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Understanding interactions between populations: individual

based modelling and quantification using pair correlation

functions
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1 School of Mathematical Sciences,
The University of Adelaide,
Adelaide, SA, 5005, Australia

November 1, 2017

Abstract

Understanding the underlying mechanisms that produce the huge variety of swarming
and aggregation patterns in animals and cells is fundamental in ecology, developmental
biology, and regenerative medicine, to name but a few examples. Depending upon the nature
of the interactions between individuals (cells or animals), a variety of different large-scale
spatial patterns can be observed in their distribution; examples include cell aggregates,
stripes of different coloured skin cells, etc. For the case where all individuals are of the
same type (i.e., all interactions are alike), a considerable literature already exists on how
the collective organisation depends on the inter-individual interactions. Here, we focus on
the less studied case where there are two different types of individuals present. Whilst a
number of continuum models of this scenario exist, it can be difficult to compare these
models to experimental data, since real cells and animals are discrete. In order to overcome
this problem, we develop an agent-based model to simulate some archetypal mechanisms
involving attraction and repulsion. However, with this approach (as with experiments),
each realisation of the model is different, due to stochastic effects. In order to make useful
comparisons between simulations and experimental data, we need to identify the robust
features of the spatial distributions of the two species which persist over many realisations
of the model (for example, the size of aggregates, degree of segregation or intermixing of
the two species). In some cases, it is possible to do this by simple visual inspection. In
others, the features of the pattern are not so clear to the unaided eye. In this paper,
we introduce a pair correlation function (PCF), which allows us to analyse multi-species
spatial distributions quantitatively. We show how the differing strengths of inter-individual
attraction and repulsion between species give rise to different spatial patterns, and how the
PCF can be used to quantify these differences, even when it might be impossible to recognise
them visually.

∗Email: saber.dini@adelaide.edu.au
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(a) (b) (c)

Figure 1: Examples of multi-species spatial patterns. (a) Hepatocyte-stellate cells co-cultured
to produce spheroids as fundamental part of liver (reprinted from Thomas et al. (2006), with
permission from Eur. Cells Mater). (b) Lions hunting buffalo on the Duba Plains (image by
Beverly Joubert, beverlyjoubert.com). (c) Pattern formation on the skin of a zebrafish (image
from Wikipedia).

1 Introduction

There are numerous instances in nature where individuals interact so as to produce a large-
scale pattern, such as in the migration of flocks of birds, swarming of bees, foraging in ants, or
cells in a developing tissue, etc. One longstanding question is to understand how the variety
of patterns emerge from relatively simple underlying interactions between the individuals [3].
Commonly, the types of interactions considered are restricted to attraction and repulsion, arising
as responses to a range of external stimuli such as those received by the sensory organs of animals
(e.g. seeing a predator, smelling food resources, etc. [49]), or, on the cellular level, resulting
from chemical gradients and / or mechanical forces [11, 53]. Patterns such as swarms or cell
aggregates may be produced where only a single species is present. However, when individuals
of multiple species are present, the potential variety of patterns is greatly increased, as a result
of variations in the degree of intermixing or segregation of the species. Three examples, where
in each case two different types of individuals are present, are shown in Fig. 1. Fig. 1a shows a
co-culture of stellate cells and hepatocytes (two types of liver cell), where stellate cells pull the
hepatocytes into aggregated spheroids [53]; Fig. 1b shows three lions chasing a buffalo herd,
where the buffalo try to escape and the herd pattern changes accordingly; and Fig. 1c shows
an image of a stripe pattern on the skin of a zebrafish formed by two differently-coloured types
of cell (xanthophores and melanophores) [23, 24, 50].

Mathematical models have made significant contributions to our understanding of how differ-
ent types of inter-individual interactions can lead to different large-scale patterns. Well known
examples include the reaction-diffusion model of morphogenesis, introduced by Turing (1952)
(which was later applied to animal coat patterns by Murray [43, 44, 42]), and the chemotaxis
model presented by Keller and Segel (1970) which produced new insights into the mechanisms
underpinning the formation of cell aggregates in dictyostelium (and many other cell types). In
many mathematical models, the underlying interactions between the individuals are idealised
as being combinations of attraction and repulsion [36]. The interplay between these opposing
forces influences the pattern. For example, Mogilner et al. (2003) shows that short-ranged re-
pulsion combined with long-range attraction is necessary to produce cohesive and well-spaced
groups in a population of a single species (similar works can be found in [10, 15, 55]). At
the cellular level, a variety of factors which would produce these types of interactions, such as
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chemo- attractants / repellents [31], traction forces [19], volume exclusion [4], etc., have been
investigated. For predator-prey interactions, a model is proposed by Chen and Kolokolnikov
(2014), where different behaviours depending on the strength of attraction between the prey
and predator are discussed.

The modelling approaches used to study pattern formation can broadly be divided into con-
tinuum and agent-based. Continuum models are formulated in terms of the densities of the
species of interest, functions of space and time which obey systems of partial differential equa-
tions (PDEs). They have the advantage that analytical techniques, such as linear stability
analysis, can be used to understand aspects of their behaviour over the entire parameter space,
which can help to give insight into the mechanisms underpinning particular phenomena. Exam-
ples would include the non-local (integro-PDE) models introduced by Mogilner and Edelstein-
Keshet (1999) for the study of swarms. In this kind of model, movement of an individual is
influenced by superposition of the forces exerted by the surrounding individuals. These forces
are represented by a convolution integral in this continuum framework [19, 20, 48]. Although
the continuum models provide good population-level information on pattern formation, because
individuals are discrete, it is difficult to compare their predictions with experiments on anything
other than a qualitative level [19].

In contrast to continuum models, agent-based models (ABMs) represent each individual ex-
plicitly. ABMs are more realistic in this sense, as they allow us to consider individual level
behaviour, which usually includes an element of stochastic behaviour (e.g. [12, 35, 37, 46]).
However, this comes at higher computational cost. In this work we develop an ABM with two
species of agents to study the interactions between the individuals. The model developed here
builds upon the earlier work for the one-species case described in [1, 12].

