

Experimental and Numerical Investigation of a Carbon Nanotube Acoustic Absorber

Md. Ayub

School of Mechanical Engineering The University of Adelaide South Australia 5005 Australia

A thesis submitted in fulfilment of the requirements for the degree of Ph. D. in Engineering on the 14th of October 2015. Ph. D. Thesis

Submitted version 14th of October 2015

Acoustics, Vibrations and Control Group School of Mechanical Engineering The University of Adelaide South Australia 5005 Australia

Typeset by the author using LATEX. Printed in Australia.

Copyright © 2016, The University of Adelaide, South Australia. All right reserved. No part of this report may be used or reproduced in any form or by any means, or stored in a database or retrieval system without prior written permission of the university except in the case of brief quotations embodied in critical articles and reviews.

Summary

The interest in applications of nanomaterials for acoustic absorption purposes is growing rapidly with advances in nanotechnology. A need also exists for a simulation framework that is applicable for modelling acoustic absorption in nanomaterials in order to develop an understanding of nanoscopic acoustic absorption mechanisms. The current study investigates the acoustic absorption characteristics of a carbon nanotube (CNT) acoustic absorber to develop an understanding of the absorption behaviour and mechanisms of the CNTs. This task involves undertaking an exploratory study of the absorption characteristics of a CNT forest and modelling the absorption effects of the CNT at the nanoscale. The absorption characteristics of the CNTs were explored by studying the normal incidence absorption coefficient of 3 mmand 6 mm-long vertically aligned CNT arrays measured experimentally using the two-microphone impedance tube method, while the modelling of the absorption effects was performed using a non-continuum particle-based method. The experimental investigation showed promising results for the acoustic absorption capability of CNT acoustic absorbers and suggests that the absorption performance could be enhanced with longer CNTs and a lower spatial density of the nanotube arrays. The study of absorption using a theoretical model based on classical absorption mechanisms indicated that the absorption behaviour of nanomaterials is likely to deviate from continuum behaviour emphasising the necessity of acoustic modelling at the nanoscale using non-continuum methods. An examination of the physical phenomena that are likely to be relevant for simulating acoustic wave propagation in the presence of CNTs revealed that the modelling of such a system would be a multi-physics problem involving heat transfer and dynamic interaction of particle vibrations. A study of various particle approaches of non-continuum methods indicated that molecular dynamics (MD) is the method best suited to simulate and study the acoustic absorption of CNTs at the nanoscale. A survey of previous molecular simulations demonstrated that the MD simulations carried out thus far have not simultaneously accounted for all relevant aspects of the multi-physics problem required for modelling the acoustic absorption effects of CNTs. Hence, three independent validation studies were performed using MD simulations for modelling a subset of the relevant phenomena, namely fluid/structure interactions, bi-directional heat transfer, and acoustic wave propagation. Each of these MD simulations were performed for a model incorporating Lennard-Jones (LJ) potentials for the non-bonded interactions of gas and CNT atoms and the REBO potential for the CNT, and the results validated against the reference case studies.

A molecular system was then designed to study acoustic wave propagation in a simple monatomic gas in a domain containing a 50 nm-long CNT opposite to the sound source and parallel to the direction of the acoustic wave propagation. The simulation domain was modelled using argon gas as the wave propagation medium, a piston made of solid argon layers as a sound source, and a specular wall as the termination wall. MD simulations were also performed without the CNT present for comparison. The characteristics of the acoustic field were studied by evaluating the behaviour of various acoustic parameters and comparing the change in behaviour with frequency. The attenuation of the acoustic wave was estimated using thermodynamic exergy concepts and compared against standing wave theory and predictions from continuum mechanics. Similarly, the acoustic field characteristics and attenuation due to the CNT were studied using MD simulations incorporating the CNT. A standing wave model, developed for the domain with the CNT present, was used to predict the attenuation by the CNT and verified against estimates from exergy concepts. Comparison of the simulation results for acoustic wave propagation with and without the CNT present demonstrated that acoustic absorption effects in the presence of CNTs can be simulated using the developed MD simulation setup although the degree of absorption was not sufficient for the CNTs simulated to investigate absorption mechanisms. The modelled MD system can also be used to study deviations from continuum theory in the characteristics of high frequency sound. The study suggests that the investigation of absorption mechanisms in nanomaterials can be conducted using the developed platform for MD simulations, however further investigations are required to capture the loss mechanisms involved in the molecular interactions between the acoustic wave and the CNT. Additionally, to permit simulations in the audible frequency range, it is necessary to speed up the computational process by modifying the system model such as by employing a hybrid model with molecular dynamics coupled to a continuum domain.

