

Diet and DNA damage in infants The DADHI study

Mansi Dass Singh

Diet and DNA damage in infants The DADHI study

Mansi Dass Singh

MSc (Nutrition & Dietetics)

A thesis submitted for the degree of Doctor of Philosophy

University of Adelaide, School of Health Sciences

Discipline of Obstetrics and Gynaecology

And

CSIRO Health & Biosecurity

Genome Health and Personalised Nutrition

November 2016

This thesis is dedicated to my guide and father Mr Harikishan Dass

Table of Contents

List of F	Figures	1
List of T	Γables	3
Abstract	t	5
Declarati	ion	8
Acknowl	ledgement	9
Abbrevia	ations	11
Publishi	ing arising from this thesis	14
Presenta	ations arising from this thesis	14
1 LITER	RATURE REVIEW: THE POTENTIAL ROLE OF FOLATE IN F	'RE-
ECLAMPS	SIA	15
1.1 At	bstract	16
1.1 Int	troduction	16
1.1.1	Pre-eclampsia	16
1.1.2	Folate	19
1.1.3	Current practice in assessing folate status	21
1.1.4	Assessing genome stability and oxidative stress	22
1.1.5	Assessing DNA methylation and gene expression	24
1.2 M	lethods	26
1.3 Re	esults and Discussion	30
1.3.1	Genome integrity in women at risk of PE	30
1.3.2	DNA methylation in women at risk of PE	36

	1.3	.3	Genetic polymorphisms in the folate/methionine pathway and PE	. 54
	1.3	.4	Is FA supplementation the answer to preventing aberrant metabolic defects	s of
	OC	'M a	mong women at risk of PE?	. 55
	1.3	.5	Proposed mechanisms of a protective effects of FA in PE	. 68
	1.3	.6	Possible role of other methyl donors	. 71
	1.3	.7	Potential hazards of High doses of FA supplementation in Pregnancy	. 72
	1.4	Lin	nitations and Strengths	. 73
	1.5	Kno	owledge gaps	. 74
	1.6	Cor	nclusions	. 75
2	GE	NEF	RAL INTRODUCTION	77
	2.1	Cel	lular DNA damage during infancy	. 78
	2.2	Me	asuring DNA damage in infants	. 79
	2.3	Nec	onatal outcomes, maternal factors and DNA damage markers	. 81
	2.4	Fee	eding methods and DNA damage during infancy	. 84
	2.5	Blo	ood micronutrients and Infant DNA health	. 88
	2.6	Kno	owledge gaps	. 96
	2.7	Нуј	potheses	. 97
	2.8	Ain	ns	. 98
3	ST	UDY	Z DESIGN AND GENERAL METHODOLOGY	100
	3.1	Stu	dy Design	101
	3.2	Par	ticipants	102
	3.2	.1	Inclusion criteria	102
	3.2	.2	Exclusion criteria	102
	3.2	.3	Recruitment	102

3.3	Power calculation	104
3.4	A pilot study	104
3.4	1.1 Inclusion criteria	105
3.4	4.2 Exclusion criteria	106
3.4	1.3 Sample size	106
3.5	General health and Food frequency questionnaire	107
3.6	Infant's feeding record	107
3.7	Blood collection	108
4 CY	TOKINESIS BLOCK MICRONUCLEUS- CYTOME ASSAY	111
4.1	Principle	111
4.2	Lymphocyte CBMN-Cyt method	113
4.2	Preparation of reagents	114
4.2	2.2 CBMN-Cyt assay protocol	116
4.3	3 Applications	123
5 SE	TTING UP AND OPTIMIZATION OF MICROBIOLOGICAL ASS	SAY FOR RED
BLOOI	O CELL FOLATE	129
5.1	Introduction	130
5.2	Folate measurement in humans	131
5.3	Microbiological assay of folate	132
5.4	Measuring folate in red blood cells	133
5.5	Method for microbiological assay of folate in red blood cells	136
6 DN	NA DAMAGE BIOMARKERS IN SOUTH AUSTRALIAN	INFANTS AS
MEASU	URED BY CBMN-CYT ASSAY AND THE INFLUENCE OF AGE, (GENDER AND
MODE	OF FEEDING DURING THE FIRST 6 MONTHS AFTER BIRTH	151

