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Abstract 
Mortality time series display time-varying volatility. The utility of statistical 
estimators from the financial time-series paradigm, which account for this 
characteristic, has not been addressed for high-frequency mortality series. 
Using daily mean-mortality series of an exemplar intensive care unit (ICU) 
from the Australian and New Zealand Intensive Care Society adult patient 
database, joint estimation of a mean and conditional variance (volatility) 
model for a stationary series was undertaken via univariate autoregressive 
moving average (ARMA, lags (p, q)), GARCH (Generalised Autoregressive 
Conditional Heteroscedasticity, lags (p, q)). The temporal dynamics of the 
conditional variance and correlations of multiple provider series, from rural/ 
regional, metropolitan, tertiary and private ICUs, were estimated utilising 
multivariate GARCH models. For the stationary first differenced series, an 
asymmetric power GARCH model (lags (1, 1)) with t distribution (degrees-of- 
freedom, 11.6) and ARMA (7,0) for the mean-model, was the best-fitting. The 
four multivariate component series demonstrated varying trend mortality de-
cline and persistent autocorrelation. Within each MGARCH series no model 
specification dominated. The conditional correlations were surprisingly low 
(<0.1) between tertiary series and substantial (0.4 - 0.6) between rural-regional 
and private series. The conditional-variances of both the univariate and mul-
tivariate series demonstrated a slow rate of time decline from periods of early 
volatility and volatility spikes. 
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1. Introduction 

Mortality time series analyses in the biomedical literature traditionally utilise 
monthly or yearly aggregates [1], albeit log-linear (Poisson) approaches to the 
assessment of the effects of air-borne pollution report daily mortality [2]. The 
recent application of statistical process control (SPC) to monitor provider (for 
example intensive care unit, ICU) mortality has seen the use of EWMA (expo-
nentially weighted moving average) charts to plot sequential patient admissions 
and progressively updated aggregate (mean) mortalities [3] [4]. The data gene-
rating process (DGP) of mortality series at this degree of temporal aggregation 
has not been appropriately characterised and would have implications for per-
formance monitoring strategies such as residual-EWMA control charts, which 
we have previously advocated [5]. The latter study investigated the DGP of 
monthly ICU mortality time-series, which displayed autocorrelation, seasonality 
and (G)ARCH ((Generalised) Autoregressive Conditional Heteroscedasticity) 
effects. That is, the conditional variance of the time series random component 
(ϵt, or white noise) followed an autoregressive process with time varying volatili-
ty. In the financial time series literature, “volatility” is conventionally equated 
with (conditional) standard deviation [6] or (conditional) variance [7], albeit 
such focus has been subjected to critique [8] [9]. We now extend the previous 
perspective to daily mortality time series, which, for the current purpose, we will 
term “high-frequency” and draw inspiration from the paradigm of economic 
and financial time series [10] [11]. As opposed to financial time series, we do not 
consider intra-day events [12] [13] [14] on the basis that deaths within a “day” 
are relatively few in number and occur at irregular time intervals, precluding 
conventional time series analysis [15]. This being said, the stylised facts of finan-
cial “returns” ( )( )1log t tp p − , where tp  is the asset price at time t, [16] have 
similarities with mortality time series [7].  

We first undertake an analysis of the daily (mean) mortality of an exemplar 
ICU continuously contributing data (1996-2010) to the ANZICS (Australian and 
New Zealand Intensive Care Society) adult patient database [17]. In particular: 
characterisation of the raw series in terms of moments, auto-correlation and 
ARCH effects; specification of a mean equation and model to remove any linear 
dependence (for example, ARMA, autoregressive moving average); identification 
of residual ARCH effects and formulation of a volatility model (in this case, a 
(G) ARCH model [18]), and joint estimation of the mean and volatility equa-
tions [19]. Secondly, and more ambitiously, we undertake the joint analysis of 
multiple-provider series on the basis of presumed temporal dependencies [20]. 
Within a time series paradigm, and inheriting the insights of our first stage 
analysis, this modelling task presents itself in the domain of multivariate 
GARCH (MGARCH) models [21] [22], whereby the dynamics of conditional- 
variance and covariance of multiple provider-series are estimated; specifically 
the relations across series in the second order moment. In itself, this task is by 
no means facile, due to the attendant computational burden of the heavily pa-
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rameterised MGARCH models [23].  

2. Methods and Materials 
2.1. Ethics Statement 

Access to the data was granted by the ANZICS (Australian and New Zealand In-
tensive Care Society) Database Management Committee in accordance with 
standing protocols; local hospital (The Queen Elizabeth Hospital) Ethics of Re-
search Committee waived the need for patient consent to use their data in this 
study. The data set analysed was anonymised before release to the authors by the 
ANZICS Centre for Outcome and Resource Evaluation (CORE) of the Australi-
an and New Zealand Intensive Care Society (ANZICS), custodians of the data-
base. The dataset is the property of the ANZICS Data base and contributing 
ICUs and is not in the public domain. Access to the data by researchers, submit-
ting ICUs, jurisdictional funding bodies and other interested parties is obtained 
under specific conditions and upon written request (“ANZICS CORE Data 
Access and Publication Policy.pdf”,  
http://www.anzics.com.au/Downloads/ANZICS%20CORE%20Data%20Access%
20and%20Publication%20Policy%20July%202017.pdf). 

As previously described [5] [24], the ANZICS adult patient database [17] was 
utilised to define an appropriate patient set, 1996-(end)2010. Physiological va-
riables collected in accordance with the requirements of the APACHE (Acute 
Physiology and Chronic Health Evaluation) III algorithm [25] [26] were the 
worst in the first 24 hours after ICU admission, and all first ICU admissions to a 
particular hospital for the period 1995-2009 were selected. Records were used 
only when all three components of the Glasgow Coma Score were provided, 
records for which all physiologic variables were missing were excluded, and for 
the remaining records, missing variables were replaced with the normal range 
and weighted accordingly. Ventilation status in the data base was recorded with 
respect to invasive mechanical ventilation on or within the first 24 hours of 
ICU-admission. The mortality endpoint was at hospital discharge. Exclusions: 
unknown hospital outcome, patients with an ICU length of stay ≤ 4 hours, and 
patients aged < 16 years of age.  

2.2. Mortality Series 

1) Exemplar univariate analysis: a running (mean) sum (window, 1 day) of 
daily mortality was computed over the period 1st January 1996 to 30th December 
2010, with a run-in period of calendar year 1995 to establish an average baseline 
mortality, for ICU site 14.  

2) Multivariate analysis: within a single state of the Commonwealth of Aus-
tralia, for each of the hospital types (rural/regional, metropolitan, tertiary and 
private), as defined in the ANZICS CORE data dictionary [25], similar daily 
mortality series were generated, allowing a minimum 6 month run-in period.  

3) The choice of exemplar and multivariate sets was made on the basis of 
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maximizing series length (including run-in period) with no missing values and 
on this basis was empirical. We have previously noted the problem of missing 
values in the ANZICS Adult Patient data base [27]. 