Declarations

Originality

This work contains no material which has been accepted for the award of any other degree of diploma in any university or other tertiary institution. To the best of my knowledge and belief, this work contains no material previously published or written by another person, except where due reference has been made in the text.

Permissions

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Md. Ayub

Acknowledgements

I would like to express my sincere gratitude to all the people that have made a contribution to the work presented in this thesis. Without their generous supports I would have not been able to finish this thesis. I would like to thank my supervisors Associate Professor Anthony Zander, Professor Benjamin Cazzolato, Associate Professor Carl Howard, and Dr David Huang, who in spite of their tremendous work pressure always extended their helping hand whenever I wanted. I am indebted to my supervisors for proof-reading this thesis during their busy schedules and their insightful comments which helped me to improve the overall quality of the work presented in this thesis. I am grateful to my principal supervisor Associate Professor Anthony Zander for providing me the opportunity to work in the beautiful work environment of AVC (Acoustics, Vibration and Control) group, in the school of mechanical engineering at the University of Adelaide. I would also like to acknowledge Anthony for assigning me this challenging project that helped me to learn a completely different side of acoustics engineering especially acoustic modelling using molecular simulation methods. I am indebted to Anthony for his generous financial support through a shortterm scholarship and tuition fee waiver during my difficult times when my postgraduate scholarships were expired. I would like to acknowledge the efforts of the people from mechanical workshop who fabricated my experimental rig (impedance tube) and the people from electronics workshop Mr Philip Schmidt, Mr Derek Franklin, Mr Silvio De leso, and Ms Lydia Zhang, who helped me with my experimental work. A special thanks to Dr Erwin Gamboa for providing me the access to Materials lab for using fume hood.

This research was supported under Australian Research Council's Discovery Projects funding scheme (project number DP130102832). I would like to thank Prof. Vesselin Shanov, Dr Noe Alvarez and Prof. Mark Schulz of Nanoworld Laboratories (University of Cincinnati, USA), Professor Stephen Hawkins and Dr Chi Huynh from CSIRO (Commonwealth Scientific and Industrial Research Organisation, Australia) for providing the carbon nanotube samples. I would also like to acknowledge the financial support provided by the University of Adelaide through an International Postgraduate Research Scholarship (IPRS) and an Australian Postgraduate Award (APA).

I am also thankful to my colleagues Jesse Coombs, Alireza Ahmadi, Chenxi Li, Cristobal Gonzalez, Maung Myo and Hywel Bennett for their help and support. I would like to acknowledge Jesse's contribution for helping me to learn the computation issues. The assistance of Mr Hywel Bennett with the experiments is also greatly appreciated. I would also like to acknowledge eResearch SA for computational support and technical help provided by their support team.

A huge thanks to my Bangladeshi friends and brothers Rahul bhai, Tapu Bhai, Milton Bhai, Mahid Bhai, Numan Bhai, Rumman, Manab, Rabiul Bhai, Kingshuk, Hassan, Javed, Suvro, Suzon, Sayem, Rifa, Mashuq, and Nafees for sharing many happy moments, for their company to make my life enjoyable, and tolerating my frustrations while writing my thesis. I am really grateful to you guys for your help, support and encouragement. I would like to express my sincere thanks to Zahid Bhai and Salma Vabhi for their support during my stay in their house.

Finally, my sincere gratitude and thanks to my parents, family members, and friends back in Bangladesh for their sacrifice and endless support during my stay in Australia. I am indebted to my best friend Mohibul Alam for his financial support and other responsibilities he took for my family over the years during my postgraduate studies.

Contents

Su	mma	ary	i
De	eclara	ations	iii
Ac	knov	wledgements	v
Li	st of	Figures	x
Li	st of	Tables	xix
Li	st of	Abbreviations	xxi
1	Intr	oduction	1
	1.1	Motivation	1
	1.2	Noise Control using Nanomaterials	1
	1.3	Overview of the Research	5
	1.4	Research Scope	9
	1.5	Chapter Outline	11
2	Lite	rature Review	13
	2.1	Introduction	13
	2.2	Nanoscopic Fibres: Carbon Nanotubes	13
	2.3	Acoustic Absorption Mechanisms	17
	2.4	Numerical Models: Continuum vs Non-Continuum Methods	20
	2.5	Non-continuum Methods: Molecular Simulation Models	24
	2.6	Capability Requirements of the Methods	32
	2.7	Justification of the Methods: LBM, DSMC and MD	34
	2.8	Summary	36
3	Aco	ustic Absorption Behaviour of a CNT Forest	39
	3.1	Introduction	39
	3.2	Background	40