The fact that stochasticity can play a role in the distribution of the individuals presents a
challenge. Each realisation of the process (i.e. simulation of the model) will be different, owing
to differences in the (random) initial conditions, or the randomness inherent in the interactions
(even when the interaction rules are fixed). We need to be able to identify which features
of the spatial pattern are robust (i.e., recur in many realisations of the process). As a first
step, this requires suitable statistical tools to quantify the spatial distributions of individuals
so that we can compare the patterns observed in different experimental or simulated datasets.
Pair correlation functions (PCFs) are popular candidates for statistical analysis of individuals
patterns [13, 22]. PCFs quantify spatial patterns by showing deviations from complete spatial
randomness (CSR), where the individuals are distributed uniformly at random. They describe
the frequency of pairs of individuals separated by a certain distance, relative to what is expected
for CSR [5]. PCFs are increasingly being used to quantify cell distributions [6, 14, 16, 40, 56] and
have recently been shown to have advantages over one of the most commonly used computational
methods for quantifying spatial distributions that are close to CSR [14]. Agnew et al. (2014)
suggest that the PCF can be used to distinguish between the spatial patterns that arise from
cell aggregate formation due to cell proliferation, and those where the aggregates form as a
result of cell-cell attraction (e.g., due to chemotaxis).

Here, we follow the approach presented by [5] for quantifying single-species volume exclu-
sion processes. We extend their method to develop a PCF for multi-species volume exclusion
processes on a two-dimensional Cartesian lattice. The method is based on normalising the
frequency of pairs by finding their expected values for the uniform distribution [5]. Periodic
continuation is applied in order to eliminate boundary effects [22]. We then compute the PCF
for realisations of our ABM simulated using different sets of parameter values (strengths and
ranges of attraction and repulsion). The PCF allows us to characterise various spatial features
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from the patterns, such as intensity of clustering, spacing between the clusters, etc. We demon-
strate how the parameter values in the model can be related to the PCF calculated from the
model output (averaged over a number of realisations). This suggests ways in which the models
can be fitted to data [25, 51, 54].

Using the ABM and PCF developed in this work, we analyse two types of inter-species in-
teractions: mutually attractive (or repulsive) and attractive-repulsive. For the case of mutually
attractive (or repulsive) systems, we examine the generic behaviour for short length scale inter-
actions, and the results suggest strong heterotypic repulsion is a necessary requirement for the
emergence of large length scale patterning in which clusters are not distributed uniformly at
random throughout the spatial domain. In the second case of attractive-repulsive systems, we
consider both predator-prey systems and stripe formation on the skin of zebrafish. Our anal-
ysis of predator-prey systems suggests that strong homotypic attraction between prey, which
produces the herd like behaviour commonly observed in predator-prey systems [39, 41], may
not be the optimal strategy to minimise predation overall. With regards to stripe formation in
zebrafish, we demonstrate that it is possible to produce stripes with no homotypic interactions,
and this is in contrast to the existing analysis of Painter et al. (2015) and Woolley et al. (2014),
who both suggest that homotypic interactions are necessary for stripe formation.

2 Model and quantification method

2.1 Multi-species agent-based model

In this paper, we simulate the interactions between individuals (which can be cells, animals, etc.)
using an ABM. The model used here is an extension of that developed in [1, 12]. Agents move
on a discrete two-dimensional lattice (x, y), of dimensions X × Y . Motivated by applications
in cell biology, we consider the domain to be periodic, thus, any agent that leave the lattice
from one side, re-enters again from the opposite side. We introduce this assumption since in
cell biology experiments, only a small ‘window’ is observed (corresponding to the field of view
of the microscope), which generally does not include the edge of the well in which the cells
are cultured. We consider that, on average, a cell moving outside the field of view is likely to
be replaced by another moving into it, which is approximated by adopting periodic boundary
conditions. Such boundary conditions eliminate edge effects, allowing us to focus on the effects
of different types of inter-individual interactions. In this work, we restrict our attention to the
case where there are only two types of agents.

Agents move on the lattice according to two motion rules: biased motion (with probability
Pb) and unbiased random motion (with probability 1 − Pb). In unbiased random motion, an
agent attempts to move to one of its four neighbouring sites with equal probability. In biased
motion, the probability of moving to each of the neighbouring sites is affected by the fact that
an agent can sense the number of other agents within a certain range. The probabilities are
calculated based on the rules of attraction and repulsion which are assumed to operate between
agents of the specific types involved. Note that each site can only be occupied by only one agent
at a time; if a agent attempts to move into an occupied site, the move is aborted. The model
thus takes account of volume exclusion ([4, 52]).

In the case of biased motion, we need to define and calculate the probability of movement to
each of the four neighbouring lattice sites. We denote this probability by Pk, where k indicates
the direction of attempted movement: k = 1 - right, k = 2 - left, k = 3 - up, and k = 4 -

down, where
∑

Pk = 1. We assume that agents of type m are attracted (repelled) by agents of
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type p within a range αmp (γmp), where m, p ∈ {1, 2}. Fig. 2 shows how the agents sense their
neighbours within a certain range and in a specific direction. We take the bias probability to
depend only upon the number of agents of each type within the relevant attraction / repulsion
ranges in each of the four directions.

Figure 2: Directional neighbourhood of an agent. A sample two-species pattern is depicted with
the red (‘1’) and blue (‘2’) colours. For example, for the red agent marked out with the black
border E11(α11) = 4, E12(α12) = 3, where α11 = α12 = 3 is the range of attraction shown by
the shaded sites.

