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Abstract

This thesis presents a toolbox for the exploratory analysis of multivariate data, in

particular proteomics imaging mass spectrometry data. Typically such data consist

of 15000 - 20000 spectra with a spatial component, and for each spectrum ion in-

tensities are recorded at specific masses. Clustering is a focus of this thesis, with

discussion of k-means clustering and clustering with principal component analysis

(PCA). Theoretical results relating PCA and clustering are given based on Ding

and He (2004), and detailed and corrected proofs of the authors’ results are pre-

sented. The benefits of transformations prior to clustering of the data are explored.

Transformations include normalisation, peak intensity correction (PIC), binary and

log transformations. A number of techniques for comparing different clustering re-

sults are also discussed and these include set based comparisons with the Jaccard

distance, an information based criterion (variation of information), point-pair com-

parisons (Rand index) and a modified version of the prediction strength of Tibshirani

and Walther (2005).

These exploratory analyses are applied to imaging mass spectrometry data taken

from patients with ovarian cancer. The data are taken from slices of cancerous tissue.

The analyses in this thesis are primarily focused on data from one patient, with some

techniques demonstrated on other patients for comparison.
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Notation Index

R the real numbers.

p number of variables.

n number of observations.

x (observation of) a functional random variable.

x (observation of) a multivariate random variable, p× 1.

X data matrix, p× n.

µ the mean of x, p× 1.

Σ the covariance matrix of x, p× p.

x̄ the sample mean of X, p× 1.

S the sample covariance matrix of X, p× p.

d(x1,x2) distance between two vectors x1 and x2.

δ(C1, C2) distance between two sets C1 and C2.

k number of clusters.

C = {C1, . . . , Ck} a k-cluster arrangement.

P(X) the power set of X, i.e. the set of all subsets of X.

m/z mass-on-charge.
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Chapter 1

Introduction

Proteomics mass spectrometry is a powerful tool for the study and identification of

proteins in organisms. Proteomics has provided new insight into human diseases,

such as biomarker discovery for early detection of cancers and the discrimination of

different cancer types.

In this thesis we consider proteomics mass spectrometry data from tissue samples

of ovarian cancer. Ovarian cancer is the deadliest of all gynaecological cancers. In

early stages, ovarian cancer does not present symptoms, and hence the disease is

often not detected until it has reached an advanced stage. Researchers are eager

to find new ways to detect the disease at an early stage, as this can significantly

increase the likelihood of patient survival.

Many different methodologies have been developed in the last few decades within

proteomics mass spectrometry. In this thesis I focus on matrix assisted laser des-

orption/ionisation (MALDI) for imaging mass spectrometry (IMS), and on data

acquired from tissue samples of patients with ovarian cancer using MALDI-IMS.

The Adelaide Proteomics Centre has made important advances in MALDI-IMS in

recent years. In this thesis I am working with their imaging data.

A mass spectrum is usually presented as a function: intensity versus mass-to-

charge. In MALDI-IMS the charge is typically 1, so we are essentially considering

intensities of mass, but we use the term mass-to-charge as it is standard for mass

2
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spectrometry (MS). We observe a large number of spectra, typically in the tens of

thousands.

This thesis is concerned with both exploratory data analysis, as well as the

theoretical basis for exploratory methods. I primarily consider cluster analysis,

which is also referred to in the literature as segmentation (particularly in proteomics

applications) and unsupervised learning or machine learning. I consider different

ways to cluster data, with most emphasis on k-means. I give special consideration

to ways of measuring distance between observations, and demonstrate how using

different distances can give very different results. My goal is to create a toolbox

together with discussions and comparisons of the effects of the different tools. These

tools may be useful to the bioinformatician, biologist or statistician interested in

analysing or clustering proteomics data.

All known material discussed in the literature are referenced in the relevant

chapter. Results unattributed are my own, and all data analyses are my own.

1.1 Chapter overview

In Chapter 2 I explain both the motivation for this project and how the data are

obtained with MALDI-IMS.

In Chapter 3 I consider the functional nature of the data, and put forward a

review and discussion of functional data analysis. I discuss the common approaches

to functional data analysis with respect to the smoothing and interpolation of data.

Since the IMS data tend to be sparse with many isolated peaks, we bin the mass

spectra onto a fine grid and then treat the data as vectors.

Preparation of functional data is extended in Chapter 4, where I consider nor-

malisation of IMS data. Normalisation is an important step in preparing the data

for analysis as the spectra are badly affected by systematic machine errors. I review

a number of methods which are commonly used, but these do not give promis-

ing results. In collaboration with Winderbaum (2015), I have put forward a new
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method of normalisation, known as peak intensity correction (PIC) which corrects

the spectra according to internal calibrants. This is related to the work on removal

of unwanted variance (RUV) proposed by Gagnon-Bartsch and Speed (2012).

Cluster analysis is explored in Chapter 5, where I use k-means clustering on

the vectorised data. A rough aim of this analysis is to partition the data into

sections that match with the different types of tissue. I have given consideration

towards the choice of distance measure in k-means, and demonstrate how different

distance measures can give vastly different clustering results. I also cluster data

after normalisation and transformations such as a binary representation and a log

transform.

In Chapter 6 I look closely at the intersection of k-means clustering and principal

component analysis (PCA). In particular I look at a proposition put forward by Ding

and He (2004) that the first principal component gives the solution to a continuous

relaxation of the k-means objective function when k = 2. I give rigorous proofs

of their theorems and lemmas, and I have corrected for a number of mistakes in

the original arguments. I also discuss limitations and possible practical uses for the

theory.

After having produced many clustering results in Chapters 5 and 6, in Chapter 7

I look at quantitative ways to compare cluster arrangements. I have chosen four

approaches to this: a set based method, information based method, a pairwise

method and a method adapted from Tibshirani and Walther’s prediction strength.

With any exploratory analysis, it is important to try different approaches as

this in itself may reveal important information about the data. For example, using

k-means clustering on the raw data with both Euclidean and cosine distances can

give very different results, which can indicate some interesting features, such as the

effect of error in the data.



Chapter 2

Proteomics Imaging Mass

Spectrometry

In the past few decades much progress has been made in the field of genomics, which

provides a basis for understanding the uniqueness and variability in humans as dif-

ferences in DNA sequences (Mishra, 2011, chapter 1). More recently, a breakthrough

has been underway in the field of proteomics which extends the work of genomics by

considering the roles of protein interactions. If genes are like a code, then proteins

are like the machinery that implements the code in a given cell.

The term proteome is a combination of the terms protein and genome, and it

is defined as the total proteins encoded by the genome of an organism. Unlike the

genome, which remains the same in all cells at all times, the proteome is dynamic,

differing in different cell types and even changing for a given cell type at different

stages in development.

The term proteomics refers to quantitative analysis of the proteome of a given

cell, tissue (e.g. cancer) or biological fluid (e.g. serum) at a given point in time or

under the effects of a defined biological stimulus (Gustafsson et al., 2011).

In this chapter I will briefly outline the role of proteomics in disease research

(particularly ovarian cancer) and some of the aims that motivate the project.

5
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2.1 Proteomics and ovarian cancer

Genetics and genomics have been instrumental in the study of human diseases.

Genes, or combinations of genes and environmental factors, can be linked to cer-

tain diseases and this has provided substantial understanding into how and why a

person contracts that disease. Proteomics has also provided insight into the role of

genes and environmental factors by identifying the roles of different proteins and

their interactions in metabolic pathways. Proteomics can help us understand the

biochemical basis of a disease, and also its diagnosis and treatment. In particular,

proteomics helps us explain:

• why certain cancers can be controlled by certain drugs and not by others,

• side effects of particular drugs,

• whether a particular person will respond to a particular treatment,

• and proteomics can also identify proteins that indicate a certain disease (biomark-

ers).

In this project we deal with tissue samples of ovarian cancer. Of all the gynae-

cological cancers, ovarian cancer has the highest mortality rate. The asymptomatic

nature of the disease means that most cases go undiagnosed until the cancer has

reached an advanced stage, by which time most treatments are not successful. How-

ever, early detection of the cancer leads to a higher five-year survival rate and a

higher probability of cure (Gustafsson et al., 2011). There is currently no effec-

tive screening test for ovarian cancer and diagnosis is difficult, so researchers are

searching for biomarkers to improve ovarian cancer detection.

So far a number of proteins have been associated with ovarian cancer: Leptin,

prolactin, Osteopontin, and insulin-like growth factor II (Mishra, 2011, chapter 6).

The search for relevant proteins is still in its infancy, and more research on the

identification of proteins associated with biomarkers and diseases is needed, both
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Figure 2.2.1: Diagram illustrating the process of MALDI-TOF mass spectrometry.

Source: Hoffmann 2012.

for diagnosis and treatment. Statistical analyses of proteomics data can help in

pointing to or identifying important proteins.

2.2 Mass spectrometry

The data for this project has been acquired via mass spectrometry (MS), and more

specifically, imaging mass spectrometry. Mass spectrometry is a powerful tool in

biochemistry, by which we can identify the abundance of a molecule or peptide,

which points to the presence of a certain protein. From Gross (2010, chapter 1):

The basic principle of mass spectrometry (MS) is to generate ions

from either inorganic or organic compounds by any suitable method,

to separate these ions by their mass-to-charge ratio (m/z) and to de-

tect them qualitatively and quantitatively by their respective m/z and

abundance.

(...) A mass spectrum is the two-dimensional representation of signal

intensity (ordinate) versus m/z (abscissa). The position of a peak, as

signals are usually called, reflects the m/z of an ion that has been cre-

ated from the analyte within the ion source. The intensity of this peak

correlates to the abundance of that ion.
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Essentially, the sample is ionised - in our case by the process known as MALDI

(matrix-assisted laser desorption/ionization) and the ions are separated based on

their masses. The method by which this is done in our case is ToF (time of flight).

A simple illustration of this process is given in Figure 2.2.1. The results of this

process are displayed in a 2-dimensional plot known as a mass spectrum, which has

ion intensity on the vertical axis and m/z on the horizontal axis. A peak at a given

m/z value indicates the abundance of an ion with that particular mass-to-charge

ratio. In MALDI experiments the charge is typically controlled to be 1, i.e. z = 1

so the horizontal axis can be thought to represent mass.

The data in this project will be referred to as imaging mass spectrometry (IMS)

as each mass spectrum is associated with a point in 2-dimensional space on a tissue

sample. I describe IMS in more detail in Section 2.3.

2.3 A brief overview of the acquisition of data for

this project

For details, see Gustafsson (2011, chapter 7).

We consider data from surgically excised ovarian cancers. Samples are available

from three patients (Patient 44, Patient 173 and Patient 540). For the majority of

analyses in this project, I will be looking at Patient 44. Tissue structure is visualised

by a pathologist using histological stains such as haematoxin and eosin (H&E), such

as in the example in Figure 2.3.1. To give an idea of the size, the black line in this

image represents 5mm.

Figure 2.3.2 details the steps in the preparation of the tissue samples. A sample

of tissue is divided into thin (2-10 µm) slices and mounted onto conductive mi-

croscopy slides. These tissue samples include cancerous tissue as well as healthy

tissue (adipose and stroma).

An overview of the workflow, illustrated in Figure 2.3.2:
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Figure 2.3.1: H&E stain for the sample from patient 44, slide 4. The high grade

cancer regions have been highlighted by the pathologist. The black line in this image

represents 5mm.
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Figure 2.3.2: Workflow diagram for the preparation and analysis of tissue samples.

Source: Gustafsson 2011.
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1. A sample of tissue is divided into thin (2-10 µm) slices and mounted onto

conductive microscopy slides (see first step in Figure 2.3.2).

2. The tissue sections are prepared with antigen retrieval, trypsin digestion and

matrix deposition (see second, third steps in Figure 2.3.2).

3. A 2-dimensional grid is superimposed onto the sample. The grid spacing used

is 100 µm (see yellow image in Figure 2.3.2).

4. MALDI-IMS data are collected using a Bruker Ultraflex III and a m/z range

of 1000-4500. A mass spectrum is acquired for every point on the grid. The

number of mass spectra in total ranges from 5000 to 100000. A single mass

spectrum corresponding to one grid point is shown bottom right of Figure 2.3.2.

5. The distribution of certain peptides can be displayed in heat maps. The image

also gives an indication of the spatial distribution of the peptide, and this can

be compared with the histology (see final steps in Figure 2.3.2).

One of the advantages of MALDI-IMS is that we can undertake a direct analysis

of the tissue and preserve the spatial information. For instance, we can see how

the abundance of certain ions can relate to tissue types by comparing the heat map

images in Figure 2.3.3 with the histology in Figure 2.3.1. Through statistical anal-

ysis, these comparisons can be made objectively. With clustering we can determine

regions where the spectra are most similar. We can also improve the data collec-

tion (through normalisation) and with classification and prediction we can make

decisions and and identify biomarkers related to disease.

2.4 Conclusion

In this chapter I have briefly introduced the motivation for analysis of proteomics

IMS data. I have also indicated the nature of the data, and I will give a more

mathematical explanation in the next chapter.
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Figure 2.3.3: Comparison of m/z heat maps for patient 44, slide 4. From left to

right, intensities of particular peptides that indicate cancer, adipose and stroma

respectively.
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We have seen that the data are in the form of 1000s of mass spectra and these

spectra can be thought of as ion intensities as a function of m/z. This means that

we are considering a special type of data known as functional data. This will be the

topic of the next chapter.



Chapter 3

Functional Data Analysis

The proteomics data which are of primary interest in this project may be treated

as functional data. The purpose of this chapter is to establish the basic ideas of

functional data, to illustrate how functional data extend and relate to multivariate

data, and how functional data ideas apply to IMS data.