5.1	Abs	stract152
5.2	Intr	roduction154
5.3	Нуј	potheses
5.4	Ain	ns163
5.5	Ma	terial and Methods164
6.5	.1	Recruitment of participants
6.5	.2	General health and Food frequency questionnaire165
6.5	.3	Infant's feeding record
6.5	.4	CBMN-Cyt assay
6.5	.5	Power calculations
6.5	.6	Statistical analysis
5.6	Res	sults171
6.6	.1	General demographics of the cohort
6.6	.2	Mean CBMN-Cyt biomarkers of the cohort at birth, three and six months173
6.6	.3	Correlation between infants' birth outcomes and CBMN-Cyt biomarkers
me	asur	ed in cord blood174
6.6	.4	Correlation between mothers' demographic characteristics with CBMN-Cyt
bio	marl	xers measured in cord blood and infant birth outcomes
6.6	.5	Correlation between mothers' lifestyle characteristics and CBMN-Cyt
bio	marl	xers measured in cord blood at birth
6.6	.6	Differences among CBMN-Cyt biomarkers in infants' lymphocytes at birth and
		183
at 3	Sand	6 months after hirth

6.6.7 Correlation between CBMN-Cyt biomarkers in Infants at birth and at 3 and	16
months	8
6.6.8 Correlation between NDI with other CBMN-Cyt biomarkers at birth, 3 and	l 6
months	
6.6.9 Correlation between micronucleus frequency in binucleated and mononucleat	ted
Lymphocyte cells1	96
6.6.10 Trend for CBMN-Cyt biomarkers in the female cohort from birth to six mont	ths
19	8
6.6.11 Trend of CBMN-Cyt biomarkers in the male cohort from birth to six mont	ths
20)1
6.6.12 Gender differences in birth outcomes and CBMN-Cyt biomarkers at birth2	04
6.6.13 Gender differences in the cohort at three and six months after birth2	.06
6.6.14 Feeding trends	.09
6.6.15 Effect of mode of feeding on genome damage biomarkers at three months 2	10
6.6.16 Effect of mode of feeding on genome instability biomarkers at six months2	11
5.7 Discussion	12
6.7.1 CBMN-Cyt biomarkers in BNCs and MNCs and their association with ea	ıch
other at birth, three and six months in the DADHI cohort	12
6.7.2 Association of infant birth outcomes with mother's demographic variables a	ınd
CBMN-Cyt biomarkers	18
6.7.3 Gender differences in relation to CBMN-Cyt biomarkers	20
6.7.4 Correlation of mode of feeding and CBMN-Cyt biomarkers measured in infan	nts
at three and six months	21
5.8 Limitations	24

6.9 Conclu	ısion225
7 THE ASS	OCIATION OF BLOOD MICRONUTRIENTS STATUS OF SOUTH
AUSTRALIAN	INFANTS WITH BIRTH OUTCOMES, FEEDING METHODS AND
GENOME DAN	MAGE DURING FIRST SIX MONTHS AFTER BIRTH226
7.1 Abstra	ct
7.2 Introdu	action
7.3 Hypoth	neses
7.4 Aims	
7.5 Method	ds234
7.5.1 Re	ecruitment of participants
7.5.2 Ge	eneral health and Food frequency questionnaire237
7.5.3 In	fant's feeding record
7.5.4 Bl	lood collection
7.5.5 CI	BMN-Cyt assay240
7.5.6 M	easure of Red cell folate242
7.5.7 Pl	asma mineral/micronutrient analysis243
7.5.8 St	atistical analysis245
7.6 Results	s245
7.6.1 Ch	nange in plasma micronutrients in infants at birth, three and six months245
7.6.2 As	ssociation between cord blood micronutrients and maternal anthropometric
variables a	nd infant birth outcomes
7.6.3 As	ssociation between cord blood micronutrients and CBMN-Cyt biomarkers at
birth	