The probability of moving in each of the four directions, Pk, is calculated from a four-
dimensional directional bias vector, v. We define this for each agent at each timestep as

v = Aa + Rr,

where A (R) is a matrix whose entries are the number of neighbouring agents within the
attraction (repulsion) range and a (r) is a two-dimensional weight of attraction (repulsion)
vector. These, in turn, are defined as follows. For an agent of type m (where m = 1 or 2), A is
given by

A =


Emm(αmm) Emp(αmp)
Wmm(αmm) Wmp(αmp)
Nmm(αmm) Nmp(αmp)
Smm(αmm) Smp(αmp)

 , for m, p ∈ {1, 2}, m 6= p,

where Emm(αmm) is the number of agents of type m to the right of the agent, within the
range determined by αmm (see Fig. 2). Similarly, Wmm(αmm) is the number of agents to the
left, Nmm(αmm) is the number of agents above and Smm is the number of agents below. Like-
wise, Emp(αmp),Wmp(αmp), Nmp(αmp) and Smp(αmp) account for the heterotypic neighbouring
agents. The weight of attraction vector is defined by

a =

[
amm

amp

]
,

where amm and amp are the weights of attraction of agents of type m to agents of the same type
and of different type, respectively. Noting that repulsion will produce biases is the opposite
direction compared to attraction, for an agent of type m, R and r are similarly defined to be:

R =


Wmm(γmm) Wmp(γmp)
Emm(γmm) Emp(γmp)
Smm(γmm) Smp(γmp)
Nmm(γmm) Nmp(γmp)

 , for m, p ∈ {1, 2}, m 6= p,
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and

r =

[
rmm

rmp

]
,

where rmm is the weight of homotypic (same type) repulsion for agents of type m and rmp is
the weight of heterotypic (different type) repulsion between agents of type m and p.

Finally, we calculate the probability of moving in each of the four directions, Pk, by normal-
ising v:

Pk =
vk
4∑

q=1
vq

, for k = 1, 2, 3, 4. (2.1)

Thus, the direction in which the agent will tend to move (reflected by Pk) is determined by the
interplay of homotypic and heterotypic attraction and repulsion influences.

We simulate the model as follows. During a discrete time-step, each agent is selected in
random sequential order and is given the opportunity to move either according to the unbiased
or biased motion rule. For an agent located at (x, y), the nature of the motion is determined by
generating a random number r1 from a uniform distribution with support [0, 1]. If r1 ∈ [0, Pb)
the agent attempts to move according to the biased motion rule; otherwise, the motion is
unbiased and it attempts to move with equal probability to one of its four neighbouring sites
(x ± 1, y ± 1). In the case of biased motion, we generate a second random number r2 from
a uniform distribution with support [0, 1], and calculate the values of Pk using Eqn. (2.1).
The agent moves to (x + 1, y) if r2 ∈ [0, P1), (x − 1, y) if r2 ∈ (P1, P1 + P2], (x, y + 1) if
r2 ∈ (P1 + P2, 1 − P4) and (x, y − 1) if r2 ∈ (1 − P4, 1]. Note that if the agent attempts to
move to a site that is occupied by another agent, then that move is aborted, and one aborted
movement is counted. These processes are repeated until the spatial distribution of agents
evolves to a quasi-steady state, which is determined by examining the evolution of the number
of aborted moves in the simulation [1].

2.2 Pair correlation function

We use PCFs as a means to characterise the spatial patterns generated by the ABM simula-
tions. PCFs characterise spatial patterns by showing deviations from CSR (where agents are
distributed uniformly at random) [22]. The deviations characterise different spatial features
such as the lengthscales of aggregation (or segregation) which are affected by the mechanisms
underlying the interactions between individuals. Computing the PCF for a sufficiently large
number of realisations of the same experiment can thus potentially provide us with information
about these mechanisms.

Binder and Simpson (2013) presented a method to compute the PCF for single-species distri-
butions on lattice. In their method, the normalisation factor, which is the expected value of the
number of pairs separated by a certain distance in CSR, is computed for distances in the x and
y direction (not the Euclidean distance). Then, the number of pairs occurring in the pattern of
interest is divided by the corresponding normalisation factor to give the PCF. Here, we use the
same approach and derive the relevant formulae for computing the PCF on periodic domains
populated with two (or potentially more) species of agents. Note that the restriction to periodic
domains is motivated by the application to cells biology experiments, as explained in §2.1 (we
assume our domain represents a ‘window’ onto a larger domain in which the interactions occur).
A further advantage of making this assumption is that PCFs estimated for patterns on finite
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domains have significant errors for large distances, whereas periodic continuation helps to miti-
gate this problem [22]. (Henceforth a reference to a PCF in this paper should be taken to imply
one derived assuming periodic boundary conditions.) Our PCFs are defined for homotypic and
heterotypic pairs. Indicating the two types of agent by ‘1’ and ‘2’, we denote the PCFs for the
1-1, 2-2 and 1-2 pairs g11, g22 and g12 respectively. In addition, since the methods for x and y
distances are identical, for brevity we present only the formulae for the x direction.

The PCF in the x direction can be defined as

gmp(i) =
cmp(i)

ĉmp(i)
, for m, p ∈ {1, 2}, (2.2)

where cmp(i) is the number of pairs a distance i apart and ĉmp(i) is the normalization factor.
cmp(i) for any pattern is obtained by counting the number of pairs with distance i in the x
direction and it can be mathematically formulated as

cmp(i) =

Nm∑
l=1

Np∑
j=J

1i(|x(m)
l − x(p)j |), J =

 l + 1, m = p,

1, m 6= p,
(2.3)

where x
(m)
l is the x-coordinate of the lth cell of type m. Nm and Np are the populations of the

species m and p respectively and 1i(x) is the indicator function defined as

1i(x) =

 1, x = i,

0, otherwise.

The expected number of pairs a distance i apart for CSR can be written in terms of the
probability of observing the pairs, given by

ĉmp(i) = Mmp Pmp(i),

where Mmp is the total number of m-p pairs and Pmp(i) is the probability that an m-p pair
occurs in the lattice. Mmp is given by

Mmp =


Nm(Nm − 1)

2
, if m = p,

NmNp, if m 6= p.

The difference in Mmp for m-m and m-p is due to the permutation of heterotypic pairs.