3.1 Introduction

This chapter is largely based on two texts: Functional Data Analysis by Ramsay

and Silverman (1997, chapters 1 & 3), and Nonparametric Functional Data Analysis

by Ferraty and Vieu (2006, chapter 1).

Consider an observation of some (single) continuous phenomenon for which we

take discrete measurements. A typical example would be a process observed over

an interval of time, the variables being the time steps t1, t2, . . . , tk. In the imaging

mass spectrometry (IMS) data, the variables correspond to the mass-to-charge m/z

values. Mass spectra are regarded as continuous.

Even though these variables will be recorded discretely, they will typically be

close, so it makes intuitive sense to consider the data as an observation x of the

continuous family:

14
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X = {x : T → R |T = [t1, tk] ⊂ R}. (3.1.1)

It is important to note the distinction here between the model or conceptual level

and the practical level. Since data are always observed discretely, the classification

of data as functional is essentially theoretical. However, modelling the data as

functions may be appropriate for the given situation. This is typically the case

when we are considering time steps, since time is continuous, regardless of whether

we observe it discretely. The same is true for mass values, wavelengths and so on.

The goals of functional data analysis are similar to any kind of statistical analy-

sis: to represent the data in a way that best aids analysis, to detect patterns, study

the relationships between independent and dependent variables and to compare dif-

ferent sets of data. Treating data as functions makes analysis with derivatives more

intuitive, which is useful in applications where rate of change and other continous

transformations of the data are of interest.

The analysis here will be assumed to be nonparametric. There are varying defi-

nitions of nonparametric in the literature, but here we take it to mean the approach

is nonparametric if we do not require or refer to any underlying distribution in the

data. This is a natural idea, since it is not particularly helpful to think of distri-

butions such as normal or exponential in the functional case. Note that Ferraty

and Vieu (2006, p.7), make the distinction between fitting a model to the data

(e.g. a linear model) for which parameters should be estimated, and fitting some

general and flexible continuous function to the data and call these parametric and

nonparametric respectively.

3.1.1 The extension of multivariate to functional

To gain better insight into functional data, I will begin by comparing it with mul-

tivariate data. In this thesis, multivariate data are data in which each observation

is associated with p > 1 discrete variables. In the same way that the integral is the
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Table 3.1.1: Summary of Data Types.

Number of Variables p

Univariate p = 1

Multivariate p > 1

High-dimensional p� 1 (In a sample of n observations,

might have p > n).

Functional p =∞, that is, p is continuous.

continuous extension of the sum, I would like to consider functional data analysis

as a continuous extension of multivariate data analysis.

Table 1 compares the different data types by their number of variables. A dis-

tinction is made between multivariate and high-dimensional data, since in practice

these cases may need different treatment. As an aside, it is important to note that

multivariate data allows for different variable types (e.g. height, weight etc) whereas

functional data only allows for data of the same type (e.g. the variables represent

different times, or different wavelengths.)

In multivariate analysis an observation will consist of measurements with a dis-

crete and finite number of variables. Consider the population case x ∈ Rp where p is

the number of variables. The analogous functional example of this is x ∈ L2, i.e. we

take the observation to be some square-integrable function R → R. Conveniently

L2 is a Hilbert space, which leads to useful results to be discussed shortly.

The multivariate random vector, x has a mean, µ ∈ Rp and likewise the func-

tional random variable x has a mean µ ∈ L2.

In multivariate analysis we are typically interested in the covariance matrix Σ(p).

Since

Σ(p)η = η∗

where η,η∗ ∈ Rp, we may treat Σ(p) as a linear operator: Σ(p) : Rp → Rp.

In the functional case, we can no longer think of the covariance as a matrix, but
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its interpretation as a bounded linear operator still applies. Hence we may write:

Σ : L2 → L2. (3.1.2)

Covariance matrices are always symmetric, and a similar notion can be noted

for this operator. Typically we require that the operator is self-adjoint.

We may be more specific in talking about the operators here. In the matrix

case, the operator has finite rank (since all matrices will have finite dimension when

dealing with multivariate data). In the functional case, we can no longer assume the

operator is a finite rank operator but we may regard them as compact operators, as

this idea naturally extends that of finite rank (Wang et al., 2015). A definition of

compact operators is given by Garrett (2012):

Definition 3.1.1. (Garrett, 2012) A linear operator T : X → Y from a Hilbert

space X to a Hilbert space Y is compact if and only if it maps bounded sequences

in X to sequences in Y with convergent subsequences.

For a self-adjoint compact operator Σ we may define a corresponding λ-eigenspace,

Xλ = {x ∈ X |Σx = λx} (3.1.3)

which naturally extends the notion of eigenvectors from the matrix case. We observe

the following results for this eigenspace given by Garrett (2012):

Theorem 3.1.1. For a compact operator Σ, defined on L2 with corresponding

eigenspace Xλ the following hold:

1. The completion of the direct sum of Xλ for all λ is the original Hilbert space

L2. That is, there is an orthonormal basis consisting of eigenvectors.

2. The eigenspaces corresponding to the discrete eigenvalues are finite dimen-

sional.

3. All the eigenvalues are real.
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Deriving summary statistics for functional data is similar to the multivariate

case. However, statistics such as sample mean and variance are typically evaluated

at a given t.

Mean: x̄(t) =
1

n

n∑
i=1

x(i)(t) (3.1.4)

Variance: varx(t) =
1

n− 1

n∑
i=1

[x(i)(t)− x̄(t)]2 (3.1.5)

Covariance: covx(t1, t2) =
1

n− 1

n∑
i=1

[x(i)(t1)− x̄(t1)][x
(i)(t2)− x̄(t2)], (3.1.6)

where x(i) is the ith function in an observed sample of n.

3.2 Smoothing of functional data

An observation of functional data (a functional datum) will be observed as a set of

discrete values x = {x(t1), . . . , x(tn)} (note that these may not necessarily be equally

spaced on the variable axis). If the underlying process is a continuous process, and

the measurements are made at discrete and possibly unequal steps and corrupted

by noise, it is often advantageous to first convert to a function x(t). This may be

done with interpolation, however if we expect the data to have noise present then

we require smoothing. After this, we may discretise the data again with the freedom

to choose spacing on the variable axis.

In the next part I will discuss two main approaches to smoothing: the basis

function approach, whereby a function is expressed in terms of some chosen basis,

and also a local weighting approach. This section serves as a brief introduction to

common methodologies in functional analysis, and although not used directly in this

project, they are of interest and could be applied to the proteomics data instead of

the peak picking and binning approach which I use in this thesis and which are

described in Section 3.4.
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3.2.1 The basis function approach

A common approach to smoothing is to express the function x : R→ R as a linear

combination of K basis functions φk : R→ R, k = 1, . . . , K:

x(t) =
K∑
k=1

ckφk(t). (3.2.1)

If the datum is received as n points on the function, then the basis function will

be evaluated at each variable point tj, j = 1, . . . , n. A typical way to evaluate the

coefficients ck for each basis would be to use a least squares fit. That would be the

minimiser of the least squares criterion:

SMSSE(x|c) =
n∑
j=1

[
xtj −

K∑
k=1

ckφk(tj)

]2
, (3.2.2)

where n is the number of discretised points of the function and K is the total number

of basis functions and coefficients to be estimated. This can also be expressed in

matrix notation:

SMSSE(x|c) = (x− Φc)T (x− Φc) = ‖x− φc‖2

where Φ = {φk} is the (n × K) matrix of basis functions evaluated at tj and x

and c are n and K dimensional vectors, respectively. The solution to the least

squares criterion is the smoothing matrix SM = Φ(ΦTΦ)−1ΦT . This is a projection

matrix, hence we may think of least squares smoothing as a projection onto the

space spanned by the basis functions.

The choice of basis functions is an important issue. It is natural to choose a

basis function that shares properties with our model of what the observed functions

represent. It is also important to keep in mind what sort of analysis we wish to do

with the data, for example whether we intend to consider derivatives, since this will

impact on the choice of function.
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Fourier series

A common choice of basis function is a Fourier basis. Fourier series are used widely

in mathematics for approximating functions. The Fourier series is of the following

form:

x̂(t) = c0 + c1 sinωt+ c2 cosωt+ c3 sin 2ωt+ c4 cos 2ωt+ . . . (3.2.3)

which is defined by the basis: φ0(t) = 1, φ2r−1(t) = sin rωt and φ2r(t) = cos rωt.

Although the Fourier basis is a popular choice, it is not without disadvantages.

This approach to smoothing works best when the underlying function is without

discontinuities and strong local features, and curvature tends to be of the same

order everywhere. For IMS data, which are full of peaks, such smooth models are

not appropriate.

Polynomial bases

Polynomial bases are also a popular approach. This means choosing bases of the

form φk(t) = (t − ω)k, k = 0, . . . , K, ω ∈ R. As with Fourier bases, polynomial

bases work well when the function does not have too many strong local features

(large amounts of local variation would require a large K). Polynomials tend to fit

well in the centre, but may exhibit strange behaviour in the tails.

Regression spline bases

The regression spline approach to smoothing addresses the problem that Fourier and

polynomial bases have with ignoring local features. It essentially creates a piecewise

polynomial function (where the pieces of polynomials in question are typically cubic)

by joining them together smoothly at certain values τk, called knots. The placement

of knots is often arbitrary, although knot placement should be dense around areas

with high variability, so as to capture that variability.
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Wavelet bases

Wavelet bases have been used in the literature for proteomics data, notably by

Morris (2012). Typically a function Ψ is chosen as the mother wavelet and the

bases are formed from contractions and translations of that base function:

Ψjk(t) = 2j/2Ψ(2jt− k) (3.2.4)

for integers j and k. These functions are constructed such that the resulting basis

is orthogonal. Wavelet bases tend to work well when dealing with functions with

sharp local features.

3.2.2 Kernel smoothing

Smoothing with local weighting means that we smooth based on local observations

without the use of basis functions. This is usually done with a kernel function. A

commonly used kernel function is the Gaussian kernel:

kern(u) = (2π)−1/2 exp(−u2/2). (3.2.5)

Weights functions are defined subsequently as:

wj(t) = kern

(
tj − t
h

)
. (3.2.6)

This weight is concentrated for values of tj centred at the point of interest t. The

parameter h, the bandwidth, controls the degree of concentration or smoothness. A

small h means that only values very close to t are given weight, whereas a large h

means a larger range of values are averaged.

From these weights we derive the kernel estimator :

x̂(t) =
N∑
j=1

Wj(t)yj. (3.2.7)

where Wj is some suitably designed weight function based on the wj.
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3.3 Preprocessing and interpolation of IMS data

The aim of this section is to build a bridge between functional data and the form of

the data that are to be used in the following chapters.

In this project, we consider data from imaging mass spectrometry (IMS). At each

pixel in the image a mass spectrum is observed. We model, xj, the jth spectrum,

evaluated at the m/z value t like so:

x
[raw]
j (t) = Bj(t) +NjSj(t) + εj(t). (3.3.1)

The key piece of information in this equation is Sj(t), the underlying signal at t,

and all other quantities refer to measurement errors or artefacts. We aim to remove

most of these errors with smoothing, or more generally, data preprocessing.

Morris (2012) outlines the following steps involved in preprocessing:

• Alignment. This involves matching up peaks from m/z values known to be

present, typically internal calibrants added for this purpose.

• Denoising and smoothing. This removes the white noise εj(t).

• Baseline correction. This removes the smooth background artefacts Bj(t),

caused by systematic ion artefacts.

• Peak picking. Multiple peaks in a certain neighbourhood are combined to

represent a single peak and peaks below a threshold value are discarded as

noise and the value is set to 0.

• Normalisation. This aims to remove the Nj coefficient, which is a systematic

error on each spectrum.

The first three steps are taken before I receive the data, and are carried out

within the machine (in this case Bruker Ultraflex III) with some parameter choices

the user can apply. The final step, normalisation, I will discuss in detail in the next

chapter.
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Figure 3.3.1: Mass spectrometry profiles from the ovarian cancer tissue sample pa-

tient 44, slide 4; peak intensities on the y-axis against m/z-values on the x-axis for

profiles 400-420 in the top panel and with zoom-ins in the bottom left panel, and

profiles 1000-1020 in the middle panel with their zoom-ins in the bottom right panel.

Each coloured line refers to one spectrum.

We will refer to the following expression as the equation for the peak list data,

evaluated at t:

x
[peak]
j (t) = NjSj(t)εj(t). (3.3.2)

We assume there is still some amount of random error present in the sample,

included in the εj(t) term, as well as the systematic, spectrum specific error Nj.
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3.4 Interpolation

I receive data as peak lists x(j) = {x(t1), . . . , x(tmj
)}, as in Equation (3.3.2). Only

the m/z values where intensities are recorded are given, and naturally these will

be different for each spectrum. The number of peaks in each spectrum will vary.

In order to make the spectra comparable, they will need to be interpolated onto a

common grid. This can be done via binning.

I previously described the process of interpolation, smoothing and discretisation

of the smoothed function. If the peaks are very dense, the three steps would need

to be applied, but due to the relative sparsity of peaks on the m/z axis, binning is

sufficient. As a side note, it would also be possible to interpolate the peaks with

kernel density smoothing; each peak would then be replaced by a Gaussian curve,

and from there the function could be discretised again. However, for this project, I

only consider binning.

