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Abstract

In this thesis I consider how statistical assumptions are driven by the assumptions

the researcher makes about the data. I focus specifically on assumptions surrounding

data generation, namely: a) the shape of distribution expected, b) the process by

which data were obtained, c) the shape of the outcome distribution, and d) inferring

information about missing data.

Each chapter of this thesis will focus on one of these assumptions using a combination

of tools. I use existing methods and propose new models before exploring from a

cognitive perspective the types of inference people make. This allows us to explore

the concept of researcher assumptions, and to consider where building them in to

the statistical model might be beneficial. In three of the four main chapters of this

thesis, I use simulation methods to compare models. The models I consider are

both Bayesian and frequentist in framework. The aim of these simulations is not

to compare frameworks, but to compare different model structures to ascertain the

structure that allows the most accurate claims about the data to be made.

There are four main arguments presented in this thesis. First I argue that it is very

rare to conduct statistical tests without making some sort of assumption about the

data. Second, I demonstrate that for distributional assumptions in a particular type
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of data, models where the assumptions are not violated can improve the accuracy of

the claims made. Thirdly, I present two models that match the assumed generative

process of two types of data; contaminated data and data with a heterogeneous

effect. I demonstrate that these models are not only more accurate, they also allow

the researcher to make richer claims about their data. Finally I experimentally in-

vestigate a well-known finding in cognitive psychology—a dislike for ambiguous or

missing data. I replicate this preference whilst demonstrating that people are still

sensitive to underlying distributional information. Together these findings suggest

that the researcher is both sensitive to and makes assumptions about the data. Cre-

ating and using statistical models that do not violate the assumptions the researcher

makes is important, but building more complicated assumptions into the model can

give a richer and more accurate understanding of the data.
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Chapter 1

Introduction

An experiment is a question which

science poses to Nature, and a

measurement is the recording of

Nature’s answer.

Max Planck

Max Planck researched in physics, a world where measurement can map very closely

to the truth, and the difference between the two can be quantified. For him experi-

ments and measurement formed the two cornerstones of science. If we in psychology,

had the luxury of the measurement capabilities that physics boasted then perhaps

we too would only need to ask and measure. Unfortunately in psychology (as in

modern day Physics), measurement error is both guaranteed and very difficult to

perfectly estimate. Although we can ask nature a question, we need statistics to

help us interpret the answer. In this thesis I both apply and propose statistical

models to help researchers in psychological and cognitive fields find the answer to

the questions they ask.

1



Chapter 1

The central theme of this thesis is to consider the interaction between the question,

answer and conclusion (experimental design, measurement and statistics) in psycho-

logical and cognitive science. I will emphasise the relationship between researcher

intention (the question), researcher interpretation (of the answer given) and statis-

tical methods. To achieve this I will first briefly discuss traditional measurement

theories of classical, generalisability (‘G’) and item response theory. Each theory

makes different assumptions about how the measurement is connected to the true

score, and so differs in which statistical techniques should be employed to account for

it. The relevance and importance of researcher assumptions holds true for all kinds

of statistics, from frequentist to Bayesian; no approach is truly impartial, although

frequentist statistics is sometimes claimed to be (Reiss & Sprenger, 2017).

This is not to say that researcher assumptions are not contentious. Simmons, Nelson,

and Simonsohn (2011) argued that researcher freedom in statistical analysis can

lead to dramatically high false positive rates. As a solution to this they argue

that if contentious analysis additions are conducted (such as the removal of certain

outliers) then the analysis should be reported both with and without this addition.

This seems like a plausible solution, but as Gelman and Loken (2013) point out,

there is a very large set of potential additions and choices that change analyses, and

most of them are defensible. Another potential solution is preregistration, where all

of the planned analyses are declared before the data are collected, but this limits

exploratory analyses (Humphreys, Sanchez de la Sierra, & Van der Windt, 2013).

In this chapter I wish to demonstrate that even very simple statistical methods

represent a large number of assumptions that are already made and incorporated
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into the model. I argue that assumptions that are explicitly incorporated into the

model are beneficial as they allow researchers in the field to define and discuss

different beliefs (such as the nature of error in psychological research) in a rigorous

fashion. To illustrate this I introduce the interaction between measurement theory,

statistical methods and interpretation. I first consider this in a strictly measurement

context, before branching out to consider other statistical methods and assumptions.

I will then focus on four assumptions that are exceptionally common within psy-

chological and cognitive research. I describe why these assumptions are important,

why they were chosen and when there is a strong probability that they might be

violated. The main body of this thesis will build on this with a chapter that fo-

cuses on each assumption violation in context. Each chapter considers the evidence

for this violation, its potential consequences, and potential solutions. In chapter

three we consider established methods of modelling skewed data, whilst in chapters

four and five I present alternate models that better match the data assumptions. In

chapter six I step back to consider how assumptions are created and acted upon in

a specific example.

For each assumption violation, there are a number of potential statistical models

that may provide a good alternative. Given this, how should we determine the

best model to use? Throughout the chapters I consider three main factors when

comparing and contrasting the models. The first is the Type 1 error rate, or the

ability of the model to correctly report no effect when one is truly not present.

The second is the Type 2 error rate, or the ability of the model to correctly report

an effect when one is truly present. The last is the relative informativeness of the
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model, or how well the claims of the model match the claims the researcher would

like to make. Whilst these three factors form a complete picture of many of the

concerns researchers have (or should have) when they choose a statistical test, they

do not directly consider the problem of model complexity.

I discuss model complexity in the discussion section of this thesis. Model complexity

refers to the trade-off between observed data fit and accuracy of future predictions.

The more complex a model, the greater its ability to fit random variation in data

that is not reflective of a true relationship between the variables. This over-fitting

results in the model estimating random variation as if it were true. By the very

nature of randomness, future data is unlikely to have the same random variation as

the current observed data. When an over-fitted model is used to predict new data,

we find that it is much less accurate than when it was fit to the observed dataset.

Indeed, a model that fits the observed data slightly less well might predict new data

better. I argue that complex models play an important data analysis role if they

aid the researcher to make claims about aspects of the data that simpler models

cannot, provided this is not at the expense of model description or prediction.

The work in this thesis begins from the understanding that measurement and other

data generation theories held by the researcher change the type, intention and inter-

pretation of statistics used. Each of the main chapters highlights one of four different

assumption violations, with discussion on what processes produce these violations

and potential solutions. Whilst drawing these ideas together is relatively uncom-

mon within the wider body of psychological research, it is not unique. My unique

contribution to the field is the novel application of existing models and the proposal
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of new models that aim to solve these problems.

1.1 Conventions, abbreviations and common terms

For ease of reading, I will summarise commonly used terms and/or symbols in this

section.

• Bold case: Where possible bold text will be used to represent vector variables,

plain text to represent scalar variables.

• i.i.d.: Identical and independently distributed.

• α: Internal consistency or Type 1 error rate, as given by context.

• β: The Type 2 error rate.

• Power: Defined as 1− β

• N: Denotes the number of observations

• Observed Value: This is the measurement for participant i. If there is only

one measurement per participant then this is represented as xi. If there are k

items to measure the variable of interest, then this is represented as xi,k. If the

same measurement is undertaken on each participant j times, this is written

as xi,j. If there are k items measured on participant i at the jth time point,

this is represented as xi,k,j.

• True Value: The true value is the true value that would be observed if our

measurement method was perfect and introduced no error. In reality this is
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never the case. In practice researchers infer the true value of x, t, from a set

of assumptions about the error that is introduced by measurement.

• Measurement Error: This is the difference between the true score and the

observed value. It is generally assumed to be drawn from a normal distribution

with µ = 0 and represented by epsilon, i.e., ε ∼ N(0, σ). This implies that the

measurement is unbiased but still introduces variance to the scores.

• Standard Error of Measurement (SEM): This is an estimation of the

standard deviation of the normal distribution discussed in the previous item.

The equation (Equation 1.1) requires the reliability of the measure (estimation

of reliability will be discussed in later sections of this introduction), and the

standard deviation of the observed scores for the sample of interest.

SEM = σ
√

1− r (1.1)

• Latent Value/Variable: If a group of k (k > 1) items are all designed

to measure one underlying construct, then this underlying construct can be

considered a latent variable. Like the true value, the latent variable is never

directly observed, but instead inferred from a set of observed responses to

items1. Throughout this thesis, the latent variable will be denoted with a

lower case l such that the value for the latent variable for participant i at the

jth time point is li,j.

• Error: Previously I discussed the concept of measurement error, but error

1If k = 1, then the latent and true value are equivalent.
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can be introduced at many different levels within a model (i.e., the difference

between observed Y and predicted Ŷ in linear regression). Other sources of

error will be discussed as needed throughout this thesis.

• Bayesian Updating: Later in this introduction I discuss the difference be-

tween two opposing statistical approaches. One of these is Bayesian statistics,

where the probability of a set of model parameters (θ) given the observed data

is proportional to the product of the probability of the data (x) given the

model (the likelihood) and the probability of the model (the prior), as shown

formally in Equation 1.2.

P (θ|x) ≈ P (x|θ)P (θ) (1.2)

• Graphical Models: In later chapters I will propose novel Bayesian models.

To communicate these models, I will employ probabilistic graphical models

(PGMs) to describe the likelihood. This is a very common way of visualising

the relationship between variables (e.g, see Jordan, 1998). Each variable is

represented at a node (either a circle or a square), with the solid lines that

join the nodes indicating probabilistic relationships. Nodes that have a dou-

ble outline are deterministic (i.e. not a random variable itself, but directly

calculated from either random or observed variables). Nodes that are square

represent discrete random variables, while nodes that are round denote con-

tinuous. The colouring of the node determines whether the node was observed

(shaded) or not observed (transparent). Large boxes around a group of nodes

indicate these nodes a replicated (e.g., for each participant, for each group).
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An example of this is shown in Figure 1.1.

Figure 1.1: Example Probabilistic Graphical Model (PGM) This figure is

a relatively simple example of the graphical models we use throughout this thesis

to demonstrate the likelihood, or the dependencies between the different model

parameters. Here A, B and D represent random variables, whilst C represents a

deterministic variable (double outline) that can be formed from A and B (direction

of the arrows). As A is square this variable is a discrete variable, whilst B, C and D

are continuous (round). All of the variables are not observed, except for D (shaded).

The two large boxes describe that for each j (where j might be experimental group)

there is a different B and C. For each i (where i might represent each individual

participant) within each group j, a different value for variable D is observed.

• MCMC Markov Chain Monte-Carlo sampling methods

• JAGS Just Another Gibbs Sampler; a language and code base.
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1.2 Measurement theory and inference about er-

ror.

If we measured the entire population of interest with complete accuracy (i.e. ob-

served directly all of the true observed values, ti) then we wouldn’t need to do

inference at all. We would know the true value of the unobserved variable(s) for all

individuals i. The statistical task would be to focus on describing the latent vari-

able(s) and any relationship between them. Unfortunately psychological constructs

(such as scholastic ability and personality factors) always have some error in mea-

surement. This error introduces uncertainty in our estimates of the true score at

both the individual level. In addition, ethical and practical constraints limit the na-

ture of experimental manipulation. We also rarely sample the full population. This

combines with measurement error to introduce uncertainty at the population level.

In the next sections I will discuss different theories of measurement error with the

purpose of demonstrating the assumptions made in very simple statistical methods

and how these assumptions are often taken for granted or ignored. In later chapters

I consider additional and different assumptions that result in models that are more

robust and allow for richer claims to be made about the data.

When we consider measurement error, statistics has three main purposes: First, to

estimate the size of the measurement error. Second, to use this information and the

observed value xi to estimate the true variable ti. Third, to estimate the degree of

uncertainty of our estimate of ti, and then to do the same again with any latent

variables. With these three purposes in mind, we turn briefly to the three main
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theories of measurement: classical, generalisability and item response, to see how

each one accounts for different levels of measurement error.

1.2.1 Classical Test Theory

Classical test theory is arguably the most common theory of measurement (Gul-

liksen, 2013; Novick, 1965). Classical test theory is founded on the relationship

between a true value of a given variable of interest and the value we observe when

we attempt to measure it. In an ideal world the observed and true scores would

be exactly the same, but in reality this is almost certainly not the case. This is an

assumption (though we have good reason to believe it to be true) because the true

value can never be observed. The measurements we make are assumed to be directly

related to the truth with some degree of error, as described in Equation 1.3.

xi = ti + ε (1.3)

If the error term, ε, is assumed to be normally distributed and with some variance

σε, then σε is the standard error of measurement of the scale. Classical test theory

makes three important assumptions about the relationship between the observed

value and the (unobserved) true value.

• Firstly, measurement error is drawn from the same distribution for every ob-

servation of t at the jth time point and the same distribution for every ith

participant’s measurement.

• Secondly, the measurement error is normally distributed and centred around
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zero, indicating that the scale is not biased.

• Thirdly, all measurement items (if there are more than one) designed to mea-

sure the overall latent variable (such as questions in a scale designed to measure

depression) have the same measurement error.

If all of these assumptions hold true, we can estimate the standard error of measure-

ment by using estimates of the scale’s reliability, or the degree to which the observed

measurement varies if the true score remains constant. Reliability can be estimated

in two ways.

1. Test-retest reliability

If the first two assumptions hold true, then reliability of the total score for

each participant can be used. The participants are measured using the desired

scale, and then measured again a short while later. It is presumed that if a

short enough time has passed then the true value will not have changed, so

any change between the times is due to measurement error.

Unfortunately in psychology our participants tend to change over time (Hinton-

Bayre, Geffen, Geffen, McFarland, & Frijs, 1999). In the field of cognitive

testing improvement is often expected even between the first and second test

session as participants tend to learn and exhibit practice effects. If this is true,

then this is evidence to suggest that the true value has changed with time, and

so change between any two time points cannot be strictly attributed to either

error or difference in true value, but rather a mixture of both.

2. Internal consistency
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If all three of the assumptions listed above hold true, then the standard error

of measurement can be estimated using internal consistency. Participants are

measured once with a desired scale that has multiple items that all point to

ti with error drawn from ε. As all observations from each participant are

assumed to have the same ε, we can use the correlation between items to

estimate error.

Unfortunately these three assumptions do not always hold true in any real

psychological testing because often multiple latent traits are being measured by

the same scale, and these traits may all be measured with different error from

different items. For example, the Depression, Anxiety and Stress Subscales

(DASS; P. F. Lovibond & Lovibond, 1995) measures three different latent

variables (namely depression, anxiety and stress), all of which are moderately

correlated with each other (r ≈ .5 − .7). One potential solution is to focus

on a single sub-scale but factor analysis indicates that some items are more

representative of the latent variable than others (Wong, Dahm, & Ponsford,

2013).

The importance of assumptions when calculating reliability is implicated both when

estimating error and also when making inference. I will discuss the implications for

estimating error further in this introduction, and these implications will be especially

salient in chapter five, where we will focus on alternate methods for making inference

when it is hard to estimate error. However, one already established alternative is to

consider the possibility that there are different sources of error. This is the basis of

generalisability theory, which I will briefly discuss in the next section.
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1.2.2 Generalisability Theory

Whilst classical test theory assumes that error is drawn from a similar distribution

across all possible variations of measurement (i.e. the link between the latent and

observed variable is similar across test items, value of latent variable, time etc.),

generalisability theory, subsequently referred to as ‘G’ theory, focuses on segment-

ing this error into defined sources (Cronbach, Rajaratnam, & Gleser, 1963). This

method advocates for research designs that focus on estimating the sources of er-

ror and the size of their contributions first before aiming to answer questions of

relationship (Shavelson, Webb, & Rowley, 1989).

This emphasis on measuring error first means that the purpose of many studies

that are based upon ‘G’ theory is different to those based upon classical test theory.

First, the major contributors to variation are identified (e.g., type of stimulus, time

of day, person administering), and then future experiments are designed to maximise

the sources of variance (i.e., use many stimuli, test at many different time points,

multiple administers) to obtain more accurate estimates. Error is broken down into

components that, as described in Equation 1.4, can interact.

X = T + εtime × εstimuli × εadmin × ...× εother (1.4)

This approach is useful for the design of experiments to maximise efficiency as an

accurate sense of source of variation can aid the researcher to design experiments

that best suit their purposes. The concept that error can have different forms is a

common feature in many of the chapters throughout this thesis. ‘G’ Theory extends
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classical test theory by considering inference over smaller units than just aggregate

scores. Item Response Theory (henceforth abbreviated IRT) extends this further by

considering item-level effects specifically.

1.2.3 Item Response Theory

Item response theory considers how specific items measure a given latent construct.

Whilst classical test theory and ‘G’ theory consider the relationship between mea-

surement and error, IRT argues that different items discriminate between different

levels of ability differently. For example, imagine that we are trying to measure

mathematical ability. A very difficult question or item might be included in our test

to effectively discriminate between an excellent student (who successfully answers

the question) and a very good student (who fails to answer the question). However,

this item would not discriminate well between the very good, good or poor students

as they all would fail to answer the question.

The relationship between item difficulty and individual ability is typically modelled

with a sinusoidal function (usually logit or probit). Figure 1.2 shows an example

of this function for a single item, with ability (θ) plotted on the x-axis and the

probability of success on the item plotted on the y-axis.

If we consider a single item, or a set of many items with relatively similar discrimi-

nation curves, we can see that this method violates the first assumption of classical

test theory, that the error will be drawn i.i.d. for each item. The uncertainty in

estimating the ability of an individual is dependent on the individual’s ability. This

implies that the error differs for different levels of ability.
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Figure 1.2: Example of IRT model for single item. This figure demonstrates

the sinusoidal relationship between an individual’s underlying ability (θ, x-axis) and

their probability of success (y-axis) on an item. Note that the item discriminates well

between some abilities (highlighted dark grey), whilst having limited discrimination

in others (light grey).

Overall, it is clear that these three measurement theories differ in the assumptions

they make about the way the observed measurements are transformed from the true

scores of interest. These assumptions result in different understandings of what

might otherwise be relatively similar datasets. It is an example of one of the themes

underlying this thesis: that data generation processes impact the interpretations

one can make from the data. The next section explores further why measurement

theory matters.
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1.2.4 Identifying Measurement Theory (and why it mat-

ters)

Most research papers that do not explicitly focus on measurement do not directly

specify the overarching theory of how the items were measured. This might give the

appearance that measurement theory does not impact experimental design, conclu-

sions, or the statistics used to the connect the two. I argue, however, that this

appearance is false.

The assumptions that we as researchers make about the way our data were gener-

ated should and does impact the way we design, analyse and draw conclusions from

experiments. However, practicality dictates that these assumptions be designed to

generalise across a wide range of situations, which limits the degree to which they

accord with researcher assumptions. In addition, different theories are used with dif-

ferent aspects of the data so that the choice of theory relates to the desired outcome.

This encompasses questions of measurement accuracy (classical test theory), error

estimation (generalisability theory), and individual latent value estimation (item

response theory).

For the reasons above, no measurement paradigm is inherently superior but in-

stead must be based on a researcher’s aims, intents and beliefs. The next section

demonstrates how different measurement theories result in different interpretations

of common statistical methods.
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1.3 Researcher assumptions and statistics

So far we have seen how different measurement theories make different assumptions

about the way data are generated. Here we discuss why this matters in terms of

how experiments should be designed and analysed.

This section contains three important take-home points. First, the measurement

theories differ in their emphasis of error. Second, the researcher’s intention guides

both their underlying measurement theory and the statistics chosen. Third, these

both contribute to the choice of and interpretation of statistical methods. The first

point becomes relevant to chapter five, which addresses how to identify individual

change from variance due to measurement error. The second and third points relate

to the issue of model complexity. In the main chapters I argue that the aspects of

the data that the researcher is interested making inference about should impact the

choice and interpretation of statistics. This idea is not novel in the abstract, but

this thesis identifies several important contexts in which standard approaches fail to

sufficiently incorporate this insight and proposes models that do. First, though, it

is important to understand how measurement theory relates to assumptions about

the data generation process.

1.3.1 Data generation assumptions

One of the major differences between the three measurement theories we discussed

in the previous sections is that they all differ in the way error is hypothesised to

be introduced to the observed scores. Not surprisingly, this difference results in
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differences in estimating error, which leads to differences in how experimental design

and statistical methods are chosen to elicit error.

Classical test theory

Classical test theory assumes that the observed or measured value represents the true

variable with some amount of unbiased error. If there are multiple measurements

that are designed to represent the same true value (such as multiple items on a test

that are designed to measure the same true variable), then the error is assumed to

be of the same unbiased distribution but independently sampled for each item (i.e.,

independently but identically distributed; i.i.d.). Given these assumptions we can

estimate error in two main ways; internal consistency and test-retest reliability.

The method for internal consistency follows as such. If the error for each item in a

given test is i.i.d. drawn from the same normal distribution with mean of zero, and

the underlying true score does not change throughout the test, then we can use the

relationship between the items within a individual to estimate the error of measure-

ment. Whilst Guttman (1945) first proposed a number of ways to do this, Cronbach

(1951) popularised one of these methods, λ3, calling it internal consistency, or α

(Equation 1.5). This measure is an estimator of the mean of all possible split-half

reliability estimates (Cortina, 1993).2

α =
n

n− 1

(
1−

∑
k σ

2
k

σ2
t

)
(1.5)

There are some caveats to the method though. Although some have claimed that

2Split-half reliability is the agreement between two random subsets of the items.
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internal consistency is the lower bound of reliability (e.g., Novick & Lewis, 1966),

McCrae, Kurtz, Yamagata, and Terracciano (2011) provide empirical evidence to

support the dissonance between internal consistency and other forms of reliability.

Additionally there is a trade-off between having a narrow focus of measurement and

the size of Cronbach’s alpha (e.g., as discussed in Streiner, 2003). The most obvious

example is that tests with a very small number of items risk having an unnecessarily

high α. This isn’t always the case; tests with many items that are repetitive also

risk this (McClelland, 1980).

Although Chronbach’s alpha is the most common method of measuring internal

consistency (e.g., as noted Zinbarg, Revelle, Yovel, & Li, 2005), it is not the only

method of assessing internal consistency. Guttman (1945) discussed six methods

that all stem from an underlying assumption of independence between participants,

and independence between items within participant, combined with an assumption

of an infinitely large population.

This independence assumption does not hold true if the true structure of the test

is hierarchical rather than uni-dimensional. A hierarchical test structure indicates

that the test items represent or ‘load’ to a set of latent variables (such as items in

a intelligence test loading differently on the different facets of intelligence), but also

to an overall latent variable. If this is the assumed structure of the test, McDonald

(2011)’s ωh is more appropriate than Cronbach’s α (which is likely to overestimate

the test reliability).

As an alternative to internal consistency, test-retest reliability is often used, and

is found to be preferable in some cases (e.g., in the measurement of personality;
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McCrae et al., 2011). To estimate measurement error using this method, partici-

pants are asked to complete a given questionnaire two or more times. If we assume

that the underlying true value did not change for the participant between measure-

ments and it is also true that measurement error is independent within participant

and across time, the measurement error can be estimated through the correlation

between the first and second scores, or test-retest reliability. There are a couple

of notable phenomena that suggest that these assumptions do not necessarily hold

true. It is typical to find a decrease in test-retest reliability over time (for example,

comparing short vs long term in McCrae et al., 2011). Additionally, in some con-

texts change is expected (Dikmen, Heaton, Grant, & Temkin, 1999; Hinton-Bayre

et al., 1999). We discuss some of the implications of this in chapter five.

In classical test theory, different assumptions about the data generation process re-

sults in different experimental designs (one versus multiple measurement points in

time), which then impacts the statistical method chosen to calculate measurement

error (internal consistency versus test-retest reliability). From this we see that re-

searcher assumptions impact both experimental design and the statistical methods

used to analyse it. But is this just a property of classical test theory? In the next

sections we consider whether this holds true for ‘G’ theory and IRT as well.

Generalisability theory and error

Classical test theory focuses on estimating the error process in transforming some

set of true scores to a set of observed scores. It requires that this process be i.i.d.

∼ N(0, σ) across people, items, time, etc. to accurately estimate what we will now
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call “population” measurement error. As we discussed in the previous section, these

assumptions lead to vastly different experimental designs and methods. Generalis-

ability theory (‘G’ theory) is not so very different, except this theory views error in

context of the population.

‘G’ theory requires the researcher to explicitly state what their intention is (Cron-

bach et al., 1963). The researcher needs to have an understanding of the population

or set of things that they wish to generalize to. Only with this understanding of

their intent can they then calculate the expected error using an Analysis of Variance

method (ANOVA).

For example, consider a researcher who wishes to estimate the ability of students

to undertake an addition process. He provides them with a scenario where addition

must take place (for example, “Julie has 10 lollies. Richard has 5 lollies. How many

lollies do Julia and Richard have together?). To estimate the measurement error

in this problem the researcher must make a choice. Is the priority to generalise

to similar problems with different numbers? To problems with the same numbers

but different protagonists in the scenario? To problems with the same problems and

protagonists but with fruit instead of candy? This problem is similar to the example

suggested by Cronbach et al. (1963) and highlights that the researcher must include

their own intent in item selection procedures.

These considerations demonstrate that, like classical test theory, ‘G’ theory also

requires researchers to make assumptions and express their intent. The next section

demonstrates that the same is true of Item Response Theory.
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Item Response Theory and error

In classical test theory we saw that the researcher must make assumptions about

the underlying error generation process in order to select appropriate experimental

designs and statistical methods. In generalisability theory we saw that the pop-

ulation that the researcher intends to generalise to must also be included in the

experimental design to create an estimate of expected error. In this section we show

that even for similar datasets the researcher’s theory of how data are generated leads

to a different statistical methods AND intentions.

Item Response Theory (IRT) proposes that there is an interaction between the

discrimination of a given item and the underlying value of the trait being measured

for a given individual. Put simply, whilst classical and (to an extent) ‘G’ theory

assume that the error introduced by an item is drawn i.i.d. for each individual,

IRT suggests that the error term varies as a function of an individual’s underlying

trait and the discrimination of the item (Embretson, 1996). This has two main

impacts: first, if we have already estimated the discriminability and difficulty of a

set of items, Computer Adaptive Testing (CAT) can be used as an experimental

design. Secondly, even if the data is collected in a more traditional way it impacts

the interpretation that one might make from it.

In general, computer adaptive testing works (although there are much more complex

schemes, see Revuelta & Ponsoda, 1998, for a comparison) in the following way.

First, a participant is asked a question with high discrimination at a starting level

of ability (i.e., an “easy” question). If a participant gets this item correct, they

progress to an item of high discrimination at a slightly higher level of ability (i.e.,
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a slightly harder question). If they get a given item incorrect, they are asked a

question with high discrimination at a slightly lower level of ability than the item

they got incorrect (i.e., they get a slightly easier question). Because of this iterative

design and the underlying assumption that the discrimination of each item can be

well estimated, it is possible to produce an estimate of the participant’s ability

with a known standard error. It also allows the researcher to trade-off reducing the

standard error of the estimate and the number of items a participant is required to

complete.

However, even if the data is collected in a more traditional manner (i.e., a set of i

participants all answer the same set of k items) rather than an adaptive design, item

response theory can still be used to elicit the discrimination of the items and hence

the error in each estimate. Whilst classical test theory is very useful at describing

the scale properties as a whole, IRT allows the researcher to infer properties of

individual items. From this inference, the researcher can then choose an alternative

experimental design like CAT, employ alternatives to classical test theory that make

different assumptions, and interpret these methods to make inference at the level of

the individual or item, rather than the group level.

This section discusses the assumptions of three measurement theories to explore

how these assumptions impact experimental design, statistics chosen and the way

the researcher interprets them. Whilst measurement error in and of itself is not the

central focus of this thesis, I chose to include this section for two purposes. Firstly,

many of the concepts of measurement error in classical test theory become salient in

chapter five (where we consider and propose an alternative to how individual change
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can be estimated) and chapter three(where we consider skewed data). Secondly,

that the researcher always makes some inference about the generative process of

obtaining data (implicitly or explicitly) and these assumptions impact the way data

analysis is undertaken. The next section also demonstrates how data generation

assumptions filter through to the intent and interpretations of higher-level statistical

methods. This is important because although this thesis focuses on situations where

the statistical assumptions are discordant with the researcher’s assumptions, it is

important to first understand where they accord.

1.3.2 Researcher intention impacts statistical method

The previous section showed that assumptions about how data are generated affect

experimental design and which statistical methods are appropriate. Here we extend

this idea further to explore the important role of researcher intention. As the list of

potential statistical methods that we could choose to focus on is very large, I choose

to highlight two common intentions. The first set are the methods that a researcher

might use to estimate relationships, which we also consider in chapter three. The

second set of methods are those that a researcher might use to estimate differences

between groups, which we consider in chapters four and five. I focus on how the

researcher’s underlying data generation assumptions interact with their intentions

in the choice of statistical method.
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Inference with relationship-driven data

Consider a researcher with two continuous variables. They wish to infer how closely

these two variables are related. Already the researcher’s intention has placed some

limitations on the type of analysis used. In this case simple linear regression is gen-

erally employed. Although this is a limitation from intention, it is also a limitation

imposed by the researcher’s repertoire. Simple linear regression is almost univer-

sally taught as a statistical method in psychology. More complex methods (such

as non-linear functions) that make more, less or simply different assumptions about

the bivariate relationship are much less common in both classes and research.

Linear regression takes the form of equation 1.6, where a set of predictors Xi are

used to predict the outcome variable Y with some prediction error ε. In the case of

simple linear regression, there is only one predictor X and equation 1.6 simplifies

to equation 1.7. Traditionally linear regression assumes that there is no error asso-

ciated with either the X or Y variables (Spearman, 1904a). Instead the error term

represents the error in predicting Y from X.

Y = β0 + β1 ∗X1 + β2 ∗X2 + ...+ βn ∗Xn + ε (1.6)

Y = β0 + β1 ∗X + ε (1.7)

So far, other than the decision to investigate the relationship between the two vari-

ables, the researcher’s intentions have not played a strong part. However, even

within the regression analysis there are at least three different components of the
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analysis that could be used depending on what their intentions are.

First, the researcher could be interested in prediction. How well can we predict the

outcome variable Y from X? More specifically, for a new observed value of X, xi

can we estimate the corresponding value of Y , yi? To do this we can employ a

prediction interval (Geisser, 1993). Any error in the measurement or observation of

X or Y will artificially widen this interval.3

Second, the researcher could be interested in decision making. In this case the

decision would be binary. Can we correctly identify whetherX is significantly related

to Y or not? If this is the researcher’s intent, they have made assumptions that any

error in generation (such as scale responding patterns) is independent between X

and Y , if present at all.

Third, the researcher could be interested in estimating the strength of the rela-

tionship. In this case he (or she) is interested in estimating the percentage of the

variance in Y that is explained by X. Again if this is the case, the researcher is

making similar assumptions to the other aims listed previously, but because the

researcher is interested in inferring a different aspect of the relationship, he (or she)

uses a different part of the regression analysis.4

Different statistical approaches and considerations must be taken if the researcher

wishes to predict new data, make binary decisions or estimate the strength of a

relationship. For each of these intentions, different underlying assumptions about

the underlying sampling procedure, error function and other factors that impact

3Provided that this error is not correlated between Y and X. If it is correlated,
it could potentially artificially tighten this interval.

4In simple regression the second and third aims are similar mathematically. This
is a special case. This property does not hold true for other regression-type analyses.
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data generation are also made.

Estimating group differences

The important role of researcher intention is not only true for relationship-driven

data; it also applies when researchers wish to estimate group differences. Typi-

cally when considering group level differences, we tend to use tests that focus on

estimating the mean, like t-tests (e.g., paired, Welch, one-sample or students, and

two-sample) and ANOVA (e.g., ANOVA, ANCOVA, MANOVA etc.)5. Importantly

when the focus is on mean estimations, we rely on the mean being a good summary

statistic for the distribution at hand. This generally implies that these analyses

work best when the distributions are symmetrical, and the tails roughly approxi-

mate those of a normal distribution. If this condition holds true, then the research

can make claims about the average scores in group A in relation to the average

scores in group B.

However in some cases the researcher is not interested in inferring average difference

between groups but instead interested in inferring whether the groups differ in terms

of the dispersion of the data. Consider, as we do in chapter three, a scale designed

to measure depression symptomology. The researcher may not want to compare the

groups in terms of average score on this scale, but instead the proportion of individ-

uals who score very highly on this scale. Here the researcher would be interested in

analysing the tails of the distribution.

5These are, of course, mathematically equivalent to linear regression techniques.
I choose to treat these two methods separately in this thesis as they are often used
that way in practice.
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Summary

In this section I briefly discussed two types of analyses: firstly, analyses that focus

on inferring relationships and secondly, analyses that focus on quantifying group

differences. For both of these families of analysis I described how the researcher’s

intentions could impact the aspect of the data the researcher wanted to make claims

about, and hence the statistical methods employed. I pointed out that, like the

estimation of error, these methods all make assumptions about how the data are

generated (an idea that will be revisited throughout this thesis). However, at this

stage, we have only covered how the researcher’s assumptions and intentions influ-

ence statistical methods. In the next section we consider interpretation.

1.3.3 Interpretation, statistical method and assumptions com-

bined

While the researcher’s intention impacts both experimental design and choice of

statistical methods, it also impacts how a statistical method is interpreted. As an

illustration we consider the various ways the previous two statistical methods can

be interpreted.

Simple linear regression

First let’s consider the humble simple linear regression. We’ve already seen we can

use it to estimate error and describe relationships. Here consider linear regression

of two similar datasets. Both datasets contain two continuous variables that form a
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pair of observations from a single person.

However these two datasets differ in the way the data was collected. In test-retest

reliability the first variable consists of total scores on a given scale, while the second

variable consists of total scores on the same scale after some time delay. When

the researcher aims to estimate the relationship between two variables, the two

variables are measured simultaneously (or close to). The researcher’s intention to

either estimate test-retest reliability or strength of relationship has impacted the

nature of their experimental design.

The researcher then makes a strong assumption about what the error term in equa-

tion 1.7 represents. If the researcher is interested in calculating the test-retest re-

liability, they assume that if the paired observation xi and yi are not equal, this

difference is due to some measurement error (εmeasure). If the researcher is inter-

ested in estimating the strength of the relationship between the paired observation

xi and yi, they assume this difference is due to some prediction error (εpredict).

This demonstrates that two identical analyses on (objectively) similar datasets can

produce two completely dissimilar interpretations of the same parameter in the sta-

tistical model.

Analysis of variance

Now suppose that a researcher is not interested in doing a linear regression but

instead wishes to make inferences about a 2x3 design. Suppose the researcher is

analysing a trial where each participant is allocated to one of two different clini-

cians administering one of three different treatments. An ANOVA is conducted,
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and it appears that there is a significant effect of the researcher administering the

treatment. How does the researcher’s assumptions change their interpretations?

If the researcher views this study within the lens of ‘G’ theory, and their aim is to

generalise across a wide range of clinicians (e.g., they are interested in the application

of this treatment in a wider population), they might then choose to add many more

administering clinicians in order to better estimate the effect of the treatment.

However, if the researcher views this difference as an underlying difference between

the two clinicians, they might be interested in identifying why this difference oc-

curs. With this in mind they might conduct post-hoc analyses to identify when and

why these difference occur (e.g., is the effect the same for all participants?) and

potentially future experiments varying clinician characteristics.

Summary

Through examples of linear regression and ANOVA, I have shown that the assump-

tions and aims of the researcher effect the interpretation of statistical methods.