2.3. Statistical Analysis 

Analyses were performed using Stata™ version 14 [28], the G@RCH™ 7 module 
[29] of OxMetrics™ 7 statistical software [30] and the “forecast” (V 6.1) package 
[31] of R (V 3.2.0; 2015) statistical software [32]. Continuous variables were re-
ported as mean (SD), except where otherwise indicated, and statistical signific-
ance was ascribed at P ≤ 0.05. Summary statistics of the univariate series were 
characterised in terms of location (mean), scale (SD), skewness and kurtosis 
(tail-heaviness) by (i) classical estimators based upon (centred) moments of the 
distribution and (ii) recently described estimators based upon pairwise compar-
ison of observations; in particular the user written Stata command “robjb” [33], 
which provides a robust Jarque-Bera normality test [34] and a robust measure of 
asymmetry and tail heaviness (“medcouple”; tail heaviness is compared against a 
value of 0.2 for the standard normal, for both observations smaller (left) and 
larger (right) than the median). Seasonality was explored using the “tbats” mod-
ule of the “forecast” package [31]. This module implements an exponential 
smoothing state space model with Box-Cox transformation, ARMA errors, and 
trend and seasonal components [35]. 

Establishment of daily time-series models at the individual ICU level was 
based upon classic Box-Jenkins methodology (ARMA models) with investigation 
of (G)ARCH effects, as previously described [5] [24]. A stationary time series 
{ }; 0, 1, 2,...tx t = ± ±  has an autoregressive moving average (ARMA(p,q)) struc-
ture: 1 1 1 1t t p t p t t q t qx x xφ φ ω θ ω θ ω− − − −= + ⋅⋅⋅ + + + + ⋅⋅⋅ +  where 1 2, , , pφ φ φ⋅⋅⋅  are 
the “autoregressive” (AR) coefficients relating the value of x  at time t to its 
past p values, and 1 2, , , qθ θ θ⋅⋅⋅  are the “moving average” (MA) coefficients, re-
lating the current “white-noise”, tω , to its past q values and ( )20,t N ωω σ . In-
itial autoregressive integrated moving average model specification (ARIMA; #p, 
#d, #q, where “#“denotes the lags [p, q] of autocorrelations and moving averages, 
respectively and the degree of differencing [d]; and “1/4”, say, indicates “1 
through 4”) was established using the “auto.arima” function of the R statistical 
package “forecast” [31]. Volatility of the (squared) residuals ( )ε  of the mean 
equation (conditional heteroscedasticity [36]) was checked using the PACF (par-
tial autocorrelation function) of the squared residuals and the user-written Sta-
ta™ “armadiag” module [37], that is, (G)ARCH effects of the error variance 
process. The latter module, which may be implemented after the “arima”, “arch” 
or “regress” (ordinary least squares regression, OLS) commands in Stata, plots 
the residual (standardized residuals with arch) autocorrelations, partial autocor-
relations and P-values of the Ljung-Box Q-statistic. For an ARCH model, the va-
riance equation is 2 2 2 2

0 1 1 2 2t t t q t qσ γ γ ε γ ε γ ε− − −= + + + ⋅⋅⋅ + , where ( )20,t tNε σ , 
2
tε  are the squared residuals (innovations) and iγ  are the ARCH parameters; 

the conditional variance is thus modelled as an AR process. A GARCH (p, q) 
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model includes lagged values of the conditional variance itself  
( )2 2 2 2 2 2 2

0 1 1 2 2 1 1 2 2t t t q t q t t p t pσ γ γ ε γ ε γ ε δ σ δ σ δ σ− − − − − −= + + + ⋅⋅⋅ + + + + ⋅⋅⋅ + , where iδ  
are the GARCH parameters (an ARMA process) [5] [24] [38].  

2.4. Univariate Series 

Various univariate GARCH models were considered and implemented in Stata™. 
As originally proposed by Engle [39], in the ARCH model, the variance of a re-
gression model was modelled as a linear function of the lagged values of the 
squared regression disturbances. The conditional mean of the series ( ty ) was 
given by t t ty x β ε= +  (where tx β  is a linear combination of lagged endo-
genous and exogenous variables and the (unknown) regression parameters, and 

tε  are the residuals or “innovations”) and the (conditional) variance ( )2
tσ  was 

variously specified and both normal and t (degrees of freedom (df) estimated 
from the data) distributions were utilised. A (1, 1) lag formulation was utilised 
for each variant [40]. Other than the vanilla GARCH model [41], the models as-
sessed were those that formally deal with the stylized facts of financial data such 
as persistence (the conditional volatility process is not mean reverting), asym-
metry (positive and negative shocks have different volatility impacts) and leve-
rage (volatility is increased by negative shocks and decreased by positive) [42] 
[43]. In particular: the GARCH (p, q) model, as formulated by Bollerslev [41]; 
the exponential GARCH (p, q) model of Nelson (EGARCH [44]); the 
GJR-(Glosten, Jagaannathan and Runkle [45])-GARCH model; and the asym-
metric power GARCH (APGARCH (p, q)), as described by Ding et al [46]. Full 
technical details are provided in Appendix 1. 

2.5. Multivariate Series 

Multivariate GARCH models [21] [22] [47] allow the conditional covariance 
matrix of the dependent variables to follow a flexible dynamic structure and the 
conditional mean to follow a vector-autoregressive (VAR) structure [24]. Thus, 
if { tx } is a vector stochastic process of dimension N x 1, and conditioning on 
past information, then ( )t tx µ θ= +  ϵ t , where θ is a finite vector of parame-
ters, ( )tµ θ  is the conditional mean vector and ϵ t  = ( )1/2

t tH zθ ; 1/2
tH  is the 

Cholesky factorisation of the time varying conditional covariance matrix tH  
and tz  is a random innovations vector. Both tH  and tµ  depend on the un-
known parameter vector θ  (which can be split into two parts, one for tµ  and 
one for tH  [47]). MGARCH models differ in specification of tH : direct gene-
ralisations of the univariate GARCH model of Bollerslev [41], for instance, the 
BEKK models [48]; linear combinations of univariate GARCH models, such as 
the orthogonal and G(eneralised)O-GARCH [49] [50] models; and conditional 
correlation models [29]. As noted by van der Weide: “The ‘holy grail’ in multi-
variate GARCH modeling is without any doubt a parameterization of the cova-
riance matrix that is feasible in terms of estimation at a minimum loss of gene-
rality” [51]. For our purposes, the conditional mean tµ  of these models was of 
lesser importance and we follow Laurent et al [23] and Tsay [49] and impose a 
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constant conditional mean and consider the conditional covariance matrix 
( )tH  as the primary objective of investigation [52]. The particular problems of 
forecasting squared innovations (and determining appropriate loss functions) 
from MGARCH models, first addressed by Andersen and Bollerslev [53], reite-
rated by Laurent et al [23], and resolved in the concept of realized variance [54], 
persuaded us not to undertake multivariate forecasting, which is more appropri-
ate for construction of hedging ratios and portfolio weights [55] [56] [57] and 
lacks import for mortality series. We therefore considered the conditional corre-
lations between ICUs over time and the ICU conditional variance over time, and 
contrast the following MGARCH models, using the G@RCH™ 7 module of Ox-
metrics™ 7: GO-GARCH [50]; and the conditional correlation models: constant 
conditional correlation (CCC) [58], and dynamic conditional correlation (DCC) 
[59]. Full technical details are provided in Appendix 2. The program allows speci-
fication of different univariate GARCH models within the overall MGARCH 
process: GARCH, EGARCH, APGARCH and GRJ-GARCH (see above, “Univa-
riate series”) may be selected [47].  

