
RESEARCH ARTICLE

A Microbiological Map of the Healthy Equine

Gastrointestinal Tract

Aaron C. Ericsson1,2*, Philip J. Johnson2,3, Marco A. Lopes2,3, Sonja C. Perry2, Hannah

R. Lanter2

1 University of Missouri Metagenomics Center, Department of Veterinary Pathobiology, University of

Missouri, 4011 Discovery Drive, Columbia, MO, 65201, United States of America, 2 College of Veterinary

Medicine, University of Missouri, 1600 Rollins Road, Columbia, MO, 65211, United States of America,

3 Department of Veterinary Medicine and Surgery, University of Missouri, 1600 Rollins Road, Columbia, MO,

65211, United States of America

* ericssona@missouri.edu

Abstract

Horses are exquisitely sensitive to non-specific gastrointestinal disturbances as well as sys-

temic and extraintestinal conditions related to gut health, yet minimal data are available

regarding the composition of the microbiota present in the equine stomach, small intestine,

and cecum and their relation to fecal microbiota. Moreover, there is minimal information

regarding the concordance of the luminal and mucosal microbial communities throughout

the equine gut. Illumina-based 16S rRNA gene amplicon sequencing of the luminal and

mucosal microbiota present in seven regions of the gastrointestinal tract of nine healthy

adult horses revealed a distinct compositional divide between the small and large intestines.

This disparity in composition was more pronounced within the luminal contents, but was

also detected within mucosal populations. Moreover, the uniformity of the gut microbiota

was much higher in the cecum and colon relative to that in the stomach, jejunum and ileum,

despite a significantly higher number of unique sequences detected in the colon. Collec-

tively, the current data suggest that while colonic samples (a proxy for feces) may provide a

reasonable profile of the luminal contents of the healthy equine large intestine, they are not

informative with regard to the contents of the stomach or small intestine. In contrast to the

distinct difference between the highly variable upper gastrointestinal tract microbiota and

relatively uniform large bowel microbiota present within the lumen, these data also demon-

strate a regional continuity present in mucosal microbial communities throughout the length

of the equine gut.

Introduction

The equine gastrointestinal tract (GIT) is a remarkable organ system with a potential length

and volume in the adult horse of over 30 meters and 150 liters, respectively. As in other mam-

mals, the different anatomic regions of the equine GIT are specialized to perform specific func-

tions, and each compartment must function correctly and in concert with the other regions to

support the health of the animal. The stomach, divided into the non-glandular (dorsal) and
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glandular (antral or pyloric) regions, typically contains ingesta needed to buffer the abundant

hydrochloric acid produced by gastric parietal cells. Some enzymatic digestion occurs in the

stomach and, owing to the acid-tolerant bacteria that reside there [1], fermentation begins as

well [2, 3]. The small intestines (i.e., duodenum, jejunum, and ileum), buffered to a near-neu-

tral pH by pancreatic bicarbonate and hepatic bile, is the primary site of protein, soluble carbo-

hydrate, and fat digestion and is also colonized by commensal microbial communities.

Considering the rapid transit through the small intestine and relatively liquid content however,

true colonization of the small intestine occurs primarily at the mucosal surface. Owing to its

role in water resorption, the contents of the large intestine are more solid and contain the high-

est bacterial densities; it is also the primary sight of fermentation, resulting in the production

of nutritionally beneficial short chain fatty acids (SCFAs) such as butyrate, propionate, and

acetate. Reflecting the different functions of the various anatomic regions, there are also differ-

ences in the rate of throughput [4], pH [5], available energy sources, and epithelial architecture

of each region.

In addition to differences in microbial composition between compartments of the equine

GIT, differences between the luminal and mucosal communities is also of clinical interest.

There are different means by which gut microbes can influence host physiology, including

contact-dependent and independent mechanisms. Recognition of the autochthonous micro-

biota and response by the host immune system requires direct contact, be it via M cell-medi-

ated transcytosis or fractalkine-mediated sensing by dendritic cells [6]. In contrast, many

metabolites such as SCFAs and secondary bile acids produced by luminal microbes not in

direct contact with the epithelium have been shown to confer beneficial and detrimental

effects, respectively [7]. Thus, differences between compartments in the mucosal communities

could influence pathways mediated through direct contact mechanisms while differences in

luminal populations could be of greater clinical relevance to those pathways responding to

microbial metabolites produced in the gut lumen.

With the aforementioned differences in mind, the utility of fecal samples as a representative

sample of the gut microbiota is problematic. Considering both the exquisite sensitivity of

horses to gastrointestinal health and the high prevalence of vague diagnoses such as “colic”

and “microbial dysbiosis” in the clinical setting, it is critical to gain a more comprehensive

understanding of the microbial populations colonizing the GIT of healthy horses, in order to

differentiate abnormal microbial compositions. To generate a detailed profile of the healthy

gut microbiota, luminal contents and mucosal scrapings were collected from several regions

throughout the GIT of adult horses subjected to euthanasia for reasons unrelated to enteric

health and subjected to culture-independent characterization via 16S rRNA gene amplicon

sequencing. Bioinformatics and statistical analysis were used to identify and visualize differ-

ences between the microbiota present in different anatomic regions, as well as between luminal

and mucosal microbial communities.