7.6.4	Association of blood micronutrients with infant weight, feeding scores and
CBMN	-Cyt biomarkers at 3 months
7.6.5	Association of blood micronutrients with infant weight, average feeding scores
and CB	MN-Cyt biomarkers at 6 months
7.6.6	Correlation between micronutrients at birth, three and six months263
7.6.7	Effect of mode of feeding on genome damage biomarkers at three months271
7.6.8	Effect of mode of feeding on genome instability biomarkers at six months272
7.6.9	Gender differences in micronutrients measured at birth, three and six months
7.7 Dis	cussion
7.7.1	Blood micronutrients and maternal anthropometric data and infant birth
outcom	es275
7.7.2	Association of blood micronutrients and CBMN-Cyt biomarkers profiles in
infants	
7.7.3	Blood micronutrients, mode of feeding and gender differences287
7.8 Lir	nitations
7.9 Co	nclusion
8 DNA D	DAMAGE IN INFANTS BORN TO WOMEN AT RISK OF PRE-ECLAMPSIA
DURING P	REGNANCY289
8.1 Ab	stract
8.2 Int	roduction:
8.2.1	Pre-eclampsia: a state of increased possibility of stress induced DNA damage?
8.2.2	Assessing oxidative stress induced DNA damage in Pre-eclampsia296

8.2	2.3	DNA damage in infants born to women with Pre-eclampsia	297
8.3	Ну	potheses	308
8.4	Aiı	ns	308
8.5	Me	thods	309
8.5	5.1	Inclusion criteria	310
8.5	5.2	Exclusion criteria	311
8.5	5.3	Sample size	311
8.5	5.4	General health questionnaire and Anthropometric data collection	312
8.5	5.5	Blood collection	312
8.5	5.6	CBMN-Cyt assay	313
8.5	5.7	Measure of Red cell folate	315
8.5	5.8	Statistical analysis	316
8.6	Re	sults	317
8.6	5.1	General maternal demographic characteristics and infant birth outcomes	s for
IN	FAC	T cases and DADHI control	317
8.6	5.2	Correlation analysis of mother's anthropometric measures at recruitment	with
inf	fant l	oirth outcomes at birth-INFACT cohort	322
8.6	5.3	DNA damage biomarkers and red cell folate measures at birth -INFACT co	ohort
			324
8.6	5.4	Correlation analysis of maternal anthropometric data and Infant birth outco	omes
wi	th C	BMN-Cyt biomarkers measured in cord blood at birth-INFACT cohort	325
8.6	5.5	Comparison of maternal and infant characteristics between INFACT	and
DA	ADH	I cohort	328

8.6.6 Comparison between CBMN-Cyt biomarkers measured in cord blood between
INFACT cases and subset of DADHI control
8.7 Discussions
8.7.1 Association of infant birth outcomes with maternal anthropometric
characteristics
8.7.2 Comparison of DNA damage CBMN-Cyt biomarkers between INFACT and
DADHI cohorts
8.8 Limitation
8.9 Conclusions
9 CONCLUSIONS, KNOWLEDGE GAPS AND FUTURE DIRECTIONS338
10 REFERENCES
11 APPENDIX397