	3.3	Materials and Methods	41
	3.4	Results and Observations	50
	3.5	Absorption Behaviour of a Long CNT Forest	60
	3.6	Difficulties and Limitations in CNT Sample Preparation	71
	3.7	Summary	72
4	Aco	ustic Simulation of Nano-channels using MD	75
	4.1	Introduction	75
	4.2	Basics of Molecular Dynamics	75
	4.3	Simulation Tools: LAMMPS, VMD, Tcl Script, TopoTools	91
	4.4	Implementation of MD for Nano-channel Flow and Acoustics	
		Problems	92
	4.5	Potential Cases for MD Simulation of Acoustic Absorption	
		Mechanisms	97
	4.6	Limitations of MD simulation in Audible Frequency Range .	101
	4.7	Summary	102
5	Vali	dation Cases for MD Simulation	105
	5.1	Introduction	105
	5.2	Nanoscale Fluid/Structure Interaction	107
	5.3	Thermal Boundary Resistance	114
	5.4	Sound Wave Propagation in a Gas	120
	5.5	Summary	132
6	Sou	nd Propagation & Classical Absorption in a Gas	133
	6.1	Introduction	133
	6.2	Simulation Details	136
	6.3	Theory: Calculation Methods	137
	6.4	Sanity Check	146
	6.5	Results and Discussion	156
	6.6	Attenuation of Sound in the Fluid Medium	172
	6.7	Summary	178
7	Sou	nd Propagation in a Gas in Presence of a CNT	179
	7.1	Introduction	179
	7.2	Simulation Details	180
	7.3	Attenuation due to the Presence of a CNT: Calculation Method	s182
	7.4	Observations	188
	7.5	Simulation Results and Discussions	193
	7.6	Effects on CNT	199
	7.7	Summary	211

viii

CONTENTS

8	Conclusions and Future Work	213
	8.1 Conclusions	213
	8.2 Recommendations and Future Work	217
Re	ferences	221
Aj	pendices	239
A	Comparison of LBM, DSMC and MD	241
B	Verification Procedure for the Experimental Results	247
	B.1 Repeatability Tests	247
	B.2 Reproducibility Tests	248
	B.3 Error Analysis	252
C	Comparison with Conventional Materials	261
D	Effects of CNT Length and Bulk Density	265
E	Typical Input Script of LAMMPS and Tcl	269
	E.1 Sound Wave Propagation in Argon Gas	270
	E.2 Sound Wave Propagation in the Presence of a CNT	280
Li	t of Publications	299
	Conference Papers	299
	Poster Presentation	299
	Journal Articles in Preparation	300

ix

List of Figures

1.1	Images of carbon nanotubes (CNTs)	3
1.2	Schematic illustrating the formation of cellular structures in car-	
	bon nanotube films in four stages of processing. (a) Film composed	
	of vertically aligned carbon nanotubes. (b) Formation of cracks	
	during evaporation of liquid from the nanotube film. (c) Shrinkage	
	of the array and bending of nanotubes resulting in formation of	
	open cellular structures. (d) Final cellular structure. Images from	
	Ajayan et al. (2006).	4
1.3	Various shapes of CNT arrays grown for different applications at	
	the University of Cincinnati (UC). Figures from Cho et al. (2014a),	
	by collaborators in Nanoworld laboratories at University of Cincin-	
	nati, USA	6
1.4	Applicability range of the models based on Knudsen number	
	(Adapted from Ivanov et al. (2007); Hanford (2008)).	8
1.5	Schematics of the modelling stages	10
2.1	Molecular structure of a (10,10) single-walled carbon nanotube.	
	The structure was drawn using "nanotube builder", a plugin of	
	VMD (Visual Molecular Dynamics) software	14
2.2	Basic hexagonal bonding structure (Ruoff et al. 2003) for one	
	graphite layer (the 'graphene sheet'). Carbon nuclei shown as	
	filled circle, out-of-plane π -bonds and σ -bonds connect the C	
	nuclei in-plane. Figure adapted from Ruoff et al. (2003)	15
2.3	The chiral or lattice vector as a linear combination of unit vectors	
	a_1 and a_2 . Figure adapted from Ruoff et al. (2003)	16
2.4	Molecular structure of a multi-walled carbon nanotube. The struc-	
	ture was drawn using "nanotube builder", a plugin of VMD	
	(Visual Molecular Dynamics) software.	17
2.5	Schematic of a closed cap single-walled carbon nanotube ¹	17

