RISK FACTORS ASSOCIATED WITH ANTIMICROBIAL RESISTANT ORGANISM CARRIAGE IN RESIDENTS OF RESIDENTIAL AGED CARE FACILITIES: A SYSTEMATIC REVIEW

Christine Dianne Hunt

A thesis submitted in total requirements for the degree of Master of Clinical Science

Joanna Briggs Institute – Higher Degrees by Research Program

The University of Adelaide

Adelaide, South Australia

Table of Contents

Declaration	i
Acknowledgement	ii
Dedication	iii
Abstract	iv
CHAPTER 1: INTRODUCTION	1
Background	2
Overview of the aim and objectives	4
Description of antibiotic resistance	5
Types of antibiotic resistant organisms	6
Relevance to the profession	9
Certainties or uncertainties in the extant literature	11
How this research proposes to address the uncertainties in the extant literature	12
Discussion on Methodology Chosen	12
The Evidence Based Health Care movement: the Science of Evidence Synthesis	14
Assumptions & Limitations	15
Summary	15
CHAPTER 2: METHODS	16
Review question/objective	17
Inclusion criteria	18
Search strategy	19
Assessment of methodological quality	21

Data collection	22
Data synthesis	22
CHAPTER 3: RESULTS	25
Description of Studies	26
Methodological Quality	29
Review Findings	39
Meta-Analysis of Risk Factors	41
Risk Factors Unique to One Study Only	51
CHAPTER 4: DISCUSSION & CONCLUSIONS	53
General discussion	54
Discussion of resident risk factors	54
Discussion of institutional risk factors	57
Discussion of environmental risk factors	60
Discussion of generalisability of meta-analysis results	60
Discussion of other risk factors	61
Important studies not included in the review	64
Implications for practice	65
Implications for research	66
Limitations of this review	68
Conclusions	69
Appendix I: Search Logic Grid: PubMed/Medline Example	70
Appendix II: Appraisal instruments	71

Appendix III: Example of Data Extraction Tool	74
Appendix IV: Studies Excluded At Full Text Review	75
Appendix V: Risk Factors that were not included in meta-analysis	79
Appendix VI: Forest Plots	80
Appendix VII: Funnel Plots	115
REFERENCES	126
LIST OF TABLES	
Table 1: RESULTS OF CRITICAL APPRAISAL OF DESCRIPTIVE STUDIES	29
Table 2: RESULTS OF CRITICAL APPRAISAL OF ANALYTIC STUDIES	30
Table 3: SUMMARY OF INCLUDED STUDIES	32
Table 4: SUMMARY OF RISK FACTORS INCLUDED IN META-ANALYSIS	40
Table 5: OVERALL RESULTS OF META-ANALYSIS OF RISK FACTORS	48
Table 6: SUB GROUP ANALYSIS OF CO-MORBIDITIES: BY TYPE	49
Table 7: SUB GROUP ANALYSIS OF ALL WOUNDS	49
Table 8: SUB GROUP ANALYSIS OF INVASIVE DEVICE: BY TYPE	50
Table 9: SUB GROUP ANALYSIS OF AB USE	50
Table 10: ONE STUDY ONLY	52