Ideally we would like to choose the bin width small enough so that at most one

peak would fall into any given interval. It is expected that differences in peaks are

typically greater than 1 Dalton on the m/z axis, although sometimes the differences

are approximately 0.5 Dalton, due to experimentation error. Consequently, a bin

width of 0.25 works sufficiently well for ensuring at most only one peak is present

in each bin. An additional note about binning: the position of the bin might have

some effect on the result, similar to what one observes when producing histogram

plots. However, we found that for clustering this shift of bins did not noticeably

affect the analysis, and we therefore do not consider it further.

By interpolating spectra into m/z bins, we are essentially converting our func-

tional data (spectra) into multivariate data (vectors). After interpolation many m/z

values have 0 peaks across all observations. Since we are no longer concerned with

the whole spectra, but rather points of comparison between the spectra, these points

can be eliminated. In the sample Patient 44, slide 4, we reduce the number of m/z

bins from 13,000 to 5,000 by deleting bins that have 0 intensity across all pixels
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after binning. The number of bins will henceforth be referred to as p, and this is

equivalent to the number of variables.

We now consider a data matrix X = [x1,x2, ...xn]. The size of the matrix is

p × n, that is, the rows correspond to variables and the columns to observations.

This orientation of the data matrix varies in the statistical literature, but this is the

convention used by Koch (2013).

3.5 Conclusion

Although the data obtained from IMS are functional by nature, we have the ability

to treat them as multivariate data. Moreover, much of the analysis of multivariate

data (such as principal components) can be extended to functional data.

From this point forward, data is usually seen in the form of the peak list x(j) =

{x(t1), . . . , x(tk)} or the multivariate data matrix X. In the next chapter I will look

closer at the problem of normalisation, and later investigate the data with cluster

analysis.



Chapter 4

Normalisation

In the previous chapter I explained the four preprocessing steps necessary in prepar-

ing IMS data for analysis: smoothing, baseline correction, peak picking and normal-

isation. I will now discuss normalisation in more detail. Since the data that are the

focus of this project have been preprocessed in all ways except normalisation, it is

necessary to spend some time choosing and comparing methods to do this.

4.1 Motivation for normalisation

In each mass spectrum we assume there is some distortion or suppression of the

intensities and this is constant for a given spectrum. We denote this constant for

the jth spectrum by the non-zero multiplicative factor Nj. Normalisation, defined

by Deininger et al. (2011) is the process of multiplying the jth spectrum by 1/N̂j

where N̂j is an estimator for Nj.

Normalisation is a vital step because we need our data to be comparable and

informative. Recall our assumed model for the mass spectra:

x
[peak]
j (t) = NjSj(t)εj(t). (4.1.1)

We wish to get as close as we can to working with the underlying signals Sj, or at

the very least, removing enough artefacts to make the spectra comparable with each

26
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other.

This is especially important in the following chapters when we will be using

clustering methods to distinguish different tissue types in the sample. As we will see,

clustering data without normalising first can lead to results that are uninformative,

or even misleading.

Our choice of normalisation method - that is, how we estimate Nj - is also

important. A poor choice of N̂j could make the data even more misleading and

uninformative.

4.2 Some simple normalisation techniques

From this point onwards we consider a mass spectrum as a vector of observed in-

tensities, or a vector of peaks. At this stage it is not necessary to have interpolated

the peaks onto a grid of equal length; in all these cases I will perform normalisa-

tion before interpolation, as once interpolation has been done the vector is full of

placeholder 0s and these should have no influence on the normalisation.

We will use vector notation to denote the kth spectrum:

xj = [x1, x2, . . . , xn]T . (4.2.1)

Hence the resulting normalised vector will be:

x
[norm]
j =

1

Nk

xk. (4.2.2)

In their paper, Deininger et al. (2011) have given a comprehensive review of

common normalisation methods currently being used in practice in proteomics MS:

• `1 norm, also called total ion count (TIC),

• `2 norm, also called mean squared error (MSE),

• l∞ norm, i.e. the maximum intensity,
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• the median intensity.

I implement each of these normalisations for comparison. In the second half of

this chapter I propose a new normalisation method which makes explicit use of the

calibrant quantities in the sample.

4.2.1 Normalisation factors

For P > 0 we define the `P -norm, N̂ (P ), like so:

N̂ (P ) =

(∑
i

|xi|P
)1/P

. (4.2.3)

We consider three cases of the `P -norm. For P = 1 we are essentially taking the

normalisation factor to be the sum of all intensities in the spectrum. We define the

`1 normalisation factor N̂ (1) as follows:

N̂ (1) =
∑
i

|xi|. (4.2.4)

Deininger et al. refer to this normalisation as Total Ion Count (TIC). It should

be noted, however, that this interpretation of the `1-norm might not be consistent

for with the kind of spectra we are using here. In our case, a number of major pre-

processing steps have already been taken (peak picking, for example) and this might

change the interpretation of ion count. It is not explicitly clear what preprocessing

steps Deininger et al. have taken prior to doing their normalisation. Having said

that, I will be using this normalisation and henceforth referring to it as `1-norm.

For P = 2, we consider the `2-norm, which is a popular choice of normalisation

factor. It is commonly known as the Euclidean norm, and is used often in statistics,

for example in calculating mean squared error. We define the `2-normalisation factor

N̂ (2) as follows:

N̂ (2) =

(∑
i

x2i

)1/2

. (4.2.5)
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As we increase P , higher intensity signals will have more impact on the normal-

isation. We may take P →∞, and this will give us only the highest intensity signal

as the normalisation factor. We call this the max norm or the `∞-norm. This means

we would normalise so that the highest intensity in each spectrum is at the same

level. The `∞ normalisation factor N̂ (max) is defined as follows:

N̂ (max) = max
i

(xi). (4.2.6)

Deininger et al. (2011) also suggest normalising with the median of the intensities

as a normalisation factor. We call this normalisation factor N̂ (med) and it is given

as follows:

N̂ (med) = median(xi). (4.2.7)

The median as a statistic has the property of being robust to the effects of out-

liers. Using the median as a normalisation factor should be robust to the effects of

preprocessing.

4.3 Comparison of normalisation techniques

In this section I compare the four normalisation factors detailed above. A number of

calibrants were applied to the sample before mass spectra were measured. Calibrants

are a form of control, as we know that each calibrant is applied evenly over the

sample. After a successful normalisation, we would expect to see roughly the same

intensity for a calibrant’s mass value in each spectrum. Hence we can judge the

effectiveness of a normalisation by these criteria:

• reduces the variance of the intensities for a given calibrant,

• gives a more homogenous distribution of intensities for a given calibrant.

The four calibrants present in each of the IMS samples are listed in Table 4.3.1.

For practical purposes, I included any m/z values within a 0.2 Dalton radius of
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Table 4.3.1: Internal Calibrants

Name m/z

C1 AngI 1296.685

C2 Glu-fib 1570.677

C3 DynA 2147.199

C4 ACTH 2932.588

these values.

4.3.1 Distribution of the calibrants before and after normal-

isation

Table 4.3.2 shows the mean and standard deviation of the ion intensities for each

calibrant (listed 1 to 4) both before (raw data) and after normalisation with the

four normalisation factors listed previously. Normalisation reduces the size of the

intensities, scaling everything between 0 and 1 in the case of the `P norms. Conse-

quently, the standard deviations are also reduced but they remain of the same order

as the means. This suggests that our goal to reduce the variance of the calibrant

intensities remains largely unfulfilled.

An illustration of how the distribution of ion intensities are affected can be seen

in Figures 4.3.1 to 4.3.5. These images show the distribution of ion intensities

separately for each calibrant in heat maps.

In the raw case, the first calibrant appears to have extremely high intensities

near the top of the tissue, which quickly taper off. The normalisations have raised

the peaks at other parts of the image, but none have produced a result that might

be considered an even distribution of intensity.

The `∞ or maximum intensity normalisation appears to be particularly prone

to problems, as there are many pixel positions (particularly on the edges where the

background material is located) where the calibrant has the highest intensity in the
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Table 4.3.2: The means and standard deviations of ion intensities for the four cali-

brants.

(a) Mean

C1 C2 C3 C4

Raw 1578.224 1813.577 1536.269 827.172

`1 0.0264 0.0474 0.0527 0.0312

`2 0.1420 0.2412 0.2560 0.1549

Max 0.2699 0.4601 0.4866 0.2999

Median 4.9111 7.4821 7.6118 4.4343

(b) Standard Deviation

C1 C2 C3 C4

Raw 2255.073 1706.340 1401.447 776.513

`1 0.0267 0.0383 0.0517 0.0364

`2 0.1149 0.1345 0.1778 0.1320

Max 0.2186 0.2534 0.3171 0.2489

Median 6.6613 6.6447 7.6404 5.0622
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(a) C1 (b) C2 (c) C3 (d) C4

Figure 4.3.1: Distribution of the four calibrants on the raw sample from Patient 44.

(a) C1 (b) C2 (c) C3 (d) C4

Figure 4.3.2: Distribution of the four calibrants after `1 normalisation on sample

from Patient 44.
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(a) C1 (b) C2 (c) C3 (d) C4

Figure 4.3.3: Distribution of the four calibrants after `2 normalisation on sample

from Patient 44.

spectrum and is hence normalised to 1. Hence we see high intensity regions clustered

around the edges.

The `2 normalisation also displays some of this problem of overweighting cali-

brants. At the edges (on the background material) it is likely that the calibrants are

the only peaks present in the spectra (since they were added there artificially). As a

result, these areas are a little skewed towards overweighting the calibrant intensities.

Having said that, the `2 normalisation may be the most successful of the methods

I have used so far, as the heat map in Figure 4.3.3 shows less extreme values than

the max norm in Figure 4.3.4. The heat maps for the `1 (Figure 4.3.2) and median

(Figure 4.3.5) norms are not significantly different from the raw case, and hence

they can be regarded as ineffective methods of normalisation.

Since none of these normalisations have provided satisfactory results, we look to

a different method of normalisation. Since we assume that the calibrants are applied
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(a) C1 (b) C2 (c) C3 (d) C4

Figure 4.3.4: Distribution of the four calibrants after `∞ (maximum ion intensity)

normalisation on sample from Patient 44.

with constant intensity across the sample, we can use them explicitly to determine

an appropriate normalisation constant Nj for each spectrum. We call this approach

peak intensity correction (PIC).

4.4 Peak intensity correction

Gagnon-Bartsch and Speed (2012), in their discussion of the removal of unwanted

variance (RUV), discuss the function of negative controls, which they define as vari-

ables that are expected not to change. Hence any apparent variability in these

variables must be attributed to the unwanted variance that we are trying to miti-

gate. The internal calibrants listed in Table 4.3.1 are precisely the negative controls.

RUV also relies on positive controls, but it is not clear what the positive controls

could be in our case. As RUV has been designed primarily for genes, it may not be

directly applicable to work with proteins. This approach may be viewed as a special
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(a) C1 (b) C2 (c) C3 (d) C4

Figure 4.3.5: Distribution of the four calibrants after median normalisation on sam-

ple from Patient 44.

case of RUV.

Recall our model for the mass spectra, after peak picking and baseline correction:

x
[peak]
j (t) = NjSj(t)εj(t). (4.4.1)

Taking the log of (4.4.1) gives us a simple linear equation:

log x
[peak]
j (t) = logNj + logSj(t) + εj(t). (4.4.2)

As an aside: when taking logs it is important to be wary of zero values. If one were

to normalise the interpolated/binned data then adding 1 to the entire spectrum is

recommended. According to my definition, xk is a peak list and so no zero quantities

are included.

Now take tm to be the m/z value of the mth calibrant. If we consider only the

m/z values for the calibrants (that is, fixing t = tm), the signal Sj(tm) = Sm only

depends on m. Recall that calibrants should have constant intensity, so there is no
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dependence on the spectrum j. We now have:

log x
[peak]
jm = logNj + logSm + εjm. (4.4.3)

This is now a regression problem where logNj and logSm are coefficients we can

estimate from the data. The linear regression problem, 4.4.3, is of the form:

y = X~β + ~ε. (4.4.4)

For the jth calibrant and kth spectrum, put

yjm = log x
[peak]
jm so

yjm = µm + νj + εjm (4.4.5)

where µj = logSj (calibrant dependent), νj = logNj (spectrum dependent) and εjm

is random error. For ~β = [µ1, . . . , µρ, ν1, . . . , νn]T , the design matrix X consists of

n+ 1 blocks B`, each ρ× (ρ+ n), where ρ is the number of calibrants:

X =


B1

...

Bn+1

 & B` =


1 0 . . . 0 | 0 . . . 0 | 1 | 0 0 . . . 0

0 1 . . . 0 | 0 . . . 0 | 1 | 0 0 . . . 0
. . . | 0 . . . 0 | 1 | 0 0 . . . 0

0 0 . . . 1 | 0 . . . 0 | 1 | 0 0 . . . 0

 .

The least squares estimator for ~β is given by:

β̂ = (XTX)−1XTyjm. (4.4.6)

Hence finding β̂ requires the calculation of (XTX)−1. This calculation is compu-

tationally too expensive to use routinely, since this matrix is very large and sparse.

However, note that XTX has a rather simple form:

XTX =

(n+ 1)Iρ×ρ 1ρ×n

1n×ρ ρIn×n

 . (4.4.7)
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Due to this specific form, an inverse can be found analytically by considering each

section of the matrix separately and deriving the matrix adjoint. Consequently, we

can determine an analytic solution for ~β (see Winderbaum (2015) for details). The

solutions are as follows:

ˆlogSm = x̄m =
1

n

n∑
j=1

xjm, (4.4.8)

ˆlogNj =
1

ρ

ρ∑
m=1

(xjm − x̄m). (4.4.9)

We take exp( ˆlogNj) as an estimate for Nj, and this becomes the normalisation

factor by which we divide the jth spectrum. Explicitly:

N̂ (PIC) = exp( ˆlogNj). (4.4.10)

Then we normalise the jth spectrum like so:

x
[norm]
j =

1

exp( ˆlogNj)
xj. (4.4.11)

Alternatively, if we wish to keep the data on a log scale, we can subtract the

term ˆlogNj from Equation (4.4.2).

log(xj)
[norm] = log(xj)− ˆlog(Nj). (4.4.12)

The transformation in Equation 4.4.11 is henceforth referred to as PIC and the

transformation in Equation 4.4.12 is referred to as log-PIC.

