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Structure of the thesis 

This thesis is presented in six chapters preceded with an Abstract which sets out the 

context and gives an overview of the thesis. Chapter 1 is made up of a Literature 

review which gives a broad background of the work presented in the subsequent 

chapters. Chapters 2, 3, 4 and 5 are experimental papers which have either been 

published, under review or unpublished work written in manuscript format shortly to be 

submitted for peer review. Each of the experimental papers contains an Abstract, 

Introduction, Materials and Methods, Results, Discussion and References. Additionally, 

they are prefaced by a statement of authorship that describes the contribution of each 

author and a link page that ties in the chapter with this thesis. General discussion and 

future research directions are presented in Chapter 6. This thesis is in agreement with the 

specification of “thesis by publication” format of the Adelaide Graduate Centre Higher 

Degree by Research, University of Adelaide, South Australia.  
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Abstract 

Chickpea (Cicer arietinum L.) is a nutritious legume predominantly grown in semi-arid 

environments under rain fed conditions, but is highly sensitive to soil salinity. Until 

recently, there has been slow progress in the application of molecular genetics in chickpea 

breeding. This is primarily because the available genetic variation in international 

chickpea germplasm collections has not been extensively characterised due to a lack of 

available genomics tools and high-throughput phenotyping resources. 

 Molecular genetic approaches are needed to identify key loci with the potential to 

improve salinity tolerance in chickpea. In this project, genetic analysis was conducted on 

two populations: A recombinant inbred line (RIL) population of 200 individuals 

developed from a cross between Genesis836 and Rupali which are known to contrast in 

their tolerance to salinity and a diversity panel consisting of 245 chickpea accessions of 

diverse genetic background from ICRISAT. For phenotyping, an image-based high-

throughput phenotyping platform was used. Data on growth rate, water use, plant 

senescence and necrosis, and agronomic traits were collected under both control and 

saline conditions (40 mM for diversity panel and 70 mM NaCl for RIL). In depth studies 

including differential metabolite accumulation and senescence detection were carried out 

to increase our understanding of the response of chickpea to salinity.  

Genesis836 and Rupali differentially accumulated metabolites associated with the TCA 

cycle, carbon and amino acid metabolism. Higher senescence scores were recorded in 

Rupali compared to Genesis836. On average, salinity reduced plant growth rate by 20%, 

plant height by 15% and shoot biomass by 28%. Additionally, salinity induced pod 

abortion and inhibited pod filling, which consequently reduced seed number and seed 

yield by 16% and 32%, respectively. Path analysis was utilised to understand the intricate 
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relationship existing between the traits measured and aided in the identification of those 

most related to salinity tolerance. This analysis showed that seed number under salt was 

highly related to salinity tolerance in chickpea.  

To identify Quantitative Trait Loci (QTL) underlying salinity tolerance in chickpea, two 

complimentary genetic analysis approaches were used: genome-wide association studies 

(GWAS) and linkage mapping. Phenotypic data was combined with genotypic data from 

both the diversity panel (generated through whole-genome resequencing) and RIL 

population (from DArTseq). Linkage mapping and GWAS identified a total of 57 QTL 

and 54 marker-trait associations (MTAs), respectively. The loci identified were linked to 

growth rate, yield, yield components and ion accumulation. A novel major QTL for 

relative growth rate on chromosome 4 that explained 42.6% of genetic variation, was 

identified by both genetic analyses. This QTL co-located with several other QTL 

identified, including those associated with projected shoot area, water use, 100-seed 

weight, the number of filled pods, harvest index, seed number and seed yield under salt. 

Near-isogenic lines will be developed to allow for targeted fine mapping that will help 

identify candidate genes for molecular analysis. Molecular markers tightly linked to this 

QTL will be validated as a selection tool in breeding to improve salinity tolerance in 

chickpea. 
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Chapter 1 

_____________________________________________________________________________________ 

Literature review 
_____________________________________________________________________________________ 





1.1 Salinity in Australia 

Agricultural production is severely limited by abiotic stress. Salinity is one abiotic stress 

that impacts negatively on worldwide food production (Nawaz et al., 2010; Rengasamy, 

2006). Most countries in the world are affected by salinity with over 800 million ha of  

land affected. This approximates to 6% of total global land area and is predicted to 

increase by 1-2% in the future (FAO, 2008).  

