the inclusion of data interpretation and a lack of clear connection to
lecture theory. Conversely, more theory oriented experiments appear to be best structured as
group work activities to foster the understanding of chemistry, in spite of student preferences.
There is also evidence to suggest that activities should be structured appropriate to the ability
level of the student cohort and that different subsets of the student population may benefit
from different approaches. The engagement of students as judged by ASLE surveys appears to
be at odds with teaching and learning goals and many ASLE items’ correct interpretation
appears counterintuitive, suggesting that using ASLE survey responses alone to optimise
experiment design may be problematic.
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5.1 How ASLE survey data should be analysed

5.1.1 Use of integer scoring methodology

The first primary hypothesis of this thesis, reproduced below, concerned the validity of
guantitative techniques typically applied to ASLE survey response data. Given the observations
made over the course of this research, appropriateness of the usual integer value scoring
system and hence reliability of past conclusions can now be evaluated.

Hypothesis 1:

Conclusions drawn from the ASLE survey data using typical scoring techniques
resemble conclusions drawn using sample independent, interval scale measures
extracted from the same data.

The integer scoring system typically used to analyse ASLE survey data is generally a reasonable
approach for most practical purposes. Despite concerns regarding this methodology raised in
statistics literature, integer value scores appear not to have any discernible advantage over
more ‘optimised’ score values for the response categories (Figure 30, p. 93), and calculation of
mean scores, standard deviations and parametric statistics is not inherently inappropriate
(Figure 31, p. 94). This observation of a specific case where scoring or ordered categorical data
for the purposes of using parametric statistical methods is relevant to survey-based research in
a wide array of disciplines where these controversial techniques are common, including
medicine, psychology and education. The problem with using integer score values, in this case,
lies far more with their interpretation.

The response categories available for any given item of the ASLE survey are not equidistant (,
Figure 27, p. 90), and the range of student perceptions gathered by each response category of
the rating scale differs from item to item (Figure 28, p. 91). This not only removes the ability to
gauge whether student perceptions are broadly positive or negative based on the sign of the
mean score value, but also the ability to compare different items of the survey. Additionally,
magnitude of any differences in mean ASLE score values observed cannot be treated as if they
are proportional in magnitude to any difference in student perceptions. The fact that any
linear relationship between the ASLE mean score and student perception is only approximate
(Figure 29, p. 92) means that whilst researchers may be able to determine that an
improvement has occurred, they cannot precisely quantify the change based purely on score
data. It is also not necessarily valid to claim no change has occurred simply because the ASLE
mean scores have failed to change substantially (Figure S 48, p259).

The problem is compounded by the fact that student predisposition towards positive response
changes from occasion to occasion, even if the identical students are surveyed (Figure 32, p.
102). These changes in student bias can generate significant mean score differences even if the
experiment is unchanged, or exaggerate or mask genuine differences (see section 3.2, pp. 61-
83 for multiple examples). Variation between individual students in a given sample (within
sample variance) may be controlled for by gathering larger student samples, but variation
across independently gathered samples of students (between sample variance) (Figure 33,

p. 105) may remain independent of individual sample sizes (Figure 44, p. 128). This means that
an inherent margin of error margin of approximately 0.1 score units on average (Figure 45, p.
129) is always expected to exist in any ASLE mean scores obtained using data gathered on a
single occasion, in addition to random errors introduced through small sample sizes. Even large
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mean score differences (= 0.7) may be the result of students evaluating an experiment unfairly
(Figure 43, p. 127) rather than a genuine difference in experiment quality.

The resulting implication for researchers is that small differences in ASLE scored results (< 0.1)
should be dismissed as expected in all cases, even if the differences appear statistically
significant. Larger differences, however, cannot be known to reflect experiment quality if using
scored data alone, and hence should always be corroborated using open response comments
received (see section 3.1, pp. 51-59 for an example). As a rough guideline, differences > 0.25
mean score units are likely to be genuine at sufficient sample sizes (Figure 45, p. 129) and this
could be used as a “rule of thumb” for most rough, exploratory studies using ASELL survey
data. However, the use of mean scores for more precise and quantitative investigations is
more questionable.

Variation in student predisposition toward positive response is by far the primary source of
variation in individual ASLE survey responses (see section 3.3.3.1, pp. 89-90), meaning one
person’s rating of “good” is not guaranteed to reflect better experiment quality than another
person’s rating of “poor”. The same conclusion is supported by the broad overlap of likely
categories of response to be observed for any given student perception (Figure 27, p. 90). This
calls into question the appropriateness of using non-parametric rank-based methods such as
the Wilcoxon rank sum test, often used to avoid the controversies associated with integer
scoring. Further, the validity of correlating scored ASLE response data is threatened, since
variance in individual responses is far more reflective of correlations within students’ own
biases than it is of correlations between perceived aspects of the learning experience (section
4.1.6.3, p. 108 and section 4.3.4.3, p. 139). Averaging the scores associated with many student
responses before correlating the data may make scores reflect experiment-specific qualities
more closely, but again the issues of a non-linear relationship between mean score and the
underlying perception remain (see section 3.3.4, pp. 95-96). Correlating scored ASLE survey
data should therefore be avoided, and any conclusions drawn from such studies should be
revised using alternate analysis.

The heavy conflation between student dependent and student independent factors, as well as
non-linear relationship between mean scores and true interval scale measures of the
analogous student perception make Hypothesis 1 above strictly false. This does not imply that
scored data cannot be used; they are far simpler to compute than Rasch measures and
therefore much more practical for most educators. Limitations in the scoring methodology
simply restrict score-based research to more exploratory purposes, which may then be
supported further by additional research (for example from qualitative comments received on
open response items of the survey). Quantitative analysis using score data is inappropriate, but
support (section 4.1.3, pp. 101-104) for the second primary hypothesis of this research:

Hypothesis 2:
Student independent contributions to the ASLE survey responses exist and are
measurable.

implies that mean scores may act as indicators of more generalizable “objective” laboratory
learning experience quality, and are useful for that reason. Researchers simply need to be
conscious that these measurable properties of the experiment evaluated contribute minimally
to the variance in individual ASLE responses, necessitating larger samples of data for
meaningful investigations.

5.1 Conclusions and future opportunities| How ASLE survey data should be analysed 162



5.1.2 Interpretation of ASLE survey results

Hypothesis 2 above appears true for most survey items, but not all. The poor construct validity
of items 11, 12 and 13 (concerning benefits of teamwork, responsibility for own learning and
time availability respectively) may imply a lack of generalisability of these qualities beyond the
perspective of individuals (Table 19, p. 106). It may not be valid, for example, to make a
general claim that one experiment is perceived as having more time availability than another:
perceived time availability may vary between individuals far too widely for any group level
measurements to be meaningful. Alternately, however, these three items may interact with
student predispositions differently to the other items of the survey. Separating these two
possible conclusions from one-another requires further investigation.

Reason exists to suspect that even the measures of experiment quality which are more
generalizable depend on the student cohort to which the activity is presented. That is, even for
items with good construct validity, many factors underpinning ASLE survey responses are likely
dependent on the abilities of the student cohort (section 4.4.4, pp. 148-152). The conclusion to
be drawn from this is not that assigning quantitative measures to ASLE survey items is
inappropriate, but that measures of experiment quality must be viewed as dependent on the
student audience. An acknowledgement should also be made that any conclusions drawn from
group-level statistics apply only to the “bulk” of the student sample, but may not apply to
extreme high or low achievers, or to students otherwise atypical to the average. The unique
best way to design experiments, or the definitive most prominent factors in a positive learning
experience may not exist: these things may change entirely for students of different learning
styles, different levels of prior experience or possibly even different cultural backgrounds. Even
the placement of the activity in the broader course context may alter measures of experiment
quality (section 4.4.2, pp. 143-146), limiting the generalisability of any ASLE survey results for
individual experiments. This emphasises the importance of detailing the context and audience
for any experiments included in the ASELL database, and for any experiments submitted to
ASELL workshops for evaluation. Connection to lecture content appears as one of the most
prominent factors in student perceptions of their experiment (Table 21, p. 130 and Table 23,

p. 132) meaning this should be a prominent consideration in experiment design and
evaluation.

Correctly interpreting ASLE survey response data is problematic for reasons independent of
independent of any issues with generalisation of the results or whether the integer scoring
system is used, however. Over the course of the numerous investigations presented in this
thesis, a number of validity issues have been noted with items on the ASLE survey, summarised
in Table 29 (see below). Multiple survey items appear to be either best interpreted differently
than intended, appear unable to be assigned any measure able to be generalised as true for
most students, or would result in issues for student learning if their responses were optimised.
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Table 29: Validity issues for items of the ASLE survey

# Item Noted validity issues (relevant section in parentheses)
1 This experiment helped me to develop my None identified
data interpretation skills
2 This experiment helped me to develop my None identified
laboratory skills
3 | found this to be an interesting experiment Consequential validity issues: potentially counterproductive to
learning (4.4.7; pp. 156-159)
4 It was clear to me how this laboratory None identified
exercise would be assessed
5 It was clear to me what | was expected to None identified
learn from completing this experiment
6 Completing this experiment has increased None identified
my understanding of chemistry
7 Sufficient background information, of an None identified
appropriate standard, is provided in the
introduction
8 The demonstrators offered effective Potentially increased in problematic experiments due to
supervision and guidance students appreciating demonstrators “rescuing” them (4.4.7; pp.
156-159).
9 The experimental procedure was clearly None identified
explained in the lab manual or notes
10 I can see the relevance of this experimentto  None identified
my chemistry studies
11  Working in a team to complete this Poor construct validity (4.1.5; Table 19, p. 106). Receives a
experiment was beneficial binary response reflecting whether students worked in pairs or
individually (4.3.3.4; pp. 133-135).
12 The experiment provided me with the Poor construct validity (4.1.5; Table 19, p. 106).
opportunity to take responsibility for my own
learning
13 | found the time available to complete this Poor construct validity (4.1.5; Table 19, p. 106).
experiment was
14 Overall, as a learning experience, | would Not a “summary” item as thought: majority of variance is

rate this experiment as

explained by factors other than those in ASLE survey items.
May not take “learning” into account as the question states.
Consequential validity issues: counterproductive to learning
(4.4.7; Equation 47, pp. 141, 156-159).

This once again highlights the need to take alternate data into account when using ASLE rating
scale responses, to confirm that researcher interpretations of the evident issues are accurate.
The third major hypothesis investigated in this thesis (below) has a complex answer: in most

cases ASLE survey data does reflect measurable properties of the experiment evaluated, but
those properties are not necessarily the ones the researcher might expect from the way the
items are phrased.

Hypothesis 3:

Student independent measures obtained from ASLE survey data reflect qualities of the

experiment evaluated.

The more pressing issue for researchers using the ASLE survey is the fact that structuring

experiments to optimise ASLE survey responses may threaten the educational value of the
activity. Given that demonstrators may be rated more positively in problematic experiments, it

may be inadvisable to strive for a positive demonstrator rating as judged by the ASLE survey.
Similarly, the “boredom” response observed as a consequence of clear connections to lecture
content and the irrelevance of increased understanding on reported overall “learning”

experience highlight the risks associated with catering to student desires. A well-structured
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learning experience, from the perspective of the teacher, necessarily appears to include many
elements that students are liable to dislike. Educators therefore must remain conscious of this
fact whenever ASLE survey responses are being utilised: whilst the surveys may help improve
the student experience, they do not ensure teaching objectives are maintained. A balance
needs to be struck between maintaining learning goals and appealing to the preferences of the
learners.

The implication of this is that features of the ASELL review process other than the ASLE surveys
are critical. Workshop sessions allow much needed feedback from other teachers about the
educational merits of the activity, which students at home institutions evidently may be
unconcerned with. Completion of the Educational Template document for experiments
submitted to the ASELL review process is also a valuable and necessary step in ensuring that
ASELL reviewed experiments have educational merit as well as the appeal from the student
perspective desired. It would be highly inadvisable to conduct any ASLE survey research with
the intent of improving experiment design without explicitly including a consideration of the
educational goals of experiments, judged from the teacher perspective rather than the student
perspective. Analysis of the open responses provided to item 16 of the survey: “What did you
think was the main lesson to be learnt from the experiment?” may assist with this goal. The
low number of responses typically gained for open response items in individual experiment
analyses may be insufficient, however, re-emphasising the need for the wider ASELL review
process incorporating the Educational Template document and feedback from educators at
ASELL workshops.

5.1.3 Recommended research methodology

These results provide an opportunity to evaluate the appropriate “best practice” for using
ASLE survey rating scale data. Suggested methodology for several different research purposes
are summarised below.

For evaluating the merits of an individual experiment:

Assigning integer score values to response categories and calculating mean values is
reasonable. However, it should not be assumed that the score assigned to the neutral category
of the scale reflects a neutral perception and scores should not be compared between
different items of the survey. Interpreting ASLE survey results as if they reflect the precise
quality described in the exact phrasing of the survey item should be avoided (see Table 29) and
any conclusions drawn from rating scale response data should be corroborated by further
research or feedback provided on open response items of the survey. ASELL workshop
feedback and data contained in the Educational Template document is critical for any review
of experiment quality to ensure the educational aims of the experiment are not compromised
by the appeal to student preferences. It should be recognised that results apply only to the
bulk of the particular student sample surveyed, in the specific course context in which the
experiment was presented.

For comparing perceptions of quality for two or more experiments

Assigning integer value scores to the rating scale categories is reasonable. Mean scores may be
calculated for each item, treating these mean scores as rough indicators only. Statistical
significance or otherwise of results is often uninformative, so little is gained using rigorous
statistical testing, parametric or otherwise (though parametric tests may be preferred to rank-
based tests). Small score differences (<0.1) should be dismissed as expected regardless of
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sample size. As a rough guideline, score differences of approximately 0.25 units may usually be
taken as significant when using sufficient sample sizes (n > 30). For more precise calculation of
error margins in the mean score, Equation 46 (reproduced below) can be used to obtain the
corrected standard error value at a particular sample size.

i
SE(Apair) = | —-+0.01 46

For large score differences, any and all conclusions regarding the magnitude of the difference
in perception should be avoided if based on the scores alone. Differences suggested by mean
score data should be affirmed using analysis of qualitative response data in all cases, or
through subsequent research. Concluding that an experiment is “improved” or “better” in a
broad sense simply because student perception appears more positive is inadvisable: learning
goals of the activity may still have been compromised, despite student approval. This should
be checked. Student cohorts evaluating the experiments to be compared should be roughly
similar, notably in terms of their level of background knowledge. It should also be
acknowledged that some perceptions are dependent on the experiment’s positioning in
relation to the lecture content, so course sequencing differences may contribute to changes
observed. It is possible that students may be caused to rate experiments highly unfairly in
some extreme circumstances, and this should be taken into consideration when interpreting
results.

For investigating broad trends in student perceptions across many experiments

Scored data is not suited to this purpose, especially for producing correlations. Rasch
modelling or other methods which separate student dependent and independent factors are
more appropriate for quantitative analysis in this case, modelling data to account for the fact
student biases differ between occasions. In the case of Rasch modelling, data connectivity can
be achieved by identifying students whose measures appear not to vary and ensuring they
evaluate multiple experiments in the data set. Connectivity could alternately be achieved
through models such as the LLTM, though fit to the model should be confirmed. Bulk
population level statistics may be misleading, given that the relevant factors contributing to
student perceptions may change depending on student prior knowledge, positioning of
experiments in wider course contexts and other factors easily overlooked in bulk analyses.

In the case of interpreting past analyses already conducted using scored data, patterns in
individual responses should be interpreted as revealing patterns in students’ own internal
biases rather than patterns in the qualities of experiments themselves. An elaboration on this
point is presented in section 4.3.4.3: “Student independence of results”. Patterns in mean
scores prominently reflect patterns in students’ internal biases when small samples are used to
obtain the mean values, but increasingly reflect patterns in the qualities of experiments
themselves as sample sizes used to calculate the mean scores are increased.

5.1 Conclusions and future opportunities| How ASLE survey data should be analysed 166



5.2 Issues in the design of learning activities

5.2.1 Key factors in student perception

A major conclusion in this thesis was estimation of a Linear Logistic Test Model for the ASLE
survey data, and hence the identification of key factors underpinning ASLE survey responses.
That is, the factors underpinning student perceptions of their laboratory learning experiences.
Individual student biases were controlled for during these analyses, meaning that the factors
obtained are only those which may be considered “objective”; the factors obtained are
components of the laboratory learning experience whose relative quality can be assumed as
generalizable to all students, and therefore can be controlled by the teacher through design of
the activity. These key factors, presented in descending order of impact on the “objective”
qualities of the learning experience, are as follows (see sections 4.3 and 4.4):

e Whether the activity is clearly seen by students to be reminiscent of content
previously covered in lectures.

e The quality and appropriateness of the instructional material provided to students

e The understanding of theoretical content gained through collaboration with others.

e The extent to which data interpretation skills are developed through the activity

e Whether students work in groups or individually

e The students’ reliance on their demonstrators

e Other unidentified or complex factors

Examining the interactions of these factors revealed a number of trends in student perception
(see section 4.4). Perceptions of increased understanding were so strongly associated with
perceived benefits of teamwork that the two manifested as one singular indistinguishable
factor, reminiscent of suggested benefits of collaborative learning suggested in education
literature 314318, 320,321,326 The exception to this was the development of technical skills, which
were instead seen to benefit from individual work and interpretation of data. Student
preference was observed to lean towards these more “skills-based” activities, with a strong
“boredom” response associated with the inclusion of lecture content. High quality
instructional notes were seen to be broadly beneficial.

These factors did not explain the entirety of variance in student perceptions seen in this study,
however. Most notably, the “overall learning experience” appears to involve a substantial
contribution from features of the learning experience not addressed within the ASLE survey.
Identification of these factors is a goal for future research, and could potentially build upon the
model presented here.

5.2.2 The need for compromise between students and teachers

Some of the validity issues discovered within the ASLE survey items have wider implications for
chemistry education broadly. Conclusions of this research conducted in the context of
laboratory learning specifically highlight issues that may also exist in learning activities beyond
the lab, or which must be acknowledged if effective pedagogy is to be implemented.

Most prominent of these is the fact that student preferences often appear counterproductive
to the attainment of learning outcomes. The contribution of the various factors in laboratory
learning to student perspectives of a positive learning experience were seen to be biased
against the inclusion of content reminiscent of lecture material, instead preferring more “skills-
based” activities. Structuring learning activities by using appeal to the learner as the primary
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guiding principle of design could therefore be catastrophic for the learning goals of the activity,
conceivably even beyond the laboratory context. Teachers appear to have to choose between
two types of learning activity:

Activities conducive to learning Activities appealing to students
(see Equations 48 and 49) (see Equations 50 and 51)
Understanding of theory through Skills development through individual work
collaboration with others and connection to and data interpretation, without “boring”
lecture content. Less reliance on lecture content. More reliance on
demonstrators/ teachers. demonstrators/teachers.

The fact that the ASELL project was created with the explicit goal of restructuring activities to
appeal to students (in order to raise enrolment and retention in chemistry), implies that the
project may contribute to a widespread decrease in standards of learning and teaching if this
dilemma is not recognised. Whilst appealing to student preferences assists in meeting some
goals of educational institutions, it hinders the achievement of others. Substantial weight
needs to be given to the review of experiments by educators, for example using the
Educational Template document and discussion at ASELL workshop, avoiding an exclusive
appeal to the student perspective.

In this way a “compromise” needs to be made between the students, who wish to enjoy their
learning experiences, and the teachers, who wish students to retain theoretical
understandings. Recognising the student perspective has been increasingly viewed as
important in education,®*® but the data discussed here suggest that neglecting the teacher
perspective could potentially be damaging. Maximising student retention and enrolment in
chemistry degrees at the cost of knowledge and understanding, as the ASELL project may have
inadvertently pursued, would be a hollow victory.

The fact that student preference is often counterproductive to effective teaching also has
further implications. Student evaluation data regarding the quality of courses or teachers could
be subject to similar issues, implying that such data may not in fact reflect informative
measures of quality (as may be assumed). In fact, highly positive ratings of practical
demonstrators were seen in this thesis not to reflect high quality teaching, but instead were an
indicator of a problematic teaching activity. Poorly designed learning activities may prompt
students to be more appreciative when the teacher “rescues” them, whilst the teacher may go
relatively unnoticed in a well-designed activity. This observation illustrates the point that
appreciation for the teacher does not necessarily indicate high teacher competence, and that
evaluating teacher competency based solely or primarily on student feedback may fail to
account for any actual learning gains by the students. Again, this does not imply the student
perspective should be ignored, merely that it should not be treated as the sole guiding factor
in evaluating the quality of teachers or courses. Further research needs to be conducted to
explore the impacts of catering to student preferences on quality of learning and knowledge
retention.

5.2.3 There is no single best way to design a learning activity

Whilst the Linear Logistic Test Model derived in the final sections of this thesis reveals many
patterns in student perceptions, closer examination also reveals the model does not provide a
“one size fits all” solution to the question of how to design an activity. The key factors in the
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laboratory learning experience are seldom always positive or always negative. Rather,
different factors typically work towards some desirable outcomes, but against others.
Additionally, factors which are highly relevant to some desirable outcomes may be much less
relevant to others.

Through the LLTM, it was observed that the best way to design a laboratory activity depends
on:

1. The purpose of the activity. As discussed previously (section 5.2.2), appeal to student
interest is often at odds with gains in understanding and relevance to the course. In
designing learning activities, therefore, teachers need to weigh and prioritise these
two options. Skills-based activities have far greater student appeal, but teachers may
need to instead prioritise the reinforcement of theoretical course content.

2. The key learning objectives. A strong difference was observed between factors
contributing to skills development and factors contributing to theoretical
understanding (sections 4.4.3 and 4.4.5). Activities where the primary learning
objectives are practical skills are best designed without strong connection to lecture
theory, instead focusing on data analysis with a strong responsibility placed on
students for their own learning. Conversely, activities in which the key learning
objectives are reminiscent of lecture content are best structured as collaborative
group work activities, naturally including clear connection to the relevant lecture
theory.

3. The background knowledge of the students. Evidence was shown (section 4.4.4) that
students with differing levels of prior experience may perceive the identical activity
differently. Features of the task such as the instructional material may need to be
pitched at a level suitable to the audience, and factors such as time availability or the
ability to understand the theoretical content may differ based on prior experience.

4. The learning styles of individuals. The data show that the more extreme perceptions
of some students could not all be explained well by the broad scale patterns described
(Table 26, p151). Factors relevant to the quality of the learning experience of some
individuals may differ entirely to those which apply to the majority, meaning
appropriate teaching methods may not only differ from class to class, but also from
individual to individual. General trends in best practice will only ever suit the bulk of
the student population, with students at the extreme “edges” best catered for with
what could be entirely different pedagogy.

The complexity involved in structuring laboratory activities described above suggests that
searching for a single “optimal” way to design activities may be misguided. Correlational
studies such as the Barrie et al. paper®! which have the objective of revealing common themes
in student perception may well be informative, but they will always only be representative of
the “average” of the whole student sample used. If practicals delivered for different purposes,
with different learning objectives, pitched to audiences of different levels of background
knowledge or different learning styles are merged into a single analysis, the results may not
adequately apply to any one of them taken individually. Correlations may simply reflect what
was most often the case within the set of experiments used.
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This thesis, for example, exclusively used data from first year undergraduate chemistry
students in Australia, limiting the ability to generalise the LLTM formulated beyond that
context. Further, these two different cohorts of students with different levels of background
knowledge were merged into a single data set, meaning this potentially confounds the results
obtained. By no means does this suggest the results obtained are uninformative — they suggest
a range of important considerations for future research and teaching practice — it simply
implies that perceptions reported by different student groups may behave in a somewhat
different manner to the way student perceptions were observed to operate in this study.
Testing the more general applicability of the LLTM derived here, or even the estimation of a
new LLTM for a wider data set, is therefore a worthwhile pursuit.
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5.3 Achievements in measurement

5.3.1 Reaffirmation of the advantages of Rasch methodology

A substantial component of this thesis naturally involved a comparison of Rasch measurement
and scoring techniques more akin to classic test theory. Whilst these methods have been
contrasted at length previously in the literature (see section 1.3.1), results here reaffirm many
established conclusions, this time for the ASLE survey specifically. Despite this, the vast
majority of practitioners are unlikely to adopt Rasch measurement techniques for the study of
ASLE project data, principally because of small sample sizes in isolated analyses, data
connectivity issues in wider scale studies and simply the fact that few have knowledge of how
to estimate or interpret the results of Rasch modelling. For this reason, the evaluation of the
validity of common scoring techniques presented in this thesis is of value, despite the fact
scoring techniques are not ideal. However, should the issues with implementing Rasch analysis
be overcome, Rasch measurement has numerous advantages:

1. Rasch analysis provides interval scale measures
Rasch measurement yields genuine interval scale data, fit for parametric statistical
methods. Whilst the calculation of means and estimation of standard error margins
was seen to be reasonable for scores, Rasch measures are additionally fit for
correlational work due to their known proportionality to the latent trait of interest. By
contrast, correlational work was shown to be invalid using scored data, given their
non-linear relation to the traits they are desired to reflect. (see section 3.3)

2. Rasch measures are sample independent
A second primary limitation in scoring methodology was the heavy conflation between
student dependent and student independent effects, leading to perturbation in scores
received depending on the occasion and students surveyed (see sections 3.2 and
4.1.4). Rasch measurement techniques allow separation of generalizable qualities of
the experiment itself from fluctuations in student biases, even allowing comparability
of otherwise isolated data sets by using models such as the LLTM (see section 4.3.3.2).

3. Rasch models are highly versatile
Scoring methods were seen in this thesis to have limitations for the analysis of larger
data sets (see section 5.1.3). These issues are substantially alleviated when using Rasch
measurement, which is readily amenable to analysing very large numbers of
responses. Further, a wide range of different conceptions of how responders interact
with the survey may be encapsulated within Rasch models (see sections 2.2, 4.1.2.2
and 4.3.3.1), in contrast to the tendency to assume one singular (simplistic) means by
which students interact with surveys when applying scoring analyses (see section
3.3.2.1). The model is also made explicit within Rasch analyses in construction of the
appropriate Rasch model, whereas it is often tacitly presumed in score-based analyses.

4. Rasch models are testable
In contrast with the variety of validity assumptions required in score-based analysis
(see for example section 1.2.2), as well as assumptions regarding the way surveys
operate (see for example section 3.3.2.1), aspects of validity may be directly tested
when using Rasch techniques. This is true for the construct validity associated with
individual models (for example see sections 4.1.5 and 4.4.4) or even the validity of one
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explanatory model of the data in contrast with others (for example see sections 4.1.3
and 4.3.3.1). These issues are far less readily investigated using scoring techniques,
leading them to have been overlooked in the past. Validity assumptions made within
Rasch analyses are, however, often directly testable through the fit statistics reported
alongside Rasch models.

5. Rasch methodology is amenable to scientific investigation
Having been initially conceived in part to ensure the objectivity required for genuine
scientific comparisons!?® (see section 1.3.1), Rasch modelling is an ideal tool for
scientific inquiry. The additional ability to formulate nearly any hypothesised
explanation of data variance as a Rasch model, coupled with the Rasch model’s
quantifiable and therefore testable predictions enables research to span far beyond
the qualitative and exploratory. Model selection techniques such as use of the
corrected Akaike Information Criterion (AlCc) allow for various hypotheses,
encapsulated within Rasch models, to be supported or refuted based on empirical
observation and measurement. An iterative process of scientific inquiry utilising these
advantages is shown in Figure 50.

Hypothesis
Suppose that the data are best described by

explanation “A”, rather than explanation “B”
Rasch model

e formulations exist for
most (if not all)

e hypothesised

explanatory models of

Prediction the observed data

If the hypothesis is true, then Rasch model “A”

will be superior to Rasch model “B”

New hypotheses

Fit statistics encapsulate

can be formed, the correspondence

S
revising past . between Rasch model
conclusions predictions and

observed data

Experiment
Data are gathered, then fit to Rasch model “A”
and fit to Rasch model “B”. Fit statistics and

hence AlCc values are calculated for each.

Model selection criteria
(e.g. the AICc) can be
used to statistically

Conclusion select the superior

model

The model with the lower AlCc is superior. The

best explanation of the data is thus inferred.

Figure 50: The scientific method applied using Rasch measurement techniques

All of these advantages were critical in drawing the primary conclusions of this thesis. Notably,
methodology directly mapping to the scheme in Figure 50 above was implemented in this
thesis to improve on models of the laboratory learning experience, without which the vast
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majority of pedagogical conclusions discussed could not have been drawn. First, the
interaction between students and surveys presumed by typical analyses (modelled by Equation
32, see section 3.3.2.1) was improved upon by including a variation in student dispositions
from occasion to occasion (modelled by Equation 35, see section 4.1.1). Then, this generalised
model was further improved by identifying the basic elements of the laboratory experience
which give rise to perceptions reported on all 14 ASLE survey rating scale items (modelled by
the LLTM, see sections 4.2 and 4.4). Future research could easily involve testing new
refinements to the existing best explanation of the data using a similar process, leading to
better understandings of laboratory-based teaching and learning.

5.3.2 Novel approaches to measurement problems

Whilst instrumental to this thesis, the scheme presented in Figure 50 is somewhat atypical of
Rasch measurement practices. As previously described in the introductory material, Rasch
models are usually used in a confirmatory manner, establishing that data fit to a model the
researcher already has in mind (see section 2.3.2). By contrast, this thesis has used Rasch
modelling in a more exploratory manner, using model fit as a tool to select the best
explanation of the data from an array of proposed models.

The reason for this approach is largely due to the original design of the ASLE survey itself. The
ASLE survey was never intended to be unidimensional; rather than measuring a single latent
trait, different items of the survey were designed to address an array of (possibly independent)
features of the learning experience which may or may not have influenced the overall quality.
It was immediately recognised that this purpose of the survey invalidated commonly used
unidimensional models, leading to the need to formulate a model which would be more in
keeping with the intent of the survey. Section 3.3 therefore modelled the data without one
single unidimensional Rasch model as would be typical, but instead using fourteen models:
one for each separate dimension of the instrument. Rather than modifying the survey itself to
more adequately address one single dimension (as would be more typical), the structure (and
therefore purpose) of the survey was kept, instead tailoring the analysis to suit the survey
itself.

This was a novel approach: the “items” within Rasch models estimated in this stage of research
were not a set of many survey questions asked within a single context (as would be typical),
they were instead a set of many contexts in which the same question was asked. There is
nothing inherently “wrong” with this approach; “item” facets constructed in this manner may
appear commonly in many facet Rasch models (see section 2.2.2) and models such as this can
easily be derived from first principles (see section 7.4.1 of the supporting information for a
derivation of all models used). However, typical methodology would instead suggest the
survey be altered such that the series of items formed a single valid dimension of
measurement. Altering the survey was not an option in this case: the major objectives of the
thesis were to address validity concerns regarding the survey as it had been presented
previously and as such the survey construct itself needed to remain in its current form.