Materials and Methods

Horses and sample collection

All samples were obtained from horses subjected to euthanasia at the University of Missouri

Veterinary Medical Teaching Hospital for reasons unrelated to gastrointestinal conditions,

during the months of April and May of 2015. Additionally, all horses were subjected to eutha-

nasia for reasons unrelated to the current study. As such, all samples were collected post mor-
tem and, per the University of Missouri, Institutional Animal Care and Use Committee

(IACUC), no IACUC approval was needed. Prior to euthanasia, horses underwent a physical

examination by a veterinary internal medicine specialist (equine), and were deemed to be free
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of overt metabolic or intestinal disease. Owners were specifically queried regarding medical

treatments in the period preceding sample collection; no horses had received antibiotics or

anti-inflammatory medications in the three months preceding euthanasia. Horses enrolled in

the present study were of multiple breeds and ages, and included both females and castrated

males; Table 1 below provides details regarding the demographics.

Following euthanasia, performed according to the 2013 Guidelines for the Euthanasia of

Animals, horses were examined grossly post mortem for signs of intestinal or systemic disease.

Full-thickness samples of the gastrointestinal tract measuring approximately 25 cm2 were

excised from the following locations: dorsal (squamous epithelial) stomach, antral (glandular

epithelial) stomach, jejunum, ileum, cecum, ventral (ascending) colon, and dorsal (descend-

ing) colon. Care was taken to assure that gastrointestinal sample locations were similar

between horses. Representative luminal (digesta) samples were also obtained from the same

sampled locations, with dorsal colonic samples serving as a surrogate for feces. All samples

were collected and placed on ice within 30 minutes of euthanasia. Upon collection, luminal

contents were placed in 50 mL conical tubes and stored at -80˚C until DNA extraction was

performed. For mucosal samples, excised tissue from each region of the GIT was thoroughly

rinsed with sterile saline until all grossly visible digesta had been removed, and then stored at

-80˚C until DNA extraction was performed. Histopathological examination of all gastrointesti-

nal segments of interest was undertaken to rule out morphologic changes in tissue architecture

related to disease.

DNA extraction

For extraction of luminal contents, a small portion was removed from the frozen sample

immediately prior to DNA extraction and the remaining sample was returned to the freezer.

For extraction of mucosal DNA, tissue sections were removed from the freezer and the epithe-

lial surface was scraped vigorously with a sterile scalpel blade to collect material for extraction.

DNA was extracted using MoBio PowerFecal kits (Carlsbad, CA), according to the manufac-

turer’s recommendations, with minor adaptations due to equipment availability. Briefly, 0.25

mg of luminal contents or material collected via mucosal scrape was added to the dry bead

tube containing 750 μL of bead solution and gently vortexed. C1 solution was added, the sam-

ple briefly vortexed, and incubated at 65˚C for 10 minutes following the recommended proto-

col. Samples were shaken for 10 min. in a TissueLyser II (Qiagen, Venlo, Netherlands) at

30Hz. Samples were centrifuged at 13,000 × g for 1 min., the supernatant transferred to the

Table 1. Demographic data associated with horses included in the study.

# Date of euthanasia Age Breed Sex Condition Reason for euthanasia

1 24 April 15 6 Morgan MC WNL Old wound

2 4 May 15 10 Quarter Horse F WNL UHPH

3 5 May 15 12 Quarter Horse F WNL UHPH

4 6 May 15 11 Quarter Horse F WNL UHPH

5 7 May 15 15 Quarter Horse MC WNL UHPH

6 15 June 15 10 Quarter Horse F WNL Untrainable

7 17 June 15 8 Paint MC WNL Untrainable

8 18 June 15 17 Quarter Horse F WNL Untrainable

9 19 June 15 15 TWH MC WNL Navicular disease

TWH, Tennessee Walking Horse; WNL, within normal limits; UHPH, unwanted healthy pasture horse

doi:10.1371/journal.pone.0166523.t001
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provided 2 mL collection tube, and the remainder of the protocol was followed as recom-

mended by the manufacturer. All samples were eluted in 100 μL solution C6.

Library construction and sequencing

16S rRNA gene amplicon library construction and sequencing were performed at the Univer-

sity of Missouri DNA Core facility. DNA concentration of samples was determined fluorome-

trically and all samples were normalized to a standard concentration for PCR amplification.