List of Figures

Figure 1.1: Scheme of one-carbon metabolism	21
Figure 1.2: Diagrammatic representation of origin of micronuclei	24
Figure 1.3: Flow chart of the search and selection process for research studies	27
Figure 2.1: Summary of mean MN frequency in BNC and MNC measured by CBMN-0	Cyt
assay in cord blood of healthy infants	
Figure 2.2: Growing up in Australia: The Longitudinal Study of Australian Children	87
Figure 2.3: Growing up in Australia: The Longitudinal Study of Australian Children	
(complementary feeds)	87
Figure 3.1: Schematic representation of the DADHI study design and recruitment	101
Figure 3.2: Consort diagram for DADHI study recruitment, blood collection and CBMI	N-Cyt
assay completion	103
Figure 3.3: Schematic representation of the pilot project in the INFACT study	105
Figure 3.4: DADHI processing protocol for cord bloods and infant heel prick bloods	110
Figure 4.1: Cytokinesis-block micronucleus Cytome assay	113
Figure 4.2: Outline of CBMN-Cyt assay	114
Figure 5.1: Structure of Folate consisting of a pteridine base attached to para aminoben	zoic
acid (PABA) and glutamic acid	131
Figure 5.2: Dose response of bacterial growth with respect to 5-methyl THF standard u	sing
different inoculum dilutions	141
Figure 5.3: Outline for Microbiological assay for RBC folate for DADHI study and	
INFACT sub-study	145
Figure 5.4: The Standard curve using 5 methyl THF as a calibrator	148
Figure 6.1: Summary of mean MN frequency measured in cord blood of healthy infants	s born
to healthy women in various countries	159
Figure 6.2: Baseline mean micronuclei (MN) frequencies (per 1000 binucleated	
lymphocytes (BNC) measured using the CBMN-Cyt assay) in peripheral blood of healt	•
non-smoking, males and females, subdivided according to age-group in a South Austra	
cohort	
Figure 6.3: Growing up in Australia: The Longitudinal Study of Australian Children	162
Figure 6.4: Growing up in Australia: The Longitudinal Study of Australian Children	
(Complementary feeds)	
Figure 6.5: Consort diagram for DADHI study recruitment, blood collection and CBMI	-
assay completion	165
Figure 6.6: Comparison between CBMN-Cyt biomarkers measured in binucleated	
lymphocyte cells at birth, 3 and 6 months	186
Figure 6.7: Comparison between CBMN-Cyt biomarkers measured in mononucleated	
lymphocyte cells at birth, 3 and 6 months	
Figure 6.8: Correlation between MN, NBUD and NPB measured in BNC at birth and a	
three months	190

Figure 6.9: Correlation between MN, NBUD and NPB measured in BNC at birth and at	six
months	.191
Figure 6.10: Correlation between MN, NBUD and NPB measured in BNC at birth and at	t six
months	.192
Figure 6.11: Comparison between mean (± SD) of CBMN-Cyt biomarkers for female co	hort
at birth, 3 and 6 months	.200
Figure 6.12: Comparison between means (± SD) of CBMN-Cyt biomarkers for male coh	ort
at birth, 3 and 6 months	.203
Figure 6.13: Feeding trends of infants in the cohort during six months after birth	.209
Figure 6.14: Type and time of introduction of complementary feed given to infants in	
DADHI cohort	.210
Figure 7.1: Consort diagram for DADHI study recruitment, blood collection and CBMN	-Cyt
assay completion	245
Figure 7. 2: DADHI processing protocol for cord bloods and infant heel prick bloods	237
Figure 7.3: Multiple comparisons of means (±SD) for plasma micronutrients at birth, three	ee
and six months	261
Figure 8.1: A schematic representation of factors associated with increased DNA damage	e in
infants born to women with Pre-eclampsia	.299
Figure 8.2: Schematic representation of the pilot project in the INFACT study	.310

