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1  | INTRODUCTION

Human activities are creating environmental conditions that pose 
threats and present opportunities for wildlife. In turn, this creates 
challenges for conservation managers. Some species have benefited 
from anthropogenic actions. For example, many invasive species profit 
from human-assisted dispersal (Banks, Paini, Bayliss, & Hodda, 2015; 
Hulme, 2009), and mesopredators may thrive following human-driven 

loss of top predators (Ritchie & Johnson, 2009). However, in many 
cases, wildlife populations are undergoing alarming declines, and 
extinction rates are now as high as 100-fold greater than the back-
ground extinction rate (Ceballos et al., 2015). Ecological monitoring is 
essential for understanding these population dynamics, and rigorous 
monitoring facilitates informed management. The effectiveness of 
management decision-making is often dependent on the accuracy and 
timeliness of the relevant ecological data upon which decisions are 
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Abstract
1.	 Knowing how many individuals are in a wildlife population allows informed  

management decisions to be made. Ecologists are increasingly using technologies, 
such as remotely piloted aircraft (RPA; commonly known as “drones,” unmanned 
aerial systems or unmanned aerial vehicles), for wildlife monitoring applications. 
Although RPA are widely touted as a cost-effective way to collect high-quality 
wildlife population data, the validity of these claims is unclear.

2.	 Using life-sized, replica seabird colonies containing a known number of fake birds, we 
assessed the accuracy of RPA-facilitated wildlife population monitoring compared to 
the traditional ground-based counting method. The task for both approaches was to 
count the number of fake birds in each of 10 replica seabird colonies.

3.	 We show that RPA-derived data are, on average, between 43% and 96% more ac-
curate than the traditional ground-based data collection method. We also demon-
strate that counts from this remotely sensed imagery can be semi-automated with 
a high degree of accuracy.

4.	 The increased accuracy and increased precision of RPA-derived wildlife monitoring 
data provides greater statistical power to detect fine-scale population fluctuations 
allowing for more informed and proactive ecological management.
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based, meaning that improvements to data collection methods may 
herald improved ecological outcomes from management actions.

Emerging technologies are increasingly being adopted by ecolo-
gists to improve data collection and capture novel data (Hebblewhite & 
Haydon, 2010; Moll, Millspaugh, Beringer, Sartwell, & He, 2007; Pimm 
et al., 2015). Advances in genetic techniques have resulted in the cost-
effective application of environmental DNA sampling to the detection 
of endangered species and invasive species (Sigsgaard, Carl, Moller, & 
Thomsen, 2015; Smart, Tingley, Weeks, van Rooyen, & McCarthy, 2015; 
Smart et al., 2016). Camera traps and acoustic recorders have become 
established tools for determining whether a species is present at a site, 
and estimating population density (Marques et al., 2013; Rowcliffe & 
Carbone, 2008). Furthermore, animal-borne telemetry devices have 
revolutionised our understanding of animal movements, including their 
interactions with the environment, and species distributions (Hussey 
et al., 2015; Kays, Crofoot, Jetz, & Wikelski, 2015). Such technologies 
have been vital in advancing our understanding of wildlife and answer-
ing fundamental questions, such as how many individuals are in a popu-
lation and whether that population trajectory is increasing or decreasing.

Remotely piloted aircraft (RPA; commonly known as “drones,” un-
manned aerial systems or unmanned aerial vehicles) have seen a rapid 
uptake by ecologists for data collection. This surge in popularity has 
arisen largely due to their ability to carry remote sensing instruments 
that collect data at scales highly suited to monitoring ecological phe-
nomena (Anderson & Gaston, 2013). Compared to remote sensing in-
struments mounted to spacecraft and conventional aircraft, RPA are 
more suited to collecting extremely fine spatial and temporal resolution 
data at the discretion of the user. These benefits have led many prac-
titioners to label RPA as a powerful tool for wildlife ecology (Chabot 
& Bird, 2015; Christie, Gilbert, Brown, Hatfield, & Hanson, 2016; 
Jones, Pearlstine, & Percival, 2006; Linchant, Lisein, Semeki, Lejeune, 
& Vermeulen, 2015; Watts et al., 2010). Consequently, RPA are being 
used for data collection in an increasingly diverse suite of ecological 
applications, including transect counts of African elephants Loxodonta 
africana (Vermeulen, Lejeune, Lisein, Sawadogo, & Bouche, 2013), 
monitoring for poaching activities (Mulero-Pazmany, Stolper, van 
Essen, Negro, & Sassen, 2014), detecting reptile and arboreal mammal 
nests (Evans, Jones, Pang, Saimin, & Goossens, 2016; Wich, Dellatore, 
Houghton, Ardi, & Koh, 2016), and estimating the body condition of 
cetaceans and pinnipeds (Christiansen, Dujon, Sprogis, Arnould, & 
Bejder, 2016; Krause, Hinke, Perryman, Goebel, & LeRoi, 2017).