Bacterial/archaeal 16S rRNA gene amplicons were generated via amplification of the V4 hyper-

variable region of the 16S rRNA gene using single-indexed universal primers (U515F/806R)[8]

flanked by Illumina standard adapter sequences and the following parameters: 98˚C(3:00)+[98˚-

C(0:15)+50˚C(0:30)+72˚C(0:30)] × 25 cycles +72˚C(7:00). Amplicons were then pooled for sequenc-

ing using the Illumina MiSeq platform and V2 chemistry with 2×250 bp paired-end reads, as

previously described [9]. Samples returning greater than 1000 reads were included in the sub-

sequent analyses. S1 Table shows the range, mean, median, and SD in coverage by sample site.

Informatics analysis

All informatics analysis was performed as previously described [10], at the MU Informatics

Research Core Facility. Briefly, assembly of DNA contigs was performed using FLASH soft-

ware [11], and culled if found to be short after trimming for a base quality less than 31. De
novo and reference-based chimera detection and removal was performed using Qiime v1.8

[12] software, and remaining contiguous sequences were assigned to operational taxonomic

units (OTUs) via de novo OTU clustering and a criterion of 97% nucleotide identity. Annota-

tion of selected OTUs was performed using BLAST [13] against the Greengenes database [14]

of 16S rRNA gene sequences and taxonomy. Principal component analyses were performed

using ¼ root-transformed OTU relative abundance data via a non-linear iterative partial least

squares algorithm, using an open access Excel macro available from the Riken Institute [15],

downloaded on August 10, 2015. Hierarchical clustering was performed via the unweighted

pair group method with arithmetic mean (UPGMA) and Bray-Curtis similarity indices, using

the Past 3.12 software package [16], downloaded on April 2, 2016.

Statistical analysis

Sequence and OTU richness and diversity indices were first tested for normality using the Sha-

piro-Wilk method; differences were then tested via one-way ANOVA or Kruskal-Wallis

ANOVA on ranks for normal and non-normal data respectively using SigmaPlot 12.3 (Systat

Software Inc., San Jose, CA); p values less than 0.05 were considered significant. Differences in

the overall composition of the different regions (stratified between luminal and mucosal sam-

ples) were tested via one-way PERMANOVA of ranked Bray-Curtis similarity indices using

the open access Past 3.12 software package [16].

Results

To determine if there were differences in the overall richness of microbial populations within

the lumen, or adherent to the mucosa, of different regions of the gut, the number of total

unique (i.e., distinct from all other sequences at a minimum of one base pair) sequences

detected was compared. Within the lumen of the GIT, there was a trend, albeit statistically

insignificant, toward greater numbers of unique sequences being detected in the large intestine

relative to the stomach and small intestine. Differences between the ventral or dorsal colon

and the stomach and small intestinal samples achieved statistical significance in several
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comparisons (Fig 1A). Comparisons of the richness (i.e., the total number of unique

sequences, regardless of distribution) of mucosal populations revealed a similar pattern

although the apparent richness was not as uniform across the gastric and small intestinal sam-

ples. Rather, the number of unique sequences recovered from the dorsal stomach samples was

comparable to that detected in the large intestinal samples, and the richness of mucosal popu-

lations declined gradually throughout the next several anatomic regions until increasing

abruptly in the large intestine (Fig 1B). While the number of unique amplicon sequences is

one commonly used metric of microbial richness, many of these sequences may differ only

slightly between closely related taxa. To account for this, the numbers of total operational taxo-

nomic units (OTUs), or clusters of sequences sharing at least 97% nucleotide identity, were

also compared. Interestingly, the trend toward increased richness in the luminal contents of

the large intestines was reversed; greater numbers of OTUs were detected in the gastric and

small intestinal luminal samples relative to the cecal and colonic samples, although these dif-

ferences did not reach statistical significance (Fig 1C). The pattern in number of OTUs

detected in mucosal samples collected from different regions of the GIT was similar to the

comparison of unique sequences (Fig 1D). Collectively, these data indicate that, while the true

richness of the microbial communities within the lumen are relatively low and stable within

the upper GIT and then increase in the lower GIT, the phylogenetic relatedness of microbiota

is greater in the lower GIT, suggesting environmental pressures selecting a subset of more

closely related microbes in the lumen of the large intestine. Conversely, the richness of muco-

sal populations followed a similar pattern regardless of whether the total number of unique

sequences or OTUs was compared. To account for the distribution of the detected taxa, Shan-

non (Fig 1E and Fig 1F) and Simpson (Fig 1G and Fig 1H) α-diversity indices were also deter-

mined. These indices are a function of both richness and evenness, with greater α-diversity

indicating a more even distribution. Notably, analysis via ANOVA with post hoc pairwise

comparisons detected multiple differences in both indices between the luminal contents in

regions of the upper and lower GIT. Alternatively, there were few differences in α-diversity

detected between mucosal samples from different segments of the GIT, the exception being

lower α-diversity in the jejunal mucosa as compared to the ventral and dorsal colonic mucosa.