List	of	Figures
	~	

2.6	Schematics of physical phenomena required for acoustic mod- elling of carbon nanotubes.	34
3.1	(a) Schematic and (b) photograph of impedance tube and instru- mentation used to measure the absorption coefficient of the CNT	10
3.2	Experimental and theoretical estimates of the normalised internal acoustic impedance of the closed tube terminated with a rigid wall. Here superscripts e and t indicate the experimental and	42
3.3	theoretical estimates of the impedance, respectively Fabricated sample of 3 mm forest of CNT arrays. Figure 3.3a shows the total thickness of the CNT sample with the attached 0.5 mm substants	46
34	Schematic of CNT sample	47
3.5	Arrangement of the sample configuration for (a) the substrate and	10
	(b) the blank impedance tube with rigid termination. Note that	
	components are shown as separated for illustrative purpose	49
3.6	Measured and corrected normal incidence sound absorption co-	
	efficient of substrate material and tube with rigid termination.	
		51
3.7	Measured and corrected normal incidence sound absorption coef-	
	ficient of CNT forest sample compared with that of the tube with	
	rigid termination. The "differences" curve was obtained by taking	
	the difference between the measured absorption coefficient of the	
	bare rigid walled tube and that with the CNT forest present	52
3.8	The arrangement of sample configuration for a 14.5 mm polyurethane	
	foam $(0.1176 \text{ g}, 21.1 \text{ kg m}^{-3})$ backed by a 37 mm air gap and the	- 1
2.0	3 mm CN1 forest.	54
3.9	Comparison of the absorption coefficient for combinations of	
	polyurethane roam and the CIVI lorest. Here, α_{diff} and α_{diff} correspond to the difference between the measured and corrected	
	absorption coefficients of the CNT and rigid wall PU CNT AC	
	ST and RW stand for the polyurethane foam (14.5 mm). CNT forest	
	(3 mm) air gap, substrate and rigid wall, respectively	54
3 10	Theoretical prediction of the absorption coefficient of a CNT forest	57
3.11	Photographs of 6mm CNT forest placed inside an impedance	01
0.11	tube sample holder	61
3.12	Measured absorption coefficient of a 6 mm CNT forest compared	
	with that of the 3 mm CNT forest.	61
3.13	Measured absorption coefficient of a 6 mm CNT forest	62

3.14	Comparison of the absorption coefficient for a combination of	()
0.15	Absorb tion and the CNT forest	63
3.15	Absorption coefficient for a sample thickness of 3.5 mm of refrasil	
	and 15.5 mm of PU foam without and with a 1.65 mm circumfer-	(1
0.16		64
3.16	Comparison of the absorption coefficient of the 6 mm CN1 sample	
	tested in two different impedance tubes of diameters 25.4 mm and	
0.10	22.1 mm	66
3.17	Incorretical prediction of the acoustic absorption coefficient of the	
	nanoporous CN1 sample and a representative double porosity	
	configurations of the CNT sample	67
4.1	Graphical representations of Lennard-Jones and WCA potentials	
	for non-bonded interactions between atoms <i>i</i> and <i>j</i>	78
4.2	Illustration of bond-lengths, bond-angles and dihedral-angles and	
	the graphical representations of their generalised potentials. Fig-	
	ure adapted from Huang (2013).	79
4.3	Flow chart of typical MD simulation using velocity-Verlet algo-	
	rithm (Adapted from Cai et al. (2010)).	84
4.4	An illustrative view of periodic boundary conditions. As a particle	
	moves out of the primary cell (shaded box), a replica image of the	
	atom moves in to replace it (Adapted from Allen (2004))	85
5.1	Snapshot of the MD simulation domain for nanoscale fluid (water)-	
	structure (CNT) interaction.	108
5.2	Flow profiles	111
5.3	Simulation domain	112
5.4	(a) Scree plot showing the normalised eigenvalues against eigen-	
	vectors obtained from PCA; (b)Vibrational mode	113
5.5	Snapshot of the MD simulation domain of liquid argon surround-	
	ing a CNT.	115
5.6	Temperature history	116
5.7	The radial density distribution of liquid argon from the surface	
	of the CNT showing density oscillations with three distinct peaks	
	within 10 Å of the CNT surface	117
5.8	Phonon energy spectrum	119
5.9	Simulation domain	120
5.10	Mean spatial temperature and pressure oscillations of the gas	124