4.4.1 Distribution of the calibrants after PIC

Since the PIC normalisation is based on the calibrants, the calibrants act as a

training set. Hence also using the calibrants as a testing set (as we have done

up until now) would show biased results. In order to amend this, I have tested
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Table 4.4.1: The mean and standard deviation of ion intensities for the four cali-

brants after PIC and PIC with log transformation.

(a) Mean

C1 C2 C3 C4

Raw 1578.224 1813.577 1536.269 827.172

PIC 996.118 1270.828 1064.314 621.523

log PIC 6.3814 7.0018 6.9252 6.3268

(b) Standard Deviation

C1 C2 C3 C4

Raw 2255.073 1706.340 1401.447 776.513

PIC 1104.701 687.643 313.046 296.654

log PIC 1.0714 0.5606 0.3171 0.4640

one calibrant at a time, with PIC normalisation trained on the remaining three

calibrants. This can be considered a leave-one-out cross validation.

Once again, the means and standard deviations before and after normalisation

are listed in Table 4.4.1. PIC normalisation does not greatly reduce the mean

intensities, but we do notice a greater decrease in the standard deviations. Taking

the log completely changes the scale of the intensities, but we note that the standard

deviations reduce significantly in proportion to the means of intensities. In other

words, we have reduced the coefficient of variation. Reducing the coefficient of

variation is a key aim, as a smaller standard deviation relative to the mean is a

move toward the model that assumes constant intensities for calibrants.

The heat maps in Figures 4.4.1, 4.4.2 and 4.4.3 show the distribution of ion

intensities after PIC normalisation. Note that the colours themselves are not illus-

trative; it is the differences in colour on a given heat map that show the evenness of

distribution. The heat maps on the log data even out over a higher intensity range



CHAPTER 4. NORMALISATION 39

(a) C1 (b) C2 (c) C3 (d) C4

Figure 4.4.1: Distribution of the four calibrants after PIC on sample from Patient

44.

and this is why they appear more red.

The distribution of calibrant ion intensities has become more evenly spread after

each transformation. Out of the four calibrants, the first calibrant appears the worst

in each case - which could suggest an instrumentation error and it may be the case

that this particular calibrant does not appear evenly across the tissue. From the

images it would seem that the ion intensities are systematically higher at the top

and fade out towards the bottom. This is not surprising, as it is in line with how

the data are collected: they are rasterised left to right, top to bottom in rows and

there is a time delay in which the calibrant may be affected.

4.5 Conclusion

In this chapter I have demonstrated why normalisation is a relevant problem. Most

of the common, naive approaches to normalisation seem to have little effect, and



CHAPTER 4. NORMALISATION 40

(a) C1 (b) C2 (c) C3 (d) C4

Figure 4.4.2: Distribution of the four calibrants after PIC in the log scale on sample

from Patient 44.

some may even have a negative effect on the interpretability of the data. PIC has

been introduced as a more intelligent approach that learns from information in the

data. The tables and the images suggest that PIC is a more successful approach

to normalisation, as it lowers the standard deviation of calibrant ion intensities

relative to the mean, and hence creates a more constant spread. However, there are a

number of assumptions inherent in PIC: including the assumption that the calibrant

quantities are indeed homogeneously present within the tissue. The anomalous first

calibrant suggests that this might not always be an accurate assumption, as it has

likely been affected by systematic machine error.

We also note the effect of applying a log transformation to the ion intensities.

A log transformation completely changes the scale, and extreme values become less

extreme. The log transformed data show much less variance in the distribution of

the calibrants, and therefore appplying a log transformation also has a similar effect
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(a) C1 (b) C2 (c) C3 (d) C4

Figure 4.4.3: Distribution of the four calibrants after log transformation only on

sample from Patient 44.

to normalisation.



Chapter 5

Clustering

This chapter is primarily concerned with clustering approaches for the proteomics

IMS data described in previous chapters.

Cluster analysis is refers to an exploratory approach in its own right which

partitions observations into groups according to which observations are close or

similar. In clustering, information about class labels is not used, and typically does

not exist.

The goal of cluster analysis is to develop a “picture” of the data. Clustering data

may lead to further insight into the effect of errors, the presence of abnormalities

and outliers, and may reveal interesting features. When we have data with many

observations, we would like to be able to isolate or identify the most important and

interesting parts, as this can simplify later analysis.

Cluster analysis could also be a first step in a more comprehensive analysis and

carried out prior to classification. Classification (Koch, 2013, chapter 6) refers to

supervised learning whereby class labels are used to derive a rule for determining

which observations belong to each class. Classification is related to regression, in the

sense that the regression response is used in the construction of the estimator and

for prediction. For the data used in this thesis, labels do not exist, so classification

is not a appropriate. This project focuses on clustering.

For the IMS data our preference would be to cluster the observations into groups

42



CHAPTER 5. CLUSTERING 43

that correspond to different tissue types, the most interesting of these being cancer-

ous tissue. Such a cluster arrangement would be ideal, however we cannot guarantee

that any given clustering method will do this. Clustering is only exploratory; it does

not make use of explicit information about tissue type, but tries to find some pattern

in the data.

Different clustering methods may produce different results, and they will vary

depending on what parameters and controls they are given (such as number of

clusters, choice of distance measure). Hence in order to obtain useful and robust

clustering results, it will be worth spending some time investigating different possible

configurations. We will make use of the imaging aspect of the IMS data to assess

clustering results via visualisation, providing a rough, qualitative guide as to whether

the clusters are reflecting tissue type. In this chapter I will firstly explore some issues

with the choice of clustering method. I will cluster both the raw peak list data, and

a binary transformation of the peak list data for comparison. Later I will apply

a variety of other possible transformations to the data in an attempt to improve

results. This includes the normalisation methods discussed in the previous chapter.

5.1 Clustering methods

There are a variety of methods that may be used for clustering. Two popular

methods are hierarchical clustering and k-means clustering (Koch, 2013, chapter 6).

5.1.1 Hierarchical clustering

Hierarchical clustering has not been used extensively in this project, so my outline

will be brief.

There are typically two approaches to hierarchical clustering:

• Agglomerative clustering begins by treating every observation as its own clus-

ter, and at each step joins clusters together so that larger clusters are formed.
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• Divisive clustering begins with the data in a single cluster and subsequently

divides it into smaller clusters.

In each case, the method is stopped whenever the user decides that an appropriate

number of clusters has been reached. This means that the user does not necessarily

need to know the number of clusters beforehand, but will still make a decision at

some point as to how many clusters there should be. The decision could be based

on a predetermined number, k, or the user could impose a bound on the size of a

cluster (Koch, 2013, section 6.2).

The hierarchical clustering methods depends on two notions of closeness: the

first being the distance between observations, and the second being the proximity

of sets of observations, called the linkage.

A disadvantage of hierarchical clustering is the computation time. The algorithm

works with the distance matrix between all observations in the sample which can be

very large. For example in our proteomics data we usually have more than 10,000

observations in a given sample.

One advantage of hierarchical clustering is that we do not need to know the

number of clusters beforehand, but this may not be an issue if we already have an

intuitive idea as to how many clusters we would like to see. For our application,

we would like our clusters to correspond to the four classes we expect to see (three

tissue types and background) so there is some justification for choosing four clusters

from the outset. Hierarchical clustering is sometimes used in proteomics when the

user wants to manually check the clusters (see Deininger et al., 2008; Bruand et al.,

2011; Bonnel et al., 2011; Trede et al., 2012).

5.1.2 k-means clustering

Another common approach to clustering is k-means clustering, which is a partition

style approach. The number of clusters, called k, is decided from the outset, and

from there it becomes a matter of deciding their optimal formation. Optimality in
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this case means minimising the k-means objective function, called Jk.

Let W = {C1, C2, . . . , Ck} be a cluster arrangement. We call W∗ the optimal

cluster arrangement if:

W∗ = argmin
W

Jk = argmin
W

k∑
i=1

∑
x∈Ci

d(x, x̄i)
2, (5.1.1)

where k is the number of clusters, chosen beforehand, Ci is the set of observations

in cluster i, x̄i is the centre of cluster i and d is a distance measure.

Computationally, determining W∗ has been shown to be a NP-hard problem,

even for the simplest case k = 2 (Drineas et al., 2004). Consequently, algorithms

for finding W∗ are heuristic and often converge to a local, non-global, minimum.

The standard k-means algorithm, sometimes referred to as Lloyd’s algorithm,

consists of an assignment step and an update step:

• Initialisation: Randomly or otherwise, assign initial cluster centroids.

• Assignment Step: Assign observations to the nearest centroid.

• Update Step: Make the means of the current clusters to be the new cluster

centroids.

The assignment and update steps are repeated until the solution stabilises.

A bad choice of initial cluster centroids can lead to the algorithm converging

on a local minimum. There has been some investigation into choosing good initial

centroids, also known as seeds, notably by Arthur and Vassilvitskii (2007), who

propose k-means++, an algorithm that improves the accuracy of k-means with careful

seeding. Another approach for seeding, using principal component analysis (PCA)

will be discussed in more detail in Chapter 6.

For the remainder of this chapter I will be using k-means to cluster the proteomics

data. Before doing so, I will make some further comments about the limitations of

k-means and how to choose the parameters for the algorithm.
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5.2 Comments on the parameters of k-means

In order to cluster according to k-means, the user must specify three parameters

(Jain, 2010); the number of clusters k, the cluster initialisation, and a distance

measure.

Choosing the number of clusters k can be a difficult problem, since the ideal

number of clusters may be an ambiguous concept, especially when little information

about the data is known beforehand. On the other hand, there are instances in

which the user may have some intuitive understanding of how many clusters they

expect to see. In the case of the proteomics data we expect to see four clusters

corresponding to three tissue types and background space, so it seems reasonable to

choose k = 4. It might also be of interest to try k = 3 or k = 5, but by clustering

with k more than 5 we begin to lose the desired interpretability.

Choosing good initialisation is important, since as I mentioned earlier a bad ini-

tial input could lead to a non-optimal solution. Although the k-means++ algorithm

helps to decide good starting points, simply replicating the k-means algorithm (up

to 10 times) and choosing the result with the smallest Jk can help ensure an optimal

solution.

The choice of distance measure is perhaps the most important of the parameters,

since it is the distance measure that defines precisely what we mean by two obser-

vations being ‘close’ or ‘similar’. Different distance measures can give very different

clustering results.

Firstly, it is necessary to be precise about what I mean by distance. The defini-

tion of distance given by Koch (2013, section 5.3) is as follows:

Definition 5.2.1. For i = 1, 2, . . . , let xi be p-dimensional vectors. A distance d

is a map defined on pairs of random vectors xi,xj such that d(xi,xj) is a positive

random variable which satisfies:

1. d(xi,xj) = d(xj,xi) ≥ 0 for all i, j,



CHAPTER 5. CLUSTERING 47

2. d(xi,xj) = 0 if i = j, and

3. d(xi,xj) ≤ d(xi,xk) + d(xk,xj) for all i, j and k.

Let X = [x1, . . . ,xn] be p-dimensional data. We call d a distance for X if d is defined

for all pairs of random vectors belonging to X.

A distance d is called a metric if 2 is replaced by d(xi,xj) = 0 if and only if

i = j.

We can think of distance as a weak form of metric. Often the distances used are

also metrics, for example the Euclidean distance, but this definition also allows us

to use measures of similarity that are not metrics, for example the cosine distance.

The most commonly used distance is the Euclidean distance. It has the nice

properties of being a metric and a norm and it is also an intuitive way of thinking

about distance, particularly in low dimensions.

Definition 5.2.2. The Euclidean distance dE is defined for random vectors x1 and

x2 by:

dE(x1,x2) = [(x1 − x2)
T (x1 − x2)]

1/2. (5.2.1)

The Euclidean distance lends itself towards finding clusters that are spherical

in shape. When clusters take other shapes, the Euclidean distance may become

unreliable. Take for example the simulated data in Figure (5.2.1). The natural

clusters appear to be the two rectangular/linear clusters, but k-means with the

Euclidean distance is not able to detect these shapes.

The Euclidean distance may also become too large too quickly in very high

dimensions. Observations in high dimensions become isolated in the Euclidean sense,

and this is clear from the mathematics: the higher the dimension of the vector, the

more components to be summed and so distance becomes increasingly large. This

can mean that errors could be exacerbated in high dimensions.

Despite the Euclidean distance being ubiquitous in most instances of k-means,

it is wise to consider other ways of thinking about proximity of vectors in high
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Figure 5.2.1: Observations are clustered into a red cluster and a blue cluster. This

cluster arrangement, optimal according to k-means with Euclidean distance, does

not detect the obvious cluster structure.
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Figure 5.2.2: k-means with cosine distance also fails to detect the obvious structure.

dimensions. In particular, we consider the cosine distance, which measures the

closeness of vectors by the angle between them.