Model selection was guided by a combination of penalized information crite-
ria, assessment of model diagnostics and comparison of model predictive per-
formance. We utilised the Akaike (AIC) and Bayesian (BIC) information criteria 
(the latter for non-nested comparisons, [60]; smaller values are advantageous for 
AIC, with, in general, a difference of >5 indicating potential model discrimina-
tion). Model diagnostics: the use of auto- (ACF) and partial-autocorrelation 
(PACF) function displays, testing for time series stationarity via the KPSS 
(Kiawtowski-Phillips-Schmidt-Shin) test (null hypothesis of stationarity [61]) 
and residual white-noise (Bartlett’s periodogram-based- and Portmanteau (Q)- 
test) were undertaken after Shumway & Stoffer [62] and as previously described 
[5] [24]. Lag length for various tests used Schwert’s criterion (a function of sam-
ple size) where applicable [63].  

Model performance (univariate series) was assessed by (i) graphical compari-
son from one-step ahead predictions and dynamic forecasts, the latter (from 1st 
July 2010 to 31st December 2010) utilising the Kalman filter (see “Dynamic fore-
casting” in [64]) and (ii) various loss criteria, using the “accuracy” function of  

the R-software “forecast” package: Mean Error (ME, ,
1

1 T

t h t
t

e
T +

=
∑ , where 

, ,t h t t h t h te y y+ + += − ); Root Mean Square Error (RMSE, 2
,1

1 T
t h tt e

T +=∑ ), Mean 

Absolute Error (MAE, ,
1

1 | |
T

t h t
t

e
T +

=
∑ ); and Mean Absolute Percentage Error 

(MAPE, ,
1

1 | |
T

t h t
t

p
T +

=
∑ , where ( )( ), ,t h t t h t h t t hp y y y+ + + += −  [65]. Forecast com- 

parison between competing models was assessed by the Stata™ user-written 
module “dmariano” which computes the Diebold-Mariano comparison of pre-
dictive accuracy (for loss criteria MSE, MAE and MAPE [66]), albeit we note the 
caution that “… different [GARCH] models can lead to almost equivalent pre-
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dictive formulas” [7]. 

3. Results 

The initial data set, 1995-2010, contained 674,193 patient records from 157 
ICUs. For the exemplar univariate analysis (ICU site 14), there were 5479 obser-
vations over the calendar years 1996-2010, with no missing values. The mean se-
ries mortality was 0.17 (0.01) and summary statistics for the raw and first diffe-
renced series are seen in Table 1, where tail-heaviness for the first differenced 
series is noted. Not surprisingly the raw series demonstrated a high degree of 
autocorrelation to the 100th lag (and beyond, data not shown). The raw series 
(Figure 1, top panel) displayed a downward mortality trend and rejected the null 
of stationarity (KPSS test) at all lags (n = 10, p < 0.01). The first differenced se-
ries (Figure 1, bottom panel) displayed stationarity at all lag lengths (n = 10, p > 
0.1) and the latter series was used for model development, the marked kurto-
sis being a feature (Table 1). Residuals from OLS regression of the raw series 
against time displayed autocorrelation and ARCH effects with p-values of the 
Ljung-Box Q-statistic approximating zero. We were unable to establish season- 

 

 
Upper panel: Y-axis, observed daily hospital mortality for ICU site 14. X-axis, time in days. Lower panel: Y-axis, first differenced daily hospital 
mortality for ICU site 14. X-axis, time in days. 

Figure 1. Raw and differenced daily mortality series. 
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Table 1. Summary statistics and autocorrelations for raw and first differenced mortality series for ICU site 14. 

Series N Mean SD Skewness Kurtosis Minimum Maximum S-Wilk z S-Wilk p robjb-s robjb-k medcouple-L medcouple-R 

Raw 5479 0.16835 0.01178 0.104 2.000 0.149 0.201 12.718 0.000 0.000 0.000 −0.190 0.006 

First differenced 5478 −0.00001 0.00029 4.215 48.663 −0.002 0.004 18.954 0.000 0.000 0.000 0.513 0.282 

Autocorrelations 
             

Lag 1 2 3 4 5 10 20 40 100 
    

Raw 0.9994 0.9987 0.9981 0.9974 0.9968 0.9938 0.9881 0.9759 0.9358 
    

First differenced 0.0053 0.0597 −0.0103 −0.0479 0.0477 0.0150 0.0180 0.0395 −0.0003 
    

SD, standard deviation. S-Wilk, Shapiro-Wilk normality test. z, z-statistic. p, p-value. robjb-s, robust Jarque-Bera normality test (skewness). robjb-k, robust 
Jarque-Bera normality test (kurtosis). medcouple-L, left medcouple (observations less than median). medcouple-R, right medcouple (observations greater 
than median). Tail-heaviness (medcouple) is compared with a value of 0.2 for the standard normal. 
 

ality of the (raw) series at the monthly or yearly level using the “tbats” module of 
the R-software “forecast” package. 

The model formulated by the “auto-arima” module of the R-software “fore-
cast” package [31] was ARIMA (1/4, 1, 1/3). Alternate specifications up to 
ARIMA (1/9, 1, 1/3) were considered, but such extensive parameterisation of the 
mean dynamic was considered to lack interpretation and a simpler mean model, 
ARIMA (7, 1, 0) was chosen to reflect the daily series (additive seasonality), al-
beit the latter model and all other ARIMA variants demonstrated substantial 
ARCH effects. Of the 8 GARCH models initially considered, an asymmetric 
power (G)ARCH model (APGARCH, [46] [67]) with t-distribution (df, 11.63) 
and ARMA (7, 0) for the mean-model, was the most parsimonious and, not sur-
prisingly, had substantial information criterion advantage over the ARIMA 
mean model (ARIMA (7, 1, 0)); BIC −86,324 versus −73,873. Information crite-
ria (AIC and BIC) with model and estimated t df for all univariate GARCH 
models are detailed in Table 2. For each of the GARCH variants, a t-distribution 
had information criterion advantage, but between-model differences based upon 
BIC were rather modest. Graphical display of ARCH specification tests for each 
of the t-distribution variants is seen in Figure 2. The APGARCH-t model (lower 
right panel) appeared the most parsimonious, especially with regard to the lack 
of residual ( 2