This concludes the first half of this introduction, which demonstrated that statis-

tical methods are always linked to the researcher. It is linked to their underlying

assumptions of how the data were generated, to their intentions with analysing the

data and to the way they interpret these analyses. The main body of my thesis

considers four different common occasions where the underlying assumptions of the

researcher are at odds with the statistical tools that they are using. In each occasion

we argue why we believe this to be the case, what the reasons behind this are and

propose alternatives that directly link to the underlying assumptions.
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In the remaining pages of this introduction I discuss the four assumptions underlying

each of the four chapters and conclude with an overview of the contributions this

thesis makes to the greater body of research as a whole.

1.4 Statistical assumptions that rarely hold true

Each chapter incorporates a different assumption, but all of the assumptions con-

form to three main criteria. Firstly, they are chosen because they were relatively

common practises or occurrences in psychological data analysis. Secondly, the cur-

rent methods usually used in each do not match the underlying assumptions of the

researcher. Thirdly, the solution in two of the four examples involve a relatively

simple Bayesian mixture model.

1.4.1 Assumption 1: Distributional assumptions

Chapter three considers the dissonance between the assumptions the statistical

method makes about the underlying distribution (e.g., normality) and the actual

sample distribution of the data. This chapter explores data where clinical-type

symptoms were measured in a non-clinical sample. This data is skewed, discrete

and bounded, yet a literature review suggests that the most common analyses are

t-tests and correlation type analyses. While the chapter focuses on a specific appli-

cation, here we focus more broadly on where in the data generation process skew

can occur.
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How is skew introduced into a sample?

There are two potential ways that a sample can be observed as skewed. The most ob-

vious (and hopefully the most likely) reason is that the underlying true distribution

is skewed. This is the most desirable as it suggests that the process of measure-

ment does not distort the overall shape of the true distribution. If the measurement

error was truly random, i.i.d. sampled from ∼ N(0, σsem) and the measurement

error is relatively small, then the process of measurement would not bias the overall

asymmetry of the true score distribution.6

The second is much less likely. In this scenario the error term is both very skewed

and contributes a very large amount of variation to the observed score. If both these

are true then even if underlying true distribution is normally distributed, then the

process of measurement will introduce a skew to the observed distribution. We hope

that this is less likely because it implies the measurement is drastically biasing the

underlying distribution. If this is the case, it is very difficult to differentiate between

any skew in the true distribution and skew introduced by the measurement error.

Whilst the first way relates very closely to the assumptions of classical test theory,

the second assumption relates much more closely to the assumptions of item response

theory, when error and the underlying true value interact. In this method a scale may

be roughly normally distributed for some samples (depending on their underlying

true value), but very skewed in others. A good example of this is the previously

introduced example of measuring mathematical ability in 10 year olds and university

6As the variance of the measurement error grows large it would begin to im-
pact the width of the observed distribution, and eventually swamp the underlying
population distribution shape. If there is enough measurement error to change the
distribution shape, then there are probably larger issues with the data than skew.
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graduates. A normally distributed scale for the university graduates might appear

very skewed in the 10 year old sample, even though their true ability is roughly

normally distributed.

It is clear that skew can be introduced into data in a variety of ways. What impli-

cations does this have for how such data can be interpreted?

One implication is that the mean may no longer be an appropriate estimator. Fur-

thermore, any credible (or confidence) intervals drawn around such an estimate that

assume normality would be wider than necessary to account for the longer tail on

one side of the distribution (potentially allowing for a large portion of the interval to

contain values that are highly unlikely, as we see in chapter four). Traditional t-tests

produce intervals that are symmetric around the estimate, which is inappropriate

for skewed distributions. The increased width of the intervals can reduce the power

of the analyses, impacting sample size calculations.

By contrast, if the error distribution is skewed then any distortion introduced by

measurement error will need to be accounted for. When the error is normally dis-

tributed with a mean of zero then this is relatively easy to do. The error of the

measurement can be estimated through estimates of the reliability of scores (either

internal consistency or test-retest reliability). When the error is not normally dis-

tributed this is much more difficult. The issue is compounded if the researcher has

some belief that the underlying true distribution is also skewed.

If measurement error is related to the underlying true scores in some way, this vio-

lates assumptions of independence present in linear regression. As we have already

discussed, linear regression models assume that the error term is independent and
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identically distributed. We previously discussed that because measurement error is

not directly modelled in a simple linear regression model, any measurement is ac-

counted for by the regression residuals. If we have a variable where the measurement

error is related in some way to the underlying true scores, then a regression model

that includes this variable may have its assumptions of homoskedasticity violated.

Loss of homoskedasticity can have drastic implications on the regression analysis.

1.4.2 Assumption 2: Is the sample contaminated?

Measurement theories all have a method to connect the observed measurement with

true scores. What the theories do not consider is the potential for contamination of

the sample, where some portion of the sample is not representative of the variable of

interest at all. In chapter four, I develop a model that accounts for contamination,

but first how does contamination occur, and how would we know if it does?

How does contamination occur?

One way to see contamination is as a function of what is perhaps an unwritten rule

of psychological research. Whatever aspect of the human mind you are interested in,

there will always be some portion of the sample you select that will be responding in

a way that is completely contrary to the way you expected them to, but consistent

with some unexpected interpretation of the task.7

7Although this is not included in this thesis, I began this PhD with a many-armed
bandit task experiment. The results were not particularly interesting, partly because
a proportion of my sample had begun to optimise their mouse movement during the
task to minimise the amount of movement required between trials. They chose the
bandit arm that was closest to the ‘next’ button that still had an acceptable pay-off,
even optimising for slight bias to right-left mouse movements compared to left-right
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There are two main ways this type of error can be introduced into the data. The

first is through an experimental design that allows some proportion of the sample be

from some population that is not the population of interest (e.g., interested in the

lexicon of native English speakers, but some non-native speakers also participate).

The second is through errors in the experimental manipulation (e.g., interested in

learning how participants make decisions given different environments, but some

proportion of participants choose to randomly select options).

The methods we use in chapter four can be used for both samples; if the sample

contains contamination (such as calculating scientific ability of high school students

where a certain proportion had their parents complete their project for them) and if

the process contains contamination (e.g., when measuring the number of depression

symptoms experienced in the last two weeks, and a certain proportion reporting the

maximum number of symptoms they have ever experienced).

How do we identify it?

Consider a relatively common sample size of 125. If the distribution has a relatively

high skew, we would expect the majority of the data to be close together, with a few

datum in the long tail (see the second panel in Figure 1.3). With such a small sample

size, we might have trouble estimating the heaviness of the tail of this distribution

(Hoaglin, Mosteller, & Turkey, 1985). Now consider the first panel of Figure 1.3.

Here we have simulated a distribution where the majority (96%) of the data is drawn

from a standard normal distribution and a very small proportion (4%)is drawn

from a contaminate distribution (N(10, 1)). Notice that the two distributions look

mouse movements. Needless to say, we did not expect that!
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relatively similar.

Figure 1.3: Skewed and contaminated data comparison. This figure demonstrates

the similarity in distribution shape with a contaminated and skewed distribution. The con-

taminated distribution(dark blue) contains 120 random samples from a standard normal

distribution, and 5 random samples from a N(10, 1) distribution. The skewed distribution

contains 125 samples from a lnN(0, 1) (light blue).

While in chapter three we consider the impact of distributional assumptions, in

chapter four we consider the impact of contamination when calculating the mean. In

both chapters we propose models that can account for these assumption violations.

Chapter three proposes a model that provides good mean estimates for a skewed

normal distribution, while chapter four uses a Bayesian mixture model to identify

and discount points that are potential contaminants that that influence the estimate

of the mean. The difference between the two models is when estimating measures of

scale. Here the two models diverge; the skewed model estimates scale as reflected by

the full width of the distribution, but the contaminated normal model only estimates

the width of the target distribution.

Naturally with two models that agree on estimating one parameter but diverge when
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estimating another, we should question which is the most appropriate to use. It does

however make these assumptions more explicit, which we discuss in later chapters.

First, we turn our attention to another pressing assumption. If we are willing to

consider heterogeneity of sample and response in simple estimation of the mean,

could we consider heterogeniety in response? The following section addresses just

this.

1.4.3 Assumption 3: Is the response homogeneous?

Chapter five considers an experimental design that compares an experimental manip-

ulation against a control condition. If we are willing to entertain that each condition

might result in a clustered effect (i.e., not all participants respond in the same man-

ner), then we must consider whether we should expect the proportion of individuals

in each condition to be similar. If they are different, wouldn’t the proportion of

individuals who improve be as important as the size of the improvement?

The concept of considering different proportions of participants is not a new idea.

In the clinical psychology literature, a tool known as Reliable Change Indices (RCI;

Jacobson & Truax, 1991) and other variations such as the Wyrwich Standardized

Difference (WSD; Wyrwich, 2004) and the Hageman Arrindell (HA; Hageman &

Arrindell, 1999) have been used. These methods identify individuals who have

experienced a significant change but do not the easily compare the proportion of

individuals experiencing an effect. All of these methods require an accurate measure

of the standard error of measurement (or the error in linking the observed to the

latent variables).
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These methods compare the change experienced by any given individual to the

standard error of measurement. They all aim to do two things: First, to identify the

amount of variability or the standard error of measurement that should be expected

if no change occurred; and second, to compare the amount of change experienced by

the individual of interest to decide whether this was significantly different or not.

The Bayesian mixture model introduced in chapter five, unlike existing methods,

does not require a direct estimate of variability, but instead compares the relative

difference in the proportion and size of effect between two conditions.

One aspect of experimental design that we do not explicitly consider in this section,

but is very common in trials that are interested in measuring reliable change, is

accounting for missing data. The next section addresses this issue, with a focus

not on the statistical model involved but on evaluating people’s intuitions in this

context.

1.4.4 Assumption 4: Is there omitted data?

Previous empirical research suggests that humans make complex and perhaps un-

intuitive decisions when there is missing data. Researchers are humans, and humans

demonstrate a number of biases of numerical reasoning (e.g., Ellsberg, 1961; Epley

& Gilovich, 2006; Landy, Silbert, & Goldin, 2013). Given that the central message

of this thesis is that researcher assumptions can and should be incorporated into

statistical models, is non-optimal human cognition a problem?

In chapter six I address this question, presenting original research investigating how

people make inferences given missing data. It argues that since we cannot avoid
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assumptions entirely, it is important to be cautious and explicit about which as-

sumptions we make. Moreover, the experiment demonstrates that although people

have certain reasoning biases, in many cases such biases are sensitive to the under-

lying data generation process in an interesting way.

Statisticians draw the distinction between three different types of missing data;

missing completely at random, missing at random and missing with some underlying

process (i.e., missing not at random). Importantly the choice of which process is

most appropriate for the researcher to model lies with the researcher, and their

assumptions about the data generative process. To illustrate the difference between

these three terms, I provide the following example.

Consider a lecturer who wishes to obtain a sense of their quality of teaching. To

do so they send an email to all students inviting them to special lecture. Following

the lecture the students are invited to fill out a survey rating the lecturer’s efficacy.

Some data were missing in the survey. Conceptually there are three different ways

this data could be theorised to be missing.

Missing completely at random refers to occasions where the data are missing with

no relationship to either the variable of interest or any other part of the dataset.

In our example some of the surveys may have inadvertently had coffee spilled over

them, rendering them unreadable.

Missing at random refers to occasions where the data are missing with no direct

relationship to the variable of interest but are related to other aspects of the dataset.

In our example this could be occur through some students using a certain email client

that is particularly aggressive in identifying junk email (reducing the probability of
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participation). The students never realised there was a lecture and so never attended

to fill out the survey, but the choice of email client is unlikely to be related to the

student’s opinion of the lecturer.

Lastly the missing data can be assumed to be missing due to some underlying

process. In our example if the students already find the lecturer unpleasant in

some way (e.g., boring, ineffectual etc.) they may choose not to waste their time

by attending an optional lecture by the teacher in question and so the sample will

under-represent individuals who dislike the lecturer, which inflates positive scores.

Chapter six reports on an experiment that investigates the inferences individuals

make when faced with missing data that is ambiguous in nature. We show that

despite having a relatively good grasp on the underlying distributional information,

individuals still tend to favour decisions that did not match the information they

had been given.

Although is a slightly different approach to the rest of this thesis, I include it

as evidence that researcher assumptions and inference may not necessarily be as

straight-forward as made out in chapters three to five. Taken together, one impli-

cation may be that the process of choosing more appropriate models (as in chap-

ter three through five) may help researchers to clarify and communicate their un-

derlying assumptions.
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1.5 Contributions of this thesis

In previous sections I identified and described how the researcher’s assumptions,

intent and desired interpretation drive the statistics used by that researcher. I

described four different occasions where the researchers and statistical assumptions

currently do not match, and described why this is not desirable. I then explored

how changing the basic assumptions might require more complex models, and how

this benefits the researcher by allowing them to directly make claims about certain

aspects of the data that are important (even if no additional variance is explained),

and also make explicit implicit assumptions about the data. This thesis uniquely

contributes to this argument in three main ways.

• Firstly, I use key modelling features taken from the cognitive science domains.

Models should be based and explored upon their underlying representation of

the data as well as the way they fit and predict data. I use this concept within

the broader field of data analysis in a psychological context.

• Secondly, I achieve this through the suggestion of alternate models that di-

rectly achieve the underlying goals central to common data analysis but are

currently not achievable (e.g., the removal of outliers before calculating the

mean of a distribution and the allowance for heterogeneity in response to an

intervention). To the best of our knowledge, whilst the underlying traits of

these models are not unique (e.g., Bayesian hierarchical and mixture models

are well known), these applications are unique.

• Lastly, I also take considerable pains to explore and demonstrate the reliabil-
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ity of these models in a variety of situations. Unique models are relatively

easy to propose in the current climate of Bayesian modelling through MCMC

sampling. For each new model I take significant space to demonstrate its

properties in terms of power, Type 1 error and other important properties

of interest to the researcher. In some cases I also suggest extensions to the

models that may be possible, but do not have space to devote to such an in

depth analysis.

It is my hope that these three core contributions will help the wider field of psy-

chological research (and others who collect, collate and analyse data from people)

to connect closer to some of the core strengths of the field of cognitive science. By

modelling the process and incorporating experience that the researcher brings to

data analysis it is my hope that data analysis will have greater finesse and allow

for stronger, and perhaps more importantly different claims to be made about the

data.

1.6 Outline of approach

In chapter two I outline and defend the statistical methods that are proposed in this

thesis. I will also outline the metrics by which the models are compared.

To address the hypotheses in chapter three I will demonstrate that removing (vio-

lated) distributional assumptions can increase the power and false acceptance rate

when considering skewed distributions.

Although this suggests that statistical analysis should move towards making fewer
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assumptions about the data, we show in chapter four that this is not the case. By

adding in a theory of contamination as part of the data analysis I show that we can

still achieve good accuracy whilst adding in a greater richness of the conclusion that

can be made.

Chapter four focuses on the use of Bayesian mixture models where the data are

assumed to contain some proportion of contamination that impacts our ability to

make inference about the expected value. Chapter five demonstrates that the same

family of data analysis techniques can be applied in a completely different context

to make different but equally rich claims about individual differences in outcomes

in randomised control trials.

In chapter six I explore a cautionary example in a study that asks participants

to make a judgement given missing information. Researchers often have to make a

judgement about their believed underlying generative process that results in missing

data, this chapter demonstrates why these judgements should be explicit.
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Methodology

Torture numbers, and they’ll

confess to anything.

Gregg Easterbrook

So far I have discussed the basic goals of this thesis, namely investigating the re-

searcher’s assumptions, intent and interpretation, and connecting these to modelling

approaches. Before we can investigate this, first I will discuss how these models are

to be expressed, estimated, evaluated and compared.

The overarching message of this chapter is to provide assurance that the estimation

and model analysis methods that I use throughout the forthcoming chapters are

not, as Gregg Easterbrook would say, simply torturing numbers to tell a particular

story. Instead I aim to demonstrate the principled manner in which the models that

I wished to compare were constructed, fit to the data and evaluated.

I outline four main aspects of statistical methodology that are relevant: First, the

difference between Bayesian and frequentist modelling approaches, focusing primar-
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ily on the underlying differences in underlying probability theory and interpretation.

Second, how different parameters within the model are estimated, weighing up the

differences between explicit and several sampling-based methods. Third, assessing

the estimations produced, focusing on assumption checking and methods of assess-

ing approximate Gibbs sampling methods. Given the accuracy of the estimation

procedure, I then consider the accuracy of the model itself through Type 1 and

Type 2 error. Finally I summarise the outcomes of these four section to provide a

justification of the statistical tools used throughout this thesis.

Before this, I first wish to preface this chapter. The previous chapter contained

many examples of common frequentist-style tests. They were chosen to illustrate

how common and popular statistical models make strong assumptions about the

data. Since frequentist-style statistics are still very common, frequentist statistics

were chosen as examples. It is important to note that Bayesian alternatives can be

produced that still preserve the same model structure and underlying assumptions

(for example in Morey & Rouder, 2015). This thesis is not designed to be an example

of Bayesian statistics proving to be better than frequentist. My interest lies with the

interaction between model and researcher assumptions. In this sense I take the view

of Bayarri and Berger (2004) that the most convenient method should be chosen.

With this in mind we proceed to the first consideration I made in the methods

produced in this thesis: The choice of Bayesian or frequentist statistical methods.
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2.1 Bayesian and frequentist statistics: The un-

derlying differences

In recent years statistics, especially statistics in the psychological and cognitive

literature, have broken into two rather distinct groups: Bayesian (e.g., Kruschke,

2010; Navarro, Griffiths, Steyvers, & Lee, 2006; Rouder & Morey, 2012; Wagenmak-

ers, 2007) and frequentist (e.g., Cumming, 2008; Smithson & Shou, 2017), with a

considerable amount of discussion of the relative merits of each (e.g., Efron, 1986;

Wagenmakers, Lee, Lodewyckx, & Iverson, 2008). Despite each side making strong

arguments in favour of the efficacy of their chosen method, they differ in underlying

probabilistic theory that the statistical inference is founded upon.

In practice there is also a divide between the most commonly used estimation

method. In the frequentist framework, analytic solutions (such as least squares

estimation for regression) dominate, with simulated solutions (such as bootstrap-

ping procedures) less prevalent. In Bayesian literature, sampling and approximate

methods dominate with more complicated models, whereas simpler models tend to

be estimated analytically. The next two sections address these two differences in

turn.

2.1.1 Differences in Probability

The two main statistical methods differ in the probabilistic theory that underpins

them. This difference would perhaps not be as salient and important to researchers

if it did not also results in differences in the interpretation of the statistical method
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as well.

First we will consider frequentist inference, which could be considered the more tra-

ditional statistical method in psychological data analysis. The concept of frequentist

inference was developed by Neyman (Neyman, 1937), Pearson (Pearson, 1920) and

Fisher (Fisher, 1925). Fisher and Neyman-Pearson both based their work off clas-

sical probability theory, but had strongly opposing views on the interpretations.

Fisher was concerned with issues estimating evidence. He suggested a statistical

methodology where findings were quantified in terms of the likelihood of obtaining

a result as rare or rarer if a null hypothesis (H0) was true.

The Neyman-Pearson interpretation was concerned with the balance between the

control of Type 1 error, α (the probability that the null hypothesis was falsely re-

jected) and Type 2 error, β (the probability of incorrectly retaining null hypothesis).

This interpretation introduces a second, alternative hypothesis HA. The set of null

and alternative hypotheses encompass the full hypothesis space, for example, the

following null H0 and alternative HA to test whether the population mean is equal

to zero.

H0 : µ = 0

HA : µ 6= 0

(2.1)

The power of the method can be derived easily from the Type 2 error rate as 1− β,

the probability of correctly rejecting the null hypothesis. These two methods were

subsequently integrated within the statistical literature to obtain a method that

neither Neyman nor Pearson nor Fisher would be comfortable using, but is the
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prevailing interpretation (Hubbard & Bayarri, 2003).

Frequentist inference is based on classical probability theory, or the probability

of an event occurring in a sequence of opportunities where it is possible it could

occur (i.e., number of times a coin flip returns heads). Bayesian inference relies

on the estimation of the probability of an event given some prior. This subjective

definition allows us to quantify single occurrence events, like the probability it will

rain tomorrow. Whilst frequentist inference is concerned with the quantification

of the data given a null hypothesis, i.e., p(x|H0), Bayesian inference is concerned

with the quantification of any hypothesis, H, given the data observed (i.e., p(H|x)).

This distinction allows one of the largest benefits of Bayesian statistics, the ability

to quantify evidence for the null (Wagenmakers et al., 2008).

The quantification of p(H|x) was first introduced by Laplace and popularised by

Bayes with Bayes theorem. This theorem (Equation 2.2) describes the relationship

between the conditional probability of event A given event B. The benefit is that it

can be used to estimate the probability of a hypothesis given some observed data,

as in Equation 2.3. In this equation, p(H|x) is referred to as the posterior, p(H) the

prior, and p(x|H) the likelihood. The posterior describes the updated probability

of the hypothesis H from the prior probability of the hypothesis p(H) given the

observed data x and the likelihood of observing the data x given the hypothesis H,

i.e., p(x|H). p(x) is the a normalising constant, and is the probability of x given

all hypotheses H. In Equation 2.4, this requires a complicated integral which is not

trivial to estimate.
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p(A|B) =
p(B|A)p(A)

p(B)
(2.2)

p(H|x) =
p(x|H)p(H)

p(x)
(2.3)

p(x) =

∫
p(x|H)p(H)dH (2.4)

Generally the hypothesis H relates to testing a set of parameters, denoted θ such

that θ = {θ1, θ2, ...θn}. If this is the case then the problem at hand would relate to

estimating the probability of these parameters θ given some set of observed data x.

Formally this means that we would substitute θ for the generic H in Equation 2.2

to produce Equation 2.5.

P (θ|x) =
P (x|θ)P (θ)

P (x)
(2.5)

How do the underlying differences between Bayesian and freqentist approaches in

how probability is defined lead to differences in interpretation?

2.1.2 Differences in Interpretation

Perhaps unsurprisingly, when two methods differ dramatically in their underlying

theory, the interpretation of these methods is also different.

First we consider the frequentist viewpoint, which encompasses both the Fisherian
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and Neyman-Person approaches. The Fisher viewpoint suggests that the observed

data x should be interpreted in terms of how likely it would be to observe this data

given the null hypothesis H0. Under this view, a p value can be interpreted as the

probability that we would observe data as rare as what we had observed or rarer

given the null is true.

Unlike the Fisherian view, the Neumann-Pearson weighs evidence for a competing

alternative hypothesis HA. Although we cannot formalise evidence for the null

hypothesis H0, we reject the null hypothesis in favour of the alternative hypothesis

if there is sufficient evidence that the null is unlikely. Here we can view the p value in

as a long-run probability. If the null is true and a 95% confidence interval is drawn

to reflect uncertainty about our estimate of a given parameter of interest, we would

expect that 95% of all confidence intervals drawn would contain the true parameter

of interest. In both the Fisherian and Neumann-Pearson views, the evidence is

viewed as the likelihood of a data x given some null hypothesis H0 (i.e, p(x|H0)).

Bayesian methods have an alternative interpretation because they estimate the prob-

ability of a given hypothesis given x directly (i.e, p(H|x)). If we focus on parameter

estimation, then a credible interval can be formed that reflects uncertainty on the

estimation of a given parameter. While the traditional 95%-confidence interval can

be interpreted in that 95% of all 95%-confidence intervals contain the true popu-

lation parameter, a 95%-credible interval can be interpreted as containing the true

parameter with 95% confidence. If we consider hypothesis testing, the Bayesian

approach allows for the estimation of the probability of the null hypothesis directly,

which frequentist methods do not.
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Furthermore, if we wish to compare which of two models is more likely given the

data at hand, the frequentist would calculate the likelihood ratio (Equation: 2.6)

and interpret it as the ratio of likelihoods of observing the data given hypothesis 1

and 2. The Bayesian would calculate a Bayes Factor (Equation: 2.7), and even if

p(H1) = p(H2) and so the formula was exactly Equation 2.6, would interpret the

ratio as the ratio of the conditional probability of hypothesis 1 and hypothesis 2

given the observed data.

p(x|H1)

p(x|H2

(2.6)

p(H1|x)

p(H2|x)
=
p(x|H1) ∗ p(H1)

p(x|H2 ∗ p(H2)
(2.7)

Rather than adopting one approach or the other – only frequentist or only Bayesian

– this thesis takes a toolbox approach. While in chapter three we consider mostly

frequentist models, in chapters four and five I propose Bayesian mixture models as

potential solutions. I am primarily concerned with finding the most appropriate

model, and so attempted not to be bound too tightly in idealistic notions of the

“true” probability theory. However, the differences between interpretation make it

difficult to directly compare frequentist and Bayesian methods. This means that I

am careful throughout this thesis to compare frequentist with frequentist methods

(chapter three) and Bayesian with Bayesian methods (chapters four and five).

To do this comparison, we must be able to estimate the parameters of the model, or

‘fit’ the model to the data we have observed, as discussed in the next section. There

we will again see differences between frequentists and Bayesians in the methods of
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model fitting.

That being said, there are a number of intuitive benefits to Bayesian methods (Wa-

genmakers, 2007). These benefits result in a general preferences for Bayesian meth-

ods in this thesis (e.g., see chapters four and five). One benefit that is displayed

in chapter four is the creation of intuitive credible intervals, also discussed in the

next section. These intervals do not reflect long range probabilities but rather the

confidence we have in our estimate interval.

2.2 Estimating parameters and uncertainty

Statistical estimation broadly falls into two main aims: Firstly, to estimate param-

eters from a limited subset of observed data, and secondly, to compare different

hypotheses e.g., comparing H0 to HA. Here I focus primarily on parameter estima-

tion, with little attention paid to comparing the likelihood of different models. Later

in this chapter, when I argue for comparing models by the reliability and accuracy

of decisions made from the data, I use an approach similar to Kruschke (2010) and

Cumming (2008).

Before discussing parameter estimation, we must first consider how we will describe

the parameter of interest. There are two types of information we will consider.

The first is a single point estimate that is most representative of the parameter

of interest (e.g, the sample mean, X̄, estimating the population mean. µ). The

second is an interval that represents the uncertainty we have about that population

estimate (e.g., a credible or confidence interval). These two types of information are
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either estimated directly through explicit likelihood functions, or through a sampling

procedure.

2.2.1 Explicit

Initially statistical methods were constrained by the limits of computational power.

This meant that many of the oldest methods such as correlation (Galton, 1886;

Pearson, 1895), student’s t-test (Student, 1908) and linear regression (Galton, 1894)

had analytic or explicit solutions. Explicit solutions involve deriving a symbolic

solution to a general problem given a set of assumptions. This large initial time cost

is offset by the generality and speed of the computation after an explicit solution

has been found.

Throughout this section we will consider estimating a relatively simple statistic,

the population mean µ, which we continue to attempt to estimate throughout this

thesis. If the sample is independently drawn from a normal distribution, then the

mean of this distribution can be approximated with the sample mean X̄. We can

also create a 95%-confidence interval1 that represents uncertainity in this estimate.

Given the assumption of normality, the formula for this confidence interval only

relies on the sample mean X̄, the sample standard deviation sd and the quantile of

a t-distribution that corresponds to an 95% level confidence interval (Equation 2.8).

The sample mean, sample standard deviation and size of the sample are quick to

compute, and there are tables of the relevant quantiles for the t-distribution with

different degrees of freedom, which makes this equation very quick to compute.

1It is trivial to create an interval that contains the true mean α% of the time,
but 95% is the most common.
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(
X̄ − tdf,α

2

sd√
n
, X̄ + tdf α

2

sd√
n

)
(2.8)

This equation relies on the central limit theorem, which states that for a set of

samples S = {s1, s2, s3, ...sk}, drawn i.i.d. from some distribution with mean µ, the

distribution of means calculated from this set of samples (S̄ = {s̄1, s̄2, s̄3, ..., s̄k})

will be normally distributed with mean µ provided that k is sufficiently large. This

finding is independent of the shape of the distribution from which the sample is

drawn.

However, the mean of the distribution may not be the most desirable summary statis-

tic if the distribution is not symmetric. Other estimators might be used, but these

estimators add additional complexity to the explicit solution, making the explicit

solution difficult if not impossible to find. Explicit solutions are not always tractable

and generally quite hard to find. Relying on models that do have explicit solutions

results in the use of models which make very strong assumptions about the popu-

lation distribution, and limits what estimators can be used. In this thesis we only

consider explicit solutions in chapter three, whereas in chapters four and five employ

sampling solutions.

2.2.2 Sampled solutions

While explicit methods expend time to create a solution and then capitalise on

this time with when the solution is calculated, sampling based methods have the

opposite focus. It is relatively easy to define a model, complete with underlying
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distributional assumptions and assumptions about the relationship between param-

eters2. However, these models can take a much longer time to estimate parameters

in the model because a procedure of sampling must be undertaken. This thesis

incorporates two methods of sampling: bootstrap and Markov-chain Monte Carlo

(MCMC). Note that the choice of solution method is not dependent on the underly-

ing statistical approach. Both Bayesians and frequentist can and do use both, with

preferences for different types of approaches.

Bootstrap

This method was first developed by Efron (1992). We first consider this method

in a frequentist sense. Say we have N observations of a variable x, where the

ith variable is denoted xi such for N observations of xi, X forms a set such that

X = {xi, x2, ..., xN}. From this sample we would like to make some inference

a certain statistic about the population from which the sample was drawn. For

simplicity we will again discuss estimating the population mean µ from the sam-

ple mean X̄. The simplest bootstrapping process takes a sample Xs of size N

from X with replacement and calculates the mean for this sample, X̄s. This sam-

pling procedure is completed B times, where B is generally very large (B > 1000).

If the sample is representative of the population, then this set of sample means

X̄B = {X̄s1, X̄s2, ..., X̄sB} can be used to make inference about the population mean

µ.

Like with the analytic method, bootstrapping uses the sample mean X̄ as an es-

2It is, as we will see, not trivial to demonstrate that the parameter estimates are
trustworthy or the model suitable. We discuss this in the next section.
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timate for the population mean µ. However, rather than relying on an analytic

solution for the 95%-confidence interval, we can use the bootstrapped distribution

to estimate an interval that, with 95% confidence contains the population mean

µ. As we see in equation 2.9, this does not rely on the sample standard deviation

or t-distribution quantiles, but instead the
(

1−.95
2

)
and

(
1 − 1−.95

2

)
quantiles of the

bootstrap distribution.

(
X̄b,.025, X̄b,.975

)
(2.9)

The Bayesian approach can also utilise bootstrapping methods, although they are

somewhat less common. In chapter four we discuss Bayesian bootstrapping, as first

proposed by Rubin et al. (1981). For simpler Bayesian models Efron (2012) suggests

that parametric bootstrapping might also be suitable. Parametric bootstrapping

uses the sample estimate parameters that describe the population distribution (i.e.,

if the population is normal, the mean µ and variance σ2 is estimated using the

sample mean X̄ and variance sd2). We would then generate B samples from this

distribution and calculate the sample mean X̄b. From this set of sample means, we

calculate our interval as in the more traditional bootstrap method.

Whilst we will consider bootstrapping in a Bayesian sense briefly in chapter four,

it is not appropriate for many of the more complex models that we will consider

in other chapters. For these models we will need to consider an alternate sampling

strategy.
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Markov-chain Monte Carlo

Markov-chain Monte Carlo (MCMC) methods are a class of simulation procedures

used to sample from a distribution of interest. They can be considered an extension

of a random walk, where each new proposal point is dependent only on the last

accepted point. This feature comes from the Markov-chain part of the algorithm.

The Monte Carlo part refers to the process of generating suitable proposal points in

order to numerically estimate something that is analytically difficult to calculate.

Why are MCMC methods used so extensively throughout Bayesian statistics? The

primary reason for their use in this thesis simply relates to the complexity of the

problem at hand. In equation 2.3, we saw the probability of the model H given the

data x is equal to an equation of which the denominator is p(x). This denominator

can be considered as the probability of x under given all possible models Hi, or the

marginal distribution of x. As we see in equation 2.4, this results in a complicated

integral, which can make the quantification of p(x) relatively difficult. MCMC meth-

ods allow the user to sample from the posterior directly. They promise convergence

to the posterior in infinite samples.

MCMC forms a class of a number of different sampling procedures. They all share

the same desirable traits, but with small differences between them. Throughout

this thesis I will use Gibbs sampling (Gelfand & Smith, 1990; Geman & Geman,

1984), implemented through Just Another Gibbs Sampler (JAGS; Hornik, Leisch,

& Zeileis, 2003). Other methods that we could have chosen include the Metropolis

Hastings or Hamiltonian Monte Carlo (Neal, 2011) algorithms, as implemented in

Stan (Stan Development Team., 2016) and a number of methods implemented by
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webppl (Goodman & Stuhlmüller, 2014).

For the models implemented in this thesis, many of the MCMC methods mentioned

above would have been suitable. Gibbs sampling was chosen primarily because it is

very popular. This popularity is partly due to longevity, one of the earliest easily

accessible MCMC methods was an implementation of Gibbs sampling in WinBUGS

(Lunn, Thomas, Best, & Spiegelhalter, 2000) in the late 1980s. JAGS was chosen

as the preferred Gibbs sampler and had easy interface with R (R Core Team, 2015)

through the package rjags (Plummer, 2016). The popularity was important because

I, and the other researchers involved in the projects presented in this thesis, believe

the models presented are useful to the wider community. To aid their dissemination

we chose to use the most accessible method of implementation. There are also a

number of examples that illustrate the suitability of Gibbs sampling for complex

hierarchical models (e.g., Growth Curve models, Gelfand, Hills, Racine-Poon, &

Smith, 1990). This is the why, but how does Gibbs sampling ensure good estimation

of the posterior?

Gibbs Sampling

Bayesian analysis requires some estimate of the posterior p(H|x). This is difficult

because to directly estimate the posterior we would need to estimate the marginal

distribution p(x). As we have already discussed, this is quite difficult to do for

complex hierarchical models (such as those used in this thesis). Gibbs sampling

provides us with a method of sampling from the posterior without having to estimate

the marginal density.
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Gibbs sampling involves iteratively sampling the conditional density instead. Say

we have a model parameter space θ such that θ = {θ1, θ2, ..., θk} is the full set

of parameters that we wish to estimate. We also have a set of N observations

X = {x1, x2, x3, ..., xn} that we hypothesise is generated by the model. Provided

we have the conditional distribution p(θi|θ1, θ2, ...θi−1, θi+1, ..., θk,X), we can use a

Gibbs sampling procedure. We describe this process (see Casella & George, 1992;

Coro, 2013; Lynch, 2007, for full explanation) next before considering when the

conditional density does not have a good solution.

1. Obtain a set of starting values for theta, θ(1). These can be chosen randomly

from priors for θ, or chosen through more advanced methods such as maximum

likelihood estimation.

2. Update θ
(2)
1 using the conditional distribution p(θ1|θ(1)

2 , ..., θ
(1)
k ,X)

3. Sample θ
(2)
2 using the conditional distribution p(θ2|θ(2)

1 , θ
(1)
3 , ..., θ

(1)
k ,X)

4. Continue to sample the ith parameter in the model, θ
(2)
i using the conditional

distribution p(θi|θ(2)
1 , θ

(2)
2 , ...θ

(2)
i−1, θ

(1)
i+1, ..., θ

(1)
k ,X)

5. The process outlined in steps 1 through 4 details how to sample one full set

of parameters. This process is repeated J times.

Whilst this is a good description of Gibbs sampling, JAGS does not restrict the user

to models where the conditional distribution can be expressed (Coro, 2013). Instead

a number of sampling algorithms are used (Plummer, 2015).