Salinity is the biggest contributor to soil degradation in Australia and poses a major threat 

to the country’s native species which negatively impacts on proper ecosystem functioning 

(ANZECC, 2001).  Australia is reported to have approximately 67% of its agricultural 

land, equivalent to 5.7 million hectares, affected by salinity (Figure 1) (Rengasamy, 

2002). Unless effective solutions are implemented, it is predicted 17 million hectares of 

Australian land will be salinized by 2050 (ANRA, 2001). Soil salinity can be categorised 

into primary salinity and secondary salinity (dry-land salinity and transient salinity, 

respectively) (ABS, 2002; Rengasamy, 2006). Transient salinity results from the 

accumulation of salts in the soil and root zones due to high rates of evaporation while dry-

land salinity results from rising saline water tables caused by intensive irrigation and 

clearing of native vegetation (Jardine et al., 2011; Rengasamy, 2002). Approximately 

70% of the Australian wheat belt is salinized due to rising water tables (NLWRA, 2001; 

Rengasamy, 2006).  

The total estimated annual loss, in lost opportunity, in Australia as a result of salinity is 

AUD $1,334 million per year (Rengasamy, 2002). Therefore, developing saline tolerant 

plants to grow in the increasingly salinized agricultural lands will alleviate further crop 

losses not only in Australia but also in other parts of the world. 
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Figure 1: The extent of salinisation in A
ustralia. M

ost agricultural land in A
ustralia are affected by either dry-land salinity or transient salinity (Rengasam

y, 2002). 
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1.2 Chickpea biology, economic importance and production 

Chickpea (Cicer arietinum L.) is a self-pollinated diploid (2n=2x=16) plant with a 

relatively small genome of 740 Mb (Arumuganathan and Earl, 1991). Through next-

generation sequencing, a chickpea draft genome sequence with predicted 28,000 genes 

has been generated (Jain et al., 2013; Parween et al., 2015; Varshney et al., 2013). This 

forms an important resource for chickpea improvement to improve food security in 

developing countries where chickpea is mostly consumed. Chickpea belongs to the family 

Leguminosae. Legumes comprise of soybeans, peanut, pulses, fresh peas and fresh beans 

(Figure 2). They are widely grown throughout the world, with chickpea ranking second in 

the pulse category in terms of total SrodXction (FAOSTAT, 2011; FAOSTAT, 2014; 

Knights and Siddique, 2002)� Chickpea is classified into kabuli and desi types. The kabuli 

chickpea is large-seeded, cream-coloured and ‘ram’s head’ shaped, with thin testa while 

desi is small-seeded, angular shaped and has a wide colour range from brown, yellow, 

orange, black to green with a thick testa (Flowers et al., 2010; Millan et al., 2006; Rao, 

2010). 

In many countries, chickpea is an important human and animal food with high nutritive 

value (Charles et al., 2002; Jukanti et al., 2012). Chickpea seed is composed of 20%-30% 

protein, 40% carbohydrates and 3%-6% oil (Gill et al., 1996). Additionally, the seeds are 

rich in manganese, potassium, iron, zinc, calcium, phosphorus, and beta-carotene (Ibrikci 

et al., 2003). Chickpea can restore and maintain soil fertility (GRDC, 2012; Saxena, 

1990) and is able to fix up to 140 kg N ha-1 year-1 through symbiosis with Rhizobium 

bacteria (Rupela and Rao, 1987).  
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The global area under chickpea production in 2014 was 14.8 million ha with 14.24 

million tonnes (mt) harvested (Figure 3a) (FAOSTAT, 2014). Chickpea is grown in more 

than 50 countries but the main chickpea producers include India, Australia, Pakistan, 

Turkey, Myanmar, Ethiopia, Iran, USA, Canada, and Mexico (Figure 3a). Most of the 

chickpea production comes from the Asian continent (Figure 3b) (FAOSTAT, 2014). 

