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Abstract 

Since the early 2000s, improvement of the student learning experience in university level 

laboratory activities in Australia has been sought by the Advancing Science by Enhancing 

Learning in the Laboratory (ASELL) project. The nation-wide project has made use of the ASELL 

Student Learning Experience (ASLE) survey to gather data and draw conclusions regarding 

student perspectives of their learning experiences, using trends observed in the data to inform 

pedagogy. Analyses of rating scale response format items on the ASLE survey have typically 

involved an integer value scoring system applied to the response categories. The 

appropriateness of such integer scoring techniques and the subsequent application of 

parametric statistical methods to ordered categorical data in this way is contested in statistical 

literature, which raises questions regarding the validity of ASELL project conclusions drawn in 

the past.  

In this thesis, Rasch measurement is applied to a data set of ASLE survey responses, using the 

true interval scale measures gained to test the validity of the scoring techniques and 

parametric methods more typically applied to ASLE data. The role of student biases in survey 

response and ‘objectivity’ of any measures associated with learning experience quality are 

explored, yielding quantitative models of the student perception of laboratory learning 

experiences. The thesis culminates in the use of factor analysis to develop a Linear Logistic Test 

Model for a data set of over 9000 completed ASLE surveys, explaining the responses received 

as linear combinations of a small number of major factors in the student laboratory learning 

experience. The model is used to draw pedagogical conclusions from the ASLE survey data set 

uninfluenced by limitations of the integer scoring techniques usually applied. 

The work has major implications for valid interpretation of ASLE survey data received both in 

the past and in future, suggesting that whilst integer scoring methods may be amenable to 

parametric statistics, the conflation of student dependent and student independent factors 

limits the generality of any conclusions drawn. Student independent measures obtained from 

Rasch analysis, however, reveal that the perceived relative quality of a laboratory exercise is 

largely consistent through the student population sampled. The Linear Logistic Test Model 

generated reveals a wide range of connections between different facets of the laboratory 

learning experience and this general perceived learning experience quality, informing effective 

science pedagogy. Pedagogical conclusions include strong connections between group work 

and understanding of theoretical content, the advantages of data analysis and individual work 

in development of more technical or practical skills, evidence for the importance of structuring 

activities appropriate to the ability level of the students, as well as ways to generate student 

interest and foster perceptions of a positive overall laboratory learning experience. A need for 

compromise between teaching objectives and learner preferences is highlighted, noting that 

the “best” way to design a laboratory activity largely depends on the intended purpose of the 

exercise. 



 vi 

 

Declaration 

I certify that this work contains no material which has been accepted for the award of any 

other degree or diploma in my name in any university or other tertiary institution and, to the 

best of my knowledge and belief, contains no material previously published or written by 

another person, except where due reference has been made in the text. In addition, I certify 

that no part of this work will, in the future, be used in a submission in my name for any other 

degree or diploma in any university or other tertiary institution without the prior approval of 

the University of Adelaide and where applicable, any partner institution responsible for the 

joint award of this degree. 

I give consent to this copy of my thesis when deposited in the University Library, being made 

available for loan and photocopying, subject to the provisions of the Copyright Act 1968. 

I also give permission for the digital version of my thesis to be made available on the web, via 

the University's digital research repository, the Library Search and also through web search 

engines, unless permission has been granted by the University to restrict access for a period of 

time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

_______________________________________ 



 vii 

 

Acknowledgements 

First and foremost, I wish to thank my supervisors Simon Pyke, Natalie Williamson and John 

Willison for their continued and valued support throughout my writing of this thesis. I greatly 

appreciate their willingness to allow me to exercise freedom and creativity in my research, 

even following paths that are relatively unfamiliar for all concerned, whilst still being able to 

provide constructive feedback and guidance along the way.  

I would also like to thank the many practical demonstrators who have assisted in the 

distribution of “my horrible surveys” over the course of numerous years, without whom I could 

never have gathered the wide data set which has been integral to the strength of this work’s 

conclusions. I wish to particularly thank Annelie Karssen, who took over the collection of 

survey data whilst I was away briefly during 2015. Data gathered during that time has been 

some of the most useful for my final and most interesting conclusions, and I am grateful for 

her help. Laboratory technicians Peter Roberts and later Catherine Margach have also been of 

great help in accommodating my presence in the first year chemistry laboratory, and I am very 

grateful to them.  

Another person deserving of particular thanks is Lyron Winderbaum, who readily offered his 

assistance in the dreaded art of MATLAB coding when I was in need. Without his help, I’m sure 

I would never have had it working. Continuing the mathematical theme, I wish to give thanks 

to Sivakumar Alagumalai, who first introduced me to Rasch analysis and kindly spared his time 

to provide me some advice in the earliest stages of my research. 

I also wish to thank my friends and family for their continual support and kindness throughout 

my studies. My friends for giving me much needed distractions from my working life as well as 

sharing my dread of the editing process, and my family for continuing to support and 

encourage my continued study, even as a few expected deadlines sailed past. 

Lastly, I would like to thank all of the first year chemistry students who have passed through 

the laboratory over the few years I have been present. Without them, my entire project would 

have been impossible and my working days would never have been so enjoyable.



 1 

 

1 Introduction



1.1  Introduction| The Advancing Science by Enhancing Learning in the Laboratory (ASELL) project 2 

 

1.1 The Advancing Science by Enhancing Learning in the 

Laboratory (ASELL) project 

1.1.1 Laboratory work in science education and history of the ASELL project 

For more than a century,1 the laboratory has served as a key component of university level 

science education. Despite queries as to whether benefits of laboratory sessions outweigh the 

costs,2, 3 suggested key roles of laboratory activity in science education have persisted.4-8 

Development of hands-on practical skills, development of scientific and critical thinking skills, 

supporting learning of the subject matter as well as fostering more generic skills such as time 

management and effective work in teams are all frequent suggested benefits of laboratory 

activities.9 These claims have been largely supported to varying extents, with more authentic 

research activities in undergraduate science additionally shown to act as powerful affective, 

behavioural and personal discovery experiences.10 

Laboratories have historically been viewed as providing the opportunity for a strong inquiry-

based environment, where inquiry is an integral part of the scientific process.11, 12 Using 

laboratories as a tool to engage students with scientific concepts at a concrete, macroscopic 

level,2, 13 students are allowed to forge connections between real world experimental 

observations and underpinning scientific concepts14 whilst strengthening their scientific 

reasoning and broader grasp of how the scientific process works.15 Developing skills in 

scientific writing has also been viewed as heavily dependent on laboratory work for this 

reason, since only in the laboratory are students able to “do” science rather than merely “learn 

about” science.16 

Stimulation of student engagement and interest in science is also a key function of laboratory 

activities, notably since student interest levels have a powerful influence on learning.17, 18 The 

appeal of laboratory experiments has previously been identified as one of the most prominent 

reasons for initial enrolment in chemistry,19 justifying observations that positive laboratory 

experiences help encourage student retention in chemistry (and other science) majors.20, 21 

Despite this, difficulties in effectively implementing inquiry-based laboratories have meant 

that more expository “cook-book” laboratories22 are prevalent, which miss out on many 

desirable (and potentially enjoyable) features of the experience.23 

During the late 1990s, anecdotal evidence presented by academics attending research 

conferences around Australia suggested that increasing numbers of students were finding their 

physical chemistry laboratory sessions neither interesting nor motivating. These observations, 

coupled with associated decreases in enrolment and retention in physical chemistry courses, 

prompted the Committee for University Teaching and Staff Development (CUTSD) at the time 

to fund the Australian Physical Chemistry Enhanced Laboratory Learning (APCELL) project, 

which aimed to address the issue.24 

Adopting a “research-led teaching” philosophy, the APCELL plan was initially formulated by 

researching the relevant education literature on laboratory learning and teaching, inquiring 

into the nature of the barriers to improvement, and gathering data on students’ perceptions of 

their teaching and learning experiences. Data gathered on students’ perceptions of their 

teaching and learning experiences in laboratories suggested that laboratory sessions could be 

perceived to lack relevance and be little help in achieving useful learning outcomes, 

reminiscent of other findings on effective laboratory teaching at the time.25, 26 Given the pre-

existence of education literature on effective laboratory teaching, the question arose as to 
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why the relevant recommendations had not already been adopted. It became apparent that 

despite attempts by individual institutions to improve their practice, each faced a variety of 

resource constraints which impeded their progress.27 Individual institutions’ limited access to 

physical resources (such as equipment), specialist expertise, pedagogical expertise and active 

student involvement meant that a multi-institution approach was necessary. The APCELL 

project therefore gained participation from multiple Australian universities, pooling the 

resources of individual institutions to collectively improve practice. The project’s overarching 

objective to “measurably improve the learning, motivation and enjoyment of chemistry 

laboratory experiences by students”28 was henceforth pursued in three ways: 

1. Establishment of a network of physical chemistry educators and students to share 

expertise in on-going curriculum development 

2. Development of a suite of physical chemistry experiments, based on sound pedagogy, 

that could facilitate improved student learning 

3. Creation of an internet database including all of these experiments, complete with 

associated demonstrator notes and other documentation required to deliver the 

laboratory activity to students 

Because of its student-centred philosophy and intended outcomes, the project sought to 

develop a template for considering existing laboratory teaching practices from a learner-

focused perspective. At a workshop held in Canberra during July of 2000, academics from over 

30 participating institutions were asked to reflect on and challenge their existing ideas and 

conceptions of teaching, addressing the issue at the level of their underlying ideas about 

teaching and learning rather than at the level of their teaching behaviours. The result was the 

refinement of the ‘Educational Template’ document,24 which became central to the APCELL 

project and its successors. This template was designed to accompany experiments submitted 

to the APCELL review process, for potential inclusion in the online APCELL database of 

pedagogically sound experiments. The template was not designed to prescribe practice, but 

instead designed to promote consideration of existing practices from a learner perspective.  

Following its review and subsequent amendments, the Educational Template document 

included several sections to be completed by the submitter as part of the experiment 

evaluation process. These sections included information on the context in which the 

experiment is run, the educational goals of the activity, how those objectives could be met and 

how both students and teachers could recognise they had been met. The template document 

was also designed to include an analysis of feedback provided by students who had conducted 

the experiment, in keeping with the learner-centred focus of the project. The student feedback 

contained within this final section of the completed template was to be gathered during hands 

on laboratory sessions, held during APCELL workshops.  

Held in Sydney in February of 2001, the first APCELL workshop was principally designed around 

the “peer review” of experiments submitted to APCELL, largely scaffolded by the Educational 

Template. Both students and academics were provided the facilities to physically conduct the 

laboratory activities submitted to APCELL, providing feedback on their experiences. Submitters 

of the experiment acted as the “demonstrator” for each laboratory activity. The laboratory 

sessions held as part of the workshop not only gathered data on learner perspectives of each 

experiment, but additionally it placed academics in the ‘shoes’ of the students, opening up a 

dialogue between teachers and learners. Workshop delegates were also provided time to 

discuss the submitted experiments at length, evaluating strengths and weaknesses of the task 
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design, potential improvements which could be made or amendments to the completed 

Educational Template document submitted along with the experiment. 

Attendees at the first APCELL workshop responded very positively to the experience, reporting 

their heightened awareness of what the student experience constitutes and the issues in 

running an effective laboratory learning exercise from the student perspective. The value and 

necessity of evaluating experiments in a hands-on, interactive environment in this way was 

acknowledged strongly by the workshop delegates, and it was agreed that all experiments 

submitted to APCELL should be put through an extensive and rigorous review, incorporating 

this process.  

Additional APCELL workshops were organised subsequent to the workshop in Sydney, largely 

to facilitate the review of large numbers of submitted experiments in bulk whilst also 

reinforcing the student-centred learning concept with participating academics. Because 

APCELL experiments now had a structured ‘peer review’ process associated with their 

evaluation, submitters could elect to pursue publication of the experiment details and 

evaluation results in a peer-reviewed education journal subsequent to their acceptance into 

the APCELL database. A partnership was established with the Australian Journal of Education in 

Chemistry,29 which published numerous APCELL experiments and their evaluations.30-41 

Following the success of APCELL, the project was expanded in 2006 to involve chemistry more 

broadly and relabelled as ACELL: The Australian Chemistry Enhanced Laboratory Learning 

project.42-46 Over the course of its development, the review process for experiments submitted 

to A(P)CELL had evolved to incorporate evaluation at the submitter’s home institution, 

gathering survey feedback from students completing the experiment as part of a course in 

which they are enrolled. A standard recommended procedure for analysing the survey 

feedback was developed,47 and this data (both qualitative and quantitative) could be 

presented in the published form of the evaluated experiment. This process was incorporated 

into the ACELL experiment review scheme, as outlined in Figure 1.  

 

Figure 1: Experiment review process 

Experiments submitted to the review process undergo a workshop review by both students and 

academics, an in-semester review by the student cohort of the home institution and a peer review 

process prior to publication. Stop points exist between these phases where the experiment may be 

modified and re-evaluated based on feedback. Image is reproduced with permission from Pyke et al.48 

This scheme has been utilised for the evaluation of a number of experiments, some of which 

have been published in peer reviewed journals alongside their associated student feedback at 

both the workshop and at the home institution, as well as their evaluation using the 

Educational Template document.49-51 
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ACELL’s success continued, with numerous workshops run across Australia. Following calls for 

even further expansion into other disciplines of science46, 52 the project eventually evolved into 

the current Advancing Science by Enhancing Learning in the Laboratory (ASELL) project,48, 53, 54 

which has now seen involvement from outside of Australia54 and is beginning to also 

encompass education in schools.55-57 The increased volume of data generated from workshop 

evaluations and home institution evaluations also allowed the project to begin contributing to 

education research more broadly, using survey response data to investigate large scale trends 

in laboratory learning experiences.58, 59 To date, ASELL and its predecessors have gathered data 

from over 120 experiments, with contribution from over 25,000 students, 350 academics and 

30 deans affiliated with 28 universities across Australia.58 Additional unknown volumes of data 

gathered using ASELL surveys across a variety of institutions also exist separately to the ASELL 

project database, such as data presented within this thesis. 

The project has maintained its experiment review structure (Figure 1), and still presents 

accepted experiments (both from current and past forms of the project) in the ASELL online 

database, available on what is now the ASELL website.56 Experiments may also still be 

evaluated using surveys designed by ASELL at home institutions, where students conducting 

the experiment may provide feedback. Data gathered using these surveys, much like data 

previously gathered by ACELL and APCELL, has also been used to contribute to laboratory 

learning education research beyond the experiment review process, in both comparative60 and 

correlational studies.58, 61  

1.1.2 Data analysis and interpretation 

Whilst the experiment review process used by ASELL and its predecessors involves multiple 

stages, this thesis will primarily have its focus on survey data received during workshops and 

most notably home institution analyses. The ASELL Student Learning Evaluation (ASLE) survey 

instrument, used for home institution analyses, was designed with the intent of providing 

academics with a simple, easy to analyse tool for capturing key elements of the student 

experience during laboratory activities. The survey is comprised of fourteen Likert-type (rating 

scale) response format items, each of which allows students to respond in one of five ordered 

response categories, as well as five open response format items (Table 1). Survey items were 

initially formulated based on recurring themes evident in original open response comments 

gathered during early APCELL workshops,61 as well as education literature regarding benefits of 

inquiry based laboratory exercises62 and teamwork.23 The precise phrasing of the questions 

included on ASELL project surveys has continually evolved with the project; however the 

content of the questions has remained generally equivalent. The rating scale or ‘Likert-style’ 

response format items are typically used for quantitative analysis, whilst open response format 

items are used for more qualitative purposes.  

Responses to ASLE surveys (used for home institution analyses) and to analogous surveys used 

in ASELL workshops are used to gauge the relative quality of the experiment from the student 

perspective. Likert-type data in particular may be more easily subjected to statistical 

comparisons, revealing any differences between evaluations of different experiments or 

between separate evaluations of the same experiment in different contexts. Often these 

investigations are treated as exploratory in nature, due to small sample sizes and hence poor 

generality of conclusions and little statistical power. This limitation is especially an issue for the 

workshop surveys, the responses for which are limited by small numbers of workshop 

participants. Studies capable of drawing more generalised and less informal conclusions 
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require large numbers of responses, typically available only from in-semester survey collection, 

or from the full collated data set of many evaluated experiments.  

Table 1: Items included in the ASELL Student Learning Experience (ASLE) survey 

# Item 
Response 
Format 

1 This experiment helped me to develop my data interpretation skills Likert - style 

2 This experiment helped me to develop my laboratory skills Likert - style 

3 I found this to be an interesting experiment Likert - style 

4 It was clear to me how this laboratory exercise would be assessed Likert - style 

5 It was clear to me what I was expected to learn from completing this experiment Likert - style 

6 Completing this experiment has increased my understanding of chemistry Likert - style 

7 Sufficient background information, of an appropriate standard, is provided in the introduction Likert - style 

8 The demonstrators offered effective supervision and guidance Likert - style 

9 The experimental procedure was clearly explained in the lab manual or notes Likert - style 

10 I can see the relevance of this experiment to my chemistry studies Likert - style 

11 Working in a team to complete this experiment was beneficial Likert - style 

12 The experiment provided me with the opportunity to take responsibility for my own learning Likert - style 

13 I found the time available to complete this experiment was Likert - style 

14 Overall, as a learning experience, I would rate this experiment as Likert - style 

15 Did you enjoy doing the experiment? Why or why not? Open  

16 What did you think was the main lesson to be learnt from the experiment? Open  

17 What aspects of the experiment did you find most enjoyable and interesting? Open 

18 What aspects of the experiment need improvement and what changes would you suggest? Open 

19 Please provide any additional comments on this experiment here. Open 

Response categories: Items 1-12: “Strongly Agree”, “Agree”, “Neutral”, Disagree”, “Strongly Disagree” 

 Item 13: “Way Too Much”, “Too Much”, “About Right”, “Not Enough”, “Nowhere Near Enough” 

 Item 14: “Excellent”, “Good”, “Average”, “Poor”, “Very Poor” 

The workshop survey for experiment evaluation and the ASLE survey are similar in their 

content, despite some differences in the questions posed. For this reason, responses obtained 

from both surveys yield comparable information and are typically treated using identical 

analysis strategies. The ASLE survey exclusively represents the views of students at the home 

institution, whilst the workshop survey is completed by ASELL workshop delegates, 

predominantly inclusive of academics.  Information such as this may be used in conjunction 

with open response comments received to gauge the quality of an experiment from the 

student perspective, identifying areas of possible strength or weakness. Work conducted by 

Crisp et al.51 in evaluating student and staff perceptions of the same experiment illustrates the 

complementarity of the workshop survey and the ASLE survey, whilst also showcasing the way 

in which Likert-type data may be used as an indicator of participant perceptions (Figure 2, 

page 7).  
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Figure 2: Exploration and contrast of perceptions using Likert-type response data obtained 
using the workshop survey and ASLE survey 

The frequency of responses observed in each of the rating scale categories gives a general insight into 

perceived quality of the experiment. In this figure, reproduced with permission from Crisp et al.51, the 

workshop survey is used to illustrate the perceptions of academics, whilst the ASLE survey is used to 

gauge the perspectives of students. 

Over time, a standard technique for the analysis of survey responses has been developed with 

the project. For open response items, a procedure of categorising comments based on their 

content and enumerating the number of comments which fall into each category is employed47 

(Figure 3). For Likert-type items, a scoring system is implemented whereby each of the five 

successive response categories are assigned successive integer values. As an example, 

response categories “strongly disagree”, “disagree”, “neutral”, “agree” and “strongly agree”  

(available for items 1 – 12) would be assigned scores of -2, -1, +0, +1 and +2 respectively. 

Response options for item 13 and for item 14 are treated similarly. The average scored 

response may then be reported for each item (Figure 4).  
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Figure 3: An example of the recommend analysis of ASLE survey open response items 

Open response comments have been classified into researcher-defined categories based on their 

content. Frequencies of comments in each category have then been enumerated for the purposes of 

comparisons (in this case, between three iterations of the same experiment run in three different years). 

Image has been reproduced with permission from Southam et al.60 

 

Figure 4: An example of typical 'scoring' of ASLE survey Likert-type response format items 

Successive integer value scores have been assigned to individual Likert-type item responses, enabling 

mean scores for each survey item to be tallied and used for comparisons (ASLE items 1 – 12 are shown). 

In this case, student perceptions have been contrasted between different years the same experiment was 

run. Image has been reproduced with permission from Southam et al.60 
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Similar techniques have also been applied with other surveys utilised over the course of the 

existence of the ASELL project and its predecessors. Other surveys used at ASELL workshops to 

gauge the perceptions of participants have been subjected to similar treatments, contrasting 

perceptions between staff and students as well as comparing responses between different 

workshops. Yeung et al53 extensively applied both techniques described above in evaluating 

the success of the first ASELL workshop, identifying key themes in qualitative comments 

received and applying the same integer scoring methodology to survey responses, yielding 

mean scores as a measure of perception. 

However, Yeung et al. take the integer scoring technique a step further than previous ASELL 

based studies by using the calculated mean scores in parametric statistical tests. In the study, 

responses to individual Likert-type items are assigned successive integer scores in the usual 

way, then used to calculate both mean scores and standard deviations. These values, in 

conjunction with sample sizes, were used multiple times to conduct both Student’s t-test and 

ANOVA; practices generally restricted to interval scale data rather than ordered categorical 

data such as rating scale responses. The distribution of student responses shown in Figure 5 

below was characterised as having a mean score of +1.52 (σ = 0.57), concluded not to 

significantly differ from the distribution of staff responses, characterised by mean score of 

+1.33 (σ = 0.76), using Student’s t-test (t = 1.21, df = 77, p = 0.231). 

 

Figure 5: Assignment of scores for the purpose of statistical testing. 

Image is reproduced with permission from Yeung Et al,53 with the addition of scores associated with each 

response category (shown in red in parentheses). 

Standard deviations had been reported alongside mean ASELL scores previously as a rough 

measure of the spread of responses (see the characterisation of the “thermodynamics think-

in” experiment by Kable and Read,50 for an example). However, they had never before been 

used to explicitly quantify probabilities associated with statistical tests. Procedures such as this 

represent a shift from interpreting response scores as a rough indicator of perception to 

interpreting them as a quantified, interval scale measures fit for parametric statistical 

comparisons. Other ASELL papers have chosen not to use scores in statistical tests, instead 

resorting to non-parametric methods such as the Wilcoxon rank sum test, as is more usual for 

the analysis of ordered categorical data. 
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Whilst ASELL survey results have commonly been used for the purposes of evaluating 

individual experiments, student perception data in the form of mean scores have also been 

used to probe the laboratory learning experience more deeply. Large volumes of data are 

available from the multitude of workshop evaluations and home institution evaluations 

conducted over the course of the ASELL project and its predecessors’ existence. This has 

enabled more reliable and generalizable statistical conclusions to be drawn, meaning ASELL 

survey data has emerged as a tool to investigate more fundamental questions about 

generating a positive student experience in the laboratory. 

A notable example of the use of larger volumes of ASELL data is the correlation of scored 

responses received for one survey item against the scores received for another, in pursuit of 

identifying factors contributing to a positive laboratory experience. The role of ‘interest’ in 

generating a positive ‘overall learning experience’ was exemplified by George et al.59 in this 

way, using both mean scores and scored individual responses to the ‘interest’ and ‘overall 

learning experience’ Likert-type items from a large number of ASELL evaluated experiments 

(Figure 6). Similar correlations were evaluated between the “overall” item and the other 

Likert-type response format items of the survey, yielding correlations between overall 

experience and items 1, 3, 6 and 12 of the ASLE survey. 

  

Figure 6: Correlated scored ASLE survey responses for item 14 (overall) and item 3 (interest) 

LEFT: The mean values of scored responses have been correlated, with each data point representing 

values from a different experiment in the ASELL database. RIGHT: Individual responses received for two 

different Likert type items of the ASLE survey have been plotted against one another. Data point sizes 

are proportional to the frequency of response. The slope value, indicative of the rate at which the “overall” 

rating changes as the “interest” rating changes, has been calculated based on assigning successive 

integer values to the five rating scale categories, here labelled as A (the most positive response) through 

to E (the least positive response). Images have been reproduced with permission from George et al.59 

Correlations such as these were stated to “provide a valuable insight into the factors that 

significantly influence students’ learning experiences”.59 In this specific instance, because items 

1, 3, 6 and 12 concern factors reflecting affective and cognitive engagement, this result was 

taken to show that “students’ evaluations of the learning aspects of a laboratory activity 

appear to derive from the high-level engagement and deep learning for which we strive”.59 

Conclusions such as these rest on the validity of the integer scoring method applied, as well as 

the valid interpretation of the meaning of survey responses by researchers utilising ASLE 

surveys. 
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1.2 Validity and ASELL 

1.2.1 Quantitative methods: categorical data, parametric statistics 

Strictly speaking, Likert “scales”, for which Likert-type response format items are usually used, 

emerge from summating or averaging scores obtained from an entire set of items, rather than 

the individual items themselves within that set as ASELL and its predecessors have done.63 

Many studies have shown that Likert scales emerging from multiple summated items can 

validly be treated as interval scale and are fit for parametric statistics, but not in the case of 

analysing individual items – a practice recommended against.64, 65 Recommendations in the 

literature suggest that Likert-type response format data should be treated as ordinal rather 

than interval scale, implying that non-parametric methods should be used66-68 such as the chi-

squared test69, Mann-Whitney U test (also known as the Wilcoxon rank sum test),70-73 the 

Kruskall-Wallis test,74 Kendall’s tau75 and Spearman’s Rho,76 whilst parametric methods  such 

as reporting means and standard deviations, use of Student’s t-test for equal77 or unequal78-80 

variances, ANOVA81-83 and Pearson’s correlation coefficient84 should be avoided and 

considered invalid.85 Parametric comparisons of mean values such as t-tests and ANOVA are 

said to be inadvisable for individual items due to difficulties in obtaining normally distributed 

data, whilst use of Pearson’s correlation is considered particularly inappropriate because it is 

influenced by the range of the score values used.86  

However, some statisticians have no issue with scoring ordered categorical data for the 

purposes of correlations87 and other parametric methods. F-tests, specifically those utilised by 

ANOVA, have long been demonstrated as being extremely robust to violations of the interval 

data assumption88 and Pearson’s correlation has been shown to be “insensitive to extreme 

violations of the basic assumptions of normality and the type of scale”.89 As such, some 

disagree that these methods are inappropriate for Likert-type data. Some even go so far as to 

claim that scoring Likert-type data for the sake of conducting t-tests is not only acceptable, but 

is superior to using rank-based tests such as the Wilcoxon, which should be avoided.90 

Norman91 concludes: 

“Parametric statistics can be used with Likert data, with small sample sizes, 

with unequal variances, and with non-normal distributions, with no fear of 

‘‘coming to the wrong conclusion’’. These findings are consistent with 

empirical literature dating back nearly 80 years. The controversy can cease 

(but likely won’t).” 

Perceived key limitations in the integer scoring technique concern the lack of sample 

independence of scored rating scale responses, as well as the difficult interpretation of scores 

and differences between them. A difference between two scores may mean a certain 

magnitude of difference in the evaluated attribute at one location on the scale, whereas the 

exact same score difference may imply an attribute difference of an entirely different 

magnitude at another point on the scale. For example, the progression from “agree” to 

“strongly agree” may not reflect an improvement of equal magnitude to the progression from 

“disagree” to “neutral”, as the equal score difference would appear to suggest. Related to this 

idea is the fact that averaging or summating two scores may not make qualitative sense. 

Paraphrasing Kuzon Jr et al.92,  Jamieson85 states: 

“the average of ‘fair’ and ‘good’ is not ‘fair-and-a-half’; this is true even 

when one assigns integers to represent ‘fair’ and ‘good’!” 
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It is objections like these which are used to justify the usual recommendations that Likert-type 

response format data should not be treated with simple scoring techniques or parametric 

statistical methods, as ASELL and its predecessors have done.  

Barrie et al.61 employed the technique of correlating scored responses to individual Likert-type 

items in a recent publication. The authors subjected scored ASLE response data to principal 

component analysis: a procedure which uses observed (Pearson) correlations between scale 

variables to extract a number of major dimensions characterising the full data set. These 

extracted dimensions or ‘principal components’ are linear combinations of the original 

dimensions of the data set (in this case, the individual ASLE survey items). One of the principal 

components extracted from the ASLE data was identified by the authors to be a “resources” 

factor, comprised of the survey questions relating to the demonstrators, laboratory notes and 

background material provided. The authors presented the following analysis (Figure 7) of the 

items comprising this “resources” factor, this time using mean scores obtained from a variety 

of experiments. 

 

Figure 7: Example of scored ASLE data being treated as an interval scale measurement 

Mean scored responses calculated for different items of the ASLE survey have been plotted against one 

another in order to show evident correlations. Lines shown in red indicate the inferred rates of change in 

responses given for the item on the vertical axis with respect to change in mean score for the overall 

learning experience item, making the assumption that the calculated mean scores can be treated as 

interval scale measures of the subject of the survey items. Circled number values indicate the number of 

data points in the relevant quadrant of the plot. Image reproduced with permission from Barrie et al.61 
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Not only are Pearson correlations used in this technique, but the individual data points 

involved are also presumed to be interval scale variables, for each singular survey item: both 

are issues of contention in suggested practice with ordered categorical data, as discussed 

previously. The caption to this figure presented in the original paper included the statement: 

“A break in the regression line is evident at an overall score of 1.0, indicating that improvement 

in the overall laboratory experience no longer depends on resources once a certain standard is 

reached”. Such a statement inherently presumes that the mean scored response is linearly 

related to the variable underpinning that response. Conceivably, however, it may be the case 

that a much larger improvement is needed to shift from “good”(scored +1) to 

“excellent”(scored +2) than is required to shift from “average”(scored +0) to “good”(scored 

+1). In the figure above, the apparent lack of improvement could therefore simply be an 

artefact of the response scale used, rather than a genuine plateau in perception. This 

illustrates the way typical analyses of ASLE survey responses inherently assume an 

‘equidistant’ nature of the response categories, influencing the conclusions drawn from the 

data. 

The validity of treating the ASLE rating scale data in the usual manner is therefore unclear, and 

investigation needs to be conducted in order to establish the appropriateness or otherwise of 

these methods, which have been applied to a vast array of data spanning back over a decade. 

The reliability of past conclusions drawn from data to which these methods have been applied 

rests on the validity of treating ASLE survey rating scale item responses with this scoring 

methodology. More fundamental questions additionally exist, however, concerning the ability 

to validly measure experiment quality in the first place. 

1.2.2 Qualitative interpretations: what does ASLE data really reflect? 

The earliest, simplest concept of “valid” measurement is simply that the instrument used (in 

this case the ASLE survey) measures what it purports to measure.93 Since the statement of this 

simple definition, multiple types and perspectives of validity emerged. A number of these 

came to be commonly viewed as facets of “construct validity”; broadly defined as whether 

empirical relations between observed outcomes are consistent with theoretical relations 

within a nomological network.94 Others still argued the topic covered a broader range of ideas 

than this,95 such as the social and ethical consequences of test use.96 This expansion of the 

validity concept and the defining of various different types of validity continued to persist,97-100 

leading Shaw and Newton to recently conclude that agreement over the meaning of the term 

is unlikely, therefore recommending the term “validity” be abandoned.101  

Borsboom, Mellenbergh and van Heerden have attempted to consolidate and simplify this 

convoluted and expansive understanding of valid measurement by reducing it down to two 

essential criteria; a measure of an attribute is valid if and only if (a) the attribute exists and (b) 

variations in the attribute cause variation in the outcome.102 On this understanding, the 

concept of valid measurement involves both the mathematical techniques used to obtain 

numerical values from observed data, as well as truth of the presumed correspondence 

between those number values and the trait purported to be measured with those numbers. 

There must exist some attribute which may consistently be assigned a meaningful numerical 

value, which can be said to be a “measure” of that attribute. Further, changes in that 

measurable attribute, if it exists, must change the observed outcomes of surveys (or other 

measurement instruments) from which the researcher obtains the purported measures of that 

attribute.  
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In the case of the ASLE surveys’ Likert-type items, what the survey “purports to measure” is 

intimately tied to the surveys’ common uses. These surveys have, since their creation, been 

distributed and analysed with the intention to evaluate the quality of an experiment as 

experienced by students, with each different Likert-type item’s responses often taken to 

reflect student perspectives of different experiment qualities. Of note here is that it is the 

quality of the experiment that is inferred from survey responses, not the disposition of the 

student cohort performing the evaluation. The fact that variation in student dispositions 

towards positive response could in theory alter the responses obtained was recognised well by 

Southam et al,60 who stated: 

“There are limitations with this study, most obviously the convenience 

sample at a single institution using a self-report instrument. This brings 

forth issues of equivalence as data from different samples are compared, 

combined and inferences drawn.” 

What is being recognised here is the lack of sample independence in survey responses 

obtained. It is acknowledged here, explicitly, that responses obtained do not exclusively reflect 

properties of the experiment itself: measurement of experiment quality is confounded by 

student dispositions. This is potentially problematic, as conclusions drawn from ASLE survey 

data often use survey responses to gauge experiment quality in a more sample independent 

sense. For example, Read and Kable make the following statements about the 

“thermodynamics think-in” experiment, following evaluation using ASLE surveys50 (emphasis 

and added commentary is shown in bold): 

“Analysis of the data shows that students enjoy working on the practical, 

and report it [the practical] to be a beneficial learning experience that 

effectively develops their understanding of thermodynamic principles. The 

practical also fosters significant interest, and through a process of 

collaboration and cooperation aids the students in further developing their 

generic thinking skills.” 

“Clear evidence has been presented that this experiment fosters 

cooperative learning and teamwork, triggers and maintains student 

engagement and interest, and is perceived to be highly relevant.” 

It is clear here that survey data has been used to draw conclusions about the experiment itself 

as a tool of education. Further, there is an implied sense that this experiment, if run with other 

students, could be used to elicit similar educational benefits.  

In the case of the ASLE surveys, the attributes which must be shown to exist in order to satisfy 

Borsboom, Mellenbergh and van Heerden‘s first requirement of valid measurement are 

therefore the (measurable) experiment qualities targeted by each specific Likert-type item of 

the survey, as true for most students. Unless these attributes have a broadly student-

independent component, they cannot be said to be qualities of the experiment itself, but 

rather qualities of the student body selected to perform the evaluation. Establishing measure 

validity in this case therefore requires the demonstration that experiment quality can 

reasonably be said to exist in a student-independent and somewhat “objective” sense, to 

which a number value can consistently be ascribed. Scored ASLE responses need not reflect 

this “objective” experiment quality exclusively, but certainly must reflect this predominantly if 

mean scores are to be used as presented above. For scores to be treated as reflecting a 
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generalizable measure of experiment quality, there must exist a generalizable sense of 

experiment quality for scores to reflect. Further, factors specific to the student sample must 

not confound survey responses so extensively as to obscure the “objective” experiment quality 

beyond retrieval. 

A related issue is the presumed correspondence between a change in experiment quality and a 

change in observed survey response. For example, it is often presumed that student 

perception outcomes could be improved by making amendments to the design of the exercise 

evaluated. An experiment may be subjected to the ASELL review process, then may be revised 

and ideally improved based on the suggestions or comments made. This assumption that 

changing the experiment design may improve survey outcomes is reflective of Borsboom, 

Mellenbergh and van Heerden’s second requirement of valid measurement: that variation in 

the measured attribute must cause variation in the outcome. The “outcome” here is the 

(scored) set of ASLE survey responses received, whilst the relevant “attribute” is an attribute of 

the student learning experience, theoretically emerging from the exercise’s design. The 

theoretical connections between experimental design and the (measurable) attributes of the 

experiment targeted by the items of the survey are the nomological network discussed in the 

concept of “construct validity”; similarities and differences in observed survey outcomes must 

directly map to the predictions of these theoretical connections. Changing experiment design 

should in theory change the measured attributes, which should therefore change the observed 

outcomes. Failing this, recommended practice suggested by ASELL project research may not 

yield the benefits it claims. Unfortunately, a detailed theoretical understanding of the 

connection between experiment design and measured attributes of the student learning 

experience is not yet understood. For this reason, the ability to satisfy Borsboom, Mellenbergh 

and van Heerden’s second requirement of valid measurement is limited for the ASLE survey 

Likert-type item scores. It is not yet possible to confidently and precisely predict an expected 

change in survey outcomes, given a specific change in experiment design. Some crude, 

qualitative expectations may currently be possible; however, the experiments evaluated using 

ASLE surveys frequently differ in multiple respects, making expectations based on these crude 

understandings alone less clear and lacking in certainty. 

Strictly speaking, to validly claim interval scale measurement, (the measurement presumed in 

applying parametric methods to scored ordered categorical data) changes in observed scores 

should occur in fixed proportion to the magnitude of changes in the underlying trait they are 

claimed to reflect. For example, a change in score of magnitude +1 should reflect a fixed 

magnitude of change in the underlying trait; a progression from a “good” experiment to an 

“excellent” experiment should only yield the identical change in score as the progression from 

a “poor” experiment to an “average” experiment if those progressions are in fact of the 

identical magnitude. Verifying this would require a quantitative understanding of both the 

underlying “objective” experiment quality attributes themselves as well as their precise 

connection to the scored responses observed. Quantitative models of survey responses, able 

to make more specific and testable predictions, need to be formulated in order to probe these 

connections further. One technique of obtaining such quantitative models is the use of Rasch 

analysis. 
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1.3 Rasch analysis 

1.3.1 Measures as opposed to scores 

In the administration of tests and in the field of psychometrics, a stark distinction is made 

between “scores” and “measures”. A wealth of literature exists discussing “classical test 

theory”103, 104 and “latent trait theory”105 (often referred to as item response theory).106, 107 

Classical test theory is based upon the integer scoring techniques commonly applied to tests 

(in the form of adding “marks” to obtain a final score) and survey results (for example in the 

case of the ASLE surveys), whilst item response theory takes the observed outcome to be a 

result of some latent trait underpinning respondents’ propensity to provide various different 

responses. Whilst it has often been shown that little difference exists between the values 

obtained from either theory,108-112 ”scores” of classical test theory are viewed as having 

limitations that the “measures” of latent trait theory do not possess. The fact that scores 

theoretically cannot be treated as interval scale whilst measures can is one such limitation. 

Rasch measurement provides a means of avoiding the controversies of bridging the gap 

between observations in ordered categories and interval scale measurements113-116 and has 

been claimed to be the only mathematical formulation capable of converting observed counts 

into true “measures” as opposed to mere “scores”.113 The Rasch model has been recognised as 

useful in educational research because of this property116-119 and has been used for survey 

validation in this field previously.120-122 Based upon the works of Georg Rasch,123, 124 the model 

was initially developed for dichotomous responses (yes/no , correct/incorrect etc) allowing for 

the estimation of measurements associated with survey or test items independent of the 

persons sampled and similarly, person associated measures independent of the survey or test 

items posed.123-125 The model has since been expanded beyond dichotomous responses, 

though all types of Rasch model still express the probability of response in each available 

category as a function of some latent trait measure underpinning the response, usually broken 

up into a person specific term and an item specific term.115, 126 The Rasch model (both the 

original dichotomous response model and its extensions) may be derived directly from the 

need to maintain “specific objectivity” of each facet of the model (eg. person, survey or test 

item, etc).127, 128 On a test, for example, the measure of ability for one person relative to the 

measure of ability for another must be independent of the question asked. Similarly, the 

measure of difficulty for one question relative to that of another question must be 

independent of the person responding. The Rasch model has been demonstrated to be the 

only rating scale model capable of this measure objectivity, which is necessary for scientific 

comparisons.129 

Generally, parameters of the model include a measure for each separate person, each of which 

reflects that individual’s “objective” propensity to respond higher or lower on the rating scale, 

and an item parameter for each survey item which reflects the “objective” difficulty of 

responding in higher categories faced by persons responding to that item. Parameters defining 

the point of equal probability of responding in either of two adjacent categories are also 

included where the rating scale has more than two options. The clear advantage of this 

treatment of the response scale over the usual scoring methods is that response categories are 

no longer assumed to be equidistant. Rather, the category structure is estimated based on the 

observed data. Because of this, values obtained from Rasch modelling are not subject to the 

same controversies as scored responses when parametric statistics are applied to them.  



1.3  Introduction| Rasch analysis 17 

 

Rasch models may also be constructed in a variety of different ways, each reflecting a different 

conceptualised interaction between observed responses and underlying latent variables 

(discussed later in section 2.2). Rasch models therefore not only provide an alternate, more 

sophisticated means of quantitative analysis for the ASLE surveys, but additionally enable the 

exploration of more qualitative aspects of survey data interpretation. Crucially, an array of fit 

statistics may be used to test the fit of observed data to any given Rasch model, opening the 

possibility to explicitly test the construct validity of any model posed. This means Rasch 

measurement permits the ability to test whether “objective” measures associated with survey 

responders or items can reasonably be assigned in almost any manner suggested. 

1.3.2 The Rasch model as a tool of validation 

Drawing on the concept of an equation relating attribute measures to some substantive 

theory, as well as a measurement mechanism relating the attribute measures to observed 

outcomes,130 Stenner et al. advocate a similar view of validity to Borsboom, Mellenbergh and 

van Heerden in presenting the benefits of considering causal rather than merely descriptive 

Rasch models.131  That is, models where the observed responses are interpreted to be caused 

by the fact that person and item measures take the value that they do, as opposed to the 

measures merely being descriptive of general trends in the observed data. In justifying this 

interpretation, techniques have been implemented to demonstrate that item parameter 

values are a direct function of the features of the task at hand. That is, the measure is 

validated: changes in attributes of the task are shown to cause a change in the observed 

measures and outcomes obtained. Through experimentation, an equation may be determined 

which derives the value of the measure directly from the attribute. This is known as a 

“specification equation”.132 Because such an equation may be used to make quantitative 

predictions, accuracy of the equation can be explicitly tested using observed data, as is the 

case for all Rasch models. 

An example of the successful use of a specification equation is the derivation of text readability 

measures (termed “Lexiles”) computed directly from the text, which are able to predict 

student reading test scores.133-135 In this example, the (Rasch) item measures reflecting text 

readability are shown to be a mathematical function of elementary features of the text itself: 

the log mean sentence length and mean log of word frequencies. Because of this direct 

relationship between the text and the Rasch measures, Rasch measures are known to reflect 

the trait they are purported to reflect and are therefore, by definition, valid measures. 

Changing the text results in changing the Rasch measure by a known quantity, thus reading 

test scores may also be predicted to change by a quantifiable degree. This case exemplifies the 

power of developing a specification equation for a data set. 

Figure 8 illustrates the role of the specification equation and causal Rasch model as integral 

components of the theoretical construct connecting laboratory activity design and responses 

students provide on the ASLE surveys. The act of the researcher is to infer latent trait 

measures from observed data, then seek patterns in these measures to discern which features 

of laboratory activity design influence their values (and hence the observed responses). This is 

achieved by estimating latent trait measures through Rasch modelling (ensuring construct 

validity of those measures), then discerning how these measures vary given the experiment 

design via either controlled experimentation or observational studies. The specification 

equation and causal Rasch model then constitute the theorised connection between activity 

design and measurable experiment attribute, and between measurable experiment attribute 

and observed survey responses respectively.  
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Figure 8: Perspectives on the connection between laboratory activity design and observed 
student response data 

The requirements of measure validation for the ASLE surveys, that measures exist and are a 

function of the laboratory design, are inherently met if a specification equation and causal 

Rasch model are determined. Establishing this connection between observations and 

measures via the measurement mechanism (causal Rasch model), and developing a 

substantive theory of why the measures take on the values that they do (expressed in the 

specification equation) not only serves to validate the measurement techniques and 

interpretations, but also allows an in-depth, quantitative model of the measured attributes of 

interest, able to be used predictively and therefore able to be experimentally supported or 

refuted. A complete mathematical formulation connecting laboratory activity design and 

observed survey response such as this would allow the quantitative prediction of ASLE survey 

outcomes for any proposed laboratory activity design. This would not only be of practical use 

in designing or improving laboratory activities, but it would also allow scientific investigation of 

the way laboratory experience operates via the testing of predictions made from the current 

model. 
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1.4 Outline of this thesis 

1.4.1 Immediate aims and hypotheses 

The primary aim of this thesis is to investigate the validity of using ASLE survey Likert-type data 

to draw inferences regarding students’ perceived laboratory learning experience. In so doing, 

an additional aim is to establish and characterise how relevant features of experiment design 

influence perceptions of the laboratory learning experience from the student perspective. 

Pursuing these aims, the work presented in this thesis can be described as addressing three 

core hypotheses, each of which can be tested using Rasch measurement. 

Hypothesis 1: 

Conclusions drawn from the ASLE survey data using typical scoring techniques 

resemble conclusions drawn using sample independent, interval scale measures 

extracted from the same data. 

This hypothesis underpins a large quantity of work that has been performed using the ASLE 

surveys in the past, most notably the analyses which utilise parametric statistical techniques 

such as calculation of mean scores, standard deviations and correlations. As Rasch modelling 

provides the only means of converting ordered categorical counts into sample independent, 

interval scale measures, this hypothesis must be tested by contrasting Rasch measures for a 

specific experiment and survey question with their corresponding ASELL scores. This major 

theme will be addressed in multiple ways within this thesis.  

In the first instance, a typical score-based investigation into laboratory learning experience 

using the ASLE surveys will be presented. This study will then be revisited with Rasch modelling 

techniques, critically evaluating the validity of the score-based study conclusions. A more in 

depth analysis of the mathematical relationships between score and measures will also be 

presented. Rasch models embodying the usual presumptions underpinning ASLE survey data 

may be formulated, thereby estimating interval scale measures associated with the data, 

presuming those measures are valid. These measures may then be contrasted with their 

corresponding mean ASELL scores, evaluating the relationship between the two. Additionally, 

the distribution of scored responses expected for any given Rasch measure may be generated 

directly from Rasch model parameters, enabling an assessment of the appropriateness or 

otherwise of parametric statistical methods when applied to scored data. All of these 

techniques, collectively, test Hypothesis 1 from various perspectives. 

Hypothesis 2: 

Student independent contributions to the ASLE survey responses exist and are 

measurable. 

This hypothesis, as well as the next, is drawn directly from the requirements of measure 

validity. Even if scored ASLE responses resemble interval scale measures estimated via Rasch 

analysis, it is still presumed that the Rasch model is a valid description of the way the observed 

data operates. Given that the Rasch model is (as previously described in section 1.3.1) the only 

mathematical formulation capable of converting observed counts in a set of ordered 

categories into interval scale measures, the fit of the observed data to the Rasch model 

provides a means of assessing whether any valid interval scale measures of quality can be 

assigned to the surveyed experiments in the first place. Other means of testing Hypothesis 2 

also exist, and these may be employed concurrently with methods which also test the third 

hypothesis of these works. The presumption that ASLE data reflect properties of the 
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experiments evaluated and therefore properties independent of the students responding, 

which can reasonably be assigned a single number value, rests on these hypotheses. 

Hypothesis 3: 

Student independent measures obtained from ASLE survey data reflect qualities of the 

experiment evaluated. 

A great deal of flexibility in the construction of Rasch-type models is permissible, thereby 

allowing for most conceivable hypotheses concerning the connection between experiment 

design and student perception to be incorporated into Rasch models and evaluated. This not 

only means that a Rasch model which embodies the way student, survey question and 

experiment are presumed to interact may be tested, but so can other Rasch models reflecting 

different conceptualisations. Formulating different Rasch models for the observed data and 

calculating corresponding fit statistics for each therefore allows for the assessment of which 

model best explains the data observed. The best model may or may not contain student 

independent facet(s), thereby testing Hypothesis 2 above. The experiment specificity of any 

student independent measures identified in the best explanatory model determined may also 

support or refute the third hypothesis of this work.  

1.4.2 Long term goals 

Some Rasch models, such as the Linear Logistic Test Model (LLTM, detailed in later sections: 

see section 2.2.2) achieve direct mathematical links between experiment structure and likely 

student perception, thereby enabling student responses to be predicted quantitatively. These 

predictions can then be empirically contrasted with observation, leading to reformulation of 

the Rasch model such that it provides more accurate predictions. Utilising statistical 

techniques to compare various models for their efficacy as an explanation of the observed 

responses, it is conceivable that iterated re-formulation of Rasch models in this way could lead 

to the generation of a specification equation for the ASLE surveys. That is, an equation 

expressing the measures of quality for an experiment (as true for most students) as a direct 

mathematical function of the design of the experiment itself.  

Development of a specification equation would not only entirely validate the notion that 

measures obtained genuinely do reflect qualities of the experiment, but far more crucially 

would reveal why some experiments are perceived more or less positively than others. This 

would be invaluable to educators, as the specification equation could be exploited to structure 

laboratory exercises which produce the circumstances most likely to be appealing to most 

students. This has uses ranging from improving student engagement and potentially therefore 

improving knowledge retention in laboratory activities, through to improving student 

enrolment and retention in science courses. These objectives were primary goals of the ASELL 

project at its inception, and are potentially achievable through the use of Rasch modelling in 

the manner described.  

Investigations presented in this thesis therefore address the topic of connections between 

laboratory activity design and estimated Rasch measures, inherently also investigating the 

truth or falsity of Hypothesis 3 above. This is to be pursued firstly by investigating whether 

student independent Rasch measures may validly be interpreted as specific to the experiment 

conducted (as described above) and secondly, if possible, by identifying the components of 

experiment design which contribute to the value of those measures. This may be facilitated by 

formulating models such as the LLTM, provided those models serve as an adequate 



1.4  Introduction| Outline of this thesis 21 

 

explanatory model of the observations. By investigating connections between ASLE survey 

responses and components of experiment design quantitatively via the Rasch models, it is 

hoped that this work may lay the foundation for future investigations identifying and refining a 

specification equation for the ASLE survey responses.
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2.1 Data collection: surveying first year chemistry laboratory 

sessions 

2.1.1 Ethical approval 

Approval to gather ASLE survey data discussed throughout this thesis was granted by the 

University of Adelaide Human Research Ethics Committee on the 25th of July, 2012 (Approval 

number H-2012-097). Copies of the information presented to participants are available in the 

supporting information (see section 7.1). 

2.1.2 Student cohorts 

Data utilised in the analyses presented in this thesis originate from two distinct cohorts of first 

year undergraduate chemistry students at the University of Adelaide. Students enrolled in the 

courses Chemistry IA and Chemistry IB (run in semesters 1 and 2 respectively) are required to 

have attained prerequisite levels of achievement in high school chemistry, whereas students 

enrolled in the courses Foundations of Chemistry IA and Foundations of Chemistry IB (again in 

semester 1 and 2 respectively) are not. Typically, approximately 550 students are enrolled in 

Chemistry IA or B courses, whilst approximately 450 students enrol in the Foundations of 

Chemistry courses from a diverse range of backgrounds, though these numbers vary from year 

to year.  

Students enrolled in these courses were provided with the opportunity to complete the ASLE 

survey (see Table 1 in section 1.1.1) at the end of their laboratory sessions. Surveys were 

presented to students as optional, and in the early stages of data collection, anonymous. 

During latter stages of data collection, surveys provided students with the opportunity to 

supply their student identification number, assured that the number would never be used to 

directly identify them by name. In the case the student’s laboratory demonstrator was also an 

analyst of the survey data, student provision of an identification number was not made 

possible, and anonymity was ensured. All students who chose to complete the survey had the 

option of not providing their identification if they wished.  

2.1.3 Experiments surveyed 

Experiments were conducted by students during fortnightly laboratory sessions, in which they 

were allocated 3 hours to complete the experiment procedure and accompanying laboratory 

booklet questions for assessment. Online pre-laboratory questions were also required to be 

completed for each experiment prior to that experiment’s laboratory session.  

In the earlier years in which data used in this thesis were collected (prior to 2012), both the 

Chemistry IA/B and Foundations of Chemistry IA/B shared a number of experiments in 

common, with no alignment with lecture material and a randomised sequence of experiments 

during the semester. Students enrolled in these courses were randomly assigned practical 

groups, with each group conducting experiments in a different sequence during fortnightly 

laboratory sessions. Chemistry IA/B courses included six laboratory activities per semester, 

whilst Foundations of Chemistry courses included only five.  However, the first laboratory 

session in each semester for the Foundations of Chemistry courses was not a ‘wet’ lab session, 

leaving four practical laboratory experiments conducted each semester by the Foundations of 

Chemistry cohort. These four experiments were all experiments also conducted by the 

Chemistry IA/B students. The original list of experiments conducted during the earlier years of 
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data collection is given in Table 2, including descriptions of the laboratory activities, semester 

in which they were conducted and whether students worked in pairs or individually. 

Table 2: Initial list of laboratory experiments conducted by students 

Experiment title Description Conducted by 

Biological buffers 
(Experiment 1) 

Students generate titration curves with the aid of 
technology to graphically investigate the pKa and effective 
range of buffer solutions, including histidine. 

Both cohorts, 
semester 1 

pairs 

Thermochemistry 
(Experiment 2) 

Students conduct simple calorimetry experiments and 
perform the appropriate calculations in order to calculate 
the enthalpy of formation of ammonium chloride using 
Hess’ law. 

Chemistry IA 
students only 

pairs 

Vapour pressure 
(Experiment 3) 

Students measure the vapour pressure of a number of 
mixtures of cyclohexane and ethanol at a range of 
different mole fractions with the aid of technology. The 
results, in conjunction with the application of Raoult’s law 
and Dalton’s law, are used to show the mixture is non-
ideal and hence that the two substances have differing 
intermolecular forces. 

Chemistry IA 
students only 

pairs 

Melting points and 
recrystallization 
(Experiment 4) 

Acetanilide is recrystallised from a crude sample, and the 
melting points of both the crude and purified samples are 
obtained and used to briefly assess purity. 

Both cohorts, 
semester 2 

individuals 

Quantitative 
techniques 
(Experiment 5) 

Students test the precision and accuracy of a volumetric 
pipette by using the measured mass of water pipetted. 
Students then determine the concentration of a sulfuric 
acid solution by titration against sodium hydroxide, 
including associated error calculations. 

Both cohorts, 
semester 1 

individuals 

Reaction kinetics 
(Experiment 6) 

Students react iodide and persulfate ions a number of 
times, varying reactant concentrations, temperature and 
the presence of a catalyst. This is used to draw inferences 
about the rate of the reaction, including determination of 
the rate law. The experimentally derived rate law is used 
to support or refute proposed reaction mechanisms. 

Both cohorts, 
semester 2 

pairs 

Liquid-liquid 
extraction and TLC 
(Experiment 8) 

Students perform an acid-base liquid-liquid extraction in 
order to separate an acidic compound (salicylic acid) and a 
neutral compound (3-nitroacetophenone). The results are 
then analysed by thin-layer chromatography (TLC) 

Both cohorts, 
semester 2 

individuals 

Synthesis of aspirin 
(Experiment 9) 

Aspirin is synthesised from salicylic acid and acetic 
anhydride. The product is then recrystallised and analysed 
against pure aspirin and pure salicylic acid samples by 
Thin-layer chromatography to test for purity. 

Chemistry IB 
students only 

individuals 



2.1  General methods| Data collection: surveying first year chemistry laboratory sessions 25 

 

Experiment title Description Conducted by 

Coloured complexes 
of iron 
(Experiment 10) 

Complexation between iron(III) and the acetyl acetonate 
(acac) bidentate ligand is used as an example to 
demonstrate equilibrium and Le Chatalier’s principle. The 
addition of sodium acetate is shown to shift equilibrium in 
favour of the formation of the tris acac complex, 
demonstrated using pH measurements as well as visual 
inspection of solutions. Solubility of the different iron 
complexes in polar or non-polar solvents is used as a tool 
to observe the equilibrium shift visually.  

Both cohorts, 
semester 1 

pairs 

Analysis of spinach 
extracts 
(Experiment 11) 

Liquid-liquid extraction is used to isolate coloured organic 
compounds from spinach leaves, with the resulting green 
solution analysed by thin-layer chromatography. 

Chemistry IB 
students only 

individuals 

Ion exchange 
chromatography 
(Experiment 12) 

Iron complexes are prepared in the presence of three 
different conditions: dilute hydrochloric acid, 
concentrated hydrochloric acid and concentrated 
hydrochloric acid with added heat. Students perform ion 
exchange chromatography on the coloured products, 
rationalising the differences in observed results 
depending on the reaction conditions used. 

Both cohorts, 
semester 1 

pairs 

Determination of 
copper(II) ion 
concentration 
(Experiment 13) 

Students use a standard solution of copper sulphate and 
perform serial dilutions to obtain a variety of different 
concentrations, each of which has its absorbance 
measured at a selected wavelength of light. With the aid 
of technology, students generate a calibration plot with 
these measurements, then use their plot to determine the 
concentration of a solution from its absorbance by 
applying Beer’s law. Students also briefly observe the 
relationship between wavelength and colour by adjusting 
a bench top spectrophotometer and observing the colour 
of a laser beam. 

Both cohorts, 
semester 1 

pairs 

At the beginning of 2012, the Foundations of Chemistry courses were modified. Practicals 

(experiments) were no longer randomised, but conducted in the same sequence for all 

students in an order designed to align with lecture content as closely as feasible. Some specific 

experiments were modified to suit the Foundations of Chemistry cohort in small ways, 

including small alterations to experimental procedures, questions asked in the answer booklet 

and information provided in the instruction document for the experiment. The specific 

experiments conducted were also changed in some instances, with the Foundations cohort 

being presented with experiments they had not been in previous years. Three new 

experiments were also devised explicitly for the Foundations of Chemistry cohort. The 

laboratory components of the Chemistry IA/B courses remained as they had been in previous 

years. 

A list of experiments conducted by the Foundations of Chemistry cohort from 2012 onwards is 

provided in Table 3, all of which had small alterations to the introductory material provided in 

the laboratory instruction manual for the experiment. Some small further revisions were also 

made to some of these experiments after 2012, and these changes are also noted.  The order 
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in which these experiments were presented also changed from one year to the next in a small 

number of cases. Experiments are listed in their initial 2012 order in Table 3, with later 

amendments noted.  

Table 3: Foundations of Chemistry cohort experiments from 2012 onwards 

Experiment title Description Notes 

 Introductory 
experiment 

Students complete a number of questions 
involving basic chemistry concepts such as 
atomic structure and simple calculations. 
Initially not a ‘wet’ lab session. 

Conducted individually. 

Later revised (2013) to include 
a video of some possible 
laboratory observations 
students were asked to 
comment on. 
A second, later revision (2014) 
included the pipetting section 
previously a part of 
“Quantitative techniques”, 
and no longer this 
observations video. 

Quantitative 
techniques 

Initially equal to the experiment of the same 
title described previously, however students 
were not required to perform error 
calculations. 

Conducted individually. 

Later revised (2014) not to 
include the section related to 
pipetting. 

Presented second in semester 
1 during 2012 and 13, 
presented third in 2014. 

Determination of 
vitamin C 
concentration 

Students determine the concentration of 
vitamin C in a commercial brand of apple juice 
by redox titration against iodine solution. 
Students must standardise the iodine solution 
first by titration against a known solution of 
vitamin C they make themselves, then use the 
iodine solution of now known concentration to 
determine the concentration of vitamin C in 
the commercial juice by titration. 

Conducted individually. 

Presented third in semester 1 
during 2012 and 13, presented 
fourth in 2014. 

Equilibrium and Le 
Chatelier’s principle 

Equivalent to the experiment previously 
labelled “Coloured complexes of iron”, with 
some amendments to the question booklet. 

Conducted in pairs. 

Presented fourth in semester 
1 during 2012, presented fifth 
in 2013 onwards. 

Visible absorption 
spectrophotometry 

Equivalent to the experiment previously titled 
“Determination of copper(II) ion 
concentration”, with some modifications. 
Students record absorbance values from 
communal machines rather than each working 
pair having access to their own, and construct 
their calibration curve on paper rather than 
using technology. Students also do not observe 
the relation between wavelength and colour. 

Conducted in pairs. 

Presented fifth in semester 1 
during 2012, presented fourth 
in 2013, presented second in 
2014. 
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Experiment title Description Notes 

Aromachemistry Students are provided with a number of 
sample vials containing unknown compounds, 
and are asked to identify which vials 
correspond to which molecules, having been 
told the list of compounds and their aromas. 
Students then answer questions regarding the 
systematic nomenclature of organic molecules 
and regarding basic reactions such as oxidation 
of organic compounds.  

New as of 2012. First 
experiment in semester 2. 

Conducted individually. 

 

Analysis of spinach 
extracts 

Equivalent to the experiment previously 
described under the same title, with the 
exception that students work in pairs rather 
than individually. 

Conducted in pairs. 

Thermochemistry Equivalent to the experiment previously 
described under the same title, with the 
exception that students are not asked one final 
question about entropy in the answer booklet. 

Conducted in pairs. 

Metal activity series Students place a number of solid metals into a 
range of solutions containing metal ions, 
observing which cases result in metal 
displacement reactions. From these results, a 
metal activity series is derived. Students 
perform a similar process using halogen waters 
and halide solutions to derive an activity series 
for halogens. 

New as of 2012.  

Conducted in pairs. 

Reaction kinetics Equivalent to the experiment previously 
described under the same title. 

Conducted in pairs. 

The order and phrasing of 
some questions in this 
experiment’s answer booklet 
were later revised for 2013 
onwards. 
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2.2 Rasch model formulations 

2.2.1 Unidimensional Rasch models 

A substantial amount of research presented in this thesis involves fitting data to various forms 

of the Rasch model. A generalised Rasch-type partial credit model may be expressed as the 

following: 

 
𝑙𝑛 [

𝑃(𝑋 = 𝑥𝑘)

𝑃(𝑋 = 𝑥𝑘−1)
] = 𝜑 − 𝜏𝑞,𝑘 1 

Where P(X=xk) denotes the probability that the observed response X, is equal to the kth 

category of the rating scale xk, the parameter  is the latent trait measure and q,k is the Rasch-

Andrich threshold between the kth category and the (k-1)th category of the rating scale, for the 

qth scale group (a scale group being a set of items all with the same rating scale structure). The 

latent trait measure   thus determines the probability of responding in each category of the 

rating scale. The  parameters would be absent from a model with only two possible responses 

for each item. 

The above expression has collapsed the latent trait measure  into a single term. However, 

Rasch models generally express this term as a difference between respondent “ability”  and 

item “difficulty”  ; the person and item specific measures previously mentioned (see section 

1.3.1). This produces a two-facet partial credit model (if using a response scale of more than 

two options): 

 
𝑙𝑛 [

𝑃𝑛,𝑖(𝑋 = 𝑥𝑘)

𝑃𝑛,𝑖(𝑋 = 𝑥𝑘−1)
] = 𝑛 − 𝑖 − 𝜏𝑞,𝑘 2 

Where the subscripts n and i identify the variables as being specific to the nth respondent or ith 

item respectively, and the ith item is part of the qth scale group. The partial credit model by 

Masters136 would be one in which all items have their own scale group, whilst the Andrich 

rating scale model137, 138 would be one in which all items are within the same scale group. 

Splitting the latent trait parameter into only person and item terms is not the only possibility, 

however. Many facet Rasch models113, 139 utilise multiple different terms, with each term 

specific to a different “facet”. The multiple different facets interact to generate the latent trait 

measure, which interacts with the rating scale (or partial credit scale) to predict the probability 

of observing each category of response. A typical example is a scenario in which students are 

graded by multiple different judges, for a number of tasks.140 Student, judge and task would 

each be assigned their own facet, splitting the latent trait measure   from Equation 1 into 

three separate terms: 

 𝜑 = 𝑆𝑛 − 𝐽𝑚 − 𝑇𝑗 3 

Where Sn is the “ability” of the nth student, Jm is the “harshness” of the mth judge, and Tj is the 

“difficulty” of the jth task. The sum of the effect of these measures then interacts with the 

rating scale threshold parameters to determine the probability that the nth student, rated by 

the mth judge on the jth task will result in an observation in each of the rating scale categories. 



2.2  General methods| Rasch model formulations 29 

 

The way in which the latent trait parameter   is split helps define the theoretical construct 

underpinning the observed responses by establishing which variables contribute to the final 

resultant observation in the rating scale. The latent trait underpinning responses to the ASELL 

surveys, for example, could be conceptualised in a number of ways. By changing the different 

facets included in the Rasch model used to explain the observed data, the factors theorised to 

be contributing to observed responses are correspondingly changed and thus so is the 

theorised mathematical mechanism connecting latent trait measures to observed responses. 

2.2.2 Multidimensional Rasch models 

Some types of Rasch model are able to express the measures described previously as a 

function of smaller, elementary components. That is, rather than expressing survey responses 

as a function of a singular latent trait varying along a singular dimension, the model may be 

reformulated such that multiple different measurable dimensions contribute to responses. 

Person measures, for example, may be explained as a linear combination of smaller variables. 

The Multidimensional Partial Credit Model (MPCM)141 expresses each person measure  as a 

linear combination of M different person attributes. Here, a multitude of person attributes 

apply differently to different survey items/circumstances. This reflects the notion that students 

draw on different predispositions in response to different questions (and in different 

circumstances).  

 
𝛽𝑖,𝑛 = ∑ 𝑤𝑖,𝑚𝜃𝑛,𝑚

𝑀

𝑚=1

 4 

In the expression above, wi,m serves as a weighting factor, scaling the degree of contribution of 

the mth student attribute to the response of the question/circumstance assigned the ith  value. 

The values of n,m reflect the relative magnitude of the nth student’s mth attribute, when 

applicable. This model may be of use in reflecting the fact that a student may, for example, 

have a different tendency to provide positive response n,1 in the case an experiment contains 

mathematics, compared with their tendency to provide positive response n,2 in cases the 

experiment does not. 

Another example is the Linear Logistic Test Model (LLTM),142-144 where the item parameters are 

broken down in the following way: 

 

𝛿𝑖 = ∑𝑞𝑖,𝑗𝜂𝑗

𝐽

𝑗=1

 5 

Here, the  value is expressed as a linear combination of J many smaller components. Each 

component has a parameter  reflecting its relative contribution to  if applicable, whilst the q 

values act as scalar ‘weighting’ factors reflecting the degree to which each component 

contributes to the measure for the ith  value.  

A very simple example of the LLTM, where  values correspond to a measure of quality of the 

ith experiment (with respect to some specific ASLE survey question for simplicity of the 

example), would be a case where qj takes the value 1 if the jth component is relevant to the 

quality of the ith experiment, and 0 otherwise. Component j could, for example, concern 

mathematical content. If the ith experiment has mathematical content, qij would take the value 

1, and so there would be an additional contribution of magnitude j to the experiment quality 
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(i) because it contains mathematical content. A more nuanced example could be where the q 

values take different values reflecting the relative amount of mathematical content in the 

experiment, with experiment quality changing linearly as degree of mathematical content 

changes. Examples like this demonstrate this model’s capability to clearly link the experiment 

quality measures () directly to the design of the experiment.  

The difficulty of applying this model lies in the identification of the different components 

which contribute to the measure of the  facet and the assignment of the various q values 

weighting their contribution. Developing a matrix of j×i different q values (weighting j 

components linearly combining to explain i different  measures) is not an issue unique to the 

LLTM. Establishment of “Q-matrices” as they are called has historically been relevant in the 

categorisation of test questions and the study of student misconceptions.145 These matrices 

can in fact be estimated from observed data through generation and testing of random Q-

matrices until an optimal Q-matrix is found,146 however this procedure is computationally 

demanding. Steps for developing a Q-matrix commonly involve the following:147, 148  

1. Identification of a set of components contributing to the response, usually informed by 

experts in the relevant field 

2. Coding each item based on which components contribute to it and which do not. This 

develops the initial Q-matrix 

3. Analyse the data with reference to the Q-matrix (for example using cognitive 

diagnostic models149 or the LLTM) 

4. Modify the initial Q-matrix based on observed output statistics associated with the 

modelled parameters, as well as theory 

5. Repeat steps 3 and 4 until an acceptable Q-matrix is determined 

However, for the ASLE surveys, this approach would require prior knowledge regarding the 

features of a positive laboratory experience, and the degree to which they contribute to each 

of the ASLE survey question topics. A large part of the ASELL project’s purpose is to determine 

these contributing factors in the first place, and therefore any expert suggestion of likely 

contributing factors to include in the Q-matrix may be somewhat speculative in nature. A 

technique is needed to identify the factors of a positive laboratory experience and their 

relative contribution to each item of the ASLE survey before a meaningful Q-matrix can be 

constructed. 

Both of these variations of the Rasch model: the decomposition of both person measures and 

item measures into linear combinations of many attributes or components respectively, are 

incorporated into the Multidimensional Random Coefficients Multinomial Logit Model 

(MRCMLM),150 also known as the ConQuest model (implemented in the ConQuest Rasch 

measurement software).151 As such, this model represents a general form of a large family of 

Rasch models; all models mentioned thus far are in fact specific cases of this general model, 

achievable by imposing various constraints on the MRCMLM.152 The notation below expresses 

the parameters using the dot product of two vectors as opposed to summation notation, and 

expresses the model at the individual category probability level as opposed to the common 

log-odds form used thus far. 

 
𝑃(𝑋 = 𝑥𝑘) =

exp(𝑤⃗⃗ 𝑖,𝑘 ⋅ 𝜃 − 𝑞 𝑖,𝑘 ⋅ 𝜂 )

∑ exp(𝑤⃗⃗ 𝑖,𝑘 ⋅ 𝜃 − 𝑞 𝑖,𝑘 ⋅ 𝜂 )
𝐾𝑖
𝑘=1

 6 
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Here, the  vector contains the M many different student attributes which sum linearly to the 

student measure (previously ), whilst the w vector contains the scalar weighting factors which 

apply to each respective  value for a specific survey item/circumstance (indexed by i ). 

Similarly, the  vector contains the relative contribution of the J many different components of 

experiment quality which sum linearly to provide the experiment quality measure (previously 

), whilst the vector q specifies the weightings applied to each of these components 

respectively, depending on the survey item/circumstance (again, indexed by i ).  

A notable additional feature of this model is that it allows for variation in the weighting of the 

 and  parameters depending on which category of response is being considered, indicated 

by the subscript k next to the w and q vectors (where Ki is the number of response categories 

possible for the ith item). The rating scale category specificity of the q values incorporates the 

rating scale category structure in this model, achieved using a series of k parameters in 

previously described Rasch models. The rating scale category specificity of both the w and q 

vectors is also of great use in modelling tests. For example, person trait 1 may be far more 

significant a contributor to obtaining the second mark of a question as compared to the first, 

whilst person trait 2 may contribute equally to both. This could be incorporated into the 

Rasch model by changing the value of w for different marks in the same question; 

progressively higher marks achieved being directly analogous to progressively higher scored 

response categories. Similar cases could be conceived for the different components 

contributing to the difficulty of those items ().  

These nuances, however, can reasonably be presumed not to contribute to the ASLE survey 

responses. The main purpose of introducing the existence of the MRCMLM here is that it 

serves as the general model of which a wide array of diverse Rasch models may be considered 

specific cases. It justifies the simultaneous decomposition of both the person measures and 

experiment quality measures of the ASLE surveys into several component parts or facets, some 

of which may take on different (or equivalent) values based on complex considerations. Rules 

defining when different facets apply and whether they take different values can be explained 

as different formulations of the matrices of w and q vectors in the MRCMLM. 
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2.3 Data treatment: generation of Rasch models 

2.3.1 Rasch measurement software 

Studies presented in this thesis make use of two programs designed specifically for Rasch 

measurement. The Winsteps program153 is designed exclusively for two-facet Rasch models, 

akin to those described by Equation 2. It provides a comprehensive set of associated statistics 

with the model generated, including bias analyses and variance decomposition. The Facets 

program154 is capable of many-facet Rasch measurement (see section 2.2.1) and therefore able 

to model a much broader array of conceptualisations of the ASLE data than the Winsteps 

program. Facets is also capable of generating accurate measure estimations for other models 

such as the Linear Logistic Test Model (section 2.2.2, Equation 5) by carefully defining and 

structuring the facets included.155 The ConQuest program151, 156 often used for these models 

was therefore not required, though may prove useful for future extensions to the work 

presented in this thesis. 

The Winsteps and Facets programs both converge to optimised measure estimates in two 

phases. The first phase, PROX, obtains an initial rough estimate by assuming normally 

distributed measures.157, 158 These estimates are then used as the initial values for joint 

maximum likelihood estimation (JMLE), which produces measures for each facet ‘independent’ 

of the other facets in the analysis.125 

2.3.2 Confirmatory and exploratory applications: treatment of misfit 

Whilst Rasch models are often considered a specific type of item response theory model, the 

conceptualisation of the relationship between data and theory differs substantially between 

item response theory and Rasch theory.159 In contrast to item response theory’s emphasis on 

structuring models which fit the data, Rasch modelling typically analyses data in the context of 

a pre-specified model (a Rasch model), assessing the fit of the data to the model as opposed to 

the reverse.160 The reason for this is intimately tied to the question of validity: purported 

measures must be verified to fulfil the relevant criteria of appropriately being labelled a 

measure of a trait. Given that the Rasch model is the only mathematical formulation capable 

of converting observed counts into true “measures” as previously discussed (see section 1.3.1), 

misfit to the Rasch model is therefore interpreted as evidence of poor construct validity as 

opposed to inaccurate formulation of the mathematical model itself.161, 162 

Consequently, response patterns exhibiting poor agreement between observation and Rasch 

model predictions may be removed from consideration as a matter of routine practice in Rasch 

measurement, as the inclusion of “misfitting” responses may compromise the measurement 

properties of the scale generated and perturb the estimated category structure of the 

instrument.162  In the context of ASLE survey analysis, misfitting students are essentially 

interpreted as “donkey votes”: those which do not follow a pattern which makes sense in light 

of the way most others respond to the array of experiments surveyed, given the Rasch model. 

This may occur because the student treats the response scale significantly differently to other 

students, views the set of experiments significantly unlike the way the other students do, or 

possibly even because their responses reflect nothing to do with the experiment at all. Once 

these misfitting students are removed, the results reflect the best estimates of the category 

structure and experiment measures that appear to be the case for most students. It is, 

however, important to note the number of misfitting students who do not adhere to this 

resulting model. Item measures in the Rasch model may also misfit, and in this case the 
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interpretation would be that the item cannot be assigned a true measure that appears to be 

reflective of any trend consistent for most students responding, in the context of the Rasch 

model utilised. Broadly speaking, poor fit in Rasch measurement implies invalidity of the 

measure construct: the values purported to be measures appear not to provide a true 

‘measure’ of some consistently evident attribute. 

Because of these considerations, Rasch analysis is typically confirmatory in nature: a specific 

Rasch model is presumed to be the correct expression of the measurement construct, in the 

case the attributes in question are measurable, and the fit statistics of the model generated 

are used to confirm this presumption. This does not, however, preclude studies which aim to 

determine which Rasch model is most appropriate for modelling the data. Use of the LLTM, 

MPCM and MDRCMLM mentioned previously (section 2.2.2) are often justified by statistically 

comparing these models to much simpler analogous Rasch models which do not model the 

measures obtained as linear combinations of multiple elementary variables. The initial 

descriptive Rasch model is contrasted with the more parsimonious model (such as the LLTM) 

to ensure that the data still fit the model to a comparative degree despite the decomposition 

of the person or item measures into smaller component parts.152, 163 Section 2.5.4 describes 

the statistical techniques often used for these comparisons. 

Comparative studies like those mentioned above are examples of cases where different 

formulations of the Rasch model are tested for their efficacy of explaining the observed data, 

despite the usual confirmatory nature of Rasch techniques. In cases such as these, the removal 

of misfitting observations would be in error. Removal of misfitting students during a study 

explicitly designed to contrast the fit of two alternate models would introduce bias into the 

comparative test, in favour of the model for which misfits had been removed. For this reason, 

misfitting data points were only removed from consideration in studies presented in this thesis 

in the cases where the objective was to determine the best estimate of the measurement 

construct, under the presumption that a particular model or interpretation is known to be 

appropriate and valid. Studies described where alternate models were compared did not 

remove misfitting data points. 

2.3.3 Measurement construct issues: extreme and disconnected responses 

It is feasible that all observed data points relevant to the estimation of a given measure may lie 

in the extreme positive or extreme negative response category. In cases such as this, the latent 

trait measure which gives rise to the observed responses cannot be precisely measured, as an 

infinite number of values beyond a certain point would all predict the same extreme set of 

observations. Assigning definite measures in these cases is therefore problematic164 and as 

such, persons, items or other facet elements for which all observed data points are at the 

same extreme do not contribute to the measure estimation procedure and do not contribute 

to the model’s various fit statistics. For this reason, the removal of extreme persons or items 

from consideration is common in the analyses discussed in this thesis. 

All measurements output from Rasch model estimation are ideally within one frame of 

reference, and can be understood as being in a definite location on the scale relative to the 

other measures. This ideal, however, is not always realised. The possibility exists for different 

subsets of the observed data to be entirely disconnected165 from one another. A simple 

example may be a case where one group of students (group A) provides survey responses for 

items 1 to 5, whereas an entirely different set of students (group B) provides responses only 

for items 6 to 10. In this case, measures for items 1 to 5 would not be directly comparable to 
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measures for items 6 to 10, as nowhere in the analysis does there exist a student who 

provided responses in both subsets of the data, which would otherwise enable the measures 

for these items to be assigned a numerical value relative to one another. Relative location of 

the measures on the scale is only assured within each of the two isolated subsets of data 

(group A and items 1 to 5, or group B and items 6 to 10). Scenarios akin to this may exist purely 

as a result of unfortunate patterns in sampling, or may exist as an artefact of the way various 

facets of the Rasch model are defined. Because measures are not comparable across subsets, 

data points appearing within small, isolated subsets separate from the connected bulk are on 

occasion (where stated) removed from consideration in the analyses described here. 

In the event isolated subsets of data need to be made comparable, techniques are available. 

“Equating” techniques,166, 167 as they are known, have the goal of placing the previously 

isolated measurement subsets into the same reference frame. Often this necessitates 

“anchoring” some measures to have specific values reasonably selected by the researcher, 

though this often comes at the cost of making an assumption. For example, two isolated 

subsets may be equated by presuming some items to have equivalent measures in the two 

different subsets, or it may be presumed that the distribution of student measures in each 

subset has the same centre (requiring both student measure subsets to be “group anchored” 

at the same value). Alternately, data sets may be ensured to be within the same reference 

frame for measurement if they share common persons responding, items the respondents are 

posed with, or common elements of another facet. 
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2.4 Data analysis: general statistical procedures 

2.4.1 Statistical testing and family-wise error 

Typically, statistical tests are conducted by reporting probability (p) values of the observed 

data being sampled under the presumed truth of some “null hypothesis”. Individual statistical 

tests are deemed to refute the null hypothesis at p<, where the value of  reflects the 

probability of a type I error: the incorrect rejection of a true null hypothesis.  

An important issue which arises when multiple different hypothesis tests are conducted is the 

problem of “multiple comparisons”. In the case where multiple statistical tests are conducted 

on the same data set, the chances of incorrectly rejecting at least one true null hypothesis are 

raised, purely by virtue of the fact many tests are conducted. In general, if k many statistical 

tests are conducted, each deeming significant results at significance level , then the 

probability of at least one type I error occurring, also known as the “family wise error rate” is 

given by: 

 𝛼̅ = 1 − (1 − 𝛼)𝑘 7 

This implies that, for example, if fourteen statistical tests are used to detect difference in 

responses to any one of fourteen Likert-type items of the ASLE survey between two different 

evaluated experiments, the probability of inferring at least one significant difference at p<0.05, 

in the case the two experiments are in truth equal, is as high as 51%. This is one reason why 

the “shotgun approach” of testing for any difference between each singular Likert-type item 

individually when contrasting two different survey evaluations is heavily criticised.35, 36 

A way of controlling for this highly undesirable effect is the application of the Bonferroni 

correction.168 The Bonferroni correction operates by reducing the selected value of  simply 

and conveniently in such a way as to ensure the family wise error rate is at least as low as 

desired by the analyst. For a specified “family” of k hypotheses, the Bonferroni correction 

recommends deeming significant difference at /k, where  here is the significance criterion 

which would ordinarily be applied were only a single test being conducted. As ̅ is always less 

than or equal to /k, this ensures the family wise error rate is sufficiently small, and is in fact 

conservative methodology. This technique is applied in numerous cases, by necessity, in this 

thesis. 

2.4.2 The normal distribution assumption 

A number of statistical procedures, namely “parametric” methods, require data to follow a 

normal distribution. That is, the data are distributed as follows: 

 
𝑝(𝑥) =

1

𝜎𝑥√2𝜋
exp⁡(

−(𝑥 − 𝜇𝑥)2

2𝜎𝑥
2 ) 8 

Where p(x) yields the probability density function of the variable of interest x, distributed with 

mean value  (also known as the “expected value”) and standard deviation . That is, given 

possible values of x are normally distributed, Equation 8 yields the probability that an 

observation randomly sampled from the population of x values will yield that specified value of 

x. Similarly, the integral of the function from - to some specified x value gives the probability 

of observing that specific value of x or less (a one-sided test). This can be used to evaluate the 
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probability that the observed value of x will lie between or outside of specified values (a two-

sided test), as well as “confidence intervals” defining the range at which x is likely to be 

observed with a specified level of probability. A more convenient, equivalent notation is to 

simply state x  𝒩(x , x
2),where x

2 (the square of the standard deviation), is often called the 

variance.  