tε ) serial correlation, as indicated by the lag p-values (0.05) of the 
(Ljung-Box) Q-statistic [68]. APGARCH parameter estimates are shown in Ta-
ble 3 (cross-referenced to model formula in Statistical analysis, Univariate series 
(iii), above), the scalar sum of α and β (=1.002) suggesting persistence of condi-
tional volatility. Conditional variance plots (Figure 3) from the APGARCH-t 
model exhibited extreme volatility during the period 1996-1998 (upper panel) 
and substantial, but declining volatility, from 1998-2010 (lower panel). This be-
ing said, a “level” shift (coded 1/0) at 1st January 1998 lacked significance (p = 
0.23). The predictive performance of the APGARCH-t model was also consi-
dered. One-step-ahead predictions are seen in Figure 4 (upper panel), demon-
strating, not surprisingly, virtual identity of the raw series signal and the one- 
step predictions (Table 4). The dynamic 6-month forecast is shown in Figure 4 
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(lower panel), with some divergence between the raw series and forecast, re-
flected in the increment of the MAPE loss function for the out-of sample fore-
cast, 2nd June 2010 to 31st December 2010 (Table 4(a), third column). With re-
spect to comparative predictive accuracy between GARCH variants (in particu- 

 
Table 2. GARCH model comparison. 

Model Model-df AIC BIC t-df 

GARCH 3 −86133.62 −86113.80 
 

GARCH-t 4 −86332.11 −86305.68 11.35 

EGARCH-t 6 −86359.50 −86432.02 11.61 

APGARCH 5 −86169.02 −86319.85 
 

APGARCH-t 6 −86363.79 −86324.14 11.63 

GJR-GARCH 4 −86171.55 −86145.12 
 

GJR-GARCH-t 5 −86351.47 −86332.43 11.63 

df, degrees of freedom. −t, t distribution. t-df, estimated t degrees of freedom, EGARCH model, no conver-
gence. 

 

 
Upper left panel: GARCH (1, 1) model, t-distribution. Upper right panel: EGARCH (1, 1) model, t-distribution. Lower left panel: GJR-GARCH (1, 
1) model t-distribution. Lower right panel: APGARCH (1, 1), t-distribution. 95% CB, 95% confidence bands. Q-stat, Ljung-Box Q-statistic [80]. 
ARCH param, ARCH parameters.  

Figure 2. ARCH specification tests for GARCH models. 
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Table 3. Parameter estimates of the APGARCH-t model. 

Equation Parameter Estimate p-value Lower 95% CI Upper 95% CI 

ARMA L7.AR 0.054 0.000 0.028 0.079 

ARCH L1.aparch (α) 0.032 0.000 0.020 0.044 

ARCH L1.aparch_e (γ) −0.330 0.000 −0.450 −0.210 

ARCH L1.pgarch (β) 0.969 0.000 0.962 0.977 

ARCH Constant 0.000 0.741 0.000 0.000 

POWER power (δ) 1.791 0.000 1.210 2.372 

t-df 
 

11.626 
 

9.944 13.665 

L, lag. t-df, estimated t degrees of freedom. 
 

 
Upper panel: 1996-2010, Y-axis, one-step conditional variance. X-axis, time (days); Lower panel: 1998-2010, Y-axis, one-step conditional variance. 
X-axis, time (days). 

Figure 3. APGARCH-t conditional variance plots. 
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Table 4. (a) Forecast evaluation of APGARCH-t model. (b) Comparative forecasts. 

(a) 

 
01 Jan. 1966-31 Dec. 2010 01 Jan. 1966-01 June 2010 02 June 2010-31 Dec. 2010 

Estimation sample N 5478 5265 213 

Mean Error (ME) −0.00004 −0.00005 −0.0373 

Root Mean Square Error (RMSE) 0.0004 0.0003 0.0382 

Mean Absolute Error (MAE) 0.0002 0.0001 0.0373 

Mean Absolute Percentage Error (MAPE) 0.0707 0.0707 24.906 

Dec., December. Jan., January. 

(b) 

Model: compared with APARCH-t 
MSE MAE MAPE 

p p p 

GARCH-t 0.817 0.052 0.032 

EGARCH-t 0.852 0.040 0.024 

GJR-GARCH-t 0.319 0.677 0.687 

MSE, means squared error. MAE, mean absolute error. MAPE, mean absolute percentage error; Significant p-values indicate superior APARCH-tforecast 
performance. 
 

 
Upper panel: One-step ahead predictions for the APGARCH-t (mean) model; Y-axis, mortality; X-axis, time (days); Lower panel: Six month dy-
namic forecast for APGARCH-t (mean) model; Y-axis, mortality; X-axis, time (days). 

Figure 4. APGARCH-t model: One step prediction and dynamic forecast. 
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Hospital raw mortality (Y-axis) plotted against time (days) for various sites in the multivariate series: upper left, rural/regional; upper right, met-
ropolitan; lower left, tertiary; lower right, private. 

Figure 5. Multivariate rural/regional, metropolitan, tertiary and private series.  
 

lar, using the t distribution): for a maximum lag of 32 (chosen by Schwert crite-
rion [63], with a uniform kernel to calculate long-run variance) a variable supe-
riority of the APGARCH-t forecasts (compared with GARCH-t, EGARCH-t and 
GJR-GARCH-t) was demonstrated, as indicated in Table 4(b), test significance 
being dependent upon the particular loss criterion [69]. Compared with the 
conventional ARIMA (7, 1, 0) model, the APGARCH-t demonstrated a superior 
forecast (MAPE, p = 0.015; MAE, p = 0.026). 

The four multivariate component raw series (rural/regional, metropolitan, 
tertiary and private) are seen in Figure 5, demonstrating varied levels of, and 
trend decline in, mortality. The series are further characterised in terms of 
summary statistics and autocorrelations for raw and differenced series in Table 
5 and Table 6 respectively. The most notable findings were (i) marked kurtosis 
and rejection of normality for both the raw and differenced series, and (ii) for 
each of the multivariate series, the raw series rejected the null of stationarity 
(KPSS test) at all lags (n = 10; p < 0.01) and the first differenced series displayed 
stationarity at all lag lengths (n = 10; p > 0.1). The 3 MGARCH model variants 
(GO-GARCH (normal distribution only), CCC (normal and t-distribution) and  
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Table 5. Summary statistics for rural/regional, metropolitan, tertiary and private multivariate series. 