xii

5.11	Velocity amplitude $V(z) = \sqrt{A^2 + B^2}$ as a function of distance for frequency $f = 67$ MHz ($R \approx 20$). The normalised DSMC result	
	compared with the MD simulation result.	125
5.12 5.13	Mean spatial temperature and pressure oscillations of the gas Cosine and sine components of particle velocity: DSMC and MD	126
	results	127
5.14	Comparison of MD simulation results with theoretical estimation	130
5.15	Thermostat damping	131
6.1	Schematic of a generalised microscopic portion of the simulation	
	domain of the designed system.	141
6.2	Sanity check for simulation system size	147
6.3	Sanity check for sampling frequency	149
6.4	Sanity check for statistical errors in the estimated velocity compo-	
	nents	150
6.5	Illustration of the time evolution of global (a) kinetic energy, (b)	
	potential energy, (c) temperature and (d) pressure of the gas in	
	the simulation system during the equilibration process	151
6.6	Illustration of the time evolution of change of (a) average velocity	
	$(V = \sqrt{V_x^2 + V_y^2 + V_z^2})$, (b) pressure, (c) temperature and (d) den-	
	sity of the gas during the equilibration process in each microscopic	
	bin (total 79 bins) along the <i>z</i> -direction of the simulation domain.	
	Each colour represents the quantity for particular bin	152
6.7	Maxwellian velocity distribution function of argon gas in equilib-	
	rium at 273 K	153
6.8	Mean spatial temperature and pressure of the gas for a simulation	
	of acoustic wave propagation at frequency $f \approx 1.5 \text{ GHz}$ ($R = 1$).	154
6.9	Maxwellian velocity distribution function of argon gas during	
	sound wave propagation at frequency $f \approx 1.5 \text{GHz}$ (R=1) mea-	
	sured globally for the whole system and locally for three spatial	
	bins along the <i>z</i> -direction	155
6.10	Estimates of work done on the gas by the piston and energy	
	extracted by the thermostat as a function of time during acoustic	
	wave propagation for a wave frequency $f \approx 1.5 \text{GHz}$ (R=1)	156
6.11	Auto-spectral density of acoustic pressure and particle velocity	
	for $R = 1$	158
6.12	Particle velocity profile for $f \approx 1.5 \text{ GHz}$ ($R = 1$)	159
6.13	Real and imaginary components of acoustic pressure and particle	
	velocity for $f \approx 1.5 \text{GHz} (R = 1)$	160

6.14	Acoustic pressure and normalised particle velocity (ρcv) of acous-	
	tic wave propagation at frequency $f \approx 1.5 \text{GHz} (R = 1) \dots$	161
6.15	Active and reactive acoustic intensity for $f \approx 1.5 \text{ GHz} (R = 1)$.	162
6.16	Reactive acoustic intensities for three different frequencies $f \approx$,	
	1.5, 2 and 2.5 GHz ($R = 1, 0.75, 0.5$)	162
6.17	Kinetic and potential energy densities of the sound field propagat-	
	ing in the simulation domain with acoustic wave frequency $f \approx$	
	$1.5 \text{GHz} \ (R = 1).$	163
6.18	Relationship between acoustic intensities and total acoustic energy	
	densities evaluated for $f \approx 1.5 \text{ GHz}$ ($R = 1$)	164
6.19	Coherence between the sound pressure and the particle velocity	
	(γ_{pv}^2) of the acoustic wave as a function of propagation distance	
	for a wave frequency of $f \approx 1.5 \text{GHz}$ ($R = 1$)	165
6.20	The coherence ($\gamma_{p_0p_z}^2$) and transfer function ($H_{p_0p_z}$) between the	
	pressure signals measured at the sound source (p_0) and at any	
	position (p_z) along the wave path away from source for simulated	
	wave frequencies $f \approx 1.5$, 2 and 2.5 GHz ($R = 1, 0.75, 0.5$)	166
6.21	Mean spatial temperature and pressure of the gas for a simulation	
	of acoustic wave propagation at frequency $f \approx 1.5 \text{ GHz}$ ($R = 1$).	168
6.22	Non-linear curve fit to cosine and sine components of velocity	
	amplitude as a function of distance for acoustic wave frequency	
	$f \approx 1.5 \mathrm{GHz} \ (R = 1).$	169
6.23	The (a) magnitude and (b) phase of the transfer function $(H_{\rho p})$	
	between acoustic pressure and density as a function of distance	
	for acoustic wave frequency $f \approx 1.5 \text{GHz}$ ($R = 1$)	170
6.24	Speed of sound as a function of distance calculated from the	
	simulation results for acoustic wave frequency $f \approx 1.5 \text{GHz}$ ($R = 1$)	.171
6.25	Comparison of the localised acoustic absorption coefficient (α_L)	
	as a function of distance along the wave path for acoustic wave	
	frequencies $f \approx 1.5$, 2 and 2.5 GHz ($R = 1, 0.75, 0.5$)	173
7.1	Simulation domain	181
7.2	Schematic of the simulation domain showing two separate regions	182