Many bird species are highly suited to RPA-facilitated population 
monitoring. RPA have been used to assess the breeding status of the 
canopy-breeding hooded crow Corvus cornix (Weissensteiner, Poelstra, 
& Wolf, 2015) and to take a census of multispecies assemblages of 
songbirds (Wilson, Barr, & Zagorski, 2017). They have also been a use-
ful tool in collecting valuable datasets of species which congregate 
and/or those that frequent known sites to breed. For example, RPA 
have been used to estimate the size of staging flocks of geese (Chabot 
& Bird, 2012), take population censuses of colony nesting species of 
gull, tern and penguin (Chabot, Craik, & Bird, 2015; Ratcliffe et al., 
2015; Sarda-Palomera, Bota, Padilla, Brotons, & Sarda, 2017; Sarda-
Palomera et al., 2012), and also make a rapid population estimate of 

the Tristan albatross Diomedea dabbenena at a remote island where 
nests are at low density (McClelland, Bond, Sardana, & Glass, 2016). 
While some studies have investigated the variability of RPA surveys 
compared to traditional methods (Chabot et al., 2015; Hodgson, 
Baylis, Mott, Herrod, & Clarke, 2016), to date, rigorous quantification 
of the accuracy of RPA-derived data has been limited.

We assessed the accuracy of RPA-facilitated wildlife popula-
tion monitoring compared to the traditional ground-based counting 
method. The task for both approaches was to count the number of fake 
birds in each of 10 replica seabird colonies. Each replica colony had a 
different known number of life-sized individuals. Although the replica 
colonies lacked the flying or moving individuals of real colonies, the 
stationary decoys provided a realistic representation of the nesting sea-
bird stimuli that observers encounter in the field. We hypothesised that 
counts from RPA-derived imagery would be more accurate and more 
precise than those generated using the traditional approach, confirming 
that RPA technology is a significant advance for ecological monitoring.

2  | MATERIALS AND METHODS

2.1 | Study site and simulated colony set-up

Fieldwork (#epicduckchallenge) was completed at a metropolitan 
beach in South Australia (Port Willunga, 35°15′33S, 138°27′41E). The 
beach comprised pale cream to golden-coloured sand, natural debris 
and was largely devoid of rocks. The terrain was representative of 
a low-lying sand cay, gently sloping from the high water mark up to 
a small (0–1.5 m), natural, vegetated embankment. The experimental 
design, including the majority of anticipated statistical analyses, was 
pre-registered (Hodgson, Baylis, Mott, & Koh, 2016).

Ten simulated greater crested tern Thalasseus bergii breeding colo-
nies were constructed using commercial, life-sized, plastic duck decoys (c. 
25.5 × 11.3 cm, 185/cm2 footprint). Colonies were situated separately on 
the beach, above the high water mark, in sandy areas that were analogous 
to nesting habitat. These areas had minimal topographic variation, and were 
typically devoid of vegetation but often contained natural beach debris.

As the interactions of individuals are thought to influence colony 
layout, a model of nesting pressure was applied to an underlying hex-
agonal grid to generate unique, unbiased colony layouts (Hodgson, 
Baylis, Mott, & Koh, 2016). The hexagonal grid was recreated in the 
field using a wire mesh, upon which grid cell centres were marked 
(mean density: 11.39/m2). Pre-counted wooden skewers were placed 
one per cell at a random location within all cells identified as occupied 
in the colony layout map. The mesh was removed and each skewer 
was replaced with a decoy facing approximately into the wind. One 
individual was placed in each occupied cell. The number of skewers 
retrieved was taken to be the true number of individuals in the colony. 
Colony sizes were between 463 and 1,017 individuals.