The value x, termed the population mean, reflects the central location of the normal 

distribution. The mean is simply the average of all possible x values weighted by their 

probability density, and may be estimated from a finite sample of n observations by obtaining 

the sample mean, labelled 𝑥̅, given in Equation 9.  

 
𝜇𝑥 = ∑𝑥 𝑝(𝑥) ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡≅ ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 𝑥̅ =

1

𝑛
∑𝑥𝑖

𝑛

𝑖=1

 9 

The value x, termed the standard deviation, gives a measure of the spread of the distribution 

about the mean value, equal to the root-mean square difference between the mean and each 

possible x value, weighted by the probability density. This value may be estimated from a finite 

number of observations n to yield the sample standard deviation, labelled sx: 

 

𝜎𝑥 = √∑𝑝(𝑥)(𝑥 − 𝜇)2 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡≅ ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 𝑠𝑥 = √
∑ (𝑥𝑖 − 𝑥̅)2𝑛

𝑖=1

𝑛 − 1
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One reason the normal distribution is assumed by a number of comparative statistical tests is 

due to the distribution of sample mean values expected to be achieved from repeated 

experiments. This relationship is expressed by the central limit theorem,169 which roughly 

states that as the sample size n of each of the individual experiments increases (in which n 

many observations of the variable of interest x are made), the distribution of the sample 

means (𝑥̅ , estimated from each of the repeated experiments) approaches a normal 

distribution 𝒩(x , x
2/n). That is, a normal distribution centred about the population mean of 

the observed variable x, with standard deviation in the estimated sample means of x/n, 

known as the “standard error” (SE) in the mean value of x. 

 𝑥̅⁡~⁡𝒩(𝜇𝑥̅ ⁡, 𝑆𝐸(𝑥)2)⁡⁡⁡⁡⁡⁡⁡; ⁡⁡⁡⁡⁡𝜇𝑥̅ = 𝜇𝑥 ⁡⁡⁡⁡⁡,⁡⁡⁡⁡⁡𝑆𝐸(𝑥̅) =
𝜎𝑥

√𝑛
 11 

 This is true regardless of whether the distribution of the sampled variable x is normal. 

However if x is not normally distributed, larger values of n are required before the distribution 

of expected mean estimates is sufficiently normal. 

Measures of skewness and kurtosis may be used to quantify departure from a normal 

distribution, with skewness roughly expressing a difference between the mean value and the 

centre of the distribution (the median)170 and kurtosis roughly expressing non-normal 

proportions between the centre and tails of the distribution.171 Equations commonly used for 

calculating skewness (1) and excess kurtosis (2), both of which are zero for the normal 

distribution, are given by the following:  



2.4  General methods| Data analysis: general statistical procedures 37 

 

 

𝛾1 = (

1
𝑛

∑ (𝑥𝑖 − 𝜇𝑥)
3𝑛

𝑖=1

𝜎𝑥
3

) 12 

 

𝛾2 = (

1
𝑛

∑ (𝑥𝑖 − 𝜇𝑥)
4𝑛

𝑖=1

𝜎𝑥
4

) − 3 13 

Skewness may be used to calculate the sample size required for expected sample means to be 

sufficiently normally distributed. Cochran’s rough guideline172 of 25×skewness and Boos and 

Hughes-Oliver’s173 suggestion of (5.66skewness)2 for a two-sided test may be used to justify 

common rules of thumb that sample sizes greater than 25 – 30 observations are usually 

sufficient for moderately skewed or unskewed data (presuming the magnitude of skewness is 

1 or less). Meeting this sufficient sample size implies the distribution of expected sample 

means obtained from repeated experimentation is approximately normal, and therefore 

“confidence intervals” of the true population mean’s likely location may be estimated based 

on the sample mean and standard deviation estimates. Kurtosis and skewness are both 

individually used to assess departure from the normal distribution here, in conjunction with 

their standard error values (used as described in the next section, 2.4.3). 

Three main statistical tests are implemented here to test for normally distributed data; the 

Kolmogorov-Smirnov test,174-176 the Shapiro-Wilk test177 and Rasch measurement based chi 

squared tests output by Rasch measurement software for each facet. All three of these 

methods test the null hypothesis that the values or measures observed or estimated are 

sampled from a normal distribution. Probability (p) values reported correspond to the 

probability that this is true, given the observed values. Visual techniques for the assessment of 

whether data appear normally distributed also include the use of Q-Q plots,178 which should 

appear as a straight line in the case of normally distributed data. With the exception of Rasch-

based chi squared tests, the assessments of normality mentioned here are briefly and 

effectively explained by Ghasemi and Zahediasl.179 Of note, the Shapiro-Wilk test is 

recommended as being more powerful than the Kolmogorov-Smirnov test, both of which have 

low power at small sample sizes.180 Conversely, as with most statistical tests, larger sample 

sizes will imply smaller departures from normality are reported as significant. These 

considerations justify the use of multiple different assessments of normality in this thesis. 

2.4.3 Z and T statistics 

Discussed in the previous section (2.4.2) was the ability to use the normal distribution to 

construct confidence intervals in which the observed variable may be observed with a 

specified probability. This, coupled with standard error values, can be used to obtain the 

probability that a calculated variable estimate is equal to, less than or greater than a specific 

value as desired. A convenient technique is to use z values, which converts values of the 

variable of interest to their location on a scale transformed to be distributed 𝒩(0,1) rather 

than their original values distributed 𝒩(x,x
2). This is convenient because confidence intervals 

may then be simply defined by stating the number of standard deviations about the mean the 

observed value may fall between. For an observed variable x expected to be distributed 𝒩 

(x,x
2), the corresponding z-value may be computed simply as: 
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 𝑧 =
𝑥 − 𝜇𝑥

𝜎𝑥
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This may be used to test the probability that the observed value of x is equal to the expected 

value x, under the “null hypothesis” that estimates of x are normally distributed about the 

value x. In a two-sided test, the regions of the normal distribution outside of x ± zx are 

summated, yielding the probability that the observed value of x would be randomly sampled 

outside of the region of x ± zx if the null hypothesis were true. A variety of statistics are 

quoted in this thesis along with their standard error values and z tests like the above may be 

used to test their difference from, or equality to, specified values in this way.  

Typically, values of  and  are not known, but rather estimated from sample data. In this case 

the procedure for computing z stated in Equation 14 produces a variable which approaches 

normality as larger samples are used for the estimates, but strictly speaking is not exactly 

normally distributed. The variable is instead said to follow a t-distribution of a specific number 

of “degrees of freedom”. The degrees of freedom directly relate to the sample size used to 

estimate the relevant values, with the t-distribution approximating a normal distribution more 

closely as sample size (and therefore the degrees of freedom) increases. The t distribution may 

be used in a similar manner to the z statistic for computing the probability that an observed 

value x, estimated from a sample of size n, is equivalent to some expected value k. Here, the 

test statistic follows a t distribution with degrees of freedom n-1.77 As previously discussed 

with reference to the central limit theorem, the standard deviation in the sample estimate 

distribution is termed the standard error value, and hence takes its place in Equation 14. 

 
𝑡 =

𝑥 − 𝑘

𝑆𝐸(𝑥)
 15 

The z and t distributions may thus both be used for statistical comparisons, with the z statistic 

being appropriate when the sampling distribution is known to be sufficiently normal, and the t 

statistic appropriate more generally. A key example is the testing of skewness and kurtosis 

values, which are quoted in this thesis alongside their standard errors to evaluate whether 

data are normally distributed. Approximations to the standard error in a proportion also exist, 

and this may be used to test whether an observed proportion (𝑝̂) is equal to an expected 

value. 

 𝑆𝐸(𝑝̂) = √𝑝̂(1 − 𝑝̂)/𝑛 16 

The normal approximation to the standard error in a proportion 𝑝̂ estimated from a random 

sample of size n is given by Equation 16, which is often stated to be approximately accurate 

provided 𝑝̂×n and (𝑝̂-1)×n are both greater than 5. Despite the prevalence of this 

approximation, there are superior methods, however.181 A more accurate formulation is the 

use of the Wilson score interval,182 whereby a desired value of z may be input into Equation 17 

to yield the upper and lower bounds of the desired confidence interval of the proportion 

observed. 

 
1

1 +
1
𝑛 𝑧2

(𝑝̂ +
1

2𝑛
𝑧2 ± √

1

𝑛
𝑝̂(1 − 𝑝̂) +

1

4𝑛2
𝑧2) 17 



2.4  General methods| Data analysis: general statistical procedures 39 

 

Generally, observed values greater than 1.96 standard deviations away from their expected 

value (therefore |z|>1.96) reject the null hypothesis at p<0.05 in accordance with the normal 

distribution. Other statistics are also commonly converted to their “z-standardised” 

equivalents for easy interpretation. Infit and outfit statistics, quoted commonly in Rasch 

analysis, are good examples (see section 2.5.2.1). 

It is also possible to use the normal distribution approximation to compare one value to 

another, if the sampling distribution of both has been estimated. The difference between two 

observed variables, x1 and x2 estimated from independent samples, may be evaluated using 

Student’s t-test. The test makes use of the standard error in the two values to compute the 

probability that x1-x2 is equal to zero, thereby testing the null hypothesis that the two values 

are equal. As before, because the standard error estimates in each value are dependent on the 

sample sizes used to estimate the values in question, the t distribution (from which p values 

are computed) varies depending on its “degrees of freedom” (df). Though forms of the t-test 

exist which presume the variances (and hence standard deviations) about the two values 

compared to be equal,77 statistics literature recommends the unequal variances form of the t-

test, also known as Welch’s test78, 79 unconditionally when sample sizes are unequal, forgoing 

common tests of equality of variance.183, 184 The test has degrees of freedom given by the 

Welch-Satterthwaite equation,80 where SE(x) is the standard error in x, given by the usual 

relation between standard deviation and sample size in the case x is a mean value estimated 

from a sample of n observations (Equation 11).  

 
𝑡(𝑊𝑒𝑙𝑐ℎ) =

𝑥1 − 𝑥2

√𝑆𝐸(𝑥1)2 + 𝑆𝐸(𝑥2)2
⁡⁡⁡⁡⁡ ; ⁡⁡⁡⁡⁡𝑑𝑓 =

(𝑆𝐸(𝑥1)
2 + 𝑆𝐸(𝑥2)

2)2

𝑆𝐸(𝑥1)4 (𝑛1 − 1)⁄ + 𝑆𝐸(𝑥2)4 (𝑛2 − 1)⁄
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An extension of this technique to test the equality of more than two values simultaneously is 

one way ANOVA.81, 82 This method tests the equality of the “within group variance” and the 

“between group variance”, each of which have their own associated degrees of freedom, using 

an F statistic; equal to the t statistic squared in the case of only two values being compared. 

This typical technique again presumes equal variances of the individual samples compared, 

however. An alternative which does not make this presumption is Welch’s ANOVA83. These 

techniques are all applied in various contexts within this thesis. In each case, however, the p-

values reported reflect the probability that the values being compared are equivalent.  

2.4.4 Chi squared statistics and nonparametric comparisons 

Variables which follow chi squared (2) distributions are common within Rasch analysis and 

within many other general statistical methods. A variable composed of the sum of the squares 

of k independent standard normal variables (i.e., squared z values) follows a chi squared 

distribution with k degrees of freedom. These statistics are often used to assess degrees of fit 

and to quantify the extent of deviation from a predicted or expected value, often across entire 

models or data sets. This may be the assessment of the fit of observed data to the Rasch 

model (see for example infit and outfit values or global fit statistics discussed in section 2.5.2) 

or the fit of the distribution of observed measure estimates to a hypothesised trend. Key 

examples of the latter include the “random(normal) chi square” and “fixed(all same) chi 

square” values reported by Rasch measurement software, which test whether the measures 

estimated for the elements of a specific facet appear to be randomly sampled from a normal 

distribution or whether they appear to be of equivalent values respectively. Probability values 

can be obtained from chi squared values using the relevant number of degrees of freedom 
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(similar to other statistics discussed) and used to perform hypothesis tests. In all cases, the 

probability value obtained corresponds to the probability that the obtained chi squared value 

be observed under the null hypothesis that the observed data is equivalent to the expected 

model or model being tested against (such as the normal distribution, Rasch model predictions 

etc). Chi squared distributed values can also be derived from the likelihood that the obtained 

data is observed given a specified model, as discussed in sections 2.5.2.2 and 2.5.4.1. Detailed 

discussion of a variety of applications of Chi squared statistics and the appropriate associated 

methodology is provided by Delucchi.66  

Chi squared values can also be converted to approximately standard normal (z) statistics via 

the Wilson-Hilferty transformation.185 If Y is a statistic following a chi squared distribution with 

degrees of freedom df, then the corresponding approximately standard normal (z) value is 

given by the transformation (W) shown in Equation 19. This transformation is often performed 

on chi squared values used to assess fit to the Rasch model (see section 2.5.2.1).126 

 

𝑊(𝑌) =

(
𝑌
𝑑𝑓

)

1
3⁄

− (1 − (
1
9
) (

2
𝑑𝑓

))

√(
1
9
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2
𝑑𝑓
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A particular application of variables following the chi squared distribution is the chi squared 

test of independence, which tests the null hypothesis that one categorical variable is 

independent to another. The test is conducted by structuring a “contingency table” with each 

column corresponding to a specific category of one variable (the column variable) and each 

row corresponding to a specific category of another (the row variable). In each cell of the table 

is the number of sampled data points observed in the relevant category of both the 

appropriate row and column variable. The test uses the observed numbers of responses to 

generate expected values for each cell in the event the row variable and column variable are 

statistically independent (i.e. the expected frequencies under the null hypothesis). The 

difference between these expectations 𝐸 and the observation 𝑂 are then used to generate a 

2 value. From this value the probability that the row variable is statistically independent to 

the column variable is obtained. For each observed count 𝑂𝑖,𝑗  in row 𝑖 and column 𝑗⁡of the 

table, in a table with 𝑟 rows and 𝑐 columns, with 𝑁 total observations, the calculation of 

expected values 𝐸𝑖,𝑗 and the test statistic 2 are given as follows, where the chi squared value 

has degrees of freedom (r-1)×(c-1).69 

 
𝐸𝑖,𝑗 =

∑ 𝑂𝑖,𝑘
𝑐
𝑘=1 ∑ 𝑂𝑘,𝑗

𝑟
𝑘=1

𝑁
⁡⁡⁡⁡⁡ ; ⁡⁡⁡⁡⁡2 = ∑∑

(𝑂𝑖,𝑗 − 𝐸𝑖,𝑗)
2
⁡

𝐸𝑖,𝑗

𝑐

𝑗=1

𝑟
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One notable case in which the chi squared test of independence is performed in this thesis is in 

the application of Mood’s median test,186 which tests whether the frequency of observed data 

points either above or below the “grand median” (the median taken using all sample groups 

compared) is independent of the sample group. This provides a non-parametric means to test 

for difference between the central point of two distributions of observed data. The chi squared 

test of independence may be improved upon, however, in the case that either the row or 

column variable only has two possible categories. Whilst the above technique only yields 

approximate probability values, Fisher’s exact test187 yields exact probability values, though is 

more computationally intensive. The exact test is at times utilised in this thesis, notably in the 
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comparison of categorised responses to open response format ASLE survey items between 

sample groups (see section 3.1). 

Other non-parametric methods of contrasting two data sets include the Mann-Whitney U 

test,72 equivalently known as the Wilcoxon Rank Sum test,70, 71 and their extension to more 

than two data sets being compared, the Kruskall-Wallis test.74 These non-parametric methods 

utilise methods of assigning ranks to observed data points and do not make assumptions of 

normally distributed data. This makes them useful alternatives to the parametric methods 

described previously when testing for equality between two or more independent samples of 

data. 

2.4.5 Correlation and linear models 

Statistics of the normal distribution are used commonly in structuring models associating two 

or more variables. Given two variables x and y, modelled as being related by some 

mathematical function 𝑓(𝑥𝑖) = 𝑦̂𝑖  (where 𝑦̂𝑖  is predicted value of the ith observed y value, 𝑦𝑖  

corresponding to the ith observed x value, 𝑥𝑖), a commonly quoted statistic is the coefficient of 

determination, labelled R2. 

 
𝑅2 = 1 −

𝜎𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠
2

𝜎𝑡𝑜𝑡𝑎𝑙
2 ⁡⁡⁡⁡ ; ⁡⁡⁡⁡𝜎𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠

2 = ∑
(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛
𝑖

⁡ , 𝜎𝑡𝑜𝑡𝑎𝑙
2 = ∑

(𝑦𝑖 − 𝑦̅)2

𝑛
𝑖
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As can be seen in Equation 21 above, the R2 value subtracts the proportion of the total 

variance in y unexplained by the model from 1, yielding the proportion of observed variance in 

y explained by the model. In the case x and y are related by a linear model, the coefficient of 

determination is equal to the square of Pearson’s correlation coefficient.188 Pearson’s 

correlation coefficient84 (x,y) is calculated as: 

 
𝜌𝑥,𝑦 =

𝜎𝑥𝑦

𝜎𝑥𝜎𝑦
⁡⁡⁡⁡⁡ ; ⁡⁡⁡⁡𝜎𝑥𝑦 = 𝐸[(𝑥 − 𝜇𝑥)(𝑦 − 𝜇𝑦)] ⁡⁡⁡⁡⁡≅ ⁡⁡⁡⁡

1

𝑛
∑(𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)

𝑛

𝑖=1

⁡ 22 

where xy is the covariance of x and y. This value, much like the mean and standard deviation, 

may be estimated from a sample of finite size n as shown in Equation 22. The E() operator 

represents the “expected value”: in this case the mean value of the term within the 

parentheses. The sample correlation coefficient, which approximates x,y whilst maintaining its 

relationship to R2, may therefore be calculated as follows: 

 
𝑟𝑥,𝑦 =

∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑛
𝑖=1

(𝑛 − 1)𝑠𝑥𝑠𝑦
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In the case it is required to statistically compare sample correlations to specific values, or to 

other correlations, the Fisher z transformation may be performed.189, 190 The value of rxy is 

transformed to a new value which approximately follows a normal distribution as shown in 

Equation 24. The Fisher transformed correlation may therefore be compared with specific 

values or other Fisher transformed correlations, using its standard error of 1/(n-3). 

 
𝐹(𝑟𝑥𝑦) =

1

2
𝑙𝑛 |

1 + 𝑟𝑥𝑦

1 − 𝑟𝑥𝑦
|⁡⁡ , 𝐹(𝑟𝑥𝑦)⁡~⁡𝒩 (𝐹(𝜌𝑥𝑦)⁡,

1

𝑛 − 3
) 24 
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In simple linear regression, the sample correlation coefficient (Equation 23) is of use in 

computing the line of best fit expressing a modelled linear relationship between variables x 

and y. Given a set of observed values of x and y, the linear relationship which expresses the ith 

estimated y value (𝑦̂𝑖) from the ith x value (xi) may be formulated as shown in Equation 25.188, 

191, 192  

 𝑦𝑖 ⁡⁡⁡⁡≅ ⁡⁡⁡⁡ 𝑦̂𝑖 = 𝑎 + 𝑏𝑥𝑖⁡⁡⁡⁡⁡; ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑏 = 𝑟𝑥𝑦

𝑠𝑦

𝑠𝑥
⁡⁡⁡⁡⁡ , 𝑎 = 𝑦̅ − 𝑏𝑥̅ 25 

The standard error in the slope of the line b is also known, enabling comparative statistical 

tests between the slope and a specified value, or between two different estimated slopes. The 

degrees of freedom for t-tests (see section 2.4.3) comparing a slope value (estimated from 

sample size n) to a specific number and for comparing two slopes to each other (estimated 

from sample sizes n1 and n2 respectively) are n-2 and n1+n2-2 respectively. 

 

𝑆𝐸(𝑏) = √
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1

(𝑛 − 2)∑(𝑥𝑖 − 𝑥̅)2
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2.4.6 Factor analysis 

Linear models may be formulated not only for the association of two variables, but also for 

multiple observed variables. Methods of formulating linear associations between a set of 

observed variables include principal components analysis (PCA) 193-195 and factor analysis.196-198 

Though similar, a number of key differences exist between PCA and factor analysis,199 the most 

notable of which is that unlike the results of factor analysis, the results of PCA may not be 

interpreted as representing an underlying construct of the data.200, 201 Rather, PCA serves as a 

data reduction technique. In PCA, the set of responses to an array of observed variables are 

reduced to a smaller number of principal components, where each component is a linear 

combination of the initial observed variables. Factor analysis, however, expresses the observed 

variables as a linear combination of underlying factors. Additionally, PCA accounts for the 

totality of observed variance in the observed data, whereas factor analysis only accounts for 

the shared variance between observed variables.202 In keeping with the objectives of this 

thesis, which involve exploring the factors underpinning observed ASLE survey responses, 

factor analysis is the more appropriate of these alternatives in this instance. 

For an array of observed cases (indexed by i), each consisting of observations of N different 

variables (indexed by n), the factor model seeks to explain each observed variable as a linear 

combination of F underlying factors, where F<N. This is achieved by converting the observed 

variables into their z standardised forms (see section 2.4.3), then fitting the data to Equation 

27 below. The value of zn,i corresponds to the z standardised form of the ith case of the nth 

variable (xn,i), whilst each value of f,i represents the measure of the fth underlying factor in the 

ith observed case. The ln,f values, termed “factor loadings”, weight the contribution of the fth 

factor to the nth observed variable. The En,i parameter is simply an error term, equivalent to 

zero for a perfectly fitting model. 

 
𝑧𝑛,𝑖 = ∑ 𝑙𝑛,𝑓𝜀𝑓,𝑖

𝐹

𝑓=1

+ 𝐸𝑛,𝑖 27 
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A number of techniques are available for factor “extraction”. That is, techniques used to 

isolate the underlying factors of the model and estimate their loadings. These techniques 

include (but are not limited to) canonical factor analysis203 (which utilises the same model as 

PCA), common factor analysis,204  alpha factoring205  and image factoring.206 Many extraction 

methods may result in nonsensical so-called “Heywood cases”, where the modelled factors are 

computed to explain more than 100% of the variance in the observed data in some 

instances.207 This does not occur for image factoring, however.208 The number of factors 

extracted during the analysis may be specified by the researcher or may be selected based on 

various statistical considerations209 such as eigenvalues210 (not recommended) or scree 

plots.211 Following extraction, “rotation” methods may be employed in order to reformulate 

the extracted factors in a manner more easily interpreted by the analyst.212 Orthogonal 

rotation methods, which maintain that estimated factors are uncorrelated, include varimax213 

and quartimax.214 Oblique rotation methods, which permit factors to be correlated, include 

direct oblimin215 and promax.216 Rotation methods are not limited to those listed here. 

Two common statistical techniques used to assess the adequacy of correlated sample data for 

factor analysis are Bartlett’s test of sphericity and the Kaiser-Myer-Olkin (KMO) measure of 

sample adequacy.217 KMO measure of sample adequacy218, 219 ranges from zero to one and is 

deemed unacceptable at values below 0.5, whilst Bartlett’s test of sphericity220, 221 tests the 

null hypothesis that all variables are uncorrelated. The rejection of this null hypothesis implies 

the data are appropriate for factor analysis.221 
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2.5 Data analysis: Rasch model related statistics 

2.5.1 Observed, expected and fair scores 

If implementing the traditional integer scoring methods applied to the ASLE survey data, the 

observed average score A corresponding to a set of observed counts in each of the K many 

available response categories (described by the vector 𝑋  = [ c1 , c2 , … , cK ] ) may be computed 

using the following: 

 
𝐴(𝑋 ) =

1

𝑁
∑ 𝑎𝑘𝑐𝑘

𝐾

𝑘=1
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Where ak is the score value assigned to the kth response category, whilst N is the total number 

of observations: the sum of the ck values. Usually, the five score values utilised for the five 

ASLE item response categories are the integer values from -2 to 2, however Rasch 

measurement software often reports score results using a scoring system beginning with the 

value zero for the first category, then proceeding with successive integer values for 

progressively higher categories. This is not problematic, as the usual ASELL-type score may be 

obtained directly from the score reported by Rasch software by subtracting 2, however it is 

worth noting for the purposes of reading and interpreting ”observed average scores” as 

reported by Rasch measurement programs. 

Once a Rasch model has been estimated for the data, expected average response scores 

associated with individual persons, items or elements of other facets may be computed. This is 

achieved by taking P(X = xk) values obtained from the Rasch model directly (Equation 1) to 

obtain the expected count of responses in each category ck, then applying Equation 28 to 

obtain a mean score based on expected response counts, rather than observed response 

counts. A value labelled as the “fair average” score may be also reported in the case of using 

the Facets program, and this is approximately equivalent to taking Rasch measures of all other 

facets as being their average value, then applying this technique.222  

The point-measure correlation gives the observed correlation (see section 2.4.5) between 

observed scores and the associated Rasch measures.223 Values of these correlations expected 

under the presumption that the data perfectly fit the Rasch model can also be computed and 

used to assess whether the observed values are excessively high or low. The observed and 

expected correlation values between score and measure are often labelled as “ptmea” and 

“ptexp” respectively in Winsteps or Facets outputs. 

2.5.2 Rasch model fit statistics and descriptive values 

2.5.2.1 Infit, outfit and discrimination 

A variety of statistics are available for describing the fit of data to the Rasch model. These 

include both local and global fit statistics including Infit (inlier-fit) and outfit (outlier-fit) values. 

Infit and outfit statistics76, 77 provide measures of how closely the data fit model predictions, 

with respect to inlying and outlying observations respectively.161  They  are computed first by 

contrasting the observed response score (Xn) for each individual data point (indexed by n) and 

contrasting with the expected mean response (En) for that single data point, computed using 

procedures described previously (see section 2.5.1). The standard deviation in the expected 

mean value (Sn) is also calculated, using the population standard deviation formula (Equation 
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10, section 2.4.2) and the expected frequencies of scored responses in each category for that 

data point. The observed score, expected mean score and standard deviation in the expected 

mean are then used to obtain a z score (see Equation 14, section 2.4.3), termed the 

“standardised residual” value for that data point (Zn). Infit and outfit mean square values 

(MnSqINFIT and MnSqOUTFIT respectively) are then computed using these standardised residuals, 

which are evaluated for each data point relevant to the facet element number the statistics 

are being quoted for (for example all data points contributed to by a specific person, specific 

survey question, etc, of which there are N). 

 
𝑀𝑛𝑆𝑞𝑂𝑈𝑇𝐹𝐼𝑇 =

1

𝑁
∑ 𝑍𝑛

2

𝑁

𝑛=1

⁡⁡⁡⁡⁡⁡⁡ , 𝑀𝑛𝑆𝑞𝐼𝑁𝐹𝐼𝑇 =
∑ (𝑋𝑛 − 𝐸𝑛)2𝑁

𝑛=1

∑ 𝑆𝑛
𝑁
𝑛=1
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Values quoted for infit and outfit may be mean-square values calculated as shown above, or 

may be corresponding standard normal z values obtained using the Wilson-Hilferty 

transformation139, 224(see sections 2.4.3 and 2.4.4, Equation 19). Because the mean square 

values are chi squared statistics (see section 2.4.4) divided by their degrees of freedom, they 

therefore have expected values of 1. The corresponding  z values may be interpreted as per 

other z statistics. 

Values substantially above expectation (termed “underfit” ) may imply measures do not 

behave in the manner presumed by the construct of the Rasch model generated, indicating 

inconsistency between prediction and observation; a key component of construct validity. 

Conversely, values below expectation imply data accords with model predictions so closely as 

to be unexpected (termed  “overfit”).162 The z statistic may be preferable to the use of the 

mean square value in some cases due to the mean square’s insensitivity to variance in the 

measures.225 However, z statistics reflect the statistical significance of the departure from 

expectation rather than its magnitude, and as such studies with vast numbers of responses 

may show significant values of z despite very small deviations from Rasch model prediction.226 

This justifies use of the mean-square values, however this is also problematic as there are no 

clear ‘rules’ defining which values are extreme and which are acceptable (though ranges of 

roughly 0.6 to 1.4 would be acceptable for ASLE survey purposes).227 Generally, z statistics are 

useful for determining whether data fit the model perfectly, whilst mean squares are useful for 

determining whether data fit the model ‘usefully’.228 A statistic related to the infit and outfit 

values is the RMSR or root mean square residual, where the residual is equivalent to the 

difference between expected scored response based on the Rasch model and observed scored 

response. 

The estimated discrimination values reported are in this instance best interpreted as a 

measure of model fit: the Rasch model uses discrimination values of 1, and these statistics 

describe what value the discrimination would take were this variable allowed to change. It 

expresses the degree of change in observed response relative to the change in the latent trait 

variable. Values below one suggest that observed responses change less drastically than 

expected as the latent trait (Rasch) measure changes, whilst values above one indicate 

observed responses change more drastically than expected as the latent trait measure 

changes.  The latter may be indicative of a second, undesirable variable which correlates to the 

latent trait of interest influencing responses.229 
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2.5.2.2 Global fit and variance explained 

Other statistics reflecting the fit of observed data to the model are the log-probability value 

and the log-likelihood chi-square value. The log-probability value is equivalent to the natural 

logarithm of the probability of sampling the relevant observed data points given the estimated 

Rasch model parameters, whilst the log-likelihood chi square value is simply -2  the log-

probability value.230 Both of these statistics may be quoted locally for individual data points, 

for measures relevant to a large set of data points, or for the Rasch model as a whole. The log-

likelihood chi-square value is a common measure of global fit, and a key component of 

statistical tests contrasting the fit of different Rasch models of the same data (see section 

2.5.4). It may also be used to test whether the observed data fits the Rasch model perfectly, 

though perfect fit is generally unexpected.231 The value is approximately chi-squared 

distributed with degrees of freedom approximately equal to the number of free parameters 

estimated subtracted from the number of (non-extreme) data points in the analysis. 

Rasch measurement software is also capable of reporting the proportion of variance in 

observed data explained by the Rasch measures estimated via variance decomposition 

techniques.232 This can be useful in assessing the degree to which various specific facets (such 

as persons or items) or the Rasch model as a whole contributes to variation in the observed 

data. This proportion is influenced by a variety of factors such as the inherent imprecision in 

the categorical response scale, the relative degree of variation in some facets compared to 

others, random error and other factors, so care must be taken in drawing conclusions from 

these values. 

2.5.2.3 Separation and reliability 

Each facet in a Rasch model may be assigned separation and reliability values. The separation 

statistic is related to the number of statistically different performance strata identifiable in the 

sample,233 whilst the reliability value (which ranges from zero to one, one being optimal) 

provides a measure of the reproducibility of the observed order of measures estimated.234, 235 

These values improve given an increased number of data points.236 

In the context of the usual two-facet Rasch models (see Equation 2 in section 2.2.1), low 

person separation implies the hierarchy of person measures cannot be distinguished well given 

the data available, and low item separation generally implies that the person sample is not 

large enough to confirm the item measure hierarchy. If the reliability value is low this can be 

improved chiefly by increasing the sample size, by making the survey instrument better 

targeted (the mean person measure and the mean item measure are close) or by gathering 

data from a broader range of the other measure. For example, item measure reliability can be 

improved by gathering data from a group of persons with a broader range of person measures, 

or conversely, person measure reliability can be improved by gathering data from items with a 

wider range of item measures. 

2.5.2.4 Rating scale associated statistics 

Both Winsteps and Facets report a range of statistical values associated with the rating scale 

structures estimated. Each Andrich threshold listed corresponds to the  parameter (see 

Equations 1 and 2) defining the point at which a student is equally likely to respond in either of 

the two relevant adjacent categories, whilst the Thurstone threshold is the measure at which a 

student has a 50% probability of responding in the lower of these two categories or below, and 

a 50% probability of responding in the upper category or above.237 
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The category measure is the point on the latent trait variable at which the expected score (see 

section 2.5.1) is equal to the assigned score for that category. These values are useful for 

assessing the equidistant nature of the categories or otherwise, as are the category “ranges”, 

which are defined at the “half point thresholds”: the points at which the expected score is 

equal to the average of the two assigned scores of adjacent categories. Also reported may be 

the observed average latent trait measure for observations in that category, or the expected 

value of this statistic presuming the Rasch model (labelled as observed and expected average 

measure respectively).238 The Facets program also reports the category peak probability, which 

is simply the measure at which the probability of observing that category is at its maximum. 

The coherence statistics are also available, and describe the ability to draw inferences between 

the observed response category and the Rasch measure for the latent trait variable. The C=>M 

(category implies measure) value describes how frequently the observed response category 

correctly predicts the latent trait measure, whilst the M=>C (measure implies category) value 

describes how frequently the latent trait measure correctly predicts the observed response 

category.239 

2.5.3 Analysis of bias interactions 

Differential Item Functioning (DIF) and Differential Person Functioning (DPF) are examples of 

bias evident in data modelled using Rasch analysis. DIF refers to cases where items appear to 

adopt significantly different measures for different persons or person groups, whilst DPF refers 

to cases where person measures appear significantly different when estimated using different 

items or sets of items. Similar bias interactions can also occur between other facets in the case 

of many facet Rasch models.  

Two statistical techniques of assessing bias interactions such as these are available in the 

Winsteps and Facets programs. Mantel statistics,240 a multiple response category extension of 

Mantel-Haenszel statistics,241 are computed via a procedure of dividing the data into strata 

based on the measures associated. In the case of incomplete data these statistics are less 

accurate and in some cases not able to be estimated, with alternative methods therefore 

preferable.242 Both Facets and Winsteps also provide alternative Bias analysis statistics using a 

Rasch-based methodology. These statistics, reported as the results of t-tests (see section 

2.4.3), have been shown to be superior to Mantel-Haenszel statistics.243-246 For this reason, and 

also due to the high prevalence of missing data in the ASLE survey responses, these t-test 

statistics were used to assess bias interactions in the studies described in this thesis. The 

probability (p) values reported by these tests correspond to the probability of obtaining the 

observed data under the null hypothesis of no bias. Reported alongside these likelihood based 

statistics are group-level fit statistics,247, 248 which test the hypothesis that observed responses 

to entire groups of facet elements (for example groups of persons) accord with Rasch model 

expectations.  

Whilst bias analyses such as DIF may determine that bias is present, a phenomenon known as 

‘artificial DIF’ exists whereby the presence of bias in one item results in statistical tests 

reporting bias for other items artificially. This means that whilst bias analyses are useful for 

detecting the presence or absence of bias in a facet generally, it may be unclear which specific 

elements of the facet (eg. which persons or which items) take different values as a result of 

bias interactions and which do not. Differentiating ‘real’ from ‘artificial’ bias interactions may 

be achieved by “resolving” the differential measures.249 
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For example, a series of items may appear to exhibit DIF depending on which of two person 

groups is responding. The item exhibiting the most significant DIF may be ‘resolved’ by 

assigning it two measures as opposed to one: one measure applicable to each person group. 

This is equivalent to treating it as two separate items: one item for which only one person 

group responds, and a second item for which only the second person group responds. 

Following this resolution, any artificial DIF induced by this item’s real DIF would no longer be 

evident. It is therefore possible to differentiate between real and artificial bias interactions in 

this way, though the analysis required to do so completely may be extensive. 

2.5.4 Model selection 

2.5.4.1 Variance explained and the likelihood ratio test 

Given two alternate models of the ASLE survey data, the need may arise to contrast the 

models’ capability to explain the observed data. In the case of nested models, those where 

one model formulation is obtained by restricting the parameters of the other (the parent 

model), the likelihood ratio test may be used to contrast the proportion of observed variance 

explained by the two models. The test statistic: 

 𝐷 = 𝜒1
2 − 𝜒2

2          ;          𝜒2 = −2 ln(ℒ) 30 

where 1
2 and 2

2 refer to the log-likelihood chi square values of the parent and restricted 

model respectively and ℒ is the likelihood of observing the data given the estimated model 

parameters, approaches a chi squared distribution with degrees of freedom equal to the 

difference between the degrees of freedom of the two original 2 values (dfparent model  dfrestricted 

model) as more data points are included.250 This may be useful to test the null hypothesis that 

both models explain the same proportion of the observed data. In general, the degrees of 

freedom associated with log-likelihood chi square values are given by df = n-k, where n is the 

number of data points, all of which must be common to both models and k is the number of 

free parameters estimated.  

“Free” parameters are those for which values are estimated rather than mathematically 

necessitated. In general, the free parameters associated with a model include one parameter 

for each element of each facet, minus the number of “centred facets” (those for which the 

average measure is defined as zero, therefore meaning one element’s measure is the negative 

sum of the measures for the other elements), plus the number of free parameters estimated in 

calculation of the Andrich thresholds. As the Andrich threshold values for each scale group are 

defined as summating to zero and threshold values exist between categories, the number of 

free parameters estimated for each scale group is two less than the number of rating scale 

categories. 

Though often applied to establish that no explained data is lost when applying the LLTM in 

place of less simplified Rasch models,144, 251 a limitation of the likelihood ratio test is that it 

does not take into account the number of parameters required to achieve the observed 

proportion of data explained by the models proposed. Estimating a larger number of 

parameters in a model will invariably explain a greater proportion of the variance in observed 

data points, even if those extra parameters do not reflect any genuine trends in the data 

previously unaccounted for. Additional parameters allow models to fit better to random 

“noise”, thereby reporting a higher proportion of variance explained. An improvement to the 
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use of the likelihood ratio test is therefore the implementation of a procedure which takes the 

parsimony of the model proposed into account. 

2.5.4.2 Parsimony and the corrected Akaike Information Criterion 

The Akaike Information Criterion,252 and its corrected form253 (AICc) provide a means of 

selecting the best explanatory model of the observed data in a statistical manner. The statistic 

takes into account the global fit of the model to the data (in the form of the log-likelihood chi 

square value) as well as the parsimony of the model (related to the number of free parameters 

needed to be estimated) to yield an AICc value for each proposed model. The model with the 

lowest AICc value is taken to be the best explanatory model for the data, for reasons outlined 

well by Burnham and Anderson.254 Specifically, the difference in AICc value from that of the 

minimum AICc model (AICc) corresponds to the Kullback-Leibler information255 loss 

experienced if working under the alternative model rather than that with the lower AICc, 

whilst exp(AICc/2) yields the likelihood of the proposed model given the data, relative to the 

best model proposed. In comparison to the lowest AICc model, alternate models with AICc ≤ 

2 have “substantial” comparative support, alternate models with 4 ≤ AICc ≤ 7 have 

“considerably less” support, whilst those with AICc ≥ 10 have “essentially no support”, 

irrespective of the actual magnitude of AICc values being compared.254 The formula for the 

corrected Akaike Information Criterion is given in Equation 31, where ℒ is the likelihood of the 

estimated parameter values given the observed outcomes (equivalent to the probability of the 

observed data given those parameter values), k is the number of free parameters estimated in 

the model and n is the number of data points used. 

 𝐴𝐼𝐶𝑐 = ⁡−2 ln(ℒ) + 2𝑘 +
2𝑘(𝑘 + 1)

𝑛 − 𝑘 − 1
 31 

The value of -2ln(ℒ) is often labelled as the log-likelihood chi square value and is commonly 

used as a measure of global fit of the observed data to the Rasch model as described 

previously (see section 2.5.2.2). The remaining terms in the AICc equation serve to penalise a 

large number of parameters used to estimate a comparatively small number of data points, 

meaning sufficient parsimony is a key factor in determination of the best model. The statistic 

has been applied to the selection of appropriate Rasch models previously.150
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3 Quantitative methods and the 

ASLE survey data 
 

In this section the application of common integer value scoring techniques to ASLE survey data 

is explored from a range of perspectives, contrasting the conclusions able to be drawn with 

those which would be suggested through Rasch modelling. Results presented in this section 

collectively serve to test the first primary hypothesis of this thesis: 

Hypothesis 1: 

Conclusions drawn from the ASLE survey data using typical scoring techniques 

resemble conclusions drawn using sample independent, interval scale measures 

extracted from the same data. 

 

Section 3.1 presents a study reminiscent of typical ASLE survey use. Rating scale items of the 

ASLE survey are analysed with the usual integer value scoring methodology, 

supporting any conclusions drawn using comments received on open response 

items of the survey. This score-based study will serve as a point of comparison in 

the subsequent section. 

Section 3.2 includes an in-depth analysis of the identical data used for the previous section, 

this time using Rasch analysis. The student independence or otherwise of score-

based data is particularly highlighted, testing the datasets gathered for evidence of 

sampling bias. The impacts of these effects on conclusions of the initial score-

based study are identified and discussed, in so doing contrasting scoring 

methodology with Rasch methodology. This study, in conjunction with the 

previous, serve as a specific example of how any limitations in score-based 

methods may impact research conclusions.  

Much of the data and discussion presented in sections 3.1  and 3.2 have been published 

(though with some differences ) in the Journal of Chemical Education,256 presenting an 

investigation contrasting student perceptions of two different technological interfaces used in 

laboratory activities. 

 

Section 3.3 presents a far more generalised investigation into the measurement properties of 

integer value scored data. Unidimensional Rasch models are generated for each 

item of the ASLE survey, using these models to contrast sample independent, 

interval scale Rasch measures of with the analogous score-based values expected. 

The relationship between scores and measures is revealed both at the level of 

individual responses and group level statistics. The validity of applying parametric 

statistical methods to scored data is also investigated.
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3.1 Typical score-based analysis of ASLE survey data: an example 

3.1.1 Outline 

Rasch analysis, whilst revealing information of much more depth than traditional scoring 

methodologies, is not readily accessible to all researchers and has not been applied to the 

ASLE surveys prior to the works presented in this thesis. The study documented in this section 

serves as an example of the way traditional scoring methods may be applied to a data set, 

despite their suggested limitations. This study makes use of the usual integer scoring 

techniques applied to Likert-type items of the ASLE survey, heavily drawing upon qualitative 

comments received on the same set of survey responses to provide additional support to any 

conclusions. In this way, pedagogical implications may still be confidently drawn, whilst 

illustrating a typical study conducted using ASLE survey data. In the section following this study 

(3.2), Likert-type data used to draw conclusions here will be re-analysed using Rasch analysis. 

This study and the next will thereby serve to contrast the conclusions of integer scoring 

methods and Rasch methods, testing the first primary hypothesis of this thesis: that 

“conclusions drawn from the ASLE survey data using typical scoring techniques resemble 

conclusions drawn using sample independent, interval scale measures extracted from the same 

data”. 

Though the primary objectives of this thesis concern validity of ASLE survey methodology and 

past conclusions, the specific investigation presented in this section as a vehicle for later 

investigating scoring methodology validity has its own notable implications. Investigation into 

the validity of the scoring methods implemented is reserved for the section following (3.2), 

using the conclusions of this study as a baseline for comparison. Consequently, the discussion 

of results here will exclusively focus on conclusions revealed about student perceptions and 

effective design of experiments, not the validity of scoring methods used to draw those 

conclusions. The study presented involves a contrast between two technological interfaces 

which students may be required to use as part of laboratory activities: a handheld graphing 

data logger and analogous software installed on a laptop computer. It is conclusions regarding 

these technological interfaces which will be discussed here, reserving an analysis of the validity 

of the scoring methodology used for section 3.2. 

3.1.2 Background: Microcomputer based laboratories 

Laboratory work provides a wide range of benefits for learning in chemistry. 7 Practical 

laboratory work has historically been claimed to be beneficial for multiple reasons, 5, 6 

including exposing students to concrete experiences with objects and concepts mentioned in 

the classroom. 4, 13 Connecting concrete, macroscopic observations to the abstract 

representations and symbolisations used in science is well understood to be a key hurdle in the 

understanding of chemistry concepts257-260 and is a task hailed as being one of the most 

difficult challenges facing science teachers, as well as one of the most important.261 In part to 

assist in the teaching of abstract concepts, and to engage students with technology they may 

use as working scientists, technology plays an increasingly large role in science education, 

including data collection and display in the laboratory setting.262 A large body of research exists 

concerning activities in which computing devices are used in conjunction with measurement 

devices (probeware) to gather and display data in laboratory teaching exercises. Students may 

be required to use handheld graphing data logger devices263-265 specifically designed to display 

and analyse data collected from associated probeware, or alternately the probeware may be 
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connected to a laptop or desktop computer equipped with the necessary software. 266-269 

These activities have been termed microcomputer based laboratory (MBL) activities. 

Because of their ability to pair events with their graphical representation in real time, MBL 

activities have been suggested to assist in making the connection between the concrete and 

the abstract,270-272 notably in the form of improving students’ graph interpretation skills. More 

active student engagement in constructing understanding has been suggested as an additional 

benefit, arising from increased focus on data interpretation instead of data collection, and 

increased student collaboration.273, 274 These MBL activities have been said to have the ability 

to “transform” laboratory activities due to these advantages.275 

Whilst a number of studies have supported these claims,265, 276-282 particularly in the context of 

inquiry based learning,263, 283, 284 overall the results of implementing MBL activities appear 

mixed285 and successful implementation of MBL activities appears to be a complex issue.286, 287 

Studies exist which counter the suggested benefits concerning student understanding of 

graphs288 and the connection between the macroscopic and more abstract.289 Other prominent 

issues appear to be the possibility that students may watch uncritically as the computer ‘does 

all the work for them’, as well as students encountering difficulty using the computing devices 

themselves.286, 290  

Studies documenting student perspectives of this technology reveal that student views of MBL 

vary to a great extent.291 Negative issues raised again include students feeling disengaged as 

the data logger does all the work, as well as a lack of technical familiarity.292 Students are 

reported to claim the technology is complex and difficult to use293 and that they do not have 

the time to ‘play’ with the technology and undergo trial and error processes of learning like 

they would do with home computers.292 These issues, including that students have difficulty 

manipulating and using MBL technology, notably in “older” forms, have also been recognized 

in teacher views.290 The disadvantages of having to learn how to use the technology as well as 

the exercise’s learning objectives has been observed to outweigh the advantages of MBL in the 

past,294 and it has been suggested that MBL activities may be better suited to those who have 

a better idea of both content and the handling of sensor technology associated with the 

microcomputer devices.295 This is reminiscent of classroom based studies suggesting students 

benefit more from computer-based exercises if they are comfortable with their use296  and it is 

not unreasonable to expect that the same is true of computing devices in the laboratory 

setting. Recent review of studies concerning MBL activities in secondary school chemistry 

suggests more research needs to be conducted to discover what can be done to assist students 

in overcoming these issues they express.291 

This study reports differences in student perception data received from two different cohorts 

of students in their first year undergraduate chemistry laboratory sessions; one cohort using a 

handheld data logger device to collect and display data in the experiments studied, and the 

other cohort performing the identical tasks, instead using a laptop computer. This change in 

technological interface was made in response to negative views expressed by students 

regarding the data logger devices, gathered using ASLE surveys distributed with original 

intentions other than this specific study. ASLE surveys were then used to monitor student 

perceptions the following year after the change had been made, and the results are presented 

in the following discussion. The observations made are suggested to be of use in moving 

towards overcoming the reported student difficulties associated with so called 

“microcomputer based laboratories”. 
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3.1.3 Specific methods 

3.1.3.1 Experiments Conducted 

During the year 2011 at the University of Adelaide, experiments studied within this research 

involved student use of the PASCO Xplorer GLX handheld graphing data logger device. 264, 265 

Student feedback data, collected for other research purposes using the ASLE instrument, 

revealed negative perceptions of these devices, which had been utilised in the teaching 

laboratory for a number of years prior. In response to this feedback, the devices were replaced 

with laptop computers equipped with software replicating the capabilities of the data loggers; 

PASCO DataStudio.266 The only differences between the two years, aside from this 

technological interface change, include the laboratory demonstrators and the portion of the 

instruction manual devoted to use of the technology implemented (in the form of an isolated 

appendix to the rest of the manual). All other features of the relevant experiments remained 

identical, including the tasks performed using either the data logger or the laptop computer. A 

total of three experiments were studied, with the perception of each contrasted between the 

two years. The utilised data measurement tools and functions of the data loggers or laptops 

were different in each of these three experiments. Experiments studied include “Vapour 

pressure”, “Biological buffers” and “Determination of copper(II) ion concentration”, described 

previously in Table 2 (section 2.1.3). 

3.1.3.2 Data Treatment 

Qualitative comments received in response to the open response items on the ASLE 

instrument (items 15-19) were assigned codes based on their content, and also whether the 

comment was of a positive, negative or neutral nature. The thirteen content-specific codes 

used for all survey items except item 16 were pre-established; devised for the purposes of 

separate research conducted in previous years (unpublished data). Codes used for item 16, in 

the case this item was used in this research, were devised as appropriate for the specific 

experiment’s learning objectives. Frequencies of comments which were and were not assigned 

each of these pre-established codes were enumerated for each survey item. Fisher’s exact test 

(see section 2.4.4) was used to compare these frequencies between the two forms of each 

experiment individually.  

Responses to Likert-style items were assigned scores corresponding to their position on the 

five point scale. Responses to items 1 – 12 of the ASLE instrument were assigned successive 

integer scores from +2 to -2 (“strongly agree” to “strongly disagree”) with zero (“neutral”) as 

the midpoint, +2 being the optimal response. Item 13 responses, concerning time availability, 

were also scored from +2 to -2 (“way too much” to “nowhere near enough”) with zero (“about 

right”) as the midpoint and optimal response. The final Likert-style item, concerning overall 

learning experience, was similarly scored from +2 to -2 (“excellent” to “very poor”) with zero 

(“average”) as the midpoint and +2 as the optimal response. Mean values of response scores 

received from each student cohort, from each year, for each experiment, for each Likert-type 

response format item on the surveys were calculated for the purposes of comparison (labelled 

as m2011 and, m2012 for mean values from 2011 and 2012 data respectively). This is in line with 

standard methodology of the ASELL project (see section 1.1.2).  

Mean scored responses to the Likert-type response format items were compared between 

years for each of the three experiments using the T-test for unequal variances (Equation 18, 

section 2.4.3), using this test in preference to the equal variances test in all cases as 

recommended in the statistics literature for data sets of unequal sample size. The value of 
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alpha (α) was selected to be 0.05 for the purposes of statistical testing, and two tailed 

probability values were obtained for all comparisons made. In order to account for the issue of 

multiple comparisons and control the family-wise error rate, the unweighted Bonferroni 

method was applied (see section 2.4.1). All hypothesis tests conducted to compare the same 

experiment between the two years of study were taken to be of the same family of 

hypotheses, thereby yielding one family of hypotheses tests for each of the three experiments 

in the study. Consequently, statistically significant difference was inferred at p < α/n, where n 

is the number of hypothesis tests conducted to compare the relevant experiment’s two 

different forms. Statistical tests and values were calculated using Microsoft® Excel® 2010, with 

the exception of Fisher’s exact test, which was conducted using VassarStats.297 

3.1.3.3 Student Cohorts Sampled 

Data featured in this study were obtained from students enrolled in the first year 

undergraduate courses Chemistry IA and Chemistry IB (see section 2.1.1 for a more detailed 

description). The number of students sampled was variable between experiments and 

between years, with students presented with the non-compulsory ASLE instrument at the end 

of their laboratory sessions. Given the sample-dependence of scored ASLE survey data, this 

sampling technique presents the possibility of introducing bias in the sample: deviating from a 

true representation of the student population. An investigation of the same data set using 

more sample independent analysis techniques (Rasch analysis) is to be presented in the 

following section (3.2) to overcome this limitation in the scoring methods used and evaluate 

the validity of conclusions drawn (see section 3.2.4.1: Summary of sample adequacy 

implications).  

3.1.4 Results and discussion 

3.1.4.1 Improved Perception of Overall Learning Experience 

Details of all statistical tests conducted and frequencies of responses received for both 

qualitative and quantitative items of the survey are presented in the supporting information 

(section 7.2).  

The effects of replacing the data logger interface with the laptop interface appear to have 

yielded noticeable improvements in student perception of overall learning experience. When 

responding to the Likert-type item “Overall, as a learning experience, I would rate this 

experiment as”, students conducting the vapour pressure experiment responded significantly 

more positively (m2011 = -0.02, m2012 = 0.69, t(149.0) = -5.06, p = 1.22 x 10-6).  Once the data 

logger interface was replaced, this experiment in particular showed apparent improvement in 

a large number of respects judging by Likert-type item responses. These improvements, 

displayed in Figure 9, will be elaborated upon throughout the discussion. Change in overall 

perception of the vapour pressure experiment was also clearly evident in the open response 

comments. When asked if they enjoyed the vapour pressure experiment (item 15), a 

significantly greater number of students gave positive responses (18 of 55 in 2011, 54 of 79 in 

2012, p = 5.34 x 10-5) and fewer gave negative responses (39 of 55 in 2011, 31 of 79 in 2012, 

p = 4.09 x 10-4). The biological buffers experiment may also have been perceived more 

positively overall judging by responses to item 14 (m2011 = 0.60, m2011 = 0.88, t(185.3) = -2.52, 

p = 1.26  x 10-2), however this result could not be deemed statistically significant when 

accounting for family-wise error. 
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Figure 9:  Mean Likert-type item response scores for “Vapour Pressure” 

Mean response scores obtained using the laptop interface appear significantly higher than mean scores 

obtained using the data logger interface. Error bars represent the standard error in the mean value. 

Further statistical details for these comparisons are available in the supporting information (see section 

7.2.1)  

In the case of “Vapour pressure” specifically, data presented later in this thesis (section 4.3.3.2, 

p.126) can be used to show that students not only found the data logger form of the 

experiment to be poor, but gave noticeably unfair ratings compared to all other experiments 

(Figure 43, p.127). A drop in approximately 0.5 score units across all ASLE survey questions for 

this experiment appears to be due solely to negative student bias, adding to the already low 

“fair” mean score values. Whilst this effect is not revealed by traditional integer scoring 

techniques alone, it is still supportive of the general pedagogical implications of the study 

discussed in this section. This large scale negative bias is only evident for this single 

experiment, and disappears once the data logger is replaced with the laptop.  

3.1.4.2 Reduced Negativity about the Equipment 

Examining the qualitative comments received for the three experiments, there are a number 

of indicators that the laptop interface was better received than the data logger interface. 

During 2011, of the 24 students who stated they did not enjoy the experiment in response to 

the question “Did you enjoy the experiment? Why or why not?”, 21 of those referenced the 

equipment used. A number of these comments mentioned that the data logger devices were 

prone to error and difficult to use. Some examples from the biological buffers experiment 

include: 

“It was ok, the GLX thing was difficult to use”; “it was annoying using the 

GLX”; “No. The explorer GLX is hard to use”; “I do not like the pasco”; “no 

glx do not work well, most people had problems” 

Comments from the vapour pressure experiment for this same question further reveal issues 

with the use of the data loggers: 
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“yes however I found the xplorer GLX difficult to use and very frustrating. 

The video, written instructions and demonstrator could not supply sufficient 

information on using the xplorer GLX”; “No. I do not like using the explorer 

GLX” 

Once the handheld data loggers had been replaced, students conducting the biological buffers 

experiment made negative comments about the equipment used significantly less often in 

response to this same survey item, both amongst all comments received for this item (21 of 51 

comments in 2011, 4 of 54 comments in 2012, p = 5.96 x 10-5) and also when considering only 

those comments which were negative (21 of 24 comments in 2011, 4 of 19 comments in 2012, 

p = 2.44 x 10-5). However, this was not clearly evident in the other two experiments, potentially 

due to the fact that different functions of the technology were used in each experiment. 

When the question “What aspects of the experiment need improvement, and what changes 

would you suggest?” was asked of students, significantly fewer equipment related negative 

comments were received for the biological buffers experiment (25 of 35 comments in 2011, 6 

of 32 comments in 2012, p = 2.16 x 10-5). There was also some indication of a similar effect in 

the copper(II) ion concentration experiment, (18 of 43 comments in 2011, 12 of 66 in 2012, 

p = 4.61 x 10-2) however this could be attributed to family-wise error. Amongst the negative 

comments which were received for this question about the copper ion experiment, the 

equipment was mentioned significantly less frequently amongst the improvements listed (25 

of 31 negative comments in 2011, 6 of 25 negative comments in 2012, p = 3.38 x 10-5). 

In the case of the vapour pressure experiment, comments viewing the equipment negatively 

could not be said to differ significantly. However, there appeared to be a positive shift in the 

number of students who found the equipment appealing, often due to the new and unfamiliar 

use of technology (in this context, ‘unfamiliar’ refers to students not having seen technology 

used in this manner in the laboratory previously). In response to item 15, the level of 

familiarity or unfamiliarity was mentioned more frequently as a reason for liking the 

experiment (1 of 55 total comments in 2011, 15 of 79 comments in 2012, p = 2.20 x 10-3). 

Although this difference could be attributed to family-wise error, these comments almost 

exclusively made very positive reference to the enjoyable experience of the novel use of 

technology, and this was something not seen when using the data logger interface.  

Additionally, these comments cite the ability to watch the graph change in real time in a 

number of cases. Some examples of most enjoyable aspects of the experiment students 

described include:  

“Working with the computer program to see live data of changes in temp 

(of water bath) and vapour pressure”; “watching the graph on the screen as 

it changed”; “recording the pressure of a system onto a real time computer 

graph”.  

These comments are reminiscent of some of the benefits suggested in the literature of the use 

of microcomputers in laboratories, and no comments referenced this until 2012 when the data 

logger devices were replaced with the laptop computers. Citing the equipment as the most 

enjoyable aspect of this experiment (in response to item 17), though increased, did not 

increase to a level able to be deemed statistically significant (14 of 43 total comments in 2011, 

35 of 79 comments in 2012, p = 7.82 x 10-2). 
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3.1.4.3 Greater Sense of Understanding 

A broad range of indicators across all three experiments show evidence that students who 

used the laptops felt a greater sense of understanding the experiments than those using the 

data loggers. The vapour pressure experiment in particular shows clear improvement. 

Significant positive changes in the mean response scores for items 5 and 6 were observed in 

this experiment, providing reason to suspect a potential increase in student perception of 

clarity of the expected learning outcomes (m2011 = 0.28, m2012 = 0.91, t(138.4) = -4.15, 

p = 5.76 x 10-5) and an increased sense that the experiment increased the students’ 

understanding of chemistry (m2011 = 0.33, m2012 = 0.98, t(142.9) = -4.21, p = 4.58 x 10-5). 

Open response comments for this same experiment corroborate this finding. In response to 

the question “Did you enjoy the experiment? Why or why not?”, the relative occurrence of 

positive and negative comments relating to understanding appeared to shift in favour of more 

positive comments in 2012 (1 positive and 11 negative in 2011, 6 positive and 2 negative in 

2012, p = 4.44 x 10-3). Understanding was also negatively mentioned less frequently in 

response to this question, both in the context of all item 15 comments received ( 11 of 55 

comments in 2011, 2 of 79 in 2012, p = 1.69 x 10-3), and considered amongst the negative 

responses only (11 of 39 in 2011, 2 of 31 in 2012, p = 2.91 x 10-2). The copper(II) ion 

concentration experiment also shows some indication of an increased understanding, with 

positive comments related to understanding stated as a reason for liking the experiment (item 

15) more often in 2012 (8 of 81 in 2011, 21 of 95 in 2012, p = 4.05 x 10-2). Whilst these 

differences may reasonably be attributed to family-wise error, these observations collectively 

serve to reinforce the significant differences already observed in the Likert-type data. 

Considering the multitude of indicators of increased understanding, in the vapour pressure 

experiment at the very least, there is clear evidence that student perception of understanding 

increased when the laptops were used in place of the data logger devices. 

Whether this improved sense of understanding is a genuine reflection of deeper learning 

remains unknown. A significant increase in perception of data interpretation skills 

development (m2011 = 0.36, m2012 = 1.06, t(131.7) = -4.90, p = 2.76 x 10-6) was detected in 

responses to the first survey item for the vapour pressure experiment, however the truth of 

this increased perception is unknown. In response to the question “What did you think was the 

main lesson to be learnt from the experiment?”, students conducting the vapour pressure 

experiment in 2012 did cite at least one of the main concepts (Dalton’s law or Raoult’s law and 

when it applies, intermolecular forces, non-ideal mixtures) in their responses more frequently 

(20 of 45 comments in 2011, 47 of 71 in 2012, p = 3.33 x 10-2). Comments including Raoult’s 

law or Dalton’s law were also more frequent (14 of 45 comments in 2011, 37 of 71 in 2012, 

p = 3.48 x 10-2). However, both of these results may be attributed to family-wise error and 

hence are inconclusive. 

3.1.4.4 Increased Perceived Simplicity 

In addition to the improvement in student perception of understanding, the students using the 

laptop computers also appear to have reported a view that the experiment was “simple” (a 

term commonly used by students in their open responses) more frequently than the cohort 

using the data logger devices. In response to being asked if they liked the experiment and why 

(item 15) students conducting the vapour pressure experiment using the data logger interface 

made no positive comments about the level of simplicity of the experiment, whereas 7 

negative comments were received stating the lack of simplicity was their reason for disliking 
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the experiment. In 2012, using the laptop interface, this perception was entirely reversed. No 

students mentioned a lack of simplicity, and 12 listed the experiment’s simplicity as their 

reason for liking the experiment, a clear significant improvement (p = 1.99 x 10-5).  

As a consequence of this, the vapour pressure experiment exhibits a number of differences in 

the tests comparing frequency of reasons for liking and disliking the experiment between the 

two years regarding the experiment’s simplicity. In response to item 15, simplicity was more 

frequent amongst reasons given for liking the experiment (0 of 18 comments in 2011, 12 of 54 

in 2012, p = 2.99 x 10-2) and was less frequent amongst reasons given for disliking the 

experiment (7 of 39 comments in 2011, 0 of 31 in 2012, p = 1.50 x 10-2). When considering all 

comments received for this survey item, simplicity was mentioned positively more often (0 of 

55 comments in 2011, 12 of 79 in 2012, p = 1.45 x 10-3) and mentioned negatively less often (7 

of 55 comments in 2011, 0 of 79 in 2012, p = 1.55 x 10-3). These differences are not significant 

beyond attribution to family wise error, but may well be genuine since they are reminiscent of 

the significant difference already confirmed.  

There is also some evidence that students conducting the copper(II) ion concentration 

experiment in 2012 when using the laptop interface reported a perception of simplicity more 

frequently than the 2011 cohort, though it is possible that there exists a degree of bias in 

samples taken for this experiment. Simplicity was mentioned as a reason for liking the 

experiment more often in response to item 15, both relative to all responses received (12 of 81 

comments in 2011, 32 of 95 in 2012, p = 4.98 x 10-3), as well relative to other reasons given for 

liking the experiment (12 of 66 comments in 2011, 32 of 86 in 2012, p = 1.18 x 10-2). These 

differences are not large enough to exclude the possibility of being artefacts of family-wise 

error, but again are reminiscent of effects already seen elsewhere. 

3.1.4.5 Further Comments 

Following the technological user interface change made, student perception of the vapour 

pressure experiment in particular was subject to widespread improvement, with students 

reporting a greater perception of understanding of the experiment and clarity of the learning 

outcomes, a complete reversal in the initial perceived lack of simplicity of the experiment and 

a more positive perception of overall learning experience. The novel equipment was seen in a 

more positive light, and students began making comments more reminiscent of the usual 

benefits of real time graphing technology in MBL exercises. The biological buffers experiment 

also received fewer negative comments about the equipment, showing the laptop interface to 

be the more positively received option. The copper(II) ion concentration experiment did not 

show any clear difference between the two forms of the experiment, but the data do show 

some signs of improvement in students’ perceived understanding and the perceived simplicity 

of the experiment.  

Reasons for the lack of major difference observed in the copper(II) ion concentration 

experiment are unclear, although it is possible that sampling bias could prevent any 

differences being detectable. It is also possible that differences for this experiment were not 

observable as the microcomputer technology is used in a comparatively smaller portion of the 

task in this case. Relative portions of the task in which the microcomputer technology was 

used could also explain why widespread significant improvement was more evident in the 

vapour pressure experiment than for the biological buffers experiment. 
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It is conceivable that these observed improvements arose because a portion of the instructions 

were re-written to accommodate the different technology in 2012, but there is little data to 

suggest this is the case. An exception to this is the case of the vapour pressure experiment, in 

which the manual was reported as a reason for disliking the experiment (item 15) less often in 

2012 (12 negative comments of  55 total comments in 2011, 5 of 79 in 2012, p = 1.53 x 10-2). 

However, this difference is not significant to the degree that it could not be attributed to 

family-wise error. Far stronger evidence exists that changing the manual was in fact 

detrimental rather than beneficial in the case of the biological buffers experiment. The 

material provided for the experiment was negatively mentioned significantly more frequently 

when asking students for potential improvements to the experiment (item 18), both in the 

context of all comments made (3 of 35 in 2011, 17 of 32 in 2012, p = 1.10 x 10-4), and 

considering only those improvements listed (3 of 31 in 2011, 17 of 25 in 2012, p = 1.11 x 10-5). 

It is possible that without this detrimental change in the instructions, some of the positive 

effects of replacing the handheld graphing data loggers seen in the vapour pressure 

experiment would also have become apparent in the biological buffers experiment. In any 

case, the changes in the manual do not appear clearly responsible for the significant 

improvements observed, meaning these effects are reasonably concluded to be genuine 

consequences of the technological change.  

The influence of having different practical demonstrators between years is not known with 

certainty. However, responses to item 8 of the survey, asking students about effective 

supervision and guidance of the demonstrator, do not differ between years in any case even if 

multiple comparisons are unaccounted for. From this it appears reasonable to conclude that 

demonstrators were similarly effective in the students’ views, and are unlikely to have 

differently influenced the perceptions of students in the two different years compared. 

3.1.5 Conclusion 

When conducting experiments in 2011 using the PASCO Xplorer GLX handheld graphing data 

logger, a number of negative student comments were received about the devices, often 

concerning difficulty of their use. Replacing these with laptop computers equipped with PASCO 

DataStudio software in 2012 resulted in numerous improvements in student perception data 

as compared with the previous year’s cohort, including a significant reduction in these 

comments amongst other benefits. Based on the reduction in comments about the difficulty of 

using the technology, and the fact that the user interface was the only facet of the procedure 

altered, the data suggest that a more easily used technological interface plays a key role in 

positive student perception of these experiments. A recognition of the fact that the user 

interface of technology can influence student perceptions as strongly as has been observed 

here may significantly assist in alleviating student issues with microcomputer based laboratory 

activities reported in the literature. It is suggested that a familiar user interface is a vital 

element of the teaching laboratory when computers are used, and that in order to allow full 

access to the potential benefits of microcomputer based laboratory activities from the student 

perspective, handheld graphic data logging devices are far less preferable than alternatives 

equipped with the same capabilities that are more easily used by students, such as laptop 

computers. 

The study presented in this section exemplifies a typical ASLE survey-based study utilising 

common integer value scoring of Likert-type items. Using the conclusions drawn here as a 

baseline for comparison, alternate techniques may now be applied to the same data set to 
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confirm that the same conclusions may be drawn, despite limitations of integer scoring 

methodology. Such a comparison is presented in the section following. 
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3.2 Justifying the conclusions of a scored analysis: Rasch 

techniques applied to the technological interfaces study 

3.2.1 Outline 

The previous section states its conclusions in such a way as to imply the observed differences 

in survey response were caused by a change in a feature of experiment design: the use of a 

laptop computer in place of a handheld data logger (see section 3.1). The claim made at the 

study’s conclusion is not that the improvements reported were due to a more easily satisfied 

student cohort. Rather, there is presumed to be some “objective” measure of experiment 

quality which has been raised, leading students to broadly report a better outcome. 

Ultimately, ASLE scores obtained for an experiment are presumed to act as measurements of 

this “objective” experiment quality, which may be considered independent of the particular 

students surveyed. Rasch analysis presents an opportunity to explicitly test the 

correspondence between scored ASLE data and more sample independent measures, as it has 

the capacity to separate student dependent and student independent contributions to survey 

response. The present section therefore re-analyses the identical data set that was used in the 

previous section, this time using Rasch modelling techniques. Errors introduced due to the 

scoring techniques’ lack of sample independence are investigated, inherently testing the first 

primary hypothesis of this thesis: that “conclusions drawn from the ASLE survey data using 

typical scoring techniques resemble conclusions drawn using sample independent, interval 

scale measures extracted from the same data”. 

It was claimed in section 3.1 that the data logger interface studied was less preferable to a 

laptop equipped with equivalent software, implying that use of the laptop interface was a 

superior way to design the experiments. Claims like these, typical of ASLE survey research, 

convey the idea that one experiment design is better than another design, in a sense true for 

students generally (see section 1.2.2). In this way the conclusion is implied to hold a degree of 

“objectivity”: whilst it is acknowledged that some variation in student preferences may exist, 

there is a broader sense in which one option is claimed to be preferable to the other once 

individual student variations are ‘averaged out’.  

As discussed previously in the introductory material to this thesis (see section 1.3.1), requiring 

this “objectivity” of any measurements estimated is one means of deriving the Rasch model. 

Rasch recognised this requirement for the items students respond to, but also for measures 

assigned to students themselves, notably test scores. He termed this requirement of valid 

comparisons “specific objectivity”, stating:124 

"comparisons between individuals become independent of which particular 

instruments -- tests or items or other stimuli -- have been used. 

Symmetrically, it ought to be possible to compare stimuli belonging to the 

same class -- measuring the same thing -- independent of which particular 

individuals, within a class considered, were instrumental for comparison."  

In an ASLE survey context, the “stimuli” Rasch refers to above are the experiments students 

conduct and the survey question to which they respond; Rasch states it ought to be possible to 

compare different experiment designs in a way that is independent of the student responding. 

This is exactly the presumption discussed above, where it is presumed there is an “objective” 

sense in which one experiment design is better or worse than another. Because ASLE survey 

mean scores are currently used as the measures of quality for an experiment, it is these scores 
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which must embody this specific objectivity. As such, mean scores should remain roughly 

equivalent regardless of the students providing the survey responses. Failing this, scores must 

either be inaccurate or unreliable estimates of “objective” experiment quality, or experiment 

quality cannot be assigned a numerical value in any objective sense in the first place. The 

possibility of the latter of these two options will be addressed in subsequent studies of this 

thesis (see section 4.1). The accuracy and reliability of scores as measures, however, can be 

evaluated in part by testing the extent to which student dependent variables influence the 

scored results observed. This is the primary objective of the study presented here.  

Because Rasch measurement is the only means of estimating student dependent and student 

independent measures separately, Rasch analysis is required in order to explicitly test the 

contribution (or lack thereof) of student dependent effects on ASLE mean scores observed. To 

this end, the following investigation uses Rasch measurement to evaluate the distributions of 

student “biases” in the gathered samples used to conduct the previous, score-based study. 

Samples are analysed for their comparability between years, as well as their probable 

resemblance to a representative sample of the student population. If the results of score-

based analyses are to resemble the results obtained using Rasch measures as per the first 

primary hypothesis of this thesis (see section 1.4.1), then these student biases must not 

confound the results obtained by score-based methods to a substantial degree. 

3.2.2 Specific methods 

The same data used to conduct the previous investigation (section 3.1) were used in this study. 

Sample sizes were adequate for Rasch analysis, as measures defining the item-response 

construct are reasonably informative for polychotomous survey items (such as is the case in 

this study) for sample sizes above approximately 50.298 Cases in which students responded 

exclusively in the most extreme positive or negative categories of the survey were removed 

from consideration in these analyses, as justified previously (see section 2.3.3). The number of 

these cases for each data set is noted, with commentary on the likely impact of their presence. 

Data obtained from different sample groups were disconnected (see section 2.3.3) owing to a 

lack of student identification on survey responses gathered. This requires that whilst student 

bias distributions can be examined for each sample group in this study (defined by year and 

experiment conducted), it is not possible to contrast the distributions obtained from two 

sample groups directly. Similarly, it is not possible to directly contrast the absolute values of 

any student independent measures estimated from Rasch modelling directly between sample 

groups. However, as will be seen, this limitation does not imply that the influence of student 

dependent effects on scored results cannot be assessed. 

To gain a measure of each student’s bias towards answering positively, a separate “rating 

scale” Rasch model (see Equation 2 presented previously in section 2.2.1) was generated for 

each of the two cohorts, for each experiment, using the Winsteps Rasch measurement 

software. Student “ability” measures () specific to the person responding on that occasion 

and item “difficulty” measures () specific to the question asked for that experiment were 

estimated in each model,i  then used to test the apparent adequacy of student samples and 

their comparability across different occasions. The rating scale model was used rather than a 

partial credit model (see section 2.2.1) due to the small number of data points. 

                                                           
i This formulation of  and  measures is later determined to be the best general explanatory 

model of the ASLE data. See section 4.1.3. 
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In order for data collected to be representative of the broader student population, it should be 

the case that the sample does not include a disproportionately high number of students biased 

towards providing either especially negative or especially positive responses. That is, the 

distribution of student measures (biases) within the sample should not be skewed and should 

represent the extremities and centre of the distribution of student biases with appropriate 

proportion. In a Rasch measurement context, this ‘bias’ towards positive response in general 

corresponds to the student “ability” measure (). The distribution of student measures was 

therefore examined for normality in each case. 

Presuming a representative sample to be distributed normally (a presumption made in the 

initial stages of Rasch model estimation; see section 2.3.1), skew in the distribution of student 

measures was taken to indicate that that the more positively biased students and the more 

negatively biased students were potentially represented disproportionately in the sample, 

whilst kurtosis was taken to suggest that the middle of the distribution and/or the extremities 

of the distribution could be represented in inappropriate proportion. It is acknowledged that 

this methodology presumes that non-normal distributions of student biases would not be 

expected to occur at the population level.  

In order to test the comparability of the 2011 and 2012 student groups, an experiment which 

had not been altered between the two years was selected to act as a “negative control”. Data 

from both the 2011 and 2012 iterations of the Analysis of Spinach Extracts experiment were 

accordingly merged, then used to generate another (single) rating scale Rasch model. Given 

the structure of this experiment remained unchanged between the two years, the “objective”’ 

quality of the experiment (modelled by the  measures) may be reasonably presumed 

identical. Presuming equality of student independent measures in this way allows data 

connectivity between the two years in the case of this specific experiment, unlike for other 

experiments. The student measures () obtained were compared for the 2011 and 2012 

groups to test comparability of the student cohorts sampled in the two years , whilst DIF 

analysis (see section 2.5.3) was performed to confirm equality of the item measures () 

between the two years as assumed in the analysis. 

Differential item functioning (DIF) analysis is robust against large differences in student 

propensity to respond positively when coupled with Rasch analysis.299 In the cases where the 

week of the semester in which surveys were collected was known, DIF analysis was used to 

identify any inconsistencies in student independent measures () between different weeks of 

the semester. However, it was not inferred which specific items differed between weeks, as 

significant DIF has the potential to be “artificial” rather than genuine (see section 2.5.3 for a 

more detailed discussion of DIF). The distribution of student dependent measures () was 

subsequently contrasted between weeks in light of the DIF analysis results, in order to test 

whether student samples from different weeks appeared to have equal propensity toward 

positive response. 

3.2.3 Results 

3.2.3.1 2011 Vapour pressure experiment 

One student responded in the most extreme negative category for every question posed in this 

sample. Consequently, the Rasch analysis assigned them an arbitrarily low “ability” measure, 

such that their predicted responses all appear at the extreme low categories. For this reason, 

responses from this person were excluded from consideration in the data presented.  
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Figure 10: Student measures for the 2011 Vapour pressure experiment 

It is possible that this student’s response is a “donkey vote”, given they are well outside the 

distribution of the other students (assigned “ability” measure of -6.11, well beyond three 

standard deviations about the mean). Given the magnitude of significant differences observed 

in the Likert-style data for this experiment, it is not expected that this single student would 

impact the results of the main comparative study in such a way as to alter the conclusions 

drawn.  

The distribution of student measures observed appears approximately normal, as is evident 

not only in the results of the Kolmogorov-Smirnov  (D = 0.074, df = 83, p  0.200) and Shapiro-

Wilk (W = 0.983, df = 83, p = 0.363) tests, but also by graphical inspection (see Figure 10 and 

Figure 11). The distribution exhibits neither significant skew (skewness = -0.082, S.E. = 0.264), 

nor significant kurtosis (kurtosis = 0.505, S.E. = 0.523). Overall, with the exception of one 

outlying student response, the sample of students appears not to favour either positively 

biased or negatively biased students excessively, and the centre of the distribution and tails of 

the distribution of student biases are represented in keeping with a normal distribution.  

 
Figure 11: Q-Q plot of student measures for “Vapour pressure” in 2011 
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3.2.3.2 2012 Vapour pressure experiment 

The overall student bias distribution for this data set was found not to be normally distributed 
by the Kolmogorov-Smirnov (D = 0.102, df = 102,p = 0.010) and Shapiro-Wilk (W = 0.949, 
df = 102, p = 0.001) tests. 

 
Figure 12: Person measures obtained for the Vapour pressure experiment in 2012 

Contributing to non-normality is the presence of a highly negatively biased student, most 
clearly visible to the bottom left of the Q-Q plot (Figure 13). However, unlike in the 2011 
version of the experiment, this student’s response does not appear to be a possible “donkey 
vote”, as they have not responded in the extreme negative category in every case, and should 
be left in the analysis.  

 
Figure 13: Q-Q plot of student measures from “Vapour pressure” in 2012 

In order to investigate the possibility that the week in which experiments were conducted 

influenced the results obtained, the Rasch model for this experiment was examined for 

differential item functioning (DIF). Three person groups were compared: those who completed 

the experiment in Week 6, those who completed the experiment in Week 8, and those who 

completed the experiment in Week 10. This comprises the full data set of responses received 

for this experiment. Results detailed below in Table 4 show that no survey item’s “difficulty” 

() measure significantly differed based on the week the student conducted the experiment. 

The item closest to the occurrence of this was question 12, however the fit statistics show that 
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this is well within expectation based on the Rasch model generated for this data. It does 

appear that an unexpected degree of similarity between weeks exists for questions 1 and 2, 

however the reason for this is unclear. This is not problematic, as it represents an unexpected 

lack of variation in responses received, rather than an unexpected degree of variation and 

error. 

Table 4: DIF between weeks for the 2012 “Vapour pressure” experiment 

Survey 

Item 

Summary DIF Between group fit statistics 

2 d.f. p Mean-square t=ZSTD 

Q1 0.000 2 1.000 0.000 -2.460 

Q2 0.035 2 0.984 0.006 -2.119 

Q3 2.794 2 0.244 0.487 -0.307 

Q4 1.642 2 0.437 0.320 -0.615 

Q5 0.435 2 0.805 0.055 -1.524 

Q6 2.191 2 0.331 0.423 -0.415 

Q7 0.219 2 0.898 0.028 -1.753 

Q8 1.343 2 0.508 0.201 -0.908 

Q9 0.441 2 0.802 0.074 -1.408 

Q10 4.035 2 0.131 0.558 -0.197 

Q11 3.230 2 0.196 0.513 -0.266 

Q12 5.839 2 0.053 1.045 0.378 

Q13 0.439 2 0.803 0.060 -1.492 

Q14 0.828 2 0.659 0.113 -1.216 

ANOVA was used to test the equality of the distribution of student measures (biases) between 

these weeks, with a significant difference detected (F(2,99) = 4.067, p = 0.020). However, the 

descriptive statistics show that student measures in Week 10 were not normally distributed, 

displaying significant kurtosis (Table 5). This could be due to the small number of students 

sampled in that week.  

Table 5: 2012 Vapour pressure experiment: Distribution of student measures (biases) 

Week 

conducted 
Mean N 

Standard 

Deviation 

Kurtosis Skewness 

value Std. Error value Std. Error 

6 1.6143 30 1.04016 -.685 .833 .374 .427 

8 1.5745 51 1.20966 .252 .656 .555 .333 

10 .7124 21 1.61062 5.294 .972 -.550 .501 

Total 1.4087 102 1.29460 2.929 .474 -.197 .239 

The non-normality of the overall distribution appears to arise because of kurtosis, generated in 

part by differences in the distribution of student biases collected in week 10 compared to data 

collected in other weeks. The distribution of student biases corresponding to those sampled in 

Week 10 appears to be centred more towards negative responses than for the other two 

weeks. Evident in the histogram displaying the full distribution of student biases (Figure 12) is 

an unexpectedly high frequency of responses at student measure of approximately 0.7, 

corresponding to the location of the mean of the Week 10 samples (see Table 5). Were the 

different weeks sampled in equal proportion, the Week 10 responses would appear more 

frequently and the mean student bias would shift further in favour of negative response. 
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One data point was identified as an outlier to the overall distribution (outliers are depicted as 

stars in Figure 14 below). However, it does not appear that removal of this outlying data point 

would alter the conclusions of the data above, as the Week 10 samples still have a visibly lower 

median value when viewed separately.  

 
 

Figure 14: Identification of outlying student measures in the 2012 “Vapour pressure” 
experiment 

(left: full data set, right: week specific data) 

Even with this outlying negatively biased respondent removed from consideration, the overall 

distribution still appears non-normal. The non-normality, however, now manifests itself as 

significant skewness rather than kurtosis (Table 6), and is less evident in the Shapiro-Wilk test 

of normality (W = 0.967, df = 101, p = 0.012). It is, however, slightly more evident judging by 

the Kolmogorov-Smirnov test (D = 0.115, df = 101,p = 0.002). 

Table 6: Effect of removing the outlier from the 2012 vapour pressure experiment data 

Data set Mean N 
Standard 

Deviation 

Kurtosis Skewness 

value Std. Error value Std. Error 

Outlier removed 1.4633 101 1.17741 .575 .476 .639 .240 

Outlier included 1.4087 102 1.29460 2.929 .474 -.197 .239 

Overall, the data show that the 2012 sample taken from the vapour pressure experiment 

shows some evidence of potentially misrepresenting the broader population. A better 

representation of responses generated in Week 10 would have produced a higher propensity 

for students to respond negatively, and by implication, the current sample appears biased 

towards positive responses from early in the semester. Depending on the magnitude of this 

effect, this could theoretically alter the conclusions of the initial score-based study. 