To assess similarities and differences in community structure, stacked bar charts showing

the relative abundance of phyla were generated. Of the 27 different phyla detected across the

entire set of samples, the luminal contents of the upper GIT contained high proportions of

bacteria in the phyla Proteobacteria and Firmicutes, lower relative abundance of Cyanobacteria
and Bacteroidetes, and much lower relative abundance of the remaining 23 phyla (Fig 2A). The

composition of luminal contents changed substantially at the junction between the small and

large intestines to one dominated by Firmicutes and Bacteroidetes. The phyla Verrucomicrobia,

Tenericutes, Spirochaetes, and Fibrobacteres were detected at lower, but appreciable, relative

abundances in the cecal and colonic lumen of all horses. Subjectively, there was also greater

variability in the gastric and small intestinal samples relative to the cecal and colonic samples.

Interestingly, the division in community composition between upper and lower GIT was

much less evident in mucosal samples. With the exception of Cyanobacteria, all of the afore-

mentioned phyla detected in the luminal contents were consistently detected on the mucosa of

all anatomic regions (Fig 2B). While the relative abundance of several phyla shifted between

Fig 1. Richness of the luminal and mucosal equine gut microbiota. Bar charts showing the mean (± sem)

number of unique 16S rRNA gene amplicon sequences (A,B) or operational taxonomic units (OTUs; C,D)

detected in luminal contents (A,C) or mucosa (B,D) of samples collected from dorsal stomach (DS), antral

stomach (AS), jejunum (Je), ileum (Il), cecum (Ce), ventral colon (VC), or dorsal colon (DC) of nine healthy

adult horses. Bars within a chart marked with like letters are significantly different (p < 0.05, ANOVA).

doi:10.1371/journal.pone.0166523.g001
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regions of mucosa, those changes occurred somewhat gradually along the length of the GIT

and the transition from upper to lower GIT was much less distinct.

Resolved to the level of OTU, the luminal contents demonstrated a similar pattern. There

was an apparently abrupt change in the composition of luminal contents at the transition from

small to large intestines, and a more uniform composition in the cecal and colonic communi-

ties (Fig 3A). The most abundant taxa detected in the upper GIT included Lactobacillus sp.,

Streptococcus sp., Actinobacillus sp., Sarcina sp., and unclassified (UC) bacteria in the family

Enterobacteriaceae (i.e., UC family Enterobacteriaceae) and UC order Streptophyta. Alterna-

tively, the composition was much less variable between horses within the lumen of the cecum,

and ventral and dorsal colon. Additionally, while certain OTUs accounted for very large pro-

portions of the detected DNA within regions of the upper GIT, no single OTU made up more

than 35% of the overall DNA recovered from any lower GIT sample. Specifically, the most

abundant taxa detected in the cecum and colon included UC order Bacteroidales, Prevotella sp.

(primarily cecum and ventral colon), UC family RF16, genus CF231, UC order Clostridiales,
UC families Lachnospiraceae and Ruminococcaceae, Treponema sp., and UC family RFP12.

In contrast to the annotations at the phylum level, when resolved to the level of OTU, the

mucosal populations in the stomach and small intestines appeared similar to the luminal con-

tents of those regions, and very distinct from the mucosal populations detected in the cecum

and colon (Fig 3B). Specifically, Lactobacillus sp. represented a dominant taxon accounting for

up to 74% of the DNA isolated from the antral stomach of one horse. Similarly, Actinobacillus
sp. was also found in high relative abundance of several mucosal samples from the upper GIT,

similar to the luminal contents. The composition of cecal and colonic mucosal communities,

at the OTU level, was very similar to those found in the lumen, with some exceptions. One

clear difference was a subjectively greater relative abundance of Desulfovibrio sp. on the cecal

Fig 2. Relative abundance of phyla in luminal and mucosal equine gut microbiota. Bar charts showing relative abundance of phyla detected in luminal

contents (A) and mucosa (B) of samples collected from dorsal stomach, antral stomach, jejunum, ileum, cecum, ventral colon, and dorsal colon of nine

healthy adult horses, displayed in the same order in each chart and in each GIT region (animal IDs listed below bars). Samples returning fewer than 1000

sequences not shown; legend at right.

doi:10.1371/journal.pone.0166523.g002
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mucosa, compensated for by a reduction in the proportion of Treponema sp. and unclassified

microbes in the UC order Clostridiales. In the ventral and dorsal colonic mucosa, a substantial

proportion of DNA was annotated to the archaea Methanobrevibacter sp. and Methanocorpus-
culum sp. A full list of all OTUs detected at greater than 0.01% mean relative abundance in the

luminal or mucosal samples of at least one region of the GIT are included in S2 Table and S3

Table, respectively.