2.2 | Ground counting approach

Ground-based counts (ground counts) were made using a standard field 
technique (Hodgson, Baylis, Mott, Herrod, et al., 2016). All observers 
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were ecologists with experience observing and counting birds, primarily 
in a professional or academic capacity. Counters used tripod-mounted 
spotting scopes or binoculars as required. Hand-held tally counters were 
used to assist counting. For each colony, the observation viewpoint 
(Figure 1e) was selected because it provided the optimum vantage, was 
at a similar altitude to the colony and was 37.5 m from the nearest bird. 
This distance is a biologically plausible minimum approach distance as 
it is the flight initiation distance of the Caspian tern Hydroprogne caspia 
(Moller, Samia, Weston, Guay, & Blumstein, 2014), a similar species to 
that being replicated. Counts (n = 61) were 7 ± 2.65 min (SD) in dura-
tion. Each of the four to seven counters made a single blind count of the 
number of individuals in each colony. The numbers of counters were 
selected based on a preliminary power analysis (Hodgson, Baylis, Mott, 
& Koh, 2016), which investigated the sample sizes necessary to detect 
small (c. 10%) differences in mean counts and count variances between 
ground counts and counts from RPA-derived imagery to high (80%, 
90% and 95%) power. Counters had no knowledge of the true number 
of individuals in the colonies or the colony set-up technique. Counts 
were made between 09.30 and 16.45 hr on 1 day in late autumn, re-
sulting in variation in illumination and shadows. During this period, wind 
speed was low to moderate (c. 5–20 kt), cloud cover varied (15%–75%) 
and visibility was high (>500 m).

2.3 | RPA description, flight characteristics and data 
collected by RPA

A small, off-the-shelf quadcopter (Iris+, 3D Robotics) was used as a 
platform to image each colony. After positioning the RPA in the cen-
tre of the colony at 15 m above-ground level, it was piloted in “alti-
tude hold” mode to make a vertical ascent without movement in other 

axes. The RPA was loitered for short periods (c. 10 s) at 30, 60, 90 
and 120 m above-ground level (sample heights) to enable the cap-
ture of several photographs at each height. Sampling was restricted 
to a height of 120 m as this is a common maximum limit for stand-
ard RPA flight. Ground control station connection (Mission Planner, 
planner.ardupilot.com) was utilised and total flight time for missions 
was 5–7 min. All missions were in accordance with local regulations 
and flown by the same licensed pilot. Samples were collected within 
40 min of the completion of ground counts.

Imagery was captured using a compact digital camera (Cyber-shot 
RX100 III, Sony—resolution: 5,472 × 3,648 px; sensor: CMOS; sensor 
size: 13.2 × 8.8 mm; lens: ZEISS Vario-Sonnar T). Exposure time was 
set at 1/2,000 s using “shutter priority” mode. Photographs were cap-
tured successively (c. 1 s intervalometer) using the Sony PlayMemories 
time-lapse application in jpeg format and at a focal length of 8.8 mm 
for all sample heights. The camera was mounted facing downwards 
using a custom vibration dampening plate. The footprint of a single 
image at each height encompassed the colony for all replicates. For 
analysis, only the image captured closest to the middle of the loiter 
time period for each sample height was used. These images (scenes; 
n = 40) were cropped (colony area <50% of footprint) so that the image 
footprint was identical for each sample height for a given colony. High-
quality imagery was obtained for six of the 10 colonies. Imagery for 
the remaining four colonies was affected by vibration-blur caused by 
a failure of the sensor attachment, likely due to wind speeds near the 
limit of the capability of the RPA platform. Scenes are archived online 
(https://doi.org/10.5061/dryad.rd736).

The ground sample distance (GSD), being the distance between 
adjacent pixel centres on the ground, for sample heights were 0.82, 
1.64, 2.47 and 3.29 cm (Figure 1). When photographed at nadir, this 

F IGURE  1 Aerial vantage of a replica 
seabird colony compared with the 
ground counter’s viewpoint. One colony 
represented by a mosaic of images (a–d) 
photographed from a remotely piloted 
aircraft-mounted camera at varying heights 
(30, 60, 90 and 120 m) and resulting 
ground sample distances (GSD; 0.82, 
1.64, 2.47 and 3.29 cm). Insets are of the 
same individual (square; c) at each height, 
displaying the decrease in resolution 
relative to an increase in GSD. (e) View 
of the colony from a ground counter’s 
standing position

(a)

(e)

(b) (c) (d)

https://doi.org/10.5061/dryad.rd736
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approximated to 275, 69, 30 and 17 pixels per individual respectively. 
The variance in GSDs was intended to represent the resolutions com-
monly achieved in wildlife monitoring applications, which result from 
sensor and sampling height variations.