Australia is the second largest producer of chickpea after India (Figure 3a) (FAOSTAT, 

2014). Chickpeas form an important component of cropping systems in Australia as a 

high value rotation option for wheat and barley growers (Siddique and Sykes, 1997). 

Australian chickpea exports comprise 25% of the total exports worldwide. Most of these 

exports go to the Indian subcontinent to meet the consistently high demand which 

exceeds domestic supply (FAOSTAT, 2014). The inability of production in India to meet 

local demand is partially attributed to abiotic stresses, which have a significant effect on 

crop productivity (Krishnamurthy et al., 2011; Upadhyaya et al., 2011). Strategies to 

increase chickpea yield and expand production to marginal land are urgently needed. 

Figure 2: Categories of legumes. Chickpea belongs to the pulse group. Source: Pulse Canada 
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Figure 3: Chickpea production. a. World production of chickpea in 2014 (FAOSTAT, 2014) Chickpea is 

grown in many countries in the world with India being the main producer. b. Share of chickpea production 

by region in 2014.  Most of chickpea production comes from Asia continent (FAOSTAT, 2014). 
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1.3 Sensitivity of chickpea to salinity 

Global chickpea production is limited by abiotic stress, causing annual losses estimated at 

about 3.7 mt (Varshney & Dubey, 2009). Salinity is a major abiotic stress, which 

negatively affects crop production (Ali et al., 2002; Lauter and Munns, 1986). An 

estimated 8%-10% of the global annual chickpea yield loss is attributed to salinity 

(Flowers et al., 2010). 

 Although saline soils are said to have salinity levels (ECe) of above 4 dS/m, which is 

approximately 40 mM NaCl (US laboratory staff, 1954), the response of different plant 

species to salinity is also dependent on pH, Cation Exchange Capacity (CEC), and soil 

type (Vadez et al., 2007; Krishnamurthy et al., 2011).  

Two phases of salinity have been described that limit plant growth and development; 

shoot ion independent ( including osmotic component) stress and shoot ion dependent 

(ionic) stress (Munns and Tester, 2008; Roy et al., 2014). Shoot ion independent stress 

occurs immediately following salt application while shoot ion dependent stress manifests 

after several days or weeks once ions accumulate in plant tissues (Munns and Tester, 

2008; Roy et al., 2014). Shoot ion independent stress arises from high salt concentration 

around plant roots which not only imposes hydraulic resistance in the plant xylem 

(Munns and Passioura, 1984) but also lowers soil water potential which interferes with 

plant water uptake (Boursiac et al., 2005; Fricke, 2004; Puniran-Hartley et al., 2014) 

consequently negatively affecting plant growth.  The reduction in plant growth is 

manifested by a reduction in tillering, leaf area, and branch number (Munns and Tester, 

2008). Shoot ion dependent stress is caused by the accumulation of toxic salts, mainly Na

+ and Cl-, in leaves (Munns and Tester, 2008; Roy et al., 2014) leading to leaf necrosis

and eventually leaf drop which reduces overall photosynthetic capability. Strategies to 

improve both shoot ion independent and shoot ion dependent tolerance of a plant will 

reduce yield losses caused by salt stress (Munns & 7ester, ����) ()igure �)� 
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Grain legumes are generally considered sensitive to salinity with chickpea among the 

most sensitive (Maas and Hoffman, 1977). Chickpea is more sensitive than durum wheat 

with exposure to 25 mM of NaCl in hydroponics system reported to kill the most 

sensitive chickpea genotypes (Flowers et al., 2010).  

Figure 4: Osmotic stress and ionic stress in plants. Osmotic stress sets in earlier than ionic stress. 

Increase in osmotic stress tolerance and ionic stress tolerance improves shoot growth rate (Munns &Tester, 

2008). 