Definition 5.2.3. The cosine distance dC is defined for random vectors x1 and x2

by:

dC(x1,x2) = 1− cos(x1,x2) = 1− xT1 x2√
(xT1 x1)(xT2 x2)

. (5.2.2)

Clustering with the cosine distance lends itself to clusters which are more con-

ical in shape. When we apply k-means with the cosine distance to our simulated

data, as in Figure 5.2.2 we see a slightly different cluster arrangement. Figure 5.2.3

shows clustering on the uniform random square and this also helps to illustrate the

difference in shapes of clusters determined by the method with different distances.

Although there are no obvious clusters, the Euclidean distance finds clusters that are

spherical, resulting in two rectangular shapes, and the cosine distance finds clusters

that are conical, resulting in two triangular shapes.
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(a) k-means with Euclidean distance.
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(b) k-means with cosine distance.

Figure 5.2.3: Clustering results for uniform random square.

The best choice of distance will likely depend on context. The cosine distance

will take no account of the differences in lengths of vectors, since it only measures

angles. In some cases information about a vector’s length may be important.

5.3 Clustering raw peak-list data

In this section I am going to be using k-means to cluster the proteomics IMS data,

using both the Euclidean and cosine distances. We consider data from three tissue

samples, belonging to three distinct patients. For the purposes of the study, they

are called Patient 44, Patient 173 and Patient 540. I will be mainly considering

Patient 44, with the other two shown for comparison.

The data are vectors, having been interpolated into bins (as described in Chap-

ter 3). To begin with I will cluster the raw peak-list data which is data that have not

been normalised or transformed. I will be using both Euclidean and cosine distance.

The resulting clusters for Patient 44 are shown in Figure 5.3.2. Each pixel

in the image corresponds to an observation and each pixel has been coloured in

accordance with the cluster membership of the observation at that pixel. There are

four clusters in each (blue, orange, pink and purple). On the left clustering with

Euclidean distance is shown and on the right clustering with cosine distance. These
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Figure 5.3.1: Dyed image of the tissue sample from Patient 44, indicating the cancer

regions.
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Figure 5.3.2: k-means clustering results for Patient 44 with Euclidean distance (left)

and cosine distance (right).
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Figure 5.3.3: k-means clustering results with K = 4 for Patient 173 (top) and

Patient 540 (bottom) with Euclidean distance (left) and cosine distance (right).
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images may be visually compared to the dyed tissue image in Figure 5.3.1. On this

image the pathologist has indicated the high grade cancer regions, circled in red.

On inspection of Figure 5.3.2 one notices that the purple cluster in the cosine

image seems to match up with the cancer regions. Furthermore, the orange cluster

matches approximately with the fatty tissue (adipose) and the pink cluster with

the connective tissue (stroma). The blue cluster matches with the background (no

tissue). From this inspection we might decide that the k-means clustering with

cosine distance is successful in the sense that it approximately identifies the tissue

types.

The cluster allocation given by k-means with Euclidean distance (on the left hand

side) is completely different to the cosine image and does not appear to match the

different tissue types. This is not surprising since, as I have previously illustrated in

Chapter 4, the raw peak list data are affected by artefacts which make the intensity

peaks between different spectra difficult to compare. The Euclidean distance tends

to be sensitive to these errors. Conversely, the errors have no effect on the cosine

distance, since the cosine distance implicitly normalises the vectors.

What this seems to suggest is that k-means with Euclidean distance may be

improved if the data is normalised or transformed beforehand. Since the Euclidean

distance is more popular and commonplace than the cosine distance, I aim to pro-

duce a result that is similar for both distance measures.

The raw peak list data for patients 173 and 540 were also clustered with both

Euclidean and cosine distance. Figure 5.3.3 shows that we see a similar outcome for

these datasets also.

5.4 Clustering after a binary transformation

Leaving normalisation aside for the moment, a straightforward way of removing

artefacts in the data is to apply a binary transformation. This leaves empty bins

with a value of 0 and all non-empty bins are assigned a value of 1. This essentially
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Figure 5.4.1: k-means clustering results for binary data with Euclidean distance

(left) and cosine distance (right).

strips the data of all information about intensity - we are left only with information

as to whether or not a peak is present.

The clustering results in Figure 5.4.1 show greater parity between the arrange-

ments for the two distance measures. This is understandable, since in using cosine

distance we are disregarding information about the height of peaks, so by using a

binary transformation with Euclidean distance we expect a similar result.

By inspection of the graphs, transforming the peak data to binary data and

clustering the binary data appears to be a successful approach to clustering for both

distance measures. However, the downside of a binary transformation is that it is

not invertible, and hence we are losing information about intensity peaks. This is



CHAPTER 5. CLUSTERING 56

perhaps not a problem for clustering, but for other applications such as classification

we may wish to keep all this information.

Hence a question we might ask is, is it possible to recreate similar clustering

results without throwing away information about intensity? In the next part I will

return to looking at some of the normalisation methods discussed in the previous

chapter.

5.5 Clustering after normalisation

As in the previous chapter, the usual way to deal with artefacts in the data is to

apply a normalisation. In this section I will apply two of the more successful nor-

malisations: `2 normalisation and peak intensity correction (PIC). We start with the

raw peak data and normalise these data with using the `2 and PIC normalisations,

and then cluster the normalised data both with the Euclidean and cosine distance.

The results can be seen in Figure 5.5.1 and 5.5.2.

As expected, these normalisations do not affect the clustering with cosine dis-

tance, as cosine distance is invariant to scaling of the observations. The clustering

of `2 normalised data with Euclidean distance shows some improvement from the

raw data case, but still differs considerably from the image resulting from the co-

sine distance and from the H&E stained image. Similarly for the clustering of PIC

normalised data.

5.6 Cluster after log transformation

Prior to doing PIC, we took the log of the peak list data. This was so we could

turn our multiplicative model into a linear one and then do linear regression. After

performing log-PIC, the data were transformed back and normalised in the usual

way (by dividing each spectrum by a constant).

We now consider the possibility of taking the log of the data as a transformation



CHAPTER 5. CLUSTERING 57

X

Y

0 20 40 60 80 100

20

40

60

80

100

120

140

160

180

200

X

Y

0 20 40 60 80 100

20

40

60

80

100

120

140

160

180

200

Figure 5.5.1: k-means clustering results for raw data after `2 normalisation with

Euclidean distance (left) and cosine distance (right).
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Figure 5.5.2: k-means clustering results for raw data after PIC normalisation with

Euclidean distance (left) and cosine distance (right).
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Figure 5.6.1: k-means clustering results for data after log transformation with Eu-

clidean distance (left) and cosine distance (right).

in itself. Taking logs can help to iron out discrepancies in intensities which are

caused by artefacts, simply by virtue of the fact the log function makes the intensities

smaller. Unlike the binary transformation, the log transformation is invertible and

does not throw away any information about intensities.

The results for clustering log data, shown in Figure 5.6.1 are promising. The clus-

ter arrangements for clustering with Euclidean and cosine distance are now similar,

albeit the Euclidean image has more holes and less smooth edges.

I have also clustered the log data with the PIC included. The result, shown in

Figure 5.6.2, does not differ greatly from just using the log transformation.
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Figure 5.6.2: k-means clustering results for data after log transformation and PIC

with Euclidean distance (left) and cosine distance (right).
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5.7 Visualisation of closeness to the cancer cluster

There is a binary aspect to cluster allocation: an observation can either be in a clus-

ter or not. Sometimes if an observation lies half way between two cluster centroids

its allocation is not as meaningful as the allocation of observations which are very

close to a particular centroid.

The different cluster assignments I described in this chapter have been based

on the intensity information of the observations only, as is standard in k-means

clustering. Visualising the cluster membership by colour as we have done here

necessarily results in hard boundaries for each cluster and may lead to the wrong

impression that spatial neighbours near boundaries of clusters differ considerably,

and hence belong to different tissue types. In reality we expect a gradual change

from one type of tissue to another.

To gain some insight into such gradual change we consider a post-clustering step

which compares spectra at arbitrary grid points to those of cluster centroids. As the

cancer cluster is of most interest, we only focus on this cluster, but the approach

could be applied to other cluster centroids. In this step I fix the cluster centroid

for the cancer cluster (which may not be associated with a pixel or observation)

and using the same distance measure as in the clustering step, so here Euclidean

or cosine, for each pixel and its corresponding observation I calculate the distance

between the observation and the cancer centroid. The distance values obtained for

each pixel are then shown in a heat map.

Figure 5.7.1 shows the heat maps of the post-clustering step using the Euclidean

distance on the left and the cosine distance on the right with the cancer cluster as

the cluster of interest for the log-transformed data. The darker colour represents

closeness to the cancer cluster centroid. A comparison with Figure 5.6.1 shows that

in each case the cancer regions in Figure 5.6.1 agree well with the darker ‘distance-

based’ regions in Figure 5.6.1. The images also indicate closeness between the cancer

tissue and the stroma tissue, which is not surprising, given that cancer typically
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(b) Cosine clustering

Figure 5.7.1: The distance from the cancer cluster, Euclidean distance (left) and

cosine distance (right) on the Euclidean and cosine cluster results on the log-

transformed data. The darker colour represents closeness.

grows out of the stroma.

In conclusion, clustering followed by the distance-based post-clustering step re-

veals interesting structure in the tissue that is not apparent when the data are

clustered into a discrete number of clusters. Other visualisation of the tissue struc-

ture is worth exploring, as well as more detailed analyses of the structure that is

exhibited in the panels of Figure 5.7.1.

5.8 Conclusion

In this section I have clustered the IMS data after a number of transformations and

normalisations. My judgement as to whether a particular cluster arrangement is

good or not so good is based entirely on whether the cluster arrangement appears to

sort observations in accordance with their tissue types, which is judged subjectively
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based on the dyed tissue image provided by the pathologist.

Since I have used k-means with two different distance measures it is of interest

to compare the differences and similarities between the results generated by each.

Using the cosine distance consistently provides good results. The Euclidean distance

is highly sensitive to which normalisation or transformation is applied to the data.

An improvement in clustering with Euclidean distance may also give insight into

which transformation or normalisation is most effective and useful.

The clustering in this chapter was based entirely on k-means. In the next chapter

I explore an extension of k-means based on principal component analysis (PCA). In

the final chapter I will return to the clustering results obtained here and propose a

quantitative comparison.



Chapter 6

Principal Component Analysis and

Clustering

So far I have discussed how clustering data can be beneficial when the data are

large and high-dimensional. In some ways we can think of clustering as a form

of dimension reduction. A more common dimension reduction method is principal

component analysis (PCA) (Koch, 2013; Jolliffe, 2002). The goal of PCA is to create

linear combinations of variables that maximise variance. We can also think of PCA

as projecting data into a lower-dimensional space in such a way that most important

information is retained.

Ding and He (2004) draw a relationship between PCA and k-means clustering.

They claim that the principal components are the continuous solutions to what they

refer to as the k-means objective function. Furthermore, PCA can be used to assist

k-means clustering and may alleviate the problem of the k-means algorithm failing

to converge to the optimal cluster solution.

In this chapter I will be investigating the claims of Ding and He; this includes

a corrected and revised proof of theorems given by Ding and He, and a number of

studies of the application both on simulated data and the IMS data. Since the bulk of

this chapter revolves around the theorems in this particular paper, I have borrowed

64
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much of the authors’ notation, occasionally making amendments for clarity.

6.1 Principal component analysis

The aim of principle component analysis (PCA) is to represent the original data in

a lower-dimensional space, by creating new variables as combinations of the original

variables. These combinations are chosen such that the maximum variance in the

data is retained. Specifically, the principal components are taken from the eigenvec-

tors of the sample covariance matrix, corresponding to the largest eigenvalues.

We refer to the original (p× n) data matrix as X = (x1, . . . ,xn). Now consider

the centred data matrix Y = (y1, . . . ,yn), where yi = xi − x̄, x̄ =
∑

i xi/n. The

sample covariance matrix is then given by S = 1
n−1YY

T . Let r be the rank of S,

and assume that all eigenvectors are unit vectors.

Definition 6.1.1. The unit vectors ui, i = 1, . . . , r, such that YYTui = λiui are

the principal directions.

Note that YYT is the sample covariance matrix without the scale factor of 1/(n−

1). Since eigenvectors are invariant to scale, unit vectors ui are also the eigenvectors

of the sample covariance matrix S of the original data matrix X. The principal

directions are also commonly referred to as loadings or weight vectors (Koch, 2013,

chapter 2).

Definition 6.1.2. The vectors vi, i = 1, . . . , r, such that YTYvi = λivi are the unit

principal components.

Note that Ding and He refer to the v1 in Definition 6.1.2 as principal components

but it should be noted that the vi are unit vectors. Principal Component Scores are

obtained when the data are projected in the principal direction. We will see shortly

that the principal component scores are given by λ1/2vi.
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From these definitions we see that the principal directions and unit principal

component are closely related to the singular value decomposition (SVD) of the

centred data matrix Y.

Definition 6.1.3. For a p× n matrix with rank r, Y, we write Y = UΛV T , where

U and V are orthonormal matrices with dimensions p × r and n × r respectively,

and Λ is a diagonal matrix with dimension r × r. This factorisation is called the

Singular Value Decomposition (SVD).

Result 6.1.1. Using the notation of Definition 6.1.3, U is the matrix of eigenvectors

of YYT , V is the matrix of eigenvectors of YTY and the diagonal entries of Λ2 are

the corresponding eigenvalues of YYT and YTY.

Proof. Starting with Y = UΛ1/2V T and multiplying both sides by YT gives:

YYT = (UΛ1/2V T )(UΛ1/2V T )T

= UΛ1/2V TV Λ1/2UT

= UΛ1/2Λ1/2UT since V TV = I

= UΛUT .