One such algorithm is the Metropolis Hastings algorithm (Hastings, 1970; Metropo-

lis, Rosenbluth, Rosenbluth, Teller, & Teller, 1953), described by Chib and Green-
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berg (1995). This algorithm is used in conjunction with Gibbs sampling for steps 1,

3 and 4 where it is not possible to sample directly from the conditional distribution.

If p(x) is the distribution that we desire to sample from but cannot directly, and

g(x) is some symmetric distribution that we can sample from, then the Metropolis

Hastings algorithm allows us to sample from p(x) as follows:

1. Draw a sample from the distribution g(x′|xt), where xt is the current sample.

This is our proposal as a new member of p(x), but it hasn’t been accepted yet.

2. Create an acceptance ratio for this sample, such that α = P (x′)
P (xt)

, where P (x)

is the density of p.

3. The generate a random number u from a Uniform distribution U [0, 1]. If u < α

then accept the proposed x′, otherwise reject and repeat.

For space purposes we will not consider the various virtues of different methods of

sampling algorithms here, but instead trust Hornik et al. (2003) that JAGS can

appropriately sample from the conditional distribution. In this section we discussed

the process of Gibbs sampling in relationship to Bayesian inference. Gibbs sampling,

a member of the MCMC family, allows the researcher to sample from the conditional

distribution without requiring estimates of the marginal p(x) Unlike bootstrapping

procedures, MCMC methods can handle relatively complicated models efficiently.

2.2.3 Type of interval

The previous sections, where I discussed analytic and bootstrapped solutions, demon-

strated that different methods can require different types of intervals to represent
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confidence. While the analytic solution had a formula that suggested the interval

with which, with 95% confidence, the true parameter fell within, the bootstrapped

95% confidence interval was derived from quantiles of the distribution of the pa-

rameter of interest. Although the intervals are estimated in different ways, they are

both estimated using distribution quantiles (the analytic solution indirectly using

the t-distribution). In the past two sections we have discussed obtaining a set of

samples from the posterior of interest p(θ|X). Given that we have this set of J sam-

ples of the posterior for θ, how should we estimate our uncertainty in our estimate

of θ? In this section I will consider two alternatives.

Option 1: Reuse the Quantile method

Perhaps the most obvious option at this stage is to use a similar method as the

explicit and boot-strapped intervals and employ a quantile method. To do this we

would take the bottom 2.5% quantile and upper 97.5% quantile for a given parameter

θi. This interval represents the interval that we are 95% confident contains the true

parameter estimate for θ. A graphical representation can be seen in the first row,

first column of Figure 2.1.

While this method makes sense for a posterior that is uni-modal, for a multi-modal

(e.g., tri-modal posterior, first row, second column, Figure 2.1) this interval will

contain areas that are very unlikely to contain the parameter of interest. Given this

issue, what other options do we have?
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Figure 2.1: Two different methods of estimating uncertainty In this figure we

demonstrate two different methods of creating a credible interval. The green represents

the quantile or ‘equal-tailed’ credible interval, the blue represents the highest density

interval. Note that while the quantile distribution focuses on estimating the interval that

encompasses 95% of the posterior, the HDI estimates the interval that is most likely. For

a uni-modal distribution they are relatively similar, but for a tri-modal distribution the

HDI returns an interval that is not continuous.

The Highest Density Interval

The Highest Density Interval (HDI) (Hyndman, 1996) seeks to estimate an interval

in which the parameter is most likely. While the quantile method measures 95% of

the mass of the posterior from the x-axis, the HDI measures 95% of the mass of the

posterior from the y-axis. The graphical representation of the difference between

the two is demonstrated by comparing the two columns in Figure 2.1.

There is very little difference between the interval drawn using the quantile method

and the HDI where the distribution is uni-modal. However in a tri-modal posterior

62



Chapter 2

(second column, Figure 2.1), there were substantial differences. In this instance the

quantile method returns a single, continuous interval that contains two regions of

very low probability (i.e, the two troughs between the peaks). The HDI, however,

returns a set of intervals that contain the highest probability for that parameter,

but are not discrete.

This thesis uses highest density intervals3. As we demonstrated above, these inter-

vals are more informative when the posterior is not uni-modal and are more intuitive

to interpret (Kruschke, 2014).

2.2.4 Summary

In this section I discussed the problem of estimation. Both frequentist and Bayesian

statistics can employ explicit or sampled solutions. While frequentist methods tend

to be analytic or estimated via bootstrapping, Bayesian methods tend to be analytic

or estimated through MCMC methods. This is reflected in their use throughout

this thesis, with Bayesian methods (chapters four through to six) estimated through

Gibbs sampling, and frequentist methods (chapters three and six) using analytic or

bootstrapped methods.

I also discussed estimating uncertainty through intervals. In frequentist methods

uncertainity is represented with confidence intervals. If we draw a countably infinite

number of 95% confidence intervals, we would expect that 95% of this set of intervals

would contain the true value of the population parameter of interest. In Bayesian

methods we could draw an interval that reflects the lower and upper quantile of the

3In chapter four we also considered quantile intervals with no significant difference
in qualitative findings

63



Chapter 2

posterior, but instead choose to estimate the highest density interval. A 95% HDI

can be interpreted to contain 95% of the most likely values of the posterior. The

differences in interpretation mean that, in this thesis, I will not directly compare

frequentist and Bayesian methods. Instead I will compare models developed within

a single statistical framework.

2.3 Assessing the estimation

In the previous section I discussed how statistics can be used to estimate parameters

of interest. In this section I will consider the methods of understanding whether the

estimation is good. This can encompass quite a wide variety of techniques, including

model comparison techniques. I will focus primarily on two main areas. The first is

used primarily in explicit frequentist methods. It involves methodologically checking

whether any assumptions made in constructing the explicit solution hold true for the

data of interest. The second method relates primarily to the use of Gibbs sampling

to estimate the posterior distribution. Here we question how to check that the

procedure has converged to the posterior.

2.3.1 Assumption Checking

Explicit solutions rely on assumptions which, if violated, indicate that the solution

may not hold. For every assumption that could be made, there are a number of

possible assumption checks that could be conducted. Assumptions like contamina-

tion, response heterogeneity and missing data do not necessarily require assumptions
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checks because they are either obvious (in the case of missing data, chapter six) or

difficult to test for (as we will see in the case of contamination and response hetero-

geneity presented in chapters four and five). Distributional assumptions, however,

underpin explicit solutions and can be tested for.

Here I discuss how to test for a common distributional assumption, normality (which

is particularly relevant to chapter three) using the Shapiro-Wilk test and quantile-

quantile plot.

Shapiro-Wilk Test

The Shapiro-Wilk test of normality (Shapiro & Wilk, 1965) is a null hypothesis

significance test that questions whether a given sample distribution was drawn from

a population that was normally distributed. The null hypothesis for this test is that

the sample is from a normally distributed population, the alternative that it is not.

It relies on the W statistic, which calculates the order4 of the samples and compares

them to the order that we would expect if the sample was drawn from a normal

population.

The Shapiro-Wilk relies on comparing the observed order of the sample, and the

expected order of a normal distribution. This is computationally complex (though

once the order is calculated, the analytic solution is quick to calculate), so samples

greater than 50 cause difficulty (Rahman & Govindarajulu, 1997). As a solution to

this, approximate solutions have been proposed (Rahman & Govindarajulu, 1997;

4The order is a list of the indices of the smallest to the largest number. It
differs from the rank when there are duplicate numbers, which the rank attempts
to average, whilst the order counts separately.
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Royston, 1992). Figure 2.2 shows the application of a Shapiro-Wilk test to ran-

dom samples from three different distributions. These distributions were chosen to

illustrate the ability of the Shapiro-Wilk to identify samples drawn from a normal

distribution (blue), a distribution that very slightly deviates from normality (t(15)

distribution, green) and a distribution that drastically differs from normality (uni-

form distribution, orange). Each column of this figure corresponds to a different

distribution.

Figure 2.2: Common methods of testing for normality The columns represent three

different underlying distributions. The bottom row shows each distribution, the top row

shows the Normal Q-Q plot, and the text indicates the results of a Shapiro-Wilk test for

samples size of 100 and 1000.

The Shapiro-Wilk is considered to be one of the highest powered methods of testing

for normality (Yap & Sim, 2011), but, as seen in Figure 2.2 there is still potential

to make an error. This means that it is also important to consider other methods

of inspecting normality, such as quantile-quantile plots.
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Quantile-quantile plot

Normal quantile-quantile plots can be used in addition to the Shapiro Wilk distri-

bution to investigate normality. To create these plots the quantiles of the observed

distribution are plotted against the quantiles of a normal distribution of similar size.

If the observed distribution is normal, we would expect the relationship between to

be linear, as seen in the upper right plot of Figure 2.2. If the observed distribution

slightly deviates from normal, we see the slight deviance that can be observed in the

middle Q-Q plot (green). If the observed distribution highly deviates from a normal

distribution, we see a non-linear relationship like in the top left Q-Q plot (orange).

Although the non-linear relationship is quickly differentiated from the other two; it

is more difficult to differentiate between a linear trend (blue) and a slight deviation

(green).

Assumption checks in the context of this thesis

In this section we briefly considered two different methods to test for normality.

Testing for normality is important in the context of chapter three. However, it is also

important to understand that explicit solutions involve the creation of estimators

through assumptions about the data, and these estimators only hold true if the

assumptions also hold true. These checks are a method to consider whether the

assumptions of the model are supported by the observed data.

The simplicity of the calculations for explicit solutions belies that there are two

issues at hand. The first is the main concern of this thesis, the degree to which

the assumptions of the model match the true assumptions of the data. The second
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relates to our ability to calculate model estimates given the data. With explicit

solutions, this is often an exercise in simple arithmetic, and can be considered sepa-

rately to the appropriateness of the model. With sampling-based MCMC methods,

the ability to calculate model estimates is of prime concern. In addition, while

analytic solutions largely do not depend on the model being appropriate to pro-

duce some estimate (regardless of whether this is a good estimate or not), MCMC

methods will often struggle to achieve the true posterior distribution for ill-specified

models. In the next section I will consider methods of investigating and solving

problems associated with this. These methods will be used extensively throughout

chapters five and four.

2.3.2 Methods of Assessing Gibbs Sampling procedures

So far we have seen that, provided all necessary assumptions are met, an explicit

solution has certain guarantees attached to it. This leads to assumption checks as

a method of assessing the ‘trustworthiness’ of an estimate. Gibbs sampling does

not need to make these assumptions, and instead updates a prior with respect to

observed data. Provided the prior allows for the true parameter value, the prior

can be updated to estimate the posterior for a given parameter. However this

convergence is not guaranteed in any particular time frame. How might we assess

whether a given procedure has accurately estimated the posterior?
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Burning in

When the MCMC chain is initialised, it requires a starting value for the parameters,

θ(1). As we previously discussed, this starting value should be a plausible and

likely member of the posterior distribution. Oftentimes, this is achieved by either

randomly sampling from the prior, or taking a MLE estimate of the prior. If the prior

is close to posterior, this is an acceptable procedure. However, sometimes the prior

overlaps the posterior with only low probability. In this instance the initial values

might be very rare members of the posterior, and hence the sampling procedure will

take a number of iterations in order to converge to sampling from the posterior.

Figure 2.3 illustrates exactly this scenario. It depicts a Gibbs Sampling routine,

implemented through JAGS, to estimate the population mean, µ of a sample. The

prior distribution for µ is considerably different to the posterior. This means that

the initial values (highlighted in yellow) are part of the burn in of the model and

should be discarded.

In this example it is relatively simple to see through visual inspection where the

sampling method appears to have converged. More formally though, sufficient burn

in time is not a trivial claim to make. Often this is completed through two methods.

Firstly, through visual inspection, similar to the process for Figure 2.3. JAGS

also has an automatic procedure, using adaptive procedures until convergence is

obtained. Samples are only kept once convergence has been achieved. A third

option is to simply set a long burn in and risk discarding viable samples from the

posterior. Whilst this is not the most efficient of methods (it can increase the time

taken to fit the model), it does not impact the quality of the posterior samples.
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Figure 2.3: Demonstrating the importance of a burn in period This figure demon-

strates the importance of a burn in period to obtain good samples from the posterior. The

x-axis represents the sample iteration, while the y-axis represents the corresponding sam-

ple for this iteration. The first samples from the MCMC chain are a very long way from

the posterior that the chain converges to. These are highlighted in yellow to indicate that

these samples would probably be discarded.

In the simulations presented in chapters four and five we use a combination of the

automatic adaption implemented through JAGS and a long burn in for conservative

reasons. The scale of the simulations presented meant that it was not possible to

visually inspect each of the chains, but examples of each model type were usually

inspected.

Mixing of chains

In the previous section we considered the burn in period: What it is, how to detect

it, and why it should be removed. However, simply removing the burn in period

does not guarantee the remaining samples have converged to the posterior. Another
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common metric of convergence is the mixing of multiple chains.

Imagine we start two Gibbs chains so that they run independently for the same

number of samples. If they both converge to the true posterior, we should expect that

the chains should intermingle, and not get caught in local minimum or maximum.

But what happens if two independent chains do not mix?

Figure 2.4 demonstrates the answer to this question for a rather specific example.

In this instance I deliberately miss-specified a model as a mixture of two normal

distributions, whilst giving observed data of data drawn from a simple normal dis-

tribution. These two chains are the Gibbs samples for the first mean of the mixture.

While they oscillate roughly around the true mean of the sample, there are two

problems at hand. The first is that the two chains do not mix appropriately. The

yellow highlighted areas are examples of poor mixing. Here the two chains do not

appear to be sampling from the same posterior.

This is, in part, caused by a failure of one of the founding rules of MCMC sampling; a

memory-less feature corresponding to the formal claim that p(θi+1|θi, θi−1, θi−2, ..., θ1, x)

is equivalent to p(θi+1|θi, x). In Figure 2.4, we can see that this is not the case. In

the middle of the figure the chain is monotonically increasing, indicating that we

could predict the ith sample by the ii−2nd sample or the i1−3th etc.

In this example we see improper mixing of chains due to model misspecification,

but the problem may also be created when there is a strong correlation between

parameters (Lynch, 2007). Both cases have the same potential solution, thinning,

discussed in the next section.
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Poor Mixing

Poor Mixing

Loss of Memoryless property

Figure 2.4: The importance of checking chains This figure demonstrates that two

MCMC chains that were starting in the same manner may not necessarily sample from

the whole posterior. Yellow boxes highlight areas of divergence between the chains.

Thinning of chains

One solution to poor mixing is to employ thinning: keeping one sample and discard-

ing the next n samples, before keeping the n + 1 sample. The purpose is to ensure

the samples that are kept are not strongly correlated with any other samples in the

chain, which allows the researcher to obtain a reliable estimate of the posterior.

Figure 2.5 shows two chains constructed for the same model and data as Figure 2.4.

The inset of Figure 2.5 is of the same scale as figure 2.4, for comparison purposes.

Note that in this figure, the chains mix well. The difference in Figure 2.5 is that

I thinned out the MCMC chain by choosing to keep every 100th sample. This was

perhaps a dramatic and inefficient method of ensuring that the chains would mix,

but it was effective.
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Figure 2.5: The importance of thinning in MCMC Two Gibbs-sampled chains

for the same model and data as Figure 2.4, but with thinned samples to obtain

proper mixing. The magnified section is analogous to Figure 2.4, but 1000 samples

are shown to demonstrate the effects are consistent throughout the entire chain.

2.3.3 Summary

This section discussed how to evaluate the parameter estimates obtained from a

MCMC procedure. In the case of explicit solutions, the assumptions upon which

the explicit solutions were derived must hold true. In the case of sampling solution

methods, it is important to analyse the convergence of such methods. Different

chapters of this thesis rely on different evaluations. Chapter three relies on ana-

lytic solutions; chapters four and five rely on sampling solutions that ensure proper

convergence by running for a long time; and chapter six uses both Bayesian and

frequentist methods where appropriate.
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2.4 Assessing the model

Having considered the difference between Bayesian and frequentist statistics as well

as how to estimate parameters and evaluate the goodness of that estimation, it is

also important to know how to evaluate entire models. Which of several models is

most trustworthy given the data at hand?”

Oftentimes when research into the ‘best’ model for a given data-situation is done

it focuses on model comparison techniques. These methods describe the degree to

which each model fits the data, and quantify which model is most likely to match the

one that generated the data. These methods include information-criterion methods

such as the AIC (Akaike, 1974), BIC (Schwarz et al., 1978), DIC (Spiegelhalter, Best,

Carlin, & Van Der Linde, 2002), WAIC (Watanabe, 2010) and evidence weighting

methods like the Bayes Factor (Kass & Raftery, 1995).

This is a worthwhile and useful way of analysing data. However, this thesis is not

interested in which model best fits the data. We, like Box (1976), take the view that

“all models are wrong but some are useful.” I focus on weighing up the usefulness of

models, and this section will focus on how we can weight these models up in terms

of usefulness.

While usefulness is not necessarily a statistical criterion, it is a practical question

that will directly impact the functionality of a model. A model that is perfectly

accurate but completely uninterpretable is of limited use when it comes to creating,

considering and extending hypotheses in a psychological research setting.

My approach mirrors the Neumann-Spearman school of thought. It is my belief that
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a good model is one where the claims that can be made from it can be trusted for

the widest set of data situations possible. The model comparisons undertaken in

this thesis thus focus on the relative ability of each model to correctly identify and

estimate a relationship where there is one (i.e., power) and to correctly claim there

is no relationship when there is not (i.e., Type 1 error).

Figure 2.6 shows the four possible options for a statistical decision. First, we consider

the options if there is not an effect. If the model correctly makes this claim (light

blue), then we would consider this a desirable trait. If there is not an effect and the

model incorrectly claims there is an effect (light green), then we would not consider

this a desirable trait. This is known is a Type 1 error.

Figure 2.6: Possible outcomes for detecting an effect. The first distribution repre-

sents the possible outcomes if no effect is found, whilst the second distribution represents

the possible outcomes if there is an effect found. There is some overlap. An ideal statistical

method minimises the green area (errors) in two ways: Firstly, by adjusting the criterion

(black bar) to an optimal position; and secondly, through lowering the relative overlap.

This is often achieved by increasing the sample size.

If there is an effect and the model correctly identifies it (dark blue), then we would

consider this a desirable trait. If the model does not identify the effect (dark green),
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then this it is considered a miss. Too many misses a non-desirable trait. The ability

of a method to identify an effect of a given size is called the power.

Traditionally there are three main factors that impact a method’s power: sample

size, effect size and the specified acceptable level of type 1 errors (i.e., α). Perhaps

unsurprisingly, the larger an effect size, the easier it is to detect the effect. Increasing

the sample size decreases the standard error of the measurement, which also helps

to detect the effect. These two factors also interact, and thus in my analyses they

are varied independently

2.5 Summary: Our approach

In this thesis my interest lies with specific features of the model structure, and

how that relates to the researcher’s underlying assumptions about how the data

were generated. To do this I needed to create, fit and analyse models of differing

structure in a way that allowed only the structure to change. This chapter laid out

the overarching decisions I made that enabled me to accomplish this throughout the

thesis as a whole.

One of the first decisions was the choice of probabilistic theory (i.e., whether to use

frequentist or Bayesian methods). Rather than choosing one or the other, I chose

instead to use the methods that were most convenient for the problem at hand. This

means that while chapter three uses frequentist methods, chapters four and five both

use Bayesian methods implemented through JAGS. In these three chapters I deliber-

ately avoided comparing Bayesian and frequentist methods against one another, as

76



Chapter 2

this would have introduced confounds (i.e., is a method performing better due to its

structure or due to being Bayesian?). Chapter six, which does not directly compare

models against one another but instead uses them as tools for data analysis, uses

both.

Even within each modelling framework, there were still choices that needed to be

made about how the models were fit to the data. Where possible I used already

derived explicit solutions because of their speed of computation. This meant that

many of the frequentist methods in chapters three and six were implemented through

explicit solutions. Where explicit solutions were not easily available, I implemented

those methods through more computationally intensive techniques (bootstrapping

in chapter three and Gibbs sampling in chapters four to six).

Using different types of methods to fit models requires different methods to evaluate

the quality of the estimation. For explicit solutions, this meant considering the

underlying assumptions of the method. Chapter three focuses on the issues that can

occur when this is not completed, while chapter six relies on these assumption checks

to ensure the claims being made from the data are trustworthy. Gibbs sampling,

implemented through JAGS, required more work. The sampling chains had to be

assessed for appropriate burn in time and appropriate convergence.

Lastly, and perhaps most importantly, in this thesis I am interested in the impact of

the structure of the model on the nature and “trustworthiness” of the claims made

by the model. This meant that I needed to to compare and contrast on three main

attributes: the ability to reject the null when it is false (i.e., power), the ability to

retain the null when it is true (i.e., Type 1 error) and the ability to make claims
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about the aspects of the data that are of theoretical interest to the researcher. While

these first two points proved to be particularly important to chapter three and four,

this last point proved to be important to chapter five5.

With these important methodological issues concluded in this chapter, in the next

chapter I turn my attention to the first assumption of interest in this thesis, the

assumption of normality.

5Whilst this is strongly linked to frequentist ideology, these traits are also desir-
able from a Bayesian standpoint.
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When the distribution is skewed

It is impossible to escape the

impression that people commonly

use false standards of measurement

Sigmund Freud

3.1 Preface

The goal of this chapter is to explore how specific uses of a scale can lead to difficulties

with statistical analysis. I argue that these problems are due to the properties of

an interaction between the scale and sample. Freud considers individuals who use

the wrong comparison units to weigh up merit, which seemed apt for a chapter that

devotes itself to a problem that is somewhat invisible to the traditional metrics of

scale comparison. This problem is the violation of normality.

Normality violations are common across a wide range of fields. This chapter fo-

cuses on a common problem in psychology: attempting to measure some underlying
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weak signal of clinical symptomatology (in this case depression) in a sample where

the overwhelming majority of individuals do not display strong indicators. When

described this way it seems to be a bizarre practice, but this type of research of-

ten yields a variety of beneficial outcomes. These range from describing the degree

of symptomatology in a specific population (such as nurses (Glass, McKnight, &

Valdimarsdottir, 1993) or students (Olsson & Knorring, 1999)), describing the re-

lationship between symptoms and other covariates to obtain a richer picture of

co-morbidity (e.g., depression and stress (Hewitt & Flett, 1993), or depression and

exercise (Mackenzie et al., 2011)) or even group differences within a population (e.g.,

gender differences). Others use this method to obtain a sample large enough to test

various features of the scale (e.g., Steer & Clark, 1997), which would not otherwise

be possible with rarer clinical populations. Clinical populations can also be hard

to access and often introduce difficulties of confounding factors (medication, co-

morbidity, etc.). We argue the scale-sample interaction results in data that (almost

always) violates the assumption of normality.

This chapter investigates the benefit of using minimally descriptive models (in this

case, models that make very few assumptions) as a potential solution to assumption

violations. We compare these models to the most popular modelling methods, as well

as more complex models with the intention of quantifying both the Type 1 and Type

2 error rates associated with each. Interestingly the results suggest that the more

complex models do not perform the best. Instead the moderately complex models

outperform the others, with the least complex models also performing relatively

well.
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Because of this, this chapter is at odds with the results of the other chapters of

this thesis. As I will discuss, the more complex models presented in subsequent

chapters represent some underlying theory of how the data were generated. The

most complex models in this chapter represent models that have a large amount

of freedom to explain variation in the data. This implies that even if they were

equivalent in accuracy and precision to the less complicated models (and they are

not), using them does not add anything in terms of the richness of the claims that

can be made from the data (in fact they are often more complicated to interpret).

The exception to this is the models outlined in the addendum.

This chapter shows that violating statistical assumptions is not desirable, does not

produce desirable outcomes, and reduces the accuracy of the claims that can be

made. Often the researcher has some underlying belief that this violation might

occur given previous experience, and this belief could guide their analysis.

My work shows that this is a common problem that arises as a specific feature of the

sample-scale interaction (rather than being a product of the scale itself). I conclude

by simulating potential solutions to the problem.
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3.4 Abstract

The administration of clinical scales (e.g. the Beck Depression Inventory, the De-

pression, Anxiety Stress Scales, the Patient Health Questionnaire 9 and the Centre

for Epidemiological Studies Depression Scale) to non-clinical samples is common in

psychological research, and such data are usually analysed with the help of statisti-

cal tools that assume normality. In this paper we consider whether this practice is

sensible. We present a review of the literature, empirical data and simulation studies

to argue that by design the use of clinical instruments will produce skewed datasets

when applied to a non-clinical population. We argue that while the presence of

skewness is not inherently problematic, it becomes so when the statistical methods

applied to data are not robust to violations of normality. We show that skewness

can have a very severe effect on the power of a study to detect an effect, which can

impact how trustworthy the results are and hence impact the ability of practitioners

who use these results to base practice upon. Finally, we consider alternative statis-

tical tools available to researchers, and argue that simple nonparametric tools that

analyse rank ordering of scores are very effective at addressing this problem.

Keywords: Statistical methods, community samples, skewness, robust statistics,

depression
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On the use of clinical scales in non-clinical populations: A discussion of the analysis of

skewed responses.

The development of questionnaire instruments plays an important role in psychology,

both in the clinical and non-clinical domain. In a clinical context, a researcher or

practitioner might use a tool such as the Beck Depression Inventory (BDI) to assess

the severity of depression; in a non-clinical context, a personality questionnaire

might be used to measure extroversion. The statistical tools used to validate new

scales tend to be similar in both cases: researchers care about test-retest reliability,

internal consistency, discriminability, convergent validity and so on.

However, one critical difference between those instruments designed for a clinical

context and those that are not is that clinical instruments are designed to be max-

imally informative when administered to a clinical population rather than a non-

clinical population. The BDI, for example, is very deliberately not a general purpose

measure of how happy someone is: the BDI scores for an unhappy but non-depressed

person will not differ greatly from the BDI score of a happy non-depressed person.

The purpose of the BDI is to be diagnostic within the clinical spectrum and to

discriminate between depressed and non-depressed people. As a consequence, when

administered to the general populace, almost all people end up with very low BDI

scores and only a few people will have large scores. In other words, non-clinical

samples the distribution of BDI scores should be expected to be skewed. The same

phenomenon does not occur with instruments that are designed for non-clinical pop-

ulations: by design, the distribution of scores for most measures of cognitive ability

or personality will tend towards normality.
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The fact that clinical tools are designed to be most informative in clinical populations

is highly desirable; it is after all the very purpose of the instrument. However, when

those same instruments are administered to a largely non-clinical population as

part of a research project, this creates substantial statistical problems. Most data

analysis tools used by psychological researchers (e.g., t-test, linear regression, etc.)

rely heavily on an assumption of normality. Yet if a clinical instrument such as the

BDI is administered to (say) a sample of undergraduate students, one should expect

that normality will be violated because – by design – most students will have BDI

scores near zero. In other words, even before looking at the data one should expect

that if a clinical assessment tool has been applied to a non-clinical population, one of

the critical assumptions underpinning most statistical tests will have been massively

violated.

In this paper we discuss (1) the prevalence of this problem in psychological research,

(2) the potential seriousness of this issue, which differs from test to test, and (3)

possible remedies for the problem. We focus in particular on the Beck Depression

Inventory, not because we believe it is a bad instrument, but because it is a very

commonly applied tool and is generally regarded as a good psychometric instrument.

The BDI is a popular scale with a theoretical foundation based on the diagnostic

criteria in the Diagnostic and Statistical Manual (DSM). It has well demonstrated

psychometric properties, including test-retest (.48 to .86) and internal reliability(.73

to .95), discriminative and concurrent validity (see Beck, Steer, & Carbin, 1988, for a

review). It has been translated into several different languages (e.g. Ghassemzadeh,

Mojtabai, Karamghadiri, & Ebrahimkhani, 2005; Shek, 1990; Wiebe & Penley,
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2005), and now takes on a number of different forms (e.g. BDI-SF (Beck, Rial, &

Rickels, 1974, 2), BDI-II (Beck, Steer, Brown, et al., 1996)). As it turns out the

issue of skewed data is a problem with regards to the BDI, but as we discuss later

in the paper the problem is likely to be prevalent elsewhere as well.

3.5 Is skewed data prevalent in the empirical lit-

erature?

To motivate the problem, consider the structure of the BDI scoring system, in

which the upper half of the scale (scores 31-63) correspond to ‘severe’ depression,

the middle section of the scale (scores 10-30) cover the ‘mild to moderate’ range,

and only a small range at the bottom of the scale (scores 0-9) is used to describe

non-depressed individuals. Estimates of the incidence of depression vary somewhat

from study to study (e.g. 8% for young adults, 13.5% on average for older adults,

Beekman, Copeland, & Prince, 1999; Kashani et al., 1987), but for the sake of

argument let us suppose that at any given point in time 10% of the populace falls

within the depressed range. In that situation, if the BDI is administered to people

sampled from the general population, 90% of BDI scores should fall within the

bottom sixth of the scale, and only 10% of the BDI scores will be distributed across

the upper five-sixths. This is not a characteristic of normally distributed data and

almost certainly implies a skewed distribution. This effect is illustrated in Figure 3.1,

and demonstrates that the skewness arises because of the fact that the clinical range

is (by design) very wide, yet only a small proportion of people fall within that range.
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Figure 3.1: This figure demonstrates how sampling a non-clinical population with the

BDI will result in a skewed distribution, with 90% of the sample falling into an extremely

narrow range on the scale.

Focusing on the characteristics of individuals in the clinical range is quite common

amongst scales designed to measure depressive symptoms, and the BDI is by no

means the only instrument designed to do so. For example, another popular scale

used for this purpose is the Depression and Anxiety Stress Scales (DASS; S. H.

Lovibond & Lovibond, 1993), and while our paper will focus on the BDI, we note

that the same issue appears when we consider the DASS. To illustrate this, Figure 3.2

plots the distribution of depression scores obtained from 451 middle aged and older

adults from the community (Ward, 2015)1. Less than 5% of the sample score in

the upper half the scale, and 82% (approximately one-sixth) of the sample score

in the first quarter. Thirty percent of individuals scored zero, indicating a strong

1This data was collected with the approval of the University of Adelaide ethics
committee
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Figure 3.2: Participant scores from a community sample on the depression subscale of

the DASS. Over 95% of the scores fall in the lower half of the scale, representing a highly

skewed sample, as is typical when a clinical measure is applied to a non-clinical population.

floor effect. Based on these descriptive statistics alone it is hardly a surprise to

find that the empirical data from the DASS plotted in Figure 3.2 are more or less

identical to the pattern we predicted for the BDI based on a consideration of its

structure. The DASS depression scores are very skewed (skew = 1.61) and heavy

tailed (kurtosis = 5.68). Not surprisingly, a Shapiro-Wilk test applied to these

data found a significant departure from normality (W = 0.80, p < .001). In short,

although the rest of this paper focuses on the BDI specifically, the problem at hand

is a far more general phenomenon, and should be expected to be relevant any time

an instrument designed for clinical populations is applied to a community sample.

We will return to this topic later.

3.5.1 Skewed BDI scores for non-clinical populations

The preceding discussion suggests that there are good theoretical reasons to expect

that administering a clinical measure to a non-clinical population will produce non-
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normal data, and specifically to expect that most such datasets will be quite skewed.

From a clinical perspective this is highly desirable, reflecting as it does the fact that

relatively few people report severe depression symptoms. However, from a statistical

perspective it presents some difficulties, especially if researchers apply data analysis

methods that are not designed to be applied to such data. With that in mind,

it is critical to determine whether this represents a problem with current research

practices as they are reported in the literature. We consider these isses in some

detail in the next section.

To obtain a sense of what current statistical practice in the discipline looks like

we conducted a literature search of PubMed, PsychInfo and Embase for all peer-

reviewed papers that used any form of the Beck Depression Inventory (i.e., including

the BDI, BDI-II, and BDI-SF), which produced 56,777 results.2 After restricting

the search to articles published in English during the years 2009-2014 inclusive that

used non-clinical or undergraduate population, we obtained a sample of 2095 papers.

After reading titles and abstracts for all 2095 papers, we excluded 700 papers that

included some clinical participants, were non-experimental or observational in nature

(72 book chapters, 14 conference abstracts and 46 literature reviews), were based

on a sample size of one (25 case studies), mentioned the Beck Depression Inventory

but did not use it (7 articles) or were duplicates that were previously unscreened (76

articles). The final result was a sample of 1155 published papers in which the BDI

was administered to a non-clinical sample. A simple random sample of 250 papers

(approximately in 1 in 4.6) was selected for closer analysis.

2Full details of this literature search can be found in the Appendix A, included
at the end of this chapter.

91



Chapter 3

Each of the 250 papers was read closely. Any papers that should have been rejected

during the abstract reading stage were rejected, leaving a total of 148 papers meeting

the criteria stated above. Assuming that the remaining papers are similar to those

that were read, we estimate that approximately 684 of the 1155 papers in our final

sample meet the criteria. Since our sample extended over five years, this exercise

suggests that approximately 114 papers are published annually in which the BDI is

administered to non-clinical population.

Across the 148 papers there were a total of 153 distinct studies. The mean sample

size for these studies was N = 490 participants, but this average is strongly influ-

enced by a few very large studies, and the median sample size was much smaller at

N = 244. The smallest study reported N = 28 particiants and the largest reported

N = 7172. Sixty-nine studies used the BDI, 68 used the BDI-II, 6 used the BDI-

SF and 10 used idiosyncratic modifications to the BDI. Although English was the

primary language, the studies report 17 other administration languages as well.

Of the 153 studies examined, 104 reported at least one sample mean and 100 reported

either the standard error of the mean or the standard deviation. Figure 3.3 shows the

results from studies reporting only on the version of the BDI with scores ranging from

0 to 63.3 While it would be nice to estimate exactly how heavy the tail of a typical

distribution is, relatively few studies (only 24 in our sample) report the proportion

of individuals at each quartile or criterion level. Nevertheless, it is straightforward

to demonstrate that the BDI scores in most community samples must have been

non-normal and positively skewed, simply on the basis of the reported means and

3We plot scores only from the full and standard BDI scale so that they are directly
comparable.
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Figure 3.3: Top panel: Distribution of the means from the 103 studies that included

at least one sample mean and used the BDI in a form such that the scores ranged

from 0 to 63. It is evident that most means fell within the non-depressed range;

the median sample mean, shown with the dotted line, was 8.60. Bottom panel:

Distribution of the standard deviations from the 97 studies that included at least

one measure of variance. In general, standard deviations were similar in size to the

means (strongly suggestive of a skewed distribution); the median sample standard

deviation, shown with the dotted line, as 7.40.
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Figure 3.4: BDI scores in community samples are almost certainly skewed. The top

panel plots a normal distribution with mean 8.6 and standard deviation 7.4, con-

sistent with the typical values reported in the literature: a substantial proportion

(about 12%) of the distribution lies below 0 (black bars), corresponding to impos-

sible values of the BDI. On the bottom panel, we plot the least skewed unimodal

distribution of BDI scores that could produce a mean of 8.6 and standard deviation

of 7.4, and it is clear from inspection that the departures from normality are very

substantial.
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standard deviations. To illustrate this, consider a study that reports a mean BDI

score of 8.6 and a standard deviation of 7.4, which is grossly typical of the values

actually reported in the literature. Given that the minimum possible BDI score is 0,

it is impossible for these scores to be normally distributed, as shown in the top panel

of Figure 3.4. In order for these scores to satisfy normality approximately 12% of

the participants must have had BDI scores below 0 – which is of course impossible

– and the moment one starts to truncate the lower tail of this distribution the

resulting scores are necessarily positively skewed, thus ensuring that the violations of

normality are systematic. The severity of these violations are impossible to estimate

without access to raw data, but it is not too difficult to show that even in the

most optimistic case the violations are non-trivial. To demonstrate this, the bottom

panel plots the least skewed distribution of BDI scores that produces a mean of 8.6

and standard deviation of 7.4 while constraining all the BDI scores to lie between

0 and 63, and forbidding the distribution to become bimodal.4 It is obvious from

inspection that this distribution is very severely non-normal (its skewness of 0.4 is

essentially the lower bound on the skewness) and much more closely resembles the

empirical distribution of DASS scores in Figure 3.2 than a normal distribution. In

short: when applying a clinical tool such as the BDI to a community sample, the

default assumption should be that data will be non-normal and positively skewed.