While visual inspection of bar charts allows for identification and comparison of prominent

taxa, it is difficult to appreciate differences in the presence or relative abundance or rare

OTUs. In order to better assess compositional differences between samples, taking into

account all detected OTUs, principal component analysis was performed. Comparing first the

luminal contents of the various anatomic regions, samples formed two distinct clusters sepa-

rated along principal component 1 (PC1, 52.88% variation) representing upper and lower GIT

respectively (Fig 4A). There was considerable β-diversity among the upper GIT samples along

both PC1 and PC2, while samples from the lower GIT clustered very tightly, indicating rela-

tively high compositional similarity between cecal and colonic samples, as well as between

horses. Agglomerative hierarchical clustering was performed as a secondary evaluation of β-

diversity (S1 Fig). Validating the PCA, samples from the upper and lower GIT formed two dis-

tinct branches of the dendrogram, as did samples from the dorsal colon. Statistical testing of

overall community differences between the luminal contents via PERMANOVA confirmed a

significant main effect of gut region (p = 0.0001; F = 16.45); pairwise comparisons indicated

that while the microbiota of the upper GIT did not differ between regions, the microbiota pres-

ent in each region of the lower GIT lumen was significantly different from all other regions

(including other regions of the lower GIT (Table 2).

Regarding the mucosal samples, a similar pattern was observed although the separation

between upper and lower GIT was not as strong, with PC1 explaining 25.48% variation (Fig 4B).

Fig 3. Relative abundance of operational taxonomic units in luminal and mucosal equine gut microbiota. Bar charts showing relative abundance of

operational taxonomic units (OTUs) detected in luminal contents (A) and mucosa (B) of samples collected from dorsal stomach, antral stomach, jejunum,

ileum, cecum, ventral colon, and dorsal colon of nine healthy adult horses, displayed in the same order in each chart and in each GIT region (animal IDs

listed below bars). Samples returning fewer than 1000 sequences not shown; dominant OTUs in upper gastrointestinal tract (GIT) labeled at upper right,

legend for dominant OTUs in lower GIT at lower right.

doi:10.1371/journal.pone.0166523.g003
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Notably, mucosal samples collected from the cecum and two colonic regions separated

completely along PC2 (11.15% variation), indicating that there are region-specific features of

the mucosal microbiota that were not readily apparent in the luminal contents. Hierarchical

Fig 4. Separate principal component analysis of luminal and mucosal gut microbial populations.

Principal component analysis of microbial communities detected in luminal contents (A) and mucosa (B) of

samples collected from dorsal stomach, antral stomach, jejunum, ileum, cecum, ventral colon, and dorsal

colon of nine healthy adult horses; legend at right.

doi:10.1371/journal.pone.0166523.g004

Table 2. Pairwise PERMANOVA of Bray-Curtis similarity indices between luminal samples.

DS AS Jejunum Ileum Cecum VC DC

DS 1 1 0.0084 0.0021 0.0042 0.0042

AS 2.1 1 0.1176 0.0042 0.0021 0.0063

Jejunum 1.42 1.255 1 0.0021 0.0021 0.0042

Ileum 3.26 3.079 0.5826 0.0021 0.0021 0.0021

Cecum 31.12 19.1 29.39 37.64 0.0042 0.0021

VC 34.01 20.42 31.71 41.21 4.137 0.0021

DC 33.58 20.22 30.82 40.06 15.82 6.917

Results of one-way PERMANOVA testing of ranked Bray-Curtis similarity indices between luminal microbiota samples in sequential regions of the equine

gastrointestinal tract. Bonferroni-corrected p values of pairwise comparisons shown in upper right with significant differences depicted in bold; F values

shown in lower left. DS = dorsal stomach, AS = antral stomach, VC = ventral colon, DC = dorsal colon.

doi:10.1371/journal.pone.0166523.t002
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clustering reflected a similar relationship between samples with two main branches comprising

primarily upper and lower GIT samples respectively, although the separation was not as absolute

as with the luminal samples (S2 Fig). Again, testing via PERMANOVA detected a significant

effect of region on the microbiota (p = 0.0001; F = 7.277), and significant differences in the com-

position of the mucosal samples between certain regions of the upper and lower GIT although

those differences were not as complete as in the luminal samples (Table 3).

To evaluate compositional differences between luminal and mucosal microbial communi-

ties, PCA was also performed using all samples. While the luminal and mucosal samples col-

lected from the upper GIT formed two distinct but slightly overlapping clusters when viewed

as PC1 versus PC2, all of the samples from the lower GIT were contained in a single small clus-

ter (Fig 5A). Mucosal samples from the upper GIT were situated on PC1 midway between

luminal samples from the same anatomic regions and the cluster of samples from the lower

GIT. Viewed as PC1 versus PC3, the lower GIT samples again separated by anatomic region

with minimal discrimination between luminal and mucosal samples (Fig 5B). Collectively, the

PCAs above suggest that the composition of microbial communities within the stomach, jeju-

num, and ileum are distinct from those in the cecum and colon, and much more variable

between horses. Additionally, while there was no clear region-specific separation of either

luminal or mucosal samples from the upper GIT, samples collected from the lower GIT sepa-

rated according to anatomic region suggesting subtle but consistent differences between the

microbial populations colonizing both the lumen and mucosa of the cecum, ventral colon, and

dorsal colon. Taking into account all samples, two-way PERMANOVA of ranked Bray-Curtis

similarity indices confirmed significant main effects of anatomic region (e.g., dorsal stomach,

antral stomach, p = 0.0001; F = 12.174) and sample collection (i.e., lumen versus mucosa,

p = 0.0001; F = 118.7), as well as a significant interaction between fixed variables (p = 0.0001;

F = 4.9469).