Similarly:

YTY = (UΛ1/2V T )T (UΛ1/2V T )

= V Λ1/2UTUΛ1/2V T

= V Λ1/2Λ1/2V T

= V ΛV T .

It follows that the principal component scores are the projections of the centred

data onto the principal directions, given by:

uTi Y = uTi UΛ1/2V T = λ
1/2
i vTi . (6.1.1)
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Equivalently,

vi = YTui/λ
1/2, (6.1.2)

which is consistent with Equation (1) from Ding and He (2004).

6.2 The k-means objective function

Recall from Chapter 5:

The goal of the k-means algorithm is to choose cluster assignments such that the

total within cluster variability, Jk, is minimised. We will refer to Jk as the k-means

objective function. Recall that

Jk =
k∑
i=1

∑
x∈Ci

d(x, x̄i)
2, (6.2.1)

where k is the number of clusters, chosen beforehand, Ci is the set of observations

in cluster i, x̄i is the centre of cluster i and d is a distance measure. For this chapter

we will take d to be the Euclidean distance. Hence we can rewrite Jk as:

Jk =
k∑
i=1

∑
x∈Ci

(x− x̄i)
T (x− x̄i). (6.2.2)

Ding and He also define a function for measuring the proximity between two

clusters Ck and Cl. Define δ : P(X)→ R such that:

δ(Ck, Cl) =
∑
i∈Ck

∑
j∈Cl

(xi − xj)
T (xi − xj). (6.2.3)

This is just the sum of squared Euclidean distances between all pairs of points in

the two clusters.

6.3 Clustering when k = 2

For sections 6.3 and 6.4 we will consider the simplest case of k = 2, that is, dividing

the data into two clusters. Ding and He generalise their results to k > 2 but I will

primarily consider the case k = 2.
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Result 6.3.1. When k = 2, it can be shown that:

J2 = nyTy − 1

2
JD (6.3.1)

where

JD =
n1n2

n

[
2
δ(C1, C2)

n1n2

− δ(C1, C1)

n2
1

− δ(C2, C2)

n2
2

]
(6.3.2)

and n1, n2 are the number of elements in C1 and C2 respectively, such that n1+n2 =

n. yTy refers to the mean of yTi yi where yi = xi − x̄.

In order to show this result, I will also prove the following lemma:

Lemma 6.3.1.

2
δ(C1, C2)

n1n2

− δ(C1, C1)

n2
1

− δ(C2, C2)

n2
2

= 2(x̄1 − x̄2)
T (x̄1 − x̄2). (6.3.3)

Note that this expression does not appear in Ding and He (2004). The incorrect

expression δ(C1,C2)
n1n2

= δ(C1,C1)

n2
1

+ δ(C2,C2)

n2
2

+ (x̄1− x̄2)
T (x̄1− x̄2) was given, which I have

corrected as Equation (6.3.3).

Proof. Consider first the term δ(C1, C1) =
∑

i∈C1

∑
j∈C1

(xi−xj)
T (xi−xj). Since we

are considering elements from the same cluster, zero terms will appear when i = j.

To illustrate, consider all the terms of the double sum as elements of a matrix:

x1 − x1 x1 − x2 . . . x1 − xn1

x2 − x1 x2 − x2 . . . x2 − xn1

...
...

. . .
...

xn − x1 xn − x2 . . . xn1 − xn1

. (6.3.4)

Note that the diagonal terms are all zero.

Expanding the brackets on the left hand side of the expression for δ(C1, C1) gives:∑
i∈C1

∑
j∈C1

(xi − xj)
T (xi − xj) =

∑
i∈C1

∑
j∈C1

xTi xi − 2xTi xj + xTj xj. (6.3.5)

When expanding the brackets it is important to remember that the zero terms must

be excluded. When we exclude the zero term, each xTi xi term appears n1− 1 times.
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Since xTi xi and xTj xj are the exactly the same, in total the xTi xi term appears

2(n1 − 1) times.

Now let us consider the cross term. First consider only the ith row from the

matrix in (6.3.4):

∑
j 6=i

xTi xj = xTi x1 + . . .xTi xi−1 + xTi xi+1 . . .x
T
i xn1

= xTi

(∑
j 6=i

xj + xi − xi

)

= xTi (n1x̄1 − xi) {where x̄1 is the cluster mean.}

= n1x
T
i x̄1 − xTi xi.

Now consider all rows i = 1, . . . , n1:∑
i

∑
j 6=i

xTi xj =

n1∑
i

(n1x
T
i x̄1 − xTi xi)

= n2
1x̄

T
1 x̄1 −

n1∑
i

xTi xi.

Since we have simplified both the square term and the cross term, we can substitute

them back into Equation (6.3.5):

δ(C1, C1) = 2(n1 − 1)

n1∑
i

xTi xi − 2n2
1x̄

T
1 x̄1 + 2

n1∑
i

xTi xi

= 2n1

n1∑
i

xTi xi − 2

n1∑
i

xTi xi − 2n2
1x̄

T
1 x̄1 + 2

n1∑
i

xTi xi

= 2n1

n1∑
i

xTi xi − 2n2
1x̄

T
1 x̄1.

The case for δ(C2, C2) is the same. We get:

δ(C1, C1)

n2
1

=
2

n1

n1∑
i

xTi xi − 2x̄T1 x̄1, (6.3.6)

δ(C2, C2)

n2
2

=
2

n2

n2∑
j

xTj xj − 2x̄T2 x̄2. (6.3.7)
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Next we consider the term δ(C1, C2) =
∑

i∈C1

∑
j∈C2

(xi − xj)
T (xi − xj):

δ(C1, C2) =
∑
i∈C1

∑
j∈C2

xTi xi − 2xTi xj + xTj xj

= n2

n1∑
i=1

xTi xi + n1

n2∑
j=1

xTj xj − 2

n1∑
i=1

n2∑
j=1

xTi xj

= n2

n1∑
i=1

xTi xi + n1

n2∑
j=1

xTj xj − 2n1n2x̄
T
1 x̄2.

Therefore:

2
δ(C1, C2)

n1n2

=
2

n1

n1∑
i=1

xTi xi +
2

n2

n2∑
j=1

xTj xj − 4x̄T1 x̄2, (6.3.8)

and finally, putting (6.3.6), (6.3.7) and (6.3.8) together gives:

2
δ(C1, C2)

n1n2

− δ(C1, C1)

n2
1

− δ(C2, C2)

n2
2

= −4x̄T1 x̄2 + 2x̄T1 x̄1 + 2x̄T2 x̄2

= 2(x̄1 − x̄2)
T (x̄1 − x̄2).

We have shown the lemma, and hence JD may be simplified like so:

JD = 2
n1n2

n
(x̄1 − x̄2)

T (x̄1 − x̄2). (6.3.9)

It remains to show Result 6.3.1, that is:

J2 = nyTy − 1

2
JD = nyTy − n1n2

n
(x̄1 − x̄2)

T (x̄1 − x̄2). (6.3.10)
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Proof. (Result 6.3.1) Recall from Equation (6.2.2) the definition of Jk with k = 2:

J2 =
∑
C1

(xi − x̄1)
T (xi − x̄1) +

∑
C2

(xj − x̄2)
T (xj − x̄2).

After expanding and collecting terms this becomes:

J2 =
n∑
i=1

xTi xi − n1x̄
T
1 x̄1 − n2x̄

T
2 x̄2

=
n∑
i=1

xTi xi − (n1x̄
T
1 x̄1 + n2x̄

T
2 x̄2)

n1 + n2

n
{n1 + n2 = n}

=
n∑
i=1

xTi xi −
n2
1x̄

T
1 x̄1 + n1n2x̄

T
1 x̄1 + n1n2x̄

T
2 x̄2 + n2

2x̄
T
2 x̄2

n
.

We add and subtract terms with the intention of isolating a term that looks like JD:

J2 =
n∑
i=1

xTi xi −
2n1n2

n
x̄T1 x̄2 −

n2
1

n
x̄T1 x̄1 −

n2
2

n
x̄T2 x̄2 −

[n1n2

n
(x̄1 − x̄2)

T (x̄1 − x̄2)
]

=
n∑
i=1

xTi xi − n(
n1

n
x̄1 +

n2

n
x̄2)

T (
n1

n
x̄1 +

n2

n
x̄2)−

[n1n2

n
(x̄1 − x̄2)

T (x̄1 − x̄2)
]

=
n∑
i=1

xTi xi − nx̄T x̄−
[n1n2

n
(x̄1 − x̄2)

T (x̄1 − x̄2)
]

=
n∑
i=1

(xi − x̄)T (xi − x̄)−
[n1n2

n
(x̄1 − x̄2)

T (x̄1 − x̄2)
]

= nyTy − 1

2
JD.

Since yTy is a constant, the problem of minimising J2 becomes the problem of

maximising JD. Since JD as in Equation (6.3.2) is composed of a positive between-

cluster distance and negative within-cluster distance, maximisation of JD can be

interpreted as ensuring clusters are as distinct and tight as possible. In addition

to this intuitive guide, Ding and He have also constructed JD to simplify the proof

of their main theorem, which is that JD leads to a solution via the first principal

component.
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6.4 Theorem

One way of defining a particular cluster arrangement W is with a cluster indicator

vector q, defined in 6.4.1. The ith element of the vector takes some discrete value

depending on which cluster the ith observation falls into. For the rest of this section,

we will assume that k = 2.

Definition 6.4.1. For k = 2, the ith component of cluster indicator vector q is

defined like so:

q(i) =

a if xi ∈ C1,

b if xi ∈ C2

(6.4.1)

where a, b ∈ R and a 6= b.

Since the cluster indicator vector, q, defines a particular cluster assignment W ,

we can think of the k-means objective function JD in Equation 6.3.2 as a function of

q. The elements of a cluster indicator vector will only take one of two distinct values

(since this is the only way a cluster indicator makes sense in practice). However,

Ding and He argue that if we allow the cluster indicator vector to take any real

value, then we can think about the maximisation of JD as an eigenvalue problem.

It then follows that the q that maximises JD is the first principal component of X.

This idea works provided that we have a sensible way to move from a continuous

vector back to a binary cluster indicator vector, which, as I will later discuss, may

be something arbitrary, such as labelling positive and negative values. I will discuss

both the proof and the implications of this result in some detail, but first let us

consider the full theorem.

The following theorem is based on the theorem given by Ding and He as The-

orem 2.2 in their paper. A major divergence from Ding and He is the removal of

Equation 6.4.5, which is discussed in section 6.4.1.

Theorem 6.4.1. Let D be the matrix of squared Euclidean distances between ob-

servations and let D̂ be the centred distance matrix. The following hold.
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• D̂ = −2YTY

• The eigenvector q of D which corresponds to the largest negative eigenvalue of

D is a multiple of the first principal component direction v1 of X.

A sketch of the proof of Theorem 6.4.1 is given by Ding and He. I will give a

more detailed walkthrough.

Proof. We start by constructing a particular cluster indicator vector q0, where a =√
n2/nn1 and b = −

√
n1/nn2. That is:

q0(i) =


√
n2/nn1 if xi ∈ C1,

−
√
n1/nn2 if xi ∈ C2.

(6.4.2)

Consider a matrix of squared Euclidean distances between observations, i.e. D =

(dij) where dij = (xi − xj)
T (xi − xj). Then it can be shown that q0 relates to the

k-means objective function JD, namely qT0Dq0 = −JD:

qT0Dq0 =
∑
j∈C1

∑
i∈C1

n2

nn1

(xi − xj)
T (xi − xj) +

∑
j∈C1

∑
i∈C2

− 1

n
(xi − xj)

T (xi − xj)

+
∑
j∈C2

∑
i∈C1

− 1

n
(xi − xj)

T (xi − xj) +
∑
j∈C2

∑
i∈C2

n1

nn2

(xi − xj)
T (xi − xj)

=
n2

nn1

δ(C1, C1)−
1

n
δ(C1, C2)−

1

n
δ(C2, C1) +

n1

nn2

δ(C2, C2)

(by the definition in Equation (6.2.3))

=
1

n

[
−2δ(C1, C2) +

n2

n1

δ(C1, C1) +
n1

n2

δ(C2, C2)

]
=
n1n2

n

[
−2

δ(C1, C2)

n1n2

+
δ(C1, C1)

n2
1

+
δ(C2, C2)

n2
2

]
= −JD.

Next we allow our generalised cluster indicator vector q to be any eigenvector of

D, hence relaxing the form given in Definition 6.4.1.
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The objective of k-means is to maximise JD, or equivalently minimise −JD, so

in this sense we think of JD as a function, not a constant. If we let J be a function

of q, where q is any unit vector, then the q that minimises J(q) = qTDq will be the

eigenvector corresponding to the lowest (largest negative) eigenvalue of the equation

Dz = λz.

Consider a centred distance matrix called D̂ = d̂ij, in which the entries of D

have the row and column means subtracted (with the repeated term added back in).

That is,

d̂ij = dij −
∑
j

dij/n−
∑
i

dij/n+
∑
ij

dij/n
2. (6.4.3)

If we write d̂ij = dij − d̃ij and D̂ = D − D̃ then it follows that qT0 D̃q0 = 0 and

hence qT0 D̂q0 = qT0Dq0 = −JD.