Figure 5: Neighbour-joining tree of the 

Reference Set. Tree diagram based on the 

simple matching dissimilarity matrix of 48 

SSR markers showing allelic diversity across 

the chickpea composite collection. The 

Reference Set (300) accessions are 

represented in red (desi), blue (kabuli), 

yellow (pea- shaped), and green (wild Cicer) 

(Upadhyaya et al., 2008). 
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Salinity affects the developmental stages of chickpea in different ways. There is 

conflicting information regarding the effect of salinity on chickpea germination. Previous 

research has shown the presence of genetic variability for chickpea germination response 

under salinity (Esechie et al., 2002). Soltani et al. (2002) established that a positive 

relationship exists between seed size and seed germination under salinity. However, other 

studies show that salinity has a minimal effect on the germination percentage and time of 

germination in chickpea (Al-Mutata, 2003; Kumar, 1985; Sekeroglu et al., 1999). 

Furthermore, Kaya et al. (2008) reported 100% germination in Kabuli genotypes screened 

under salinity (16.3dsm-1 of NaCl). These contrasting outcomes may be due to different

genotypes and screening methods employed in the different studies.  

Several studies show the reproductive phase to be more sensitive to salinity than the 

vegetative phase in chickpea (Katerji et al., 2001; Krishnamurthy et al., 2011; Pushpavalli 

et al., 2015a; Samineni et al., 2011; Turner et al., 2013; Vadez et al., 2007; Vadez et al., 

2012a; Vadez et al., 2012b). This has important implications when selecting for salt 

tolerant genotypes, as tolerance at the vegetative phase does not necessarily translate to 

reproductive success under salinity. Podding has been reported to be the most sensitive 

stage with a high rate of pod abortion reported in sensitive genotypes under saline 

conditions (Samineni et al., 2011). Similarly high number of filled pods and high seed 

number under salinity, as opposed to seed size, have been shown to be major 

determinants of salinity tolerance (Krishnamurthy et al., 2011; Pushpavalli et al., 2015a; 

Pushpavalli et al., 2015b; Samineni et al., 2011; Turner et al., 2013; Vadez et al., 2012a; 

Vadez et al., 2012b). However, in a breeding context, the cost of implementing 

phenotypic selection tools for salinity tolerance in chickpea is crucial. Therefore, it is 

important to identify phenotypic traits that correlate with salinity tolerance during early 

developmental stages in chickpea. Vadez et al. (2012a), found that a large number of 

tertiary branches and flowers can lead to reproductive success under salinity. However, 

these two traits are difficult to measure especially when a large number of genotypes are 

involved.  
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Three mechanisms of salinity tolerance have been studied in chickpea. These include; 

osmotic tolerance (Khan et al., 2016), ion exclusion (Pushpavalli et al., 2015a; Turner et 

al., 2013), and tissue tolerance (Khan et al., 2016; Kotula et al., 2015). Recently, Khan et 

al. (2016) used concentrated macronutrient solutions to study the response of two 

chickpea cultivars, Genesis836 and Rupali, to osmotic stress equivalent to osmotic 

potential exerted by 60 mM NaCl. This study demonstrated that chickpea is tolerant to 

osmotic stress, a component of shoot-ion independent stress. Previous studies have 

demonstrated reduction of seed yield under salinity without critical levels of toxic ions 

accumulating in plant tissues (Pushpavalli et al., 2015a; Turner et al., 2013; Vadez et al., 

2007). Therefore, it is imperative to investigate the response of chickpea to shoot ion 

independent stress, which is specifically induced by NaCl. Several studies have shown 

chickpea is sensitive to sodium ions (Na+) as opposed to potassium (K+) or chloride ions 