List of Tables

Table 1.1: Australian National Health and Medical Research Council's levels of evidence	e 29
Table 1.2: Studies of genome integrity in women at risk of pre-eclampsia	33
Table 1.3: Studies of DNA methylation in women at risk of pre-eclampsia	39
Table 1.4: Studies of folic acid supplementation in women at risk of pre-eclampsia	60
Table 1.5: Potential pharmacological effects of folate in relation to biomarkers associated	1
with risk of pre-eclampsia	
Table 3.1: Sample size to detect significant differences at different power levels	
Table 3.2: Scoring criteria for infant mode of feeding	
Table 4.1: Biomarkers assessed in CBMN-Cyt assay	
Table 4.2: Scoring criteria with photomicrographs of CBMN-Cyt biomarkers	
Table 4.3: Frequency of CBMN-cyt biomarkers as assessed in lymphocytes collected from	
cord blood of infants	
Table 5. 1: Sources of Conjugase available for Microbiological assay of folate	
Table 5.2: Addition of solutions (µl) in 96 well microplate for MA folate	
Table 6.1: Infant mode of feeding record	
Table 6.2: Difference in MN frequency in BNCs that can be detected at $p < 0.05$ dependi	
on number of subjects per group and statistical power level	
3 1 6 1	
Table 6.3: General demographic data for DADHI mother-infant cohort [mean (± SD)	.1/2
Table 6.4: Mean (± SD) CBMN-Cyt biomarkers measured at birth, 3 and 6 months for	174
DADHI	.1/4
Table 6.5: Correlation analysis of Infant Birth outcomes and CBMN-Cyt biomarkers	176
measured in cord blood at birth	
Table 6.6: Correlation analysis of Mother's demographic characteristics at recruitment ar	
CBMN-Cyt biomarkers at birth	
Table 6.7: Correlation analysis of mother's demographic characteristics at recruitment an	
infant's birth outcomes	
Table 6.8: Correlation analysis of gestation age and infant's birth outcomes	
Table 6.9: Group statistic for student t test for influence of mother's smoking status during	_
pregnancy on CBMN biomarkers	
Table 6.10: Group statistic for student t test for influence of mother's alcohol intake during	_
pregnancy on CBMN biomarkers	.181
Table 6.11: Group statistic for student t test for influence of mother's Folic acid intake	
(400μg/d) during pregnancy on CBMN biomarkers	.182
Table 6.12 Group statistic for student t test for type of labour and CBMN biomarkers	
measured in the cord blood	.182
Table 7.1: Infant mode of feeding.	
Table 7.2: Comparison of mean Blood micronutrients in infants at birth, 3 & 6 months	.245
Table 7.3: Correlation analysis between blood micronutrients and maternal factors and	
infant birth outcomes	
Table 7.4: Correlation analysis between cord micronutrients and CBMN-Cyt biomarkers	
birth	
Table 7.5: Association of blood micronutrients with infant weight and feeding scores at 3	
months	255

Table 7.6: Correlation analysis between cord micronutrients and CBMN-Cyt biomarkers at 3 months
Table 7.7: Association of blood micronutrients with infant weight and feeding scores at 6 months
Table 7.8: Correlation analysis between cord micronutrients and CBMN-Cyt biomarkers at 6 months
Table 7.9: Correlation of plasma micronutrients at birth with those at 3 and 6 months262
Table 7.10: Correlation matrix of micronutrients measured at birth
Table 7.11: Correlation matrix of micronutrients measured at 3 months
Table 7.12: Correlation matrix of micronutrients measured at 6 months
Table 7.13: Correlation analysis of CBMN-Cyt biomarkers and average feeding scores at 3
months
Table 7.14: Correlation analysis of CBMN biomarkers and feeding scores at 6 months270
Table 7.15: Gender differences in blood micronutrients at birth
Table 7.16: Gender differences in blood micronutrients at three months271
Table 7.17: Gender differences in blood micronutrients at six months
Table 8.1: Summary of studies of DNA damage in placenta or blood collected from women
at risk/or with Pre-eclampsia300
Table 8.2: Summary of studies of DNA damage in cord blood samples of women with Pre-
eclampsia
Table 8.3: General demographic data for INFACT mother-infant cohort [mean (± SD)] .317
Table 8.4 General demographic data for subset of mother-infant pairs of DADHI control
$[\text{mean } (\pm SD)] \qquad 319$
Table 8.5: Correlation analysis of mother's anthropometric characteristics at recruitment and
infant birth outcomes at birth-INFACT cohort
Table 8.6: Correlation analysis of gestation age and infant's birth outcomes for INFACT cohort
Table 8.7: Mean (± SD) CBMN-Cyt biomarkers and red cell folate measured at birth
-INFACT cohort
Table 8.8: Correlation analysis of maternal anthropometric characteristics at recruitment and
CBMN-Cyt biomarkers in cord blood at birth-INFACT cohort
Table 8.9: Correlation analysis of infant birth outcomes and CBMN-Cyt biomarkers measured
in cord blood at birth-INFACT cohort (n=10)325
Table 8.10: Comparison between infant birth outcomes & RCF between INFACT and birth
weight matched DADHI control (n ranged from 14-19)
Table 8.11: Comparison between CBMN-Cyt biomarkers measured in cord blood between
INFACT cases and DADHI control

Abstract

Accumulation of DNA damage during infancy may increase risk of accelerated ageing and degenerative diseases such as cancers. Pregnancy is understood to be a state of high expression of inflammatory genes. It may be possible that infants, born to women at high risk of preeclampsia (PE): a condition associated with increased oxidative stress, inflammation and altered gene expression, may have increased DNA damage compared with infants born to women at low risk of developing PE. However, currently there are no baseline DNA damage data for infants born to mothers in relation to their low/high risk of developing PE in Australia.