Therefore, q vector that maximises J(q) = qTDq is given by the eigenvector

corresponding to the lowest (largest negative) eigenvalue of

D̂z = λz. (6.4.4)

With some algebra, it can be shown that
∑

j dij = nxTi xi + nxTx− 2nxTi x̄ and∑
ij dij = 2n2yTy.

n∑
j

dij =
n∑
j

(xi − xj)
T (xi − xj)

=
n∑
j

(
xTi xi − 2xTi xj + xTj xj

)
= nxTi xi + nxTx− 2nxTi x̄

n∑
ij

dij =
n∑
i

n∑
j

(xi − xj)
T (xi − xj)

= 2n
n∑
i

xTi xi − 2n2x̄T x̄

= 2n2yTy.
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By substituting these into Equation (6.4.3), we find that:

d̂ij = xTi xi − 2xTi xj + xTj xj

−
(
nxTi xi + nxTx− 2nxTi x̄

)
/n

−
(
nxTj xj + nxTx− 2nxTj x̄

)
/n

+

(
2n

n∑
i

xTi xi − 2n2x̄T x̄

)
/n2

= −2
(
xTi xj − xTi x̄− xTj x̄ + x̄T x̄

)
= −2(xi − x̄)T (xj − x̄)

Equivalently D̂ = −2YTY. It follows that the eigenvector corresponding to the

lowest eigenvalue of Equation (6.4.4) is also the eigenvector corresponding to the

largest eigenvalue of YTY which is precisely the unit principal component vector v1.

6.4.1 Discussion

If allowing the cluster indicator vector to be continuous gives us the principal com-

ponent as an optimal solution, then the obvious question to ask is what does this

mean for clustering? If a cluster indicator vector takes continuous values then it

loses its functionality for allocating observations into clusters. In order to perform

clustering we must somehow discretise the unit principal component vector.

As part of their Theorem, Ding and He define cluster allocation like so:

C1 = {xi|v1(i) ≤ 0}, C2 = {xi|v1(i) > 0}. (6.4.5)

In other words, the observations are sorted into clusters based on the sign of the unit

principal component vector. This rule is intuitive, since the principal component

projection centres the data so we might expect two clusters to fall either side of

zero. However, in practice this is not always the case, as I will illustrate in a small

simulation study.
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In the first case, two spherical clusters with n = 1000 observations are normally

distributed with covariance matrices Σ1 = 0.2I and Σ2 = 0.9I respectively. In the

second case, the sizes of the clusters have been changed; the first cluster now only

has n = 200.

Table 6.4.1: Cluster simulation parameters.

n1 n2 Σ1 Σ2

Sim 1 1000 1000

0.2 0

0 0.2

 0.9 0

0 0.9


Sim 2 200 1000

0.2 0

0 0.2

 0.9 0

0 0.9



These simulated data are clustered according to Equation (6.4.5). In Figure 6.4.1

the colours red and blue represent the cluster allocation. By construction, the two

clusters are fairly distinct and obvious.

When the size of the clusters is equal, the sign of v1 seems to cluster accurately.

However, when one cluster is significantly larger than the other, we get a cluster

allocation that is no longer intuitive - observations that we expect to be in the big

red cluster have been allocated to the blue cluster. This is because v1 is skewed by

the different weights of the clusters, and hence its sign is no longer able to divide

them.

This example suggests that even though v1 may be an optimal solution in a

continuous setting, clustering is not a continuous problem, and hence it might not

be so helpful in practice.

6.5 Application for k = 2 and k > 2

Having seen some examples of PCA clustering on simulated data, let us now see

what happens when we try to cluster real data. In the following examples I will
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Figure 6.4.1: Two simulated clusters examples. The colours represent the cluster

membership, as decided by the sign of the first unit principal component vector.
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Figure 6.5.1: IMS data: clustering with the sign of the first principal component

(left) and second principal component (right).

attempt to cluster the log-transformed IMS data.

The results of clustering with the sign of the first principal component and then

independently with the sign of the second principal component can be seen in Fig-

ure (6.5.1). By visual inspection, the sign of the first principal component distin-

guishes the cancer and the background from the other tissue types. The sign of the

second principal component distinguishes the two tissue types (adipose and stroma)

but does not distinguish the cancer tissue.

If we can partition data into two groups with the sign of the first or second

principal component, then it seems logical to create more clusters by considering the

first and second principal components together. If we consider the signs of the first

two principal components we can partition the data into 4 clusters corresponding
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Figure 6.5.2: IMS log transformed data: clustering with the signs of the first and

second principal components, 4 clusters (left) and 3 clusters (right).

to the combination of signs {++,−+,+−,−−}. Similarly, 3 principal components

would create 8 clusters, 4 principal components 16 and so forth.

To create a number of clusters that is not a power of 2, clusters may be combined

or collapsed into each other according to hierarchical clustering rule. Recall that

in hierarchical clustering we determine the proximity of clusters with linkage. In

other words, the two clusters with the smallest linkage may be combined to form

one cluster. A simple example of a linkage is the Euclidean distance between cluster

centres.

Figure (6.5.2) shows the results of clustering with 4 and 3 clusters respectively.

In the 4 cluster case, the different tissue types are distinguished, but there is some

blurring between the cancer tissue and background. By considering the distances
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between cluster centroids we find that the cancer and background clusters have

the closest centroids. Combining these two clusters gives the 3-cluster arrangement

shown in Figure (6.5.2). The 3-cluster results appears to similar to the the result for

k-means clustering with Euclidean distance found in Chapter 5, with the exception

of there being no distinction between cancer and background. Since differentiat-

ing between tissue types is more valuable in practice, the 3-cluster PCA result is

reasonably successful.

6.6 Further comments

It should be noted that Ding and He are not the first to notice that the unit principal

component vector is the continuous solution to the k-means objective. Drineas et al.

(2004) find that the continuous relaxation of the discrete clustering problem can be

found via calculating the SVD of the data matrix (which is equivalent to principal

component analysis, as I discussed earlier).

Furthermore, the idea of principal component analysis as a tool for clustering has

been discussed by Jolliffe (2002, Section 9.2). He suggests that representing the data

in two dimensions by the first two PCs can help to visually identify the presence of

clusters: “provided that most of the variation, and in particular the between-cluster

variation, falls in the two-dimensional subspace defined by the first two PCs” (p.

212). He also makes the point that PCA can be useful for clustering variables as

opposed to observations.

Koch (2013, Section 6.5) discusses the role of PCA “as an exploratory tool for

choosing the number of clusters.” She also clusters observations according to the

positive and negative elements of the principal direction vector, and finds that in

some cases the first and second principal components are able to identify clear

clusters.
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6.7 A practical application of PCA clustering

As my earlier counter-examples have shown, the PCA clustering method suggested

by Ding and He (2004) is not always optimal. However, it may still be useful in

practice. A possible application, which was also suggested by Ding and He, is to use

the PCA clustering solution as the first step, or seed, in the k-means algorithm.

One of the main problems with the k-means algorithm is that a solution may

not necessarily be optimal, i.e. we may find a local minimum. This can usually be

avoided by careful seeding, but choosing a seed and even knowing whether or not

the solution obtained is optimal provides further problems.

The upside of the PCA solution is that it is unique (since principal components

are always unique up to the sign of the eigenvector). Although not necessarily

perfect, the first few principal components can predict the location of the data, and

hence this can give us a good starting point for k-means.

6.8 Conclusion

In this chapter I have examined the theoretical relationship between principal com-

ponent analysis (PCA) and k-means clustering with the Euclidean distance. PCA is

an approach that focuses on the variance of data, and variance is based on the Eu-

clidean distance between observations. Similarly, k-means with Euclidean distance

is also based on variance; variance between and within clusters. It should not be

surprising that these two methods are related.

Since the relationship between PCA and k-means is based around the Euclidean

distance, PCA cannot be easily compared with k-means using any other sort of

distance measure, such as cosine.



Chapter 7

Comparison of Clustering

Methods

Up until this point we have considered a number of ways to cluster the IMS data.

This includes clustering with k-means using Euclidean and cosine distance, cluster-

ing after various transformations of the data and clustering using PCA. To conclude

the thesis I would like to explore some quantitative ways of comparing these clus-

tering results.

Unlike with classification, it is not usually possible to check a cluster arrange-

ment against ‘truth.’ By its design, clustering is an exploratory method for finding

patterns and groupings within data. Due to this fact, it is not always reasonable

to talk about which cluster arrangement is the ‘best.’ Having said that, there are

obviously some criteria for a good clustering arrangement for the IMS data, namely

one that separates the tissue types. At this stage the true separation into tissue

types cannot be obtained, so we only have a rough visual guide based on the H&E

stain.

Regardless of whether we can conclude on a ‘best’ cluster arrangement or method,

comparing methods in itself is a worthwhile exercise. It can be interesting to know

which cluster methods produce similar results, which ones are different and by how

82
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much.

In this chapter I will discuss a number of ways to compare similarity between two

cluster arrangements. This will include simple measures based around the similarity

of sets (the Jaccard distance), an entropy based measure (variation of information)

and pairwise comparisons (the Rand index). I will be considering ‘cluster validation

by prediction strength’ proposed by Tibshirani and Walther (2005), and a compar-

ison measure based on this methodology.

7.1 Methods of comparison

I begin by providing details about each comparison method, and I will apply these

approaches to the clustering results obtained previously at the end of the chapter.

7.1.1 Jaccard distance

The Jaccard index or Jaccard similarity coefficient (first introduced by Jaccard

(1901)) is a simple way of measuring the similarity of two sets. It may also be

extended to the Jaccard distance, which measures dissimilarity or distance between

sets.

Definition 7.1.1. For two finite sets, A and B, the Jaccard distance between these

two sets is given by:

dJ(A,B) = 1− |A ∩B|
|A ∪B|

, (7.1.1)

where |A| is the number of elements in set A.

Identical sets have a Jaccard distance of 0 and disjoint sets have a Jaccard

distance of 1.

We may think of a cluster arrangement as a collection of sets. Hence to compare

two cluster arrangements, we may do so by calculating the Jaccard distance between

corresponding clusters. The first step in this process is to match the clusters between
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each arrangement. For simplicity, we assume that the number of clusters k is the

same for each arrangement.

Consider two cluster arrangements C = {C1, C2, . . . Ck} and

K = {K1, K2, . . . Kk}. The following steps outline how to calculate d(C,K), the

Jaccard distance between the two arrangements.

1. Calculate the Jaccard distance between all sets in C and K. That is, dJ(Ci, Kj)

for all i, j = 1, . . . , k.

2. Match clusters from each arrangement based on these distances using an op-

timal assignment algorithm. I have used Munkres algorithm to do this, (see

Cao, 2008). Munkres algorithm returns pairs {Ci, Kj} such that the sum

of Jaccard distances between pairs is minimised. Once matched, label pairs

{C1, K1}, {C2, K2} etc.

3. Calculate the average Jaccard distance between matched pairs. That is,

d(C,K) =
1

k

k∑
i=1

dJ(Ci, Ki). (7.1.2)

The resulting distance, d(C,K) will be a number between 0 and 1, close to 0 if

the two arrangements are very similar and close to 1 if the two arrangements are

very different.

7.1.2 Variation of information

The Jaccard distance is a set based distance, which makes sense when we treat cluster

arrangements as collections of sets. We may also think of a cluster arrangement

as a distribution of data. To compare distributions, we may use techniques from

information theory.

Meilă (2007) proposes an information based criterion for comparing cluster ar-

rangements. This criterion, called variation of information, uses entropy and mutual
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information between the two cluster arrangements to measure ‘the amount of infor-

mation lost and gained’ in changing from one to the other.

Consider a cluster arrangement C = {C1, C2, . . . , CK}. Consider a map that

sends an observation to a cluster. Given an observation x in X, the probability that

it falls into cluster Ck will be given by:

P (k) =
|Ck|
n

=
nk
n
. (7.1.3)

In this way we define a discrete random variable associated with the observations

and cluster arrangement C. The entropy of this random variable is defined like so:

H(C) = −
K∑
k=1

P (k) log(P (k)). (7.1.4)

The entropy measures the uncertainty of the random variable. It only takes the

value 0 when there is no uncertainty, in other words when there is only one cluster.

Now consider two cluster arrangements C and K (the number of clusters in each

is not necessarily equal). The probability that an observation x falls into cluster Ck

in C and Kk′ in K is given by:

P (k, k′) =
|Ck ∩Kk′ |

n
=
nk,k′

n
. (7.1.5)

We also define the mutual information between two cluster arrangements, C and K:

I(C,K) =
K∑
k=1

K′∑
k′=1

P (k, k′) log

(
P (k, k′)

P (k)P (k′)

)
. (7.1.6)

The mutual information tells us how much information one cluster arrangement has

about the other. In other words, given that we know the cluster allocation of x in

C, how much does that reduce the uncertainty of its allocation in K? The mutual

information is always less than or equal to the individual entropies of C and K, with

equality only when the cluster arrangements are identical.

Definition 7.1.2. For two cluster arrangements C and K, the variation of informa-

tion (VI) is given by:

V I(C,K) = H(C) +H(K)− 2I(C,K). (7.1.7)
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The variation of information is always positive, and 0 when the two cluster

arrangements are identical. Unlike the Jaccard distance, the VI may exceed 1.

7.1.3 The Rand index

Cluster arrangement comparisons can also be made by considering pairs of observa-

tions. If we consider two observations x1 and x2 from X, and two cluster arrange-

ments C and K then there are four possibilities for the pair (x1,x2):

• They appear in the same cluster in both C and K.

• They appear in different clusters in both C and K.

• They appear in the same cluster in C and different clusters in K.

• They appear in different clusters in C and the same cluster in K.

The number of pairs in each of these cases are denoted N00, N11, N01 and N10 re-

spectively.

The Rand index, first introduced by Rand (1971), provides a measure of sim-

ilarity between two cluster arrangements and is defined as ‘the number of similar

assignments of point-pairs normalised by the total number of point-pairs.’