Beyond the choice to amend the Rasch model used rather than amending the survey to fit a
pre-established model, atypical approaches were also implemented when investigating the
survey data’s qualitative meanings. It became clear early on that even the more suitable Rasch
model selected was not necessarily the best option. Again, the goal here was to explore which
interpretation of the existing survey was appropriate; the goal was not to amend the survey to
fit a desired construct. Theoretical expectations and observed behaviour of the data do not
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necessarily match in all cases, and this led to the exploration of which model best suited the
data based on observation, not based on theory (section 4.1). This was a major shift in the use
of Rasch models from confirmatory applications, instead now for exploratory purposes. Such
an approach is far more typical of item response theory than it is of Rasch measurement (see
section 2.3.2).

This exploratory approach allowed for a range of conclusions regarding both the survey’s
validity and implications of the data received. Contrasting an array of possible interactions
between student and survey instrument (see section 4.1) allowed for a determination of the
optimal qualitative understanding of the survey’s use. Not only did this reveal crucial issues in
comparability of survey results gathered in different occasions, it also enabled an explicit test
of whether it was valid to assume features of the laboratory experience were objective and
measurable. Having determined this to be reasonable based on data, not merely based on
presumption, relationships between these measurable traits were able to be explored, finally
generating the Linear Logistic Test Model.

Formulation of the Linear Logistic Test Model itself was also far from typical. In keeping with
the usual confirmatory applications of Rasch measurement, Q-matrices for Linear Logistic Test
models are typically stipulated a priori, not derived from observational data. This usually arises
from a very deliberate and careful design of the survey or test at the outset, or else through
consultation with experts in the relevant field (see section 2.2.2). However, neither of these
approaches were possible in this case; the survey had not been designed with a specific Q-
matrix construct in mind, nor was there sufficient expert knowledge available regarding how
student perceptions precisely interact to stipulate an appropriate Q-matrix based on theory.
Again a novel approach was taken to rectify the problem: the technique of factor analysis was
was merged with Rasch modelling techniques to identify contributors to the Q-matrix, as well
as determine the weights of those contributions on each survey item.

Factor analysis and Rasch analysis have not been combined in the precise manner
implemented in this thesis previously, likely because of the atypical exploratory purpose of the
analysis and the unconventional multidimensional structure of the survey itself. Moreover, the
means of determining the appropriate number of factors to be retained was again atypical.
Rather than using common techniques involving eigenvalues or scree plots in conjunction with
what “makes sense” to the analyst (see section 2.4.6), objective Rasch model fit statistics and
model selection criteria were used to choose the most appropriate number of factors.
Confirmatory factor analysis in itself is not a new concept, but the marriage of exploratory
factor analysis and the confirmatory statistics of Rasch modelling is an entirely new technique.
The technique allowed for an objective selection of the factors to be included in the model
uninfluenced by any expectations of the researcher, and further produced an LLTM with near
perfect approximation to non-LLTM estimates (Figure 41, p 125). Analogous methods could
easily be applied to other data sets, identifying variables which underpin the observed data
and quantifying their contributions. This could be achievable for any research area making use
of survey data, for which the survey items are not intended to comprise a singular dimension.

Though the fit to the data appear to suggest a resounding success of this estimation technique,
commentary should be provided on the likely validity of the factors extracted. Most factors
extracted were able to be assigned a reasonable real world interpretation by examining two
pieces of information: the factor loadings on each of the initial ASLE survey items and patterns
in the final measure values for each factor. This in itself lends some initial degree of credibility
to the factor labels assigned, but far more compelling evidence of validity arises from the
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predictions made by the model itself. Well known and extensively researched concepts in
education were evident in the model under the factor identities assigned, including the strong
relationship between collaboration and understanding as well as the importance of sequencing
activities within the lecture course. This encapsulation of established theory was in no way
built into the model itself or the estimation procedure, suggesting that it emerges as a
consequence of a genuine correspondence between the model and real world patterns.

It should be noted that assigning factor character in this way necessarily draws upon what
each factor correlates with. Or more specifically, what the factor is observed to correlate with
in the data available. This creates a problem: features which form part of the identity of a
factor will naturally correlate to its measure values, but so too will the features of the
laboratory experience merely influenced by that factor. This conflation between identity and
influence of the basic factors extracted may mean the labels attributed to them and
descriptions of their character (see Table 25, section 4.4.1) could be in error.

Moreover, the factors modelled to underpin the experiences targeted by the survey items are
themselves necessarily composed of the original survey item dimensions. That is, any
identifiable defining characteristics of the factors extracted are restricted to being one of the
topics addressed in the survey items the model seeks to explain. If there are any key factors
underpinning survey responses which cannot directly be mapped back to a particular survey
item (or items), then this technique simply will not be capable of identifying them. This issue
posed a notable problem in the LLTM breakdown of the “overall learning experience” item: the
primary contributor to measures for this item was a factor which itself only strongly correlated
to “overall learning experience”, failing to be assigned any other fundamental identity.
Further, it was noted that the student cohort may play a role in factor identity, affecting which
features were observed to correlate within the data and therefore which factor dimensions
were constructed by the model (see section 4.4.4).

A revealing insight into validity of the factor characterisations assigned is that of factor 8 of the
LLTM. This factor was seen to have no clear correlation to any item of the ASLE survey, making
its identity a mystery initially, if indeed it was even a valid factor to extract. However, it was
observed to have a very clear, albeit unconventional real world interpretation: correction of
measures for item 11 (regarding benefit of teamwork) back to a binary response (reflecting
whether students worked in pairs or not). Given its lack of correlation to any particular item of
the survey, this factor would almost certainly have been discarded in a conventional factor
analysis. Its retention here, however, was critical. It was also by definition a perfectly valid
factor, since its measures mapped directly and exactly proportionally to a real world
phenomenon.

Despite factor 8’s validity, which lends credence to the notion that this technique does indeed
yield at least some validly interpretable factors, its behaviour also exposes a problem with the
method. The observed measures for item 11 of the survey are effectively one of two values if
factor 8 is discounted: one value if students worked in pairs, but a different value of they
worked individually. Clearly the binary option of whether students worked in pairs or not
should be the singular primary factor defining this behaviour in an ideal LLTM, but this was not
the estimated model. Instead, the model expressed this component of item 11’s behaviour as
an artificial combination of various teamwork-related features of the experience. This
happened because a single binary item of whether students worked in pairs or not was not
included on the survey, and so could not serve as the identity of any factor extracted. This is
plainly not the most parsimonious solution, and poses an open goal for future research. A
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method is needed to define a known factor into the Q-matrix at the start of the procedure,
such that it will be included in the final Q-matrix estimated.

5.3.3 In pursuit of a specification equation

Whilst the LLTM formulation obtained reveals a wide range of connections between student
experience and aspects of the activity design, making a direct mathematical connection
between objective experiment quality and the real world features of experiment design has
yet to be seen. Such a connection was described as a longer term goal for this research in the
introductory material (see section 1.4.2) and there are a small number of indicators in the
results discussed which suggest such a relationship may be attainable in future.

The measure for Ngqtq interpretation aPPEArS to be a direct function of the mode in which data
is presented to students. Values for this factor took on low values for all cases in which the
PASCO GLX Explorer handheld data logger was used, and consistently took on an equivalent
higher value measure ( 14atq interpretation = 0.28 Logits) when this was changed to a laptop
computer equipped with PASCO Data Studio software (see section 4.4.5). The fact that the
equivalent value was observed for all cases of using the laptop interface indicates a direct
connection between activity design and the precise number value of the measure, as does the
fact that shifting from data logger to laptop was consistently an improvement (though to a
different extent in different experimental contexts). Similarly, the binary measure outcome for
survey item 11; § = —1.92 Logits if students worked individually and § = 0.08 Logits if
students worked in pairs, also suggests a direct mathematical connection between activity
design and the precise number value of the measure.

A simplistic way to encapsulate the design of the experiment mathematically is to express it as
a vector of many elements, each element of the vector pertaining to a different possible
inclusion in the experiment design. Such a vector could have countless (even infinite)
elements, corresponding to the countless different ways to design experiments: each element
of the vector could take on a value of 1 or 0, corresponding to the inclusion or lack of inclusion
of a specific possible feature in the design of the task respectively.

51

. 1, attribute z is true of experiment m
Wy = [(L)l (O)) ]’ w, =

0, attribute z is not true of experiment m

Conceptualising such a vector is useful, since it can be further imagined that each of the
observed basic factor measures of the LLTM are some direct mathematical function of the
experiment design vector. That is, the factor measures are resultant of the experiment design:

Nfm = Qf (am) 52

The survey item measures could also be expressed as a function of experiment design. Using
this type of notation, a specification equation for survey item 11’s measure could be
constructed as follows:

S — - — —1.92 Wstydents work individually
11 (teamwork), m — Qteamwork (wm) - : 53
’ 0.08 Wstydents work in pairs

Here the measure for item 11 (pertaining to perceived benefit of teamwork) for the mt™
experiment (611 (teamwork), m) is expressed as a direct function (Q¢eqmwori) of the design of
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the experiment (w,,). The relevant features of the experiment design are students’
requirement to work individually or in pairs. In Equation 53 above, truth or falsity of each of
these options is expressed as a value of 1 or 0 respectively for the wsygents work indiviauany and

Wstydents work in pairs terms.

Table 30 (page 178) summarises the full theoretical connection between experiment design
and observed ASLE survey data, as explored in this research. Relevant equation numbers, as
used in prior sections of this thesis, are listed to the left where appropriate. It can be seen that
whilst a large portion of this connection has been revealed through the work in this thesis, the
explanation of basic laboratory learning experience factors as a direct mathematical function
of experiment design attributes remains largely undetermined. Solving these mathematical
connections may serve as the goal of future work, potentially via iterated refinement of
existing models (see Figure 50 presented previously).

Determining a precise specification equation which could be used by all teachers in all
circumstances may not be possible, however. Evidence has been presented and discussed at
length that different relationships exist within the measures obtained depending on the
student cohort to which experiments and surveys are presented. A specification equation
which appears consistently true for one student cohort may be incorrect for another. It is
unlikely, therefore, that Rasch measurement for experiment design could ever be used to
achieve what “Lexiles” have for reading (see section 1.3.2).

In the case of reading, the objective reading difficulty of a text appears to be consistent across
the student population broadly, allowing “Lexiles” (a measure of reading difficulty derived
from Rasch measurement) to be meaningful for any audience. This means that Lexiles can be
calculated for an array of texts and disseminated to schools and educators as a useful tool in
selecting texts appropriate for various readers. In the case of ASLE survey-derived Rasch
measures for laboratory exercises, however, any objective measurements obtained may be
specific to particular student audiences only. Consequently, measures associated with specific
experiments could never be widely disseminated in this way without specifying the precise
student audience which was used to obtain them. The measures are therefore far less simple
to interpret, and very restricted in their utility. The practice of Rasch measurement and the
derivation of any specification equations for the ASLE data in future is likely of far greater use
in education research than it is for the purposes of widespread dissemination to teachers.
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Table 30: Full model connecting experiment design to observed ASLE survey data

ASELL mean scores arise from

)& Xim; @=[-2 -1 40 +1 +2] averaging scored observed survey
responses

Each survey item, for each experiment
S .
- | X = [Cima1 Cimz2 " Cimk] has a total count of responses received
in each rating scale category

Observed response category counts
34 | cimp = Nim X P* i (Xk, 6im) arise from population level response
category probabilities

(o0}

Population level response category
33| P (i, 8im) = f Pymi(X = x,) X P(Bg) . dPBE probabilities arise from summating
probabilities for individual students

— 00

Interaction between occasion specific
student biases, survey question specific
In Ppm,i (X = x;) y P e experiment quality measures and the

Ppmi(X = x¢_1) Enm — “PCMim — *Lk response category structure interact to
predict response probabilities for
individual students

35

MEASURABLE LATENT VARIABLES/ EXPERIMENT QUALITIES UNDERPINNING RESPONSE

Disconnects between different subsets
A2 | Sprmym = —Opcmyp T Vs of the data may offset experiment
quality measure estimates

F Survey question specific experiment
_ ' ' quality measures are a linear

A0 | Ouirmym = 2 QifMym + Hi combination of more basic experiment

f=1 specific factors

Measures for basic experiment specific
52 | npm = Qp (@) factors are each a direct function of the
attributes of experiment design

1, attribute z is true of experiment m
0, attribute z is not true of experiment m

51 | @, =[w1 w2 "'];(uz={

Relevant equation numbers used in the body of this thesis are shown at the far left of the table.
VARIABLES: ASELL mean score (A), total student responses (N), observed response category count (c),
population level probability (P*), individual student probability (P), observed response (X), response category (x),
student dependent measure (Be), student independent measure (Spcu for Partial Credit Model, S.mm for Linear
Logistic Test Model), category threshold (t), measurement subset offset (y), basic factor weighting (q), basic
factor measure (n), survey question relative location (), specification equation function (€2), experiment design
description vector ()

VARIABLE INDICES: nt" person, mth experiment, it" survey question, ki response category (of K),

st measurement subset, fih basic factor (of F), zt" experiment design attribute
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5.4 Future investigation with the Linear Logistic Test Model

5.4.1 Uniting the broader ASELL database

Given the breadth of conclusions able to be drawn from the Linear Logistic Test Model
generated from the data set used in this thesis, as well as the questions existing regarding its
generality to other data sets, it is desirable to be able to test whether other data sets exhibit
the same patterns. The ability to test the applicability or otherwise of a model such as the
LLTM is one of the primary strengths of Rasch measurement techniques, making this objective
entirely within reach. The ASELL project also has a vast array of data from over 120 evaluated
experiments at its disposal,®” providing an ideal opportunity to test the applicability of the
LLTM generated here for a larger and more diverse data set.

Unlike using scored response data, the LLTM inherently separates student dependent and
student independent factors. This naturally avoids effects whereby the conclusions drawn
reflect patterns in students’ inherent predispositions more than patterns in generalizable ways
to improve the learning experience (see section 4.3.4.3). The LLTM also naturally connects
data sets gathered from different experiments, as the same underlying factors contribute to
the perceptions observed for each (see section 4.3.3.2). The LLTM derived here also has the
advantage that it was derived objectively from the data alone, without stipulation of which
factors to include in the model using subjective researcher judgement (see section 4.3.4.4).
These three benefits: the isolation of student independent trends, connection of data sets and
objectivity of the model’s derivation provide additional motive to estimate parameters
associated with experiments in the ASELL database, using the LLTM structure.

In this study, the Facets Rasch measurement software was used to estimate parameters for
the ASLE data LLTM. Whilst this was achievable, structuring the Q-matrix within the Facets
software specification file is by no means simple, and cannot be achieved without the aid of
other technology such as Microsoft Excel. It would be more convenient to utilise more capable
Rasch measurement software such as ConQuest,** 1°® within which matrix weighting
coefficients can be more simply stipulated. This would also allow the use of non-integer values
in the Q-matrix, making the resultant model more accurate. The procedure used in this thesis
to generate a Linear Logistic Test Model within the Facets software is presented in the
supporting information (see section 7.6.1), as are both the integer value and non-integer value
forms of the Q-matrix (see section 7.6.3).

The hypothesis of whether the LLTM generated in this research applies to the wider ASELL data
set can simply be tested using the corrected Akaike Information Criterion (AlCc). The same
data could be fit to the LLTM and an analogous non-LLTM model, calculating the AICc value for
each. The LLTM can be deemed the best explanatory model of the data if it has the lower AlCc
value. Further elaboration on AlCc value interpretation is presented in section 2.5.4.2.

Because student dependent parameters are best modelled as constant for a singular occasion,
but varying between different occasions (see section 4.1.3), estimation of an analogous non-
LLTM model of the ASELL data would result in myriad isolated subsets of data. An alternate
means of calculating the fit of the data to a non-LLTM analogue is therefore preferable. Once
the LLTM has been estimated within Rasch measurement software (such as Facets), non-LLTM
analogues of all survey item measures estimated can be obtained simply by adding
“displacement measures” back to the d,.tm measures obtained. A Partial Credit model of the
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data can then be structured by anchoring all dpcmy measures to equal these dumm + displacement
values. The fit statistics of this Partial Credit Model would then reflect the fit of the datato a
non-LLTM model, which can be contrasted with the fit observed to the LLTM.

AlCc values can then be calculated for each of the two alternate models using Equation 31
(reproduced below), where n is the total number of data points gathered (14 per survey, if all
surveys are complete) and the —2 In(£) term is the log-likelihood chi squared value quoted in
the Facets software as a measure of global model fit (£ is the likelihood value for the full
model, which may be quoted in other Rasch measurement software).

AlCc = —21 (L)+2k+2k(k+1)
€= n n—k—1

31
The number of free parameters (k) to be used in the equation above for the (non-LLTM) Partial
Credit Model can be simply calculated using the number of experiments conducted (X) and the
number of surveys gathered (N), as shown below.

k = 56 T measures (4 Rasch-Andrich thresholds x 14 items)
+ 14X 4 measures (14 ASLE item measures per experiment)
+N e measures (one per survey occasion, even for the same
students)
-1 (one facet centred at zero)

For the LLTM, a different set of parameters is involved and therefore the number of free
parameters must be computed differently. The total number of free parameters (k) depends
on the number of factors (F) contributing to the final LLTM approximations to each survey item
measure. In this thesis, a 12 factor model (F=12) was computed to be optimal. However,
because the factor loading values were rounded to integers, the twelfth factor was rendered
not to contribute, leaving only 11 factors in the model for which results are presented (F=11).

k = 56 T measures (4 Rasch-Andrich thresholds x 14 items)
+ 14 [ measures (Defining relative location of measures for the
14 survey items)
+F.X 1 measures (F factor measures per experiment)
+N e measures (one per survey occasion, even for the same
students)
-1 (one facet centred at zero)

Having calculated AlCc values for the LLTM and non-LLTM models of the data, the preferable
model can be concluded (the model of lowest AlCc value).

Should the procedure described above reveal that the LLTM presented in this thesis is not a
suitable explanation of the wider ASLE data set, it may not be possible to emulate the
procedure described within section 4 of this thesis to obtain a better LLTM, due to issues of
data connectivity. Currently, ASLE surveys are typically anonymous, meaning any given
experiment evaluated with the ASLE survey has no connection to other analyses. In analyses
described within this thesis, students responding to multiple experiments were used to
‘equate’ different isolated subsets of data, allowing comparability between measures and
subsequently permitting factor analysis and Q-matrix estimation. A similar procedure would be
necessary to equate all experiments in the ASLE survey database if a new LLTM were to be
estimated. This is not possible given respondent anonymity, however.
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One possible solution to the problem could be to designate a series of “calibration”
responders: specific individuals who complete a number of experiments and evaluate them
using ASLE surveys, whose responses may be used to connect the wider database. An
immediately apparent option for who these individuals may be is ASELL workshop attendees. If
ASELL workshop attendees completed ASLE surveys for each experiment they conduct at the
workshop, and if multiple surveys completed by the same individual could be tracked, it may
be possible to use those individuals to unite the data sets associated with experiments
submitted by different institutions. This may at least unite the set of experiments conducted at
workshops, but the same could not be said for the data gathered at home institutions: again,
responders common to multiple experiments, whose biases toward positive response can be
assumed not to change, must be present to unite separate datasets.

5.4.2 Improving the current LLTM

Multiple observations over the course of this research have indicated that the LLTM estimated
here may need to be further refined if it is to be applicable to a wider data set. The limited
diversity of the student audience for these studies substantially restricts the generality of any
precise mathematical patterns observed. Further, the model may conflate the identity and
influences of key factors underpinning student perceptions (see section 5.3.2), meaning the
LLTM estimated could have been perturbed by features which correlate by chance in the
sample of experiments selected.

Substantial contributions by factors of unknown identity have also been revealed, suggesting a
target for future research. Measures for the “overall learning experience” item particularly
have a majority of variance explained by factors other than those targeted by the ASLE survey
or identified within the LLTM. Identifying these factors is pivotal not only to refinement of the
LLTM as a model, but also to the understanding of what makes students view their laboratory
experiences positively.

The aspects of the laboratory experience currently included on the survey do not encompass
all considerations relevant to student perceptions. Were these factors identified, the current
model could be substantially improved. A simple solution to this could be to structure a new
survey, including some items present on the current ASLE survey, but others designed to
investigate different features of the student experience. New question could be designed to
target features of the activity design which appeared relevant to the measure values obtained
here, but were not explicitly targeted previously. Rating scale items which might be included
on a revised survey are suggested below.

Items addressing appropriateness to the prior learning of the audience:

e | found the theory in this experiment to be (above my level, appropriate to my level,
below my level)

e | found the technical skills in this experiment to be (above my level, appropriate to my
level, below my level)

Items which may reveal the learning style the experiment is best directed towards:

e This activity involves hands-on interaction with chemical concepts

e This activity allows me to visualise chemistry in action

e This activity requires me to use difficult or complex symbols / mathematics
e This activity requires me to remember and apply chemical concepts
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Structuring a new survey could also allow an opportunity to target the basic factors seen to
underpin ASLE survey response more directly. Doing so could not only serve as a tool for more
direct measurements of fundamental components of the laboratory learning experience, but
could also be used as a tool to confirm the precise defining characteristics of the six known
factors identified in the LLTM (see Table 25). Some rating scale items which may assist in these
objectives are suggested below.

For factor 1 (theory focus):

e This activity is strongly connected to the lecture course content
e The main purpose of this activity is to develop my technical laboratory skills
e The main purpose of this activity is to reinforce my understanding of lecture theory

For factor 2 (instructions):

e The instructional material provided is clear and sufficient
e | easily understood the material provided to me in the notes for this activity
e The instructional notes for this activity provided all information | needed

For factor 3 (collaborative understanding):

e This activity has increased my understanding of chemistry theory

e This activity involves collaboration with others

e This activity has increased my understanding of chemistry theory through
collaboration with others

For factor 4 (data interpretation):

e This activity allows me to improve my data interpretation skills
e This activity involved the use of technology
e The technology used in this activity was simple to operate

For factor 5 (independent learning):

e This activity allows me to learn independently
e In this experiment | worked (in pairs or in a group / individually)

For factor 6 (demonstrators):
e In this activity | needed help from my demonstrator

If a new survey were structured including questions such as these, and similar methods to
those discussed over the course of this thesis were applied, a LLTM obtained would be likely to
better encapsulate the factors contributing to student experiences than the model presented
here. If such a study were conducted at the University of Adelaide, gathering data for the
identical experiments studied already, measures obtained for any new survey items could be
included alongside measures obtained from research in this thesis to estimate a vastly
improved LLTM for the ASLE data. This may be a far more viable solution to reformulation of
the LLTM than uniting the wider ASLE database.

Refinement of the understandings gained through the course of these works, or identification
of entirely new factors contributing to student perceptions of laboratory learning experiences
in this way could continue to build upon the array of knowledge revealed by the model
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presented in this thesis. Not only could this continue to inform effective pedagogy of science,
but also serve to reveal key questions for future research in science education and teaching in
laboratories.
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7.1 Information provided to participants

7.1.1 Excluding the option to provide student identification number

PARTICIPANT INFORMATION SHEET

Project Title: Representations of scientific concepts and learning THE UNIVERSITY
experience of first year undergraduate university students o ADELAIDE

This project will gather information regarding student perceptions of laboratory exercises, and hence has
the ability to evaluate the efficacy of each experiment as a learning exercise from the student perspective.
Benefits of this investigation include contribution to knowledge of effective pedagogy in sciences and also
contributions to the improvement and/or sustained quality of first year undergraduate laboratory programs
in chemistry, biology and physics courses at the University of Adelaide. Researchers involved in the
project include Mr. Sam Priest, A/Prof. Simon Pyke, Dr. Natalie Williamson and Dr. John Willison.

The aim of this project is to investigate factors contributing to positive learning experience from a student
perspective. Of primary interest is the investigation of any trends in student perception of experiments as
related to the modes in which concepts are represented. Specifically, macro (accessible to the senses),
sub-micro (not accessible to the senses), and symbolic representations (those using equations, symbols,
diagrams etc) of concepts will be considered.

Data for this project is collected via surveys distributed during laboratory sessions. These surveys are
modelled on those used for the ALTC funded Advancing Science by Enhancing Learning in the Laboratory
(ASELL) project (see http://www.asell.org), which have been used at numerous institutions Australia wide
for more than 10 years. We ask that you complete these surveys at the end of your laboratory sessions,
and that any feedback you provide is honest.

Your participation is entirely voluntary and your feedback is anonymous. Neither whether you choose to
respond to these surveys, nor any feedback you provide, will have any influence on your progress,
results or grades in any subject. Researchers gathering the data requested will have no direct role in
assessment of the laboratory activities concerned. Filling out the survey will constitute consent for its use
for research purposes.

If you are willing to participate, please complete the surveys made available to you during your practical
sessions, upon completion of your experiment. Thank you for your cooperation. Please direct any queries
regarding this research to one of the contacts below:

) Dr. Natalie Williamson
Mr. Sam Priest

First Year Coordinator (Discipline of Chemistry)
BSc. (Hons I), PhD student

School of Chemistry and Physics
Tel: I
Email: I

School of Chemistry and physics

Email: [

A/Prof. Simon Pyke

) ) ) ) Dr. John Willison
Associate Dean (Learning & Quality) — Faculty of Sciences

. . Senior Lecturer
School of Chemistry and Physics

Te!: NN
Email: [N

School of Education
Te!: I
Email: [N
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PARTICIPANT INFORMATION SHEET

Project Title: Representations of scientific concepts and learning THE UNIVERSITY
experience of first year undergraduate university students o, ADE LA | D E

This project will gather information regarding student perceptions of laboratory exercises, and hence has
the ability to evaluate the efficacy of each experiment as a learning exercise from the student perspective.
Benefits of this investigation include contribution to knowledge of effective pedagogy in sciences and also
contributions to the improvement and/or sustained quality of first year undergraduate laboratory programs
in chemistry, biology and physics courses at the University of Adelaide. Researchers involved in the
project include Mr. Sam Priest, A/Prof. Simon Pyke, Dr. Natalie Williamson and Dr. John Willison.

The aim of this project is to investigate factors contributing to positive learning experience from a student
perspective. Of primary interest is the investigation of any trends in student perception of experiments as
related to the modes in which concepts are represented. Specifically, macro (accessible to the senses),
sub-micro (not accessible to the senses), and symbolic representations (those using equations, symbols,
diagrams etc) of concepts will be considered.

Data for this project is collected via surveys distributed during laboratory sessions. These surveys are
modelled on those used for the ALTC funded Advancing Science by Enhancing Learning in the Laboratory
(ASELL) project (see http://www.asell.org), which have been used at numerous institutions Australia wide
for more than 10 years. We ask that you complete these surveys at the end of your laboratory sessions,
and that any feedback you provide is honest.

Your participation is entirely voluntary and your feedback is anonymous. Neither your response to these
surveys, nor any feedback you provide, will have any influence on your progress, results or grades in any
subject. Researchers gathering the data requested will have no direct role in assessment of the
laboratory activities concerned. Filling out the survey will constitute consent for its use for research
purposes.

The surveys provide you with the opportunity to include your student ID number. This is entirely optional,
and you may elect to still complete a survey without including this. Should you choose to provide your
student identification number, this is at no stage intended to be linked to your name. The optional
provision of your identification number is included solely for the purpose of identifying surveys which have
been completed by the same person, and also relating perceptions of experiments to the different
subjects students study. This facilitates investigation regarding whether perceptions and learning
experiences associated with one science discipline area influence those of another.

If you are willing to participate, please complete the surveys made available to you during your practical
sessions, upon completion of your experiment. Thank you for your cooperation. Please direct any queries
regarding this research to one of the contacts below:

. Dr. Natalie Williamson
Mr. Sam Priest

First Year Coordinator (Discipline of Chemistry)
BSc. (Hons 1), PhD student

School of Chemistry and Physics
Tel: I
Email: [

School of Chemistry and physics

Email: [N

A/Prof. Simon Pyke

) ) , . Dr. John Willison
Associate Dean (Learning & Quality) — Faculty of Sciences

. ) Senior Lecturer
School of Chemistry and Physics

Te! I
Email: [

School of Education
Tel: I
Email: |
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7.2 Supporting information for sections 3.1 and 3.2

7.2.1 Responses to Likert-type items

For each of the following tables, a number of symbols are used. Response categories A through E represent the
most positive to least positive response options respectively. The total number of responses received for that
survey item (the sample size) is labelled as n ; m is the mean response score for that item; s is the standard
deviation of response scores about the mean score; SE(m) is the standard error in the mean value, calculated as the
standard deviation (s) divided by the square root of the sample size (n).

