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Abstract

This thesis presents a toolbox for the exploratory analysis of multivariate data, in
particular proteomics imaging mass spectrometry data. Typically such data consist
of 15000 - 20000 spectra with a spatial component, and for each spectrum ion in-
tensities are recorded at specific masses. Clustering is a focus of this thesis, with
discussion of k-means clustering and clustering with principal component analysis
(PCA). Theoretical results relating PCA and clustering are given based on Ding
and He (2004), and detailed and corrected proofs of the authors’ results are pre-
sented. The benefits of transformations prior to clustering of the data are explored.
Transformations include normalisation, peak intensity correction (PIC), binary and
log transformations. A number of techniques for comparing different clustering re-
sults are also discussed and these include set based comparisons with the Jaccard
distance, an information based criterion (variation of information), point-pair com-
parisons (Rand index) and a modified version of the prediction strength of Tibshirani
and Walther (2005).

These exploratory analyses are applied to imaging mass spectrometry data taken
from patients with ovarian cancer. The data are taken from slices of cancerous tissue.
The analyses in this thesis are primarily focused on data from one patient, with some

techniques demonstrated on other patients for comparison.
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Notation Index

R the real numbers.

number of variables.

n number of observations.

x (observation of) a functional random variable.
X (observation of) a multivariate random variable, p x 1.
X data matrix, p X n.

n the mean of x, p x 1.

by the covariance matrix of x, p X p.

X the sample mean of X, p x 1.

S the sample covariance matrix of X, p x p.
d(x1,X2) distance between two vectors x; and Xs.
4(Cy,Cy) distance between two sets C; and Cs.

k number of clusters.

C={Cy,...,Cx} a k-cluster arrangement.
P(X) the power set of X, i.e. the set of all subsets of X.

m/z mass-on-charge.
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