Given the parameters of the Rasch model generated, it is possible to computationally simulate 

the expected frequency of responses under a theoretical, more negatively biased sample. This 

is useful for determining the likely magnitude of the difference between the positively biased 

sample collected and a more equally representative sample. Figure 15 shows the “item 

characteristic curve” (ICC) corresponding to the Rasch model generated for this data. It 

displays the expected (average) response score as a function of student measure minus item 

measure (displayed on the plot as the “latent trait measure”). The unexpectedly high empirical 
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value at a latent trait measure of -6 Logits is due to the very low number of data points 

available at this extreme. 

 
Figure 15: Item characteristic curve (ICC) for the 2012 Vapour pressure experiment Rasch 

model 

Using this plot, it is possible to roughly estimate the magnitude of the expected change in 

average scored response, were the distribution of student biases ( values) shifted. It is 

expected that under a more equal representation of each of the three weeks sampled, the 

population mean bias could not possibly be lower than the current observed Week 10 mean 

bias (rather, it would be somewhere between the low Week 10 mean bias and the higher 

Week 6 and 8 mean bias values). 

The Week 10 average student measure () is 0.7124 logits, whilst the observed sample overall 

has an average measure of 1.4087 logits (both including the outlier previously discussed). 

Assuming a model unbiased sample to have an average student measure intermediate 

between these two values, an unbiased sample would have an average student measure of 

approximately 1.06 logits; only approximately 0.35 logits lower than the observed sample. 

Using the ICC plot, a change in student ability measure of only 0.35 logits (from 1.41 to 1.06) 

corresponds to a change in average scored response of only approximately 0.15 score units. 

This gives a rough approximation to the size of the difference that would be expected in 

observed average response scores if the sample reflected Week 10 responses as opposed to 

the observed, positively biased sample. 

Displayed in Table 7 is a replication of the statistical comparisons made between the observed 

data for the 2011 and 2012 versions of the vapour pressure experiment, and alongside, the 

comparisons corresponding to a case in which the mean scores of 2012 items were shifted 

0.15 units lower. 
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Table 7: Observed bias in 2012 Vapour pressure sample - Magnitude of the impact on 
responses 

 
Observed 2011 sample compared to  

observed 2012 sample 

Observed 2011 sample compared to 

hypothetical unbiased 2012 sample 

 mean df t p mean df t p 

Q1 0.70 131.65 -4.90 0.000003 0.55 131.65 -3.85 0.000181 

Q2 0.55 137.85 -3.64 0.000388 0.4 137.85 -2.64 0.009209 

Q3 0.61 161.51 -3.53 0.000533 0.46 161.51 -2.67 0.008430 

Q4 0.40 169.52 -2.62 0.009497 0.25 169.52 -1.64 0.103801 

Q5 0.64 138.36 -4.15 0.000058 0.49 138.36 -3.17 0.001870 

Q6 0.65 142.86 -4.21 0.000046 0.5 142.86 -3.23 0.001531 

Q7 0.29 167.99 -1.94 0.054108 0.14 167.99 -0.92 0.357564 

Q8 0.14 169.00 -1.07 0.284552 -0.01 169.00 0.08 0.936486 

Q9 0.39 179.09 -2.34 0.020224 0.24 179.09 -1.45 0.150128 

Q10 0.14 162.76 -0.95 0.341206 -0.01 162.76 0.10 0.922074 

Q11 0.04 172.69 -0.28 0.783503 -0.11 172.69 0.90 0.367410 

Q12 0.43 147.63 -3.27 0.001352 0.28 147.63 -2.13 0.034877 

Q13 0.49 138.19 -4.89 0.000003 0.34 138.19 -3.38 0.000929 

Q14 0.71 149.03 -5.06 0.000001 0.56 149.03 -4.00 0.000101 

Shaded red are the cells containing probability values deemed statistically significant, 

accounting for the multiple comparisons correction used in the original comparative study. As 

can be seen above, in a hypothetical sample without the bias imparted by an 

underrepresentation of students who conducted the vapour pressure experiment in Week 10, 

significant differences in responses to survey questions 5, 6 and 13 are no longer evident. 

Significant differences in responses to questions 1 and 14, however, remain.  

Based on this rough analysis, it is expected that the differences in scored responses to survey 

items 5, 6 and 13 for the vapour pressure experiment could feasibly be attributed to bias in the 

sample, introduced by underrepresentation of students conducting the 2012 experiment in 

Week 10.  Some indication of difference in these items still exists after accounting for this bias, 

however the differences are small enough to possibly be attributed to the issue of multiple 

comparisons.  

To further corroborate this conclusion, the 2011 and 2012 “Vapour pressure” samples were 

merged and entered into a single rating scale model Rasch analysis. Each item of the survey 

was tested for DIF between the two years. Since DIF compares the “difficulty” () of 

responding positively to an item independent of student propensity to respond positively (), 

it provides a means of testing for significant differences independent of student biases. As 

stated in the introductory material to this study, no single student provided responses in both 

years for this same experiment, and therefore no common point of reference exists to 

establish the relative ‘central location’ of the measures for each group ( or ). DIF analysis 

can, however, still be used to reveal differences in the relative locations of each of the  

measures with respect to the others within each group since, as mentioned in the introductory 

material, DIF is robust against large differences in student propensity to respond positively 

when coupled with Rasch analysis.299 Entering the two disconnected subsets into a single 

Rasch model, it can be initially assumed that the  measures are equivalent for the two groups 

in order to “connect” the data. Significant DIF detected would indicate falsity of this 
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assumption, though would not clearly indicate which items differed between groups 

specifically. The results of such an analysis, performed on a merged model of the 2011 and 

2012 vapour pressure experiment data, are presented in Table 8. 

Table 8: DIF between the 2011 and 2012 forms of the Vapour pressure experiment 

Survey 

Item 

Summary DIF 
 

Between group fit statistics 

2 d.f. p Mean-square t=ZSTD 

Q1 6.8875 1 0.0087 3.5327 1.5809 

Q2 1.2245 1 0.2685 0.6179 0.1569 

Q3 0.9657 1 0.3258 0.4847 0.0164 

Q4 0.4314 1 0.5113 0.2167 -0.3757 

Q5 2.5762 1 0.1085 1.3049 0.6682 

Q6 3.7287 1 0.0535 1.895 0.9752 

Q7 1.7904 1 0.1809 0.9047 0.4018 

Q8 4.1944 1 0.0406 2.1367 1.0823 

Q9 1.0124 1 0.3143 0.5085 0.0432 

Q10 8.1537 1 0.0043 4.1969 1.7718 

Q11 10.4717 1 0.0012 5.4435 2.0817 

Q12 0 1 1 0.0114 -1.173 

Q13 0 1 1 0.015 -1.1268 

Q14 3.9268 1 0.0475 1.9938 1.02 

The data clearly evidences cases where item difficulty measures significantly differ (p < 0.05 

highlighted) between the two cohorts. That is, after accounting for student propensity to 

respond positively, it appears some items appear either more or less difficult to answer 

positively in the different years. Questions 1, 8, 10, 11 and 14 show significant DIF, with 

question 11 so different as to be outside expectations of this merged data Rasch model. The 

between group fit statistics for other items showing significant DIF do not reveal confident 

difference, but do appear slightly elevated (notably for questions 1 and 10). It is important to 

note that items exhibiting significant DIF are not necessarily the specific items which have 

changed between years. 

Person (bias) measures estimated in this merged analysis were, by necessity, estimated under 

the initial presumption that all item measures () were equivalent for the two years. The 

results presented above demonstrate this presumption to be a false one. Differences in 

measures of experiment quality () appear to exist between the two years, independent of any 

student dependent contributions. It appears that significant differences between the data 

logger form of the experiment and the laptop form of the experiment exist independent of the 

fact the 2012 sample is likely to be positively biased. 

3.2.3.3 2011 Biological buffers experiment  

Two extreme responses, where the student provided the extreme positive response for all 

survey items, were removed from consideration in the following analysis. These two students, 

being a small fraction of the broader sample, are not expected to significantly impact on any 

conclusions.  
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Figure 16: Person measures obtained for the Biological Buffers experiment in 2011 

Results demonstrate that the 2011 sample from the biological buffers experiment contains a 
non-normal distribution of student biases, arising from a significant degree of kurtosis. Both 
the Kolmogorov-Smirnov (D = 0.106, df = 134, p = 0.001) and Shapiro-Wilk (W = 0.965, 
df = 134, p = 0.002) tests reject the null-hypothesis of normality. Kurtosis is significant, yet 
skewness remains acceptable (Table 9, presented on page 72). Kurtosis is easily visible upon 
visual inspection of the distribution (Figure 16). There also appears to be an outlying negatively 
biased student, as displayed in the box plot below (shown using a star, Figure 17) and also 
visible to the far left of the Q-Q plot (Figure 18).  

 

Figure 17: Outlier identification for the 2011 Biological buffers experiment student measure 
data 
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Figure 18: Q-Q plot of student measures for the 2011 Biological Buffers experiment 

Removal of this outlying student from consideration does not alter any conclusions, as the 

distribution remains non-normal as judged by the Kolmogorov-Smirnov (D = 0.106, df = 133, 

p = 0.001) and Shapiro-Wilk (W = 0.972, df = 133, p = 0.008) tests. The degree of kurtosis does 

appear less significant, however (Table 9).  

Table 9: Effect of removing the outlier from the 2011 Biological Buffers experiment data 

Data set Mean N 
Standard 

Deviation 

Kurtosis Skewness 

value Std. Error value Std. Error 

Outlier included 1.6254 134 1.52497 1.495 .416 -.224 .209 

Outlier removed 1.6674 133 1.45059 0.777 0.417 0.090 0.210 

Overall, the distribution of student biases in this sample does not show evidence of overall bias 

in either the positive or negative direction. However, its shape (judging by kurtosis) may not be 

representative of the broader population. It is not expected that this would influence the 

results of the main study, as the distribution does not appear to be significantly skewed. That 

is, there does not appear to be a disproportionate number of students responding positively or 

responding negatively. There is simply an overrepresentation of the students with more 

extreme biases (both positive and negative, equally so), or an overrepresentation of those with 

average bias, or both.  

3.2.3.4 2012 Biological buffers experiment 

The Kolmogorov-Smirnov test for normality marginally rejects the hypothesis of normality for 

this sample (D = 0.100, df = 80, p = 0.046), whilst the Shapiro-Wilk test does not (W = 0.975, 

df = 80, p = 0.116). Given the lack of skew or kurtosis, as well as the reasonable appearance of 

the histogram (Figure 19) and Q-Q plot (Figure 20), the majority of evidence suggests that the 

distribution is sufficiently close to normality, and the sample does not appear to represent 

positively and negatively biased students in unequal proportion. Any departures from 

normality appear minimal, and therefore would be unlikely to influence conclusions drawn. 
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Figure 19: Distribution of person measures for the 2012 Biological buffers experiment 

 

 
Figure 20: Q-Q plot of student measures for the 2012 Biological buffers experiment 

In order to investigate the possibility that the week experiments were conducted influenced 

the results obtained, the Rasch model for this experiment was examined for differential item 

functioning (Table 10). Four person groups were compared: those who completed the 

experiment in Week 4, those in Week 6, those in Week 8 and those in Week 10. This comprises 

the full data set from this sample. No DIF was detected, indicating no single item appeared to 

be more or less “difficult” to answer positively in the different weeks sampled. 
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Table 10: DIF between weeks for the 2012 Biological buffers experiment 

Survey 

Item 

Summary DIF Between group fit statistics 

2 d.f. p Mean-square t=ZSTD 

Q1 3.309 3 0.345 0.264 -1.044 

Q2 3.348 3 0.340 0.291 -0.966 

Q3 4.568 3 0.205 0.387 -0.725 

Q4 2.133 3 0.544 0.206 -1.232 

Q5 3.022 3 0.387 0.228 -1.158 

Q6 1.726 3 0.630 0.159 -1.413 

Q7 1.326 3 0.723 0.117 -1.603 

Q8 2.316 3 0.508 0.208 -1.225 

Q9 4.199 3 0.240 0.387 -0.725 

Q10 2.837 3 0.416 0.223 -1.175 

Q11 3.642 3 0.302 0.337 -0.846 

Q12 2.333 3 0.505 0.174 -1.352 

Q13 0.404 3 0.940 0.035 -2.199 

Q14 1.600 3 0.659 0.150 -1.452 

Student “ability” measures (bias) were compared between weeks by ANOVA, with no 

significant difference detected (F(3,76) = 0.136, p = 0.938). The distribution of biases within 

each week sampled appears normally distributed, with the exception that the Week 10 

samples exhibit a significant degree of kurtosis. This could be attributed to the small number 

of samples when considering each week separately. The distribution of biases within the total 

sample for the 2012 Biological buffers experiment appears not to have a significant degree of 

skew or kurtosis, and generally appears normal (Table 11). 

Table 11: Distribution of ability measures (biases)  for the 2012 Biological buffers experiment 

Week conducted Mean N 
Standard 

Deviation 

Kurtosis Skewness 

value Std. Error value Std. Error 

4 1.6947 15 .84574 -.978 1.121 .090 .580 

6 1.6579 24 1.09054 -.104 .918 .002 .472 

8 1.6419 21 1.40130 .559 .972 -.262 .501 

10 1.4755 20 1.14374 2.163 .992 .306 .512 

Total 1.6150 80 1.13650 .664 .532 -.052 .269 

3.2.3.5 2011 Copper(II) ion concentration experiment 

The distribution of student biases in this case appears marginally non-normal, arising from a 

degree of skewness (skewness = 0.439, S.E. = 0.218; kurtosis = 0.195, S.E. = 0.433), visible most 

prominently in Figure 21. This is suggestive of slight bias in the sample. Whether this bias is 

towards more positive responses or more negative responses is unknown, as it is not clear 

whether the skewness arises from an underrepresentation of responses at one extreme, or an 

overrepresentation of responses slightly off-centre of the distribution. 
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Figure 21: Distribution of student measures for the 2011 Copper(II) ion concentration 
experiment 

Three extreme positive responses were excluded from consideration in these analyses. Were 

they included and were their contribution substantial, the overall distribution of biases would 

be more positive. This would not impact on the conclusions of the initial score-based study, as 

this effect would make improvements from 2011 to 2012 less evident, as opposed to more. 

The non-normality of the distribution obtained is only slight, with the Q-Q-plot appearing 

largely reasonable (Figure 22), and tests of normality rejecting only marginally if at all 

(Kolmogorov-Smirnov: D = 0.078, df = 123, p = 0.064 ; Shapiro-Wilk: W = 0.979, df = 123, 

p = 0.048). Any overall bias is therefore likely to be only slight and of little consequence. 

 

 

Figure 22: Q-Q plot of student measures for the 2011 Copper(II) ion concentration 
experiment 

3.2.3.6 2012 Copper(II) ion concentration experiment 

In order to investigate the possibility that the week in which experiments were conducted 

influenced the results obtained, the Rasch model for this experiment was examined for 

differential item functioning (DIF). Three person groups were compared: those who completed 

the experiment in week 6, those in week 8 and those in week 10. This comprises the full set of 
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responses collected for this sample. No DIF was detected, indicating no single item appeared 

to be more or less difficult to answer positively in the different weeks sampled. 

Table 12: DIF between weeks for the 2012 Copper(II) ion concentration experiment 

Survey 

Item 

Summary DIF 
 

Between group fit statistics 

2 d.f. p Mean-square t=ZSTD 

Q1 0.7459 2 0.6873 0.1227 -1.176 

Q2 3.0938 2 0.2098 0.5578 -0.1972 

Q3 3.099 2 0.2093 0.5609 -0.1926 

Q4 3.2753 2 0.1915 0.5431 -0.2191 

Q5 0.144 2 0.9324 0.0253 -1.7865 

Q6 3.0705 2 0.2123 0.5317 -0.2362 

Q7 0.3802 2 0.8275 0.063 -1.4732 

Q8 5.1171 2 0.0759 0.8591 0.1852 

Q9 0.3498 2 0.8403 0.0546 -1.5286 

Q10 1.6299 2 0.4391 0.291 -0.6786 

Q11 4.4028 2 0.1086 0.7655 0.0777 

Q12 3.8376 2 0.1443 0.6571 -0.0585 

Q13 1.7273 2 0.418 0.306 -0.645 

Q14 0.7195 2 0.6965 0.1231 -1.1743 

There is an extreme response used to generate the Rasch model used to conduct the above 

analysis; however their inclusion would not impact upon the results of the DIF analysis. As 

extreme responses necessarily fit the Rasch model optimally, they do not contribute to DIF 

statistics and are excluded from the analysis. This extreme response was excluded from 

consideration in the subsequent analyses for reasons described in the introduction (see 

section 2.3.3). 

 

Figure 23: Distribution of student measures for the 2012 Copper(II) ion concentration 
experiment 

Student propensity to answer positively (bias) was also examined. The measures appear not to 

be normally distributed (Kolmogorov-Smirnov: D = 0.125, df = 119, p < 0.001 ; Shapiro-Wilk: 

W = 0.967, df = 119, p = 0.005), primarily due to a degree of skewness (see Table 13, presented 
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on page 78), visible in the distribution itself (Figure 23) as well as to some extent in the Q-Q 

plot (Figure 24). 

 

Figure 24: Q-Q plot of student measures for the 2012 Copper(II) ion concentration 
experiment 

The samples from different weeks appear not to significantly differ as judged by ANOVA 

(F(2,116) = 2.379, p = 0.098) and the additional removal of an identified outlier (indicated as a 

star in Figure 25) does not alter this conclusion (F(2,115) = 2.733, p = 0.069). However, the data 

from Week 6 appear to exhibit significant skew and kurtosis when the outlying response is 

included (but not otherwise), and this may influence the validity of the ANOVA test (see details 

in Table 13). 

 

 

Figure 25: Outlying student identification for the 2012 Copper(II) ion concentration 
experiment 

The mean “ability” measure (bias) of the total sample from this experiment appears roughly at 
the midpoint between the three mean measures taken from each sampled week. As such, 
uneven sampling between weeks seems to ‘balance out’ in terms of the central location of the 
distribution of biases. However, skew of the distribution of all results remains, possibly 
originating primarily from the Week 6 data, likely generating the observed non-normality. The 
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skewness is far less significant upon removal of the outlier, however the overall distribution 
remains non-normal as judged using statistical tests. (Kolmogorov-Smirnov: D = 0.114, 
df = 118, p = 0.001 ; Shapiro-Wilk: W = 0.970, df = 118, p = 0.009). 

Table 13: Week-specific bias statistics for the 2012 Copper(II) ion concentration experiment 

Extreme response removed only 

Week conducted Mean N 
Standard 

Deviation 

Kurtosis Skewness 

value Std. Error value Std. Error 

6 2.5057 44 1.10600 2.380 .702 1.063 .357 

8 2.8119 37 1.13227 -.035 .759 .299 .388 

10 2.2321 38 1.22410 .780 .750 .649 .383 

Total 2.5135 119 1.16627 .686 .440 .592 .222 

Extreme response and outlier removed 

Week conducted Mean N 
Standard 

Deviation 

Kurtosis Skewness 

value Std. Error value Std. Error 

6 2.4151 43 .93962 -.223 .709 .303 .361 

8 2.8119 37 1.13227 -.035 .759 .299 .388 

10 2.2321 38 1.22410 .780 .750 .649 .383 

Total 2.4806 118 1.11428 .192 .442 .406 .223 

Overall, this sample appears to be biased. Positively biased and negatively biased students 

have been sampled disproportionately in Week 6, notably due to a substantially outlying 

response, and this has translated into skew of the overall distribution of biases in the total 

sample. However, even the removal of this outlier does not entirely resolve the issue. It is 

unclear which students, those positively biased or those negatively biased, were sampled in 

inappropriate proportion.  

Based on the analysis of both the 2011 and 2012 samples from the Copper(II) ion 

concentration experiment, sampling bias may perturb results obtained. It is uncertain whether 

this would over-exaggerate or under-exaggerate any differences in student perception of 

learning experience studied, though if the outlying student in 2012 is the exception to the 

general trend, scored results calculated with its inclusion may report more positive perception 

that warranted. This would exaggerate reported improvements, though not to a large degree 

provided the rest of the sample may be considered representative.  Given very few differences 

were actually observed for this experiment in the initial score-based study, the apparent bias 

of these samples does not impact the broader initial conclusions. 

3.2.3.7 Analysis of spinach extracts as a “negative control” 

In order to establish comparability between the 2011 and 2012 student cohorts, a Rasch 

model was generated for the Analysis of spinach extracts experiment; an experiment which 

remained unchanged between the two years, and from which a relatively large sample was 

gathered (144 in 2011 and 77 in 2012). The data from both years was grouped into the same 

Rasch model, testing for DIF between the item measures estimated from each year’s 

responses. 
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Table 14: Analysis of spinach extracts item measures compared between years 

Survey 

Item 

Summary DIFa 
 

Between group fit statisticsb 

2 d.f. p Mean-square t=ZSTD 

Q1 3.8564 1 0.0496 1.7746 0.9183 

Q2 1.303 1 0.2537 0.5816 0.1208 

Q3 0.7015 1 0.4023 0.3118 -0.2115 

Q4 0.6171 1 0.4321 0.2747 -0.271 

Q5 3.7627 1 0.0524 1.7378 0.9005 

Q6 0 1 1 0.0011 -1.4323 

Q7 2.3871 1 0.1223 1.0778 0.5251 

Q8 8.3175 1 0.0039 3.84 1.672 

Q9 2.9865 1 0.084 1.3614 0.7012 

Q10 0.6448 1 0.422 0.2975 -0.2338 

Q11 19.1133 1 <0.0001 9.6979 2.8738 

Q12 0.1138 1 0.7358 0.0543 -0.8468 

Q13 0.499 1 0.48 0.2294 -0.3514 

Q14 0.1031 1 0.7481 0.0446 -0.8976 

The DIF analysis shows that a degree of differential item functioning exists. Large, significant 

differences exist for questions 8 and 11, with question 11 showing DIF outside of Rasch model 

expectations. Questions 1 and 5 also show difference of marginal significance. 

Question 11 asks students to rate whether working in a team to complete the experiment was 

beneficial. In the case of this experiment, students worked individually, rather than in groups 

or pairs. As a consequence, this survey item was often not answered at all, and was not 

responded to in any consistent manner. Apparent DIF for this survey item’s responses is 

therefore neither unexpected nor problematic. Question 8 asks students about the efficacy of 

their practical demonstrator’s supervision and guidance. This is the one aspect of the 

laboratory environment which changed between the two years, and again it is unsurprising 

that this specific item may show significant difference. It is possible that the two items showing 

marginal difference are cases of “artificial DIF” induced by the presence of other survey items 

with a large and significant genuine DIF, such as item 11. The issue of multiple comparisons 

(see section 2.4.1) may also play a part in the presence of some significant differences.  

The majority of items report no substantial DIF, and it is reasonable to presume that the two 

sets of item measures for the two years are broadly similar in their location. As such, little 

error in the location of student measures estimated would be introduced, making a 

comparison of student biases between the two years viable. The distribution of student biases 

sampled in 2011 appears not to be normally distributed (Kolmogorov-Smirnov: D = 0.090, 

df = 141, p = 0.008 ; Shapiro-Wilk: W = 0.971, df = 141, p = 0.005). The 2012 data, however, 

appears to have a normal distribution of sampled student biases (Kolmogorov-Smirnov: 

D = 0.098, df = 77, p = 0.064 ; Shapiro-Wilk: W = 0.976, df = 77, p = 0.150). The significant non-

normality of the 2011 data appears to arise because of a significant degree of kurtosis, and 

skew in the distribution appears not to be an issue (Table 15). The centre and extremities of 

the distribution of student biases therefore appear to have been sampled disproportionately in 

2011, however, this should not influence the location of the centre of the distribution. The 

three extreme responses in 2011 removed from consideration in these analyses correspond to 

persons responding in the extreme positive category in every case. Even if these three 
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students were a significant enough proportion to generate an overall bias in the sample taken 

as a whole, this bias would be a positive one, masking significant improvements in 2012 rather 

than exaggerating them. The results of the main study (section 3.1) would therefore not be 

compromised. 

Table 15: Student bias distribution statistics for the Analysis of spinach extracts experiment 

year Median Mean N 
Std. 

Deviation 

Kurtosis Skewness 

value Std. Error Skewness Std. Error 

2011 1.46 1.5653 141 1.15439 1.014 .406 .386 .204 

2012 1.61 1.7962 77 1.12784 -.539 .541 .308 .274 

Because the distribution of the 2011 data appears significantly non-normal, the distributions of 

student “ability” measures were compared using non-parametric statistical tests. Both the 

mean “ability” measure and the shape of the overall distribution of these measures were 

compared. The data clearly show that the median and distribution of student biases may be 

considered equivalent between the two years, as judged by Mood’s median test (grand 

median = 1.61, 2 = 0.432, df = 1, p = 0.5108) and the Mann-Whitney U test (standardised test 

statistic = 1.285, p = 0.1988). Fitted normal distributions are displayed in Figure 26 using black 

lines. 

 
Figure 26: Student bias distributions for the Analysis of spinach extracts experiment 

Overall, the distributions of broad-scale student biases for samples taken from the two 

different years appear equal, as judged using responses to this unchanged experiment. Though 

some items appear to be more “difficult” to answer positively for the 2012 cohort, potentially 

indicating a finer level of bias applicable to these questions only, this would mask significant 

improvements rather than exaggerate them. For this reason, the conclusions drawn in the 

main study appear valid. 

3.2.4 Discussion 

3.2.4.1 Summary of sample adequacy implications 

A major outcome of this investigation is the evaluation of the adequacy of samples gathered 

for the initial score-based study (section 3.1), with particular focus on their representative 

nature or otherwise and their comparability between the two years. These two features are 
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required for the conclusions of the initial study to be valid and as such are summarised for 

each studied experiment individually below. 

Vapour Pressure 

The 2011 data appear unbiased, with the exception of one response which may be a 

‘donkey vote’. This response is not expected to influence results significantly. 

The 2012 data appear significantly biased towards positive responses. This appears to 

have arisen because responses collected from Week 6 and Week 8 of the semester 

appear more positive than data from Week 10, and these were more frequently 

represented in the sample. It has been shown, however, that the magnitude of the 

bias present in the 2012 distribution is not sufficient to account for all differences 

observed in the main study data comparisons. It was also shown that the difficulty of 

responding positively to some (unidentified) items of the survey significantly differs 

between the two years, independent of student biases.  

Biological Buffers 

The 2011 data appear unbiased towards more positive or negative responses overall. 

Whilst the distribution of student biases in this sample does not show evidence of 

overall bias in either the positive or negative direction, its shape may not be 

representative of the broader population, as some kurtosis is evident. 

The 2012 data appear unbiased. Neither student propensity to respond positively, nor 

the difficulty of responding to any item positively independent of bias, changes 

between the weeks in which the experiment may have been conducted. The majority 

of evidence suggests that the distribution of student biases sampled for this 

experiment approximates normality. 

Copper (II) Ion Concentration 

The 2011 data appear biased, but it is unknown whether the bias is positive or 

negative in nature. 

The 2012 data appear biased, caused by skew in the distribution of biases sampled 

from Week 6 of the semester. It is unknown whether this bias is in the positive or 

negative direction. The “difficulty” of responding to any given item positively, 

independent of student bias, did not appear to differ between weeks of the semester. 

The significant bias in the samples taken from the two cohorts for this experiment may 

potentially explain why no significant differences were detected in survey responses 

between the two years for this experiment in the main study, despite the fact clear 

differences between years are apparent in the case of the other two experiments. 

Negative control: Analysis of spinach extracts 

The student cohorts from 2011 and 2012 appear comparable. The distributions of 

student biases sampled from each year are equivalent. Some items appear more 

“difficult” to respond to positively for the 2012 cohort, potentially masking 

improvements in 2012 as opposed to exaggerating them. 
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3.2.4.2 Scores versus measures: incongruent results 

As can be seen from the summary presented above, consideration of student bias effects has 

the potential to perturb the conclusions drawn from a score-based study. Whilst in this specific 

case the student samples obtained appear roughly acceptable, it needed to be confirmed that 

various features observed were not problematic numerous times over the course of the 

analysis. Even with typically greater than 50 observations for each sample, the distribution of 

biases often appeared skewed, opening the possibility that this bias could have perturbed the 

scored results obtained.  

The case of the vapour pressure experiment highlights this point: scored results yielded an 

exaggeration of the actual cohort difference, thus it needed to be confirmed using Rasch 

measurement techniques that any genuine differences in experiment quality persisted after 

taking this into account. Once Rasch measurement was used to estimate the impact of student 

bias differences, only items 1 (concerning data interpretation skills development) and 14 

(concerning overall learning experience) are confidently reported to differ between years. 

“False positives” were reported for three other survey items by the scored results prior to this 

amendment. It is conceivable that shifts in the distribution of student biases could similarly 

produce “false negatives” in other analyses, counteracting genuine differences in experiment 

quality which would otherwise be evident if using student independent measurements (i.e. 

Rasch measures).  

Based on these observations, it appears that scored results do not necessarily yield the same 

conclusions as sample independent measures (Rasch measures) would. The fact that scores 

conflate student dependent and student independent effects allows the biases of individual 

student responses to perturb the results observed. A substantial problem is faced by 

researchers who observe a difference in scored results: it could be that experiment quality has 

changed or it could be that the students sampled have a different bias, but it is not a simple 

matter to tell the difference between the two. Further, when using scoring techniques, shifts 

in student bias could mask genuine differences in experiment quality which would otherwise 

be evident. The use of the traditional integer scoring method, therefore, places the researcher 

at risk of both type I and type II errors in absence of demonstrably comparable student 

samples. 

Fortunately in this specific case, open response data was also available to affirm or refute the 

conclusions implied by the scored Likert-type data. It is unfortunate that this particular study 

could not make use of student identification numbers in order to connect subsets of the data 

gathered in different years, in order to make the same comparisons using Rasch measurement 

instead of scores. The fact remains, however, that genuine student independent measures and 

scores do not necessarily yield the same conclusions. Making more accurate comparisons 

requires student biases to be estimated from other data, such that the locations of student 

independent measures for each group compared can be estimated relative to them. Achieving 

this requires the identification of cases where the same student (presumably of the same bias) 

responds on multiple different occasions, allowing any differences in the ‘bulk’ distribution of 

student biases to be identifiable and able to be controlled for. Subsequent studies presented 

in this thesis will make use of student identification numbers to achieve this. Additionally, it 

remains unknown from this study precisely how much student bias varies. It may be the case 

that the observations of this study are a rare exception, whereas student biases typically may 

remain reasonably invariant overall. A more generalised approach to this topic is therefore 

needed, beyond this specific case. A general relationship between the Rasch measure for a 
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survey item and the corresponding mean scored response expected from the student 

population is needed to shed light on this issue. 

3.2.5 Conclusion 

Data presented here reveals the potential for scored ASLE survey Likert-type data to yield 

inaccurate conclusions. Whilst the broader scale conclusions of the previously presented 

research (section 3.1) appear to hold, the results of the Likert-type item comparisons need 

some degree of revision. Commonly utilised mean scoring techniques appear susceptible to 

the effects of student biases, conflating these effects with any changes in sample-independent 

factors, such as the “objective” quality of the experiment. Following the observation of this 

specific case of scores yielding subtly different conclusions to genuine interval scale measures, 

a more generalised investigation into the relationship between scored results and sample 

independent measures is needed. The extent to which student biases confound scored results 

in a general sense remains an open question, and achieving a more valid means to contrast 

experiments evaluated using the ASLE survey remains as a future goal. These two points are 

addressed in subsequent sections of this thesis. 
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3.3 Scoring responses to individual Likert-type items on the ASLE 

survey 

3.3.1 Outline 

Following the previous study’s illustration that student biases may confound the results of 

comparisons made using integer scoring methods, the extent to which these effects are likely 

to be problematic in a more general sense became a pressing question. The research 

presented in this section now explores the relationship between traditional scores and 

corresponding Rasch measures far more explicitly, investigating the precise mathematical 

relationships between the two. This topic will be explored both at the level of individual 

response data, as well as mean scores obtained from entire samples. Through these analyses, 

the relative contribution of student bias effects on the variance in observed survey responses 

can be known, shedding light on whether mean scores are likely to be a valid means of 

indicating change in the “objective” quality of experiments evaluated. Knowledge of the 

relationship between scores and sample independent, interval scale (Rasch) measures will be 

used to explore the validity of the statistical treatment of ASLE response data, including the 

application of the integer scoring technique as well as parametric statistical methods. 

At this stage, it will still be presumed that “objective” experiment quality can validly be 

attributed a numerical value. That is, it is presumed that valid interval scale measures of 

student independent experiment quality exist. The accuracy or otherwise of this supposition is 

necessary for these preliminary investigations, but will be addressed subsequently in this 

thesis (see section 4.1). Working under this presumption, Rasch models can be generated 

describing the relationship between score and measure for each item of the ASLE survey and 

from this, population level expectations can be extrapolated. In this way the relationship 

between Rasch measure and expected score can be known, more conclusively answering the 

question of whether integer scoring methods are a valid means of measuring experiment 

quality in general, presuming such a thing can be measured. The first primary hypothesis of 

this thesis: 

Conclusions drawn from the ASLE survey data using typical scoring techniques 

resemble conclusions drawn using sample independent, interval scale measures 

extracted from the same data. 

will thus be supported or refuted at the conclusion of this study. It will also be determined 

whether parametric statistical techniques are appropriate for data treated using integer 

scoring techniques, if traditional integer scoring techniques are valid. Broadly speaking, this 

study evaluates the adequacy of the current methods used to extract measurements from 

survey responses. In generating Rasch models for the ASLE data based on current assumptions 

of the way ASLE surveys function, the presumed “measurement mechanism” by which 

observed responses are related to underlying latent traits may also begin to be explored.  

3.3.2 Specific methods 

3.3.2.1 Assumptions of ASLE survey use and Rasch model construction 

Rasch models estimated during the course of this study were constructed based on the 

assumptions required for the usual uses of the ASLE survey data. These assumptions and their 

implications for the construction of Rasch models for the data are outlined below. 
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Assumption 1: Responses given by the same student are comparable between different 

occasions, and between different experiments.  

For example, if a student responds “agree” to item three in Experiment A, and also responds 

“agree” to the same survey item in Experiment B, these responses may be interpreted 

equivalently in terms of what they imply regarding experiment quality. In terms of constructing 

a Rasch model of the data, this implies student measures; each student’s propensity to provide 

positive response, must remain constant for all occasions. This assumption also requires that 

the structure of the rating scale remain constant for all occasions (experiments). 

Assumption 2: Different survey items concern different topics, and responses to them therefore 

reflect different latent variables. 

This implies two things for the construction of Rasch models. Firstly, if student independent 

factors are presumed to exist, a different measure must exist for each of the fourteen survey 

items. Secondly, students must each have fourteen different measures; one contributing to 

each of the fourteen different question specific latent variables. For example, a student’s 

tendency to find experiments interesting is presumed independent to their tendency to report 

that the experiment provided them with the opportunity to take responsibility for their own 

learning, as these are fundamentally different topics. In general, any given student may (but 

not necessarily) have a different tendency to respond positively to a different survey item for 

similar reasons, and must therefore be assigned a different Rasch measure for each. 

Assumption 3: Student independent measures of experiment quality exist and influence ASLE 

survey responses for the relevant experiment.  

This assumption requires that there is some student independent component to observed 

responses: a measure of experiment quality, generally true for all students. Coupling this with 

the requirements of assumption 2 above, these measures must be specific to the question 

asked as well as the experiment being evaluated. Each experiment evaluated is thus presumed 

to have 14 different quality measures associated with it: one targeted by each Likert-type 

survey item. 

Overall, these assumptions necessitate that a Rasch model of the ASLE data be constructed in 

the following way: 

 
𝑙𝑛 [

𝑃𝑞,𝑛,𝑖(𝑋 = 𝑥𝑘)

𝑃𝑞,𝑛,𝑖(𝑋 = 𝑥𝑘−1)
] = 𝑞,𝑛 − 𝑞,𝑖 − 𝜏𝑞,𝑘 32 

where the subscripts q, n and i denote specificity to the qth survey question, nth student 

responding and ith experiment evaluated respectively. The variable X is the observed 

response, equal to one of the five available response categories x1 to x5 and the values  and  

correspond to student dependent (bias/ “ability”) and student independent (experiment 

quality/”difficulty”) measures respectively. The  parameters define the rating scale structure. 

An interesting feature of this model is that no variable is independent of the question asked. 

From a measurement perspective, this implies there is no common point of reference for 

which measures specific to different questions may be assigned values relative to one another 

and relative to the common reference. This means that data obtained for different survey 

questions is necessarily disconnected (see section 2.3.3) and not directly comparable. For this 
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reason, fourteen distinct question specific Rasch models exist under these presumptions, and 

this is therefore how the data were modelled in the investigation discussed.  

This model of the data is also intuitively sensible, given the deliberate multidimensionality of 

the ASLE survey instrument; each Likert-type item, by design, targets a different dimension of 

the laboratory learning experience. Here, a different unidimensional Rasch model is generated 

for the measurement of each distinct dimension of the survey, each with student “ability” 

measures and experiment “difficulty” measures specific to that dimension. The result is one 

Rasch model for each of the fourteen survey questions asked: the “items” within each Rasch 

model are simply the different circumstances (experiments) in which the identical question 

was asked of the students, with each circumstance having a different “difficulty” of providing 

positive response to that same question. 

3.3.2.2 Data collection 

Responses to ASLE surveys (Table 1) utilised in this investigation were gathered from first year 

undergraduate chemistry students at the University of Adelaide nearing the end of their 

laboratory sessions from late 2012 through to the end of 2013. These surveys were presented 

as optional, and allowed for the voluntary inclusion of the student’s identification number. 

Responses from the 1127 different students who freely chose to provide these numbers were 

collated and used to estimate Rasch models for each of the ASLE survey’s fourteen Likert-type 

questions. Those without identification were excluded out of practical necessity. A total of 33 

experiments were evaluated using survey responses from these students, listed in the 

supporting information (Table S 40, section 7.3.1). Surveys were gathered from both the 

Chemistry IA/B and Foundations of Chemistry IA/B cohorts. 

Experiments of the same title conducted by the two different student cohorts were not 

necessarily identical, with the Foundations of Chemistry forms of the experiments having been 

modified to suit the different student cohort in some cases (see section 2.1.3). Though the 

same experiments were present in both of the two years, small changes had been made in 

some cases and therefore each was considered a different experiment (with a different set of 

“difficulty” measures) for the purposes of the Rasch analyses. This data is consolidated in 

subsequent investigations, only after establishing it is valid to do so (see section 4).  

The number of responses received from each experiment contributing to the analyses in this 

study is detailed in the supporting information (Table S 40, section 7.3.1) as well as the total 

number of responses received, not all of which could be used for these purposes owing to the 

lack of provision of a student identification number. Far more students provided responses in 

2013, and of those, a higher proportion chose to provide their identification numbers. 

3.3.2.3 Data cleaning process 

Each separate question of the ASLE survey was analysed in isolation from the others, yielding a 

separate two-facet (experiments, students) rating scale Rasch model specific to each Likert-

type survey question. Rasch models were generated using the Winsteps Rasch measurement 

software.153 For each question separately, survey responses received which included a student 

identification number were collated and entered into the Winsteps software. Persons or items 

(experiments) which were reported by the software to be disconnected from the bulk of the 

data and present in isolated “subsets” were removed, as were students providing all responses 

in the extreme positive category or all responses in the extreme negative category (for 
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justification of these procedures, see section 2.3.3). This procedure was repeated until all 

remaining data points appeared connected as reported by Winsteps. 

At this point, two different Rasch models were generated for the data remaining: one model in 

which the rating scale structure was constant for all experiments, and a second model in which 

the rating scale structure was allowed to differ between Chemistry IA/B experiments and 

Foundations of Chemistry IA/B experiments. The model which best explained the data as 

judged by the corrected Akaike Information Criterion (see section 2.5.4.2) was then used for 

subsequent data preparation and analysis. 

In order to achieve the best estimates of the Rasch model, students significantly misfitting the 

model were, at this point, removed from the analysis (see section 2.3.2 for justification). 

Students selected to be removed were those for which the infit or outfit z value was outside of 

the +2 to -2 range. The z value was used to identify misfit as opposed to the mean square value 

due to the mean square’s insensitivity to variance in the measures. It is acknowledged, 

therefore, that whilst those students removed misfit the model to a statistically significant 

degree, the actual magnitude of their misfit was not necessarily large. For this reason more 

students may have been removed than was necessary due to this conservative methodology. 

However, this is unlikely to cause significant issues as Rasch modelling is useful even with small 

sample sizes, preferably a minimum of 10 observations per response category.239, 300  

Following this removal of misfitting students, the data were further examined for connectivity, 

and persons or items (experiments) appearing to be present in separate subsets to the rest of 

the data were removed. Extreme responding students were also again removed at this stage 

(see section 2.3.3 for information on both disconnected and extreme responses). Rasch 

models generated from the data remaining were used for the subsequent analyses presented. 

Details of the results of these models, as well as the numbers removed during data 

preparation steps previously described, are available in the supporting information (sections 

7.3.4 - 7.3.17). 

3.3.2.4 Generating score to measure relationships 

For each Rasch model (one for each Likert-type survey question), the probability of observing 

each possible response (of score x) as reported by a student of measure  in response to an 

experiment of measure  is calculated directly from the Rasch model. By modelling  student 

measures as being normally distributed, an assumption made by initial estimation methods of 

the Winsteps software (see section 2.3.1), the probability P* of observing each given response 

(xk) when sampling randomly from the whole student population, all of whom are responding 

to an experiment of quality measure  with respect to the question being asked, was derived 

using the law of total probability.301 

 
𝑃∗(𝑥𝑘 , 𝛿𝑖,𝑚) = ∫ 𝑃(𝑋 = 𝑥𝑘) × 𝑃(𝛽)

∞

−∞

. 𝑑𝛽⁡⁡⁡⁡⁡; ⁡⁡⁡⁡⁡𝑃(𝛽)⁡~⁡𝒩(𝛽̅, 𝜎𝛽
2) 33 

Equation 33 results from taking the probability that a specific student of measure  will 

provide response xk (obtained directly from the Rasch model, see Equation 1), multiplying that 

value by the probability of sampling a student of that specific  measure, then summating 

across the entire distribution of possible  measures.  These functions, like the Rasch model 

equations from which they are derived, are specific to the survey item posed. 
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From these functions, evaluated using the Matlab software,302 the distribution of expected 

mean ASELL scores as a function of the experiment measure  were derived for each of the 14 

Likert-type items of the ASLE survey. The population level probabilities of observing a response 

in each category, computed via Equation 33, were taken to approximate the expected 

population level proportion of responses in each category (the observed count c for the 

category divided by the total number of responses N). 

 𝑐𝑘

𝑁
≈ 𝑃∗(𝑥𝑘 , 𝛿) 34 

These values were then used to compute the mean ASELL score in the usual way (see Equation 

28). The expected mean ASELL score provided by the average student (the “fair average” 

associated with the relevant  value) was also calculated, the mathematics of which has 

previously been described (see section 2.5.1). Standard error values (and subsequently 95% 

confidence intervals) for the expected population level mean ASELL scores were calculated at 

various sample sizes using standard statistical formulae previously discussed (see sections 

2.4.1 and 2.4.3), again utilising the approximation shown in Equation 34. 

3.3.2.5 Simulation of population level distributions 

Population level probabilities generated using Equation 33 were used to simulate 5000 

samples of 100 observations each for item 2 of the ASLE survey: “This experiment helped me 

to develop my laboratory skills”, selected from the fourteen Likert-type items of the survey for 

reasons detailed in the subsequent discussion (see section 3.3.3.3). This simulation study was 

conducted in order to test the assumption that the mean scores obtained from random 

samples appear normally distributed about the true population mean; a requirement of 

parametric statistical methods. The population level proportion of responses in each of the 

five response categories for this item were evaluated at experiment measure =0, as this is by 

definition the measure of the average experiment in the sample. Random numbers ranging 

from zero to one were generated using Microsoft Excel’s RAND() function, and from these 

random numbers, simulated responses in one of the five categories were assigned based on 

the random number values. The range of random number values corresponding to each 

assigned response was, in each case, selected such that the size of the random number range 

corresponded to the relative probability of that response category being observed. 

Given the central limit theorem, sample mean scores will more closely approximate a normal 

distribution as sample size increases (see section 2.4.2, Equation 11). The task is therefore 

simply to evaluate the sample size at which the approximation is sufficiently close, and this 

was done based on Muthén and Muthén’s criteria303 for deciding sufficient sample size using 

randomly simulated data. Accordingly, the sample size was deemed to be sufficient once 

coverage (the proportion of the data falling within the expected 95% confidence interval) was 

consistently between 0.91 and 0.98, and the bias in the estimated standard error in the mean 

score was less than 5% in magnitude. Muthén and Muthén also recommend that bias in any 

parameters estimated (in this case the mean score) should not exceed 10%, however given 

that the location of the zero point of the scale influences this bias value and that the zero point 

on the ASELL scoring scale is arbitrary, this was not investigated. The estimated and true 

population means were, however, still compared. 
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3.3.3 Results 

3.3.3.1 Features of models generated 

Statistical details of the fourteen rating scale Rasch models generated, one model for each 

Likert-type survey item, are available in the supporting information (sections 7.3.4 - 7.3.17). 

This information includes the number of data points received in each response category, 

separation and reliability values for both persons and experiments, the raw variance in 

observed responses explained by the person and experiment measures as evaluated by 

Winsteps’ variance decomposition, fit statistics for the response categories and for each model 

globally, measures and ranges for response categories,  estimated Rasch-Andrich thresholds 

with associated standard errors as well as Rasch-Thurstone thresholds and estimated local 

discrimination values for each pair of adjacent response categories, histograms displaying 

distributions of estimated person and item measures and figures displaying empirical and 

observed response category probability curves. The interpretation of these statistics is 

described extensively in section 2.5.2: “Rasch model fit statistics and descriptive values”. 

Person measure reliability values in all fourteen models are very low. This is most likely a 

consequence of the fact that any given student only responded to a small number of 

experiments, making estimation of their Rasch measure imprecise. Experiment measures show 

better reliability values, though these vary broadly from high values near 0.95 through to low 

values closer to 0.6 in some cases. This variation may have arisen for a broad array of reasons. 

Regardless, this should not be problematic for this study, as the main focus here is the 

response scale structure. Sample sizes achieved appear adequate for the most part, however 

the most negative category received less than the recommended 10 data points for a number 

of survey items. The practical implication of this is that score to measure relationships 

presented here are imprecise for the extreme negative end of the response scales presented. 

This imprecision is reflected in large standard error values seen for the lowest Rasch-Andrich 

threshold parameter in each model. Poor alignment between person measures and 

experiment measures (poor targeting) in most cases may have contributed to this issue as well 

as the issues with reliability previously described. Better survey targeting could yield more 

accurate results than presented here, notably by including survey responses gathered from 

experiments which illicit more negative responses than the experiments studied in this 

research.  

Poor survey targeting is also a likely contributor to the low proportions of observed variance 

explained by the experiment measures. Variance explained by experiment measures is under 

10% for almost all survey items; a small fraction of the total variance explained by both 

student and experiment measures combined, often near 50% (which is acceptable). Most 

experiments have measures with substantially lower values than most person measures, 

making positive responses far more likely and therefore reducing the amount of variation in 

observed data attributable to measurement differences. This makes the relative contribution 

of random effects (such as the inherent imprecision of the five-point response scale) 

comparatively larger, reducing the precision and reliability of measurements achieved. 

Additionally, the distribution of student measures in each case appears much broader than the 

distribution of experiment measures, reducing the relative contribution of experiment-specific 

factors to the observed responses and depleting the variance explained by experiment 

measures. This could potentially mean that large samples need to be gathered in order to 

‘average out’ these student factors and random effects when using scoring methods. The need 

for further investigation into the nature of these undesirable contributions to the ASLE survey 
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responses therefore warrants subsequent research, discussed later in this thesis (see section 

4.1). 

Despite these effects, fit statistics appear acceptable and the numbers of students removed 

due to misfit were not excessive, meaning that Rasch models generated likely provide a good 

representation of expectations for the bulk of the student population. The narrow range of 

experiment measures and the poor targeting achieved here is a property of this specific 

sample and not necessarily to be expected in all cases. Category structures and threshold 

parameters estimated should still be generalizable, despite the fact their associated errors 

could have been reduced if the experiments surveyed were more varied and better aligned 

with the distribution of student measures. 

3.3.3.2 Relationship between mean ASELL scores and Rasch measures 

Estimation of Rasch models for each survey item revealed the rating scale category structure 

for each item of the survey. An example is displayed below in Figure 27, and similar graphs are 

available for all items of the ASLE survey in the supporting information (sections 7.3.4 - 7.3.17).  

 

Figure 27: Response structure for item 3: “I found this to be an interesting experiment” 

Colours of red, yellow, green, blue and purple have been used to illustrate the probability that a given 

student will provide response in the five available response categories (strongly disagree, disagree, 

neutral, agree and strongly agree respectively). The category threshold parameters of the Rasch model 

(k) mark the boundaries between most probable response categories for the given latent trait measure 

( -  on the horizontal axis). Either higher student measure (, reflecting bias) or lower experiment 

measure (, reflecting “difficulty” of providing positive response) imply that more positive responses 

become more probable. 

A key feature of most rating scale category structures is that the categories do not appear 

“equidistant”: more positive response categories typically gather a broader range of 

perceptions. The lack of consistency in the width of each category explains why the more 

positive categories are often associated with higher coherence values; it is more often 

accurate to infer a measure of perception from the category observed (and vice versa) in these 

cases, because in these ranges of perception the probability of responding in other categories 



3.3  Quantitative methods and the ASLE survey data| Scoring responses to individual Likert-type items on 
the ASLE survey 

91 

 

remains relatively low. By contrast, drawing inferences between observed response category 

and measure of perception may be inaccurate for the lower categories, as a high degree of 

overlap exists between category probability values. Shown below in Figure 27, for example, 

even at the most probable point of responding in the “disagree” category ( -   -2.5), there is 

still only a 50% chance the student will respond with “disagree” rather than the adjacent 

response options. For reasons such as these, the frequency of accurate inference from 

response category to measure of perception often drops below 50%, with the exception of the 

second to most positive response category. This category, except in the case of item 13, 

universally gathers the most responses and covers the broadest range of perceptions, making 

inference from observed category to measure of perception accurate typically more than 70% 

of the time for this category. 

 
Figure 28: Category measures and ranges for the ASLE survey items 

Solid lines indicate category measures: the measure ( - , see Figure 27) at which responses observed 

would be expected to receive an average score of the value displayed in the legend. Boundaries between 

shaded regions reflect half-point thresholds: the measures ( - ) at which the expected average scored 

response is mid-way between integer value scores assigned to the response categories. 

Category measures and ranges reported by Winsteps for the models generated were obtained 

for each item of the survey (Figure 28). Survey items 4, 5, 11 and 12 were best modelled as 

having a different response scale structure for the two different student cohorts, usually with 

slightly wider categories for the Foundations of Chemistry student cohort model. One key 

feature of the response scales highlighted by these measures is the fact that the measure of 

the centre category is typically a negative value. The zero-point of the category structure is the 

point of equal probability of responding in the two most extreme categories, and in all cases 

observed here, the centre category appears lower than this point. Figure 28 above again 

displays the lack of consistency in the width of the five available response categories, for each 

item of the survey. The relationship between Rasch measures and corresponding score values 
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for each category shows a clear lack of equivalence between the magnitude of a change in 

score and the magnitude of a chance in perception. The category structure also appears to 

vary between different items of the survey instrument. For example, item 13 shows a category 

structure with a very wide centre category compared to the other items. 

The impact of this variation and the inequality of the spacing between categories of response 

on the generation of mean ASELL scores was investigated further, by generating the 

relationships between experiment measure () and expected mean score. An example of this is 

displayed in Figure 29.  

 

Figure 29: Expected mean ASELL scores for item 14: “Overall, as a learning experience, I 
would rate this experiment as” 

The “Experiment measure” corresponds to the  value referenced continually throughout this study: the 

student independent measure of “difficulty” in providing a positive response to the item. The plot shows a 

non-linear relationship between this truly interval-scale measure of objective experiment quality and the 

mean score value expected to be observed when following typical ASELL data treatment methods. 

Dotted lines display the variation in expected mean scores at a variety of sample sizes, with less variation 

observed when more samples are gathered. 

The change in mean ASELL score as a function of the Rasch experiment measure does not 

appear to be strictly linear, though appears roughly so in the region in which non-extreme 

ASELL scores (-1.5 to 1.5) would be received. A roughly sigmoidal curve is observed in most 

cases, with the maximum and minimum mean ASELL scores of plus and minus two observed 

beyond approximately -5 or +10 logits respectively from the measure of this sample’s average 

experiment (experiment measure  = 0). Item 13, regarding the time available, appears 

different; the expected mean ASELL score plateaus and does not substantially change from 

zero for approximately 3 logits either side of the average experiment’s measure (Figure S 48, 

p.259). The standard deviation in experiment measures for this item is roughly two logits 

based on this sample, meaning that ASELL scores for item 13 are extremely insensitive to 

changes. This is a limitation of the scoring system when applied to this item. Non-linearity in 

the relationship between ASELL score and measure is not unique to item 13, however. The 

expected mean ASELL score received from the average student does not always align with the 
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expected mean score received from the whole student population, suggesting possible skew in 

the distribution of expected mean ASELL scores at locations where these values differ. This 

may be important for obtaining the sample sizes required. Regions of the scale which produce 

a more skewed distribution of mean ASELL scores would require larger sample sizes for the 

purposes of statistical comparisons.173 

In order to investigate the degree to which the non-linear relationship between score and 

measure impacts the validity of the use of scores, the correlation between mean ASELL score 

and estimated Rasch measure was calculated (Figure 30). Scores were calculated using both 

the traditional ASELL integer scores and by using the category measures obtained by Rasch 

modelling as “optimised” scores. This was conducted using data points used for the Rasch 

measure estimations and repeated using all data points collected prior to the data cleaning 

process. Because of the small number of responses received in 2012, correlations between 

scores measures were also separately evaluated for the 2013 data only. 

 

Figure 30: Observed similarity between mean score values and estimated Rasch measures 

Data cleaning processes noted in the legend include removal of extreme, disconnected and substantially 

misfitting responses. Data points remaining after these cleaning processes reflect those which may be 

adequately described by Rasch models (thus presumed not to be “donkey votes” or inconsistent with the 

majority). The “optimised” scores referred to in the figure utilise category measures (see Figure 28) in 

place of the usual integer score values assigned in order to better reflect the true magnitude of difference 

between the five rating scale options. 
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Results show that scores generally correlate reasonably strongly to the interval scale Rasch 

measures, with little difference between the integer scoring system and the optimal scores 

obtained from using category measures. The data cleaning process does not appear to have 

altered this. However, small sample sizes appear to severely deteriorate this correlation 

between score and measure. This can also be seen in the broadening of the 95% confidence 

intervals of expected mean ASELL scores in the score to measure relationship plots for each 

item’s Rasch model (such as the example shown in Figure 29). Data misfitting the Rasch model, 

such as “donkey votes” and students dissenting from the majority, appear to severely enhance 

the lack of correlation for small samples. 

3.3.3.3 Simulation study: the appropriateness of parametric statistics 

A simulated distribution of mean ASELL scores received for an average experiment ( = 0) in 

response to item 2 of the ASLE survey: “this experiment allowed me to develop my laboratory 

skills” is shown in Figure 31. Simulations have been repeated for a range of sample sizes to 

obtain the distributions shown (5000 simulated samples of the relevant size in  each case). 

 

Figure 31: Distribution of mean ASELL scores obtained from samples of various size, in 
response to item 2 of the ASLE survey 

Alignment between the observed simulated distributions (shaded red and orange) and the predictions of 

a normally distributed data set (dotted lines) indicate that the presumptions of parametric statistical 

methods are closely met. Results were generated using parameters estimated for item 2 of the ASLE 

survey: “This experiment helped me to develop my laboratory skills”, detailed in Table S 42 of the 

supporting information (section 7.3.5). 
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Survey item 2 was chosen for this simulation study for a number of reasons. Empirically, this 

question shows the highest variance in observed responses explained by the experiment 

measures (as opposed to student factors) of all questions examined (23.8%), and also one of 

the highest total proportions of variance explained by the Rasch model as a whole (55.2%). The 

person measures also appear at least roughly normally distributed, meaning the normal 

distribution approximation used to generate the measure to expected mean ASELL score 

relationships is more likely accurate. The category structure also appears to have good fit 

statistics, with a sufficient number of samples gathered in each category to give an acceptable 

approximation of the category parameters. This survey item also shows one of the highest 

experiment measure reliability values (0.94).  

The average mean ASELL score obtained in the simulations closely aligns with the true 

population mean score of 0.98 for all sample sizes. The average estimate of the standard error, 

however, appears smaller than the true standard error for small sample sizes. The bias in the 

average standard error estimate reaches acceptable criteria (below 5% bias) by a sample size 

of eight (precise values not shown). The 95% confidence interval assumed by parametric 

statistics (assuming normal distribution of mean scores) aligns well with the empirical region 

containing 95% of all simulated means obtained for all sample sizes, improving as sample size 

increases as expected. The proportion of simulated means falling within the 95% confidence 

interval assumed by parametric statistics reaches acceptable levels (between 0.91 and 0.98) 

after only two samples. Methods of calculating the sample size required for a normal 

distribution in population means based on the skewness of the distribution of observed data, 

such as Boos and Hughes-Oliver’s173 suggestion of (5.66skew)2 for a two-sided test or 

Cochran’s rough guideline172 of 25skew2 appear roughly accurate, recommending sample 

sizes greater than approximately 5 and 4 respectively. Criteria recommended by Boos and 

Hughes-Oliver173 are suggested based on achieving coverage of at least 0.94, and this is 

achieved in all but few cases beyond the sample size recommended by their method. 

3.3.4 Discussion 

The structure of the response scale categories yielded by Rasch models reveals a number of 

important results. Firstly, the variation in category structure between the different survey 

items removes the ability to interpret scores in the same way for different items of the survey. 

For example, a mean score of +1.2 on item 3 (interest) and mean score of 0.8 on item 6 

(understanding) does not necessarily imply that students responded more positively regarding 

their interest than they did regarding their understanding. It could be that the position of a 

truly “neutral” perception on each item’s response scale differs, or that the five response 

categories for one item gather different ranges of student perceptions than is the case for 

other survey items. The fact that response categories for all items are not equidistant also 

implies that at the level of individual responses the integer scoring system is strictly inaccurate. 

Given the variation in category structure between different survey items, the most accurate 

scoring system for one survey item is also not necessarily the same as for another.  

The relationship between mean ASELL score and the interval scale Rasch measure is not linear, 

implying that changes in mean ASELL scores reflect different sized changes in the variable of 

interest depending on the scale location. This reflects the non-additive nature of scores as 

opposed to measures often referenced in the literature advocating Rasch modelling over 

scoring systems. Mean ASELL scores do, however, strictly increase as the latent variable of 

interest increases, and for this reason are of practical use as an indicator of change. Changes in 

an experiment’s tendency to illicit positive responses can validly be inferred from observing a 
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change in mean ASELL score, but the magnitude of the change in ASELL score cannot be used 

to infer the magnitude of the change in the latent variable of interest. 

However, despite the strictly inaccurate nature of the integer scoring system, taking the 

average ASELL score still appears to be useful. Using ideal category measures in place of the 

usual integer values does not appear to greatly improve the validity of using scores as 

measures, and scores generally tend to correlate highly to the measures of interest provided 

sample size is sufficient. This congruence between Rasch measure and observed mean score 

aligns with the pre-existing statistics literature showing good agreement between item 

response theory based measures and scores assigned using classical test theory.  

Scored individual student responses, however, appear to have highly variable meaning. One 

student’s response scoring +1 could feasibly correspond to a less positive perception of the 

experiment compared to another student’s response scoring +0, based on the high degree of 

overlap in the rating scale categories (see Figure 27 previously). It is unclear how much this 

compromises the validity of rank-based non-parametric statistical tests, which have previously 

been used to avoid the controversies of using parametric methods on ordered categorical 

data. It appears that at the level of individual responses, the data may not even classify as 

being consistently ordered. 

The validity of using scores as if they were a true measure of the variable of interest appears to 

be the key problem with small sample sizes, rather than the validity of using parametric 

statistics. Correlations between scores and Rasch measures drop sharply if including data 

points of small sample size, likely due to the large variation in student measures which would 

otherwise be ‘averaged out’ over a large sample. Parametric statistics, however, appear 

entirely appropriate for mean ASELL scores from very low samples, as the assumption of 

normally distributed mean values is met. Mean ASELL scores are therefore fit for t-tests, 

ANOVA and other parametric techniques. Again, however, it should be emphasised that 

change in mean ASELL scores cannot be used to infer the actual magnitude of the change in 

the variable of interest. The non-linear relationship between scores and measures also means 

some differences in the trait of interest may not be detected in the mean scores. Using scores 

instead of measures therefore appears to put the researcher at risk of “type two errors”: 

inferring no difference when in fact there is one. 

3.3.5 Conclusion 

Despite common criticisms of using successive integer score values for the analysis of 

individual Likert-type items, it has been shown here that using mean scores in the case of the 

ASLE survey provides some practical use. Presence of differences in the latent variable of 

interest may be validly inferred from differences in mean scores, and mean scores appear to 

be fit for parametric statistical methods such as t-tests and ANOVA. Researchers using scores 

rather than more sophisticated measures such as those obtained through Rasch modelling 

should, however, be conscious of the non-linear relationship between mean scores and the 

underlying variable of interest they are intended to reflect. Mean scores generally correlate 

well to Rasch measures if sample size is large, however the magnitude of mean score 

differences is not informative of the true magnitude of any difference in the underlying 

variable. The presence of experiment independent factors such as a wide variety of student 

biases appears to threaten the validity of using mean scores as experiment-specific 

measurements at small sample sizes, warranting further investigation into the nature of these 

effects.
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4 Qualitative interpretations and 

the ASLE survey data 
In this section, the appropriate interpretation of ASLE survey data is explored in a more 

qualitative sense, exploring questions regarding the connection between survey data and any 

measures of experiment quality which may be considered largely student independent. These 

questions are investigated by refining different models of survey response, seeking the best 

explanatory model of the observed data. In so doing, this section tests the second and third 

primary hypotheses of this thesis: 

Hypothesis 2: 

Student independent contributions to the ASLE survey responses exist and are 

measurable. 

Hypothesis 3: 

Student independent measures obtained from ASLE survey data reflect qualities of the 

experiment evaluated. 

 

Section 4.1 considers an array of possible different interactions between students and the 

ASLE surveys, encapsulating each as a different Rasch model. The observed data 

are then fit to each Rasch model, using both fit to the model and parsimony of the 

model to determine the best explanation of the observed data. A principal 

question answered within this section is whether any student independent 

qualities, emergent from experiment design, can be said to contribute. 

Section 4.2 makes use of the best explanatory model of the ASLE data determined in the 

previous study, comparing the perceptions of male and female students. Whilst 

this section does not directly test either of the hypotheses reproduced above, it 

was considered worthwhile to answer questions regarding gender equality in the 

course given the opportunity. The study exemplifies the ability of Rasch 

methodology to investigate more deeply than scored analyses are capable, 

separately investigating student dependent and student independent measures. 

Section 4.3 probes the relationship between student independent measures associated with 

ASLE survey data and factors of the learning experience. A technique is developed 

and implemented to explain ASLE survey student independent measures as a 

function of more basic elements of the laboratory experience, encapsulating the 

relationships within a Linear Logistic Test Model (LLTM). Notably, the LLTM 

structure is estimated from observed data rather than stipulated a priori, as would 

usually be the case. 

Section 4.4 examines the relationships between different facets of the laboratory learning 

experience, as revealed by the LLTM derived in the previous section. Particular 

focus is given to the connection between generalisable measures of quality and 

the design features of the learning activity, addressing Hypothesis 3 above. 

Relationships uncovered reveal important conclusions for the pedagogy of science 

in the laboratory setting.
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4.1 Valid measurement of experiment quality using the ASELL 

project surveys 

4.1.1 Outline 

In the previous study, the ASLE surveys were analysed using Rasch measurement techniques, 

presuming the validity of assigning interval scale measures. Estimates of experiment and 

question specific measures were found to contribute very little to the variance in observed 

responses, whilst a broad range of different student specific effects was the dominant source 

of variation. Whilst gathering large student samples may average out these student variations, 

the small contribution of the assumed experiment and question specific factors raises the 

question of whether it would serve as a better explanation of the data to disregard these 

factors entirely.  This study therefore employs a number of Rasch measurement techniques to 

test a critical assumption of the ASLE surveys: that survey responses gathered from a particular 

experiment genuinely reflect some quality of that specific experiment. Rather than making 

assumptions regarding what the survey responses reflect and regarding their comparability 

between different survey occasions, a broader data set of ASLE responses is modelled under 

an array of different interpretations, varying the question specific and/or experiment specific 

nature of student dependent and student independent factors. Accounting for both the fit and 

parsimony of these different models, the Rasch model which serves as the best explanation of 

the ASLE survey responses is determined. The best model established here provides a 

foundation to begin more detailed investigations into why experiment measures take on the 

values that they do, allowing for the development and refinement of a specification equation 

deriving experiment quality measures directly from empirical features of laboratory activity 

design. Results obtained in this study also reveal information about the comparability of data 

obtained on different occasions, and the errors likely to be introduced by these effects are 

discussed. 

4.1.2 Specific methods 

4.1.2.1 Data collection and initial treatment 

The same data set used to conduct the statistical techniques validation study (section 3.3) was 

used to generate a variety of separate two-facet and three-facet Rasch models, each 

explaining the observed responses in a different way. These models were then statistically 

contrasted in order to determine which model served as the best explanation of the data 

available (using techniques to be discussed). In order to allow for comparative statistical tests 

between these models, the same exact data points must be used for each. Data points which 

contributed to an ‘extreme’ measure in any of these models were therefore removed from 

consideration by practical necessity, as these responses have indefinite associated statistics 

(see section 2.3.3). Additionally, it was ensured that all data points used did not appear 

disconnected from the bulk of the other data gathered for the same survey item, or from the 

same experiment (unless this was an artefact of the model used). This resulted in a total of 

45,641 data points being used to generate each of these Rasch models, gathered over a period 

of time from the second half of 2012 through to the end of 2013. Surveys gathered include 

responses from both the Chemistry IA/B and Foundations of Chemistry IA/B cohorts, some of 

which are associated with student identification numbers.  
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4.1.2.2 Facets of the explanatory models generated 

The generation of ASLE responses was conceptualised as the interaction of three basic 

components: the student responding, the experiment conducted and the questions asked. 

Building on this notion, a total of six possible facets which may contribute to an explanatory 

model of the ASLE data were identified.  Of these facets, those which take different values 

depending on which student is responding were deemed ‘student dependent’ facets, whereas 

those which take the same value regardless of which student is responding were deemed 

‘student independent’ facets. An initial presumption was made that the best explanatory 

model of the data would include at least one student dependent facet and at least one student 

independent facet, though this presumption was subsequently tested following the generation 

and analyses of these models, as described in this study’s results. 

Table 16 and Table 17 provide a description of each facet potentially included in explanatory 

models explored. Displayed are generalised descriptions of the manner in which different facet 

element numbers were assigned, using example element numbers. Each different facet 

element number corresponds to a different assigned measure value for that facet under the 

relevant circumstances, and conversely the same facet element number implies the 

assignment of the same measure value. More rigorous mathematical justification of Rasch 

model formulations including facets which vary in this manner are provided in the supporting 

information (section 7.4.1). Notations used for each facet here highlight the manner in which 

each facet is assigned different element numbers, whilst notations used in the supporting 

information are selected to best highlight the mathematics underpinning the facets’ 

derivations.  

Table 16: Student independent facets 

E Q  

Specific to: 

Experiment 

Independent of: 

Question 
Student 

Specific to: 

Question 

Independent of: 

Experiment 
Student 

Specific to: 

Experiment 
Question 

Independent of: 

Student 

 

Ex
p

e
ri

m
e

n
t 

St
u

d
e

n
t 

Question 

q.1 q.2 q.3 

Ex.A St.1 1 1 1 

Ex.A St.2 1 1 1 

Ex.B St.1 2 2 2 

Ex.B St.2 2 2 2 

Each experiment is assigned a 
different measure. These 
values remain the same 
regardless of which student is 
responding or which question 
is asked. 
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Question 

q.1 q.2 q.3 

Ex.A St.1 1 2 3 

Ex.A St.2 1 2 3 

Ex.B St.1 1 2 3 

Ex.B St.2 1 2 3 

Each question is assigned a 
different measure. These 
values remain the same 
regardless of which student is 
responding or which 
experiment is being evaluated. 
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p
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t 
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u

d
e

n
t 

Question 

q.1 q.2 q.3 

Ex.A St.1 1 2 3 

Ex.A St.2 1 2 3 

Ex.B St.1 4 5 6 

Ex.B St.2 4 5 6 

Each experiment is assigned a 
different measure for each 
different question. These 
values remain the same 
regardless of which student is 
responding. 
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Table 17: Student dependent facets 

 E Q 

Specific to: 

Student 

Independent of: 

Experiment 
Question 

Specific to: 

Student 
Experiment 

Independent of: 

Question 

Specific to: 

Student 
Question 

Independent of: 

Experiment 

 

Ex
p

e
ri

m
e

n
t 

St
u

d
e

n
t 

Question 

q.1 q.2 q.3 

Ex.A St.1 1 1 1 

Ex.A St.2 2 2 2 

Ex.B St.1 1 1 1 

Ex.B St.2 2 2 2 

Each student is assigned a 
different measure. These 
values remain the same 
regardless of which experiment 
is being evaluated or which 
question is asked. 

 

Ex
p
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m
e
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t 

St
u

d
e

n
t 

Question 

q.1 q.2 q.3 

Ex.A St.1 1 1 1 

Ex.A St.2 2 2 2 

Ex.B St.1 3 3 3 

Ex.B St.2 4 4 4 

Each student is assigned a 
different measure for each 
different experiment 
evaluated. These values remain 
the same regardless of which 
question asked. 

 

Ex
p
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t 
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d
e

n
t 

Question 

q.1 q.2 q.3 

Ex.A St.1 1 2 3 

Ex.A St.2 4 5 6 

Ex.B St.1 1 2 3 

Ex.B St.2 4 5 6 

Each student is assigned a 
different measure for each 
different survey question. 
These values remain the same 
regardless of which experiment 
is being evaluated. 

An array of nine possible two –facet models for the ASLE data was therefore determined by 

modelling the latent trait underpinning responses as the interaction of one student dependent 

facet and one student independent facet. Two other possible models were also identified; one 

three facet model containing all three broadly specific facets (those specific only to students, 

only to experiments or only to questions), as well as another three-facet model comprised of 

all three jointly specific facets (experiment and question specific, experiment and student 

specific, question and student specific). All models aside from these would contain 

redundancies and be reducible to one of these eleven,ii  leaving these eleven models to be the 

full range of possibilities. All Rasch models generated were of the form displayed in Equation 2 

(section 2.2.1), with the Andrich threshold () parameters differing for different survey 

questions (i.e. 14 scale groups, one for each survey item). Table 18 displays the way the latent 

trait variable  was modelled under each explanatory model. A Rasch model was generated for 

the observed data under each of these interpretations, recording the log-likelihood chi-square 

value and the number of free parameters estimated for each. These values were used to 

calculate the corrected Akaike Information Criterion (AICc) for each model, and the model with 

the lowest AICc value was taken to be the best explanatory model for the observed data (see 

section 2.5.4.2).  

                                                           
ii For example, a three-facet model --Q would be equivalent to a two-facet model -, as the  
measures, jointly specific to both experiment and question, would already embody any broad scale 
question specific variation otherwise encompassed by the Q measures. This arises for any model in 
which one facet, broadly specific to one component contributing to responses, is paired with another 

facet already jointly specific to that same component and another (for this reason, the Q-Q model and 

the E-E model are actually equivalent to one-facet models Q and E respectively). Further details are 
available in the Rasch model derivations provided in the supporting information (section 7.4.1) 
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Table 18: Mathematical form of the latent trait variable   in each explanatory model 

   
Student independent factors 

   

Experiment and 

question specific 

Question 

specific 

Experiment 

specific 

Student 

dependent 

factors 

Broad (non-specific)  -  A  - Q G  - E F 

Question specific  Q -  I Q - Q J Q - E C 

Experiment specific E -  H E - Q B E - E K 
     

Other models 
(Q + E) -  

[all jointly specific facets] 
E 

 - (E + Q) 
[all broadly specific facets] 

D 

Each Rasch model in the table above is derived from first principles in the supporting information (section 

7.4.1). Labels shown at the right of each model formulation (for example  A ) also appear next to the 

appropriate corresponding equation in the model derivations. Notations for each facet used in the main 

body (those shown above) are not the same as the more complex notations used in the model 

derivations. Notation here is based on how the factors vary and the way in which facet element numbers 

are assigned, whilst notation in the model derivations is based on the mathematical structure of each 

facet’s derivation. 

4.1.2.3 Further investigation using an expanded data set 

Upon determination of the best explanatory model, further investigation was conducted using 

an expanded data set, consisting of survey responses gathered from many experiments 

conducted at the University of Adelaide from times ranging from 2010 to mid-2014. A broader 

data set of survey responses was used for this subsequent investigation due to the fact that 

not only had more responses been collected by this time, but also because the best 

explanatory model determined allows for the use of survey responses without associated 

student identification (for reasons to be discussed). The use of these responses was not 

possible in the initial investigation due to the nature of some possible models (e.g. those 

where student measures remained constant throughout all experiments). This expanded data 

set made use of 9,287 surveys gathered after removal of extreme responses, composed of 

128,811 data points. More details regarding this expanded data set are available in Table S 56, 

presented in the supporting information (section 7.4.2). Fit statistics associated with measure 

estimates in the model determined to be the best explanation of the data were recorded to 

further assess construct validity. 

4.1.3 Best explanation of ASLE data 

Modelling student dependent factors to be question specific appears to be the worst 

explanation of the data, as demonstrated by the fact such models have the highest AICc values 

of all (Figure 32). A significant improvement is gained by assuming the bias of each student to 

be non-specific; constant regardless of which question is asked or which experiment is being 

conducted. However, the best, most parsimonious explanations of the ASLE survey data 

appear to be provided by models which allow the bias of each student to differ between 

different experiments. The model explaining the highest portion of observed data (66.64%) is 

the E+Q- model, in which student dependent factors are modelled as having both an 

experiment specific component and a separate question specific component, whilst student 

independent factors are modelled as being jointly specific to both question and experiment. 

The high portion of data explained is not worth the substantial lack of parsimony imparted by 
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the many modelled parameters needed to do so, however. The extra variance explained here 

appears not to be due to the model accounting for consistent and significantly evident trends 

in the data, but rather the model’s extra parameters allowing predictions to fit more closely to 

random ‘noise’.

 

Figure 32: Explanatory Rasch models for the ASLE survey data  

Models are arranged from best explanation of the observed data to worst, grouped based on the way in 

which students dependent factors appear to vary. Model descriptions correspond to those presented in 

Table 18. For each model, student dependent factors are modelled as either “broad (non-specific)”, 

“question specific”, “experiment specific” or “two-facet”, using , Q, E or (Q+E) respectively (see 

Table 17). Student independent factors are modelled as specific to “experiment”, “question”, “experiment 

and question (single-facet)” or “experiment and question (two-facet)” using E, Q,  or (E+Q) respectively 

(see Table 16). 

Both the question specific and experiment specific interpretations of student factors drastically 

increase the proportion of observed data explained by the models, as compared to modelling 

each student’s bias as broad and non-specific. However, only the experiment-specific student 

factor models achieve this in a sufficiently parsimonious manner. Assuming each student to 

have fourteen different bias parameters, one for each different question they may be asked, is 

extremely costly in terms of parsimony. Thousands of extra parameters need to be modelled 

under this interpretation  compared to simply assuming a single bias parameter per student, 

and the extra portion of the data explained does not make up for this substantial cost. 

Assuming each student has a different bias value for each experiment they conduct, on the 

other hand, achieves a similar amount of extra observed data explained by the model whilst 

modelling far, far fewer extra parameters to do so. Crucially, the fact that the AICc values for 
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these models (those where student factors are experiment specific) are lower than the 

alternatives where student measures are broad and non-specific demonstrates conclusively 

that the additional parameters are explaining real, consistent variations in the data. Modelling 

student biases as if they differ for each experiment the student conducts, rather than 

remaining constant, provides a better explanation of ASLE survey results.  

Based on this assessment, student dependent contributions to the ASLE survey responses 

appear to vary from experiment to experiment, and do so in a manner not equivalent between 

different students. One student’s tendency to respond positively may increase from one 

experiment to the next, whilst another student’s may decrease between the exact same two 

experiments. This appears to be the case regardless of how student independent factors are 

conceptualised, and is present to such a significant degree that ignoring these effects sharply 

decreases the proportion of observed data able to be accounted for. 

Student independent factors contributing to ASLE survey responses appear to be best 

modelled as being both experiment and question specific. Removing the experiment specific 

nature of these factors consistently provides a worse explanation of the data, as does the 

removal of the question specific nature of the data. This trend is true regardless of how 

student dependent factors are conceptualised. The null-hypothesis that these student 

independent factors are non-existent was firmly rejected in the best explanatory model of the 

data (2= 7324.9, df=451, p<<0.001), and modelling the student effects on their own (E) 

yielded a worse explanatory model by comparison (log-likelihood 2=80729.9, 3688 free 

parameters, 37.47% of variance explained, AICc=+5476.4 compared to the E- model). This 

data collectively provides strong support for the hypothesis that ASLE survey data reflects 

student independent factors which are specific to both the experiment evaluated and the 

question asked.  

Given this aligns with what would be expected if the usual assumptions about the way the 

ASLE survey works were true (see section 3.3.2.1), this is a promising result. However, the 

matter is complicated by the way the student dependent effects appear to function. The 

previous study discussed the usual assumptions of utilising the ASLE surveys, and the 

necessary implications these assumptions had for the construct of Rasch models of the data. 

One assumption discussed was the comparability of data across various different occasions, 

and it was described that this assumption requires that student measures remain invariant 

between different survey occasions (see section 3.3.2.1). As seen in Figure 32, the best model 

of all possible models is the model in which student dependent effects vary from experiment 

to experiment, whilst student independent factors not only vary from question to question but 

also vary differently in different experiments. Utilising the notation introduced in this 

investigation to specify the different facets, the relevant Rasch model is given in Equation 35, 

where the  parameter is specific to the survey question asked as well as the relevant category 

threshold. This is highly problematic, as it results in a model where nothing remains constant 

between different experiments evaluated. 

 
𝑙𝑛 [

P(𝑋 = 𝑥𝑘)

P(𝑋 = 𝑥𝑘−1)
] = 𝐸 − − 𝑘  35 

When modelled in this way, the data are split up into 33 isolated subsets, each of which 

contains the data gathered from one specific student group sampled. Different sample groups 

correspond either to different years, different student cohorts (Foundations of Chemistry IA/IB 

or Chemistry IA/IB), or different practical exercises conducted. Measures are not comparable 
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across different subsets when data sets lack connectivity in this way (see section 2.3.3), 

meaning that if this genuinely is the way the data are best modelled, data gathered from one 

experiment cannot easily be validly compared to data gathered from another. Practically 

speaking, this corresponds to an interpretation of the data where something a student thinks 

is “good” on one occasion could be the same as what they consider “poor” on another 

occasion. Even if the identical students are used to evaluate two experiments on two 

occasions, there is no reason to assume their responses can be considered as meaning the 

same thing each time; in fact it appears that, based on these results, they most likely will not. 

This could potentially ruin any ability to use student evaluations as a tool of comparing the 

qualities of each experiment, conflicting with the entire purpose of the ASLE instrument as a 

tool of evaluation and comparison.  

4.1.4 Investigating comparability between different sample scores 

Rasch models of the data may be made comparable using ‘equating’ techniques, however such 

techniques are not available to researchers using the usual ASELL scoring procedure. For 

scores to be comparable between different occasions under this explanatory model, the same 

overall distribution of student measures needs to be assumed. The hypothesis that the overall 

student measure distribution remains constant despite variation in individual students was 

tested here by equating the Rasch measurement scales of the different experiment specific 

subsets, and comparing the distribution of student measures observed for each.  

The different experiment-specific subsets of data were equated using two techniques. First, 

experiments which were structured identically despite being presented at different times and 

to different students were assumed to have the identical student independent ( ) measures. 

This reduced the number of isolated subsets from 76 down to only 29, and resulted in a better 

explanatory model of the data (log-likelihood 2=217851.8, 9734 free parameters, 49.03% of 

variance explained, AICc=-76.6 compared to the unequated E- model). Secondly, the 

remaining measurement subsets were equated by identifying 82 students who appear to have 

invariant bias (both infit and outfit mean square values <0.8 for the - model of the same 

data, with responses for at least five experiments) and modelling them to have the same (E) 

measure for every experiment in which they responded. All other students were still modelled 

to have a measure different for each experiment, as per the best explanation of the ASLE data. 