Table S 1: Likert type item response data for the Biological Buffers experiment

2011 responses (datalogger interface)

Response frequencies Count | Sampling Distribution
Survey ltem

A B C D E n m s Se(m)

1 |datainterpretation skills 20 86 18 3 6 133 | 0.83 0.87 0.08
2 llaboratory skills 21 80 23 4 6 134 | 0.79 0.90 0.08
3 |interest 19 46 50 13 6 134 | 044 1.00 0.09
4 |clearassessment 26 68 35 3 2 134 | 0.84 0.81 0.07
5 |clearexpected learning 30 67 26 8 3 134 | 0.84 0.92 0.08
6 |increased understanding 28 70 27 5 4 134 | 0.84 0.90 0.08
7  |background information 36 61 24 9 5 1351 0.84 1.01 0.09
8 |demonstrators 67 51 16 1 1 136 | 1.34 0.77 0.07
9 |clearprocedure 35 68 21 6 5 135 1 0.90 0.96 0.08
10 Jrelevance todiscipline 51 64 17 3 1 136 1.18 0.79 0.07
11 |benefit ofteamwork 68 48 13 3 3 135 1.30 0.90 0.08
12 Jresponsibility forown learing | 31 72 26 2 3 134 | 0.94 0.83 0.07
13 Jtime availability 2 9 113 8 1 133 | 0.02 0.47 0.04
14 |overall learning experience 11 76 32 12 3 134 | 0.60 0.85 0.07
Response frequencies Count | Sampling Distribution

Survey Item

A B C D E n m s Se (m)

1 |datainterpretation skills 15 53 12 0 0 80 1.04 0.58 0.07
2 llaboratory skills 19 45 14 2 0 80 1.01 0.72 0.08
3 |interest 13 33 28 4 2 80 | 0.6e4 0.90 0.10
4 |clearassessment 19 45 11 4 1 80 0.96 0.83 0.09
5 |clear expected learning 18 46 8 4 4 80 0.88 099 0.11
6 [increased understanding 15 43 18 1 2 79 0.86 0.83 0.09
7  |background information 18 35 17 7 3 80 0.73 103 0.12
8 |demonstrators 45 28 4 2 1 80 143 0.81 0.09
9 |clearprocedure 13 29 21 13 4 80 043 110 0.12
10 Jrelevance todiscipline 28 38 12 2 0 80 1.15 0.76 0.09
11 Jbenefit ofteamwork 48 24 6 2 0 80 148 0.75 0.08
12 Jresponsibility for own learing 21 42 15 2 0 80 1.03 0.75 0.08
13  Jtime availability 1 11 65 3 0 80 0.13 046 0.05
14 Joverall learning experience 12 50 15 2 1 80 0.88 0.74 0.08
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Table S 2: Likert type item response data for the Vapour Pressure experiment

2011 responses (datalogger interface)

Response frequencies Count | Sampling Distribution
Survey ltem

A B C D E n m s Se(m)

1 |datainterpretation skills 10 37 18 11 8 84 0.36 1.15 0.13
2 laboratory skills 16 32 16 14 6 84 045 1.19 0.13
3 |interest 22 24 13 18 84 1-0.15 1.27 0.14
4 |clearassessment 33 27 9 8 84 | 026 1.08 0.12
5 [clearexpectedlearning 35 20 8 11 83 0.28 1.19 0.13
6 |increasedunderstanding 12 32 22 8 10 84 0.33 120 0.13
7  |background information 13 43 15 8 5 84 0.61 1.05 0.11
8 |demonstrators 39 27 14 3 1 84 1.19 0.92 0.10
9 |clearprocedure 7 24 27 17 9 84 0.04 1.12 0.12
10 Jrelevance todiscipline 15 38 21 5 5 84 0.63 1.04 0.11
11 |benefit ofteamwork 47 25 8 1 84 136 0.89 0.10
12 Jresponsibility for own learing 15 30 30 4 84 056 1.01 0.11
13 |time availability 2 1 39 34 8 84 |-0.54 0.78 0.09
14 Joverall learning experience 3 28 27 16 10 84 -0.02 1.08 0.12

2012 responses (laptop interface)

Response frequencies Count | Sampling Distribution
Survey Iltem

A B C D E n m s Se(m)

1 |datainterpretation skills 24 63 13 1 1 102 1.06 0.70 0.07
2 laboratory skills 25 58 16 3 1 103 1.00 0.78 0.08
3 Jinterest 13 45 28 10 7 103 | 0.46 1.06 O0.10
4 |clearassessment 15 56 18 10 4 103 | 0.66 0.98 0.10
5 [clearexpectedlearning 21 59 17 5 1 103 | 0.91 0.81 0.08
6 |increased understanding 26 56 15 5 1 103 | 0.98 0.83 0.08
7  |background information 26 51 18 5 3 103 | 0.89 0.94 0.09
8 |demonstrators 49 45 6 0 3 103 | 1.33 0.83 0.08
9 |clearprocedure 20 31 33 11 8 103 | 043 1.15 0.11
10 |relevance todiscipline 18 53 24 6 2 103 | 0.77 0.88 0.09
11 |benefit ofteamwork 56 36 5 4 1 102 | 1.39 0.83 0.08
12 Jresponsibility for own learing 21 65 13 3 1 103 | 0.99 0.73 0.07
13 |time availability 1 6 84 9 2 102 | -0.05 0.51 0.05
14 |overall learningexperience 11 58 26 7 1 103 | 0.69 0.79 0.08
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Table S 3: Likert-type item response data for the Copper(ll) lon Concentration experiment

2011 responses (datalogger interface)

Response frequencies Count | Sampling Distribution
Survey ltem

A B C D E n m s Se(m)

1 |datainterpretation skills 24 78 23 0 0 125 1 1.01 0.62 0.06
2 llaboratory skills 35 71 18 1 1 126 1.10 0.72 0.06
3 |interest 25 62 30 7 2 126 | 0.80 0.88 0.08
4 |clearassessment 40 60 23 3 0 126 | 1.09 0.77 0.07
5 |clear expected learning 41 65 17 3 0 126 1.14 0.73 0.07
6 |increased understanding 31 64 23 6 1 125 1 0.94 0.84 0.07
7  |background information 39 65 20 2 0 126 1.12 0.72 0.06
8 |demonstrators 80 39 5 1 0 125 158 0.61 0.05
9 |clearprocedure 54 55 13 3 0 125 | 1.28 0.75 0.07
10 [Jrelevance todiscipline 34 58 30 4 0 126 | 0.97 0.80 0.07
11 |benefit ofteamwork 73 46 5 1 0 125 153 0.62 0.06
12 Jresponsibility for own learing 34 67 23 1 1 126 1.05 0.75 0.07
13 Jtime availability 8 14 102 2 0 126 | 0.22 0.58 0.05
14 Joverall learning experience 14 89 23 0 0 126 | 0.93 0.54 0.05

2012 responses (laptop interface)

Response frequencies Count | Sampling Distribution
Survey ltem

A B C D E n m s Se(m)

1 |datainterpretation skills 24 68 28 0 0 120 | 0.97 0.66 0.06
2 laboratory skills 26 74 19 1 0 120 1.04 0.64 0.06
3 Jinterest 31 59 23 7 0 120 | 0.95 0.83 0.08
4 |clearassessment 41 57 19 3 0 120 | 1.13 0.77 0.07
5 |clearexpected learning 41 58 18 3 0 120 | 1.14 0.76 0.07
6 [increased understanding 27 56 32 4 0 119 | 0.89 0.79 0.07
7  |background information 49 59 3 0 120 | 1.28 0.71 0.07
8 |demonstrators 81 31 0 1 120 | 1.59 0.68 0.06
9 |clearprocedure a7 59 13 1 0 120 1.27 0.68 0.06
10 |relevance todiscipline 30 67 19 4 0 120 | 1.03 0.74 0.07
11 Jbenefit ofteamwork 65 40 11 2 2 120 | 1.37 0.85 0.08
12 Jresponsibility for own learing 28 61 29 1 0 119 0.97 0.72 0.07
13 Jtime availability 2 23 94 1 0 120 | 0.22 0.47 0.04
14 |overall learningexperience 17 81 22 0 0 120 | 0.96 0.57 0.05
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7.2.2 Comparative tests for the Biological Buffers experiment data

The total number of surveys collected for the Biological Buffers experiment in 2011 and 2012
were 136 and 80 surveys respectively. In this case, the significance level (o) is 0.05 and the
number of statistical tests conducted (n) is 137.Therefore, p values below a/n = 3.65x10™ are
shaded to indicate refutation of the relevant null hypothesis, controlling for family-wise error.

Quantitative comparisons in this section compare mean scored Likert-type item responses,

using the t-test for unequal variances. p < a / n refutes the null hypothesis that mean scores

are equal for the two data sets. Qualitative comparisons test the significance of the

association between the data set sampled, and content and/or nature of the comments

received using Fisher's exact test. p < a / n refutes the null hypothesis that response content is
independent of the student data set sampled (data logger or laptop).

Table S 4: Quantitative comparisons for the Biological Buffers experiment

Survey item and topic Myatalogger ~ Miaptop df t p
1 data interpretation skills 0.83 1.04 208.6 -2.03 4.34 x10 2
2 laboratory skills 0.79 1.01 194.7 -1.98  4.95 x10 2
3 interest 0.44 0.64 179.7 -1.48 1.40 x10 1
4 clearassessment 0.84 0.96 162.8 -1.02 3.08 x10 1
5 clear expected learning 0.84 0.88 156.8 -0.23 8.15 x10 1
6 increased understanding 0.84 0.86 174.8 -0.14  8.86 x10 1
7 background information 0.84 0.73 163.8 0.83 4.10 x10 1
8 demonstrators 1.34 1.43 159.7 -0.77  4.40 x10 1
9 clear procedure 0.90 0.43 148.7 3.23 1.52 x10 3
10 relevance to discipline 1.18 1.15 170.2 0.31 7.57 x10 1
11 benefit of teamwork 1.30 1.48 190.3 -1.57 1.18 x10 1
12 responsibility for own learing 0.94 1.03 180.3 -0.77 4.42 x10 1
13 time availability 0.02 0.13 168.7 -1.56 1.20 x10 1
14 overall learning experience 0.60 0.88 185.3 -2.52 1.26 x10 2
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7.2.2.1 General perceptions of “Biological Buffers”

Table S 5: General nature of responses to item 15: “Did you enjoy doing the experiment?
Why or why not?” for the Biological Buffers experiment

Are responses more positive? Are responses more negative?
Data logger Laptop Data logger Laptop
Positive 28 36 Negative 24 19
Not positive 23 18 Not negative 26 35
p= 2.36 x10! p= 2.33x10?

Table S 6: Topic referenced in response to item 15: "Did you enjoy doing the experiment?
Why or why not?" for the Biological Buffers experiment

Data logger Laptop
Code Positive Negative Positive Negative P
T Time availability 0 1 4 0 2.00 x10-1
C Relation to the course/lectures 4 0 2 0 1.00 x100
P Aspects of the procedure 5 0 4 6 4.40 x10 -2
M Manual or answer book 0 2 0 7 1.00 x100
| level ofinterest 2 2 4 0 429 %10
R results obtained 2 1 3 2 1.00 %100
L new learningachieved 4 0 3 0 1.00 x100
E equipment, apparatus or technology 4 21 2 4 5.67 x10-1
F level of familiarity or relevance 0 0 3 0 1.00 x100
U level of understanding 6 0 3 3 1.82 x10-1
0 others in the lab (students/demonstrators) 2 0 2 0 1.00 %1060
S level of simplicity 3 0 8 0 1.00 x100
X uncategorised 7 0 9 3 2.63 x10-1

Table S 7: Content referenced in response to item 16: “What did you think was the main

lesson to be learned from the experiment” for the Biological Buffers experiment

Data logger Laptop
Code Coded Notcoded Coded  Notcoded P
E Equivalence points/ pKa 6 32 10 39 7.81 x101
R Effective range of buffers 11 27 8 41 1.95 x10-1
H Henderson Hasselbalch equation 6 32 4 45 322 x101
P pH 7 31 1 38 791 x101
X none ofthe above 17 21 25 24 6.66 x10 -1
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7.2.2.2 Positive perceptions of “Biological Buffers”

Table S 8: Reasons cited for enjoying the Biological buffers experiment considered amongst
all comments received in response to item 15: "Did you enjoy doing the experiment? Why or

why not?"
Data logger Laptop

Code Coded Notcoded Coded Notcoded P
T Time availability 0 51 4 50 1.18 %10
C Relation to the course/lectures 4 47 2 52 4.28 x10 1
P Aspects of the procedure 5 46 4 50 7.37 x101
M Manual or answer book 0 51 0 54 1.00 x100
| level ofinterest 2 49 4 50 6.79 x10 1
R results obtained 2 49 3 51 1.00 x10°0
L new learning achieved 4 47 3 51 7.11 x10-1
E equipment, apparatus or technology 4 47 2 52 428 %101
F level of familiarity or relevance 0 51 3 51 243 %101
U level of understanding 6 45 3 51 3.11 x10-1
O others inthe lab (students/demonstrators) 2 49 2 52 1.00 x100
S level of simplicity 3 48 8 46 2.03 x10-1
X uncategorised 7 44 9 45 7.88 x10 -1

Table S 9: Reasons cited for enjoying the Biological Buffers experiment considered only

amongst other reasons cited for liking the experiment in response to item 15: "Did you enjoy

doing the experiment? Why or why not?"

Data logger Laptop
Code Coded  Notcoded Coded  Notcoded P
T Time availability 0 28 4 32 1.25 x101
C Relation to the course/ lectures 4 24 2 34 391 x101
>] Aspects of the procedure 5 23 4 32 4.88 x10 1
M Manual or answer book 0 28 0 36 1.00 x100
| level of interest 2 26 4 32 6.88 x10 !
R results obtained 2 26 3 33 1.00 x100
L new learningachieved 4 24 3 33 6.89 x10-1
E equipment, apparatus or technology 4 24 2 34 3.91 %101
F level of familiarity or relevance 0 28 3 33 2.50 %10
U level of understanding 6 22 3 33 1.63 x10-1
0 others in the lab (students/ demonstrators) 2 26 2 34 1.00 %100
S level of simplicity 3 25 8 28 3.22 x101!
X uncategorised 7 21 9 27 1.00 x100
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Table S 10: Features cited as the most enjoyable and interesting aspects of the Biological

Buffers experiment considered amongst all responses to item 17: “What aspects of the

experiment did you find most enjoyable and interesting?”

Data logger Laptop
Code Coded Notcoded Coded  Notcoded P
T Time availability 0 31 0 36 1.00 x10°0
C Relation to the course/lectures 0 31 1 35 1.00 x100
2] Aspects of the procedure 8 23 17 19 8.23 x10 2
M Manual or answer book 1 30 0 36 4.63 x101
| level of interest 0 31 0 36 1.00 x100
R results obtained 10 21 9 27 592 x10-1
L new learning achieved 0 31 0 36 1.00 x100
E equipment, apparatus or technology 7 24 10 26 7.80 x101
F level of familiarity or relevance 0 31 1 35 1.00 x100
U level of understanding 0 31 0 36 1.00 %100
0 others in the lab (students/demonstrators) 0 31 2 34 495 %101
S level of simplicity 0 31 0 36 1.00 x10°0
X uncategorised 5 26 2 34 2.36 x101

Table S 11: Features cited as the most enjoyable and interesting aspects of the Biological
Buffers experiment considered amongst only other positive responses to item 17: “What
aspects of the experiment did you find most enjoyable and interesting?”

Data logger Laptop
Code Coded  Notcoded Coded Notcoded P
T Time availability 0 25 0 31 1.00 x10°
C Relation to the course/lectures 0 25 1 30 1.00 x100
p Aspects of the procedure 8 17 17 14 1.10 %101
M Manual or answer book 1 24 0 31 4.46 x10 1
| level ofinterest 0 25 0 31 1.00 x100
R results obtained 10 15 9 22 411 x101
L new learningachieved 0 25 0 31 1.00 x100
E equipment, apparatus or technology 7 18 10 21 7.77 x10-1
F level of familiarity or relevance 0 25 1 30 1.00 x100
U level of understanding 0 25 0 31 1.00 x10°0
0 others in the lab (students/demonstrators) 0 25 2 29 497 x10-1
S level of simplicity 0 25 0 31 1.00 x100
X uncategorised 5 20 2 29 2.23 x101
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7.2.2.3 Negative perceptions of “Biological Buffers”

Table S 12: Reasons cited for not enjoying the Biological Buffers experiment considered

amongst all comments received in response to item 15: "Did you enjoy doing the

experiment? Why or why not?"

Data logger Laptop
Code Coded  Notcoded Coded  Notcoded P
T Time availability 1 50 0 54 486 x10-1
C Relation to the course/lectures 0 51 0 54 1.00 x100
2] Aspects of the procedure 0 51 6 48 2.72 x10 2
M Manual or answer book 2 49 7 47 1.62 x101
| level of interest 2 49 0 54 2.34 x101
R results obtained 1 50 2 52 1.00 x100
L new learningachieved 0 51 0 54 1.00 x100
E equipment, apparatus or technology 21 30 4 50 5.96 x10 >
F level of familiarity or relevance 0 51 0 54 1.00 x100
U level of understanding 0 51 3 51 243 x101
0 others in the lab (students/demonstrators) 0 51 0 54 1.00 %100
S level of simplicity 0 51 0 54 1.00 x100
X uncategorised 0 51 3 51 243 x10-1

Table S 13: Reasons cited for not enjoying the Biological Buffers experiment considered
amongst only other negative comments received in response to item 15: "Did you enjoy

doing the experiment? Why or why not?"

Data logger Laptop
Code Coded  Notcoded Coded  Notcoded P
T Time availability 1 23 0 19 1.00 x100
C Relation to the course/lectures 0 24 0 19 1.00 x100
P Aspects of the procedure 0 24 6 13 4.45 x10 3
M Manual or answer book 2 22 7 12 3.04 x10 2
| level of interest 2 22 0 19 495 x10-!
R results obtained 1 23 2 17 5.75 x10 1
L new learning achieved 0 24 0 19 1.00 x100
E equipment, apparatus or technology 21 3 4 15 2.44 %10 >
F level of familiarity or relevance 0 24 0 19 1.00 %100
U level of understanding 0 24 3 16 7.85 x10 2
(@] others in the lab (students/demonstrators) 0 24 0 19 1.00 x100
S level of simplicity 0 24 0 19 1.00 x100
X uncategorised 0 24 3 16 7.85 x10 2
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Table S 14: Areas of potential improvement cited for the Biological Buffers experiment

considered amongst all comments received in response to item 18: “What aspects of the
experiment need improvement and what changes would you suggest?”

Data logger Laptop
Code Coded Notcoded Coded  Notcoded P
T Time availability 0 35 2 30 2.39 x101
C Relation to the course/ lectures 0 35 0 32 1.00 %100
2] Aspects of the procedure 1 34 2 30 6.03 x10 -1
M Manual or answer book 3 32 17 15 1.10 x10 4
| level of interest 1 34 0 32 1.00 x100
R results obtained 0 35 0 32 1.00 x100
L new learningachieved 1 34 0 32 1.00 %100
E equipment, apparatus or technology 25 10 6 26 2.16 x10 >
F level of familiarity or relevance 0 35 0 32 1.00 x100
U level of understanding 0 35 0 32 1.00 x100
0 others in the lab (students/demonstrators) 1 34 1 31 1.00 %100
S level of simplicity 0 35 0 32 1.00 x10°0
X uncategorised 2 33 0 32 493 x101

Table S 15: Areas of potential improvement cited for the Biological Buffers experiment

considered amongst only other negative comments received in response to item 18: “What

aspects of the experiment need improvement and what changes would you suggest?”

Data logger Laptop
Code Coded  Notcoded Coded  Notcoded P
T Time availability 0 31 2 23 195 x10 1
C Relation to the course/lectures 0 31 0 25 1.00 x100
2] Aspects of the procedure 1 30 2 23 5.81 x10-1
M Manual or answer book 3 28 17 8 1.11 x10 -
| level of interest 1 30 0 25 1.00 x100
R results obtained 0 31 0 25 1.00 x100
L new learningachieved 1 30 0 25 1.00 x100
E equipment, apparatus or technology 25 6 6 19 3.38 x10
F level of familiarity or relevance 0 31 0 25 1.00 x100
U level ofunderstanding 0 31 0 25 1.00 x100
0 others in the lab (students/ demonstrators) 1 30 1 24 1.00 x100
S level of simplicity 0 31 0 25 1.00 x100
X uncategorised 2 29 0 25 497 x101
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7.2.3 Comparative tests for the Vapour Pressure experiment data

The total number of surveys collected for the Vapour Pressure experiment in 2011 and 2012
were 84 and 103 surveys respectively. In this case, the significance level (o) is 0.05 and the
number of statistical tests conducted (n) is 140.Therefore, p values below a/n =3.57x10* are
shaded to indicate refutation of the relevant null hypothesis, controlling for family-wise error.

Quantitative comparisons in this section compare mean scored Likert-type item responses,
using the t-test for unequal variances. p < a / n refutes the null hypothesis that mean scores
are equal for the two data sets. Qualitative comparisons test the significance of the
association between the data set sampled, and content and/or nature of the comments

received using Fisher's exact test. p < a / n refutes the null hypothesis that response content is

independent of the student data set sampled (data logger or laptop).

Table S 16: Quantitative comparisons for the Vapour Pressure experiment

item Mgata logger Miantop df t p

1 datainterpretation skills 0.36 1.06 131.7 -490 2.76 x10 -6
2 laboratory skills 0.45 1.00 137.9 -3.64 3.88 x10 4
3 interest -0.15 0.46 161.5 -3.53 5.33 x10 4
4 clear assessment 0.26 0.66 169.5 -262 9.50 x10°3
5 clear expected learning 0.28 0.91 138.4 -4.15 5.76 x10 >
6 increased understanding 0.33 0.98 142.9 -4.21 458 x10 5
7 background information 0.61 0.89 168.0 -1.94 541 x1032
8 demonstrators 1.19 1.33 169.0 -1.07 285 x101
9 clear procedure 0.04 0.43 179.1 -2.34 2.02 x102
10 relevance to discipline 0.63 0.77 162.8 -0.95 341 x101
11 benefit of teamwork 1.36 1.39 172.7 -0.28 7.84 x101
12 responsibility for own learing 0.56 0.99 147.6 -3.27 135 x10°3
13 time availability -0.54 -0.05 138.2 -4.89 274 x10 6
14 overall learning experience -0.02 0.69 149.0 -5.06 1.22 x10®

7.2 Supporting Information| Supporting information for sections 3.1 and 3.2 214



7.2.3.1 General perceptions “Vapour Pressure”

Table S 17: General nature of responses to item 15: “Did you enjoy doing the experiment?
Why or why not?” for the Vapour Pressure experiment

Are responses more positive? Are responses more negative?
Data logger Laptop Data logger Laptop
Positive 18 54 Negative 39 31
Not positive 37 25 Not negative 16 48
p= 5.34 x10° p= 4.09 x10*

Table S 18: Topic referenced in response to item 15: "Did you enjoy doing the experiment?
Why or why not?" for the Vapour Pressure experiment

Data logger Laptop
Code Positive Negative Positive Negative P
T Time availability 1 1 1 1 1.00 %100
C Relation to the course/ lectures 0 0 1 0 1.00 x100
2] Aspects of the procedure 0 4 3 12 1.00 x100
M Manual or answer book 0 12 1 5 3.33 x101
| level ofinterest 9 5 12 8 1.00 x100
R results obtained 0 0 1 0 1.00 %100
L new learning achieved 6 0 4 0 1.00 x100
E equipment, apparatus or technology 3 6 7 3 1.79 x10-1
F level of familiarity or relevance 1 1 15 0 1.18 %101
U level of understanding 1 11 6 2 4.44 %10 3
0 others in the lab (students/ demonstrators) 1 0 2 0 1.00 x100
S level of simplicity 0 12 0 1.99 x10 5
X uncategorised 2 8 5 1.83 x101

Table S 19: Content referenced in response to item 16: “What did you think was the main
lesson to be learned from the experiment” for the Vapour Pressure experiment

Data logger Laptop
Code Coded Notcoded Coded  Notcoded P

L mention Laws -Rauolt's law or Dalton's law 14 31 37 34 3.48 x10 2

| mention ideal or non-ideal mixtures 2 43 3 68 1.00 x100

F mention intermolecular forces 9 36 15 56 1.00 %100

2] mention vapour pressure 14 31 24 47 8.40 x10-1

A mention use of aparatus or equipment 6 39 12 59 7.93 x101

X uncategorised as any of the above 16 29 17 54 2.08 x10-1

Ap mention (non)application of laws 3 42 12 59 1.57 x11-1
L/F/I Contain comments coded L,For| 20 25 47 24 3.33 x12 2
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7.2.3.2 Positive perceptions of “Vapour Pressure”

Table S 20: Reasons cited for enjoying the Vapour Pressure experiment considered amongst
all comments received in response to item 15: "Did you enjoy doing the experiment? Why or
why not?"

Data logger Laptop
Code Coded Notcoded Coded  Notcoded P
T Time availability 1 54 1 78 1.00 x10°0
C Relation to the course/lectures 0 55 1 78 1.00 x10°0
2] Aspects of the procedure 0 55 3 76 2.69 %101
M Manual or answer book 0 55 1 78 1.00 x100
I level of interest 9 46 12 67 1.00 %100
R results obtained 0 55 1 78 1.00 x10°0
L new learningachieved 6 49 4 75 3.16 x101
E equipment, apparatus or technology 3 52 7 72 5.25 %101
F level of familiarity or relevance 1 54 15 64 2.20 %103
U level of understanding 1 54 6 73 2.39 %101
0 others in the lab (students/demonstrators) 1 54 2 77 1.00 x10°0
S level of simplicity 0 55 12 67 145 x10 3
X uncategorised 2 53 8 71 197 x101

Table S 21: Reasons cited for enjoying the Vapour Pressure experiment considered only
amongst other reasons cited for liking the experiment in response to item 15: "Did you enjoy
doing the experiment? Why or why not?"

Data logger Laptop
Code Coded Notcoded Coded  Notcoded P
T Time availability 1 17 1 53 440 x101
C Relation to the course/ lectures 0 18 1 53 1.00 x10°0
>} Aspects of the procedure 0 18 3 51 5.68 x10 -1
M Manual or answer book 0 18 1 53 1.00 x10°0
| level of interest 9 9 12 42 3.63 x10 2
R results obtained 0 18 1 53 1.00 x10°0
L new learningachieved 6 12 4 50 1.25 x10 2
E equipment, apparatus or technology 3 15 7 47 7.03 x101
F level of familiarity or relevance 1 17 15 39 5.64 x10 2
U level of understanding 1 17 6 48 6.72 x101
0 others in the lab (students/demonstrators) 1 17 2 52 1.00 x10°0
S level of simplicity 0 18 12 42 2,99 x10 2
X uncategorised 2 16 8 46 1.00 %100
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Table S 22: Features cited as the most enjoyable and interesting aspects of the Vapour

Pressure experiment considered amongst all responses to item 17: “What aspects of the
experiment did you find most enjoyable and interesting?”

Data logger Laptop
Code Coded Notcoded Coded  Notcoded P
T Time availability 0 43 0 69 1.00 %100
C Relation to the course/ lectures 0 43 0 69 1.00 x100
2] Aspects of the procedure 7 36 13 56 8.04 x101
M Manual or answer book 2 41 2 67 6.37 x10 1
| level ofinterest 0 43 1 68 1.00 x100
R results obtained 4 39 15 54 1.21 x1011
L new learning achieved 4 39 2 67 2.01 x10-1
E equipment, apparatus or technology 14 29 35 34 7.82 x10 2
F level of familiarity or relevance 5 38 3 66 2.56 x10-1
U level of understanding 2 41 0 69 1.45 x10-1
0 others in the lab (students/demonstrators) 4 39 1 68 7.06 x10 2
S level of simplicity 0 43 1 68 1.00 %100
X uncategorised 3 40 4 65 1.00 x100

Table S 23: Features cited as the most enjoyable and interesting aspects of the Vapour

Pressure experiment considered amongst only other positive responses to item 17: “What
aspects of the experiment did you find most enjoyable and interesting?”

Data logger Laptop
Code Coded Notcoded Coded  Notcoded P
T Time availability 0 32 0 63 1.00 x100°
C Relation to the course/ lectures 0 32 0 63 1.00 x100
P Aspects of the procedure 7 25 13 50 1.00 x100
M Manual or answer book 2 30 2 61 6.01 x10-
| level of interest 0 32 1 62 1.00 x100
R results obtained 4 28 15 48 2.79 x10-1
L new learningachieved 4 28 2 61 1.75 x10-1
E equipment, apparatus or technology 14 18 35 28 2.88 x10 -1
F level of familiarity or relevance 5 27 3 60 1.14 %101
U level of understanding 2 30 0 63 1.11 %101
0 others in the lab (students/ demonstrators) 4 28 1 62 4,26 x10 2
S level of simplicity 0 32 1 62 1.00 x100
X uncategorised 3 29 4 59 6.84 x10-1
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7.2.3.3 Negative perceptions of “Vapour Pressure”

Table S 24: Reasons cited for not enjoying the Vapour Pressure experiment considered
amongst all comments received in response to item 15: "Did you enjoy doing the

experiment? Why or why not?"

Data logger Laptop
Code Coded Notcoded Coded  Notcoded P
T Time availability 1 54 1 78 1.00 x10°0
C Relation to the course/lectures 0 55 0 79 1.00 x10°0
2] Aspects of the procedure 4 51 12 67 1.88 x10 1
M Manual or answer book 12 43 5 74 1.54 x10 2
I level of interest 5 50 8 71 1.00 %100
R results obtained 0 55 0 79 1.00 x10°0
L new learningachieved 0 55 0 79 1.00 %100
E equipment, apparatus or technology 6 49 3 76 1.60 x10 1!
F level of familiarity or relevance 1 54 0 79 4,10 x101
U level of understanding 11 44 2 77 1.69 x10 3
(@] others in the lab (students/demonstrators) 0 55 0 79 1.00 x10°0
S level of simplicity 7 48 0 79 1.55 x10 3
X uncategorised 49 5 74 3.58 x10 1

Table S 25: Reasons cited for not enjoying the Vapour Pressure experiment considered

amongst only other negative comments received in response to item 15: "Did you enjoy

doing the experiment? Why or why not?"

Data logger Laptop
Code Coded Notcoded Coded  Notcoded P
T Time availability 1 38 1 30 1.00 x10°0
C Relation to the course/ lectures 0 39 0 31 1.00 x10°0
>} Aspects of the procedure 4 35 12 19 8.68 x10 3
M Manual or answer book 12 27 5 26 175 x101
| level of interest 5 34 8 23 220 x101
R results obtained 0 39 0 31 1.00 x10°0
L new learningachieved 0 39 0 31 1.00 %100
E equipment, apparatus or technology 6 33 3 28 7.21 x101
F level of familiarity or relevance 1 38 0 31 1.00 %100
U level of understanding 11 28 2 29 2.91 x10 2
0 others in the lab (students/demonstrators) 0 39 0 31 1.00 x10°0
S level of simplicity 7 32 0 31 1.50 x10 2
X uncategorised 33 5 26 1.00 %100
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Table S 26: Areas of potential improvement cited for the Vapour Pressure experiment
considered amongst all comments received in response to item 18: “What aspects of the
experiment need improvement and what changes would you suggest?”

Data logger Laptop
Code Coded Notcoded Coded  Notcoded P
T Time availability 6 34 3 54 155 %101
C Relation to the course/lectures 0 40 1 56 1.00 x100
2] Aspects of the procedure 7 33 8 49 7.77 x10-1
M Manual or answer book 18 22 15 42 8.11 x10 2
I level of interest 2 38 1 56 5.67 x101
R results obtained 0 40 1 56 1.00 x100
L new learning achieved 0 40 0 57 1.00 x100
E equipment, apparatus or technology 4 36 8 49 7.56 x10 1
F level of familiarity or relevance 0 40 0 57 1.00 x100
U level of understanding 1 39 0 57 412 x101
0 others in the lab (students/demonstrators) 2 38 0 57 1.68 x101
S level of simplicity 2 38 0 57 1.68 x10 1
X uncategorised 3 37 2 55 401 x101

Table S 27: Areas of potential improvement cited for the Vapour Pressure experiment
considered amongst only other negative comments received in response to item 18: “What

aspects of the experiment need improvement and what changes would you suggest?”