4Estimating this distribution is not difficult: it is a constrained optimisation
problem defined over 63 unknown values, and is easily solved using standard opti-
misation tools: we used the “L-BFGS-B” method in the optim() function in R to
do so, using a penalised error function to enforce constraints, but we imagine any
standard tool would work well.
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3.5.2 How widespread is the skewness problem?

Up to this point our discussion has focused mostly on the application of the BDI to

non-clinical populations, but – as foreshadowed by the fact that DASS scores follow

the same pattern that we predicted for BDI – we suspect that the phenomenon

is much more general. To illustrate this generality, we undertook a smaller scale

investigation of two other scales commonly used to measure depression or dysphoria

in a non-clinical populations.

The first extension we examine is the Patient Health Questionnaire-9 (PHQ-9). The

PHQ-9 was developed as part of a battery of mental health screening tests (PHQ-9;

Kroenke, Spitzer, & Williams, 2001) and is similar to the BDI insofar as the items

reflect the diagnostic criteria in the DSM-IV (Kroenke et al., 2001). The tool is de-

signed for use by primary care practitioners to diagnose and screen for depression in

patients, and as such it is primarily a clinical instrument. This is evident from look-

ing at the ranges of scores corresponding to different diagnostic categories: PHQ-9

scores range from 0 to 27, with scores below 10 indicating a low risk of depression

and scores over 15 indicating major depression (Kroenke et al., 2001). Despite the

focus on clinical diagnostics, the PHQ-9 has also been administered to non-clinical

populations (e.g., Fang, Young, Golshan, Moutier, & Zisook, 2012), and when ap-

plied in that fashion we should expect it to produce systematically non-normal data

with a positive skew. The non-depressed individuals should be contained within

33% of the scale, whilst the (much rarer) depressed individuals should be spread

across 48% of the range. This is exactly what one expects of skewed distributions,

and quite inconsistent with normality assumptions.
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To see if there is empirical evidence that this skewness exists in real data, we looked

at two studies that have reported PHQ-9 scores in non-clinical popilations. One

reported a mean score of 6.89 and standard deviation of 5.31 (Fang, Young, Golshan,

Moutier & Zisook, 2012). In keeping with what we found for the BDI, if these scores

were truly normally distributed, then about 10% of the participants should have

had negative scores. Given that the PHQ-9 has a floor of zero, it seems most likely

that the data were non-normal and positively skewed. As a second example, Zivin,

Eisenberg, Gollust & Golberstein (2009) used the PHQ-9 to estimate that somwhere

between 12.93 - 15.36% of students were ‘depressed’. Again, these statistics imply

skewness: if 85% of students restricted to the bottom third of the scale, with the

remaining 15% spread across the upper two thirds, it is very unlikely that the data

are normal, and are much more representative of a positively skewed distribution.

As a final example we considered the 20-item Center for Epidemiological Studies

Depression Scale (CESD; Radloff, 1977), a public domain self-report measure for

depressive symptoms. On the surface, there are grounds to be more optimistic

that CESD scores might be normally distributed in community samples, because

the CESD was specifically designed to be useful and appropriate for non-clinical

administration. However, the structure of the scale itself suggests some reasons to be

cautious. Scores on the CESD range from 0 to 60, with a cut-off point for increased

risk of depression of 16 (Radloff, 1991). Accordingly, the lower 23% of the scale

describes depressive symptoms as they occur with a non-clinical population, with the

remaining 77% describing possible depression (scores 17 through 28), and probable

depression (28 through 60). As such, a substantial majority people should still be
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Table 3.1: Differences and estimates among the four scales. Each scale has a reported

clinical cut-off, above which scores indicate a clinical status and below which indicate

non-clinical status. We used these cut-offs to understand the rough proportion of

scale designed to describe the non-clinical population.

Scale Intended
use

Proportion
describing
non-
clinical

Reported
mean

Reported
SD

Range Skew?

BDI Screening
and
assessment

14.3% 8.60 7.40 0 - 63 Likely

DASS
(Depression)

Non-
clinical
screening

23.8% 5.67 6.72 0 - 42 Likely

PHQ-9 Screening
and
assessment

33.3% 6.89 5.31 0 - 27 Possible

CESD Non-
clinical
population

25.0% 8.97
12.51

8.50
9.67

0 - 60 Likely

expected to score at the lower end of the CESD scale, suggesting that skewness will

likely be an issue.

Turning to the empirical evidence, we note that when Radloff (1991) investigated

the distribution of CESD scores in an adult population, they reported a mean of

8.97 and standard deviation of 8.50. If these data were normal one would require

approximately 15% of adults to have CESD scores below zero, and again the most

reasonable inference is that there is a strong floor effect with many participants

scoring near zero, and a small number of participants scoring very highly: the data

are skewed. This affect appears to be attenuated for their undergraduate population:

a mean of 12.51 and standard deviation of 9.67 “only” requires 10% of the population
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to have impossible CESD scores in order to satisfy normality. As such it is possible

that the skewness in the undergraduate population is reduced, but it is difficult to

infer too much on the basis of such a cursory analysis.

Obviously, our investigation of the PHQ-9 and CESD scales were not as thorough

as our evaluation of the BDI. However, the evidence that we do have all points in

the same direction (see Table 3.1 for a summary). It would appear that the skew-

ness problem is not peculiar to the BDI and DASS, but is a general phenomenon

that should be expected when clinical instruments are applied to community popu-

lations. Moreover, it should be noted that this problem does not appear to be the

consequence of “poor” scale design in the traditional sense of the term: all four in-

struments we have considered have well-demonstrated psychometric properties, but

these desirable properties provide no protection against floor effects in non-clinical

populations, and as such cannot provide safeguards against the skewness problem.

This problem emerges from the very nature of the fact that the scales are designed

to measure a (comparatively) rare thing. Most people are not depressed, but peo-

ple who are depressed vary considerably in the severity of their depression. Any

scale designed to measure depression that preserves these characteristics will tend

to produced skewed data.

3.6 What statistical tools are currently used?

In the previous section we argued that skewed data should be the expected result

whenever an instrument designed for clinical usage is administered to a mostly non-

clinical population. Our survey of the literature on the BDI bears this out, with the
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Figure 3.5: Distribution of statistical analyses applied to BDI data from non-clinical

samples (left panel). Over three quarters of the analyses assumed that the data was

normally distributed (right panel); this includes correlations, ANOVAs, and various forms

of regression. Less than one-third of reported studies incorporated other analyses (e.g.,

non-parametric analyses, SEM, and so forth).

descriptive statistics reported in the relevant papers implying that skewed data is

the norm, and a more cursory examination of the behaviour of other scales suggests

that skewness is quite typical. However, although it seems clear that skewness is

typical, it may not be obvious that this skewness presents a problem with the existing

literature. In theory, it need not be problematic at all: the normal distribution is

by no means universal in empirical data, and a great many statistical tools have

been designed specifically to allow scientists to make inferences when normality is

violated. Viewed from a statistical perspective there is no reason to be concerned

with skewed data so long as these data are analysed with appropriate tools. With

that in mind, our goal in this section is to survey the statistical tools that researchers

have reported using to analyse their data.

In the first instance we return to our survey of the literature in order to examine

what kinds of analyses are typically reported. To that end, we recorded every anal-

ysis that incorporated the BDI. As Figure 3.5 shows, the most common analyses

are correlations, multiple regressions, t-tests and ANOVAs: over two-thirds of all
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reported analyses fell into these categories. All of them rely on some form of nor-

mality assumption, so prima facie it seems highly likely that in most of these cases

the assumptions of the hypothesis test reported in the papers were violated.5

This pattern of results is somewhat worrying. Across the 148 papers we examined,

we find pervasive evidence that skewness exists in the data alongside widespread

usage of statistical analysis that are not designed for skewed data. Moreover, there

is almost no reporting of the shape of the distribution (121 papers) or any discus-

sion of the assumptions of the statistical tests (118 papers). Given this, we turn

our attention to the effect of skewed data on most common analyses found in the

literature review.

3.7 Why does this matter in practice?

A pragmatic researcher might read the previous section and be unconcerned. Al-

though the normality assumptions of common statistical tests are well known to

most researchers, it is not unusual for people to rationalize the use of such tests

even when the normality of the data seems unlikely. A common justification is the

claim that with a large enough sample, violations to normality have only have a

minimal effect on the outcomes. While this is not entirely unreasonable, it opens up

5Strictly speaking, it is possible that the raw data did not violate the assumptions
of these tests. For example, it is technically possible to have a skewed dependent
variable while having normally distributed residuals in a regression analysis (which
is what linear regression actually assumes) if it turns out, for example, that the
independent variables are also skewed in just the right way. However, it would be a
very remarkable coincidence for this to happen on a regular basis. The more likely
scenario is that the normality assumptions of the test were indeed violated by the
data.
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the question of just how large a sample size is required. To put it another way, how

badly does skewness affect the performance of the statistical tests typically used in

clinical psychology?

In order to investigate this, we look at the effect that skewness has on both Type 1

and Type 2 errors. Type 1 error captures the tendency to incorrectly reject the null

hypothesis even if it is true: that is, the tendency to find a significant effect where

there is none. Type 2 error reflects the opposite tendency – failure to find an effect

when one exists. How likely are these errors when the underlying data are skewed

and the test is inappropriate? We can address this question by simulating sample

data with varying degrees of skewness6. Since the data are simulated, we know the

“correct” outcome and the target effect size. Running the simulated data through

the appropriate test will reveal how many times that test returns the result that

we know is correct. We can also vary sample size to determine whether, as is often

presumed, increasing sample size solves the problems associated with non-normal

data.

3.7.1 Comparing means (t-tests)

We first simulate the situation that arises when there are two groups and the re-

searcher wishes to investigate whether the population means of the two groups are

the same. Typically one would use t-tests or ANOVAs to determine whether any

difference between populations is signified, and with this in mind we ran a simula-

6All of the details from the simulations included in this paper, including data
included and code to run, are contained within LK’s github page https://github.
com/lauken13/Community-Samples-and-Skewed-Data.
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tion study based on this practice. One thousand data-sets were drawn from a G-H

distribution, which is a distribution where a standard normal distribution is trans-

formed using two parameters to change the degree of skew and kurtosis. We focused

on the modifying the degree of skew using the ’g’ parameter. For each simulated

dataset we sampled two groups while manipulating the degree of skew of the data

(keeping the population skew the same between the two groups) and the number of

participants in each group. Once these were sampled, we added to one group the

effect size (which was acceptable as the g-h distribution is a standard normal trans-

formation). The three levels of effect size (small, medium and large) correspond to

a pre-transformation Cohen’s d of 0.3, 0.5 and 0.8. The aim of these simulations

were to answer two main questions: (a) the effect of skew on the power and Type 1

error rate of the test, and (b) whether any loss of power or increase in Type 1 errors

could be rectified by simply increasing the sample size.

In Table 3.2 we describe the sample skew characteristics for the first and second

groups in the t-tests. Although we expect the skew of the our scales to correspond

most closely to the “Medium Skew” condition, it could very well fall in the “High

Skew” condition. The “Normal” condition demonstrates that even if the underlying

distribution was not skewed it is entirely possible to have a sample with a skew

as high as 2.0. As we have rationalised before, we believe that the underlying

distribution of the is truly skewed, indicating the possible levels of skew could be

very high.

Figure 3.6 shows the results of these simulations. Somewhat reassuringly, it suggests

that Type 1 error – incorrectly rejecting the null hypothesis when it should be
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Table 3.2: Sample skew for group 1 and group 2 in the simulations investigating the

effect of skew in the t-test, broken down by simulated skew condition.

Distribution G-H Dist. Group 1 Group 2

G value Range Mean(SD) Range Mean(SD)

Normal 0.00 (-2.0, 2.0) 0.00 (0.28) (-2.13, 1.87) 0.00 (0.28)

Low Skew 0.20 (-1.7, 2.27) 0.52 (0.34) (-1.65, 3.18) 0.52 (0.34)

Medium Skew 0.50 (-1.93, 8.24) 1.37 (.65) (-1.58, 9.18) 1.38 (0.64)

High Skew 1.50 (-0.73, 22.11) 4.99 (3.18) (-0.99, 22.02) 4.99 (3.18)
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Figure 3.6: Error rates with a t-test as a function of sample size, skewness, and effect

size. The y axis shows the proportion of time t-tests gave the correct analysis for our

simulated data. In the simulations in which there was truly no effect, a correct analysis

would be to retain the null. When there was a small, medium, or large effect, a correct

analysis would be to reject the null. The diamond markers indicate that when there is no

effect, t-tests typically correctly retain the null: as a result, Type 1 error is low. However,

the other markers show that when there is an effect, t-tests often incorrectly report that

there is none (i.e., Type 2 error is high) when the data are skewed. The effect of skew

is demonstrated by change in shape of the lines across the panels. Where the lines drop

lower, there is an effect of skew. This is the case even for large effect and sample sizes if

the skew is high enough.

retained – is low even when the data are highly skewed and the sample size is small.

However, most unreassuringly, it suggests that Type 2 error – incorrectly retaining
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the null hypothesis when it should be rejected – is high. If the dataset is highly

skewed, even when there is a large effect size and N = 500, the null hypothesis is

incorrectly retained a full 25% of the time; put another way, 25% of these studies

would erroneously conclude there is no effect when in fact there is a small one. The

problem becomes even more extreme when the samples are a more typical 50-100.

In that case, a typical t-test on skewed data will have a Type 2 error 75% of the

time, almost double that of one performed on normally distributed data. In other

words, more often than not the test will suggest that there is no effect when in fact

there is one.

Why does this occur? What effects do these deviations from normality mean? One

implication is that when data are skewed, the mean is no longer a measure of central

location: the presence of a small number of extreme values pulls the mean higher

than the median. Another implication is that when the underlying distribution is

skewed, there is a higher variance in the samples. This is because some samples

may (just by chance) contain one or more extreme points, while others may not. As

a result, variances and outcomes may differ widely, especially when sample size is

small. The effect size, as measured by Cohen’s d, decreases as we increase the skew

of the groups (through transformation). The groups are then much less likely to be

found to be significantly different, even though they were designed and simulated

to be so. Ranking measures like the Mann-Whitney U test are invariant to these

changes.

These results so far suggest that the typical test used to compare two means – t-

tests – dramatically lose power and hence increase Type 2 errors when there is a
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Figure 3.7: Error rates within the linear model as a function of sample size, skewness,

and effect size. The y axis shows the proportion of time the linear model (i.e., a simple

regression with a single predictor) gave the correct analysis for our simulated data. When

there was truly no effect, a correct analysis would be to retain the null. If there was a

small, medium, or large effect, a correct analysis would be to reject the null. The diamond

markers indicate that when there is no effect, analyses based on the linear model typically

correctly retain the null: as a result, Type 1 error is low. However, the other markers

show that when there is an effect, the linear model often incorrectly reports that there is

none (i.e., Type 2 error is high) when the data is skewed. While this finding is less severe

than that found for t-tests, the Type 2 rate is still substantial even when the effect size

and sample size are large, as long as there is sufficient skew.

high degree of skew in the data. However, our literature review revealed a heavy

reliance on not just t-tests, but another family of tests as well – tests involving linear

regression.

3.7.2 Inferring relationships (correlations and linear regres-

sion)

This group of tests focuses on determining whether an increase in a variable – or

more than one variable if we consider multiple regression – suggests another variable
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will not change (null hypothesis) or will change in a linear manner (alternative

hypothesis). This family of tests includes correlations and regressions, all of which

rely on a common set of assumptions and methods. What is the outcome when

these tests are applied to skewed data?

We investigate this question as we did with t-tests, by simulating sample data with

varying degrees of skewness. In our simulations we knew the “ground truth” (i.e.,

whether there was an effect, and if so how large) and evaluated whether the model

reported the correct analysis. For simplicity we consider only simple regressions with

a single continuous predictor (see Appendix 3.11.2 for additional detail). As before,

we wished to investigate the effects of sample size and the amount of skewness in

the data. To that end we manipulated the strength of the relationship between the

two variables, as measured by Pearson’s r, as well as the sample size and degree of

skew. Similar to before with Cohen’s d, the small, medium and large effect sizes

correspond to a correlation of .3, .5 and .8. In Table 3.3 we describe the sample

skew characteristics for the first and second observations in the correlations. As

with the t-tests, 1000 data-sets were used for the simulation study. Unlike the t-

tests (where the effect size was added after transformation) here we simulated two

correlated variables using the mvrnorm function in the MASS package in R, and

then transformed each independently using the g-h transformation to obtain the

same distribution shape as before.

The results are shown in Figure 3.7, and are very similar to those from the previous

study. Type 1 error rates remain low even if the data are highly skewed, but there

is a substantial increase in Type 2 errors when there is high or even mild skew.
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Table 3.3: Sample skew for the first and second observation in the simulations

investigating the effect of skew in the simulated simple linear regression, broken

down by simulated skew condition.

Distribution G-H Dist. Group 1 Group 2

G value Range Mean(SD) Range Mean(SD)

Normal 0.00 (-2.11, 1.87) 0.00 (0.28) (-1.98, 1.92) 0.00 (0.28)

Low Skew 0.20 (-1.86, 3.32) 0.52 (0.34) (-1.82, 3.35) 0.52 (0.34)

Medium Skew 0.50 (-1.69, 10.07) 1.37 (.65) (-1.41, 9.98) .1.38 (0.64)

High Skew 1.5 (-.91, 22.14) 4.99 (3.19) (-0.68, 22.00) 4.98 (3.18)

When the effect size is small and the data are highly skewed, even sample sizes of

up to 500 return the incorrect conclusion more often than not. As before, there are

many reasons for the poor performance when the data is skewed. One important

factor is that skewed datasets tend to include many outlier points that lie far from

the main cluster of responses, and these can have a disproportionate effect on the

inferred relationship. Specifically, this occurs when they have high leverage: the lack

of nearby data points means that they have a large effect on the final result. This

effect is shown with the two datasets depicted in Figure 3.8. Both datasets have

exactly the same points except the one on the right has one additional outlier. This

single data point changes the correlation from a moderate, positive one (r = 0.433)

to a negligible, negative one (r = −0.144). As skew becomes more pronounced, the

presence of high-leverage outliers like this increases.
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Figure 3.8: Graphical illustration of the problem with a single high-leverage outlier.

The datasets in both panels are identical except that the one on the right contains one

outlier. This single point has a dramatic effect on the line of best fit and the overall

correlation, altering it from a correlation of moderate size (r = 0.433) to one of negligible

size (r = −0.144).

3.7.3 Summary

As this section illustrates, one of the most pervasive problems that skewness in-

troduces is a loss of power when the data are analysed using tools that rely on a

normality assumption. From a practical standpoint this is troubling, because it un-

dermines the sample size calculations that researchers typically use to work out how

many people they need to recruit, and distorts the estimates of the power that re-

searchers report in the litetature. If we have a sample of 100 individuals drawn from

two normally distributed groups with a large difference between them, we would

have a very high probability (95% or higher) of detecting that this difference is

present (good power). However if these two groups had a high skew, then we would

detect the same difference in only 60% of the trials. The need for an larger sample

sizes when dealing with skewed data is discussed by Cundill and Alexander (2015),

who provide methods for calculating the required sample size for negative binomial
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and poisson distributions. More generally, if it is indeed the case that most studies

have much lower power than they appear to have based on the usual methods for

sample size calculation, the rate of false positives in the literature is likely to be

much higher than one would hope for, contributing to the poor replication rate that

been reported in empirical investigations (Open Science Collaboration, 2015).

3.8 What solutions are available to researchers?

The previous sections describe the prevalent use of statistical tests with assumptions

of normality, despite research designs in which the nature of the scales used dictates

that the distribution is likely to be skewed. One of the biggest resulting issues is the

lack of power, even with extremely large sample sizes. In this section we consider

possible remedies to the problem.

3.8.1 Outlier removal

A straightforward solution to the problem of skewed data is to simply remove outliers

from analysis. This method is appropriate if the research question is focused on non-

clinical individuals, because in such cases the outliers typically reflect participants

in the clinical range and may not be the most relevant to the research problem

being addressed. Identifying these outliers is sometimes a challenge, but in many

cases the scale itself provides information about the severity of symptoms and it is

straightforward to simply set a exclusion threshold based on that (e.g., removing all

participants whose scores put them in the ‘severe’ range). One could also remove
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outliers statistically, either by examining boxplots (as in Hubert and Vandervieren

(2008)) or using the MAD-median rule (Davies & Gather, 1993).7 Regardless of

how outliers are excluded, outlier exclusion in general is a valid method as long as

the exclusion criterion is set before the data are analysed and there is a theoretical

(i.e., psychological) motivation for removing the extreme values.

One of the biggest difficulties with the outlier removal method is the fact that

in many cases there is no psychological justification for outlier removal. In fact,

many studies are interested in investigating the full range of variability across a

population, and in most cases that necessarily includes a small proprtion of people

who fall within the clinical range. In such cases, one has no psychological reason for

exluding those individuals, or any strong statistical justification for doing so except

for the fact that those participants introduce non-normality to the sample. If one

ends up excluding data solely for the sake of statistical convenience, some concerns

would seem to be warranted. To address this in a more principled way, it seems

wiser to make use of statistical methods that are robust to the presence of skewness.

With this in mind we consider some of the main approaches.

3.8.2 Comparing groups (t-tests)

We first consider the problem of comparing group means, which typically requires

a t-test. As we saw in Figure 3.6, these tests lead to a high Type 2 error rate when

the data are skewed, leading to a substantial decline in power. One solution to this

is Yuen’s t-test (Yuen, 1974). It aims to overcome the problems caused by skewed

7Both of these methods are supported through the statistical package WRS de-
veloped by Wilcox and Schönbrodt (2015).
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data by comparing the 20% trimmed mean rather than the means, as is traditional.

By doing so it excludes the most extreme 20% of the data before calculating the

means. The other solution we consider is the Mann-Whitney U test, which operates

on ranks rather than the raw data values. Each data point is replaced with its rank

(e.g., the highest depression score in the sample would get the highest rank score)

and the ranks are compared. This avoids the problems associated with skewed data

because it removes information about the distances between points.

In order to investigate whether either of these alternatives overcomes the problems

associated with the traditional t-test, we replicated the simulations in Figure 3.6

using Yuen’s t-test and the Mann-Whitney U test. The results, shown in Figure 3.9,

demonstrate that both represent a considerable improvement. When there is a high

amount of skew the traditional t-test usually has a Type 2 error rate of about 75%,

even when the sample size is extremely large. By contrast, both Yuen’s t-test and

the Mann-Whitney U have a Type 2 error rate of less than 5% when the sample size

is large enough, even when the effect size is small. The Mann-Whitney U is slightly

more effective, performing just as well across the board on highly skewed data as on

data with no skew at all.

3.8.3 Inferring relationships (correlation and linear regres-

sion)

These result so far are reassuring, but are applicable only to comparisons between

groups. Often researchers may be interested in evaluating linear relationships in-

cluding correlations or regression. This also leads to more complicated adaptions
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Figure 3.9: Simulation results comparing the performance of two alternatives to the

traditional t-test: Yuen’s t-test and the Mann-Whitney U . As before, the y axis captures

the proportion of time the test gives the correct answer (i.e., accepting the null when there

is no effect and rejecting it when there is one). Both alternatives represent a considerable

improvement when the data is skewed, achieving less than 5% Type 2 error rates with

large enough sample size. The Mann-Whitney U in particular performs as well on highly

skewed data as it does on data with no skew at all.

of regression like structural equation modelling and path analysis. As we saw in

Figure 3.7 these approaches have high Type 2 error rates when applied to skewed

data. This data has an increased probability of including outliers have high lever-

age, which can have a strong effect on the outcomes of the test. But what are the

alternatives? We consider two distinct ways of counteracting this problem. The

first is Spearman’s rho, a simple method that ranks the raw data and then takes a

correlation of the ranked values. It is a non-parametric alternative to Pearson’s r

(Spearman, 1904b). The other alternative we consider is HC4 regression (Godfrey,
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2006). This form of regression that down-weights high leverage points so that they

have less ability to influence the parameter estimates.

In order to investigate whether either of these alternatives overcomes the prob-

lems associated with a simple linear model, the simulations from Figure 3.7 were

replicated with Spearman’s correlation and HC4 regression. The results, shown

in Figure 3.10 suggest that while Spearman’s method provides improvement, HC4

regression is not much different from the traditional method. When the data are

highly skewed, the linear model could detect a small effect only about 40% of the

time, even when the sample size was extremely larger. In contrast, Spearman’s rho

detected even a small effect with remarkable accuracy regardless of the skew of the

data. In hindsight this is unsurprising: HC4 regression is designed to reduce the

effect of high leverage points, but does not account for a decrease in information in

the higher reaches of the scale.

3.8.4 Inferring relationships (multiple regression)

These results suggest that there are promising alternatives to simple linear regression

and correlation. However often multiple regression is the chosen tool of choice. How

well do these more complicated models identify the relationship between a skewed

predictor and outcome variable when other non-skewed and non-related predictors

are included in the model? In order to investigate this we replicated the simu-

lations from Figure 3.7 were replicated in a similar fashion, but we also included

three additional predictors that had no relationship with the outcome or predictor

variable. As with the simulations in Figure 3.10, we included both a linear model
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Figure 3.10: Simulation results comparing the performance of two alternatives to the

traditional simple linear regression: Spearman’s rho and HC4 regression. As before, the y

axis captures the proportion of time the test gives the correct answer (i.e., accepting the

null when there is no effect and rejecting it when there is one). Unlike the simulations

demonstrated with the t-test, only one model provides improvement when the data is

skewed. Whilst the Spearman correlation provides a similar level of power regardless of

skewness, the HC4 regression does not improve on the traditional linear model.

and the HC4 adaption of a linear model. As Spearman’s correlation is not suited

for regression with multiple predictors, we relied on an extended model for ranked

regression (Kloke & McKean, 2012) that is designed in a similar fashion to Spear-

man’s rho, but allows for multiple predictors. In Table 3.4 we describe the sample

skew characteristics for the first and second observations in the multiple regression.

The results of these simulations can be seen in Figure 3.11. As the simulations now

have more than one predictor, we will focus on investigating whether the skewed
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Table 3.4: Sample skew for outcome and skewed predictor in the simulations investi-

gating the effect of skew in the multiple regression, broken down by simulated skew

condition.

Distribution G-H Dist. Group 1 Group 2

G value Range Mean(SD) Range Mean(SD)

Normal 0.00 (-2.12, 2.03) 0.00 (0.28) (-2.46, 1.91) 0.00 (0.28)

Low Skew 0.20 (-1.71, 2.90) 0.52 (0.34) (-1.65, 3.24) 0.52 (0.34)

Medium Skew 0.50 (-1.90, 8.98) 1.38 (0.65) (-1.43, 8.77) 1.38 (0.64)

High Skew 1.5 (-.74, 21.96) 4.99 (3.19) (-0.78, 22.17) 5.00 (3.21)

predictor was (when it was a a significant predictor) correctly identified as a signif-

icant predictor (i.e. the power of each method) or (when it was not a significant

predictor) correctly identified as not a significant predictor (i.e., the Type 1 error

rate of each method8). Like before, the small, medium and large effect sizes corre-

spond to a correlation of 0.3, 0.5 and 0.8. As with the simulations for simple linear

regression presented in Figure 3.10, both the traditional linear model and HC4 re-

gresion perform quite poorly at identifying small effect sizes in high skewed data.

However, similar to Spearman’s correlation in the previous simulations, ranked re-

gression performed quite well, correctly identifying about 80% of small effect sizes

with a large sample size and highly skewed data.

8We could have chosen to focus on identifying whether the collection of predictors
explained a significant amount of variance in the outcome variable through R2 and
its corresponding significance test, but for simplicity focused only on the relationship
between the skewed predictor and outcome variable given non-related predictors.
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Figure 3.11: Simulation results comparing the performance of two alternatives to the

traditional multiple linear regression: ranked regression and HC4 regression. As before,

the y axis captures the proportion of time the test gives the correct answer (i.e., accepting

the null when there is no effect and rejecting it when there is one). Similar to the simple

linear regression results in Figure 3.10, only one model provides improvement when the

data is skewed. Whilst the ranked regression was a significant improvement, the HC4

regression is no real improvement on the traditional linear model.

3.8.5 Summary

We considered three common analyses that, from our literature review, are com-

monly used with skewed data. The t-test was the most sensitive to skew, which

resulted in less power at identifying small, moderate and even large effects. While

the Yuen t-test improved performance, the Mann-Whitney U test was superior over-

all. This general pattern was mirrored in our simulations based on regression analy-

ses: approaches based on ranks (e.g., Spearman’s rho) outperformed standard linear
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regression, whereas other methods such as HC4 regression did not.

3.9 Discussion

The sensitivity of scales to the spectrum of non-clinical symptoms provides a unique

challenge to our normality reliant statistical models. In this manuscript we present

a non-clinical sample of scores as they fall on the DASS depression subscale, a

literature review that highlights the population mean and standard deviation of the

scores of a non-clinical sample on the Beck Depression Inventory, and extended this

logic to two other scales, the CESD and PHQ-9. We summarised these findings in

Table 3.1.

We argue that this is a necessary characteristic of the scales. Their central design

purpose is to screen for and describe depression in a clinical population. For the

purpose they were designed for they perform exceptionally well. However, we argue

that it can be problematic when they are applied a non-clinical population and

traditional statistics are used to infer relationships and differences (as is commonly

done).

This issue predominately does not cast doubt on the significant findings. Through

simulation studies we demonstrated that the type 1 error rate (the likelihood of

a model to falsely find an effect when in fact there is none) was constant across

different levels of skew. However, as the distribution of the sample data grows more

skewed, the power of the traditional methods (the ability to detect an effect when

there is indeed an effect present) is significantly hampered.
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If traditional power calculations cannot be directly used with skewed data, then

researchers can no longer trust their estimations of whether they have sufficient a

sample size to detect the effect size they expected to find. Because of this, they are

less likely to replicate their findings in replications. If this is a global trend, then it

decreases the trustworthiness of the research findings overall. With these issues in

mind, we sought to find alternative methods that were less sensitive to the shape of

the data.

The first method to increase the power of the more traditional methods is to attempt

to reduce the degree of skew. One of the most common methods to achieve this is to

remove outliers. Removing only a few extreme points in a highly skewed distribu-

tion can reduce the uncertainty around parameter estimates and hence increase the

power. We discussed methods that are appropriate for extreme outlier removal in

a skewed distribution. However, we also acknowledge that often the entire sample

is of interest. In these times it is undesirable to remove extreme points because the

act of doing so reduces the overall information available.

The second method is to use methods that aim to make a similar inference to the

traditional methods, but does not rely on assumptions of normality. The first meth-

ods we investigated were alternatives to the traditional two sample t-test. In this

instance a method based upon ranking data, the Mann-Whitney U test, produced

the best improvement in power. A similar preference for ranking methods was found

for simple linear and multiple regression techniques.

One potential limitation to the evidence for the ranking methods advocated for in

this paper is that transformation methods were not considered. Part of the reason
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 Do you expect that there will be roughly as many people in the 

upper half of the scale as the lower scale?  

OR  

Do you expect that people will score roughly above and below 

some central value? 

Is there a chance that your data will be skewed? 

However check other assumptions of the test 

are met 

Proceed with traditional methods 

Are you interested in a relationship across the 

full range of the scale?  

Are you interested in the whole scale? 

NO YES 

NO

, 
YES 

Remove outliers either by a pre-set criterion or 

by statistical method.  

Check to see if there is still skewness present in 

the data. 

Remove outliers, is there still skew? 

NO

, 

Are you comparing two (or more) groups or are 

you looking at the relationship between two 

(or more variables) 

What sort of test are you doing? 

Comparing 

Groups 
Relationships 

Proceed with a Mann-Whitney U test 

Are you looking at the relationship between 

two variables (one predictor, one outcome) or 

many variables (more than one predictor, one 

outcome) 

How many predictors do you have? 

Two  

Variables 

More than two 

Variables 

Proceed with a Spearman 

Correlation 
Consider Ranked Regression 

Figure 3.12: Describes the steps required to identify situations where skewed data might

be likely, and the methods one might take to analyse skewed data to improve power.
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for this was the method we chose for our simulations. All simulation data was

created through a transformational method, where data were created as normally

distributed data with a given effect size, and then transformed to have the correct

degree of skew. We chose this method because it best reflects how a normally

distributed sample could become skewed with a scale that is maximally informative

for only a few rare (in a non-clinical sample) individuals. It also allowed us to

theoretically manipulate the skew and effect size in our simulation without relying

on the (normal assuming) analytic methods. As the data were simulated through

transformation, it difficult to compare the transformation without the simulation

method biasing the results. Transformation of the data is generally completed on a

case-specific manner as there is not a one-size fits all solution.

In this paper we reviewed the distribution of clinically aimed scales when used with

non-clinical samples. We discussed that the very nature of these scales implied that

they would produce skewed data to some degree on with a non-clinical sample. This

isn’t necessarily an issue, but we showed that the commonly used traditional statis-

tical techniques were considerably less powerful than presumed with this data. One

method to mitigate these issue is to use ranking methods like the Mann-Whitney

U test (for groups) or Spearman or ranked regression techniques (for relationships).

We demonstrated the improved power of these techniques through simulation stud-

ies. We refer readers to then flow chart presented in Figure 3.12 for a summary of

the findings presented here.

We sought to examine the increase in power that could be obtained from a relatively

small change of analysis method. We feel that this change means that both the
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analysis and interpretation is relatively easily understood and implemented, which

increases the ease in which researchers might move to this method. However, this

benefit is also one of the major limitations of this manuscript. We did not consider

more complex methods (such as M-estimators, quantile differences test, quantile-

quantile regression and members of the generalised linear model family like the

log normal, gamma and Weibull), nor do we consider the relative benefits of these

methods when compared to more simple rank methods for this problem. We also

do not consider scale-specific approaches like boundary inflation, nor item specific

relationships, which we agree is a both a limitation and a potential area for future

research.

Also worth mentioning is the limitations of ranked methods themselves. One of the

challenges for these methods is where multiple points have the same rank (i.e., there

are ties). There exists a diverse literature to account for these ties when calculating

uncertainty on the estimator (which is used for hypothesis testing), but there will

inevitably be a point where there are too many ties to make meaningful inference.

Future work should investigate where this point is for scales of this type, where there

is good reason to suspect a higher proportion of ties in the lower parts of the scale.

Overall we wish this paper to be a cautionary note not about not using scales such

as the BDI, DASS, PHQ-9 etc (which we believe in general are very good scales).

Instead we wish to emphasise that the relatively simple substitution of rank order

methods for more traditional statistical methods allows significantly greater power

than traditional linear regression and t-tests.
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3.11 Appendix

3.11.1 A. Details of our literature search

The first author, LK, undertook an initial literature search of PubMed, PsychInfo

and Embase to see how common the Beck Depression Inventory is in the literature.