This PhD project had four phases:

*A systematic literature search was conducted with the aim to explore the literature and identify knowledge gaps in the role of folate in the etiology and prevention of PE. The review found (i) deficiency of folate and other B vitamins, with higher concentrations of oxidative stress biomarkers in maternal tissues and body fluids of women with PE when compared with women at low risk of PE, and (ii) some of this dysregulation may be balanced epigenetically with oral intake of methyl donors including folate and vitamins B₂.

*A prospective cohort study was conducted; 'Diet and DNA damage in Infants' (The DADHI study), with the aim to study:

- (i) DNA damage, cytostasis, and cytotoxicity utilizing a comprehensive Cytokinesis block micronucleus cytome (CBMN-Cyt) assay in lymphocyte of Australian born infants [at birth (cord blood, n=82), 3 (n=64) and 6 months (n=53) (heel prick blood)] of mothers at low risk of PE
- (ii) association of maternal factors and infant birth outcomes with CBMN-Cyt biomarkers

(iii) whether mode of feeding influences CBMN-Cyt biomarkers in infants at 3 and 6 months after birth

This study found significant positive associations of infant birth outcomes (gestation age, birth weight, head circumference, birth length and APGAR score) and maternal anthropometric variables with CBMN-Cyt biomarkers, suggesting possible genotoxic effects on infant's DNA by metabolic processes that promote excessive growth and higher body mass index.

* The next aim was to determine

- (i) association of **blood micronutrient status** with CBMN-Cyt biomarkers in cord blood at birth and infant's blood at 3 and 6 months
- (ii) whether mode of feeding influences blood micronutrient status at 3 and 6 months after birth

The study observed significant associations of DNA damage biomarkers with infant birth outcomes and micronutrient status suggesting that both under and oversufficiency of some nutrients may be detrimental for cell growth and repair.

*A **pilot project** [in 'Investigations in the Folic acid clinical trial' (INFACT study)] with the aim to collect DNA damage data in the cord blood collected from infants of women at increased risk of developing PE. The study found that (i) maternal anthropometric variables may influence infant birth outcomes, mainly birth size, and (ii) INFACT cases (n=10) had higher frequency of CBMN-Cyt biomarkers compared with gender and birth weight matched DADHI controls (n=15).

These preliminary data could be used to form the design of larger studies required to confirm the association of maternal factors and PE with DNA damage in the infants at birth and later in life in the first 1000 days.

Declaration

I certify that this work contains no material which has been accepted for the award of any

other degree or diploma in my name, in any university or other tertiary institution and, to the

best of my knowledge and belief, contains no material previously published or written by

another person, except where due reference has been made in the text. In addition, I certify

that no part of this work will, in the future, be used in a submission in my name, for any other

degree or diploma in any university or other tertiary institution without the prior approval of

the University of Adelaide and where applicable, any partner institution responsible for the

joint-award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made

available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I acknowledge that copyright of published works contained within this thesis resides with the

copyright holder(s) of those works. I also give permission for the digital version of my thesis

to be made available on the web, via the University's digital research repository, the Library

Search and also through web search engines, unless permission has been granted by the

University to restrict access for a period of time.

I acknowledge the support I have received for my research through the provision of an

Australian Government Research Training Program Scholarship.

Mansi Dass Singh (------2017)

7

Acknowledgement

I express my gratitude to Prof Michael Fenech for allowing me to a life empowering opportunity through this project. Your continuous positive vibrancy, extraordinary knowledge, philosophical reflections and solid support during the challenging learnings of laboratory work, writing thesis as well through experiences of life has inspired me at every stage of this unique project. I feel privileged to have worked under your guidance and vision and sincere thanks for this opportunity.

