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Abstract

In this work, biodiesel and petrodiesel combustion is studied under conditions that
represent those in an engine at top-dead-centre. The primary focus of this study is on improving
the understanding of biodiesel feedstock properties on spray structure, understanding the effect
of strain on soot formation in biodiesel and petrodiesel combustion using a kinetics-based soot
model, developing a simplified soot model that can model soot formation in both biodiesel and
petrodiesel combustion, and applying the model to study soot formation in sprays. The
differences in feedstock properties primarily affect the liquid phase penetration. It is shown that
liquid penetration is influenced by entrainment rate, vapour pressure, and the average droplet
size, in decreasing order of influence. The vapour-phase penetration and mixture fraction
distribution in the sprays are not significantly influenced by the changes in feedstock properties.

Kinetic mechanisms for the oxidation of surrogate fuels for biodiesel and diesel and for
soot formation are employed in the study. A one-dimensional flamelet code is employed to
investigate the response of the soot formation to changes in scalar dissipation rate. The soot
formation in biodiesel combustion is found to be more sensitive to changes in scalar dissipation
rate. This suggests that increasing turbulence in a biodiesel-fuelled engine is likely to have a
greater impact on soot emissions than in a petrodiesel-fuelled engine. Through a reaction
pathway analysis, it is found that the differences in soot are on account of differences in the
concentration of the aromatic species. Critical Kinetic pathways and important species
responsible for soot formation are identified for the fuels.

Having identified the critical species and pathways, a semi-empirical two-equation soot
model is developed to model soot in both hydrocarbon diesel and biodiesel combustion. Results
from the kinetic soot formation model are employed to calibrate the constants of the
semi-empirical model. To the best knowledge of the author, this is the first soot model
formulated that can model soot formation in the combustion of both fuels. The semi-empirical
model is implemented in an in-house Reynolds-averaged Navier Stokes (RANS) multi-
dimensional spray code and employed to predict soot in biodiesel and diesel sprays. The
computed spray results are compared with available measurements in the literature. Compared
to the performance of another well-validated semi-empirical two-equation soot model, the soot

model developed in this work is shown to better predict soot in both biodiesel and diesel sprays.
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