The search terms for these three databases is included in full in Table 3.5.
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Database Scale Students Language Year

PubMed beck depression[tw]
OR BDI[tiab]

Students[mh] OR student*[tiab] OR schools[mh] OR univer-
sit*[tiab] OR faculty[mh] OR college*[tiab] OR undergradu-
ate*[tw] OR (nonclinical[tiab] AND adolesce*[all])

english[lang] Filters: published
in the last 5 years

PsychInfo beck depression inven-
tory.sh OR beck de-
pression inventory.mp
OR BDI.mp

educational degrees.sh or college graduates.sh or high school
graduates.sh or higher education.sh OR colleges.sh or
schools.sh or community colleges.sh or college environment.sh
or higher education.sh or military schools.sh or universit*.mp
or student*.mp

limit 9
to english
language

10 and 2009:2014.
(sa year).

Embase ‘beck depression in-
ventory’/exp/mj OR
‘beck depression in-
ventory’

‘student’/exp [english]/lim [2010-2014]/py

Table 3.5: Literature search terms, broken down by database
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3.11.2 B. Details of simulation studies.

All of the simulations presented in this paper were conducted in similar manner.

The simulations can be divided into those that dealt with group comparisons and

those that dealt with relationships. For each simulation two samples with a desired

correlation or cohen’s d and shape were created (details below). The test of interest

was then completed. For each simulation this procedure was repeated 1000 times.

Details of this protocol are described in this section.

Each reported sample size was the sample of individuals in each group. For example,

in a two-sample t-test, a sample size of 10 meant that there are 10 individuals in

each group. For the simple correlations described, a sample size of 10 means that

there were 10 individuals who each gave two values.

Two samples were created with a given effect size. For the simulations that were

focused on comparing two means, first a sample was drawn from a population with

a given shape and then sampling from a second distribution with the same shape

as the first but displaced by the effect size (as the distributions were standard

normal). The simulations linear regression/correlation used a Cholesky-Square Root

decomposition to generate two normal variables with a known correlation, and then

transforming these two variables with a g-h transformation.

We relied on a transformation method to create an appropriate level of skew. The

distribution was created with a g-h distribution (Hoaglin et al., 1985). This distribu-

tion can be used to transform a standard normal distribution to be positively skewed

to varying degrees. This distribution can also be used to vary the heaviness of the

tail (or kurtosis). For the purposes of the simulations presented in this manuscript,
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the parameter controlling kurtosis was kept constant. The distributions of the low

skewed (g=0.2), medium skew (g=0.5) or highly skewed (g=1.5) were used. They

are shown in Figure 3.13.
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Figure 3.13: This figure demonstrates the three different distributions used in many

of the simulations described in this paper. These distributions are drawn with

sample of 250 data points. The high skew condition has a much higher probability

of outliers.

This method of generating data was chosen for two reasons. The g-h distribution

is often used when investigating robustness of statistical tests (Wilcox, 2012). This

means that this research fits within a broader research programme. Additionally the

g-h distribution can be used to increase the degree of skew in increments to allow

for testing.

However, there are some limitations with using such a distribution. The distribution

is designed to have median of zero regardless of the skew. To accomplish this, the

distribution can have values that are less than zero. This is unlike the scales of

interest in this paper, which have a fixed lower bound at zero. We believe that this
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should not have a large impact on analysis, the tests described in this paper should

be robust under translation of scores under the scale.

Another limitation with the g-h distribution is that it is a continuous unbounded

distribution. The distribution of the scales described in this manuscript are discrete

and bounded, generally at zero with some upper bound. This may have some impact

on the applicability of these simulations to these datasets.

The tests investigated were conducted using standard tests in the statistical pro-

gram R (R Core Team, 2015). The HC4 regression was conducted using the func-

tion olshc4 from the WRS package that accompanies Wilcox (2012). The ranked

regression model was conducted using the function rfit (Kloke & McKean, 2012).

The remaining functions (t.test for t tests, cor.test for correlations, wilcox.test for

the Mann-Whitney U test) were all contained in the stats package released with R.

The full code for these simulations can be found at https://github.com/lauken13/

Community-Samples-and-Skewed-Data.

In this section details of the simulations presented in this manuscript are described.

The distributions of the simulated data were created using a g-h distribution. There

are some issues with this distribution, so the simulations should be repeated using

random samples from real data.

3.12 Addendum

This paper was designed to demonstrate to researchers in very applied fields that

there are substantial perils associated with the use of scales designed to make clin-
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ical distinctions with a non-clinical sample. It proposed very simple solutions like

ranked methods. It is important to note that we never intended for these methods

to be taken as the most appropriate solution for all researchers with this sort of data.

Rather this manuscript was a suggestion that simple and relatively well-known al-

ternatives would be more appropriate than the current prevailing practice as they

do not involve violating core assumptions.

Realistically our methods should be considered only as an improvement to the cur-

rent standard. Another possibility requires an elegant family of distributions re-

cently proposed by Smithson and Shou (2017). I will illustrate it using the data

from the community sample discussed earlier in the chapter (i.e., the distribution of

scores on the DASS subscale for 451 adults)

The study from which this was taken included measures on the other two subscales

of the DASS (anxiety and stress) and a number of demographic and health related

subscales. In this section we will evaluate current practice (e.g., Pearson correla-

tion), the ranked method proposed in the chapter (e.g., Spearman correlation) and

the method proposed by Smithson and Shou (2017) as implemented through the ac-

companying package cdfquantreg (Shou & Smithson, 2016). Our question of interest

is the relationship between depression and stress. This analysis has similar features

to a vignette accompanying the cdfquantreg package that considers the relationship

between stress and anxiety.

The most common analysis for estimating the relationship between depression and

stress, the Pearson correlation, suggests that the relationship between depression

and stress is significant (r=.611, p < .001). The Spearman correlation is slightly
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smaller (r=.607, p < .001), although this method is ill-suited to analyses where

there are multiple ties. There are many in this dataset because many individuals

score in the very low ranges of the scale.

The alternative proposed by Smithson and Shou (2017) is to use the package cd-

fquantreg to investigate the relationship between depression and stress in this dataset

using a logit-logistic base distribution. This allows us to model the location and dis-

persion separately. In this case we see that depression grows more severe with higher

levels of stress (µ = 6.71, p < .001), but also that the relationship has less dispersion

as levels of stress grow (σ = −0.669, p < .001).

This more complex model demonstrates that those who score highly on the depres-

sion subscale tend to be stressed, whilst those who score lowly on the depression

subscale may or may not be stressed. In the next chapter, we see again that increas-

ing complexity can change the richness and informativeness of the conclusions that

can be made.
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When the sample is contaminated

I do not refuse my dinner simply

because I do not understand the

process of digestion.

Oliver Heaviside

While the previous chapter considered the violation of distributional assumptions,

this chapter investigates the impact of impurities, conflicts, or contaminants in the

sample. Contamination indicates that a certain proportion of a sample is not repre-

sentative of the population or process of interest and instead represents some other

population or process. Most researchers would agree that this is an inevitable event

in psychological research. In this chapter I consider potential ways of inferring the

population mean given some underlying assumption that there exists some propor-

tion of the data that are contaminants.

As in chapter three the work here compares a number of models that differ in their

degree of complexity. The main difference between the complex models in this
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chapter and those in chapter three is that these models were created to account for

an underlying belief of how the the data were generated. This demonstrates again

that complex models are potentially beneficial, but only when when they address

the researcher’s beliefs and aims. This work shows that the most complex models

(the contaminated normal model) make the strongest claims about the process in

which the data were generated, and the least complex models (Bayesian bootstrap in

terms of free parameters, normal model in terms of freedom to account for different

shapes) make the smallest claims about the process of data generation.

Our results indicate that when contamination is expected, the most complex model is

the most appropriate. This is contrary to chapter three, where the most appropriate

model was among the most simplest. Why is there this difference? I argue that when

the additional complexity stems from an underlying notion of how the data were

generated, it allows for richer and more reliable data analysis.

Like Oliver Heaviside in the quote that begins this chapter, I agree that refusing

to model and analyse data because I do not (and will never) fully understand the

process in which it was created would be futile. However, Heaviside sells himself

short. He understands a great deal about the process of digestion (it is an organic

process and starts at the mouth) and that understanding heavily governs the things

he is willing to endorse as food and the process by which he feeds himself (namely

through his mouth). Knowledge about the process has informed his model of diges-

tion and aids him in making rich claims about the process of dinner. This chapter

argues our knowledge about the process in which data are produced should be in-

corporated into the models we use. This allows the researcher to draw more precise,

133



Chapter 4

more accurate, and altogether richer conclusions about their data.
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4.3 Abstract

As Bayesian methods become more popular among behavioral scientists, they will

inevitably be applied in situations that violate the assumptions underpinning typi-

cal models used to guide statistical inference. With this in mind, it is important to

know something about how robust Bayesian methods are to the violation of those

assumptions. In this paper we focus on the problem of contaminated data (such as

data with outliers or conflicts present), with specific application to the problem of

estimating a credible interval for the population mean. We evaluate five Bayesian

methods for constructing a credible interval, using toy examples to illustrate the

qualitative behaviour of different approaches in the presence of contaminants, and

an extensive simulation study to quantify the robustness of each method. We find

that the “default” normal model used in most Bayesian data analyses is not robust,

and that approaches based on the Bayesian bootstrap are only robust in limited

circumstances. A simple parametric model based on Tukey’s “contaminated normal

model” and a model based on the t-distribution were markedly more robust. How-

ever, the contaminated normal model had the added benefit of estimating which

data points were discounted as outliers and which were not.

Keywords: Bayesian data analysis, robust methods, contaminated data
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Not every credible interval is credible: Evaluating robustness

in the presence of contamination in Bayesian data analysis

Data analysis plays a central role in scientific discovery, helping researchers organize

and interpret the results of experimental and observational studies. In the majority

of cases, researchers conduct data analyses with the help of “default” models that

are broadly applicable to a wide range of scientific problems, rather than attempt

the more arduous (and often unrealistic) task of developing a task specific model

for each problem. As a consequence of this pragmatic behavior by scientists, it is

important to verify whether these default models behave in a sensible way when

applied to real data that may not satisfy the assumptions built into the model.

Much of the applied statistics literature has this character (Bamnett & Lewis, 1994;

Hoaglin et al., 1985; Wilcox, 2012).

Because the world is complex and data are limited, it is generally recognized that it

is never possible to build a model that is detailed enough to capture everything of

interest in a particular data analysis problem: it is for this reason that statisticians

often remark that “all models are wrong” (e.g., Box, 1976). This is also why exam-

ining the performance of models when their assumptions are violated (i.e., when the

model is misspecified) is critically important for ensuring sound scientific practice.

Following the advice of Box (1976), our goal here is to determine which models are

most useful when their assumptions are violated.

With this in mind, it is useful to consider the rise of Bayesian data analysis in behav-

ioral statistics. Orthodox statistical inference begins from the frequentist premise,

which assumes that the word “probability” describes the results of an aleatory pro-
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cess: when a repeatable event such as the flip of a coin is repeated sufficiently many

times, in the long run the proportions of cases converge to a specific number (e.g.,

50% of coin flips come up heads). The vast majority of analyses in the psychological

literature rely on orthodox statistical theory: when reporting confidence intervals

and p-values, for instance, one is relying on frequentist methods.

Unlike the orthodox approach, the Bayesian view does not interpret probability in

aleatory terms. Instead, the Bayesian approach begins from an epistemic assump-

tion, and interprets the word “probability” as the degree of belief that a reasoner

should place in an particular proposition. Over the last few decades, the Bayesian

approach has become increasingly popular, with many researchers choosing to re-

port Bayes factors rather than p-values and credible intervals instead of confidence

intervals. In part this shift has been driven by the well-documented failures of or-

thodox methods (Wagenmakers, 2007), and in part by the fact that there are now

several easily accessible tools that provide default Bayesian solutions to common

data analysis problems ( for a default t-distribution model see Kruschke & Mered-

ith, 2015, online version; http://www.sumsar.net/best online/). For instance, the

development of the BayesFactor package in R (Morey & Rouder, 2015) and its easy

accessibility through user friendly software such as JASP (JASP Team, 2016) has

allowed widespread adoption of Bayesian methods that were once available only to

specialists. In our view this mainstreaming of Bayesian inference is greatly to be

desired, but it carries new problems for Bayesian statisticians to consider. In par-

ticular, when Bayesian analyses were more inaccessible, that meant that the only

people who implemented Bayesian statistics were technically sophisticated enough
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not to misuse them; as they become more mainstream – which is a good thing! – it

does mean that they are also more likely to be applied inappropriately or misused.

What challenges are these? In an ideal world, the answer would be “none at all”:

every researcher would consider the particular constraints imposed by their research

problem, work out what those constraints imply about the statistical model to be

used, construct the priors that best express the knowledge that the researcher pos-

sesses, implement that model, and then report the posterior distributions that result

once the data are observed. In the real world, of course, this is not so much a polite

fiction as it is a statistician’s fantasy. In our experience researchers (sometimes) do

not have rich enough knowledge of the problem or (very often) lack the many years

of statistical training required do anything other than rely on default methods.

As default Bayesian tools become mainstream, they will increasingly be used in

situations that violate their assumptions. As such, it is critical to consider how

well default Bayesian methods perform when they are misspecified, and to consider

whether different defaults are required if performance is especially poor with respect

to common problems. There are a many different situations in which model misspec-

ification becomes a concern: in this paper we focus on the problem of contaminated

data. Contaminated data problems arise when a researcher’s observations are com-

posed not just of data that reflects the question of interest, but also data reflecting

some other generating process.
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4.3.1 The problem of contaminated data

We frame the problem of contaminated data in terms of one of the simplest esti-

mation problems in statistics: using observed data X = (x1, . . . , xn) to construct

an interval estimate for a population mean. Very typically we might assume that

the observed data are drawn from a normal distribution with unknown mean µ and

standard deviation σ. In most cases the quantity of interest is the unknown mean

µ. With the help of this model, an orthodox statistician might construct a confi-

dence interval that is designed to ensure that µ falls within the interval for 95% of

cases, or a Bayesian statistician might construct a credible interval and claim that

there is a 95% probability that the true mean falls within the range. Regardless of

whether one is Bayesian or frequentist, the analyses that empirical scientists usually

rely upon assume that every observation X has been sampled from the relevant

population distribution.

In many – perhaps most – real world inference problems facing psychological re-

searchers, this assumption is untenable. Sometimes participants press buttons ran-

domly in the hope of leaving the study early, sometimes people answer the wrong

question, sometimes a legitimate response is miscoded in the data. As a consequence,

most datasets end up with some unknown proportion of contaminants; observations

that arise from some other unknown process and are not informative about the

population parameters of interest to researchers. To the extent that one’s statistical

inferences are driven by contaminants, researchers run the risk of drawing the wrong

conclusions from experimental data.

The difficulties posed by contaminants are well known both to empirical scientists
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and to statisticians, and the issue is very frequently covered in introductory research

methods classes. Researchers typically use exclusion criteria to try to identify con-

taminants and remove them from datasets. Similarly, statisticians have developed

a variety of robust methods that are designed to produce sensible inferences even

when contaminants are present, from both a Bayesian (Berger et al., 1994; Wang &

Blei, 2015) and frequentist perspective (Huber, 1964; Huber & Ronchetti, 2009). In

this paper we approach the problem from a Bayesian perspective.

To what extent does contamination present a problem for Bayesian data analysts?

One possibility is that all Bayesian methods are robust to contamination simply

by virtue of being Bayesian. This may seem somewhat implausible to an expert

reader – and we imagine that statisticians would recognize this as the strawman

hypothesis that it is – but Bayesian approaches often seem so desirable that ex-

perimental researchers could certainly be forgiven for thinking that this is a serious

possibility. With this in mind, in the next section we will focus on relatively simple

Bayesian models that can easily be applied to typical experimental data in the be-

havioral sciences, and investigate the differences between them when contaminants

are present.

4.4 Four ways to get five posteriors

We focus on the relatively simple situation in which a researcher is presented with

a sample of n continuous-valued univariate observations X = (x1, . . . , xn), and the

goal is to construct an interval that captures the researcher’s uncertainty about

the population mean. Although this situation is somewhat limited in scope, it
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corresponds to a very common problem in psychological research, since it is quite

typical for researchers to examine and report means and confidence intervals (or

the Bayesian equivalent). In this section we describe five different methods1 that a

Bayesian researcher might use to construct a highest density credible interval when

presented with this inference problem: the normal model, the contaminated normal

model, the t distribution model, and two versions of the Bayesian bootstrap method.2

4.4.1 The normal model

The first model we consider is a “default” normal model that makes no attempt to

address the problem of contaminants. As shown in Figure 4.1a this model assumes

that all observations are sampled independently from a normal distribution with

unknown mean µ and unknown standard deviation σ. Because these parameters

are unknown, the researcher specifies priors that describe their pre-existing state

of knowledge. We restrict ourselves to the grossly typical situation in which the

researcher has very little prior knowledge about the parameters, and specifies diffuse

priors over µ and σ. To formalize this, we adopt a prior in which µ is drawn from a

Normal(0,100) distribution and the precision of the data (i.e., 1/σ2) is drawn from

1Code implementing the models can be found online at https://github.com/
lauken13/Robust-Intervals

2In our initial investigations we also considered two frequentist methods for esti-
mating confidence intervals, one of which was the Student’s t interval and the other
of which was the 20 % percentile-t trimmed bootstrap. Not surprisingly the over-
all behavior of the Student’s t interval was roughly similar to that of the Bayesian
normal model, and the frequentist trimmed bootstrap was somewhat similar to the
Bayesian trimmed mean bootstrap. However, given that the behavior of the fre-
quentist methods is well-documented elsewhere in the literature and that our goal
in this paper is not to revisit the “Bayesians versus frequentist” debate yet again,
we decided to omit the frequentist methods.
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Figure 4.1: Graphical models for the usual normal model (panel a), the t-distribution

model (panel b), the contaminated normal model (panel c), and the statistical model

underpinning the Bayesian bootstrap procedure (panel d). Beneath the graphical models

we have included prior and relational information about each node. Wherever sensible we

have endeavoured to keep the priors for similar parameters similar across the models.

a Gamma(.0001, .0001) distribution, but other variations are possible. Following

typical practice in the Bayesian data analysis literature we implemented this model

using JAGS, though given the simplicity of the model almost any software package

could be used. The normal model appears in various guises in the Bayesian data

analysis literature, for example the basic Bayesian t-test (Wetzels, Raaijmakers,

Jakab, & Wagenmakers, 2009), Bayesian ANOVA (Rouder & Morey, 2012), and

many other custom models (Lee & Wagenmakers, 2014).
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4.4.2 The t-distribution model

Andrade and O’Hagan (2011) and Kruschke (2013) suggest a convenient alternative

to the normal model. These authors take the view that the normal distribution is

very sensitive to outliers, and note that this sensitivity can be reduced if the data

are assumed to arise from a distribution with heavier tails. With that in mind,

they suggest that the t-distribution is a convenient heavy tailed distribution that

only adds one additional free parameter (degrees of freedom) when compared to the

normal model. Theoretically this distribution is created from a mixture of normals

with expected value µ and a precision drawn from γ(df/2, scale2 ∗ df/2). The full

model is depicted graphically in Figure 4.1b.

In order to allow for direct comparison across models we chose to use the same prior

for µ and precision parameters as the normal model. For the degrees of freedom

we use an exponential prior as recommended by Kruschke (2013). In order to avoid

increased flexibility due to hyper-parameters, we use exp(1) as the prior, which is

relatively conservative in the amount of variation in the standard deviations of the

normals in the mixture.

This model construction promises to be robust when faced with outliers. Each

datum observed can be thought of as a draw from a normal distribution with the

same mean as other data in the sample, but with a precision that is wider or narrower

as dictated by its relationship to the rest of the data (i.e. a more extreme point

would be drawn from a normal with lower precision and hence higher variance).

Whilst theoretically this is true, the data as a whole is fit to a t-distribution with

parameters µ, σ and ν (degrees of freedom). This final parameter, ν, provides the
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only indication to the amount of data that is discounted as outliers or contaminants.

The exact relationship, however, is not clear. Certainly it does not give an estimate

of the proportion of data that are discounted, nor the degree to which they are

discounted. With this in mind, we propose an alternative model that does allow the

user some notion of the proportion and extremity of the contamination.

4.4.3 The contaminated normal model

As an alternative to the normal and t-distribution models, we propose the contami-

nated normal model (e.g., Tukey, 1960). Although this model requires an additional

number of free parameters, we argue that it is easier overall to interpret. The con-

taminated normal is a very simple mixture model in which the target distribution

is again a normal distribution with unknown mean µ and standard deviation σ1, as

per the usual normal model. However, some unknown proportion of the observa-

tions γ are drawn from a contaminant distribution that again has mean µ but has

a different (generally larger) standard deviation σ2. The standard deviation of the

contaminants is governed by the scale parameter h, such that σ2 = h × σ1. The

contaminated normal model is depicted graphically in Figure 4.1c.

In our applications we assume that the contaminant proportion γ is drawn from a

Beta(1,9) distribution, reflecting a somewhat conservative expectation that 10% of

the data are contaminants. Similarly, we assume that h is drawn from an Exponen-

tial(.1) distribution, implying that on average the contaminant distribution will be

10 times as wide as the target distribution. The model enumerates the probability

each datum is a contaminant and the overall proportion of contamination.
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Clearly, the contaminated normal model is not intended to serve as a literal model

for how contamination processes play out in psychological data. In real life there are

very few phenomena of interest to behavioral researchers that are precisely normally

distributed, and there is no reason to think that contaminant distributions are any

more likely to be normal either. However, in much the same way that researchers

treat normality as a sensible first approximation when constructing models for a

phenomenon of interest, we propose that normality makes sense as a first approxi-

mation to contaminant processes too. Our goal is not to have a realistic generative

model for every psychological experiment (which seems impossible) but rather to

construct a minimal, sensible account that has the potential to detect the most

misleading contaminants and prevent them from having a disproportionately large

effect on the inferences about the target.

To our knowledge the contaminated normal model has not previously been consid-

ered as a general purpose tool in psychological data analysis, but the principles upon

which it is based are fairly standard. For example, the idea of explicitly building

a high-variance “contaminant distribution” into the model is a relatively standard

approach in cognitive modelling (e.g., Ratcliff & Tuerlinckx, 2002; Zeigenfuse & Lee,

2010). Similarly, the overall effect of adding the contaminant distribution is to cre-

ate a “heavy tailed” model for the observed data, consistent with standard advice

in the Bayesian robust statistics literature (e.g., Berger et al., 1994). Given the

simplicity of the idea and its alignment with existing approaches in the literature,

the contaminated normal model seems a sensible way to construct a default model

for contaminated data.
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4.4.4 The Bayesian bootstrap

In the contaminated normal model, the central idea is to model contaminants with

the help of an explicit, parameterized contaminant distribution. The model is very

much a parametric model, making strong assumptions about the shape of the target

distribution and the shape of the contaminant distribution. An alternative approach

is to consider nonparametric methods in which the researcher avoids relying on any

strong assumption about distributional shape. This approach is very common in

frequentist analyses: when presented with unusual data, a typical orthodox solution

is to use bootstrapping (Efron & Tibshirani, 1994) to construct confidence intervals

(Efron, 1987; Hall, 1988).

Although less commonly used in the psychological literature (e.g., Navarro, Newell,

& Schulze, 2016) a Bayesian version of bootstrapping exists and is known as the

Bayesian bootstrap (Rubin et al., 1981). In much the same way that bootstrapping

plays an important role in frequentist robust statistics (Wilcox, 2012), one might

imagine that the Bayesian bootstrap approach could serve a similar role for Bayesian

data analysts in psychology. The Bayesian bootstrap (henceforth BB) algorithm is

described in Figure 4.2, but to understand the logic of the BB procedure it is useful

to first discuss Bayesian nonparametric inference in a relatively non-technical way.

From the Bayesian perspective, nonparametric inference proceeds as follows. The

observed data are assumed to be generated by some unknown probability distribu-

tion G whose properties are largely unknown. In parametric Bayesian inference the

data analyst typically places a strong constraint on G, perhaps by assuming that G

is a normal distribution or a member of another family of distributions that can be
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described by a small number of parameters. In nonparametric Bayesian inference no

such constraint is imposed: instead, the data analyst specifies a prior P (G) that has

broad support across the space of possible probability distributions. After observing

the data X the analyst updates their beliefs about the unknown distribution. This

yields the posterior P (G|X) that assigns a degree of plausibility to every possible

distribution G that could have generated the observed data.

Given these beliefs about the population distribution G it is conceptually straight-

forward to construct the posterior distribution for any characteristic of that dis-

tribution. For instance, if we let E[G] denote the expected value (mean) of the

distribution G then the posterior density for the mean is given by

P (µ) =

∫
G|E[G]=µ

dP (G)

and a credible interval can be constructed accordingly. The graphical model for this

inference problem is illustrated in Figure 4.1d, and highlights the fact that the data

analyst “directly” specifies the prior for the distribution G. The population mean

µ is simply one of many properties that can be calculated from the distribution and

plays no special role in the generative model. As such, the same underlying model

can be adapted to compute a credible interval for the population median, trimmed

mean, standard deviation, skewness, or any other property that can be computed

from a generic probability distribution G. Given our interest in contaminated data,

we consider two cases of particular interest: the mean (henceforth denoted BB-

mean) and the 20% trimmed mean (denoted BB-trimmed), where the most extreme

20% were trimmed from the distribution before the mean was calculated.
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The description above is a fairly general (and imprecise) description of nonpara-

metric Bayesian methods, and like any statistical method the complexity lies in the

details. There are many different methods for constructing nonparametric priors

P (G), with different strengths and weaknesses. Examples include Dirichlet pro-

cesses (Ferguson, 1973), Pitman-Yor processes (Pitman & Yor, 1981), Pölya trees

(Mauldin, Sudderth, & Williams, 1992), Dirichlet diffusion trees (Neal, 2000) and

many others besides. A technical overview of nonparametric methods is given by

Ghosh and Ramamoorthi (2003) but there are several tutorials and applications

relevant to psychologists in the literature (B̊åath, 2016; Gershman & Blei, 2012;

Karabatsos, 2017; Navarro et al., 2006). For the purposes of the current paper it

suffices to note that the statistical model underpinning the BB is a limiting case of

the well-known Dirichlet process in which the statistician expresses the maximum

degree of uncertainty about the unknown distribution G.3

The end result of this is that the Bayesian Bootstrap in its most common form

(Rubin, 1981) considers the observed values to be the only possible values in the

population. These values are given weight proportional to that they were observed

in the sample. In this way this method is very similar to a traditional frequentest

bootstrap.

3Formally, the prior in Rubin et al. (1981) is equivalent to the special case of
a Dirichlet process that specifies a base measure αG0 where the base distribution
G0 has broad support and we apply the limiting version of the prior as the concen-
tration parameter α → 0. As has been noted in the statistics literature (Diaconis
& Freedman, 1986, 1) the Dirichlet process prior has some limitations when used
as a prior over continuous distributions: in the limit the posterior concentrates on
discrete distributions with probability 1, and leads to posterior inconsistency when
the true distribution is continuous. In such cases the only possible values in G are
those that were observed in the sample, leading to a “comb”-like appearance. In
addition to the problem noted in the main text the BB inherits the other concerns
associated with Dirichlet process models, and as such some caution is warranted.
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The Bayesian bootstrap (BB) is based on the nonparametric Bayesian model described in
the main text, and describes a method for sampling probability distributions G (referred
to as BB replicates) from the posterior belief distribution. Specifically, given data X =
(x1, . . . , xn) we can sample from the posterior P (G|X) by the following procedure:

1. Generate n− 1 uniform random numbers from the interval [0, 1].

2. Order the numbers such that u1 < u2 < . . . < un−1, and set u0 = 0 and un = 1.

3. The weight wi assigned to xi is the difference ui − ui−1.

4. The sampled distribution G is constructed by setting P (x = xi) = wi. Values not
represented in the original dataset are assigned probability zero.

Given a set of BB replicates generated in this fashion, and a population parameter (e.g.,
the mean) defined in terms of some function f(·) of the population distribution G, we
can construct a simple Monte Carlo approximation to the posterior distribution of the
parameter by applying the function to each BB replicate.

Figure 4.2: The Bayesian bootstrap procedure. The distribution G is a weighted set of

numbers that were observed in the dataset. Once G has been formed, the population

parameter of interest (in this case either the mean, or the mean of a distribution with 20%

of the most extreme points removed) is calculated.

From the perspective of dealing with contaminants, the nonparametric Bayesian

approach has a good deal to recommend it. First, nonparametric methods do not

make strong assumptions about the shape of the population distribution, and as

such there is nothing preventing a nonparametric Bayes model from inferring that

the data are generated from a complex distribution that includes a long tail of

outliers. Second, because the method allows the researcher to construct a posterior

distribution for any statistic of interest, it is no more difficult to construct a credible

interval for the 20% trimmed mean than it is to do so for the untrimmed mean. This

provides a natural Bayesian equivalent of robust frequentist methods that work in a

similar fashion by bootstrapping a confidence interval for the trimmed mean (Efron

& Tibshirani, 1994). Third, for the BB approach specifically, the computations are

straightforward to implement: As Figure 4.2 makes clear, Bayesian bootstrapping
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is no more complex than its frequentist counterpart.

We considered two Bayesian Bootstrap models. The first focused on estimating the

mean as the statistic of interest. The second estimated the 20% trimmed mean. If

the Bayesian Bootstrap performs in any way similarly to the frequentest bootstrap-

ping, then the 20% trimmed mean should be robust insofar as the frequentest 20%

trimmed mean bootstrap is (Wilcox, 2012).

Set against these advantages, some shortcomings should be noted. In the original

paper Rubin et al. (1981) points out that the BB is implicitly reliant on a statistical

model that is a somewhat implausible in most practical settings. Most notably,

because of the way that the prior P (G) is spread so thinly across the space of

possible distributions G, any empirical dataset (no matter how small the sample

size) turns out to be large enough to “swamp the prior”. The effect is so large

that the posterior distribution P (G|X) is entirely restricted to those distributions

G that are defined only across values that appeared once in the original sample.

Much like the frequentist bootstrap, the BB can only re-use the existing data: it

does not consider unobserved values. Nevertheless, in this paper we take a pragmatic

perspective. We do not believe that any general purpose statistical models actually

represent plausible theories of the data, and in our view the obvious failures of the

BB model make it no less plausible than (say) linear regression. The question at

hand is whether the BB provides a useful “generic” tool for researchers to express

their beliefs about unknown quantities. As Box (1976, p. 792) famously remarked

“since all models are wrong the scientist must be alert to what is importantly wrong.

It is inappropriate to be concerned with mice when there are tigers abroad”. With
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Figure 4.3: Posterior distributions for the population mean (or trimmed mean) when

given a small dataset containing one outlier, according to the five different approaches.

The dotted line represents the true population mean (without the contaminated point). If

the model is estimating the mean well, we would hope the posterior to be peaked near or

on the mean. The normal model (leftmost plot) is strongly influenced by the outlier. To

a lesser extent, so is the Bayesian bootstrap interval for the mean (fourth plot from the

left). The contaminated normal model (second from the left) , the t-distribution model

(middle), and the Bayesian bootstrap interval for the trimmed mean (rightmost plot) are

all less sensitive to the extreme data point.

that in mind, we turn our attention to the search for tigers.

4.5 When does contamination matter?

Armed with five Bayesian models, we first consider a problem familiar to anyone

who has taken an undergraduate research methods class. Suppose a particular

154



Chapter 4

experimental condition yields the following six observations:4

−2,−1, 0, 1, 2, 15

and the researcher wishes to construct a 95% credible interval for the mean. It is

immediately obvious that the sixth data point is an outlier, in the sense that it is

quite distant from the other five. What is less than obvious is whether it also counts

as a contaminant, in the sense of being an observation generated from a distribution

entirely unrelated to the phenomenon of interest to the researcher. If it is indeed a

contaminant it should have minimal influence on what the researcher believes about

the phenomenon of interest. Noting this, it is instructive to consider what the five

Bayesian approaches infer from these data.

The violin plots in Figure 4.3 show the relevant posterior distributions for all five

models, and it is immediately clear from inspection that the choice of model matters.

According to the normal model and the BB-mean approach, the best point estimate

(calculated from the mean of the posterior) for the population mean µ is essentially

identical to the sample mean of 2.49. The BB estimate of the population 20%

trimmed mean discounts the outlier to some extent, producing an estimate of 1.38.

The contaminated normal model and the t-distribution model produce the strongest

outlier discounting and estimate a population mean of 0.47 and 0.22, respectively,

only slightly larger than the mean of the first five observations. Other inferences

from these models are equally discrepant.

4 These numbers were arbitrary, but interestingly enough are also used in the
toy example given in Kruschke (2014, Figure 16.5, p. 460).
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We next consider the the highest density intervals for the mean.5 According to the

normal model there is a 95% probability that the population mean lies between

[−4.25, 9.08] and an 18% probability that the population mean is less than zero.

The t-distribution model and contaminated normal model produce much narrower

95% credible intervals of [−2.23, 2.27] and [−2.49, 4.88] respectively, but a much

larger probability that the population mean is negative (43% each). A Bayesian

bootstrap of the mean gives a qualitatively different interval estimate of [0.79, 7.03],

with a lower bound noticeably closer to zero than either of the other two models.

Not surprisingly, this model judges that there is only a 6% probability that the true

mean is negative. Finally, using the BB to estimate the trimmed mean produces an

interval of [−1.60, 7.12] and a 27% probability of a negative mean.

Unique among the models, the contaminated normal model also provides an esti-

mate of which items are contaminants: for instance, the data point 15 is given 85%

probability, while the others are identified as contaminants with less than 7% prob-

ability. It also estimates the overall proportion of contaminants (γ in Figure 4.1) at

13.1%, and the overall width of the contaminate distribution (h in Figure 4.1) as

11 times the target distribution. As this simple example illustrates, there is a clear

difference between the performance of the t-distribution and contaminated normal

models on one hand, and the other models on the other. The contaminated normal

model has the added benefit of allocating the probability that each datum is an

outlier.

5 Although all of the simulations provided in this manuscript use the highest
density interval (HDI), we ran all simulations with equal-tailed intervals between
the .025 and .975 quantiles. There was no qualitative difference in the results.
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4.5.1 Systematic differences as a function of outlier extrem-

ity

Disagreement among models is not necessarily problematic, especially when those

models are provided with very few data points. In this case, however, the differences

are systematic and reflect a deep incompatibility among the models. To see this,

suppose we were to smoothly vary the location of the sixth data point from x = 0

to x = 25, and observe how the credible intervals change for all five approaches.

The results are shown in Figure 4.4, and reveal fundamental differences in how the

models behave.

For the normal model and the BB-mean approach, the best estimate of the pop-

ulation mean tracks the sample mean: the more extreme the outlier becomes, the

more extreme the estimated population mean comes. In contrast, the t-distribution

model, contaminated normal and BB-trimmed methods all discount the outlier but

do so in qualitatively different ways. The BB-trimmed method discounts the most

extreme observations, but the extent of the discounting does not depend on the mag-

nitude of the extremity: the estimated population mean rises more slowly than the

sample mean, but it rises monotonically. Making the outlier more extreme always

increases the estimated population mean.

