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Abstract

Although various forms of linkage map construction software are widely available,
there is a distinct lack of packages for use in the R statistical computing environment (R
Core Team 2017). This article introduces the ASMap linkage map construction R package
which contains functions that use the efficient MSTmap algorithm (Wu, Bhat, Close, and
Lonardi 2008) for clustering and optimally ordering large sets of markers. Additional to
the construction functions, the package also contains a suite of tools to assist in the rapid
diagnosis and repair of a constructed linkage map. The package functions can also be
used for post linkage map construction techniques such as fine mapping or combining
maps of the same population. To showcase the efficiency and functionality of ASMap, the
complete linkage map construction process is demonstrated with a high density barley
backcross marker data set.
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1. Introduction

Genetic linkage maps are widely used in the biological research community to explore the
underlying DNA of populations. They generally consist of a set of polymorphic genetic
markers spanning the entire genome of a population generated from a specific cross of parental
lines. This exploration may involve the dissection of the linkage map itself to understand the
genetic landscape of the population or, more commonly, it is used to conduct gene-trait
associations such as quantitative trait loci (QTL) analysis or genomic selection (GS). For
QTL analysis, the interpretation of significant genomic locations is enhanced if the linkage
map contains markers that have been assigned and optimally ordered within chromosomal
groups. This can be achieved algorithmically by using linkage map construction techniques
that utilize the laws of Mendelian genetics (Sturtevant 1913).


http://dx.doi.org/10.18637/jss.v079.i06

2 ASMap: Linkage Map Construction and Diagnosis in R

In the relatively short history of linkage map construction there has been an abundance of
stand alone software. Early linkage map construction algorithms used brute force combina-
toric methods to determine marker order (Lander and Green 1987; Lange and Weeks 1989)
and were built into historical versions of popular software packages: Mapmaker (Lander,
Green, Abrahamson, Barlow, Daly, Lincoln, and Newburg 1987) and JoinMap (Stam 1993).
As the number of markers increased non-combinatoric methods emerged, including SERI-
ATION (Buetow and Chakravarti 1987) and rapid chain delineation (RCD; Doerge 1996). A
version of RCD was implemented in the intuitive graphically oriented package Map Manager.
(Manly, Cudmore, and Meer 2001). Although Map Manager enjoyed a meteoric rise in use,
the implemented RCD algorithm was sub-optimal and the software was limited to reduced
numbers of markers. Schiex and Gaspin (1997) and Liu (1998) recognized a more efficient
approach to marker ordering could be attained from finding solutions to the traveling sales-
man problem. Computational methods that exploited this knowledge were quickly adopted in
construction algorithms including the evolution-strategy algorithm (Mester, Ronin, Hu, Peng,
Nevo, and Korol 2003a; Mester, Ronin, Minkov, Nevo, and Korol 2003b) implemented in Mul-
tipoint and the RECORD algorithm (Van Os, Stam, Visser, and Van Eck 2005) available as
command line software and later implemented in software packages IciMapping (Meng, Li,
Zhang, and Wang 2015) and onemap (Margarido and Mollinari 2015). Other construction
algorithm variants involving efficient solutions of the traveling salesman problem included the
unidirectional growth (UG) algorithm (Tan and Fu 2006), the AntMap algorithm (Iwata and
Ninomiya 2006), the MSTmap algorithm (Wu et al. 2008) and Lep-MAP (Rastas, Paulin,
Hanski, Lehtonen, and Auvinen 2013). Unfortunately these more recent algorithms have only
been available as downloadable low-level source codes that require compilation before use.

In the R statistical computing environment there were only two packages available for link-
age map construction. The qtl package (Broman and Wu 2016; Broman and Sen 2009) has
matured considerably since its inception in 2001 and provides users with a suite of functions
for linkage map construction and QTL analysis across a wide set of populations. Unfortu-
nately, the marker ordering algorithms in the package rely on computationally cumbersome
combinatoric methods and multiple stages to achieve optimality. In a more recent addition
to the R contributed package list, onemap (Margarido and Mollinari 2015) contains a collec-
tion of linkage map construction tools specialized for a restricted set of inbred and outbred
populations. The package implements well known marker ordering algorithms including SE-
RIATION (Buetow and Chakravarti 1987), RECORD (Van Os et al. 2005), RCD (Doerge
1996) and UG (Tan and Fu 2006). Unfortunately these algorithms have been implemented in
native R code and lack the computational expediency of the low-level source code equivalents.

In an attempt to circumvent these computational issues we developed the ASMap package
(Taylor and Butler 2017) which is freely downloadable from the Comprehensive R Archive
Network (CRAN) at https://CRAN.R-project.org/package=ASMap. The package contains
linkage map construction functions that fully utilize the freely available C++ source code
(http://alumni.cs.ucr.edu/~yonghui/mstmap.html) for the MSTmap algorithm derived
in Wu et al. (2008) and outlined in Section 2. The algorithm uses the minimum spanning tree
of a graph (Cheriton and Tarjan 1976) to cluster markers into linkage groups as well as find
the optimal marker order within each linkage group. In contrast to qtl and onemap, genetic
linkage maps are constructed very efficiently without the requirement for multiple ordering
stages. The algorithm is restricted to linkage map construction with backcross (BC), doubled
haploid (DH) and recombinant inbred (RIL) populations. For RIL populations, the level
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of self-pollination can also be given and consequently the algorithm can handle selfed F2,
F3, ..., Fr populations where r is the level of selfing. Advanced RIL populations (r — o)
are also allowed and are treated similar to a DH population for the purpose of linkage map
construction.

An overview of the ASMap package functions are presented in Section 3. Two linkage map
construction functions are available that provide users with a fast, flexible set of tools for
constructing linkage maps using the MSTmap algorithm. To complement the efficient con-
struction functions the package also contains a function that pulls markers of different types
from the linkage map, temporarily placing them aside. This is complemented by a function
that pushes markers back to linkage groups at any stage of the construction or reconstruc-
tion process. To efficiently diagnose the quality of the constructed map the package contains
graphical functions that simultaneously display multiple panel profiles of linkage map statis-
tics associated with the genotypes or marker/intervals. Where possible, the ASMap package
uses the ‘cross’ object format (see the qtl function read.cross() for the structure of its ge-
netic objects). Once the class of the object is appropriately set, both ASMap and qtl functions
can be used synergistically to construct, explore and manipulate the object. To showcase the
functionality of the ASMap package, Section 4 presents an illustrative example that involves
the complete linkage map construction process for a barley backcross population. This section
concludes with a short summary on the use of ASMap functions in post construction linkage
map development techniques such as fine mapping and combining maps. The performance of
the MSTmap algorithm in ASMap is outlined in Section 5 and the article concludes with a
short summary.

2. MSTmap algorithm

Following the notation of Wu et al. (2008) consider a doubled haploid population of n indi-
viduals genotyped across a set of ¢t markers where each (j, k)th entry of the n x ¢t matrix M is
either an A or a B representing the two parental homozygotes in the population. Let P be
the probability of a recombination event between the markers (m;, my) where 0 < P, < 0.5.
MSTmap uses two possible weight objective functions based on recombination probabilities
between the markers

wp (4, k) = Pjg, (1)

Wi (j, k) = = (Pjilog Pjx + (1 — Pjy)log(1 — Pjy)). (2)

In general Py, is not known and so it is replaced by an estimate, d;;,/n where dj;, corresponds
to the hamming distance between m; and my, (the number of non-matching alleles between

the two markers). This estimate, d;i/n, is also the maximum likelihood estimate for P j; for
the two weight functions defined above.