(Cl-) (Khan et al., 2016; Pushpavalli et al., 2015a; Turner et al., 2013). Turner et al.(2013) 

studied ion accumulation in 50 chickpea genotypes, ranging from extremely tolerant to 

sensitive, when subjected to 80 mM NaCl (Krishnamurthy et al., 2011). They found 

sensitive genotypes to accumulate significantly high levels of Na+ and K+ but not Cl- in

mature seeds. Additionally, they established a moderate negative relationship between 

salinity tolerance (seed yield under 40 mM NaCl) and Na+ accumulation in the youngest-

fully expanded leaf. Using eight genotypes, Pushpavalli et al. (2015a) demonstrated 

association between salinity tolerance and high K+/Na+ in fully expanded young leaves, 

low Na+ in old green leaves, high K+ in seeds at mid-filling stage, and high Cl- in mature 

seeds. In contrast, Vadez et al. (2007) did not find association between salinity tolerance 

and shoot Na+ or shoot K+, 50 days after sowing ( DAS). The discrepancy in the three 

studies may be due to different sampling strategies, or the tissue type and developmental 

stage sampled to quantify ion accumulation.  
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Tissue tolerance has been demonstrated in chickpea using two genotypes, Genesis836 and 

Rupali, which contrast for salinity tolerance (Khan et al., 2016; Kotula et al., 2015). 

Genesis836 accumulated a similar concentration of Na+ as Rupali but maintained net 

photosynthetic activity (Khan et al., 2016) and seed yield (Kotula et al., 2015m�) under 

salinity.  

The above studies indicate that there is a need to further explore the relative contribution 

of the known mechanisms of salinity tolerance in chickpea, ideally in larger germplasm 

collections where there is evidence that tolerance mechanisms are genotype dependant.   

1.4 Breeding for improved salinity tolerance in chickpea 

Plant breeders exploit genetic diversity to increase yield potential or broaden adaptation 

to marginal environments. The recent application of bioinformatics and genomic tools has 

made it possible to more readily identify novel traits and exploit naturally occurring 

genetic variation in breeding than previously. Previous research reported the existence of 

limited natural genetic variability for salinity tolerance in chickpea available for breeding 

(Johansen et al., 1990; Saxena, 1984; Udupa et al., 1993). This may be due to the small 

number of chickpea genotypes under study, limited streamlined phenotyping 

methodologies, and evaluation of salinity tolerance at the vegetative phase rather than 

reproductive phase of growth. The use of geographically diverse material (Maliro et al., 

2008; Serraj et al., 2004) and the assessment of salinity tolerance based on seed yield 

(Krishnamurthy et al., 2011; Pushpavalli et al., 2015a; Turner et al., 2013; Vadez et al., 

2007) has since provided evidence that useful genetic variation for salinity tolerance is 

present in chickpea. This variation can be utilised in breeding programs to improve the 

salinity tolerance of otherwise adapted chickpea breeding varieties and breeding lines. 
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1.4.1 Chickpea germplasm 

Crop improvement relies heavily on the availability of rich plant genetic resources 

(Singh, 1987) maintained by different research institutes globally. Most of the world 

chickpea accessions are held by two members of the Consultative Group on International 

Agricultural Research (CGIAR) involved in chickpea improvement: The International 

Crops Research Institute for the Semi-Arid Tropics (ICRISAT) located in India, and the 

International Centre for Agricultural Research in Dry land Areas (ICARDA) located in 

Morocco. ICRISAT holds 20,267 accessions of chickpea while ICARDA has 13,462 

accessions from 61 countries across five continents (Upadhyaya et al., 2011). The 

challenges associated with the use of diverse germplasm collections have been 

ameliorated by the development of core collections and a reference collection designed to 

represent the range of genetic variability present in the broader chickpea gene pool. It is 

cost effective, less labour-intensive and more practical to screen for traits of interest in 

smaller representative collections than in complete germplasm collections. 

A number of germplasm collections have been formed to facilitate chickpea 

improvement. These include; the core collection, mini-core collection, composite 

collection, and the Reference Set. The core collection containing 1956 chickpea 

accessions (10% of the accessions from ICRISAT) was established to capture the 

diversity in the chickpea gene pool based on geographical distribution, origin of the 

accessions and data on 13 morphological and agronomic traits (Upadhyaya et al., 2001). 

Afterwards, the mini-core collection (211 accessions) which represents 10% of the core 

collection (1956 accessions) and 1% of the entire collection held at ICRISAT gene bank 

was established. The mini-core collection was formed based on data from 22 

morphological and agronomic traits (Upadhyaya &Ortiz 2001). A composite collection 

(2915) consisting of the core collection (1956 accessions) from ICRISAT and 709 
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cultivated chickpea accessions from ICARDA was formed to represent the genetic 

diversity in the chickpea germplasm present in the two centres (Upadhyaya et al., 2006). 