The contaminated normal model shows a fundamentally different pattern. For very

modest outliers (up to about x = 6) the contaminated model behaves in a sim-

ilar fashion to the normal model and the BB-mean approach, and the estimated

population mean is almost identical to the sample mean. Above this point, the

contaminant model begins to discount the outlier, reducing its influence on the es-
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Table 4.1: Qualitative differences among the five different Bayesian approaches are sum-

marized here. This table is a summary of the findings demonstrated in Figure 4.4, and

summarises the theoretical expectations of how the models incorporate the outlier and

thus how the beliefs about the mean vary across models. The third row relates to whether

the posterior (and subsequent credible interval) is symmetric around the estimate for the

mean. The last row addresses how the outliers are treated by the model.

Normal Contam-
inated

t-dist BB-
mean

BB-
trimmed

Should outliers be discounted
when estimating means?

No Yes Yes No Yes

Do beliefs about the mean reverse
as the outlier becomes very ex-
treme?

No Yes No No No

Should uncertainty at the upper
end be mirrored in the lower end?

Yes Maybe Yes No No

Does the model allow explicit out-
lier labelling?

No Yes No No No

timated population mean. Eventually a point is reached that the model becomes

so certain that the outlier is a true contaminant that any further increases to the

outlier act to reduce the estimated population mean. By the time that the outlier

reaches x = 25 the model has discounted it almost completely, and the estimated

population mean falls back towards zero (the mean of the other five observations).

This pattern is fundamentally at odds with the one produced by the BB-trimmed

method.

The t-distribution model performs differently again. Much earlier than the contam-

inated normal model (i.e. before the outlier has reached a value of 5), it begins to

discount this extreme point, producing a credible interval that is relatively consistent

regardless of the value of the outlier.
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Figure 4.4: An illustration of how the credible intervals change as a function of the

extremity of an outlier. Each observed sample contains the values −2, −1, 0, 1 and 2 in

equal proportions. The y-axis represents the width of the credible interval for these points

plus a contaminant. The values on the x-axis represent the extremity of the contaminant

point. As these values increase, the distance between this point and the rest of the sample

grows. The dark points show the population mean estimated by the model for each value

of contamination. The light grey points show the mean of the sample distribution both

with and without the extreme point. The normal, BB mean and BB trimmed produce

intervals that increase monotonically as the outlier grows more severe. Conversely, the

contaminated normal model does not. Once an outlier is sufficiently extreme, the model

discounts it and produces a credible interval on the remaining sample. The t-distribution

model discounts the moderately small outliers to the same degree as the extremely large

outliers.
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A similarly dramatic disagreement appears when we consider how the credible in-

tervals change. The normal distribution and t-distribution models are symmetric,

and as a consequence any increase of uncertainty at the upper end of the interval

must be mirrored by increasing the uncertainty at the lower end as well. The non-

parametric model that underpins the BB imposes no such symmetry constraint, and

so the upper and lower tails of the credible interval move relatively independently.

For both BB models a shift in the outlier produces a change in the upper end of the

credible interval that matches the change produced by the normal model, but the

lower bound is largely unaffected.

The contaminated model produces a different pattern again. For relatively modest

outliers (again, up to about x = 6) the upper and lower bounds of the interval look

essentially identical to the normal model, and satisfy the same symmetry constraints.

However, once the model begins to discount the outlier a different pattern emerges.

The lower bound to the credible interval stays roughly constant, not too dissimilar

to the nonparametric models. The upper bound, continues to rise for a while but

eventually it too begins to fall back down as the model becomes increasingly certain

that the outlier is a contaminant.

The various disagreements among models are summarized in Table 4.1, which char-

acterises the differences in terms of three questions about how credible intervals

should behave and how beliefs should change as a function of the extremity of an

outlier. As the table highlights, the differences are not simple differences of opinion

about priors (e.g., how big an effect size is expected); they are fundamental questions

about the relationship between data and beliefs. In our view at least, the behavior
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of the contaminated normal model most closely matches what we think most (but

not all) scientists would consider reasonable in most (but not all) psychological ex-

periments. To the extent that this is true, a contaminated normal model makes

considerably more sense as a default choice for the analysis of behavioral data.

4.5.2 Increasing the sample size does not erase the differ-

ences

A different perspective on the same issue is to consider how the models make different

inferences as a function of sample size. In real data analysis problems, adding

new data also changes the distribution of those observations. For the purposes of

illustrating the “pure” effect of sample size, we create a sequence of datasets by

adding multiple copies of the same six values X = (−2,−1, 0, 1, 2, 15), and apply all

five methods to the data. The results are shown in Figure 4.5.

Unsurprisingly, as the sample size increases, the normal model and the BB mean ap-

proach continue to produce estimates of the population mean that track the sample

mean of 2.5, and the credible intervals tighten around that mean. Equally unsurpris-

ingly, as the sample size increases the BB estimate of the 20% trimmed population

mean converges to the 20% trimmed mean of the observed data, yielding a value of

0.5 in the large sample limit. The contaminated normal model and t-distribution

model produce a different answer again: as the sample size increases the models

become increasingly certain that the outliers (the copies of the x = 15 observations)

are contaminants, and converge to the mean of the other observations, yielding an

estimated population mean of 0. The contaminated normal model, whilst produc-
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ing a wider credible interval for small n, produces a slightly tighter credible interval

than the t-distribution model as n grows large.

To a statistician, none of these results might seem especially surprising: models that

rely on different assumptions can produce quite different estimates of the same (or

similar) quantity. To an empirical scientist, they might be somewhat problematic.

The fact that the differences between models can be exaggerated by collecting ad-

ditional data has non-trivial implications. It is not possible to avoid the problem

of contaminants simply by being Bayesian, nor is it possible to sidestep the issue

simply by collecting more data. To resolve the problems that these incompatibilities

pose, substantive choices must be made by the data analyst.

4.5.3 How robust are the different methods?

The examples in the previous section highlight the importance of taking contami-

nation seriously. In order to provide a better picture of how each of five methods

performs, we present a simulation study that investigates the behavior of different

Bayesian models when contaminants are introduced to the data. We consider two

qualitatively different kinds of contamination, biased contamination and unbiased

contamination, depicted in Figure 4.6. In both instances we assume that there ex-

ists a target population distribution (shaded plot) that represents the phenomenon

of substantive interest to the researcher, but the dataset is corrupted: some propor-

tion of the data arise from a contaminant distribution (grey plot) that is of little

substantive interest.

The unbiased contamination scenario exactly matches the assumptions that under-
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Figure 4.5: An illustration of how the credible intervals change as a function of sample

size. To control for the effect of distribution, at every sample size n the observed sample

contains the values −2, −1, 0, 1, 2 and 15 in equal proportions. The y-axis represents

the width of the credible interval. The x-axis represents the sample size. As before in

Figure 4.4, the dark points show the population mean estimated by the model for each

value of contamination. The light grey points show the mean of the sample distribution

both with and without the extreme point. The convergence rate of the normal model, BB

mean and BB trimmed models are roughly similar, whilst the contaminated normal model

converges much faster. The normal and BB mean models converge to approximately 2.5,

the BB trimmed mean converges close to 0, and the contaminated normal model and

t-distribution models converge to approximately 0.
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(a) Unbiased Contaminants (b) Biased Contaminants

Figure 4.6: Two qualitatively different kinds of contaminant distribution. Each panel

plots a target distribution (shaded) mixed together with a contaminant distribution (grey).

In the unbiased contamination scenario (panel a) the contaminants are generated from a

normal distribution that has high variance but is centred on the same location as the

target distribution. In the biased contamination scenario (panel b) the contaminants have

a different mean to the target distribution.

pin the contaminated normal model: the mean of the contaminant distribution is

the same as the mean of the target distribution, but it has higher variance. In con-

trast, a biased contamination scenario is one in which the contaminants arise from

a distribution that has a different mean from the target, and is potentially more

worrisome.6 Specifically, in our simulations the target distribution was always as-

sumed to be a normal distribution with mean 0 and standard deviation 1. Unbiased

contaminants were sampled from a normal distribution with mean 0 and standard

deviation 10, whereas biased contaminants were sampled from a normal distribution

with mean 10 and standard deviation 1.

6In these simulations we assume that the contaminants are normal. We also ran a
version in which the contaminants were generated from a clumpy distribution, which
we did by sampling contaminant distributions from a Dirichlet process. However,
apart from making the results somewhat more variable everywhere, we did not find
that clumpy contamination made much of a difference to our simulation results,
and as such we have restricted our discussion to the case when contaminants are
normally distributed.
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In addition to varying the kind of contamination, we varied the amount of con-

tamination from 0% to 50%. In practice we would expect that the proportion of

contaminants should be well below 50% – indeed, if half of one’s data are “contam-

inants” it does not seem to make sense to consider them contaminants any more.

As mentioned earlier in the paper we expect that a value of 10% is more reasonable,

but given that our focus is developing statistical methods that are robust even in

somewhat extreme situations, it seems sensible to consider the full range of possi-

bilities. Finally, we varied the sample size, considering values with N = 20, 50, 100

and 250 in order to cover the range of typical sample sizes in behavioral research.

For each scenario we ran 1000 random simulations.

The results are plotted in Figures 4.7 and 4.8. In the top row of Figure 4.7 we see

that when the contaminants are unbiased, all four Bayesian methods have reasonable

coverage – in the frequentist sense of trapping the true mean with the desired 95%

probability7 – for most choices of sample size and contamination level, suggesting

that for the most part these methods are robust when contaminants are unbiased.

The one exception to this is the BB mean approach (plotted with black triangles),

which performs noticeably worse than the other three approaches when the sample

size is small and the contamination level is low. The reason for this is that small

7We have on occasion encountered Bayesian data analysts who oppose any evalu-
ation of the frequentist properties of Bayesian methods, arguing that Bayesian meth-
ods should be defined on their own terms with no reference to frequentist concepts
such as consistency, efficiency, unbiasedness etc. We can understand this impulse,
but we take a pragmatic view ourselves. To the extent that these simulations annoy
a truly committed Bayesian, we propose that even a committed Bayesian is entitled
to treat the entire frequentist apparatus as an elaborate elicitation study: if a model
produces long run behavior that the data analyst does not find desirable, it must be
the case that this is not a model that the analyst places any (subjective) belief in.
In that sense a frequentist evaluation can be very useful to a Bayesian researcher,
as a method for uncovering revealed preferences.
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Figure 4.7: Coverage probability (proportion of cases in which the interval contains the

true mean) for all five Bayesian methods as a function of sample size (x-axis), contaminant

proportion (horizontal panels) and contaminant type (vertical panels). Insofar as each of

these represents a 95% credible interval, ideally one hopes to see 95% coverage. Except for

the BB mean, all of the models have good coverage probability when the contaminants are

not biased to one side of the sample. As expected, when the contaminants are biased, all

of the models eventually fail with 50% contamination, even with a very large sample. The

contaminated normal model however, is robust at a much higher level of contamination

(40%) than even the t-distribution.
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Figure 4.8: Average interval width (y-axis) for all five Bayesian methods as a function

of sample size (x-axis), contaminant proportion (horizontal panels) and contaminant type

(vertical panels). Although some contaminants produce wider intervals than others, they

are quite similar in size. This suggests that the robustness in Figure 4.7 is not an artifact

of more conservative (wider) credible intervals.
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sample sizes and lower contamination rates is exactly the situation in which it is most

likely for all the contaminants to lie on the same side, thereby producing data that is

more representative of the biased contaminant situation, and (as we discuss below),

the BB mean model does not fare well when faced with biased contamination.

In addition to measuring the coverage probability for the different estimators, we

also examined the precision (i.e., average width) of the credible intervals produced

be each of the four methods. The top row of Figure 4.8 suggests that the average

width of the credible intervals does not differ greatly among all four methods. Taken

together with the results in Figure 4.7 the simulations suggest that unbiased contam-

inants are comparatively harmless, having only modest influence on the accuracy

or size of the credible intervals. To the extent that contaminants are unbiased, one

might reasonably conclude that Bayesian inference using the default normal model is

genuinely robust, and there would be little need to consider alternative approaches.

When we turn our attention to the case when the contaminants are genuinely bi-

ased, a different story emerges. As the bottom row of plots in Figure 4.7 the normal

model and the BB estimate of the mean are both very sensitive to biased contam-

inants: even a modest level of contamination (e.g., 10 contaminants in a sample of

100 observations) is enough to make it virtually certain that 95% credible intervals

constructed using these methods does not contain the mean of the target distribu-

tion. The failure of the BB mean approach is particularly noteworthy because it

highlights that, like the frequentest bootstrap, nonparametric approaches are not

automatically robust: using the Bayesian bootstrap to estimate the posterior dis-

tribution for the parameter mean frees the researcher from the assumption that the
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population is normal, but it does not provide any mechanism to identify or exclude

contaminants. As such, when the contaminants are biased, so too is the the BB

estimate of the population mean.

The other three methods perform rather better. The BB estimate of the population

20% trimmed mean is somewhat improved, but – somewhat unsurprisingly – it too

becomes unreliable once the proportion of contaminants rises above the trimming

level: at 30% contamination it is only marginally better than the other two methods.

The contaminated normal model and t-distribution model, on the other hand, are

both extremely robust, performing similarly to each other up to 30% contamination

level. At a massive 40% contamination, the contaminated normal model produces

a credible interval that contains the true mean in more than 50% of cases, beaten

by the t-model only in the smallest sample size.

Again we note a slight inconsistency. With higher contamination levels (greater

than 40%) the contaminated normal model produces a curious result. Unlike the

other models (which start at their most accurate and decrease with increased n), the

contaminated normal model is less likely to contain the true mean with 20 samples

than 50 samples. This is because the contaminated normal model estimates the

contaminant proportion using information from both the prior (which assigns a

very small probability to such high levels of contamination) and the data observed.

With very small sample sizes, the data provide very little evidence to suggest a

high level of contamination. As such the model relies more heavily on the prior

and incorrectly identifies contaminated points as members of the target distribution

(e.g., only 29% of contaminants are correctly identified at a 40% contaminant level
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with N = 20). However, unlike the other models, increasing the sample size does

lead to better estimation of the contaminant proportion (i.e. an increase to 70%

correctly identified at 40% contaminant and N = 50). This increases the probability

of creating a credible interval that contains the true mean.

Finally, we turn our attention away from the coverage probability and consider the

precision (as measured by width) of the intervals in the biased contaminant scenario.

Consistent with our earlier findings in the unbiased scenario, the robustness of the

contaminated normal model does not seem to come at the expense of precision. As

the bottom row of Figure 4.8 shows, the credible intervals produced by the contami-

nated normal model tend to be as narrow as those produced by the other approaches.

It is noteworthy that the width of the intervals produced by contaminated normal

model decreases with increased sample size in much the same manner as the other

models. This suggests that the increased robustness of this model is not an artifact

of the model producing more conservative (i.e. wider) intervals.

4.6 Detecting contaminants in the data

In this manuscript we considered five different methods of creating a credible interval

for the mean. Overwhelmingly the contaminated normal model and t-distribution

model perform best when contamination is present. However, they employ very

different methods of accounting for this contamination. The t-distribution model

accounts for outliers because its tails can be heavier than the tails of a normal

distribution. The contaminated normal model, by contrast, is a mixture model of

a target distribution and a (much wider) contaminant distribution. Because it is
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Figure 4.9: An illustration of the probability of the extreme point being labelled as

an outlier by the contaminated normal model. The values on the x-axis represent the

extremity of the contaminant point. The y-axis represents the probability of this point

being classified as a contaminant relative to the other data. As the value grows more

extreme, it becomes much more likely to be rejected as a contaminant.

a mixture model, every datum has some probability of being in the contaminant

distribution. No other model that we have described in this paper has this feature.

We have argued that this feature is rather desirable for a number of reasons. To more

fully demonstrate the main one – that it identifies which specific data points are likely

to be the outliers – we repeat the simulations from Figure 4.4, but now investigate

the probability that the extreme point is identified as an outlier. As Figure 4.9

shows, the contaminated normal does well at outlier identification. Initially the

extreme point is included in the target distribution, but as that point grows large

relative to the rest of data it is increasingly categorized as part of the contaminant.

This mirrors the shape of the credible interval in Figure 4.4.
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4.7 Discussion

Statistical inference necessarily relies on simplifying assumptions: the causal mecha-

nisms that produce empirical data are usually complex, and researchers typically do

not understand the phenomenon under investigation well enough to properly specify

what those mechanisms are (or else why would one be studying it?). The truism that

“all models are wrong” is an expression of this necessity (Box, 1976). However, the

fact that all models are wrong does not imply that all simplifying assumptions are

equally sensible. Given the inherent difficulties associated with behavioral research,

we argue that if a data analysis tool is intended to serve as a “default” method for

behavioral researchers, it must be robust in the face of contaminated data. In prac-

tice is difficult to trust the inferences produced by a statistical model if that model is

extremely sensitive to contaminants. This point is acknowleged within the orthodox

literature on robust statistics (Wilcox, 2012), but has received comparatively little

attention within Bayesian behavioral statistics.8

In this paper we restricted ourselves to a very simple statistical problem – the es-

timation of a credible interval for the population mean of a continuous univariate

quantity – and to a set of five Bayesian approaches that are by no means exhaustive,

but are arguably representative of the class of models that researchers might con-

sider applying. In some respects our findings would not surprise any statistician: the

default normal model is not robust to contamination, and a nonparametric approach

is not necessarily better if applied in a naive way. The Bayesian bootstrap approach

8We do not suggest that Bayesians are unaware of this as an issue (see Wang
and Blei (2015), for example), merely that research has tended to focus on different
questions.
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is somewhat robust if it is used to construct credible intervals for a quantity (pop-

ulation trimmed mean) that is not easily influenced by the tails of the distribution,

but it is not at all robust when it is directly applied to estimate the population mean

itself. This finding is mirrored in the parametric models as well: although we find

that the default normal model is not robust, the t-distribution model and contam-

inated normal model are very robust, and appear to remain robust even when the

contamination process violates the underlying assumptions of the model. At very

high levels of contamination the t-distribution model is not quite as robust as the

contaminated normal model and also provides no indication about which items are

most likely to be outliers.

In view of the fact that Bayesian methods are not robust to contamination simply

by virtue of being Bayesian, to the extent that contamination is commonplace in

behavioral research, it seems sensible to prefer those models that are robust to con-

tamination. We suggest that the contaminated normal model, the t-distribution,

and the Bayesian bootstrap approach for inference about trimmed means all meet

this criterion. In our simulation studies, the contaminated normal model seemed to

perform best, but some caution is warranted since the relative robustness of these

three methods almost certainly depends on the situation. When the population dis-

tribution is skewed, for instance, one might expect the contaminated normal model

to perform poorly relative to the BB-trimmed method. More generally, when choos-

ing among different approaches that have some claim to being labelled “robust”, we

suggest that the qualitative considerations listed in Table 4.1 provide a better guide

to researchers than relying too heavily on any one simulation study. Our personal
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view is that in most situations the behavior of the contaminated model is the closest

match to what a human reasoner would consider sensible, but ultimately the choice

of model has to depend on the context.

That said, one advantage of Bayesian methods in general is that they make it easy to

implement multiple ways to model data with outliers, some but not all of which we

evaluated here. For instance, t-distributions can be straightforwardly implemented

in JAGS and Stan, along with contaminant models for logistic regression and other

hypothesis testing models. The textbook Doing Bayesian Data Analysis (Kruschke,

2014) is an accessible resource for many such approaches.

Finally, it is worth commenting on the generality of the problem under consideration.

On the one hand, this paper does focus on a very simple problem. On the other

hand, the problem is one faced by almost every paper reporting empirical data:

in many areas of psychology and other behavioral sciences it is standard to report

interval estimates for the population mean in various experimental conditions, and

it is exactly this situation that we have considered. That being said, a natural

extension of the work is to move beyond estimation problems to hypothesis testing

scenarios. The contaminated normal model represents a sensible and simple tool

for robust Bayesian estimation, and it is naturally extensible to construct robust

Bayesian t-tests, ANOVAs and regression analyses. We are currently working on

exactly these extensions.

In addition, although this paper is focused on data analysis, very similar problems

arise for human learners in the real world. The data available to people is often

contaminated with outliers of one sort or another, and a robust learner would need
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to deal with them just as statisticians do. The mixture model we employ here may

be appropriate as a cognitive model as well, and pursuing this is an interesting

alternate line of research. In the meantime, however, it seems clear – even on the

basis of this initial investigation – that for a statistician the issue of robustness is

just as critical for evaluating Bayesian models as it is for orthodox approaches, and

should be given consideration when choosing the appropriate data analysis tool.
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When not everyone responds the

same way

Empathy is a tool for building

people into groups

Neil Gaiman

In the previous chapter I argued for modelling contamination as a process of the way

the data were generated. This does not just increase the accuracy of the claims that

can be made about the data. It also allows us, as researchers, to make additional

claims about the data. In this chapter I extend this idea further with an example

that combines the assumptions that the researcher makes about the data with the

inference they would like to make.

We will consider an intervention trial, where the outcome of interest is the difference

between pre- and post intervention, focusing on the case where the researcher has

some underlying belief that not all participants will be affected by the treatment. I
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argue that these beliefs should govern both the structure of the model and, through

this structure, the parameters of interest.

Existing models that are commonly used with this sort of data focus on identifying

individual change. They do so through a testing process, not through a model that

assumes a heterogeneous response. In this chapter I demonstrate that we can use

a Bayesian mixture model that directly models this assumption, which allows us

to make claims about the data that are richer. With this model we do not need

to limit ourselves to making inference about the individual level, but instead can

compare and contrast the size and proportion of individuals effected by a given

treatment. The previous chapter demonstrated that models based on assumptions

of the researcher are more accurate and can make richer claims about the data. This

chapter demonstrates that a model based on assumptions about how the data were

generated changes the type of outcome variables of interest in a rich and positive

way.
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5.3 Abstract

Psychology often relies on making inference about the average individual, which can

hide or distort true effects if the effect is not homogeneous. Although there exist

traditional modelling attempts to distinguish between individuals who experience

significant change and those that do not, the model proposed in this paper uses

current state-of-the-art statistical models, which can estimate at both the individual

and group-level, as an alternative to current best practice. To achieve this we

propose a Bayesian mixture model that allows the researcher to infer at a group-

level the proportion of individuals who experience an effect, and the size of the effect

if it is experienced, and at an individual level whether individuals have experienced

change or not. We demonstrate the efficacy of this model with a four toy datasets,

and demonstrate the excellent parameter recovery for three of the four datasets. We

then discuss potential extensions to this model class to improve the model further.

Keywords: Clinical trials, statistical analysis, Bayesian methods, Reliable Change

Indices
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Reliable estimates of individual change with

Bayesian latent class models

Psychological science is often the science of averages. As scientists, we care about the

average response to given a specific intervention or the average relationship between

two different factors. By considering averages we can summarise data from many

people using a small set of easily interpreted numbers and use these to predict future

events. However, using average effects in this way relies on assuming all individuals

have roughly the same response – an assumption that may not necessarily hold,

with important consequences. In this paper we present a new application for a class

of statistical models that permits researchers to make estimates at both individual

and group-levels simultaneously. Our focus is on designs in which a treatment (or

intervention) is provided to a group of people, and the question of interest is whether

the intervention produces an effect on a continuous-valued outcome (or response).

Such designs are commonplace in medical and clinical settings, and the heterogeneity

of treatment effects in these situations is well known. For instance, only one to

two-thirds of individuals appear to respond to the first prescribed medication for

depression (Little, 2009; Souery, Papakostas, & Trivedi, 2006). Heterogeneity also

appears present in therapeutic settings as well (Ross et al., 2004).

Despite the existence of individual variability, many of the most common statistical

methods focus not on individual-level effects but rather on estimating the mean

difference between pre- and post-treatment. Unfortunately, if the treatment is not

effective for all participants, then these methods can hide true effects. For example,

a very effective treatment that only treats a small sub-section of the population
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may appear to have a negligible effect across the full population, even though for

the people it does impact the effect can be very meaningful. Naturally, we are not

the first researchers to point this out. Others (e.g., Hageman & Arrindell, 1999;

Jacobson & Truax, 1991; Wyrwich, 2004, to name a few) have noted the need to

distinguish between individuals who experience an effect and those who do not.

They, along with others (see Ferrer & Pardo, 2014, for a review), have proposed

various methods for identifying individuals who experience significant1 change in a

pre-post trial.

Such methods typically require a multi-stage approach. In the first stage, a tra-

ditional test at the population or group-level is undertaken (e.g., a paired-samples

t-test). In the second stage, if there is some suspicion of individual differences in

response to the treatment, a method of identifying these individuals is employed

(e.g., reliable change indices, or RCI, Jacobson & Truax, 1991). In the final stage,

the two groups are compared in terms of the proportion of individuals they impact,

sometimes by summing the number of people they identify (e.g., Jacobson, Dobson,

Fruzzetti, Schmaling, & Salusky, 1991), other times by using a more sophisticated

method (e.g., Hageman & Arrindell, 1999).

This kind of approach has some limitations. As we describe in more detail later, one

problem is that typical methods for detecting the individuals who have responded

to treatment (such as RCIs) require an independent estimate of scale reliability

1This literature makes a key distinction between clinical significance and statisti-
cal significance: clinical significance occurs when a change is clinically relevant (e.g.,
an intervention moves someone into a different diagnosis category) while statistical
significance occurs when it reflects true change rather than random measurement
error. Our focus in this paper is on statistical significance, since establishing it is a
necessary precursor to establishing clinical significance.
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which may be difficult to accurately obtain. Another problem is that this kind

of multi-stage approach can conceal interesting effects and the issues only com-

pound with more than one treatment condition. For instance, suppose there is a

between-condition difference in the proportion of individuals who experience a sig-

nificant change; however, there is not a significant difference between conditions in

the average change. This might occur due to differing effect sizes of the treatment

across condition, but would be hard to detect according to the standard statistical

approach.

These considerations suggest that the current state-of-the-art statistical approach

lacks the sensitivity to detect certain situations of clinical interest. In this paper we

apply Bayesian mixture models which address this shortcoming. This type of model

allows the user to make simultaneous estimates at both the individual level (i.e., did

the individual experience significant change or not) and the group-level (i.e., what

proportion of people changed? what was the size of the effect for those who did

change?). It also allows us to quantify and propagate uncertainty in a precise way.

In the first part of this paper, we consider a single-condition experiment in which the

question of interest is whether an intervention leads to change over time. Our model

identifies whether each individual has experienced statistically significant change and

how large that change is. The next section addresses experiments with two condi-

tions; as before, our model can identify the individuals who experience statistically

significant change and quantify the size of that change. It now also quantifies the

difference between conditions. We conclude by discussing the benefits of analysing

individual change with Bayesian mixture models.
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5.4 Single group pretest-posttest designs

As mentioned, current practice typically identifies statistically significant change

using a two-stage process in which the overall effect at the group-level is identified

first, and individuals are examined only if such an effect is not detected. Having

argued that this is inefficient and can miss important cases, we consider here a

unified latent class model that simultaneously assigns individual participants to

responder and non-responder classes, and estimates parameters for the effect size

among responders and prevalence of responders in the population.

We apply this approach to the simplest experimental design, one in which all par-

ticipants are assigned to a single treatment group, and each participant is measured

once at pretest and once at posttest, yielding measurements xi1 and xi2 for the ith

participant, and the data are characterised as a single change score δi = xi2 − xi1

for each participant.2 For these designs, there are a number of other approaches

that could potentially be adopted: for instance, there are four methods discussed

in Ferrer and Pardo (2014) that are applicable to a single group design: reliable

change indices (RCI: Jacobson & Truax, 1991), the Wyrwich standardized differ-

ence (WSD: Wyrwich, 2004), the Gulliksen Lord Novick method (GLN: Hsu, 1996)

and the Hageman Arrindell approach (HA: Hageman & Arrindell, 1999). However,

all four of these methods rely on a measure of scale reliability to estimate the amount

of measurement noise inherent to the outcome variable x. Intuitively this makes a

good deal of sense, insofar as one aims to detect whether a particular change δ is

2It is important to note there are some dangers in analysing differences scores
directly rather than modelling the raw measurements. We return to this topic later,
but for the moment we begin with the simplest model.
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suspiciously large relative to the measurement noise. Unfortunately, it is difficult

using these methods to find estimates of scale reliability that yield appropriate Type

1 error rates, making it difficult to apply these methods in practice. Only test-retest

reliability has been shown to do so (Ferrer & Pardo, 2014), but some caution is

advisable (Martinovich, Saunders, & Howard, 1996). The good performance of test-

retest reliability depends on the assumption that there are no changes that occur

between test and retest. As the underlying inference problem at hand is precisely

to determine whether such changes have occurred, this would seem rather unsatis-

factory. More generally, of course, many experiments rely on outcome measures for

which no test-retest reliability values are available: from a statistical perspective, it

would be desirable to provide scientists with an approach that does not require any

a priori estimate of scale reliability in order to provide useful results. The model we

present in this section does precisely this.

5.4.1 The Bayesian model

Currently the cutting edge technique in cognitive psychology is to utilise Bayesian

mixture models to detect contamination (Kennedy, Navarro, Perfors, & Briggs,

2017; Zeigenfuse & Lee, 2010), quantify (Bartlema, Lee, Wetzels, & Vanpaemel,

2014; Danileiko & Lee, 2017; Lee, 2016) and detect individual differences (Dennis,

Lee, & Kinnell, 2008). In this manuscript we suggest that this technique provides

a beneficial alternative to reliable change models, which to our knowledge has not

previously been suggested. Our approach assumes that the observed difference scores

δi reflect a mixture of two latent classes indexed by a class assignment variable zi.
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Each participant is allocated either to the non-responder class (zi = 0), indicating

that no change has occurred, or to a responder class (zi = 1) indicating that a

change has occurred. The probability of belonging to the responder class p, the

average effect size µ among responders, and the amount of variability σ in the data

are all treated as unknown variables, and for the purpose of this investigation we

place uniform priors (over a fixed range) for all three variables. The uniform prior

was chosen to span the entire range of possible values for difference between times,

and was set using information from the data (the maximum upper and lower change

possible)3. While each of the particular modelling choices (e.g., normally distributed

measurement error, uniform priors etc) could be questioned, they will be sufficient

for our purpose, which is to highlight the value of using Bayesian latent class models

for the detection of individual change.

The structure of this model is illustrated schematically in Figure 5.1, and – in essence

it treats the observed difference scores δ as arising from a mixture of two normal

distributions. One distribution corresponding to the non-responders and has fixed

mean 0, the other correspond to responders and has unknown mean µ, and the rel-

ative weight assigned to these two components reflects the proportion p of people in

the population that are responsive to treatment. However, as Figure 5.1 illustrates,

we build the model by explicitly assuming that each participant is sampled from only

one of these two distributions, using the class assignment variable zi as an indicator

variable. By formulating this mixture distribution as a hierarchical Bayesian model,

we can use MCMC methods to estimate the joint posterior distribution over all

3Scales with definite upper and lower bounds could also be used to provide this
information
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zi

p

�i

participant i

p ⇠ Beta(1, 1)

zi ⇠ Bernoulli(p)

(a) Latent Class

(b) Change Score Model

µ

�
� ⇠ Uniform(0, high)

µ ⇠ Uniform(low, high)

�i ⇠ Normal(zi ⇥ µ, �)

Figure 5.1: A simple Bayesian mixture model for a single-group pretest-posttest

design. Participants are assumed to fall in one of two latent classes (a), consisting

of non-responders who show no systematic change (zi = 0) and responders who show

a systematic effect of the treatment (zi = 1). The population rate of responding is

an unknown variable denoted p. In (b), the observed difference score δi = xi2 − xi1
between the second and the first measurement is sampled from a normal distribution

with standard deviation σ, but has mean 0 for non-responders and mean µ for

responsive participants.
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model parameters. Thus, given the observed data δ = (δ1, δ2, . . . , δn) for n subjects

we are able to estimate not only the posterior distribution over the population level

parameters p, µ and σ, but also the individual subject parameters zi. Accordingly,

for each person we obtain the Bayesian estimate φi = P (zi = 1|δ) corresponding to

the posterior probability that the i-th person is responsive to the treatment.

The latent class model described above has a number of desirable properties: it is

simple, it estimates population level parameters at the same time as it estimates

individual subject parameters, and unlike standard methods in the field it does not

require the researcher to have access to a “ground truth” measure of scale reliability.

However, these properties are of little value if the method is unable to reliably detect

individual change. In the next section we present a simulation study illustrating that

our Bayesian latent class model is surprisingly good at estimating the proportion of

people who experience the effect, categorising individuals as responders or non-

responders, and estimating the size of the effect experienced by responders.

5.4.2 The data

In our simulations we consider four qualitatively distinct scenarios, illustrated schemat-

ically in Figure 5.2. In all instances we assume a single group pretest posttest design

in which every participant is measured once prior to the treatment and once after-

wards. The four scenarios are as follows. The first (Small-All) describes the situation

where there is a small effect of the intervention, but it effects everyone. The second

(Medium-Most) applies to a situation in which the intervention has a medium-sized

effect but on only 75% of the participants. The third (Large-Few) corresponds to a
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situation where the effect is large but only for a minority (25%) of people. Finally,

we also consider the case where the intervention has no effect on anyone (No Effect).

To make the scenarios comparable, the datasets are designed to ensure that the

average difference score is the same (δ̄ = 3) in all scenarios except the No Effect

dataset, which had δ̄ = 0. To that end, in the Small-All case we set p = 1 and µ = 3,

the Medium-Most case sets p = 0.75 and µ = 4, and finally Large-Few sets p = 0.25

and µ = 12. Except where otherwise noted we report the performance of the model

across 500 simulated datasets, implementing the model in JAGS, and using 1200

thinned samples (thinned every 100th sample) from the posterior to estimate poste-

rior quantities of interest, after a burn-in period of 3000.

5.4.3 Results: Individual subject parameters

In the first instance we consider cases where a moderately large number of observa-

tions are available (400 participants), and our first question is how well the model

identifies the individuals who experienced a statistically significant change. For

each person the model produces an estimate φi, corresponding to the proportion of

posterior samples in which that the i-th participant was assigned to the responder

group, φi = P (zi = 1|δ). To score the performance of the model we used a hard

classification rule: if φ > .5 the participant is labelled a responder, if φ ≤ .5 they

were labelled a non-responder. This is convenient in order to compute a simple mea-

sure of model performance (i.e., percentage of correct classifications) but in many

applications it might be most appropriate to simply report the φi values.

As illustrated in Figure 5.3, the model was highly successful in assigning participants
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Figure 5.2: Four sets of simulated data given to the model. Each of these datasets is

intended to capture a common situation confronting a researcher who studies the effect

of an intervention on participants. The initial measurement xi1 is drawn from a normal

distribution and shown with dark shading. The intervention occurs and then another set

of measurements xi2 is taken at time 2 (light shading), yielding a set of difference scores

δi. While the simulated datasets Small-All and No Effect are unimodal (indicating that all

participants experienced either a small effect or no effect, respectively), datasets Medium-

Most and Large-Few represent data where not all participants experience the effect. Below

each figure the parameters used to simulate the data are shown: proportion of individuals

who experience the effect (p), size of the effect (µ) and standard deviation of the effect

(σ).
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Figure 5.3: Model identification of individuals who experience change. This shows the

same dataset as Figure 5.2, but here the x-axis represents the difference score δ between

the time 2 and time 1 raw scores. The light shading represents the individuals who were

correctly classified by the model. The dark shading represents the individuals who were

incorrectly classified. All participants were correctly classified in all of the datasets except

Medium-Most, which had difficulty for the 7% of participants whose small effect size was

compatible with both responder and non-responder latent classes.

to the correct latent class (responder or non-responder) in most cases. For the

Large-Few, Small-All and No Effect datasets, each participant was correctly identi-

fied. For the Medium-Most dataset, there was some overlap between participants

at the margins, leading to some misclassification. In total, 7% of the participants

were misclassified by the model; these were the ones who experienced such a small

amount of change that they could plausibly be classified as either responder or

no-responder.