This new model proved to be a better explanation of the data than the previous equated 

model, due to the fact it accounted for the consistency in these students’ responses and 

avoided the need to model multiple bias parameters for each (log-likelihood 2=218693.7, 

9286 free parameters, 48.68% of variance explained, AICc = -202.6 compared to the previous 

partially equated model). This validates the selection of students to consider as having 

invariant E measures for the purposes of equating. 

Following application of these equating techniques, the data set contained only 7 isolated 

subsets. The largest of these subsets (subset 1) was used to assess the comparability of the 

student bias (experiment-specific student measure) distributions gathered from each separate 

sampling occasion. The distributions of measures from each of the separate groups of students 

are shown in Figure 33, where sample groups are labelled by student cohort (C for Chemistry 

IA/B, F for Foundations of Chemistry IA/B or u for an unknown or mixed cohort), then labelled 

by year, then labelled the title of the experiment conducted. A more positive bias measure (E) 

reflects a greater propensity to provide a positive response to all fourteen Likert-type items 

posed.   
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Figure 33: Comparison of the distribution of student biases samples on different occasions 

The distributions appear quite variable, and almost all appear to significantly deviate from the 

normal distribution (see Table S 57 in the supporting information, section 7.4.2). Both the 

shape and centre of the distributions appear to significantly differ as judged by the Kruskal-

Wallis test (test statistic = 164.855, df = 45, p<0.001) and Mood’s median test (grand 

median = 1.510, test statistic = 135.545, df: 45, p<0.001). The students used for the purposes 
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of equating appear to have a much smaller range of bias values, reflecting the fact that those 

students who appear to respond in a consistent manner tend not to do so in an extremely 

positive or negative way. They were not included in the comparative statistical tests. 

4.1.5 Other notable features of the equated model 

Final results were split into seven isolated measurement subsets. Subset 1 contained most 

experiments conducted by the Chemistry IA/B cohort, whilst subset 6 contained most 

experiments conducted by the Foundations of chemistry cohort. The other subsets include 

experiments which could not be connected to the rest of the data. These experiments included 

the original form of the three experiments which made use of handheld data loggers256 (as 

opposed to using laptop computers in their revised forms), the initial form of the Foundations 

of chemistry “introductory experiment” and the original form of the Foundations of chemistry 

version of the “Reaction kinetics” experiment before revising the order and phrasing of the 

questions presented. Experiment quality measures for the connected data are presented in 

the supporting information (Table S 58, section 7.4.2). 

The reliability of the experiment quality measures obtained in this equated model is very high 

(separation = 5.87; reliability = 0.97), whilst student bias measure reliability could be improved, 

yet is still acceptably high (separation = 2.70; reliability = 0.88). These values are promising, 

particularly given that misfitting students were not removed from consideration as is often 

common practice in Rasch measurement. Fit statistics for the question-specific experiment 

measures reveal that in the majority of cases, questions 11 and 13 (concerning teamwork and 

time availability respectively) fit the Rasch model poorly. This is true for both inlying data 

points and for outlying data points (judging by infit and outfit respectively).  Question 12, 

concerning students’ opportunity to take responsibility for their own learning, also appears to 

misfit, but to a lesser degree. This may mean that perceptions for questions 11, 12 and 13 are 

poorly modelled under this interpretation of the data. The general overfit observed in other 

survey items may indicate the presence of confounding factors forcing student responses to 

align more than expected. A description of the variety of statistics described in Table 19 is 

available in sections 2.5.1 and 2.5.2.1. 

Table 19: Fit statistics associated with ASLE survey items in the equated model 

# Survey item topic 
Data 

points 

Infit Outfit Estim. 

Discrm 

Correlations 

MnSq ZStd MnSq ZStd PtMea PtExp 

1 data interpretation 9250 0.93 -3.8 0.94 -3.6 1.06 0.64 0.61 

2 laboratory skills 9276 0.95 -3.0 0.92 -4.7 1.08 0.68 0.65 

3 interest 9264 0.95 -3.4 0.94 -3.5 1.08 0.68 0.66 

4 clear assessment 9263 0.91 -5.7 0.89 -6.4 1.10 0.66 0.62 

5 expected learning 9260 0.83 -9.0 0.81 -9.0 1.17 0.69 0.61 

6 increased understanding 9258 0.79 -9.0 0.77 -9.0 1.22 0.71 0.62 

7 background in introduction 9244 0.95 -2.8 0.94 -3.4 1.06 0.64 0.62 

8 demonstrators 9253 1.07 3.9 1.00 0.0 0.96 0.51 0.53 

9 procedure in manual 9247 1.03 1.7 1.01 0.6 0.99 0.62 0.63 

10 relevance to chemistry studies 9254 0.90 -6.5 0.87 -7.8 1.13 0.67 0.62 

11 teamwork 8628 1.53 9.0 1.64 9.0 0.51 0.55 0.68 

12 responsibility for own learning 9207 1.11 7.1 1.18 9.0 0.86 0.54 0.60 

13 time availability 9196 1.64 9.0 1.77 9.0 0.61 0.38 0.61 

14 overall learning experience 9211 0.82 -9.0 0.81 -9.0 1.14 0.68 0.61 



4.1  Qualitative interpretations and the ASLE survey data| Valid measurement of experiment quality using 
the ASELL project surveys 

107 

 

4.1.6 Discussion 

4.1.6.1 Responses do reflect qualities of the experiment 

Broadly speaking, it appears clearly evident from these analyses that student independent 

factors play a significant role in the generation of ASLE survey question responses. A clear 

question-specific element to the survey responses is present, reflecting qualities that both 

appear generally true for most students and also appear to be specific to the design of the 

experiment being evaluated. This is evidenced by the fact that removing the experiment-

specific or question-specific nature of student independent factors (or removing student 

independent factors entirely) invariably results in a worse explanatory model of the observed 

data, regardless of how student dependent factors are conceptualised. The ability to simplify 

the Rasch model by presuming all experiments with the same design have the identical 

student independent, question-specific measures (as seen during the equating procedure) 

lends considerable validity to the usual interpretation and practical use of ASLE survey results. 

Based on these results, the ASLE surveys do indeed appear to target the ‘objective’ quality of 

the experiment designs being evaluated, with respect to the questions being asked. 

The misfit of survey items 11 and 13, and to an extent item 12, suggests that the manner in 

which the data were modelled here does not align with the way in which the data appear to 

behave for these specific items. This suggests survey item 11, pertaining to the benefit of 

teamwork, item 12, pertaining to the opportunity to take responsibility for one’s own learning 

and survey item 13, concerning time availability, exhibit poor construct validity under this 

interpretation of the data. A model in which student bias remains constant for different survey 

items yet differs between occasions, whilst experiment quality measures are specific to each 

experiment and survey item posed, appears not to explain responses to these specific items 

well.  Factor analysis previously conducted on an entirely separate set of ASLE data54 has 

previously revealed that items 11 and 13 appeared independent to other questions of the 

instrument, potentially suggesting that student dependent factors for these two items may not 

be equal to those applying to other survey items, as was modelled here. A future refinement 

to the current best explanation of the ASLE data would therefore be to model student bias 

parameters differently for these two items specifically, maintaining the current model for the 

others. The validity of measurements obtained from these survey items remains unknown 

until these further analyses are conducted.  The other survey items, however, appear to be 

well explained by the current best model determined.  

4.1.6.2 ASELL scores obtained from few different cohorts contain inherent error 

Despite the fact that ASLE responses do reflect the qualities of the experiment being 

evaluated, these factors are clouded by the influences of student biases on the responses 

given. Student predisposition towards positive response appears to vary widely between 

individuals, and individuals mostly appear not to have the same predisposition from one 

occasion to the next. This interpretation of student factors appears to be the best way of 

modelling responses, irrespective of the way student independent factors are conceptualised.  

Student bias towards positive response appears best modelled as if it is constant for all 

questions on a given occasion, but changes from one occasion to the next. This means that 

even using the exact same student group, results from one experiment may not be 

comparable to another given that the same student’s responses may mean fundamentally 

different things. These effects, being the major contribution to individual responses, are liable 

to perturb overall scored data received unless the sample size gathered is sufficient to 
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‘average out’ this variability. Achieving this, however, is problematic. There are two sources of 

student bias variation here: within group variation, which may be minimised by gathering a 

large number of samples from each single student group, and between group variation, which 

may only be minimised by gathering a representative sample of many different groups of 

students. Gathering a vast array of data from a single student group will naturally minimise any 

student sampling effects caused by variation in student biases within that sampled group, but 

because variation in the average bias occurs between different student groups (eg. from 

different years of sampling in the case of this study), error introduced by sampling effects can 

never be minimised unless a large number of groups are sampled, not just a large number of 

students from each one. This is the reason why results of this study still exhibit errors 

introduced by student bias variation, despite the fact some ASELL scores have been calculated 

from over 700 responses. These responses still emerged from a small number of different 

groups, and so the between group variation has not been minimised. 

Because of the presence of between cohort bias variation, scored responses gathered from a 

single cohort or few cohorts contain an inherent degree of unreliability beyond that imparted 

by low sample sizes or imprecision in the response scale. The inability to separate student bias 

effects from measures of experiment quality in scored data serves as a constant limitation to 

the use and interpretation of the ASLE survey data. Advanced techniques such as Rasch 

analysis are capable of separating these effects, though such methods are not nearly so simple 

and available to educators as the usual scoring methods of survey analysis. A practical 

implication for researchers utilising scoring methods would be to only infer a genuine 

difference in experiment quality once score differences appear to be large, even if calculated 

standard errors are small. Statistical tests conducted on scored data cannot differentiate 

between genuine change in the experiment quality as opposed a change in the average bias of 

the broad student cohort, and this should be acknowledged in all ASELL survey research. Due 

to the fact student bias distributions may unavoidably differ between sampling occasions, 

small variations in scores between two ASLE evaluations should be dismissed as expected 

variability, even if statistical tests reveal a significant difference.  

4.1.6.3 Experiment quality correlations cannot be revealed by correlating scores 

The fact that student bias values remain constant between different survey items, and the fact 

they also contribute to the vast majority of variation between responses provided means that 

correlations between individual response scores for different questions are most likely due to 

person biases staying constant between questions, not relationships between the actual 

experiment qualities.  Correlations based on individual response scores are therefore mostly 

unrelated to anything able to be altered by restructuring the experiment and therefore not of 

any practical use whatsoever in designing appealing laboratory activities. The correlations are 

most likely revealing factors “beyond our control”. In the case of correlating mean scores 

rather than scored individual responses, this problem would become less prevalent as more 

responses were used to generate each data point. Increasing the number of students whose 

scores are averaged to compute the mean allows the student bias effects to be further 

‘averaged out’, meaning the scores more closely reflect the student independent experiment 

quality measures. 

Further research needs to be conducted using sample independent means of measurement, 

such as Rasch analysis, in order to determine which experiment qualities correlate to the 

overall broadly appealing nature of the experiment, in a sense true for most students. A wider 

variety of different experiments needs to be sampled than was the case in this study. 
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4.1.6.4 Future model refinements and deeper understandings 

During the course of this investigation, the best explanatory model of the ASLE survey data 

studied here was determined. As a consequence of the nature of this model, namely the fact 

that student bias terms appear to vary between occasions, yet remain constant for all items on 

each occasion, the generation of Rasch models of the ASLE data including students who have 

not provided their identification, or who have only completed a small number of experiments 

has become possible. This is a substantial improvement upon previous models, which 

presumed the necessity of tracking student identifiers, consequently severely limiting data 

availability. 

Additionally, the model determined here to be the current best explanation can be used as a 

starting point in subsequent studies to test further refinements. As discussed in the 

introductory material, it is not currently possible to confidently predict the theoretical 

expectation of the way perception measurements should change, given a specific change in 

experiment design. Given a sufficiently wide array of different experimental designs and 

accompanying ASLE response data, this goal now appears obtainable. Further refinements to 

the way experiment quality measures are modelled, connecting their value to the design 

features of the experiment, could be tested similarly to the manner implemented here, using 

AICc values. Using the current best explanatory model as a starting point, a refinement could 

be hypothesised, and AICc values could be used to contrast the current best explanation with 

the newly proposed explanation. The best model of the two could then be taken to be the new 

best explanatory model, iterating this process continually as progressively more data becomes 

available and more hypotheses are able to be tested. With the knowledge that experiment 

quality measures for the identical procedure do remain constant for different student cohorts, 

this process could feasibly utilise any and all ASLE survey data that has ever been collected, as 

it is now known that student bias is entirely occasion specific and hence tracking student 

identification between occasions is unnecessary for bias measure estimation. 

Ways to probe the reasons experiment quality measures take the values they do could 

potentially involve the development of a specification equation;132 an equation deriving the 

value of  as a function of other components, based on some theoretical framework. This 

could include expressing  as the sum of a number of facets each related to some aspect of 

experiment design, or using other similar methods such as using the linear logistic test 

model142, 143 or multidimensional Rasch models.141, 152 Establishing a specification equation 

using techniques such as these would not only serve to further complete the process of 

validating the ASLE survey measurements, but more importantly would establish a 

quantitative, predictive and testable model of student perception outcomes as a direct 

function of experiment design. Such a model would be invaluable knowledge for any educator 

implementing, designing or researching laboratory learning exercises.  

4.1.7 Conclusion 

Throughout the course of this investigation, the ASLE survey responses have been clearly 

demonstrated to contain a student independent component, specific to both the experiment 

being evaluated and the survey item posed. This establishes that these surveys can validly be 

used to compare the quality of different laboratory learning exercises, in a sense that is 

generally true for most students. It is however, necessary to conduct further investigation to 

establish this for both the time availability question and the teamwork benefit question of the 

survey. Student bias effects appear to be inconsistent between different sampling occasions, 
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meaning that scored ASLE survey data should be assumed to contain an inherent and expected 

error, unless a representative sample of different student cohorts is used. Gathering many 

samples from the same student cohort does not alleviate this effect, and differences in 

experiment quality should only be inferred from scored data if differences are large, even 

when small differences appear statistically significant. Correlations between scores obtained 

for different survey items are more likely to reflect similarity in student biases than factors 

which may be exploited by educators to develop more generally appealing laboratory sessions. 

This is certain for correlated individual responses, and progressively less of an issue as more 

responses are used for each data point if mean scores are correlated. The current model 

serving as the best explanation of the ASLE survey data determined in this research could 

feasibly be used as a starting point to develop other models, potentially connecting 

experiment quality measures directly to facets of the experiment design.  
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4.2 Gender differences in the perception of laboratory learning 

experiences in chemistry 

4.2.1 Outline 

Given the determined best explanatory model of the ASLE data, the opportunity arises to 

investigate finer level trends in both the person measures and the experiment quality 

measures. Given Rasch analysis’ ability to estimate these measures separately, analyses are 

possible here which would not be achievable if a scoring method were implemented. This 

section utilises these advanced techniques to contrast the perceptions of male and female 

students during their chemistry laboratory sessions. This is investigated from two different 

perspectives: identification of any difference in the average general tendency to provide 

positive response to any given laboratory exercise, as well as investigation of experiment and 

question specific differences consistent across all students. 

4.2.2 Specific methods 

All data utilised for this analysis includes the data used to estimate the previously determined 

best explanatory model for the ASLE data (see section 4.1). For those students who provided 

their identification numbers on the survey, the gender of the student was recorded and used 

for comparative purposes. Responses which were unable to be identified were excluded from 

the comparative tests, but still contributed to formulation of the Rasch model. 

A difference between genders in the tendency to provide positive response as broadly 

applicable to any experiment in general was tested by taking the average of all person 

measures estimated for a specific individual, for each individual in turn, then contrasting the 

distribution of these measures between genders. Because of the connectivity issues of the 

determined best explanatory model, this procedure was repeated for two distinct subsets of 

the data: “subset 1” containing experiments conducted by Chemistry IA/B students (or in some 

cases both by Chemistry IA/B and Foundations of Chemistry IA/B students), and “subset 6” 

containing experiments conducted by the Foundations of chemistry IA/B cohort. More specific 

details regarding which experiments are contained in these subsets and how many survey 

responses contributed to estimating their measures is available in the supporting information 

relevant to determination of the best explanatory model of the ASLE data (Table S 56 and 

Table S 58 in section 7.4.2). Student measures specific to subset 1 experiments were 

disregarded when finding average measures for the subset 6 comparison and vice versa, as 

measures are not comparable across subsets (see section 2.3.3). 

Experiment quality measures were tested for differential item functioning (see section 2.5.3) 

between the two genders using the Facets software, aiming to reveal any experiment or 

question specific differences between genders. Specific experiment quality measures for which 

no students who listed their ID number provided response were not compared, meaning that 

of the 406 experiment quality measures estimated in the equated model (one measure for 

each of the 14 survey items, for 29 equated experiments), only 350 were able to be tested for 

significant differential item functioning (DIF). Because this analysis therefore involves 350 

distinct hypothesis tests, multiple comparisons are an issue in this study. Under the null 

hypothesis of no evident DIF in any case, it would be expected that 5% of the 350 tests 

performed would reject the null hypothesis at p<0.05 (by definition) as a simple consequence 

of natural random variation. Therefore, the proportion of DIF tests resulting in p<0.05 was 

tallied, and was tested using the normal approximation to the standard error of a proportion 
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(see section 2.4.3) to determine whether the observed proportion of rejecting hypothesis tests 

was significantly greater than the expected 5%. The Bonferroni correction to the significance 

level was also considered in order to correct for family-wise error, when interpreting results of 

isolated hypotheses within the full set. 

4.2.3 Results 

4.2.3.1 General predisposition toward positive response 

Non-parametric statistical tests were required for the comparison of student measures 

between genders, as the distribution of values obtained appeared to significantly deviate from 

normality as judged by the Shapiro-Wilk and Kolmogorov-Smirnov tests (Table 20).  

Table 20: Normality tests for distribution of students’ average measures  

Data set 
Kolmogorov-Smirnov test Shapiro-Wilk test 

Statistic df p Statistic df p 

Subset 1 
Female students .056 471 .001 .980 471 <0.001 

Male students .055 502 .001 .982 502 <0.001 

Subset 6 
Female students .047 325 .075 .990 325 .023 

Male students .110 317 <0.001 .963 317 <0.001 

The general predisposition toward positive response for any given experiment was not found 

to differ between genders for either the subset 1 data or the subset 6 data. As is evident in 

both Figure 34 and Figure 35, the centre and breadth of distributions of student measures 

appears invariant between genders. Tests revealed that neither the distribution nor the 

median differed significantly between genders for either subset, as judged by Mood’s median 

test (grand median = 1.667, 2 = 3.116, df = 1, p = 0.078 for subset 1; grand median = 1.586, 

2 = 0.399, df = 1, p = 0.528 for subset 6) and the Mann-Whitney U test (standardised test 

statistic = 1.619, p = 0.105 for subset 1; standardised test statistic = 0.794, p = 0.427 for subset 

6) respectively. 

 

Figure 34: Distribution of student predispositions toward positive response in subset 1 
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Figure 35: Distribution of student predispositions toward positive response in subset 6 

From this data, male and female students appear not to differ in their general tendency to 

provide positive responses to ASLE survey items for the experiments evaluated. 

4.2.3.2 Student independent measures of experiment quality 

Following the performance of DIF analysis on the student independent measures of 

experiment quality, a number of tests reported significant difference between genders at 

p < 0.05. However, no single hypothesis test was so significant as to avoid attribution to family-

wise error (p < 0.05/350). This means that no individual test of DIF may be used to definitively 

claim a difference between genders for that specific experiment and survey item in this case. 

Regardless, the use of a Z test revealed that the proportion of tests suggesting a difference 

between genders at p < 0.05 was significantly higher than the 5% which would be expected 

under a scenario of total equality. A total of 31 out of the 350 tests conducted (8.86%) 

reported p values less than 0.05, meaning that the statistical tests conducted indicated gender 

differences in significantly more cases than would be expected if no true DIF existed in any 

case (Z = 2.54 , p = 0.011). This result was affirmed by use of an improved approximation to the 

confidence interval of a proportion, with similar results: the Wilson score interval reports a 

95% confidence interval of 6.3% to 12.3% in the observed data, which does not overlap with 

the expected 5% proportion. The evidence therefore suggests that some degree of difference 

does exist in the quality of some experiments between genders, however identifying what the 

specific points of difference are is highly problematic. A full table of all DIF tests conducted is 

provided in the supporting information (Table S 59, section 7.5). 

In order to investigate which specific facets of the laboratory experience genuinely differ 

between genders, and for which laboratory experiments, the number of DIF tests suggesting 

inequality between genders at p < 0.05 was tallied for each item of the survey, and additionally 

for each experiment conducted in order to observe where differences are detected most 
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frequently. Whether the test revealed significantly greater difficulty of providing a positive 

response for male students or for female students was also recorded.  

 

Figure 36: Possible gender differences grouped by survey item 

As can be seen in Figure 36, neither the perception of increased understanding nor the 

perceived sufficiency of the background information provided ever consistently differed 

between the male and female student groups. All other items exhibit at least one difference 

significant to p < 0.05 detected in one of the 25 equated experiments able to be compared, 

with some survey items exhibiting differences exclusively in favour of a single gender. 

Providing a positive response to survey item 11; “working in a team to complete this 

experiment was beneficial”, appears significantly more difficult for males in the case of five 

different experiments, and evidently equivalent between genders for the other experiments. 

This result should, however, be taken with extreme caution: it has been shown previously that 

this survey item significantly misfits this Rasch model of the data (see Table 19, section 4.1.5) 

and therefore measures may not even be validly attributable to this survey item, let alone any 

gender differences in those measures. Many other survey items are not subject to this 

problem, however, and do exhibit multiple occasions of evident DIF.  Survey item 3 for 

example, concerning interest, consistently appears either more difficult to provide positive 

response for males (in 4 cases) or exhibits no gender difference (the other 21 cases). It should 

again be emphasised, however, that the issue of multiple comparisons implies that no single 

test result here was significant to the degree it could not be attributed to family-wise error. 

The differences at p < 0.05 enumerated and displayed in Figure 36 are easily attributable to 

random chance. These results therefore represent grounds for further investigation more than 

they reflect a conclusive characterisation of precise differences between genders. 

Differences at p < 0.05 were similarly enumerated and grouped based on the experiment in 

which they occur (Figure 37). No specific experiment appears to exhibit possible gender 

difference in any more than three of the fourteen survey items, and again any differences 

reported here are attributable to family-wise error regardless.
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Figure 37: Possible gender differences grouped by experiment 

Given that it is known that at least some degree of DIF is likely real as judged by the results of 

the group level Z-test described earlier, an effort was made to identify any particularly large 

differences amongst those detected as significant to p < 0.05. Here a ‘large’ difference 

between genders was deemed at a difference in gender-specific  measure greater than or 

equal to ln(2); that is, cases in which the odds of one gender responding in the next highest 

category is twice the odds of the other gender doing the same. 

Large gender differences where males were substantially less likely to provide positive 

response were detected twice in the case of item 13 and once in the case of item 11, both of 

which fit poorly to the Rasch model and may therefore not be meaningful comparisons due to 

construct invalidity (see Table 19, section 4.1.5). Four large differences were found where 

female students were substantially less likely to provide positive response; one case for item 

13, again possibly not a meaningful comparison, and the other three all concerning different 

iterations of the “Reaction Kinetics” experiment. These differences, however, were not in the 

same survey item in every case. Figure 38 shows the observed difference between estimated 

gender-specific experiment quality measures (), with error bars representing standard error 

values. 
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Figure 38: Gender specific DIF analysis for different forms of the “Reaction Kinetics” 
experiment 

Whilst cases of DIF in the “Reaction Kinetics” experiment occasionally appear large and 

significant, there appears to be little consistency in these occurrences across occasions which 

could not be equated due to subtle differences in the experiment structure. The largest 

difference appears to be that once the experiment was revised for the Foundations of 

Chemistry cohort, the odds of male students responding in the next highest category became 

seven times that of the female students when posed with item 5: “It was clear to me what I 

was expected to learn from completing this experiment” (odds exp(1.97) times as high, as 

determined by a difference of 1.97 logits in the gender-specific  values). This test was, 

however, one of the few which were based on a small sample of responses, and so has a wider 

margin of error than in other cases. Consequently this difference only appears significant at 

p = 0.0415. 

This experiment was not the only one to be revised to suit the Foundations of Chemistry IA/B 

cohort, however. Numerous experiments, all of which appear in subset 6 of the equated data 

set, were revised in similar ways. These revisions included aligning the timing of experiments 

with the lecture material as much as possible rather than having different student groups 

conducting different experiments at different times in the semester, as well as slightly 

modifying the laboratory manual and question booklet accompanying each experiment. 

Modifications include some small procedural simplifications or amendments (such as working 

in pairs rather than individually) and rephrasing or amendment to the background information 
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provided, often in the form of “chemistry connections”: small paragraphs giving extra 

assistance or connecting theory presented to other theory previously encountered. 

Hypothesising that these changes made to the “Reaction Kinetics” experiment were the cause 

of the evident DIF of survey item 5, it would be expected that similar changes to the 

experiment and manual in other cases would result in a similar observation of DIF. However, 

this expectation is not evident in the data.  

As can be seen in Figure 39, gender difference in survey item 5 is not consistently observed in 

all cases where the experiment was revised for the Foundations of Chemistry cohort, meaning 

these revisions are unlikely to be the cause of the large difference observed in the revised 

form of the “Reaction Kinetics” experiment discussed previously. The fact that the large DIF 

observed is absent without  these revisions, however, means the DIF of item 5 in the revised 

“Reaction kinetics” experiment is not attributable to any difference in the structure of the 

experiment itself, and is likely an artefact of random error. This illustrates the difficulty of 

making multiple comparisons simultaneously: it is expected that some large significant 

differences will be reported falsely (type 1 error) as an artefact of random error, and more 

comparisons inevitably means more chances for these errors to occur. Regardless, the number 

of null hypotheses rejected here remains significantly higher than the expectation presuming 

no DIF, as previously discussed. It simply remains problematic to identify which DIF is genuine 

and which is a result of random error. 

 

Figure 39: Gender DIF observed in item 5 for Foundations of Chemistry revised experiments 

4.2.4 Discussion 

Whilst this investigation was unable to pinpoint any specific cases of gender differences in the 

perception of the laboratory exercises evaluated, it would be incorrect to claim no significant 

gender difference was detected. The fact that more significant differences were detected than 

expected under the null hypothesis of perfect equality suggests at least some small cases of 

genuine difference are likely to exist in this data set. The issue is that the problem of multiple 

comparisons necessitates very strict criteria for identifying a confident conclusion of genuine 

difference, with many false positives at usual significance criteria expected for so many 

hypothesis tests conducted on the same data set. Vast sample sizes are needed to draw 
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conclusions of difference not attributable to family wise error in this way. Regardless of this 

difficulty, it can still be concluded that some differences between genders exist in the student 

independent measures of experiment quality, though those differences which are present 

appear not to be particularly prominent. It could feasibly be the case that multiple small yet 

ultimately inconsequential differences exist, summating to produce what is a detectable effect 

in this study when observing the data overall. Given the small proportion of cases which 

showed difference even at p<0.05, it appears that presuming genders to behave differently as 

a general rule would be a poor explanation of the data. Rather, what differences exist are likely 

small and/or infrequent. In terms of more general, broad scale predisposition towards 

laboratory experiences, rather than specific cases, there also appears to be no detectable 

difference between genders. 

4.2.5 Conclusion 

Whilst this analysis was unable to pinpoint any specific, conclusive differences between male 

and female students’ perception of the laboratory experience, it has been shown that some 

small differences are likely to exist. Any differences present appear not to be due to a general 

tendency of one gender to be less positive toward chemistry laboratory sessions than the 

other. Instead, any differences present appear to occur in a manner specific to the experiment 

conducted and survey item posed. The vast majority of cases appear not to be detectably 

different between the two genders. 
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4.3 Empirical estimation of a Linear Logistic Test Model Q-matrix 

4.3.1 Outline 

Previous research presented in this thesis has yielded the best general explanatory model for 

the ASLE data, based on observed response patterns. Whilst this model reveals several notable 

features of the way students interact with experiments to give rise to ASLE survey responses, 

the model is not informative as to why some experiments are associated with more preferable 

measures whilst others are not. As such, a deeper understanding of which features of 

experiment design elicit positive responses remains to be determined. 

The Linear Logistic Test Model (LLTM, see section 2.2.2) allows student independent measures 

to be expressed as a linear combination of more basic components. That is, the model 

“explains” the observed item parameters as the sum of several underlying factors. In the 

context of the ASLE surveys, a LLTM formulation may explain the fourteen question-specific 

quality measures associated with an experiment to be directly resultant of a small number of 

elementary features of the laboratory experience. Most notably, it may express the measure 

for survey item 14: the “overall learning experience”, as a direct function of other facets of the 

laboratory experience. 

 𝐸𝑥1⁡ 𝐸𝑥2 ⁡𝐸𝑥3⁡

⁡

𝑞1:⁡𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡
𝑞2: 𝑐𝑙𝑎𝑟𝑖𝑡𝑦
𝑞3: 𝑜𝑣𝑒𝑟𝑎𝑙𝑙

[

1,1⁡⁡

2,1⁡⁡

3,1⁡⁡

1,2

2,2

3,2

⁡⁡

1,3

2,3

3,3

]
⁡⁡
=

⁡⁡

⁡

[
1
0
2

0
1
1
]
⁡
×

⁡
⁡⁡⁡𝐸𝑥1⁡ 𝐸𝑥2 ⁡𝐸𝑥3 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

[
𝜂1,1⁡⁡
𝜂2,1⁡⁡

𝜂1,2

𝜂2,2
⁡⁡

𝜂1,3

𝜂2,3
]

𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡
𝑐𝑙𝑎𝑟𝑖𝑡𝑦

 36 

Equation 36 above is an example of a simple Linear Logistic Test Model. Three survey 

questions (q1, q2 and q3) have been asked of three different experiments (Ex1, Ex2 and Ex3) 

and student independent measures for each have been obtained (). The example above 

explains the nine observed  measures as linear combinations of only six underlying η 

measures. For example, the  measure for question 3 (“overall”) is always twice the  measure 

associated with “interest” plus the  measure associated with “clarity”. As a result, only six 

parameters (η) would need to be estimated to explain the observed data rather than the 

original nine (). In this way the model is made more parsimonious, whilst providing an 

explanation for all  measures in terms of more fundamental factors.  

The matrix of weighting coefficients in the above example is known as a “Q-matrix”. Typically, 

the Q-matrix is stipulated a priori by the analyst, since the LLTM is often used when an 

explanatory model is already established. Unfortunately, an underlying model of the ASLE 

survey items similar to the above example is currently unknown. Attempts have been made to 

evaluate the extent to which other survey items are relevant to the “overall learning 

experience” rating associated with question 14, but these past attempts have been based on 

integer scoring methodologies. Addressing this question from a Rasch modelling perspective 

requires formulation of a Linear Logistic Test Model (or similar), either based on theory or 

based on data. Given little theory exists concerning student perceptions and their 

interrelationships, a priori stipulation of a Q-matrix for the ASLE surveys would require a 

substantial degree of ‘trial and error’ before a successful matrix was found. As such, a method 

of estimating a satisfactory Q-matrix directly from observed data is needed. Such a method is 

described in this section. A method for deriving a satisfactory Q-matrix for the ASLE survey 

data is presented, then applied to the existing data set of survey responses. Adequacy of the 

Q-matrix estimated as an improved explanation of the observed data is also demonstrated. 
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Features of the model obtained and their pedagogical implications are to be discussed 

separately in a subsequent section of this thesis. 

4.3.2 Specific methods 

4.3.2.1 Estimation of a Q-matrix using factor analysis 

Factor analysis (see section 2.4.6) expresses Z-standardisations (see section 2.4.3) of the 

observed variables as a linear combination of F latent factors. In the case of the ASLE surveys, 

an example of this would be the expression of the 14 different question-specific quality 

measures for each experiment as estimated using a partial credit model (𝑃𝐶𝑀), as being linear 

combinations of underlying, basic experiment qualities (factors). 

In Equation 37 above, subscripts 𝑖 and 𝑚 indicate specificity to the ith survey item and mth 

experiment respectively. The 𝛿𝑃𝐶𝑀
̅̅ ̅̅ ̅̅ ̅

𝑖
 term denotes the mean value of the set of all 𝛿𝑃𝐶𝑀𝑖,𝑚

 

values for the ith survey item, whilst 𝜎𝑃𝐶𝑀𝑖
 represents the standard deviation in the set of 

𝛿𝑃𝐶𝑀𝑖,𝑚
 values for the ith survey item. There are F many factors (indexed by f) underpinning 

the responses to the 14 survey items for any given experiment evaluated. The factor loading of 

the fth factor onto the ith survey item is given by 𝑙𝑖,𝑓, with 𝜀𝑓,𝑚 acting as the measure of the fth 

factor for the mth experiment. 

This equation may be rearranged to express the 𝛿𝑃𝐶𝑀𝑖,𝑚
 value in terms of the factor model 

loadings and measures: 

 
𝛿𝑃𝐶𝑀𝑖,𝑚

≅ 𝜎𝑃𝐶𝑀𝑖
∑ 𝑙𝑖,𝑓𝜀𝑓,𝑚

𝐹

𝑓=1

+ 𝛿𝑃𝐶𝑀
̅̅ ̅̅ ̅̅ ̅

𝑖
 38 

Which in turn may be rewritten to incorporate the 𝛿𝑃𝐶𝑀
̅̅ ̅̅ ̅̅ ̅

𝑖
 and 𝜎𝑃𝐶𝑀𝑖

 values into the summation 

term as follows: 

𝛿𝑃𝐶𝑀𝑖,𝑚
≅ ∑ 𝑙′𝑖,𝑗𝑗,𝑚

𝐹+14
𝑗=1     ;   𝑙′𝑖,𝑗 = {

𝜎𝑃𝐶𝑀𝑖
𝑙𝑖,𝑓 , 𝑗 ≤ 𝐹

1, 𝑗 = 𝐹 + 𝑖
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    , ∀𝑚, 𝜀(𝐹+𝑖),𝑚 = 𝛿𝑃𝐶𝑀𝑖
̅̅ ̅̅ ̅̅ ̅ 39 

This equation now resembles a linear logistic test model (LLTM). The 𝑙’ values are analogous to 

the weighting values in the LLTM Q-matrix, whilst the  values are analogous to measures of 

the basic underlying variables, of which the observed variables are a linear combination. Subtle 

differences do, however, exist between this formulation and an estimated LLTM.  

A key issue is that the 𝛿𝑃𝐶𝑀𝑖,𝑚
 values above are estimated such that they sum to zero, but 

there is no guarantee this will eventuate if the data are modelled using an LLTM structure. 

Rather, it is the basic parameters of the LLTM, analogous to the  values in Equation 39, which 

are instead defined to sum to zero. This has the implication that any estimated LLTM 

parameters analogous to the 𝜀(𝐹+𝑖),𝑚 term will not necessarily be equivalent to the 𝛿𝑃𝐶𝑀
̅̅ ̅̅ ̅̅ ̅

𝑖
 

values (as Equation 39 would otherwise appear to suggest). Instead, the estimated values 

serve to define the location of one item’s set of experiment specific measures relative to those 

of another item, after accounting for the different linear combinations of the underlying 

 
𝑧𝑖,𝑚 =

𝛿𝑃𝐶𝑀𝑖,𝑚
− 𝛿𝑃𝐶𝑀

̅̅ ̅̅ ̅̅ ̅
𝑖

𝜎𝑃𝐶𝑀𝑖

≅ ∑ 𝑙𝑖,𝑓𝜀𝑓,𝑚

𝐹

𝑓=1

 37 
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factors. Their sum would equate to the negative sum of the set of all other factor measures 

estimated. For these reasons, a LLTM analogous to this formulation is therefore best expressed 

using different variables, as shown in Equation 40. 

𝛿𝐿𝐿𝑇𝑀𝑖,𝑚 = ∑ 𝑞𝑖,𝑗𝜂𝑗,𝑚
𝐹+14
𝑗=1       ;   𝑞𝑖,𝑗 = {

𝑘𝜎𝑃𝐶𝑀𝑖
𝑙𝑖,𝑓 , 𝑗 ≤ 𝐹

1, 𝑗 = 𝐹 + 𝑖
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

      ,∀𝑚, 𝜂(𝐹+𝑖),𝑚 = 𝜇𝑖 40 

The above model may more simply be stated in matrix form, to illustrate the fact it is directly 

analogous to the LLTM example presented in the introductory material (Equation 36). In 

Equation 41 below, Q is the matrix of 𝑞𝑖,𝑗 values (which serve as the LLTM weighting factors) 

and H is the matrix of 𝜂𝑗,𝑚 values. Note that values within matrix Q may be calculated from the 

results of a factor analysis, whilst values within matrix H require estimation using Rasch 

modelling software. 

 [𝛿𝐿𝐿𝑇𝑀𝑖,𝑚] = 𝑸 × 𝑯 41 

In Equation 40 above, a scalar value k is also introduced in order to allow the matrix of 

weighting factors to be scaled up or down such that all Q-matrix values (qi,j) approximate 

integers. This is necessary for running the LLTM within the Facets software, which is only 

capable of using integer values for the qi,j weightings, but unnecessary within other more 

capable Rasch measurement programs. The value k may be selected arbitrarily such that all q 

values satisfy this constraint approximately, and q values may then be rounded to the nearest 

whole number to generate a matrix Q’ used in the analysis in the Facets software. Larger 

values of k would allow Q’ to more closely approximate the matrix of unrounded values Q, 

however this would also be more taxing on the Facets software. 

Constructing the LLTM Q-matrix in this way, it can be seen that the 𝜂𝑗,𝑚 values serve the same 

purpose as the factor measures 𝜀𝑓,𝑚, though are not equivalent in value to them. The value of 

𝜂𝑗,𝑚 is a measure of the jth basic factor for the mth experiment, and can be estimated based on 

observed data. The value 𝜎𝑃𝐶𝑀𝑖
 is the standard deviation in the 𝛿𝑃𝐶𝑀𝑖,𝑚

 measures for the ith 

survey item, estimated from the previous, non-LLTM Rasch model. Working this value into the 

𝑞𝑖,𝑗 parameters allows one survey item to have more variable measures than another survey 

item without the need of working this item specific variation into the 𝜂𝑗,𝑚 measures, which are 

desired not to be survey item specific. For easier interpretation of the estimated measures 

assigned to the basic underlying factors (𝜂𝑗,𝑚), it is also convenient to define the LLTM 

measures to have the opposite orientation to the PCM measures thusly: 

 𝛿𝐿𝐿𝑇𝑀𝑖,𝑚 ≅ −𝛿𝑃𝐶𝑀𝑖,𝑚
+ 

𝑠
 42 

The 𝛿𝐿𝐿𝑇𝑀𝑖,𝑚 measures are redefined in this way such that a more positive measure implies 

increased likelihood of more positive response. That is, the Rasch model is reformulated such 

that:  

 𝜑𝑛,𝑖,𝑚 = 𝛽′𝐸 𝑛,𝑚
+ 𝛿𝐿𝐿𝑇𝑀𝑖,𝑚 43 

where  is the latent trait measure input into Equation 1, which is modelled as giving rise to 

the observed responses for the nth student, ith survey item and mth experiment. The ’E term 

here is the experiment specific student bias facet discussed in previous investigations (see 

section 4.1.2.2, Table 17), shifted in value because of the differences between LLTM and PCM. 
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The equating procedures previously detailed for both the student dependent and student 

independent measures are also maintained: some students are defined to have the same ’E 

measure regardless of the experiment conducted, whilst the LLTM measures are defined to be 

equivalent for the identical experiment (see section 4.1.4). The value  in Equation 42 

translates measures by an amount specific to the measurement subset (indexed by s), owing 

to differences between the partial credit model and LLTM formulations described previously.  

4.3.2.2 Resolving disconnected subset issues 

The ASLE survey data, as analysed thus far, contains a number of subset disconnects. This 

implies that the absolute location of measures estimated from one subset relative to the 

absolute location of measures in another is unknown. This is problematic, as the factor analysis 

necessary for the procedure above requires all measures for each given ASLE survey question 

to be correlated against all measures for each other ASLE survey question. This is impossible 

unless the absolute location of each measure relative to the others associated with the same 

survey question is known. As such, all subsets of the data must be equated prior to application 

of this LLTM estimation technique.  

One way to achieve this equating of subsets is to artificially force 𝛿𝑃𝐶𝑀 measures in one subset 

to be equal to 𝛿𝑃𝐶𝑀 measures in another subset. As such, analysis was carried out to identify 

cases where all 𝛿𝑃𝐶𝑀 measures associated with a specific experiment in subset one of the 

current model were likely equivalent to all 𝛿𝑃𝐶𝑀 measures associated with another experiment 

in subset six of the current model (see section 4.1.5). This was achieved though correlating the 

fourteen estimated 𝛿𝑃𝐶𝑀 measures for each experiment with those for every other.  

Under the assumption that two experiments have identical measures, two key expectations 

exist. If the set of measures associated with each of the two experiments were estimated 

separately, and a linear relationship were drawn between the two, then: 

(1) A strong correlation would be observed between the two sets of measure estimates 

(2) The slope of the line would be approximately one 

Prediction (1) is trivially the case, given that the separate sets of measures, if truly equivalent, 

would observably yield a set of estimates in the same order and the same relative difference 

from one another. Prediction (2) is justified by the fact that if the two sets of measures were 

equal, the magnitude of the differences between any given pair of measures within each set 

should be the same as the differences observed in the analogous measures of the other set. 

For example, if measures for items 1 and 2 differ by 0.5 logits in one experiment, the measures 

for items 1 and 2 should also differ by 0.5 logits in the other experiment, if the two 

experiments are equal.  Experiments with sufficiently similar measures for equating purposes 

were identified in this way and stipulated to have equal 𝛿𝑃𝐶𝑀 measures prior to factor analysis 

and subsequent LLTM formulation. 

4.3.2.3 Features of the factor analysis 

Following the forced equating of two experiments described above, the remaining 

disconnected data subsets were removed from consideration. The  measures from the 

remaining 23 connected experiments were then used for the purposes of conducting factor 

analysis. Image factoring was chosen as the factor extraction method for two reasons. Firstly, 

image factoring operates via linear regression techniques, which are appropriate for deriving 

linear models as desired. Secondly, only image factoring was capable of yielding sensible 
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results for larger numbers of underlying factors. Other factor extraction techniques resulted in 

so called “Haywood cases” in multiple instances (data not reported), whereas image factoring 

is not susceptible to this issue (see section 2.4.6).  Varimax rotation was used to obtain more 

easily interpretable factors, maintaining their orthogonal nature. 

The method of deriving a Q-matrix described above relies on a factor model having been 

performed on the 𝑃𝐶𝑀 measures. It is at this stage of the analysis that the number of basic 

underlying factors explaining the observed responses is defined. A different number of factors 

stipulated at the outset of the analysis would result in a different Q-matrix estimated, and 

therefore a procedure is needed to select the most appropriate number of factors modelled. 

A range of techniques are typically applied in factor analysis to select the appropriate number 

of factors. In this study, the appropriate number of factors was selected based on the 

adequacy of the LLTM model generated from that factor model. A new Q-matrix was 

generated for each possible number of factors stipulated, then the most appropriate Q-matrix 

was identified as the Q-matrix which yielded a LLTM with the minimum corrected Akaike 

Information Criterion value (see section 2.5.4.2).  

4.3.3 Results 

4.3.3.1 Model estimation 

A small number of disconnected experiments with very strong correlations between  

measures were observed (see supporting information: section 7.6.1). The strongest 

correlation, between “Coloured complexes of iron” and “Equilibrium and LeChatelier’s 

principle (revised: for foundations)” (r=0.975), may be somewhat expected, as these two 

experiments are equivalent except for minor changes to the instruction manual. The 

verification that their measures align is useful, however, in that it may imply the two forms of 

the experiment can reasonably be assumed equivalent, thereby allowing equating between 

the Chemistry IA/B and Foundations of Chemistry IA/B cohorts, at present divided into distinct 

measurement subsets in the current best model. Considering these experiments equivalent 

would not only be a more parsimonious model, but would also therefore allow direct 

comparisons between experiments which could otherwise not be contrasted. However, 

treating these two experiments as equivalent in the Rasch model resulted in a poorer 

explanation of the observed data (AICc = +3.78) due to the proportion of observed data 

explained by the model lost in making this simplification (2 = 36.2969, df = 14, p = 0.0009). 

Regardless, these two experiments were the most similar of any pair contrasted, and therefore 

equated for the purposes of the following factor analysis. Data which remained disconnected 

from the bulk of the data after this equating procedure were removed from consideration, and 

a partial credit Rasch model (formulated in the same manner as the current best explanatory 

model, section 4.1.3) was estimated using the remaining equated data set of 120 701 

individual data points, gathered from 23 experiments.  

The 322 PCM measures obtained from the initial partial credit model were organised by 

experiment (row) and survey item (column) in preparation to conduct the factor analyses. The 

KMO measure of sampling adequacy and Bartlett’s test of sphericity were used to confirm the 

data were adequate for factor analysis, revealing the sample size was marginally adequate at 

best (KMO = 0.511) but contained a significant degree of correlation (2 = 195.186, d.f. = 91, 

p < 0.001). As will be seen, the poor sample adequacy appears not to compromise the final 

results obtained. Factor models were generated for 9, 10, 11, 12 and 13 factors underpinning 
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the fourteen observed survey item measures for each experiment. Modelling lower numbers 

of factors became unnecessary based on results (discussed in conjunction with Figure 40 

below). 

Following the computation of Q-matrices from factor models as described in the specific 

methods section, one for every different number of latent factors modelled, the Facets 

software was used to estimate a corresponding LLTM for each (see section 7.6.1 for the 

structure of the specification files). The corrected Akaike Information Criterion (see section 

2.5.4.2) was used to identify which of the different LLTM formulations generated provided the 

best explanation of the observed data. 

 

 

 

Figure 40: Efficacy of Linear Logistic Test Models formulated using factor analysis results 

Modelling a greater number of factors underpinning ASLE survey responses is less parsimonious (lower 

right) but explains a greater proportion of observed data variance (upper right). An optimum balance 

between these two competing considerations is found when 12 underlying factors are modelled, 

corresponding to a minimum on the “surface” of AICc values (left). This model explains the observed data 

better than all other models, including the previous best explanatory model of the ASLE data discussed in 

section 4.1.3. As can be seen, modelling fewer than 9 factors would likely produce progressively less 

desirable models, extrapolating from the data presented.   

Figure 40 (left) displays the AICc values corresponding to different numbers of latent factors 

modelled as explaining the survey item specific measures for each experiment. The plots 
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displayed to the right of the figure break down these AICc values into their deviation from 

observed data and lack of parsimony components. Shown in red are the values obtained for 

the unsimplified (partial credit) model: the model up until this point deemed to be the best 

explanation of the observed data (see section 4.1.3). The best explanatory model of the data 

was observed to be a LLTM with 12 latent factors explaining response to the 14 ASLE survey 

items for each experiment. Following the identification of the 12-factor model as optimal, the 

Q-matrix for the 12 factor model was used to estimate a LLTM for the full data set (128,881 

data points) without artificially equating “Coloured complexes of iron” and “Equilibrium and Le 

Chatelier’s principle (revised: for foundations)”, as these were only equated previously to 

enable the factor analysis to be performed. This LLTM proved to be the best proposed 

explanatory model of the full data set thus far (log-likelihood 2=218807.7, 9213 free 

parameters, 48.62% of variance explained, AICc = -55.5 compared to the previous best 

model).  

The parsimony of the LLTM appears not to have resulted in a loss of explained data variance. 

The raw estimated LLTM values approximate non-LLTM estimates for the same data closely, as 

seen in Figure 41. As can be seen, there is a very high level of agreement between the LLTM 

measures and the analogous non-LLTM measures. The more parsimonious LLTM accounts for 

99.56% of the variance in the non-LLTM measures. The “displacement” value in Figure 41 is a 

simple error term reflecting the difference between the LLTM model prediction and the 

“optimal” value. 

 

Figure 41: Accuracy of Linear Logistic Test Model approximatons 

The LLTM’s linear combinations of the estimated factor measures estimated do not necessarily sum to 

values which would explain the data optimally. The difference between the LLTM estimate (LLTM) and 

this optimal value is expressed as the “displacement”. Thus, adding the displacement value back to the 

LLTM model’s estimates yields the optimal measure which would otherwise be reported in a non-LLTM 

model. The strong correlation between LLTM and LLTM + displacement reflects the fact that very little 

variance in the observed measure estimates is lost in the LLTM approximation. 

Performing a likelihood ratio test (see section 2.5.4.1) reveals that some degree of explained 

variance is lost when this LLTM is applied to the full data set (2(73) = 113.98, p = 0.002), but 

when applying this LLTM to the somewhat restricted data set used to generate the factor 
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analysis results, no significant loss of explained data is observed (2(55) = 27.01, p = 0.999). 

The LLTM obtained appears to be a definitively superior model to the partial credit model, 

when applied to the exact data set used for estimation. The model also appears somewhat 

generalizable beyond the estimation data set, given the AICc value still affirms it as the 

superior model in the wider data set. An even better LLTM may therefore have been possible 

for the broader data set, were it better connected and able to be used for Q-matrix estimation. 

4.3.3.2 Data connectivity and errors in typical scored data 

A useful feature of the LLTM applied to the full data set is that the data now appear fully 

connected, where disconnects otherwise existed. Experiments which were previously in 

isolated subsets of the data and unable to be contrasted now appear in the same subset of 

measurement, because the LLTM values are necessarily composed of the same underlying 

factor dimensions. As can be seen in Figure 42, each previously isolated subset within the 

original set of PCM measures appears offset from the other subsets, rendering comparison 

between different subsets of data invalid. Connectivity is achieved with the LLTM, however, 

and the artificial offsets in measure values reported due to subset disconnects (s, see 

Equation 42) are now known.  

 

Figure 42: Previous measure offsets in disconnected subsets of data revealed by the LLTM 

Linear relationships observed are the linear relationship between LLTM and PCM described previously by 

Equation 42, presented in the introductory material for this section. The original PCM estimates appear in 

seven disconnected subsets of the full data set, each visualised as a separate trendline. Vertical 

translation of the different trendlines results from a lack of ability to assign PCM measure values relative 

to those in other subsets previously. The y = mx + c equations shown directly emulate Equation 42, 

where the slope value m is always approximately -1 and the intercept value c is the subset specific offset 

s. The LLTM term featuring in Equation 42 is replaced here by LLTM + displacement, where the 

displacement is simply an “error” term resulting from imperfect approximation of the LLTM summations to 

their optimal (non-LLTM) values. These error corrected values were used here to better estimate the 

subset offset parameters. Lack of perfect correlation observed within each subset likely results from 

subtly different Rasch model optimisation when the Facets software specification file is structured to 

accommodate an underlying LLTM as opposed to a simple Partial credit Model (PCM). 
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The comparability of measures afforded through this connectivity allows for broad scale 

statistics to be drawn, quantifying the average error introduced in typical ASELL integer score 

values. Mean scores calculated from observed responses can be contrasted with the “fair” 

scores which would be expected in absence of any sampling errors (computed from LLTM 

predicted category frequencies). As can be seen in Figure 43, the bulk of the data closely fit to 

a singular linear relationship, with a high correlation. However, data from the original (data 

logger) variant of “Vapour Pressure” deviate from this trend, exhibiting far lower calculated 

scores than would be expected without sampling bias. 

 

Figure 43: Effects of student biases on calculated ASELL mean scores 

Scores here refer to values calculated using the typical technique of assigning successive integer values 

to the successive rating scale categories, associated with the final 29 equated experiments of the full 

data set (see Table S 56 in section 7.4.2). Statistics shown associated with the linear relationship drawn 

are relevant to the bulk of the data only (excluding “Vapour Pressure”). Mean scores for the “Vapour 

pressure” experiment are substantially offset, indicating unfair evaluation compared to the other 

experiments. 

It is known that this offset for the “Vapour pressure” experiment values is not due to data 

connectivity issues. Because all basic parameters in the LLTM were included in a single facet 

(see section 7.6.2 in the supporting information), η parameters for each LLTM factor 

associated with “Vapour pressure”  have known position relative to the item locations μ, which 

in turn have known location relative to the η measures for all other experiments. This 

observation therefore suggests that students evaluating the “Vapour pressure” experiment 

had a broad scale negative bias against the experiment as a whole, to a degree which never 

occurred for other experiments evaluated. Given this experiment was received poorly, it 

therefore appears that this variant of the “Vapour pressure” experiment was received so 

poorly that students began to judge it unfairly. The trendlines shown in Figure 43 illustrate that 

for the data logger variation of “Vapour Pressure”, students provided responses approximately 

0.7 score units lower than would be fair, for all items of the survey. The fact that such an effect 

can exist is important both for the interpretation of survey data and for the design of 

laboratory activities.  
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Discounting “unfair” evaluations like this, the rest of the data can be used to quantify expected 

sampling errors present in calculated score values. Based on the central limit theorem, it may 

seem intuitive that increasing the number of observations used to calculate a mean score 

would reduce the error observed. However, this does not appear to be the case. 

 

Figure 44: Sample size independence of ASELL mean score errors 

A “baseline” level of systematic error remains for samples of any size, due to between sample variance. 

Average disposition towards positive response for entire sample groups changes from occasion to 

occasion and may differ between different groups, and this is not eliminated by simply increasing the 

number of observed cases sampled from a single group, at a singular time. The “absolute error” is the 

magnitude of difference between the observed mean score and the fair mean score, calculated from 

LLTM measures. 

As shown in Figure 44, the size of the errors in the bulk data set appears largely independent 

of the sample size. This can be explained using an observation made previously in sections 

4.1.4 and 4.1.6.2: errors in ASELL score arise not only from variance in student biases within 

individual sample groups, but also variance in the average bias between different sample 

groups. Here the term “sample group” is used to refer to a subset of the total observed data 

set, defined by the specific set of circumstances in which surveys were gathered. For example, 

all surveys gathered in the morning may form one sample group, whilst all surveys gathered in 

the afternoon may form another. Alternately, surveys gathered from students enrolled in 

Foundations of Chemistry may form one group, whilst students enrolled in Chemistry IA/B may 

form another.  Different student circumstances and contexts (for example time of day, course 

enrolled) influence broad scale student disposition, as was noted previously as an explanation 

for the fact that student specific measures (E) change from occasion to occasion (see section 

4.1). This affects the location of mean score value large sample sizes converge to, meaning 

different sample groups converge to different population means. It is differences between 

these population level means particular to the different groups which remain present, 

independent of the sample sizes used for each group.  

A very narrow diversity of sample groups was combined in these analyses, therefore meaning 

that the between sample variance has been reduced very little. Sample sizes used are very 

large, however, meaning the within sample variance has little to no effect in most cases. As 

such, variance in ASELL mean score error appears constant, due almost entirely to the inherent 

differences between the small variety of sample groups combined in these data. Reducing the 
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impact of these constant errors would not only require large numbers of observations from 

each group, but also a diverse range of different sample groups.  

Drawing a histogram of the errors observed (which reflect between sample variance), it can be 

seen that the distribution of errors for the bulk of the data appears roughly normal, with a 

standard deviation of approximately 0.1 (see Figure 45). It is this value which may be used as a 

quantification of the average size of any “baseline” level of error in these ASELL mean scores. 

Observations made here suggest that this constant margin of inherent error should be 

presumed to exist in ASELL mean score values, and should be included in any statistical 

analyses of ASELL mean score data. 

 

Figure 45: Distribution of errors in ASELL mean score 

The unfairly judged “Vapour pressure” experiment appears as an outlier to the rest of the data gathered. 

The bulk of the calculated error margins in mean ASELL scores follow an approximately normal 

distribution with   0.1. Because these errors are due almost entirely to between sample variance, this 

error margin should be considered as an expected level of variation in ASELL survey data, regardless of 

sample size. 

4.3.3.3 Major identifiable factors 

The now comparable values of LLTM are merely combinations of the more fundamental 

underlying factors, and it is measures associated with these factors which become the focus of 

comparative studies when using the LLTM. The relative contribution of each of these 

estimated factors to the variance in ASLE survey responses can be roughly gauged by referring 

to the results of the factor analysis used to generate the final LLTM, shown in Table 21. As can 

be seen the vast majority of variance in PCM values is explained by the first seven extracted 

factors only, whereas factors 8 through 12 all explain less than 1% of the variance in these 

measures (the other factors all explaining at least greater than 6% each). Were the number of 

factors to be retained decided using a scree plot, only these first seven factors would be 

retained judging by these values. The often used, but problematic factor extraction technique 

of retaining only those factors with eigenvalues of 1 or above would advise retaining only the 

first five factors. Here, in contrast, 12 factors have been retained based on an optimal balance 

between parsimony and proportion of observed data explained by the model (Figure 40 

previously). Factors beyond factor 7 are thus considered necessary for a full explanation of the 

observed data, but show little substantial contribution in comparison to the other factors of 

the model. Factor numbers have been assigned based on relative proportion of variance in the 

initial PCM measures explained. 
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Table 21: Variance in student independent measures explained by LLTM factors 

Factor 

Initial Eigenvalues 
Extraction Sums of Squared 

Loadings 
Rotation Sums of Squared 

Loadings 

Total 
% of 

Variance 
Cumulative 

% 
Total 

% of 
Variance 

Cumulative 
% 

Total 
% of 

Variance 
Cumulative 

% 

1 3.583 25.590 25.590 3.065 21.895 21.895 2.540 18.144 18.144 

2 3.133 22.377 47.967 2.811 20.077 41.972 2.313 16.519 34.663 

3 2.020 14.431 62.399 1.726 12.331 54.303 1.249 8.921 43.584 

4 1.599 11.423 73.821 1.195 8.532 62.836 1.172 8.373 51.957 

5 1.213 8.663 82.485 .917 6.550 69.385 1.158 8.269 60.225 

6 .784 5.600 88.084 .402 2.869 72.254 .927 6.618 66.844 

7 .618 4.411 92.496 .221 1.578 73.832 .869 6.205 73.049 

8 .356 2.543 95.039 .056 .403 74.235 .119 .848 73.897 

9 .217 1.550 96.589 .004 .026 74.261 .098 .698 74.595 

10 .155 1.110 97.699 .019 .132 74.393 .071 .510 75.105 

11 .124 .884 98.583 .036 .260 74.653 .036 .260 75.364 

12 .096 .687 99.270 .104 .741 75.394 .004 .029 75.394 

13 .066 .471 99.740 
      

14 .036 .260 100.000 
      

“Initial eigenvalues” reflect the relative variance explained by each factor as estimated by 

preliminary principal component analysis, prior to factor extraction. Totals sum to the number of 

initial variables (14). “Extraction sums of squared loadings” refer only to the shared variance 

among the 12 factors retained following extraction by image factoring. “Rotation sums of squared 

loadings” are similar values computed following factor rotation. It can be seen that a sharp drop in 

the % variance explained occurs for factors 8 to 12 as compared with the seven major factors (1-

7), particularly in the final rotated solution. 

It should be noted that proportions of variance explained in Table 21 above were not 

calculated using all 128,881 individual data points following LLTM estimation, but instead refer 

to calculations performed only on the limited number of artificially equated PCM values used 

to initially estimate the factor loading matrix. As such, these values serve as rough indicators 

rather than reflections of the properties of the final LLTM estimated. As was seen in Figure 41 

previously, the final estimated LLTM was able to explain 99.56% of variance in non-LLTM 

values, rather than the 75.394% explained in the factor analysis results. The discrepancy is 

likely due to the re-estimation of non-LLTM measures (LLTM + displacement, analogous to PCM) 

during the Facets software Rasch model optimisation process and the increase in number of 

data points included.  

The loadings of each factor onto each of the ASLE survey items further support the conclusion 

that first seven factors are responsible for the majority of variance in observed responses, 

whilst the remaining five factors contribute little. Table 22 displays the factor loadings 

associated with each factor, reflecting the correlation between factor measures and PCM 

measures associated with the original fourteen survey items. It is these loading values which 

were utilised to generate the final Q matrix for the 12 factor LLTM, via Equation 40. 
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Table 22: Annotated factor loading matrix (𝑳 = [𝒍𝒊,𝒇]) for the 12 factor model 

  Factor number ( f ) 

i Survey item 1 2 3 4 5 6 7 8 9 10 11 12 

1 This experiment helped me 
to develop my data 
interpretation skills 

0.02 0.01  0.08  0.81  -0.10 0.19  0.02 0.01  0.01  -0.01 -0.01 0 . 0 0  

2 This experiment helped me 
to develop my laboratory 
skills 

-0.70 0.05  -0.07 0.46  0.33  -0.05 0.07 -0.01 -0.03 0.16  0.01  0 . 0 2  

3 I found this to be an 
interesting experiment 

-0.72 0.36  0.33  0.07  0.07  -0.18 0.24 0.05  0.15  0.04  -0.07 0 . 0 1  

4 It was clear to me how this 
laboratory exercise would 
be assessed 

0.13 0.84  0.13  0.01  -0.03 0.10  0.23 -0.05 0.18  -0.05 0.02  0 . 0 1  

5 It was clear to me what I 
was expected to learn from 
completing this experiment 

0.69 0.50  0.07  0.14  0.09  0.18  0.19 0.08  0.14  -0.06 0.03  -0.03 

6 Completing this experiment 
has increased my 
understanding of chemistry 

0.06 0.06  0.81  0.03  -0.12 -0.08 0.05 -0.05 0.01  0.00  0.00  0 . 0 0  

7 Sufficient background 
information, of an 
appropriate standard, is 
provided in the introduction 

-0.27 0.70  -0.09 0.30  0.16  0.14  0.12 -0.10 -0.01 0.15  -0.03 -0.03 

8 The demonstrators offered 
effective supervision and 
guidance 

0.12 0.10  -0.04 0.23  -0.02 0.69  0.13 0.02  0.00  0.00  -0.01 0 . 0 0  

9 The experimental procedure 
was clearly explained in the 
lab manual or notes 

0.07 0.76  -0.06 -0.14 0.21  -0.02 -0.04 0.06  -0.15 -0.02 0.00  0 . 0 1  

10 I can see the relevance of 
this experiment to my 
chemistry studies 

0.78 0.10  0.27  0.15  -0.13 -0.01 -0.17 0.02  0.00  0.11  -0.05 0 . 0 4  

11 Working in a team to 
complete this experiment 
was beneficial 

0.07 -0.18 0.56  0.09  -0.48 0.10  -0.21 0.29  -0.01 -0.01 -0.01 0 . 0 0  

12 The experiment provided 
me with the opportunity to 
take responsibility for my 
own learning 

-0.16 0.18  -0.19 -0.06 0.77  -0.03 0.06 0.02  0.00  0.00  -0.01 0 . 0 0  

13 I found the time available to 
complete this experiment 
was 

0.50 0.04  -0.07 -0.26 -0.25 0.46  0.40 -0.08 0.01  -0.02 0.16  0 . 0 0  

14 Overall, as a learning 
experience, I would rate this 
experiment as 

-0.27 0.29  0.01  0.09  0.20  0.31  0.67 -0.01 0.01  0.01  -0.02 0 . 0 0  

Factor loading values in the table above reflect correlations between factor measures and survey item 

measures. Negative correlations are shown in blue, whilst positive correlations are shown in red, with 

darker colours reflecting correlations of greater magnitude. These values therefore reflect the “character” 

of each factor, described in terms of the original survey items: what each factor resembles. 

These loading values may be used to identify what features of the laboratory experience each 

factor generally appears to reflect. That is, the loading values reflect the identity or “character” 

of each factor. A summary of the strongest observed loadings for each of the first seven 

factors and hence the assigned character of each is provided in Table 23. Factors 8 to 12 show 
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minimal loadings only for any given survey item, and their character is therefore unknown. 

This is not problematic, however, as these factors contribute very little to variance in observed 

data as discussed. 

Table 23: Character of major factors contributing to ASLE survey responses 

Factor Strong negative loadings 
Characterise more negative values 

Strong positive loadings 
Characterise more positive values    

Assigned character 

1 
Laboratory skills development 
Interest 

Relevance to chemistry studies 
Clear expected learning 

Time availability 

Theory focus 
(vs practical/ lab focus) 

2  

Clear assessment criteria 
Clear procedure in manual 

Sufficient background information 
Clear expected learning outcomes 

Instructions 

3  
Increased understanding of chemistry 

Teamwork beneficial 

Collaborative 
understanding 

4  
Data interpretation skills 

development 
Data interpretation 

5 Teamwork beneficial Responsibility for own learning Independent learning 

6  
Demonstrator supervision and 

guidance 
Demonstrators 

7  Positive overall learning experience Unexplained overall 

A number of factors appear to load strongly on singular survey items and have therefore been 

assigned a character reflective of the content of those items (factors 4, 6 and 7 loading on 

survey items 2, 8 and 14 respectively). This does not necessarily imply that it is only these 

factors which contribute to each of these respective survey items, merely that these factors 

are primarily characterised by singular aspects of the laboratory experience and not others 

targeted by the survey. Factor 7, for example, is not the only factor to contribute to the overall 

learning experience: it is simply a factor that has no other clear defining characteristic, and 

appears unexplained by characteristics targeted by other survey items.  

Other factors appear to have more complex character. The loadings of factor 1 appear to 

suggest a dimension whereby a stimulation of interest and development of laboratory skills 

comes at the cost of a perceived lack of relevance and clarity of learning objectives, as well as 

a lack of time to complete the experiment. Conversely, for learning objectives to be clear and 

relevant with ample time to address them, the task evidently typically lacks a development of 

laboratory skills and is less interesting. These characteristics appear to resemble the 

differences between hands-on “skills-based” experiments and experiments intended to 

reinforce lecture content rather than technical skills. Factor 1 has therefore been labelled as 

the spectrum from lecture theory focus to practical/ laboratory skills focus to reflect this. The 

quality of the instructional material provided appears to be a singular factor, with factor 2 

loading on four separate survey items all concerned with the information provided to 

students. The character of factor 2 has therefore been assigned accordingly as the 
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“instructional material” factor. Factor 3 primarily loads on the perceived increase in 

understanding, but also has a prominent loading on the perceived benefit of teamwork. Factor 

3 has been assigned as “collaborative understanding” to reflect this. This factor does not 

negatively load on responsibility for own learning, however, meaning it may therefore be more 

accurately characterised primarily by the increase in understanding. Another factor, factor 5, 

does appear to represent the contrast between independence and collaboration, loading 

positively on responsibility for own learning and negatively on the benefit of teamwork. Factor 

5 has therefore been assigned as relating to “independent learning”. 

4.3.3.4 Identity of remaining low contribution factors 

Despite the fact that factors 8 – 12 have little contribution to the variance in observed 

responses overall, their identity may still be useful information if it can be determined. 

However, their very low correlation with (and therefore resemblance to) aspects of the 

laboratory experience targeted by the ASLE survey makes characterisation of these factors 

problematic. 

A clue as to the role of one of these factors, factor 8, can be gained from examining the effects 

of excluding factor 8 from the model. Factor 8 has no clearly discernible identity based on its 

factor loadings, but does appear to have some role in determining response to item 11 of the 

survey: “working in a team to complete this experiment was beneficial”. The final LLTM 

computes the measure for item 11 as a sum of various contributions from the first 8 factors, 

with no contribution from factors 9 and onwards (see Table 24 later discussed). Computing 

the measures for this item by only considering the seven primary identified factors discussed 

previously therefore gives insight into the role of factor 8. Such a comparison is displayed in 

Figure 46. 
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Figure 46: Role of factor 8 in determining the "benefit of teamwork" measure 

The left of the figure shows student independent measures for item 11 of the ASLE survey, as computed 

using all factors involved. The right of the figure shows measures computed for the same item, this time 

only using the first seven identifiable factors in the model. Factors 9 onwards had no contribution in either 

case, meaning any change in the distributions observed is solely due to the exclusion of factor 8. 

As can be seen, student independent measures for item 11 appear in two clusters when all 

factors of the model are included. When observing which experiments’ measures appear in 

which cluster, it is quickly discovered that all values in the upper cluster ( > -1) are, without 

exception, the experiments conducted in pairs. Conversely, again without exception, all values 

in the lower cluster ( < -1) are from experiments conducted individually. This demonstrates 

quite clearly that item 11 of the ASLE survey yields an effectively binary response: when asked 

if teamwork was beneficial, students respond positively in all cases they worked in pairs, 

whereas they respond negatively if they worked individually.  

Curiously, however, this binary response is entirely absent unless factor 8 is included in the 

calculation. Computing measures for item 11 using only the first 7 factors, a single cluster of 

measurements is observed. Reasons for this are speculative, but the conclusion must be drawn 

that factor 8 “corrects” the measure for item 11 back to a binary response once the effects of 

the first 7 factors have been accounted for. As has been seen in the identity of the first seven 

factors, teamwork or lack thereof is an inherent defining feature of at least two factors 

underpinning ASLE survey responses (factors 3 and 5), and therefore a full range of (non-

binary) perceptions regarding the role of teamwork is accounted for by the students. However, 

it appears that despite a tacit acknowledgement of this full spectrum when answering other 

items of the ASLE survey, students are still compelled to respond to item 11: “working in a 

team to complete this experiment was beneficial”, as if it simply asked “did you work in a 

team?” The correcting of the full spectrum of possible perceived levels of teamwork back to a 

binary response is the observed role of factor 8, judging by this analysis.  
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Behaviour such as this could never be expected to correlate strongly to any item asked on the 

ASLE survey, and therefore never manifest as a substantial factor loading value which could be 

used to “characterise” the factor’s identity. Factors 9 through to 12 could have similarly 

obscure roles in survey response, however this remains unknown. It is effects such as this, 

which could never have manifested in the results of any simple factor analysis, which justify 

the inclusion of factors beyond those which are clearly identifiable (the first seven here). The 

identity of factors contributing to ASLE survey responses which cannot resemble any question 

asked on any survey, such as factor 8, could be a problem unable to be rectified easily.  

4.3.3.5 Factor impacts 

The true advantage of the LLTM generated is not the identification of the key factors involved 

in ASLE survey response, as this could largely be achieved from a simple factor analysis alone. 

Rather, the greater advantage is the quantification of each of these factors’ contribution to 

each individual ASLE survey item. The final Q-matrix estimated from this factor loading matrix 

is shown in Table 24. These values are the “weightings” of each factor’s contribution to the 

original ASLE survey items’ measures. Of note, the pattern in weightings does not necessarily 

match the patterns observed in the factor loadings. This is because of different observed 

variances in item measures estimated in the Partial Credit Model for each question. These 

weightings reflect the “impact” of each factor, rather than reflecting the “character” of each 

factor like the factor loadings. Negative impacts are coloured blue, whilst positive impacts are 

coloured red, with darker colours indicating higher magnitude of impact. Of note, factor 12 has 

zero impact on any survey item, and can therefore be discounted from consideration entirely. 

It’s inclusion in the model seems to be an advantage only in that it allows more accurate 

estimation of the other 11 factor weightings. It should be noted that Rasch measurement 

software other than Facets could accommodate non-integer values in the Q-matrix, giving 

factor 12 some small degree of impact. 

A wealth of information regarding how to improve all fourteen specific aspects of the 

laboratory learning experience targeted by the ASLE surveys is contained within the Q-matrix. 

The Rasch measure reflecting “objective” quality of the experiment with respect to any given 

survey item can be known by making use of the Q-matrix coefficients and measures associated 

with each of the twelve basic factors identified above, for the experiment concerned (Equation 

40). Impacts of altering any of these twelve factors of the laboratory learning experience can 

also be known and quantified using the Q-matrix coefficients. The full breadth of conclusions 

regarding best practice in structuring laboratory learning exercises gained from this 

investigation is therefore highly extensive and to be discussed separately (see section 4.4). 
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Table 24: Annotated weighting matrix (𝑸 = [𝒒𝒊,𝒋]) for the 12 factor model 

  

Factor number ( j = f ) 

i Survey item 1 2 3 4 5 6 7 8 9 10 11 12 

1 

This experiment helped me to 
develop my data interpretation 
skills 

0 0 1 7 -1 2 0 0 0 0 0 0 

2 
This experiment helped me to 
develop my laboratory skills 

-15 1 -1 10 7 -1 2 0 -1 3 0 0 

3 
I found this to be an interesting 
experiment 

-10 5 5 1 1 -3 3 1 2 1 -1 0 

4 

It was clear to me how this 
laboratory exercise would be 
assessed 

1 6 1 0 0 1 2 0 1 0 0 0 

5 

It was clear to me what I was 
expected to learn from 
completing this experiment 

5 3 1 1 1 1 1 1 1 0 0 0 

6 

Completing this experiment has 
increased my understanding of 
chemistry 

1 1 7 0 -1 -1 0 0 0 0 0 0 

7 

Sufficient background 
information, of an appropriate 
standard, is provided in the 
introduction 

-2 5 -1 2 1 1 1 -1 0 1 0 0 

8 

The demonstrators offered 
effective supervision and 
guidance 

1 1 0 1 0 3 1 0 0 0 0 0 

9 

The experimental procedure was 
clearly explained in the lab 
manual or notes 

1 8 -1 -1 2 0 0 1 -2 0 0 0 

10 

I can see the relevance of this 
experiment to my chemistry 
studies 

7 1 2 1 -1 0 -1 0 0 1 0 0 

11 
Working in a team to complete 
this experiment was beneficial 

2 -4 14 2 -11 2 -5 7 0 0 0 0 

12 

The experiment provided me with 
the opportunity to take 
responsibility for my own learning 

-1 1 -1 0 5 0 0 0 0 0 0 0 

13 
I found the time available to 
complete this experiment was 

14 1 -2 -8 -7 13 12 -2 0 -1 5 0 

14 
Overall, as a learning experience, 
I would rate this experiment as 

-2 2 0 1 1 2 5 0 0 0 0 0 

Note that the matrix shown above is not the full Q-matrix. The full matrix has matrix elements for columns 

j=13 to j=26 as described in Equation 40 and can be seen in full in the supporting information (section 

7.6.3). The matrix elements shown are those relevant to the twelve basic experiment specific factors 

(indexed by f) underpinning survey question responses. 

4.3.4 Discussion 

4.3.4.1 Successful model estimation 

The fact that the 12-factor LLTM model yields an AICc value lower than the initial partial credit 

model definitively establishes that this technique of Q-matrix estimation achieves the desired 

outcome. For the data set used to estimate the matrix, the explanatory model of the data has 
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been successfully reduced to a smaller number of factors for each experiment (7 major factors, 

12 factors total) than the initial fourteen, with no evident loss in the proportion of observed 

data explained. Generalising the model to a slightly wider data set, the estimated LLTM still 

appears superior to the initial partial credit model. 

The outstanding success of this technique was achieved despite two key sources of error in the 

Q-matrix estimation: 

1) Artificial equating of two experiments to resolve data connectivity issues 

2) Rounding errors in the conversion of factor loadings to Q-matrix weightings 

Utilising Rasch measurement software capable of using non-integer values for Q-matrix 

weights and estimating the Q-matrix from a fully connected data set would resolve these 

sources of error, generating a model which fits the data even more closely than the one 

presented here. A model such as this would be capable of modelling even more than the 

observed 99.56% of variance in PCM values obtained here. Further, this study’s success was 

achieved with a near inadequate number of data points for the factor analysis. Evidently this 

method is capable of estimating a superior model for a given data set despite this. The use of 

data points obtained from a small number of experiments limits only the generalizability of the 

model obtained, not the capability of estimating a superior model for the given data set. 

The fact that the final model estimated here was generated from the measures associated 

with only 23 experiments is a substantial limit on the generalizability of any conclusions drawn 

from the model features. However, the LLTM estimated still represents a significant 

improvement in understanding: the previous partial credit model contained no inherent 

information about why each experiment is associated with the set of quality measures 

observed (). The final LLTM, however, explicitly reveals patterns in the quality measures 

observed, explaining them as combinations of more basic factors which are identifiable 

through their factor loading values on the initial survey items. The LLTM therefore represents 

an advance in knowledge.  

4.3.4.2 Corrected standard error in a fair mean ASELL score 

Due to the data connectivity afforded by the LLTM, observed ASELL mean score results could 

be easily contrasted with fair predictions of the LLTM, which eliminate errors introduced 

through broad scale biases in individual samples. 

Data presented here can be used to derive a corrected, more accurate formulation for the 

standard error in any given ASELL score. The fair mean ASELL score (Afair) can be considered as 

the observed mean score (Aobserved) minus the error introduced due to broad scale bias in the 

sampled group (Ebias): 

 𝐴𝑓𝑎𝑖𝑟 =⁡𝐴𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝐸𝑏𝑖𝑎𝑠 44 

Through the variance sum law, this therefore implies that the expected variance in a fair ASELL 

mean score can be described by the following, presuming the observed mean score and the 

bias present are independent: 

 𝑣𝑎𝑟(𝐴𝑓𝑎𝑖𝑟) = ⁡𝑣𝑎𝑟(𝐴𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑) + 𝑣𝑎𝑟(𝐸𝑏𝑖𝑎𝑠) 45 
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Given that the standard error is simply the square root of the sample variance, Equation 45 is 

effectively an equation for the most appropriate error margin in any sampled ASELL score. The 

𝑣𝑎𝑟(𝐴𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑) term is the variance in the observed mean score calculated: the within sample 

variance. The 𝑣𝑎𝑟(𝐸𝑏𝑖𝑎𝑠) term is the variance introduced through differences between the 

biases of separate samples: the between sample variance. These two terms sum to give the 

total variance in a fair ASELL mean score 𝑣𝑎𝑟(𝐴𝑓𝑎𝑖𝑟). Using the central limit theorem to obtain 

𝑣𝑎𝑟(𝐴𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑) and Figure 45 to obtain 𝑣𝑎𝑟(𝐸𝑏𝑖𝑎𝑠), the standard error in a fair ASELL mean score 

may be given as follows: 

 𝑆𝐸(𝐴𝑓𝑎𝑖𝑟) = ⁡√⁡
𝜎𝐴

2

𝑛
+ 0.01 46 

Where SE is the standard error, 𝜎𝐴
2 is the observed variance in scored ASELL survey responses 

and n is the sample size. This corrected standard error value could be used in T-tests 

conducted on ASELL mean score data, which are far more accessible to most ASELL survey 

researchers. It can also be inferred that an error margin of approximately 0.1 score units is to 

be expected for any ASELL score obtained, regardless of sample size. This can be used to 

suggest a simple rule of thumb that no significant difference in two ASELL mean scores can be 

claimed unless those two means differ by at least 0.1 score units. 

This specific minimum error value of 0.1 score units may well be particular to this data set: the 

value is a reflection of the degree of difference between the variety of sampling occasions and 

contexts combined in these analyses. Notably, the two student cohorts: Foundations of 

Chemistry IA/B and Chemistry IA/B, are expected to have different perspectives and biases 

towards the experiments, due to differences in their backgrounds. Similarly, students 

conducting experiments at different times of day or at different times during the week may 

have consistent differences in their average predispositions. It would be unexpected, however, 

to observe differences in average bias greater than these in most cases: the two separate 

cohorts particularly are quite dissimilar, and most cases in which data sets are compared are 

liable to use cohorts more similar than these in the comparison by design. If cohorts of a 

greater degree of dissimilarity are used, however, the value of 𝑣𝑎𝑟(𝐸𝑏𝑖𝑎𝑠) used above (0.01) 

may need to be increased.  

The corrected standard error formula presented above may prove useful for more rigorous 

statistical testing, but use of ASELL surveys in practice does not often need to be this precise. 

Surveys are often used for exploratory purposes, and rough guidelines for significant 

differences are usually sufficient. By considering the maximum possible value of 𝜎𝐴
2 in the 

formula above, a guideline for the expected maximum standard error value for an ASELL mean 

score gathered from n samples can be estimated. Assuming the distribution of scored 

responses gathered has a singular peak, the maximum possible variance in the observed 

scored responses (𝜎𝐴
2) arises from a distribution whereby each response category has the same 

proportion of responses: a uniform distribution. Calculating the population variance in this 

case (as per Equation 10) yields a value of 2. This value can be substituted for 𝜎𝐴
2 in either the 

corrected (Equation 46) or uncorrected (Equation 11) formula of the standard error value to 

yield an expected maximum error margin (SEmax) in the mean ASELL score. As can be seen in 

Figure 47, the correction for between group variance has little practical significance. Standard 

error values at sufficient sample sizes appear not to exceed approximately 0.25 score units, 

regardless of the inclusion of any correction. 
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Figure 47: Maximum expected standard error values in calculated ASELL mean scores 

The corrected standard error value differs little from the uncorrected value. At appreciable sample sizes 

(n  30), the standard error in a mean ASELL score is not expected to exceed approximately 0.25 score 

units. This can be used as a rough guideline for exploratory comparisons. 

4.3.4.3 Student independence of results 

Recently, Barrie et al.61 also conducted a factor analysis on ASLE survey response data, 

discussing the role of various factors in generating a positive overall learning experience. 

Factors reported in this previous study differ substantially from those reported in the new 

analysis presented here, and this is to be expected for a number of reasons. The differences 

may partly be due to the fact this study exclusively made use of data from a single year level at 

a single university (as opposed to the broader scope of the Barrie et al. study), but the 

differences are far more prominently due to different estimation methodology. 

