
 

 

  

 

Improved Evolutionary Algorithm Optimisation of Water Distribution 

Systems Using Domain Knowledge 

 

 

by 
Weiwei Bi 

 

 

 

Thesis submitted to School of Civil, Environmental & Mining Engineering 
of the University of Adelaide 

in fulfillment of the requirements for 
the degree of 

Doctor of Philosophy 

 

Copyright© Weiwei Bi, December 2015. 

 

  



 

 

  



 

 

Improved Evolutionary Algorithm Optimisation of Water Distribution Systems 

Using Domain Knowledge 

 

By: 

Weiwei Bi 

Supervised by: 

Graeme C. Dandy, B.E. (Hons), MEngSc, Ph.D. 

Professor, School of Civil, Environmental & Mining Engineering, 

The University of Adelaide 

Holger R. Maier, B.E. (Hons), Ph.D. 

Professor, School of Civil, Environmental & Mining Engineering, 

The University of Adelaide 

Thesis submitted in fulfillment of the requirements for the degree of 

Doctor of Philosophy 

School of Civil, Environmental & Mining Engineering 
Faculty of Engineering, Computer and Mathematical Sciences 
The University of Adelaide 
North Terrace, Adelaide, SA 5005, Australia 
Telephone: +61 8303 6139 
Facsimile: +61 8303 4359 
Web: http://www.adelaide.edu.au/directory/weiwei.bi 
Email: weiwei.bi@adelaide.edu.au 

 

 

 

Copyright© Weiwei Bi, December, 2015. 



 

 

 



i 

 

Contents  

 

Contents i 

Abstract v 

Statement of Originality vii  

Acknowledgements viii  

List of Figures ix  

List of Tables xi 

List of Acronyms xii  

Chapter 1. Introduction 1 

1.1 Objectives of research 3 

1.2 Outline of the thesis 4 

Chapter 2. Journal Paper 1-Improved genetic algorithm optimization of 
water distribution system design by incorporating domain 
knowledge 7 

2.1 Introduction 9 

2.2 Proposed prescreened heuristic sampling method for WDS design 12 

2.3 Methodology 18 

2.3.1 Sampling methods                                               19 

2.3.2 Case studies                                                   21 

2.3.3 Genetic algorithm optimization                                    23 

2.4 Computational Experiments 24 

2.5 Results and discussion 27 

2.5.1 Group 1 (G1) case studies                                         29 

2.5.2 Group 2 (G2) case studies                                         31 

2.5.3 Group 3 (G3) case studies                                         33 

2.6 Summary and conclusions 34 

Chapter 3. Journal Paper 2- Impact of starting position and searching 
mechanism on evolutionary algorithm convergence rate 37 



ii 

 

3.1 Introduction 40 

3.2 Methodology 43 

3.2.1 Initialization approaches                                          44 

3.2.2 Evolutionary algorithms and their parameterization                    45 

3.2.3 Case studies                                                   46 

3.2.4 Performance assessment                                          47 

3.2.5 Performance explanation                                         48 

3.3 Computational Experiments 53 

3.4 Results and discussions 54 

3.4.1 Impact of the starting positions and searching mechanisms                54 

3.4.2 Relationship between observed performance and problem statistics         57 

3.4.3 Relationship between observed performance and population diversity       60 

3.4.4 Summary                                                      61 

3.5 Conclusions 62 

Chapter 4. Journal Paper 3- Use of domain knowledge to increase the 
convergence rate of evolutionary algorithms for optimizing the cost 
and resilience of water distribution systems 65 

4.1 Introduction 67 

4.2 The optimization problem 70 

4.3 Proposed multi-objective prescreened heuristic sampling method 72 

4.3.1 Step 1: Identify initial solutions using domain knowledge related to cost         72 

4.3.2 Step 2: Identify an initial front by adjusting the solutions obtained in Step 1 
based on domain knowledge related to network resilience              73 

4.3.3 Step 3: Generate initial MOEA population by sampling in the vicinity of the 
initial front identified in Step 2                                   75 

4.4 Methodology 76 

4.4.1 Methods for determining initial MOEA population                     77 

4.4.2 Multiobjective evolutionary algorithms                              78 

4.4.3 Case studies                                                   79 

4.4.4 Run-time performance metrics                                        79 

4.5 Computational experiments 81 

4.6 Results and discussion 83 



iii 

 

4.7 Summary and conclusions 90 

Chapter 5. Conclusions and Recommendations for Future Work 93 

5.1 Research Contributions 93 

5.2 Research Limitations 95 

5.3 Recommendations for Future Work 96 

References 99 

Appendix 107 

 

  



iv 

 

  



v 

 

Abstract  

Water distribution systems (WDSs) are becoming increasingly complex and larger in 

scale due to the rapid growth of population and fast urbanization. Hence, they require 

high levels of investment for their construction and maintenance. This motivates the need 

to optimally design these systems, with the aim being to minimize the investment budget 

while maintaining high service quality. Over the past 25 years, a number of evolutionary 

algorithms (EAs) have been developed to achieve optimal design solutions for WDSs, 

representing a focal point of much research in this area.  

One issue that hinders EAs’ wide application in industry is their significant demand on 

computational resources when handling real-world WDSs. In recognition of this, there 

has been a move from aiming to find the globally optimal solutions to identifying the 

best possible solutions within constrained computational resources. While many studies 

have been undertaken to attain this goal, there have been limited efforts that use 

engineering knowledge to reduce the computational effort. The research undertaken in 

this thesis is such an attempt, as it aims to efficiently identify near-optimal solutions with 

the aid of WDS design knowledge. 

This thesis presents a domain-knowledge based optimization framework that enables the 

near-optimal solutions (fronts) of WDS problems to be identified within constrained 

computing time. The knowledge considered includes (i) the relationship between pipe 

size and distance to the water source(s); (ii) the impact of flow velocities on optimal 

solutions; and (iii) the relationship between flow velocities and network resilience.  

This thesis consists of an Introduction, three chapters that are based around a series of 

three journal papers and a set of Conclusions and Recommendations for Further 

Work.  
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The first paper introduces a new initialization method to assist genetic algorithms 

(GAs) to identify near-optimal solutions in a computationally efficient manner. This 

is attained by incorporating domain knowledge into the generation of the initial 

population of GAs. The results show that the proposed method performs better than 

the other three initialization methods considered, both in terms of computational 

efficiency and the ability to find near-optimal solutions. 

The second paper investigates the relative impact of different algorithm initializations 

and searching mechanisms on the speed with which near-optimal solutions can be 

identified for large WDS design problems. Results indicate that EA parameterizations, 

that emphasize exploitation relative to exploration, enable near-optimal solutions to 

be identified earlier in the search, which is due to the “big bowl” shape of the fitness 

function for all of the WDS problems considered. Using initial solutions that are 

informed using domain knowledge can further increase the speed with which 

near-optimal solutions can be identified.  

The third publication extends the single-objective method in the first paper to a 

two-objective problem. The objectives considered are the minimization of cost and 

maximization of network resilience. The performance of the two-objective 

initialization approach is compared with that of randomly initializing the population 

of multi-objective EAs applied to range of WDS design problems. The results 

indicate that there are considerable benefits in using the proposed initialization 

method in terms of being able to identify near-optimal fronts more rapidly. 

Although all of the results obtained in this research have shown that the proposed 

method is effective for improving the efficiency of EAs in finding near-optimal 

solutions, only gravity fed water distribution systems with a single loading case were 

considered as case studies. One important area for future research is the extension of 

the proposed method to more complex WDSs which may include tanks, pumps and 

valves.  
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