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Index of a Family of Lattice Dirac Operators and Its Relation to the Non-Abelian Anomaly
on the Lattice
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In the continuum, a topological obstruction to the vanishing of the non-Abelian anomaly in 2n di-
mensions is given by the index of a certain Dirac operator in 2n 1 2 dimensions, or equivalently, the
index of a 2-parameter family of Dirac operators in 2n dimensions. In this paper an analogous result
is derived for chiral fermions on the lattice in the overlap formulation. This involves deriving an index
theorem for a family of lattice Dirac operators satisfying the Ginsparg-Wilson relation. The index density
is proportional to Lüscher’s topological field in 2n 1 2 dimensions.

DOI: 10.1103/PhysRevLett.86.200 PACS numbers: 11.15.Ha, 02.40.–k, 11.30.Rd
The Atiyah-Singer index theorem, both for single opera-
tors [1] and families of operators [2], has been of major
importance in the modern development of quantum field
theory (QFT). For example, the index theorem for single
operators gives topological insight into the nonvanishing
of the axial anomaly [3], provides the basis for a resolu-
tion of the U(1) problem [4], and determines the dimension
of the instanton moduli space (used in semiclassical inves-
tigations of Yang-Mills theory; see, e.g., [5]), while the
families index theorem reveals topological obstructions to
the vanishing of gauge anomalies, thereby providing con-
straints on allowable theories [6–8].

When attempting to get a well-defined nonperturbative
formulation of QFT’s (in particular, gauge theories) one
successful and well-established approach has been to for-
mulate the theory on a spacetime lattice [9]. Therefore,
carrying over the index theorem, both for single operators
and families, to the lattice is an interesting and important
problem. For a long time this did not seem possible though,
due to the fermion doubling problem and the resulting need
for acceptable lattice Dirac operators to break chiral sym-
metry [10]. In the traditional formulations, at best only a
remnant of the index theorem is retained on the lattice [11].
However, the situation has changed quite dramatically in
recent years with the advent of the overlap formulation [12]
and the discovery [13–15] of acceptable lattice Dirac op-
erators satisfying the Ginsparg-Wilson (GW) relation [16]

Dg5 1 g5D � aDg5D �a � lattice spacing� .

(1)

Such operators have exactly chiral zero modes [since
Dc � 0 ) D�g5c� � �aDg5D 2 g5D�c � 0], which
allows one to define index D � Tr�g5jkerD� [15]. There
is a “lattice index theorem” [15,17,18]

index D � 2
a
2

Tr�g5D� � a4
X
x

q�x� , (2)

where
200 0031-9007�01�86(2)�200(4)$15.00
q�x� � 2
a
2

tr�g5D�x, x�� (3)

is the index density. For SU�N� gauge fields on the
Euclidean 2n-dimensional torus, indexD and q�x� reduce
to the continuum index and density in the classical con-
tinuum limit [19], at least when D is the overlap Dirac
operator [13]. [Earlier results in this direction were ob-
tained in [15,18,20]. When D is the overlap Dirac opera-
tor the right-hand side of (2) has a spectral flow
interpretation which had previously been used as a defi-
nition of lattice topological charge in [12].] Furthermore,
although it is not invariant under the usual chiral trans-
formations, the fermion action S � a4

P
x c̄�x�Dc�x�

exhibits an exact lattice-deformed version of chiral sym-
metry [17] (which was implicit in the overlap formalism):
dS � 0 for dc � ĝ5c , dc̄ � c̄g5 where

ĝ5 � g5�1 2 aD� . (4)

An easy consequence of (1) is ĝ
2
5 � 1. Furthermore, after

supplementing (1) with the g5-Hermiticity condition

D� � g5Dg5 (5)

we have ĝ
�
5 � ĝ5. Thus ĝ5 can be viewed as a lattice-

deformed chirality matrix. The axial anomaly for
the lattice-deformed chiral symmetry transforma-
tion above can be determined from the correspond-
ing change in the fermion measure to be A�x� �
2ia tr�g5D�x, x�� � 2iq�x� [17]. This is completely
analogous to the relation between axial anomaly and index
density in the continuum [3].