Data logger Laptop
Code Coded  Notcoded Coded  Notcoded P
T Time availability 6 29 3 31 477 x101
C Relation to the course/lectures 0 35 1 33 493 x10 1
2] Aspects of the procedure 7 28 8 26 7.77 x10-1
M Manual or answer book 18 17 15 19 6.32 x101
| level of interest 2 33 1 33 1.00 x100
R results obtained 0 35 1 33 493 x10 1
L new learning achieved 0 35 0 34 1.00 %100
E equipment, apparatus or technology 4 31 8 26 2.18 x101
F level of familiarity or relevance 0 35 0 34 1.00 x100
U level ofunderstanding 1 34 0 34 1.00 x100
0 others in the lab (students/ demonstrators) 2 33 0 34 493 x101
S level of simplicity 2 33 0 34 493 x101
X uncategorised 3 32 2 32 1.00 x100
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7.2.4 Comparative tests for the Copper (Il) lon Concentration experiment data

The total number of surveys collected for the Copper (l1) lon Concentration experiment in 2011

and 2012 were 126 and 120 surveys respectively. In this case, the significance level (a) is 0.0
and the number of statistical tests conducted (n) is 137.Therefore, p values below

o/n = 3.65x10* are shaded to indicate refutation of the relevant null hypothesis, controlling
for family-wise error.

Quantitative comparisons in this section compare mean scored Likert-type item responses,
using the t-test for unequal variances. p < a / n refutes the null hypothesis that mean scores
are equal for the two data sets. Qualitative comparisons test the significance of the
association between the data set sampled, and content and/or nature of the comments

5

received using Fisher's exact test. p < a/ n refutes the null hypothesis that response content is

independent of the student data set sampled (data logger or laptop).

Table S 28: Quantitative comparisons for the Copper (Il) lon Concentration experiment

item Motz logger  Miapton df t p
1 data interpretation skills 1.01 0.97 240.1 0.51 6.13 x10 -1
2 laboratory skills 1.10 1.04 242.9 0.62 5.38 x10 1
3 interest 0.80 0.95 244.0 -1.37 173 x101
4 clear assessment 1.09 1.13 243.5 -047 6.39 x101
5 clear expected learning 1.14 1.14 242.4 0.01 9.90 x10
6 increased understanding 0.94 0.89 242.0 0.51 6.09 x10 1
7 background information 1.12 1.28 243.7 -1.80 7.37 x10 2
8 demonstrators 1.58 1.59 237.9 -0.09 9.26 x101
9 clear procedure 1.28 1.27 242.4 0.15 8.84 x101
10 relevance to discipline 0.97 1.03 243.8 -0.58 5.63 x101
11 benefit of teamwork 1.53 1.37 216.6 1.70 9.14 x10 2
12 responsibility for own learing 1.05 0.97 242.9 0.78 437 x101
13 time availability 0.22 0.22 238.3 0.08 9.34 x101
14 overall learning experience 0.93 0.96 241.3 -042 675 x10!
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7.2.4.1 General perceptions of “Determination of Copper (ll) lon Concentration”

Table S 29: General nature of responses to item 15: “Did you enjoy doing the experiment?
Why or why not?” for the Copper (llI) lon Concentration experiment

Are responses more positive? Are responses more negative?
Data logger Laptop Data logger Laptop
Positive 66 86 Negative 15 9
Not positive 15 9 Not negative 66 86
p= 1.22 x10? p= 1.22 x10!

Table S 30: Topic referenced in response to item 15: "Did you enjoy doing the experiment?
Why or why not?" for the Copper (llI) lon Concentration experiment

Data logger Laptop
Code Positive Negative  Positive Negative P
T Time availability 10 0 6 0 1.00 x10°0
C Relation to the course/ lectures 0 1 0 1.00 x10°0
P Aspects of the procedure 2 5 1 5.45 x10-1
M Manual or answer book 3 2 4 2 1.00 x100
| level ofinterest 11 5 11 3 6.89 x10 -1
R results obtained 5 0 6 1 1.00 x10°0
L new learning achieved 8 0 11 0 1.00 %100
E equipment, apparatus or technology 6 4 10 2 3.48 x10-1
F level of familiarity or relevance 7 0 6 1 1.00 %100
U level of understanding 8 1 21 0 3.00 x10
(0] others in the lab (students/demonstrators) 3 1 1 0 1.00 %100
S level of simplicity 12 1 32 1 490 x10 1
X uncategorised 14 2 16 1 6.01 x10-1

Table S 31: Content referenced in response to item 16: “What did you think was the main
lesson to be learned from the experiment” for the Copper (1) lon Concentration experiment

Data logger Laptop
Code Coded Notcoded Coded  Notcoded P
L Light's wavelength & colour relationship 4 65 1 82 1.77 x101
B Beer's law/ conc. & absorbance relationship 37 32 31 52 5.06 x10 2
C Determination of unknown concentration 3 66 6 77 5.12 x101
E Use of equipment 9 60 15 68 5.04 x101
X none of the above 22 47 36 47 1.80 x10 !
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7.2.4.2 Positive perceptions of “Determination of Copper (ll) lon Concentration”

Table S 32: Reasons cited for enjoying the Copper (llI) lon Concentration experiment
considered amongst all comments received in response to item 15: "Did you enjoy doing the
experiment? Why or why not?"

Data logger Laptop

Code Coded  Notcoded Coded  Notcoded P
T Time availability 10 71 6 89 195 x10-1
C Relation to the course/ lectures 2 79 1 94 595 x10 -1
p Aspects of the procedure 3 78 5 90 7.27 x101
M Manual or answer book 3 78 4 91 1.00 x100
I level of interest 11 70 11 84 8.20 x101
R results obtained 5 76 6 89 1.00 x100
L new learningachieved 8 73 11 84 8.10 x101
E equipment, apparatus or technology 6 75 10 85 6.01 x101
F level of familiarity or relevance 7 74 6 89 5.77 x10 1
U level of understanding 8 73 21 74 4.05 x10 -2
0 others in the lab (students/ demonstrators) 3 78 1 94 3.35 x10!
S level of simplicity 12 69 32 63 498 x10 3
X uncategorised 14 67 16 79 1.00 x100

Table S 33: Reasons cited for enjoying the Copper (llI) lon Concentration experiment

considered only amongst other reasons cited for liking the experiment in response to item

15: "Did you enjoy doing the experiment? Why or why not?"

Data logger Laptop

Code Coded  Notcoded Coded  Notcoded P
T Time availability 10 56 6 80 1.17 x10-1
C Relation to the course/ lectures 2 64 1 85 5.80 x10 1
P Aspects of the procedure 3 63 5 81 1.00 x100
M Manual or answer book 3 63 4 82 1.00 x100
| level of interest 11 55 11 75 6.43 x10 1
R results obtained 5 61 6 80 1.00 x100
L new learningachieved 8 58 11 75 1.00 x100
E equipment, apparatus or technology 6 60 10 76 791 x101
F level of familiarity or relevance 7 59 6 80 5.61 x10 1
U level of understanding 8 58 21 65 6.33 x10 2
0 others in the lab (students/ demonstrators) 3 63 1 85 3.17 x10!
S level of simplicity 12 54 32 54 1.18 x10 2
X uncategorised 14 52 16 70 8.37 x101
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Table S 34: Features cited as the most enjoyable and interesting aspects of the Copper (Il)
lon Concentration experiment considered amongst all responses to item 17: “What aspects
of the experiment did you find most enjoyable and interesting?”

Data logger Laptop
Code Coded Notcoded Coded  Notcoded P
T Time availability 1 64 0 83 439 x101
C Relation to the course/lectures 0 65 0 83 1.00 x100
P Aspects of the procedure 21 44 26 57 1.00 x100
M Manual or answer book 0 65 0 83 1.00 x100
I level of interest 1 64 4 79 3.85 x101
R results obtained 21 44 30 53 7.28 x10 1
L new learningachieved 2 63 0 83 1.91 x10-1
E equipment, apparatus or technology 21 44 35 48 2.36 x10 1
F level of familiarity or relevance 2 63 0 83 191 x101
U level of understanding 0 65 0 83 1.00 x100
0 others in the lab (students/demonstrators) 1 64 1 82 1.00 x100
S level of simplicity 0 65 0 83 1.00 x100
X uncategorised 5 60 1 82 8.70 x10 2

Table S 35: Features cited as the most enjoyable and interesting aspects of the Copper (ll)
lon Concentration experiment considered amongst only other positive responses to item 17:

“What aspects of the experiment did you find most enjoyable and interesting?”

Data logger Laptop
Code Coded Notcoded Coded  Notcoded P
T Time availability 1 61 0 79 440 x101
C Relation to the course/ lectures 0 62 0 79 1.00 x100
P Aspects of the procedure 21 41 26 53 5.94 x10-1
M Manual or answer book 62 0 79 1.00 %100
| level of interest 61 4 75 3.85 x101
R results obtained 21 41 30 49 7.24 %101
L new learning achieved 2 60 0 79 1.92 x10-1
E equipment, apparatus or technology 21 41 35 44 2.29 x101
F level of familiarity or relevance 2 60 0 79 1.92 %101
U level of understanding 0 62 0 79 1.00 x100
0 others in the lab (students/demonstrators) 1 61 1 78 1.00 x100
S level of simplicity 0 62 0 79 1.00 x100
X uncategorised 5 57 1 78 8.68 x10 2
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7.2.4.3 Negative perceptions of “Determination of Copper (ll) lon Concentration”

Table S 36: Reasons cited for not enjoying the Copper (Il) lon Concentration experiment
considered amongst all comments received in response to item 15: "Did you enjoy doing the
experiment? Why or why not?”

Data logger Laptop
Code Coded  Notcoded Coded  Notcoded P
T Time availability 0 81 0 95 1.00 x10°0
C Relation to the course/lectures 0 81 0 95 1.00 x100
P Aspects of the procedure 2 79 1 94 5.95 x10-1
M Manual or answer book 2 79 2 93 1.00 x100
| level of interest 5 76 3 92 473 x101
R results obtained 0 81 1 94 1.00 x100
L new learningachieved 0 81 0 95 1.00 %100
E equipment, apparatus or technology 4 77 2 93 416 %101
F level of familiarity or relevance 0 81 1 94 1.00 %100
U level of understanding 1 80 0 95 460 x10 1
0 others inthe lab (students/ demonstrators) 1 80 0 95 4.60 x10 -
S level of simplicity 1 80 1 94 1.00 x100
X uncategorised 2 79 1 94 5.95 x10 -1

Table S 37: Reasons cited for not enjoying the Copper (ll) lon Concentration experiment
considered amongst only other negative comments received in response to item 15: "Did
you enjoy doing the experiment? Why or why not?"

Data logger Laptop
Code Coded  Notcoded Coded  Notcoded P
T Time availability 0 15 0 9 1.00 x100
C Relation to the course/lectures 0 15 0 9 1.00 x100
P Aspects of the procedure 2 13 1 8 1.00 x100
M Manual or answer book 2 13 2 7 1.00 x100
| level of interest 5 10 3 6 1.00 x100
R results obtained 0 15 1 8 3.75 x101
L new learningachieved 0 15 0 9 1.00 x100
E equipment, apparatus or technology 4 11 2 7 1.00 %100
F level of familiarity or relevance 0 15 1 8 3.75 x101
U level of understanding 1 14 0 9 1.00 x100
0 others in the lab (students/ demonstrators) 1 14 0 9 1.00 x100
S level of simplicity 1 14 1 8 1.00 x100
X uncategorised 2 13 1 8 1.00 x100
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Table S 38: Areas of potential improvement cited for the Copper (l1) lon Concentration
experiment considered amongst all comments received in response to item 18: “What
aspects of the experiment need improvement and what changes would you suggest?”

Data logger Laptop
Code Coded Notcoded Coded  Notcoded P
T Time availability 0 43 1 55 1.00 x100
C Relation to the course/lectures 1 42 0 56 434 %101
P Aspects of the procedure 3 40 6 50 7.28 x10-1
M Manual or answer book 9 34 7 49 2.83 x101
| level of interest 1 42 0 56 434 %101
R results obtained 0 43 0 56 1.00 x100
L new learning achieved 0 43 0 56 1.00 x100
E equipment, apparatus or technology 18 25 12 44 4.61 x10 2
F level of familiarity or relevance 1 42 0 56 434 %101
U level of understanding 1 42 0 56 4,34 x10 !
0 others in the lab (students/ demonstrators) 0 43 1 55 1.00 %100
S level of simplicity 0 43 2 54 5.04 x10-1
X uncategorised 1 42 1 55 1.00 x100

Table S 39: Areas of potential improvement cited for the Copper (ll) lon Concentration

experiment considered amongst only other negative comments received in response to item

18: “What aspects of the experiment need improvement and what changes would you

suggest?”
Data logger Laptop

Code Coded  Notcoded Coded  Notcoded P
T Time availability 0 32 1 25 448 x101
C Relation to the course/lectures 1 31 0 26 1.00 x100
>} Aspects of the procedure 3 29 6 20 2.74 x10-1
M Manual or answer book 9 23 7 19 1.00 x100
| level ofinterest 1 31 0 26 1.00 x100
R results obtained 0 32 0 26 1.00 x100
L new learning achieved 0 32 0 26 1.00 x100
E equipment, apparatus or technology 18 14 12 14 5.98 x10 -1
F level of familiarity or relevance 1 31 0 26 1.00 x10°0
U level of understanding 1 31 0 26 1.00 x10°0
0 others in the lab (students/ demonstrators) 0 32 1 25 448 x10 -1
S level of simplicity 0 32 2 24 1.97 x101
X uncategorised 1 31 1 25 1.00 x100
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7.3 Supporting information for section 3.3

7.3.1 Sample sizes

Table S 40: Survey responses available prior to data cleaning processes

D Total % surveys
Year | Semester | Experiment surveys with ID
surveys .
collected provided
- 2012 2 Aromas 22 103 21%
E 2012 2 Analysis of Spinach Extracts 39 107 36%
E | 2012 2 Activity Series 34 81 42%
S | 2012 2 Thermochemistry 24 77 31%
E 2012 2 Reaction Kinetics 17 74 23%
< | 2013 1 Introductory Experiment 104 126 83%
> | 2013 1 Quantitative Techniques 54 61 89%
g 2013 1 Determination of Vitamin C Content in Apple juice 44 57 77%
Q 2013 1 Equilibrium & Le Chatelier 119 137 87%
“:‘) 2013 1 Absorption Spectrophotometry 71 83 86%
P 2013 2 Aromas 229 248 92%
2 | 2013 2 Analysis of Spinach Extracts 182 206 88%
'(é 2013 2 Thermochemistry 185 204 91%
3 | 2013 2 Activity Series 146 161 91%
- 2013 2 Reaction Kinetics 72 82 88%
2012 2 Biological Buffers 30 80 38%
2012 2 Melting Points and Recrystallisation 25 70 36%
2012 2 Reaction Kinetics 54 84 64%
2012 2 Liquid-Liquid Extraction and TLC 22 72 31%
* 2012 2 Synthesis of Aspirin 14 36 39%
% 2012 2 Analysis of Spinach Extracts 21 77 27%
g 2013 1 Thermochemistry 220 227 97%
& | 2013 1 Vapour Pressure 140 148 95%
'SE 2013 1 Quantitative Techniques 195 203 96%
g 2013 1 Equilibrium & Le Chatelier 167 174 96%
2 | 2013 1 lon Exchange Chromatography 244 252 97%
g 2013 1 Absorption Spectrophotometry 224 232 97%
2 2013 2 Analysis of Spinach Extracts 210 218 96%
© 2013 2 Synthesis of Aspirin 125 129 97%
2013 2 Reaction Kinetics 201 205 98%
2013 2 Melting Points and Recrystallisation 181 182 99%
2013 2 Biological Buffers 162 170 95%
2013 2 Liquid-Liquid Extraction and TLC 126 128 98%
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7.3.2 Matlab codes for population level expected score distributions

The code presented below is one example of the technique used to derive population level
response probability values, and other values used to generate figures showing the population
level relationship between score and measure. The five response categories are referred to
using A, B, C, D and E, from most to least positive respectively.

txy = is used to specify the Andrich threshold between categories X and Y
meanb = is used to specify the mean student measure
stdevb = is used to specify the standard deviation in student measures

vd = specifies the interval for which values of all functions are defined, and the space between
data points defined.

PE, PD, PC, PB, and PA are the population level probabilities of observing responses in
categories E,D,C,B and A respectively .They are computed using quad(, , ), which specifies a
finite range of values the integral term of Equation 33 is computed over (given integration
from negative to positive infinity was not possible). These values may require adjustment for
ideal calculation. Plots of PE, PD, PC, PB and PA against vd should yield smooth curves to
indicate acceptable computation.

ASELLScore gives the population level mean expected score using the ASELL integer scoring
system.

ASELLdevlessX and ASELLdevmoreX respectively give the lower and upper boundaries for the
95% confidence interval of the distribution of expected mean ASELL scores taken from samples
of size X.

tab = 7.82;
tbc = 4.26;
tcd = -4.96;
tde = -7.12;
meanb = 0.03;

stdevb = 2.29;

cA = exp(-tab);
cB = exp(-thc);
cC = exp(-tcd);
cD = exp(-tde);

vd = -15:0.1:15;

PE = zeros(size(vd));

for i = 1:Tength(vd)

d = vd(@();

fune = @(b) (1./(cA*cB*cC*cD*exp(4*b - 4*d) + cB*cC*cD*exp(3*b-3*d) + cC*cD*exp(2*b-2*d) + cD*exp(b-
d) + 1)).*normpdf(b,meanb,stdevb);

PE(i) = quad(fung,-20,20);

end

PD = zeros(size(vd));

for i = 1:Tength(vd)

d = vd(@);

funb = @(b) (1./(cA*cB*cC*exp(3*b - 3*d) + cB*cC*exp(2*b-2*d) + cC*exp(b-d) + 1 + (1/cD)*exp(d-
b))) . *normpdf(b,meanb, stdevb) ;

PD(i) = quad(funD,-20,20);

end

PC = zeros(size(vd));
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for i = 1:1ength(vd)
d = vd(@i);

func = @(b) (1./(cA*cB*exp(2*b - 2*d) + cB*exp(b-d) + 1 + (1/cC)*exp(d-b) + (1/(cC*cD))*exp(2*d-

2*b))) . *normpdf (b,meanb, stdevb);
PC(i) = quad(func,-20,20);
end

PB = zeros(size(vd));

for i = 1l:1ength(vd)

d = vd@(i);

funB = @(b) (1./(cA*exp(b - d) + 1 + (1/cB)*exp(d-b) + (1/(cB*cC))*exp(2*d-2%b) +
(1/(cB*cC*cD))*exp(3*d-3*b))) . *normpdf(b,meanb, stdevb) ;

PB(i) = quad(funB,-18,18);

end

PA = zeros(size(vd));

for i = 1l:1ength(vd)

d = vd(i);

funA = @(b) (1./(1 + (1/cA)*exp(d-b) + (1/(cA*cB))*exp(2*d-2*b) + (1/(cA*cB*cC))*exp(3*d-3*b) +
(1/(cA*cB*cC*cD)) *exp(4*d-4*b))) . *normpdf(b,meanb, stdevb);

PA(i) = quad(funa,-20,20);

end

for i = 1l:1ength(vd)
ASELLScore(i)= 2*PA(i)+PB(i)-PD(i)-2*PE(i);
end

for i = 1l:1ength(vd)

ASELLdev(i) = sqrt(PA(i)*((2-ASELLScore(i))A2)+PB(i)*((1-ASELLScore(i))A2)+PC(i)*((0-
ASELLScore(i))A2)+PD(i)*((-1-ASELLScore(i))A2)+PE(i)*((-2-ASELLScore(i))A2));

end

for i = 1l:1ength(vd)
ASELLdevless10(i) = ASELLScore(i)-2*ASELLdev(i)/sqrt(9);
end

for i = 1:1ength(vd)
ASELLdev1ess20(i) = ASELLScore(i)-2*ASELLdev(i)/sqrt(19);
end

for i = 1:1ength(vd)
ASELLdev1ess30(i) = ASELLScore(i)-2*ASELLdev(i)/sqrt(29);
end

for i = 1:Tength(vd)
ASELLdev1ess50(i) = ASELLScore(i)-2*ASELLdev(i)/sqrt(49);
end

for i = 1:Tength(vd)
ASELLdev1ess100(i) = ASELLScore(i)-2*ASELLdev(i)/sqrt(99);
end

for i = 1:1ength(vd)
ASELLdevmorelO(i) = ASELLScore(i)+2*ASELLdev(i)/sqrt(9);
end

for i = 1:1ength(vd)
ASELLdevmore20(i) = ASELLScore(i)+2*ASELLdev(i)/sqrt(19);
end

for i = 1:Tength(vd)
ASELLdevmore30(i) = ASELLScore(i)+2*ASELLdev(i)/sqrt(29);
end

for i = 1:Tength(vd)
ASELLdevmore50(i) = ASELLScore(i)+2*ASELLdev(i)/sqrt(49);
end

for i = 1l:1ength(vd)
ASELLdevmorel00(i) = ASELLScore(i)+2*ASELLdev(i)/sqrt(99);
end
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7.3.3 Equality of response scales between different student cohorts

For each survey item, the equality of response scales between the two different student
cohorts was tested. These tests were conducted using statistics gathered from the first Rasch
models estimated after the initial removal of disconnected subsets of data. The Corrected
Akaike Information Criterion was used to select the preferable explanation of the data, as
shown in blue in Figure S 1 below. Results of a typical Likelihood ratio test are also shown
(red), though this statistic does not account for parsimony of the explanation and was
therefore not preferred as a criterion for model selection.
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Figure S 1: Model selection for whether Foundations of Chemistry IA/B and Chemistry IA/B
student cohorts were assigned different response scales

In the cases where the best explanation of the data is such that the two student cohorts treat
the response scale differently (items 3, 4, 11 and 12 as judged above), rating scale associated
statistics are reported for each cohort in the material following.
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7.3.4

Item 1: “This experiment helped me to develop my data interpretation

skills”

Data preparation/ analyses run

o UvkwNe

Initial data:

1127 persons, 33 items
Connectivity issues, extreme persons and blank responses resolved: 164 persons removed
Further connectivity issues resolved: 13 persons removed
Misfit issues resolved: 81 persons with z-scores for infit or outfit |z|> 2 removed.
Further connectivity issues resolved. 33 persons and 6 items removed.

Extreme responses removed: 8 persons removed (final results reported)

Table S 41: Rasch model details for item 1

Category threshold between Andrich threshold Thurstone Estimated
Lower category label Upper category label measure st.error threshold discrimination
RESPONSE CATEGORY Agree / Strongly Agree 5.45 0.07 5.45 0.98
ASSOCIATED STATISTICS Neutral / Agree 0.45 0.06 0.5 1.02
Disagree / Neutral -2.41 0.14 -2.22 1.01
Strongly Disagree / Disagree -3.49 0.4 -3.73 1.07
Category Range Coherence Fit Statistics counts in
ASELL score Category Label X X
measure from to C=>M M=>C Infit Outfit RMSR sampled data
2 Strongly Agree 6.55 5.47 0 40% 68% 1.03 1.01 0.6718 371
1 Agree 2.95 0.57 5.47 87% 76% 0.99 0.99 0.3223 1714
0 Neutral -0.91 -2.07 0.57 54% 58% 0.99 0.94 0.5722 550
-1 Disagree -2.98 -3.98 -2.07 6% 29% 1 1 1.0622 62
-2 Strongly Disagree -4.78 —o0 -3.98 0% 0% 0.84 0.72 1.5321 7
Number Measures separation reliability Rawvarla_ncelnobserved data
BROAD SCALE STATISTICS used for explained by measures
estimates mean st.dev observed model observed model empirical modelled
Persons 828 2.50 1.89 0.40 0.56 0.14 0.24 37.7% 37.7%
Experiments 27 0.00 0.63 1.61 1.67 0.72 0.73 11.0% 11.0%
Data points: 2704 Log-likelihood chi square: 3561.54 df: 1847
Person measures
&0
a0
€ 40 |]
3
(=]
(&}
= 30
(=]
@
& 20
104

il

3 613 7.03 7.38

ltem count
Ly

Experiment measures

Figure S 2: Measure distributions for item 1
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Expected mean ASELL score
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Figure S 3: Category structure for item 1
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Figure S 4: Expected mean ASELL scores for item 1
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7.3.5

Data preparation/ analyses run

Initial data:

aukrwNeR

1127 persons, 33 items
Connectivity issues, extreme persons and blank responses resolved: 221 persons and 1 item removed
Further connectivity issues resolved: 5 persons removed
Misfit issues resolved: 78 persons with z-scores for infit or outfit |z|> 2 were removed.
Further connectivity issues resolved. 12 persons removed (final results reported)

Table S 42: Rasch model details for item 2

Item 2: “This experiment helped me to develop my laboratory skills”

Category threshold between Andrich threshold Thurstone Estimated
Lower category label Upper category label measure st.error threshold discrimination
RESPONSE CATEGORY Agree / Strongly Agree 515 0.06 5.17 0.94
ASSOCIATED STATISTICS Neutral / Agree 0.7 0.06 0.75 1.06
Disagree / Neutral -2.03 0.13 -1.96 0.99
Strongly Disagree / Disagree -3.82 0.35 -3.96 0.98
Category Range Coherence Fit Statistics counts in
ASELL score Category Label X X
measure from to C=>M M=>C Infit Outfit RMSR sampled data
2 Strongly Agree 6.26 5.19 © 52% 69% 1.06 1.04 0.6026 660
1 Agree 2.93 0.82 5.19 86% 73% 0.94 1.01 0.3356 1722
0 Neutral -0.63 -1.88 0.82 51% 62% 0.94 0.94 0.6045 492
-1 Disagree -2.95 -4.14 -1.88 27% 50% 1.04 1.04 0.9512 79
-2 Strongly Disagree -5.03 —o0 -4.14 9% 50% 0.95 0.92 1.2395 11
R i in ob. ddat
Number Measures separation reliability awvana'nce inobserved data
BROAD SCALE STATISTICS used for explained by measures
estimates mean st.dev observed model observed model empirical modelled
Persons 811 2.94 1.77 0.61 0.76 0.27 0.37 31.4% 31.1%
Experiments 32 0 1.75 3.92 4.08 0.94 0.94 23.8% 23.5%
Data points: 2964 Log-likelihood chi square: 4080.63 df: 2119
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Figure S 5: Measure distributions for item 2
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Figure S 7: Expected mean ASELL scores for item 2
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7.3.6

Data preparation/ analyses run

Initial data: 1127 persons, 33 items

Eal o

Item 3: “l found this to be an interesting experiment”

Connectivity issues, extreme persons and blank responses resolved: 173 persons removed
Misfit issues resolved: 114 persons with z-scores for infit or outfit |z|> 2 were removed.
Remaining data split into two subsets: one containing Foundations of Chemistry experiments, the other containing Chemistry
IA experiments. To ensure connectivity, one previously removed misfitting person was added back into analysis. Resulting
data had connectivity issues, but with the two cohorts still connected. Connectivity issues were resolved: 3 persons removed.
(Final results reported)

Table S 43: Rasch model details for item 3

Category threshold between Andrich threshold Thurstone Estimated
Lower category label Upper category label measure st.error threshold discrimination
RESPONSE CATEGORY Agree / Strongly Agree 3.92 0.05 3.96 0.99
ASSOCIATED STATISTICS Neutral / Agree 0.79 0.05 0.82 1.00
Disagree / Neutral -1.72 0.11 -1.59 1.01
Strongly Disagree / Disagree -2.99 0.27 -3.20 1.16
Category Range Coherence Fit Statistics counts in
ASELL score Category Label X X
measure from to C=>M M=>C Infit Outfit RMSR sampled data
2 Strongly Agree 5.06 4.03 © 46% 70% 1.02 1.01 0.6802 648
1 Agree 2.37 0.86 4.03 79% 64% 0.98 1.01 0.3882 1486
0 Neutral -0.41 -1.48 0.86 49% 55% 1.01 1.01 0.6412 679
-1 Disagree -2.40 -3.43 -1.48 14% 31% 1.01 0.99 1.0274 110
-2 Strongly Disagree -4.26 —o0 -3.43 11% 67% 0.71 0.66 1.2025 18
R - -
Number Measures separation reliability awvarlaAncelnobserved data
BROAD SCALE STATISTICS used for explained by measures
estimates mean st.dev observed model observed model empirical modelled
Persons 838 211 1.60 0.74 0.86 0.35 0.43 40.2% 40.0%
Experiments 33 0.00 0.99 2.83 2.87 0.89 0.89 10.0% 10.0%
Data points: 2941 Log-likelihood chi square: 4905.13 df: 2068
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Figure S 8: Measure distributions for item 3
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7.3.7 Item 4: “It was clear to me how this laboratory exercise would be
assessed”

Data preparation/ analyses run

1. Initial data: 1127 persons, 33 items.

2. Connectivity issues, extreme persons and blank responses resolved: 241 persons, 1 item removed. Student cohorts were
assigned separate rating scale structures.