2.1. Clustering

If markers m; and m, belong to two different linkage groups then P = 0.5 and the hamming
distance between them has the property E(d;;) = n/2. Using these definitions, MSTmap
determines whether markers belong to the same linkage group using Hoeffding’s inequality

P(dj1. < 8) < exp(~2(n/2 — 8)2/n) (3)
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Figure 1: Negative logl0 € versus the number of genotypes in the population for four threshold
cM distances.

for § < n/2. For a given P(d;, < §) = € and n, the equation —2(n/2 — §)*/n = loge
is solved to determine an appropriate hamming distance threshold, 5. Wu et al. (2008)
indicate that the choice of € is not crucial when attempting to form linkage groups. However,
the equation that requires solving is highly dependent on the number of individuals in the
population. For example, for a DH population, Figure 1 shows the profiles of the negative
log 10e against the number of individuals in the population for four threshold minimum cM
distances (25, 30, 35,40). MSTmap uses a default of € = 0.00001 which would work universally
well for population sizes of n ~ 150t0200. For larger numbers of individuals, for example
n = 350, the plot indicates an e = 1072 to 10~ would use a conservative minimum threshold
of 30-35 ¢M before linking markers between clusters. If the default e = 107° is given in this
instance this threshold is dropped to ~ 45 ¢cM and consequently distinct clusters of markers
will appear linked. For this reason, Figure 1 should always initially be checked before linkage
map construction to ensure an appropriate p value is given to the MSTmap algorithm.

To cluster the markers MSTmap uses an edge-weighted complete graph for M where the
individual markers are vertices and the edge between any two markers m; and my, is the
pairwise hamming distance dj;. Edges with weights greater than § are then removed. The
remaining connected components allow the marker set M to be partitioned into r linkage
groups, M = [My,...,M,].

2.2. Marker ordering

For simplicity, consider that the n x ¢t matrix of markers M belongs to the same linkage
group. Preceding marker ordering, the markers are “binned” into groups where, within each
group, the pairwise distance between any two markers is zero. The markers within each group
have no recombinations between them and are said to be co-locating at the same genomic
location for the n genotypes used to construct the linkage map. A representative marker is
then chosen from each of the bins and used to form the reduced n x t* marker set M™*.

For the reduced matrix M*, consider the complete set of entries (7, k) € (1,...,t*) for either
weight function (1) or (2). These complete set of entries can be viewed as the upper triangle
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of a symmetric weight matrix W. MSTmap views all these entries as being connected edges
in an undirected graph where the individual markers are vertices. A marker order for the set
M*, also known as a traveling salesman path (TSP), is found by visiting each marker once
and summing the weights from the connected edges. To find a minimum weight (TSP,,n),
MSTmap uses a minimum spanning tree (MST) algorithm (Cheriton and Tarjan 1976), such
as Prim’s algorithm (Prim 1957). If the TSP,,;, is unique then the MST is the optimal order
for the markers. For cases where the data contains genotyping errors or lower numbers of
individuals the MST may not be a complete path and contain markers or small sets of markers
as individual nodes connected to the path. In these cases, MSTmap uses the longest path in
the MST as the backbone and employs several efficient local optimization techniques such as
K-opt, node-relocation and block-optimize (see Wu et al. 2008) to improve the current min-
imum TSP. By integrating these local optimization techniques into the algorithm, MSTmap
provides users with a true one stage marker ordering algorithm.

A unique feature of the MSTmap algorithm is the use of an expectation-maximization (EM)
type algorithm for the imputation of missing allele scores that is tightly integrated with the
ordering algorithm for the markers. To achieve this the marker matrix M™ is converted to
a matrix, A, where the entries represent the probabilistic certainty of the allele being the
parental homozygote, AA. For the jth marker and ith individual then

1 if M*(i,7) is the AA allele,
A(l,7) =< 0 if M*(i,7) is the BB allele, (4)
R;/(R; + S;) if M*(i,7) is missing,

where Rj = (1 — Pj_Lj)(l — Pjﬂ'_;,_l), Sj = Pj—l,jpj,j-‘rl and Pj,j_l,ﬁ’j’j_u are estimated
recombination fractions between the (j — 1)th and jth marker and jth and (j + 1)th marker
respectively. If M*(i,7) is missing then the equation on the right hand side is the posterior
probability of the missing value in marker j being the A allele for genotype ¢ given the current
estimate. Unlike the flanking marker methods of Martinez and Curnow (1992, 1994) this
equation represents a probabilistic approach to imputation. The ordering algorithm begins
by initially calculating pairwise normalized distances between all markers in M* and deriving
an initial weight matrix, W. An undirected graph is formed using the markers as vertices
and the upper triangular entries of W as weights for the connected edges. An MST of the
undirected graph is then found to establish an initial order for the markers of the linkage
group. For the current order at the (j —1, 7, j 4+ 1)th markers the E-step of algorithm requires
updating the missing observation at marker j by updating the estimates Pj_l,j = dAj_Lj /n
and IA’MH = CZMH/ n in (4). The M-step then re-estimates the pairwise distances between
all markers in M* where, for the jth and kth marker, is

djr. =Y A6, J)(1 = A(i, k) + AGi, k) (1 - A, )
i=1

and the weight matrix W is recalculated. An undirected graph is formed with the markers
as vertices and the upper triangular entries of W as weights for the connected edges. A
new order of the markers is derived by obtaining an MST of the undirected graph and the
algorithm is repeated to convergence. Although this requires several iterations to converge,
the computational time for the ordering algorithm remains efficient.

If required, the MSTmap algorithm also detects and removes genotyping errors as well as
integrates this process into the ordering algorithm. The technique involves using a weighted
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average of nearby markers to determine the expected state of the allele. For individual ¢ and
marker j the expected value of the allele is calculated using

E[A(i,5)] = Y d; 2 A(i, k:)/ > dii
J#k J#k

In this equation the weights are the inverse square of the distance from marker j to its nearby
markers. MSTmap only uses a small set of nearby markers during each iteration and the
observed allele is considered suspicious if |[E[A(4,5)] — A(i,7)] > 0.75. If an observation is
detected as suspicious it is treated as missing and imputed using the EM algorithm discussed
previously. The removal of the suspicious allele has the effect of reducing the number of
recombinations between the marker containing the suspicious observation and the neighboring
markers. This has an influential effect on the genetic distance between markers and the overall
length of the linkage group.

The complete algorithm used to initially cluster the markers into linkage groups and opti-
mally order markers within each linkage group, including imputing missing alleles and error
detection, is known as the MSTmap algorithm.