Locationz ICU site Series N Mean SD Skewness Kurtosis Minimum Maximum S-Wilk S-Wilk p 

Rural/Regional 
1st-July-2004 

to 
31st-December-2010 

32 

 

49 

 

52 

 

106 

 

Raw 

Differenced 

Raw 

Differenced 

Raw 

Differenced 

Raw 

Differenced 

2374 

2373 

2374 

2373 

2374 

2373 

2374 

2373 

0.10800 

0.00000 

0.07285 

0.00001 

0.06555 

−0.00001 

0.08039 

0.00000 

0.0021 

0.0002 

0.0053 

0.0002 

0.0047 

0.0002 

0.0050 

0.0002 

0.2275 

2.7344 

−1.1625 

3.4719 

1.8186 

4.8580 

0.5939 

4.5056 

2.4469 

12.4898 

3.1737 

16.9665 

5.9761 

43.4592 

2.2198 

27.158 

0.1040 

−0.0005 

0.0578 

−0.0003 

0.0592 

−0.0006 

0.0694 

−0.0004 

0.1137 

0.0015 

0.0792 

0.0013 

0.0826 

0.0029 

0.0932 

0.0025 

8.105 

15.767 

14.041 

16.688 

14.561 

16.616 

12.393 

17.030 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

Metropolitan 
1st-July-2005 

to 
31st-December-2010 

37 

 

64 

 

73 

 

130 

 

Raw 

Differenced 

Raw 

Differenced 

Raw 

Differenced 

Raw 

Differenced 

2010 

2009 

2010 

2009 

2010 

2009 

2010 

2009 

0.10175 

0.00000 

0.18514 

0.00000 

0.14827 

0.00000 

0.09023 

0.00001 

0.0046 

0.0004 

0.0048 

0.0006 

0.0026 

0.0004 

0.0064 

0.0004 

0.1195 

5.2374 

−0.2384 

2.3950 

0.1365 

2.6539 

−0.2206 

4.7265 

3.2859 

47.9392 

2.0787 

12.9483 

3.9181 

24.7187 

1.4799 

37.2795 

0.0867 

−0.0018 

0.1728 

−0.0037 

0.1398 

−0.0024 

0.0784 

−0.0013 

0.1141 

0.0061 

0.1957 

0.0035 

0.1580 

0.0039 

0.0988 

0.0048 

8.471 

16.135 

9.002 

14.721 

7.408 

14.634 

12.531 

15.982 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

Tertiary 
1st-July-2003 

to 
31st-December-2010 

13 

 

40 

 

48 

 

60 

 

76 

 

84 

 

91 

 

Raw 

Differenced 

Raw 

Differenced 

Raw 

Differenced 

Raw 

Differenced 

Raw 

Differenced 

Raw 

Differenced 

Raw 

Differenced 

2741 

2740 

2741 

2740 

2741 

2740 

2741 

2740 

2741 

2740 

2741 

2740 

2741 

2740 

0.18985 

−0.00001 

0.18045 

−0.00001 

0.16403 

−0.00001 

0.15641 

0.00000 

0.15100 

−0.00001 

0.22975 

−0.00001 

0.09748 

−0.00001 

0.0062 

0.0004 

0.0124 

0.0003 

0.0060 

0.0004 

0.0073 

0.0003 

0.0118 

0.0004 

0.0119 

0.0004 

0.0084 

0.0003 

1.4893 

2.2167 

0.0787 

2.7742 

0.6958 

2.8927 

0.2747 

3.0224 

1.7084 

2.3249 

0.2812 

2.4361 

0.6651 

4.5859 

4.9537 

17.7470 

1.7626 

32.2987 

2.7709 

20.2068 

2.4559 

27.7510 

4.5631 

18.1360 

1.7031 

22.5103 

2.8833 

56.5747 

0.1818 

−0.0023 

0.1604 

−0.0019 

0.1540 

−0.0015 

0.1435 

−0.0017 

0.1403 

−0.0024 

0.2140 

−0.0024 

0.0873 

−0.0015 

0.2133 

0.0037 

0.2077 

0.0038 

0.1825 

0.0041 

0.1749 

0.0039 

0.1884 

0.0033 

0.2589 

0.0045 

0.1247 

0.0052 

14.030 

15.237 

11.391 

15.470 

11.664 

15.605 

9.506 

15.460 

15.883 

15.334 

12.688 

15.313 

13.223 

16.536 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

Private 
1st-July-2004 

to 
31st-December-2010 

21 

 

38 

 

92 

 

98 

 

123 

 

Raw 

Differenced 

Raw 

Differenced 

Raw 

Differenced 

Raw 

Differenced 

Raw 

Differenced 

2374 

2373 

2374 

2373 

2374 

2373 

2374 

2373 

2374 

2373 

0.07638 

−0.00001 

0.05749 

0.00000 

0.07823 

0.00000 

0.02300 

0.00000 

0.02871 

0.00000 

0.0057 

0.0002 

0.0051 

0.0001 

0.0054 

0.0002 

0.0025 

0.0001 

0.0015 

0.0001 

−0.7457 

2.9992 

0.9777 

5.9317 

−0.4022 

3.8774 

−2.2758 

6.8764 

−0.9272 

7.5953 

2.2253 

17.5986 

2.6550 

61.3591 

1.6272 

24.9860 

7.3654 

65.5402 

3.4962 

75.4797 

0.0641 

−0.0005 

0.0516 

−0.0004 

0.0683 

−0.0005 

0.0135 

−0.0001 

0.0241 

−0.0002 

0.0839 

0.0015 

0.0706 

0.0022 

0.0858 

0.0021 

0.0257 

0.0017 

0.0318 

0.0019 

13.098 

15.581 

13.807 

16.887 

12.957 

16.503 

15.725 

17.678 

11.843 

17.805 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

SD, standard deviation. S-Wilk, Shapiro-Wilk normality test. z, z-statistic. p, p-value. 
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Table 6. Autocorrelations of raw and first differenced mortality series for rural/regional, metropolitan, tertiary and private multi-
variate series. 

Location ICU number N Lag 1 2 3 4 5 10 20 40 100 

Rural/Regional 
1st-July-2004 

to 
31st-December-2010 

32 

 

49 

 

52 

 

106 

 

2374 

2373 

2374 

2373 

2374 

2373 

2374 

2373 

Raw 

Differenced 

Raw 

Differenced 

Raw 

Differenced 

Raw 

Differenced 

0.9946 

−0.0274 

0.9979 

0.0483 

0.9981 

0.1227 

0.9979 

−0.0087 

0.9895 

−0.0299 

0.9959 

0.0070 

0.9959 

−0.0310 

0.9957 

0.0426 

0.9847 

0.0061 

0.0042 

−0.0198 

0.9939 

0.0147 

0.9935 

0.0297 

0.9799 

0.0089 

0.9926 

0.0406 

0.9918 

−0.0085 

0.9911 

0.0599 

0.9751 

−0.0275 

0.9910 

−0.0509 

0.9897 

−0.0683 

0.9886 

0.0184 

0.9518 

0.0126 

0.9826 

0.0002 

0.9796 

−0.0223 

0.9748 

−0.0355 

0.9014 

−0.0282 

0.9690 

0.0232 

0.9555 

−0.0421 

0.9573 

0.0295 

0.8154 

−0.0031 

0.9403 

0.0449 

0.8957 

0.0203 

0.9228 

0.0246 

0.6208 

0.0330 

0.8263 

−0.0391 

0.6809 

0.0405 

0.8240 

−0.0160 

Metropolitan 
1st-July-2005 

to 
31st-December-2010 

37 

 