3. Misfit issues resolved: 99 persons with z-scores for infit or outfit |z|> 2 were removed.

4. Further connectivity issues resolved. 1 person removed (final results reported).

Table S 44: Rasch model details for item 4

Category threshold between Andrich threshold Thurstone Estimated
CHEMISTRY IA/B Lower category label Upper category label measure st.error threshold discrimination
Agree / Strongly Agree 3.82 0.07 3.85 0.98
RESPONSE CATEGORY Neutral / Agree 0.44 0.07 0.52 1.02
ASSOCIATED STATISTICS Disagree / Neutral -1.57 0.15 -1.46 0.99
Strongly Disagree / Disagree -2.68 0.40 -2.92 1.12
Category Range Coherence Fit Statistics countsin
ASELL score Category Label X
measure from to C=>M M=>C Infit Outfit RMSR sampled data
2 Strongly Agree 4.94 3.91 © 42% 68% 1.04 1.01 0.6741 418
Agree 2.15 0.63 3.91 83% 66% 0.97 1.00 0.3695 972
0 Neutral -0.48 -1.38 0.63 45% 52% 0.98 0.98 0.6767 326
-1 Disagree -2.20 -3.17 -1.38 8% 31% 1.05 1.05 1.1896 52
-2 Strongly Disagree -3.98 —o0 -3.17 0% 0% 0.77 0.71 1.5054 7
FOUNDATIONS OF Category threshold between Andrich threshold Thurstone ‘ Est‘in'{atet.i
CHEMISTRY IA/B Lower category label Upper category label measure st.error threshold discrimination
Agree / Strongly Agree 5.06 0.10 5.07 0.01
RESPONSE CATEGORY Neutral / Agree 0.45 0.10 0.52 0.99
ASSOCIATED STATISTICS Disagree / Neutral -1.93 0.26 -1.86 1.01
Strongly Disagree / Disagree -3.58 1.02 -3.73 1.09
Category Range Coherence Fit Statistics counts in
ASELL score Category Label X
measure from to C=>M M=>C Infit Outfit RMSR sampled data
2 Strongly Agree 6.17 5.09 © 54% 67% 0.99 0.95 0.5866 220
1 Agree 2.76 0.62 5.09 86% 74% 0.95 1.01 0.3228 649
0 Neutral -0.69 -1.80 0.62 43% 59% 1.04 1.05 0.6696 158
-1 Disagree -2.79 -3.93 -1.80 12% 67% 1.00 0.94 1.1922 17
-2 Strongly Disagree -4.8 —o0 -3.93 0% 0% 0.73 0.63 1.5583 1
Number Measures separation reliability Rawvaria.ncein observed data
BROAD SCALE STATISTICS used for explained by measures
estimates mean st.dev observed model observed model empirical modelled
Persons 786 2.40 1.63 0.52 0.66 0.21 0.30 42.5% 42.2%
Experiments 32 0.00 0.60 1.12 1.20 0.56 0.59 2.9% 2.9%
Data points: 2820 Log-likelihood chi square: 4316.53 df: 1997
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Figure S 11: Measure distributions for item 4
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7.3.8 Item 5: “It was clear to me what | was expected to learn from completing
this experiment”

Data preparation/ analyses run

1. Initial data: 1127 persons, 33 items.

2. Connectivity issues, extreme persons and blank responses resolved: 205 persons removed. Student cohorts were assigned
separate rating scale structures.

Misfit issues resolved: 94 persons with z-scores for infit or outfit |z|> 2 were removed.

4.  Further connectivity issues resolved. 13 persons removed (final results reported).

w

Table S 45: Rasch model details for item 5

Category threshold between Andrich threshold Thurstone Estimated
CHEMISTRY IA/B Lower category label Upper category label measure st. error threshold discrimination
Agree / Strongly Agree 3.60 0.06 3.63 0.92
RESPONSE CATEGORY Neutral / Agree 0.07 0.07 0.20 1.08
ASSOCIATED STATISTICS Disagree / Neutral -1.60 0.15 -1.40 0.96
Strongly Disagree / Disagree -2.07 0.35 -2.45 1.15
Category Range Coherence Fit Statistics counts in
ASELL score Category Label )
measure from to C=>M M=>C Infit Outfit RMSR sampled data
2 Strongly Agree 4.72 3.68 o 44% 68% 1.09 1.04 0.6631 473
1 Agree 1.87 0.36 3.68 83% 67% 0.95 0.99 0.3681 1015
0 Neutral -0.59 -1.30 0.36 45% 51% 0.90 0.88 0.6717 274
-1 Disagree -1.95 -2.77 -1.30 0% 0% 1.12 1.10 1.3312 44
-2 Strongly Disagree -3.49 —o0 -2.77 0% 0% 0.80 0.71 1.6939 9
FOUNDATIONS OF Category threshold between Andrich threshold Thurstone . Est‘im.ate(Ai
CHEMISTRY 1A/B Lower category label Upper category label measure st.error threshold discrimination
Agree / Strongly Agree 4.79 0.10 4.80 1.02
RESPONSE CATEGORY Neutral / Agree 0.00 0.11 0.10 1.10
ASSOCIATED STATISTICS Disagree / Neutral 2.14 0.28 -1.89 0.96
Strongly Disagree / Disagree -2.66 0.73 -3.02 1.02
Category Range Coherence Fit Statistics counts in
ASELL score Category Label )
measure from to C=>M M=>C Infit Outfit RMSR sampled data
2 Strongly Agree 5.90 4.82 0 53% 67% 0.99 0.97 0.5999 210
1 Agree 241 0.24 4.82 86% 75% 0.99 0.98 0.3113 642
0 Neutral -0.92 -1.76 0.24 33% 47% 1.06 1.04 0.7144 121
-1 Disagree -2.48 -3.33 -1.76 8% 50% 0.78 0.74 1.0856 13
-2 Strongly Disagree -4.06 —0 -3.33 0% 0% 0.82 0.76 1.7300 2
Number Measures separation reliability Rawvariavnceinobserved data
BROAD SCALE STATISTICS used for explained by measures
estimates mean st. dev observed model observed model empirical modelled
Persons 815 2.23 1.60 0.36 0.52 0.11 0.21 39.9% 39.7%
Experiments 33 0.00 0.67 1.32 1.46 0.63 0.68 3.3% 3.3%
Data points: 2803 Log-likelihood chi square: 4214.61 df: 1950
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Figure S 16: Measure distributions for item 5
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7.3.9
chemistry”

Data preparation/ analyses run

Initial data:

Eal o

1127 persons, 33 items
Connectivity issues, extreme persons and blank responses resolved: 202 persons removed
Misfit issues resolved: 109 persons with z-scores for infit or outfit |z|> 2 were removed.
Further connectivity issues resolved. 4 persons removed (final results reported).

Table S 46: Rasch model details for item 6

Item 6: “Completing this experiment has increased my understanding of

Category threshold between Andrich threshold Thurstone Estimated
Lower category label Upper category label measure st.error threshold discrimination
RESPONSE CATEGORY Agree / Strongly Agree 3.72 0.05 3.75 0.95
ASSOCIATED STATISTICS Neutral / Agree 0.3 0.06 0.37 1.06
Disagree / Neutral -1.91 0.14 -1.59 0.98
Strongly Disagree / Disagree -2.11 0.31 -2.55 1.17
Category Range Coherence Fit Statistics counts in
ASELL score Category Label X X
measure from to C=>M M=>C Infit Outfit RMSR sampled data
2 Strongly Agree 4.84 3.80 © 49% 68% 1.08 1.05 0.6626 725
1 Agree 2.03 0.47 3.80 83% 66% 0.96 0.97 0.3559 1587
0 Neutral -0.63 -1.42 0.47 39% 55% 0.94 0.92 0.6919 483
-1 Disagree -2.09 -2.89 -1.42 7% 40% 1.08 1.09 1.2083 54
-2 Strongly Disagree -3.58 —o0 -2.89 23% 100% 0.82 0.73 1.5798 13
R i in ob. ddat
Number Measures separation reliability awvana.ncelno serveddata
BROAD SCALE STATISTICS used for explained by measures
estimates mean st.dev observed model observed model empirical modelled
Persons 812 2.16 1.49 0.54 0.65 0.22 0.30 40.3% 40.1%
Experiments 33 0.00 0.69 1.77 1.80 0.76 0.76 3.1% 3.1%
Data points: 2862 Log-likelihood chisquare: 4573.53 df: 2015
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Figure S 21: Measure distributions for item 6
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7.3.10 Item 7: “Sufficient background information, of an appropriate standard, is

provided in the introduction”
Data preparation/ analyses run

Initial data: 1127 persons, 33 items

Eal o

Connectivity issues, extreme persons and blank responses resolved: 214 persons removed
Misfit issues resolved: 112 persons with z-scores for infit or outfit |z|> 2 were removed.
Further connectivity issues resolved. 16 persons removed (final results reported).

Table S 47: Rasch model details for item 7

Category threshold between Andrich threshold Thurstone Estimated
Lower category label Upper category label measure st.error threshold discrimination
RESPONSE CATEGORY Agree / Strongly Agree 3.79 0.05 3.82 0.96
ASSOCIATED STATISTICS Neutral / Agree 0.52 0.06 0.65 1.04
Disagree / Neutral -1.05 0.12 -1.12 1.02
Strongly Disagree / Disagree -3.25 0.44 -3.35 0.99
Category Range Coherence Fit Statistics counts in
ASELL score Category Label X X
measure from to C=>M M=>C Infit Outfit RMSR sampled data
2 Strongly Agree 491 3.89 © 53% 70% 1.04 1.03 0.6273 806
1 Agree 2.19 0.78 3.89 80% 65% 0.96 0.98 0.3783 1503
0 Neutral -0.24 -1.18 0.78 41% 49% 0.98 0.97 0.7144 449
-1 Disagree -2.21 -3.49 -1.18 8% 50% 0.96 0.91 1.1786 91
-2 Strongly Disagree -4.43 —o0 -3.49 17% 50% 1.00 1.01 1.6363 6
R i in ob. ddat
Number Measures separation reliability awvana.ncelno serveddata
BROAD SCALE STATISTICS used for explained by measures
estimates mean st.dev observed model observed model empirical modelled
Persons 785 2.50 1.46 0.59 0.73 0.26 0.34 38.3% 38.0%
Experiments 33 0.00 1.47 3.46 3.49 0.92 0.92 7.4% 7.4%
Data points: 2855 Log-likelihood chisquare: 4646.49 df: 2035
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Figure S 24: Measure distributions for item 7
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7.3.11 Item 8: “The demonstrators offered effective supervision and guidance”

NOTE: Demonstrators are not experiment specific — students often (but not always) had the same demonstrator for every
experiment. What the results for this question mean is open to interpretation. Potentially, the experiment measures reflect the
difficulty of rating any given demonstrator in general positively for that experiment. However, the variable frequency of responses
from different demonstrator groups may mean measures are biased to reflect the quality of the demonstrators who provided
more survey responses in that experiment. A different type of analysis is likely required to analyse this question properly (It is
probably impossible to gather the data required for this).

Data preparation/ analyses run

Initial data:

Eal o o

1127 persons, 33 items
Connectivity issues, extreme persons and blank responses resolved: 456 persons removed (mostly extreme positives)
Misfit issues resolved: 67 persons with z-scores for infit or outfit |z|> 2 were removed.

Further connectivity issues resolved. 15 persons removed. (final data set results displayed)

Table S 48: Rasch model details for item 8

Category threshold between Andrich threshold Thurstone Estimated
Lower category label Upper category label measure st.error threshold discrimination
RESPONSE CATEGORY Agree / Strongly Agree 3.37 0.05 3.41 0.98
ASSOCIATED STATISTICS Neutral / Agree 0.16 0.09 0.28 0.99
Disagree / Neutral -1.50 0.26 -1.31 1.12
Strongly Disagree / Disagree -2.04 0.74 -2.40 1.31
Category Range Coherence Fit Statistics counts in
ASELL score Category Label X X
measure from to C=>M M=>C Infit Outfit RMSR sampled data
2 Strongly Agree 4.50 3.48 0 73% 72% 1.02 1.00 0.4733 1095
1 Agree 1.80 0.42 3.48 68% 63% 1.01 1.02 0.4426 1061
0 Neutral -0.51 -1.22 0.42 12% 32% 1.02 1.01 0.9291 161
-1 Disagree -1.88 -2.72 -1.22 0% 0% 0.75 0.64 1.2888 15
-2 Strongly Disagree -3.44 —o0 -2.72 0% 0% 0.44 0.30 1.3617 2
R - -
Number Measures separation reliability awvarla_ncelnobserved data
BROAD SCALE STATISTICS used for explained by measures
estimates mean st.dev observed model observed model empirical modelled
Persons 589 2.80 1.31 0.31 0.48 0.09 0.18 32.8% 32.5%
Experiments 33 0.00 0.97 1.65 1.75 0.73 0.75 4.4% 4.3%
Data points: 2334 Log-likelihood chi square: 3373.50 df: 1710
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Figure S 27: Measure distributions for item 8
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7.3.12 Item 9: “The experimental procedure was clearly explained in the lab

manual or notes”

Data preparation/ analyses run

Eal o

Initial data:

1127 persons, 33 items
Connectivity issues, extreme persons and blank responses resolved: 262 persons removed
Misfit issues resolved: 113 persons with z-scores for infit or outfit |z|> 2 were removed.

Remaining data split into two subsets: one containing Foundations of Chemistry experiments, the other containing Chemistry

IA experiments. To ensure connectivity, one previously removed misfitting person was added back into analysis. Resulting
data had connectivity issues, but with the two cohorts still connected. Connectivity issues were resolved: 8 persons, 1 item
removed (final results reported).

Table S 49: Rasch model details for item 9

Category threshold between Andrich threshold Thurstone Estimated
Lower category label Upper category label measure st.error threshold discrimination
RESPONSE CATEGORY Agree / Strongly Agree 2.90 0.05 2.95 1.06
ASSOCIATED STATISTICS Neutral / Agree 0.05 0.06 0.20 1.09
Disagree / Neutral -0.92 0.11 -0.95 0.98
Strongly Disagree / Disagree -1.94 0.24 -2.21 0.99
Category Range Coherence Fit Statistics counts in
ASELL score Category Label X X
measure from to C=>M M=>C Infit Outfit RMSR sampled data
2 Strongly Agree 4.04 3.04 © 50% 70% 1.01 1.00 0.6411 854
1 Agree 1.51 0.40 3.04 78% 61% 1.01 1.05 0.4001 1426
0 Neutral -0.35 -0.97 0.40 30% 36% 1.04 1.04 0.8150 372
-1 Disagree -1.61 -2.48 -0.97 18% 61% 0.91 0.86 1.2597 97
-2 Strongly Disagree -3.25 —0 -2.48 5% 100% 0.89 0.79 1.6746 20
R i in ob: ddat
Number Measures separation reliability awvarla‘nce inobserved data
BROAD SCALE STATISTICS used for explained by measures
estimates mean st.dev observed model observed model empirical modelled
Persons 745 1.91 1.19 0.20 0.44 0.04 0.16 34.7% 34.4%
Experiments 32 0.00 0.76 1.84 1.86 0.77 0.77 6.9% 6.8%
Data points: 2769 Log-likelihood chi square: 4838.56 df: 1990
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Figure S 30: Measure distributions for item 9
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7.3.13 Item 10: “l can see the relevance of this experiment to my chemistry

studies”
Data preparation/ analyses run

Initial data: 1127 persons, 33 items

Eal o

Connectivity issues, extreme persons and blank responses resolved: 217 persons removed
Misfit issues resolved: 88 persons with z-scores for infit or outfit |z|> 2 were removed.
Further connectivity issues resolved. 4 persons removed (final results reported)

Table S 50: Rasch model details for item 10

Category threshold between Andrich threshold Thurstone Estimated
Lower category label Upper category label measure st.error threshold discrimination
RESPONSE CATEGORY Agree / Strongly Agree 4.50 0.05 4.52 1.00
ASSOCIATED STATISTICS Neutral / Agree 0.53 0.06 0.57 0.99
Disagree / Neutral -2.17 0.16 -1.92 1.05
Strongly Disagree / Disagree -2.86 0.40 -3.18 1.02
Category Range Coherence Fit Statistics counts in
ASELL score Category Label X X
measure from to C=>M M=>C Infit Outfit RMSR sampled data
2 Strongly Agree 5.62 4.56 © 52% 69% 1.01 0.98 0.5983 744
1 Agree 2.52 0.64 4.56 84% 70% 0.97 1.00 0.3448 1655
0 Neutral -0.72 -1.75 0.64 43% 57% 1.02 1.02 0.6927 427
-1 Disagree -2.56 -3.47 -1.75 11% 50% 0.89 0.83 1.0334 44
-2 Strongly Disagree -4.22 —0 -3.47 0% 0% 0.98 0.94 1.6798 7
R i in ob. ddat
Number Measures separation reliability awvarla.nce inobserved data
BROAD SCALE STATISTICS used for explained by measures
estimates mean st.dev observed model observed model empirical modelled
Persons 818 2.53 1.70 0.61 0.73 0.27 0.35 43.2% 42.9%
Experiments 33 0.00 0.66 1.56 1.58 0.71 0.71 4.1% 4.1%
Data points: 2877 Log-likelihood chi square: 4145.71 df: 2024
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Figure S 33: Measure distributions for item 10
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7.3.14 Item 11: “Working in a team to complete this experiment was beneficial”
Data preparation/ analyses run

1. Initial data: 1127 persons, 33 items
2. Connectivity issues, extreme persons and blank responses resolved: 339 persons removed. Student cohorts were assigned
separate rating scale structures.

3. Misfit issues resolved: 149 persons with z-scores for infit or outfit |z| = 2 were removed.
4.  Further connectivity issues resolved. 16 persons and 1 item removed (final results reported).

Table S 51: Rasch model details for item 11

Category threshold between Andrich threshold Thurstone Estimated
CHEMISTRY 1A/B Lower category label Upper category label measure st.error threshold discrimination
Agree / Strongly Agree 2.66 0.07 2.85 0.91
RESPONSE CATEGORY Neutral / Agree 1.27 0.08 1.09 1.14
ASSOCIATED STATISTICS Disagree / Neutral 3.27 0.20 -1.85 0.97
Strongly Disagree / Disagree -0.66 0.26 -2.11 0.79
Category Range Coherence Fit Statistics counts in
ASELL score Category Label X X
measure from to C=>M M=>C Infit Outfit RMSR sampled data
2 Strongly Agree 3.91 3.07 © 66% 73% 1.04 1.03 0.5625 609
1 Agree 1.97 0.91 3.07 57% 44% 1.04 1.15 0.5247 488
0 Neutral -0.53 -1.44 0.91 60% 70% 0.88 0.82 0.6307 413
-1 Disagree -2.00 -2.61 -1.44 0% 0% 1.18 1.15 1.1434 15
-2 Strongly Disagree -3.10 —o0 -2.61 14% 60% 1.13 1.18 1.5514 22
FOUNDATIONS OF Category threshold between Andrich threshold Thurstone . Est.im.atetl:i
CHEMISTRY IA/B Lower category label Upper category label measure st. error threshold discrimination
Agree / Strongly Agree 2.95 0.08 3.04 0.91
RESPONSE CATEGORY Neutral / Agree 0.65 0.10 0.64 1.12
ASSOCIATED STATISTICS Disagree / Neutral -1.85 0.23 -1.42 0.92
Strongly Disagree / Disagree -1.75 0.41 -2.28 0.89
Category Range Coherence Fit Statistics countsin
ASELL score Category Label X X
measure from to C=>M M=>C Infit Outfit RMSR sampled data
2 Strongly Agree 4.12 3.17 © 52% 67% 1.08 1.05 0.6413 304
1 Agree 1.83 0.64 3.17 75% 56% 0.94 1.04 0.4051 396
0 Neutral -0.42 -1.22 0.64 40% 61% 0.86 0.84 0.7297 161
-1 Disagree -1.88 -2.64 -1.22 26% 42% 1.25 1.30 1.2748 19
-2 Strongly Disagree -3.30 —o0 -2.64 13% 100% 1.09 1.11 1.5286 8
Number Measures separation reliability Rawvaria_nceinobserved data
BROAD SCALE STATISTICS used for explained by measures
estimates mean st.dev observed model observed model empirical modelled
Persons 623 1.96 1.24 0.52 0.69 0.21 0.32 27.2% 27.1%
Experiments 32 0.00 1.08 2.75 2.78 0.88 0.89 25.5% 25.5%
Data points: 2435 Log-likelihood chi square: 4080.24 df: 1775

Person measures

30

Person count

ltem count
L]

Experiment measures

Figure S 36: Measure distributions for item 11
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7.3.15 Item 12: “The experiment provided me with the opportunity to take
responsibility for my own learning”

Data preparation/ analyses run

1. Initial data: 1127 persons, 33 items

2. Connectivity issues, extreme persons and blank responses resolved: 188 persons removed. Student cohorts were assigned
separate rating scale structures.

Misfit issues resolved: 147 persons with z-scores for infit or outfit |z|> 2 were removed.

4.  Further connectivity issues resolved. 25 persons removed (final results reported).

w

Table S 52: Rasch model details for item 12

Category threshold between Andrich threshold Thurstone Estimated
CHEMISTRY 1A/B Lower category label Upper category label measure st.error threshold discrimination
Agree / Strongly Agree 4.84 0.07 4.87 1.01
RESPONSE CATEGORY Neutral / Agree 1.64 0.07 1.61 1.02
ASSOCIATED STATISTICS Disagree / Neutral -3.19 0.28 -2.74 0.95
Strongly Disagree / Disagree -3.29 0.64 -3.74 1.20
Category Range Coherence Fit Statistics counts in
ASELL score Category Label i
measure from to C=>M M=>C Infit Outfit RMSR sampled data
2 Strongly Agree 5.97 4.94 £ 44% 70% 1.00 0.99 0.6677 371
1 Agree 3.24 1.56 4.94 85% 64% 0.96 0.94 0.3475 864
0 Neutral -0.71 -2.42 1.56 50% 73% 1.00 1.02 0.6319 408
-1 Disagree -3.25 -4.09 -2.42 7% 17% 1.23 1.09 1.0878 14
-2 Strongly Disagree -4.78 —0 -4.09 0% 0% 0.81 0.71 1.3060 3
FOUNDATIONS OF Category threshold between Andrich threshold Thurstone ‘ Est(im.atec.i
CHEMISTRY 1A/B Lower category label Upper categorylabel | measure  sterror [ threshold discrimination
Agree / Strongly Agree 6.30 0.11 6.31 0.93
RESPONSE CATEGORY Neutral / Agree 1.95 0.10 1.94 1.06
ASSOCIATED STATISTICS Disagree / Neutral -4.60 0.48 -3.82 0.93
Strongly Disagree / Disagree -3.65 1.06 -4.43 0.81
Category Range Coherence Fit Statistics counts in
ASELL score Category Label X
measure from to C=>M M=>C Infit Outfit RMSR sampled data
2 Strongly Agree 7.41 6.34 0 44% 64% 1.08 1.06 0.6710 162
1 Agree 4.12 1.92 6.34 83% 72% 1.00 0.99 0.3391 567
0 Neutral -1.24 -3.41 1.92 68% 76% 0.92 0.91 0.4872 288
-1 Disagree -4.13 -4.85 -3.41 0% 0% 1.28 1.07 1.0840 4
-2 Strongly Disagree -5.44 —o0 -4.85 0% 0% 1.25 0.94 1.8169 1
Number Measures separation reliability Rawvaria‘nceinobserved data
BROAD SCALE STATISTICS used for explained by measures
estimates mean st. dev observed model observed model empirical modelled
Persons 767 3.41 1.99 1.19 1.30 0.36 0.42 45.1% 45.0%
Experiments 33 0.00 0.76 1.38 1.42 0.66 0.67 4.3% 4.3%
Data points: 2682 Log-likelihood chi square: 3799.33 df: 1877

Person measures

Person count
.
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o st AT

o4 R a5 5
-4.00 -3.08 -2.16 -1.24 -0.32 0.60 1.52 2.43 3.35 427 519 6.11 T.03 7.95 8.87
) L L | L L L \ L L h L L

1
1

ltem count

Experiment measures

Figure S 41: Measure distributions for item 12
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7.3.16 Item 13: “l found the time available to complete this experiment was”
Data preparation/ analyses run

Initial data: 1127 persons, 33 items

Connectivity issues, extreme persons and blank responses resolved: 124 persons and 2 items removed
Further connectivity issues and blank responses resolved: 103 persons and 5 items removed

Further connectivity issues and blank responses resolved: 10 persons and 1 item removed

Misfit issues resolved: 115 persons with z-scores for infit or outfit |z|= 2 were removed.
Further connectivity issues resolved: 36 persons removed (final results presented).

Table S 53: Rasch model details for item 13

v ~wNR

Category threshold between Andrich threshold Thurstone Estimated
Lower category label Upper category label measure st. error threshold discrimination
RESPONSE CATEGORY Too Much / Way Too Much 7.82 0.19 7.85 1.05
ASSOCIATED STATISTICS About Right / Too Much 4.26 0.07 4.23 1.04
Not Enough / About Right -4.96 0.11 -4.86 0.94
Nowhere Near Enough / Not Enough -7.12 0.33 -7.22 1.14
Category Range Coherence Fit Statistics counts in
ASELL score Category Label X §
measure from to C=>M M=>C Infit Outfit RMSR sampled data
2 Way Too Much 8.94 7.90 el 15% 50% 0.85 0.82 0.8439 40
Too Much 6.04 4.18 7.9 57% 65% 0.96 0.88 0.5478 396
0 About Right -0.35 -4.72 4.18 95% 91% 0.97 0.98 0.2008 2388
-1 Not Enough -6.04 -7.36 -4.72 37% 58% 1.04 0.92 0.7213 112
-2 Nowhere Near Enough -8.3 —o0 -7.36 9% 100% 0.75 0.51 1.0435 11
Number Measures separation reliability Rawvaria‘nceinobserved data
BROAD SCALE STATISTICS used for explained by measures
estimates mean st. dev observed model observed model empirical modelled
Persons 739 0.03 2.29 0.00 0.00 0.00 0.00 38.6% 37.1%
Experiments 25 0.00 2.08 4.09 4.14 0.94 0.94 14.7% 14.1%
Data points: 2947 Log-likelihood chi square: 2085.72 df: 2181

Person measures

Person count

-6.00 -5.08 -4.16 -3.24 -2,32 -1.40 -0.45 0.43 1.

227 3149 411 5.03 595 6.87

[tem count

Item measures

Figure S 46: Measure distributions for item 13
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7.3.17 Item 14: “Overall, as a learning experience, | would rate this experiment

as”

Data preparation/ analyses run

Initial data:

Eal o

1127 persons, 33 items
Connectivity issues, extreme persons and blank responses resolved: 153 persons removed
Misfit issues resolved: 88 persons with z-scores for infit or outfit |z|> 2 were removed.
Further connectivity issues resolved. 51 persons and 1 item removed (final results presented).

Table S 54: Rasch model details for item 14

Category threshold between Andrich threshold Thurstone Estimated
Lower category label Upper category label measure st. error threshold discrimination
RESPONSE CATEGORY Good / Excellent 5.72 0.06 5.72 0.98
ASSOCIATED STATISTICS Average / Good 0.13 0.06 0.17 1.02
Poor / Average -3.06 0.18 -2.55 0.99
Very Poor / Poor -2.79 0.43 -3.36 1.25
Category Range Coherence Fit Statistics counts in
ASELL score Category Label X
measure from to C=>M M=>C Infit Outfit RMSR sampled data
2 Excellent 6.82 5.73 © 46% 68% 1.04 0.98 0.6269 457
1 Good 2.93 0.23 5.73 89% 78% 0.97 0.98 0.2973 1981
0 Average -1.28 -2.27 0.23 48% 60% 0.97 0.94 0.5933 474
-1 Poor -2.97 -3.74 -2.27 7% 50% 1.09 1.11 1.2291 29
-2 Very Poor -4.38 —o0 -3.74 0% 0% 0.75 0.59 1.6048 6
Number Measures separation reliability Rawvaria.ncein observed data
BROAD SCALE STATISTICS used for explained by measures
estimates mean st.dev observed model observed model empirical modelled
Persons 835 2.69 2.02 0.39 0.51 0.13 0.21 45.2% 44.9%
Experiments 33 0.00 1.02 2.01 2.04 0.80 0.81 1.9% 1.8%
Data points: 2947 Log-likelihood chi square: 3501.83 df: 2078

Person count

ltem count

Person measures
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Experiment measures

Figure S 49: measure distributions for item 14
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7.4 Supporting information for section 4.1

7.4.1 Rasch model derivations

Included in this section are simple derivations of each Rasch model used in this thesis, notably
contrasted in section 4.1. Equations labelled with white text within a black box (for example E)
correspond to Rasch model formulations used in the main body of research, as presented in
Table 18 of section 4.1.2.2.

Symbols used in the model derivations following differ to the facet symbols used in the main
discussion. This is because facets are constructed in the main body discussion based on how
their element numbers are assigned, rather than their precise mathematical origins. In some
cases, a variety of different facet terms presented here vary in the identical way, hence are
assigned facet element numbers identically and thus have identical measures estimated, all
else being equal. It is appropriate therefore to use the same facet symbol in the main body
research in these cases, despite possible differences in their basic formulation within
mathematical derivations. A summary of the variety of symbols used to refer to different types
of facet is provided below.

Table S 55: Symbols used to represent different facets in various Rasch model formulations

Symbol used Facets which vary in this
in main body Facet description manner, as noted in these
discussion model derivations

[
E Q Values vary between questions only, otherwise constant 8q
2 ©
E —

[ .
a <) E Values vary between contexts (experiments) only, s
Z° otherwise constant ¢
= o
g &
S - 5 Values vary between questions and contexts 5 s 5 S
& (experiments) only, otherwise constant @.c’ = q.cr ma.cr =aq.c
'uz__' B Values vary between students only, otherwise constant Bs
ax
E —
E = Values vary between students and questions only, B B B: -

©
e - BQ otherwise constant Sq2 P sqrEsgrrsq
2 - Values vary between students and contexts B B, B: -
“ BE (experiments) only, otherwise constant SerFscrEscer s

Symbols used in the main body discussion imply the way facet element numbers are assigned. A greater
number of symbols is needed to express the different facets which vary similarly, but with different
mathematical justifications. Assignment of facet element numbers for each is shown in Table 16 and
Table 17, section 4.1.2.2.