More recently, a further set of germplasm was established based on molecular marker 

diversity screening. The Reference Set (300 accessions) was selected based on 48 SSR 

(simple sequence repeat) markers and is reported to capture 78% of 1683 alleles present 

in the composite collection (2915 accessions) (Upadhyaya et al., 2008). The Reference 

Set includes 211 accessions from the mini-core collection. The 300 accessions of the 

Reference Set consist of geographically diverse material including 267 landraces, 13 

advanced lines and cultivars, 7 wild Cicer species (C.reticulutum and C. echinospermum) 

and 13 accessions whose biological status is unknown. Classification based on seed type, 

shows the Reference Set consists of 197 desi, 86 kabuli, and 10 pea-shaped lines 

(Upadhyaya et al., 2008) (Figure 5). Because of the diverse nature of lines in the 

Reference Set, this collection is ideal for association mapping approaches to identify 

genomic regions controlling traits of interest. Previous studies show large genetic 

variation for salinity tolerance exists in the Reference Set (Krishnamurthy et al., 2011; 

Turner et al., 2013; Vadez et al., 2007), making this germplasm ideal for studying the 

genetic control of salinity tolerance in chickpea. 

1.4.2 Mapping populations for genetic analysis 

Different populations including filial generation two (F2), back-cross lines (BC), 

recombinant inbred lines (RIL), double haploid (DH) (Figure 6) and natural diverse 

populations can be used for genetic studies. RIL and DH populations are generally 

preferred for genetic studies because of their homozygous nature, enabling the 

multiplication and testing across different locations in different years without genetic 

change (Collard et al., 2005). However, RIL development is time consuming; in some 

cases taking between four to five years to complete. DH chickpea production has been 
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achieved in the Australian cultivar Sonali (desi) and Canadian cultivar CDC Xena 

(kabuli) by the application of different stress treatments on microspore culture (Grewal et 

al., 2009). Croser et al. (2011) obtained DH pro embryos from the Australian cultivar 

Rupali. However, there is no research reporting the development of DH pro-embryos into 

mature chickpea plants capable of generating seed. Using DH lines would minimise the 

time spent to develop a mapping populations by single seed descent (SSD) (Figure 6), but 

current protocols for DH chickpea production are expensive (Grewal et al., 2009) and this 

approach is currently unviable. 

Rapid chickpea regeneration enabling the completion of three generations of chickpea in 

one year is only feasible in short season environments such as India (Gaur et al., 2007; 

Sethi, 1981). An alternative strategy involves growth under glasshouse conditions to 

advance beyond the F2 generation under conditions that accelerate development. 

Recently, researchers at the University of Western Australia have developed methods to 

accelerate generation time in pulses. This involves precocious germination of immature 

seed and customising lighting and temperature conditions in the glasshouse. This method 

allows chickpea generation time to be shortened to 60 days (Dr Janine Croser –personal 

communication).  
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Figure 6: Types of mapping populations for self-pollinating plant species. Quantitative trait loci 

analysis is mostly conducted in Filial generation 2 (F2), back-cross populations (BC), recombinant inbred 

lines (RIL) and in double haploid lines (Collard et al., 2005) 

Vegetative propagation involving the use of stem cuttings has also been proposed as a 

means of obtaining identical genetic plant material that could be tested in replicated 

experiments (Danehloueipour et al., 2006). The stem cutting technique will make it 

possible to propagate and evaluate chickpea material at the F2 generation, then 

subsequently utilise SSD to advance clones for the development of RILs. This method 

could also be used for seed multiplication hence accelerating RIL development 

(Danehloueipour et al., 2006). 