64 

 

73 

 

130 

 

2010 

2009 

2010 

2009 

2010 

2009 

2010 

2009 

Raw 

First differenced 

Raw 

First differenced 

Raw 

First differenced 

Raw 

First differenced 

0.9952 

0.0236 

0.9925 

0.0231 

0.9864 

−0.0184 

0.9974 

0.0060 

0.9902 

−0.0315 

0.9847 

−0.0596 

0.9735 

0.0070 

0.9948 

−0.0752 

0.9855 

−0.0125 

0.9778 

−0.0128 

0.9605 

−0.0537 

0.9925 

0.0037 

0.9810 

−0.0493 

0.9711 

0.0459 

0.9495 

−0.1208 

0.9904 

0.0354 

0.9769 

0.0210 

0.9637 

−0.0535 

0.9418 

−0.0808 

0.9881 

−0.0651 

0.9538 

−0.0138 

0.9336 

−0.0247 

0.8972 

−0.1250 

0.9781 

−0.0541 

0.8970 

0.0259 

0.8807 

−0.0042 

0.8215 

0.1100 

0.9624 

0.0412 

0.7653 

−0.0336 

0.7573 

−0.0026 

0.6175 

0.0428 

0.9315 

0.0486 

0.4058 

0.0313 

0.5021 

−0.0059 

0.0536 

−0.0090 

0.8112 

0.0535 

Tertiary 
1st-July-2003 

to 
31st-December-2010 

13 

 

40 

 

48 

 

60 

 

76 

 

84 

 

91 

 

2741 

2740 

2741 

2740 

2741 

2740 

2741 

2740 

2741 

2740 

2741 

2740 

2741 

2740 

Raw 

Differenced 

Raw 

Differenced 

Raw 

Differenced 

Raw 

Differenced 

Raw 

Differenced 

Raw 

Differenced 

Raw 

Differenced 

0.9971 

−0.0777 

0.9991 

−0.0760 

0.9971 

−0.0601 

0.9985 

0.0553 

0.9984 

−0.0092 

0.9984 

−0.0662 

0.9980 

0.0348 

0.9944 

−0.0374 

0.9982 

0.0779 

0.9943 

−0.0285 

0.9969 

0.0121 

0.9969 

0.0685 

0.9968 

−0.0074 

0.9960 

−0.0244 

0.9919 

0.0142 

0.9973 

0.0403 

0.9916 

−0.0169 

0.9953 

−0.0501 

0.9953 

0.0262 

0.9952 

−0.0168 

0.9940 

0.0759 

0.9894 

0.0023 

0.9964 

0.0342 

0.9890 

−0.0042 

0.9938 

0.0311 

0.9935 

0.9190 

0.9936 

−0.0019 

0.9922 

−0.0313 

0.9871 

−0.0006 

0.9954 

0.0778 

0.9862 

0.0426 

0.9923 

−0.0066 

0.9915 

−0.0339 

0.9920 

−0.0177 

0.9905 

0.0088 

0.9746 

−0.0106 

0.9901 

0.0276 

0.9727 

−0.0533 

0.9852 

0.0438 

0.9819 

0.0037 

0.9837 

−0.0360 

0.9806 

−0.1068 

0.9520 

−0.0894 

0.9779 

−0.0590 

0.9501 

0.0634 

0.9686 

−0.0293 

0.9662 

−0.0039 

0.9680 

0.0512 

0.9623 

−0.0329 

0.9111 

0.0445 

0.9577 

0.0317 

0.8988 

0.0438 

0.9352 

0.0770 

0.9421 

0.0513 

0.9441 

−0.0323 

0.9308 

−0.0409 

0.7533 

−0.0232 

0.8925 

0.0364 

0.7471 

−0.0078 

0.8285 

0.0005 

0.8495 

−0.0237 

0.8678 

−0.0077 

0.7933 

−0.0347 

Private 
2nd-July-2004 

to 
31st-December-2010 

21 

 

38 

 

92 

 

98 

 

123 

 

2374 

2373 

2374 

2373 

2374 

2373 

2374 

2373 

2374 

2373 

Raw 

Differenced 

Raw 

Differenced 

Raw 

Differenced 

Raw 

Differenced 

Raw 

Differenced 

0.9984 

0.0336 

0.9991 

−0.0077 

0.9992 

−0.0409 

0.9966 

0.0788 

0.9969 

0.0094 

0.9967 

−0.0198 

0.9982 

−0.0204 

0.9984 

−0.0085 

0.9931 

0.0396 

0.9937 

−0.0259 

0.9951 

−0.0094 

0.9973 

−0.0176 

0.9977 

−0.0089 

0.9895 

−0.0115 

0.9907 

−0.0182 

0.9935 

0.0087 

0.9964 

0.0727 

0.9969 

0.0422 

0.9859 

0.0572 

0.9878 

−0.0062 

0.9919 

−0.0007 

0.9955 

−0.0273 

0.9961 

0.0229 

0.9822 

0.0883 

0.9849 

0.0549 

0.9843 

−0.0169 

0.9900 

−0.0134 

0.9922 

0.0260 

0.9632 

0.0083 

0.9684 

0.0032 

0.9709 

−0.0424 

0.9795 

−0.0441 

0.9832 

0.0140 

0.9283 

−0.0246 

0.9317 

0.0082 

0.9422 

0.0026 

0.9590 

0.0162 

0.0962 

−0.0051 

0.8571 

0.0299 

0.8574 

0.0167 

0.8631 

0.0056 

0.8877 

−0.0050 

0.8991 

0.0107 

0.6486 

−0.0222 

0.6119 

−0.0002 
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Table 7. Model specifications for the MGARCH series. 

Model 
Rural/Regional Series = 4 Metropolitan Series = 4 Tertiary Series = 7 Private Series = 5 

AIC BIC AIC BIC AIC BIC AIC BIC 

GO-GARCH-normal 

GARCH univariate 

APARCH univariate 

CCC-normal 

GARCH univariate 

APARCH univariate 

CCT-t 

GARCH univariate 

APARCH univariate 

DCC-normal 

GARCH univariate 

APARCH univariate 

DCC-t 

GARCH univariate 

APARCH univariate 

 

−59.18 

No−convergence 

 

−59.14 

−59.38 

 

−61.85 

−61.85 

 

−59.14 

−59.38 

 

−61.86 

−61.85 

 

−59.14 

 

 

−59.09 

−59.32 

 

−61.81 

−61.78 

 

−59.09 

−59.31 

 

−61.81 

−61.78 

 

−54.16 

No−convergence 

 

−54.11 

−54.25 

 

−54.81 

−54.86 

 

−54.11 

−54.25 

 

−54.81 

−54.86 

 

−54.11 

 

 

−54.06 

−54.18 

 

−54.76 

−54.79 

 

−54.05 

−54.17 

 

−54.75 

−54.78 

 