2.3. Extension to RIL populations

The MSTmap algorithm can also be used to construct linkage maps for RIL populations
generated through self-pollination of F1 derived individuals. These include inbred F2, F3,
..., Fr populations, where r is the level or generation of selfing as well as advanced RIL
populations created by r — oo levels of selfing. Non-advanced RIL populations contain three
distinct genotypic states, two parental homozygotes (AA, BB) in equal proportions and a
heterozygote (AB) with expected proportion determined by the simple decaying equation
2-(=1) As r — oo this expected fraction tends to zero and the population can be considered
to be an advanced RIL containing parental (AA, BB) homozygotes only.

To ensure the MSTmap algorithm can be efficiently used to perform clustering and optimal
ordering of markers for RIL populations, accurate estimates of pairwise recombination prob-
abilities between markers are required. For an advanced RIL the estimated recombination
probability between any two markers m; and my, can be directly calculated using the result
in Broman (2005), namely

*

Py = (Pj/2)/(1— Pj), ()

where ij = dji/n is the estimated recombination probability between the two markers from
a DH population. For any non-advanced RIL, P;k cannot be directly calculated and the
MSTmap algorithm uses the recurrence relation results of Haldane and Waddington (1931)
(see Supplementary Text S1 in Wu et al. 2008) and a simple stepwise optimization procedure
to closely approximate P7;. Although Hoeffding’s inequality (3) is well-defined for DH and BC
populations, it is also used in the MSTmap algorithm to cluster markers for RIL populations.
For large enough 7, (5) can be approximately used to investigate the threshold p value required
for the inequality. At its theoretical boundaries, zero and 0.5, P;fk and P are equivalent but
for Pjj. between 0.25 and 0.35, P7; is substantially decreased creating a reduction of 10 cM+
in the genetic distance between the markers. Figure 1 indicates that this 10 ¢cM reduction
would require the p value to be squared to achieve the appropriate threshold for clustering
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markers in RIL populations. Optimal ordering of markers within clustered linkage groups is
then accomplished using the methods outlined in Section 2.2. However, for non-advanced RIL
populations only, the additional MSTmap algorithm features, including imputation of missing
alleles scores and the detection of potential genotyping errors, have not been implemented.

3. ASMap package

3.1. Map construction functions

The ASMap package contains two linkage map construction functions that allow users to fully
utilize the MSTmap parameters listed at http://alumni.cs.ucr.edu/~yonghui/mstmap.
html and available for use with the source code. mstmap() is a generic S3 function with
methods for ‘data.frame’ and ‘cross’ objects. The S3 method for ‘data.frame’ has the
following arguments:

mstmap (object, pop.type = "DH", dist.fun = "kosambi',
objective.fun = "COUNT", p.value = le-06, noMap.dist = 15, noMap.size = O,
miss.thresh = 1, mvest.bc = FALSE, detectBadData = FALSE,
as.cross = TRUE, return.imputed = TRUE, trace = FALSE, ...)

The explicit form of the data frame object required for the ‘data.frame’ method of mstmap ()
is borne from the syntax of the marker file required for using the MSTmap source code. It
must have markers in rows and genotypes in columns. Marker names are required to be in the
rownames component of the data frame, genotype names should reside in the names and each
of the columns of the data frame must be of class ‘character’ (not factors). The available
populations that can be passed to the argument pop.type are "BC" for backcross, "DH" for
doubled haploid, "ARIL" for advanced recombinant inbred and "RILn" for recombinant inbred
with n levels of selfing. It is recommended to set as.cross = TRUE to ensure that the returned
object can be used with the suite of ASMap and qtl package functions.

The ‘cross’ method provides greater linkage map construction flexibility by allowing users
to pass an unconstructed or constructed ‘cross’ object created from package qtl.

mstmap (object, chr, id = "Genotype", bychr = TRUE, suffix = "numeric",
anchor = FALSE, dist.fun = "kosambi", objective.fun = "COUNT",
p.value = 1e-06, noMap.dist = 15, noMap.size = 0, miss.thresh = 1,
mvest.bc = FALSE, detectBadData = FALSE, return.imputed = FALSE,
trace = FALSE, ...)

The object needs to inherit from one of the allowable classes available in the qtl package,
namely ‘bc’, ‘dh’, ‘riself’, ‘bcsft’ where "be" is a backcross ‘dh’ is a doubled haploid,
‘riself’ is an advanced recombinant inbred (see 7convert2riself) and ‘besft’ is a back-
cross/self (see ?convert2bcsft). The functions flexibility stems from the appropriate use
of the bychr and chr arguments. The logical flag bychr = FALSE ensures the the subset
of linkage groups defined by chr will be bulked and reconstructed whereas bychr = TRUE
confines the reconstruction within each linkage group defined by chr.
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Users need to be aware that the p.value argument available for both construction functions
plays a crucial role in determining the clustering of markers to distinct linkage groups. Sec-
tion 2.1 shows that the separation of marker groups is highly dependent on the number of
individuals in the population. As a consequence, some trial and error may be required to
determine an appropriate p.value for the linkage map being constructed. We have also pro-
vided an additional feature to the construction functions that allows the imputed probability
matrix of representative markers to be returned if return.imputed = TRUE.

3.2. Pulling and pushing markers

Often in linkage map construction some pruning of the markers occurs before initial construc-
tion. For example, this may be the removal of markers with a proportion of missing values
higher than some desired threshold as well as markers that are significantly distorted from
their expected Mendelian segregation patterns. The removal is usually permanent and the
possible importance of some of these markers may be overlooked. A preferable system would
be to identify and place the problematic markers aside with the intention of checking their
usefulness at a later stage of the construction process. The ASMap package contains two
functions that perform this task.

pullCross(object, chr, type = c("co.located", "seg.distortion", "missing"),
pars = NULL, replace = FALSE, ...)

pushCross(object, chr, type = c("co.located", "seg.distortion", "missing",
"unlinked"), unlinked.chr = NULL, pars = NULL, replace = FALSE, ...)

The construction helper functions share three types of markers that can be “pulled /pushed”
from linkage maps. These include markers that are co-located with other markers, markers
that have some defined segregation distortion and markers with a defined proportion of missing
values. If the argument type is "seg.distortion" or "missing" then the initialization
function pp.init ()

pp.init(seg.thresh = 0.05, seg.ratio = NULL, miss.thresh = 0.1,
max.rf = 0.25, min.lod = 3)

is used to determine the appropriate threshold parameter setting (seg.thresh, seg.ratio,
miss.thresh) that will be used to pull/push markers from the linkage map. Users can set
their own parameters by appropriate use of the pars argument. For each different type,
pullCross() will pull markers from the map and place them in separate elements of the
returned object. Within the elements, vital information is kept that can be accessed by
pushCross() to push the markers back at a later stage of linkage map construction. The
function pushCross() also contains another marker type called "unlinked" which, in con-
junction with the argument unlinked.chr, allows users to push markers from an unlinked
linkage group in the geno element of the object into established linkage groups. This mech-
anism becomes vital, for example, when pushing new markers into an established linkage
map.
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3.3. Visual diagnostics

To provide a complete system for efficient linkage map construction ASMap contains graphical
functions for visual diagnosis of the constructed linkage map. Three flexible functions are
provided and examples of their use are given in Section 4.

profileGen(cross, chr, bychr = TRUE, stat.type = c("xo", "dxo", "miss"),
id = "Genotype", xo.lambda = NULL, ...)