In a lattice of width X and height Y , Pmp(i) can be found by the ratio of the number of pairs

of lattice sites distance i apart, d̂mp(i), to the total possible pairs, given by

Pmp(i) =


d̂mp(i)

1
2XY (XY − 1)

, if m = p,

d̂mp(i)

XY (XY − 1)
, if m 6= p.

(2.4)

All of the possible pairs that may be observed in a lattice of size X = 6 and Y = 2 are shown
in Fig. 3, for the sake of illustration. As this figure shows, the number of possible pairs of
lattice sites distance i apart in one row is

r̂mm(i) = X, for i = 1, ...,
X

2
− 1.
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Here, we assumed X and Y are even, however, the method is the same for odd X and Y for
distances i = 1, ..., (X − 1)/2.

Note that if the two agents were of different types, each possible pair shown in Fig. 3 should
be counted twice due to the possible permutation between them. Thus, for m-p pairs the counts
should be multiplied by two, i .e. d̂mp = 2d̂mm, m 6= p.

Then, the possible number of pairs that can occur when there are multiple rows is given by

d̂mm(i) = r̂mm(i)Y + 2r̂mm(i)

(
Y

2

)
= Y 2X, for i = 1, ...,

X

2
− 1,

where the first term at the RHS of the above equation accounts for the Y cases where the paired
points are in one row (Figs. 3a and 3b), and the second term accounts for the paired points in
different rows (Figs. 3c and 3d).

(a) (b) (c) (d)

Figure 3: All possible combinations of pairs of sites in a lattice with X = 6 and Y = 2. The
arrows depict the distances which can be direct or periodic. The pairs of unit distance apart in
(a) one row and (c) two rows. The pairs of distance two apart in (b) one row and (d) two rows.

Finally, substituting d̂mm(i) into Eqn. (2.4), yields the normalisation factor:

ĉmp(i) =


Nm(Nm − 1)Y

XY − 1
, if m = p,

2NmNp Y

XY − 1
, if m 6= p.

(2.5)

Thus, by computing cmp(i) defined in Eqn. (2.3), the normalising factor ĉmp(i) in Eqn. (2.5)
and plugging them into Eqn. (2.2), we are able to evaluate the PCF for a given pattern.

For a spatial domain that is populated uniformly at random the expected value of the PCF is
unity at all distances. When the PCF is greater than unity at some distance we have aggregation,
and when the PCF is less than unity at some distance we have segregation. In the following
section, we use the PCF to identify homotypic and heterotypic aggregation / segregation length-
scales in three examples of two-species spatial patterns.
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Figure 4: Three two-species patterns and their PCFs in the x direction, N1 = N2 = 400. First
column of panels: From top to bottom, the agents are distributed uniformly at random, in
two segregated clusters and in two intermixed clusters. Second column of panels: Heterotypic
PCFs. Third column of panels: Homotypic PCFs for the red species. Fourth column of panels:
Homotypic PCFs for the blue species.

2.3 Illustrative two-species spatial patterns

We begin by evaluating the PCFs in the x direction for the patterns shown in the first column
of Fig. 4 (illustrations of the PCF for a variety of one-species patterns can be found in [5] for
comparison). Understanding how information about the pattern is encoded in the PCF for
these examples will help to guide our interpretation of the PCF in the more complex situations
which are presented in §3. We follow the practice found in earlier papers [1, 5] and use linear
interpolation to represent the discrete PCFs as continuous curves (columns 2-4 in Fig. 4).

The first example we consider is where the two species are distributed uniformly at random,
as is illustrated in the first row of Fig. 4. As expected, we observe that the heterotypic
and homotypic PCFs have a small-amplitude oscillation around unity, indicating that there is
no heterotypic or homotypic spatial structure in the pattern. This provides a check on the
derivation of the PCFs, which were normalised with respect to CSR.

In the second example, individuals of the same type are distributed in two single-species
clusters (red and blue squares in second row Fig. 4). The heterotypic PCF is equal to zero for
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0 < i ≤ 30 (as the two clusters are 30 units apart), and then increases linearly for 30 < i ≤ 50
(as each cluster is 20 units in length) to a maximum value at i = 50 (the distance between the
two centres of the clusters). Therefore, there is heterotypic segregation at short to intermediate
distances and heterotypic aggregation at large distances. In contrast, both homotypic PCFs
indicate short to intermediate scale aggregation only, for 0 < i ≤ 20.

For the third and final example, the two-species are distributed uniformly at random within
two clusters and the heterotypic and homotypic PCFs are all the same (third row of Fig. 4).
Additionally, the interpretation of the PCFs is similar to that of the PCF for the single-species
clustering pattern in Figure 4 of [5]. Subsequently, the heterotypic, homotypic and overall
population aggregation / segregation length-scales are also all the same. We observe short
scale aggregation (0 < i ≤ 20), intermediate scale segregation (20 < i ≤ 30), and long scale
aggregation (30 < i ≤ 50).

3 Results

Having described our modelling approach and quantification method, we are now in a position
to investigate the types of patterns produced by different combinations of inter-individual in-
teractions, and the extent to which different pattern-forming mechanisms can be distinguished
by analysis of the resulting pattern using the PCF. For each set of results in Figs. 5–8, we
evaluate the average PCFs in the x direction for N = 60 simulations that have evolved to
a quasi-steady state from initial conditions where both species were distributed uniformly at
random throughout the domain. As in Agnew et al. (2014), we use the number of aborted
movements as the measure of reaching the quasi-steady state. The layout of Figs. 5–8 is similar
to that of Fig. 4, with the additional broken curves representing the 95% confidence intervals of
the t-distribution for the average PCFs (solid curves). In all the simulations, we choose a high
value of the probability of biased motion, Pb = 0.8, which allows us to focus our study on cell
interactions effects, rather than the effect of unbiased motion. Also, the ranges of attraction
and repulsion are set to αmp = γmp = 5, further concentrating the majority of our investigation
on the effect of varying the strengths of attraction and repulsion, amp and rmp. This restriction
is relaxed in the last set of results (Fig. 9), where we study the effect of varying the ranges of
attraction / repulsion in the system. Similar sets of results are found for the average PCFs in
the y direction, as the interactions and initial conditions make no difference between the x and
y directions. We consider two generic types of inter-species interactions: mutually attractive
(or repulsive) and attractive-repulsive.