xiv

List of Figures

- 7.3 Comparison between one- and two-region approaches for nonlinear fitting of the wave equations to the components of the velocity amplitude for a theoretical standing wave formulated using a transmission matrix for an acoustic wave of frequency $f \approx 2.5 \text{ GHz}$ (R = 0.5). The length of the domain $z < 1.5 \times 10^{-7}$ m represents the gas region (*Region 2*), and the domain length z > 1.5×10^{-7} m corresponds to the CNT region (*Region 1*). The waveforms fit perfectly to the velocity components for both approaches and predict the same value of the sound speed and attenuation coefficient as the value used to formulate the standing wave. . .
- Comparison between one- and two-region approaches for non-7.4 linear fitting of the wave equations to the components of the velocity amplitude from the simulation results for a case without the CNT (with solid argon wall as acoustic source) for an acoustic wave of frequency $f \approx 1.5 \,\text{GHz}$ (R = 1). The length of the domain $z < \lambda_{mfp}$ represents the gas region (*Region 2*), and the domain length $z > \lambda_{mfp}$ corresponds to the CNT region (*Region 1*). Predicted values: one-region approach- c = 446 m/s, $m = 0.967 \times 10^7 \,\mathrm{m}^{-1}$; two-region approach- $c = 429 \,\mathrm{m/s}, m =$ 186 7.5 Schematic of generalised microscopic potion of the simulation domain in the presence of a CNT of the modelled acoustic system. 187 7.6 Mean spatial temperature and pressure of gas and CNT 190 7.7 Cumulative average of velocity of the gas at each monitoring point along the z-direction of the simulation domain during the equilibrium process. Each colour represents the quantity for each particular monitoring point. 191 7.8 Mean spatial temperature of gas and CNT 191 7.9 192 7.10 Comparison of the work done by the piston and the energy extracted by the thermostat as a function of the oscillation period of the wave cycle for a simulation domain with CNT for acoustic excitation at frequency $f \approx 1.5 \,\text{GHz}$. 192 7.11 Components, A(z) and B(z), of particle velocity amplitude v(z)as a function of distance in a simulation domain with and without the CNT present for the same simulation conditions for acoustic 194