The function profileGen() calls statGen() to obtain statistics for graphically profiling in-
formation about the genotypes across the marker set and also returns the statistics invisibly
after plotting. The current statistics that can be calculated and profiled include:

e "x0": number of crossovers;
e "dxo": number of double crossovers;

e "miss": number of missing values.

The two statistics "xo" and "dxo" are only useful for constructed linkage maps. From the
authors’ experience, they represent the most vital two statistics for determining a linkage
maps quality. Inflated crossover or double crossover rates of any genotypes indicate problem-
atic lines and should be questioned. Significant crossover rates can be checked by manually
inputting a median crossover rate using the argument xo.lambda. Additional graphical pa-
rameters can be passed to the high level lattice function xyplot () through the ... argument

profileMark(cross, chr, stat.type = "marker", use.dist = TRUE,
map.function = "kosambi", crit.val = NULL, display.markers = FALSE,
mark.line = FALSE, ...)

The function profileMark () calls statMark() and graphically profiles marker/interval statis-
tics as well as returns them invisibly after plotting. The current marker statistics that can
be profiled are

e "seg.dist": —logl0 p value from a test of segregation distortion;
e "miss": proportion of missing values;
e "prop": allele proportions;

e "dxo": number of double crossovers.
The current interval statistics that can be profiled are

e "erf": estimated recombination fractions;

e "lod": LOD score for the test of no linkage;
e "dist": interval map distance;

e "mrf": map recombination fraction;

e "recomb": number of recombinations.
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The function allows any combination of marker/interval statistics to be plotted simultaneously
on a multi-panel lattice display. There is a chr argument to subset the linkage map to user
defined linkage groups. If crit.val = "bonf" then markers that have significant segregation
distortion greater than the family wide alpha level of 0.05/m, where m is the number of
markers, will be annotated in marker panels. Similarly, intervals that have a significantly
weak linkage from a test of the recombination fraction of r = 0.5 will also be annotated in the
interval panels. All linkage groups are highlighted in a different color to ensure they can be
clearly identified. The lattice panels ensure that marker and interval statistics are seamlessly
plotted together so problematic regions or markers can be identified efficiently. Additional
graphical parameters can be passed to xyplot () through the ... argument.

heatMap (x, chr, mark, what = c("both", "lod", "rf"), lmax = 12, rmin = 0,
markDiagonal = FALSE, color = rev(colorRampPalette(brewer.pal(11,
"Spectral")) (256)), ...)

ASMap contains an improved version of the heat map that rectifies limitations of the heat
map, plot.rf (), available in qtl. The function independently plots the LOD score on the
bottom triangle of the heat map as well as the actual estimated recombination fractions (RFs)
on the upper triangle. A color key legend is also provided for the RFs and LOD scores on
the left and right hand side of the heat map respectively. As the actual estimated RFs are
plotted, the scale of the legend includes values beyond the theoretical threshold of 0.5. By
increasing this scale beyond 0.5, potential regions where markers out of phase with other
markers can be recognized. Similar to plot.rf (), the heatMap() function allows subsetting
of the linkage map by chr and users can further subset the linkage groups using the argument
mark by indexing a set of markers within linkage groups defined by chr.

3.4. Miscellaneous functions

In the authors’ experience, the assumptions of how the individuals of a population are genet-
ically related is rarely checked throughout the construction process. Too often unconstructed
or constructed linkage maps contain individuals that are closely related beyond the simple
assumptions of the population. ASMap contains a function for the detection and reporting
of the relatedness between individuals as well as a function for forming consensus genotypes
if genuine clones are found.

genClones(object, chr, tol = 0.9, id = "Genotype")
fixClones (object, gc, id = "Genotype", consensus = TRUE)

The genClones () function uses the power of comparegeno () from the qtl package to perform
the relatedness calculations. It then provides a numerical breakdown of the relatedness be-
tween pairs of individuals that share a proportion of alleles greater than tol. This breakdown
also includes the clonal group the pairs of individuals belong to. The table of information from
this calculation can then be passed to fixClones() through the argument gc and consen-
sus genotypes are formed through the appropriate merging of alleles across genotypes within
clone groups.

During the linkage map construction process there may be a requirement to break or merge
linkage groups. ASMap provides two functions to achieve this.
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breakCross(cross, split
mergeCross (cross, merge

NULL, suffix = "numeric", sep = ".")
NULL, gap = 5)

The breakCross() function allows users to break linkage groups in a variety ways. The
split argument takes a list with elements named by the linkage group names that require
splitting and containing the markers that immediately proceed where the splits are to be made.
The mergeCross() function provides a method for merging linkage groups. Its argument
merge requires a list with elements named by the proposed linkage group names required
and containing the linkage groups to be merged. It should be noted that this function places
an artificial genetic distance gap between the merged linkage groups. Accurate distance
estimation would require a separate map estimation procedure after merging has taken place.

In qtl genetic distances can be estimated using est.map() or through read.cross() when
setting the argument estimate.map = TRUE. The estimation uses the multi-locus hidden
Markov model technology of Lander and Green (1987). Unfortunately this is computationally
cumbersome if there are many markers in a linkage group and becomes more so if there
are many missing allele calls and genotyping errors present. ASMap contains a small map
estimation function that circumvents this computational burden.

quickEst (object, chr, map.function = "kosambi", ...)

The quickEst() function makes use of another function in qtl called argmax.geno(). This
function is also a multi-locus hidden Markov algorithm that uses the observed markers present
in a linkage group to impute pseudo-markers at any chosen cM genetic distance. In this case,
the requirement is for a reconstruction or imputation at the markers themselves. For the
most accurate imputation to occur there needs to be an estimate of genetic distance in place
and this is calculated by converting recombination fractions to genetic distances after calling
est.rf(). Asaresult, the quickEst () function lives up to its namesake by providing efficient
and accurate genetic distance calculations for large linkage maps.

The functions pullCross () and pushCross() described in Section 3.2 are used to create and
manipulate extra list elements "co.located", "seg.distortion" and "missing" associated
with different marker types. Unfortunately, these list elements are not recognized by the
native qtl functions. If the subset method for ‘cross’ objects is used to subset the object to
a reduced number of individuals then the data component of each of these elements will not
be subsetted accordingly. In addition, the statistics in the table component of the elements
"seg.distortion" and "missing" will be incorrect for the newly subsetted linkage map.
These issues are rectified with the use of the subsetCross() function.

subsetCross(cross, chr, ind, ...)

This subset function contains identical functionality to the subset method for ‘cross’ objects.
However, it also ensures that the data components of the extra list elements "co.located",
"seg.distortion" and "missing" are subsetted to match the linkage map. In addition,
for elements "seg.distortion" and "missing" it updates the table components to reflect
the newly subsetted map, ensuring pushCross() uses the most accurate information when
determining which markers to push back into the linkage map.