Having seen that there is an exact lattice index theorem
for lattice Dirac operators satisfying the GW relation, and
that the index and its density are related to the axial anom-
aly in precisely the same way as in the continuum, it is
natural to ask if there is also a lattice index theorem for
families of such operators such that the families index is
related to gauge anomalies (or more precisely, to obstruc-
tions to the vanishing of these anomalies) in the same way
© 2001 The American Physical Society
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as in the continuum. In this paper we show that this is in-
deed the case: We derive an index theorem [(11) below]
for a family of such lattice Dirac operators, parametrized
by a 2-sphere in the orbit space of SU�N� lattice gauge
fields on the 2n-dimensional torus T2n. This is the pro-
totype for a more general lattice families index theorem
which is currently under development [21]. We find that
this index is related to an obstruction to gauge invariance in
precisely the same way as in the continuum setting, where
it was previously studied by Alvarez-Gaumé and Ginsparg
[6]. Furthermore, the index density is found to be propor-
tional to Lüscher’s topological field q�x, y1, y2� in 2n 1 2
dimensions [22] [given by (19) below]. This provides a
natural origin for q�x, y1, y2� in the lattice theory. (It was
introduced in an ad hoc manner in [22].) This is of in-
terest and potential use in connection with Lüscher’s ap-
proach towards achieving gauge invariance in non-Abelian
lattice chiral gauge theory: a local gauge anomaly-free for-
mulation exists if and only if the local cohomology class
represented by q�x, y2, y2� is trivial [22].

Chiral gauge theory can be formulated on the lattice in
the overlap formalism [12], which can be reformulated as
a functional integral approach with lattice Dirac operator
D satisfying the GW relation (1) and g5-Hermiticity
condition (5) [22,23]. Put a hypercubic lattice on T2n,
with lattice spacing a, and tet C denote the finite-
dimensional space of lattice spinor fields. The chiral
projections P6 �

1
2 �1 6 g5� and P̂6 �

1
2 �1 6 ĝ5�

determine decompositions C � C1 © C2 and C �
Ĉ1 © Ĉ2, respectively. The (right-handed) lattice chiral
determinant in this setting is

det�iDU
1� � �y2 , ŵ1�U�� , (6)

where y2 and ŵ1 are unit volume elements on C2 and Ĉ1,
respectively. These are unique up to phase factors; they
can be written as y2 � y1 ^ · · · ^ yd and ŵ1 � ŵ1 ^
· · · ŵd where y1, . . . , yd and ŵ1, . . . , ŵd are orthonormal
bases for C2 and Ĉ1, respectively. y2 and ŵ1 are the
many-body ground states in the overlap formulation [12],
and correspond to the chiral fermion measures in the for-
mulation of Refs. [22,23]. Note that ĝ5 � g5�1 2 aDU �
depends on the lattice gauge field U, so the subspace Ĉ1

and volume element ŵ1 likewise depend on U. On the
other hand, since the usual chiral decomposition C �
C1 © C2 does not involve U, neither does y2. We
are assuming dimC6 � dimĈ6 � d (otherwise the chi-
ral determinant vanishes). This is equivalent to assuming
indexDU � 0, i.e., U is in the topologically trivial sector
[12,22]. The space of lattice gauge fields will typically
contain a subset of measure zero where DU is not defined.
In the case of the overlap Dirac operator such fields can
be excluded by imposing a condition of the form jj1 2

U�p�jj , e on the plaquette products of U [24]. This con-
dition is automatically satisfied close to the classical con-
tinuum limit since 1 2 U�p� � a2Fmn�x� 1 O�a3�. We
will assume that the same is true for the general D that we
are considering here.

Consider a circle family 	fu
u[S1 of SU�N� lattice
gauge transformations. Each fu is a map from the lattice
sites to SU�N� (assuming for simplicity that the fermion
is in the fundamental representation). The action of fu on
U determines a circle family S 1 � 	Uu
u[S1 in the space
U of lattice gauge fields on T2n. Since the modulus of
(6) is gauge invariant [12], we have a map from S1 to the
unit circle in C :

u � �y2 , ŵ1�Uu����y2 , ŵ1�U�� . (7)

The winding number W of this map is an obstruction to
gauge invariance of the lattice chiral determinant. It was
recently studied in [25] where it was shown to reduce to
the continuum obstruction [6] in the classical continuum
limit. In the following we will show that W is related to
the index of a Dirac operator D in 2n 1 2 dimensions
in complete analogy with the continuum relation found in
[6]. Our result is a lattice version of a special case of the
families index theorem of [7] (this will be explained in
detail in [21]).