2.4 | Manual counting approach for RPA-derived  
imagery

Manual counts of perceived individuals in digital imagery were com-
pleted following a technique previously implemented for RPA-facilitated 
monitoring of living seabirds (Hodgson, Baylis, Mott, Herrod, et al., 2016). 
Systematic counts were made using the multicount tool within an easy-
to-use, open source, java-based scientific image processing program 
(ImageJ, http://imagej.net/). This tool is used by manually placing a mark 
on each object to be counted and then computing a tally of the number 
of marks placed. A grid plugin was used to overlay a square matrix (cell 
sizes: 70,000, 15,000, 8,000 and 4,000 pixels for each sample height) 
and counters were instructed to view the colony sequentially (gridcell 
by gridcell: left to right, top to bottom). Counters were encouraged to 
zoom in to each cell as they progressed and, upon completion, review 
their count at different levels of zoom until they were satisfied they had 
counted all individuals. For each sample height, seven to nine individuals 
counted each colony. Counters had no knowledge of the experimental 
set-up and only one had experience in ground counting colonial birds.

2.5 | Semi-automated counting approach for RPA-
derived imagery

In each scene, digital bounding boxes were used to manually de-
limit a percentage of individual birds (Figure 2a). Four larger areas of 

background without birds were also delimited. These data were used 
to train a linear support-vector machine (a discriminative classifier; 
Cortes & Vapnik, 1995), which predicted the likelihood of each pixel 
being a bird or background when applied to the corresponding scene 
(Figure 2b). Instead of relying on colour intensities, for each pixel used 
in the training processes, we computed a rotation-invariant Fourier his-
togram of oriented gradient (Liu et al., 2013) features. This resulted in 
the classifiers being trained to determine which features distinguished 
birds from the background. The predicted likelihood (score) maps indi-
cated the approximate locations of birds in the scenes, and detections 
were generated by applying a threshold to the score maps. This pro-
cess unavoidably resulted in redundant bird proposals (Figure 2c) and 
so the final detection results were obtained by suppressing redundant 
proposals by minimising an energy function (Pham, Rezatofighi, Reid, & 
Chin, 2016; Figure 2d). This function encoded the spatial distribution of 
objects and was informed by our knowledge of how the birds nest (e.g. 
two birds cannot occupy the same location). The source code and data-
set are archived online (https://doi.org/10.4225/55/5a57f969d82e0).

To determine the minimum amount of training data required for 
accurate detections relative to manual image counts, we varied the 
percentage of individual birds used as training data from 1% to 30% 
for each scene.

2.6 | Statistical methods

All analyses were carried out in r version 3.2.2 (R Core Team, 2016). 
Pre-registered analyses were designed to investigate how within-
colony absolute count error, within-colony variability of counts and 
within-colony bias of counts differed between count techniques 
(Hodgson, Baylis, Mott, & Koh, 2016). For analyses of count error, we 

F IGURE  2 Semi-automated detection and counting of wildlife using computer vision techniques. (a) User annotation of perceived target 
objects (red) and background (blue). (b) Predicted likelihood (score) map generated by the trained classifier which has automatically determined 
which image features distinguish objects from background, independent of scale and orientation. Warmer colours indicate increasing likelihood 
of the pixel being a target object. (c) Target object proposals (red) computed by thresholding the score map. Object size is estimated from the 
annotations. (d) Final output (which includes a total count and detection co-ordinates) where detected individuals are delineated (red) after 
redundant detections have been automatically suppressed

(a) (b)

(c) (d)

http://imagej.net/
https://doi.org/10.4225/55/5a57f969d82e0
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consider our contrasts of experimental conditions to be conservative 
compared to typical field conditions. In the field, ground counters con-
tend with the movement of live birds while counters of RPA-derived 
imagery use static images. Our use of decoys, therefore, removes a 
potential source of error for ground counters, whereas that source 
of error is minor or non-existent for counts made from RPA-derived 
images.