There is often a requirement to incorporate additional markers to an established linkage map
or merge two linkage maps from the same population. This idea motivated the creation of

11
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the combineMap() function in the ASMap package. The aim of the function is to merge
linkage maps based on shared map information, readying the combined linkage groups for
reconstruction through an efficient linkage map construction process such as the mstmap
method for ‘cross’ objects.

combineMap (..., id = "Genotype", keep.all = TRUE)

The function takes an unlimited number of linkage maps through the ... argument. The
linkage maps must all have the same ‘cross’ class structure and contain the same genotype
identifier id. The merging of the maps happens intelligently with initial merging based on
commonality between the genotypes. If keep.all = TRUE the new combined linkage map is
“padded out” with missing values where genotypes are not shared. If keep.all = FALSE the
combined map is reduced to genotypes that are shared among all linkage maps. Secondly, if
linkage group names are shared between maps then the markers from common linkage groups
are clustered.

4. Illustrative example

To showcase the functionality of the ASMap package, the complete linkage map construction
process is presented for a barley backcross population containing 3024 markers genotyped on
326 individuals in an unconstructed marker set formatted as a qtl object with class ‘bc’. The
data is available in the ASMap package using

R> library("ASMap")
R> data("mapBCu", package = "ASMap")

4.1. Pre-construction

Before constructing a linkage map it is prudent to go through a pre-construction checklist to
ensure the best quality genotypes/markers are being used to construct the linkage map. A
non-exhaustive ordered checklist for an unconstructed marker set could be:

e Check missing allele scores across markers for each genotype as well as across genotypes
for each marker. Markers or genotypes with a high proportion of missing information
could be problematic.

e Check for genetic clones or individuals that have a high proportion of matching allelic
information between them.

e Check markers for excessive segregation distortion. Highly distorted markers may not
map to unique locations.

e Check markers for switched alleles. These markers will not cluster or link well with
other markers during the construction process and it is therefore preferred to repair
their alignment before proceeding.

e Check for co-locating markers. For large linkage maps it would be more computationally
efficient from a construction standpoint to temporarily omit markers that are co-located
with other markers.
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Figure 2: Plot of the missing allele scores for the unconstructed map mapBCu.

Figure 2 shows the result of a call to the missing value diagnostic plot plot.missing()
available in qtl.

R> plot.missing(mapBCu)

The darkest horizontal lines on the plot indicate there are some genotypes with large amounts
of missing data. This could indicate poor physical genotyping of these lines and should be
removed before proceeding. The plot also reveals the markers have a large number of typed
allele values across the range of genotypes. The ASMap function statGen () is used to identify
genotypes with more than 50% missing alleles across the markers. These are omitted using
the usual functions available in package qtl.

R> sg <- statGen(mapBCu, bychr = FALSE, stat.type = "miss")
R> mapBC1 <- subset(mapBCu, ind = sg$miss < 1600)

From a map construction point of view, highly related individuals may enhance segregation
distortion of markers. It is therefore wise to determine a course of action such as removal of
individuals or the creation of consensus genotypes before proceeding with any further pre-
construction diagnostics. The ASMap function genClones() discussed in Section 3.4 is used
to identify and report genetic clones.

R> gc <- genClones(mapBC1, tol = 0.95)
R> gc$cgd

G1 G2  coef match diff na.both na.one group
1 BCO45 BC039 0.9919 1466 12 97 1448 1
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2 BCO52 BCO39 1.0000 2423 0] 98 502 1
3 BC168 BC039 1.0000 2572 0 47 404 1
4 BCO52 BC045 0.9899 1476 15 94 1438 1
5 BC168 BC045 0.9872 1620 21 44 1338 1
6 BC168 BC052 1.0000 2577 0 36 410 1
7 BCO67 BCO60 1.0000 2759 0 8 256 2
8 BC135 BC086 1.0000 2743 0 17 263 3
9 BC099 BC093 1.0000 2737 0 19 267 4
10 BC120 BC117 1.0000 2699 0 22 302 5
11 BC129 BC126 1.0000 2678 0 35 310 6
12 BC204 BC138 1.0000 2691 0] 6 326 7
13 BC147 BC141 0.9996 2753 1 22 247 8
14 BC193 BC144 1.0000 2771 0 7 245 9
15 BC162 BC161 1.0000 2686 0 20 317 10
16 BC205 BC190 1.0000 2886 0 7 130 11
17 BC286 BC285 1.0000 2920 0 1 102 12
18 BC325 BC314 1.0000 2911 0 4 108 13

The table shows 13 groups of genotypes that share a proportion of their alleles greater than
0.95. The supplied additional statistics show the first group contains three pairs of genotypes
that had matched pairs of alleles from 1620 markers or less. These pairs also had ~ 1400
markers where an allele is present for one genotype and missing for another. Based on this,
there is not enough evidence to suspect these pairs may be clones and they are removed
from the table. The fixClones() function is then used to form consensus genotypes for the
remaining groups of clones in the table.

R> cgd <- gc$cgd[-c(1, 4, 5), ]
R> mapBC2 <- fixClones(mapBC1, cgd, consensus = TRUE)

At this juncture it is wise to check whether the observed allelic frequencies at a specific loci
deviate from expected allelic frequencies. This is called segregation distortion and it is well
known to occur from errors in the physical laboratorial processes and can also occur in lo-
cal genomic regions from underlying biological and genetic mechanisms (Lyttle 1991). The
significance of the segregation distortion, the allelic proportions and the missing value pro-
portion across the genome can be graphically represented using the marker profiling function
profileMark() and the result is displayed in Figure 3.

R> profileMark (mapBC2, stat.type = c("seg.dist", "prop", "miss"),
+ crit.val = "bonf", layout = c(1, 4), type = "1")

Setting crit.val = "bonf" annotates the markers in each panel that have a p value for the
test of segregation distortion lower than the family wide Bonferroni adjusted alpha level of
0.05/(total number of markers). The plot indicates there are numerous markers that are
significantly distorted with three highly distorted markers. The plot also shows the missing
value proportion of the markers does not exceed 20%.

The highly distorted markers are omitted using
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Figure 3: For individual markers, the negative logl0 p value for the test of segregation dis-
tortion, the proportion of each contributing allele and the proportion of missing values.

R> mm <- statMark(mapBC2, stat.type = "marker")$marker$AB
R> dm <- markernames(mapBC2) [(mm > 0.98) | (mm < 0.2)]
R> mapBC3 <- drop.markers(mapBC2, dm)

Without a constructed map it is impossible to determine the origin of the segregation distor-
tion. However, the blind use of distorted markers may also create linkage map construction
problems. It may be more sensible to place the distorted markers aside and construct the
map with less problematic markers. Once the linkage map is constructed the more problem-
atic markers can be introduced to determine whether they have a useful or deleterious effect
on the map. The ASMap functions pullCross() and pushCross() discussed in Section 3.2
are designed to take advantage of this scenario. To showcase their use in this example, they
are used to pull markers with 10-20% missing values, markers with significant segregation
distortion and co-located markers.

R> pp <- pp.init(miss.thresh = 0.1, seg.thresh = "bonf")

R> mapBC3 <- pullCross(mapBC3, type = "missing", pars = pp)

R> mapBC3 <- pullCross(mapBC3, type = "seg.distortion", pars = pp)
R> mapBC3 <- pullCross(mapBC3, type = "co.located")

R> names (mapBC3)

[1] "geno" "pheno" "missing"
[4] "seg.distortion" "co.located"

A total of 847 markers are removed and placed aside in their respective elements, with 2173
markers remaining in the map ready for linkage map construction.