LIST OF FIGURES

Figure 1: Study Selection Flowchart	28
Figure 2: Forest Plot: Meta-Analysis of all Comorbidities Combined - Odds Ratio	80
Figure 3: Forest Plot: Meta-Analysis of all Comorbidities Combined - Risk Ratio	81
Figure 4: Forest Plot: Sub-group analysis of Cerebral Comorbidities - Odds Ratio	82
Figure 5: Forest Plot: Meta-Analysis of Limited Mobility - Odds Ratio	83
Figure 6: Forest Plot: Meta-Analysis of Limited Mobility - Risk Ratio	84
Figure 7: Forest Plot: Meta-Analysis of Dependency - Odds Ratio	85
Figure 8: Forest Plot: Meta-Analysis of Dependency - Risk Ratio	86
Figure 9: Forest Plot: Meta-Analysis of all Wounds - Odds Ratio	87
Figure 10: Forest Plot: Meta-Analysis of all Wounds - Risk Ratio	88
Figure 11: Forest Plot: Sub-group analysis of Wounds Only (excl Decubitus Ulcer) - Odds R	atio89
Figure 12: Forest Plot: Sub-group analysis of Wounds Only (excl Decubitus Ulcer) - Risk Ra	itio 90
Figure 13: Forest Plot: Sub-group analysis of Decubitus Ulcers only - Odds Ratio	91
Figure 14: Forest Plot: Sub-group analysis of Decubitus Ulcers only - Risk Ratio	92
Figure 15: Forest Plot: Meta-Analysis of Incontinence - Odds Ratio	93
Figure 16: Forest Plot: Meta-Analysis of Incontinence - Risk Ratio	94
Figure 17: Forest Plot: Meta-Analysis of History of ARO - Odds Ratio	95
Figure 18: Forest Plot: Meta-Analysis of History of ARO - Risk Ratio	96
Figure 19: Forest Plot: Meta-Analysis of Sex (Male vs Female) - Odds Ratio	97
Figure 20: Forest Plot: Meta-Analysis of Sex (Male vs Female) - Risk Ratio	98
Figure 21: Forest Plot: Meta-Analysis of All Invasive Devices - Odds Ratio	99
Figure 22: Forest Plot: Meta-Analysis of All Invasive Devices - Risk Ratio	100
Figure 23: Forest Plot: Sub-group analysis of Gastrostomy/Nasogastric Devices - Odds Rati	o 101

Figure 24: Forest Plot: Sub-group analysis of Gastrostomy/Nasogastric Devices - Risk Ratio 102
Figure 25: Forest Plot: Sub-group analysis of IDUC/CUD Devices - Odds Ratio
Figure 26: Forest Plot: Sub-group analysis of IDUC/CUD Devices - Risk Ratio
Figure 27: Forest Plot: Meta-Analysis of Antibiotic Use - Odds Ratio
Figure 28: Forest Plot: Meta-Analysis of Antibiotic Use - Risk Ratio
Figure 29: Forest Plot: Sub-group analysis of Antibiotic use within last 12 weeks - Odds Ratio 107
Figure 30: Forest Plot: Sub-group analysis of Antibiotic use within last 12 weeks - Risk Ratio 108
Figure 31: Forest Plot: Sub-group analysis of Fluoro/Cipro Antibiotic use - Odds Ratio
Figure 32: Forest Plot: Sub-group analysis of Fluoro/Cipro Antibiotic use - Risk Ratio
Figure 33: Forest Plot: Sub-group analysis of Cephalosporin Antibiotic use - Odds Ratio 111
Figure 34: Forest Plot: Sub-group analysis of Cephalosporin Antibiotic use - Risk Ratio 112
Figure 35: Forest Plot: Meta-Analysis of Hospital Stay (including surgery) - Odds Ratio 113
Figure 36: Forest Plot: Meta-Analysis of Hospital Stay (including surgery) - Risk Ratio 114
Figure 37: Funnel Plot: Meta-Analysis of Comorbidities - Odds Ratio (11 studies)
Figure 38: Funnel Plot: Meta-Analysis of Dependency - Odds Ratio (11 studies)
Figure 39: Funnel Plot: Meta-Analysis of all Wounds - Odds Ratio (17 studies)
Figure 40: Funnel Plot: Meta-Analysis of Sex (Male vs Female) - Odds Ratio (18 studies) 118
Figure 41: Funnel Plot: Meta-Analysis of Sex (Male vs Female) - Risk Ratio (16 studies) 119
Figure 42: Funnel Plot: Meta-Analysis of Invasive Devices - Odds Ratio (19 studies)
Figure 43: Funnel Plot: Sub-group analysis of IDUC/CUD Devices - Odds Ratio (14 studies) 121
Figure 44: Funnel Plot: Meta-Analysis of Antibiotic Use - Odds Ratio (22 studies)
Figure 45: Funnel Plot: Meta-Analysis of Antibiotic Use - Risk Ratio (11 studies)
Figure 46: Funnel Plot: Sub-group analysis of Antibiotic Use in last 12 weeks - Odds Ratio (11
studies)
Figure 47: Funnel Plot: Meta-Analysis of Hospital Stay Meta-analysis: Odds Ratio (16 studies)125