The following derivations express the probability P that the observed response X will occur in
category k of rating scale structure g (i.e. in category x ;), under survey circumstances

described by vector D= [S g C].Here,s, gand cindex the student responding, the
guestion they are responding to and the context in which the student is asked that question
respectively.
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Consider the probability of response in category k relative to the probability of response in the
previous category, using this as a relative measure of the tendency to observe positive
response in a given circumstance:

P(X=x,D=1[s 4 c])
P(X=x,64ID=[s q c])

=15, (D) = 1y (s,q,€)

The tool used in order to obtain a measurement should not influence the measure value
obtained. It is therefore required that the measure of one circumstance described by Ba =
[Sa qa Ca] relative to another circumstance described by Bb =[Sp qp Cp]remains
equivalent regardless of which rating scale structure or rating scale category is used. Using
some hypothetical “reference” rating scale structure (g,) and category (k,), this requirement
implies that for any rating scale structure (g) and response category (k):

7Tg,k (Sax qa, Ca) _ T[go,ko (Sa' qa, Ca)
gk (Sp» qp» Cp) g0,k (Sp» qp» Cp)

and hence,

Tgo.ko (Sb» b Cp)

Mg,k (Sar Gar Ca) = Mgk (Sp, G, Cp) X
g arYarta g ’ ’ ﬂgo_ko(sb;Qb:Cb)

Defining some arbitrary “reference” circumstance ® = [@s  Pq @] with which other
circumstances may be contrasted for the purposes of measurement, then substituting this

reference circumstance in place of D, = [Sp qp Cp] in the equation above obtains:

ﬂgo,ko (s' q' C)

Ty x(S,q,¢) =My d) x —_—
" gk( ) T[gojko(q))

which, after taking the natural logarithm,

Ttgo,kg (S' q, C)
Tgo.ko ((;D)
yields the generalised Rasch model first presented as Equation 1 in the introductory material

(replacing 1ty x (s, q, ¢) with the full probability ratio described at the beginning of this
discussion).

ln[ng,k(s, q, c)] = ln[ng,k(a)')] +In

In

P(x = xg_k|ﬁ =[s q ¢])
C] = Ps,qc — Tgk 1

P(X=x,,4ID=1[s 4

)

Here the latent trait measure underpinning response in circumstance D= [s g c]isgiven
by:

T[go,ko (S' q, C)
Tgo.ko (cb)

and the rating scale structure is defined by parameters:

Dsqc = ln[

Tgx = In [ng‘k(ab))_l]
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The latent trait parameter may be reformulated at this point by introducing various
constraints, restricting the way measure values change as descriptions of the circumstance
change. Requiring that the measure for one student relative to a hypothetical “reference
student” (¢) is independent of question and context (i.e. requiring “specific objectivity” of the
student measure) necessitates:

Tgo.ko (S’ 4 C) _ Tg0.ko (S’ d)Q’ ¢C)
Ttgo,ko (d)s' q, C) T[go.ko (¢s: ¢q! ¢C)

which therefore implies:

Tgo.ko (S’ ¢Q’ ¢C)
Tgo.ko (¢s' bq ¢6)

and hence, substituting back into the expression for the latent trait measure:

T[go,ko (Sv q, C) = T[go,ko (¢S! q, C) X

Tgqko (S, Q)
Tgo.ko ((I))

Or, introducing simplified variable labels:

=In [ngo,ko (¢s' q, C) x T[go,ko (S' ¢q' ¢c)
Tgo.ko ((D) Tgo.ko (CI))

Psqc = In [

Tgo.ko (S’ ¢q' ¢C)
Tgo.ko ((b)

-1
5 =1 (ﬂgo,ko (d)s: q, C)) n
) gc = || —————=—
Tgo.ko (CI))

which is a two-facet Rasch model containing one facet specific to student only () and
another specific to both question and context (6, ). Similar procedures can be used to obtain
other two-facet Rasch models, either by requiring specific objectivity with respect to question

asked:
5 =In (ngo ko (¢s: q, ¢c n
! Tgo.ko (d))

Ds,qc = Bs — aq,c i Bs= lnl

Tgo.ko (S' ¢q) C)
Tgo.ko (d))

Ds,qc = ﬂs,c - 6q ; :Bs,c =In [
or survey context:

T[go,ko (S, q, ¢C)
Tgo.ko ((D)

-1
, 6.=1In (—ngo'ko (d)s'iq' C)>
Tgo.ko (cb)
These all produce two-facet Rasch models, with facets varying in different ways. Facets derived
in the latter two formulations include a context-specific student facet (fs ), a question facet
(84), a question-specific student facet (B, 4) and a context-specific facet (6.). Any of these
formulations can be further used to derive a simple three-facet Rasch model by introducing
further specific objectivity requirements. For example, specific objectivity with respect to the
survey question posed requires that:

Dsqc = ﬂs,q - 5c ; :Bs,q =In [

ngo,ko (S, q, ¢c) 7rgo,ko (5' ¢q' ¢c)

Tgo.ko (b9, dc) - Tgo.ko (¢S’ ¢Q' ¢C)
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Tgo.ko (S’ ¢Q‘ ¢C)
Tgo.ko (CI))

and therefore, the 5 , facet can be reformulated as follows:

T[go,ko (S' q, ¢c) = T[go,ko ((;bs: q, ¢c) X

7rgo,ko (S: q, ¢c) =In [ngo,ko (5: (pc‘ ¢c) x 7rgo,ko (¢s' q, ¢C) — ,B -5
S q

Tgo.ko (6) Tgo.ko (6) Tgo.ko (5)

with similar reformulations for the B . or §, . facets. The net result is that all three of the prior

ﬁs‘q = ln[

latent trait parameter expressions may be reformulated as:

(ps,q,c = ﬁs - 5q - 50 n

which is a three-facet Rasch model containing a student facet, question facet and context
facet. Thus, four different expressions for the latent trait parameter have been derived. A fifth
expression may be derived by considering the sum of the first three latent trait parameter
expressions discovered previously. The expression below requires all specific objectivity
restraints thus far introduced:

Ds,q,c + Ps,q.c + DPs,qc = (,Bs - é\q,c) + (.Bs,c - 6q) + (.Bs,q - 6c)

or more simply,

3(ps,q,c = (.Bs,q + .Bs,c - 6q,c) + (,Bs - 6q - 6c)

The simple three-facet model expression presented previously can easily be subtracted on
both sides of this equation to yield:

2(ps,q,c = .Bs,q + .Bs,c - 6q,c
And therefore:

1 1 1
Ds.qc = E.Bs,q + EBS,C - E aq,c

This expression contains all three facet terms which are jointly specific to more than one
component of the circumstance description. The coefficient of %2 outside of each facet term
can conveniently be removed by re-labelling variables. A complex three-facet Rasch model can

then be expressed:
Ps,qc = B’s,q + B,s,c - 6,q,c -

where the facet measures then reflect the following:

1/2]
g = tp i |(Toeke (S0 90)
s,q 2 s,q T[ (6)
Jo.ko

_ 127
ﬁl — 1 (Trgmko (S’ ¢Q’ C))
s,.c

=fsc=1n =
27 7rgo'ko((b)
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-1/2
5y =28, =In (Lm"“((ps’q’c))
q.c q.c =

2 7tgo'ko(c]:))

rather than the usual relationships as presented in previous discussion. Restrictions can be
imposed on the parameters of either this complex three facet model or the previously
described simple three-facet model to obtain other Rasch model formulations.

For example, assume a scenario such that the question asked does not alter the latent trait
parameter. That is, for all s, g and c:

Tgo,ko (s.q, <) — Tgo.ko (S‘ (pQ' C)
Tgo.ko (CI)) Tgo.ko (CI))

This restriction reduces the previously described &, facet to zero by the following:

-1 —\\ —1
5q =In (Trgo,ko (‘l)s' q, ¢C)> =In (ngo,k0(¢)> =0

Tgo.ko (6) Tgo.ko (6)

Therefore, under this presumption, the previously presented simple three-facet model is

reduced to a simple two-facet model:
Ps,qc = Bs — 6¢ -

The identical presumption also restricts the complex three-facet model to the identical
formulation. Beginning with the complex three-facet model (written in expanded form below):

1/2 1/2 -1/2
_ T[go,ko (S: q, ¢c) T[go,ko (S, ¢q' C) T[go,ko (¢s' q, C)
(pS,q,C =In e —— +In e ——— —In ——
Tgo.ko (q)) Tgo.ko (QD) Tgo.ko (d))

which simplifies to:

1/2
® =In (T[.go.ko (S' q, ¢c) % Tgo.ko (S' d)tI' C) % Tgo.ko (¢5’ 4 C)>
s,q.c — p— — —
! Tgo.ko (CI)) Tgo.ko (CI)) Tgo.ko (CI))

Applying the restriction described previously yields:

1/2
_ (”go,ko (S' bq, ¢6) Tgo.ko (s, ¢q, c) Tgo.ko (¢, ¢q) C))
Psqc = In p— X — X —
Tgo.ko (cb) Tgo.ko (cb) Tgo.ko (cb)

Again applying previously stated specific objectivity requirements, this expands to give:

1/2
Geno=In (”go,ko (5' bq, ¢6) % Tgo.ko (5' bq) ¢C) % Tgo.ko (¢, ¢q) c) % Tgo.ko (¢, bq C))
s,.q.c = p— — . —
Tgo.ko (cb) Tg0.ko (cb) Tg0.ko ((I)) Tgo.ko (Cb)

which simplifies to Equation F, as was to be shown:

T[gorko(s' ¢q'¢6) N ”yo.ko(d’s'd’q'c) _
T[go'ko(q)) Tgo.ko (CD)

Ds,qc = In [ .85 - 60
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Presuming instead that latent trait measure is independent of survey context, procedures
analogous to those above may be employed to give another alternate model:

Psqc = Bs — 6q H

The complex three-facet Rasch model can also be restricted in other ways, however. Any one
of the three complex facets can be presumed zero. That is, it may be assumed that either of
the following are true:

1/2 —\\ 1/2
ﬁ’ =In (T[go.ko (S, q, ¢c)> = In (ngo,ko (¢))> =0 Vs q
S, rig — )

! Tgo.ko (CD) Tgo.ko (CD)

1/2 N 1/2
B'sc=1In (—n‘q"‘k"(s' ¢q,c)> =In (—n‘g"’k"(d))) =0 Vs,c

Tgo.ko (5) Tgo.ko (5)

1/2 — 1/2
éﬂq'c =In (ngo'ko(s' ¢Q’C)> = In (ngo'ko(¢)> =0 vgc

Tgo.ko (5) Tgo.ko (5)

which respectively give the three models shown below:

—_ p! !

(ps,q,c - ,8 sc ) q.c n
_ pt ’

Psqc =B'sq =0 qc -

Ps,qc = ﬁ’s,q + ﬁ’s,c

These three models are all formulated such that all terms are dependent on one “overarching”
component of the survey circumstance description (the context, question or student
respectively). Note that the third does not include any student independent term, and so has
not been labelled. These models represent cases where the data are described using the same
two facets, but the measures of those facets are not comparable for different cases of the
“overarching” variable. For example, Model H above has a student facet and a question facet,
which remain comparable for some specific survey context. However, once the survey context
changes, the student facet and question facet may take on different values. A lack of
connectivity is therefore necessitated: measures are not comparable across different survey
contexts. Similar scenarios exist for the other two models of the three presented above. This
necessary disconnectivity does not occur for the other models presented thus far.

Restricting specific facet values to zero in a similar manner to the above can lead to
formulations of Rasch models where the latent trait measure is given by a singular facet: any
one of the facets presented in models described up to this point. A notable case of this is the
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scenario in which one facet in any of models A, B or C is restricted to equal zero, leaving only
the facet specific to two components of the circumstance description. That is, the latent trait
variable ¢ is modelled to equal S, Bs 4 Or =8, only. Take for example:

T[go,ko (S! q, ¢c)
Tgo.ko (CD)

This may be reformulated by multiplying the term within the square parentheses with a
convenient ratio equal to one (shown below within large curved parentheses):

T[go,ko (S, q, ¢c) x (ngo,ko (S’ ¢q: ¢c))]
Tgo.ko (CD) Tgo.ko (S’ d)Q’ ¢C)

Rearranging the fractions within, this becomes:

Ds,qc = ﬁs,q = ln[

Dsqc = ﬁs,q = ln[

T[go,ko (S: q, d)c) x ngo,ko (51 ¢q: ¢c)
T[‘go‘ko (S' ¢q' ¢C) T[.go.ko (CD)

Ps,qc = ﬁs,q = ln[

which may be written as a new model:

T ,ko(siqid)c)
Psqe=Psq=Bs+Bsq B =ln[—“"°
s,49,¢ s,q9 S s,q s,q T[go'ko(s, ¢q,¢c)

Where B is defined as previously, and the newly introduced facet label g , is another
guestion-specific student term, with a value defined relative to a student-specific reference
point Ty, k. (s, bq, q,’)c) rather than being defined relative to the universal reference point

TCgo ko (3) used for all other facet definitions thus far. Notice, however, that no assumptions
needed to be made to obtain this formulation from the usual question-specific student facet:
this expression is an equivalent, alternate form. It appears that the usual question-specific
student facet, as defined relative to the universal reference point, is equivalent to modelling a
facet which is student specific only, then adding a facet term which expresses a question
specific component specific to that student. It can similarly be shown that the B , term may
alternately be deconstructed as follows:

Hx *k T k (S! q;d) )
(ps,q,c = ﬁs_q = S‘q—é‘q ; 5.q = ln [M
Tgo.ko (¢s.9, c)

which is an expression containing the usual question specific facet, plus yet another question-
specific student facet, this time defined relative to a question specific reference point

TCgo ko ((;bq, q, (;bc). Again, however, this model was obtained as a simple rearrangement of the
single B, 4 facet, and therefore if data were fit to this model it would yield no different
information whatsoever. Model J is in this way redundant: the same information is achieved by
utilising a simpler model, where the jointly specific facet (specific jointly to student and
guestion) has not been split. This redundancy occurs for any case where a facet jointly specific
to two components of the circumstance description (eg. question-specific student term,
context-specific student term or question-specific context term) is coupled with a facet
singularly specific to one of those same components (student, question or context). The same
information would be obtained without modelling the singularly specific facet; it is made
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redundant by inclusion of the jointly specific facet. For example, a model of solely the f .
facet (as previously defined) is equivalent to the following:

_ =B _5 . o] T[gkaO (S’ ¢q’ C)
(ps,q,c - ﬁs,c — Ps,c” 9% s,q — n
Tgo.ko (¢S’ ¢Q‘ C)

Because of these considerations of redundancy, no further Rasch model formulations exist
where circumstances are differentiated only based on three components: student, question
and context. Models J and K are still included in the main discussion, however, to complete the
array of student dependent and student independent facet combinations shown in Table 18 of
section 4.1.2.2.
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7.4.2 Data tables

Original experiment titles presented here denote the student cohort the experiment was
presented to (C indicates Chemistry IA/B, F indicated Foundations of Chemistry IA/B and u

denotes unknown or mixed cohort), the year in which it was presented (for example ’10 is the
notation for 2010) and the title of the experiment.

Table S 56: Original and equated experiment numbers and surveys gathered

ORIGINAL VALUES: Experiments conducted EQUATED VALUES: Identically
either in different semesters, conducted by structured experiments are assigned Surveys received
different cohorts of students (Chemistry IA/B | identical sets of measures, regardless
vs Foundations of Chemistry IA/B) or with of the semester or year in which they
different designs entirely are assigned were presented and regardless of the
separate sets of measures student cohort
Experiment title "
(]
# Experiment title # (Title is only listed on the first § E
occasion its facet element S % E
number appears) s 5 g
< s 2
1 u-'10-Expt.5 5 Quantitative techniques 52 52
2 C-'11-Ex.1 - Biological buffers 1 Biological Buffers 136 134
3 C-'11-Ex.2 - Thermochemistry 2 Thermochemistry 104 104
4 C-'11-Ex.3 - Vapour pressure 3 Vapour Pressure 84 83
5 C-'11-Ex.4 - Melting points and 4 Melting Points and 147 146
recrystallisation Recrystallisation
6 C-'11-Ex.5 - Quantitative techniques 5 97 96
7 C-'11-Ex.6 - Reaction kinetics 6 Reaction Kinetics 154 154
8 C-'11-Ex.8 - Liquid-liquid extraction and | 8 Liquid-Liquid Extraction and TLC | 120 118
TLC
9 C-'11-Ex.9 - Synthesis of aspirin 9 Synthesis of Aspirin 95 93
10 C-'11-Ex.10 - coloured complexes of 10 Coloured Complexes of Iron 90 90
iron
11  C-'11-Ex.11 - analysis of spinach 11 Analysis of Spinach Extracts 144 141
extracts
12 C-'11-Ex.12 - lon exchange 12 lon exchange Chromatography 108 106
chromatography
13 C-'11-Ex.13 - Copper(ll) ion absorption 13 Copper(ll) lon Absorption 126 123
spectrophotometry Spectrophotometry
14  F-'11-Ex.1 - Biological buffers 1 69 67
15 F-'11-Ex.4 - Melting points and 4 85 82
recrystallysation
16  F-'11-Ex.5 - Quantitative techniques 5 64 63
17  F-'11-Ex.6 - Reaction kinetics 6 93 92
18 F-'11-Ex.8 - Liquid-liquid extractionand | 8 57 54
TLC
19 F-'11-Ex.10 - Coloured complexes of 10 71 70
iron
20 F-'11-Ex.12 - lon exchange 12 78 78
chromatography
21 F-'11-Ex.13 - Copper(ll) ion absorption 13 83 83
spectrophotometry
22 F-'12-Ex.OF - Introductory experiment 7 Introductory experiment 19 19
23 F-'12-Ex.1F - Quantitative techniques 14  Quantitative Techniques 102 102
(revised: for foundations)
24 F-'12-Ex.2F - Vitamin C titration 15 Determination of vitamin C 73 73
concentration

o o o o o o o o o o o o o o o o o o o o oo o oIUSGdfOFequating
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ORIGINAL VALUES: Experiments conducted EQUATED VALUES: Identically
either in different semesters, conducted by structured experiments are assigned Surveys received
different cohorts of students (Chemistry IA/B | identical sets of measures, regardless
vs Foundations of Chemistry IA/B) or with of the semester or year in which they
different designs entirely are assigned were presented and regardless of the
separate sets of measures student cohort
Experiment title ,téo
] ©
. . o . ) = € >
# Experiment title # (Title is only listed on the first S o @
occasion its facet element S % § §
number appears) = 5 g =
s 9o I |
25  F-'12-Ex.3F - Equilibrium & Le 16 Equilibrium and Le Chatalier's 104 102 0
Chatalier's principle Principle (revised: for
foundations)
26 F-'12-Ex.AF - Visible absorption 17 Visible Absorption 73 70 0
spectrophotometry Spectrophotometry
27  F-'12-Ex.5F - Aromas 18  Aromachemistry 103 101 0
28  F-'12-Ex.6F - Analysis of spinach 19 Analysis of Spinach Extracts 107 103 0
extracts (revised: for foundation - in
pairs)
29  F-'12-Ex.7F - Activity Series 20 Metal Activity Series 81 76 0
30 F-'12-Ex.8F - Thermochemistry 21 Thermochemistry (revised: for 77 77 0
foundations)
31  F-'12-Ex.9F - Reaction kinetics 22 Reaction Kinetics (revised: for 74 74 0
foundations)
32 F-'13-Ex OF - Introductory experiment 23 Introductory experiment 126 126 9
(revised: observations video)
33 F-'13-Ex 1F - Quantitative techniques 14 61 60 4
34  F-'13-Ex 2F - Vitamin C titration 15 57 56 7
35 F-'13-Ex 3F - Visible absorption 17 137 136 10
spectrophotometry
36 F-'13-Ex 4F - Equilibrium & Le 16 83 82 6
Chatalier's principle
37 F-'13-Ex 5F - Aromas 18 248 248 26
38 F-'13-Ex 6F - Analysis of spinach 19 206 205 24
extracts
39  F-'13-Ex 7F - Thermochemistry 21 204 202 23
40  F-'13-Ex 8F - Activity series 20 161 156 23
41  F-'13-Ex 9F - Reaction kinetics 24 Reaction Kinetics (revised: 82 81 13
question order and phrasing)
42  C-'12-Ex.1 - Biological buffers 25 Biological Buffers (revised: 80 80 0
laptop)
43  C-'12-Ex.4 - Melting points and 4 70 70 0
recrystallisation
44 C-'12-Ex.6 - Reaction kinetics 6 84 84 0
45  C-'12-Ex.8 - Liquid-liquid extractionand | 8 72 72 0
TLC
46  C-'12-Ex.9 - Synthesis of aspirin 9 36 36 0
47  C-'12-Ex.11 - Analysis of spinach 11 77 77 0
extracts
48  C-'13-Ex 2 - Thermochemistry 2 227 227 23
49  C-'13-Ex 3 - Vapour pressure 26 Vapour Pressure (revised: 148 148 20
laptop)
50 C-'13-Ex 5 - Quantitative techniques 5 203 201 30
51 C-'13-Ex 10 - Equilibrium & Le 10 174 172 23
Chatelier's principle
52 C-'13-Ex 12 - lon exchange 12 252 252 36
chromatography
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ORIGINAL VALUES: Experiments conducted EQUATED VALUES: Identically
either in different semesters, conducted by structured experiments are assigned Surveys received
different cohorts of students (Chemistry IA/B | identical sets of measures, regardless
vs Foundations of Chemistry IA/B) or with of the semester or year in which they
different designs entirely are assigned were presented and regardless of the
separate sets of measures student cohort
Experiment title ,%D
3] ©
. . = 1S =
# Experiment title # (Title is only listed on the first S o g
occasion its facet element S % g é
number appears) 2 5 g 'GUVJ,
C 5 2 =)
53 (C-'13-Ex 13 - Copper(ll) ion absorption 27 Copper(ll) lon Absorption 232 231 T
spectrophotometry Spectrophotometry (revised:
laptop)
54  C-'13-Ex 11 - Analysis of spinach 11 218 217 30
extracts
55  C-'13-Ex 9 - Synthesis of aspirin 9 129 129 18
56  C-'13-Ex 6 - Reaction kinetics 6 205 202 33
57 C-'13-Ex 4 - Melting points and 4 182 178 27
recrystallisation
58 C-'13-Ex 1 - Biological buffers 25 170 166 21
59 (C-'13-Ex 8 - Liquid-liqud extraction and 8 128 128 19
TLC
60 C-'12-Ex 2 - Thermochemistry 2 140 138 0
61 C-'12-Ex 3 - Vapour pressure 26 102 102 0
62 C-'12-Ex 5 - Quantitative techniques 5 112 111 0
63  C-'12-Ex 10 - Equilibrium & Le 10 83 82 0
Chatelier's principle
64 C-'12-Ex 12 - lon exchange 12 128 127 0
chromatography
65 C-'12-Ex 13 - Copper(ll) ion absorption 27 120 119 0
spectrophotometry
66  F-'14- Ex OF - Introductory Experiment 28 Introductory Experiment 143 143 7
(revised: pipetting)
67  F-'14- Ex 1F - Quantitative Techniques 29 Quantitative Techniques 177 177 10
(revised: no pipetting)
68  F-'14- Ex 2F - Determination of Vitamin | 15 137 133 8
C Concentration
69  F-'14- Ex 3F - Equilibrium & Le 16 109 107 6
Chatelier's Principle
70  F-'14- Ex 4F - Visible Absorption 17 177 176 7
Spectrophotometry
71  C-'14-Thermochemistry 2 237 235 6
72 C-'14-Vapour Pressure 26 144 144 6
73 C-'1l4-lon Exchange Chromatography 12 199 196 8
74  C-'14-Visible Absorption 27 189 189 7
Spectrophotometry
75 C-'14-Quantitative Techniques 5 140 140 6
76  C-'14-Equilibrium & Le Chatelier's 10 121 120 8
principle
Totals: | 9380 9287 530
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Table S 57: Tests of normality for student measures gathered from different occasions
(subset 1 only)

Unequated experiment number and title
(sample group)

Kolmogorov-Smirnov test

Shapiro-Wilk test

Statistic df p Statistic df p
1 u-'10-Expt.5 .081 52 ,200* .980 52 .519
3 C-'11-Ex.2 - Thermochemistry .088 104 .045 .980 104 117
5 C-'11-Ex.4 - Melting points and recrystallisation 125 146 .000 951 146 .000
6 C-'11-Ex.5 - Quantitative techniques 124 96 .001 .956 96 .003
7 C-'11-Ex.6 - Reaction kinetics .149 154 .000 .953 154 .000
8 C-'11-Ex.8 - Liquid-liquid extraction and TLC .098 118 .008 .981 118 .098
9 C-'11-Ex.9 - Synthesis of aspirin .159 93 .000 .952 93 .002
10 C-'11-Ex.10 - coloured complexes of iron .180 90 .000 914 90 .000
11 C-'11-Ex.11 - analysis of spinach extracts .094 141 .004 .970 141 .004
12 C-'11-Ex.12 - lon exchange chromatography 121 106 .001 .984 106 225
15 F-'11-Ex.4 - Melting points and recrystallysation 137 82 .001 941 82 .001
16 F-'11-Ex.5 - Quantitative techniques 134 63 .007 924 63 .001
17  F-'11-Ex.6 - Reaction kinetics 122 92 .002 .956 92 .003
18 F-'11-Ex.8 - Liquid-liquid extraction and TLC 133 54 .018 971 54 .204
19 F-'11-Ex.10 - Coloured complexes of iron .104 70 .059 .970 70 .087
20 F-'11-Ex.12 - lon exchange chromatography 125 78 .004 .944 78 .002
42 C-'12-Ex.1 - Biological buffers .103 80 .036 .978 80 175
43 C-'12-Ex.4 - Melting points and recrystallisation .098 70 .092 .961 70 .027
44 C-'12-Ex.6 - Reaction kinetics 141 84 .000 .959 84 .010
45 C-'12-Ex.8 - Liquid-liquid extraction and TLC .106 72 .043 .953 72 .009
46 C-'12-Ex.9 - Synthesis of aspirin 192 36 .002 .948 36 .093
47 C-'12-Ex.11 - Analysis of spinach extracts .108 77 .028 .969 77 .058
48 C-'13-Ex 2 - Thermochemistry 125 204 .000 .956 204 .000
49 C-'13-Ex 3 - Vapour pressure .082 128 .036 .986 128 .210
50  C-'13-Ex 5 - Quantitative techniques .087 171 .003 .959 171 .000
51 C-'13-Ex 10 - Equilibrium & Le Chatelier's principle .091 149 .004 .976 149 .011
52 C-'13-Ex 12 - lon exchange chromatography .097 216 .000 .978 216 .002
53 C-'13-Ex 13 - Copper(ll) ion absorption spectrophotometry 143 205 .000 .944 205 .000
54 C-'13-Ex 11 - Analysis of spinach extracts .096 187 .000 977 187 .004
55 C-'13-Ex 9 - Synthesis of aspirin 133 111 .000 .947 111 .000
56 C-'13-Ex 6 - Reaction kinetics .080 169 .011 976 169 .005
57 C-'13-Ex 4 - Melting points and recrystallisation 126 151 .000 .952 151 .000
58  C-'13-Ex 1 - Biological buffers .078 145 .031 .987 145 .194
59 C-'13-Ex 8 - Liquid-liqud extraction and TLC .088 109 .038 .975 109 .036
60  C-'12-Ex 2 - Thermochemistry 116 138 .000 974 138 .011
61 C-'12-Ex 3 - Vapour pressure 117 102 .002 .953 102 .001
62 C-'12-Ex 5 - Quantitative techniques .099 111 .009 961 111 .002
63 C-'12-Ex 10 - Equilibrium & Le Chatelier's principle .169 82 .000 .918 82 .000
64 C-'12-Ex 12 - lon exchange chromatography .110 127 .001 .936 127 .000
65 C-'12-Ex 13 - Copper(ll) ion absorption spectrophotometry 137 119 .000 .946 119 .000
71 C-'14-Thermochemistry .071 229 .007 981 229 .004
72 C-'14-Vapour Pressure 118 138 .000 971 138 .005
73 C-'14-lon Exchange Chromatography .106 188 .000 .968 188 .000
74 C-'14-Visible Absorption Spectrophotometry 130 182 .000 941 182 .000
75 C-'14-Quantitative Techniques .091 134 .008 .969 134 .004
76 C-'14-Equilibrium & Le Chatelier's principle .079 112 .086 .986 112 .281
* This is a lower bound of the true significance.
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Table S 58: Experiment quality measures (3) estimated using the final equated model

Surveyitem (question) number and topic

1 2 3 4 5 6 7 8 9 O UL » B U
0
3 o _
£ E = g |8
=) 8 17 @ 2 <
__% g > <@ g n
E 3 5 3 g 3 |z
S < =] ® =] c = © x IS
S U, @ £ 5 £ o 2 S > | B
I = £ IS k-] < 0 € 3] = 2 2|5
2 - @ 3 5 =] =] £ fe] 2 = = @
2 > S 5 T 5 g g o x 3 8 g |8
s 5§ ., % 8 % 3 3 5 & % % T $&|&
£ @ 2 © © i > 5 B 3 2 & 8 T
s 5 £ 5 8 8 2 2 8 £ E 28 3 %
# Experimentftitle § 8 £ < % 2 8 & 5 © & o E 3
Thermochemistry 024 077 1D 0K/ -052 -026 0L -092 -054 -087 -08L 025 001 -003| 1
4 Melting Points and Recrystallisation | 011 -070 -022 -037 -031 -007 -05 -069 -033 037 1B -036 154 -035| 1
5 Quantitative techniques 027 1B 034 032 045 051 -034 -096 -073 00 134 -089 231 -025| 1
6 ReactionKinetics 04 020 05 -001 -0 0% 0B -054 022 -035 -073 0B 168 031| 1
8 Liquid-Liquid Extraction and TLC 049 -074 021 000 0B 006 0B -069 -0 026 096 -057 205 030 | 1
9 Synthesis of Aspirin 031 076 038 043 -001 OX -054 -080 -065 01 120 -049 329 -021| 1
D Coloured Complexes of Iron 056 -062 024 0B 040 023 007 -068 -027 Om -102 -014 307 02| 1
1 Analysis of Spinach Extracts 021 08 -041 027 -007 008 -034 -078 036 021 138 -051 036 -045| 1
2 lonexchange Chromatography 032 -063 -005 02 002 -054 037 -082 003 006 -120 054 133 -035| 1
25 Biological Buffers (revised: laptop) -042 005 095 043 026 023 051 -079 091 -035 -090 029 152 034 | 1
26 Vapour Pressure (revised: laptop) -047 -058 061 041 007 -028 -003 -107 056 008 -103 -0 222 024 | 1
27 Copper(ll) IonAbsorptio'n 035 006 B -040| 1
Spectrophotometry (revised: laptop) | = T
1 Biological Buffers 025 097 182 071 2
3 Vapour Pressure 064 038 142 072 069 063 006 -092 106 00l -150 009 341 144 | 3
B Copper(ih lon Absorption 007 034 055 001 000 029 -003 -078 -033 030 -107 041 16 008 | 4
...... Spectrophotometry e
7 Introductory experiment 044 234 140 -050 OR 062 OB -103 023 068 108 009 240 053 | 5
 Quantitative Techniques (revised:for | 419 138 047 034 026 026 000 -049 -001 -040 068 -070 297 -003| 6
foundations)
g Determination of Vitamin C 031 099 000 0P -005 0L 00l -053 033 025 070 035 3B 000| 6
concentration
p EquiibriumandLe ChataliersPrinciple | 5)  ggp .0y 0B 033 0B 05 -053 -005 -0B 072 026 292 026 | 6
(revised: for foundations)
T Visible Absorption Spectrophotometry | -026 -054 01 -022 -0 001 -025 -066 -020 022 -063 -002 023 -041| 6
B Aromachemistry 050 153 008 -044 -040 0D 020 071 -068 -046 058 007 -042 -009| 6
g Analysis of Spinach EXracts (revised: | o5 105 047 05 04 -028 000 -l 041 002 078 033 126 -067| 6
for foundation - in pairs)
20 Metal Activity Series 0D -029 007 -037 -049 -048 -039 075 -049 063 -071 -0B 165 -00l| 6
21 Thermochemistry (revised: for 0T 060 073 -022 0B -026 005 -090 035 -041 075 044 19 021 6
foundations)
23 Introductory experiment (revised: 036 204 192 -002 -063 008 040 -080 032 -068 106 029 -058 002 | 6
observations video)
24 ReactionKinetics (revised:question | g6/ 044 008 075 071 079 -020 092 -007 097 -128 002 162 00L| 6
order and phrasing)
28 Eggt(tiitrl];t)oryifmeriment (revised: 035 076 121 034 -041 089 029 -135 -043 -0 109 -033 -092 -038| 6
29 g;:{‘t‘iﬁgg“’”ec"mq“es (revisedmo | 535 125 ou 001 003 -0 003 -077 00l 0L 096 -038 140 -062| 6
22 ReactionKinetics (revised: for 026 0B 037 033 -008 002 079 -073 028 004 -088 -042 255 04l 7
foundations)
More positive measure values imply greater difficulty of providing positive response. Measures are not
comparable between different subsets.
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7.5 Supporting information for section 4.2

Experiment numbers referenced in the table following refer to those of the equated best
explanatory model of the ASLE data. The o values obtained without taking gender into account
has previously been reported for each of these experiments, for each question (survey item),

as detailed in Table S 56.