So far we have shown that a Bayesian latent class model correctly classifies most of

the individuals in these simulated datasets. However, this simulation study corre-

sponds to a relatively easy inference problem because the effect size is fairly sub-

stantial and the sample size is relatively large. With this in mind we repeated

the previous simulation using sample sizes ranging from 24 to 400 to see how the
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Figure 5.4: Effect of sample size on the ability to correctly classify individual participants

as responders (zi = 1) and non-responders (zi = 0). The y-axis shows the proportion

of individuals who are correctly classified, while the x-axis indicates the sample size for the

simulated dataset. Model performance on all four scenarios (indicated by the four colours)

is very good, with the only departures from 100% accuracy being for the Medium-Most

and No Effect datasets.

model performs when there are fewer observations available. As shown in Figure 5.4,

the model performs well in the Small-All and Large-Few scenarios. It is somewhat

less accurate in the Medium-Most, due to the overlap between the change and no

change groups. To some extent this is inevitable, as the population distribution

over δ for responders and non-responders overlaps in the Medium-Most scenario, and

as such perfect classification is impossible. The model is least accurate in the No

Effect scenario where the model is misspecified.
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5.4.4 Results: Population level parameters

As the previous section illustrates, a Bayesian latent class model is very successful

at identifying individual responders and non-responders. Having verified this, we

consider how effectively it estimates the two population level parameters of interest,

namely the true probability of experiencing change (p) and the effect size among

responders (µ). Figure 5.5 plots an example of the 95% highest density credible

intervals (e.g., Kruschke, 2013) estimated for the population probability p against

the sample size n,4 and Figure 5.6 does likewise for the effect size µ. As is clear

from inspection, when there is a true effect that is experienced by a non-negligible

proportion of participants the credible intervals include the parameter value from

which the data were simulated. As expected, with more data these intervals tighten,

and importantly they do so while still containing this true parameter value. This

indicates that in samples where there are differences in response, it is possible to

estimate it with this model. This cannot be observed where there is No Effect.

Although these intervals contain the true parameter value, they do not tighten with

additional data. This occurs as a feature of the miss-specification between the model

and the data. When no effect exists, the joint posterior distribution over p and µ

concentrates around those values where p×µ is small, which occurs whenever either

of these parameters is small. Consequently, the model has some uncertainty about

whether the proportion of responders p is near zero, the effect size µ is near zero,

or both. The large credible intervals in Figure 5.5 and 5.6 are a reflection of this

inherent ambiguity.

4Full simulations results can be found in Appendix 5.9
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Figure 5.5: Effect of sample size on the estimated proportion p of people belonging to

the responder class at the population level. The y-axis shows the model’s estimate of

p, while the x-axis reflects the sample size in the simulated dataset. The four different

colours represent the four different datasets, split across two panels for ease of viewing.

Black lines mark the true value. The left panel shows the datasets Small-All and No Effect,

in which the effect on all participants was drawn from the same distribution. The model

does very well at recovering the proportion of change in the Small-All case but has very

large credible intervals when there is No Effect. As Figure 5.6 suggests, this is probably

because the model also has high uncertainty around the effect size (which is zero). In

essence, the model cannot decide between having a relatively high proportion of people

in a change group with effect size of zero or having almost nobody in a change group

with undetermined effect size. The panel on the right shows the datasets in which only a

proportion of the individuals experienced an effect; the model accurately estimates that

proportion both when it is 75% (Medium-Most) and 25% (Large-Few).
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Figure 5.6: Effect of sample size on the estimation of the effect size µ among responders.

The y-axis shows the model’s estimate of µ, while the x-axis reflects the sample size in the

simulated dataset. The four different colours represent the four different datasets, which

we separated over two figures for ease of viewing. Black lines mark the true value. The

left panel shows the datasets Small-All and No Effect, in which the effect on all participants

was drawn from the same distribution. The model does very well at recovering the effect

size in the Small-All case but has very large credible intervals when there is No Effect,

consistent with the results shown in Figure 5.5. The panel on the right shows the datasets

in which only a proportion of the individuals experienced an effect; the model accurately

estimates the effect size in both cases.
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At first glance, this ambiguity between p and µ and the corresponding width of

the credible intervals may seem undesirable. However, there is a sense in which it

correctly reflects the actual knowledge that the researcher has obtained. To illustrate

this, Figure 5.7 plots the (marginal) posterior distributions over the population level

parameters p and µ and the individual subject assignments zi for all four scenarios,

for a small dataset with n = 24 participants. Of particular note are the results

for the No Effect scenario: for every individual participant the model has accrued

modest evidence that they belong to the non-responder class (solid blue bars are

all below the baseline of 0.5), and the posterior distributions over p (pink) and µ

(yellow) have shifted towards 0 in both cases. However, the model “remains open”

to the possibility that there is a very weak effect, or an effect that is experienced

by only a very small proportion of people (which would have been undetectable in

this sample), and so the population level estimates in particular are quite uncertain.

In short, this is not a failure of the model so much as an inherent ambiguity in the

inference problem.

5.4.5 Summary

Single group pretest-posttest designs are very prevalent in the literature, typically

analysed at the aggregate level with paired samples t-tests. The significance of in-

dividual subject changes are rarely assessed, and when they are it is typically using

methods such as RCI that require the researcher to have access to a ground truth

measure of scale reliability (measurement error). However, in this initial investi-

gation at least, it is clear that in a number of situations a Bayesian latent class
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Figure 5.7: Group and individual estimates. This figure demonstrates model estimates

for the group-level (namely, proportion and size of effect) and individual level. Datasets

are represented along the rows, while group proportion(pink tones), group effect(yellow

tones) and individual estimates(blue tones) form the columns. On the left hand side the

plots compare the prior (lighter tones) to the posterior posterior(darker tones). On the

right hand side, the figure shows the number of times participant was coded as changed

(dark blue), or not changed (dark blue). This means the y-axis can be interpreted as the

proportion of times coded as changed. The dark line represents 50%, our decision rule. On

the x-axis of each figure the grey shading indicates the true group. While the model does

not return a strong posterior for the No Effect dataset, it is still accurate at classifying at

an individual level.
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analysis is able to correctly estimate population level effects and correctly identify

which participants are responsive to the treatment and which are not. Of course,

the single group design is the simplest possible repeated measures design. Often-

times experiments will compare two (or more) groups against each other over time,

and in the next section we examine this situation. We develop a minor extension to

the Bayesian latent class models that is appropriate to a multiple group situation,

showing that it can be used to not just estimate individuals who have experienced

change, but also to compare the different conditions in terms of the proportion and

size of effect observed.

5.5 Multiple group pretest-posttest designs

The extension of the Bayesian latent class model to multiple group pretest-posttest

designs is relatively straightforward. In this section we restrict ourselves to consider-

ing the situation where there are only two possible treatment conditions, and hence

two groups, for the sake of simplicity. Once again, there are a number of existing

methods that are applicable to these designs. However, two of the main methods,

discussed in Ferrer and Pardo (2014), identify change by comparing it to a norm

or control group. They are known as Standardised Individual Difference or SID

(Payne & Jones, 1957) and Prediction Intervals or PI (Crawford & Howell, 1998).

In these approaches, it is assumed that the control group is one in which there is no

true change. This can be somewhat problematic in practice due to placebo effects,

Hawthorne effects (McCarney et al., 2007) and so on. To the extent that changes

within a control group need not be homogenous (e.g., if not everyone experiences
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the placebo effect) it is not safe to assume that the control group is in fact the “no

change” group. In some cases a change would be expected to occur in the control

group (e.g., practice effects), and in some instances a suppression of such effects

(e.g., if practice effects vanish under some circumstances) might be the phenomenon

of interest (e.g., Hinton-Bayre et al., 1999). With this in mind, we adopt a more

general approach that does not require any one group to be declared a priori to be

a no-change “reference group”.

5.5.1 The Bayesian model

The structure of the Bayesian latent class model is illustrated in Figure 5.8, and

is essentially identical to the original model in Figure 5.1. The only addition to

the model is an observed group assignment variable gi, indicating the treatment

group to which the i-th participant is assigned. Each treatment is assumed to have

its own population level parameters, pj and µj, corresponding to the probability

of responding to the treatment and the effect size among responders respectively.

For simplicity we place independent priors over the parameters for each group.5 As

in the previous section, we are interested in exploring the model estimates at the

population level (pj and µj parameters) and the individual subject level (the zi class

assignment parameters).

5It would not be difficult to extend the model to add an additional layer to the
hierarchical model, assuming that the population parameters are themselves drawn
from a higher level distribution over possible effects, but we do not explore that
extension in this paper.
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zi

�i

participant i

(a) Latent Class

(b) Change Score Model

�
� ⇠ Uniform(0, high)

gi

condition j

µj

pj

µj ⇠ Uniform(low, high)

zi|gi = j ⇠ Bernoulli(pj)

�i|gi = j ⇠ Normal(zi ⇥ µj , �)

pj ⇠ Beta(1, 1)

Figure 5.8: Graphical model of the Bayesian latent class model for a two-group design.

The subscript i denotes the participant, and j refers to the condition. Participants are

allocated to one of two conditions by the researcher, so the group assignment gi parameter

is observed. The model contains population level parameters for the proportion of people

pj who are responsive to the j-th treatment and the size of the effect µj they experience.

For each participant, the model assigns zi = 1 if they were responsive and zi = 0 if they

were not.
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Table 5.1: Set of situations presented to the model. Each of the two conditions could

have four distinct responses to the intervention (Small-All, Medium-Most, Large-Few, or No

effect), producing the 10 distinct combinations with markers. The four conditions marked

with 7 correspond to situations where there is no difference between treatments, and both

groups have the same population parameters. Scenarios marked with 3 correspond to

cases where one treatment is effective and the other is not. Finally, scenarios marked with

∼ correspond to cases where both treatments are effective (and the average change score

is the same in both cases) but the pattern of change is different in the two groups.

Condition 2

Small-All Medium-Most Large-Few No Effect

Condition
1

Small-All 7 ∼ ∼ 3

Medium-Most 7 ∼ 3

Large-Few 7 3

No Effect 7

5.5.2 The data

In the previous section we considered four different scenarios that researchers might

encounter: Small-All, where all the individuals improve a small amount, Medium-

Most, where most individuals improve a moderate amount, Large-Few, where some

individuals improve a large amount, and No Effect, where no individuals improve.

We again consider these four different situations, but this time applied to both

conditions, leading to the ten distinguishable scenarios listed in Table 5.1. Unless

stated otherwise, the simulations and model performance measures in this section

mirror those in the previous section: in particular, we retain the property that the

average change score δ is identical in the Small-All, Medium-Most and Large-Few

scenarios.
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Figure 5.9: Performance of the Bayesian latent class model in assigning individual sub-

jects to responsive (zi = 1) and non-responsive classes when there are two treatment

conditions, plotted as a function of sample size. Panels represent the four qualitative pat-

terns (e.g., Small-All, Large-Few) that might be encountered in group 1, and lines represent

the pattern of change in group 2. In all situations, the model makes good classifications.

5.5.3 Results: Individual subject parameters

Perhaps unsurprisingly, the pattern of performance at the individual subject level

is exactly as one might expect from the previous section. In our simulated datasets,

individual subjects are correctly classified responders or non-responders over

80% of the time and in the vast majority of cases performance is over 90%. Consis-

tent with the previous simulation, the misclassifications arise most often when one

or more groups has a Medium-Most structure, due to the overlap between the two

classes in this scenario. Noting this, we turn to a consideration of the inferences

that can be made at the population level.
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5.5.4 Results: Population level parameters

To illustrate the value of the Bayesian latent class model when estimating popula-

tion level effects in a multiple group design, consider how a standard independent

samples t-test applied to the difference scores δ would behave when confronted with

the 10 scenarios listed in Table 5.1. Assuming that sufficient data were available, a

t-test has the capability to correctly detect population level differences when one of

the two groups shows No effect (marked with 3) and to retain the null when the two

treatments produce identical effects (marked with 7), but it cannot draw meaning-

ful distinctions between treatments that produce qualitatively different patterns of

change (those marked with ∼). Because the “two-stage” approach tends to rely on

t-tests at the population level and separate tests (e.g., RCI) at the individual subject

level, it is very difficult for this approach to handle these situations. A model that

draws a distinction between the magnitude µ of an effect and the proportion p of

participants that experience it is the only way to reconcile this pattern. 6

To investigate the performance of the latent class model, we examine the credible

intervals over population level differences in effect size µ2 − µ1 and proportion of

people showing the effect p2−p1. If the 95% credible interval contains 0 then we can

conclude that it is likely that the proportion of individuals who experience change

is not different between the two conditions. If it does not, then it is likely that there

was a difference between conditions.

Here we chose to present credible intervals of the difference between the proportion

and effect size in the two treatments. This approach allowed us to visually see the

6More generally, a statistical tool needs to be sensitive to the distributional shape
and not merely the location parameter of a distribution.

208



Chapter 5

effect of increasing the sample size, and also allows us to gain a greater understanding

of how volatile the credible interval bounds are (do they smoothly decrease as the

sample size increases or are they more jagged?). Here when the credible interval

contains zero, we loosely interpret this as providing some evidence that there is no

difference between the two treatments. This is not a formally correct way to compare

a ‘no difference’ model against one where there is a difference. The credible interval

is conditioned on the alternative hypothesis (much like how the frequentist p-value

is conditioned on the null), and so we cannot find evidence for the null (as the

frequentist cannot find evidence for the alternative) (Wagenmakers, Lee, Rouder, &

Morey, 2015).

What alternatives are there for formal model comparison? The most formally correct

method would be to use a Bayes Factor to compare the null model to the alternative

model where there is a difference. In this case the two models are nested, and

so we could use the Savage-Dickey method (Dickey, 1971) to compare the two.

Unfortunately the bounds of the uniform prior (the prior for the effect size in our

model) impact the magnitude of the Bayes Factor, making it hard to calculate

in this instance. We used credible intervals here because they allowed a qualitative

understanding of model behaviour, but future work should compare how to formally

test a null hypothesis with this model.

We begin by considering those cases where no true difference exists between the

two treatments, an example of which is plotted in Figure 5.10.7 As is clear from

inspection, the model tends to produce larger credible intervals when the sample size

7As before, full simulations results can be found in Appendix 5.9, at the conclu-
sion of this chapter.
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is small (as one would expect), but in all cases the interval includes zero, indicating

that the model does not imply differences between the groups when there is none.

How does the model perform in situations where there is a genuine difference between

the two treatments? As highlighted in Table 5.1, it is useful to distinguish between

cases where one group shows an effect (be it Small-All, Medium-Most or Large-Few)

and the other group shows No Effect, and cases where both groups show effects but

those effects are of different kinds. In Figure 5.11 we again plot credible intervals

for the two parameter differences of interest, namely p2 − p1 and µ2 − µ1. As is

clear from inspection, the posterior distributions over these variables tend to be

highly diagnostic for detecting those situations where both groups show effects, but

of different kinds. In all such cases (left and middle panels), the credible intervals

are narrow enough to exclude zero even at modest sample size. However, when one

treatment produces No Effect (right panels), these quantities are largely unhelpful,

with credible intervals including zero in many instances.

5.5.5 Summary

In extending the latent class model to multiple group pretest-posttest designs, the

results are again encouraging. Even with a more complex experimental design,

the model correctly identifies almost all of the individuals, in both conditions, who

change with the intervention. The model also provides a means to compare the

conditions based on the proportion p of individuals that change as well as the size

of the effect if the change occurred. It is important to note that three of the four

datasets would be indistinguishable using more traditional methods, since all showed
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(a)

(b)

Figure 5.10: Performance of the Bayesian latent class model at the population level, when

both treatment groups experience the same change (i.e., null effect of treatment, marked

with 7 in Table 5.1). The top row (a) plots an example of 95% credible intervals for p2−p1,

the difference between conditions in terms of the population probability of experiencing

change. The bottom row (b) shows credible intervals for µ2−µ1, the difference in the effect

size. In each panel, the results are plotted as a function of sample size. The shaded area

represents the credible interval area, with the dotted boundary representing the upper and

lower bounds of this interval. In all cases the credible intervals contain zero.
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(a)

(b)

Figure 5.11: Performance of the Bayesian latent class model at the population level, when

the pattern of change in the population is different (a true effect of treatment exists). The

top row (a) an plots an example of the 95% credible intervals for p2 − p1, the difference

between conditions in terms of the population probability of experiencing change. The

bottom row (b) shows an example of the credible intervals for µ2 − µ1, the difference in

the effect size. In each panel, the results are plotted as a function of sample size. The

shaded area represents the credible interval area, with the dotted boundary representing

the upper and lower bounds of this interval. In every case where both groups show an

effect of a different kind (i.e., those marked with ∼ in Table 5.1; left and middle panels)

the relevant credible intervals exclude zero, indicating that the model correctly describes

this feature of the data. However, when one group shows no effect and the other does not

(i.e., those marked with 3 in Table 5.1; right panel) the credible intervals are quite large

and often include zero.
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the same mean change and only differed in the distributions. Overall, our model

demonstrated low Type 1 and Type 2 errors, indicating that it could identify effects

where they occurred but did not yield too many false negatives. The model was the

least powerful when one of the conditions had no effect at all, which (as in Part I)

reflects the difficulty in estimating two variables that are highly confounded with

one another (the proportion of people experiencing a change and the effect size of

the change).

5.6 Comparison with existing methods

Up to this point we have focused on illustrating the desirable qualitative features

of adopting a Bayesian latent class approach, showing that it can reliably detect

individual changes, correctly estimate population level effects, and draws a mean-

ingful distinction between situations where all participants show a small effect and

situations where a few people show large effects. Moreover, it correctly identifies

individual changes without relying on an external ground truth measure of scale

reliability, and as such may be of considerable use in many research contexts.

Arguably, the principal virtue of this approach is the fact that it can be applied in

situations that other approaches cannot. Nevertheless, as our Bayesian approach

is also applicable in situations to which other approaches can be applied, it seems

sensible to ask how well it performs in relation to those cases. In this section we

address this question, which means we must focus on datasets where we can treat

one condition as a reference group (i.e., where at least one of the conditions had no

effect). Note that this procedure is somewhat advantageous to existing approaches
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because it provides them strong information about the presence of a lack of effect.

Although we could give the same information to the Bayesian latent class model, we

choose not to for two reasons. Firstly, as we have seen, the model already does well

at classifying individuals as responders and non-responders without making

this strong assumption. Secondly, as we have discussed, there are many scenarios

in which we do not know whether such an assumption holds true. One of the main

benefits of the Bayesian mixture model is that while it can use a strong assumption

like this, it does not need to.8

What models should we compare our Bayesian mixture model to? There are two

classes of model in the literature: those that require an estimate of scale measure-

ment error (best estimated as a function of test-retest reliability), and those that

require a reference group. Instead of including all of the alternative models, which

is quite a list, we choose to focus on the most popular model within each group.

The most commonly used model that requires test-retest reliability is the Reliable

Change Indices, or RCI (Jacobson & Truax, 1991), while the most commonly used

model that requires a reference group is the Prediction Intervals, or PI (Crawford

& Howell, 1998). We provide details of these two models below.

8Of course, it would be trivial to modify the model to incorporate such an as-
sumption if the researcher wanted by modifying the priors.
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5.6.1 Existing methods

Reliable change indices (RCI)

The RCI method is one of the most popular ways of determining whether an indi-

vidual has experienced statistically significant change, and has been shown to have a

good Type 1 error rate (Jacobson & Truax, 1991). It estimates for each participant

in the treatment group a Reliable Change Index which is calculated based upon the

standard error measurement (SEM) of the scale as well as the degree of change that

individual has experienced. If the absolute value of the RCI for that individual is

greater (or less) than a threshold (most commonly ±1.96), then that person is con-

sidered to have experienced statistically significant change. The original RCI was

later amended in order to estimate the SEM (Christensen & Mendoza, 1986; Ferrer

& Pardo, 2014) based on the standard deviation of both the pre- and post-scores

(SDpre and SDpost) as well as the reliability R of the scale. Equation 5.1 shows

the full implementation that we used.

RCIi =
Di√

(SDpre
√

1−R)2 + (SDpost
√

1−R)2
(5.1)

We estimate the denominator of this equation using data from the No Effect dataset

(which we always used for condition 1). The difference D between time 1 and time 2

scores is calculated in the treatment condition (condition 2), and the absolute value

of the RCI for each participant in condition 2 is compared to the 1.96 criterion.
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Prediction intervals

The PI method is also referred to as “confidence intervals for the individual predicted

value” (Ferrer & Pardo, 2014) and unlike RCI it relies on a reference sample (in our

case, we use the No Effect group in condition 1 as the reference sample). The

prediction interval is derived by first plotting the time 1 scores against the time

2 scores for the reference sample. A linear regression model is then fit to these

values, and the resulting regression line is used to create a 95% prediction interval

(Crawford & Howell, 1998), shown in Equation 5.2 below. Prediction intervals

are, by definition, wider than a confidence interval; whilst a 95% confidence interval

contains the true parameter with 95% confidence, a 95% prediction interval includes

a new observation with 95% confidence. The prediction interval is then used to

identify the individuals in the treatment condition who experienced change: they

are the ones whose scores fall outside of the prediction interval. The equation to

calculate this interval for each new observation is included below.

PIi = ± (Yi − Ŷi)
MSE

√
1 + 1

n
+ (Xi−X̄)2∑

(Xi−X̄)2

(5.2)

5.6.2 Model evaluation

Both the RCI and PI models are trained on data from the reference group (condition

1), which consists of 400 pre-post samples from the No Effect dataset. They are

then evaluated on how well they categorise 400 individuals drawn from the Small-

All, Medium-Most, Large-Some and No Effect datasets. By contrast, our Bayesian

mixture model is given both sets of data and estimates parameters in the same way
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as in previous sections, and we focus our analysis on the predictions it makes about

individuals in the treatment condition (condition 2). This process is biased in favour

of RCI and PI because it effectively gives them more information (i.e., the fact that

there is no effect in condition 1) whereas our model is expected to infer that from

the data.

Figure 5.12 compares all three models – RCI, PI, and ours – in terms of their per-

formance identifying which individuals in the treatment condition were identified as

being in the change group. The Bayesian mixture model is more accurate than the

other two models for all datasets considered. Of course, accuracy in classification of

individuals is only one possible measure of model performance. The Bayesian mix-

ture model, unlike the RCI and PI, can also quantify the probability that any given

individual has experienced significant change (rather than using a binary decision

rule), the ability to estimate the proportion of individuals changed, and the size of

the change for those individuals. In the next section we discuss several additional

benefits of this approach.

5.7 Discussion

Moving beyond group-level change is a growing trend in research. With the under-

standing that not all individuals respond to a treatment in the same way, methods

for identifying those individuals who have experienced change have been proposed.

These methods all require (either directly or indirectly) a reference group where no

change has occurred to quantify the inherent measurement error in the data. We

suggest that in practice, a pure reference group is difficult if not impossible to ob-
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Figure 5.12: Comparison of three models at identifying individuals who experienced

change. Models were compared in their accuracy in classifying the individuals in the

treatment condition for four different datasets (panels); the control condition was always

presumed to show No Effect. The three models were the Reliable Change Indices (RCI ),

Prediction Intervals (PI ), and our Bayesian mixture model (B-LC ). The B-LC was the

most accurate in all cases.

tain. To the extent that this situation applies quite broadly within applied research,

it is important to have statistical tools – such as our Bayesian latent class model –

that can make sensible inferences about individual subject changes even in the face

of real world concerns about the quality of reference data.

Based on simulated datasets reflecting four qualitatively distinct situations that

a research might find themselves in, we showed that this model can accurately

classify individuals as responders who are sensitive to the treatment and non-

responders who show no change from baseline. The model provides good group-

level estimates of proportion p and effect size µ of those who do change, and enables

researchers to compare conditions based on these parameters. Moreover, model

performance was robust to variations in sample size and had relatively low Type 1

and Type 2 error rates. In this section we discuss two additional benefits of this

218



Chapter 5

modelling approach. Firstly, a number of benefits emerge because it is a Bayesian

latent class model. Secondly, we show that it is relatively easy to adapt the model

to handle different data analysis situations, and provide a few examples highlighting

how this can be achieved.

One of the major difference between the previously described models and the one we

implement here is that this model takes the form of a Bayesian latent class model.

The benefits of the Bayesian framework of statistics has been well documented (see

Kruschke, 2014; Wagenmakers, Morey, & Lee, 2016, for examples). In this section

we wish to highlight some of the Bayesian benefits that are especially useful in the

context of individual change. One particularly useful benefit is the fact that although

the model expresses the class assignment as a binary variable zi (reflecting the idea

that people either do or do not respond to treatment), the posterior distribution

over zi expresses the full range of possible beliefs about each person. By defining

φi = P (zi|δ) to correspond to the posterior probability that the i-th participant

belongs to the responder group, the model is able to make graded assessments

about each person. This is particularly evident in the individual change analysis

presented in Figure 5.7, which highlights the extent of uncertainty that the model

has about each individual.

A second benefit to the Bayesian latent class approach is that it does not require us to

rely on a reference sample for which the researcher can safely assume that no change

has occurred. By embedding the individual subject estimates within a hierarchical

Bayesian framework that explicitly estimates the underlying change parameters p

and µ we can draw inferences about the inherent noise in the measurement σ. Given
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this knowledge, the model is capable of constructing estimates of individual subject

class memberships zi that are as accurate as those produced by PI or RCI.

The final benefit to this Bayesian approach is that the inference method for the

model is entirely generic, relying on standard MCMC routines implemented in pack-

ages such as WinBUGS, JAGS and Stan. All that the researcher is required to do is

specify the structure of the model. This makes the framework highly extensible. In

the current application, we have restricted ourselves to considering simple pretest

posttest designs (and considered only the simplest situation in which the raw data

are the difference scores δi = xi2 − xi1), but there are a much larger variety of re-

peated measures designs to which the approach could be extended. With very little

work we can add more interventions and outcome measures by adding additional

variables to the model. With slightly more work to change the structure of the model

we can change the model to allow for wait-list or stepped-wedge designs. By making

some assumptions about how the interventions will effect individuals over time (e.g

linearly, exponentially etc.), we can modify the model to allow for multiple time

points. In some contexts one might wish to replace the normally distributed pre-

and post-scores with alternative distributions such as a t-distribution (for increased

robustness; Kruschke, 2013), negative-Binomial (e.g., for count data; Holsclaw, Hall-

gren, Steyvers, Smyth, & Atkins, 2015), or even a logistic link function (for binary

outcome data).

These Bayesian latent class models were inspired by Reliable Change Indices (Ja-

cobson & Truax, 1991) and the notion that not all individuals change in a pretest-

posttest design. Others have built upon this the initial model proposed by Jacobson
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and Truax (1991) to account for regression to the mean (Hageman & Arrindell,

1999). Regression to the mean is a statistical phenomenon where an individual is

more likely to be closer to the population mean at the posttest than they were at the

pretest (Healy & Goldstein, 1978). The model described in this manuscript does not

account for regression to the mean, which we can see reflected in the categorization

of extreme points in the No Effect data as changed. Changes to the model that

reflect the structure of a repeated measures model, namely including independent

measurement error at each time point in conjunction with either a fixed or random

effect, are currently being discussed.

Of course, as with all methods of identifying individual change, care is needed in

interpreting the results of these analyses. As individuals are clustered together

into classes — those who experience change and those who did not – it may be

tempting to conduct unplanned, post-hoc analyses to investigate whether there are

any differences between the two groups. Some care is necessarily required in these

situations. Even though the researcher might have an a priori hypothesis that

people who experience change are different from those who do not (with respect

to some covariate), the assignments of individuals to the responder and non-

responder classes is necessarily post-hoc even if the choice of covariates to compare

is constrained by an a priori hypothesis.

These caveats and potential extensions notwithstanding, we suggest that Bayesian

latent class models provide a valuable addition to the statistical toolbox when

analysing the results of pretest-posttest designs. They are more broadly applica-

ble than most alternative methods, and support a broader range of inferences at
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the individual subject and population level. If our goal is to draw inferences about

changes experienced by people as well as by populations, models of this kind are

extremely useful.
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5.9 Appendix

In the text we presented examples of credible intervals for different sample sizes and

different datasets. Here I extend this with the results of two simulation studies;

one investigating informativeness and accuracy of the credible interval for popula-

tion level parameters in the single group scenario; and the second to investigate

estimation of the difference between groups for the two-group scenario.

Figure 5.13 demonstrates the average accuracy and precision (as interval width) of

the credible intervals produced by the B-LC model for the single group scenario. As

we saw with the example credible intervals in the text, the model is very likely to

produce a credible interval of the proportion and effect size that contains the true

parameter value. The model struggled most with the No Effect scenarios, producing

much wider credible intervals. As we discussed in the main text, this is to be

expected.

With this in mind, we turn our attention to the two-group simulation. As before,

although the text reported example credible intervals, we used the B-LC model with

500 iterations of these comparisons. Figure 5.14 shows the average accuracy and

width for credible intervals around the difference in proportion, while Figure 5.15

shows the same for the difference in effect size. We find greater evidence for our two

main findings from the main text for difference in proportion estimates; namely low

power and wider credible intervals for comparisons against the No Effect scenario.

We also see evidence for the findings in the main text that suggest estimating the

difference in effect size had higher power than estimating the difference in proportion.
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Figure 5.13: Ability of the model to correctly estimate the true parameter in a single

group scenario. Five-hundred of the four example datasets were generated with 5 different

sample sizes. For each the B-LC model was used to estimate an interval for which we are

95% confident contained the true proportion of individuals effected (first row) and true

effect size for those who were effected (second row). Each interval was recorded in terms

of its accuracy (first column) – whether it contained the true parameter or not – and its

width (second column). Even though the B-LC model produced wider intervals for the

No Effect dataset, all intervals were very likely to contain the true parameter.
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Figure 5.14: Ability of the model to correctly estimate a significant difference between

proportions in a two group scenario. Five-hundred of the dataset comparisons were gen-

erated with different sample sizes. For each the B-LC model was used to estimate an

interval for which we are 95% confident contained the true difference between proportion

of individuals effected in group one and the proportion in group 2. Each interval was

recorded in terms of its accuracy (first row) – whether it contained the true difference or

not – and its width. Overall the B-LC model produced intervals that were very accurate

for all pairings except those comparing the No Effect to the other datasets.
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Figure 5.15: Ability of the model to correctly estimate a significant difference between

effect size in a two group scenario. Five-hundred of the dataset comparisons were generated

with different sample sizes. For each the B-LC model was used to estimate an interval for

which we are 95% confident contained the true difference between the effect size in group

one and the effect size in group 2. Each interval was recorded in terms of its accuracy (first

row) – whether it contained the true difference or not – and its width. Overall the B-LC

model produced intervals that grew in accuracy with increased sample size, and relatively

narrow intervals for all but the Large-Few and No Effect combination.
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When there is missing data

It is possible at times to develop a

mathematical analysis based on a

more complex set of assumptions,...

(t)his is more troublesome in many

ways than the analysis based on

simple assumptions, but where

feasible it is to be preferred.

Lee J. Cronbach

In the previous chapters of this thesis I moved from a model that made few assump-

tions about the data (chapter three) to models that incorporated assumptions or

knowledge the researcher believes to be true about the data (chapters four and five).

However, there is substantial evidence from the cognitive sciences to suggest that

people are susceptible to making a number of incorrect decisions based upon the

data they have observed (e.g., Ellsberg, 1961; Epley & Gilovich, 2006; Landy et al.,

2013). If this is true, then perhaps Cronbach is incorrect: instead of moving towards
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analysis based on complex assumptions about the data, we should move away from

complex models to more simple models.

In this chapter I consider the well-known effect of ambiguity aversion (Ellsberg,

1961). Whilst this effect is often used to demonstrate that people have an aver-

sion to ambiguous information, in practice it requires that the participants estimate

information that is missing. As I have already discussed in the introduction, statis-

ticians categorise missing data into three causes; missing completely at random,

missing at random and missing with some underlying process. Participants in ambi-

guity aversion tasks, however, have been shown to be relatively resistant to various

manipulations that suggest different causes of missing data (e.g., Garcia-Retamero,

Müller, Catena, & Maldonado, 2009), behaving with similar disdain for ambigu-

ous options regardless of the source of ambiguity. In this work I explore whether

this is caused by aversion to ambiguous information or incorrect judgements about

the underlying missing data. Our results suggest that ambiguity aversion remains

robust against different levels of ambiguity and many of the prior manipulations.

Despite this, participants were remarkably sensitive to manipulations of the source

and distribution.

This has interesting implications for both ambiguity aversions as well as for the use

of researcher assumptions in statistical data analysis. Based only on the judgements

of participants, we should not trust researchers to make accurate assumptions about

their data. However, when we consider the estimates participants make about the

underlying data, they are quite sensitive to the underlying distributions.
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6.2 Abstract

Ambiguity aversion, or the preference for options with known rather than unknown

probabilities, is a robust phenomenon within the decision making literature (e.g.,

Camerer & Weber, 1992). There are some suggestions that this aversion is due

to people inferring differences in the prior distribution for the ambiguous option

(Güney & Newell, 2015). In this study we investigated the relationship between prior

distributions and experienced information cues on people’s decision making and their

judgments about the underlying distribution in the ambiguous item. We used three

different prior cues; positive (suggesting a positive underlying distributional cue),

neutral (no distributional cue) and negative (suggesting a negative underlying

distributional cue) and five different information cues, varying both the bias of the

information and the degree of ambiguity. While we found that both prior and

information manipulations had the expected impact for participants’ judgements of

underlying distributions, they only impacted the decisions participants made some

of the time.

Keywords: ambiguity; uncertainty; priors; information
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6.3 Introduction

When dealing with real data, the practicing statistician should explicitly con-

sider the process that causes missing data far more often than he [sic] does.

– Donald Rubin, 1976

A classic finding in the human decision making literature is that people are ambiguity

averse: when presented with a choice between options that ostensibly offer the same

expected reward, one of which is specified in more precise terms than the other,

people typically prefer to select the less ambiguous option (Camerer & Weber, 1992;

Ellsberg, 1961). For example, people will typically prefer to bet on the flip of a fair

coin – where the probability of heads is known to be 50% – rather than bet on the

outcome of a weighted coin, where the bias θ on the coin is unknown. However,

following Laplace’s “principle of insufficient reason”, a Bayesian reasoner should

specify a symmetric prior P (θ) over the coin bias, leading to the conclusion that in

the absence of any other information, the two bets are equivalent for all practical

purposes. Human decision makers rarely show this indifference, with the majority

of people preferring to avoid the ambiguity inherent in the second example (Liu &

Colman, 2009).

Why does this occur? One possibility is that people tend to be pessimistic about

their prospects when ambiguity is present. On the surface, the ambiguity in the

biased coin scenario seems innocuous, but it need not be so. If a professional stage

magician were offering you the bet – or a social psychologist for that matter – you

might have reason to be suspicious. Perhaps they know something about the situa-

tion that you do not. Ambiguous scenarios maximize the potential for malfeasance,
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and a cautious decision maker might be wise to avoid them. This tension can be

seen in the “tennis match” scenarios discussed by Gardenfors and Sahlin (1982): if

you and I both know that players A and B are matched in skill and have played

each other many times, you have far fewer opportunities to take advantage of me

by virtue of superior knowledge than if the two contestants have never played each

other. When competing against others, missing data matters and ambiguity aver-

sion seems reasonable, because the things you do not know can be used against

you.