185

7.12	Active and reactive acoustic intensities as a function of distance in	
	a simulation domain with and without the CNT present for the	
	same simulation conditions for acoustic excitation at frequency	
	$f \approx 1.5 \mathrm{GHz} \ (R = 1).$	194
7.13	(a) Magnitude and (b) phase of the transfer function, $H_{p_0p_z}$, be-	
	tween the acoustic pressure at the sound source and that away	
	from the source, as a function of distance for two acoustic do-	
	mains with and without the CNT present for the same simulation	
	conditions for acoustic excitation at frequency $f \approx 1.5 \text{ GHz}$ ($R = 1$)	.196
7.14	Localised acoustic absorption coefficient, α_L , as a function of dis-	
	tance along the wave path between the two acoustic domains with	
	and without the CNT present.	197
7.15	Curve fit, using two-region approach described in Section 7.3.1, to	
	cosine and sine components, $A(z)$ and $B(z)$, of velocity amplitude	
	from MD simulation as a function of wave propagation distance	
	for acoustic excitation at frequency $f \approx 1.5 \text{ GHz}$ ($R = 1$). The curve	
	fitting was performed for the simulation results obtained with and	
	without the CNT present. The value of the attenuation constant	
	$m_g = 1.05 \times 10^7 \mathrm{m}^{-1}$ and sound speed $c = 431 \mathrm{m/s}$ for the gas	
	were predicted from the waveforms of the velocity components	
	obtained without the CNT present by fitting the curve within the	
	length of the domain $z > 100$ nm, which is equivalent to the CNT	
	region (<i>Region 1</i>)	198
7.16	Comparison of acoustic power with (a) total power (Equation	
	(7.18)) and (b) exergy (combination of Equations (7.20) and (7.21))	
	for an acoustic domain with the presence of the 50 nm CNT for	
	acoustic excitation at frequency $f \approx 1.5 \text{ GHz}$ ($R = 1$)	200
7.17	(a) Total power and (b) exergy in acoustic domains with and	
	without the CNT present for acoustic excitation at frequency $f \approx$	
	$1.5 \text{GHz} \ (R = 1).$	201
7.18	Deflection modes with and without excitation by the acoustic flow	
	obtained from principal component analysis.	203
7.19	CNT atom positions used to observe the displacement of the tip	
	and the middle of the CNT.	203
7.20	Displacement of CNT tip atom	204
7.21	Displacement of atom in middle of CNT	205
7.22	Single-sided spectrum of the auto-spectral density of the displace-	
	ment amplitude of the atom in the middle of the CNT	207
7.22	Single-sided spectrum of the auto-spectral density of the displace-	
	ment amplitude of the atom in the middle of the CNT	208
	-	

xvi

List of Figures

7.23	Phonon energy spectrum with and without acoustic excitation .	210
B.1	Comparison of absorption of CNT for repeated test data	248
B.2	Comparison of absorption coefficient of 3 mm long CNT of diam-	
	eter 25.4 mm for repeated test data	249
B.3	Comparison of absorption coefficient of 3 mm long CNT samples	
	of diameters 25.4 mm and 22.1 mm	249
B.4	Absorption coefficient of an empty impedance tube of diameter	
	25.4 mm with rigid termination.	250
B.5	Decomposed wave spectra of the two microphones in the tube,	
	showing the effect of tube resonances	251
B.6	Measured reflection coefficient in the tube for the rigid termination	
	using the decomposition theory of Seybert (1988)	251
B.7	Magnitude and phase of the measured and corrected transfer	
	function	253
B.8	Comparison of the theoretical and measured attenuation constant	
	for a 22.10 mm diameter tube. The theoretical value is calculated	
	from Equation (3.7) using the value of the constant $A = 0.0194$	
	(Han et al. 2007)	254
B.9	Schematic of (a) the modified impedance tube setup with the	
	additional termination microphone used to measure (b) the trans-	
	fer function between the measurement microphones (Ch1: mi-	
	crophone 1, Ch2: microphone 2) and the embedded termination	
	microphone (Ch4: microphone 4). Details of the setup and calcula-	
	tion procedure can be found in (Katz 2000)	255
B.10	Estimated normalised bias error in the transfer function mea-	
	sured between the two microphones. Bias error type 1 is given by	
	Equation (B.1), and bias error type 2 is given by Equation (B.5).	257
B.11	Estimated normalised random error in the transfer function mea-	
	sured between the two microphones	259

xvii

C.1	Comparison of the experimentally measured acoustic absorption	
	coefficient of the CN1 forest with theoretical estimates for two	
	conventional porous materials of equivalent thickness: melamine	
	toam and glass wool. It should be noted that the mass of CNTs	
	(without the substrate) presented here is an estimate from the sam-	
	ple configuration shown in Figure 3.3a, in which the CNTs were	
	attached to the substrate. A more accurate estimate of the mass,	
	which should be made separately after extracting the CNTs from	
	the substrate, may differ from the approximate value. However,	
	the difference is anticipated to not be significant.	262
C.2	Comparison of the experimentally measured acoustic absorption	
	coefficient of the CNT forest with theoretical estimates for two	
	conventional porous materials of equivalent mass: melamine foam	
	and glass wool.	262
C.3	Comparison of the sound absorption coefficient of the CNT forest	
	with a high absorption coefficient specimen, Refrasil (3.5 mm),	
	measured using the impedance tube.	263
	0 I	
D.1	Comparison of theoretical estimates of acoustic absorption coef-	
	ficient of the 3 mm CNT forest with varying bulk density in the	
	range of $5 - 43.4 \text{kgm}^{-3}$	266
D.2	Comparison of theoretical estimates of the acoustic absorption	
	coefficient of a CNT forest with a bulk density of 43.4 kgm^{-3} for	
	varying thickness in the range of $3 - 50 \text{ mm}$.	267
D.3	Comparison of theoretical estimates of acoustic absorption coeffi-	
	cient of a CNT forest with a bulk density of 10 kgm^{-3} for varying	
	thickness in the range of $3 - 50$ mm.	267
		201