Table S 59: DIF between genders for the equated model

Male students

Female students

f, — Comparison: Welch’s T-test

S8 S

g § i ) Standard 5 Standard Ch ind Joint robabilit
gg § (logits) error (logits) error (maI:rlgler:ale) standard t dof ° (p) !
[ error

2 1 0.01 0.12 0.36 0.11 -0.36 0.17 -2.13 419 0.0341
2 2 0.54 0.11 0.83 0.10 -0.28 0.15 -1.89 422 0.0593
2 3 1.14 0.09 1.04 0.09 0.10 0.13 0.75 422 0.4525
2 4 -0.18 0.12 -0.05 0.11 -0.13 0.16 -0.82 422 0.4140
2 5 -0.56 0.12 -0.47 0.11 -0.09 0.17 -0.52 421 0.6052
2 6 -0.24 0.12 -0.37 0.11 0.13 0.16 0.78 423 0.4346
2 7 -0.04 0.11 0.23 0.10 -0.27 0.15 -1.84 420 0.0668
2 8 -0.96 0.13 -0.98 0.12 0.02 0.18 0.08 421 0.9338
2 9 -0.62 0.12 -0.59 0.11 -0.04 0.16 -0.22 422 0.8248
2 10 -0.65 0.12 -0.89 0.12 0.24 0.17 1.39 423 0.1662
2 11 -0.65 0.12 -0.82 0.11 0.17 0.16 1.02 420 0.3065
2 12 0.08 0.12 -0.23 0.12 0.31 0.16 1.90 420 0.0586
2 13 0.16 0.14 0.03 0.14 0.12 0.20 0.61 422 0.5406
2 14 -0.24 0.13 -0.19 0.12 -0.05 0.18 -0.29 420 0.7749
4 1 0.32 0.17 -0.03 0.18 0.35 0.25 1.39 196 0.1654
4 2 -0.81 0.19 -0.75 0.19 -0.07 0.26 -0.25 198 0.7995
4 3 -0.56 0.17 -0.30 0.16 -0.26 0.24 -1.10 198 0.2735
4 4 -0.04 0.16 -0.50 0.17 0.45 0.24 1.89 199 0.0599
4 5 -0.22 0.17 -0.33 0.17 0.11 0.24 0.47 199 0.6424
4 6 -0.37 0.17 -0.14 0.16 -0.23 0.24 -0.97 199 0.3330
4 7 -0.24 0.16 -0.13 0.16 -0.12 0.23 -0.51 198 0.6113
4 8 -0.93 0.19 -0.97 0.19 0.04 0.27 0.15 197 0.8774
4 9 -0.07 0.16 -0.37 0.16 0.30 0.23 1.31 197 0.1904
4 10 -0.05 0.16 0.47 0.15 -0.53 0.22 -2.36 198 0.0192
4 11 1.50 0.14 1.27 0.15 0.24 0.20 1.15 148 0.2504
4 12 -0.02 0.17 0.25 0.17 -0.27 0.24 -1.12 197 0.2642
4 13 1.78 0.24 1.26 0.26 0.52 0.35 1.47 197 0.1420
4 14 -0.54 0.20 -0.47 0.19 -0.07 0.27 -0.25 197 0.8021
5 1 -0.41 0.14 -0.34 0.15 -0.07 0.21 -0.36 313 0.7207
5 2 -1.24 0.15 -1.31 0.16 0.07 0.22 0.33 313 0.7452
5 3 0.54 0.11 0.19 0.13 0.35 0.17 2.08 311 0.0381
5 4 -0.24 0.13 -0.33 0.14 0.09 0.19 0.48 312 0.6337
5 5 -0.49 0.13 -0.40 0.14 -0.09 0.19 -0.48 313 0.6308
5 6 0.66 0.11 0.42 0.13 0.24 0.17 1.41 312 0.1599
5 7 -0.45 0.13 -0.20 0.13 -0.24 0.18 -1.32 313 0.1873
5 8 -1.02 0.15 -1.02 0.16 0.01 0.22 0.03 312 0.9751
5 9 -0.71 0.13 -0.73 0.14 0.02 0.20 0.08 311 0.9340
5 10 -0.53 0.13 -0.21 0.14 -0.32 0.19 -1.66 312 0.0970
5 11 1.60 0.10 1.52 0.11 0.08 0.15 0.54 249 0.5918
5 12 -0.66 0.14 -0.70 0.15 0.05 0.20 0.23 309 0.8144
5 13 1.99 0.20 2.35 0.21 -0.36 0.29 -1.25 310 0.2108
5 14 -0.50 0.15 -0.57 0.16 0.07 0.22 0.33 311 0.7410
6 1 0.36 0.16 0.50 0.15 -0.14 0.21 -0.68 247 0.5003
6 0.28 0.15 0.51 0.14 -0.22 0.21 -1.09 247 0.2777
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Male students

Female students

' _o0ox Comparison: Welch’s T-test

$2 S

g § % 3 Standard ) Standard Change in & Joint robabilit
:'J'g— é (logits) error (logits) error (male—gfemale) standard t df ° (p) !
w error

6 3 0.83 0.13 0.31 0.13 0.52 0.19 2.78 245 0.0059
6 4 -0.06 0.15 -0.05 0.14 -0.02 0.21 -0.09 246 0.9319
6 5 -0.25 0.15 -0.31 0.15 0.06 0.22 0.27 246 0.7850
6 6 0.12 0.15 0.20 0.14 -0.08 0.20 -0.38 245 0.7065
6 7 -0.17 0.15 0.08 0.14 -0.24 0.20 -1.22 246 0.2253
6 8 -1.15 0.19 -0.45 0.15 -0.70 0.24 -2.95 242 0.0035
6 9 -0.02 0.14 0.31 0.13 -0.33 0.19 -1.74 246 0.0829
6 10 -0.57 0.16 -0.47 0.15 -0.09 0.22 -0.42 246 0.6713
6 11 -0.59 0.16 -0.63 0.15 0.05 0.22 0.22 241 0.8282
6 12 0.19 0.15 0.38 0.15 -0.19 0.21 -0.90 246 0.3679
6 13 1.93 0.22 1.40 0.23 0.53 0.32 1.66 244 0.0991
6 14 0.19 0.16 0.05 0.16 0.13 0.23 0.58 245 0.5603
8 1 0.35 0.20 0.77 0.19 -0.42 0.28 -1.53 144 0.1294
8 2 -0.69 0.21 -0.98 0.22 0.29 0.31 0.92 145 0.3569
8 3 0.28 0.18 0.06 0.18 0.22 0.26 0.87 145 0.3882
8 4 0.00 0.19 0.00 0.19 0.00 0.27 -0.01 144 0.9921
8 5 0.13 0.19 0.42 0.18 -0.29 0.26 -1.10 145 0.2713
8 6 -0.21 0.20 0.24 0.18 -0.45 0.27 -1.67 145 0.0972
8 7 0.19 0.18 0.26 0.18 -0.07 0.25 -0.27 144 0.7904
8 8 -0.84 0.22 -0.92 0.22 0.08 0.31 0.25 145 0.8017
8 9 -0.11 0.18 -0.31 0.19 0.19 0.27 0.73 145 0.4674
8 10 0.26 0.18 0.23 0.19 0.04 0.26 0.14 144 0.8925
8 11 1.13 0.17 1.28 0.17 -0.14 0.24 -0.59 111 0.5560
8 12 -0.25 0.20 -0.45 0.21 0.19 0.29 0.67 145 0.5037
8 13 2.08 0.28 1.75 0.29 0.33 0.40 0.81 145 0.4171
8 14 0.30 0.21 -0.32 0.22 0.63 0.30 2.07 145 0.0404
9 1 0.43 0.22 0.33 0.19 0.11 0.29 0.37 130 0.7107
9 2 -0.69 0.24 -0.98 0.21 0.29 0.32 0.90 130 0.3721
9 3 -0.43 0.22 -0.71 0.19 0.28 0.29 0.97 130 0.3351
9 4 -0.61 0.23 -0.35 0.19 -0.25 0.30 -0.85 128 0.3957
9 5 -0.39 0.23 0.16 0.17 -0.55 0.29 -1.95 127 0.0539
9 6 0.15 0.21 0.15 0.17 0.00 0.27 -0.01 129 0.9905
9 7 -0.83 0.23 -0.57 0.19 -0.25 0.30 -0.85 128 0.3993
9 8 -1.01 0.25 -0.87 0.20 -0.15 0.32 -0.45 127 0.6500
9 9 -0.28 0.21 -0.62 0.19 0.34 0.28 1.21 130 0.2301
9 10 0.13 0.21 0.08 0.18 0.05 0.27 0.19 127 0.8480
9 11 1.27 0.18 1.33 0.16 -0.05 0.24 -0.23 108 0.8196
9 12 -0.34 0.23 0.05 0.19 -0.38 0.30 -1.29 128 0.2002
9 13 3.67 0.25 3.27 0.22 0.40 0.33 1.21 124 0.2281
9 14 -0.44 0.26 -0.45 0.21 0.02 0.33 0.06 124 0.9561
10 1 0.55 0.14 0.55 0.14 0.00 0.20 0.01 270 0.9960
10 2 -0.54 0.15 -0.90 0.16 0.36 0.22 1.62 269 0.1056
10 3 0.15 0.13 0.09 0.13 0.06 0.19 0.31 270 0.7574
10 4 0.32 0.13 0.00 0.14 0.32 0.19 1.65 267 0.1007
10 5 0.40 0.13 0.37 0.13 0.03 0.19 0.16 269 0.8709
10 6 0.30 0.13 0.21 0.14 0.09 0.19 0.46 269 0.6464
10 7 0.25 0.13 0.04 0.13 0.21 0.19 1.12 268 0.2617
10 8 -0.92 0.16 -0.54 0.15 -0.38 0.22 -1.74 268 0.0827
10 9 -0.24 0.14 -0.09 0.13 -0.15 0.19 -0.79 269 0.4276
10 10 -0.12 0.14 -0.08 0.14 -0.04 0.20 -0.20 269 0.8436
10 11 -1.03 0.16 -0.86 0.15 -0.17 0.22 -0.78 268 0.4334
10 12 0.07 0.14 0.28 0.14 -0.21 0.20 -1.04 269 0.2973
10 13 3.58 0.17 2.80 0.19 0.77 0.25 3.06 265 0.0025
10 14 0.00 0.15 0.01 0.16 -0.02 0.22 -0.08 268 0.9340
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Male students

Female students

Comparison: Welch’s T-test

: s =

v 9 o

g § % ) Standard 1 Standard Ch ind Joint robabilit
:-’-E é (logits) error (logits) error (malzrlgfeemale) standard t df ° (p) !
] error

11 1 0.30 0.16 0.51 0.16 -0.21 0.22 -0.96 223 0.3377
11 2 -0.67 0.17 -0.87 0.18 0.19 0.24 0.78 223 0.4361
11 3 -0.23 0.15 -0.67 0.16 0.43 0.22 1.97 223 0.0495
11 4 -0.23 0.15 -0.46 0.17 0.23 0.22 1.02 222 0.3101
11 5 -0.12 0.15 -0.18 0.16 0.07 0.22 0.31 224 0.7571
11 6 0.10 0.15 -0.01 0.15 0.12 0.21 0.54 223 0.5889
11 7 -0.43 0.15 -0.41 0.16 -0.01 0.22 -0.05 222 0.9603
11 8 -0.79 0.16 -0.94 0.18 0.15 0.24 0.62 222 0.5358
11 9 0.01 0.14 0.24 0.14 -0.23 0.20 -1.14 222 0.2545
11 10 0.14 0.14 0.25 0.15 -0.11 0.21 -0.54 223 0.5864
11 11 1.32 0.13 1.40 0.14 -0.08 0.19 -0.41 172 0.6807
11 12 -0.11 0.16 -0.05 0.16 -0.06 0.22 -0.27 222 0.7862
11 13 0.29 0.20 0.72 0.22 -0.42 0.29 -1.44 222 0.1510
11 14 -0.55 0.17 -0.52 0.18 -0.03 0.25 -0.10 222 0.9165
12 1 0.50 0.11 0.30 0.11 0.20 0.16 1.27 411 0.2053
12 2 -0.76 0.13 -0.35 0.11 -0.41 0.17 -2.37 410 0.0183
12 3 0.12 0.11 -0.15 0.10 0.28 0.15 1.86 413 0.0634
12 4 0.04 0.11 0.26 0.10 -0.22 0.15 -1.48 412 0.1391
12 5 -0.12 0.11 0.02 0.10 -0.14 0.15 -0.90 410 0.3687
12 6 -0.63 0.12 -0.57 0.11 -0.06 0.17 -0.36 411 0.7164
12 7 0.29 0.10 0.36 0.09 -0.07 0.14 -0.49 410 0.6223
12 8 -0.89 0.12 -0.59 0.11 -0.30 0.16 -1.84 410 0.0659
12 9 -0.08 0.11 0.13 0.09 -0.21 0.14 -1.47 410 0.1421
12 10 0.03 0.11 -0.35 0.11 0.38 0.16 2.43 412 0.0154
12 11 -0.92 0.12 -1.30 0.12 0.39 0.17 2.30 412 0.0218
12 12 -0.37 0.12 -0.63 0.12 0.27 0.17 1.61 409 0.1086
12 13 1.36 0.18 1.33 0.17 0.03 0.25 0.10 412 0.9178
12 14 -0.35 0.13 -0.49 0.13 0.14 0.18 0.77 412 0.4430
14 1 -0.28 0.38 -0.26 0.37 -0.02 0.53 -0.03 44 0.9736
14 2 -1.06 0.38 -1.53 0.41 0.47 0.56 0.84 44 0.4055
14 3 0.49 0.30 0.87 0.29 -0.38 0.42 -0.91 44 0.3667
14 4 -0.27 0.34 0.24 0.33 -0.51 0.47 -1.07 43 0.2884
14 5 -0.40 0.35 -0.93 0.38 0.52 0.51 1.02 44 0.3121
14 6 -0.03 0.33 0.39 0.31 -0.42 0.45 -0.94 44 0.3547
14 7 -0.30 0.33 0.23 0.31 -0.53 0.45 -1.17 43 0.2490
14 8 -0.31 0.32 -0.38 0.33 0.07 0.46 0.15 44 0.8792
14 9 0.17 0.30 0.07 0.31 0.10 0.43 0.23 44 0.8215
14 10 -0.64 0.35 -0.64 0.36 0.00 0.50 0.00 44 0.9981
14 11 1.36 0.27 0.96 0.29 0.40 0.40 1.01 40 0.3182
14 12 -0.50 0.36 -0.99 0.38 0.49 0.52 0.95 44 0.3464
14 13 3.21 0.41 2.46 0.48 0.74 0.64 1.17 44 0.2486
14 14 -0.25 0.39 0.04 0.37 -0.29 0.53 -0.55 44 0.5867
15 1 -0.64 0.22 -0.26 0.21 -0.38 0.30 -1.24 147 0.2162
15 2 -1.12 0.22 -1.02 0.21 -0.11 0.31 -0.35 147 0.7274
15 3 -0.23 0.19 0.02 0.18 -0.25 0.26 -0.97 147 0.3357
15 4 -0.05 0.19 0.02 0.19 -0.07 0.27 -0.26 147 0.7927
15 5 0.15 0.18 0.00 0.19 0.15 0.26 0.58 147 0.5660
15 6 0.03 0.19 -0.01 0.19 0.04 0.26 0.16 147 0.8755
15 7 -0.34 0.19 -0.03 0.18 -0.31 0.26 -1.17 147 0.2440
15 8 -0.53 0.20 -0.35 0.19 -0.18 0.27 -0.66 146 0.5082
15 9 -0.18 0.18 -0.19 0.18 0.01 0.26 0.03 147 0.9767
15 10 -0.22 0.19 -0.25 0.19 0.03 0.27 0.10 147 0.9237
15 11 0.87 0.17 0.75 0.17 0.12 0.24 0.51 129 0.6135
15 12 -0.12 0.20 -0.21 0.20 0.09 0.28 0.32 143 0.7519
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Male students

Female students

Comparison: Welch’s T-test

s s

o Q@ H

& § b . Joint .
g‘ g— é (Iosits) Stz:rc:)arrd (Iogits) Stz::)arrd (mcarll:ngfzxaﬁle) standard t df pmb(?)s”“ty
[ error

15 13 3.21 0.24 3.14 0.24 0.07 0.34 0.22 146 0.8282
15 14 0.09 0.21 -0.33 0.21 0.43 0.30 1.42 147 0.1564
16 1 0.04 0.21 0.13 0.19 -0.09 0.28 -0.31 154 0.7550
16 2 -0.67 0.22 -1.11 0.21 0.44 0.30 1.46 155 0.1460
16 3 -0.51 0.20 -0.13 0.18 -0.37 0.27 -1.40 152 0.1626
16 4 -0.19 0.20 0.26 0.17 -0.45 0.26 -1.70 152 0.0906
16 5 -0.12 0.20 0.49 0.16 -0.61 0.26 -2.39 153 0.0180
16 6 -0.02 0.20 0.15 0.17 -0.17 0.26 -0.65 153 0.5165
16 7 0.27 0.18 0.14 0.17 0.13 0.25 0.52 154 0.6060
16 8 -0.10 0.18 -0.15 0.17 0.06 0.25 0.24 155 0.8109
16 9 -0.14 0.19 -0.11 0.17 -0.02 0.25 -0.09 154 0.9311
16 10 -0.20 0.20 -0.19 0.18 -0.01 0.27 -0.02 155 0.9849
16 11 -0.08 0.18 -0.72 0.19 0.64 0.26 2.44 154 0.0156
16 12 -0.05 0.20 -0.20 0.19 0.15 0.28 0.54 153 0.5899
16 13 3.31 0.23 2.65 0.24 0.66 0.33 1.99 154 0.0482
16 14 0.17 0.21 0.01 0.20 0.16 0.29 0.55 154 0.5835
17 1 -0.47 0.17 -0.22 0.15 -0.26 0.22 -1.15 264 0.2518
17 2 -0.70 0.16 -0.49 0.15 -0.21 0.22 -0.95 266 0.3416
17 3 -0.10 0.14 0.20 0.12 -0.30 0.19 -1.61 264 0.1082
17 4 -0.15 0.15 -0.29 0.14 0.14 0.20 0.69 268 0.4894
17 5 -0.08 0.14 -0.12 0.13 0.04 0.20 0.19 267 0.8516
17 6 -0.06 0.14 0.03 0.13 -0.09 0.19 -0.44 267 0.6596
17 7 -0.14 0.14 -0.41 0.13 0.27 0.19 1.40 267 0.1614
17 8 -0.81 0.16 -0.45 0.13 -0.36 0.21 -1.75 264 0.0816
17 9 0.02 0.13 -0.19 0.13 0.21 0.19 1.11 268 0.2675
17 10 0.14 0.14 0.20 0.13 -0.05 0.19 -0.29 265 0.7753
17 11 -0.37 0.14 -0.80 0.14 0.43 0.19 2.22 269 0.0271
17 12 0.03 0.15 0.00 0.14 0.03 0.20 0.13 267 0.8969
17 13 0.30 0.20 0.34 0.18 -0.04 0.27 -0.15 266 0.8784
17 14 -0.36 0.17 -0.60 0.16 0.23 0.23 1.01 267 0.3152
18 1 0.42 0.15 0.84 0.15 -0.42 0.21 -1.95 230 0.0525
18 2 1.33 0.12 1.72 0.13 -0.39 0.18 -2.21 232 0.0279
18 3 0.16 0.13 -0.09 0.15 0.25 0.20 1.24 228 0.2174
18 4 -0.29 0.15 -0.55 0.17 0.26 0.22 1.16 229 0.2484
18 5 -0.19 0.15 -0.72 0.17 0.53 0.22 2.35 229 0.0198
18 6 -0.28 0.15 -0.06 0.16 -0.22 0.21 -1.03 232 0.3021
18 7 0.07 0.13 0.24 0.14 -0.17 0.20 -0.85 230 0.3955
18 8 -0.56 0.15 -0.83 0.18 0.28 0.23 1.21 229 0.2288
18 9 -0.42 0.14 -0.95 0.17 0.53 0.23 2.36 229 0.0189
18 10 -0.39 0.15 -0.71 0.17 0.32 0.22 1.41 231 0.1596
18 11 -0.64 0.14 -0.35 0.15 -0.29 0.21 -1.38 232 0.1683
18 12 0.07 0.15 0.07 0.16 0.00 0.22 0.02 231 0.9878
18 13 -0.41 0.17 -0.38 0.18 -0.03 0.25 -0.12 229 0.9059
18 14 -0.13 0.17 -0.29 0.18 0.16 0.24 0.66 231 0.5124
19 1 -0.23 0.18 -0.23 0.17 0.00 0.25 -0.02 206 0.9858
19 2 -0.84 0.18 -1.06 0.18 0.23 0.26 0.88 207 0.3818
19 3 -0.48 0.16 -0.41 0.16 -0.07 0.23 -0.30 207 0.7637
19 4 -0.23 0.16 -0.21 0.16 -0.03 0.23 -0.12 207 0.9064
19 5 -0.09 0.16 -0.39 0.16 0.30 0.23 1.32 207 0.1891
19 6 -0.31 0.17 -0.28 0.16 -0.03 0.23 -0.13 206 0.8948
19 7 -0.07 0.15 0.02 0.15 -0.09 0.21 -0.42 205 0.6780
19 8 -1.15 0.19 -1.23 0.19 0.07 0.26 0.28 207 0.7790
19 9 0.06 0.15 0.62 0.13 -0.56 0.19 -2.86 205 0.0047
19 10 0.05 0.16 -0.05 0.15 0.10 0.22 0.45 207 0.6562
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Male students

Female students

T o= Comparison: Welch’s T-test

$8 S

g § i 1 Standard 1) Standard Change in & Joint robabilit
:-’-E é (logits) error (logits) error (male—gfemale) standard t df ° (p) !
W error

19 11 -0.62 0.16 -0.83 0.16 0.21 0.23 0.91 203 0.3619
19 12 -0.24 0.17 0.02 0.16 -0.26 0.23 -1.11 206 0.2681
19 13 1.34 0.25 1.01 0.23 0.33 0.34 0.97 203 0.3340
19 14 -0.51 0.19 -0.99 0.19 0.49 0.27 1.82 205 0.0709
20 1 -0.13 0.20 0.08 0.19 -0.20 0.28 -0.73 158 0.4663
20 2 -0.28 0.20 -0.37 0.19 0.09 0.28 0.32 159 0.7521
20 3 -0.08 0.18 0.18 0.16 -0.26 0.25 -1.08 158 0.2839
20 4 -0.63 0.20 -0.33 0.18 -0.30 0.27 -1.10 158 0.2715
20 5 -0.65 0.20 -0.26 0.18 -0.39 0.27 -1.41 158 0.1598
20 6 -0.50 0.20 -0.34 0.18 -0.16 0.27 -0.59 158 0.5591
20 7 -0.57 0.20 -0.44 0.18 -0.13 0.26 -0.50 158 0.6188
20 8 -0.95 0.22 -0.76 0.19 -0.19 0.29 -0.66 157 0.5106
20 9 -0.33 0.19 -0.71 0.19 0.37 0.26 1.42 159 0.1573
20 10 -0.73 0.21 -0.57 0.19 -0.16 0.28 -0.56 158 0.5773
20 11 -0.43 0.19 -0.82 0.18 0.39 0.26 1.49 159 0.1388
20 12 0.25 0.19 -0.29 0.19 0.54 0.27 2.02 158 0.0454
20 13 1.66 0.26 1.39 0.27 0.27 0.38 0.72 157 0.4731
20 14 -0.10 0.21 0.02 0.19 -0.11 0.28 -0.40 158 0.6873
21 1 -0.09 0.18 -0.20 0.17 0.11 0.25 0.45 196 0.6551
21 2 0.62 0.16 0.65 0.14 -0.02 0.21 -0.10 196 0.9198
21 3 0.67 0.15 0.85 0.13 -0.19 0.20 -0.95 196 0.3453
21 4 -0.54 0.18 -0.16 0.15 -0.39 0.23 -1.67 195 0.0972
21 5 -0.24 0.17 -0.26 0.15 0.02 0.23 0.09 196 0.9293
21 6 -0.30 0.17 -0.23 0.15 -0.07 0.23 -0.29 196 0.7702
21 7 -0.14 0.16 0.23 0.14 -0.37 0.21 -1.75 195 0.0814
21 8 -0.91 0.18 -1.17 0.17 0.26 0.25 1.04 197 0.2983
21 9 -0.47 0.17 -0.31 0.14 -0.16 0.22 -0.72 195 0.4722
21 10 -0.24 0.17 -0.52 0.16 0.28 0.23 1.22 197 0.2230
21 11 -0.55 0.17 -0.78 0.15 0.23 0.23 1.02 197 0.3112
21 12 -0.40 0.18 -0.20 0.16 -0.20 0.24 -0.81 195 0.4171
21 13 1.60 0.25 0.73 0.24 0.87 0.34 2.56 196 0.0112
21 14 0.14 0.18 0.25 0.16 -0.11 0.24 -0.46 194 0.6432
22 1 -0.67 0.65 0.01 0.51 -0.68 0.82 -0.83 14 0.4230
22 2 0.06 0.56 -0.29 0.52 0.34 0.76 0.45 14 0.6575
22 3 0.62 0.50 0.41 0.47 0.21 0.68 0.30 14 0.7660
22 4 0.35 0.52 0.20 0.48 0.15 0.71 0.22 14 0.8328
22 5 -1.75 0.73 0.22 0.47 -1.97 0.87 -2.26 13 0.0415
22 6 0.16 0.52 0.46 0.46 -0.30 0.70 -0.43 14 0.6764
22 7 0.84 0.48 0.41 0.46 0.44 0.67 0.66 14 0.5227
22 8 -0.20 0.50 -0.76 0.48 0.57 0.69 0.82 14 0.4259
22 9 0.14 0.50 0.20 0.46 -0.06 0.68 -0.09 14 0.9327
22 10 0.13 0.53 -0.48 0.50 0.62 0.73 0.84 14 0.4141
22 11 -0.29 0.55 -1.41 0.57 1.13 0.79 1.43 14 0.1759
22 12 0.04 0.60 -0.28 0.54 0.32 0.80 0.40 14 0.6955
22 13 2.65 0.66 2.46 0.61 0.19 0.90 0.21 14 0.8401
22 14 -0.35 0.63 1.02 0.48 -1.37 0.80 -1.72 14 0.1080
23 1 0.69 0.26 0.51 0.23 0.18 0.35 0.50 87 0.6193
23 2 1.75 0.21 2.30 0.17 -0.55 0.27 -1.99 85 0.0495
23 3 2.13 0.20 1.95 0.17 0.18 0.26 0.69 87 0.4910
23 4 -0.09 0.26 -0.24 0.23 0.15 0.35 0.42 87 0.6721
23 5 -0.57 0.28 -0.99 0.25 0.42 0.38 1.10 88 0.2738
23 6 0.36 0.25 -0.10 0.23 0.46 0.34 1.37 88 0.1732
23 7 0.16 0.24 0.42 0.20 -0.26 0.32 -0.84 86 0.4045
23 8 -0.70 0.29 -0.89 0.27 0.19 0.39 0.50 88 0.6215
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Male students

Female students

Comparison: Welch’s T-test

s s

[T} o

g § i 1) Standard 3 Standard Ch ind Joint robabilit
:'J'g— é (logits) error (logits) error (malzrlgfzxale) standard t df ° (p) !
[ error