Because Barrie et al. base their factor analysis on scored individual responses, they conflate 

student dependent and student independent effects (see section 3.2). As the majority of 

variance in individual ASLE survey data points is due to student dependent effects (as 

identified in section 3.3), correlations underpinning the factor analysis in the Barrie et al. paper 

will reflect correlations between student dependent factors (biases) far more than they reflect 

correlations between student independent factors (experiment quality) (see section 4.1.6.3). 

In contrast, the study presented here exclusively analyses student independent measures, 

meaning the factors estimated reflect properties of the experiments evaluated, not the 

students doing the evaluation. 

As an example, in the Barrie et al. study, scored individual responses to survey item 14 (overall 

learning experience) correlate with scored responses to survey item 7 (concerning background 

material provided). In this study, Rasch measures for these same items also correlate. 

However, the conclusions which can be drawn are very different. From the score based study, 

an appropriate conclusion would be: 

Students who rate their overall experience highly also commonly rate the background 

information to be sufficient. 

Whereas from the Rasch based study, an appropriate conclusion would be: 
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Experiments for which the overall learning experience measure is high also commonly 

have a high background information sufficiency measure.  

The former conclusion, most appropriate for the Barrie et al. study, could feasibly be the case 

even if background information quality were irrelevant to genuine overall experience: it could 

be that students in a “good mood” typically answer both questions more positively regardless. 

The latter conclusion, able to be drawn from this LLTM formulation, has controlled for student 

dependent factors such as this. 

What becomes apparent is that the conclusion able to be drawn from the score based study is 

not necessarily informative of good experiment design: the correlation could appear simply 

because students who have a high positive bias to one question also happen to have a high 

positive bias to other questions, regardless of the experiment conducted at the time. In fact, 

based on results presented in section 4.1, this is precisely the way student responses operate. 

The use of the Barrie et al. study in informing best practice for design of experiments is, for 

this reason, highly questionable. In contrast, the Rasch technique used here exclusively makes 

use of measures that have been shown (see section 4.1) to reflect ‘objective’ measures of 

quality for the experiments themselves, independent of the biases of students responding.  

Factors extracted in the Barrie et al. paper are therefore expected to reflect factors 

underpinning student disposition towards positive response, not factors underpinning 

experiment quality. Had the factor analysis been conducted on mean scores – which “average 

out” student bias effects to a degree – this would be less of an issue. However, doing so would 

have reduced the study to having only 784 data points for the factor analysis as opposed to the 

reported 3153. Additionally, even in the case of using mean scores, only 56 responses per 

experiment on average may not have been sufficient to overcome all student bias variations 

within each group. Even if it were sufficient to do so, this would still not remedy the remaining 

between-group variation in student biases (see section 4.1.4). 

The use of a larger number of data points in the Barrie et al. study highlights one substantial 

difficulty with the methodology used here: data from a large number of experiments are 

needed for this type of analysis to be generalizable. Though generation of the LLTM here made 

use of nearly three times as many individual responses, the factor analysis was based on only 

322 Rasch measures, which was seen to be barely adequate at best. As has been discussed, 

however, the model generated still represents an improvement in understanding. 

4.3.4.4 Factor extraction: objectivity and quantification 

Another advantage of this technique over the previous score-based factor analysis is the 

identification of how many factors to extract via statistical means rather than judgement by 

the researcher. In the previous study by Barrie et al., the appropriate number of factors in 

model was decided by retaining the smallest number of factors whilst meeting somewhat 

arbitrary (though common) researcher-chosen criteria. The method of selecting for 

eigenvalues ≥ 1 was used, which has been shown to be less preferable than other alternate 

methods.209 The technique used in the study discussed here requires no input by the 

researcher as to the number of factors extracted: the number of factors is determined 

objectively by the algorithms involved, which are based on well-established statistical 

considerations of parsimony and fit of data to the model. This also means that factors with 

unconventional characteristics necessary for the model’s accuracy are retained where they 

would otherwise be dismissed inappropriately. The retention of factor 8 in this model is a 



4.3  Qualitative interpretations and the ASLE survey data| Empirical estimation of a Linear Logistic Test 
Model Q-matrix 

141 

 

prime example. This is possible here because the factor extraction is unaffected by the 

expectations or predispositions of the researcher.  

A drawback of this methodology, however, is the substantial amount of time needed for the 

estimation: each data point corresponding to a different LLTM in the plot at the right of Figure 

40 required approximately 10 to 13 hours of computing time. This is partly due to the 

complexity of the model, but more likely due to the fact that the “landscape” of possible 

solutions to each LLTM is a very “flat” surface, meaning the optimal solution differs very little 

from many other solutions, thereby increasing the time needed to find the global minimum 

during the optimisation. 

The final LLTM obtained in this study also has the advantage of explicitly quantifying the 

effects of each factor on the experiment’s quality with respect to each item of the survey. In 

this way, measures such as those for the “overall learning experience” item are directly 

explained in terms of the experiment’s basic properties. Moreover, they are explained in a 

quantitative manner: it is known which factors contribute the most, which contribute the least 

and the proportion yet to be explained.  As an example, the LLTM formulation for the “overall 

learning experience” measure (associated with survey item 14) is expressed below in Equation 

47 (discounting the item location parameter μ14). The column vector containing integer value 

coefficients is lifted directly from the appropriate row of the Q matrix (Table 24), whilst the 

vector of η values contains measures of the seven major factors identified, each labelled using 

their assigned character (see Table 23). The integer weightings are constant for all 

experiments, whereas the factor measures (η) are all experiment specific. The final measure 

value  can be input into Equation 43 (as LLTM), which in turn can be substituted into Equation 

1 to give the probability of observing a student to respond in each of the five response 

categories on the ASLE survey. 

 𝛿14⁡(𝑜𝑣𝑒𝑟𝑎𝑙𝑙⁡𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔⁡𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒) ⁡⁡⁡=    
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47 

Here the Q-matrix reveals the relative weighting of each factor’s contribution to the overall 

learning experience. Included is a contribution of 5 × factor 7, which itself is characterised as 

mostly resembling overall learning experience. This shows and explicitly quantifies a 

substantial contribution to overall learning experience which is not explained by the topics of 

other items within the ASLE survey. The model estimated here thereby identifies a gap in 

knowledge, revealing a goal for future research. A substantial portion of the overall learning 

experience measures are explained in this model, however. As previously stated, the extent of 

these contributions are explicitly quantified in the model, advancing understanding further 

than merely a “yes or no” answer to the question of whether various considerations are of 

importance. A full spectrum of partial contributions is recognised in this model, as opposed to 

only identifying full, partial or absent factoring as was the case in the study by Barrie et al. 

Equations similar to Equation 47 are obtained for all fourteen items of the ASLE survey through 

this model. 
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Having obtained this model, the results can now be analysed in depth to determine how 

experiments should be structured to be received as positively as possible by students, which 

positive features of the laboratory experience are more important than others, and the likely 

effects of changing various features of the laboratory experience both qualitatively and 

quantitatively.  

4.3.5 Conclusion 

A technique has been devised and implemented here to yield a Linear Logistic Test Model for 

the ASLE survey data. The method yielded the best explanatory model of the data to date, 

resulting in a more parsimonious solution without sacrificing the proportion of data explained 

by the model. The objective, sample independent nature of the model means conclusions can 

now be drawn regarding best practice for the design of laboratory exercises, independent of 

the specific students conducting the activity. This topic is to be discussed in the next section of 

the results presented in this thesis. Formulation of the model has also allowed for the 

derivation of a correction to the standard error in a given mean score value calculated using 

more typical integer scoring methods. This correction is readily usable for the majority of 

ASELL survey practitioners. 



4.4  Qualitative interpretations and the ASLE survey data| Recipes for a positive laboratory experience: 
pedagogical implications of the ASLE data LLTM 

143 

 

4.4 Recipes for a positive laboratory experience: pedagogical 

implications of the ASLE data LLTM 

4.4.1 Outline 

The previous study described a method for using observed data to derive a Linear Logistic Test 

Model (LLTM) capable of adequately explaining ASLE survey response patterns. Application of 

this procedure resulted in the generation of a factor loading matrix, detailing the character of 

12 factors: seven major interpretable factors (Table 25) and 5 factors with little clear 

contribution or identity. As part of the LLTM, a Q matrix was also estimated, detailing how 

each factor contributes to responses for each ASLE survey question. This section will now 

discuss the key features of the estimated model, revealing more practical interpretations of 

the results able to inform future teaching practice. A summary of the seven interpretable 

factors and the symbols used to refer to them in the following discussion is presented in Table 

25 below. The low-contribution factors, factors 8 through 11 (not presented in Table 25), will 

be referred to as ηf where f is the factor number. 

Table 25: interpretable factors contributing to laboratory perceptions 

# Symbol Factor description 

1 𝜂𝑡ℎ𝑒𝑜𝑟𝑦⁡𝑓𝑜𝑐𝑢𝑠 
Positive values for this factor reflect a focus on (lecture) theory, 

whereas negative values reflect a focus instead on practical 
activity. 

2 𝜂𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 
Positive values for this factor reflect high quality of the 

instructional notes provided 

3 𝜂𝑐𝑜𝑙𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑖𝑣𝑒⁡⁡𝑢𝑛𝑑𝑒𝑟𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔 
Positive values for this factor reflect an increase in perceived 

understanding of chemistry, associated with the benefit of 
teamwork 

4 𝜂𝑑𝑎𝑡𝑎⁡𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑎𝑡𝑖𝑜𝑛 
Positive values for this factor are associated with perceived 

development of data interpretation skills 

5 𝜂𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡⁡𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 

Positive values for this factor are associated with perceived 
opportunity to take responsibility for own learning, whereas 

negative values are instead associated with a sense that 
teamwork was beneficial 

6 𝜂𝑑𝑒𝑚𝑜𝑛𝑠𝑡𝑟𝑎𝑡𝑜𝑟𝑠 
Positive values for this factor are associated with students 
frequently reporting effective supervision and guidance by 

their demonstrator. 

7 𝜂𝑢𝑛𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑⁡𝑜𝑣𝑒𝑟𝑎𝑙𝑙 
Positive values for this factor are associated with a more 

positive reported overall learning experience, unexplained by 
other factors 

Refer to Table 22 for more precise characterisation of each factor’s defining features and Table 24 for 
quantifications of their impacts on each ASLE survey item. 

4.4.2 Skills-based versus theory-based laboratory activities 

The fact that 𝜂𝑡ℎ𝑒𝑜𝑟𝑦⁡𝑓𝑜𝑐𝑢𝑠 appears as the first factor (explaining 18% of the variance in PCM 

estimates, see Table 21 previously) appears to suggest that an experiment’s focus on (lecture) 
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theory or on practical activity is the single most important consideration in designing an 

experiment which will rate positively with students.  Student interest and “overall laboratory 

experience” as reported in items 3 and 14 of the ASLE survey respectively appear to improve 

as focus is directed away from theory and instead towards practical activity. However, this 

appears to come at the cost of reduced clarity of the learning objectives and a lack of time 

availability. Measurements for this factor associated with each surveyed experiment are 

displayed in Figure 48. 

 

Figure 48: LLTM basic parameter measures for factor 1 (theory focus) 

More positive values correlate with perceived relevance, clarity of expected learning outcomes and time 

availability whilst negative values correlate to increased interest and perceived development of laboratory 

skills. Error bars represent the standard error value of the measure. Experiment titles are sequenced from 

lowest measure to highest measure. A summary of experiment descriptions has previously been 

presented in section 2.1.3. 

Given pre-existing chemistry education literature detailing the importance of practical activity 

for engaging with chemistry at the “macroscopic” and concrete level,13, 257, 259, 260, 304-306 as well 

as the substantial importance of bridging the gap between concrete observations and formal 
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theory in science education,261, 307, 308 it is tempting to interpret this factor as a measure of 

whether students perceive the experiment (or the concepts involved) to be more concrete and 

hands on or more abstract and theoretical in nature. However, interpreting 𝜂𝑡ℎ𝑒𝑜𝑟𝑦⁡𝑓𝑜𝑐𝑢𝑠 as a 

measure of concrete versus formal interaction with the relevant concepts would lead to some 

very complex rationalisations of the observed factor values. 

For example, the “Metal activity series” experiment has one of the higher 𝜂𝑡ℎ𝑒𝑜𝑟𝑦⁡𝑓𝑜𝑐𝑢𝑠 

measures, despite the fact that students work almost exclusively with direct experimental 

observations in this practical. Interpreting 𝜂𝑡ℎ𝑒𝑜𝑟𝑦⁡𝑓𝑜𝑐𝑢𝑠 as a concrete vs abstract measure, the 

concrete nature of “Metal activity series” would suggest a low 𝜂𝑡ℎ𝑒𝑜𝑟𝑦⁡𝑓𝑜𝑐𝑢𝑠 measure, not a 

high one. A clearer understanding of the 𝜂𝑡ℎ𝑒𝑜𝑟𝑦⁡𝑓𝑜𝑐𝑢𝑠 factor values comes from recognition of 

the factor’s defining characteristics: clear, relevant learning objectives as opposed to high 

development of laboratory skills, from the perspective of the students. The explanation for the 

“Metal activity series” experiment’s high 𝜂𝑡ℎ𝑒𝑜𝑟𝑦⁡𝑓𝑜𝑐𝑢𝑠 measure comes from the fact that 

“Metal activity series” is aligned with lecture content, as part of the Foundations of Chemistry 

course. The experiment therefore has a high focus on theory that students recognise from 

lectures, leading to perceptions of relevance and clarity of the intended learning outcomes: 

primary components of the 𝜂𝑡ℎ𝑒𝑜𝑟𝑦⁡𝑓𝑜𝑐𝑢𝑠 factor. It is also reasonable to expect that students 

therefore recognise the purpose of the practical to be about exploring the lecture content as 

opposed to development of any laboratory skills. Under this interpretation, a high value of 

𝜂𝑡ℎ𝑒𝑜𝑟𝑦⁡𝑓𝑜𝑐𝑢𝑠 is logical.  

Other experiments of high 𝜂𝑡ℎ𝑒𝑜𝑟𝑦⁡𝑓𝑜𝑐𝑢𝑠 measure are also predominantly experiments 

conducted as part of the Foundations of Chemistry course, which are similarly aligned well 

with lecture content. In contrast, many experiments of low 𝜂𝑡ℎ𝑒𝑜𝑟𝑦⁡𝑓𝑜𝑐𝑢𝑠 measure are those 

without lecture content alignment, often conducted by the Chemistry IA/IB cohort, whose 

practical activities were randomly sequenced. One apparent exception to this broad 

explanation of the observed values appears to be “Equilibrium and Chatelier’s principle” as 

first revised for the Foundations of Chemistry cohort. From the teacher’s perspective this 

experiment aligns well with the lecture content, and therefore should have a high 𝜂𝑡ℎ𝑒𝑜𝑟𝑦⁡𝑓𝑜𝑐𝑢𝑠 

measure. However, the experiment is observed to have a low 𝜂𝑡ℎ𝑒𝑜𝑟𝑦⁡𝑓𝑜𝑐𝑢𝑠 value despite this. 

The measure assigned also appears to explain the observed responses well given the fit 

statistics (see Table 26), and cannot be dismissed as a statistical anomaly given its narrow error 

margin.  

Recalling that ASLE data reflects student perceptions rather than teacher intentions may 

resolve this apparent problem. The low 𝜂𝑡ℎ𝑒𝑜𝑟𝑦⁡𝑓𝑜𝑐𝑢𝑠 measure of “Equilibrium and Chatelier’s 

principle” as first revised for the Foundations of Chemistry cohort may be interpreted to 

suggest students typically do not see the connection to the lecture content, despite teacher 

intent. This interpretation is sensible in light of the conceptual complexity and abstract 

reasoning required to draw conclusions from the observations made in the experiment; the 

topic of equilibrium is known to be problematic with respect to connecting concrete 

experiences with abstract theory,260, 305, 309-312 and this may explain why students might “miss 

the point” of the experiment. Observations made in “Equilibrium and Chatelier’s principle” 

largely consist of changes in pH and colour, with conclusions about equilibria only accessible 

through subsequent deductions and correct interpretation in light of more abstract theory. 

Disconnects between macroscopic phenomena and the unseen “sub-microscopic” level of 

chemistry such as this have often been cited as cause for students being unclear about what 
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intended learning outcomes they are supposed to gain from their observations,257, 259, 260, 306, 313 

and such a reduced clarity of intended learning outcomes is a defining characteristic of low 

𝜂𝑡ℎ𝑒𝑜𝑟𝑦⁡𝑓𝑜𝑐𝑢𝑠 measures (see Table 22). 

Generally speaking, the existence of this factor and the trends in its observed values appear to 

suggest that a clear connection to lecture content, from the perspective of the students, is the 

primary (known) factor in laboratory experience perceptions. Sequencing of the experiment 

with lecture content appears not to be sufficient in achieving this, however: the connection 

must be readily apparent to the students, not just the teacher. This connection may be 

achieved through careful design of experiments such that the relevant theory is clearly 

associated with the experimental observations and procedures; the macroscopic observations 

need to be illustrative of the abstract concept to achieve a high measure of 𝜂𝑡ℎ𝑒𝑜𝑟𝑦⁡𝑓𝑜𝑐𝑢𝑠, in 

conjunction with the experiment’s sequencing with the appropriate lecture material. Achieving 

this effectively lends itself to promoting clarity of the learning objectives of the practical and a 

perception of relevance (as seen in the Q-matrix, Table 24). 

Unfortunately, this also has the consequences of decreasing student interest and reducing 

perceived development of laboratory skills. The explanation for the impacts on student 

interest could simply be that students find lecture theory boring, or alternately that they find 

novel material interesting; reasons are not clear from the model alone. In either case the trend 

is somewhat unsurprising, as is the fact that students perceive the experiment to be less about 

developing laboratory skills if they perceive a stronger connection to lecture content. Similarly, 

increased time availability for practicals more concerned with lecture theory may be intuitively 

explained by the fact that practicals more directed towards technical skills typically require 

more time consuming manual “work” to complete. 

Additionally, benefits of having a clear connection to lecture content seem only to involve 

increased clarity of the intended learning outcomes, with only a small impact on actually 

attaining them. The Q-matrix weighting coefficient of this factor on the survey item 

“completing this experiment has increased my understanding of chemistry” is only +1, whereas 

other factors appear to have far more substantial contribution. Again, however, the 

perceptions of students may not necessarily align with teacher perspectives or indeed with the 

actual objective gains in student learning resulting from the practical. The implication for 

teachers here simply appears to be that a stronger and easily recognised connection to lecture 

content clarifies learning goals for students, but at the cost of students liking the exercise 

(both in terms of their interest and perceived “overall learning experience”). In this way, 

student preference appears to lean towards “skills-based” laboratory tasks rather than 

“lecture theory-based” laboratory tasks. 

4.4.3 Collaborative and independent learning 

The notion that learning is a social process is a very familiar concept in education, often viewed 

as being at the heart of constructivist ideologies. The views of Vygotsky314, 315 notably 

emphasise the significance of social interactions during the learning process, whilst past and 

current trends in pedagogy of science (and other disciplines) have emphasised the benefits of 

small group discovery activities,316-318 guided inquiry activities involving group work319-321 and 

the benefits of involving peers in problem based learning activities.322-326 
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The appearance of the third factor in the ASLE data LLTM: 𝜂𝑐𝑜𝑙𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑖𝑣𝑒⁡𝑢𝑛𝑑𝑒𝑟𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔, seems 

to suggest that interaction with peers is relevant to student enjoyment of their activities as 

well as in their learning, as suggested in the literature. This factor appears most strongly 

characterised as relating to perceived understanding of chemistry (item 6) and also has a 

slightly less strong association with perceived benefits of teamwork (item 11), as seen in Table 

22. However, the impacts of high values for this factor appear reversed to this: item 11 

(concerning teamwork) displays the most improvement as 𝜂𝑐𝑜𝑙𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑖𝑣𝑒⁡𝑢𝑛𝑑𝑒𝑟𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔 is 

increased (Q-matrix weight of +14), with perceived understanding slightly less so, but still 

substantially improved (Q-matrix weigh of +7). A possible explanation for this could be that 

increasing understanding (through groupwork) is the heart of the factor’s definition (hence the 

factor loadings observed), whereas in practice, students notice the fact they are now working 

together more than they notice the gains in understanding achieved (hence the Q-matrix 

coefficients observed). Regardless of which of these features can most accurately be described 

as the primary description of this factor, it seems clear that a perception of increased 

understanding of chemistry and a perception of teamwork being beneficial are so strongly 

associated that they manifest as one singular indistinguishable factor.  

Perceived increase in the understanding of chemistry as reported by students on ASLE surveys 

seems almost entirely due to this single factor, with little contribution from any other factors 

identified in the LLTM (see Equation 48 below, discounting item location parameter μ6). The 

only other ways to promote understanding appear to be clear focus on lecture theory, well 

written instructional material, less responsibility for the student’s own learning and reduced 

guidance from demonstrators, though these factors each appear far less important by 

comparison. 
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48 

The reasons behind the strong association between perceived increase in understanding and 

perceived benefits of teamwork are not made clear by the model itself. It could be that an 

experiment which improves student understanding often tends to elicit (or even require) 

conversation with peers, or that peers are more likely to be of assistance when needed. It 

could also be that experiments which require teamwork naturally assist with student 

understanding. The “direction” of causality here is unknown, but it seems reasonable to 

suggest that the existence of the 𝜂𝑐𝑜𝑙𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑖𝑣𝑒⁡𝑢𝑛𝑑𝑒𝑟𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔 factor was not unexpected based 

on existing education literature. Not only does the value of this factor influence the two survey 

items reflecting its primary characteristics (items 6 and 11 concerning understanding and 

teamwork respectively), but also positively influences student interest in the activity (Q-matrix 

weight of +5). 

The role of teamwork (or lack thereof) on student perceptions of learning is further revealed 

by another factor;  𝜂𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡⁡𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔. This factor appears much more directly characterised 

as the spectrum from independent work (for positive values) to collaborative work (for 
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negative values).  Somewhat confirming the conclusions drawn from the 

𝜂𝑐𝑜𝑙𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑖𝑣𝑒⁡𝑢𝑛𝑑𝑒𝑟𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔 factor’s behaviour, 𝜂𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡⁡𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 reveals a slightly negative 

impact on understanding as students report they are more able to take responsibility for their 

own learning (see Equation 48 above). Positive values of 𝜂𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡⁡𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 also show a 

small positive impact on perceived overall learning experience (Q-matrix weighting of +1), 

which was not observed for the 𝜂𝑐𝑜𝑙𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑖𝑣𝑒⁡𝑢𝑛𝑑𝑒𝑟𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔 factor. This suggests students 

prefer individual work to group work, aligning with the previous conclusion that “skills-based” 

practicals (which benefit from independent learning) are preferred to “theory-based” 

practicals (which benefit from collaborative understanding), seen when analysing the 

𝜂𝑡ℎ𝑒𝑜𝑟𝑦⁡𝑓𝑜𝑐𝑢𝑠 factor previously. More independent learning also appears to lead to a decrease 

in perceived availability of time (Q-matrix weighting of -7), again in keeping with what was 

seen for “skills-based” practicals generally when analysing 𝜂𝑡ℎ𝑒𝑜𝑟𝑦⁡𝑓𝑜𝑐𝑢𝑠. 

One of the largest impacts of the 𝜂𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡⁡𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 factor, however, is the substantial 

increase in reported development of laboratory skills as 𝜂𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡⁡𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 is increased (Q-

matrix weighting of +7, see Equation 49 in later discussion). Evidently, students perceive their 

laboratory skills to be better developed in the experiments where they report teamwork to be 

of little benefit and instead have responsibility for their own learning. The argument could be 

made, therefore, that skills-based practicals are more beneficial when conducted 

independently.  

However, this initially seems to conflict with the pedagogical implications of promoting 

“increased understanding of chemistry”, which was seen to be improved when group work is 

seen to be beneficial (seen analysing the 𝜂𝑐𝑜𝑙𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑖𝑣𝑒⁡𝑢𝑛𝑑𝑒𝑟𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔 factor). The apparent 

conflict may be reconciled if “understanding of chemistry” is primarily interpreted by students 

to mean understanding of chemistry theory, not laboratory skills. Rather than the model 

presented here containing any contradiction, this interpretation would then simply imply that 

the most appropriate pedagogy depends on the primary learning objectives of the practical: 

skills development is promoted by independent learning, whereas understanding of theory is 

promoted by teamwork. 

4.4.4 Different factors may apply for different student groups 

Given the hypothesis that individual work is beneficial for “skills-based” practicals as suggested 

in the preceding discussion, it is a natural next stage of research to examine the changes 

observed when the identical “skills-based” experiment is conducted in pairs as opposed to 

individually. The “Analysis of spinach extracts” experiment is one such experiment, and is in 

fact the only case in this study where whether students worked individually or in pairs was 

ever modified. The experiment appears to be perceived as one of the more “skills-based” 

experiments, with the relatively low 𝜂𝑡ℎ𝑒𝑜𝑟𝑦⁡𝑓𝑜𝑐𝑢𝑠 measures of 1.12 ± 0.1 Logits and 1.13 ± 0.01 

Logits for the Chemistry IB (individual work) and Foundations of Chemistry IB (working in pairs) 

iterations respectively (see Figure S 59 in the supporting information). Given the preceding 

discussion, it would therefore be expected that perceived development of laboratory skills and 

overall learning experience would receive more positive responses in the case of working 

individually. The empirical Rasch measures associated with each survey item (), reflecting 

“objective” quality of the learning experience, were compared to test this prediction. 

Measures estimated when students conduct the experiment in pairs as opposed to the 

measures estimated when students conduct the experiment individually are contrasted in 

Figure 49. 
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As would be expected, the measure for the item pertaining to the perceived benefit of 

teamwork appears greatly decreased when working individually. The next greatest affected 

facet of the learning experience is the perceived time availability, with group work appearing 

to be associated with less available time. This is in direct contrast to the implications of the 

behaviour of the 𝜂𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡⁡𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 factor described previously. Skills development also 

behaves contrary to prediction: the student group working in pairs appeared to broadly report 

a greater perceived development of laboratory skills, in contrast to the prediction made based 

on the effects of the 𝜂𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡⁡𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 factor. This specific “skills-based” practical appears 

not to have benefited from individual work as hypothesised. Patterns in the measures for this 

experiment appear to differ from the behaviour more generally observed in the full data set. 

 

Figure 49: Measures of laboratory learning experience quality associated with different 
forms of the Analysis of Spinach extracts experiment 

Here the experiment quality measures presented are the empirical values as would be estimated from a 

partial credit Rasch model, not the LLTM approximation (corrected by adding the “displacement” value). 

This is to ensure that observed values are contrasted rather than values simply predicted from the 

theoretical model. Error bars represent standard error values. Note that the position of the “zero” value is 

arbitrary. The student group “working individually” were Chemistry IB students, whilst the student group 

“working in pairs” were Foundations of Chemistry IB students (see section 2.1.1). 

It is important to note that although the experiment conducted here is equivalent, different 

cohorts of students were involved for the two groups. Despite the fact that student bias 

measures have been controlled for, the possibility of differential item functioning between the 

two student cohorts still exists. That is, all other factors being equal, objective measures of 
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learning experience quality () may be the same for all students within a single student cohort, 

but differ between the two cohorts.  Possibilities such as this confound any conclusions drawn 

from the comparison displayed in Figure 49. This could explain why time availability appears to 

be less of an issue for the students working individually in this case: that group is also the 

group of students with past experience in chemistry, who may objectively execute procedures 

more quickly as a general rule, because of their past experience. Likewise, the experiment’s 

learning objectives appear slightly less discernible for the “in pairs / Foundations of chemistry” 

group, possibly for similar reasons. The “individual workers / Chemistry IB” group may also 

have had lower perceived development of laboratory skills simply because they already had 

the required skills through previous chemistry experience, unlike the Foundations cohort.  

A valid comparison of working in pairs as opposed to working individually cannot yet be made 

here. This observation raises a critical issue: if the quality of an experiment can objectively 

differ depending on the capability of the student cohort, then so too must the Q-matrix. In real 

world terms, this means that the relative importance factors determining the quality of an 

experiment differ based on the student group to which the experiment is presented. As 

currently presented, the LLTM does not incorporate potential differences in the factors 

contributing to a positive student learning experience for the two different student cohorts: 

“Foundations of Chemistry IA/B” and “Chemistry IA/B”. Inherent differences in the appropriate 

pedagogy applicable to each student group therefore confound the Q-matrix weighting 

coefficients estimated.  

Differences in the design of the experiments conducted which, by chance, happen to correlate 

with differences in the student cohort conducting those experiments may alter the 

correlations observed in the factor analysis, hence also the factors extracted and the 

associated Q-matrix. For example, it was previously suggested that the (often) more 

experienced “Chemistry IA/B” cohort may be more likely to finish their experiments quickly 

than the (often) inexperienced “Foundations of Chemistry IA/B” cohort. Experiments where 

students work individually are in many cases the experiments exclusively conducted by the 

Chemistry IA/IB cohort, suggesting that this could be one reason why the perceived benefit of 

teamwork appears to be associated with increased time availability more generally in the final 

LLTM; it may be the cohort difference which impacts time availability rather than teamwork, 

but the two just happen to correlate. Likewise, experiments with greater theory focus were 

noted to often be the experiments conducted by the Foundations of Chemistry cohort, 

possibly helping to explain why 𝜂𝑡ℎ𝑒𝑜𝑟𝑦⁡𝑓𝑜𝑐𝑢𝑠  appears to control a large proportion of the 

variance observed in experiment quality measures estimated for the ASLE survey items. The 

fact that experiments conducted individually were almost exclusively conducted by the more 

experienced Chemistry IA/B cohort could also explain why teamwork showed such a strong 

association with the increase in understanding. The actual extent to which to cohort difference 

confounds the results of this investigation is unknown. Rectifying this issue would require 

estimating a separate Q-matrix for each student group; something not possible with this data 

set due to the low number of experiments investigated. 

The fit statistics associated with some LLTM measure estimates appear to support the 

possibility of different factor models applying to different student groups. Many 𝜂𝑡ℎ𝑒𝑜𝑟𝑦⁡𝑓𝑜𝑐𝑢𝑠 

measures which appear contrary to intuition can often be attributed to misfitting (specifically 

underfitting) the model generated. In cases such as these, reported student perceptions 

appear not to be modelled well by the Q matrix and Rasch model proposed here, suggesting 

that factors contributing to the observed perceptions are either weighted differently or are 
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different in nature to those modelled. Table 26 provides a summary of fit statistics associated 

with each measure for the 𝜂𝑡ℎ𝑒𝑜𝑟𝑦⁡𝑓𝑜𝑐𝑢𝑠 factor.  

Table 26: Fit statistics for ηtheory focus measures 

# Experiment 
Data 

points 

Infit Outfit Estim. 

Discrm 

Correlations 

MnSq ZStd MnSq ZStd PtMea PtExp 
          

3 Vapour Pressure 5141 1.17 7.5 1.54 9.0 0.68 0.72 0.74 

10 Coloured Complexes of Iron 32971 1.04 3.8 1.12 9.0 0.94 0.74 0.75 

13 Copper(II) Ion Absorption 

Spectrophotometry 

12750 0.98 -1.2 1.07 4.1 1.00 0.62 0.63 

16 Equilibrium and Le Chatalier's Principle 

(revised: for foundations) 

17902 1.00 -0.3 1.07 4.4 0.96 0.75 0.76 

8 Liquid-Liquid Extraction and TLC 22860 0.92 -7.6 0.92 -6.0 1.08 0.72 0.71 

9 Synthesis of Aspirin 15637 0.96 -3.1 1.02 1.5 0.99 0.75 0.76 

11 Analysis of Spinach Extracts 26703 1.02 2.4 1.11 9.0 0.97 0.59 0.61 

17 Visible Absorption Spectrophotometry 23596 1.07 6.3 1.16 9.0 0.94 0.56 0.60 

26 Vapour Pressure (revised: laptop) 24331 0.98 -1.5 1.07 5.3 1.00 0.70 0.71 

12 Ion exchange Chromatography 46824 1.07 9.0 1.11 9.0 0.94 0.63 0.66 

19 Analysis of Spinach Extracts (revised: for 

foundation - in pairs) 

19020 0.83 -9.0 0.89 -7.9 1.14 0.71 0.69 

1 Biological Buffers 12322 0.89 -7.3 0.91 -4.9 1.08 0.71 0.72 

4 Melting Points and Recrystallisation 29207 0.96 -4.1 0.99 -1.0 1.03 0.67 0.67 

22 Reaction Kinetics (revised: for 

foundations) 

4561 0.81 -8.3 0.85 -5.3 1.06 0.74 0.74 

27 Copper(II) Ion Absorption 

Spectrophotometry (revised: laptop) 

33347 0.97 -2.8 1.06 5.2 0.98 0.62 0.65 

15 Determination of Vitamin C 

concentration 

16109 0.98 -1.4 1.04 2.6 1.01 0.76 0.76 

29 Quantitative Techniques (revised: no 

pipetting) 

10914 0.98 -1.5 1.04 2.3 1.02 0.69 0.69 

7 Introductory experiment 1149 1.14 3.1 1.20 4.4 0.81 0.66 0.69 

21 Thermochemistry (revised: for 

foundations) 

17253 1.11 8.3 1.32 9.0 0.85 0.64 0.68 

25 Biological Buffers (revised: laptop) 15165 0.99 -0.5 1.03 1.8 1.02 0.68 0.69 

5 Quantitative techniques 40666 1.12 9.0 1.16 9.0 0.90 0.71 0.72 

6 Reaction Kinetics 32704 1.03 3.5 1.07 6.5 0.96 0.64 0.67 

20 Metal Activity Series 14348 0.89 -8.2 0.92 -5.0 1.07 0.70 0.70 

28 Introductory Experiment (revised: 

pipetting) 

8822 1.19 9.0 1.33 9.0 0.81 0.49 0.54 

14 Quantitative Techniques (revised: for 

foundations) 

9903 1.05 3.0 1.12 6.1 0.92 0.73 0.75 

18 Aromachemistry 21530 1.23 9.0 1.41 9.0 0.71 0.51 0.57 

24 Reaction Kinetics (revised: question 

order and phrasing) 

4984 0.99 -0.5 1.08 2.5 0.99 0.70 0.70 

2 Thermochemistry 43480 1.23 9.0 1.44 9.0 0.70 0.56 0.62 

23 Introductory experiment (revised: 

observations video) 

7797 1.22 9.0 1.45 9.0 0.68 0.55 0.63 

Numbers (#) associated with experiments are equivalent to those listed in Table S 56 (section 7.4.2) 

following previously described equating procedures. Cases shaded in orange exhibit statistically 

significant underfit of a large magnitude. Experiments have been ordered from lowest measure to 

highest measure, as displayed in Figure 48. Elaborations on the statistics quoted and their 

interpretations are presented in section 2.5.2). 



4.4  Qualitative interpretations and the ASLE survey data| Recipes for a positive laboratory experience: 
pedagogical implications of the ASLE data LLTM 

152 

 

Many of the 29 experiments appear to underfit the model significantly (ZStd > 2, see section 

2.5.2.1). It is important to note, however, that statistical significance of the misfit does not 

reflect the magnitude of the misfit; many experiments have several thousand data points 

associated, leading to significance of even very small misfit to the model. Only seven 

experiments show underfit of any substantial magnitude (mean square values above 

approximately 1.2, see section 2.5.2.1). Of the experiments which do show significant misfit, 

many are different variants of the same experiments. “Thermochemistry” and “Introductory 

experiment” each have multiple different variants, yet consistently show some misfit to the 

model in each case. This lends some assurance to the idea that the observed misfit is 

characteristic of the experiment design itself rather than being chance variation within the 

data set.  

Using the mean square values as an indicator of the magnitude of the misfit, outlying data 

points appear to deviate from the model more than inlying data points in all cases, suggesting 

that most student perceptions for survey items relevant to 𝜂𝑡ℎ𝑒𝑜𝑟𝑦⁡𝑓𝑜𝑐𝑢𝑠 are well explained by 

the model, but extreme perceptions are explained poorly.  This is additionally observable in 

the fact that misfitting experiments (shaded in Table 26) are at the edges of the distribution of 

measures rather than being closer to the average. Differential item function may exist here; 

the objective quality of experiments may differ depending on the specific student group 

performing the evaluation, for reasons independent of the students’ broad scale tendency to 

provide positive response on the survey. The “Thermochemistry” experiment, for example, 

may have an objectively less clear connection to the lecture content for students of a specific 

learning style (or of other particular characteristics). In such a case, those specific students 

would then respond in a manner substantially different to the bulk of the student population, 

as the factors determining learning experience quality for them differ from the factors 

determining learning experience quality for other students. These students’ response patterns 

would then misfit the LLTM, manifesting as the high outfit values observed (since their 

perceptions would be outlying rather than inlying).  

This issue highlights a limitation of analysing large scale datasets of ASLE survey responses: the 

student population is presumed to be “homogeneous”. Correlating responses, either using 

Rasch measures such as in this study or using scores as previous research has done, reveal 

conclusions only about the average behaviour of the bulk student sample. The nuances which 

arise when considering how to appeal to a specific cohort of students are lost when observing 

broad scale correlations or average responses. Conclusions drawn from large scale studies of 

ASLE survey data about the definitive factors contributing to a positive laboratory experience 

may therefore encourage “teaching to the centre”, whilst neglecting students with atypical 

learning requirements or capabilities. This raises consequential validity issues for the use of 

ASLE survey data; something to be explored further in later discussion. 

4.4.5 Supporting laboratory skills development through data interpretation 

A means of improving the vast majority of aspects of the laboratory learning experience 

targeted by the ASLE survey appears to be the effective development of data interpretation 

skills within practicals. The only survey items not impacted by 𝜂𝑑𝑎𝑡𝑎⁡𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑎𝑡𝑖𝑜𝑛 are items 4, 

6 and 12, concerning clarity of assessment criteria, increased understanding and responsibility 

for own learning respectively. Increasing 𝜂𝑑𝑎𝑡𝑎⁡𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑎𝑡𝑖𝑜𝑛 does also appear to have a large 

negative impact on perceived time availability (Q-matrix weighting of -8), likely because extra 

data interpretation requires more time for the analysis. However, all other items see at least a 
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small improvement as 𝜂𝑑𝑎𝑡𝑎⁡𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑎𝑡𝑖𝑜𝑛 is increased, with substantial gains seen in the 

perceived development of laboratory skills (Q-matrix weighting of +10, see Equation 49 

below). This suggests that the ability to interpret the data gained from executing practical 

procedures may improve the ability to execute the procedure itself, at least from the 

perception of the learner. Intuitively this is sensible, given that understanding the data to be 

gained from a procedure (and hence how to interpret them), helps in executing the procedure 

with an understanding in mind as opposed to ‘blind’ recipe following. Equation 49 shows the 

composition of the data interpretation skills item measure, as modelled in the LLTM 

(discounting item 2 relative location μ2).  

 𝛿2⁡(𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑜𝑟𝑦⁡𝑠𝑘𝑖𝑙𝑙𝑠⁡𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡) ⁡⁡⁡=    
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As can be seen, 𝜂𝑑𝑎𝑡𝑎⁡𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑎𝑡𝑖𝑜𝑛 appears as a prominent contributor to the perception of 

laboratory skills development. The two other most prominent contributors are 𝜂𝑡ℎ𝑒𝑜𝑟𝑦⁡𝑓𝑜𝑐𝑢𝑠 

and 𝜂𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡⁡𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔, both of which could theoretically be manifestations of cohort 

difference issues already noted. Chemistry IA/B experiments lacked lecture synchronisation 

(low 𝜂𝑡ℎ𝑒𝑜𝑟𝑦⁡𝑓𝑜𝑐𝑢𝑠⁡) and were often the only experiments to be conducted individually (high 

𝜂𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡⁡𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔), meaning a cohort difference in the perceived development of 

laboratory skills would be expected to manifest as heavy weightings in these two factors. 

However, the contribution of these two factors appears to be opposite to what would be 

expected, were this the case: Chemistry IA/B students have increased prior experience and 

therefore would develop fewer new laboratory skills, meaning the factor weightings observed 

would be positive for 𝜂𝑡ℎ𝑒𝑜𝑟𝑦⁡𝑓𝑜𝑐𝑢𝑠 and negative for 𝜂𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡⁡𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔respectively under 

this interpretation. If the observed heavy weightings are indeed a result of cohort differences, 

it appears the more experienced cohort generally perceives more skill development, not less. 

This is in direct contrast with reasonable expectation, suggesting that the large weightings of 

these factors cannot be dismissed merely as cohort differences confounding the data. 

Independent work and a low focus on lecture content can therefore reasonably be concluded 

to support the development of laboratory skills generally. 

A cohort difference may, however, contribute in other ways. The measures for 

𝜂𝑑𝑎𝑡𝑎⁡𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑎𝑡𝑖𝑜𝑛, which also strongly contributes to laboratory skills development, appear 

to be dependent on students’ ability to interpret the data as required. Measures also appear 

to be dependent on the improvement of data interpretation skills, which could feasibly differ 

depending on the skills students have to begin with. The reaction kinetics experiment 

exemplifies this fact well: as initially presented, “Reaction kinetics” shows a 𝜂𝑑𝑎𝑡𝑎⁡𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑎𝑡𝑖𝑜𝑛 

measure of -0.32 ± 0.01 Logits. When revised and presented to the Foundations of chemistry 

cohort, 𝜂𝑑𝑎𝑡𝑎⁡𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑎𝑡𝑖𝑜𝑛 improved slightly to -0.27 ± 0.03 Logits, suggesting the Foundations 

cohort’s data interpretation skills were developed more than for the Chemistry IA cohort, 

using this same practical exercise. This could sensibly be attributed to differences in past 
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chemistry experience. Anecdotally, some students from Chemistry IA noted that they had 

conducted the essentially identical experiment in high school; something which would 

decrease any data interpretation skills gained from the experiment. This was typically not an 

issue for the Foundations cohort.  

Further, when initially modified to suit the Foundations of chemistry cohort, the questions 

asked of the students in “Reaction kinetics” were mistakenly re-ordered, changing the way 

students were guided through the data analysis process. This change is observable as a 

decrease in quality of the material provided (𝜂𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 shifted from 0.50 ± 0.01 down to 

0.44 ± 0.03 Logits). When this was noticed and amended such that the questions were asked in 

their original, more intuitive order, the increased quality of the provided material (𝜂𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 

= 0.56 ± 0.03) allowed a more easily followed interpretation of the data, seen in an improved 

𝜂𝑑𝑎𝑡𝑎⁡𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑎𝑡𝑖𝑜𝑛 measure from the original -0.27 ± 0.03 Logits up to -0.19 ± 0.03 logits. 

Again, these observations illustrate that measures for 𝜂𝑑𝑎𝑡𝑎⁡𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑎𝑡𝑖𝑜𝑛 appear to be related 

to student ability to interpret the data as required, not just the extent to which it is required of 

them. Quality of data interpretation activities appears to outweigh quantity here. 

The role of the 𝜂𝑑𝑎𝑡𝑎⁡𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑎𝑡𝑖𝑜𝑛 factor as a measure of students’ ability to interpret their 

data, rather than merely be required to do so, is further corroborated using measures for 

experiments previously studied in depth. Section 3.1: “Typical score-based analysis of ASLE 

survey data: an example” discussed the effects of replacing a handheld data logger with a 

more likely intuitive laptop interface for the purpose of data analysis. Improving the means by 

which data was gathered and viewed by students would intuitively alter the students’ 

development of data interpretation skills as a result of the practical, meaning this study 

presents an opportunity to examine the behaviour and validity of the 𝜂𝑑𝑎𝑡𝑎⁡𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑎𝑡𝑖𝑜𝑛 

factor. All three of the experiments discussed in section 3.1, which were amended to be 

conducted using a laptop rather than a handheld data logger, show similarly improved 

𝜂𝑑𝑎𝑡𝑎⁡𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑎𝑡𝑖𝑜𝑛 values with the laptop interface (Table 27). This further validates 

conclusions presented earlier about the laptop interface being superior to the data logger 

interface: all three experiments show a greater perceived development of data interpretation 

skills with the laptop interface, presumably because the laptop interface (where data is 

gathered and analysed) is more often intuitive and more easily understood.  

Table 27: Data interpretation skills development measures for different technological 
interfaces 

Experiment 
𝜼𝒅𝒂𝒕𝒂⁡𝒊𝒏𝒕𝒆𝒓𝒑𝒓𝒆𝒕𝒂𝒕𝒊𝒐𝒏 /(Logits) 

Data logger interface Laptop interface 

Vapour pressure -0.45 ± 0.03 -0.28 ± 0.02 
Biological buffers -0.36 ± 0.02 -0.26 ± 0.02 

Copper (II) ion absorption spectrophotometry -0.32 ± 0.02 -0.30 ± 0.01 
Visible absorption spectrophotometry  -0.26 ± 0.02 

The first three experiments presented in the table above were previously studied in depth, described in 

section 3.1. “Visible absorption spectrophotometry” was not discussed at length previously, but is a 

version of “Copper (II) ion absorption spectrophotometry” presented exclusively to the Foundations of 

Chemistry cohort. 

Perhaps even more encouraging, however, is the high degree of similarity in the measures 

obtained for each experiment. Values for 𝜂𝑑𝑎𝑡𝑎⁡𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑎𝑡𝑖𝑜𝑛 using the laptop interface are 

highly consistent between all relevant experiments, each with a measure of approximately 
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0.28 Logits. This is a substantial validation of the qualitative meaning of the 𝜂𝑑𝑎𝑡𝑎⁡𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑎𝑡𝑖𝑜𝑛 

factor: factor measures take on the same value when students interact with their data in the 

same way, suggesting a direct connection between the 𝜂𝑑𝑎𝑡𝑎⁡𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑎𝑡𝑖𝑜𝑛 measure value and 

real world concepts pertaining to data interpretation. Values associated with the handheld 

data logger vary to some extent, though again appear comparable for two of the three 

experiments listed. This variation may be due to the different purposes for which the 

technology was used in each case. 

4.4.6 High quality written material is broadly beneficial 

During the initial discussion of experiments in which the technological interface was changed, 

it was suggested that a change in the instructional material for the three experiments may 

have been a contributor to the reason for the observed improvements, rather than the change 

in technological interface (see section 3.1.4.5). This concern was dismissed, given little 

evidence existed to suggest the new instructions were any better than the originals, and if 

anything may have been of lesser quality given the qualitative comments received. The LLTM 

offers the possibility of quantifying the quality of the provided material, using 𝜂𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 

measures. This single factor encompasses all ASLE survey items concerning materials provided 

to the students, including background information (item 7), experimental procedure (item 9) 

assessment criteria (item 4) and to some extent the intended learning outcomes (item 5).  

Table 28: Changes in quality of the provided material when using different technological 
interfaces 

Experiment 
𝜼𝒊𝒏𝒔𝒕𝒓𝒖𝒄𝒕𝒊𝒐𝒏𝒔 /(Logits) 

Data logger interface Laptop interface 

Vapour pressure 0.48 ± 0.02 0.47 ± 0.01 
Biological buffers 0.44 ± 0.02 0.42 ± 0.02 

Copper (II) ion absorption 
spectrophotometry 

0.52 ± 0.02 0.55 ± 0.01 

As can be seen, improvement for any the three experiments is minimal at best (Table 28). Error 

margins in 𝜂𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 measures for the two forms of each experiment overlap except in the 

case of the Copper (II) ion absorption spectrophotometry experiment, which shows some small 

improvement in the instructional material once the laptop was introduced. Again, the fact that 

any improvement observed is minimal matches the prediction which would be made from the 

fact the instructional notes were only changed minimally: the only section altered in each case 

was a small appendix containing instructions for the technology. The suggestion that a change 

in quality of the instructions was unlikely to be the cause of the observed improvements 

appears sound.  

Had the 𝜂𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 measures been substantially different, however, this could have had 

large scale impacts on the responses observed. The 𝜂𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 factor is the second most 

prominent factor in the LLTM, and appears as one of the equal largest contributors to positive 

responses to the question “I found this to be an interesting experiment”, with a Q-matrix 

weighting of +5 (the other equally strong contributor being 𝜂𝑐𝑜𝑙𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑖𝑣𝑒⁡𝑢𝑛𝑑𝑒𝑟𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔). The 

𝜂𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 factor also appears as one of the strongest identifiable contributors to the 

“overall learning experience” item, with a Q-matrix weighting of +2. At least small 

improvements to every item on the ASLE survey appear likely with greater quality of the 

provided materials (reflected in a high 𝜂𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 measure), only with the exceptions of item 

1 (development of data interpretation skills) which appears unaffected by the 𝜂𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 
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factor, as well as item 11 (concerning the benefits of teamwork). Item 11 “working in a team to 

complete this experiment was beneficial” appears as the only item whose responses are 

negatively impacted by 𝜂𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠, with a Q-matrix weighting of -4. This seems to suggest 

that a higher quality of instructional notes for an experiment leads students to see less benefit 

in teamwork, perhaps explained by a lowered need for assistance by their peers. This may not 

necessarily be a bad thing, given that it may indicate students can grasp the intended 

messages within the notes more easily without assistance. 

Again, however, the effect of student cohort differences can be seen in this factor. The 

identical instructional notes can evidently be objectively better for one student group than 

another. The Quantitative techniques experiment is a revealing example: when presented to 

the Chemistry IA cohort, “Quantitative Techniques” has a 𝜂𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 measure of 0.55 ± 0.01 

Logits, whereas when the same experiment was presented to the Foundations of chemistry 

cohort, the perceived quality of the provided material dropped to 𝜂𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 = 0.44 ± 0.02 

Logits. A similar value was seen even after the experiment was further amended for the 

Foundations of chemistry cohort, removing the pipetting section of the activity (𝜂𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 = 

0.46 ± 0.02). Once again, however, the fact that the same notes can be more useful to one 

student cohort than for another is intuitively sensible. Different student cohorts likely have 

different learning styles, cognitive abilities, background knowledge and an array of other 

differing predispositions, meaning the same set of notes may not be read, interpreted or 

understood equivalently. Pitching the written material at a level appropriate to the abilities of 

the reader is naturally advisable, and this is seen in the behaviours of 𝜂𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 as 

described. 

4.4.7 Engaging the students: interest and positive overall experience 

One of the major goals of the ASELL project and its predecessors has been to improve the 

student experience of their laboratory activities, promoting interest and a positive overall 

learning experience. The LLTM now reveals how to achieve this, based on patterns present in 

the data set analysed. A wide array of factors appear to contribute to student interest in a 

laboratory activity, as seen in Equation 50 (discounting item 3 relative location μ3). 
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50 

By far the strongest contributor to student interest in the activity is a decreased connection to 

lecture content. Naturally this is undesirable for many laboratory activities from the 

perspective of the teacher, since laboratory activities are often intended to strengthen content 

knowledge through concrete interactions. Student preference naturally appears to lie with 

“skills-based” rather than “theory-based” experiments.  
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As it was previously discussed, however, low ⁡𝜂𝑡ℎ𝑒𝑜𝑟𝑦⁡𝑓𝑜𝑐𝑢𝑠 measure does not necessarily imply 

more concrete interaction with the material. Heavily concrete practicals can occasionally be 

observed to have high⁡𝜂𝑡ℎ𝑒𝑜𝑟𝑦⁡𝑓𝑜𝑐𝑢𝑠 measures, and this was previously explained by suggesting 

that a clear connection to current theory from the perspective of the students was the key 

consideration (see section 4.4.2). This raises an unusual situation: it is not necessarily the 

inclusion of theory students are opposed to, but the fact that they can recognise the theory as 

relevant to the course. Theory recognisably connected to the lecture content appears to 

drastically decrease student interest, where it apparently may not if it were absent from 

lectures. Reasons for this effect are speculative at best, but this may simply be a “knee-jerk” 

reaction of boredom to any theory which has been laboured upon as part of the course. 

The only possible remedy to this problem appears to be to “disguise” the theory in any 

practical which also appears in the lecture content. Lecture content to be reinforced by the 

practical activity should, by this logic, be addressed differently to the way it is in other 

components of the course. In this way it may not be quite as recognisable to students, ideally 

reducing this “boredom” response. Alternately, practicals could be used as a means of 

introducing the lecture theory rather than reinforcing it. This would have the effect that 

students still gain the educational benefits of the practical relevant to the theory, but without 

the risk of students losing interest because of the lecture content connection. Students would, 

ideally, not be able to be “bored” by the material if they had not been extensively exposed to 

it yet. Using practical activity as introductory rather than to reinforce content already 

presented also follows recommendations in the education literature, keeping the laboratory as 

the place to explore the “macro” aspects of chemistry,4, 13 then shifting from the concrete to 

the abstract as recommended by Johnstone257-260, 304, 306 and in line with cognitive development 

described by Piaget.261, 307, 308, 327 

Other strong contributors to interest in the activity appear to be well constructed written 

material (high ⁡𝜂𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 ) and understanding through teamwork (high 

𝜂𝑐𝑜𝑙𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑖𝑣𝑒⁡⁡𝑢𝑛𝑑𝑒𝑟𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔). Interestingly, this creates another problem for educators: 

understanding through teamwork was previously seen to be beneficial for highly theory 

focussed practicals, whilst more skills-based practicals, conducive to student interest, were 

seen to benefit from individual work. The decision whether students work in teams or not 

therefore presents a dilemma to the teacher when running a skills-based practical: working in 

teams makes the experiment more interesting, but working individually promotes laboratory 

skills development. Strengthening the learning objectives appears to be at odds with 

maintaining student interest. 

A more moderate contribution to student interest is to reduce perceptions of effective 

demonstrator guidance. This seems unintuitive if the demonstrator guidance item of the ASLE 

survey (item 8) is taken to reflect the teaching ability of the demonstrator, however, correct 

interpretation of the 𝜂𝑑𝑒𝑚𝑜𝑛𝑠𝑡𝑟𝑎𝑡𝑜𝑟𝑠 factor is problematic. The factor measures can not 

possibly reflect the quality of specific demonstrators, since the specific demonstrator was not 

constant for each practical. Rather, the demonstrator was specific to the practical group 

students were assigned to: each experiment was conducted by a range of student groups in 

each semester, each group with a potentially different demonstrator. At best, values for this 

factor could be attributed to the “average” quality of demonstrators for each given practical. 

However, there is reason to suggest that values for this factor may also depend on students’ 

reliance on their demonstrators, and hence greater appreciation of their assistance. 
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Before “Vapour Pressure” was amended to utilise the laptop as opposed to the handheld data 

logger, the value of 𝜂𝑑𝑒𝑚𝑜𝑛𝑠𝑡𝑟𝑎𝑡𝑜𝑟𝑠 was far higher than for any other experiment at a value of 

0.92 ± 0.03 Logits. For the entire suite of 28 other experiments studied, 𝜂𝑑𝑒𝑚𝑜𝑛𝑠𝑡𝑟𝑎𝑡𝑜𝑟𝑠 only 

ranges between values of 0.29 ± 0.02 and 0.67 ± 0.02 Logits (for the revised “Vapour pressure” 

using the laptop and “Determination of Vitamin C concentration” respectively). A conclusion 

that quality of the demonstrators’ teaching abilities drastically rose for one specific experiment 

seems unlikely, particularly since their teaching abilities would then have to be interpreted as 

returning to normal again once the identical experiment used a different technological 

interface. The demonstrator measure seems to reflect something about the design of the 

activity, not the demonstrators themselves. A likely candidate for correct interpretation of 

𝜂𝑑𝑒𝑚𝑜𝑛𝑠𝑡𝑟𝑎𝑡𝑜𝑟𝑠 is that it measures students’ broad scale appreciation for the fact they have a 

demonstrator there to help and guide them: the extent to which students require and 

appreciate help, not the quality of the demonstrator irrespective of how needed they were. 

Under this interpretation, it makes sense that student interest would be improved under low 

𝜂𝑑𝑒𝑚𝑜𝑛𝑠𝑡𝑟𝑎𝑡𝑜𝑟𝑠 measures: it simply means that experiments are more interesting if students do 

not need to rely on their demonstrators to complete or understand the exercise. 

The role of 𝜂𝑑𝑒𝑚𝑜𝑛𝑠𝑡𝑟𝑎𝑡𝑜𝑟𝑠 seems to be opposite for the overall learning experience, however. 

Increasing reliance on demonstrators may decrease student interest in the activity, but it 

promotes a better overall perception of the activity as a whole. Equation 47, which has been 

previously presented, is replicated below to show the LLTM model for the overall learning 

experience item of the ASLE survey. 
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47 

Again it is seen that students show a preference for less lecture theory connection in their 

practical activities, indicated by the -2 weighting coefficient for ⁡𝜂𝑡ℎ𝑒𝑜𝑟𝑦⁡𝑓𝑜𝑐𝑢𝑠. This factor, as 

well as assistance by the demonstrators and high quality instructional material appear to carry 

equal weight in generating a positive overall learning experience. Independent learning also 

appears to play a small role, leaving understanding of the theory through groupwork with no 

discernible contribution. This does not mean group work need not be included in practical 

activities – it was seen to be highly beneficial for understanding of chemistry. However, it does 

suggest students have a slight preference towards individual work. Given student preferences 

for “skills-based” practicals discussed at length previously, this is perhaps unsurprising. It 

appears that constructive alignment328, 329 plays a role here: the laboratory activity needs to be 

designed to suit the key learning objectives, either increased theoretical understanding or 

increased technical skills. Skills oriented practicals are likely to be perceived well overall 

regardless, but attainment of the learning objectives is likely to be improved using individual 

work and the inclusion of some data interpretation (see section 4.4.5). However, theory 

oriented practicals are unlikely to be perceived well unless connection to lecture content is 

well hidden (section 4.4.3) and understanding is most liable to be increased through group 

work, in contrast to the recommendation for skills development. 
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More concerning, however, is the fact that 𝜂𝑐𝑜𝑙𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑖𝑣𝑒⁡⁡𝑢𝑛𝑑𝑒𝑟𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔 has no discernible 

weighting on the overall learning experience. Given that this factor’s primary defining 

characteristic is the perception of increased understanding of chemistry, the question arises as 

to whether students are generally ignoring the word “learning” in the phrase “overall learning 

experience”. Certainly ASLE survey researchers would typically interpret responses to this 

survey item as incorporating, at least in part, some learning gained from the exercise. The 

observations made here suggest this may be in error, however. A serious issue is now apparent 

for the consequential validity of the ASLE survey: if experiments are structured such that the 

“overall learning experience” item receives the most positive response possible, this has 

evidently no connection to increased student understanding. The pursuit of optimal 

perceptions by the students (pursued using ASLE surveys) needs to be appropriately balanced 

with the educational goals of the course. If students were to receive their preferences, judging 

by Equation 47, experiments would be entirely disconnected from the lecture content, 

students would not have to develop group work skills, demonstrators would guide students 

through any thinking processes required and whether any understanding was gained would be 

considered irrelevant. This difference between student preference and teacher intentions may 

explain the evident disconnects between staff expectations of what would promote a positive 

overall learning experience and the results observed in student feedback.51, 57 

This is by no means a full explanation of students’ “overall learning experience” rating, 

however. The largest contribution of all to this survey item’s response is from the seventh 

factor, interpreted only as “overall learning experience” unable to be explained as connected 

with the other 13 items of the ASLE survey. The vast majority of variance in “overall learning 

experience” appears to occur for reasons unknown. It may be that these reasons are 

connected to attainment of learning objectives, but it also may not. It could also be that this 

seventh factor has unusual “corrective” behaviour as factor 8 was previously seen to exhibit 

(see section 4.3.3.4). The identity of this factor, and hence the identity of the current 

unidentified sources of variance in perceived overall learning experience, remains as a goal for 

future research. 

4.4.8 Conclusion 

The ASLE data LLTM reveals a wide range of insights into the laboratory experience from the 

student perspective. Trends observed in student preferences appear to suggest that individual 

work and more skills-based practical activities are preferred by students. Activities like these 

appear to benefit from the inclusion of data interpretation and a lack of clear connection to 

lecture theory. Conversely, more theory oriented experiments appear to be best structured as 

group work activities to foster the understanding of chemistry, in spite of student preferences. 

There is also evidence to suggest that activities should be structured appropriate to the ability 

level of the student cohort and that different subsets of the student population may benefit 

from different approaches. The engagement of students as judged by ASLE surveys appears to 

be at odds with teaching and learning goals and many ASLE items’ correct interpretation 

appears counterintuitive, suggesting that using ASLE survey responses alone to optimise 

experiment design may be problematic.
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5.1 How ASLE survey data should be analysed 

5.1.1 Use of integer scoring methodology 

The first primary hypothesis of this thesis, reproduced below, concerned the validity of 

quantitative techniques typically applied to ASLE survey response data. Given the observations 

made over the course of this research, appropriateness of the usual integer value scoring 

system and hence reliability of past conclusions can now be evaluated.  

Hypothesis 1: 

Conclusions drawn from the ASLE survey data using typical scoring techniques 

resemble conclusions drawn using sample independent, interval scale measures 

extracted from the same data. 

The integer scoring system typically used to analyse ASLE survey data is generally a reasonable 

approach for most practical purposes. Despite concerns regarding this methodology raised in 

statistics literature, integer value scores appear not to have any discernible advantage over 

more ‘optimised’ score values for the response categories (Figure 30, p. 93), and calculation of 

mean scores, standard deviations and parametric statistics is not inherently inappropriate 

(Figure 31, p. 94). This observation of a specific case where scoring or ordered categorical data 

for the purposes of using parametric statistical methods is relevant to survey-based research in 

a wide array of disciplines where these controversial techniques are common, including 

medicine, psychology and education. The problem with using integer score values, in this case, 

lies far more with their interpretation. 

The response categories available for any given item of the ASLE survey are not equidistant (, 

Figure 27, p. 90), and the range of student perceptions gathered by each response category of 

the rating scale differs from item to item (Figure 28, p. 91). This not only removes the ability to 

gauge whether student perceptions are broadly positive or negative based on the sign of the 

mean score value, but also the ability to compare different items of the survey. Additionally, 

magnitude of any differences in mean ASLE score values observed cannot be treated as if they 

are proportional in magnitude to any difference in student perceptions. The fact that any 

linear relationship between the ASLE mean score and student perception is only approximate 

(Figure 29, p. 92) means that whilst researchers may be able to determine that an 

improvement has occurred, they cannot precisely quantify the change based purely on score 

data. It is also not necessarily valid to claim no change has occurred simply because the ASLE 

mean scores have failed to change substantially (Figure S 48, p259).  

The problem is compounded by the fact that student predisposition towards positive response 

changes from occasion to occasion, even if the identical students are surveyed (Figure 32, p. 

102). These changes in student bias can generate significant mean score differences even if the 

experiment is unchanged, or exaggerate or mask genuine differences (see section 3.2, pp. 61-

83 for multiple examples). Variation between individual students in a given sample (within 

sample variance) may be controlled for by gathering larger student samples, but variation 

across independently gathered samples of students (between sample variance) (Figure 33, 

p. 105) may remain independent of individual sample sizes (Figure 44, p. 128). This means that 

an inherent  margin of error margin of approximately 0.1 score units on average (Figure 45, p. 

129) is always expected to exist in any ASLE mean scores obtained using data gathered on a 

single occasion, in addition to random errors introduced through small sample sizes. Even large 
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mean score differences ( 0.7) may be the result of students evaluating an experiment unfairly 

(Figure 43, p. 127) rather than a genuine difference in experiment quality. 

The resulting implication for researchers is that small differences in ASLE scored results (< 0.1) 

should be dismissed as expected in all cases, even if the differences appear statistically 

significant. Larger differences, however, cannot be known to reflect experiment quality if using 

scored data alone, and hence should always be corroborated using open response comments 

received (see section 3.1, pp. 51-59 for an example). As a rough guideline, differences  0.25 

mean score units are likely to be genuine at sufficient sample sizes (Figure 45, p. 129) and this 

could be used as a “rule of thumb” for most rough, exploratory studies using ASELL survey 

data. However, the use of mean scores for more precise and quantitative investigations is 

more questionable. 

Variation in student predisposition toward positive response is by far the primary source of 

variation in individual ASLE survey responses (see section 3.3.3.1, pp. 89-90), meaning one 

person’s rating of “good” is not guaranteed to reflect better experiment quality than another 

person’s rating of “poor”. The same conclusion is supported by the broad overlap of likely 

categories of response to be observed for any given student perception (Figure 27, p. 90). This 

calls into question the appropriateness of using non-parametric rank-based methods such as 

the Wilcoxon rank sum test, often used to avoid the controversies associated with integer 

scoring. Further, the validity of correlating scored ASLE response data is threatened, since 

variance in individual responses is far more reflective of correlations within students’ own 

biases than it is of correlations between perceived aspects of the learning experience (section 

4.1.6.3, p. 108 and section 4.3.4.3, p. 139). Averaging the scores associated with many student 

responses before correlating the data may make scores reflect experiment-specific qualities 

more closely, but again the issues of a non-linear relationship between mean score and the 

underlying perception remain (see section 3.3.4, pp. 95-96). Correlating scored ASLE survey 

data should therefore be avoided, and any conclusions drawn from such studies should be 

revised using alternate analysis. 

The heavy conflation between student dependent and student independent factors, as well as 

non-linear relationship between mean scores and true interval scale measures of the 

analogous student perception make Hypothesis 1 above strictly false. This does not imply that 

scored data cannot be used; they are far simpler to compute than Rasch measures and 

therefore much more practical for most educators. Limitations in the scoring methodology 

simply restrict score-based research to more exploratory purposes, which may then be 

supported further by additional research (for example from qualitative comments received on 

open response items of the survey). Quantitative analysis using score data is inappropriate, but 

support (section 4.1.3, pp. 101-104)  for the second primary hypothesis of this research: 

Hypothesis 2: 

Student independent contributions to the ASLE survey responses exist and are 

measurable. 

implies that mean scores may act as indicators of more generalizable “objective” laboratory 

learning experience quality, and are useful for that reason. Researchers simply need to be 

conscious that these measurable properties of the experiment evaluated contribute minimally 

to the variance in individual ASLE responses, necessitating larger samples of data for 

meaningful investigations. 
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5.1.2 Interpretation of ASLE survey results 

Hypothesis 2 above appears true for most survey items, but not all. The poor construct validity 

of items 11, 12 and 13 (concerning benefits of teamwork, responsibility for own learning and 

time availability respectively) may imply a lack of generalisability of these qualities beyond the 

perspective of individuals (Table 19, p. 106). It may not be valid, for example, to make a 

general claim that one experiment is perceived as having more time availability than another: 

perceived time availability may vary between individuals far too widely for any group level 

measurements to be meaningful. Alternately, however, these three items may interact with 

student predispositions differently to the other items of the survey. Separating these two 

possible conclusions from one-another requires further investigation. 

Reason exists to suspect that even the measures of experiment quality which are more 

generalizable depend on the student cohort to which the activity is presented. That is, even for 

items with good construct validity, many factors underpinning ASLE survey responses are likely 

dependent on the abilities of the student cohort (section 4.4.4, pp. 148-152). The conclusion to 

be drawn from this is not that assigning quantitative measures to ASLE survey items is 

inappropriate, but that measures of experiment quality must be viewed as dependent on the 

student audience. An acknowledgement should also be made that any conclusions drawn from 

group-level statistics apply only to the “bulk” of the student sample, but may not apply to 

extreme high or low achievers, or to students otherwise atypical to the average. The unique 

best way to design experiments, or the definitive most prominent factors in a positive learning 

experience may not exist: these things may change entirely for students of different learning 

styles, different levels of prior experience or possibly even different cultural backgrounds. Even 

the placement of the activity in the broader course context may alter measures of experiment 

quality (section 4.4.2, pp. 143-146), limiting the generalisability of any ASLE survey results for 

individual experiments. This emphasises the importance of detailing the context and audience 

for any experiments included in the ASELL database, and for any experiments submitted to 

ASELL workshops for evaluation. Connection to lecture content appears as one of the most 

prominent factors in student perceptions of their experiment (Table 21, p. 130 and Table 23, 

p. 132) meaning this should be a prominent consideration in experiment design and 

evaluation.  

Correctly interpreting ASLE survey response data is problematic for reasons independent of 

independent of any issues with generalisation of the results or whether the integer scoring 

system is used, however. Over the course of the numerous investigations presented in this 

thesis, a number of validity issues have been noted with items on the ASLE survey, summarised 

in Table 29 (see below). Multiple survey items appear to be either best interpreted differently 

than intended, appear unable to be assigned any measure able to be generalised as true for 

most students, or would result in issues for student learning if their responses were optimised.  



5.1  Conclusions and future opportunities| How ASLE survey data should be analysed 164 

 

Table 29: Validity issues for items of the ASLE survey 

# Item Noted validity issues (relevant section in parentheses) 

1 This experiment helped me to develop my 
data interpretation skills 

None identified 

2 This experiment helped me to develop my 
laboratory skills 

None identified 

3 I found this to be an interesting experiment Consequential validity issues: potentially counterproductive to 
learning (4.4.7; pp. 156-159) 

4 It was clear to me how this laboratory 
exercise would be assessed 

None identified 

5 It was clear to me what I was expected to 
learn from completing this experiment 

None identified 

6 Completing this experiment has increased 
my understanding of chemistry 

None identified 

7 Sufficient background information, of an 
appropriate standard, is provided in the 
introduction 

None identified 

8 The demonstrators offered effective 
supervision and guidance 

Potentially increased in problematic experiments due to 
students appreciating demonstrators “rescuing” them (4.4.7; pp. 
156-159). 

9 The experimental procedure was clearly 
explained in the lab manual or notes 

None identified 

10 I can see the relevance of this experiment to 
my chemistry studies 

None identified 

11 Working in a team to complete this 
experiment was beneficial 

Poor construct validity (4.1.5; Table 19, p. 106). Receives a 
binary response reflecting whether students worked in pairs or 
individually (4.3.3.4; pp. 133-135). 

12 The experiment provided me with the 
opportunity to take responsibility for my own 
learning 

Poor construct validity (4.1.5; Table 19, p. 106). 

13 I found the time available to complete this 
experiment was 

Poor construct validity (4.1.5; Table 19, p. 106). 

14 Overall, as a learning experience, I would 
rate this experiment as 

Not a “summary” item as thought: majority of variance is 
explained by factors other than those in ASLE survey items. 
May not take “learning” into account as the question states. 
Consequential validity issues: counterproductive to learning 
(4.4.7; Equation 47, pp. 141, 156-159).  

This once again highlights the need to take alternate data into account when using ASLE rating 

scale responses, to confirm that researcher interpretations of the evident issues are accurate. 

The third major hypothesis investigated in this thesis (below) has a complex answer: in most 

cases ASLE survey data does reflect measurable properties of the experiment evaluated, but 

those properties are not necessarily the ones the researcher might expect from the way the 

items are phrased. 

Hypothesis 3: 

Student independent measures obtained from ASLE survey data reflect qualities of the 

experiment evaluated. 

The more pressing issue for researchers using the ASLE survey is the fact that structuring 

experiments to optimise ASLE survey responses may threaten the educational value of the 

activity. Given that demonstrators may be rated more positively in problematic experiments, it 

may be inadvisable to strive for a positive demonstrator rating as judged by the ASLE survey. 

Similarly, the “boredom” response observed as a consequence of clear connections to lecture 

content and the irrelevance of increased understanding on reported overall “learning” 

experience highlight the risks associated with catering to student desires. A well-structured 
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learning experience, from the perspective of the teacher, necessarily appears to include many 

elements that students are liable to dislike. Educators therefore must remain conscious of this 

fact whenever ASLE survey responses are being utilised: whilst the surveys may help improve 

the student experience, they do not ensure teaching objectives are maintained. A balance 

needs to be struck between maintaining learning goals and appealing to the preferences of the 

learners. 

The implication of this is that features of the ASELL review process other than the ASLE surveys 

are critical. Workshop sessions allow much needed feedback from other teachers about the 

educational merits of the activity, which students at home institutions evidently may be 

unconcerned with. Completion of the Educational Template document for experiments 

submitted to the ASELL review process is also a valuable and necessary step in ensuring that 

ASELL reviewed experiments have educational merit as well as the appeal from the student 

perspective desired. It would be highly inadvisable to conduct any ASLE survey research with 

the intent of improving experiment design without explicitly including a consideration of the 

educational goals of experiments, judged from the teacher perspective rather than the student 

perspective. Analysis of the open responses provided to item 16 of the survey: “What did you 

think was the main lesson to be learnt from the experiment?” may assist with this goal. The 

low number of responses typically gained for open response items in individual experiment 

analyses may be insufficient, however, re-emphasising the need for the wider ASELL review 

process incorporating the Educational Template document and feedback from educators at 

ASELL workshops. 

5.1.3 Recommended research methodology 

These results provide an opportunity to evaluate the appropriate “best practice” for using 

ASLE survey rating scale data. Suggested methodology for several different research purposes 

are summarised below. 

For evaluating the merits of an individual experiment: 

Assigning integer score values to response categories and calculating mean values is 

reasonable. However, it should not be assumed that the score assigned to the neutral category 

of the scale reflects a neutral perception and scores should not be compared between 

different items of the survey. Interpreting ASLE survey results as if they reflect the precise 

quality described in the exact phrasing of the survey item should be avoided (see Table 29) and 

any conclusions drawn from rating scale response data should be corroborated by further 

research or feedback provided on open response items of the survey. ASELL workshop 

feedback and data contained in the Educational Template document is critical for any review 

of experiment quality to ensure the educational aims of the experiment are not compromised 

by the appeal to student preferences. It should be recognised that results apply only to the 

bulk of the particular student sample surveyed, in the specific course context in which the 

experiment was presented. 

For comparing perceptions of quality for two or more experiments 

Assigning integer value scores to the rating scale categories is reasonable. Mean scores may be 

calculated for each item, treating these mean scores as rough indicators only. Statistical 

significance or otherwise of results is often uninformative, so little is gained using rigorous 

statistical testing, parametric or otherwise (though parametric tests may be preferred to rank-

based tests). Small score differences (<0.1) should be dismissed as expected regardless of 
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sample size. As a rough guideline, score differences of approximately 0.25 units may usually be 

taken as significant when using sufficient sample sizes (n  30). For more precise calculation of 

error margins in the mean score, Equation 46 (reproduced below) can be used to obtain the 

corrected standard error value at a particular sample size. 

 𝑆𝐸(𝐴𝑓𝑎𝑖𝑟) = ⁡√⁡
𝜎𝐴

2

𝑛
+ 0.01 46 

For large score differences, any and all conclusions regarding the magnitude of the difference 

in perception should be avoided if based on the scores alone. Differences suggested by mean 

score data should be affirmed using analysis of qualitative response data in all cases, or 

through subsequent research. Concluding that an experiment is “improved” or “better” in a 

broad sense simply because student perception appears more positive is inadvisable: learning 

goals of the activity may still have been compromised, despite student approval. This should 

be checked. Student cohorts evaluating the experiments to be compared should be roughly 

similar, notably in terms of their level of background knowledge. It should also be 

acknowledged that some perceptions are dependent on the experiment’s positioning in 

relation to the lecture content, so course sequencing differences may contribute to changes 

observed. It is possible that students may be caused to rate experiments highly unfairly in 

some extreme circumstances, and this should be taken into consideration when interpreting 

results. 

For investigating broad trends in student perceptions across many experiments 

Scored data is not suited to this purpose, especially for producing correlations. Rasch 

modelling or other methods which separate student dependent and independent factors are 

more appropriate for quantitative analysis in this case, modelling data to account for the fact 

student biases differ between occasions. In the case of Rasch modelling, data connectivity can 

be achieved by identifying students whose measures appear not to vary and ensuring they 

evaluate multiple experiments in the data set. Connectivity could alternately be achieved 

through models such as the LLTM, though fit to the model should be confirmed. Bulk 

population level statistics may be misleading, given that the relevant factors contributing to 

student perceptions may change depending on student prior knowledge, positioning of 

experiments in wider course contexts and other factors easily overlooked in bulk analyses. 

In the case of interpreting past analyses already conducted using scored data, patterns in 

individual responses should be interpreted as revealing patterns in students’ own internal 

biases rather than patterns in the qualities of experiments themselves. An elaboration on this 

point is presented in section 4.3.4.3: “Student independence of results”. Patterns in mean 

scores prominently reflect patterns in students’ internal biases when small samples are used to 

obtain the mean values, but increasingly reflect patterns in the qualities of experiments 

themselves as sample sizes used to calculate the mean scores are increased. 
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5.2 Issues in the design of learning activities 

5.2.1 Key factors in student perception 

A major conclusion in this thesis was estimation of a Linear Logistic Test Model for the ASLE 

survey data, and hence the identification of key factors underpinning ASLE survey responses. 

That is, the factors underpinning student perceptions of their laboratory learning experiences.  

Individual student biases were controlled for during these analyses, meaning that the factors 

obtained are only those which may be considered “objective”; the factors obtained are 

components of the laboratory learning experience whose relative quality can be assumed as 

generalizable to all students, and therefore can be controlled by the teacher through design of 

the activity. These key factors, presented in descending order of impact on the “objective” 

qualities of the learning experience, are as follows (see sections 4.3 and 4.4): 

 Whether the activity is clearly seen by students to be reminiscent of content 

previously covered in lectures. 

 The quality and appropriateness of the instructional material provided to students 

 The understanding of theoretical content gained through collaboration with others. 

 The extent to which data interpretation skills are developed through the activity 

 Whether students work in groups or individually 

 The students’ reliance on their demonstrators 

 Other unidentified or complex factors 

Examining the interactions of these factors revealed a number of trends in student perception 

(see section 4.4). Perceptions of increased understanding were so strongly associated with 

perceived benefits of teamwork that the two manifested as one singular indistinguishable 

factor, reminiscent of suggested benefits of collaborative learning suggested in education 

literature.314-318, 320, 321, 326 The exception to this was the development of technical skills, which 

were instead seen to benefit from individual work and interpretation of data. Student 

preference was observed to lean towards these more “skills-based” activities, with a strong 

“boredom” response associated with the inclusion of lecture content. High quality 

instructional notes were seen to be broadly beneficial. 

These factors did not explain the entirety of variance in student perceptions seen in this study, 

however. Most notably, the “overall learning experience” appears to involve a substantial 

contribution from features of the learning experience not addressed within the ASLE survey. 

Identification of these factors is a goal for future research, and could potentially build upon the 

model presented here. 

5.2.2 The need for compromise between students and teachers 

Some of the validity issues discovered within the ASLE survey items have wider implications for 

chemistry education broadly. Conclusions of this research conducted in the context of 

laboratory learning specifically highlight issues that may also exist in learning activities beyond 

the lab, or which must be acknowledged if effective pedagogy is to be implemented. 

Most prominent of these is the fact that student preferences often appear counterproductive 

to the attainment of learning outcomes. The contribution of the various factors in laboratory 

learning  to student perspectives of a positive learning experience were seen to be biased 

against the inclusion of content reminiscent of lecture material, instead preferring more “skills-

based” activities. Structuring learning activities by using appeal to the learner as the primary 
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guiding principle of design could therefore be catastrophic for the learning goals of the activity, 

conceivably even beyond the laboratory context. Teachers appear to have to choose between 

two types of learning activity: 

Activities conducive to learning  
(see Equations 48 and 49) 

Activities appealing to students 
(see Equations 50 and 51) 

Understanding of theory through 
collaboration with others and connection to 

lecture content. Less reliance on 
demonstrators/ teachers. 

Skills development through individual work 
and data interpretation, without “boring” 

lecture content. More reliance on 
demonstrators/teachers. 

 

The fact that the ASELL project was created with the explicit goal of restructuring activities to 

appeal to students (in order to raise enrolment and retention in chemistry), implies that the 

project may contribute to a widespread decrease in standards of learning and teaching if this 

dilemma is not recognised. Whilst appealing to student preferences assists in meeting some 

goals of educational institutions, it hinders the achievement of others. Substantial weight 

needs to be given to the review of experiments by educators, for example using the 

Educational Template document and discussion at ASELL workshop, avoiding an exclusive 

appeal to the student perspective. 

In this way a “compromise” needs to be made between the students, who wish to enjoy their 

learning experiences, and the teachers, who wish students to retain theoretical 

understandings. Recognising the student perspective has been increasingly viewed as 

important in education,330 but the data discussed here suggest that neglecting the teacher 

perspective could potentially be damaging. Maximising student retention and enrolment in 

chemistry degrees at the cost of knowledge and understanding, as the ASELL project may have 

inadvertently pursued, would be a hollow victory. 

The fact that student preference is often counterproductive to effective teaching also has 

further implications. Student evaluation data regarding the quality of courses or teachers could 

be subject to similar issues, implying that such data may not in fact reflect informative 

measures of quality (as may be assumed). In fact, highly positive ratings of practical 

demonstrators were seen in this thesis not to reflect high quality teaching, but instead were an 

indicator of a problematic teaching activity. Poorly designed learning activities may prompt 

students to be more appreciative when the teacher “rescues” them, whilst the teacher may go 

relatively unnoticed in a well-designed activity. This observation illustrates the point that 

appreciation for the teacher does not necessarily indicate high teacher competence, and that 

evaluating teacher competency based solely or primarily on student feedback may fail to 

account for any actual learning gains by the students. Again, this does not imply the student 

perspective should be ignored, merely that it should not be treated as the sole guiding factor 

in evaluating the quality of teachers or courses. Further research needs to be conducted to 

explore the impacts of catering to student preferences on quality of learning and knowledge 

retention. 

5.2.3 There is no single best way to design a learning activity 

Whilst the Linear Logistic Test Model derived in the final sections of this thesis reveals many 

patterns in student perceptions, closer examination also reveals the model does not provide a 

“one size fits all” solution to the question of how to design an activity. The key factors in the 
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laboratory learning experience are seldom always positive or always negative. Rather, 

different factors typically work towards some desirable outcomes, but against others. 