−99.65 

No−convergence 

 

−99.56 

No−convergence 

 

−99.97 

No−convergence 

 

−99.56 

No−convergence 

 

−99.97 

No−convergence 

 

−99.56 

 

 

−99.47 

 

 

−99.88 

 

 

−99.87 

 

 

−99.88 

 

 

−77.22 

No-convergence 

 

−77.08 

No-convergence 

 

−81.95 

−82.11 

 

−77.08 

−77.42 

 

−81.95 

−82.11 

 

−77.16 

 

 

−77.02 

 

 

−81.89 

−82.02 

 

−77.01 

−77.43 

 

−81.89 

−82.02 

GO-GARCH: generalised orthogonal GARCH. CCC: constant conditional correlation. DCC: dynamic conditional correlation. -normal: normal distribution. 
–t: t distribution (estimated from the data) 
 

DCC (normal and t-distribution)), displayed varying degrees of convergence 
difficulties, especially with the 7 component univariate series of the tertiary mul-
tivariate set. Table 7 shows model information criteria (AIC and BIC) for (i) two 
univariate specifications, GARCH (1, 1) and APGARCH (1, 1) and (ii) the 4 
MGARCH series (rural/regional, metropolitan, tertiary and private). Within 
each MGARCH series no model specification dominated, although there was 
some advantage for the t-distribution in the private series. The tertiary series al-
lowed only a univariate GARCH specification and the GO-GARCH model was 
unable to converge with the univariate APGARCH. Graphical analysis is pre-
sented of the conditional correlations and variances from the DCC-t model (un-
ivariate APGARCH (1, 1)), except for the tertiary series (univariate GARCH (1, 
1)). Figure 6 & Figure 7 show the conditional correlations between the univa-
riate series of the rural/regional and metropolitan series. The correlations be-
tween the component univariate series were quite variable, and demonstrated 
reversion to a constant level (see Statistical analysis, Multivariate series, ii(b), 
above), the private series being noted for relatively high positive correlation 
(0.27 - 0.85). The variances of the component series of each of the multivariate 
series demonstrated a variable rate of time decline from periods of early volatili-
ty and volatility spikes in the rural/regional and metropolitan and private series 
during the calendar years mid 2006-2007 to mid 2007-2008. 

4. Discussion 

The current study has demonstrated that high frequency (daily) mortality series  
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Conditional correlations (Y-axis) over time (X-axis) for various combinations of ICU sites. 

Figure 6. Conditional correlations between the ICU sites (32, 49, 52 and 106) of the rural/regional multivariate series. 
 

 
Conditional correlations (Y-axis) over time (X-axis) for various combinations of ICU sites. 

Figure 7. Conditional correlations between the ICU sites (37, 64, 73 and 130) of the metropolitan multivariate series (obtained 
from a variant of the DCC model: Asymmetric Corrected Dynamic Correlation Model (Aielli) [59], with univariate APGARCH (1, 1). 
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exhibit (G)ARCH effects, consistent with our two previous studies of the same 
data-base [5] [24], albeit the specific models differ, most likely reflecting differ-
ent temporal data aggregation, daily versus monthly [70]. Thus, unlike some fi-
nancial data, for example exchange rates, the ability to discern ARCH effects did 
not decrease with increasing sampling interval [71].  

In financial time series, conditional asymmetry is a stylized fact [67]. That is, 
there is a negative correlation between the squared current innovations ( )2

tε  
and the past innovations, or empirically, the volatility due to, say, a price de-
crease is greater than that of a comparable price increase. For classical GARCH, 
the conditional variance is a function of the modulus of the past tε , positive 

( )tε
+  and negative ( )tε

−  innovations having the same effect on current vola-
tility: ( ) ( )Cov , Cov , 0, 0,  t t h t t h hε ε ε ε+ −

− −= = > where Cov = covariance. Under 
conditions of second-order stationarity, tε  may be decomposed as t t tnε σ=  
where tn  is an iid sequence and tσ  is a measurable positive function of the 
past of tε . The circumstance ( )Cov , 0t t hσ ε − <  is that of a leverage effect. For 
the APGARCH model (see Statistical analysis, Univariate series, (iii)), if | | 0iγ >  
then “… negative innovations have more impact on current volatility than posi-
tive ones of the same modulus” [67]; that is, there exists a leverage effect. This 
condition was satisfied in the current APGARCH model ( | |γ  = 0.330, γ  was 
significantly different from 0, P = 0.000, Table 3).  

However, a degree of caution is required in considering the application of 
asymmetric volatility models [43] to non-economic/financial data. Such models 
require “…a specification that can accommodate a leverage effect” [40], such 
specification being described as “crucial” by the authors of the APGARCH mod-
el [46]. We make two points with regard to leverage in the current series: (i) a 
snapshot of the series, 1996-1998, raw versus the differenced mortality (Figure 
8), is suggestive of volatility clustering during sharp falls in mortality, similar to 
that described by Engle for financial data [72] and (ii) the early volatility maybe 
at least in part due to reporting artefacts or processes at that time, in addition to 
the increased variability associated with smaller numbers. The overall trend then 
is for declining mortality, which would be confounded with improvements in 
reporting processes, data completeness and increasing numbers. This would 
suggest that we are not seeing a leverage effect as such, but rather a confluence of 
trends. 

The implications of a volatility model perspective [43] in the context of mor-
tality rates are best considered against the background of (i) the above perspec-
tive of the financial paradigm where the trade-off between risk and expected re-
turn is a fundamental concern and the measurement and forecasting of volatility 
a core pursuit [73] and (ii) recent actuarial and demographic literature, where 
detailed comparisons between (G)ARCH–based stochastic mortality models and 
the orthodox Lee-Carter model [74], have favoured the former. Of interest, the 
literature review (section 2.3) of Andersen et al., “Volatility forecasting in fields 
outside finance” in 2006 [73] made no specific mention of mortality series. The  
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Upper panel: raw series 1996-1998; Y-axis, raw mortality; X-axis, time (days); Lower panel: differenced series 1996-1998; Y-axis, differenced mor-
tality; X-axis, time (days). 

Figure 8. Raw mortality and differenced mortality series: 1996 to 1998. 
 

original Lee-Carter model (modelling the logarithm of the central death rate 

,x tm  for age x at time t) used ARIMA functions to undertake mortality forecasts, 
but assumed homoscedasticity and constant volatility, which assumptions are 
belied by the structure of long-term (yearly) mortality series which demonstrate 
non-stationarity, conditional heteroscedasticity and non-normality [75] [76]. 
Thus, apposite analysis of mortality time-series mandates the demonstration and 
appropriately modelling of volatility. As opposed to the population perspective 
of demography, we model the mortality of the critically-ill, where the interplay 
of an ensemble of patient factors (severity of illness, patient type) and provider 
characteristics (ICU occupancy, structure and staffing), not all of which are in 
principle identifiable, are determinate in the conditional heteroscedasticity of the 
mortality series.  