Discussion

The equine industry contributes roughly $39 billion in direct impact to the U.S. economy

annually, and an additional $60 billion in indirect or induced impact. Individually, horses are

among the most expensive companion animals to feed and maintain and, considering their

potential longevity, the lifetime cost of horse ownership easily exceeds that of all other com-

panion species. In horses, non-specific abdominal pain or “colic” is one of the most common

causes of morbidity and mortality, with an estimated incidence of 4.2 events per horse per year

[17]. Case fatality rates vary among studies but have been calculated to be between 7% and

Table 3. Pairwise PERMANOVA of Bray-Curtis similarity indices between mucosal samples.

DS AS Jejunum Ileum Cecum VC DC

DS 1 0.0336 1 0.0084 0.0021 0.0189

AS 0.9533 0.2016 0.9786 0.0126 0.0105 0.0105

Jejunum 7.222 5.142 0.1743 0.0588 0.0483 0.0588

Ileum 1.363 2.358 3.508 0.0147 0.0063 0.1029

Cecum 9.03 10.02 17.3 6.567 0.0651 0.021

VC 10 12.01 22.8 7.332 3.773 0.0273

DC 8.066 9.514 16.58 4.916 9.083 5.758

Results of one-way PERMANOVA testing of ranked Bray-Curtis similarity indices between mucosal microbiota samples in sequential regions of the equine

gastrointestinal tract. Bonferroni-corrected p values of pairwise comparisons shown in upper right with significant differences depicted in bold; F values

shown in lower left. DS = dorsal stomach, AS = antral stomach, VC = ventral colon, DC = dorsal colon.

doi:10.1371/journal.pone.0166523.t003
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13% [17–19]. Considering the high incidence of these conditions in conjunction with the con-

siderable expense of treating horses, the total annual economic impact of equine colic in the U.

S. was estimated to be over $115 million in 1998 and has surely increased since then [17]. It

should be noted that despite the term “colic”, signs of abdominal pain can originate from

other regions of the gut or other organ systems. Moreover, no etiology is determined in the

majority of cases [19, 20], although the most common clinical associations include gas colic

and feed-related issues [17, 21]. It is plausible that in many of the idiopathic cases, the underly-

ing cause of discomfort, bloating, ileus, or other clinical signs may be related to changes in the

composition or function of the resident microbiota. Moreover, several other common disease

entities affecting the musculoskeletal [22, 23] and metabolic system [24] of horses are also inti-

mately associated with the gastrointestinal microbiota. The majority of intestinal microbes are

refractory to culture and the ability to interrogate these rich and dynamic microbial communi-

ties using culture-independent methods has only recently become technically and economi-

cally feasible. Indeed, several groups have now described the composition of fecal [25–31] and

gastric [32] microbiota in healthy horses, as well as associations between specific conditions

affecting horses (such as laminitis [22], colic [31], and colitis [33]) and characteristic changes

in the fecal microbiota. That said, there are still many uncertainties regarding the healthy

equine gut microbiota including the composition of the gastric and small intestinal microbiota

Fig 5. Combined principal component analysis of luminal and mucosal gut microbial populations.

Principal component analysis of microbial communities detected in luminal contents and mucosa of samples

collected from dorsal stomach, antral stomach, jejunum, ileum, cecum, ventral colon, and dorsal colon of nine

healthy adult horses, shown as PC1 versus PC2 (A) and PC1 versus PC3 (B); legend at right.

doi:10.1371/journal.pone.0166523.g005
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in relation to that colonizing the cecum and colon, and the composition of mucosal communi-

ties in relation to the luminal contents. For the purposes of diagnosing and treating upper GI

disturbances related to the gut microbiota (GM), these differences may very well be of clinical

relevance.