For each test, a generalised linear mixed model was fit between 
the response (e.g. absolute count error) and the technology used to 
make the count (e.g. ground count, manually counted RPA-derived 
image captured at 30 m height, semi-automatically counted RPA-
derived image captured at 30 m height), with colony included in 
the model as a random effect. To investigate effects of counting 
technique on absolute count error, we defined the response as the 
absolute difference between the true number of birds in a colony 
and the counted number of birds. To investigate effects of count-
ing technique on count variability, we defined the response as the 
absolute difference between each count and the mean of counts 
of the same colony taken using the same method. Count variability 
was not estimated for semi-automated counts as there was only a 
single semi-automated count per colony. To investigate the effect 
of counting technique on relative count bias, we defined the re-
sponse as the difference between the true number of birds in the 
colony and the counted number of birds. For the absolute count 
error model, we used a Poisson distribution with quasi-likelihood 
estimation, and for the variability and bias models, we used a 
Gaussian distribution. For each model, post hoc Tukey tests were 
used to test for differences in the response between all pairs of 
treatment levels.

Semi-automated count data were added to the experimen-
tal design after our pre-registration of the analysis, and caused 
minor changes to the planned analysis. The addition of semi-
automated count data, with a single replicate per colony, re-
quired fitting colony as a random effect instead of as a fixed 
effect in each model.

Statements comparing the accuracy of counts from RPA-
derived imagery to ground counts are based on the mean within-
colony root mean squared error (RMSE) of that counting approach, 
standardised as a proportion of the true count within each colony. 
For instance, a statement that counts from RPA-derived imagery 
are “95% more accurate than ground counts” means that, within-
colony, the RMSE for counts from RPA-derived imagery is 5% of 
the RMSE for ground counts, representing a 95% reduction in 
RMSE.

To compare the semi-automated counts to that of the people 
counting the images, we first took the semi-automated count after 
10% of training data had been used for each scene. Ten percent of 
training data was consistently identified as a threshold over which lit-
tle improvement in counts occurred for all scenes. We compared this 
count to each of the manual counts of the same image using ANOVA 
for all scenes, and also for those scenes of high quality. We also used 
loglinear models with a Poisson distribution to make more quantitative 
comparisons of the two approaches.

3  | RESULTS

3.1 | Manual counts from RPA-derived imagery vs. 
ground counts

On average across all colonies, counts from RPA-derived imagery 
were between 43% and 96% more accurate than ground counts, de-
pending on the sample height (between 92% and 98% for the colonies 
with high-quality imagery; Table S1). The mean absolute error was sig-
nificantly smaller for counts from RPA-derived imagery at all heights 
compared to ground counts (all p < .001; Figure 3a).

No significant increase in count accuracy was achieved by ob-
taining imagery from heights lower than or equal to 90 m. Using data 
only from colonies with high-quality imagery, there was no significant 
change in count accuracy across the range of heights. The lower accu-
racy of ground counts was due to significant underestimations of the 
true number of individuals in colonies (Figure 3b). Counts from RPA-
derived imagery obtained at 30 and 60 m did not significantly under- 
or overestimate the true number of individuals in a colony, and there 
was no evident bias in counts from RPA-derived imagery at any height 
for colonies with high-quality imagery (Figure 3b).

Counts from RPA-derived imagery were more precise (i.e. had 
lower intercounter variability) than ground counts, regardless of the 
height at which imagery was obtained (t4,560 = −10.21 to −13.37, all 
p < .001; Figure S1). Counts from RPA-derived imagery were more 
precise for imagery obtained at 30 m compared to those obtained 
from 120 m (p = .01); however, there were no significant differences in 
precision among counts from RPA-derived imagery at different heights 
for colonies with high-quality imagery (all p > .98).

3.2 | Semi-automated counts from RPA-derived  
imagery

By increasing the percentage (from 1% to 30%) of individuals used 
as training data for the image-analysis algorithm, 10% training data 
was consistently identified as a threshold above which little improve-
ment in count accuracy was achieved (Figure S2). There was no sig-
nificant difference between counts that were made with 10% training 
data and those made by manual counting from RPA imagery across 
all scenes. The semi-automated results were 94% similar to manual 
counts across all scenes (98% for the colonies with high-quality im-
agery; see also Table S1).