I thank you Prof Bill Hague for allowing me to be a part of your family, continuous encouragement in staying focussed, cheering me up during the 'low phases'. I am grateful for your time, energy and intellectual inputs in completion of this project.

I sincerely thank you Dr Phil Thomas for always motivating me towards the right directions with your positivity, smiles, strengths, practical guidance and invaluable support for successful completion of this project. I also thank Prof Julie for her support and guidance despite her enormously busy schedule. I am truly blessed to have learned from the best supervisors and for being under their patronage while completing this milestone.

I express my sincere thanks to Suzette coat for being my mentor, guide and support. You always had time and patience for me while I admired and tried to imbibe your perseverance towards perfection.

A big thanks to everyone in the nutrigenomic laboratory especially Maryam Hor for training me in CBMN-Cyt assay twice!!!, calming my anxiety during the entire process, sharing your expertise, laughter, chocolates and tea and replying to my texts even late at nights. I also thank you Theodora Almond and Tina McCarthy for your invaluable support. I also sincerely thanks Bruce May for his support in attaining 'order' in my 'chaotic' time of optimising folate assay.

My special thanks to A/Prof Jayashree Arcot at the University of New South Wales and Dr Karrie Kam for training me in Microbiological assay of folate and continuing the support till I accomplished the enormous task by providing means as well as resources. I am also grateful to Prof Chandrika Piyathilake at the University Alabama, Birmingham and Dr Suguna Badiga for giving me all the necessary support even being thousands of miles away via skype irrespective of time and your own busy schedule.

And Himanshu for being my backbone through the entire journey, for your believe in me, and love and compassionate support during some of the most challenging time of our married life. I also thank my son for understanding and bringing joys at the most distressing times, and my mother in law for her unconditional support and wisdoms. I am sincerely thankful to our friends Sanjay, Swati, Vijaya for being the pillar of support and Saulai for her warmth and generous support!!

And last but above all, my Father who has been the inspiration, initiator and motivating luminous for my dreams and aspirations and mom for her endearing and blessings.

Abbreviations

8-OHdG: 8-hydroxy-2'- deoxyguanosine 5-methyl THF: 5 methyl tetrahydro folate

5-LTR: 5-long terminal repeat

AOAC: Association of official analytical methods

ATP: Adenosine triphosphate ADP: Adenosine diphosphate

ATM: Ataxia-telangiectasia mutated ANOVA: Analysis of variance

BNC: Binucleated lymphocyte cells

BMI: Body mass index

BF: Breast fed BP: Blood pressure

CBMN-Cyt: Cytokinesis block micronucleus-cytome assay

CO₂: Carbon dioxide CH3: methyl group Cob: Cobalamin

Cfu: Colony forming units CVD: Cardiovascular disease CI: Confidence interval Cyto-B: Cytochalasin-B

CpG: cytosine-phosphate-guanine

CSIRO: Commonwealth Scientific and Industrial Research Organisation

CV: Coefficient of variation CB: Calibration blank

CIROS: circular optical systems

COBRA: combined bisulfate restriction analysis

COMT: catechol-*O*-methyltransferase CRH: corticotropin-releasing hormone

CT: cytotrophoblasts

DADHI: Diet and DNA damage in Infants

DHF: Di hydrofolate

DNA: Deoxyribonucleic acid

d-ROM: derivatives of reactive oxygen metabolites

dUMP: deoxy uridine monophosphate dTMP: deoxy thymidine monophosphate dTTP: deoxy thymidine triphosphate dUMP: deoxy uridine monophosphate

DMSO: Dimethylsulphoxide

DS: Down syndrome

EDTA: Ethylene diamine tetra acetic acid ELISA: Enzyme-linked immunosorbent assay

