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Summary

The interest in applications of nanomaterials for acoustic absorption purposes
is growing rapidly with advances in nanotechnology. A need also exists for
a simulation framework that is applicable for modelling acoustic absorp-
tion in nanomaterials in order to develop an understanding of nanoscopic
acoustic absorption mechanisms. The current study investigates the acoustic
absorption characteristics of a carbon nanotube (CNT) acoustic absorber to
develop an understanding of the absorption behaviour and mechanisms of
the CNTs. This task involves undertaking an exploratory study of the absorp-
tion characteristics of a CNT forest and modelling the absorption effects of
the CNT at the nanoscale. The absorption characteristics of the CNTs were
explored by studying the normal incidence absorption coefficient of 3 mm-
and 6 mm-long vertically aligned CNT arrays measured experimentally us-
ing the two-microphone impedance tube method, while the modelling of
the absorption effects was performed using a non-continuum particle-based
method. The experimental investigation showed promising results for the
acoustic absorption capability of CNT acoustic absorbers and suggests that
the absorption performance could be enhanced with longer CNTs and a lower
spatial density of the nanotube arrays. The study of absorption using a theo-
retical model based on classical absorption mechanisms indicated that the
absorption behaviour of nanomaterials is likely to deviate from continuum
behaviour emphasising the necessity of acoustic modelling at the nanoscale
using non-continuum methods. An examination of the physical phenomena
that are likely to be relevant for simulating acoustic wave propagation in the
presence of CNTs revealed that the modelling of such a system would be a
multi-physics problem involving heat transfer and dynamic interaction of
particle vibrations. A study of various particle approaches of non-continuum
methods indicated that molecular dynamics (MD) is the method best suited
to simulate and study the acoustic absorption of CNTs at the nanoscale. A
survey of previous molecular simulations demonstrated that the MD simula-
tions carried out thus far have not simultaneously accounted for all relevant
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aspects of the multi-physics problem required for modelling the acoustic
absorption effects of CNTs. Hence, three independent validation studies were
performed using MD simulations for modelling a subset of the relevant phe-
nomena, namely fluid/structure interactions, bi-directional heat transfer, and
acoustic wave propagation. Each of these MD simulations were performed
for a model incorporating Lennard-Jones (LJ) potentials for the non-bonded
interactions of gas and CNT atoms and the REBO potential for the CNT, and
the results validated against the reference case studies.

A molecular system was then designed to study acoustic wave propaga-
tion in a simple monatomic gas in a domain containing a 50 nm-long CNT
opposite to the sound source and parallel to the direction of the acoustic wave
propagation. The simulation domain was modelled using argon gas as the
wave propagation medium, a piston made of solid argon layers as a sound
source, and a specular wall as the termination wall. MD simulations were
also performed without the CNT present for comparison. The characteristics
of the acoustic field were studied by evaluating the behaviour of various
acoustic parameters and comparing the change in behaviour with frequency.
The attenuation of the acoustic wave was estimated using thermodynamic
exergy concepts and compared against standing wave theory and predictions
from continuum mechanics. Similarly, the acoustic field characteristics and at-
tenuation due to the CNT were studied using MD simulations incorporating
the CNT. A standing wave model, developed for the domain with the CNT
present, was used to predict the attenuation by the CNT and verified against
estimates from exergy concepts. Comparison of the simulation results for
acoustic wave propagation with and without the CNT present demonstrated
that acoustic absorption effects in the presence of CNTs can be simulated
using the developed MD simulation setup although the degree of absorption
was not sufficient for the CNTs simulated to investigate absorption mecha-
nisms. The modelled MD system can also be used to study deviations from
continuum theory in the characteristics of high frequency sound. The study
suggests that the investigation of absorption mechanisms in nanomaterials
can be conducted using the developed platform for MD simulations, however
further investigations are required to capture the loss mechanisms involved
in the molecular interactions between the acoustic wave and the CNT. Addi-
tionally, to permit simulations in the audible frequency range, it is necessary
to speed up the computational process by modifying the system model such
as by employing a hybrid model with molecular dynamics coupled to a
continuum domain.
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