The parsimony of univariate GARCH models has been shown in actuarial and 
demographic studies, but the analysis of, say, cross-(nation)-state mortality cor-
relations [75] within the same framework has been “…a largely unchartered ter-
ritory” [77]. To this end, the recent study of Gao and Hu [78] reports 8 separate 
GARCH (1, 1) models in a sub-section “An application to multi-country study”, 
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rather than a multivariate approach. Although not undertaking MGARCH fore-
cast assessment in the current series (see Statistical analysis, Multivariate series; 
above), recent evidence has suggested primacy of the DCC model, at least in fi-
nancial series [23] [56] and further sophisticated variants of the DCC model 
have been presented [79], although cautions about the DCC representation have 
been expressed [80]. In a wide ranging study of time series from finance, physi-
ology and genomics, Podobnik et al., using time-lag random matrix theory, 
demonstrated that “… cross-correlations are ubiquitously present in many sys-
tems … [and] … studying these cross-correlations is a necessary prerequisite for 
understanding them …” [81]. Similar studies have been presented from the so-
cial sciences [82] [83]. As the selection of univariate series was based upon de-
fined provider categories of hospital type and locality, there was an expectation 
of substantial but variable levels of correlation between these (multivariate) se-
ries, more so given the particular structure of critical care practice in Australia 
and New Zealand (uniform training scheme and closed ICUs [84]). The condi-
tional correlations were surprisingly low (<0.1) between tertiary series and sub-
stantial (0.4 - 0.6) between rural-regional and private series. An explanation for 
this finding could be the similarity / uniformity of patient-mix and treatments in 
tertiary ICUs. Thus, condition correlations would look relatively independent, as 
opposed to the cross-correlations, which would be expected to be related. Such 
explanation would also suggest that other sets of hospitals were more heteroge-
neous, which seems plausible, although less so for the metropolitan centres. 
Conditional variance volatility demonstrated, not surprisingly, persistence and 
the degree of volatility was most marked in non-tertiary series where annual pa-
tient admission numbers were lower [85]. Within the statistical process control 
(SPC) paradigm, where we have demonstrated the facility of univariate GARCH 
modelling [5], the extension to “… monitor [ing] outcomes at more than one 
unit simultaneously” has been advocated [86] and, on the basis of the cross- 
correlations revealed in the current analysis, would also appear to have a plausi-
ble empirical basis. 

5. Conclusion 

High frequency ICU mortality time series display autocorrelation, persistence of 
conditional variance and volatility which are appropriately modelled using esti-
mators which explicitly account for these attributes. Similarly, multivariate 
mortality series exhibit these stylised facts and temporal dependencies, reflected 
in varying degrees of conditional correlations which belie the use of (repeated) 
univariate approaches to the understanding of the performance of sets of ICUs.  
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Appendix 1 

i) The GARCH(p,q) model, as formulated by Bollerslev [41]; 
2 2 2

1 1

q p

t i t i j t j
i j

σ ω α ε β σ− −
= =

= + +∑ ∑ , where , andi jω α β  are constants and 2
tε  are 

the squared residuals (innovations: ( ) ( )and is i.i.d., E 0, var 1t t t t t tz z z zε σ= = = ). 
This model is an obvious comparator and in some financial data (exchange 
rates) it outperforms more sophisticated models [40]. 

ii) The exponential GARCH(p,q) model of Nelson (EGARCH [44]). 

( ) ( )2 2
1 1 1ln lnt t t tz zσ ω α γ β σ− − −= + + + ; where the γ  parameter indicates 

leverage ( )if 0 andγ γ α γ< < < −  [42]. Different formulations and software 
implementations of the EGARCH model exist and we provide a minimal equa-
tion where p = q = 1 [87]. 

iii) The GJR-(Glosten, Jagaannathan and Runkle [45])-GARCH model; 

( )2 2 2 2

1 1

q p

t i t i i t i t i j t j
i j

Sσ ω α ε γ ε β σ−
− − − −

= =

= + + +∑ ∑ , where tS −  is a dummy variable of  

value 1 when tε  is negative and 0 otherwise and the model assumes that the 
sign of tε  (positive or negative) is determinant of the impact of 2

tε  on the 
conditional variance 2

tσ  [88]. 
iv) The asymmetric power GARCH (APGARCH (p, q)), as described by Ding et 

al [46]; 
( )2

1 1

q p

t i t i i t i j t j
i j

δ δσ ω α ε γ ε β σ− − −
= =

= + − +∑ ∑ , where 0, 0, 0, 0i jω δ α β> > ≥ ≥  
and | | 1iγ ≤ . The δ parameter performs a Box-Cox type transformation of σt 
and iγ  reflects the “leverage” effect [89]; | | 1iγ ≤  is a non-restrictive identi-
fiability constraint [67]. If the sum of (scalar) α and β (a persistence coefficient 
[90] [91]) < 1, the conditional volatility process is mean reverting and shocks are 
transitory. First published in 1993, this is an encompassing model to the extent 
that it includes the ARCH, GARCH and GJR-GARCH models as special cases 
[88]. 

Appendix 2 

i) GO-GARCH [50]. In orthogonal GARCH models, the observed data are as-
sumed to be generated by an orthogonal transform of N (or <N) univariate 
GARCH processes, which may be considered as factors [47]. In GO-GARCH, 
the orthogonality condition is relaxed [21]; the original series (contained in 

tr ) are linked to unobserved, uncorrelated factors ( tz ; in GO-GARCH, equal 
to the series number) through a linear, invertible transformation (W , a 
non-singular N N×  matrix). The conditional covariance matrix of tr  is  

expressed as ( ) ( ) ,
1

N
z z

t t k tk k
k

H WH W w w h
=

′ ′= = ∑ , where ( )kw  are the columns of 

W  and ,
z
k th  are the diagonal elements of z

tH  [22].  

ii) Conditional correlation models: use nonlinear combinations of univariate 
GARCH models to represent the conditional covariances, which are decom-
posed into conditional variances and correlations. The diagonal elements of 

tH  (the conditional covariance matrix) are modelled as univariate GARCH 
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models, whereas the off-diagonal elements are modelled as nonlinear func-
tions of the diagonal terms. 

a) constant conditional correlation (CCC) [58]; here the conditional correla-
tions are (time) invariant and the conditional covariances are proportional to 
the product of corresponding standard deviations. The series ( tr ) are mod-
elled as ( )GARCH ,p q . Although we estimate the CCC model, it is used as a 
comparator as the “… hypothesis of CCCs is not tenable except for specific 
cases and short periods” [92]. 

b) dynamic conditional correlation (DCC) [59]. The CCC model is generalised 
such that the conditional correlations change over time: , , , ,ij t ij t ii t jj th h hρ= , 
where the diagonal elements , , and hii t jj th  follow univariate GARCH 
processes and ,ij tρ  follows a time-varying dynamic process. A constraint of 
this model is that “… all correlations have the same dynamic pattern… 
[and] … revert to a constant level” [92]. 
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