3.1 Mutually attractive or repulsive inter-species interactions

The first case we consider is where the inter-species interactions are either mutually attractive or
repulsive (i.e., type 1 agents are attracted to (repelled by) type 2 agents, and type 2 agents are
attracted to (repelled by) type 1 agents). This is motivated by observations of co-cultured hep-
atocytes and stellate cells in vitro, which produce cell aggregates (see Fig.1a). The experiments
undertaken by Thomas et al. (2006) indicate that in co-culture, cluster formation is enhanced
compared to hepatocyte only culture (see the images and videos in [53]). A continuum model
of this process was developed by Green et al. (2010). They assumed attractive interactions
between hepatocytes, and mutually attraction between hepatocytes and stellates. (Short range
repulsion between cells of all types was also included in the model, to represent the effect of over-
crowding at high cell densities.) Depending upon the relative strength of hepatocyte-hepatocyte
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and hepatocyte-stellate interaction, the model found that cells formed clusters within which the
two types were either segregated, partially-segregated, or intermixed. We will consider similar
scenarios here using our model, which has the advantage over continuum models of representing
the cells as discrete entities, and including the effects of crowding more naturally (since only
once agent can occupy each lattice site).

3.1.1 Heterotypic interactions only

We begin by analysing a system governed by heterotypic interactions only (so a11 = a22 =
r11 = r11 = 0) and where the strengths of attraction and repulsion are the same for both
species a12 = a21, r12 = r21. Thus, interactions between agents of the same type are governed
simply by volume exclusion (as only one agent can occupy a lattice site). The strengths of
heterotypic attraction and repulsion are then varied, and the results are presented in Fig. 5.

When attraction is much stronger than repulsion clusters are formed in which the two species
intermix, as shown in the first row of Fig. 5. The PCF for this type of pattern can be interpreted
by considering the illustrative example in the last row of Fig. 4 and the one-species patterns
found in [1, 5]. Similar to the results in the last row of Fig. 4, the heterotypic and homotypic
PCFs are almost identical and therefore the heterotypic, homotypic and overall population (i.e.
ignoring agents types) aggregation / segregation length-scales are also all the same. The values
of the PCFs above unity at short distances indicate short scale aggregation (i.e. the clusters
in the first row of Fig. 5), with the minimum in the PCFs at i ≈ 10 providing a quantitative
measure of the average spacing between the clusters, or the scale of segregation. The fact that
the three PCFs are the same shows that there are no significant differences in the distributions
of the two species, indicating they are intermixed uniformly at random within each cluster.
At intermediate and large distances, for i > 20, the PCFs are close to unity, implying that
the centres of the clusters are distributed uniformly at random, as observed for the one-species
patterns in [1, 5].

When repulsion is much stronger than attraction clusters are again produced, but in this
case the species are now segregated, so that the red and blue agents are no longer intermixed
(see fourth row of Fig. 5). The clusters are also no longer compact and roughly circular, but
elongated, eccentric shapes. However, the fundamental characteristics of the PCFs are similar
to those for the illustrative example in the second row of Fig. 4. Where heterotypic aggregation
/ segregation occurs, we observe homotypic segregation / aggregation. In other words, the
heterotypic and homotypic PCFs are in anti-phase. For example, at the distance i ≈ 10 there
is maxima in the heterotypic PCF and a minima in both the homotypic PCFs (fourth row of
Fig. 5).

Unlike the case of strong attraction where there is heterotypic aggregation at short-distances
(first row of Fig. 5), in the case of strong repulsion we observe short-scale heterotypic segregation
(fourth row of Fig. 5). Furthermore, for strong repulsion we observe heterotypic and homotypic
aggregation / segregation at large distances, which is in contrast to the lack of spatial structure
at large distances when compared to that of strong attraction.

The above discussion shows that the PCFs can distinguish and characterise either strong
attraction or strong repulsion heterotypic interactions that produce visible spatial clustering.
We now consider the case of weak attraction and weak repulsion that generate patterns with no
visible spatial structure (see second and third row of Fig. 5). In the case of weak heterotypic
interactions, the deviations of the maximum and minimum values of the PCFs from unity are
at least an order of magnitude smaller than those for the case of strong heterotypic interactions,
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Figure 5: Mutually attractive or repulsive species with heterotypic interactions only, a11 = a22 =
r11 = r11 = 0 and N1 = N2 = 500. First row: Strong heterotypic attraction, a12 = a21 = 5 and
r12 = r21 = 1. Second and third row: Weak heterotypic attraction and repulsion. Second row:
a12 = a21 = 1.2 and r12 = r21 = 1. Third row: a12 = a21 = 1 and r12 = r21 = 1.2. Fourth row:
Strong heterotypic repulsion, a12 = a21 = 1 and r12 = r21 = 5.
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indicting that the patterns are close to CSR. However, even with a relatively small number of
simulations (N = 60), the heterotypic PCFs correctly identify the weak, short scale behaviour.
For example, in the second row of Fig. 5 the heterotypic attraction (a12 = a21 = 1.2) is
slightly stronger than the heterotypic repulsion (r12 = r21 = 1) and we observe weak short scale
heterotypic aggregation, similar to that found for strong attraction in the first row of Fig. 5.

These few examples clearly illustrate the potential usefulness of the PCF for identifying the
presence of attractive (or repulsive) heterotypic interactions, even when no pattern is distin-
guishable by eye. However, they also sound a note of caution in using the PCF to infer the
mechanism of pattern formation. The fact that the homotypic PCFs are above unity at short
distances in the first and fourth rows of Fig. 5 is not indicative of homotypic attraction; it
occurs because agents of the same type are forced together by strong attractive, or repulsive
heterotypic interactions. Thus, if we wish to try to make inferences about the mechanism of
pattern formation from the PCFs, we need to consider the heterotypic and homotypic PCFs
simultaneously, and may require information about the homotypic interactions (e.g. from an
experiment where only one species is present).