The present data agree with previous findings [30] in that, with regard to luminal microbial

populations, there are two distinct regions of the equine gastrointestinal tract. The microbial

composition within the upper GIT, represented here by the stomach, jejunum, and ileum, was

highly variable between horses, and between regions within the same horse. While many of the

same dominant taxa (e.g., Actinobacillus sp. and Lactobacillus sp.) were detected in these

regions across all horses, the relative abundance varied substantially. This likely reflects both

the relatively high rate of throughput in the upper GIT, and the constant introduction of envi-

ronmental bacteria present in the feed and forage. Supporting this, the upper GIT contained

abundant α-Proteobacteria, common in environmental samples. Conversely, the luminal con-

tents of the lower GIT, i.e., the cecum and colon, were remarkably similar between horses

despite the variable history, breed, and age of the horses included in the study. It merits

emphasis that, despite the lack of uniformity within the lumen of regions of the upper GIT, the

luminal and mucosal populations of the lower GIT were remarkably uniform, suggesting that

the cecal and colonic microbial populations are stable and affected only minimally by differ-

ences higher in the GIT. Due to logistical constraints, all horses spent at least 18 hours in the

University of Missouri, Veterinary Medical Teaching Hospital equine clinic prior to euthana-

sia. Thus, while some normalization in the composition of the GM may have occurred owing

to the common environment preceding sample collection as well as the fact that all horses

resided in rural Missouri, it is doubtful that the common feed and housing conditions for such

a short period of time could induce such a uniform microbial composition in horses of multi-

ple ages, breeds, and backgrounds.

The data presented here are also supported by their agreement with previous analyses of the

equine gut microbiota performed using 16S rRNA gene sequencing methods, although there

are also differences worthy of mention. Several studies applying next-generation sequencing

methods to healthy equine hindgut samples have detected Firmicutes-dominated microbial

profiles, followed in relative abundance by some combination of Bacteroidetes, Proteobacteria,

or Verrucomicrobia as the second and third most prevalent phyla, depending on the study [22,

26, 31, 33]. In all of these studies, bacteria in the phylum Firmicutes outweighed the next most

common phylum by a ratio of 4:1 or greater, in contrast to the present data wherein the Firmi-
cutes to Bacteroidetes ratio was approximately 1:1 in all horses. These discrepancies can be

explained by several possible factors including geographic location, breed, and husbandry of

the horses, as well as methodological differences such as DNA extraction technique and

sequencing platform. It is doubtful that this difference in sequencing platform accounts for the

difference in detected phyla as one group has utilized both systems [29, 30, 33, 34] with sam-

ples collected from horses in a similar environment, and generated comparable results. Of

note however, studies performed by Dougal et al. [27, 28], using samples obtained from differ-

ent groups of horses located in Michigan and the UK respectively, detected a Firmicutes to Bac-
teroidetes ratio similar to that reported here. Thus, the differences in detected Firmicutes to

Bacteroidetes ratio may be a function of geographic location, thus indicating a substantial

range of values in the healthy equine hindgut. This is further supported by comparison of the

current data to that generated in the similarly designed study performed in Ontario, Canada.

While the extraction chemistry and primer set varied slightly from those used here, sequencing

of the same 16S rRNA gene region detected a Firmicutes-dominated hindgut[30]. Alterna-

tively, such variance may be attributable to seasonal effects on forage and thus the GM.
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Considering the proposed concept of a “core” fecal microbiota in horses, i.e., a group of

OTUs that are detected at greater than 0.1% relative abundance in all [27] or a majority [35] of

samples, 87 and 98 OTUs were detected at greater than 0.1% mean relative abundance in the

lumen and mucosa of the dorsal colon respectively (a surrogate for feces). Of those, 68 and 42

OTUs respectively were detected in all nine samples, 41 of those being shared between the

luminal and mucosal samples. Comparison of these numbers to existing literature however is

problematic as they are dependent on sequencing coverage and the resolution afforded by the

primer set.

Progressing to more proximal regions of the GIT, the cecum appears very similar composi-

tionally to the ventral and dorsal colon, although the relative abundance of certain OTUs shifts

throughout the length of the GIT. Conversely, the ileum appears in stark contrast to the hind-

gut, suggesting a dramatic shift in the community architecture. Moreover, the agreement

between horses is much less in the upper GIT, as evidenced by the distribution of those sam-

ples on PCA. These data are in agreement with the findings of Dougal et al. who found that,

while samples from the cecum, various colonic regions, and feces were intermingled in a hier-

archical clustering analysis, ileal samples formed a separate branch of the dendrogram [27].

Thus, the ileocecal junction represents a transition zone within the equine GIT, leading to a

more uniform microbial community. The reason for this stark shift in the composition and

uniformity of the luminal microbiota is unclear but is likely due, at least in part, to the change

in throughput as ingesta reach the hindgut. In the foregut, transit is relatively rapid whereas in

the hindut, transit slows considerably. Additionally, there are surely differences in substrate

availability between the upper and lower GIT; as most dietary macromolecules are absorbed in

the jejunum, the bacteria present in the hindgut become more reliant on fermentation of non-

digestible carbohydrates. Regarding the greater variability between horses in the composition

of the upper GIT microbiota, it must also be considered that an occult condition, undetected

during the physical, gross, and histological examinations, influenced the results. While the

screening criteria for inclusion was intended to eliminate horse with gastrointestinal disease,

certain sub-clinical conditions could ostensibly affect the GM while being undetected during

physical and histological examination to screen subjects.