Declaration

I certify that this work contains no material which has been accepted for the award of any other

degree or diploma in my name in any university or other tertiary institution and, to the best of my

knowledge and belief, contains no material previously published or written by another person,

except where due reference has been made in the text. In addition, I certify that no part of this

work will, in the future, be used in a submission in my name for any other degree or diploma in

any university or other tertiary institution without the prior approval of the University of Adelaide

and where applicable, any partner institution responsible for the joint award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made

available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis be made available on the web, via the

University's digital resource repository, the Library Search and also through web search engines,

unless permission has been granted by the University to restrict access for a period of time.

Christine D Hunt

i

Acknowledgement

I would like to acknowledge the support Dr David Tivey and Dr Jared Campbell provided to me during my studies and in completing this thesis. Their wisdom and guidance was always freely given and gratefully received.

I would also like to acknowledge my employer, Eldercare Incorporated, for the support and encouragement they have given me during the last two and a half years.

Dedication

This work is dedicated to my family:

In particular, to my partner Karen, without whom I would not have been able to complete this work. I will be forever grateful for her endless love, support and encouragement.

And also to my children and their families, including my two darling grandchildren who both arrived while I was working on this review, and a new little one who will be joining the family soon.

I hope one day I will be an inspiration to them to pursue lifelong learning.

Abstract

Aim

The thesis reports the outcomes of a systematic review conducted to identify the risk factors associated with antimicrobial resistant organism (ARO) carriage in residents of residential aged care facilities (RACF).

Background

The World Health Organization (WHO) recognises antimicrobial resistance as a critical world health issue and acknowledges that with the reduction in the development of new antibiotics there is an urgent need to take action to slow the spread of antimicrobial resistant organisms (AROs).

Residential Aged Care Facilities (RACFs) aim to provide nursing and personal care to the elderly who can no longer remain in their own home; in an environment that is safe and home-like. AROs are commonly found in aged care settings. A resident who is infected or colonised with an ARO may be a temporary or longer-term carrier of an ARO, and may act as a reservoir for the organism and a potential source of transmission to others. A risk-management approach is required in order to implement effective infection prevention strategies for dealing with residents with AROs. All facilities need to be able to identify the risks in their own context and select the appropriate course of action; however, little is known about the risk factors for ARO acquisition in this population.

Method

A comprehensive literature search was conducted of Medline, Cumulative Index to Nursing and Allied Health Literature (CINHAL), Embase and Cochrane databases for quantitative studies that

examined the risk factors for carriage of AROs in residents of RACFs. All risk factors associated with carriage of any antibiotic resistant organism in the target population were considered in this review. The review followed the Johanna Briggs Institute (JBI) methodology for conducting systematic reviews of quantitative studies.

Results

This review considered 32 quantitative studies that met the inclusion criteria and identified risk factors associated with ARO carriage in residents of residential aged care facilities. In all, over seventy potential risk factors were examined in the included studies. Data extracted from these studies were analysed with Comprehensive Meta Analysis (CMA) software. As a result of the meta-analysis a total of 10 statistically significant risk factors that influence the colonisation or infection of residents of RACFs with AROs were identified:

- Comorbidities
- Immobility
- Dependency
- Wounds
- Incontinence
- History of an ARO
- Male Sex
- Invasive devices
- Previous antibiotic therapy
- Hospitalisation

The results will be presented in detail in the thesis.

Conclusions

Of the 10 risk factors identified not all were generalisable to the population as a whole; however some were, and this generalisability will be discussed further in the thesis. This information will inform risk identification and mitigation protocols for use in this setting. It may potentially lead to the development of a reliable risk assessment tool that staff can use to identify those residents most at risk. This review has provided an evidence base on which to build a planned approach to risk management and the implementation of transmission prevention strategies to prevent AROs in residents of RACFs.