3.1.2 Homotypic interactions only

We now investigate the patterns which can occur with only homotypic interactions between the
two species (so a12 = a21 = r12 = r21 = 0), with the same strengths of attraction and repulsion
for each species a11 = a22 and r11 = r22. The results for strong homotypic attraction and strong
homotypic repulsion are presented in the first and second row of Fig. 6.

For strong attraction, we observe short scale heterotypic segregation, short scale homotypic
aggregation, intermediate scale heterotypic aggregation and intermediate scale homotypic seg-
regation (first row of Fig. 6). We remark that the short scale heterotypic segregation is not
indicative of heterotypic repulsion (as r12 = r21 = 0), and is instead the result of the strong
homotypic attraction which pulls species of the same type together. We also see that the het-
erotypic PCF is quite similar to that of the system with only heterotypic repulsion (see fourth
row of Fig. 5). However, at intermediate and large distances, the homotypic PCFs in the
system with only homotypic interactions are quite different from those of the system with only
heterotypic interactions. This is because the compact clusters are distributed uniformly at ran-
dom in the first row of Fig. 6 (as shown by the fact that the PCFs are close to unity at large
distances), whereas the elongated clusters are distributed in a segregated pattern in the fourth
row of Fig. 5 (as the PCFs show noticeable fluctuations about unity at large distances). Hence,
as mentioned earlier, this warrants the use of the homotypic PCFs in identifying the dominant
underlying interactions along with the heterotypic PCF.

Strong repulsion produces patterns with almost no visible spatial structure (second row of
Fig. 6). The heterotypic PCF shows that the inter-species distribution is close to CSR, whilst
the homotypic PCFs reveal weak short scale homotypic segregation, due to the dominance of
homotypic repulsion.

3.1.3 Heterotypic and homotypic interactions

We now consider an example of when both homotypic and heterotypic interactions are present
in the system, and focus our attention on weak homotypic attraction and strong heterotypic
repulsion (Fig. 7). When compared to the elongated and segregated clusters in the fourth row
of Fig. 5 (i.e. , strong heterotypic repulsion only), we see that the effect of weak homotypic

13



20 40 60 80 100

20

40

60

80

100

0 10 20 30 40 50

0.8

1

1.2

1.4

1.6

0 10 20 30 40 50

0.8

1

1.2

1.4

1.6

0 10 20 30 40 50

0.8

1

1.2

1.4

1.6

20 40 60 80 100

20

40

60

80

100

0 10 20 30 40 50

0.98

1

1.02

0 10 20 30 40 50

0.98

1

1.02

0 10 20 30 40 50

0.98

1

1.02

Figure 6: Mutually attractive or repulsive species with homotypic interactions only, a12 = a21 =
r21 = r12 = 0 and N1 = N2 = 500. First row: Strong homotypic attraction, a11 = a22 = 5 and
r11 = r22 = 1. Second row: Strong homotypic repulsion, a11 = a22 = 1 and r11 = r22 = 5.

attraction forms more compact clusters in Fig. 7. At a glance, these compact clusters appear
similar to those in the first row of Fig. 6 (i.e. strong homotypic attraction only). However,
upon closer inspection, the compact clusters in Fig. 7 are not distributed uniformly at random
throughout the domain, as is the case for those in the first row of Fig. 6.

To summarise the clustering observed in Figs. 5, 6 and 7, we find that systems with ei-
ther strong heterotypic or homotypic attraction produce clusters that are distributed uniformly
at random, whereas systems with strong heterotypic repulsion produce clusters that are not
distributed uniformly random. Therefore, the results suggest strong heterotypic repulsion is
a necessary requirement for large length scale patterning in mutually attractive (or repulsive)
systems with short length scale interactions. The PCF analysis is consistent with these obser-
vations, and further demonstrates the usefulness of the PCFs to quantify multi-species spatial
patterns.

3.2 Attractive-repulsive inter-species interactions

We now turn to the case where the heterotypic interactions produce opposite effects on the
two species - e.g., species 1 is attracted to species 2, whilst species 2 is repelled by species 1.
This type of interaction is termed run-and-chase. We consider two examples of run-and-chase
interactions that can produce visible clusters of one of the species (e.g. prey) and two-species
striped patterns (e.g. zebrafish skin).
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Figure 7: Mutually attractive or repulsive species with weak homotypic attraction and strong
heterotypic repulsion, a11 = a22 = 1, r12 = r21 = 5, a12 = a21 = r11 = r22 = 0 and N1 = N2 =
500.
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Figure 8: Strong attractive-repulsive interactions with no homotypic repulsion and no predator
homotypic attraction, a12 = r21 = 50, r11 = r22 = r12 = a21 = a11 = 0, N1 = 50 and
N2 = 500. Predators (red) are attracted to preys (blue). The effect of varying the prey
homotypic attraction is shown. First row, a22 = 0 Second row, a22 = 5. Third row, a22 = 10.
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3.2.1 Predator-prey system

A common situation where the run-and-chase mechanism pertains is a predator-prey system
where predators (species 1) are attracted to prey (species 2), which try to flee from them
(Fig. 1b). Various swarming patterns may emerge [9]. Living in a swarm provides a variety
of advantages for animals, such as enhanced defensive capabilities, vigilance, foraging, mating
success, etc. [28, 49], but it can as well have detrimental effects, which are discussed in the
following.

The dynamical behaviour of predator-prey systems have been extensively studied [2, 9, 62].
However, the analysis of spatial patterns generated with discrete models of this system has
received much less attention. Therefore, we set the parameters of our ABM to mimic a predator-
prey system and apply our PCF to the resulting patterns. Obviously, our model does not
incorporate all of the underlying mechanisms found in specific predator-prey systems. For
example, game theoretical models have been used to examine collective strategies (both prey
and predator) found in specific predator-prey systems [8, 29, 32]. Nevertheless, the aim here
then is to investigate the behaviour of attractive / repulsive interactions commonly found in
most predator-prey systems, and focus on the spatial patterns produced by these systems.