FA: Folic acid

FFQ: Food frequency questionnaire

FBS: Foetal Bovine serum FAn: Fanconi Anemia

FACT: Folic Acid Clinical Trial

GA: Gestation age

HELLP: haemolysis, elevated liver enzymes, low platelet count

HIF-1 α : hypoxia induced factor-1 α

Hcy: Homocysteine

HBSS: Hanks Balanced Salt solution

HPLC: High Performance Liquid Chromatography

HT: Hypertension

IUGR: Intrauterine growth restriction

IGF: Insulin growth factor

IMVS: Institute of Medical and Veterinary Science

IRR: Incident rate ratio IVF: In vitro fertilization

ICP: Inductively coupled plasma analysis

ICPAES: Inductively coupled plasma atomic emission spectrometry

IQ: Intelligence quotient

INFACT: Investigations in Folic Acid Clinical trial

ICAM-1: intercellular adhesion molecule-1

ICR: imprinting control region

L casei: Lactobacillus casei LBW: Low birth weight

LGA: Large for gestational age

LOD: Limit of detection

MTHF: Methyl tetrahydro folate

MTHFD1: methylenetetrahydrofolate dehydrogenase MTHFR: methylenetetrahydrofolate reductase

MTRR: methionine synthase reductase

MTR: methionine synthase

MN: Micronuclei

MNC: Mononucleated lymphocyte cells

MMA: Methylmalonic acid MDA: malondialdehyde

MS: Microsoft

MA: Microbiological assay
MRL: method reporting limits
MMP: matrix metalloproteinase

MS-SNuPE: methylation-sensitive single-nucleotide primer extension

NHANES: National Health and Nutrition Examination Survey

NHMRC: National Health and Medical Research Council's levels of evidence

NPB: Nucleoplasmic bridges

NBUD: Nuclear buds

NDI: Nuclear division index NTD: Neural tube defects NSW: New South Wales

OR: Odd ratio

OCM: One carbon metabolism OSI: oxidative stress index

PE: Pre-eclampsia

PCR: Polymerase chain reaction

p: significance value

PHA: Phytohemagglutinin PABA: Para amino benzoic acid PBL: Peripheral blood lymphocyte

PTPE: preterm pre-eclampsia

RCT: randomized controlled trial

RBC: Red blood cells RCF: red cell folate r: correlation coefficient

RR: relative risk

RNA: Ribonucleic acid ref-1: redox factor

RT-PCR, reverse transcription polymerase chain reaction

SD: standard deviation

SEM: standard error of mean SAM: S-adenosylmethionine SAH: S-adenosyl homocysteine SGA: Small for gestation age SSE: sister chromatin exchange

THF: tetra hydro folate
TNF: Tumor necrosis factor
TLR-9: toll like receptor-9
TS: thymidylate synthase
TAS: total antioxidant status
TOS: and total oxidant status

WCH: Women's and Children Hospital

Publications arising from this thesis

- 1. Singh MD, Thomas P, Owens J, Hague W, Fenech M, 2005. 'Potential role of folate in Preeclampsia', Nutrition Reviews .Oct; 73 (10):694-722. Impact factor 6
- 2. Singh MD, Thomas P, Hor M, Almond T, Owens J, Hague W, Fenech M 2016. 'Infant birth outcomes are associated with DNA damage biomarkers as measured by CBMN-Cyt assay-The DADHI study'. Submitted with major revisions to Mutagenesis journal

Presentations arising from this thesis

- 1. 'Genome stability of infants as measured by CBMN-Cyt assay and influence of feeding during six months after birth' at Nutrition society of Australia-Adelaide Student presentation event, 19 November 2015
- 2. 8th Congress of the International Society of Nutrigenetics/Nutrigenomics 2-3 May 2014, Gold Coast, Australia
- 3. Florey postgraduate Research Conference, 24th September, 2015
- 4. Joint Annual Scientific Meeting of the Nutrition Society of NZ and the Nutrition Society of Australia, 1st 4th December 2015
- 5. 'Genome stability in lymphocytes of South Australian babies as measured by Cytokinesis Block Micronucleus assay', Oral presentation as part of Annual review at joint HDR seminar programme for the Disciplines of Obstetrics and Gynaecology and Robinson Institute, 12th March 2015
- 6. Folate and Genome Integrity in Infants', Oral presentation as part of Annual review at joint HDR seminar programme for the Disciplines of Obstetrics and Gynaecology and Robinson Institute, 10th June 2014
- 7. Diet and DNA Health in Infant', Oral presentation at CSIRO Nutrigenomic Laboratory, June 2014