15
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Figure 4: Heat map of the constructed linkage map mapBC4.

4.2. MSTmap construction

The curated genetic marker data in mapBC3 is then constructed using the mstmap method for
‘cross’ objects.

R> mapBC4 <- mstmap(mapBC3, bychr = FALSE, trace = TRUE, p.value = le-12)
R> chrlen(mapBC4)

L.1 L.2 L.3 L.4 L.5
304.910957 266.240647 78.982131 252.281760 33.226962
L.6 L.7 L.8 L.9

233.485952 153.315888 106.290403 6.657526

By setting bychr = FALSE the complete set of marker data from mapBC3 is bulked and con-
structed from scratch. This construction involves the clustering of markers to linkage groups
and the optimal ordering of markers within each linkage group. Figure 1 indicates for a
population size of 309 that the p.value should be set to 107!? to ensure a 30cM threshold
when clustering markers to linkage groups. The newly constructed linkage map contains
nine linkage groups each containing markers that are optimally ordered. The performance
of the MSTmap construction is checked by plotting the heat map of pairwise recombination
fractions (RFs) between markers and their pairwise LOD score of linkage using

R> heatMap (mapBC4, lmax = 70)

The resulting heat map is given in Figure 4. An aesthetic heat map is attained when the heat
on the lower triangle of the plot (pairwise LOD scores) matches the heat on the upper triangle
(pairwise estimated RFs) and this was achieved by setting 1lmax = 70. The heat map shows
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Figure 5: For individual genotypes, the number of recombinations, double recombinations
and missing values for mapBC4.

consistent heat across the markers within linkage groups indicating strong linkage between
nearby markers. The linkage groups appear to be very distinctly clustered.

Although the heat map is indicating the construction process was successful it does not
highlight subtle problems that may be existing in the constructed linkage map. One of the
key quality characteristics of a well constructed linkage map is an appropriate recombination
rate of each of the genotypes. For a conservative theorized chromosomal length of 200cM each
member of the progeny of the barley backcross population line has an approximate expected
recombination rate of ~ 14 across the genome. Genotypes that significantly exceed this rate
are checked using the profileGen() function.

R> pg <- profileGen(mapBC4, bychr = FALSE, stat.type = c("xo", "dxo",
+ "miss"), id = "Genotype", xo.lambda = 14, layout = c(1, 3), lty = 2)

Figure 5 shows the number of recombinations, double recombinations and missing values
for each of 309 genotypes. The plot also annotates the genotypes that have recombination
rates significantly above an expected recombination rate of 14. A total of seven lines have
recombination rates above 20 and the plots also show that these lines have excessive missing
values. To ensure the extra list elements "co.located", "seg.distortion" and "missing"
of the object are subsetted and updated appropriately, the offending genotypes are removed
using the ASMap function subsetCross(). The linkage map is then reconstructed.

R> mapBC5 <- subsetCross(mapBC4, ind = !pg$xo.lambda)
R> mapBC6 <- mstmap(mapBC5, bychr = TRUE, trace = TRUE, p.value = le-12)
R> chrlen(mapBC6)

L.1 L.2 L.3 L.4 L.5
229.578103 223.170605 65.806120 214.380402 27.297642

17
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Figure 6: Marker profiles of the negative logl0 p value for the test of segregation distortion,
allele proportions and the number of double crossovers as well as the interval profile of the
number of recombinations between adjacent markers in mapBC6.

L.6 L.7 L.8 L.9
191.060846 140.114968 88.687053 4.875885

As a result the lengths of the linkage groups dropped dramatically.

It is also useful to graphically display statistics of the markers and intervals of the current
constructed linkage map. For example, Figure 6 shows the marker profiles of the —logl0
p value for the test of segregation distortion, the allele proportions and the number of double
crossovers. It also displays the interval profile of the number of recombinations occurring
between adjacent markers. This plot reveals many things that are useful for the next phase
of the construction process.

R> profileMark(mapBC6, stat.type = c("seg.dist", "prop", "dxo", "recomb"),
+ layout = c(1, 5), type = "1")

Figure 6 reveals the success of the map construction process with no more than one double
crossover being found at any marker and very few being found in total. The plot also reveals
the extent of the biological distortion that can occur within a linkage group. A close look
at the segregation distortion and allele proportion plots shows the linkage group L.3 and the
short linkage group L.5 have profiles that could be joined if the linkage groups were merged.
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Figure 7: Heat map of the linkage map mapBC6 subsetted to linkage groups L.3, 1.5, L..8 and
L.9.

In addition, L.8 and L.9 also have profiles that could be joined if the linkage groups were
combined.

4.3. Pushing back markers

Markers that were originally placed aside in the pre-construction of the linkage map can now
be pushed back into the constructed linkage map and the map carefully re-diagnosed. To
begin, the 515 external markers that have between 10% and 20% missing values residing in
the list element "missing" are pushed back in using pushCross()

R> pp <- pp.init(miss.thresh = 0.22, max.rf = 0.3)
R> mapBC6 <- pushCross(mapBC6, type = "missing", pars = pp)

The parameter miss.thresh = 0.22 is used to ensure that all markers with a missing value
proportion less than 0.22 are pushed back into the linkage map. Note, this pushing mechanism
is not re-constructing the map and only assigns the markers to the most suitable linkage
group. At this point it is worth re-plotting the heat map to check whether the push has
been successful. The graphic is confined to linkage groups L.3, L.5, L..8 and L.9 to determine
whether the extra markers have provided useful additional information about the possible
merging of the groups. The resulting heat map is given in Figure 7.

R> heatMap (mapBC6, chr = c("L.3", "L.5", "L.8", "L.9"), lmax = 70)

It is clear from the heat map that there are genuine linkages between L.3 and L.5 as well
as L.8 and L.9. These two sets of linkage groups are merged using mergeCross() and the
linkage group names are renamed to form the optimal seven linkage groups that are required
for the barley genome.

19
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Figure 8: For individual genotypes, the number of recombinations, double recombinations
and missing values for mapBC7.

R> mlist <- 1ist("L.3" = ¢("L.3", "L.5"), "L.8" = c("L.8", "L.9"))
R> mapBC6 <- mergeCross(mapBC6, merge = mlist)

R> names (mapBC6$geno) <- paste("L.", 1:7, sep = "")

R> mapBC7 <- mstmap(mapBC6, bychr = TRUE, trace = TRUE, p.value = 2)
R> chrlen(mapBC7)

L.1 L.2 L.3 L.4 L.5 L.6 L.7
242.4104 233.1945 162.6205 224.1773 201.1503 147.7669 159.5308

As the optimal number of linkage groups have been identified the re-construction of the map is
performed by linkage group only through setting p.value = 2. The linkage group lengths of
L.1, L.2 and L.4 are slightly elevated indicating excessive recombination across these groups.

R> pgl <- profileGen(mapBC7, bychr = FALSE, stat.type = c("xo", "dxo",
+ "miss"), id = "Genotype", xo.lambda = 14, layout c(1, 3), 1ty = 2)

Figure 8 shows the genotype profiles for the 302 barley lines. The introduction of the markers
with missing value proportions between 10% and 20% into the linkage map has highlighted
two more problematic lines that have a high proportion of missing values across the genome.
These lines are removed using subsetCross() and the map reconstructed.

