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ABSTRACT

The resistivity and permeability of fractures and faults
by Alison Kirkby

Fracture permeability is necessary for the development of many unconventional en-
ergy resources, as they are often hosted in rocks with low primary permeability. The
magnetotelluric (MT) method has previously imaged temporal resistivity changes as-
sociated with injection of conductive fluids into the subsurface. This thesis examines
MT responses over two areas of the Otway Basin, Australia, to determine what charac-
teristics of natural fractures can be imaged using MT. In addition, the resistivity and
permeability of synthetic fractures and 3D fracture networks are modelled, to draw a
link between the resistivity values that are measured and the permeability.

One dimensional anisotropic MT inversions in the Koroit region, Victoria, central on-
shore Otway Basin, delineate strong resistivity anisotropy at 2-3 km depth with a
north-northwest strike. The anisotropy strike is consistent with that of known frac-
ture networks in the Koroit region, and the groundwater at this depth is known to be
saline. Thus, the resistivity anisotropy is interpreted as fluid-filled fractures and faults,
reducing the resistivity in the north-northwest direction. In contrast, anisotropic in-
versions in the Penola Trough, western Otway Basin, reveal only minor anisotropy that
is inconsistent with known fractures from coincident well image log and seismic data.
Thus, an isotropic interpretation is consistent with the data here. Likewise, higher
resistivities and lower permeabilities have been measured in wells in Penola, compared
to Koroit.

The resistivity and permeability of synthetic fractures filled with an electrically conduc-
tive fluid change non-linearly as the fractures are incrementally opened. A percolation
threshold can be defined, below which the permeability and resistivity are close to the
rock matrix values. At the percolation threshold, the permeability increases by three
orders of magnitude or more over an aperture change of < 0.1 mm. The resistivity
change depends on the ratio of the rock to fluid resistivity but is generally less than the
permeability change, and occurs over a wider aperture range. Similar characteristics
are observed in 3D fracture networks except that in networks, percolation is controlled
by both the fault network density and fault connectivity. Many sparse networks will
not percolate no matter how open the faults are. When the fault density is sufficiently
high, a percolation threshold can be defined in terms of the mean fault aperture. At
the percolation threshold, a change in mean aperture of 0.02 mm changes the perme-
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ability by four orders of magnitude and resistivity by a factor of four. The percolation
threshold does not necessarily occur at the same aperture for different flow directions,
so fault networks near their percolation threshold commonly show anisotropy in both
resistivity and permeability.

Therefore, not only are the MT responses in the Koroit region of the Otway Basin
consistent with the presence of resistivity anisotropy due to pervasive open fractures
and faults, but realistic fault networks can produce such anisotropic resistivities and
permeabilities, with the amount of anisotropy highly sensitive not only to the density
of faults in an area but also the degree of openness in the fractures themselves.

Thesis Supervisors: Graham Heinson, Simon Holford, Derrick Hasterok
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