There is some evidence to support the idea that people evaluate ambiguous options

pessimistically. Keren and Gerritsen (1999) asked people to predict which of two

decision makers – one who chose a precise option, the other an ambiguous option –

were most likely to succeed in their bets. Participants rated the decision-maker who

chose the precise option as more likely to win. Viewed in Bayesian terms, this makes

sense if the prior P (θ) that people use to evaluate an ambiguous option is pessimistic,

and to assume that the omitted information is biased against them. Interestingly,

in experimental scenarios that allow people to verify that the “ambiguous” option

is constrained by a simple stochastic process that is not biased against them (i.e.,

ambiguity is reduced to “mere” second order probability), people do not display

ambiguity aversion to the same extent (Güney & Newell, 2015).

In this paper we extend this idea, introducing a manipulation that aims to shape

the prior that people use to evaluate the ambiguous option by providing a causal

story for why some information is missing. At the same time, we manipulate the

amount of information available to people as well as the apparent favorability of the
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gambles (the information cue). There is some evidence that these two factors

may interact (Garcia-Retamero et al., 2009). For instance, Tversky and Kahneman

(1980) suggest that observed base rates are only taken into account when they

appear to be causal (i.e. directly related to the outcome), Garcia-Retamero et al.

(2009) find that people also display a confirmation bias, attending to informational

cues only to the degree that they support the initial base rate. Here we manipulate

each of these factors more systematically.

6.4 Method

6.4.1 Participants

79 University of Adelaide first-year psychology students and 364 Amazon Mechanical

Turk (AMT) workers participated on their own computer or laptop. Of the initial

participants, 73 were randomly allocated to a control condition with no ambiguity,

just to make sure the instructions were clear. As expected, they showed no preference

between options. They are thus are excluded from all subsequent analyses, leaving

370 in the full dataset. Of these, 167 were female, 201 were male, and 2 marked

‘other’ for gender; ages ranged from 17 to 73 (mean = 32.2). Student participants

were given course credit, while AMT workers were paid $1 for the five minute task.

Initial analysis indicated no qualitative difference in performance between the two

subject pools, so all have been combined for all analyses.

239



Chapter 6

Figure 6.1: The basic scenario. Participants were asked to select a box from which

the experimenter would randomly select one chocolate: blue ones were worth 100 points

and red ones were worth nothing. In all conditions, people had to choose from one box in

which the distribution of red (which looks medium grey in greyscale) and blue (dark grey)

items was fully apparent; the other box was fully or partially ambiguous, represented by

chocolates in white wrappers that could be either red or blue underneath.

6.4.2 Materials & procedure

Regardless of condition, people were told they were taking part in a study about

making choices. According to the cover story, they were part of a promotion be-

ing held by a fictitious chocolate factory, which produced boxes containing eight

chocolates. As a part of the promotion, the researcher would select one chocolate

randomly from the box. If it was blue, the participant would be awarded 100 points,

but if it was red, they would not be awarded anything. The job of each participant

was to choose which of two boxes they would like the researcher to choose a chocolate

from.

Importantly, as shown in Figure 6.1, participants always had to choose between one

box in which the distribution of chocolates was fully known, and another in which
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it was fully or partially ambiguous. The side with the ambiguous box was random-

ized. All participants were told the same cover story explaining the ambiguity: the

machine that wrapped the chocolates had malfunctioned and randomly re-wrapped

some chocolates with a white wrapper. This did not impact the wrapping under-

neath, so if a white wrapper was selected people would be given points based on

whether the wrapper underneath was blue or red.

This particular cover story was chosen for two main reasons. With the first part we

could manipulate the underlying prior distribution for the ambiguous tokens (either

expecting more red, more blue or a neutral condition). With the second part we

introduced a reason for ambiguity that was, to the best of our powers, neutral and

separate to the underlying distribution of red or blue wrappers in a given box.

The study manipulated two main factors. The first was the prior expectation

participants had about how many chocolates of each kind might be found in each box,

which we accomplished through a cover story that relied on their social reasoning.

The second was the amount of information provided about the more ambiguous

box. The experiment was fully between-subjects, with each participant randomly

allocated to one of the 15 conditions (3 prior x 5 information level). Each

participant was thus asked to make one choice and one estimate about the number

blue chocolates among those that were hidden.

6.4.3 Manipulating the prior expectations

One of our main questions was how people form prior expectations of what an

ambiguous situation might indicate, and how those would affect their degree of am-
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biguity aversion. The manipulation of prior assumptions therefore depended on a

social cover story about a worker at the factory with different kinds of motivations.

In the positive condition, the worker was trying to help people win points by

putting more blue chocolates in the boxes; in the negative condition they were

trying to make them more likely to lose by putting more red ones in; and in the

neutral condition they were rearranging chocolates with no bias one way or an-

other. We were careful to note in all cases that the employee didn’t affect all of the

chocolates, so that there would be doubt about the exact nature of the distribution

the ambiguous candies. The exact instructions are:

• positive: “One of our employees wants to increase the odds that people will

get prize money so he randomly puts more blue chocolates in some of the

boxes, though he didn’t get to all of them.”

• neutral: “One of our employees enjoys rearranging the order of the choco-

lates in the boxes, though he doesn’t change which ones go where and he didn’t

get to all of them.”

• negative: “One of our employees who thinks the company is losing money

on this promotion randomly puts more red chocolates in some of the boxes,

though he didn’t get to all of them.”

6.4.4 Manipulating the distribution of observations

Because our primary question was how ambiguity aversion relates to the combination

of prior beliefs about the distribution as well as the information they did have, we

also manipulated the information provided about the ambiguous box. There were

242



Chapter 6

Table 6.1: The five information conditions, which varied the degree of ambiguity and

the distribution implied by the visible pieces in the ambiguous box. The other box always

contained half red and half blue pieces, all visible. In the actual experiment the side that

the ambiguous box appeared on was randomized.

Condition Stimuli

100%

Negative 75%

Neutral 75%

Positive 75%

50%

two components to this. The first is the total amount of ambiguity: what percentage

of the wrappers in the “ambiguous” box were ambiguous, i.e., white? The second

was the true distribution suggested by the revealed wrappers if there were any.

This resulted in five experimental conditions, as shown in Table 6.1. Ambiguity

ranged from 100% (in which all of the wrappers were white) to 50% in which half

were white. To manipulate information content, we split the 75% condition into

three versions. In the 75% negative the two non-white wrappers were red, in the

75% positive they were both blue, and in the 75% neutral one was red and one

was blue. These conditions are interesting because they are mostly ambiguous but

provide a small amount of information about the true underlying distribution, and

thus are ideal for teasing apart the roles of the amount of ambiguity and the nature

of the observed information. In order to test the success of this manipulation, after

making their choice we asked each participant how many of the hidden chocolates
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they thought were red, how many were blue, and how many might have been another

color.

6.5 Results and Discussion

6.5.1 The effect of prior knowledge

Our first question was whether manipulating the prior assumptions affected people’s

levels of ambiguity aversion. To analyze this, we evaluated whether the proportion of

people choosing the ambiguous option differed between prior conditions, collapsing

across the amount of ambiguity but excluding the cases where there were additional

cues (i.e. the 75% negative and positive conditions).1 There was a significant effect,

which can be seen by considering the overall difference between the colored bars in

Figure 6.2 (χ2(2) = 25.98, p < 0.001, BF10 = 39523).2

Indeed, those in the positive condition were much more likely to choose the am-

biguous box. In that condition the aversion to ambiguity was eliminated (χ2(1) =

14.75, p < 0.001, Holm correction for multiple tests used, Bayesian 95% credible

interval [.62,.85]) since people actually preferred the ambiguous box: an eminently

sensible choice if they thought it was more likely to contain more blue chocolates.

People in both the neutral (χ2(1) = 4.55, p < 0.05, Holm corrected; Bayesian 95%

CI [0.29,0.49]) and negative (χ2(1) = 7.58, p < 0.05, Holm corrected, Bayesian

1The code used for all analyses presented in this manuscript are available at LK’s
GitHub page https://github.com/lauken13/Ambiguity

2For this analysis we collapsed across the neutral ambiguity conditions, but ex-
cluded the conditions that gave distribution cues. Including these two conditions
made no difference to the outcome.
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Figure 6.2: Proportion of participants choosing the ambiguous option as a

function of degree of ambiguity. Intervals show the 95% highest density credible

interval. The x axis reflects the prior manipulation affecting people’s expectations about

what the ambiguous box held, with people in the positive condition expecting that it

held more good (blue) chocolates and the negative condition expecting it held more

red. Each of the three panels depicts different degrees of ambiguity with example stimuli

shown in the insets. Those in both the neutral and negative conditions showed the

classic ambiguity aversion affect. Interestingly, it did not seem to change with the degree

of ambiguity.

95% CI [.25,.45]) conditions did show the standard ambiguity aversion, preferring

to avoid the ambiguous box.

Several aspects of these results are interesting. First, people in the neutral con-

dition were just as ambiguity-averse as those in the negative condition (χ2(1) =

0.18, p = .67, BF10=0.33). Second, the degree of ambiguity aversion in both the

neutral and negative conditions also did not appear to change based on the

amount of ambiguity: people were just as averse to selecting chocolates out of a

box with four hidden chocolates ones as with eight hidden, despite the fact that the

former situation contains more information about the true distribution of chocolates
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(neutral: χ2(2) = 0.43, p = .81, BF10 = 0.21), negative: χ2(2) = 1.63, p = .44,

BF10 = 0.41). In the positive condition, there appeared to be a trend where people

did seem to be sensitive to the amount of ambiguity: as it increased, they were more

likely to choose the ambiguous box, but this was not statistically significant (Bayes

Factor “more likely” vs “all different” = 1.68, “more likely” vs “all the same” =

0.64).3

Why might people be doing this? One possibility is that people in the positive

condition believed that it contained more blue chocolates, while those in the neu-

tral and negative conditions believed it to be mostly red, thus inducing ambi-

guity aversion. To test this possibility, we analyzed participants’ estimates of the

number of blue chocolates in the ambiguous box. As Figure 6.3 shows, those in

the positive condition inferred that more than half of the chocolates were blue

(X̄ = 4.72, t(56) = 5.45, p < 0.001, BF10 = 13974), those in the neutral condi-

tion did not have strong opinions either way (X̄ = 3.99, t(87) = −0.13, p = .90,

BF10 = 0.12), and those in the negative condition felt that half or less were blue

(X̄ = 3.68, t(75) = −2.76, p < 0.01, BF10 = 4.26).

These results suggest three things. First, they indicate that ambiguity aversion can

be overcome if there is reason to believe that the ambiguous item is more appealing

than the unambiguous item (in this case, that it contains more than 50% of blue

chocolates). Second, they suggest that ambiguity aversion is not solely caused by

the prior: people showed the ambiguity aversion in the neutral condition while

3We used Bayes Factors for this analysis because of the ease with which it allowed
us to test an ordinal hypothesis (i.e., that the groups were increasing) for binomial
data, which a χ-square does not.
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Figure 6.3: Estimated number of blue chocolates in the ambiguous box as a

function of degree of ambiguity. The y axis shows the number of chocolates that

people estimated were in the ambiguous box. Only the people in the positive condition

assumed that the ambiguous box contained more than 50% blue chocolates, those in

the neutral condition assumed that about half were blue, and those in the negative

condition thought half or fewer were blue. For reference, the lightly shaded boxes at the

bottom of the bars indicate how many of the estimated chocolates were directly visible in

that condition.

simultaneously estimating that the ambiguous box contained the same number of

blue chocolates as the unambiguous one (i.e., four).

Overall, these results suggest that people’s prior assumptions play a strong but not

dispositive role in ambiguity aversion: when people are given a reason to believe

that an ambiguous choice is better they are entirely willing to choose it. Moreover,

people are sensitive to a cover story about how the observations were generated,

and are willing to adjust their decision making on the basis of their beliefs about

this generative process. Nevertheless, it is noteworthy that prior beliefs are not the

entire story: people are ambiguity averse even when they believe the ambiguous
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option is statistically identical to the unambiguous one.

6.5.2 The effect of distributional information

As the previous section illustrates, people’s prior beliefs about an ambiguous sit-

uation are sensitive to the causal explanation for why the missing information is

missing. We now consider the question of how sensitive people are to the distri-

bution of observed evidence. To that end we consider the three 75% ambiguous

conditions, all of which are matched on ambiguity, but present people with evidence

that is positive (two blue chocolates are observed), negative (two reds), or neutral

(one blue and one red).

The results, shown in Figure 6.4, reveal that people were largely insensitive to the

distribution of observed chocolates, at least for the positive and negative cover

stories. People given the positive cover story tended to prefer the ambiguous box

regardless of what the two visible chocolates looked like (χ2(2) = 0.06, p = .97,

BF10 = 0.17), while those given the negative cover story avoided it regardless

(χ2(2) = 1.87, p = .39, BF10 = 0.47). In these two conditions, people’s prior beliefs

about the source of the ambiguity (i.e., the cover story) overwhelmed any effect

that the observed chocolates might have had. Only in the neutral condition –

where no clear reason for the ambiguity was provided – did people change their

behavior consistently, picking the ambiguous box more often when the two visible

chocolates were blue (BF “increasing” vs “all the same” = 3.30, BF “increasing”

vs “all different” = 2.62). While it seems plausible that people would be willing

to adjust their behavior in the positive and negative conditions if the quantity
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Figure 6.4: Proportion of participants choosing the ambiguous option as a

function of observed information. Each of the three panels show boxes with 75%

ambiguity (i.e., two known chocolates and six unknown) but differ in the distributional

makeup of the known chocolates, as shown in the inset diagrams: in the 75% negative

condition both chocolates were red, in the 75% neutral condition there was one of each,

and in the 75% positive condition both were blue. It is clear that informational content

did not affect ambiguity aversion except in the 75% neutral condition, suggesting that

only then were people’s priors weak enough to be overcome by data.

of observations were larger (e.g., a box with 99 blue chocolates observed and 1

unknown is much better than one with 50 blue chocolates and 50 red, regardless of

how maliciously the 1 ambiguous chocolate was chosen!), the fact that no observed

differences were found in our data suggests that the biases imposed by the cover

story are quite strong.

This explanation is supported when we consider the estimates of the number of

blue chocolates in these three conditions. As Figure 6.5 makes clear, people take

the observed information into account in all conditions: regardless of whether the

cover story was positive (R2 = .20, F (2, 71) = 8.71, p < 0.001, BF10 = 79.81),

neutral (R2 = .29, F (2, 63) = 12.91, p < 0.001, BF10 = 971.65), or negative
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Figure 6.5: Estimated number of blue chocolates in the ambigous box as a

function of amount of information. The y axis shows the number of chocolates that

people estimated were in the ambiguous box. People were sensitive to both the prior

(cover story) and data (visible chocolates). Priors played a role, with people (regardless

of the pattern of visible chocolates) estimating the most blue chocolates when they were

given the positive cover story and the least when given the negative cover story. The

data played a role too, with people (regardless of cover story) inferring the fewest blue

chocolates when two red ones were visible, and the most when two blue ones were.

(R2 = .39, F (2, 75) = 23.52, p < 0.001, BF10 = 997272.9), people thought the box

with two visible blue chocolates probably contained more blue chocolates, while

the box with two visible red chocolates contained fewest. There is an effect of

the prior cover story as well, with people who received the positive cover story

consistently estimated more blue chocolates than those who received the neutral

one (t(126.82) = 2.95, p < 0.01, BF10 = 8.14), and those more than the negative

one (t(145.18) = 5.90, p < 0.001, BF10 = 503803). This is consistent with the

suggestion that people are sensitive to the quantity observed evidence, but consider

the cover story to be the more important factor when driving decisions in situations
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like these where comparatively little information is available.

6.5.3 Summary

The experiment suggests that participants are very sensitive to the reason given for

why the ambiguity exists: it appears to exert a substantial influence on the priors

people bring to the statistical inference problem that ambiguity presents. This effect

is seen regardless of whether we look at which box people chose, or whether we look

at their estimates of the number of chocolates in the ambiguous box. That said,

ambiguity aversion is not fully explained by the combination of priors, the observed

data, and estimates about the true nature of the underlying distribution of choco-

lates in the ambiguous box. This is evident for several reasons. First, people tended

to avoid ambiguity to a similar degree regardless of whether the cover story was neu-

tral or negative (Figure 6.2), and differences in the amount of ambiguity when

it was positive resulted in different levels of ambiguity aversion (Figure 6.2) but

not differences in the estimated number of blue chocolates (Figure 6.3). Moreover,

while differences in the distribution of the observed chocolates affected ambiguity

aversion when the cover story was neutral, they did not affect it when the cover

story was positive or negative (Figure 6.4), though this may be a consequence

of strong priors. As shown in Figure 6.5, people do use the observed data to guide

their estimates in these condition, but the data never outweigh the prior.
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6.6 General Discussion

It is perhaps unsurprising that ambiguity aversion is malleable when people are

presented with partial data or given reasons to view ambiguity in a positive light.

After all, real world decision making always involves some degree of ambiguity: it

would be very strange if people could not embrace it under the right circumstances.

The critical finding from our experiment, however, is that people seem to assess

ambiguity in a fairly rational way: when given reasons to prefer ambiguity people

do so, and when given observational data that makes the ambiguous option more

favorable, people adjust their beliefs about the desirability of that option. This is

consistent with findings by Güney and Newell (2011, 2015) that ambiguity aversion

is related to the prior beliefs that people use to interpret the ambiguity, and is

reminiscent of results showing that other decision-making effects can be manipulated

by shifting the quality and quantity of information available to people (e.g., Welsh

& Navarro, 2012).

Of particular interest to us is the fact that ambiguity aversion seems to be the default

behavior in our experiment: despite our best efforts to create a “neutral” prior

condition, participants were disposed to treat that scenario with some suspicion,

and adopt a relatively negative strategy that more closely resembles the negative

cover story than the positive one. Moreover, they did so in spite of the fact that

their estimates of the proportion of blue chocolates were roughly 50% on average.

Does this suggest that our participants take additional information into account

when making decisions about ambiguity? If so, what other cues could they be

using?
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One possibility is the social aspect of ambiguity aversion that has been demonstrated

by several researchers. Charness, Karni, and Levin (2013) demonstrate that allowing

individuals to control aspects of the experiment – reducing suspicion about the

ambiguous option – reduces ambiguity aversion, whist allowing participant collusion

results in a trend towards ambiguity neutrality. This effect of collusion was also

demonstrated by Keck, Diecidue, and Budescu (2012), suggesting that a fruitful

avenue for future work would be to examine the effect of social co-operation and

competition on ambiguity preferences.

Another possibility is that participants are relying on a different decision process, one

that doesn’t aim to maximize expected utility. For instance, Gilboa and Schmeidler

(1989) propose the Maxmin Expected Utility theory, which suggests that partici-

pants have in mind a prior range for the number of desired tokens in the ambiguous

option. They will choose this ambiguous option if and only if the expected utility of

the ambiguous option for the minimum of the range is less than the expected utility

of the unambiguous option. If people are using this rule to make decisions, but still

give estimates about the expected value of blue chocolates, this theory might explain

the dissonance between decisions and inferred distribution. Future work could elicit

this directly by asking participants to give an upper and lower bound for the number

of blue chocolates that they expect, but would also need to explain why this is true

for some but not all conditions.

More generally, a natural direction to extend this work is to consider a broader

range of scenarios and mechanisms that might give rise to ambiguous data. In real

life, this can happen in many different ways. The interpretation of surveys with
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missing data can be very different depending on whether the data are missing at

random or have been systematically censored. Ambiguous phrasing in an opinion

piece might be innocuous, or it might reflect an attempt to mislead with half truths.

Even the ambiguity in something as simple as Ellsberg’s (1961) original urn task

might carry a different interpretation depending on whether participants believe the

experimenter is asking a trick question. In short, when trying to construct a general

theory of why people tend towards ambiguity aversion, we suggest it makes sense to

ask where ambiguity arises in the real world. Is ambiguity usually associated with

positive outcomes, or does the absence of key information tend to suggest something

more nefarious? Our current results are ambiguous, but future work will investigate

additional informative cues.
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Discussion

“This isn’t magic, is it?”

“I don’t think so,” said Johhny.

“It’s probably just very, very, very

strange science.”

“Oh, good,” said Yo-Less. “Er...

What’s the difference?”

Terry Pratchett

This thesis investigates four areas where researcher and statistical assumptions con-

flict. In discussing each area, I argued that we can and should create statistical

models that incorporate researcher assumptions. To conclude I overview the find-

ings of this thesis, identify some caveats and future directions and then make my

final conclusions.
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7.1 Overview

Chapter three considered the nature of the data obtained using clinically aimed

scales with a non-clinical population. This combination creates a strong floor effect

and produces skewed data. I proposed ranked alternatives to increase the accuracy of

conclusions made from this data, and a cdf quantile method to increase the richness

of possible conclusions (Smithson & Shou, 2017). Overall, this chapter demonstrates

that while not violating the assumptions of the statistical method results in more

accurate results, increased complexity with some underlying theory leads to richer

claims.

Chapter four extended this by investigating the most appropriate model when the

researcher has some belief that their sample might be contaminated. In this chapter I

proposed a Bayesian mixture model that corresponds to a process of contamination.

This model was as or more accurate than the current best practice while also allowing

for additional claims to be made about the data. The chapter provides evidence that

incorporating researcher assumptions improves accuracy and changes the claims that

can be made from the data.

The next chapter built upon this. Here we considered a situation where the re-

searcher hypothesised that not all individuals will respond in the same way. I

utilised a family of models that incorporates these assumptions. These models not

only allowed the researcher to make the claims about individual change, but also

about group level differences of proportion and effect size. Other models that do

not incorporate these assumptions do not have this property. This model, by in-

corporating researcher assumptions, allowed the researcher to make inference about

258



Chapter 7

the parameters they are truly interested in.

Lastly, chapter six took an alternate approach by experimentally investigating the

relationship of ambiguity aversion to underlying distribution assumptions. We show

that despite replicating an aversion to ambiguity, participants were sensitive to dif-

ferent conditions with different underlying information cues. I include this chapter

as an example that despite a robust finding of rejection of ambiguity, people are

still able to make the sensible assumptions about the underlying data. This sup-

ports other chapters in this thesis that suggest researchers should incorporate their

assumptions about data into their statistical models.

With these four main findings laid out, in the next sections we will go on to consider

four different considerations raised by the findings of this thesis.

7.2 Researcher Assumptions

I began this thesis by arguing that statistical methods rely on the researcher’s as-

sumptions, intentions and interpretation. To demonstrate this, I outlined a number

of different examples where these three factors changed the chosen method and the

interpretation of its findings. However, the bulk of this thesis explored four examples

where these assumptions do not currently match the model most often used.

I am not the first to propose that researcher knowledge could be built into Bayesian

models for data analysis. Hemmer, Tauber, and Steyvers (2015) propose incorpo-

rating researcher driven priors into the analysis of Bayesian models of cognition.

While their work considers models of cognition, ours extends this concept to discuss
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the inclusion of models of the data generation process in general.

I argue through simulations studies, modelling and a study of decision making,

that the researcher’s assumptions, intent and interpretation should be incorporated

into the statistical modelling process. To conclude I turn to discuss the strengths

and weaknesses of my simulation-based approach, problems associated with model

complexity and the impact of cognitive biases on researcher assumptions.

7.3 Simulation Studies

Chapters three through five used a series of simulation studies to evaluate relative

model efficacy. Simulation studies were chosen as they allowed us to compare and

contrast different models given data sampled with different assumptions. They

afforded control that elucidated three benefits for the work presented in this thesis.

Firstly, it allowed us to explore the efficacy of the model in question with different

data scenarios. Secondly, because the data were simulated, we could investigate

where parameter recovery was possible and where it was not. This allows us to gain

an estimate of the accuracy of the model. Lastly, using simulated data allows us

to compare different models over identical data types. Any difference between the

efficacy of the models is due to differences in the model and not due to differences

in the sample.

Simulation studies are to real world datasets as basic science is to applied science.

Both are important, but while simulation studies and basic science (Calder, Phillips,

& Tybout, 1982) allow for control within the study, real world data and applied
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science (Steckler & McLeroy, 2008) increases the external validity of the method.

A lack of real-world data is one of the largest limitations of this thesis. However,

comparing models with purely real-world data does not disambiguate which model

makes the correct claims.

Future work could compare and contrast the claims made by the different models

with real datasets (in a method similar to Hinton-Bayre, 2012). This type of study

would be beneficial as it indicates how often the choice of model changes the con-

clusions made in real-world data analysis. This style of investigation alone does not

demonstrate which model is the correct model, or which conclusion is most trust-

worthy, which is the benefit of pure simulation studies. An alternative would be to

conduct pseudo-simulations: calculating the effect of sample size using subsamples

of a real world dataset.

The procedure for this is as follows. Given a large dataset of two variables {Y,X},

and a model that estimates a desired parameter θ.

1. For sample size n1, draw n1 random cases from dataset {Y,X}, which we

denote {Yn1,1, Xn1,1}.

2. Using this sub sample, fit the model and obtain an estimate for θ, θ̂n1,1, and

compare this to θ̂pop as estimated with the full dataset. Calculate an interval

around θ̂n1,1 that reflects the uncertainty of this estimate.

3. Repeat steps one and two for j samples of size n1 to obtain an estimate of ac-

curacy and precision for every respective θ̂n1,j. Calculate an average expected

accuracy and precision for that sample size.
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4. Repeat steps one through three for sample sizes in the set of interest N =

{n1, n2, ..., nB}, constrained so that nB 6 N .

One last critique with simulation studies is that it is possible to create a dataset

that perfectly matches the model assumptions. In such a case, it would be hardly

surprisingly that this model outperforms any other models with different assump-

tions, as they are miss-specified for the data. This issue is particularly important

in chapters four and five. In chapter four we addressed it by being careful to use

datasets that violate the assumptions of all the models. In chapter five, this is less

of an issue as the message of this chapter is that it is possible to create a model that

incorporates assumptions underlying repeated-measures data.

7.4 Complex models and overfitting

Many of the assumptions I have identified that are very common in psychological

research were introduced to simply reduce the number of parameters and the overall

complexity of the statistical model. The importance of using the simplest model

possible has long been noted (e.g., minimum description length (Rissanen, 1978)

and minimum message length (Wallace & Boulton, 1968)). Minimising the number

of parameters allowed to freely move prevents the model from overfitting to the

observed data at the expense of accuracy in predicting future data. In this section I

discuss a) why minimal model methods sometimes are insufficient for the data they

fit, b) how more complex models are useful in many cases, but must be used with

caution, and c) the methods to differentiate between the two.
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7.4.1 Defining model simplicity

The search for a model that best describes the data at hand is often required to

conform to Occam’s razor, the simplest model that explains the data ought to be

preferred. Model simplicity can be thought of two different ways.

The first way is to consider the number of free parameters. Free parameters are

variables contained within the model that are allowed to freely vary to best fit to

the data. Models with fewer free parameters are generally considered to be simpler.

The second way to consider the complexity of the model is to consider the shape of

possible relationships. Given a model where some outcome variable Y is predicted

by X, would a model with a quadratic term (e.g., Y ∼ aX2 + c), a model without a

quadratic term (e.g., Y ∼ aX + c) or a model with a power term (e.g., Y ∼ Xa + c)

be a more complicated model? All three have just two free parameters, a and c, but

differ greatly in the overall shape they can describe.

If model complexity is too ambiguous, then by what metric should we choose one

model over the other? If an analytic solution is desired, it will be faster but prac-

tical considerations mean that some distributions (notably the normal distribution)

will be over-emphasised. However, analytic tractability is not usually a problem

nowadays thanks to the presence of computational sampling methods.

The models proposed in this thesis are not simply more complex alternatives to

the standard practice. They are also not chosen to be the most complicated de-

scription of the data possible. Instead the models, especially those chosen in chap-

ters four and five use additional complexity to allow the researcher to make claims
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about aspects of the data they are truly interested in. This is accomplished by in-

corporating their beliefs about the underlying data generation process. Of course, it

can be difficult to define model complexity. When it is difficult, the choice between

two models depends on the context and beliefs of the researcher.

7.4.2 Comparing models

Complexity is often seen as an undesirable trait when modelling as it increases the

probability of overfitting. A model that is more complex can describe a wider variety

of data and relationships than a less complex model. This might seem desirable,

but if complex models are used unnecessarily, they might account for small random

fluctuations in the data as part of the true relationship. If this occurs, predictions

made by the model may be less accurate than simpler models.

With decreased prediction accuracy as a potential side effect of complexity, when

is it justified to use a more complex model instead of a simpler one? If the more

complicated model is closer to “true” underlying model than the simpler model,

then it will both fit the observed data and predict future data as well as or better

than the simpler model. There are a number of different techniques to identify the

model that best describes the data whilst penalising for model complexity. In a

review, Myung and Pitt (2016) categorise these methods into penalised likelihood

methods, Bayesian methods and direct estimation methods.

Penalised likelihood models, such as the AIC (Akaike, 1981) and the BIC (Schwarz

et al., 1978) seek to compare models on the likelihood of the model given the data

whilst penalising model complexity by a function of the number of free parameters

264



Chapter 7

and sample size. While this method does account for complexity, it only accounts for

the complexity that can be attributed to the number of free parameters the model

has, not the flexibility of relationships possible.

The Bayesian alternative takes one of two approaches. The first is a Bayes Factor

approach, or more generally a Bayesian Model Selection (BMS) approach (Myung

& Pitt, 2016). The BMS is the negative log of the marginal likelihood of the model

given the data. The difference between the BMS for two models is the log Bayes

Factor (Kass & Raftery, 1995), where the log Bayes Factor is the ratio of the marginal

likelihood of model 1 over the marginal likelihood of model 2. Because the BMS is a

measurement across the parameter space, it accounts for model complexity without

the need for additional parameters. When the BMS is difficult to calculate, an

alternative method is to use either a DIC (Spiegelhalter et al., 2002), which uses

the marginal likelihood estimated at the posterior mean, or the WAIC (Watanabe,

2010), which uses predictive density. As the WAIC and DIC doesn’t average over

the whole posterior, they still need to penalise for the number of parameters to

adjust for complexity.

Lastly there are what Myung and Pitt (2016) call direct estimation methods. These

are methods that use part of the sample to fit the model, and then test how well

the model can predict the remaining sample. The main differences between these

methods is how the sample is split, spanning from cross-validation (Geisser, 1993),

that splits the sample into equal halves, to leave one out (LOO) (Vehtari, Gelman,

& Gabry, 2017), which predicts each datum in turn from the rest of the sample.

I have argued that statistical models should be based on the assumptions of the re-
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searcher, suggesting that statistical models are the outcome of cognitive processes.

While the aforementioned model comparison techniques consider prediction, estima-

tion, variance accounted for and complexity in a statistical sense, they don’t account

for the aims and beliefs of the researcher. In cognitive science it has been argued

that the choice of priors needs to reflect the beliefs and knowledge of the researcher

(Vanpaemel, 2010), especially in terms of the underlying beliefs about the process

represented by the data (Lee & Wagenmakers, 2014). Even if the model fits excep-

tionally well, if the researcher wants to make claims about specific aspects of the

process and the model that does not contain parameters that represent this, it is

not useful.

Cognitive modelling has an additional set of considerations by which models ought

to be evaluated (see Myung & Pitt, 2016, for a full discussion). These recommen-

dations might potentially be of use to statistical models that incorporate researcher

beliefs. Of specific interest here are the model’s plausibility and interpretability.

Namely, model assumptions and structure should be based on established theory

and interpretable in the context of the problem.

7.5 Cognitive biases and assumptions

Throughout this thesis I have argued that researcher’s assumptions, intent and

interpretations have and should be included in the statistical modelling process.

In chapters four and five, I demonstrated that this approach can be beneficial by

increasing the overall model accuracy and increasing the richness of the claims that

can be made. However, can the researcher be trusted to make the correct inference
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about the data generation process? Decades of research in the cognitive sciences

have detailed a number of cognitive biases that suggest that people are not always

rational at making judgements with numbers (e.g., Ellsberg, 1961; Epley & Gilovich,

2006; Landy et al., 2013).

The work in chapter six bears on this question. We investigated whether ambiguity

bias reflected a distortion in the underlying belief of missing data. We discovered

that despite showing an overall bias to avoid ambiguity, when asked about the hidden

tokens, participants were sensitive to different environmental cues.

This is not the first work to suggest that cognitive biases are not necessarily evidence

of irrational thinking. Others have suggested that Bayesian reasoning accounts of

human behaviour make good predictions, even when rational accounts do not. One

example of this is evidence that suggests thinking previously identified as irrational

can be better explained as evidence of a heuristic (Gigerenzer, 1991; Hahn & Oaks-

ford, 2007).

An interesting direction for future work could involve continuing to investigate the

impact on human biases on inference made in statistical analyses. Is it possible that

confirmation bias (Nickerson, 1998) and the desire for researchers to find statistical

evidence for their hypotheses1 result from the same underlying cognitive mechanism?

If it is, would research that aims to reduce confirmation bias (e.g., Schwind & Buder,

2012) provide clues to reduce some of the issues identified by Simmons et al. (2011)?

The work in this thesis analysed both accuracy of a binary conclusion (i.e., were

the two groups different or not) and also uncertainty about these estimates. Ap-

1One concern with the researcher choosing statistical techniques after seeing the
data (Simmons et al., 2011)
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proaches that emphasise the uncertainty of measurement are strongly advocated

for throughout Bayesian and frequentist literature (e.g., Cumming, 2008; Kruschke,

2014; Wagenmakers, 2007). In practice however, many scientists are reluctant to

use these methods. This has led to solutions that simply decrease the probability of

making a Type 1 error (Benjamin et al., 2018). Why, in practice, is there relatively

little focus on estimation rather than binary assignment? Is it that the estimation

makes obvious the inherent uncertainty of data analysis, and uncertainty is not

preferred? This is an intriguing open question inspired by the findings of chapter

six.

7.6 Final Conclusions

In this thesis I argued that researcher assumptions, intent and interpretation form

an integral part of statistical analysis. In chapter one I argued that this was not a

novel concept, but one that has underpinned the design and assumptions of our most

common statistical methods. In chapter two I outlined methods that I had chosen

to use throughout this thesis, where I begin my argument that the ‘best’ model is

one that is both accurate and precise. Chapter three demonstrated that significant

improvements can be made simply by using a model that is more appropriate for

the data at hand, while chapter four demonstrated that employing a model that

relies on researcher assumptions resulted in additional benefits. In chapter five I

demonstrate that not only do models that incorporate researcher assumptions have

significant improvements in accuracy, they also allow the researcher the ability to

make claims about the parameters that are truly of interest. In chapter six I consider
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whether the researcher can be trusted to be sensitive to different environments that

produce data. I demonstrate for a simple case, ambiguity aversion, that they are.

In a broader sense this thesis argues against the idea that researchers are inherently

biased, and statistics should be undertaken by an impartial observer. Instead I argue

that the researcher, an expert in their field, has a large amount of domain-specific

knowledge about what they expect the process of obtaining the data entails. I argue

that by incorporating this into the model itself, it is possible to make these currently

implicit assumptions explicit. This increases transparency, allowing the method to

be debated explicitly in the field. The ultimate goal is to lead to models built with

better assumptions and to give the researcher the tools to make cleaner and more

interesting descriptions of their data. In the end, transparency, reproducibility, and

scholarly debate is where the real magic of science is.
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