Regarding the equine gastric microbiota, there is limited available literature describing cul-

ture-independent studies of the equine gastric microbiota. Yuki et al. performed an informa-

tive analysis of the Lactobacillus spp. colonizing the epithelium of the equine stomach,

however isolates were first selected via culture methods [1]. Subsequent studies using biopsy

material collected from the stomach of six healthy horses and subjected to 16S rRNA gene pyr-

osequencing revealed a rich microbiota comprising many more taxa than Lactobacillus spp.

[32] Supporting the current data set, that study identified no apparent microbial differences

between the glandular and nonglandular regions of the stomach.

There are, of course, limitations to the present study including the relatively small sample

size and the inability to control for multiple variables of potential import such as diet, sex, age,

and activity level. While all of these variables have been documented to influence the composi-

tion of GM in humans [36–40], little is known regarding the effect of these variables in equine

samples. Willing et al. used terminal-restriction fragment length polymorphism analysis in

combination with sequencing to demonstrate the energy-rich forage diets led to decreased

abundance of lactic acid bacteria and certain Streptococcus spp. [25] but, to the authors’ knowl-

edge, there are no comparable published data generated with next-generation sequencing.

Similarly, in the current study and the previous work of Costa et al. [30] wherein horses of

both sexes were analyzed, no sex-dependent differences were noted.

Another limitation to the present study, as well as the referenced surveys of the equine GM,

is the limited resolution and relative abundance of taxa provided by 16S rRNA gene amplicon
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sequencing. In contrast to whole genome shotgun sequencing, targeted sequencing of 16S

rRNA gene libraries can only discriminate microbial taxa down to the level of species but most

sequences are annotated to only the level of genus or family. Thus, while robust changes in the

composition of polymicrobial communities may be detected with excellent reproducibility,

changes within certain unresolved taxa could go undetected. Additionally, both targeted and

whole genome sequencing methods report the relative abundance of detected taxa and abso-

lute quantification of any given taxa requires different methodologies.

Lastly, while the material collected from any given segment of the GIT appeared relatively

homogenous, it is possible that the 250 mg collected for analysis may not be representative of

the region. The multiple technical replicates needed to answer those questions would have

been prohibitively expensive and, based on the inter-subject agreement between those regions

harboring the highest microbial densities, of limited value. Similarly, the data reported herein

represent a relatively low sample size, particularly in the upper GIT mucosa, owing to the fail-

ure of several samples to amplify and sequence well. Thus, this relatively low sample size may

have reduced our ability to detect differences between regions in the upper GIT, particularly

the jejunum.

While the above data provide a detailed profile of the microbial populations present

throughout the length of the equine GIT, additional studies are needed to determine the effect

of geographical and seasonal differences in sample collection. Moreover, the associations

between various conditions (e.g., colic, laminitis, and obesity/insulin dysregulation) and char-

acteristic shifts in the composition of the equine GM need to be reproduced and examined for

causality. Approaches such as longitudinal fecal sampling of horses at an increased risk of such

conditions, or fecal bacteriotherapy of affected horses with microbial samples collected from

healthy donors would begin to answer those questions. Once any such causal relationships are

found, targeted analysis of the metabolome or proteome could be used to develop improved

diagnostic and therapeutic approaches.

Collectively, the data presented above suggest that while fecal samples may provide a rea-

sonable profile of the luminal contents of the equine large intestine, the dorsal colon micro-

biota is nonetheless significantly different from that present in the cecum and ventral colon,

and is entirely uninformative with regard to the contents of the stomach or small intestine.

Moreover, in contrast to the distinct difference between the highly variable upper gastrointesti-

nal tract microbiota and relatively uniform large bowel microbiota present within the lumen,

there is a regional continuity present in mucosal microbial communities throughout the length

of the equine gut.

Supporting Information

S1 Fig. Hierarchical clustering of luminal samples. Unweighted pair group method with

arithmetic mean (UPGMA) of Bray-Curtis similarity indices between luminal microbiota

detected in the dorsal stomach (DS), antral stomach (AS), jejunum (Jej), ileum (Ile), cecum

(Cec), ventral colon (VC), and dorsal colon (DC) of nine healthy adult horses. Cophenetic cor-

relation = 0.9516.

(TIF)

S2 Fig. Hierarchical clustering of mucosal samples. Unweighted pair group method with

arithmetic mean (UPGMA) of Bray-Curtis similarity indices between mucosal microbiota

detected in the dorsal stomach (DS), antral stomach (AS), jejunum (Jej), ileum (Ile), cecum

(Cec), ventral colon (VC), and dorsal colon (DC) of nine healthy adult horses. Cophenetic cor-

relation = 0.8263.

(TIF)
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