Choose a disk family B2 � 	U�u,t�
�u,t�[B2 in U with
boundary S 1, i.e., with U�u,1� � Uu . (Such a family might
not exist in general due to the restrictions on U needed to
ensure that D is well defined. However its existence is
guaranteed close to the classical continuum limit: we can
take the lattice transcript of the continuum family of [6].)
This determines a family of lattice Dirac operators D�u,t� �
DU �u,t�

. Setting Ĝ1 � s1 ≠ ĝ5 (where ĝ5 � ĝ
�u,t�
5 ) and

Ĝ2 � s2 ≠ 1, we define the Dirac operator in 2n 1 2
dimensions in the lattice setting to be

D � Ĝai�≠a 1 Aa� a � 1, 2 . (8)

The derivatives are with respect to the continuous Carte-
sian coordinates � y1, y2� on B2 and we have introduced
a continuum SU�N� gauge field A � Aadya on B2 with
Aa� y1, y2, x� a function of lattice site x as well as � y1, y2�.
D extends in a natural way to an elliptic 1st order differ-
ential operator on the vector fields with values in a vector
bundle over the closed manifold S2 � B2 <S1 eB2 as fol-
lows. The fiber of the vector bundle is C2 ≠ C (i.e., the
representation space of the Pauli matrices tensored with the
finite-dimensional vector space of lattice spinor fields on
T2n) and the transition function at the common boundary
S1 of B2 and eB2 is 1 ≠ F21 where F�u� � fu. A vector
field in this vector bundle consists of a function C�u, t�
on B2 together with a function eC�u, s� on eB2, both taking
values in C2 ≠ C , and related at the common boundary
S1 byeC�u, 1� � F�u�21 ? C�u, 1� � 1 ≠ f21

u ? C�u, 1� .

(9)
201
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D is defined on C by (8), and is defined to act on eC
as Ĝ

a
Ui�≠a 1 Ãa� where Ĝ

1
U � s1 ≠ ĝ

U
5 and Ĝ

2
U � G2.

The gauge-covariance of D implies that D�u,1� � DUu

�
fu ± DU ± f

21
u and ĝ

�u,1�
5 � fu ± ĝ

U
5 ± f

21
u . Using

these it is easily checked that D respects the relation (9),
and is therefore a well-defined operator on the vector fields
in the above vector bundle over S2, provided the gauge
field Ã � Ãadya on eB2 is related to the field A on B2 at
the common boundary S1 by

Ã�u, 1, x� � fu�x�21A�u, 1, x�fu�x� 1 fu�x�21dufu�x� .

(10)

[For example, we can take A � 0 and Ã�u, s, x� �
sfu�x�21dufu�x� in terms of polar coordinates �u, s�
on eB2.]

The space of vector fields in the above vector bundle
over S2 is denoted by V in the following. The chiral-
ity operator G5 � s3 ≠ 1 determines a chiral decomposi-
tion V � V1 © V2. The ellipticity of D follows easily
from the facts that s1 ≠ ĝ5 anticommutes with s2 ≠ 1
and �s1 ≠ ĝ5�2 � �s2 ≠ 1�2 � 1 ≠ 1. Also, D is for-
mally self-adjoint with respect to the natural inner prod-
uct in V since s1 ≠ ĝ5 and s2 ≠ 1 are self-adjoint on
C2 ≠ C . D anticommutes with G5 � s3 ≠ 1 and there-
fore has a chiral decomposition � 0

D1

D2

0 � and index D �
dim kerD1 2 dim kerD2. The following formula for the
index is derived below.

Theorem:

index D � 2
1

2pi

µZ
B2

Tr�P̂1dP̂1dP̂1�

1
1
2

Z
S 1

Tr�f21
u dufuĝU

5 �
∂

.

(11)

Here P̂1 is to be viewed as a function on the space U
of lattice gauge fields whose values are operators on C
(i.e., finite-dimensional matrices), and d is the exterior
derivative on U . Thus the first integrand is a 2-form on
U and can be integrated over the disc B2 in U to get a C
number. The second integrand is a 1-form on the boundary
S 1 of B2, with ĝ

U
5 � ĝ

�0,1�
5 constant.