Definition 7.1.3. For two clusterings C and K, where N00 and N11 denote the

number of point-pairs that appear in the same cluster in both C and K, and different

clusters in both C and K respectively, the Rand index (RI) is given by:

RI =
N00 +N11(

n
2

) . (7.1.8)

The RI is a simple way to measure consistency between two clusterings. Identical

clusterings will have a RI of 1, and two completely different clusterings will have a

RI close to 0. To implement RI I use the code of De Bie (2003).
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7.1.4 Prediction strength

Tibshirani and Walther (2005) have borrowed ideas from discriminate analysis to

determine what they call the prediction strength of a cluster arrangement. Predic-

tion strength compares how well a clustering derived from a training set performs

on a testing set, where the training and testing sets are both subsets of the original

data. In other words, how well does a cluster arrangement trained on a subset of

data predict the cluster allocation of the rest of the data? They use this idea to

help decide the best number of clusters to use; the best cluster arrangement should

have the highest prediction strength.

With some adjustment, prediction strength can also be applied to the comparison

of different cluster arrangements. The question can be changed to: how well does

one cluster arrangement predict a different cluster arrangement?

As with the Rand index, this measure is also based on pair-points. We con-

sider the co-membership matrix, which can either be defined for a single cluster

arrangement, or one cluster arrangement relative to another.

Definition 7.1.4. For fixed k > 0, let C(X, k) be a k-cluster arrangement on X.

The co-membership matrix D corresponding to X has entries:

Dij =

1 if xi and xj ∈ X belong to the same cluster,

0 otherwise.

Definition 7.1.5. Let X′ be data of the same dimension as X, with k-cluster ar-

rangement C(X′, k). The co-membership matrix D[C(X, k),X′] of X′ relative to the

cluster arrangement C(X, k) of X has entries:

D[C(X, k),X′]ij =

1 if x′i and x′j belong to the same cluster in C(X, k),

0 otherwise.

These ideas of co-membership matrices can also be extended to considering two

different clusterings on the same data, if we take X = X′. As with the RI, the
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co-membership matrices give us an idea of the consistency between two cluster

arrangements. This leads to Tibshirani and Walther’s prediction strength,

PS(C) = min
1≤`≤k

 1

n′`(n
′
` − 1)

∑
x′
i 6=x′

j∈C′
`

D[C(X, k),X′]ij

 (7.1.9)

which I have modified for the problem of comparing two clusterings, C and K of the

same data X in the following way:

PS(K, C) = min
1≤`≤k

 1

n`(n` − 1)

∑
xi 6=xj∈K`

D[C(X, k),X]ij

 (7.1.10)

where n` is the number of elements in cluster K` of K. For two cluster arrangements

C and K, we consider each cluster in K one at a time, and count the proportion of

point-pairs in that cluster that are also in the same cluster in C. Prediction strength

will then be equal to the lowest proportion out of all the clusters.

Unlike all of the cluster comparison methods we have seen so far, this prediction

strength is not symmetric, as in general PS(K, C) 6= PS(C,K).

Tibshirani and Walther (2005) also discuss the prediction error loss for a cluster

arrangement, but once again, this may also be extended to a method for comparing

two cluster arrangements.

Let C∗(X) denote the true grouping of the data X. Define the prediction error

loss of the clustering procedure C by

E(C) =
1

n2

n∑
i,j=1

|D[C∗(X, k),X]−D[C(X, k),X]| . (7.1.11)

This can be easily adapted for cluster comparison: instead of comparing a cluster

arrangement against a true grouping, compare two arbitrary cluster arrangements

C and K, by defining:

E(C,K) =
1

n2

n∑
i,j=1

|D[C(X, k),X]−D[K(X, k),X]| . (7.1.12)
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Unlike the prediction strength, this comparison is symmetric. It can be inter-

preted as the proportion of point-pairs that are differently assigned to the same

group plus the proportion of point-pairs that are differently assigned to different

groups.

7.2 Application of measures of comparison

In the following section I am going to use the comparison methods to compare some

of the clustering results from earlier chapters.

7.2.1 Jaccard distance and variation of information: com-

parisons with the binary transformation

In earlier chapters, we found that using a binary transformation before clustering

gave a result that seemed to match well to the tissue types as noted by the pathol-

ogist. One undesirable feature of this transformation was that it involved throwing

away information about the ion intensities. Consequently, we would like to find a

transformation or normalisation that gives a similar clustering result to the binary,

but does not involve throwing away information. In previous chapters we found

that the log transformation and log transformation with PIC seem to lead to similar

clustering results to the binary.

I will now use the Jaccard distance and variation of information (VI) to quanti-

tatively assess the similarity of these cluster arrangements. Eight clustering results

have been compared to binary with Euclidean and binary with cosine (called Bin.

E and Bin. C in Table 7.2.1 respectively):

1. raw data with Euclidean

2. raw data with cosine

3. log data with Euclidean
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4. log data with cosine

5. PIC normalised data with Euclidean

6. PIC normalised data with cosine

7. log data PIC with Euclidean

8. log data PIC with cosine

The numerical results can be found in Table 7.2.1, and Figure 7.2.1 shows a

visual comparison. The closer the Jaccard distance is to 0, the more similar the

cluster arrangements. The same is true for VI, but VI can be greater than 1.

There are essentially two factors of interest: how much does clustering change af-

ter different transformations of the data, and how much does clustering change after

changing the clustering distance (Euclidean vs. cosine distance). The information

we get from the Jaccard and VI tell us more or less the same story.

The binary cluster arrangements are closest to the log transformed PIC clus-

ter arrangements (3,4,7,8), and furthest from the raw and PIC scaled without log

(1,2,5,6). The Euclidean clusterings are most similar to each other and the cosine

clusterings are also closest to each other (illustrated by the graph in Figure 7.2.1,

where the red and blue lines alternate being on top). When the difference to the

binary clustering is small, the actual clustering distance (Euclidean or cosine) seems

to matter more (see points 3,4,7,8 on Figure 7.2.1).

7.2.2 Comparing PCA clustering with k-means clustering

One advantage that the VI has over the Jaccard distance is that it compares cluster

arrangements holistically, and hence it is possible to compare arrangements where

the number of clusters are different. This may have useful application in choosing

the best number of clusters - i.e. how much information is lost or gained by adding

another cluster?
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Table 7.2.1: Jaccard (and VI distances) between cluster arrangements

1. Raw E. 2. Raw C. 3. Log E. 4. Log C.

Bin. E. 0.7709 (1.6708) 0.2046 (0.8994) 0.0971 (0.4864) 0.1337 (0.5476)

Bin. C. 0.7935 (1.7063) 0.1881 (0.7808) 0.1685 (0.7063) 0.0497 (0.2661)

5. PIC E. 6. PIC C. 7. Log-PIC E. 8. Log-PIC C.

Bin. E. 0.6090 (1.4982) 0.2046 (0.8994) 0.0517 (0.2786) 0.1249 (0.5092)

Bin. C. 0.6444 (1.5505) 0.1881 (0.7808) 0.1317 (0.5390) 0.0295 (0.1700)
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Figure 7.2.1: Jaccard distances (a) and VI (b) between binary data clustered with

Euclidean (red) and binary data clustered with cosine (blue) with arrangements

listed 1-8 in Table 7.2.1.

In Chapter 6 I discussed some cluster arrangements formed with principal com-

ponent analysis (PCA) on the log transformed data. I considered arrangements of

two, three and four clusters. I would like to compare how close these are to the

k-means cluster result on the log data (using Euclidean distance).

The results of this comparison are displayed in Table 7.2.2 and Figure 7.2.2.

Note that the clusters formed with PCs are closer to each other than to the k-means
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Table 7.2.2: VI between k-means and PCA clusterings

PC-4 PC-3 PC-2

k-means (4 clusters) 0.9984 0.7936 1.0442

PC-4 0.3140 0.6897

PC-3 0.3757

Figure 7.2.2: Grayscale heat map of the VI between 1. k-means, 2. PC-4, 3. PC-3,

4. PC-2. VI of 0 indicates that the cluster arrangements are identical.

cluster arrangement. This should not be surprising, since the 2-cluster and 3-cluster

PC arrangements can be constructed by combining clusters from the 4-cluster PC

arrangement, hence there should be some preservation of information. The PC-4

and PC-3 arrangements are closest, followed by the PC-3 and PC-2 arrangements.
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The VI increases (indicates less similarity) when we compare the PC-2 with the

PC-4, which is understandable when comparing an arrangement with 2 clusters to

an arrangement with 4 clusters.

The k-means cluster arrangement has higher VI when compared with the other

three. It is closest to the PC-3 arrangement, which was also what I found based on

the images in Chapter 6: when the background cluster is combined with the cancer

cluster, the result looks similar to the k-means.

7.2.3 Rand index: compare clustering on full dataset with

clustering on principal components

So far we have seen what happens when we cluster a dataset with principal compo-

nents and how this is similar to clustering with k-means based on Euclidean distance.

Previously, I clustered the data with the signs of the first two components, but in

this case I would like to use k-means clustering on the principal component data in

fewer than p dimensions. In particular, how many principal components do we need

for the resulting cluster arrangement to become close to the cluster arrangement

formed on the full dataset? I have used the Rand index (RI) to investigate this

question.

I considered the k-means Euclidean cluster arrangement on the log data. I then

calculated the RI between this and the cluster arrangement on up to 50-dimensional

principal component data. The RI for these is shown in Figure 7.2.3. From the graph

it would appear that only as few as 10 principal components are needed before the

clustering results have a RI of 0.99 with the clustering result on the full data.

Once again the relationship between PCA and k-means clustering is heavily

underlined by the use of the Euclidean distance (as PCA is based on Euclidean

variance). If we were to cluster the principal components using the cosine distance,

we would see a very different result. In Figure 7.2.4 the RI for cosine clustering on

PCs and the full dataset shows that adding more PCs does not help cosine clustering:
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Figure 7.2.3: RI of k-means result on q-dimensional principal component data vs

k-means with full data set (vertical) vs number of principal components (horizontal).
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Figure 7.2.4: RI with full data set (vertical) vs number of principal components

(horizontal), Euclidean (red) and cosine (blue).

the RI remains static at around 0.7. This could once again emphasise the fact that

Euclidean and cosine distance are very different concepts, often giving very different

results.

7.2.4 Prediction strength and prediction error loss: a four-

way comparison

I have used the remaining pairwise methods (prediction strength and prediction

error loss) to compare cluster arrangements formed with just the Euclidean distance

on four versions of the data: binary, log, PIC and log-PIC. These quantities are

presented in grayscale heat maps (Figure 7.2.5). A colour bar has been added to
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Table 7.2.3: Prediction strength (left) and prediction error loss (right). Legend:

1. binary, 2. log, 3. PIC, 4. log-PIC.

1 2 3 4 1 2 3 4

1 1 0.8391 0.4150 0.9177 0 0.0654 0.3388 0.0324

2 0.8117 1 0.4232 0.8648 0.0654 0 0.3220 0.0598

3 0.3570 0.3884 1 0.3800 0.3388 0.3220 0 0.3226

4 0.8887 0.8461 0.4277 1 0.0324 0.0598 0.3226 0

Figure 7.2.5: Grayscale heat map of the comparisons with the prediction strength

(left) and error prediction loss (right). Legend: 1. binary, 2. log, 3. PIC, 4. log-PIC.

each figure as the maps are not all based on the same scale, for instance a value

of 1 on prediction strength is a perfect match and a value of 1 on the prediction

error loss is a perfect mismatch (a perfect match has value 0). The colour white

represents a perfect match.

The results of the comparison with prediction strength and prediction error loss

are similar. Note that prediction strength is not symmetric: for example, the binary

clustering ‘predicts’ the log-PIC clustering better than the log-PIC predicts the

binary (0.9177 vs. 0.8887). The general pattern is the same: the PIC clustering is

the odd one out, being quite different from the other three. This is consistent with

what we saw in Chapter 5. The two closest clustering results are from the binary
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data and log-PIC.

7.3 Conclusion

The various methods for cluster arrangement comparison that I have discussed have

all produced results that are comparable. For example, each method tells us that

the binary data clustered with the Euclidean distance is “closest” to the data trans-

formed with log-PIC, clustered with Euclidean distance. The comparison methods

mostly differ in their philosophy towards comparisons, and whether we treat a clus-

ter arrangement as a collection of sets or a distribution of data. Good agreement

between different methods gives the user confidence that the cluster arrangements

are indeed close, or not close as the case may be.

In practice, any of these methods should be useful and relatively easy to use.

Even with a dataset as a large as 14,000 observations it is not computationally

expensive to implement multiple comparisons.



Chapter 8

Conclusion

The general aim of this thesis has been to present a toolbox for exploratory analysis

of proteomics IMS data. I have presented a number of different approaches to clus-

tering by varying such quantities as clustering method, parameters such as distance,

and carrying out various preparatory transformations of the data.

As I show in the data analysis, some of the naively applied methods do not pro-

duce interpretable results. However, application of transforms prior to clustering,

appropriate normalisation or use of different distance measures can lead to inter-

pretable results which are of interest to the biologist and medical experts.

The comparisons between different cluster approaches, which I introduce and

apply to the data, provide quantitative answers to how similar alternate cluster

approaches are, thereby allowing exclusion of methods that produce very different

and non-interpretable results.

A natural next step in the analysis of proteomics data is the classification of

IMS data and prediction of cancerous regions of patients with tumorous tissue.

The different approaches and the comparison measures I introduced and applied in

Chapter 7 are expected to be informative in a subsequent classification of spectra.
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