R> mapBC8 <- subsetCross(mapBC7, ind = !pgl$xo.lambda)
R> mapBC9 <- mstmap(mapBC8, bychr = TRUE, trace = TRUE, p.value = 2)
R> chrlen(mapBC9)
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Figure 9: Marker profiles of the negative logl0 p value for the test of segregation distortion,
allele proportions for mapBC9.

L.1 L.2 L.3 L.4 L.5 L.6 L.7
225.7900 223.3063 157.0592 206.4801 194.3003 145.7554 149.2467

The removal of these two lines will not have a deleterious effect on the number of linkage
groups and therefore the linkage map was reconstructed by linkage group only. The length
of most linkage groups has now been appreciably reduced. Figure 9 displays the segregation
distortion and allele proportion profiles for the markers from using profileMark() again.

R> profileMark(mapBC9, stat.type = c("seg.dist", "prop"), layout = c(1, 5),
+ type = ”l”)

The plot indicates a spike of segregation distortion on L.2 that does not appear to be biological
and needs to be removed. The plot also indicates the significant distortion regions on L.3, L..6
and L.7 indicating some of the markers with missing value proportions between 10% and 20%
pushed back into the linkage map also had some degree of segregation distortion. The marker
positions on the xz-axis of the plot suggests these regions are sparse. The 295 external markers
in the list element "seg.distortion" may hold the key to this sparsity and are pushed back
to determine their effect on the linkage map.

R> sm <- statMark(mapBC9, chr = "L.2", stat.type = "marker")

R> dm <- markernames(mapBC9, "L.2") [sm$marker$negloglOP > 6]

R> mapBC10 <- drop.markers(mapBC9, dm)

R> pp <- pp.init(seg.ratio = "70:30")

R> mapBC11 <- pushCross(mapBC10, type = "seg.distortion", pars = pp)
R> mapBC12 <- mstmap(mapBC11, bychr = TRUE, trace = TRUE, p.value = 2)
R> round(chrlen(mapBC12) - chrlen(mapBC9), 5)

21
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L.1 L.2 L.3 L4 L.5 L.6 L.7 Total Ave.
No. of markers 681 593 335 679 233 279 219 3019 431
Lengths 226.0 224.4 157.7 205.6 195.2 1455 1429 12973 185.3
Ave. interval 033 038 047 030 084 0.52 0.66 0.50

Table 1: Table of statistics for the final linkage map, mapBC.

L.1 L.2 L.3 L.4 L.5 L.6 L.7
0.20398 1.11431 0.60228 -0.92150 0.86448 -0.25043 -6.29943

R> nmar (mapBC12) - nmar (mapBC10)

L.1L.2L.3L.4L.5L.6L.7
0 1156 0 O 86 b2

After checking the table element of the "seg.distortion" element, a 70:30 distortion ratio
is chosen to ensure all distorted markers are pushed back into the linkage map. After the
pushing is complete, the linkage map is reconstructed and linkage group lengths change
negligibly from the previous version of the map. This indicates the extra markers have been
inserted successfully with nearly all distorted markers being pushed into L.3, L.6 and L.7.

To finalize the map the 39 co-locating markers residing in the "co.located" list element of
the object are pushed back into the linkage map and placed adjacent to the markers they are
co-located with. Note that all external co-located markers have an immediate linkage group
assignation.

R> mapBC <- pushCross (mapBC12, type = "co.located")
R> names (mapBC)

[1] "geno“ "pheno"

A check of the final structure of the object shows the extra list elements have been removed
and only the "pheno" and "geno" list elements remain. The final linkage map statistics are
given in Table 1.

4.4. Post construction linkage map development

ASMap provides functionality to insert additional markers into an established linkage map
without losing important linkage group identification. The methods applied in this section
assume the additional markers, as well as the constructed linkage map, are qtl ‘cross’ objects
of the same class. The methods are best described by presenting several examples that mimic
common post-construction linkage map development tasks. In these examples additional
markers will be obtained by randomly selecting markers from the final linkage map obtained
in the previous section, mapBC.

R> set.seed(123)
R> mn <- markernames (mapBC) [sample(1:3019, 2700, replace = FALSE)]
R> addl <- drop.markers(mapBC, mn)
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R> mapBCs <- drop.markers (mapBC, markernames (addl))
R> add2 <- subset(addl, chr = "L.1")

R> add3 <- addl

R> mn3 <- markernames (add3)

R> for (i in 1:length(mn3))

+ add3 <- movemarker (add3, mn3[i], "ALL")

Combining linkage maps

Many populations that are currently being researched have been genotyped on multiple plat-
forms and separate linkage maps constructed for one or both of the populations. The add1
qtl object mimics an older map of mapBC with 319 markers spanning the seven linkage groups.
As the linkage groups are known between maps there is only a requirement to combine the
maps in a sensible manner and reconstruct. This can be done efficiently using combineMap ()
without external manipulation and loss of linkage group information.

R> addl <- subset(addl, ind = 2:300)

R> fulll <- combineMap (mapBCs, addl, keep.all
R> fulll <- mstmap(fulll, bychr = TRUE, trace
+ p.value = 2)

TRUE)
TRUE, anchor = TRUE,

The combineMap() function merges the two maps on their matching genotypes with missing
values added in the first genotype for the markers from add1. The function also understands
that both linkage maps share common linkage group names and places the markers from
shared linkage groups together. The map can then be reconstructed by linkage group using
p-value = 2 in the call of the ‘cross’ method of mstmap, ensuring the important identity of
linkage groups are retained. In addition, setting anchor = TRUE ensures that the orientation
of the linkage groups will be preserved for the larger linkage map, mapBCs.

Fine mapping

In marker assisted selection breeding programs it is common to increase the density of markers
in a specific genomic region of a linkage group for the purpose of more accurately identifying
the position of gene related loci. This technique is known as fine mapping. The add2 object
contains only markers from the L.1 linkage group of mapBCs. When the linkage group for the
additional markers is known in advance and matches a linkage group in the constructed map,
the insertion of the new markers is very similar to the previous section.

R> add2 <- subset(add2, ind = 2:300)

R> full2 <- combineMap (mapBCs, add2, keep.all = TRUE)

R> full2 <- mstmap(full2, chr = "L.1", bychr = TRUE, trace = TRUE,
+ anchor = TRUE, p.value = 2)

Again, the removal of the first genotype of add2 causes missing values to be added in the
first genotype of full2 for the markers that are in add2. After the maps are combined, all
markers from L.1 are clustered together and only L.1 requires reconstructing.
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Unknown linkage groups

There may be occasions when the linkage group identification of the additional markers is
not known in advance. For example, an incomplete set of markers was used to construct the
map or a secondary set of markers are available that come from an unconstructed linkage
map. The qtl object add3 consists of one linkage group called ALL containing 319 markers
spanning the seven linkage groups in addi.