23 9 0.06 0.24 0.30 0.20 -0.24 0.32 -0.74 86 0.4601
23 10 -0.72 0.28 -0.55 0.24 -0.17 0.37 -0.46 86 0.6485
23 11 1.32 0.21 0.93 0.18 0.39 0.27 1.42 86 0.1606
23 12 -0.33 0.27 -0.18 0.23 -0.15 0.36 -0.42 86 0.6764
23 13 -1.12 0.26 -0.40 0.23 -0.72 0.35 -2.05 88 0.0434
23 14 0.55 0.28 -0.19 0.25 0.74 0.38 1.97 88 0.0521
24 1 -0.94 0.34 -0.58 0.30 -0.36 0.46 -0.78 65 0.4406
24 2 -0.73 0.32 -0.21 0.28 -0.52 0.43 -1.21 65 0.2322
24 3 -0.02 0.27 -0.03 0.25 0.01 0.37 0.02 64 0.9840
24 4 -1.00 0.32 -0.78 0.29 -0.22 0.43 -0.50 65 0.6155
24 5 -0.51 0.31 -0.94 0.30 0.43 0.43 1.01 64 0.3163
24 6 -0.76 0.31 -0.91 0.30 0.15 0.43 0.34 65 0.7315
24 7 -0.02 0.27 -0.36 0.26 0.34 0.37 0.90 64 0.3691
24 8 -0.85 0.31 -1.07 0.30 0.22 0.43 0.51 65 0.6084
24 9 -0.56 0.29 0.21 0.23 -0.77 0.37 -2.06 65 0.0438
24 10 -1.09 0.32 -0.94 0.29 -0.15 0.44 -0.35 65 0.7276
24 11 -0.97 0.30 -1.81 0.34 0.84 0.46 1.84 64 0.0706
24 12 -0.18 0.31 0.57 0.27 -0.76 0.41 -1.84 62 0.0701
24 13 1.31 0.40 1.29 0.45 0.02 0.60 0.04 64 0.9670
24 14 0.10 0.31 0.20 0.28 -0.10 0.42 -0.24 65 0.8082
25 1 -0.39 0.19 -0.43 0.20 0.04 0.27 0.15 180 0.8831
25 2 0.08 0.17 0.12 0.18 -0.04 0.25 -0.17 182 0.8682
25 3 0.88 0.15 1.14 0.15 -0.26 0.21 -1.25 182 0.2112
25 4 0.37 0.16 0.57 0.16 -0.20 0.23 -0.86 182 0.3890
25 5 0.01 0.17 0.34 0.17 -0.33 0.24 -1.40 183 0.1630
25 6 0.30 0.16 0.04 0.17 0.26 0.24 1.09 181 0.2776
25 7 0.21 0.16 0.60 0.16 -0.39 0.22 -1.76 182 0.0796
25 8 -0.63 0.19 -0.98 0.20 0.36 0.28 1.29 180 0.1974
25 9 0.79 0.14 0.78 0.15 0.00 0.21 0.02 181 0.9845
25 10 -0.50 0.18 -0.30 0.18 -0.20 0.25 -0.78 181 0.4341
25 11 -0.52 0.17 -1.23 0.21 0.71 0.27 2.63 176 0.0092
25 12 0.27 0.17 0.72 0.17 -0.45 0.24 -1.86 179 0.0641
25 13 1.95 0.24 1.42 0.27 0.53 0.36 1.48 179 0.1401
25 14 0.58 0.17 0.15 0.19 0.43 0.26 1.67 180 0.0966
26 1 -0.50 0.16 -0.28 0.15 -0.22 0.22 -1.02 264 0.3070
26 2 -0.58 0.16 -0.57 0.15 -0.01 0.21 -0.04 265 0.9670
26 3 0.71 0.12 0.37 0.12 0.33 0.17 1.95 267 0.0528
26 4 0.24 0.13 0.60 0.12 -0.36 0.18 -1.99 266 0.0473
26 5 0.07 0.14 0.18 0.13 -0.12 0.19 -0.63 266 0.5312
26 6 -0.36 0.15 -0.25 0.14 -0.12 0.20 -0.58 265 0.5615
26 7 -0.11 0.13 0.09 0.12 -0.21 0.18 -1.15 266 0.2503
26 8 -1.21 0.17 -1.30 0.16 0.09 0.23 0.38 266 0.7048
26 9 0.14 0.13 0.69 0.11 -0.56 0.17 -3.31 265 0.0010
26 10 0.22 0.13 -0.09 0.13 0.31 0.19 1.66 267 0.0981
26 11 -0.65 0.14 -1.24 0.15 0.59 0.20 2.88 266 0.0043
26 12 0.19 0.15 -0.14 0.14 0.33 0.20 1.63 263 0.1040
26 13 2.32 0.21 2.29 0.19 0.03 0.29 0.11 264 0.9100
26 14 0.11 0.15 0.20 0.14 -0.08 0.21 -0.40 265 0.6863
27 1 -0.35 0.14 -0.29 0.13 -0.05 0.19 -0.29 395 0.7706
27 2 -0.33 0.13 -0.40 0.13 0.07 0.18 0.40 397 0.6901
27 3 0.24 0.11 -0.08 0.11 0.32 0.16 2.02 397 0.0435
27 4 -0.23 0.12 -0.08 0.12 -0.14 0.17 -0.85 396 0.3962
27 5 -0.26 0.12 -0.35 0.12 0.09 0.17 0.52 395 0.6019
27 6 0.08 0.12 0.23 0.11 -0.16 0.16 -0.96 393 0.3355
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Male students

Female students

Comparison: Welch’s T-test

: s =

a3 o

£ § 7 . Joint .
E"' g— é (Iogits) Stz::ird (Iogits) Stz:ij'rd (mcar:zngfeemje) standard t df pmb(:;"l'ty
] error

27 7 -0.43 0.12 -0.33 0.12 -0.11 0.17 -0.62 395 0.5328
27 8 -0.98 0.14 -0.92 0.13 -0.06 0.19 -0.29 395 0.7690
27 9 -0.44 0.12 -0.44 0.12 -0.01 0.17 -0.03 392 0.9739
27 10 -0.19 0.12 -0.09 0.12 -0.10 0.17 -0.59 394 0.5530
27 11 -0.67 0.12 -0.88 0.12 0.20 0.17 1.17 394 0.2413
27 12 -0.16 0.13 -0.12 0.12 -0.04 0.17 -0.20 393 0.8378
27 13 1.16 0.17 1.17 0.17 -0.01 0.24 -0.06 396 0.9538
27 14 -0.49 0.14 -0.48 0.13 -0.01 0.20 -0.07 392 0.9464
28 1 -0.23 0.25 -0.45 0.25 0.22 0.35 0.63 105 0.5275
28 2 -0.85 0.25 -0.85 0.25 0.00 0.35 0.00 105 0.9987
28 3 1.21 0.18 1.19 0.18 0.02 0.25 0.09 105 0.9320
28 4 -0.69 0.24 0.00 0.21 -0.68 0.32 -2.11 103 0.0371
28 5 -0.50 0.23 -0.24 0.22 -0.26 0.32 -0.80 105 0.4228
28 6 0.87 0.19 0.96 0.18 -0.09 0.27 -0.33 104 0.7434
28 7 -0.20 0.21 -0.28 0.21 0.08 0.30 0.26 105 0.7942
28 8 -1.67 0.30 -1.10 0.25 -0.57 0.39 -1.46 104 0.1482
28 9 -0.31 0.22 -0.46 0.22 0.15 0.31 0.50 105 0.6188
28 10 -0.19 0.22 -0.06 0.21 -0.13 0.31 -0.41 105 0.6823
28 11 1.31 0.18 0.89 0.18 0.42 0.25 1.68 100 0.0965
28 12 -0.32 0.24 -0.53 0.23 0.21 0.33 0.63 105 0.5275
28 13 -1.01 0.25 -1.27 0.23 0.26 0.33 0.78 103 0.4379
28 14 -0.28 0.26 -0.26 0.25 -0.01 0.36 -0.03 105 0.9733
29 1 -0.47 0.22 -0.18 0.20 -0.29 0.30 -0.98 145 0.3269
29 2 -1.39 0.23 -1.24 0.21 -0.15 0.31 -0.48 147 0.6338
29 3 -0.04 0.19 -0.20 0.18 0.16 0.26 0.61 148 0.5440
29 4 0.18 0.19 -0.07 0.18 0.25 0.26 0.96 148 0.3379
29 5 0.18 0.19 -0.05 0.18 0.23 0.26 0.89 148 0.3756
29 6 -0.15 0.20 -0.11 0.18 -0.04 0.27 -0.15 147 0.8807
29 7 0.03 0.18 0.06 0.17 -0.03 0.25 -0.14 147 0.8891
29 8 -0.80 0.21 -0.86 0.21 0.06 0.29 0.21 147 0.8349
29 9 -0.01 0.18 -0.03 0.17 0.02 0.25 0.09 145 0.9288
29 10 -0.26 0.20 0.08 0.17 -0.34 0.26 -1.28 147 0.2032
29 11 0.97 0.17 0.86 0.16 0.12 0.23 0.50 129 0.6150
29 12 -0.26 0.21 -0.40 0.19 0.14 0.28 0.49 147 0.6239
29 13 1.46 0.29 1.22 0.27 0.24 0.40 0.61 147 0.5432
29 14 -0.71 0.23 -0.49 0.21 -0.21 0.31 -0.69 146 0.4932
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7.6 Supporting information for sections 4.3 and 4.4

7.6.1 Correlations used for equating prior to factor analysis
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Figure S 52

Dotted lines are used to separate isolated subsets of data. Experiments 10 and 16 were selected to be
artificially equated based on this analysis, owing to their strong correlation and equivalence in design.
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Similarity between measures for Experiment 10 in subset 1 (Coloured complexes of iron) and
Experiment 16 in subset 6 (Equilibrium and Le Chatelier’s principle (revised: for foundations)
are additionally shown in Figure S 52 and Figure S 53 below.

3.5 4

3

Measure (8)

—o— Coloured Complexes of Iron

—o— Equilibrium and Le Chatelier's Principle
(revised: for foundations)

4 5 6 7 8 9
Survey item number

10 11 12 13 14

Figure S 53: Similarity of measures for experiments selected to be artificially equated

4 -

y =0.9212x - 0.0486
R? =0.9499

Equilibrium and Le Chatelier's principle
(revised: for foundations) & values

-2 \ \ \
0 2

Coloured Complexes of Iron & values

Figure S 54: Linear relationship between measures for experiments selected to be artificially

equated

7.6 Supporting Information| Supporting information for sections 4.3 and 4.4

283



7.6.2 Estimating the final LLTM within Facets software

A large number of facets must be defined in order to estimate an LLTM within the Facets
software:

e Asurvey item facet used as a “dummy facet” to easily define different rating scale
structures for each survey item

¢ The occasion-specific student bias measures (3:) must be included

e The question-specific experiment measure (3) facet normally used for a Partial Credit
Model is then defined and set as a “dummy facet” for the purposes of stipulating the
LLTM structure: labels assigned to each element of this facet will be used to define the
Q matrix.

e The n and p values (factor measures and item locations respectively) are contained
within one single “basic parameters” facet, each different measure with its own facet
element number. It is these facet element numbers which are listed in the labels for
each & facet element, specifying which parameters to add together to calculate that
specific 0 value.

e The model must be defined to contain an extensive series of additional facets which
the program can use to add additional “basic parameters” as instructed to do so by the
Q matrix (stipulated by the dummy & facet labels). Every additional time any basic
parameter measure must be added (or subtracted) one more time, this requires an
additional facet. In the code outlined here, the total number of basic parameter facets
included is 100: the sum of the maximum values for each column in the Q matrix.

FACETS=104

;1 - items (dummy, used only to define rating scale structures)

;2 — Occasion-specific student bias measures

;3 - Question-specific experiment measures (dummy, codes for LLTM)

;4.. - Factor measures and item locations
ENTERED-IN-DATA=1,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4 4 4 4,4, 4, 4,4 4 4.4,

Note that in the final line of code shown above, the number “4” is repeated 100 times. This is
because facet number 4 is the facet containing the factor measures and item locations, which
will be summated to approximate the & measures. There are 100 times a basic parameter
(either u or ) may be stipulated to be either added or subtracted once more within the labels
of the 3™ facet (to be coded as described below).

Specifications are included to define all facets as positively oriented (more positive measure
implies positive response is more likely), to arrange data in the final output and to specify
which of the facets is “free” or non-centred. The coding below has defined facet 2: the student
measures, to be the non-centred facet. That is, the measures for this facet will not sum to
zero. Measures for all other facets will be defined to sum to zero. The NULL specification has
been used to allow later stipulation that no basic parameter of the LLTM be added at the
relevant point of the summation.

NEGATIVE=0

ARRANGE=N

NONCENTER=2
NULL=0000

The MODEL specification must be used in such a way that it defines whether basic parameters
of the model are added or subtracted. That is, it is used to define the sign of the Q matrix
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coefficients. This is achieved by adding a negative sign where appropriate in front of the
relevant basic parameter facets. A different model must be stipulated for each survey item, as
each has a different series of Q matrix coefficients. Fourteen MODEL= statements will thus be
needed for the ASLE survey LLTM. Below, “Q1Scale” and “Q14Scale” have been used as labels
for the particular rating scale structures associated with survey questions 1 and 14. The “R4”
indicates a rating scale structure with 4 Rasch-Andrich thresholds. Note the addition of one
more “?” for each time any basic parameter may be added or subtracted one more time.

MODEL=1,?,?,?,?2.,?2,?2.?2,?2,?2.?2,?2,?2.?2,?2,?2.,?2,?2,2.,?2,?2,2,?2,2.2,2,?2.2,2,2.2,2,2.?2,?2,?
00, 0,0,0,
?2,2.?2.?2.?2.?2.?.?2. ?

’ ’ 1 1 ’ ’

22 2 2.2 2 _?2 2 _?2 2 _?2 .2 _?2 _2 .2 2222227227207
2,?2,2,2,?2,?2,2,2,?2,2,?2,?2,2,?2,-?,-?,-?,-?,-?,-?2,-?,-2,-?2,-?2,-?2,2,2,?2,2,?2,?2,7,7,"
,?2,?2,?2,2,?2,2,2,?2,2,?2,?2,2,?2,2,?2,?2,2,?2,72,?2,?2,2,?2,72,?2,?2,72,?2,7,?2,?2,7,?7,7,Qlscale

(other model statements for other survey items)
MODEL=14,7?,?,-?,-?,-?,-?,-?,-?,-?,-?,-?,-?,-2,-?,-?,-?2,-2,2,72,72,2,2,72,2,?2,7,7,
222222222222 2222222222222 2222222272 272727207
=y~ 3y ytyyycyycyYyYyYyYyyryyyyYyyyyryyyyyyyyyyyyyyyy
?,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,72,2,2,2,2,2,2,?2,7,7,7,Ql4s
-’:l’-’-’.’.’-,-,-,.’.’-,-,-,-’.’.’-,-’-’-’-’.,.,.,.’-’-’.,.,.,-’-’.’.’.’.,
cale

rating scale=Qlscale,R4

(specifications defining the rating scale structure for the other survey
items)

rating scale=Ql4scale,R4

Facets other than the 6 facet and basic parameter facet may be labelled as desired.

LABELS=
1= Survey item,D
1, data interpretation

(labels for other survey items)

14, overall learning experience

2= Person measures (occasion-specific and equated)
1, ex1 -pP1
2, Ex1 -P 2
3, Ex1 - P 3

(labels for other person measures)

9379, Ex 73 - P 5917
9380, Ex 71 - P 5520
9381-9462, Equated across occasions

The linear combination of basic parameters (several n values plus a p value) which
approximate each & measure can be stipulated as labels for the  facet elements. There is one
O facet element for each survey item, for each experiment. The label for each element of the
dummy o facet is a string of 100 four- digit numbers, each number being the element number
associated with the next basic parameter to be added or subtracted. Whether that basic
parameter is added or subtracted is stipulated within the MODEL= statement. For example,
digits 0001 at the end of the label for the first facet element (below) stipulate the addition of
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basic parameter 0001: the item location () for survey item 1. The next o value’s label has a
code of 0002 at the end, to add basic parameter 0002. The full string of text adds (or subtracts)
each basic parameter the correct number of times to yield the 4 value in accordance with the
LLTM Q-matrix. Basic parameter 0101 is subtracted fifteen times within the specifications for
the second 6 value, for example, because of a -15 Q-matrix weighting of factor 01 on to item 2
(6 element 2 being item 2 for experiment 1).

3, Question specific experiment quality measures (LLTM codes),D
1,0000000000000000000000000000000000000000000000000000000000000000000000000000
000000000000000003010000000000000000000000000000000000000000000000000000040104
010401040104010401040100000000000005010000000000000000000000000000000000000000
060106010000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000001
2,0101010101010101010101010101010101010101010101010101010101010201000000000000
000000000000000003010000000000000000000000000000000000000000000000000000040104
010401040104010401040104010401040105010501050105010501050105010000000000000000
060100000000000000000000000000000000000000000000000007010701000000000000000000
000000000000000000000000000000000000000000000000000901000010011001100100000000
0000000000000002

(other codes for basic parameter element numbers)

406,01290129000000000000000000000000000000000000000000000000000002290229000000
000000000000000000000000000000000000000000000000000000000000000000000000000429
000000000000000000000000000000000000052900000000000000000000000000000000000000
000629062900000000000000000000000000000000000000000000072907290729072907290000
000000000000000000000000000000000000000000000000000000000000000000000000000000
000000000000000014

4, LLTM Basic parameters
0001, Survey item 1 Tlocation
0002, Survey item 2 Tlocation

(other item location parameters)

0014, survey item 14 Tocation

0101, f1 Ex 1 "factor 1" - Biological Buffers

0102, f1 Ex 2 "factor 1" - Thermochemistry

0103, f1 Ex 3 "factor 1" - Vapour Pressure

0104, f1 Ex 4 "factor 1" - Melting Points and Recrystallisation

(other experiment specific factor measures)

1127, f11 Ex 27 "factor 11" - Copper(II) Ion Absorption Spectrophotometry
(revised: Taptop)

1128, f11 Ex 28 "factor 11" - Introductory Experiment (revised: pipetting)
1129, f11 Ex 29 "factor 11" - Quantitative Techniques (revised: no pipetting)

Above, the first two digits of the LLTM basic parameter element numbers correspond to the
factor number, whilst the second two digits correspond to the experiment number. For
example, 0103 is the factor 1 measure for experiment 3 (Vapour pressure). This notation is
simply out of convenience. The DValues= specification can then be entered to instruct the
program that the additional basic parameter facets included initially in the ENTERED-IN-DATA
specification have element numbers stipulated by particular locations in the string of digits for
each label in facet 3 (the dummy 0 facet).
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DVALUES=

(other commands for reading labels of the basic parameter facet)

102,3,393,4
103,3,397,4
104,3,401,4

The specifications above stipulate the facet number (of the total 104), then the facet number
whose label is to be referenced (facet 3, the dummy & facet), the first digit of the total string of
digits in the label to read when retrieving the relevant basic parameter for that facet, then the
number of digits to read from that point. The stipulation 4,3,1,4 therefore instructs the
program to add a basic parameter (specified in the ENTERED-IN-DATA specification initially) as
the 4th facet by reading the label of facet 3, beginning with the 1 digit and continuing to read
4 digits, then using this number as the element number of the basic parameters facet to
retrieve.

In the study discussed within this thesis, data was entered into the specification file as one line
of code per data point. Only the first 3 facets need to be specified, as all basic parameters are
entered using the DValues specifications. The four digits listed specify the survey item number,
the number of the relevant occasion-specific student bias measure, the & facet number
corresponding to the experiment and survey item for which the observed response was
gathered, then the observed response (0 through to 4 for the lowest to highest response
category respectively)

(one 1ine for each data point)

11,9380,25,4
12,9380,26,4
13,9380,27,3
14,9380,28,3
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7.6.3 Full matrices comprising the final LLTM

The ASLE survey data can be described by Equation 41 reproduced below, where H is a matrix

of parameters estimated from the data (Figure S 57) and Q is a matrix of coefficients weighting
each of these factors’ contributions to each ASLE survey item (Figure S 56). The product of
these matrices yields a matrix of item-specific experiment quality measures (Figure S 58) able

to predict student responses to ASLE surveys in conjunction with Equations 43 and 1.

The most accurate (unrounded) estimate for the Q-matrix is:

[5LLTMi,m] =QXxH

one column for each factor
A

for inclusion Olf W parameters

[ 0.022
-0.695
0.72
0.134
0.686
0.058
-0.268
0.115
0.072
0.775
0.073
-0.161
0.504
— |-0.265

one row for each survey item
|

0.007
0.054
0.36
0.841
0.497
0.058
0.695
0.104
0.755
0.096
-0.178
0.175
0.043
0.294

0.079
-0.07
0.333
0.133
0.074
0.814
-0.09
-0.044
-0.055
0.268
0.561
-0.189
-0.069
0.013

Figure S 55: Preliminary Q-matrix of non-integer values

0.812
0.46
0.069
0.008
0.135
0.032
0.301
0.232
-0.143
0.153
0.089
-0.06
-0.264
0.089

-0.098
0.333
0.07
-0.034
0.093
-0.122
0.158
-0.022
0.209
-0.13
-0.476
0.768
-0.254
0.199

0.19
-0.052
-0.183
0.099
0.184
-0.075
0.136
0.685
-0.016
-0.012
0.102
-0.025
0.458
0.308

0.016
0.073
0.238
0.229
0.187
0.051
0.123
0.134
-0.037
-0.165
-0.206
0.06
0.404
0.668

0.01
-0.01
0.054
-0.045
0.078
-0.046
-0.099
0.016
0.063
0.018

0.29
0.023
-0.078
-0.013

0.011

-0.032

0.147

0.179

0.142
0.01

-0.008

0.002

-0.149
-0.004
-0.007
-0.003

0.009
0.012

-0.007
0.162
0.042
-0.051
-0.064
-0.002
0.15
0.002
-0.021
0.113
-0.01
0.001
-0.022
0.007

-0.006
0.013
-0.07
0.018
0.03
0.002
-0.032
-0.013
-0.002
-0.051
-0.014
-0.007
0.16
-0.016

!
-0.002
0.023
0.013
0.013
-0.027

0
-0.033
-0.001
0.011
0.035

0
-0.002
0.001
-0.002
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whilst the matrix of integer values below is approximately a scalar multiple of the above (scalar

value k = 24.4, see Equation 40), yet suitable for use with the Facets software.
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The matrix H in Equation 41 contains all parameters estimated for the LLTM, and is shown in
full below. Note that the item locations () are fixed to be identical for each experiment
(column) and that factor measures for factor 12 all appear as zero, since this factor did not
contribute (and could therefore be excluded) when using the matrix of integer values. The

factor measures for each experiment contained within this matrix are more conveniently

presented as figures within section 7.6.4, including error margins for each.

one column for each experiment

A
r 1
- 114 124 11 114 118 118 117 112 112 11 112 113 11 119 116 in 112 12 113 118 117 115 128 121 117 112 115 118 116
044 052 048 056 0.55 0.5 051 052 059 05 051 046 052 044 051 047 054 055 045 056 053 044 044 056 042 047 055 052 046
053 073 074 07 062 066 044 0.7 068 068 0.7 081 064 061 061 062 065 065 074 072 071 066 065 076 065 078 066 056 0.67
¢ 036 -0.35 -045 -0.28 -026 -0.32 -0.44 -035 -0.35 -039 -0.34 -037 -0.32 -025 -0.23 -034 -0.26 -04 -031 -03 -032 -0.27 -035 -0.19 -026 -0.28 -03 -0.27 -0.26
a 074 089 089 092 096 083 063 095 089 084 0.9 096 0.84 09 083 079 078 077 088 084 086 088 088 082 0.76 09 082 086 085
$ 033 055 092 045 051 046 035 049 054 057 053 058 054 033 029 037 044 039 058 045 052 037 048 042 047 067 057 058 0.36
€ 7 |047 o064 025 068 062 057 05 056 059 054 067 066 052 065 065 058 066 060 071 06 053 059 065 061 062 05 064 065 0.78
‘o' -0.53 -0.54 -0.73 -0.62 -0.53 -0.53 -0.74 -0.64 -0.68 -0.51 -0.71 -0.52 -0.47 -0.51 -0.58 -05 -0.53 -0.48 -0.58 -0.61 -0.63 -0.47 0.7 -0.64 -0.63 -0.72 -0.51 -0.53 -0.64
© 123 104 136 122 119 129 142 123 116 106 137 107 119 116 115 118 118 12 122 116 117 126 123 129 121 119 116 118 106
&£ 113 13 165 094 112 122 107 i 117 135 12 116 099 122 103 126 099 108 12 125 098 083 103 113 117 11 118 12 106
-3.71 -4.18 -454 -4 4.16 -4 3.57 3.9 -446 -434 -399 -417 -3.84 -3.98 -4.0: -4 -379 -4 4.34 -4.05 -4.02 -385 -4.2 3.9! -4.14 -4.24 -427 -395 -4.1
L ( 0 0 0 0 0 ) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[| 056 056 056 056 056 056 0.56 056 056 056 056 056 056 056 056 056 056 056 056 056 056 056 056 056 056 056 0.56
ne unre unre 1 unr nme ne2 ne 11 112 112 1nr ne e 112 112 112 112 112 112 1 e 112 112 112 112 112
-3.44 -3.44 -344 -344 -344 -3.44 -3.44 344 -3.44 -3.44 -344 -344 -344 -344 -344 -344 -344 -3.44 -344 -344 -344 -344 -344 -344 -3.44 -3.44 -3.44
-851 -851 -851 -851 -851 -851 -851 851 -851 -851 -851 -851 -851 -851 -851 -851 -851 -851 -851 -851 -851 -851 -851 -851 -851 -851 -851
4 -109 -109 -109 -109 -109 -109 -109 109 -109 -109 -109 -109 -109 -109 -109 -109 -109 -109 -109 -109 -109 -109 -109 -109 -109 -109 -10.9
fl_{ 59 -59 59 -59 5.9 5.9 5.9 59 -59 -59 -59 59 -59 -59 59 -59 59 -59 -59 -59 5.9 5.9 59 -59 -59 -59 5.9
o d -3.42 -342 -3.42 -342 -342 -342 -342 342 -342 -342 -342 -342 -342 -342 -342 -342 -342 -342 -342 -342 -342 -342 -342 -342 -342 -342 -342
g -3.47 -3.47 -3.47 -3.47 -3.47 -3.47 -347 3.47 -3.47 -3.47 -347 -347 -347 -347 -3.47 -3.47 -3.47 -347 -347 -347 -347 -347 -3.47 -3.47 -347 -347 -347
g -433 -433 -433 -4.33 -4.33 -433 -433 4.33 -4.33 -433 -433 -433 -433 -433 -433 -433 -433 -433 -433 -433 -433 -433 -433 -433 -4.33 -4.33 -433
= -9.97 -997 -997 -997 -9.97 -9.97 -9.97 9.97 -9.97 -9.97 -9.97 -997 -997 -997 -997 -997 -9.97 -9.97 -9.97 -9.97 -997 -997 -997 -997 -997 -9.97 -9.97
58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58
-3.49 -3.49 -349 -349 -349 -3.49 -3.49 349 -3.49 -3.49 -349 -349 -349 -349 -349 -349 -349 -3.49 -3.49 -349 -349 -349 -349 -349 -3.49 -3.49 -3.49
-7.47 -7.47 -7.47 -7.47 -7.47 -7.47 -7.47 -7. -7.47 -7.47 -7.47 -7.47 -7.47 -7.47 -747 -747 -7.47 -747 -7.47 -7.47 -7.47 -7.47 -7.47 -7.47 -7.47 -7.47 -7.47 -7.47
= | 408 -4.08 -408 -4.08 -408 -4.08 -4.08 - 408 -408 -408 -4.08 -408 -408 -4.08 -4.08 -408 -4.08 -408 -4.08 -408 -408 -408 -4.08 -408 -4.08 -4.08_-4.08

Figure S 57: LLTM basic parameter matrix H

As can be seen in Equation 41, the product of the matrices Q and H yields a new matrix
containing all student independent measures for each evaluated experiment, approximately
equal to those which would be estimated from a fully connected Partial Credit Model. This

(annotated) matrix of duwm values is presented in full below.
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7.6.4 Measures for basic factors contributing to ASLE survey responses
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Figure S 59: Measures of latent factor 1 for all experiments

Analyses suggest this factor is largely related to the perceived connection between theoretical content in
the experiment and content presented in the lecture course. The factor appears to be related to the
perceived connection with recognisable theory from the perspective of the students. Not mere presence
of any theory at all or presence of course content regardless of the familiarity of presentation.
Experiments with high measures for this factor have an easily recognised relevance to the course and
consequently clear expected learning outcomes, whereas experiments with low values for this factor are
perceived as more “skills-based” and time consuming. A strong “boredom” response is seen for
experiments inclusive of familiar lecture content, and so student interest also correlates with this factor.
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Figure S 60: Measures of latent factor 2 for all experiments

This factor most closely resembles an overall quality of instructional and guiding material provided to
students conducting the experiment. Most ASLE item responses correlating with this factor's values
involve a sense of clarity in the material. Patterns observed in values above, notably different iterations of
the “Reaction kinetics” experiment, suggest that not only are the instructional notes relevant to this
measure, but also the order and phrasing of questions asked within the laboratory notebook that are
submitted for assessment.
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Figure S 61: Measures of latent factor 3 for all experiments

This factor exists as a manifestation of the fact that perceived benefits of teamwork and perceived
increases in understanding are so closely relates as to manifest as a singular, irreducible factor within
this data set. It is not clear from this analysis alone why this occurs: teamwork could promote
understanding, understanding could prompt students to be more willing to help their classmates, or a
confounding factor could cause the two to correlate for other reasons.
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Figure S 62: Measures of latent factor 4 for all experiments

This factor most closely reflects the perceived increase in data interpretation skills from the students’
perspective. More positive values of this factor (increased perception of skills development) does not
necessarily arise merely from the inclusion of data interpretation tasks: the development of skills, rather
than mere use of existing skills, appears to be important based on patterns in the observed measure
values. Notably, the figure above shows higher measure values for experiments presented to students of
lower ability (the Foundations of Chemistry cohort), presumably because skills utilised in the experiments
were more often new, and therefore developed through the exercise. Simply including new analytical
procedures is not sufficient either, however: “Vapour pressure” receives the lowest measure of all, likely
because the unfamiliar graphing data logger involved was met with confusion and frustration.
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Figure S 63: Measures of latent factor 5 for all experiments

This factor most clearly resembles a spectrum from working individually (more positive values) to
benefiting from working with others (less positive values), and maps reasonably closely (though not
perfectly) to whether students worked in pairs (low values) or individually (high values). The value of this
factor appears to depend on factors other than how students are required to work, however, given the
appearance of an experiment conducted individually (“introductory experiment’) as the lowest value and
an experiment conducted in pairs (“lon Exchange Chromatography”) as the highest value, both in
contrast to the broader trend. The prior knowledge of the student cohorts (Foundations of Chemistry IA/B
or Chemistry IA/B) may play a role also, as experiments conducted by the less experienced Foundations
cohort appear to cluster at the lower end of the spectrum, representing that teamwork is beneficial in
these cases.
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Figure S 64: Measures of latent factor 6 for all experiments

This factor most closely resembles the perception that the demonstrator’s assistance in the experiment
was effective. It is important to note that these values were extracted from data sets where multiple
different demonstrators taught different subsets of the student groups, and so values of this factor cannot
be interpreted as reflecting teacher quality. Rather, they reflect an attribute specific to the experiment
itself which influences the perceived appreciation of the demonstrator (or possibly an aggregate view of
the range of demonstrators who taught each experiment). Key to this interpretation is the “Vapour
pressure” experiment as the highest value: demonstrators were appreciated to a far greater extent in this
generally poorly received experiment than in any other case. However, when the identical experiment
was run in absence of the poorly received handheld data logger device, this extremely positive perception
of the demonstrators vanished. This factor appears to reflect a reliance on and appreciation for the
demonstrator's help (for example as a result of a poor experiment), not the demonstrator's teaching
ability.
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Figure S 65: Measures of latent factor 7 for all experiments

This factor has an unknown relation to laboratory activity design, but most closely resembles a perception
of positive overall experience. Critically, it is a contribution to overall experience not resembling any items
included on the ASLE survey instrument, and therefore represents a variation in this perception which is,
as yet, unaccounted for. Were other items to be included on the ASLE survey and used to identify more
factors than those comprising this LLTM, it is anticipated that measures for this factor would vary to a far
lesser extent.
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