We assume that a smaller group of predators chase a larger group of prey, with strong attrac-
tive (predator)-repulsive (prey) heterotypic interactions. We also assume homotypic attraction
between prey, to provide group cohesion. All other potential interactions are neglected. We
choose much higher heterotypic strengths compared to homotypic ones, based on the idea that
for the prey avoiding the predators is of greater importance than staying near to other members
of the same species.

The assumption of homotypic attraction between the fleeing prey when attacked by predators
is often justified by the ‘selfish herd’ hypothesis [39, 41]. The hypothesis states that each prey
tries to distance itself from the predators by attempting to remain close to the centre of the
herd, which would make other individuals more exposed. We use our PCF to investigate the
influence of the prey’s homotypic attraction on the patterns produced. The results can then be
used to discuss the extent to which different behaviours contribute to the success / failure of
the prey / predators [47].

The effect of increasing the prey homotypic attraction is shown in Fig. 8 (top-bottom rows).
Although the homotypic PCFs are not remarkably different in different experiments, the effect
of increasing the prey’s homotypic attraction produces a qualitative and quantitative change
in the heterotypic PCFs. As shown in the first row of Fig. 8, for a22 = 0, the maxima of the
heterotypic PCF at i ≈ 5 indicates that large number of prey and predators are 5 sites apart,
which can be interpreted as the prey successfully keeping their distance from the predators.
But as the homotypic attraction of the prey increases, this maximum at g12(5) decays, while
g12(1) becomes dominant (see second row of Fig. 8). Fig. 8 illustrates the dominance of g12(1)
for a22 = 10. This indicates proximity of predators and prey, which is likely to be associated
with success for the predators.

These results support the notion that living in a swarm can increase the risk of predation
for the prey, by providing a more easily-recognisable target for predators [49]. Importantly,
the detrimental effect of homotypic attraction in prey is quantified by the computed PCFs.
Our results suggest that homotypic attraction may save individuals by placing others closer to
predators, but it works at the expense of increased overall predation. This is shown by the
increase in g12(1) with increasing the strength of homotypic attraction, which indicates the
increased averaged proximity of predators to the preys.
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The quantification approach taken here can be readily applied to more sophisticated predator-
prey models that incorporate greater levels of biological detail. We believe this may help to
produce insights into the optimum strategies for prey, which minimise the risk of predation.

3.2.2 Zebrafish stripes

The zebrafish is a popular model organism for the study of pattern formation in animals [21,
23, 24, 34, 50]. In particular, we consider the development of the striped pattern on its skin, as
is illustrated in Fig. 1c. The two species of interest here are melanophores and xanthophores,
two types of pigment cell (dark and light coloured, respectively) which are involved in creating
the skin patterns (for simplicity, other cell types such as iridophores [17] are neglected here).

Pattern formation in zebrafish has been analysed using various mathematical models, both
continuum [18, 45, 60] and discrete [7, 38, 58]. Recent studies suggest that run-and-chase
is the major underlying mechanism for stripe formation [23, 61]. It has been observed that
melanophores migrate away from the chasing xanthophores when the melanophores contact the
dendrites of the xanthophores [23]. We implement a generic run-and-chase scenario in our ABM,
and investigate possible patterns and their spatial characteristics. In this work, we concentrate
on the effect of cells interactions on stripe formation. Thus, other factors that may impact on
this process, such as domain growth, are not considered here (see e.g. [58] for a more complex
model of stripe formation in zebrafish).

The different patterns generated by varying the heterotypic ranges of attraction and repulsion
are illustrated by Fig. 9a where the homotypic interactions are deactivated (a11 = a22 = r11 =
r22 = 0). In these simulations, the escaping agents of type 2 (blue) are being chased by agents
of type 1 (red). We vary the range that chasers are attracted to runners, α12, and the range
that runners are repulsed by chasers, γ21. Fig. 9b shows the associated heterotypic PCFs,
g12. As Fig. 9a indicates, stripes (which can randomly be horizontal or vertical) are formed
when α12 = {10, 15} and γ21 = {1, 5}, without any homotypic interactions. This implies that
a simple run-and-chase system (without homotypic interactions) is able to produce a striped
pattern. The highly deviated g12 for α12 = {10, 15} and γ21 = {1, 5} confirms that these
generated patterns are quite distinct from CSR. In addition, the values of g12 below unity at
short distances demonstrate the segregation of the two types.

The PCFs for α12 = {10, 15} and γ21 = {1, 5} show that g12 magnitude is higher in γ21 = 5
than that in γ21 = 1. This means that increasing γ21 can give more pronounced stripes.
However, g12 for α12 = {10, 15} and γ21 = {10, 15} lie very close to unity, implying that
the stripes are significantly distorted. To sum up, we deduce that increasing γ21 can help to
form more distinct stripes, provided it is kept significantly lower than α12. Generally, this
is equivalent to short range of heterotypic repulsion and long range of heterotypic attraction,
which is consistent with what is observed in in vitro experiments [23]. Moreover, the results
indicate that the number of stripes, which is related to the number of maxima / minima of g12,
depends only on α12 in the studied cases here. Hence, it appears that repulsion can disrupt
stripe formation, but it does not affect the number of stripes.