4  | DISCUSSION

RPA-derived data were more accurate and more precise than the tra-
ditional data collection method, validating claims that RPA are a highly 
beneficial tool for ecologists. By facilitating accurate census data, 
RPA can provide ecologists with more confidence in population esti-
mates from which management decisions can be made. Furthermore, 
the superior precision of counts from RPA images increases statis-
tical power to detect population trends, owing to the lower type II 



     |  1165Methods in Ecology and Evolu
onHODGSON et al.

error rate in statistical analysis that comes with comparing measures 
with smaller variance (Gerrodette, 1987). The improved precision of 
completing wildlife population censuses using RPA has been demon-
strated for free-living seabird colonies (Hodgson, Baylis, Mott, Herrod, 
et al., 2016), suggesting our results are generalisable to natural set-
tings. Differences in accuracy and precision between RPA-facilitated 
and traditional survey methods can be attributed to the sources and 
magnitudes of variance for each method, which are strongly affected 
by the different vantages (Hodgson, Baylis, Mott, Herrod, et al., 2016).

Manual counting from RPA-derived imagery returned high-quality 
data. We estimate that a reasonable detection rate for manual count-
ing is at least 72 birds per min (unpublished data), demonstrating the 
suitability of this approach for colonies of less than a few thousand in-
dividuals. However, when the number of individuals is high, or repeat 
counts of colonies are required at different time points, the labour 
investment needed for manual counting can be substantial, so image-
analysis techniques have been increasingly employed to streamline 
the detection process (Chabot & Francis, 2016). Our semi-automated 
image-based object detection algorithm required the manual delin-
eation of a proportion of birds and four areas of background without 
birds to be used as training data. Delineations were comfortably made 
at a rate of 30 birds per min, and user intervention was not required 
once processing started. Accordingly, given 10% training data was 
sufficient for accurate counts, our semi-automated approach reduced 

user time investment without diminishing data quality compared to 
the manual, RPA-derived census. While processing time will vary with 
computing power, we still consider employing the algorithm and in-
putting training data a more efficient use of user time. This will be 
of particular interest in today’s research environment where fund-
ing for conservation is limited (Waldron et al., 2013) and research-
ers are under ever more pressing time constraints (Fischer, Ritchie, & 
Hanspach, 2012).

The capture quality and resolution of RPA-derived imagery heavily 
influenced the results of both human and semi-automated detection. 
Consequently, ecologists should determine the minimum required 
GSD for their context and optimise their sensor accordingly (e.g. res-
olution, focal length) relative to sample height. When determining an 
appropriate sample height, best practice protocols should be consid-
ered to minimise potential disturbance to wildlife (Hodgson & Koh, 
2016), while complying with relevant local aviation legislation and 
achieving an acceptable sample area within the possible survey time 
period.

The ability to collect data with higher accuracy, higher precision 
and less bias than the existing approach confirms that RPA are a 
scientifically rigorous data collection tool for wildlife population 
monitoring. This approach produces a permanent record, provid-
ing the unique opportunity to error-check, and even recount with 
new detection methods, unlike ground count data. RPA-facilitated 

F IGURE  3 Accuracy and bias of 
remotely piloted aircraft (RPA) and 
traditional wildlife monitoring approaches. 
The absolute error (a) and difference from 
the true count (b) of each method. Data 
from all colonies (n = 10; shaded) and also 
for the subset of colonies with high-quality 
imagery (n = 6; unshaded) are presented for 
manual counts from RPA-derived imagery 
(blue) and ground counts (green). Manual 
(man) and semi-automated (auto) counts 
from RPA-derived imagery are displayed 
and data are grouped by height, which  
reflects ground sample distance (GSD; 30 m 
height = 0.82 cm GSD, 60 m = 1.64 cm, 
90 m = 2.47 cm, 120 m = 3.29 cm) Absolute error

100 200 300 400
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MAN

AUTO
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90 m
MAN

AUTO

MAN

AUTO

60 m
MAN

AUTO

MAN

AUTO

30 m
MAN

AUTO

MAN

AUTO

Ground

(a) (b)



1166  |    Methods in Ecology and Evolu
on HODGSON et al.

monitoring also presents the opportunity to collect population 
data without entering breeding grounds or ecologically sensitive 
areas, thereby avoiding the disturbance associated with ground sur-
veys. Furthermore, as RPA platforms, sensors and computer vision 
techniques continue to develop, it is likely that the accuracy and 
cost-effectiveness of RPA-based approaches will also continue to 
improve.
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