xviii

List of Tables

2.1	Comparison of continuum and non-continuum particle-based approaches.	22
2.2	Comparison of the particle-based simulation methods based on the simulation capabilities to capture the physical phenomena required for nanoscale acoustic flow modelling, indicating MD as the most suitable method.	36
3.1 3.2	Operating frequency range for different microphone spacings Measured parameters and estimated physical properties of the CNTs and CNT forest that were used to predict the acoustic absorption characteristics using classical methods	44
		50
4.1	Comparison of potential validation cases for MD simulation of nanoscale flow indicates the suitability of those cases for each	
4.1	physical phenomenon. Comparison of potential validation cases for MD simulation of	99
	nanoscale flow indicates the suitability of those cases for each physical phenomenon.	100
5.1	Lennard-Jones potential parameters (ε_{ij} and σ_{ij}) for interactions between C-O, Ar-C, Ar-Ar, C-N, N-N, Ar-N (Chen et al. 2011; Carlborg et al. 2008; Sup et al. 2014)	106
5.2	Major differences in the simulation approaches between the cur- rent study and the reference cases (Chen et al. 2011; Carlborg et al. 2008; Hadjiconstantinou and Garcia 2001) that were used for	100
	validation.	107
5.3	Parameters for SPC/E water model (Berendsen et al. 1984)	109

Comparison of MD and DSMC results (Hadjiconstantinou and Garcia 2001) for fitted attenuation coefficient (<i>m</i>) and sound speed (<i>c</i>) for different range of λ_{mfp} values used in fitting the cosine and sine components, $A(z)$ and $B(z)$, respectively, of the velocity
amplitude in Figure 5.13b
Comparison of theoretical predictions and simulation results of classical attenuation constant for three different frequencies simu-
lated in this study
coefficients $\omega \tau_s$ and $\omega \tau_\kappa$ are also evaluated for each of the wave frequencies along with Greenspan (1956)'s validity parameter $\frac{\rho c^2}{\omega \mu \gamma}$. 177
Comparison on the advantages, disadvantages, limitations, and applicability range of LBM, DSMC and MD reported in the literature.242
Comparison on the advantages, disadvantages, limitations, and applicability range of LBM, DSMC and MD reported in the literature.244
Comparison on the advantages, disadvantages, limitations, and applicability range of LBM, DSMC and MD reported in the literature.246
Microphone distance to termination calculations for each null in measurement (Ch1: 3 nulls, Ch2: 2 nulls) using rigid termination with embedded microphone (Ch4)

xx

List of Abbreviations

- AG: Air Gap
- ASTM: American Society for Testing and Materials
- CNT: Carbon Nanotube
- CVD: Chemical Vapour Deposition
- BGK: Bhatnagar-Gross-Krook
- BNT: Boron Nitride Nanotube
- CFD: Computational Fluid Dynamics
- DCV-GCMD: Dual control volume-grand canonical MD
- DPD: Dissipative Particle Dynamics
- DSMC: Direct Simulation Monte Carlo
- DWCNT: Double walled carbon nanotube
- EMD: Equilibrium Molecular Dynamics
- GCMC: Grand Canonical Monte Carlo
- LAMMPS: Large-scale Atomic/Molecular Massively Parallel Simulator
- LBM: Lattice Boltzmann Method
- MD: Molecular Dynamics
- MWCNT: Multiple walled carbon nanotube.
- NEMD: Non-Equilibrium Molecular Dynamics
- PBC: Periodic Boundary Condition

- PCA: Principal Component Analysis
- PU: Polyurethane
- REBO: Reactive Empirical Bond Order
- RW: Rigid Wall
- SCCM: Standard Cubic Centimetres per Minute
- SEM: Scanning Electronic Microscopy
- SPC: Simple Point Charge
- SRD: Stochastic Rotational Dynamics
- ST: Substrate
- SWCNT: Single walled carbon nanotube
- TBC: Thermal Boundary Conductance
- TBR: Thermal Boundary Resistance
- TEM: Transmission Electron Microscopy
- TNA: Titania Nanotube
- VMD: Visual Molecular Dynamics
- WCA: Weeks-Chandler-Andersen