By Eq. (3.11) of [25] the obstruction (winding number)
W associated with the map (7) equals the right-hand side
of (11) without the minus sign. It follows that

W � 2index D . (12)
202
This is the promised lattice analog of the result of [6]. It
follows from (12) and the result of [25] that index D re-
duces in the classical continuum limit to minus the degree
of the map F: S1 3 T2n ! SU�N�, F�u, x� � fu�x�,
which is precisely the index of the continuum Dirac
operator in 2n 1 2 dimensions [6]. The 2-form in the first
term in the right-hand side of (11) has appeared previously
in the overlap formalism in [26], where it was interpreted
as a form of Berry’s curvature. [The Berry phase is
associated with the state w1�U� in (6).] It is interesting to
note that a version of this 2-form also arises in the context
of the quantized Hall effect [27]. The second term in
(11) arises in [25] as the integral of the covariant gauge
anomaly (and vanishes in the special case where U � 1).

The index formula (11), together with (19) for the index
density, and the relation (12) are the main results of this
paper. The proof is as follows. We start from the formula

index D � Tr�G5e2tD 2

� ; t . 0 . (13)

This can be evaluated in the t ! 0 limit by familiar tech-
niques as in [6]: It is seen to be the sum of a contribution
from the B2 part of S2 � B2 <S1 eB2, given by

Z
B2

d2y a4
X
x

qD �x, y1, y2� , (14)

where

qD �x,y1, y2�

� lim
t!0

Z `

2`

d2k
�2p�2 tr�G5 e2ik?y�e2tD 2

�eik?y� �x, x� ,

(15)

and an analogous contribution from the eB2 part. In (15) the
trace is over spinor and flavor indices; O �x, y� denotes the
kernel function of an operator O on scalar lattice fields.
From (8) we calculate

2D 2 � ≠2 1 �2A1 1 ĝ5=1ĝ5 2 is3=2ĝ5�≠1

1 2A2≠2 1 =aAa

1 is3ĝ5F12 1 �ĝ5=1ĝ5 2 is3=2ĝ5�A1 , (16)

where =aĝ5 � ≠aĝ5 1 �Aa , ĝ5� (as in [22]); for nota-
tional simplicity we have omitted the ≠ symbol. After
substituting this in (14) and making a change of variables
kj ! t21�2kj we find
qD �x, y1, y2� � lim
t!0

1
t

Z `

2`

d2k
�2p�2 tr���s3 exp	2 k2 1

p
t �2A1 1 ĝ5=1ĝ5 2 is3=2ĝ5�ik1 1

p
t �2A2�ik2

1 t�=aAa 1 ĝ5=1ĝ5 1 is3�ĝ5F12 2 =2ĝ5A1��
��� �x, x� . (17)



VOLUME 86, NUMBER 2 P H Y S I C A L R E V I E W L E T T E R S 8 JANUARY 2001
This can be calculated by expanding the integrand in pow-
ers of

p
t. Terms with odd powers of s3 give a vanishing

contribution, as do terms with k dependence of the form
e2k2

k
p
1 k

q
2 where either p or q is odd. The remaining terms

are

tie2k2

tr��2A1=2ĝ5 1 ĝ5=1ĝ5=2ĝ5�k2
1

1 ĝ5F12 2 =2ĝ5A1� �x, x� 1 O�t3�2� , (18)

where we have used the fact that ĝ5=aĝ5 � 2=aĝ5ĝ5

(an easy consequence of ĝ
2
5 � 1). Evaluating the integral

in (17) with this integrand, we find that the contributions
from the 2A1=2ĝ5k2

1 and 2=2ĝ5A1 terms in tr�· · ·� in (18)
cancel, resulting in

qD �x, y1, y2� �
21
2pi

µ
1
4

tr�ĝ5=1ĝ5=2ĝ5� �x, x�

1
1
2

tr�ĝ5F12� �x, x�
∂

. (19)

Modulo the numerical factor 21�2p , this coincides with
Lüscher’s topological field Eq. (9.8) of [22]. Summing
over the lattice sites gives (cf. Appendix B of [22])

a4
X
x

qD �x, y1, y2� �
21
2pi

Tr

µ
1
4

�ĝ5≠1ĝ5≠2ĝ5�

2
1
2

≠1�A2ĝ5�

1
1
2

≠2�A1ĝ5�
∂

. (20)

The contribution to (14) from the first term in (20) gives
the first term in the index formula (11). The contribution
to (14) from the remaining terms in (20) reduces to
2

1
2

R
S1 Tr�A�u, 1�ĝ�u,1�

5 � in polar coordinates. The analo-
gous contribution to index D from the eB2 part is only
1

1
2

R
S1 Tr�Ã�u, 1�ĝU

5 � (since ĝ
U
5 is constant). Adding

these and using (10) we get the second term in (11).
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