Additionally, factors which are highly relevant to some desirable outcomes may be much less 

relevant to others. 

Through the LLTM, it was observed that the best way to design a laboratory activity depends 

on: 

1. The purpose of the activity. As discussed previously (section 5.2.2), appeal to student 

interest is often at odds with gains in understanding and relevance to the course. In 

designing learning activities, therefore, teachers need to weigh and prioritise these 

two options. Skills-based activities have far greater student appeal, but teachers may 

need to instead prioritise the reinforcement of theoretical course content.  

 

2. The key learning objectives. A strong difference was observed between factors 

contributing to skills development and factors contributing to theoretical 

understanding (sections 4.4.3 and 4.4.5). Activities where the primary learning 

objectives are practical skills are best designed without strong connection to lecture 

theory, instead focusing on data analysis with a strong responsibility placed on 

students for their own learning. Conversely, activities in which the key learning 

objectives are reminiscent of lecture content are best structured as collaborative 

group work activities, naturally including clear connection to the relevant lecture 

theory. 

 

3. The background knowledge of the students. Evidence was shown (section 4.4.4) that 

students with differing levels of prior experience may perceive the identical activity 

differently. Features of the task such as the instructional material may need to be 

pitched at a level suitable to the audience, and factors such as time availability or the 

ability to understand the theoretical content may differ based on prior experience.  

 

4. The learning styles of individuals. The data show that the more extreme perceptions 

of some students could not all be explained well by the broad scale patterns described 

(Table 26, p151). Factors relevant to the quality of the learning experience of some 

individuals may differ entirely to those which apply to the majority, meaning 

appropriate teaching methods may not only differ from class to class, but also from 

individual to individual. General trends in best practice will only ever suit the bulk of 

the student population, with students at the extreme “edges” best catered for with 

what could be entirely different pedagogy. 

The complexity involved in structuring laboratory activities described above suggests that 

searching for a single “optimal” way to design activities may be misguided. Correlational 

studies such as the Barrie et al. paper61 which have the objective of revealing common themes 

in student perception may well be informative, but they will always only be representative of 

the “average” of the whole student sample used. If practicals delivered for different purposes, 

with different learning objectives, pitched to audiences of different levels of background 

knowledge or different learning styles are merged into a single analysis, the results may not 

adequately apply to any one of them taken individually. Correlations may simply reflect what 

was most often the case within the set of experiments used.  
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This thesis, for example, exclusively used data from first year undergraduate chemistry 

students in Australia, limiting the ability to generalise the LLTM formulated beyond that 

context. Further, these two different cohorts of students with different levels of background 

knowledge were merged into a single data set, meaning this potentially confounds the results 

obtained. By no means does this suggest the results obtained are uninformative – they suggest 

a range of important considerations for future research and teaching practice – it simply 

implies that perceptions reported by different student groups may behave in a somewhat 

different manner to the way student perceptions were observed to operate in this study. 

Testing the more general applicability of the LLTM derived here, or even the estimation of a 

new LLTM for a wider data set, is therefore a worthwhile pursuit. 
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5.3 Achievements in measurement 

5.3.1 Reaffirmation of the advantages of Rasch methodology 

A substantial component of this thesis naturally involved a comparison of Rasch measurement 

and scoring techniques more akin to classic test theory. Whilst these methods have been 

contrasted at length previously in the literature (see section 1.3.1), results here reaffirm many 

established conclusions, this time for the ASLE survey specifically. Despite this, the vast 

majority of practitioners are unlikely to adopt Rasch measurement techniques for the study of 

ASLE project data, principally because of small sample sizes in isolated analyses, data 

connectivity issues in wider scale studies and simply the fact that few have knowledge of how 

to estimate or interpret the results of Rasch modelling. For this reason, the evaluation of the 

validity of common scoring techniques presented in this thesis is of value, despite the fact 

scoring techniques are not ideal. However, should the issues with implementing Rasch analysis 

be overcome, Rasch measurement has numerous advantages: 

1. Rasch analysis provides interval scale measures 

Rasch measurement yields genuine interval scale data, fit for parametric statistical 

methods. Whilst the calculation of means and estimation of standard error margins 

was seen to be reasonable for scores, Rasch measures are additionally fit for 

correlational work due to their known proportionality to the latent trait of interest. By 

contrast, correlational work was shown to be invalid using scored data, given their 

non-linear relation to the traits they are desired to reflect. (see section 3.3) 

 

2. Rasch measures are sample independent 

A second primary limitation in scoring methodology was the heavy conflation between 

student dependent and student independent effects, leading to perturbation in scores 

received depending on the occasion and students surveyed (see sections 3.2 and 

4.1.4). Rasch measurement techniques allow separation of generalizable qualities of 

the experiment itself from fluctuations in student biases, even allowing comparability 

of otherwise isolated data sets by using models such as the LLTM (see section 4.3.3.2). 

 

3. Rasch models are highly versatile 

Scoring methods were seen in this thesis to have limitations for the analysis of larger 

data sets (see section 5.1.3). These issues are substantially alleviated when using Rasch 

measurement, which is readily amenable to analysing very large numbers of 

responses. Further, a wide range of different conceptions of how responders interact 

with the survey may be encapsulated within Rasch models (see sections 2.2, 4.1.2.2 

and 4.3.3.1), in contrast to the tendency to assume one singular (simplistic) means by 

which students interact with surveys when applying scoring analyses (see section 

3.3.2.1). The model is also made explicit within Rasch analyses in construction of the 

appropriate Rasch model, whereas it is often tacitly presumed in score-based analyses. 

 

4. Rasch models are testable  

In contrast with the variety of validity assumptions required in score-based analysis 

(see for example section 1.2.2), as well as assumptions regarding the way surveys 

operate (see for example section 3.3.2.1), aspects of validity may be directly tested 

when using Rasch techniques. This is true for the construct validity associated with 

individual models (for example see sections 4.1.5 and 4.4.4) or even the validity of one 
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explanatory model of the data in contrast with others (for example see sections 4.1.3 

and 4.3.3.1). These issues are far less readily investigated using scoring techniques, 

leading them to have been overlooked in the past. Validity assumptions made within 

Rasch analyses are, however, often directly testable through the fit statistics reported 

alongside Rasch models. 

 

5. Rasch methodology is amenable to scientific investigation 

Having been initially conceived in part to ensure the objectivity required for genuine 

scientific comparisons129 (see section 1.3.1), Rasch modelling is an ideal tool for 

scientific inquiry. The additional ability to formulate nearly any hypothesised  

explanation of data variance as a Rasch model, coupled with the Rasch model’s 

quantifiable and therefore testable predictions enables research to span far beyond 

the qualitative and exploratory. Model selection techniques such as use of the 

corrected Akaike Information Criterion (AICc) allow for various hypotheses, 

encapsulated within Rasch models, to be supported or refuted based on empirical 

observation and measurement. An iterative process of scientific inquiry utilising these 

advantages is shown in Figure 50. 

 

Figure 50: The scientific method applied using Rasch measurement techniques 

All of these advantages were critical in drawing the primary conclusions of this thesis. Notably, 

methodology directly mapping to the scheme in Figure 50 above was implemented in this 

thesis to improve on models of the laboratory learning experience, without which the vast 

Hypothesis 

Suppose that the data are best described by 
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Prediction 

If the hypothesis is true, then Rasch model “A” 

will be superior to Rasch model “B” 

 

Experiment 

Data are gathered, then fit to Rasch model “A” 
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hence AICc values are calculated for each.  
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majority of pedagogical conclusions discussed could not have been drawn. First, the 

interaction between students and surveys presumed by typical analyses (modelled by Equation 

32, see section 3.3.2.1) was improved upon by including a variation in student dispositions 

from occasion to occasion (modelled by Equation 35, see section 4.1.1). Then, this generalised 

model was further improved by identifying the basic elements of the laboratory experience 

which give rise to perceptions reported on all 14 ASLE survey rating scale items (modelled by 

the LLTM, see sections 4.2 and 4.4). Future research could easily involve testing new 

refinements to the existing best explanation of the data using a similar process, leading to 

better understandings of laboratory-based teaching and learning. 

5.3.2 Novel approaches to measurement problems 

Whilst instrumental to this thesis, the scheme presented in Figure 50 is somewhat atypical of 

Rasch measurement practices. As previously described in the introductory material, Rasch 

models are usually used in a confirmatory manner, establishing that data fit to a model the 

researcher already has in mind (see section 2.3.2). By contrast, this thesis has used Rasch 

modelling in a more exploratory manner, using model fit as a tool to select the best 

explanation of the data from an array of proposed models. 

The reason for this approach is largely due to the original design of the ASLE survey itself. The 

ASLE survey was never intended to be unidimensional; rather than measuring a single latent 

trait, different items of the survey were designed to address an array of (possibly independent) 

features of the learning experience which may or may not have influenced the overall quality. 

It was immediately recognised that this purpose of the survey invalidated commonly used 

unidimensional models, leading to the need to formulate a model which would be more in 

keeping with the intent of the survey. Section 3.3 therefore modelled the data without one 

single unidimensional Rasch model as would be typical, but instead using fourteen models: 

one for each separate dimension of the instrument. Rather than modifying the survey itself to 

more adequately address one single dimension (as would be more typical), the structure (and 

therefore purpose) of the survey was kept, instead tailoring the analysis to suit the survey 

itself. 

This was a novel approach: the “items” within Rasch models estimated in this stage of research 

were not a set of many survey questions asked within a single context (as would be typical), 

they were instead a set of many contexts in which the same question was asked. There is 

nothing inherently “wrong” with this approach; “item” facets constructed in this manner may 

appear commonly in many facet Rasch models (see section 2.2.2) and models such as this can 

easily be derived from first principles (see section 7.4.1 of the supporting information for a 

derivation of all models used). However, typical methodology would instead suggest the 

survey be altered such that the series of items formed a single valid dimension of 

measurement. Altering the survey was not an option in this case: the major objectives of the 

thesis were to address validity concerns regarding the survey as it had been presented 

previously and as such the survey construct itself needed to remain in its current form. 

Beyond the choice to amend the Rasch model used rather than amending the survey to fit a 

pre-established model, atypical approaches were also implemented when investigating the 

survey data’s qualitative meanings. It became clear early on that even the more suitable Rasch 

model selected was not necessarily the best option. Again, the goal here was to explore which 

interpretation of the existing survey was appropriate; the goal was not to amend the survey to 

fit a desired construct. Theoretical expectations and observed behaviour of the data do not 
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necessarily match in all cases, and this led to the exploration of which model best suited the 

data based on observation, not based on theory (section 4.1). This was a major shift in the use 

of Rasch models from confirmatory applications, instead now for exploratory purposes. Such 

an approach is far more typical of item response theory than it is of Rasch measurement (see 

section 2.3.2). 

This exploratory approach allowed for a range of conclusions regarding both the survey’s 

validity and implications of the data received. Contrasting an array of possible interactions 

between student and survey instrument (see section 4.1) allowed for a determination of the 

optimal qualitative understanding of the survey’s use. Not only did this reveal crucial issues in 

comparability of survey results gathered in different occasions, it also enabled an explicit test 

of whether it was valid to assume features of the laboratory experience were objective and 

measurable. Having determined this to be reasonable based on data, not merely based on 

presumption, relationships between these measurable traits were able to be explored, finally 

generating the Linear Logistic Test Model. 

Formulation of the Linear Logistic Test Model itself was also far from typical. In keeping with 

the usual confirmatory applications of Rasch measurement, Q-matrices for Linear Logistic Test 

models are typically stipulated a priori, not derived from observational data. This usually arises 

from a very deliberate and careful design of the survey or test at the outset, or else through 

consultation with experts in the relevant field (see section 2.2.2). However, neither of these 

approaches were possible in this case; the survey had not been designed with a specific Q-

matrix construct in mind, nor was there sufficient expert knowledge available regarding how 

student perceptions precisely interact to stipulate an appropriate Q-matrix based on theory. 

Again a novel approach was taken to rectify the problem: the technique of factor analysis was 

was merged with Rasch modelling techniques to identify contributors to the Q-matrix, as well 

as determine the weights of those contributions on each survey item.  

Factor analysis and Rasch analysis have not been combined in the precise manner 

implemented in this thesis previously, likely because of the atypical exploratory purpose of the 

analysis and the unconventional multidimensional structure of the survey itself. Moreover, the 

means of determining the appropriate number of factors to be retained was again atypical. 

Rather than using common techniques involving eigenvalues or scree plots in conjunction with 

what “makes sense” to the analyst (see section 2.4.6), objective Rasch model fit statistics and 

model selection criteria were used to choose the most appropriate number of factors. 

Confirmatory factor analysis in itself is not a new concept, but the marriage of exploratory 

factor analysis and the confirmatory statistics of Rasch modelling is an entirely new technique. 

The technique allowed for an objective selection of the factors to be included in the model 

uninfluenced by any expectations of the researcher, and further produced an LLTM with near 

perfect approximation to non-LLTM estimates (Figure 41, p 125). Analogous methods could 

easily be applied to other data sets, identifying variables which underpin the observed data 

and quantifying their contributions. This could be achievable for any research area making use 

of survey data, for which the survey items are not intended to comprise a singular dimension. 

Though the fit to the data appear to suggest a resounding success of this estimation technique, 

commentary should be provided on the likely validity of the factors extracted. Most factors 

extracted were able to be assigned a reasonable real world interpretation by examining two 

pieces of information: the factor loadings on each of the initial ASLE survey items and patterns 

in the final measure values for each factor. This in itself lends some initial degree of credibility 

to the factor labels assigned, but far more compelling evidence of validity arises from the 
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predictions made by the model itself. Well known and extensively researched concepts in 

education were evident in the model under the factor identities assigned, including the strong 

relationship between collaboration and understanding as well as the importance of sequencing 

activities within the lecture course. This encapsulation of established theory was in no way 

built into the model itself or the estimation procedure, suggesting that it emerges as a 

consequence of a genuine correspondence between the model and real world patterns. 

It should be noted that assigning factor character in this way necessarily draws upon what 

each factor correlates with. Or more specifically, what the factor is observed to correlate with 

in the data available. This creates a problem: features which form part of the identity of a 

factor will naturally correlate to its measure values, but so too will the features of the 

laboratory experience merely influenced by that factor. This conflation between identity and 

influence of the basic factors extracted may mean the labels attributed to them and 

descriptions of their character (see Table 25, section 4.4.1) could be in error.  

Moreover, the factors modelled to underpin the experiences targeted by the survey items are 

themselves necessarily composed of the original survey item dimensions. That is, any 

identifiable defining characteristics of the factors extracted are restricted to being one of the 

topics addressed in the survey items the model seeks to explain. If there are any key factors 

underpinning survey responses which cannot directly be mapped back to a particular survey 

item (or items), then this technique simply will not be capable of identifying them. This issue 

posed a notable problem in the LLTM breakdown of the “overall learning experience” item: the 

primary contributor to measures for this item was a factor which itself only strongly correlated 

to “overall learning experience”, failing to be assigned any other fundamental identity. 

Further, it was noted that the student cohort may play a role in factor identity, affecting which 

features were observed to correlate within the data and therefore which factor dimensions 

were constructed by the model (see section 4.4.4). 

A revealing insight into validity of the factor characterisations assigned is that of factor 8 of the 

LLTM. This factor was seen to have no clear correlation to any item of the ASLE survey, making 

its identity a mystery initially, if indeed it was even a valid factor to extract. However, it was 

observed to have a very clear, albeit unconventional real world interpretation: correction of 

measures for item 11 (regarding benefit of teamwork) back to a binary response (reflecting 

whether students worked in pairs or not). Given its lack of correlation to any particular item of 

the survey, this factor would almost certainly have been discarded in a conventional factor 

analysis. Its retention here, however, was critical. It was also by definition a perfectly valid 

factor, since its measures mapped directly and exactly proportionally to a real world 

phenomenon. 

Despite factor 8’s validity, which lends credence to the notion that this technique does indeed 

yield at least some validly interpretable factors, its behaviour also exposes a problem with the 

method. The observed measures for item 11 of the survey are effectively one of two values if 

factor 8 is discounted: one value if students worked in pairs, but a different value of they 

worked individually. Clearly the binary option of whether students worked in pairs or not 

should be the singular primary factor defining this behaviour in an ideal LLTM, but this was not 

the estimated model. Instead, the model expressed this component of item 11’s behaviour as 

an artificial combination of various teamwork-related features of the experience. This 

happened because a single binary item of whether students worked in pairs or not was not 

included on the survey, and so could not serve as the identity of any factor extracted. This is 

plainly not the most parsimonious solution, and poses an open goal for future research. A 
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method is needed to define a known factor into the Q-matrix at the start of the procedure, 

such that it will be included in the final Q-matrix estimated. 

5.3.3 In pursuit of a specification equation 

Whilst the LLTM formulation obtained reveals a wide range of connections between student 

experience and aspects of the activity design, making a direct mathematical connection 

between objective experiment quality and the real world features of experiment design has 

yet to be seen. Such a connection was described as a longer term goal for this research in the 

introductory material (see section 1.4.2) and there are a small number of indicators in the 

results discussed which suggest such a relationship may be attainable in future. 

The measure for 𝜂𝑑𝑎𝑡𝑎⁡𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑎𝑡𝑖𝑜𝑛 appears to be a direct function of the mode in which data 

is presented to students. Values for this factor took on low values for all cases in which the 

PASCO GLX Explorer handheld data logger was used, and consistently took on an equivalent 

higher value measure ( 𝜂𝑑𝑎𝑡𝑎⁡𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑎𝑡𝑖𝑜𝑛 ≅ 0.28⁡𝐿𝑜𝑔𝑖𝑡𝑠) when this was changed to a laptop 

computer equipped with PASCO Data Studio software (see section 4.4.5). The fact that the 

equivalent value was observed for all cases of using the laptop interface indicates a direct 

connection between activity design and the precise number value of the measure, as does the 

fact that shifting from data logger to laptop was consistently an improvement (though to a 

different extent in different experimental contexts). Similarly, the binary measure outcome for 

survey item 11;  ≅ −1.92⁡𝐿𝑜𝑔𝑖𝑡𝑠 if students worked individually and  ≅  0.08⁡𝐿𝑜𝑔𝑖𝑡𝑠 if 

students worked in pairs, also suggests a direct mathematical connection between activity 

design and the precise number value of the measure.  

A simplistic way to encapsulate the design of the experiment mathematically is to express it as 

a vector of many elements, each element of the vector pertaining to a different possible 

inclusion in the experiment design. Such a vector could have countless (even infinite) 

elements, corresponding to the countless different ways to design experiments: each element 

of the vector could take on a value of 1 or 0, corresponding to the inclusion or lack of inclusion 

of a specific possible feature in the design of the task respectively. 

Conceptualising such a vector is useful, since it can be further imagined that each of the 

observed basic factor measures of the LLTM are some direct mathematical function of the 

experiment design vector. That is, the factor measures are resultant of the experiment design: 

The survey item measures could also be expressed as a function of experiment design. Using 

this type of notation, a specification equation for survey item 11’s measure could be 

constructed as follows: 

Here the measure for item 11 (pertaining to perceived benefit of teamwork) for the mth 

experiment (𝛿11⁡(𝑡𝑒𝑎𝑚𝑤𝑜𝑟𝑘),⁡⁡⁡𝑚) is expressed as a direct function (Ω𝑡𝑒𝑎𝑚𝑤𝑜𝑟𝑘) of the design of 

     𝜔⃗⃗ 𝑚 = [𝜔1 𝜔2 ⋯]⁡; ⁡𝜔𝑧 = {
1, 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒⁡𝑧⁡𝑖𝑠⁡𝑡𝑟𝑢𝑒⁡𝑜𝑓⁡𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡⁡𝑚
0, 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒⁡𝑧⁡𝑖𝑠⁡𝑛𝑜𝑡⁡𝑡𝑟𝑢𝑒⁡𝑜𝑓⁡𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡⁡𝑚

 51 

 𝜂𝑓,𝑚 = Ω𝑓(𝜔⃗⃗ 𝑚) 52 

 

𝛿11⁡(𝑡𝑒𝑎𝑚𝑤𝑜𝑟𝑘),⁡⁡⁡𝑚 = Ω𝑡𝑒𝑎𝑚𝑤𝑜𝑟𝑘(𝜔⃗⃗ 𝑚) = [

⋮
−1.92
0.08

⋮

] ⋅ [

⋮
𝜔𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠⁡𝑤𝑜𝑟𝑘⁡𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑙𝑦

𝜔𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠⁡𝑤𝑜𝑟𝑘⁡𝑖𝑛⁡𝑝𝑎𝑖𝑟𝑠

⋮

] 53 
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the experiment (𝜔⃗⃗ 𝑚). The relevant features of the experiment design are students’ 

requirement to work individually or in pairs.  In Equation 53 above, truth or falsity of each of 

these options is expressed as a value of 1 or 0 respectively for the 𝜔𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠⁡𝑤𝑜𝑟𝑘⁡𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑙𝑦  and 

𝜔𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠⁡𝑤𝑜𝑟𝑘⁡𝑖𝑛⁡𝑝𝑎𝑖𝑟𝑠 terms. 

Table 30 (page 178) summarises the full theoretical connection between experiment design 

and observed ASLE survey data, as explored in this research. Relevant equation numbers, as 

used in prior sections of this thesis, are listed to the left where appropriate. It can be seen that 

whilst a large portion of this connection has been revealed through the work in this thesis, the 

explanation of basic laboratory learning experience factors as a direct mathematical function 

of experiment design attributes remains largely undetermined. Solving these mathematical 

connections may serve as the goal of future work, potentially via iterated refinement of 

existing models (see Figure 50 presented previously). 

Determining a precise specification equation which could be used by all teachers in all 

circumstances may not be possible, however. Evidence has been presented and discussed at 

length that different relationships exist within the measures obtained depending on the 

student cohort to which experiments and surveys are presented. A specification equation 

which appears consistently true for one student cohort may be incorrect for another. It is 

unlikely, therefore, that Rasch measurement for experiment design could ever be used to 

achieve what “Lexiles” have for reading (see section 1.3.2).  

In the case of reading, the objective reading difficulty of a text appears to be consistent across 

the student population broadly, allowing “Lexiles” (a measure of reading difficulty derived 

from Rasch measurement) to be meaningful for any audience. This means that Lexiles can be 

calculated for an array of texts and disseminated to schools and educators as a useful tool in 

selecting texts appropriate for various readers. In the case of ASLE survey-derived Rasch 

measures for laboratory exercises, however, any objective measurements obtained may be 

specific to particular student audiences only. Consequently, measures associated with specific 

experiments could never be widely disseminated in this way without specifying the precise 

student audience which was used to obtain them. The measures are therefore far less simple 

to interpret, and very restricted in their utility. The practice of Rasch measurement and the 

derivation of any specification equations for the ASLE data in future is likely of far greater use 

in education research than it is for the purposes of widespread dissemination to teachers. 
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Table 30: Full model connecting experiment design to observed ASLE survey data 

ASELL MEAN SCORES FOR EACH SURVEY QUESTION, FOR EACH EXPERIMENT 

28 𝐴𝑖,𝑚 = (
1

𝑁𝑖,𝑚

)𝑎 ⋅ 𝑋 𝑖,𝑚⁡; ⁡𝑎 = [−2 −1 +0 +1 +2] 
ASELL mean scores arise from 

averaging scored observed survey 

responses 

OBSERVED SURVEY RESPONSE FREQUENCIES 

- 𝑋 𝑖,𝑚 = [𝑐𝑖,𝑚,1 𝑐𝑖,𝑚,2 ⋯ 𝑐𝑖,𝑚,𝐾]  
Each survey item, for each experiment 

has a total count of responses received 

in each rating scale category 

34 𝑐𝑖,𝑚,𝑘 ≈ 𝑁𝑖,𝑚 × 𝑃∗
𝑖,𝑚(𝑥𝑘 , 𝛿𝑖,𝑚) 

Observed response category counts 

arise from population level response 

category probabilities 

33 𝑃∗
𝑖,𝑚(𝑥𝑘 , 𝛿𝑖,𝑚) = ∫ 𝑃𝑛,𝑚,𝑖(𝑋 = 𝑥𝑘) × 𝑃(𝛽𝐸)

∞

−∞

. 𝑑𝛽𝐸 ⁡⁡⁡⁡⁡ 
Population level response category 

probabilities arise from summating 

probabilities for individual students 

35 𝑙𝑛 [
𝑃𝑛,𝑚,𝑖(𝑋 = 𝑥𝑘)

𝑃𝑛,𝑚,𝑖(𝑋 = 𝑥𝑘−1)
] = 𝛽𝐸𝑛,𝑚

− 𝛿𝑃𝐶𝑀𝑖,𝑚
− 𝑖,𝑘  

Interaction between occasion specific 

student biases, survey question specific 

experiment quality measures and the 

response category structure interact to 

predict response probabilities for 

individual students 

MEASURABLE LATENT VARIABLES/ EXPERIMENT QUALITIES UNDERPINNING RESPONSE 

42 𝛿𝐿𝐿𝑇𝑀𝑖,𝑚
≈ −𝛿𝑃𝐶𝑀𝑖,𝑚

+ 𝛾𝑠 
Disconnects between different subsets 

of the data may offset experiment 

quality measure estimates 

40 𝛿𝐿𝐿𝑇𝑀𝑖,𝑚
= ∑ 𝑞𝑖,𝑓𝜂𝑓,𝑚 + 𝜇𝑖

𝐹

𝑓=1

 

Survey question specific experiment 

quality measures are a linear 

combination of more basic experiment 

specific factors 

52 𝜂𝑓,𝑚 = Ω𝑓(𝜔⃗⃗ 𝑚) 
Measures for basic experiment specific 

factors are each a direct function of the 

attributes of experiment design 

EXPERIMENT DESIGN ATTRIBUTES 

51 𝜔⃗⃗ 𝑚 = [𝜔1 𝜔2 ⋯]⁡; ⁡𝜔𝑧 = {
1, 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒⁡𝑧⁡𝑖𝑠⁡𝑡𝑟𝑢𝑒⁡𝑜𝑓⁡𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡⁡𝑚
0, 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒⁡𝑧⁡𝑖𝑠⁡𝑛𝑜𝑡⁡𝑡𝑟𝑢𝑒⁡𝑜𝑓⁡𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡⁡𝑚

 

Relevant equation numbers used in the body of this thesis are shown at the far left of the table. 

VARIABLES: ASELL mean score (A), total student responses (N), observed response category count (c), 
population level probability (P*), individual student probability (P), observed response (X), response category (x), 

student dependent measure (E), student independent measure (PCM for Partial Credit Model, LLTM for Linear 

Logistic Test Model), category threshold (), measurement subset offset (), basic factor weighting (q), basic 

factor measure (), survey question relative location (), specification equation function (), experiment design 
description vector (𝜔⃗⃗ ) 

VARIABLE INDICES: nth person, mth experiment, ith survey question, kth response category (of K), 
sth measurement subset, fth basic factor (of F), zth experiment design attribute 
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5.4 Future investigation with the Linear Logistic Test Model 

5.4.1 Uniting the broader ASELL database 

Given the breadth of conclusions able to be drawn from the Linear Logistic Test Model 

generated from the data set used in this thesis, as well as the questions existing regarding its 

generality to other data sets, it is desirable to be able to test whether other data sets exhibit 

the same patterns. The ability to test the applicability or otherwise of a model such as the 

LLTM is one of the primary strengths of Rasch measurement techniques, making this objective 

entirely within reach. The ASELL project also has a vast array of data from over 120 evaluated 

experiments at its disposal,57 providing an ideal opportunity to test the applicability of the 

LLTM generated here for a larger and more diverse data set. 

Unlike using scored response data, the LLTM inherently separates student dependent and 

student independent factors. This naturally avoids effects whereby the conclusions drawn 

reflect patterns in students’ inherent predispositions more than patterns in generalizable ways 

to improve the learning experience (see section 4.3.4.3). The LLTM also naturally connects 

data sets gathered from different experiments, as the same underlying factors contribute to 

the perceptions observed for each (see section 4.3.3.2). The LLTM derived here also has the 

advantage that it was derived objectively from the data alone, without stipulation of which 

factors to include in the model using subjective researcher judgement (see section 4.3.4.4). 

These three benefits: the isolation of student independent trends, connection of data sets and 

objectivity of the model’s derivation provide additional motive to estimate parameters 

associated with experiments in the ASELL database, using the LLTM structure. 

In this study, the Facets Rasch measurement software was used to estimate parameters for 

the ASLE data LLTM. Whilst this was achievable, structuring the Q-matrix within the Facets 

software specification file is by no means simple, and cannot be achieved without the aid of 

other technology such as Microsoft Excel. It would be more convenient to utilise more capable 

Rasch measurement software such as ConQuest,151, 156 within which matrix weighting 

coefficients can be more simply stipulated. This would also allow the use of non-integer values 

in the Q-matrix, making the resultant model more accurate. The procedure used in this thesis 

to generate a Linear Logistic Test Model within the Facets software is presented in the 

supporting information (see section 7.6.1), as are both the integer value and non-integer value 

forms of the Q-matrix (see section 7.6.3). 

The hypothesis of whether the LLTM generated in this research applies to the wider ASELL data 

set can simply be tested using the corrected Akaike Information Criterion (AICc). The same 

data could be fit to the LLTM and an analogous non-LLTM model, calculating the AICc value for 

each. The LLTM can be deemed the best explanatory model of the data if it has the lower AICc 

value. Further elaboration on AICc value interpretation is presented in section 2.5.4.2. 

Because student dependent parameters are best modelled as constant for a singular occasion, 

but varying between different occasions (see section 4.1.3), estimation of an analogous non-

LLTM model of the ASELL data would result in myriad isolated subsets of data. An alternate 

means of calculating the fit of the data to a non-LLTM analogue is therefore preferable. Once 

the LLTM has been estimated within Rasch measurement software (such as Facets), non-LLTM 

analogues of all survey item measures estimated can be obtained simply by adding 

“displacement measures” back to the LLTM measures obtained. A Partial Credit model of the 



5.4  Conclusions and future opportunities| Future investigation with the Linear Logistic Test Model 180 

 

data can then be structured by anchoring all PCM measures to equal these LLTM + displacement 

values. The fit statistics of this Partial Credit Model would then reflect the fit of the data to a 

non-LLTM model, which can be contrasted with the fit observed to the LLTM. 

AICc values can then be calculated for each of the two alternate models using Equation 31 

(reproduced below), where n is the total number of data points gathered (14 per survey, if all 

surveys are complete) and the −2 ln(ℒ) term is the log-likelihood chi squared value quoted in 

the Facets software as a measure of global model fit (ℒ is the likelihood value for the full 

model, which may be quoted in other Rasch measurement software).  

 𝐴𝐼𝐶𝑐 = ⁡−2 ln(ℒ) + 2𝑘 +
2𝑘(𝑘 + 1)

𝑛 − 𝑘 − 1
 31 

The number of free parameters (k) to be used in the equation above for the (non-LLTM) Partial 

Credit Model can be simply calculated using the number of experiments conducted (X) and the 

number of surveys gathered (N), as shown below.  

                    k  =       56   measures (4 Rasch-Andrich thresholds × 14 items) 

  + 14X  measures (14 ASLE item measures per experiment) 

  + N E measures (one per survey occasion, even for the same 

students) 

  − 1  (one facet centred at zero) 

For the LLTM, a different set of parameters is involved and therefore the number of free 

parameters must be computed differently. The total number of free parameters (k) depends 

on the number of factors (F) contributing to the final LLTM approximations to each survey item 

measure. In this thesis, a 12 factor model (F=12) was computed to be optimal. However, 

because the factor loading values were rounded to integers, the twelfth factor was rendered 

not to contribute, leaving only 11 factors in the model for which results are presented (F=11). 

                    k  =       56   measures (4 Rasch-Andrich thresholds × 14 items) 

  + 14 μ⁡measures (Defining relative location of measures for the 

14 survey items) 

  + F. X η⁡measures (F factor measures per experiment) 

  + N E measures (one per survey occasion, even for the same 

students) 

  − 1  (one facet centred at zero) 

Having calculated AICc values for the LLTM and non-LLTM models of the data, the preferable 

model can be concluded (the model of lowest AICc value).  

Should the procedure described above reveal that the LLTM presented in this thesis is not a 

suitable explanation of the wider ASLE data set, it may not be possible to emulate the 

procedure described within section 4 of this thesis to obtain a better LLTM, due to issues of 

data connectivity. Currently, ASLE surveys are typically anonymous, meaning any given 

experiment evaluated with the ASLE survey has no connection to other analyses. In analyses 

described within this thesis, students responding to multiple experiments were used to 

‘equate’ different isolated subsets of data, allowing comparability between measures and 

subsequently permitting factor analysis and Q-matrix estimation. A similar procedure would be 

necessary to equate all experiments in the ASLE survey database if a new LLTM were to be 

estimated. This is not possible given respondent anonymity, however. 
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One possible solution to the problem could be to designate a series of “calibration” 

responders: specific individuals who complete a number of experiments and evaluate them 

using ASLE surveys, whose responses may be used to connect the wider database. An 

immediately apparent option for who these individuals may be is ASELL workshop attendees. If 

ASELL workshop attendees completed ASLE surveys for each experiment they conduct at the 

workshop, and if multiple surveys completed by the same individual could be tracked, it may 

be possible to use those individuals to unite the data sets associated with experiments 

submitted by different institutions. This may at least unite the set of experiments conducted at 

workshops, but the same could not be said for the data gathered at home institutions: again, 

responders common to multiple experiments, whose biases toward positive response can be 

assumed not to change, must be present to unite separate datasets. 

5.4.2 Improving the current LLTM 

Multiple observations over the course of this research have indicated that the LLTM estimated 

here may need to be further refined if it is to be applicable to a wider data set. The limited 

diversity of the student audience for these studies substantially restricts the generality of any 

precise mathematical patterns observed. Further, the model may conflate the identity and 

influences of key factors underpinning student perceptions (see section 5.3.2), meaning the 

LLTM estimated could have been perturbed by features which correlate by chance in the 

sample of experiments selected.  

Substantial contributions by factors of unknown identity have also been revealed, suggesting a 

target for future research. Measures for the “overall learning experience” item particularly 

have a majority of variance explained by factors other than those targeted by the ASLE survey 

or identified within the LLTM. Identifying these factors is pivotal not only to refinement of the 

LLTM as a model, but also to the understanding of what makes students view their laboratory 

experiences positively. 

The aspects of the laboratory experience currently included on the survey do not encompass 

all considerations relevant to student perceptions. Were these factors identified, the current 

model could be substantially improved. A simple solution to this could be to structure a new 

survey, including some items present on the current ASLE survey, but others designed to 

investigate different features of the student experience. New question could be designed to 

target features of the activity design which appeared relevant to the measure values obtained 

here, but were not explicitly targeted previously. Rating scale items which might be included 

on a revised survey are suggested below. 

Items addressing appropriateness to the prior learning of the audience: 

 I found the theory in this experiment to be (above my level, appropriate to my level, 

below my level) 

 I found the technical skills in this experiment to be (above my level, appropriate to my 

level, below my level) 

Items which may reveal the learning style the experiment is best directed towards:  

 This activity involves hands-on interaction with chemical concepts 

 This activity allows me to visualise chemistry in action 

 This activity requires me to use difficult or complex symbols /  mathematics 

 This activity requires me to remember and apply chemical concepts 
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Structuring a new survey could also allow an opportunity to target the basic factors seen to 

underpin ASLE survey response more directly. Doing so could not only serve as a tool for more 

direct measurements of fundamental components of the laboratory learning experience, but 

could also be used as a tool to confirm the precise defining characteristics of the six known 

factors identified in the LLTM (see Table 25). Some rating scale items which may assist in these 

objectives are suggested below. 

For factor 1 (theory focus): 

 This activity is strongly connected to the lecture course content 

 The main purpose of this activity is to develop my technical laboratory skills 

 The main purpose of this activity is to reinforce my understanding of lecture theory 

For factor 2 (instructions): 

 The instructional material provided is clear and sufficient 

 I easily understood the material provided to me in the notes for this activity 

 The instructional notes for this activity provided all information I needed 

For factor 3 (collaborative understanding): 

 This activity has increased my understanding of chemistry theory 

 This activity involves collaboration with others  

 This activity has increased my understanding of chemistry theory through 

collaboration with others 

For factor 4 (data interpretation): 

 This activity allows me to improve my data interpretation skills 

 This activity involved the use of technology 

 The technology used in this activity was simple to operate 

For factor 5 (independent learning): 

 This activity allows me to learn independently 

 In this experiment I worked (in pairs or in a group / individually)  

For factor 6 (demonstrators): 

 In this activity I needed help from my demonstrator 

If a new survey were structured including questions such as these, and similar methods to 

those discussed over the course of this thesis were applied, a LLTM obtained would be likely to 

better encapsulate the factors contributing to student experiences than the model presented 

here. If such a study were conducted at the University of Adelaide, gathering data for the 

identical experiments studied already, measures obtained for any new survey items could be 

included alongside measures obtained from research in this thesis to estimate a vastly 

improved LLTM for the ASLE data. This may be a far more viable solution to reformulation of 

the LLTM than uniting the wider ASLE database. 

Refinement of the understandings gained through the course of these works, or identification 

of entirely new factors contributing to student perceptions of laboratory learning experiences 

in this way could continue to build upon the array of knowledge revealed by the model 
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presented in this thesis. Not only could this continue to inform effective pedagogy of science, 

but also serve to reveal key questions for future research in science education and teaching in 

laboratories.
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7.1 Information provided to participants 

7.1.1 Excluding the option to provide student identification number 

 

PARTICIPANT INFORMATION SHEET  

Project Title:  Representations of scientific concepts and learning  

experience of first year undergraduate university students 

This project will gather information regarding student perceptions of laboratory exercises, and hence has 

the ability to evaluate the efficacy of each experiment as a learning exercise from the student perspective. 

Benefits of this investigation include contribution to knowledge of effective pedagogy in sciences and also 

contributions to the improvement and/or sustained quality of first year undergraduate laboratory programs 

in chemistry, biology and physics courses at the University of Adelaide. Researchers involved in the 

project include Mr. Sam Priest, A/Prof. Simon Pyke, Dr. Natalie Williamson and Dr. John Willison. 

The aim of this project is to investigate factors contributing to positive learning experience from a student 

perspective. Of primary interest is the investigation of any trends in student perception of experiments as 

related to the modes in which concepts are represented. Specifically, macro (accessible to the senses), 

sub-micro (not accessible to the senses), and symbolic representations (those using equations, symbols, 

diagrams etc) of concepts will be considered. 

Data for this project is collected via surveys distributed during laboratory sessions. These surveys are 

modelled on those used for the ALTC funded Advancing Science by Enhancing Learning in the Laboratory 

(ASELL) project (see http://www.asell.org), which have been used at numerous institutions Australia wide 

for more than 10 years. We ask that you complete these surveys at the end of your laboratory sessions, 

and that any feedback you provide is honest.  

Your participation is entirely voluntary and your feedback is anonymous. Neither whether you choose to 

respond to these surveys, nor any feedback you provide, will have any influence on your progress, 

results or grades in any subject. Researchers gathering the data requested will have no direct role in 

assessment of the laboratory activities concerned. Filling out the survey will constitute consent for its use 

for research purposes.  

If you are willing to participate, please complete the surveys made available to you during your practical 

sessions, upon completion of your experiment. Thank you for your cooperation. Please direct any queries 

regarding this research to one of the contacts below:

Mr. Sam Priest 

BSc. (Hons I), PhD student 

School of Chemistry and physics 

Email: samuel.priest@adelaide.edu.au 

  

A/Prof. Simon Pyke 

Associate Dean (Learning & Quality) – Faculty of Sciences 

School of Chemistry and Physics 

Tel: +61 8 8313 5358 

Email: simon.pyke@adelaide.edu.au

Dr. Natalie Williamson 

First Year Coordinator (Discipline of Chemistry) 

School of Chemistry and Physics 

Tel: +61 8 8313 5496 

Email: natalie.williamson@adelaide.edu.au 

 

Dr. John Willison 

Senior Lecturer 

School of Education 

Tel: +61 8 8313 3219 

Email: john.willison@adelaide.edu.au

 

  

tel:+61-8-8313-5358
tel:+61-8-8313-5496
tel:+61-8-8313-3219


7.1  Supporting Information| Information provided to participants 204 

 

 

7.1.2 Including the option to provide student identification number 

 

 

PARTICIPANT INFORMATION SHEET  

Project Title:  Representations of scientific concepts and learning  

experience of first year undergraduate university students 

This project will gather information regarding student perceptions of laboratory exercises, and hence has 

the ability to evaluate the efficacy of each experiment as a learning exercise from the student perspective. 

Benefits of this investigation include contribution to knowledge of effective pedagogy in sciences and also 

contributions to the improvement and/or sustained quality of first year undergraduate laboratory programs 

in chemistry, biology and physics courses at the University of Adelaide. Researchers involved in the 

project include Mr. Sam Priest, A/Prof. Simon Pyke, Dr. Natalie Williamson and Dr. John Willison. 

The aim of this project is to investigate factors contributing to positive learning experience from a student 

perspective. Of primary interest is the investigation of any trends in student perception of experiments as 

related to the modes in which concepts are represented. Specifically, macro (accessible to the senses), 

sub-micro (not accessible to the senses), and symbolic representations (those using equations, symbols, 

diagrams etc) of concepts will be considered. 

Data for this project is collected via surveys distributed during laboratory sessions. These surveys are 

modelled on those used for the ALTC funded Advancing Science by Enhancing Learning in the Laboratory 

(ASELL) project (see http://www.asell.org), which have been used at numerous institutions Australia wide 

for more than 10 years. We ask that you complete these surveys at the end of your laboratory sessions, 

and that any feedback you provide is honest.  

Your participation is entirely voluntary and your feedback is anonymous. Neither your response to these 

surveys, nor any feedback you provide, will have any influence on your progress, results or grades in any 

subject. Researchers gathering the data requested will have no direct role in assessment of the 

laboratory activities concerned. Filling out the survey will constitute consent for its use for research 

purposes.  

The surveys provide you with the opportunity to include your student ID number. This is entirely optional, 

and you may elect to still complete a survey without including this. Should you choose to provide your 

student identification number, this is at no stage intended to be linked to your name. The optional 

provision of your identification number is included solely for the purpose of identifying surveys which have 

been completed by the same person, and also relating perceptions of experiments to the different 

subjects students study. This facilitates investigation regarding whether perceptions and learning 

experiences associated with one science discipline area influence those of another.  

If you are willing to participate, please complete the surveys made available to you during your practical 

sessions, upon completion of your experiment. Thank you for your cooperation. Please direct any queries 

regarding this research to one of the contacts below:

Mr. Sam Priest 

BSc. (Hons I), PhD student 

School of Chemistry and physics 

Email: samuel.priest@adelaide.edu.au 

  

A/Prof. Simon Pyke 

Associate Dean (Learning & Quality) – Faculty of Sciences 

School of Chemistry and Physics 

Tel: +61 8 8313 5358 

Email: simon.pyke@adelaide.edu.au

Dr. Natalie Williamson 

First Year Coordinator (Discipline of Chemistry) 

School of Chemistry and Physics 

Tel: +61 8 8313 5496 

Email: natalie.williamson@adelaide.edu.au 

 

Dr. John Willison 

Senior Lecturer 

School of Education 

Tel: +61 8 8313 3219 

Email: john.willison@adelaide.edu.au 

 

tel:+61-8-8313-5358
tel:+61-8-8313-5496
tel:+61-8-8313-3219
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7.2 Supporting information for sections 3.1 and 3.2 

7.2.1 Responses to Likert-type items 

For each of the following tables, a number of symbols are used. Response categories A through E represent the 

most positive to least positive response options respectively. The total number of responses received for that 

survey item (the sample size) is labelled as n ; m is the mean response score for that item; s is the standard 

deviation of response scores about the mean score; SE(m) is the standard error in the mean value, calculated as the 

standard deviation (s) divided by the square root of the sample size (n). 

Table S 1: Likert type item response data for the Biological Buffers experiment 

 

2011 responses (datalogger interface)

Count

A B C D E n m s Se (m)

1 data interpretation skills 20 86 18 3 6 133 0.83 0.87 0.08

2 laboratory skills 21 80 23 4 6 134 0.79 0.90 0.08

3 interest 19 46 50 13 6 134 0.44 1.00 0.09

4 clear assessment 26 68 35 3 2 134 0.84 0.81 0.07

5 clear expected learning 30 67 26 8 3 134 0.84 0.92 0.08

6 increased understanding 28 70 27 5 4 134 0.84 0.90 0.08

7 background information 36 61 24 9 5 135 0.84 1.01 0.09

8 demonstrators 67 51 16 1 1 136 1.34 0.77 0.07

9 clear procedure 35 68 21 6 5 135 0.90 0.96 0.08

10 relevance to discipline 51 64 17 3 1 136 1.18 0.79 0.07

11 benefit of teamwork 68 48 13 3 3 135 1.30 0.90 0.08

12 responsibility for own learing 31 72 26 2 3 134 0.94 0.83 0.07

13 time availability 2 9 113 8 1 133 0.02 0.47 0.04

14 overall learning experience 11 76 32 12 3 134 0.60 0.85 0.07

2012 responses (laptop interface)

Count

A B C D E n m s Se (m)

1 data interpretation skills 15 53 12 0 0 80 1.04 0.58 0.07

2 laboratory skills 19 45 14 2 0 80 1.01 0.72 0.08

3 interest 13 33 28 4 2 80 0.64 0.90 0.10

4 clear assessment 19 45 11 4 1 80 0.96 0.83 0.09

5 clear expected learning 18 46 8 4 4 80 0.88 0.99 0.11

6 increased understanding 15 43 18 1 2 79 0.86 0.83 0.09

7 background information 18 35 17 7 3 80 0.73 1.03 0.12

8 demonstrators 45 28 4 2 1 80 1.43 0.81 0.09

9 clear procedure 13 29 21 13 4 80 0.43 1.10 0.12

10 relevance to discipline 28 38 12 2 0 80 1.15 0.76 0.09

11 benefit of teamwork 48 24 6 2 0 80 1.48 0.75 0.08

12 responsibility for own learing 21 42 15 2 0 80 1.03 0.75 0.08

13 time availability 1 11 65 3 0 80 0.13 0.46 0.05

14 overall learning experience 12 50 15 2 1 80 0.88 0.74 0.08

Response frequencies Sampling Distribution
Survey Item

Response frequencies
Survey Item

Sampling Distribution
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Table S 2: Likert type item response data for the Vapour Pressure experiment 

 

 

2011 responses (datalogger interface)

Count

A B C D E n m s Se (m)

1 data interpretation skills 10 37 18 11 8 84 0.36 1.15 0.13

2 laboratory skills 16 32 16 14 6 84 0.45 1.19 0.13

3 interest 7 22 24 13 18 84 -0.15 1.27 0.14

4 clear assessment 7 33 27 9 8 84 0.26 1.08 0.12

5 clear expected learning 9 35 20 8 11 83 0.28 1.19 0.13

6 increased understanding 12 32 22 8 10 84 0.33 1.20 0.13

7 background information 13 43 15 8 5 84 0.61 1.05 0.11

8 demonstrators 39 27 14 3 1 84 1.19 0.92 0.10

9 clear procedure 7 24 27 17 9 84 0.04 1.12 0.12

10 relevance to discipline 15 38 21 5 5 84 0.63 1.04 0.11

11 benefit of teamwork 47 25 8 3 1 84 1.36 0.89 0.10

12 responsibility for own learing 15 30 30 5 4 84 0.56 1.01 0.11

13 time availability 2 1 39 34 8 84 -0.54 0.78 0.09

14 overall learning experience 3 28 27 16 10 84 -0.02 1.08 0.12

2012 responses (laptop interface)

Count

A B C D E n m s Se (m)

1 data interpretation skills 24 63 13 1 1 102 1.06 0.70 0.07

2 laboratory skills 25 58 16 3 1 103 1.00 0.78 0.08

3 interest 13 45 28 10 7 103 0.46 1.06 0.10

4 clear assessment 15 56 18 10 4 103 0.66 0.98 0.10

5 clear expected learning 21 59 17 5 1 103 0.91 0.81 0.08

6 increased understanding 26 56 15 5 1 103 0.98 0.83 0.08

7 background information 26 51 18 5 3 103 0.89 0.94 0.09

8 demonstrators 49 45 6 0 3 103 1.33 0.83 0.08

9 clear procedure 20 31 33 11 8 103 0.43 1.15 0.11

10 relevance to discipline 18 53 24 6 2 103 0.77 0.88 0.09

11 benefit of teamwork 56 36 5 4 1 102 1.39 0.83 0.08

12 responsibility for own learing 21 65 13 3 1 103 0.99 0.73 0.07

13 time availability 1 6 84 9 2 102 -0.05 0.51 0.05

14 overall learning experience 11 58 26 7 1 103 0.69 0.79 0.08

Sampling DistributionResponse frequencies
Survey Item

Sampling DistributionResponse frequencies
Survey Item
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Table S 3: Likert-type item response data for the Copper(II) Ion Concentration experiment 

 

  

2011 responses (datalogger interface)

Count

A B C D E n m s Se (m)

1 data interpretation skills 24 78 23 0 0 125 1.01 0.62 0.06

2 laboratory skills 35 71 18 1 1 126 1.10 0.72 0.06

3 interest 25 62 30 7 2 126 0.80 0.88 0.08

4 clear assessment 40 60 23 3 0 126 1.09 0.77 0.07

5 clear expected learning 41 65 17 3 0 126 1.14 0.73 0.07

6 increased understanding 31 64 23 6 1 125 0.94 0.84 0.07

7 background information 39 65 20 2 0 126 1.12 0.72 0.06

8 demonstrators 80 39 5 1 0 125 1.58 0.61 0.05

9 clear procedure 54 55 13 3 0 125 1.28 0.75 0.07

10 relevance to discipline 34 58 30 4 0 126 0.97 0.80 0.07

11 benefit of teamwork 73 46 5 1 0 125 1.53 0.62 0.06

12 responsibility for own learing 34 67 23 1 1 126 1.05 0.75 0.07

13 time availability 8 14 102 2 0 126 0.22 0.58 0.05

14 overall learning experience 14 89 23 0 0 126 0.93 0.54 0.05

2012 responses (laptop interface)

Count

A B C D E n m s Se (m)

1 data interpretation skills 24 68 28 0 0 120 0.97 0.66 0.06

2 laboratory skills 26 74 19 1 0 120 1.04 0.64 0.06

3 interest 31 59 23 7 0 120 0.95 0.83 0.08

4 clear assessment 41 57 19 3 0 120 1.13 0.77 0.07

5 clear expected learning 41 58 18 3 0 120 1.14 0.76 0.07

6 increased understanding 27 56 32 4 0 119 0.89 0.79 0.07

7 background information 49 59 9 3 0 120 1.28 0.71 0.07

8 demonstrators 81 31 7 0 1 120 1.59 0.68 0.06

9 clear procedure 47 59 13 1 0 120 1.27 0.68 0.06

10 relevance to discipline 30 67 19 4 0 120 1.03 0.74 0.07

11 benefit of teamwork 65 40 11 2 2 120 1.37 0.85 0.08

12 responsibility for own learing 28 61 29 1 0 119 0.97 0.72 0.07

13 time availability 2 23 94 1 0 120 0.22 0.47 0.04

14 overall learning experience 17 81 22 0 0 120 0.96 0.57 0.05

Survey Item
Response frequencies Sampling Distribution

Survey Item
Response frequencies Sampling Distribution
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7.2.2 Comparative tests for the Biological Buffers experiment  data 

The total number of surveys collected for the Biological Buffers experiment in 2011 and 2012 

were 136 and 80 surveys respectively. In this case, the significance level () is 0.05 and the 

number of statistical tests conducted (n) is 137.Therefore, p values below /n = 3.6510-4 are 

shaded to indicate refutation of the relevant null hypothesis, controlling for family-wise error. 

Quantitative comparisons in this section compare mean scored Likert-type item responses, 

using the t-test for unequal variances. p < α / n refutes the null hypothesis that mean scores 

are equal for the two data sets. Qualitative comparisons test the significance of the 

association between the data set sampled, and content and/or nature of the comments 

received using Fisher's exact test. p < α / n refutes the null hypothesis that response content is 

independent of the student data set sampled (data logger or laptop).  

Table S 4: Quantitative comparisons for the Biological Buffers experiment 

 

  

Survey item and topic mdata logger mlaptop df t

1 data interpretation skills 0.83 1.04 208.6 -2.03 4.34 10 -2

2 laboratory skills 0.79 1.01 194.7 -1.98 4.95 10 -2

3 interest 0.44 0.64 179.7 -1.48 1.40 10 -1

4 clear assessment 0.84 0.96 162.8 -1.02 3.08 10 -1

5 clear expected learning 0.84 0.88 156.8 -0.23 8.15 10 -1

6 increased understanding 0.84 0.86 174.8 -0.14 8.86 10 -1

7 background information 0.84 0.73 163.8 0.83 4.10 10 -1

8 demonstrators 1.34 1.43 159.7 -0.77 4.40 10 -1

9 clear procedure 0.90 0.43 148.7 3.23 1.52 10 -3

10 relevance to discipline 1.18 1.15 170.2 0.31 7.57 10 -1

11 benefit of teamwork 1.30 1.48 190.3 -1.57 1.18 10 -1

12 responsibility for own learing 0.94 1.03 180.3 -0.77 4.42 10 -1

13 time availability 0.02 0.13 168.7 -1.56 1.20 10 -1

14 overall learning experience 0.60 0.88 185.3 -2.52 1.26 10 -2

p
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7.2.2.1 General perceptions of “Biological Buffers” 

Table S 5: General nature of responses to item 15: “Did you enjoy doing the experiment? 
Why or why not?” for the Biological Buffers experiment 

Are responses more positive? Are responses more negative? 

 Data logger Laptop  Data logger Laptop 

Positive 28 36 Negative 24 19 

Not positive 23 18 Not negative 26 35 

 p = 2.36 x10-1  p = 2.33 x10-1 

 

Table S 6: Topic referenced in response to item 15: "Did you enjoy doing the experiment? 
Why or why not?" for the Biological Buffers experiment 

 

 

Table S 7: Content referenced in response to item 16: “What did you think was the main 
lesson to be learned from the experiment” for the Biological Buffers experiment 

 

  

Code Positive Negative Positive Negative

T Time availability 0 1 4 0 2.00 10 -1

C Relation to the course/ lectures 4 0 2 0 1.00 10 0

P Aspects of the procedure 5 0 4 6 4.40 10 -2

M Manual or answer book 0 2 0 7 1.00 10 0

I level of interest 2 2 4 0 4.29 10 -1

R results obtained 2 1 3 2 1.00 10 0

L new learning achieved 4 0 3 0 1.00 10 0

E equipment, apparatus or technology 4 21 2 4 5.67 10 -1

F level of familiarity or relevance 0 0 3 0 1.00 10 0

U level of understanding 6 0 3 3 1.82 10 -1

O others in the lab (students/ demonstrators) 2 0 2 0 1.00 10 0

S level of simplicity 3 0 8 0 1.00 10 0

X uncategorised 7 0 9 3 2.63 10 -1

LaptopData logger
p

Code Coded Not coded Coded Not coded

E Equivalence points/ pKa 6 32 10 39 7.81 10 -1

R Effective range of buffers 11 27 8 41 1.95 10 -1

H Henderson Hasselbalch equation 6 32 4 45 3.22 10 -1

P pH 7 31 11 38 7.91 10 -1

X none of the above 17 21 25 24 6.66 10 -1

Data logger
p

Laptop
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7.2.2.2 Positive perceptions of “Biological Buffers” 

Table S 8: Reasons cited for enjoying the Biological buffers experiment considered amongst 
all comments received in response to item 15: "Did you enjoy doing the experiment? Why or 
why not?" 

 

 

Table S 9: Reasons cited for enjoying the Biological Buffers experiment considered only 
amongst other reasons cited for liking the experiment in response to item 15: "Did you enjoy 
doing the experiment? Why or why not?" 

 

Code Coded Not coded Coded Not coded

T Time availability 0 51 4 50 1.18 10 -1

C Relation to the course/ lectures 4 47 2 52 4.28 10 -1

P Aspects of the procedure 5 46 4 50 7.37 10 -1

M Manual or answer book 0 51 0 54 1.00 10 0

I level of interest 2 49 4 50 6.79 10 -1

R results obtained 2 49 3 51 1.00 10 0

L new learning achieved 4 47 3 51 7.11 10 -1

E equipment, apparatus or technology 4 47 2 52 4.28 10 -1

F level of familiarity or relevance 0 51 3 51 2.43 10 -1

U level of understanding 6 45 3 51 3.11 10 -1

O others in the lab (students/ demonstrators) 2 49 2 52 1.00 10 0

S level of simplicity 3 48 8 46 2.03 10 -1

X uncategorised 7 44 9 45 7.88 10 -1

LaptopData logger
p

Code Coded Not coded Coded Not coded

T Time availability 0 28 4 32 1.25 10 -1

C Relation to the course/ lectures 4 24 2 34 3.91 10 -1

P Aspects of the procedure 5 23 4 32 4.88 10 -1

M Manual or answer book 0 28 0 36 1.00 10 0

I level of interest 2 26 4 32 6.88 10 -1

R results obtained 2 26 3 33 1.00 10 0

L new learning achieved 4 24 3 33 6.89 10 -1

E equipment, apparatus or technology 4 24 2 34 3.91 10 -1

F level of familiarity or relevance 0 28 3 33 2.50 10 -1

U level of understanding 6 22 3 33 1.63 10 -1

O others in the lab (students/ demonstrators) 2 26 2 34 1.00 10 0

S level of simplicity 3 25 8 28 3.22 10 -1

X uncategorised 7 21 9 27 1.00 10 0

LaptopData logger
p
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Table S 10: Features cited as the most enjoyable and interesting aspects of the Biological 
Buffers experiment considered amongst all responses to item 17: “What aspects of the 
experiment did you find most enjoyable and interesting?” 

 

 

Table S 11: Features cited as the most enjoyable and interesting aspects of the Biological 
Buffers experiment considered amongst only other positive responses to item 17: “What 
aspects of the experiment did you find most enjoyable and interesting?” 

 

  

Code Coded Not coded Coded Not coded

T Time availability 0 31 0 36 1.00 10 0

C Relation to the course/ lectures 0 31 1 35 1.00 10 0

P Aspects of the procedure 8 23 17 19 8.23 10 -2

M Manual or answer book 1 30 0 36 4.63 10 -1

I level of interest 0 31 0 36 1.00 10 0

R results obtained 10 21 9 27 5.92 10 -1

L new learning achieved 0 31 0 36 1.00 10 0

E equipment, apparatus or technology 7 24 10 26 7.80 10 -1

F level of familiarity or relevance 0 31 1 35 1.00 10 0

U level of understanding 0 31 0 36 1.00 10 0

O others in the lab (students/ demonstrators) 0 31 2 34 4.95 10 -1

S level of simplicity 0 31 0 36 1.00 10 0

X uncategorised 5 26 2 34 2.36 10 -1

LaptopData logger
p

Code Coded Not coded Coded Not coded

T Time availability 0 25 0 31 1.00 10 0

C Relation to the course/ lectures 0 25 1 30 1.00 10 0

P Aspects of the procedure 8 17 17 14 1.10 10 -1

M Manual or answer book 1 24 0 31 4.46 10 -1

I level of interest 0 25 0 31 1.00 10 0

R results obtained 10 15 9 22 4.11 10 -1

L new learning achieved 0 25 0 31 1.00 10 0

E equipment, apparatus or technology 7 18 10 21 7.77 10 -1

F level of familiarity or relevance 0 25 1 30 1.00 10 0

U level of understanding 0 25 0 31 1.00 10 0

O others in the lab (students/ demonstrators) 0 25 2 29 4.97 10 -1

S level of simplicity 0 25 0 31 1.00 10 0

X uncategorised 5 20 2 29 2.23 10 -1

Laptop
p

Data logger
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7.2.2.3 Negative perceptions of “Biological Buffers”  

Table S 12: Reasons cited for not enjoying the Biological Buffers experiment considered 
amongst all comments received in response to item 15: "Did you enjoy doing the 
experiment? Why or why not?" 

 

Table S 13: Reasons cited for not enjoying the Biological Buffers experiment considered 
amongst only other negative comments received in response to item 15: "Did you enjoy 
doing the experiment? Why or why not?" 

 

 

Code Coded Not coded Coded Not coded

T Time availability 1 50 0 54 4.86 10 -1

C Relation to the course/ lectures 0 51 0 54 1.00 10 0

P Aspects of the procedure 0 51 6 48 2.72 10 -2

M Manual or answer book 2 49 7 47 1.62 10 -1

I level of interest 2 49 0 54 2.34 10 -1

R results obtained 1 50 2 52 1.00 10 0

L new learning achieved 0 51 0 54 1.00 10 0

E equipment, apparatus or technology 21 30 4 50 5.96 10 -5

F level of familiarity or relevance 0 51 0 54 1.00 10 0

U level of understanding 0 51 3 51 2.43 10 -1

O others in the lab (students/ demonstrators) 0 51 0 54 1.00 10 0

S level of simplicity 0 51 0 54 1.00 10 0

X uncategorised 0 51 3 51 2.43 10 -1

Data logger
p

Laptop

Code Coded Not coded Coded Not coded

T Time availability 1 23 0 19 1.00 10 0

C Relation to the course/ lectures 0 24 0 19 1.00 10 0

P Aspects of the procedure 0 24 6 13 4.45 10 -3

M Manual or answer book 2 22 7 12 3.04 10 -2

I level of interest 2 22 0 19 4.95 10 -1

R results obtained 1 23 2 17 5.75 10 -1

L new learning achieved 0 24 0 19 1.00 10 0

E equipment, apparatus or technology 21 3 4 15 2.44 10 -5

F level of familiarity or relevance 0 24 0 19 1.00 10 0

U level of understanding 0 24 3 16 7.85 10 -2

O others in the lab (students/ demonstrators) 0 24 0 19 1.00 10 0

S level of simplicity 0 24 0 19 1.00 10 0

X uncategorised 0 24 3 16 7.85 10 -2

Data logger Laptop
p
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Table S 14: Areas of potential improvement cited for the Biological Buffers experiment 
considered amongst all comments received in response to item 18: “What aspects of the 
experiment need improvement and what changes would you suggest?”  

 

Table S 15: Areas of potential improvement cited for the Biological Buffers experiment 
considered amongst only other negative comments received in response to item 18: “What 
aspects of the experiment need improvement and what changes would you suggest?” 

 

  

Code Coded Not coded Coded Not coded

T Time availability 0 35 2 30 2.39 10 -1

C Relation to the course/ lectures 0 35 0 32 1.00 10 0

P Aspects of the procedure 1 34 2 30 6.03 10 -1

M Manual or answer book 3 32 17 15 1.10 10 -4

I level of interest 1 34 0 32 1.00 10 0

R results obtained 0 35 0 32 1.00 10 0

L new learning achieved 1 34 0 32 1.00 10 0

E equipment, apparatus or technology 25 10 6 26 2.16 10 -5

F level of familiarity or relevance 0 35 0 32 1.00 10 0

U level of understanding 0 35 0 32 1.00 10 0

O others in the lab (students/ demonstrators) 1 34 1 31 1.00 10 0

S level of simplicity 0 35 0 32 1.00 10 0

X uncategorised 2 33 0 32 4.93 10 -1

Data logger
p

Laptop

Code Coded Not coded Coded Not coded

T Time availability 0 31 2 23 1.95 10 -1

C Relation to the course/ lectures 0 31 0 25 1.00 10 0

P Aspects of the procedure 1 30 2 23 5.81 10 -1

M Manual or answer book 3 28 17 8 1.11 10 -5

I level of interest 1 30 0 25 1.00 10 0

R results obtained 0 31 0 25 1.00 10 0

L new learning achieved 1 30 0 25 1.00 10 0

E equipment, apparatus or technology 25 6 6 19 3.38 10 -5

F level of familiarity or relevance 0 31 0 25 1.00 10 0

U level of understanding 0 31 0 25 1.00 10 0

O others in the lab (students/ demonstrators) 1 30 1 24 1.00 10 0

S level of simplicity 0 31 0 25 1.00 10 0

X uncategorised 2 29 0 25 4.97 10 -1

Data logger
p

Laptop
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7.2.3 Comparative tests for the Vapour Pressure experiment data 

The total number of surveys collected for the Vapour Pressure experiment in 2011 and 2012 

were 84 and 103 surveys respectively. In this case, the significance level () is 0.05 and the 

number of statistical tests conducted (n) is 140.Therefore, p values below /n = 3.5710-4 are 

shaded to indicate refutation of the relevant null hypothesis, controlling for family-wise error. 

Quantitative comparisons in this section compare mean scored Likert-type item responses, 

using the t-test for unequal variances. p < α / n refutes the null hypothesis that mean scores 

are equal for the two data sets. Qualitative comparisons test the significance of the 

association between the data set sampled, and content and/or nature of the comments 

received using Fisher's exact test. p < α / n refutes the null hypothesis that response content is 

independent of the student data set sampled (data logger or laptop).  

Table S 16: Quantitative comparisons for the Vapour Pressure experiment 

 

  

item mdata logger mlaptop df t

1 data interpretation skills 0.36 1.06 131.7 -4.90 2.76 10 -6

2 laboratory skills 0.45 1.00 137.9 -3.64 3.88 10 -4

3 interest -0.15 0.46 161.5 -3.53 5.33 10 -4

4 clear assessment 0.26 0.66 169.5 -2.62 9.50 10 -3

5 clear expected learning 0.28 0.91 138.4 -4.15 5.76 10 -5

6 increased understanding 0.33 0.98 142.9 -4.21 4.58 10 -5

7 background information 0.61 0.89 168.0 -1.94 5.41 10 -2

8 demonstrators 1.19 1.33 169.0 -1.07 2.85 10 -1

9 clear procedure 0.04 0.43 179.1 -2.34 2.02 10 -2

10 relevance to discipline 0.63 0.77 162.8 -0.95 3.41 10 -1

11 benefit of teamwork 1.36 1.39 172.7 -0.28 7.84 10 -1

12 responsibility for own learing 0.56 0.99 147.6 -3.27 1.35 10 -3

13 time availability -0.54 -0.05 138.2 -4.89 2.74 10 -6

14 overall learning experience -0.02 0.69 149.0 -5.06 1.22 10 -6

p
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7.2.3.1 General perceptions “Vapour Pressure” 

Table S 17: General nature of responses to item 15: “Did you enjoy doing the experiment? 
Why or why not?” for the Vapour Pressure experiment 

Are responses more positive? Are responses more negative? 

 Data logger Laptop  Data logger Laptop 

Positive 18 54 Negative 39 31 

Not positive 37 25 Not negative 16 48 

 p = 5.34 x10-5  p = 4.09 x10-4 

 

Table S 18: Topic referenced in response to item 15: "Did you enjoy doing the experiment? 
Why or why not?" for the Vapour Pressure experiment 

 

 

Table S 19: Content referenced in response to item 16: “What did you think was the main 
lesson to be learned from the experiment” for the Vapour Pressure experiment 

 

  

Code Positive Negative Positive Negative

T Time availability 1 1 1 1 1.00 10 0

C Relation to the course/ lectures 0 0 1 0 1.00 10 0

P Aspects of the procedure 0 4 3 12 1.00 10 0

M Manual or answer book 0 12 1 5 3.33 10 -1

I level of interest 9 5 12 8 1.00 10 0

R results obtained 0 0 1 0 1.00 10 0

L new learning achieved 6 0 4 0 1.00 10 0

E equipment, apparatus or technology 3 6 7 3 1.79 10 -1

F level of familiarity or relevance 1 1 15 0 1.18 10 -1

U level of understanding 1 11 6 2 4.44 10 -3

O others in the lab (students/ demonstrators) 1 0 2 0 1.00 10 0

S level of simplicity 0 7 12 0 1.99 10 -5

X uncategorised 2 6 8 5 1.83 10 -1

Data logger
p

Laptop

Code Coded Not coded Coded Not coded

L mention Laws - Rauolt's law or Dalton's law 14 31 37 34 3.48 10 -2

I mention ideal or non-ideal mixtures 2 43 3 68 1.00 10 0

F mention intermolecular forces 9 36 15 56 1.00 10 0

P mention vapour pressure 14 31 24 47 8.40 10 -1

A mention use of aparatus or equipment 6 39 12 59 7.93 10 -1

X uncategorised as any of the above 16 29 17 54 2.08 10 -1

Ap mention (non)application of laws 3 42 12 59 1.57 11 -1

L/F/I Contain comments coded L,F or I 20 25 47 24 3.33 12 -2

Laptop
p

Data logger
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7.2.3.2 Positive perceptions of “Vapour Pressure” 

Table S 20: Reasons cited for enjoying the Vapour Pressure experiment considered amongst 
all comments received in response to item 15: "Did you enjoy doing the experiment? Why or 
why not?" 

 

 

Table S 21: Reasons cited for enjoying the Vapour Pressure experiment considered only 
amongst other reasons cited for liking the experiment in response to item 15: "Did you enjoy 
doing the experiment? Why or why not?" 

 

  

Data logger

Code Coded Not coded Coded Not coded

T Time availability 1 54 1 78 1.00 10 0

C Relation to the course/ lectures 0 55 1 78 1.00 10 0

P Aspects of the procedure 0 55 3 76 2.69 10 -1

M Manual or answer book 0 55 1 78 1.00 10 0

I level of interest 9 46 12 67 1.00 10 0

R results obtained 0 55 1 78 1.00 10 0

L new learning achieved 6 49 4 75 3.16 10 -1

E equipment, apparatus or technology 3 52 7 72 5.25 10 -1

F level of familiarity or relevance 1 54 15 64 2.20 10 -3

U level of understanding 1 54 6 73 2.39 10 -1

O others in the lab (students/ demonstrators) 1 54 2 77 1.00 10 0

S level of simplicity 0 55 12 67 1.45 10 -3

X uncategorised 2 53 8 71 1.97 10 -1

Laptop
p

Data logger

Code Coded Not coded Coded Not coded

T Time availability 1 17 1 53 4.40 10 -1

C Relation to the course/ lectures 0 18 1 53 1.00 10 0

P Aspects of the procedure 0 18 3 51 5.68 10 -1

M Manual or answer book 0 18 1 53 1.00 10 0

I level of interest 9 9 12 42 3.63 10 -2

R results obtained 0 18 1 53 1.00 10 0

L new learning achieved 6 12 4 50 1.25 10 -2

E equipment, apparatus or technology 3 15 7 47 7.03 10 -1

F level of familiarity or relevance 1 17 15 39 5.64 10 -2

U level of understanding 1 17 6 48 6.72 10 -1

O others in the lab (students/ demonstrators) 1 17 2 52 1.00 10 0

S level of simplicity 0 18 12 42 2.99 10 -2

X uncategorised 2 16 8 46 1.00 10 0

Laptop
p
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Table S 22: Features cited as the most enjoyable and interesting aspects of the Vapour 
Pressure experiment considered amongst all responses to item 17: “What aspects of the 
experiment did you find most enjoyable and interesting?” 

 

 

Table S 23: Features cited as the most enjoyable and interesting aspects of the Vapour 
Pressure experiment considered amongst only other positive responses to item 17: “What 
aspects of the experiment did you find most enjoyable and interesting?” 

 

  

Code Coded Not coded Coded Not coded

T Time availability 0 43 0 69 1.00 10 0

C Relation to the course/ lectures 0 43 0 69 1.00 10 0

P Aspects of the procedure 7 36 13 56 8.04 10 -1

M Manual or answer book 2 41 2 67 6.37 10 -1

I level of interest 0 43 1 68 1.00 10 0

R results obtained 4 39 15 54 1.21 10 -1

L new learning achieved 4 39 2 67 2.01 10 -1

E equipment, apparatus or technology 14 29 35 34 7.82 10 -2

F level of familiarity or relevance 5 38 3 66 2.56 10 -1

U level of understanding 2 41 0 69 1.45 10 -1

O others in the lab (students/ demonstrators) 4 39 1 68 7.06 10 -2

S level of simplicity 0 43 1 68 1.00 10 0

X uncategorised 3 40 4 65 1.00 10 0

p
LaptopData logger

Code Coded Not coded Coded Not coded

T Time availability 0 32 0 63 1.00 10 0

C Relation to the course/ lectures 0 32 0 63 1.00 10 0

P Aspects of the procedure 7 25 13 50 1.00 10 0

M Manual or answer book 2 30 2 61 6.01 10 -1

I level of interest 0 32 1 62 1.00 10 0

R results obtained 4 28 15 48 2.79 10 -1

L new learning achieved 4 28 2 61 1.75 10 -1

E equipment, apparatus or technology 14 18 35 28 2.88 10 -1

F level of familiarity or relevance 5 27 3 60 1.14 10 -1

U level of understanding 2 30 0 63 1.11 10 -1

O others in the lab (students/ demonstrators) 4 28 1 62 4.26 10 -2

S level of simplicity 0 32 1 62 1.00 10 0

X uncategorised 3 29 4 59 6.84 10 -1

p
Data logger Laptop
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7.2.3.3 Negative perceptions of “Vapour Pressure”  

Table S 24: Reasons cited for not enjoying the Vapour Pressure experiment considered 
amongst all comments received in response to item 15: "Did you enjoy doing the 
experiment? Why or why not?" 

 

Table S 25: Reasons cited for not enjoying the Vapour Pressure experiment considered 
amongst only other negative comments received in response to item 15: "Did you enjoy 
doing the experiment? Why or why not?" 

 

  

Data logger

Code Coded Not coded Coded Not coded

T Time availability 1 54 1 78 1.00 10 0

C Relation to the course/ lectures 0 55 0 79 1.00 10 0

P Aspects of the procedure 4 51 12 67 1.88 10 -1

M Manual or answer book 12 43 5 74 1.54 10 -2

I level of interest 5 50 8 71 1.00 10 0

R results obtained 0 55 0 79 1.00 10 0

L new learning achieved 0 55 0 79 1.00 10 0

E equipment, apparatus or technology 6 49 3 76 1.60 10 -1

F level of familiarity or relevance 1 54 0 79 4.10 10 -1

U level of understanding 11 44 2 77 1.69 10 -3

O others in the lab (students/ demonstrators) 0 55 0 79 1.00 10 0

S level of simplicity 7 48 0 79 1.55 10 -3

X uncategorised 6 49 5 74 3.58 10 -1

p
Laptop

Data logger

Code Coded Not coded Coded Not coded

T Time availability 1 38 1 30 1.00 10 0

C Relation to the course/ lectures 0 39 0 31 1.00 10 0

P Aspects of the procedure 4 35 12 19 8.68 10 -3

M Manual or answer book 12 27 5 26 1.75 10 -1

I level of interest 5 34 8 23 2.20 10 -1

R results obtained 0 39 0 31 1.00 10 0

L new learning achieved 0 39 0 31 1.00 10 0

E equipment, apparatus or technology 6 33 3 28 7.21 10 -1

F level of familiarity or relevance 1 38 0 31 1.00 10 0

U level of understanding 11 28 2 29 2.91 10 -2

O others in the lab (students/ demonstrators) 0 39 0 31 1.00 10 0

S level of simplicity 7 32 0 31 1.50 10 -2

X uncategorised 6 33 5 26 1.00 10 0

p
Laptop
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Table S 26: Areas of potential improvement cited for the Vapour Pressure experiment 
considered amongst all comments received in response to item 18: “What aspects of the 
experiment need improvement and what changes would you suggest?”  

 

Table S 27: Areas of potential improvement cited for the Vapour Pressure experiment 
considered amongst only other negative comments received in response to item 18: “What 
aspects of the experiment need improvement and what changes would you suggest?” 

 

  

Code Coded Not coded Coded Not coded

T Time availability 6 34 3 54 1.55 10 -1

C Relation to the course/ lectures 0 40 1 56 1.00 10 0

P Aspects of the procedure 7 33 8 49 7.77 10 -1

M Manual or answer book 18 22 15 42 8.11 10 -2

I level of interest 2 38 1 56 5.67 10 -1

R results obtained 0 40 1 56 1.00 10 0

L new learning achieved 0 40 0 57 1.00 10 0

E equipment, apparatus or technology 4 36 8 49 7.56 10 -1

F level of familiarity or relevance 0 40 0 57 1.00 10 0

U level of understanding 1 39 0 57 4.12 10 -1

O others in the lab (students/ demonstrators) 2 38 0 57 1.68 10 -1

S level of simplicity 2 38 0 57 1.68 10 -1

X uncategorised 3 37 2 55 4.01 10 -1

Data logger Laptop
p

Code Coded Not coded Coded Not coded

T Time availability 6 29 3 31 4.77 10 -1

C Relation to the course/ lectures 0 35 1 33 4.93 10 -1

P Aspects of the procedure 7 28 8 26 7.77 10 -1

M Manual or answer book 18 17 15 19 6.32 10 -1

I level of interest 2 33 1 33 1.00 10 0

R results obtained 0 35 1 33 4.93 10 -1

L new learning achieved 0 35 0 34 1.00 10 0

E equipment, apparatus or technology 4 31 8 26 2.18 10 -1

F level of familiarity or relevance 0 35 0 34 1.00 10 0

U level of understanding 1 34 0 34 1.00 10 0

O others in the lab (students/ demonstrators) 2 33 0 34 4.93 10 -1

S level of simplicity 2 33 0 34 4.93 10 -1

X uncategorised 3 32 2 32 1.00 10 0

Data logger Laptop
p
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7.2.4 Comparative tests for the Copper (II) Ion Concentration experiment  data 

The total number of surveys collected for the Copper (II) Ion Concentration experiment in 2011 

and 2012 were 126 and 120 surveys respectively. In this case, the significance level () is 0.05 

and the number of statistical tests conducted (n) is 137.Therefore, p values below 

/n = 3.6510-4 are shaded to indicate refutation of the relevant null hypothesis, controlling 

for family-wise error. 

Quantitative comparisons in this section compare mean scored Likert-type item responses, 

using the t-test for unequal variances. p < α / n refutes the null hypothesis that mean scores 

are equal for the two data sets. Qualitative comparisons test the significance of the 

association between the data set sampled, and content and/or nature of the comments 

received using Fisher's exact test. p < α / n refutes the null hypothesis that response content is 

independent of the student data set sampled (data logger or laptop).  

Table S 28: Quantitative comparisons for the Copper (II) Ion Concentration experiment 

 

  

item mdata logger mlaptop df t

1 data interpretation skills 1.01 0.97 240.1 0.51 6.13 10 -1

2 laboratory skills 1.10 1.04 242.9 0.62 5.38 10 -1

3 interest 0.80 0.95 244.0 -1.37 1.73 10 -1

4 clear assessment 1.09 1.13 243.5 -0.47 6.39 10 -1

5 clear expected learning 1.14 1.14 242.4 0.01 9.90 10 -1

6 increased understanding 0.94 0.89 242.0 0.51 6.09 10 -1

7 background information 1.12 1.28 243.7 -1.80 7.37 10 -2

8 demonstrators 1.58 1.59 237.9 -0.09 9.26 10 -1

9 clear procedure 1.28 1.27 242.4 0.15 8.84 10 -1

10 relevance to discipline 0.97 1.03 243.8 -0.58 5.63 10 -1

11 benefit of teamwork 1.53 1.37 216.6 1.70 9.14 10 -2

12 responsibility for own learing 1.05 0.97 242.9 0.78 4.37 10 -1

13 time availability 0.22 0.22 238.3 0.08 9.34 10 -1

14 overall learning experience 0.93 0.96 241.3 -0.42 6.75 10 -1

p
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7.2.4.1 General perceptions of “Determination of Copper (II) Ion Concentration” 

Table S 29: General nature of responses to item 15: “Did you enjoy doing the experiment? 
Why or why not?” for the Copper (II) Ion Concentration experiment 

Are responses more positive? Are responses more negative? 

 Data logger Laptop  Data logger Laptop 

Positive 66 86 Negative 15 9 

Not positive 15 9 Not negative 66 86 

 p = 1.22 x10-1  p = 1.22 x10-1 

 

Table S 30: Topic referenced in response to item 15: "Did you enjoy doing the experiment? 
Why or why not?" for the Copper (II) Ion Concentration experiment 

 

 

Table S 31: Content referenced in response to item 16: “What did you think was the main 
lesson to be learned from the experiment” for the Copper (II) Ion Concentration experiment 

 

  

Code Positive Negative Positive Negative

T Time availability 10 0 6 0 1.00 10 0

C Relation to the course/ lectures 2 0 1 0 1.00 10 0

P Aspects of the procedure 3 2 5 1 5.45 10 -1

M Manual or answer book 3 2 4 2 1.00 10 0

I level of interest 11 5 11 3 6.89 10 -1

R results obtained 5 0 6 1 1.00 10 0

L new learning achieved 8 0 11 0 1.00 10 0

E equipment, apparatus or technology 6 4 10 2 3.48 10 -1

F level of familiarity or relevance 7 0 6 1 1.00 10 0

U level of understanding 8 1 21 0 3.00 10 -1

O others in the lab (students/ demonstrators) 3 1 1 0 1.00 10 0

S level of simplicity 12 1 32 1 4.90 10 -1

X uncategorised 14 2 16 1 6.01 10 -1

Data logger Laptop
p

Code Coded Not coded Coded Not coded

L Light's wavelength & colour relationship 4 65 1 82 1.77 10 -1

B Beer's law/ conc. & absorbance relationship 37 32 31 52 5.06 10 -2

C Determination of unknown concentration 3 66 6 77 5.12 10 -1

E Use of equipment 9 60 15 68 5.04 10 -1

X none of the above 22 47 36 47 1.80 10 -1

Data logger Laptop
p
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7.2.4.2 Positive perceptions of “Determination of Copper (II) Ion Concentration” 

Table S 32: Reasons cited for enjoying the Copper (II) Ion Concentration experiment 
considered amongst all comments received in response to item 15: "Did you enjoy doing the 
experiment? Why or why not?" 