R> add3 <- subset(add3, ind = 2:300)

R> full3 <- combineMap (mapBCs, add3, keep.all = TRUE)

R> full3 <- pushCross(full3, type = "unlinked", unlinked.chr = "ALL")
R> full3 <- mstmap(full3, bychr = TRUE, trace = TRUE, anchor TRUE,
+ p.value = 2)

Again, combineMap() is used to initially merge linkage maps. The function pushCross()
is then used to push the additional markers into the constructed linkage map. By choosing
the marker type argument type = "unlinked" and providing the unlinked.chr = "ALL"
the function recognizes that the markers require pushing back into the remaining linkage
groups of full3. Again, the linkage map reconstruction only requires optimal ordering of the
markers within linkage groups.

5. Performance of MSTmap and ASMap

Wu et al. (2008) contains extensive information on the comparative performance of the
MSTmap algorithm for constructing linkage maps. However, it was not outlined in Wu
et al. (2008) how well the algorithm scaled for complete linkage map construction of large
genetic marker sets. Some insight can be gained from Rastas et al. (2013) where a direct
comparison of Lep-MAP with the MSTmap algorithm is presented and they indicate that ef-
ficient results are achievable with 10,000 markers genotyped on 200 individuals. To showcase
the efficiency and scalability of the MSTmap algorithm in ASMap, Table 2 presents the com-
putational timings for linkage map construction of varied simulated DH and F2 populations
using the ‘cross’ method of mstmap. The simulated data sets comprised of all combinations
of (100, 200, 300) individuals and (1K, 2K, 5K, 10K, 20K) markers evenly distributed in five
chromosomes. For example, a 20K marker set consists of five chromosomes each containing
4K markers. Timings are presented for complete linkage map construction (marker clustering
and optimal ordering within linkage groups) as well as marker ordering only within estab-
lished linkage groups. All timings are averaged over the five chromosomes. For brevity, the
simulations for DH marker data sets have been restricted to two error rates, no error rate
and one that is comparable to a realistic downstream error rate obtained from a genotype by
sequencing (GBS) pipeline (0.42%) discussed in Glaubitz, Casstevens, Lu, Harriman, Elshire,
Sun, and Buckler (2014). For the latter, the argument detectBadData = TRUE has been set
in the ‘cross’ method of mstmap. F2 marker data sets have only been simulated with no error
due to the lack of error detection capabilities of the MSTmap algorithm for non-advanced RIL
populations. All simulations were performed on a Linux Ubuntu 14.04 box with a quad-core
4.7 Ghz Pentium i7 with 16Gb RAM.

Table 2 indicates very efficient results are achievable for complete linkage map construction
across the range of marker sets and population sizes. Without the requirement for initial
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Clustering and ordering Ordering only
n 1K 2K 5K 10K 20K 1K 2K 5K 10K 20K
DH 100 031 128 803 39.2 175.2 0.10 0.28 1.45 6.6 313

(no error) 200 0.99 3.28 2225 85.0 341.6 0.18 0.60 3.08 14.3 63.3
300 0.98 495 3238 1222 491.1 029 091 5.22 243 1074

DH 100 041 144 1255 532 2453 0.13 0.40 217 11.8 179.6
(0.42% error) 200 0.76 3.69 26.56 1179 579.9 0.27 131 6.93 33.7 185.0
300 1.51  5.74 39.57 164.7 680.7 042 1.38 843 40.2 338.6

F2 100 1.26 4.86 30.86 149.2 670.0 0.39 1.29 6.61 26.67 146.2
200 252 9.65 79.06 354.7 1304.4 0.84 3.33 21.51 79.60 292.1
300 4.14 1820 111.2 529.7 2181.2 1.75 6.60 34.35 142.6 385.9

Table 2: Computational timings of MSTmap in ASMap (in seconds) for various simulated
DH and F2 populations with all combinations of (100, 200, 300) individuals and (1K, 2K, 5K,
10K, 20K) markers distributed evenly across five chromosomes. Timings are averaged over
the five chromosomes.

clustering of markers, there is a dramatic reduction in computation time required for optimally
ordering of markers within established linkage groups. Compared to its error free counterpart,
there is a moderate increase in computational time for linkage map construction of marker
sets containing error (0.42%) caused by the requirement to identify and remedy potential
genotyping errors as the algorithm progresses. For simulated F2 marker sets, the reduction in
computational efficiency is due to the iterative optimization procedure required to estimate
pairwise information between the markers.

There is clear performance disadvantage when an initial clustering of markers is included
in the MSTmap algorithm. This was also indicated in Rastas et al. (2013) and Strnadova,
Buluc, Chapman, Gilbert, Gonzalez, Jegelka, Rokhsar, and Oliker (2014) where MSTmap
had memory limitation problems attempting to cluster > 100K markers genotyped across
a small set of individuals. These performance issues are due to the potentially enormous
number of pairwise comparisons that require calculation before clustering markers to linkage
groups. However, this computational burden can almost be completely removed by exploiting
the knowledge that, for small population sizes, there are large numbers of co-locating markers
existing throughout the unconstructed marker set. Consider a simulated data set of over 50K
markers genotyped on 300 individuals created from the final linkage map mapBC constructed
in Section 4.3.

R> simBC <- sim.geno(mapBC, step = 0.025, n.draws = 1,

+ map.function = "kosambi")

R> simBC$geno[["ALL"]]$data <- pull.draws(simBC)[, , 1]

R> simBC$geno[["ALL"]]$map <- 1:ncol(simBC$geno[["ALL"]]$data)

R> mn <- paste("mark", 1:ncol(simBC$geno[["ALL"]]$data), sep = "")
R> names (simBC$geno[["ALL"]]$map) <- mn

R> dimnames (simBC$geno[["ALL"]]$data) [[2]] <- mn

R> simBCs <- subset (simBC, chr = "ALL")

R> totmar(simBCs)

[1] 54905
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In ASMap the temporary omission of co-locating markers from an unconstructed marker set
can be achieved extremely efficiently using

R> simBCc <- pullCross(simBCs, type = "co.located")
R> totmar (simBCc)

[1] 3501

When type = "co.located" pullCross() makes use of the function findDupMarkers() in
qtl which has been explicitly written to ascertain marker duplication. The "geno" component
of the returned object simBCc now contains less than 7% of the original markers and can be
easily processed by the ‘cross’ method of mstmap. The co-located markers, and their links
to the markers remaining in the unconstructed set, are retained to ensure that they can be
pushed back into the linkage map once the construction is complete (see Section 3.2). This
simple initial diagnostic procedure now gives users the ability to construct very large linkage
maps without potential computational issues.

6. Summary

The R package ASMap provides an efficient suite of tools for linkage map construction and
diagnosis. The construction functions utilize the source code of the MSTmap algorithm
derived in Wu et al. (2008) and can be used in various flexible ways to construct linkage maps
for large genetic marker data sets. The functions are also extremely efficient with negligible
loss of computational efficiency compared to the MSTmap source code equivalent.

The package is under continuous development and updates will appear through CRAN. In
the short term, it is expected most of these developments will pertain to increases in the
efficiency of the linkage map construction work flow through additional visual and numerical
diagnostic functions. For example, this includes a function that assists in the assignment and
alignment of linkage groups through the use of previously constructed linkage maps. In the
longer term, package updates may also include functions that exploit future marker clustering
and marker ordering technology as they become available.
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