Natural populations can be utilised in association mapping, which relies on historic 

linkage disequilibrium (LD) (the non-random association of loci) in diverse germplasm 

collections, to identify functional variants controlling complex traits such as salinity 

tolerance. Association mapping enables the identification of QTL underlying a trait of 
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interest in a relatively short period of time as the approach relies on the assembly of 

germplasm panels rather than the production of experimental populations that require 

many generation cycles. However, when considering an association mapping approach, it 

is crucial to account for population structure in the panel under study to avoid the 

identification of false marker-trait associations (Myles et al., 2009). To date, association 

mapping approaches have not been utilised to identify genomic regions controlling 

salinity tolerance in chickpea. This approach may be a useful tool to identify novel QTL 

and genes underlying salinity tolerance in chickpea. 

1.4.3 Molecular markers 

Marker assisted-selection (MAS) in any breeding program is facilitated by molecular 

markers associated with a trait of interest (Varshney and Dubey, 2009). Many DNA 

markers are based on restriction fragment analysis, hybridisation or amplification by 

PCR. Hybridisation techniques take time while restriction and amplification of DNA have 

the possibility of introducing errors and bias in inferring genotypic information from 

material under study.  

DNA markers have been widely used in pulses (Choudhury et al., 2006; Dhanasekar et 

al., 2010; Muehlbauer et al., 1991).  Some of the marker types that have been used in 

genetic map construction or analysis of genetic diversity in chickpea include; isozyme 

markers (Ahmad et al., 1992), restriction fragment length polymorphism (RFLP) (Serret 

et al., 1997), amplified fragment length polymorphism (AFLP) (Shan et al., 2004), 

random amplification of polymorphic DNA (RAPD) (Ahmad, 1999; Banerjee et al., 

2001; Singh et al., 2002; Sonnante et al., 1997), simple sequence repeat (SSR) markers 

(Pushpavalli et al., 2015b; Sudupak, 2004; Thudi et al., 2011; Upadhyaya et al., 2008; 

Vadez et al., 2012b; Winter et al., 1999) and diversity array technology (DArT) markers 

(Thudi et al., 2011).  

Page 17



Due to the narrow genetic base in cultivated chickpea, most DNA marker technologies 

have not been effective in identifying sufficient polymorphism between chickpea 

genotypes. Due to their polymorphic and co-dominant nature (Gupta et al., 2010), SSR 

markers have been utilised in constructing genetic linkage maps to identify QTL 

controlling salinity tolerance (Pushpavalli et al., 2015b; Vadez et al., 2012b) as well as in 

characterising the diversity and allelic richness in the chickpea composite collection to 

form the Reference Set (Upadhyaya et al., 2008).  

Single nucleotide polymorphisms (SNPs) markers are the marker of choice because of 

their abundant nature and transferability across platforms and breeding populations. 

Several studies have identified numerous SNP markers in the chickpea genome (Gujaria 

et al., 2011; Hiremath et al., 2011; Rajesh and Muehlbauer, 2008; Varshney and Dubey, 

2009; Varshney et al., 2013). Large-scale marker discovery, high-throughput genotyping 

and draft genome sequences (Jain et al., 2013; Varshney et al., 2013) have made it 

possible to construct high-resolution genetic linkage maps in chickpea. Advances have 

mostly been made in inter-specific genetic maps (Gaur et al., 2015; Gaur et al., 2012; 

Gujaria et al., 2011; Hiremath et al., 2012; Nayak et al., 2010). Few studies have 

successfully developed intra-specific high-density genetic linkage maps (Kujur et al., 

2015; Verma et al., 2015) but generally the populations utilised to identify these SNPs 

and construct genetic maps are not suitable for the mapping of salinity tolerance in 

chickpea because the genotypes chosen do not differ in their ability to tolerate soil 

salinity. 

1.4.4 Genetic control of tolerance to salinity 

Salinity tolerance is a polygenic trait with complex underlying genetic and physiological 

control (Flowers and Flowers, 2005). Breeding for salt tolerant cultivars is only possible 

with an increased understanding of genetic basis of salinity tolerance. QTL for salinity 
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tolerance have been mapped in crops such as tomato (Foolad et al., 2001), soybean (Lee 

et al., 2004), rice (Campbell et al., 2015; Flowers et al., 2000; Koyama et al., 2001; Wang 

et al., 2012), barley (Eleuch et al., 2008; Saade et al., 2016; Xu et al., 2012) and wheat 

(Genc et al., 2010; Shahzad et al., 2012). Similarly, loci associated with salinity tolerance 

have been identified in Medicago truncatula (Arraouadi et al., 2012) and Medicago sativa 

(Yu et al., 2016) with chromosome 1 harbouring major QTL in both studies. 