 

 

Table S 33: Reasons cited for enjoying the Copper (II) Ion Concentration experiment 
considered only amongst other reasons cited for liking the experiment in response to item 
15: "Did you enjoy doing the experiment? Why or why not?" 

 

  

Code Coded Not coded Coded Not coded

T Time availability 10 71 6 89 1.95 10 -1

C Relation to the course/ lectures 2 79 1 94 5.95 10 -1

P Aspects of the procedure 3 78 5 90 7.27 10 -1

M Manual or answer book 3 78 4 91 1.00 10 0

I level of interest 11 70 11 84 8.20 10 -1

R results obtained 5 76 6 89 1.00 10 0

L new learning achieved 8 73 11 84 8.10 10 -1

E equipment, apparatus or technology 6 75 10 85 6.01 10 -1

F level of familiarity or relevance 7 74 6 89 5.77 10 -1

U level of understanding 8 73 21 74 4.05 10 -2

O others in the lab (students/ demonstrators) 3 78 1 94 3.35 10 -1

S level of simplicity 12 69 32 63 4.98 10 -3

X uncategorised 14 67 16 79 1.00 10 0

Data logger Laptop
p

Code Coded Not coded Coded Not coded

T Time availability 10 56 6 80 1.17 10 -1

C Relation to the course/ lectures 2 64 1 85 5.80 10 -1

P Aspects of the procedure 3 63 5 81 1.00 10 0

M Manual or answer book 3 63 4 82 1.00 10 0

I level of interest 11 55 11 75 6.43 10 -1

R results obtained 5 61 6 80 1.00 10 0

L new learning achieved 8 58 11 75 1.00 10 0

E equipment, apparatus or technology 6 60 10 76 7.91 10 -1

F level of familiarity or relevance 7 59 6 80 5.61 10 -1

U level of understanding 8 58 21 65 6.33 10 -2

O others in the lab (students/ demonstrators) 3 63 1 85 3.17 10 -1

S level of simplicity 12 54 32 54 1.18 10 -2

X uncategorised 14 52 16 70 8.37 10 -1

Data logger Laptop
p
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Table S 34: Features cited as the most enjoyable and interesting aspects of the Copper (II) 
Ion Concentration experiment considered amongst all responses to item 17: “What aspects 
of the experiment did you find most enjoyable and interesting?” 

 

 

Table S 35: Features cited as the most enjoyable and interesting aspects of the Copper (II) 
Ion Concentration experiment considered amongst only other positive responses to item 17: 
“What aspects of the experiment did you find most enjoyable and interesting?” 

 

  

Code Coded Not coded Coded Not coded

T Time availability 1 64 0 83 4.39 10 -1

C Relation to the course/ lectures 0 65 0 83 1.00 10 0

P Aspects of the procedure 21 44 26 57 1.00 10 0

M Manual or answer book 0 65 0 83 1.00 10 0

I level of interest 1 64 4 79 3.85 10 -1

R results obtained 21 44 30 53 7.28 10 -1

L new learning achieved 2 63 0 83 1.91 10 -1

E equipment, apparatus or technology 21 44 35 48 2.36 10 -1

F level of familiarity or relevance 2 63 0 83 1.91 10 -1

U level of understanding 0 65 0 83 1.00 10 0

O others in the lab (students/ demonstrators) 1 64 1 82 1.00 10 0

S level of simplicity 0 65 0 83 1.00 10 0

X uncategorised 5 60 1 82 8.70 10 -2

Laptop
p

Data logger

Code Coded Not coded Coded Not coded

T Time availability 1 61 0 79 4.40 10 -1

C Relation to the course/ lectures 0 62 0 79 1.00 10 0

P Aspects of the procedure 21 41 26 53 5.94 10 -1

M Manual or answer book 0 62 0 79 1.00 10 0

I level of interest 1 61 4 75 3.85 10 -1

R results obtained 21 41 30 49 7.24 10 -1

L new learning achieved 2 60 0 79 1.92 10 -1

E equipment, apparatus or technology 21 41 35 44 2.29 10 -1

F level of familiarity or relevance 2 60 0 79 1.92 10 -1

U level of understanding 0 62 0 79 1.00 10 0

O others in the lab (students/ demonstrators) 1 61 1 78 1.00 10 0

S level of simplicity 0 62 0 79 1.00 10 0

X uncategorised 5 57 1 78 8.68 10 -2

Laptop
p

Data logger
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7.2.4.3 Negative perceptions of “Determination of Copper (II) Ion Concentration” 

Table S 36: Reasons cited for not enjoying the Copper (II) Ion Concentration experiment 
considered amongst all comments received in response to item 15: "Did you enjoy doing the 
experiment? Why or why not?” 

 

Table S 37: Reasons cited for not enjoying the Copper (II) Ion Concentration experiment 
considered amongst only other negative comments received in response to item 15: "Did 
you enjoy doing the experiment? Why or why not?" 

 

  

Code Coded Not coded Coded Not coded

T Time availability 0 81 0 95 1.00 10 0

C Relation to the course/ lectures 0 81 0 95 1.00 10 0

P Aspects of the procedure 2 79 1 94 5.95 10 -1

M Manual or answer book 2 79 2 93 1.00 10 0

I level of interest 5 76 3 92 4.73 10 -1

R results obtained 0 81 1 94 1.00 10 0

L new learning achieved 0 81 0 95 1.00 10 0

E equipment, apparatus or technology 4 77 2 93 4.16 10 -1

F level of familiarity or relevance 0 81 1 94 1.00 10 0

U level of understanding 1 80 0 95 4.60 10 -1

O others in the lab (students/ demonstrators) 1 80 0 95 4.60 10 -1

S level of simplicity 1 80 1 94 1.00 10 0

X uncategorised 2 79 1 94 5.95 10 -1

Laptop
p

Data logger

Code Coded Not coded Coded Not coded

T Time availability 0 15 0 9 1.00 10 0

C Relation to the course/ lectures 0 15 0 9 1.00 10 0

P Aspects of the procedure 2 13 1 8 1.00 10 0

M Manual or answer book 2 13 2 7 1.00 10 0

I level of interest 5 10 3 6 1.00 10 0

R results obtained 0 15 1 8 3.75 10 -1

L new learning achieved 0 15 0 9 1.00 10 0

E equipment, apparatus or technology 4 11 2 7 1.00 10 0

F level of familiarity or relevance 0 15 1 8 3.75 10 -1

U level of understanding 1 14 0 9 1.00 10 0

O others in the lab (students/ demonstrators) 1 14 0 9 1.00 10 0

S level of simplicity 1 14 1 8 1.00 10 0

X uncategorised 2 13 1 8 1.00 10 0

Laptop
p

Data logger
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Table S 38: Areas of potential improvement cited for the Copper (II) Ion Concentration 
experiment considered amongst all comments received in response to item 18: “What 
aspects of the experiment need improvement and what changes would you suggest?”  

 

Table S 39: Areas of potential improvement cited for the Copper (II) Ion Concentration 
experiment considered amongst only other negative comments received in response to item 
18: “What aspects of the experiment need improvement and what changes would you 
suggest?” 

 

  

Code Coded Not coded Coded Not coded

T Time availability 0 43 1 55 1.00 10 0

C Relation to the course/ lectures 1 42 0 56 4.34 10 -1

P Aspects of the procedure 3 40 6 50 7.28 10 -1

M Manual or answer book 9 34 7 49 2.83 10 -1

I level of interest 1 42 0 56 4.34 10 -1

R results obtained 0 43 0 56 1.00 10 0

L new learning achieved 0 43 0 56 1.00 10 0

E equipment, apparatus or technology 18 25 12 44 4.61 10 -2

F level of familiarity or relevance 1 42 0 56 4.34 10 -1

U level of understanding 1 42 0 56 4.34 10 -1

O others in the lab (students/ demonstrators) 0 43 1 55 1.00 10 0

S level of simplicity 0 43 2 54 5.04 10 -1

X uncategorised 1 42 1 55 1.00 10 0

Data logger Laptop
p

Code Coded Not coded Coded Not coded

T Time availability 0 32 1 25 4.48 10 -1

C Relation to the course/ lectures 1 31 0 26 1.00 10 0

P Aspects of the procedure 3 29 6 20 2.74 10 -1

M Manual or answer book 9 23 7 19 1.00 10 0

I level of interest 1 31 0 26 1.00 10 0

R results obtained 0 32 0 26 1.00 10 0

L new learning achieved 0 32 0 26 1.00 10 0

E equipment, apparatus or technology 18 14 12 14 5.98 10 -1

F level of familiarity or relevance 1 31 0 26 1.00 10 0

U level of understanding 1 31 0 26 1.00 10 0

O others in the lab (students/ demonstrators) 0 32 1 25 4.48 10 -1

S level of simplicity 0 32 2 24 1.97 10 -1

X uncategorised 1 31 1 25 1.00 10 0

Data logger Laptop
p
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7.3 Supporting information for section 3.3 

7.3.1 Sample sizes 

Table S 40: Survey responses available prior to data cleaning processes 

 Year Semester Experiment 
ID 

surveys 

Total 

surveys 

collected 

% surveys 

with ID 

provided 

Fo
u

n
d

at
io

n
s 

o
f 

C
h

em
is

tr
y 

IA
/B

 e
xp

er
im

e
n

ts
 2012 2 Aromas 22 103 21% 

2012 2 Analysis of Spinach Extracts 39 107 36% 

2012 2 Activity Series 34 81 42% 

2012 2 Thermochemistry 24 77 31% 

2012 2 Reaction Kinetics 17 74 23% 

2013 1 Introductory Experiment 104 126 83% 

2013 1 Quantitative Techniques 54 61 89% 

2013 1 Determination of Vitamin C Content in Apple juice 44 57 77% 

2013 1 Equilibrium & Le Chatelier 119 137 87% 

2013 1 Absorption Spectrophotometry 71 83 86% 

2013 2 Aromas 229 248 92% 

2013 2 Analysis of Spinach Extracts 182 206 88% 

2013 2 Thermochemistry 185 204 91% 

2013 2 Activity Series 146 161 91% 

2013 2 Reaction Kinetics 72 82 88% 

C
h

em
is

tr
y 

IA
/B

 E
xp

er
im

en
ts

 

2012 2 Biological Buffers 30 80 38% 

2012 2 Melting Points and Recrystallisation 25 70 36% 

2012 2 Reaction Kinetics 54 84 64% 

2012 2 Liquid-Liquid Extraction and TLC 22 72 31% 

2012 2 Synthesis of Aspirin 14 36 39% 

2012 2 Analysis of Spinach Extracts 21 77 27% 

2013 1 Thermochemistry 220 227 97% 

2013 1 Vapour Pressure 140 148 95% 

2013 1 Quantitative Techniques 195 203 96% 

2013 1 Equilibrium & Le Chatelier 167 174 96% 

2013 1 Ion Exchange Chromatography 244 252 97% 

2013 1 Absorption Spectrophotometry 224 232 97% 

2013 2 Analysis of Spinach Extracts 210 218 96% 

2013 2 Synthesis of Aspirin 125 129 97% 

2013 2 Reaction Kinetics 201 205 98% 

2013 2 Melting Points and Recrystallisation 181 182 99% 

2013 2 Biological Buffers 162 170 95% 

2013 2 Liquid-Liquid Extraction and TLC 126 128 98% 
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7.3.2 Matlab codes for population level expected score distributions 

The code presented below is one example of the technique used to derive population level 

response probability values, and other values used to generate figures showing the population 

level relationship between score and measure. The five response categories are referred to 

using A, B, C, D and E, from most to least positive respectively. 

 

txy = is used to specify the Andrich threshold between categories X and Y  

meanb = is used to specify the mean student measure  

stdevb = is used to specify the standard deviation in student measures  

 

vd = specifies the interval for which values of all functions are defined, and the space between 

data points defined.  

 

PE, PD, PC, PB, and PA are the population level probabilities of observing responses in 

categories E,D,C,B and A respectively .They are computed using quad( , , ), which specifies a 

finite range of values the integral term of Equation 33 is computed over (given integration 

from negative to positive infinity was not possible). These values may require adjustment for 

ideal calculation. Plots of PE, PD, PC, PB and PA against vd should yield smooth curves to 

indicate acceptable computation. 

  

ASELLScore gives the population level mean expected score using the ASELL integer scoring 

system. 

ASELLdevlessX and ASELLdevmoreX respectively give the lower and upper boundaries for the 

95% confidence interval of the distribution of expected mean ASELL scores taken from samples 

of size X. 

 

tab = 7.82; 

tbc = 4.26; 

tcd = -4.96; 

tde = -7.12; 

meanb = 0.03; 

stdevb = 2.29; 

 

cA = exp(-tab); 

cB = exp(-tbc); 

cC = exp(-tcd); 

cD = exp(-tde); 

 

vd = -15:0.1:15; 

 

PE = zeros(size(vd)); 

for i = 1:length(vd) 

d = vd(i); 

funE = @(b) (1./(cA*cB*cC*cD*exp(4*b - 4*d) + cB*cC*cD*exp(3*b-3*d) + cC*cD*exp(2*b-2*d) + cD*exp(b-
d) + 1)).*normpdf(b,meanb,stdevb); 

PE(i) = quad(funE,-20,20); 

end 

 

PD = zeros(size(vd)); 

for i = 1:length(vd) 

d = vd(i); 

funD = @(b) (1./(cA*cB*cC*exp(3*b - 3*d) + cB*cC*exp(2*b-2*d) + cC*exp(b-d) + 1 + (1/cD)*exp(d-
b))).*normpdf(b,meanb,stdevb); 

PD(i) = quad(funD,-20,20); 

end 

 

PC = zeros(size(vd)); 
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for i = 1:length(vd) 

d = vd(i); 

funC = @(b) (1./(cA*cB*exp(2*b - 2*d) + cB*exp(b-d) + 1 + (1/cC)*exp(d-b) + (1/(cC*cD))*exp(2*d-
2*b))).*normpdf(b,meanb,stdevb); 

PC(i) = quad(funC,-20,20); 

end 

 

PB = zeros(size(vd)); 

for i = 1:length(vd) 

d = vd(i); 

funB = @(b) (1./(cA*exp(b - d) + 1 + (1/cB)*exp(d-b) + (1/(cB*cC))*exp(2*d-2*b) + 
(1/(cB*cC*cD))*exp(3*d-3*b))).*normpdf(b,meanb,stdevb); 

PB(i) = quad(funB,-18,18); 

end 

 

PA = zeros(size(vd)); 

for i = 1:length(vd) 

d = vd(i); 

funA = @(b) (1./(1 + (1/cA)*exp(d-b) + (1/(cA*cB))*exp(2*d-2*b) + (1/(cA*cB*cC))*exp(3*d-3*b) + 
(1/(cA*cB*cC*cD))*exp(4*d-4*b))).*normpdf(b,meanb,stdevb); 

PA(i) = quad(funA,-20,20); 

end 

 

for i = 1:length(vd) 

ASELLScore(i)= 2*PA(i)+PB(i)-PD(i)-2*PE(i); 

end 

 

for i = 1:length(vd) 

ASELLdev(i) = sqrt(PA(i)*((2-ASELLScore(i))^2)+PB(i)*((1-ASELLScore(i))^2)+PC(i)*((0-
ASELLScore(i))^2)+PD(i)*((-1-ASELLScore(i))^2)+PE(i)*((-2-ASELLScore(i))^2)); 

end 

 

for i = 1:length(vd) 

ASELLdevless10(i) = ASELLScore(i)-2*ASELLdev(i)/sqrt(9); 

end 

 

for i = 1:length(vd) 

ASELLdevless20(i) = ASELLScore(i)-2*ASELLdev(i)/sqrt(19); 

end 

 

for i = 1:length(vd) 

ASELLdevless30(i) = ASELLScore(i)-2*ASELLdev(i)/sqrt(29); 

end 

 

for i = 1:length(vd) 

ASELLdevless50(i) = ASELLScore(i)-2*ASELLdev(i)/sqrt(49); 

end 

 

for i = 1:length(vd) 

ASELLdevless100(i) = ASELLScore(i)-2*ASELLdev(i)/sqrt(99); 

end 

 

for i = 1:length(vd) 

ASELLdevmore10(i) = ASELLScore(i)+2*ASELLdev(i)/sqrt(9); 

end 

 

for i = 1:length(vd) 

ASELLdevmore20(i) = ASELLScore(i)+2*ASELLdev(i)/sqrt(19); 

end 

 

for i = 1:length(vd) 

ASELLdevmore30(i) = ASELLScore(i)+2*ASELLdev(i)/sqrt(29); 

end 

 

for i = 1:length(vd) 

ASELLdevmore50(i) = ASELLScore(i)+2*ASELLdev(i)/sqrt(49); 

end 

 

for i = 1:length(vd) 

ASELLdevmore100(i) = ASELLScore(i)+2*ASELLdev(i)/sqrt(99); 

end  
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7.3.3 Equality of response scales between different student cohorts 

For each survey item, the equality of response scales between the two different student 

cohorts was tested. These tests were conducted using statistics gathered from the first Rasch 

models estimated after the initial removal of disconnected subsets of data. The Corrected 

Akaike Information Criterion was used to select the preferable explanation of the data, as 

shown in blue in Figure S 1 below. Results of a typical Likelihood ratio test are also shown 

(red), though this statistic does not account for parsimony of the explanation and was 

therefore not preferred as a criterion for model selection. 

 

Figure S 1: Model selection for whether Foundations of Chemistry IA/B and Chemistry IA/B 
student cohorts were assigned different response scales 

In the cases where the best explanation of the data is such that the two student cohorts treat 

the response scale differently (items 3, 4, 11 and 12 as judged above), rating scale associated 

statistics are reported for each cohort in the material following. 
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7.3.4 Item 1: “This experiment helped me to develop my data interpretation 

skills” 

Data preparation/ analyses run 

1. Initial data:  1127 persons, 33 items 
2. Connectivity issues, extreme persons and blank responses resolved: 164 persons removed 

3. Further connectivity issues resolved: 13 persons removed 

4. Misfit issues resolved: 81 persons with z-scores for infit or outfit |z|> 2 removed.  

5. Further connectivity issues resolved. 33 persons and 6 items removed. 

6. Extreme responses removed: 8 persons removed (final results reported) 

Table S 41: Rasch model details for item 1 

 

 

Figure S 2: Measure distributions for item 1 

measure st. error

/ 5.45 0.07 5.45 0.98

/ 0.45 0.06 0.5 1.02

/ -2.41 0.14 -2.22 1.01

/ -3.49 0.4 -3.73 1.07

from to C => M M => C Infit Outfit RMSR

2 Strongly Agree 6.55 5.47  40% 68% 1.03 1.01 0.6718 371

1 Agree 2.95 0.57 5.47 87% 76% 0.99 0.99 0.3223 1714

0 Neutral -0.91 -2.07 0.57 54% 58% 0.99 0.94 0.5722 550

-1 Disagree -2.98 -3.98 -2.07 6% 29% 1 1 1.0622 62

-2 Strongly Disagree -4.78  -3.98 0% 0% 0.84 0.72 1.5321 7

mean st. dev observed model observed model empirical modelled

828 2.50 1.89 0.40 0.56 0.14 0.24 37.7% 37.7%

27 0.00 0.63 1.61 1.67 0.72 0.73 11.0% 11.0%

Data points: 2704 3561.54 df: 1847

Andrich thresholdCategory threshold between

reliability
Raw variance in observed data 

explained by measures

Thurstone 

threshold

Estimated 

discrimination

Log-likelihood chi square:

ASELL score Category Label
Category 

measure

Range Coherence

BROAD SCALE STATISTICS

Number 

used for 

estimates

Measures separation

Persons

Experiments

Strongly Agree

Agree

Neutral

Disagree

RESPONSE CATEGORY 

ASSOCIATED STATISTICS

Upper category labelLower category label

Agree

Neutral

Disagree

Strongly Disagree

Fit Statistics counts in 

sampled data
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Figure S 3: Category structure for item 1 

 

Figure S 4:  Expected mean ASELL scores for item 1
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7.3.5 Item 2: “This experiment helped me to develop my laboratory skills” 

Data preparation/ analyses run 

1. Initial data:  1127 persons, 33 items 
2. Connectivity issues, extreme persons and blank responses resolved: 221 persons and 1 item removed 
3. Further connectivity issues resolved: 5 persons removed 

4. Misfit issues resolved: 78 persons with z-scores for infit or outfit |z| 2 were removed. 
5. Further connectivity issues resolved. 12 persons removed (final results reported) 

Table S 42: Rasch model details for item 2 

 

 

 

Figure S 5: Measure distributions for item 2 

measure st. error

/ 5.15 0.06 5.17 0.94

/ 0.7 0.06 0.75 1.06

/ -2.03 0.13 -1.96 0.99

/ -3.82 0.35 -3.96 0.98

from to C => M M => C Infit Outfit RMSR

2 Strongly Agree 6.26 5.19  52% 69% 1.06 1.04 0.6026 660

1 Agree 2.93 0.82 5.19 86% 73% 0.94 1.01 0.3356 1722

0 Neutral -0.63 -1.88 0.82 51% 62% 0.94 0.94 0.6045 492

-1 Disagree -2.95 -4.14 -1.88 27% 50% 1.04 1.04 0.9512 79

-2 Strongly Disagree -5.03  -4.14 9% 50% 0.95 0.92 1.2395 11

mean st. dev observed model observed model empirical modelled

811 2.94 1.77 0.61 0.76 0.27 0.37 31.4% 31.1%

32 0 1.75 3.92 4.08 0.94 0.94 23.8% 23.5%

Data points: 2964 4080.63 df: 2119Log-likelihood chi square:

RESPONSE CATEGORY 

ASSOCIATED STATISTICS

Category threshold between Andrich threshold Thurstone 

threshold

Estimated 

discriminationLower category label Upper category label

Agree Strongly Agree

Neutral Agree

Disagree Neutral

Strongly Disagree Disagree

ASELL score Category Label
Category 

measure

Range Coherence

Persons

Experiments

Fit Statistics counts in 

sampled data

BROAD SCALE STATISTICS

Number 

used for 

estimates

Measures separation reliability
Raw variance in observed data 

explained by measures
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Figure S 6: Category structure for item 2 

 

Figure S 7: Expected mean ASELL scores for item 2
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7.3.6 Item 3: “I found this to be an interesting experiment” 

Data preparation/ analyses run 

1. Initial data:  1127 persons, 33 items 
2. Connectivity issues, extreme persons and blank responses resolved: 173 persons removed 

3. Misfit issues resolved: 114 persons with z-scores for infit or outfit |z| 2 were removed. 
4. Remaining data split into two subsets: one containing Foundations of Chemistry experiments, the other containing Chemistry 

IA experiments. To ensure connectivity, one previously removed misfitting person was added back into analysis. Resulting 
data had connectivity issues, but with the two cohorts still connected. Connectivity issues were resolved: 3 persons removed. 
(Final results reported) 

Table S 43: Rasch model details for item 3 

 

 

Figure S 8: Measure distributions for item 3 

measure st. error

/ 3.92 0.05 3.96 0.99

/ 0.79 0.05 0.82 1.00

/ -1.72 0.11 -1.59 1.01

/ -2.99 0.27 -3.20 1.16

from to C => M M => C Infit Outfit RMSR

2 Strongly Agree 5.06 4.03  46% 70% 1.02 1.01 0.6802 648

1 Agree 2.37 0.86 4.03 79% 64% 0.98 1.01 0.3882 1486

0 Neutral -0.41 -1.48 0.86 49% 55% 1.01 1.01 0.6412 679

-1 Disagree -2.40 -3.43 -1.48 14% 31% 1.01 0.99 1.0274 110

-2 Strongly Disagree -4.26  -3.43 11% 67% 0.71 0.66 1.2025 18

mean st. dev observed model observed model empirical modelled

838 2.11 1.60 0.74 0.86 0.35 0.43 40.2% 40.0%

33 0.00 0.99 2.83 2.87 0.89 0.89 10.0% 10.0%

Data points: 2941 4905.13 df: 2068

RESPONSE CATEGORY 

ASSOCIATED STATISTICS

Category threshold between Andrich threshold Thurstone 

threshold

Estimated 

discriminationLower category label Upper category label

Agree Strongly Agree

Neutral Agree

Disagree Neutral

Strongly Disagree Disagree

ASELL score Category Label
Category 

measure

Range Coherence

Persons

Experiments

Log-likelihood chi square:

Fit Statistics counts in 

sampled data

BROAD SCALE STATISTICS

Number 

used for 

estimates

Measures separation reliability
Raw variance in observed data 

explained by measures
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Figure S 9: Category structure for item 3 

 

Figure S 10: Expected mean ASELL scores for item 3
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7.3.7 Item 4: “It was clear to me how this laboratory exercise would be 

assessed” 

Table S 44: Rasch model details for item 4 

 

 

Figure S 11: Measure distributions for item 4 

measure st. error

/ 3.82 0.07 3.85 0.98

/ 0.44 0.07 0.52 1.02

/ -1.57 0.15 -1.46 0.99

/ -2.68 0.40 -2.92 1.12

from to C => M M => C Infit Outfit RMSR

2 Strongly Agree 4.94 3.91  42% 68% 1.04 1.01 0.6741 418

1 Agree 2.15 0.63 3.91 83% 66% 0.97 1.00 0.3695 972

0 Neutral -0.48 -1.38 0.63 45% 52% 0.98 0.98 0.6767 326

-1 Disagree -2.20 -3.17 -1.38 8% 31% 1.05 1.05 1.1896 52

-2 Strongly Disagree -3.98  -3.17 0% 0% 0.77 0.71 1.5054 7

measure st. error

/ 5.06 0.10 5.07 0.01

/ 0.45 0.10 0.52 0.99

/ -1.93 0.26 -1.86 1.01

/ -3.58 1.02 -3.73 1.09

from to C => M M => C Infit Outfit RMSR

2 Strongly Agree 6.17 5.09  54% 67% 0.99 0.95 0.5866 220

1 Agree 2.76 0.62 5.09 86% 74% 0.95 1.01 0.3228 649

0 Neutral -0.69 -1.80 0.62 43% 59% 1.04 1.05 0.6696 158

-1 Disagree -2.79 -3.93 -1.80 12% 67% 1.00 0.94 1.1922 17

-2 Strongly Disagree -4.8  -3.93 0% 0% 0.73 0.63 1.5583 1

mean st. dev observed model observed model empirical modelled

786 2.40 1.63 0.52 0.66 0.21 0.30 42.5% 42.2%

32 0.00 0.60 1.12 1.20 0.56 0.59 2.9% 2.9%

Data points: 2820 4316.53 df: 1997

Fit Statistics counts in 

sampled data

Strongly Disagree Disagree

ASELL score Category Label
Category 

measure

Range Coherence

Thurstone 

threshold

Estimated 

discriminationLower category label Upper category label

Agree Strongly Agree

Persons

Experiments

Log-likelihood chi square:

CHEMISTRY IA/B

RESPONSE CATEGORY 

ASSOCIATED STATISTICS

Category threshold between Andrich threshold

Neutral Agree

Disagree Neutral

Fit Statistics counts in 

sampled data

BROAD SCALE STATISTICS

Number 

used for 

estimates

Measures separation reliability
Raw variance in observed data 

explained by measures

Strongly Disagree Disagree

ASELL score Category Label
Category 

measure

Range Coherence

Agree Strongly Agree

Neutral Agree

Disagree Neutral

FOUNDATIONS OF 

CHEMISTRY IA/B

RESPONSE CATEGORY 

ASSOCIATED STATISTICS

Category threshold between Andrich threshold Thurstone 

threshold

Estimated 

discriminationLower category label Upper category label

Data preparation/ analyses run 

1. Initial data:  1127 persons, 33 items.  
2. Connectivity issues, extreme persons and blank responses resolved: 241 persons, 1 item removed. Student cohorts were 

assigned separate rating scale structures. 

3. Misfit issues resolved: 99 persons with z-scores for infit or outfit |z| 2 were removed. 
4. Further connectivity issues resolved. 1 person removed (final results reported). 
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Figure S 12: Category structure for item 4 - Chemistry IA/B students 

 

Figure S 13: Category structure for item 4 - Foundations of Chemistry IA/B students 
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Figure S 14: Expected mean ASELL scores for item 4 – Chemistry IA/B students 

 

Figure S 15: Expected mean ASELL scores for item 4 - Foundations of Chemistry IA/B students
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7.3.8 Item 5: “It was clear to me what I was expected to learn from completing 

this experiment” 

Data preparation/ analyses run 

1. Initial data:  1127 persons, 33 items.  
2. Connectivity issues, extreme persons and blank responses resolved: 205 persons removed. Student cohorts were assigned 

separate rating scale structures. 

3. Misfit issues resolved: 94 persons with z-scores for infit or outfit |z| 2 were removed. 
4. Further connectivity issues resolved. 13 persons removed (final results reported). 

Table S 45: Rasch model details for item 5 

 

 

Figure S 16: Measure distributions for item 5 

measure st. error

/ 3.60 0.06 3.63 0.92

/ 0.07 0.07 0.20 1.08

/ -1.60 0.15 -1.40 0.96

/ -2.07 0.35 -2.45 1.15

from to C => M M => C Infit Outfit RMSR

2 Strongly Agree 4.72 3.68  44% 68% 1.09 1.04 0.6631 473

1 Agree 1.87 0.36 3.68 83% 67% 0.95 0.99 0.3681 1015

0 Neutral -0.59 -1.30 0.36 45% 51% 0.90 0.88 0.6717 274

-1 Disagree -1.95 -2.77 -1.30 0% 0% 1.12 1.10 1.3312 44

-2 Strongly Disagree -3.49  -2.77 0% 0% 0.80 0.71 1.6939 9

measure st. error

/ 4.79 0.10 4.80 1.02

/ 0.00 0.11 0.10 1.10

/ -2.14 0.28 -1.89 0.96

/ -2.66 0.73 -3.02 1.02

from to C => M M => C Infit Outfit RMSR

2 Strongly Agree 5.90 4.82  53% 67% 0.99 0.97 0.5999 210

1 Agree 2.41 0.24 4.82 86% 75% 0.99 0.98 0.3113 642

0 Neutral -0.92 -1.76 0.24 33% 47% 1.06 1.04 0.7144 121

-1 Disagree -2.48 -3.33 -1.76 8% 50% 0.78 0.74 1.0856 13

-2 Strongly Disagree -4.06  -3.33 0% 0% 0.82 0.76 1.7300 2

mean st. dev observed model observed model empirical modelled

815 2.23 1.60 0.36 0.52 0.11 0.21 39.9% 39.7%

33 0.00 0.67 1.32 1.46 0.63 0.68 3.3% 3.3%

Data points: 2803 4214.61 df: 1950

Strongly Disagree Disagree

CHEMISTRY IA/B

RESPONSE CATEGORY 

ASSOCIATED STATISTICS

Category threshold between Andrich threshold Thurstone 

threshold

Estimated 

discriminationLower category label Upper category label

Agree Strongly Agree

Neutral Agree

Disagree Neutral

counts in 

sampled data

FOUNDATIONS OF 

CHEMISTRY IA/B

RESPONSE CATEGORY 

ASSOCIATED STATISTICS

Category threshold between Andrich threshold Thurstone 

threshold

Estimated 

discriminationLower category label Upper category label

ASELL score Category Label
Category 

measure

Range Coherence Fit Statistics

Agree Strongly Agree

Neutral Agree

Disagree Neutral

Strongly Disagree Disagree

ASELL score Category Label
Category 

measure

Range Coherence

Persons

Experiments

Log-likelihood chi square:

Fit Statistics counts in 

sampled data

BROAD SCALE STATISTICS

Number 

used for 

estimates

Measures separation reliability
Raw variance in observed data 

explained by measures
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Figure S 17: Category structure for item 5 - Chemistry IA/B students 

 

Figure S 18: Category structure for item 5 - Foundations of Chemistry IA/B students 
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Figure S 19: Expected mean ASELL scores for item 5 - Chemistry IA/B students 

 

 

Figure S 20: Expected mean ASELL scores for item 5 - Foundations of Chemistry IA/B students
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7.3.9 Item 6: “Completing this experiment has increased my understanding of 

chemistry” 

Data preparation/ analyses run 

1. Initial data:  1127 persons, 33 items 
2. Connectivity issues, extreme persons and blank responses resolved: 202 persons removed 

3. Misfit issues resolved: 109 persons with z-scores for infit or outfit |z| 2 were removed. 
4. Further connectivity issues resolved. 4 persons removed (final results reported). 

Table S 46: Rasch model details for item 6 

 

 

 

Figure S 21: Measure distributions for item 6 

measure st. error

/ 3.72 0.05 3.75 0.95

/ 0.3 0.06 0.37 1.06

/ -1.91 0.14 -1.59 0.98

/ -2.11 0.31 -2.55 1.17

from to C => M M => C Infit Outfit RMSR

2 Strongly Agree 4.84 3.80  49% 68% 1.08 1.05 0.6626 725

1 Agree 2.03 0.47 3.80 83% 66% 0.96 0.97 0.3559 1587

0 Neutral -0.63 -1.42 0.47 39% 55% 0.94 0.92 0.6919 483

-1 Disagree -2.09 -2.89 -1.42 7% 40% 1.08 1.09 1.2083 54

-2 Strongly Disagree -3.58  -2.89 23% 100% 0.82 0.73 1.5798 13

mean st. dev observed model observed model empirical modelled

812 2.16 1.49 0.54 0.65 0.22 0.30 40.3% 40.1%

33 0.00 0.69 1.77 1.80 0.76 0.76 3.1% 3.1%

Data points: 2862 4573.53 df: 2015
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Log-likelihood chi square:

Fit Statistics counts in 
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Number 
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Figure S 22: Category structure for item 6 

 

 

Figure S 23: Expected mean ASELL scores for item 6
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7.3.10 Item 7: “Sufficient background information, of an appropriate standard, is 

provided in the introduction” 

Data preparation/ analyses run 

1. Initial data:  1127 persons, 33 items 
2. Connectivity issues, extreme persons and blank responses resolved: 214 persons removed 

3. Misfit issues resolved: 112 persons with z-scores for infit or outfit |z| 2 were removed. 
4. Further connectivity issues resolved. 16 persons removed (final results reported). 

Table S 47: Rasch model details for item 7 

 

 

 

Figure S 24: Measure distributions for item 7 

measure st. error

/ 3.79 0.05 3.82 0.96

/ 0.52 0.06 0.65 1.04

/ -1.05 0.12 -1.12 1.02

/ -3.25 0.44 -3.35 0.99

from to C => M M => C Infit Outfit RMSR

2 Strongly Agree 4.91 3.89  53% 70% 1.04 1.03 0.6273 806

1 Agree 2.19 0.78 3.89 80% 65% 0.96 0.98 0.3783 1503

0 Neutral -0.24 -1.18 0.78 41% 49% 0.98 0.97 0.7144 449

-1 Disagree -2.21 -3.49 -1.18 8% 50% 0.96 0.91 1.1786 91

-2 Strongly Disagree -4.43  -3.49 17% 50% 1.00 1.01 1.6363 6

mean st. dev observed model observed model empirical modelled

785 2.50 1.46 0.59 0.73 0.26 0.34 38.3% 38.0%

33 0.00 1.47 3.46 3.49 0.92 0.92 7.4% 7.4%

Data points: 2855 4646.49 df: 2035
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Figure S 25: Category structure for item 7 

 

 

Figure S 26: Expected mean ASELL scores for item 7
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7.3.11 Item 8: “The demonstrators offered effective supervision and guidance” 

NOTE: Demonstrators are not experiment specific – students often (but not always) had the same demonstrator for every 
experiment. What the results for this question mean is open to interpretation. Potentially, the experiment measures reflect the 
difficulty of rating any given demonstrator in general positively for that experiment. However, the variable frequency of responses 
from different demonstrator groups may mean measures are biased to reflect the quality of the demonstrators who provided 
more survey responses in that experiment. A different type of analysis is likely required to analyse this question properly (It is 
probably impossible to gather the data required for this). 

Data preparation/ analyses run 

1. Initial data:  1127 persons, 33 items 
2. Connectivity issues, extreme persons and blank responses resolved: 456 persons removed (mostly extreme positives) 

3. Misfit issues resolved: 67 persons with z-scores for infit or outfit |z| 2 were removed. 
4. Further connectivity issues resolved. 15 persons removed. (final data set results displayed) 

Table S 48: Rasch model details for item 8 

 

 

 

Figure S 27: Measure distributions for item 8 

measure st. error

/ 3.37 0.05 3.41 0.98

/ 0.16 0.09 0.28 0.99

/ -1.50 0.26 -1.31 1.12

/ -2.04 0.74 -2.40 1.31

from to C => M M => C Infit Outfit RMSR

2 Strongly Agree 4.50 3.48  73% 72% 1.02 1.00 0.4733 1095

1 Agree 1.80 0.42 3.48 68% 63% 1.01 1.02 0.4426 1061

0 Neutral -0.51 -1.22 0.42 12% 32% 1.02 1.01 0.9291 161

-1 Disagree -1.88 -2.72 -1.22 0% 0% 0.75 0.64 1.2888 15

-2 Strongly Disagree -3.44  -2.72 0% 0% 0.44 0.30 1.3617 2

mean st. dev observed model observed model empirical modelled

589 2.80 1.31 0.31 0.48 0.09 0.18 32.8% 32.5%

33 0.00 0.97 1.65 1.75 0.73 0.75 4.4% 4.3%

Data points: 2334 3373.50 df: 1710

RESPONSE CATEGORY 

ASSOCIATED STATISTICS

Category threshold between Andrich threshold Thurstone 

threshold

Estimated 

discriminationLower category label Upper category label

Agree Strongly Agree

Neutral Agree

Disagree Neutral

Strongly Disagree Disagree

ASELL score Category Label
Category 

measure

Range Coherence

Persons

Experiments

Log-likelihood chi square:

Fit Statistics counts in 

sampled data

BROAD SCALE STATISTICS

Number 

used for 

estimates

Measures separation reliability
Raw variance in observed data 

explained by measures



7.3  Supporting Information| Supporting information for section 3.3 247 

 

 

 

Figure S 28: Category structure for item 8 

 

Figure S 29: Expected mean ASELL scores for item 8
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7.3.12 Item 9: “The experimental procedure was clearly explained in the lab 

manual or notes” 

Data preparation/ analyses run 

1. Initial data:  1127 persons, 33 items 
2. Connectivity issues, extreme persons and blank responses resolved: 262 persons removed 

3. Misfit issues resolved: 113 persons with z-scores for infit or outfit |z| 2 were removed. 
4. Remaining data split into two subsets: one containing Foundations of Chemistry experiments, the other containing Chemistry 

IA experiments. To ensure connectivity, one previously removed misfitting person was added back into analysis. Resulting 
data had connectivity issues, but with the two cohorts still connected. Connectivity issues were resolved: 8 persons, 1 item 
removed (final results reported). 

Table S 49: Rasch model details for item 9 

 

 

 

Figure S 30: Measure distributions for item 9 

measure st. error

/ 2.90 0.05 2.95 1.06

/ -0.05 0.06 0.20 1.09

/ -0.92 0.11 -0.95 0.98

/ -1.94 0.24 -2.21 0.99

from to C => M M => C Infit Outfit RMSR

2 Strongly Agree 4.04 3.04  50% 70% 1.01 1.00 0.6411 854

1 Agree 1.51 0.40 3.04 78% 61% 1.01 1.05 0.4001 1426

0 Neutral -0.35 -0.97 0.40 30% 36% 1.04 1.04 0.8150 372

-1 Disagree -1.61 -2.48 -0.97 18% 61% 0.91 0.86 1.2597 97

-2 Strongly Disagree -3.25  -2.48 5% 100% 0.89 0.79 1.6746 20

mean st. dev observed model observed model empirical modelled

745 1.91 1.19 0.20 0.44 0.04 0.16 34.7% 34.4%

32 0.00 0.76 1.84 1.86 0.77 0.77 6.9% 6.8%

Data points: 2769 4838.56 df: 1990
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Figure S 31: Category structure for item 9 

 

Figure S 32: Expected mean ASELL scores for item 9
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7.3.13 Item 10: “I can see the relevance of this experiment to my chemistry 

studies” 

Data preparation/ analyses run 

1. Initial data:  1127 persons, 33 items 
2. Connectivity issues, extreme persons and blank responses resolved: 217 persons removed 

3. Misfit issues resolved: 88 persons with z-scores for infit or outfit |z| 2 were removed. 
4. Further connectivity issues resolved. 4 persons removed (final results reported) 

Table S 50: Rasch model details for item 10 

 

 

 

Figure S 33: Measure distributions for item 10 

measure st. error

/ 4.50 0.05 4.52 1.00

/ 0.53 0.06 0.57 0.99

/ -2.17 0.16 -1.92 1.05

/ -2.86 0.40 -3.18 1.02

from to C => M M => C Infit Outfit RMSR

2 Strongly Agree 5.62 4.56  52% 69% 1.01 0.98 0.5983 744

1 Agree 2.52 0.64 4.56 84% 70% 0.97 1.00 0.3448 1655

0 Neutral -0.72 -1.75 0.64 43% 57% 1.02 1.02 0.6927 427

-1 Disagree -2.56 -3.47 -1.75 11% 50% 0.89 0.83 1.0334 44

-2 Strongly Disagree -4.22  -3.47 0% 0% 0.98 0.94 1.6798 7

mean st. dev observed model observed model empirical modelled

818 2.53 1.70 0.61 0.73 0.27 0.35 43.2% 42.9%

33 0.00 0.66 1.56 1.58 0.71 0.71 4.1% 4.1%

Data points: 2877 4145.71 df: 2024
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Figure S 34: Category structure for item 10 

 

Figure S 35: Expected mean ASELL scores for item 10
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7.3.14 Item 11: “Working in a team to complete this experiment was beneficial” 

Data preparation/ analyses run 

1. Initial data:  1127 persons, 33 items 
2. Connectivity issues, extreme persons and blank responses resolved: 339 persons removed. Student cohorts were assigned 

separate rating scale structures. 

3. Misfit issues resolved: 149 persons with z-scores for infit or outfit |z| 2 were removed. 
4. Further connectivity issues resolved. 16 persons and 1 item removed (final results reported). 

Table S 51: Rasch model details for item 11 

 

 

Figure S 36: Measure distributions for item 11 

measure st. error

/ 2.66 0.07 2.85 0.91

/ 1.27 0.08 1.09 1.14

/ -3.27 0.20 -1.85 0.97

/ -0.66 0.26 -2.11 0.79

from to C => M M => C Infit Outfit RMSR

2 Strongly Agree 3.91 3.07  66% 73% 1.04 1.03 0.5625 609

1 Agree 1.97 0.91 3.07 57% 44% 1.04 1.15 0.5247 488

0 Neutral -0.53 -1.44 0.91 60% 70% 0.88 0.82 0.6307 413

-1 Disagree -2.00 -2.61 -1.44 0% 0% 1.18 1.15 1.1434 15

-2 Strongly Disagree -3.10  -2.61 14% 60% 1.13 1.18 1.5514 22

measure st. error

/ 2.95 0.08 3.04 0.91

/ 0.65 0.10 0.64 1.12

/ -1.85 0.23 -1.42 0.92

/ -1.75 0.41 -2.28 0.89

from to C => M M => C Infit Outfit RMSR

2 Strongly Agree 4.12 3.17  52% 67% 1.08 1.05 0.6413 304

1 Agree 1.83 0.64 3.17 75% 56% 0.94 1.04 0.4051 396

0 Neutral -0.42 -1.22 0.64 40% 61% 0.86 0.84 0.7297 161

-1 Disagree -1.88 -2.64 -1.22 26% 42% 1.25 1.30 1.2748 19

-2 Strongly Disagree -3.30  -2.64 13% 100% 1.09 1.11 1.5286 8

mean st. dev observed model observed model empirical modelled

623 1.96 1.24 0.52 0.69 0.21 0.32 27.2% 27.1%

32 0.00 1.08 2.75 2.78 0.88 0.89 25.5% 25.5%

Data points: 2435 4080.24 df: 1775
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Figure S 37: Category structure for item 11 - Chemistry IA/B students 

 

Figure S 38: Category structure for item 11 - Foundations of Chemistry IA/B students 
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Figure S 39: Expected mean ASELL scores for item 11 - Chemistry IA/B students 

 

 

Figure S 40: Expected mean ASELL scores for item 11 - Foundations of Chemistry IA/B 
students
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7.3.15 Item 12: “The experiment provided me with the opportunity to take 

responsibility for my own learning” 

Data preparation/ analyses run 

1. Initial data:  1127 persons, 33 items 
2. Connectivity issues, extreme persons and blank responses resolved:188 persons removed. Student cohorts were assigned 

separate rating scale structures. 

3. Misfit issues resolved: 147 persons with z-scores for infit or outfit |z| 2 were removed. 
4. Further connectivity issues resolved. 25 persons removed (final results reported). 

Table S 52: Rasch model details for item 12 

 

 

Figure S 41: Measure distributions for item 12 

measure st. error

/ 4.84 0.07 4.87 1.01

/ 1.64 0.07 1.61 1.02

/ -3.19 0.28 -2.74 0.95

/ -3.29 0.64 -3.74 1.20

from to C => M M => C Infit Outfit RMSR

2 Strongly Agree 5.97 4.94  44% 70% 1.00 0.99 0.6677 371

1 Agree 3.24 1.56 4.94 85% 64% 0.96 0.94 0.3475 864

0 Neutral -0.71 -2.42 1.56 50% 73% 1.00 1.02 0.6319 408

-1 Disagree -3.25 -4.09 -2.42 7% 17% 1.23 1.09 1.0878 14

-2 Strongly Disagree -4.78  -4.09 0% 0% 0.81 0.71 1.3060 3

measure st. error

/ 6.30 0.11 6.31 0.93

/ 1.95 0.10 1.94 1.06

/ -4.60 0.48 -3.82 0.93

/ -3.65 1.06 -4.43 0.81

from to C => M M => C Infit Outfit RMSR

2 Strongly Agree 7.41 6.34  44% 64% 1.08 1.06 0.6710 162

1 Agree 4.12 1.92 6.34 83% 72% 1.00 0.99 0.3391 567

0 Neutral -1.24 -3.41 1.92 68% 76% 0.92 0.91 0.4872 288

-1 Disagree -4.13 -4.85 -3.41 0% 0% 1.28 1.07 1.0840 4

-2 Strongly Disagree -5.44  -4.85 0% 0% 1.25 0.94 1.8169 1

mean st. dev observed model observed model empirical modelled

767 3.41 1.99 1.19 1.30 0.36 0.42 45.1% 45.0%

33 0.00 0.76 1.38 1.42 0.66 0.67 4.3% 4.3%

Data points: 2682 3799.33 df: 1877
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Figure S 42: Category structure for item 12 - Chemistry IA/B students 

 

Figure S 43: Category structure for item 12 - Foundations of Chemistry IA/B students 
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Figure S 44: Expected mean ASELL scores for item 12 - Chemistry IA/B students 

 

Figure S 45: Expected mean ASELL scores for item 12 - Foundations of Chemistry IA/B 
students
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7.3.16 Item 13: “I found the time available to complete this experiment was” 

Data preparation/ analyses run 

1. Initial data:  1127 persons, 33 items 
2. Connectivity issues, extreme persons and blank responses resolved: 124 persons and 2 items removed 
3. Further connectivity issues and blank responses resolved: 103 persons and 5 items removed 
4. Further connectivity issues and blank responses resolved: 10 persons and 1 item removed 

5. Misfit issues resolved: 115 persons with z-scores for infit or outfit |z| 2 were removed.  
6. Further connectivity issues resolved: 36 persons removed (final results presented). 

Table S 53: Rasch model details for item 13 

 

 

 

Figure S 46: Measure distributions for item 13 

measure st. error

/ 7.82 0.19 7.85 1.05

/ 4.26 0.07 4.23 1.04

/ -4.96 0.11 -4.86 0.94

/ -7.12 0.33 -7.22 1.14

from to C => M M => C Infit Outfit RMSR

2 Way Too Much 8.94 7.90  15% 50% 0.85 0.82 0.8439 40

1 Too Much 6.04 4.18 7.9 57% 65% 0.96 0.88 0.5478 396

0 About Right -0.35 -4.72 4.18 95% 91% 0.97 0.98 0.2008 2388

-1 Not Enough -6.04 -7.36 -4.72 37% 58% 1.04 0.92 0.7213 112

-2 Nowhere Near Enough -8.3  -7.36 9% 100% 0.75 0.51 1.0435 11

mean st. dev observed model observed model empirical modelled

739 0.03 2.29 0.00 0.00 0.00 0.00 38.6% 37.1%

25 0.00 2.08 4.09 4.14 0.94 0.94 14.7% 14.1%

Data points: 2947 2085.72 df: 2181
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Log-likelihood chi square:

Fit Statistics counts in 
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Figure S 47: Category structure for item 13 

 

 

Figure S 48: Expected mean ASELL scores for item 13
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7.3.17 Item 14: “Overall, as a learning experience, I would rate this experiment 

as” 

Data preparation/ analyses run 

1. Initial data:  1127 persons, 33 items 
2. Connectivity issues, extreme persons and blank responses resolved: 153 persons removed 

3. Misfit issues resolved: 88 persons with z-scores for infit or outfit |z| 2 were removed. 
4. Further connectivity issues resolved. 51 persons and 1 item removed (final results presented). 

Table S 54: Rasch model details for item 14 

 

 

 

Figure S 49: measure distributions for item 14 

measure st. error

/ 5.72 0.06 5.72 0.98

/ 0.13 0.06 0.17 1.02

/ -3.06 0.18 -2.55 0.99

/ -2.79 0.43 -3.36 1.25

from to C => M M => C Infit Outfit RMSR

2 Excellent 6.82 5.73  46% 68% 1.04 0.98 0.6269 457

1 Good 2.93 0.23 5.73 89% 78% 0.97 0.98 0.2973 1981

0 Average -1.28 -2.27 0.23 48% 60% 0.97 0.94 0.5933 474

-1 Poor -2.97 -3.74 -2.27 7% 50% 1.09 1.11 1.2291 29

-2 Very Poor -4.38  -3.74 0% 0% 0.75 0.59 1.6048 6

mean st. dev observed model observed model empirical modelled

835 2.69 2.02 0.39 0.51 0.13 0.21 45.2% 44.9%

33 0.00 1.02 2.01 2.04 0.80 0.81 1.9% 1.8%

Data points: 2947 3501.83 df: 2078
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Figure S 50: Category structure for item 14 

 

Figure S 51: Expected mean ASELL scores for item 14 
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7.4 Supporting information for section 4.1 

7.4.1 Rasch model derivations 

Included in this section are simple derivations of each Rasch model used in this thesis, notably 

contrasted in section 4.1. Equations labelled with white text within a black box (for example  A) 

correspond to Rasch model formulations used in the main body of research, as presented in 

Table 18 of section 4.1.2.2. 

Symbols used in the model derivations following differ to the facet symbols used in the main 

discussion. This is because facets are constructed in the main body discussion based on how 

their element numbers are assigned, rather than their precise mathematical origins. In some 

cases, a variety of different facet terms presented here vary in the identical way, hence are 

assigned facet element numbers identically and thus have identical measures estimated, all 

else being equal. It is appropriate therefore to use the same facet symbol in the main body 

research in these cases, despite possible differences in their basic formulation within 

mathematical derivations. A summary of the variety of symbols used to refer to different types 

of facet is provided below. 

Table S 55: Symbols used to represent different facets in various Rasch model formulations 

 Symbol used 
in main body 

discussion 
Facet description 

Facets which vary in this 
manner, as noted in these 

model derivations 

ST
U

D
EN

T 
IN

D
EP

EN
D

EN
T 

(s
ee

  T
ab

le
 1

6
) 

Q Values vary between questions only, otherwise constant 𝛿𝑞 

E 
Values vary between contexts (experiments) only, 

otherwise constant 
𝛿𝑐 

 
Values vary between questions and contexts 

(experiments) only, otherwise constant 
𝛿𝑞,𝑐  , 𝛿′𝑞,𝑐  , 𝛿𝑞,𝑐

∗  , 𝛿𝑞,𝑐
∗∗  

ST
U

D
EN

T 
D

EP
EN

D
EN

T 
(s

ee
  T

ab
le

 1
7

) 

 Values vary between students only, otherwise constant 𝛽𝑠 

Q 
Values vary between students and questions only, 

otherwise constant 
𝛽𝑠,𝑞 , 𝛽′𝑠,𝑞 , 𝛽𝑠,𝑞

∗  , 𝛽𝑠,𝑞
∗∗  

E 
Values vary between students and contexts 

(experiments) only, otherwise constant 
𝛽𝑠,𝑐 , 𝛽′𝑠,𝑐  , 𝛽𝑠,𝑐

∗  , 𝛽𝑠,𝑐
∗∗  

Symbols used in the main body discussion imply the way facet element numbers are assigned. A greater 

number of symbols is needed to express the different facets which vary similarly, but with different 

mathematical justifications. Assignment of facet element numbers for each is shown in Table 16 and 

Table 17, section 4.1.2.2. 

The following derivations express the probability P that the observed response X will occur in 

category k of rating scale structure g (i.e. in category 𝑥𝑔,𝑘), under survey circumstances 

described by vector 𝐷⃗⃗ = [𝑠 𝑞 𝑐]. Here, s, q and c index the student responding, the 

question they are responding to and the context in which the student is asked that question 

respectively. 
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Consider the probability of response in category k relative to the probability of response in the 

previous category, using this as a relative measure of the tendency to observe positive 

response in a given circumstance: 

𝑃(𝑋 = 𝑥𝑔,𝑘|𝐷⃗⃗ = [𝑠 𝑞 𝑐])

𝑃(𝑋 = 𝑥𝑔,𝑘−1|𝐷⃗⃗ = [𝑠 𝑞 𝑐])
= 𝜋𝑔,𝑘(𝐷⃗⃗ ) = 𝜋𝑔,𝑘(𝑠, 𝑞, 𝑐) 

The tool used in order to obtain a measurement should not influence the measure value 

obtained. It is therefore required that the measure of one circumstance described by 𝐷⃗⃗ 𝑎 =

[𝑠𝑎 𝑞𝑎 𝑐𝑎] relative to another circumstance described by 𝐷⃗⃗ 𝑏 = [𝑠𝑏 𝑞𝑏 𝑐𝑏] remains 

equivalent regardless of which rating scale structure or rating scale category is used. Using 

some hypothetical “reference” rating scale structure (𝑔0) and category (𝑘0), this requirement 

implies that for any rating scale structure (g) and response category (k): 

𝜋𝑔,𝑘(𝑠𝑎 , 𝑞𝑎 , 𝑐𝑎)

𝜋𝑔,𝑘(𝑠𝑏 , 𝑞𝑏 , 𝑐𝑏)
=

𝜋𝑔0,𝑘0
(𝑠𝑎 , 𝑞𝑎 , 𝑐𝑎)

𝜋𝑔0,𝑘0
(𝑠𝑏 , 𝑞𝑏 , 𝑐𝑏)

 

and hence, 

𝜋𝑔,𝑘(𝑠𝑎 , 𝑞𝑎, 𝑐𝑎) = 𝜋𝑔,𝑘(𝑠𝑏 , 𝑞𝑏 , 𝑐𝑏) ×
𝜋𝑔0,𝑘0

(𝑠𝑏 , 𝑞𝑏 , 𝑐𝑏)

𝜋𝑔0,𝑘0
(𝑠𝑏 , 𝑞𝑏 , 𝑐𝑏)

 

Defining some arbitrary “reference” circumstance Φ⃗⃗⃗ = [𝜙𝑠 𝜙𝑞 𝜙𝑐] with which other 

circumstances may be contrasted for the purposes of measurement, then substituting this 

reference circumstance in place of 𝐷⃗⃗ 𝑏 = [𝑠𝑏 𝑞𝑏 𝑐𝑏] in the equation above obtains:  

𝜋𝑔,𝑘(𝑠, 𝑞, 𝑐) = 𝜋𝑔,𝑘(Φ⃗⃗⃗ ) ×
𝜋𝑔0,𝑘0

(𝑠, 𝑞, 𝑐)

𝜋𝑔0,𝑘0
(Φ⃗⃗⃗ )

 

which, after taking the natural logarithm, 

𝑙𝑛[𝜋𝑔,𝑘(𝑠, 𝑞, 𝑐)] = 𝑙𝑛[𝜋𝑔,𝑘(Φ⃗⃗⃗ )] + 𝑙𝑛 [
𝜋𝑔0,𝑘0

(𝑠, 𝑞, 𝑐)

𝜋𝑔0,𝑘0
(Φ⃗⃗⃗ )

] 

yields the generalised Rasch model first presented as Equation 1 in the introductory material 

(replacing 𝜋𝑔,𝑘(𝑠, 𝑞, 𝑐) with the full probability ratio described at the beginning of this 

discussion). 

 
𝑙𝑛 [

𝑃(𝑋 = 𝑥𝑔,𝑘|𝐷⃗⃗ = [𝑠 𝑞 𝑐])

𝑃(𝑋 = 𝑥𝑔,𝑘−1|𝐷⃗⃗ = [𝑠 𝑞 𝑐])
] = 𝜑𝑠,𝑞,𝑐 − 𝜏𝑔,𝑘 1 

Here the latent trait measure underpinning response in circumstance 𝐷⃗⃗ = [𝑠 𝑞 𝑐] is given 

by: 

𝜑𝑠,𝑞,𝑐 = 𝑙𝑛 [
𝜋𝑔0,𝑘0

(𝑠, 𝑞, 𝑐)

𝜋𝑔0,𝑘0
(Φ⃗⃗⃗ )

] 

and the rating scale structure is defined by parameters: 

𝜏𝑔,𝑘 = ⁡𝑙𝑛 [𝜋𝑔,𝑘(Φ⃗⃗⃗ )
−1

] 
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The latent trait parameter may be reformulated at this point by introducing various 

constraints, restricting the way measure values change as descriptions of the circumstance 

change. Requiring that the measure for one student relative to a hypothetical “reference 

student” (𝜙𝑠) is independent of question and context (i.e. requiring “specific objectivity” of the 

student measure) necessitates: 

𝜋𝑔0,𝑘0
(𝑠, 𝑞, 𝑐)

𝜋𝑔0,𝑘0
(𝜙𝑠, 𝑞, 𝑐)

=
𝜋𝑔0,𝑘0

(𝑠, 𝜙𝑞 , 𝜙𝑐)

𝜋𝑔0,𝑘0
(𝜙𝑠, 𝜙𝑞 , 𝜙𝑐)

 

which therefore implies: 

𝜋𝑔0,𝑘0
(𝑠, 𝑞, 𝑐) = 𝜋𝑔0,𝑘0

(𝜙𝑠, 𝑞, 𝑐) ×
𝜋𝑔0,𝑘0

(𝑠, 𝜙𝑞 , 𝜙𝑐)

𝜋𝑔0,𝑘0
(𝜙𝑠, 𝜙𝑞 , 𝜙𝑐)

 

and hence, substituting back into the expression for the latent trait measure: 

𝜑𝑠,𝑞,𝑐 = 𝑙𝑛 [
𝜋𝑔0,𝑘0

(𝑠, 𝑞, 𝑐)

𝜋𝑔0,𝑘0
(Φ⃗⃗⃗ )

] = 𝑙𝑛 [
𝜋𝑔0,𝑘0

(𝜙𝑠, 𝑞, 𝑐)

𝜋𝑔0,𝑘0
(Φ⃗⃗⃗ )

×
𝜋𝑔0,𝑘0

(𝑠, 𝜙𝑞 , 𝜙𝑐)

𝜋𝑔0,𝑘0
(Φ⃗⃗⃗ )

] 

Or, introducing simplified variable labels: 

 

𝜑𝑠,𝑞,𝑐 = 𝛽𝑠 − 𝛿𝑞,𝑐⁡⁡⁡⁡⁡; ⁡⁡⁡⁡⁡𝛽𝑠 = 𝑙𝑛 [
𝜋𝑔0,𝑘0

(𝑠, 𝜙𝑞 , 𝜙𝑐)

𝜋𝑔0,𝑘0
(Φ⃗⃗⃗ )

]⁡⁡⁡⁡⁡,⁡⁡⁡⁡⁡𝛿𝑞,𝑐 = 𝑙𝑛 [(
𝜋𝑔0,𝑘0

(𝜙𝑠, 𝑞, 𝑐)

𝜋𝑔0,𝑘0
(Φ⃗⃗⃗ )

)

−1

] A 
 

which is a two-facet Rasch model containing one facet specific to student only (𝛽𝑠) and 

another specific to both question and context (𝛿𝑞,𝑐). Similar procedures can be used to obtain 

other two-facet Rasch models, either by requiring specific objectivity with respect to question 

asked: 

 

𝜑𝑠,𝑞,𝑐 = 𝛽𝑠,𝑐 − 𝛿𝑞⁡⁡⁡⁡⁡; ⁡⁡⁡⁡⁡𝛽𝑠,𝑐 = 𝑙𝑛 [
𝜋𝑔0,𝑘0

(𝑠, 𝜙𝑞 , 𝑐)

𝜋𝑔0,𝑘0
(Φ⃗⃗⃗ )

] ⁡⁡⁡⁡⁡,⁡⁡⁡⁡⁡𝛿𝑞 = 𝑙𝑛 [(
𝜋𝑔0,𝑘0

(𝜙𝑠 , 𝑞, 𝜙𝑐)

𝜋𝑔0,𝑘0
(Φ⃗⃗⃗ )

)

−1

] B 
 

or survey context: 

 

𝜑𝑠,𝑞,𝑐 = 𝛽𝑠,𝑞 − 𝛿𝑐⁡⁡⁡⁡⁡; ⁡⁡⁡⁡⁡𝛽𝑠,𝑞 = 𝑙𝑛 [
𝜋𝑔0,𝑘0

(𝑠, 𝑞, 𝜙𝑐)

𝜋𝑔0,𝑘0
(Φ⃗⃗⃗ )

]⁡⁡⁡⁡⁡,⁡⁡⁡⁡⁡𝛿𝑐 = 𝑙𝑛 [(
𝜋𝑔0,𝑘0

(𝜙𝑠 , 𝜙𝑞 , 𝑐)

𝜋𝑔0,𝑘0
(Φ⃗⃗⃗ )

)

−1

] C 
 

These all produce two-facet Rasch models, with facets varying in different ways. Facets derived 

in the latter two formulations include a context-specific student facet (𝛽𝑠,𝑐), a question facet 

(𝛿𝑞), a question-specific student facet (𝛽𝑠,𝑞) and a context-specific facet (𝛿𝑐). Any of these 

formulations can be further used to derive a simple three-facet Rasch model by introducing 

further specific objectivity requirements. For example, specific objectivity with respect to the 

survey question posed requires that:  

𝜋𝑔0,𝑘0
(𝑠, 𝑞, 𝜙𝑐)

𝜋𝑔0,𝑘0
(𝜙𝑠, 𝑞, 𝜙𝑐)

=
𝜋𝑔0,𝑘0

(𝑠, 𝜙𝑞 , 𝜙𝑐)

𝜋𝑔0,𝑘0
(𝜙𝑠, 𝜙𝑞 , 𝜙𝑐)

 

i.e. 



7.4  Supporting Information| Supporting information for section 4.1 265 

 

 

𝜋𝑔0,𝑘0
(𝑠, 𝑞, 𝜙𝑐) = 𝜋𝑔0,𝑘0

(𝜙𝑠, 𝑞, 𝜙𝑐) ×
𝜋𝑔0,𝑘0

(𝑠, 𝜙𝑞 , 𝜙𝑐)

𝜋𝑔0,𝑘0
(Φ⃗⃗⃗ )

 

and therefore, the 𝛽𝑠,𝑞 facet can be reformulated as follows: 

𝛽𝑠,𝑞 = 𝑙𝑛 [
𝜋𝑔0,𝑘0

(𝑠, 𝑞, 𝜙𝑐)

𝜋𝑔0,𝑘0
(Φ⃗⃗⃗ )

] = 𝑙𝑛 [
𝜋𝑔0,𝑘0

(𝑠, 𝜙𝑐 , 𝜙𝑐)

𝜋𝑔0,𝑘0
(Φ⃗⃗⃗ )

×
𝜋𝑔0,𝑘0

(𝜙𝑠, 𝑞, 𝜙𝑐)

𝜋𝑔0,𝑘0
(Φ⃗⃗⃗ )

] = 𝛽𝑠 − 𝛿𝑞 

with similar reformulations for the 𝛽𝑠,𝑐 or 𝛿𝑞,𝑐 facets. The net result is that all three of the prior 

latent trait parameter expressions may be reformulated as: 

 𝜑𝑠,𝑞,𝑐 = 𝛽𝑠 − 𝛿𝑞 − 𝛿𝑐 D 
 

which is a three-facet Rasch model containing a student facet, question facet and context 

facet. Thus, four different expressions for the latent trait parameter have been derived. A fifth 

expression may be derived by considering the sum of the first three latent trait parameter 

expressions discovered previously. The expression below requires all specific objectivity 

restraints thus far introduced: 

𝜑𝑠,𝑞,𝑐 + 𝜑𝑠,𝑞,𝑐 + 𝜑𝑠,𝑞,𝑐 = (𝛽𝑠 − 𝛿𝑞,𝑐) + (𝛽𝑠,𝑐 − 𝛿𝑞) + (𝛽𝑠,𝑞 − 𝛿𝑐) 

or more simply, 

3𝜑𝑠,𝑞,𝑐 = (𝛽𝑠,𝑞 + 𝛽𝑠,𝑐 − 𝛿𝑞,𝑐) + (𝛽𝑠 − 𝛿𝑞 − 𝛿𝑐) 

The simple three-facet model expression presented previously can easily be subtracted on 

both sides of this equation to yield: 

2𝜑𝑠,𝑞,𝑐 = 𝛽𝑠,𝑞 + 𝛽𝑠,𝑐 − 𝛿𝑞,𝑐  

And therefore: 

𝜑𝑠,𝑞,𝑐 =
1

2
𝛽𝑠,𝑞 +

1

2
𝛽𝑠,𝑐 −

1

2
𝛿𝑞,𝑐  

This expression contains all three facet terms which are jointly specific to more than one 

component of the circumstance description. The coefficient of ½ outside of each facet term 

can conveniently be removed by re-labelling variables. A complex three-facet Rasch model can 

then be expressed: 

 𝜑𝑠,𝑞,𝑐 = 𝛽′𝑠,𝑞 + 𝛽′𝑠,𝑐 − 𝛿′𝑞,𝑐  E 
 

where the facet measures then reflect the following: 

𝛽′𝑠,𝑞 =
1

2
𝛽𝑠,𝑞 = 𝑙𝑛 [(

𝜋𝑔0,𝑘0
(𝑠, 𝑞, 𝜙𝑐)

𝜋𝑔0,𝑘0
(Φ⃗⃗⃗ )

)

1/2

] 

𝛽′𝑠,𝑐 =
1

2
𝛽𝑠,𝑐 = 𝑙𝑛 [(

𝜋𝑔0,𝑘0
(𝑠, 𝜙𝑞 , 𝑐)

𝜋𝑔0,𝑘0
(Φ⃗⃗⃗ )

)

1/2

] 
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𝛿𝑞,𝑐 =
1

2
𝛿𝑞,𝑐 = 𝑙𝑛 [(

𝜋𝑔0,𝑘0
(𝜙𝑠, 𝑞, 𝑐)

𝜋𝑔0,𝑘0
(Φ⃗⃗⃗ )

)

−1/2

] 

rather than the usual relationships as presented in previous discussion. Restrictions can be 

imposed on the parameters of either this complex three facet model or the previously 

described simple three-facet model to obtain other Rasch model formulations. 

For example, assume a scenario such that the question asked does not alter the latent trait 

parameter. That is, for all s, q and c: 

𝜋𝑔0,𝑘0
(𝑠, 𝑞, 𝑐)

𝜋𝑔0,𝑘0
(Φ⃗⃗⃗ )

=
𝜋𝑔0,𝑘0

(𝑠, 𝜙𝑞 , 𝑐)

𝜋𝑔0,𝑘0
(Φ⃗⃗⃗ )

 

This restriction reduces the previously described 𝛿𝑞 facet to zero by the following: 

𝛿𝑞 = 𝑙𝑛 [(
𝜋𝑔0,𝑘0

(𝜙𝑠, 𝑞, 𝜙𝑐)

𝜋𝑔0,𝑘0
(Φ⃗⃗⃗ )

)

−1

] = 𝑙𝑛 [(
𝜋𝑔0,𝑘0

(Φ⃗⃗⃗ )

𝜋𝑔0,𝑘0
(Φ⃗⃗⃗ )

)

−1

] = 0 

Therefore, under this presumption, the previously presented simple three-facet model is 

reduced to a simple two-facet model: 

 𝜑𝑠,𝑞,𝑐 = 𝛽𝑠 − 𝛿𝑐 F 
 

The identical presumption also restricts the complex three-facet model to the identical 

formulation. Beginning with the complex three-facet model (written in expanded form below): 

𝜑𝑠,𝑞,𝑐 = 𝑙𝑛 [(
𝜋𝑔0,𝑘0

(𝑠, 𝑞, 𝜙𝑐)

𝜋𝑔0,𝑘0
(Φ⃗⃗⃗ )

)

1/2

] + 𝑙𝑛 [(
𝜋𝑔0,𝑘0

(𝑠, 𝜙𝑞 , 𝑐)

𝜋𝑔0,𝑘0
(Φ⃗⃗⃗ )

)

1/2

] − 𝑙𝑛 [(
𝜋𝑔0,𝑘0

(𝜙𝑠, 𝑞, 𝑐)

𝜋𝑔0,𝑘0
(Φ⃗⃗⃗ )

)

−1/2

] 

which simplifies to: 

𝜑𝑠,𝑞,𝑐 = 𝑙𝑛 [(
𝜋𝑔0,𝑘0

(𝑠, 𝑞, 𝜙𝑐)

𝜋𝑔0,𝑘0
(Φ⃗⃗⃗ )

×
𝜋𝑔0,𝑘0

(𝑠, 𝜙𝑞 , 𝑐)

𝜋𝑔0,𝑘0
(Φ⃗⃗⃗ )

×
𝜋𝑔0,𝑘0

(𝜙𝑠, 𝑞, 𝑐)

𝜋𝑔0,𝑘0
(Φ⃗⃗⃗ )

)

1/2

] 

Applying the restriction described previously yields: 

𝜑𝑠,𝑞,𝑐 = 𝑙𝑛 [(
𝜋𝑔0,𝑘0

(𝑠, 𝜙𝑞 , 𝜙𝑐)

𝜋𝑔0,𝑘0
(Φ⃗⃗⃗ )

×
𝜋𝑔0,𝑘0

(𝑠, 𝜙𝑞 , 𝑐)

𝜋𝑔0,𝑘0
(Φ⃗⃗⃗ )

×
𝜋𝑔0,𝑘0

(𝜙𝑠, 𝜙𝑞 , 𝑐)

𝜋𝑔0,𝑘0
(Φ⃗⃗⃗ )

)

1/2

] 

Again applying previously stated specific objectivity requirements, this expands to give: 

𝜑𝑠,𝑞,𝑐 = 𝑙𝑛 [(
𝜋𝑔0,𝑘0

(𝑠, 𝜙𝑞 , 𝜙𝑐)

𝜋𝑔0,𝑘0
(Φ⃗⃗⃗ )

×
𝜋𝑔0,𝑘0

(𝑠, 𝜙𝑞 , 𝜙𝑐)

𝜋𝑔0,𝑘0
(Φ⃗⃗⃗ )

×
𝜋𝑔0,𝑘0

(𝜙𝑠, 𝜙𝑞 , 𝑐)

𝜋𝑔0,𝑘0
(Φ⃗⃗⃗ )

×
𝜋𝑔0,𝑘0

(𝜙𝑠, 𝜙𝑞 , 𝑐)

𝜋𝑔0,𝑘0
(Φ⃗⃗⃗ )

)

1/2

] 

which simplifies to Equation F, as was to be shown: 

𝜑𝑠,𝑞,𝑐 = 𝑙𝑛 [
𝜋𝑔0,𝑘0

(𝑠, 𝜙𝑞 , 𝜙𝑐)

𝜋𝑔0,𝑘0
(Φ⃗⃗⃗ )

×
𝜋𝑔0,𝑘0

(𝜙𝑠, 𝜙𝑞 , 𝑐)

𝜋𝑔0,𝑘0
(Φ⃗⃗⃗ )

] = 𝛽𝑠 − 𝛿𝑐  
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Presuming instead that latent trait measure is independent of survey context, procedures 

analogous to those above may be employed to give another alternate model:  

 𝜑𝑠,𝑞,𝑐 = 𝛽𝑠 − 𝛿𝑞 G 
 

The complex three-facet Rasch model can also be restricted in other ways, however. Any one 

of the three complex facets can be presumed zero. That is, it may be assumed that either of 

the following are true: 

𝛽′𝑠,𝑞 = 𝑙𝑛 [(
𝜋𝑔0,𝑘0

(𝑠, 𝑞, 𝜙𝑐)

𝜋𝑔0,𝑘0
(Φ⃗⃗⃗ )

)

1/2

] = ⁡𝑙𝑛 [(
𝜋𝑔0,𝑘0

(Φ⃗⃗⃗ )

𝜋𝑔0,𝑘0
(Φ⃗⃗⃗ )

)

1/2

] = 0⁡⁡⁡⁡⁡⁡∀𝑠, 𝑞 

 

𝛽′𝑠,𝑐 = 𝑙𝑛 [(
𝜋𝑔0,𝑘0

(𝑠, 𝜙𝑞 , 𝑐)

𝜋𝑔0,𝑘0
(Φ⃗⃗⃗ )

)

1/2

] = ⁡𝑙𝑛 [(
𝜋𝑔0,𝑘0

(Φ⃗⃗⃗ )

𝜋𝑔0,𝑘0
(Φ⃗⃗⃗ )

)

1/2

] = 0⁡⁡⁡⁡⁡⁡∀𝑠, 𝑐 

 

𝛿′𝑞,𝑐 = 𝑙𝑛 [(
𝜋𝑔0,𝑘0

(𝑠, 𝜙𝑞 , 𝑐)

𝜋𝑔0,𝑘0
(Φ⃗⃗⃗ )

)

1/2

] = ⁡𝑙𝑛 [(
𝜋𝑔0,𝑘0

(Φ⃗⃗⃗ )

𝜋𝑔0,𝑘0
(Φ⃗⃗⃗ )

)

1/2

] = 0⁡⁡⁡⁡⁡⁡∀𝑞, 𝑐 

which respectively give the three models shown below: 

 𝜑𝑠,𝑞,𝑐 = 𝛽′𝑠,𝑐 − 𝛿′𝑞,𝑐  H 
 

 

 𝜑𝑠,𝑞,𝑐 = 𝛽′𝑠,𝑞 − 𝛿′𝑞,𝑐  I 
 

 

 𝜑𝑠,𝑞,𝑐 = 𝛽′𝑠,𝑞 + 𝛽′𝑠,𝑐   

These three models are all formulated such that all terms are dependent on one “overarching” 

component of the survey circumstance description (the context, question or student 

respectively). Note that the third does not include any student independent term, and so has 

not been labelled. These models represent cases where the data are described using the same 

two facets, but the measures of those facets are not comparable for different cases of the 

“overarching” variable. For example, Model H above has a student facet and a question facet, 

which remain comparable for some specific survey context. However, once the survey context 

changes, the student facet and question facet may take on different values. A lack of 

connectivity is therefore necessitated: measures are not comparable across different survey 

contexts. Similar scenarios exist for the other two models of the three presented above. This 

necessary disconnectivity does not occur for the other models presented thus far. 

Restricting specific facet values to zero in a similar manner to the above can lead to 

formulations of Rasch models where the latent trait measure is given by a singular facet: any 

one of the facets presented in models described up to this point. A notable case of this is the 
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scenario in which one facet in any of models A, B or C is restricted to equal zero, leaving only 

the facet specific to two components of the circumstance description. That is, the latent trait 

variable  is modelled to equal 𝛽𝑠,𝑐, 𝛽𝑠,𝑞 or −𝛿𝑞,𝑐 only. Take for example: 

𝜑𝑠,𝑞,𝑐 = 𝛽𝑠,𝑞 = 𝑙𝑛 [
𝜋𝑔0,𝑘0

(𝑠, 𝑞, 𝜙𝑐)

𝜋𝑔0,𝑘0
(Φ⃗⃗⃗ )

] 

This may be reformulated by multiplying the term within the square parentheses with a 

convenient ratio equal to one (shown below within large curved parentheses): 

𝜑𝑠,𝑞,𝑐 = 𝛽𝑠,𝑞 = 𝑙𝑛 [
𝜋𝑔0,𝑘0

(𝑠, 𝑞, 𝜙𝑐)

𝜋𝑔0,𝑘0
(Φ⃗⃗⃗ )

× (
𝜋𝑔0,𝑘0

(𝑠, 𝜙𝑞 , 𝜙𝑐)

𝜋𝑔0,𝑘0
(𝑠, 𝜙𝑞 , 𝜙𝑐)

)] 

Rearranging the fractions within, this becomes: 

𝜑𝑠,𝑞,𝑐 = 𝛽𝑠,𝑞 = 𝑙𝑛 [
𝜋𝑔0,𝑘0

(𝑠, 𝑞, 𝜙𝑐)

𝜋𝑔0,𝑘0
(𝑠, 𝜙𝑞 , 𝜙𝑐)

×
𝜋𝑔0,𝑘0

(𝑠, 𝜙𝑞 , 𝜙𝑐)

𝜋𝑔0,𝑘0
(Φ⃗⃗⃗ )

] 

which may be written as a new model: 

 
𝜑𝑠,𝑞,𝑐 = 𝛽𝑠,𝑞 = 𝛽𝑠 + 𝛽𝑠,𝑞

∗ ⁡⁡⁡⁡⁡; ⁡⁡⁡⁡⁡𝛽𝑠,𝑞
∗ = 𝑙𝑛 [

𝜋𝑔0,𝑘0
(𝑠, 𝑞, 𝜙𝑐)

𝜋𝑔0,𝑘0
(𝑠, 𝜙𝑞 , 𝜙𝑐)

]  

Where 𝛽𝑠 is defined as previously, and the newly introduced facet label 𝛽𝑠,𝑞
∗  is another 

question-specific student term, with a value defined relative to a student-specific reference 

point 𝜋𝑔0,𝑘0
(𝑠, 𝜙𝑞 , 𝜙𝑐) rather than being defined relative to the universal reference point  

𝜋𝑔0,𝑘0
(Φ⃗⃗⃗ ) used for all other facet definitions thus far. Notice, however, that no assumptions 

needed to be made to obtain this formulation from the usual question-specific student facet: 

this expression is an equivalent, alternate form. It appears that the usual question-specific 

student facet, as defined relative to the universal reference point, is equivalent to modelling a 

facet which is student specific only, then adding a facet term which expresses a question 

specific component specific to that student. It can similarly be shown that the 𝛽𝑠,𝑞 term may 

alternately be deconstructed as follows: 

 
𝜑𝑠,𝑞,𝑐 = 𝛽𝑠,𝑞 = 𝛽𝑠,𝑞

∗∗ −𝛿𝑞⁡⁡⁡⁡⁡; ⁡⁡⁡⁡⁡𝛽𝑠,𝑞
∗∗ = 𝑙𝑛 [

𝜋𝑔0,𝑘0
(𝑠, 𝑞, 𝜙𝑐)

𝜋𝑔0,𝑘0
(𝜙𝑠, 𝑞, 𝜙𝑐)

] J 
 

which is an expression containing the usual question specific facet, plus yet another question-

specific student facet, this time defined relative to a question specific reference point  

𝜋𝑔0,𝑘0
(𝜙𝑞 , 𝑞, 𝜙𝑐). Again, however, this model was obtained as a simple rearrangement of the 

single 𝛽𝑠,𝑞 facet, and therefore if data were fit to this model it would yield no different 

information whatsoever. Model J is in this way redundant: the same information is achieved by 

utilising a simpler model, where the jointly specific facet (specific jointly to student and 

question) has not been split. This redundancy occurs for any case where a facet jointly specific 

to two components of the circumstance description (eg. question-specific student term, 

context-specific student term or question-specific context term) is coupled with a facet 

singularly specific to one of those same components (student, question or context). The same 

information would be obtained without modelling the singularly specific facet; it is made 
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redundant by inclusion of the jointly specific facet. For example, a model of solely the 𝛽𝑠,𝑐 

facet (as previously defined) is equivalent to the following: 

 
𝜑𝑠,𝑞,𝑐 =⁡𝛽𝑠,𝑐 = 𝛽𝑠,𝑐

∗∗−𝛿𝑐⁡⁡⁡⁡⁡; ⁡⁡⁡⁡⁡𝛽𝑠,𝑞
∗∗ = 𝑙𝑛 [

𝜋𝑔0,𝑘0
(𝑠, 𝜙𝑞 , 𝑐)

𝜋𝑔0,𝑘0
(𝜙𝑠, 𝜙𝑞 , 𝑐)

] K 
 

Because of these considerations of redundancy, no further Rasch model formulations exist 

where circumstances are differentiated only based on three components: student, question 

and context. Models J and K are still included in the main discussion, however, to complete the 

array of student dependent and student independent facet combinations shown in Table 18 of 

section 4.1.2.2. 
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7.4.2 Data tables 

Original experiment titles presented here denote the student cohort the experiment was 

presented to (C indicates Chemistry IA/B, F indicated Foundations of Chemistry IA/B and u 

denotes unknown or mixed cohort), the year in which it was presented (for example ’10 is the 

notation for 2010) and the title of the experiment. 