The patterns and PCFs in Figs. 9a and 9b show that stripes are not formed when α12 ≤ γ12.
However, as noted earlier, when the range of attraction is larger than the range of repulsion the
model is capable of producing the stripes without the need to include homotypic interactions.
Painter et al. (2015) studied the run-and-chase mechanism by means of a one-dimensional
continuous model, assuming equal cell-scale ranges of heterotypic interactions between the cells.
Based on their results, they suggest that homotypic attraction is necessary for the production
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Figure 9: Attractive-repulsive interactions with no homotypic interactions, a12 = r21 = 1,
a21 = r12 = 0, a11 = a22 = r11 = r22 = 0, and N1 = N2 = 1000. The effect of varying the
heterotypic ranges attraction / repulsion is shown, α21 = γ21 = {1, 5, 10, 15}. (a) Typical spatial
patterns. (b) Average heterotypic PCF, g12.
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Figure 10: Attractive-repulsive interactions with no homotypic interactions, a12 = r21 = 1,
a21 = r12 = 0, a11 = a22 = r11 = r22 = 0, and N1 = N2 = 200. The effect of varying
the heterotypic ranges attraction / repulsion is shown, α21 = γ21 = {1, 5, 10, 15}. (a) Typical
spatial patterns. (b) Average heterotypic PCF, g12.
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and maintenance of the stripes. Woolley et al. (2014) posits a similar argument that run-
and-chase does not lead to formation of persistent stripes, using a lattice-free individual-based
model. The results presented in Fig. 9 confirm that when the heterotypic interactions have
equal ranges, stripe formation does not occur. However, if the range of attraction is longer than
that of repulsion, stripes can be produced without the need for homotypic interactions.

Finally, we examine the effect of reducing the densities by one fifth in the run-and-chase
simulations of Fig. 9. The importance of density on pattern formation is demonstrated by
comparing the panels in Figs. 9 and 10, where we can observe that the intra-species stripes in
the high density system are not present in the lower density system. Furthermore, the lower
density simulations produce a new type of pattern of interspecies stripes separated by stripes
of unoccupied space within the domain (see the fourth column, Fig. 10). Therefore, it is
possible that other families of patterns, such as the ring-like structures observed in the single
species models of Liu et al. (2013) and Mart́ınez-Garćıa et al. (2015), could be found by further
exploration of the parameter space with our multi-species model.

4 Discussion

In this paper, we have developed a generic ABM for two interacting species. The interactions
between individuals can be attractive or repulsive in any combination, and the ranges of in-
teractions can be varied for each type of interaction. The model enables us to investigate how
different inter-individual interactions can generate a variety of distinctive, large-scale patterns.
However, the main novelty of our approach is to combine the agent-based modelling with a
method of quantifying the resulting patterns, which provides a means by which model results
and experimental observations can be compared, and the underlying inter-individual interac-
tions identified. We have extended the periodic PCF introduced in [1] to allow us to quantify
the multi-species spatial patterns produced by different combinations of homotypic and het-
erotypic interactions, and have shown how to interpret the PCF and obtain information about
the underlying interactions.

We began by considering the case where the heterotypic interactions between the two species
were either both attractive or both repulsive. For the case of strong heterotypic attraction
(in the absence of homotypic interactions), compact aggregates form in which both types of
individuals are intermixed, which is consistent with the results of [19], who considered interac-
tions between two types of liver cell cultured in vitro. Conversely, when homotypic attraction
dominates over heterotypic, compact aggregates form in which the two types are segregated.
Interestingly, and perhaps less intuitively, we observe the formation of similar compact, segre-
gated aggregates when the dominant interaction is heterotypic repulsion, combined with weaker
homotypic attraction. This is because the strong repulsion ‘sorts’ the agents into regions where
only one type is present, and the weak homotypic attraction then causes them to coalesce into
clumps. Although both situations give rise to aggregates of the same composition, the differ-
ence in the interactions can be distinguished by our PCF. Similar to the results of Agnew et al.
(2014), our PCF is also able to identify weak interactions, even if the resulting pattern is indis-
tinguishable by eye from the CSR state. However, in general, interpretation of the two-species
PCFs is more complicated than for the one-species case; for example, the fact that the function
is greater than unity does not necessarily indicate an attractive interaction (see e.g., Fig. 5).
These results emphasise the importance of both quantification, and careful experimentation to
explore all the possibilities when investigating interactions in biological systems.

We then turned our attention to the case of attractive-repulsive heterotypic interactions - the
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run-and-chase scenario. We considered two biological examples of this situation: predator-prey
interactions, and melanophore-xanthophore interactions in zebrafish. In the first of these, we
were able to demonstrate using the PCF that increasing the strength of homotypic attraction
between the prey would lead to closer proximity of predators and prey on average, which would
be to the advantage of the predators. We believe this is due to the fact that the homotypic
attractions help to maintain a compact, coherent group of prey, which is more strongly attractive
to the predators than a more dispersed group would be. Similar to some of the earlier cases,
this result is not obvious from visual comparison of the patterns (see Fig. 8), and so provides
another example of the potential usefulness of the PCF in quantifying the spatial distributions
of individuals.

Run-and-chase has also been proposed as the mechanism giving rise to stripe formation in
zebrafish [61, 23], and we investigated this possibility using our model. We varied the ranges
of attraction (xanthophores towards melanophores) and repulsion (melanophores towards xan-
thophores) to determine which values would lead to the initiation of stripes. Long range attrac-
tion and short range repulsion was found to be able to produce stripes. Importantly, we found
that homotypic attraction is not necessary for stripe formation, in contrast to what has been
suggested by Painter et al. (2015) and Woolley et al. (2014).

The ABM used here is an idealised, simple model, intended to cover a wide range of situations
driven by homotypic-heterotypic attraction-repulsion forces. One can specialise this model for a
specific system by including more underlying mechanisms. Some examples include incorporating
lattice growth to mimic the growth in the size of the zebrafish during its development [58], or
adding mechanisms, such as predator confusion [27], active defending [28], etc. to the predator-
prey model to gain insight into how different swarming behaviours may be advantageous in
these species.

Our PCF may also be useful for the purpose of parameter estimation. Recent work on
parameter inference for simpler (one population) ABMs suggest that it is a good candidate for
use as a summary statistic in approximate Bayesian computation methods [54, 25, 51]. However,
we note that due to the higher complexity of our model (which includes attraction and repulsion
strengths and lengthscales for each combination of interactions), extending the previous work
will be a considerable undertaking.
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