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Abstract

Water distribution systems (WDSs) are becomingeasingly complex and larger in
scale due to the rapid growth of population and diglsanization. Hence, they require
high levels of investment for their constructioml anaintenance. This motivates the need
to optimally design these systems, with the aimdpgd minimize the investment budget
while maintaining high service quality. Over thesp25 years, a number of evolutionary
algorithms (EAs) have been developed to achievienaptlesign solutions for WDSs,

representing a focal point of much research indtes.

One issue that hinders EAs’ wide application irustdy is their significant demand on
computational resources when handling real-worldS&Dn recognition of this, there
has been a move from aiming to find the globallyirogl solutions to identifying the

best possible solutions within constrained comprtat resources. While many studies
have been undertaken to attain this goal, theree Hmen limited efforts that use
engineering knowledge to reduce the computatioffiatteThe research undertaken in
this thesis is such an attempt, as it aims toieffity identify near-optimal solutions with

the aid of WDS design knowledge.

This thesis presents a domain-knowledge based iaption framework that enables the
near-optimal solutions (fronts) of WDS problemsbi® identified within constrained
computing time. The knowledge considered includethé relationship between pipe
size and distance to the water source(s); (ii)infgact of flow velocities on optimal

solutions; and (iii) the relationship between fleglocities and network resilience.

This thesis consists of an Introduction, three tdrgthat are based around a series of
three journal papers and a set of Conclusions amcbfRmendations for Further
Work.



The first paper introduces a new initialization huet to assist genetic algorithms
(GAs) to identify near-optimal solutions in a congtionally efficient manner. This
is attained by incorporating domain knowledge ithe generation of the initial
population of GAs. The results show that the pregosiethod performs better than
the other three initialization methods consideredth in terms of computational

efficiency and the ability to find near-optimal stbns.

The second paper investigates the relative imgadifferent algorithm initializations
and searching mechanisms on the speed with whiahapimal solutions can be
identified for large WDS design problems. Resuittigate that EA parameterizations,
that emphasize exploitation relative to exploratienable near-optimal solutions to
be identified earlier in the search, which is dughte “big bowl” shape of the fithess
function for all of the WDS problems considered.ifgsinitial solutions that are
informed using domain knowledge can further inceedlse speed with which

near-optimal solutions can be identified.

The third publication extends the single-objectimethod in the first paper to a
two-objective problem. The objectives consideresl the minimization of cost and
maximization of network resilience. The performanoé the two-objective
initialization approach is compared with that odamly initializing the population
of multi-objective EAs applied to range of WDS dgsiproblems. The results
indicate that there are considerable benefits iimgushe proposed initialization

method in terms of being able to identify near-oyati fronts more rapidly.

Although all of the results obtained in this resbahave shown that the proposed
method is effective for improving the efficiency &As in finding near-optimal

solutions, only gravity fed water distribution systs with a single loading case were
considered as case studies. One important ardattoe research is the extension of
the proposed method to more complex WDSs which imelyde tanks, pumps and

valves.
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