Table S 56: Original and equated experiment numbers and surveys gathered 

ORIGINAL VALUES: Experiments conducted 
either in different semesters, conducted by 
different cohorts of students (Chemistry IA/B 
vs Foundations of Chemistry IA/B) or with 
different designs entirely are assigned 
separate sets of measures 

EQUATED VALUES: Identically 
structured experiments are assigned 
identical sets of measures, regardless 
of the semester or year in which they 
were presented and regardless of the 
student cohort 

 
Surveys received 
 

# Experiment title # 

Experiment title 
 
(Title is only listed on the first 
occasion its facet element 
number appears) 

in
it

ia
l c

o
u

n
t 

af
te

r 
ex

tr
em

es
 

re
m

o
ve

d
 

U
se

d
 f

o
r 

eq
u

at
in

g 

1 u-'10-Expt.5 5 Quantitative techniques 52 52 0 

2 C-'11-Ex.1 - Biological buffers 1 Biological Buffers 136 134 0 

3 C-'11-Ex.2 - Thermochemistry 2 Thermochemistry 104 104 0 

4 C-'11-Ex.3 - Vapour pressure 3 Vapour Pressure 84 83 0 

5 C-'11-Ex.4 - Melting points and 
recrystallisation 

4 Melting Points and 
Recrystallisation 

147 146 0 

6 C-'11-Ex.5 - Quantitative techniques 5  97 96 0 

7 C-'11-Ex.6 - Reaction kinetics 6 Reaction Kinetics 154 154 0 

8 C-'11-Ex.8 - Liquid-liquid extraction and 
TLC 

8 Liquid-Liquid Extraction and TLC 120 118 0 

9 C-'11-Ex.9 - Synthesis of aspirin 9 Synthesis of Aspirin 95 93 0 

10 C-'11-Ex.10 - coloured complexes of 
iron 

10 Coloured Complexes of Iron 90 90 0 

11 C-'11-Ex.11 - analysis of spinach 
extracts 

11 Analysis of Spinach Extracts 144 141 0 

12 C-'11-Ex.12 - Ion exchange 
chromatography 

12 Ion exchange Chromatography 108 106 0 

13 C-'11-Ex.13 - Copper(II) ion absorption 
spectrophotometry 

13 Copper(II) Ion Absorption 
Spectrophotometry 

126 123 0 

14 F-'11-Ex.1 - Biological buffers 1  69 67 0 

15 F-'11-Ex.4 - Melting points and 
recrystallysation 

4  85 82 0 

16 F-'11-Ex.5 - Quantitative techniques 5  64 63 0 

17 F-'11-Ex.6 - Reaction kinetics 6  93 92 0 

18 F-'11-Ex.8 - Liquid-liquid extraction and 
TLC 

8  57 54 0 

19 F-'11-Ex.10 - Coloured complexes of 
iron 

10  71 70 0 

20 F-'11-Ex.12 - Ion exchange 
chromatography 

12  78 78 0 

21 F-'11-Ex.13 - Copper(II) ion absorption 
spectrophotometry 

13  83 83 0 

22 F-'12-Ex.0F - Introductory experiment 7 Introductory experiment 19 19 0 

23 F-'12-Ex.1F - Quantitative techniques 14 Quantitative Techniques 
(revised: for foundations) 

102 102 0 

24 F-'12-Ex.2F - Vitamin C titration 15 Determination of vitamin C 
concentration 

73 73 0 
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ORIGINAL VALUES: Experiments conducted 
either in different semesters, conducted by 
different cohorts of students (Chemistry IA/B 
vs Foundations of Chemistry IA/B) or with 
different designs entirely are assigned 
separate sets of measures 

EQUATED VALUES: Identically 
structured experiments are assigned 
identical sets of measures, regardless 
of the semester or year in which they 
were presented and regardless of the 
student cohort 

 
Surveys received 
 

# Experiment title # 

Experiment title 
 
(Title is only listed on the first 
occasion its facet element 
number appears) 

in
it

ia
l c

o
u

n
t 

af
te

r 
ex

tr
em

es
 

re
m

o
ve

d
 

U
se

d
 f

o
r 

eq
u

at
in

g 

25 F-'12-Ex.3F - Equilibrium & Le 
Chatalier's principle 

16 Equilibrium and Le Chatalier's 
Principle (revised: for 
foundations) 

104 102 0 

26 F-'12-Ex.4F - Visible absorption 
spectrophotometry 

17 Visible Absorption 
Spectrophotometry 

73 70 0 

27 F-'12-Ex.5F - Aromas 18 Aromachemistry 103 101 0 

28 F-'12-Ex.6F - Analysis of spinach 
extracts 

19 Analysis of Spinach Extracts 
(revised: for foundation - in 
pairs) 

107 103 0 

29 F-'12-Ex.7F - Activity Series 20 Metal Activity Series 81 76 0 

30 F-'12-Ex.8F - Thermochemistry 21 Thermochemistry (revised: for 
foundations) 

77 77 0 

31 F-'12-Ex.9F - Reaction kinetics 22 Reaction Kinetics (revised: for 
foundations) 

74 74 0 

32 F-'13-Ex 0F - Introductory experiment 23 Introductory experiment 
(revised: observations video) 

126 126 9 

33 F-'13-Ex 1F - Quantitative techniques 14  61 60 4 

34 F-'13-Ex 2F - Vitamin C titration 15  57 56 7 

35 F-'13-Ex 3F - Visible absorption 
spectrophotometry 

17  137 136 10 

36 F-'13-Ex 4F - Equilibrium & Le 
Chatalier's principle 

16  83 82 6 

37 F-'13-Ex 5F - Aromas 18  248 248 26 

38 F-'13-Ex 6F - Analysis of spinach 
extracts 

19  206 205 24 

39 F-'13-Ex 7F - Thermochemistry 21  204 202 23 

40 F-'13-Ex 8F - Activity series 20  161 156 23 

41 F-'13-Ex 9F - Reaction kinetics 24 Reaction Kinetics (revised: 
question order and phrasing) 

82 81 13 

42 C-'12-Ex.1 - Biological buffers 25 Biological Buffers (revised: 
laptop) 

80 80 0 

43 C-'12-Ex.4 - Melting points and 
recrystallisation 

4  70 70 0 

44 C-'12-Ex.6 - Reaction kinetics 6  84 84 0 

45 C-'12-Ex.8 - Liquid-liquid extraction and 
TLC 

8  72 72 0 

46 C-'12-Ex.9 - Synthesis of aspirin 9  36 36 0 

47 C-'12-Ex.11 - Analysis of spinach 
extracts 

11  77 77 0 

48 C-'13-Ex 2 - Thermochemistry 2  227 227 23 

49 C-'13-Ex 3 - Vapour pressure 26 Vapour Pressure (revised: 
laptop) 

148 148 20 

50 C-'13-Ex 5 - Quantitative techniques 5  203 201 30 

51 C-'13-Ex 10 - Equilibrium & Le 
Chatelier's principle 

10  174 172 23 

52 C-'13-Ex 12 - Ion exchange 
chromatography 

12  252 252 36 
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ORIGINAL VALUES: Experiments conducted 
either in different semesters, conducted by 
different cohorts of students (Chemistry IA/B 
vs Foundations of Chemistry IA/B) or with 
different designs entirely are assigned 
separate sets of measures 

EQUATED VALUES: Identically 
structured experiments are assigned 
identical sets of measures, regardless 
of the semester or year in which they 
were presented and regardless of the 
student cohort 

 
Surveys received 
 

# Experiment title # 

Experiment title 
 
(Title is only listed on the first 
occasion its facet element 
number appears) 

in
it

ia
l c

o
u

n
t 

af
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r 
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53 C-'13-Ex 13 - Copper(II) ion absorption 
spectrophotometry 

27 Copper(II) Ion Absorption 
Spectrophotometry (revised: 
laptop) 

232 231 26 

54 C-'13-Ex 11 - Analysis of spinach 
extracts 

11  218 217 30 

55 C-'13-Ex 9 - Synthesis of aspirin 9  129 129 18 

56 C-'13-Ex 6 - Reaction kinetics 6  205 202 33 

57 C-'13-Ex 4 - Melting points and 
recrystallisation 

4  182 178 27 

58 C-'13-Ex 1 - Biological buffers 25  170 166 21 

59 C-'13-Ex 8 - Liquid-liqud extraction and 
TLC 

8  128 128 19 

60 C-'12-Ex 2 - Thermochemistry 2  140 138 0 

61 C-'12-Ex 3 - Vapour pressure 26  102 102 0 

62 C-'12-Ex 5 - Quantitative techniques 5  112 111 0 

63 C-'12-Ex 10 - Equilibrium & Le 
Chatelier's principle 

10  83 82 0 

64 C-'12-Ex 12 - Ion exchange 
chromatography 

12  128 127 0 

65 C-'12-Ex 13 - Copper(II) ion absorption 
spectrophotometry 

27  120 119 0 

66 F-'14- Ex 0F - Introductory Experiment 28 Introductory Experiment 
(revised: pipetting) 

143 143 7 

67 F-'14- Ex 1F - Quantitative Techniques 29 Quantitative Techniques 
(revised: no pipetting) 

177 177 10 

68 F-'14- Ex 2F - Determination of Vitamin 
C Concentration 

15  137 133 8 

69 F-'14- Ex 3F - Equilibrium & Le 
Chatelier's Principle 

16  109 107 6 

70 F-'14- Ex 4F - Visible Absorption 
Spectrophotometry 

17  177 176 7 

71 C-'14-Thermochemistry 2  237 235 6 

72 C-'14-Vapour Pressure 26  144 144 6 

73 C-'14-Ion Exchange Chromatography 12  199 196 8 

74 C-'14-Visible Absorption 
Spectrophotometry 

27  189 189 7 

75 C-'14-Quantitative Techniques 5  140 140 6 

76 C-'14-Equilibrium & Le Chatelier's 
principle 

10  121 120 8 

Totals: 9380 9287 530 
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Table S 57: Tests of normality for student measures gathered from different occasions 
(subset 1 only) 

Unequated experiment number and title  

(sample group) 

Kolmogorov-Smirnov test Shapiro-Wilk test 

Statistic df p Statistic df p 

1 u-'10-Expt.5 .081 52 .200* .980 52 .519 

3 C-'11-Ex.2 - Thermochemistry .088 104 .045 .980 104 .117 

5 C-'11-Ex.4 - Melting points and recrystallisation .125 146 .000 .951 146 .000 

6 C-'11-Ex.5 - Quantitative techniques .124 96 .001 .956 96 .003 

7 C-'11-Ex.6 - Reaction kinetics .149 154 .000 .953 154 .000 

8 C-'11-Ex.8 - Liquid-liquid extraction and TLC .098 118 .008 .981 118 .098 

9 C-'11-Ex.9 - Synthesis of aspirin .159 93 .000 .952 93 .002 

10 C-'11-Ex.10 - coloured complexes of iron .180 90 .000 .914 90 .000 

11 C-'11-Ex.11 - analysis of spinach extracts .094 141 .004 .970 141 .004 

12 C-'11-Ex.12 - Ion exchange chromatography .121 106 .001 .984 106 .225 

15 F-'11-Ex.4 - Melting points and recrystallysation .137 82 .001 .941 82 .001 

16 F-'11-Ex.5 - Quantitative techniques .134 63 .007 .924 63 .001 

17 F-'11-Ex.6 - Reaction kinetics .122 92 .002 .956 92 .003 

18 F-'11-Ex.8 - Liquid-liquid extraction and TLC .133 54 .018 .971 54 .204 

19 F-'11-Ex.10 - Coloured complexes of iron .104 70 .059 .970 70 .087 

20 F-'11-Ex.12 - Ion exchange chromatography .125 78 .004 .944 78 .002 

42 C-'12-Ex.1 - Biological buffers .103 80 .036 .978 80 .175 

43 C-'12-Ex.4 - Melting points and recrystallisation .098 70 .092 .961 70 .027 

44 C-'12-Ex.6 - Reaction kinetics .141 84 .000 .959 84 .010 

45 C-'12-Ex.8 - Liquid-liquid extraction and TLC .106 72 .043 .953 72 .009 

46 C-'12-Ex.9 - Synthesis of aspirin .192 36 .002 .948 36 .093 

47 C-'12-Ex.11 - Analysis of spinach extracts .108 77 .028 .969 77 .058 

48 C-'13-Ex 2 - Thermochemistry .125 204 .000 .956 204 .000 

49 C-'13-Ex 3 - Vapour pressure .082 128 .036 .986 128 .210 

50 C-'13-Ex 5 - Quantitative techniques .087 171 .003 .959 171 .000 

51 C-'13-Ex 10 - Equilibrium & Le Chatelier's principle .091 149 .004 .976 149 .011 

52 C-'13-Ex 12 - Ion exchange chromatography .097 216 .000 .978 216 .002 

53 C-'13-Ex 13 - Copper(II) ion absorption spectrophotometry .143 205 .000 .944 205 .000 

54 C-'13-Ex 11 - Analysis of spinach extracts .096 187 .000 .977 187 .004 

55 C-'13-Ex 9 - Synthesis of aspirin .133 111 .000 .947 111 .000 

56 C-'13-Ex 6 - Reaction kinetics .080 169 .011 .976 169 .005 

57 C-'13-Ex 4 - Melting points and recrystallisation .126 151 .000 .952 151 .000 

58 C-'13-Ex 1 - Biological buffers .078 145 .031 .987 145 .194 

59 C-'13-Ex 8 - Liquid-liqud extraction and TLC .088 109 .038 .975 109 .036 

60 C-'12-Ex 2 - Thermochemistry .116 138 .000 .974 138 .011 

61 C-'12-Ex 3 - Vapour pressure .117 102 .002 .953 102 .001 

62 C-'12-Ex 5 - Quantitative techniques .099 111 .009 .961 111 .002 

63 C-'12-Ex 10 - Equilibrium & Le Chatelier's principle .169 82 .000 .918 82 .000 

64 C-'12-Ex 12 - Ion exchange chromatography .110 127 .001 .936 127 .000 

65 C-'12-Ex 13 - Copper(II) ion absorption spectrophotometry .137 119 .000 .946 119 .000 

71 C-'14-Thermochemistry .071 229 .007 .981 229 .004 

72 C-'14-Vapour Pressure .118 138 .000 .971 138 .005 

73 C-'14-Ion Exchange Chromatography .106 188 .000 .968 188 .000 

74 C-'14-Visible Absorption Spectrophotometry .130 182 .000 .941 182 .000 

75 C-'14-Quantitative Techniques .091 134 .008 .969 134 .004 

76 C-'14-Equilibrium & Le Chatelier's principle .079 112 .086 .986 112 .281 

* This is a lower bound of the true significance. 
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Table S 58: Experiment quality measures () estimated using the final equated model 

 
More positive measure values imply greater difficulty of providing positive response. Measures are not 

comparable between different subsets. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14
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2 Thermochemistry 0.24 0.77 1.10 -0.14 -0.52 -0.26 0.11 -0.92 -0.54 -0.87 -0.81 -0.25 0.01 -0.03 1

4 Melting Points and Recrystallisation 0.11 -0.70 -0.22 -0.37 -0.31 -0.07 -0.15 -0.69 -0.33 0.37 1.18 -0.36 1.54 -0.35 1

5 Quantitative techniques -0.27 -1.15 0.34 -0.32 -0.45 0.51 -0.34 -0.96 -0.73 -0.19 1.34 -0.89 2.31 -0.25 1

6 Reaction Kinetics 0.14 0.20 0.56 -0.01 -0.16 0.14 0.15 -0.54 0.22 -0.35 -0.73 -0.13 1.68 0.31 1

8 Liquid-Liquid Extraction and TLC 0.49 -0.74 0.21 0.00 0.13 0.06 0.15 -0.69 -0.11 0.26 0.96 -0.57 2.05 0.30 1

9 Synthesis of Aspirin 0.31 -0.76 -0.38 -0.43 -0.01 0.14 -0.54 -0.80 -0.65 0.16 1.20 -0.49 3.29 -0.21 1

10 Coloured Complexes of Iron 0.56 -0.62 0.24 0.13 0.40 0.23 0.07 -0.68 -0.27 0.11 -1.02 -0.14 3.07 0.20 1

11 Analysis of Spinach Extracts 0.21 -0.85 -0.41 -0.27 -0.07 0.08 -0.34 -0.78 0.36 0.21 1.38 -0.51 0.36 -0.45 1

12 Ion exchange Chromatography 0.32 -0.63 -0.05 0.12 0.02 -0.54 0.37 -0.82 0.03 0.06 -1.20 -0.54 1.33 -0.35 1

25 Biological Buffers (revised: laptop) -0.42 0.05 0.95 0.43 0.26 0.23 0.51 -0.79 0.91 -0.35 -0.90 0.29 1.52 0.34 1

26 Vapour Pressure (revised: laptop) -0.47 -0.58 0.61 0.41 0.07 -0.28 -0.03 -1.07 0.56 0.08 -1.03 -0.19 2.22 0.24 1

27
Copper(II) Ion Absorption 
Spectrophotometry (revised: laptop)

-0.27 -0.35 0.06 -0.21 -0.34 0.18 -0.42 -0.98 -0.45 -0.11 -0.74 -0.16 1.13 -0.40 1

1 Biological Buffers 0.15 0.25 0.97 0.15 0.22 0.29 0.25 -0.63 -0.08 -0.51 -0.86 -0.40 1.82 0.71 2

3 Vapour Pressure 0.64 0.38 1.42 0.72 0.69 0.63 0.06 -0.92 1.06 0.01 -1.50 0.09 3.41 1.44 3

13
Copper(II) Ion Absorption 
Spectrophotometry

-0.07 -0.34 0.55 0.01 0.00 0.29 -0.03 -0.78 -0.33 0.30 -1.07 -0.41 1.16 0.08 4

7 Introductory experiment 0.44 2.34 1.40 -0.50 -0.12 0.62 -0.18 -1.03 -0.23 -0.68 1.08 -0.09 -2.40 0.53 5

14
Quantitative Techniques (revised: for 
foundations)

-0.19 -1.38 0.47 0.34 -0.26 0.26 0.00 -0.49 -0.01 -0.40 0.68 -0.70 2.97 -0.03 6

15
Determination of Vitamin C 
concentration

-0.31 -0.99 0.00 -0.12 -0.05 0.12 -0.01 -0.53 -0.33 -0.25 0.70 -0.35 3.19 0.00 6

16
Equilibrium and Le Chatalier's Principle 
(revised: for foundations)

0.22 -0.92 -0.17 0.13 0.33 0.18 0.16 -0.53 -0.05 -0.13 -0.72 -0.26 2.92 0.26 6

17 Visible Absorption Spectrophotometry -0.26 -0.54 0.14 -0.22 -0.16 0.01 -0.25 -0.66 -0.20 0.22 -0.63 -0.02 0.23 -0.41 6

18 Aromachemistry 0.59 1.53 0.08 -0.44 -0.40 -0.10 0.20 -0.71 -0.68 -0.46 -0.58 -0.07 -0.42 -0.09 6

19
Analysis of Spinach Extracts (revised: 
for foundation - in pairs)

-0.25 -1.05 -0.47 -0.15 -0.14 -0.28 0.00 -1.11 0.41 -0.02 -0.78 -0.33 1.26 -0.67 6

20 Metal Activity Series -0.10 -0.29 0.07 -0.37 -0.49 -0.48 -0.39 -0.75 -0.49 -0.63 -0.71 -0.18 1.65 -0.01 6

21
Thermochemistry (revised: for 
foundations)

-0.17 0.60 0.73 -0.22 -0.18 -0.26 0.05 -0.90 -0.35 -0.41 -0.75 -0.44 1.19 0.21 6

23
Introductory experiment (revised: 
observations video)

0.36 2.04 1.92 -0.02 -0.63 0.08 0.40 -0.80 0.32 -0.68 1.06 -0.29 -0.58 0.02 6

24
Reaction Kinetics (revised: question 
order and phrasing)

-0.84 -0.44 -0.08 -0.75 -0.71 -0.79 -0.20 -0.92 -0.07 -0.97 -1.28 -0.02 1.62 0.01 6

28
Introductory Experiment (revised: 
pipetting)

-0.35 -0.76 1.21 -0.34 -0.41 0.89 -0.29 -1.35 -0.43 -0.19 1.09 -0.33 -0.92 -0.38 6

29
Quantitative Techniques (revised: no 
pipetting)

-0.32 -1.25 -0.14 -0.01 0.03 -0.12 0.03 -0.77 -0.01 -0.12 0.96 -0.38 1.40 -0.62 6

22
Reaction Kinetics (revised: for 
foundations)

-0.26 -0.18 0.37 0.33 -0.08 -0.02 0.79 -0.73 0.28 0.04 -0.88 -0.42 2.55 0.41 7

Survey item (question) number and topic
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7.5 Supporting information for section 4.2 

Experiment numbers referenced in the table following refer to those of the equated best 

explanatory model of the ASLE data. The  values obtained without taking gender into account 

has previously been reported for each of these experiments, for each question (survey item), 

as detailed in Table S 56. 

Table S 59: DIF between genders for the equated model 
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 #
 Male students Female students Comparison: Welch’s T-test 

 

(logits) 

Standard 

error 

 

(logits) 

Standard 

error 

Change in  

(male – female) 

Joint 

standard 

error 

t d.f. 
probability 

(p) 

2 1 0.01 0.12 0.36 0.11 -0.36 0.17 -2.13 419 0.0341 

2 2 0.54 0.11 0.83 0.10 -0.28 0.15 -1.89 422 0.0593 

2 3 1.14 0.09 1.04 0.09 0.10 0.13 0.75 422 0.4525 

2 4 -0.18 0.12 -0.05 0.11 -0.13 0.16 -0.82 422 0.4140 

2 5 -0.56 0.12 -0.47 0.11 -0.09 0.17 -0.52 421 0.6052 

2 6 -0.24 0.12 -0.37 0.11 0.13 0.16 0.78 423 0.4346 

2 7 -0.04 0.11 0.23 0.10 -0.27 0.15 -1.84 420 0.0668 

2 8 -0.96 0.13 -0.98 0.12 0.02 0.18 0.08 421 0.9338 

2 9 -0.62 0.12 -0.59 0.11 -0.04 0.16 -0.22 422 0.8248 

2 10 -0.65 0.12 -0.89 0.12 0.24 0.17 1.39 423 0.1662 

2 11 -0.65 0.12 -0.82 0.11 0.17 0.16 1.02 420 0.3065 

2 12 0.08 0.12 -0.23 0.12 0.31 0.16 1.90 420 0.0586 

2 13 0.16 0.14 0.03 0.14 0.12 0.20 0.61 422 0.5406 

2 14 -0.24 0.13 -0.19 0.12 -0.05 0.18 -0.29 420 0.7749 

4 1 0.32 0.17 -0.03 0.18 0.35 0.25 1.39 196 0.1654 

4 2 -0.81 0.19 -0.75 0.19 -0.07 0.26 -0.25 198 0.7995 

4 3 -0.56 0.17 -0.30 0.16 -0.26 0.24 -1.10 198 0.2735 

4 4 -0.04 0.16 -0.50 0.17 0.45 0.24 1.89 199 0.0599 

4 5 -0.22 0.17 -0.33 0.17 0.11 0.24 0.47 199 0.6424 

4 6 -0.37 0.17 -0.14 0.16 -0.23 0.24 -0.97 199 0.3330 

4 7 -0.24 0.16 -0.13 0.16 -0.12 0.23 -0.51 198 0.6113 

4 8 -0.93 0.19 -0.97 0.19 0.04 0.27 0.15 197 0.8774 

4 9 -0.07 0.16 -0.37 0.16 0.30 0.23 1.31 197 0.1904 

4 10 -0.05 0.16 0.47 0.15 -0.53 0.22 -2.36 198 0.0192 

4 11 1.50 0.14 1.27 0.15 0.24 0.20 1.15 148 0.2504 

4 12 -0.02 0.17 0.25 0.17 -0.27 0.24 -1.12 197 0.2642 

4 13 1.78 0.24 1.26 0.26 0.52 0.35 1.47 197 0.1420 

4 14 -0.54 0.20 -0.47 0.19 -0.07 0.27 -0.25 197 0.8021 

5 1 -0.41 0.14 -0.34 0.15 -0.07 0.21 -0.36 313 0.7207 

5 2 -1.24 0.15 -1.31 0.16 0.07 0.22 0.33 313 0.7452 

5 3 0.54 0.11 0.19 0.13 0.35 0.17 2.08 311 0.0381 

5 4 -0.24 0.13 -0.33 0.14 0.09 0.19 0.48 312 0.6337 

5 5 -0.49 0.13 -0.40 0.14 -0.09 0.19 -0.48 313 0.6308 

5 6 0.66 0.11 0.42 0.13 0.24 0.17 1.41 312 0.1599 

5 7 -0.45 0.13 -0.20 0.13 -0.24 0.18 -1.32 313 0.1873 

5 8 -1.02 0.15 -1.02 0.16 0.01 0.22 0.03 312 0.9751 

5 9 -0.71 0.13 -0.73 0.14 0.02 0.20 0.08 311 0.9340 

5 10 -0.53 0.13 -0.21 0.14 -0.32 0.19 -1.66 312 0.0970 

5 11 1.60 0.10 1.52 0.11 0.08 0.15 0.54 249 0.5918 

5 12 -0.66 0.14 -0.70 0.15 0.05 0.20 0.23 309 0.8144 

5 13 1.99 0.20 2.35 0.21 -0.36 0.29 -1.25 310 0.2108 

5 14 -0.50 0.15 -0.57 0.16 0.07 0.22 0.33 311 0.7410 

6 1 0.36 0.16 0.50 0.15 -0.14 0.21 -0.68 247 0.5003 

6 2 0.28 0.15 0.51 0.14 -0.22 0.21 -1.09 247 0.2777 



7.5  Supporting Information| Supporting information for section 4.2 276 

 

 

Ex
p

e
ri

m
e

n
t 

# 

(e
q

u
at

e
d

) 

Q
u

e
st

io
n

 #
 Male students Female students Comparison: Welch’s T-test 
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6 3 0.83 0.13 0.31 0.13 0.52 0.19 2.78 245 0.0059 

6 4 -0.06 0.15 -0.05 0.14 -0.02 0.21 -0.09 246 0.9319 

6 5 -0.25 0.15 -0.31 0.15 0.06 0.22 0.27 246 0.7850 

6 6 0.12 0.15 0.20 0.14 -0.08 0.20 -0.38 245 0.7065 

6 7 -0.17 0.15 0.08 0.14 -0.24 0.20 -1.22 246 0.2253 

6 8 -1.15 0.19 -0.45 0.15 -0.70 0.24 -2.95 242 0.0035 

6 9 -0.02 0.14 0.31 0.13 -0.33 0.19 -1.74 246 0.0829 

6 10 -0.57 0.16 -0.47 0.15 -0.09 0.22 -0.42 246 0.6713 

6 11 -0.59 0.16 -0.63 0.15 0.05 0.22 0.22 241 0.8282 

6 12 0.19 0.15 0.38 0.15 -0.19 0.21 -0.90 246 0.3679 

6 13 1.93 0.22 1.40 0.23 0.53 0.32 1.66 244 0.0991 

6 14 0.19 0.16 0.05 0.16 0.13 0.23 0.58 245 0.5603 

8 1 0.35 0.20 0.77 0.19 -0.42 0.28 -1.53 144 0.1294 

8 2 -0.69 0.21 -0.98 0.22 0.29 0.31 0.92 145 0.3569 

8 3 0.28 0.18 0.06 0.18 0.22 0.26 0.87 145 0.3882 

8 4 0.00 0.19 0.00 0.19 0.00 0.27 -0.01 144 0.9921 

8 5 0.13 0.19 0.42 0.18 -0.29 0.26 -1.10 145 0.2713 

8 6 -0.21 0.20 0.24 0.18 -0.45 0.27 -1.67 145 0.0972 

8 7 0.19 0.18 0.26 0.18 -0.07 0.25 -0.27 144 0.7904 

8 8 -0.84 0.22 -0.92 0.22 0.08 0.31 0.25 145 0.8017 

8 9 -0.11 0.18 -0.31 0.19 0.19 0.27 0.73 145 0.4674 

8 10 0.26 0.18 0.23 0.19 0.04 0.26 0.14 144 0.8925 

8 11 1.13 0.17 1.28 0.17 -0.14 0.24 -0.59 111 0.5560 

8 12 -0.25 0.20 -0.45 0.21 0.19 0.29 0.67 145 0.5037 

8 13 2.08 0.28 1.75 0.29 0.33 0.40 0.81 145 0.4171 

8 14 0.30 0.21 -0.32 0.22 0.63 0.30 2.07 145 0.0404 

9 1 0.43 0.22 0.33 0.19 0.11 0.29 0.37 130 0.7107 

9 2 -0.69 0.24 -0.98 0.21 0.29 0.32 0.90 130 0.3721 

9 3 -0.43 0.22 -0.71 0.19 0.28 0.29 0.97 130 0.3351 

9 4 -0.61 0.23 -0.35 0.19 -0.25 0.30 -0.85 128 0.3957 

9 5 -0.39 0.23 0.16 0.17 -0.55 0.29 -1.95 127 0.0539 

9 6 0.15 0.21 0.15 0.17 0.00 0.27 -0.01 129 0.9905 

9 7 -0.83 0.23 -0.57 0.19 -0.25 0.30 -0.85 128 0.3993 

9 8 -1.01 0.25 -0.87 0.20 -0.15 0.32 -0.45 127 0.6500 

9 9 -0.28 0.21 -0.62 0.19 0.34 0.28 1.21 130 0.2301 

9 10 0.13 0.21 0.08 0.18 0.05 0.27 0.19 127 0.8480 

9 11 1.27 0.18 1.33 0.16 -0.05 0.24 -0.23 108 0.8196 

9 12 -0.34 0.23 0.05 0.19 -0.38 0.30 -1.29 128 0.2002 

9 13 3.67 0.25 3.27 0.22 0.40 0.33 1.21 124 0.2281 

9 14 -0.44 0.26 -0.45 0.21 0.02 0.33 0.06 124 0.9561 

10 1 0.55 0.14 0.55 0.14 0.00 0.20 0.01 270 0.9960 

10 2 -0.54 0.15 -0.90 0.16 0.36 0.22 1.62 269 0.1056 

10 3 0.15 0.13 0.09 0.13 0.06 0.19 0.31 270 0.7574 

10 4 0.32 0.13 0.00 0.14 0.32 0.19 1.65 267 0.1007 

10 5 0.40 0.13 0.37 0.13 0.03 0.19 0.16 269 0.8709 

10 6 0.30 0.13 0.21 0.14 0.09 0.19 0.46 269 0.6464 

10 7 0.25 0.13 0.04 0.13 0.21 0.19 1.12 268 0.2617 

10 8 -0.92 0.16 -0.54 0.15 -0.38 0.22 -1.74 268 0.0827 

10 9 -0.24 0.14 -0.09 0.13 -0.15 0.19 -0.79 269 0.4276 

10 10 -0.12 0.14 -0.08 0.14 -0.04 0.20 -0.20 269 0.8436 

10 11 -1.03 0.16 -0.86 0.15 -0.17 0.22 -0.78 268 0.4334 

10 12 0.07 0.14 0.28 0.14 -0.21 0.20 -1.04 269 0.2973 

10 13 3.58 0.17 2.80 0.19 0.77 0.25 3.06 265 0.0025 

10 14 0.00 0.15 0.01 0.16 -0.02 0.22 -0.08 268 0.9340 
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11 1 0.30 0.16 0.51 0.16 -0.21 0.22 -0.96 223 0.3377 

11 2 -0.67 0.17 -0.87 0.18 0.19 0.24 0.78 223 0.4361 

11 3 -0.23 0.15 -0.67 0.16 0.43 0.22 1.97 223 0.0495 

11 4 -0.23 0.15 -0.46 0.17 0.23 0.22 1.02 222 0.3101 

11 5 -0.12 0.15 -0.18 0.16 0.07 0.22 0.31 224 0.7571 

11 6 0.10 0.15 -0.01 0.15 0.12 0.21 0.54 223 0.5889 

11 7 -0.43 0.15 -0.41 0.16 -0.01 0.22 -0.05 222 0.9603 

11 8 -0.79 0.16 -0.94 0.18 0.15 0.24 0.62 222 0.5358 

11 9 0.01 0.14 0.24 0.14 -0.23 0.20 -1.14 222 0.2545 

11 10 0.14 0.14 0.25 0.15 -0.11 0.21 -0.54 223 0.5864 

11 11 1.32 0.13 1.40 0.14 -0.08 0.19 -0.41 172 0.6807 

11 12 -0.11 0.16 -0.05 0.16 -0.06 0.22 -0.27 222 0.7862 

11 13 0.29 0.20 0.72 0.22 -0.42 0.29 -1.44 222 0.1510 

11 14 -0.55 0.17 -0.52 0.18 -0.03 0.25 -0.10 222 0.9165 

12 1 0.50 0.11 0.30 0.11 0.20 0.16 1.27 411 0.2053 

12 2 -0.76 0.13 -0.35 0.11 -0.41 0.17 -2.37 410 0.0183 

12 3 0.12 0.11 -0.15 0.10 0.28 0.15 1.86 413 0.0634 

12 4 0.04 0.11 0.26 0.10 -0.22 0.15 -1.48 412 0.1391 

12 5 -0.12 0.11 0.02 0.10 -0.14 0.15 -0.90 410 0.3687 

12 6 -0.63 0.12 -0.57 0.11 -0.06 0.17 -0.36 411 0.7164 

12 7 0.29 0.10 0.36 0.09 -0.07 0.14 -0.49 410 0.6223 

12 8 -0.89 0.12 -0.59 0.11 -0.30 0.16 -1.84 410 0.0659 

12 9 -0.08 0.11 0.13 0.09 -0.21 0.14 -1.47 410 0.1421 

12 10 0.03 0.11 -0.35 0.11 0.38 0.16 2.43 412 0.0154 

12 11 -0.92 0.12 -1.30 0.12 0.39 0.17 2.30 412 0.0218 

12 12 -0.37 0.12 -0.63 0.12 0.27 0.17 1.61 409 0.1086 

12 13 1.36 0.18 1.33 0.17 0.03 0.25 0.10 412 0.9178 

12 14 -0.35 0.13 -0.49 0.13 0.14 0.18 0.77 412 0.4430 

14 1 -0.28 0.38 -0.26 0.37 -0.02 0.53 -0.03 44 0.9736 

14 2 -1.06 0.38 -1.53 0.41 0.47 0.56 0.84 44 0.4055 

14 3 0.49 0.30 0.87 0.29 -0.38 0.42 -0.91 44 0.3667 

14 4 -0.27 0.34 0.24 0.33 -0.51 0.47 -1.07 43 0.2884 

14 5 -0.40 0.35 -0.93 0.38 0.52 0.51 1.02 44 0.3121 

14 6 -0.03 0.33 0.39 0.31 -0.42 0.45 -0.94 44 0.3547 

14 7 -0.30 0.33 0.23 0.31 -0.53 0.45 -1.17 43 0.2490 

14 8 -0.31 0.32 -0.38 0.33 0.07 0.46 0.15 44 0.8792 

14 9 0.17 0.30 0.07 0.31 0.10 0.43 0.23 44 0.8215 

14 10 -0.64 0.35 -0.64 0.36 0.00 0.50 0.00 44 0.9981 

14 11 1.36 0.27 0.96 0.29 0.40 0.40 1.01 40 0.3182 

14 12 -0.50 0.36 -0.99 0.38 0.49 0.52 0.95 44 0.3464 

14 13 3.21 0.41 2.46 0.48 0.74 0.64 1.17 44 0.2486 

14 14 -0.25 0.39 0.04 0.37 -0.29 0.53 -0.55 44 0.5867 

15 1 -0.64 0.22 -0.26 0.21 -0.38 0.30 -1.24 147 0.2162 

15 2 -1.12 0.22 -1.02 0.21 -0.11 0.31 -0.35 147 0.7274 

15 3 -0.23 0.19 0.02 0.18 -0.25 0.26 -0.97 147 0.3357 

15 4 -0.05 0.19 0.02 0.19 -0.07 0.27 -0.26 147 0.7927 

15 5 0.15 0.18 0.00 0.19 0.15 0.26 0.58 147 0.5660 

15 6 0.03 0.19 -0.01 0.19 0.04 0.26 0.16 147 0.8755 

15 7 -0.34 0.19 -0.03 0.18 -0.31 0.26 -1.17 147 0.2440 

15 8 -0.53 0.20 -0.35 0.19 -0.18 0.27 -0.66 146 0.5082 

15 9 -0.18 0.18 -0.19 0.18 0.01 0.26 0.03 147 0.9767 

15 10 -0.22 0.19 -0.25 0.19 0.03 0.27 0.10 147 0.9237 

15 11 0.87 0.17 0.75 0.17 0.12 0.24 0.51 129 0.6135 

15 12 -0.12 0.20 -0.21 0.20 0.09 0.28 0.32 143 0.7519 
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15 13 3.21 0.24 3.14 0.24 0.07 0.34 0.22 146 0.8282 

15 14 0.09 0.21 -0.33 0.21 0.43 0.30 1.42 147 0.1564 

16 1 0.04 0.21 0.13 0.19 -0.09 0.28 -0.31 154 0.7550 

16 2 -0.67 0.22 -1.11 0.21 0.44 0.30 1.46 155 0.1460 

16 3 -0.51 0.20 -0.13 0.18 -0.37 0.27 -1.40 152 0.1626 

16 4 -0.19 0.20 0.26 0.17 -0.45 0.26 -1.70 152 0.0906 

16 5 -0.12 0.20 0.49 0.16 -0.61 0.26 -2.39 153 0.0180 

16 6 -0.02 0.20 0.15 0.17 -0.17 0.26 -0.65 153 0.5165 

16 7 0.27 0.18 0.14 0.17 0.13 0.25 0.52 154 0.6060 

16 8 -0.10 0.18 -0.15 0.17 0.06 0.25 0.24 155 0.8109 

16 9 -0.14 0.19 -0.11 0.17 -0.02 0.25 -0.09 154 0.9311 

16 10 -0.20 0.20 -0.19 0.18 -0.01 0.27 -0.02 155 0.9849 

16 11 -0.08 0.18 -0.72 0.19 0.64 0.26 2.44 154 0.0156 

16 12 -0.05 0.20 -0.20 0.19 0.15 0.28 0.54 153 0.5899 

16 13 3.31 0.23 2.65 0.24 0.66 0.33 1.99 154 0.0482 

16 14 0.17 0.21 0.01 0.20 0.16 0.29 0.55 154 0.5835 

17 1 -0.47 0.17 -0.22 0.15 -0.26 0.22 -1.15 264 0.2518 

17 2 -0.70 0.16 -0.49 0.15 -0.21 0.22 -0.95 266 0.3416 

17 3 -0.10 0.14 0.20 0.12 -0.30 0.19 -1.61 264 0.1082 

17 4 -0.15 0.15 -0.29 0.14 0.14 0.20 0.69 268 0.4894 

17 5 -0.08 0.14 -0.12 0.13 0.04 0.20 0.19 267 0.8516 

17 6 -0.06 0.14 0.03 0.13 -0.09 0.19 -0.44 267 0.6596 

17 7 -0.14 0.14 -0.41 0.13 0.27 0.19 1.40 267 0.1614 

17 8 -0.81 0.16 -0.45 0.13 -0.36 0.21 -1.75 264 0.0816 

17 9 0.02 0.13 -0.19 0.13 0.21 0.19 1.11 268 0.2675 

17 10 0.14 0.14 0.20 0.13 -0.05 0.19 -0.29 265 0.7753 

17 11 -0.37 0.14 -0.80 0.14 0.43 0.19 2.22 269 0.0271 

17 12 0.03 0.15 0.00 0.14 0.03 0.20 0.13 267 0.8969 

17 13 0.30 0.20 0.34 0.18 -0.04 0.27 -0.15 266 0.8784 

17 14 -0.36 0.17 -0.60 0.16 0.23 0.23 1.01 267 0.3152 

18 1 0.42 0.15 0.84 0.15 -0.42 0.21 -1.95 230 0.0525 

18 2 1.33 0.12 1.72 0.13 -0.39 0.18 -2.21 232 0.0279 

18 3 0.16 0.13 -0.09 0.15 0.25 0.20 1.24 228 0.2174 

18 4 -0.29 0.15 -0.55 0.17 0.26 0.22 1.16 229 0.2484 

18 5 -0.19 0.15 -0.72 0.17 0.53 0.22 2.35 229 0.0198 

18 6 -0.28 0.15 -0.06 0.16 -0.22 0.21 -1.03 232 0.3021 

18 7 0.07 0.13 0.24 0.14 -0.17 0.20 -0.85 230 0.3955 

18 8 -0.56 0.15 -0.83 0.18 0.28 0.23 1.21 229 0.2288 

18 9 -0.42 0.14 -0.95 0.17 0.53 0.23 2.36 229 0.0189 

18 10 -0.39 0.15 -0.71 0.17 0.32 0.22 1.41 231 0.1596 

18 11 -0.64 0.14 -0.35 0.15 -0.29 0.21 -1.38 232 0.1683 

18 12 0.07 0.15 0.07 0.16 0.00 0.22 0.02 231 0.9878 

18 13 -0.41 0.17 -0.38 0.18 -0.03 0.25 -0.12 229 0.9059 

18 14 -0.13 0.17 -0.29 0.18 0.16 0.24 0.66 231 0.5124 

19 1 -0.23 0.18 -0.23 0.17 0.00 0.25 -0.02 206 0.9858 

19 2 -0.84 0.18 -1.06 0.18 0.23 0.26 0.88 207 0.3818 

19 3 -0.48 0.16 -0.41 0.16 -0.07 0.23 -0.30 207 0.7637 

19 4 -0.23 0.16 -0.21 0.16 -0.03 0.23 -0.12 207 0.9064 

19 5 -0.09 0.16 -0.39 0.16 0.30 0.23 1.32 207 0.1891 

19 6 -0.31 0.17 -0.28 0.16 -0.03 0.23 -0.13 206 0.8948 

19 7 -0.07 0.15 0.02 0.15 -0.09 0.21 -0.42 205 0.6780 

19 8 -1.15 0.19 -1.23 0.19 0.07 0.26 0.28 207 0.7790 

19 9 0.06 0.15 0.62 0.13 -0.56 0.19 -2.86 205 0.0047 

19 10 0.05 0.16 -0.05 0.15 0.10 0.22 0.45 207 0.6562 
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19 11 -0.62 0.16 -0.83 0.16 0.21 0.23 0.91 203 0.3619 

19 12 -0.24 0.17 0.02 0.16 -0.26 0.23 -1.11 206 0.2681 

19 13 1.34 0.25 1.01 0.23 0.33 0.34 0.97 203 0.3340 

19 14 -0.51 0.19 -0.99 0.19 0.49 0.27 1.82 205 0.0709 

20 1 -0.13 0.20 0.08 0.19 -0.20 0.28 -0.73 158 0.4663 

20 2 -0.28 0.20 -0.37 0.19 0.09 0.28 0.32 159 0.7521 

20 3 -0.08 0.18 0.18 0.16 -0.26 0.25 -1.08 158 0.2839 

20 4 -0.63 0.20 -0.33 0.18 -0.30 0.27 -1.10 158 0.2715 

20 5 -0.65 0.20 -0.26 0.18 -0.39 0.27 -1.41 158 0.1598 

20 6 -0.50 0.20 -0.34 0.18 -0.16 0.27 -0.59 158 0.5591 

20 7 -0.57 0.20 -0.44 0.18 -0.13 0.26 -0.50 158 0.6188 

20 8 -0.95 0.22 -0.76 0.19 -0.19 0.29 -0.66 157 0.5106 

20 9 -0.33 0.19 -0.71 0.19 0.37 0.26 1.42 159 0.1573 

20 10 -0.73 0.21 -0.57 0.19 -0.16 0.28 -0.56 158 0.5773 

20 11 -0.43 0.19 -0.82 0.18 0.39 0.26 1.49 159 0.1388 

20 12 0.25 0.19 -0.29 0.19 0.54 0.27 2.02 158 0.0454 

20 13 1.66 0.26 1.39 0.27 0.27 0.38 0.72 157 0.4731 

20 14 -0.10 0.21 0.02 0.19 -0.11 0.28 -0.40 158 0.6873 

21 1 -0.09 0.18 -0.20 0.17 0.11 0.25 0.45 196 0.6551 

21 2 0.62 0.16 0.65 0.14 -0.02 0.21 -0.10 196 0.9198 

21 3 0.67 0.15 0.85 0.13 -0.19 0.20 -0.95 196 0.3453 

21 4 -0.54 0.18 -0.16 0.15 -0.39 0.23 -1.67 195 0.0972 

21 5 -0.24 0.17 -0.26 0.15 0.02 0.23 0.09 196 0.9293 

21 6 -0.30 0.17 -0.23 0.15 -0.07 0.23 -0.29 196 0.7702 

21 7 -0.14 0.16 0.23 0.14 -0.37 0.21 -1.75 195 0.0814 

21 8 -0.91 0.18 -1.17 0.17 0.26 0.25 1.04 197 0.2983 

21 9 -0.47 0.17 -0.31 0.14 -0.16 0.22 -0.72 195 0.4722 

21 10 -0.24 0.17 -0.52 0.16 0.28 0.23 1.22 197 0.2230 

21 11 -0.55 0.17 -0.78 0.15 0.23 0.23 1.02 197 0.3112 

21 12 -0.40 0.18 -0.20 0.16 -0.20 0.24 -0.81 195 0.4171 

21 13 1.60 0.25 0.73 0.24 0.87 0.34 2.56 196 0.0112 

21 14 0.14 0.18 0.25 0.16 -0.11 0.24 -0.46 194 0.6432 

22 1 -0.67 0.65 0.01 0.51 -0.68 0.82 -0.83 14 0.4230 

22 2 0.06 0.56 -0.29 0.52 0.34 0.76 0.45 14 0.6575 

22 3 0.62 0.50 0.41 0.47 0.21 0.68 0.30 14 0.7660 

22 4 0.35 0.52 0.20 0.48 0.15 0.71 0.22 14 0.8328 

22 5 -1.75 0.73 0.22 0.47 -1.97 0.87 -2.26 13 0.0415 

22 6 0.16 0.52 0.46 0.46 -0.30 0.70 -0.43 14 0.6764 

22 7 0.84 0.48 0.41 0.46 0.44 0.67 0.66 14 0.5227 

22 8 -0.20 0.50 -0.76 0.48 0.57 0.69 0.82 14 0.4259 

22 9 0.14 0.50 0.20 0.46 -0.06 0.68 -0.09 14 0.9327 

22 10 0.13 0.53 -0.48 0.50 0.62 0.73 0.84 14 0.4141 

22 11 -0.29 0.55 -1.41 0.57 1.13 0.79 1.43 14 0.1759 

22 12 0.04 0.60 -0.28 0.54 0.32 0.80 0.40 14 0.6955 

22 13 2.65 0.66 2.46 0.61 0.19 0.90 0.21 14 0.8401 

22 14 -0.35 0.63 1.02 0.48 -1.37 0.80 -1.72 14 0.1080 

23 1 0.69 0.26 0.51 0.23 0.18 0.35 0.50 87 0.6193 

23 2 1.75 0.21 2.30 0.17 -0.55 0.27 -1.99 85 0.0495 

23 3 2.13 0.20 1.95 0.17 0.18 0.26 0.69 87 0.4910 

23 4 -0.09 0.26 -0.24 0.23 0.15 0.35 0.42 87 0.6721 

23 5 -0.57 0.28 -0.99 0.25 0.42 0.38 1.10 88 0.2738 

23 6 0.36 0.25 -0.10 0.23 0.46 0.34 1.37 88 0.1732 

23 7 0.16 0.24 0.42 0.20 -0.26 0.32 -0.84 86 0.4045 

23 8 -0.70 0.29 -0.89 0.27 0.19 0.39 0.50 88 0.6215 
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23 9 0.06 0.24 0.30 0.20 -0.24 0.32 -0.74 86 0.4601 

23 10 -0.72 0.28 -0.55 0.24 -0.17 0.37 -0.46 86 0.6485 

23 11 1.32 0.21 0.93 0.18 0.39 0.27 1.42 86 0.1606 

23 12 -0.33 0.27 -0.18 0.23 -0.15 0.36 -0.42 86 0.6764 

23 13 -1.12 0.26 -0.40 0.23 -0.72 0.35 -2.05 88 0.0434 

23 14 0.55 0.28 -0.19 0.25 0.74 0.38 1.97 88 0.0521 

24 1 -0.94 0.34 -0.58 0.30 -0.36 0.46 -0.78 65 0.4406 

24 2 -0.73 0.32 -0.21 0.28 -0.52 0.43 -1.21 65 0.2322 

24 3 -0.02 0.27 -0.03 0.25 0.01 0.37 0.02 64 0.9840 

24 4 -1.00 0.32 -0.78 0.29 -0.22 0.43 -0.50 65 0.6155 

24 5 -0.51 0.31 -0.94 0.30 0.43 0.43 1.01 64 0.3163 

24 6 -0.76 0.31 -0.91 0.30 0.15 0.43 0.34 65 0.7315 

24 7 -0.02 0.27 -0.36 0.26 0.34 0.37 0.90 64 0.3691 

24 8 -0.85 0.31 -1.07 0.30 0.22 0.43 0.51 65 0.6084 

24 9 -0.56 0.29 0.21 0.23 -0.77 0.37 -2.06 65 0.0438 

24 10 -1.09 0.32 -0.94 0.29 -0.15 0.44 -0.35 65 0.7276 

24 11 -0.97 0.30 -1.81 0.34 0.84 0.46 1.84 64 0.0706 

24 12 -0.18 0.31 0.57 0.27 -0.76 0.41 -1.84 62 0.0701 

24 13 1.31 0.40 1.29 0.45 0.02 0.60 0.04 64 0.9670 

24 14 0.10 0.31 0.20 0.28 -0.10 0.42 -0.24 65 0.8082 

25 1 -0.39 0.19 -0.43 0.20 0.04 0.27 0.15 180 0.8831 

25 2 0.08 0.17 0.12 0.18 -0.04 0.25 -0.17 182 0.8682 

25 3 0.88 0.15 1.14 0.15 -0.26 0.21 -1.25 182 0.2112 

25 4 0.37 0.16 0.57 0.16 -0.20 0.23 -0.86 182 0.3890 

25 5 0.01 0.17 0.34 0.17 -0.33 0.24 -1.40 183 0.1630 

25 6 0.30 0.16 0.04 0.17 0.26 0.24 1.09 181 0.2776 

25 7 0.21 0.16 0.60 0.16 -0.39 0.22 -1.76 182 0.0796 

25 8 -0.63 0.19 -0.98 0.20 0.36 0.28 1.29 180 0.1974 

25 9 0.79 0.14 0.78 0.15 0.00 0.21 0.02 181 0.9845 

25 10 -0.50 0.18 -0.30 0.18 -0.20 0.25 -0.78 181 0.4341 

25 11 -0.52 0.17 -1.23 0.21 0.71 0.27 2.63 176 0.0092 

25 12 0.27 0.17 0.72 0.17 -0.45 0.24 -1.86 179 0.0641 

25 13 1.95 0.24 1.42 0.27 0.53 0.36 1.48 179 0.1401 

25 14 0.58 0.17 0.15 0.19 0.43 0.26 1.67 180 0.0966 

26 1 -0.50 0.16 -0.28 0.15 -0.22 0.22 -1.02 264 0.3070 

26 2 -0.58 0.16 -0.57 0.15 -0.01 0.21 -0.04 265 0.9670 

26 3 0.71 0.12 0.37 0.12 0.33 0.17 1.95 267 0.0528 

26 4 0.24 0.13 0.60 0.12 -0.36 0.18 -1.99 266 0.0473 

26 5 0.07 0.14 0.18 0.13 -0.12 0.19 -0.63 266 0.5312 

26 6 -0.36 0.15 -0.25 0.14 -0.12 0.20 -0.58 265 0.5615 

26 7 -0.11 0.13 0.09 0.12 -0.21 0.18 -1.15 266 0.2503 

26 8 -1.21 0.17 -1.30 0.16 0.09 0.23 0.38 266 0.7048 

26 9 0.14 0.13 0.69 0.11 -0.56 0.17 -3.31 265 0.0010 

26 10 0.22 0.13 -0.09 0.13 0.31 0.19 1.66 267 0.0981 

26 11 -0.65 0.14 -1.24 0.15 0.59 0.20 2.88 266 0.0043 

26 12 0.19 0.15 -0.14 0.14 0.33 0.20 1.63 263 0.1040 

26 13 2.32 0.21 2.29 0.19 0.03 0.29 0.11 264 0.9100 

26 14 0.11 0.15 0.20 0.14 -0.08 0.21 -0.40 265 0.6863 

27 1 -0.35 0.14 -0.29 0.13 -0.05 0.19 -0.29 395 0.7706 

27 2 -0.33 0.13 -0.40 0.13 0.07 0.18 0.40 397 0.6901 

27 3 0.24 0.11 -0.08 0.11 0.32 0.16 2.02 397 0.0435 

27 4 -0.23 0.12 -0.08 0.12 -0.14 0.17 -0.85 396 0.3962 

27 5 -0.26 0.12 -0.35 0.12 0.09 0.17 0.52 395 0.6019 

27 6 0.08 0.12 0.23 0.11 -0.16 0.16 -0.96 393 0.3355 
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27 7 -0.43 0.12 -0.33 0.12 -0.11 0.17 -0.62 395 0.5328 

27 8 -0.98 0.14 -0.92 0.13 -0.06 0.19 -0.29 395 0.7690 

27 9 -0.44 0.12 -0.44 0.12 -0.01 0.17 -0.03 392 0.9739 

27 10 -0.19 0.12 -0.09 0.12 -0.10 0.17 -0.59 394 0.5530 

27 11 -0.67 0.12 -0.88 0.12 0.20 0.17 1.17 394 0.2413 

27 12 -0.16 0.13 -0.12 0.12 -0.04 0.17 -0.20 393 0.8378 

27 13 1.16 0.17 1.17 0.17 -0.01 0.24 -0.06 396 0.9538 

27 14 -0.49 0.14 -0.48 0.13 -0.01 0.20 -0.07 392 0.9464 

28 1 -0.23 0.25 -0.45 0.25 0.22 0.35 0.63 105 0.5275 

28 2 -0.85 0.25 -0.85 0.25 0.00 0.35 0.00 105 0.9987 

28 3 1.21 0.18 1.19 0.18 0.02 0.25 0.09 105 0.9320 

28 4 -0.69 0.24 0.00 0.21 -0.68 0.32 -2.11 103 0.0371 

28 5 -0.50 0.23 -0.24 0.22 -0.26 0.32 -0.80 105 0.4228 

28 6 0.87 0.19 0.96 0.18 -0.09 0.27 -0.33 104 0.7434 

28 7 -0.20 0.21 -0.28 0.21 0.08 0.30 0.26 105 0.7942 

28 8 -1.67 0.30 -1.10 0.25 -0.57 0.39 -1.46 104 0.1482 

28 9 -0.31 0.22 -0.46 0.22 0.15 0.31 0.50 105 0.6188 

28 10 -0.19 0.22 -0.06 0.21 -0.13 0.31 -0.41 105 0.6823 

28 11 1.31 0.18 0.89 0.18 0.42 0.25 1.68 100 0.0965 

28 12 -0.32 0.24 -0.53 0.23 0.21 0.33 0.63 105 0.5275 

28 13 -1.01 0.25 -1.27 0.23 0.26 0.33 0.78 103 0.4379 

28 14 -0.28 0.26 -0.26 0.25 -0.01 0.36 -0.03 105 0.9733 

29 1 -0.47 0.22 -0.18 0.20 -0.29 0.30 -0.98 145 0.3269 

29 2 -1.39 0.23 -1.24 0.21 -0.15 0.31 -0.48 147 0.6338 

29 3 -0.04 0.19 -0.20 0.18 0.16 0.26 0.61 148 0.5440 

29 4 0.18 0.19 -0.07 0.18 0.25 0.26 0.96 148 0.3379 

29 5 0.18 0.19 -0.05 0.18 0.23 0.26 0.89 148 0.3756 

29 6 -0.15 0.20 -0.11 0.18 -0.04 0.27 -0.15 147 0.8807 

29 7 0.03 0.18 0.06 0.17 -0.03 0.25 -0.14 147 0.8891 

29 8 -0.80 0.21 -0.86 0.21 0.06 0.29 0.21 147 0.8349 

29 9 -0.01 0.18 -0.03 0.17 0.02 0.25 0.09 145 0.9288 

29 10 -0.26 0.20 0.08 0.17 -0.34 0.26 -1.28 147 0.2032 

29 11 0.97 0.17 0.86 0.16 0.12 0.23 0.50 129 0.6150 

29 12 -0.26 0.21 -0.40 0.19 0.14 0.28 0.49 147 0.6239 

29 13 1.46 0.29 1.22 0.27 0.24 0.40 0.61 147 0.5432 

29 14 -0.71 0.23 -0.49 0.21 -0.21 0.31 -0.69 146 0.4932 
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7.6 Supporting information for sections 4.3 and 4.4 

7.6.1 Correlations used for equating prior to factor analysis 

 

Figure S 52: Correlations between initial PCM measures for different experiments 

Dotted lines are used to separate isolated subsets of data. Experiments 10 and 16 were selected to be 

artificially equated based on this analysis, owing to their strong correlation and equivalence in design. 
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Similarity between measures for Experiment 10 in subset 1 (Coloured complexes of iron) and 

Experiment 16 in subset 6 (Equilibrium and Le Chatelier’s principle (revised: for foundations) 

are additionally shown in Figure S 52 and Figure S 53 below. 

 

Figure S 53: Similarity of measures for experiments selected to be artificially equated 

 

Figure S 54: Linear relationship between measures for experiments selected to be artificially 
equated 

  

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14

M
e
a
s
u
re

 (

)

Survey item number

Coloured Complexes of Iron

Equilibrium and Le Chatelier's Principle
(revised: for foundations)

y = 0.9212x - 0.0486
R² = 0.9499

-2

-1

0

1

2

3

4

-2 0 2 4

E
q
u
ili

b
ri
u

m
 a

n
d
 L

e
 C

h
a
te

lie
r'
s
 p

ri
n

c
ip

le
 

(r
e
v
is

e
d
: 
fo

r 
fo

u
n
d
a
ti
o

n
s
) 


v
a
lu

e
s

Coloured Complexes of Iron  values



7.6  Supporting Information| Supporting information for sections 4.3 and 4.4 284 

 

 

7.6.2 Estimating the final LLTM within Facets software 

A large number of facets must be defined in order to estimate an LLTM within the Facets 

software: 

 A survey item facet used as a “dummy facet” to easily define different rating scale 

structures for each survey item 

 The occasion-specific student bias measures (E) must be included 

 The question-specific experiment measure () facet normally used for a Partial Credit 

Model is then defined and set as a “dummy facet” for the purposes of stipulating the 

LLTM structure: labels assigned to each element of this facet will be used to define the 

Q matrix.  

 The  and  values (factor measures and item locations respectively) are contained 

within one single “basic parameters” facet, each different measure with its own facet 

element number. It is these facet element numbers which are listed in the labels for 

each  facet element, specifying which parameters to add together to calculate that 

specific  value. 

 The model must be defined to contain an extensive series of additional facets which 

the program can use to add additional “basic parameters” as instructed to do so by the 

Q matrix (stipulated by the dummy  facet labels). Every additional time any basic 

parameter measure must be added (or subtracted) one more time, this requires an 

additional facet. In the code outlined here, the total number of basic parameter facets 

included is 100: the sum of the maximum values for each column in the Q matrix. 

FACETS=104 

;1 - items (dummy, used only to define rating scale structures) 

;2 – Occasion-specific student bias measures 

;3 - Question-specific experiment measures (dummy, codes for LLTM) 

;4… - Factor measures and item locations 

ENTERED-IN-DATA=1,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4, ... 

Note that in the final line of code shown above, the number “4” is repeated 100 times. This is 

because facet number 4 is the facet containing the factor measures and item locations, which 

will be summated to approximate the  measures. There are 100 times a basic parameter 

(either  or ) may be stipulated to be either added or subtracted once more within the labels 

of the 3rd facet (to be coded as described below). 

Specifications are included to define all facets as positively oriented (more positive measure 

implies positive response is more likely), to arrange data in the final output and to specify 

which of the facets is “free” or non-centred. The coding below has defined facet 2: the student 

measures, to be the non-centred facet. That is, the measures for this facet will not sum to 

zero. Measures for all other facets will be defined to sum to zero. The NULL specification has 

been used to allow later stipulation that no basic parameter of the LLTM be added at the 

relevant point of the summation.  

NEGATIVE=0 

ARRANGE=N 

NONCENTER=2 

NULL=0000 

The MODEL specification must be used in such a way that it defines whether basic parameters 

of the model are added or subtracted. That is, it is used to define the sign of the Q matrix 
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coefficients. This is achieved by adding a negative sign where appropriate in front of the 

relevant basic parameter facets. A different model must be stipulated for each survey item, as 

each has a different series of Q matrix coefficients. Fourteen MODEL= statements will thus be 

needed for the ASLE survey LLTM. Below, “Q1Scale” and “Q14Scale” have been used as labels 

for the particular rating scale structures associated with survey questions 1 and 14. The “R4” 

indicates a rating scale structure with 4 Rasch-Andrich thresholds. Note the addition of one 

more “?” for each time any basic parameter may be added or subtracted one more time. 

MODEL=1,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,
?,?,?,?,?,?,?,?,?,?,?,?,?,?,-?,-?,-?,-?,-?,-?,-?,-?,-?,-?,-?,?,?,?,?,?,?,?,?,?
,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,Q1scale 

. 

.     (other model statements for other survey items) 

. 

MODEL=14,?,?,-?,-?,-?,-?,-?,-?,-?,-?,-?,-?,-?,-?,-?,-?,-?,?,?,?,?,?,?,?,?,?,?,
?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,
?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,Q14s
cale 

* 

rating scale=Q1scale,R4 

. 

.   (specifications defining the rating scale structure for the other survey 
items) 

. 

rating scale=Q14scale,R4 

* 

Facets other than the  facet and basic parameter facet may be labelled as desired. 

LABELS= 

1= Survey item,D 

1, data interpretation 

. 

.     (labels for other survey items) 

. 

14, overall learning experience 

* 

2= Person measures (occasion-specific and equated) 

1, Ex 1 - P 1 

2, Ex 1 - P 2 

3, Ex 1 - P 3 

. 

.     (labels for other person measures) 

. 

9379, Ex 73 - P 5917 

9380, Ex 71 - P 5520 

9381-9462, Equated across occasions 

* 

The linear combination of basic parameters (several  values plus a  value) which 

approximate each  measure can be stipulated as labels for the  facet elements. There is one 

 facet element for each survey item, for each experiment. The label for each element of the 

dummy  facet is a string of 100 four- digit numbers, each number being the element number 

associated with the next basic parameter to be added or subtracted. Whether that basic 

parameter is added or subtracted is stipulated within the MODEL= statement. For example, 

digits 0001 at the end of the label for the first facet element (below) stipulate the addition of 
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basic parameter 0001: the item location () for survey item 1. The next  value’s label has a 

code of 0002 at the end, to add basic parameter 0002. The full string of text adds (or subtracts) 

each basic parameter the correct number of times to yield the  value in accordance with the 

LLTM Q-matrix. Basic parameter 0101 is subtracted fifteen times within the specifications for 

the second  value, for example, because of a -15 Q-matrix weighting of factor 01 on to item 2 

( element 2 being item 2 for experiment 1). 

3, Question specific experiment quality measures (LLTM codes),D 

1,0000000000000000000000000000000000000000000000000000000000000000000000000000
000000000000000003010000000000000000000000000000000000000000000000000000040104
010401040104010401040100000000000005010000000000000000000000000000000000000000
060106010000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000001 

2,0101010101010101010101010101010101010101010101010101010101010201000000000000
000000000000000003010000000000000000000000000000000000000000000000000000040104
010401040104010401040104010401040105010501050105010501050105010000000000000000
060100000000000000000000000000000000000000000000000007010701000000000000000000
000000000000000000000000000000000000000000000000000901000010011001100100000000
0000000000000002 

. 

.     (other codes for basic parameter element numbers) 

. 

406,01290129000000000000000000000000000000000000000000000000000002290229000000
000000000000000000000000000000000000000000000000000000000000000000000000000429
000000000000000000000000000000000000052900000000000000000000000000000000000000
000629062900000000000000000000000000000000000000000000072907290729072907290000
000000000000000000000000000000000000000000000000000000000000000000000000000000
000000000000000014 

* 

4, LLTM Basic parameters 

0001, Survey item 1 location 

0002, Survey item 2 location 

. 

.     (other item location parameters) 

. 

0014, Survey item 14 location 

0101, f1 Ex 1  "factor 1" - Biological Buffers 

0102, f1 Ex 2  "factor 1" - Thermochemistry 

0103, f1 Ex 3  "factor 1" - Vapour Pressure 

0104, f1 Ex 4  "factor 1" - Melting Points and Recrystallisation 

. 

.     (other experiment specific factor measures) 

. 

1127, f11 Ex 27  "factor 11" - Copper(II) Ion Absorption Spectrophotometry 
(revised: laptop) 

1128, f11 Ex 28  "factor 11" - Introductory Experiment (revised: pipetting) 

1129, f11 Ex 29  "factor 11" - Quantitative Techniques (revised: no pipetting) 

* 

Above, the first two digits of the LLTM basic parameter element numbers correspond to the 

factor number, whilst the second two digits correspond to the experiment number. For 

example, 0103 is the factor 1 measure for experiment 3 (Vapour pressure). This notation is 

simply out of convenience. The DValues= specification can then be entered to instruct the 

program that the additional basic parameter facets included initially in the ENTERED-IN-DATA 

specification have element numbers stipulated by particular locations in the string of digits for 

each label in facet 3 (the dummy  facet).  
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DVALUES= 

4,3,1,4 

5,3,5,4 

6,3,9,4 

7,3,13,4 

8,3,17,4 

. 

. (other commands for reading labels of the basic parameter facet) 

. 

102,3,393,4 

103,3,397,4 

104,3,401,4 

* 

The specifications above stipulate the facet number (of the total 104), then the facet number 

whose label is to be referenced (facet 3, the dummy  facet), the first digit of the total string of 

digits in the label to read when retrieving the relevant basic parameter for that facet, then the 

number of digits to read from that point. The stipulation 4,3,1,4 therefore instructs the 

program to add a basic parameter (specified in the ENTERED-IN-DATA specification initially) as 

the 4th facet by reading the label of facet 3, beginning with the 1st digit and continuing to read 

4 digits, then using this number as the element number of the basic parameters facet to 

retrieve.  

In the study discussed within this thesis, data was entered into the specification file as one line 

of code per data point. Only the first 3 facets need to be specified, as all basic parameters are 

entered using the DValues specifications. The four digits listed specify the survey item number, 

the number of the relevant occasion-specific student bias measure, the  facet number 

corresponding to the experiment and survey item for which the observed response was 

gathered, then the observed response (0 through to 4 for the lowest to highest response 

category respectively) 

DATA= 

1,1,57,3 

2,1,58,4 

3,1,59,4 

4,1,60,4 

5,1,61,2 

. 

. (one line for each data point) 

. 

11,9380,25,4 

12,9380,26,4 

13,9380,27,3 

14,9380,28,3 
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7.6.3 Full matrices comprising the final LLTM 

The ASLE survey data can be described by Equation 41 reproduced below, where H is a matrix 

of parameters estimated from the data (Figure S 57) and Q is a matrix of coefficients weighting 

each of these factors’ contributions to each ASLE survey item (Figure S 56). The product of 

these matrices yields a matrix of item-specific experiment quality measures (Figure S 58) able 

to predict student responses to ASLE surveys in conjunction with Equations 43 and 1. 

 [𝛿𝐿𝐿𝑇𝑀𝑖,𝑚] = 𝑸 × 𝑯 41 

The most accurate (unrounded) estimate for the Q-matrix is: 

 

Figure S 55: Preliminary Q-matrix of non-integer values 

whilst the matrix of integer values below is approximately a scalar multiple of the above (scalar 

value k = 24.4, see Equation 40), yet suitable for use with the Facets software. 

 

Figure S 56: Integer value Q-matrix used for the final LLTM 

It is this Q-matrix (Figure S 56) which was used in the main study. Note that factor 12 

coefficients are all zero, meaning this factor could be excluded. 
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one column for each factor for inclusion of μ parameters

0 0 1 7 -1 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

-15 1 -1 10 7 -1 2 0 -1 3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

-10 5 5 1 1 -3 3 1 2 1 -1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

1 6 1 0 0 1 2 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

5 3 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

1 1 7 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

-2 5 -1 2 1 1 1 -1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

1 1 0 1 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

1 8 -1 -1 2 0 0 1 -2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

7 1 2 1 -1 0 -1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

2 -4 14 2 -11 2 -5 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

-1 1 -1 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

14 1 -2 -8 -7 13 12 -2 0 -1 5 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

-2 2 0 1 1 2 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
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The matrix H in Equation 41 contains all parameters estimated for the LLTM, and is shown in 

full below. Note that the item locations () are fixed to be identical for each experiment 

(column) and that factor measures for factor 12 all appear as zero, since this factor did not 

contribute (and could therefore be excluded) when using the matrix of integer values. The 

factor measures for each experiment contained within this matrix are more conveniently 

presented as figures within section 7.6.4, including error margins for each. 

 

Figure S 57: LLTM basic parameter matrix H 

As can be seen in Equation 41, the product of the matrices Q and H yields a new matrix 

containing all student independent measures for each evaluated experiment, approximately 

equal to those which would be estimated from a fully connected Partial Credit Model. This 

(annotated) matrix of LLTM values is presented in full below. 

 

Figure S 58: Matrix of LLTM measures specific to survey item and experiment 
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-0.36 -0.35 -0.45 -0.28 -0.26 -0.32 -0.44 -0.35 -0.35 -0.39 -0.34 -0.37 -0.32 -0.25 -0.23 -0.34 -0.26 -0.4 -0.31 -0.3 -0.32 -0.27 -0.35 -0.19 -0.26 -0.28 -0.3 -0.27 -0.26
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3 -2.42 -1.76 -1.73 -0.45 -1.23 -1.33 -3.01 -0.9 -0.33 -0.88 -0.39 -0.61 -1.44 -1.47 -0.98 -0.89 -0.9 -1.17 -0.43 -0.84 -1.66 -1.44 -2.76 -0.72 -1.74 -1.28 -0.9 -2.06 -0.9

4 -1.7 -0.55 -1.01 -0.28 -0.47 -0.78 -1.07 -0.73 -0.29 -1.02 -0.39 -0.84 -0.88 -1.28 -0.94 -1.25 -0.56 -0.39 -0.72 -0.44 -0.7 -1.25 -0.93 -0.25 -1.25 -0.93 -0.39 -0.59 -0.94

5 -1.5 -0.21 -1.01 -0.48 -0.27 -0.57 -1.39 -0.83 -0.73 -1.14 -0.68 -0.71 -0.93 -0.77 -0.88 -1.27 -0.79 -0.46 -0.69 -0.49 -0.65 -0.84 -0.37 -0.13 -1 -0.88 -0.49 -0.44 -0.93

6 -1.68 -0.47 -0.95 -0.67 -1.3 -0.89 -2.12 -0.8 -0.86 -0.95 -0.8 -0.18 -1.18 -1.23 -1.08 -1.14 -0.91 -0.76 -0.6 -0.41 -0.61 -0.94 -0.99 -0.05 -0.99 -0.42 -0.97 -1.72 -0.8

7 -1.55 -0.81 -0.42 -0.55 -0.43 -0.97 -1.24 -0.71 -0.22 -0.77 -0.48 -1.05 -0.94 -1.1 -0.88 -1.09 -0.73 -1.11 -0.84 -0.55 -0.94 -1.58 -1.39 -0.56 -1.18 -0.76 -0.51 -0.46 -0.94

8 -0.79 0.23 0.67 -0.02 0.15 -0.16 -0.68 -0.15 0.1 -0.01 0.08 0.15 -0.03 -0.45 -0.51 -0.54 -0.09 -0.26 0.25 -0.08 -0 -0.45 -0.01 -0.02 -0.11 0.35 0.28 0.35 -0.25

9 -1.35 -0.15 -1.35 -0.35 -0.1 -0.94 -1.4 -0.6 -0.04 -0.47 -1.14 -0.7 -0.56 -1.01 -0.69 -1.02 -0.61 -0.32 -1.29 -0.34 -0.56 -1.28 -1.23 -0.79 -1.72 -1.25 -0.33 -0.45 -0.96

10 -0.93 0.11 -0.25 -0.97 -0.64 -0.39 -0.89 -0.96 -0.84 -0.83 -0.93 -0.81 -1.16 -0.56 -0.8 -0.94 -1 -0.5 -0.83 -0.2 -0.56 -1.07 -0.12 0.09 -0.53 -0.68 -0.63 -0.65 -0.88

11 -0.52 0.05 1.23 -1.88 -2.23 -0.01 -2.53 -1.69 -1.92 0.37 -2.04 0.48 0.19 -1.6 -1.7 -0.21 -0.25 -0.2 -0.13 -0.21 -0.16 -0.14 -1.87 0.53 0.11 0.42 -0.11 -1.88 -1.87

12 -1.02 -0.49 -0.4 -0.17 0.06 -0.68 -1.44 -0.04 -0.25 -0.57 -0.3 -0.17 -0.51 -0.35 -0.6 -0.8 -0.82 -0.94 -0.51 -0.63 -0.54 -0.46 -0.58 -0.8 -1.09 -0.42 -0.65 -0.41 -0.61

13 -3.12 -0.77 -3.63 -2.24 -3.07 -2.36 0.76 -2.76 -4 -3.83 -1.06 -2.08 -2.14 -3.9 -4.36 -4 -1.17 -0.38 -2.04 -2.54 -2.14 -3.5 -0.36 -2.53 -2.27 -3.09 -1.9 0.04 -2.22

14 -2.09 -0.68 -1.79 -0.3 -0.52 -1.16 -2.01 -0.9 -0.57 -0.99 -0.33 -0.37 -1.04 -1.02 -0.95 -1.27 -0.54 -0.78 -0.16 -0.88 -1.13 -1.2 -1.02 -0.86 -1.04 -0.92 -0.42 -0.4 -0.27
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7.6.4 Measures for basic factors contributing to ASLE survey responses 

 

 

   
Laboratory skills development 
Interest 

Relevance to chemistry studies 
Clear expected learning 

Time availability 
 

Figure S 59: Measures of latent factor 1 for all experiments 

Analyses suggest this factor is largely related to the perceived connection between theoretical content in 

the experiment and content presented in the lecture course. The factor appears to be related to the 

perceived connection with recognisable theory from the perspective of the students. Not mere presence 

of any theory at all or presence of course content regardless of the familiarity of presentation. 

Experiments with high measures for this factor have an easily recognised relevance to the course and 

consequently clear expected learning outcomes, whereas experiments with low values for this factor are 

perceived as more “skills-based” and time consuming. A strong “boredom” response is seen for 

experiments inclusive of familiar lecture content, and so student interest also correlates with this factor. 
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 Clear assessment criteria 

Clear procedure in manual 
Sufficient background information 
Clear expected learning outcomes 

 

Figure S 60: Measures of latent factor 2 for all experiments 

This factor most closely resembles an overall quality of instructional and guiding material provided to 

students conducting the experiment. Most ASLE item responses correlating with this factor’s values 

involve a sense of clarity in the material. Patterns observed in values above, notably different iterations of 

the “Reaction kinetics” experiment, suggest that not only are the instructional notes relevant to this 

measure, but also the order and phrasing of questions asked within the laboratory notebook that are 

submitted for assessment. 
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 Increased understanding of chemistry 

Teamwork beneficial 
 

Figure S 61: Measures of latent factor 3 for all experiments 

This factor exists as a manifestation of the fact that perceived benefits of teamwork and perceived 

increases in understanding are so closely relates as to manifest as a singular, irreducible factor within 

this data set. It is not clear from this analysis alone why this occurs: teamwork could promote 

understanding, understanding could prompt students to be more willing to help their classmates, or a 

confounding factor could cause the two to correlate for other reasons. 
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 Data interpretation skills development 
 

Figure S 62: Measures of latent factor 4 for all experiments 

This factor most closely reflects the perceived increase in data interpretation skills from the students’ 

perspective. More positive values of this factor (increased perception of skills development) does not 

necessarily arise merely from the inclusion of data interpretation tasks: the development of skills, rather 

than mere use of existing skills, appears to be important based on patterns in the observed measure 

values. Notably, the figure above shows higher measure values for experiments presented to students of 

lower ability (the Foundations of Chemistry cohort), presumably because skills utilised in the experiments 

were more often new, and therefore developed through the exercise. Simply including new analytical 

procedures is not sufficient either, however: “Vapour pressure” receives the lowest measure of all, likely 

because the unfamiliar graphing data logger involved was met with confusion and frustration. 
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Teamwork beneficial Responsibility for own learning 

Figure S 63: Measures of latent factor 5 for all experiments 

This factor most clearly resembles a spectrum from working individually (more positive values) to 

benefiting from working with others (less positive values), and maps reasonably closely (though not 

perfectly) to whether students worked in pairs (low values) or individually (high values). The value of this 

factor appears to depend on factors other than how students are required to work, however, given the 

appearance of an experiment conducted individually (“introductory experiment”) as the lowest value and 

an experiment conducted in pairs (“Ion Exchange Chromatography”) as the highest value, both in 

contrast to the broader trend. The prior knowledge of the student cohorts (Foundations of Chemistry IA/B 

or Chemistry IA/B) may play a role also, as experiments conducted by the less experienced Foundations 

cohort appear to cluster at the lower end of the spectrum, representing that teamwork is beneficial in 

these cases. 
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 Effective demonstrator supervision and guidance 

Figure S 64: Measures of latent factor 6 for all experiments 

This factor most closely resembles the perception that the demonstrator’s assistance in the experiment 

was effective. It is important to note that these values were extracted from data sets where multiple 

different demonstrators taught different subsets of the student groups, and so values of this factor cannot 

be interpreted as reflecting teacher quality. Rather, they reflect an attribute specific to the experiment 

itself which influences the perceived appreciation of the demonstrator (or possibly an aggregate view of 

the range of demonstrators who taught each experiment). Key to this interpretation is the “Vapour 

pressure” experiment as the highest value: demonstrators were appreciated to a far greater extent in this 

generally poorly received experiment than in any other case. However, when the identical experiment 

was run in absence of the poorly received handheld data logger device, this extremely positive perception 

of the demonstrators vanished. This factor appears to reflect a reliance on and appreciation for the 

demonstrator’s help (for example as a result of a poor experiment), not the demonstrator’s teaching 

ability.  

 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Determination of Vitamin C concentration

Biological Buffers

Quantitative Techniques (revised: for foundations)

Introductory experiment

Quantitative Techniques (revised: no pipetting)

Equilibrium and Le Chatelier's Principle (revised: for foundations)

Reaction Kinetics (revised: for foundations)

Aromachemistry

Reaction Kinetics (revised: question order and phrasing)

Visible Absorption Spectrophotometry

Melting Points and Recrystallisation

Metal Activity Series

Reaction Kinetics

Biological Buffers (revised: laptop)

Introductory experiment (revised: observations video)

Liquid-Liquid Extraction and TLC

Quantitative techniques

Thermochemistry (revised: for foundations)

Analysis of Spinach Extracts

Synthesis of Aspirin

Copper(II) Ion Absorption Spectrophotometry

Thermochemistry

Coloured Complexes of Iron

Copper(II) Ion Absorption Spectrophotometry (revised: laptop)

Ion exchange Chromatography

Analysis of Spinach Extracts (revised: for foundation - in pairs)

Introductory Experiment (revised: pipetting)

Vapour Pressure (revised: laptop)

Vapour Pressure

𝜼𝒅𝒆𝒎𝒐𝒏𝒔𝒕𝒓𝒂𝒕𝒐𝒓𝒔 



7.6  Supporting Information| Supporting information for sections 4.3 and 4.4 296 

 

 

 

 

  
 

 Positive overall learning experience 

Figure S 65: Measures of latent factor 7 for all experiments 

This factor has an unknown relation to laboratory activity design, but most closely resembles a perception 

of positive overall experience. Critically, it is a contribution to overall experience not resembling any items 

included on the ASLE survey instrument, and therefore represents a variation in this perception which is, 

as yet, unaccounted for. Were other items to be included on the ASLE survey and used to identify more 

factors than those comprising this LLTM, it is anticipated that measures for this factor would vary to a far 

lesser extent. 
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