To date, only three studies have focussed on identifying QTL underlying salinity 

tolerance in chickpea (Pushpavalli et al., 2015b; Samineni, 2010; Vadez et al., 2012b). 

Using recombinant inbred lines (RIL) developed between Indian adapted genotypes, 

Vadez et al. (2012b) found loci on chromosome 6 and chromosome 3 to control seed 

yield and seed yield components, respectively, under salt while Pushpavalli et al. (2015b) 

identified two key genomic regions on chromosome 5 and chromosome 7, which control 

salinity tolerance related traits in chickpea. Samineni (2010) study did not detect any 

major QTL. This study found 20 QTL for different traits explaining less than 10% of 

phenotypic variation. Besides the low resolution in genomic regions identified due to the 

small number of SSR markers used for map construction, these studies were limited in the 

number of traits under study due to phenotyping platform utilised.  

Environmental factors are known to influence the expression of phenotype. It is 

imperative to conduct phenotyping in multiple seasons to ensure stable QTL are obtained, 

which can be laborious and time consuming. Hence, there is a need to combine a 

streamlined high-throughput phenotyping system with high density SNP information to 

identify genomic regions controlling salinity tolerance in different sets of germplasm. 
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1.5 Research Aims 

The generation of high density SNP information, using the recently completed chickpea 

draft genome sequence, provides an excellent opportunity to identify QTL for salinity 

tolerance in chickpea. This research aims to address the gaps in our current understanding 

of the genetic basis of salinity tolerance. Currently only three studies have identified QTL 

for physiological and agronomic traits in chickpea, each using bi-parental populations 

derived from genotypes adapted to Indian environments. Additionally, there is no 

research reporting association mapping for traits associated with salinity tolerance in 

chickpea. Last but not least, robust phenotyping methodology is needed for generating 

quality phenotypic data for genome-wide association mapping and linkage mapping. 

To address these research aims, we asked the following questions: 

1. What is the level of genetic variation for salinity tolerance in chickpea germplasm

using high-throughput precision phenotyping?

2. What tolerance mechanisms and key traits drive salinity tolerance in the chickpea

germplasm?

3. What genomic regions and gene(s) underlie salinity tolerance in chickpea?
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Link to chapter 2 

Previous studies suggest limited genetic variation for salinity tolerance exists in chickpea 

germplasm. This is partly due to the challenges associated with phenotyping large diverse 

sets of germplasm. This chapter describes image-based phenotyping in chickpea and its 

application in exploring genetic diversity for salinity tolerance. To complement findings 

from controlled environments to a breeding and agronomic context, field phenotyping 

was also carried out using a diverse germplasm collection assembled by ICRISAT, India. 

This study shows that shoot ion independent and shoot ion dependent tolerance exist in 

chickpea. Additionally, this chapter describes key traits that would be valuable for 

breeders for selecting salt tolerant genotypes. 6eed number under salt Zas found to be 

highly associated with tolerance. This chapter is written in manuscript format and is 

currently under peer review in Scientific Reports as follows;  Atieno J, Li Y, Langridge P, 

Berger B, Brien C, Dowling K, Varshney R.K, Sutton, T. Exploring genetic variation for 

salinity tolerance in chickpea using image-based phenotyping. 
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Abstract 

Soil salinity results in reduced productivity in chickpea. However, breeding for salinity 

tolerance is challenging because of limited knowledge of the key traits affecting 

performance under elevated salt and the difficulty of high-throughput phenotyping for 

large and diverse germplasm collections. This study utilised an image-based 

phenotyping platform to study genetic variation in chickpea for salinity tolerance in 245 

diverse accessions. On average salinity reduced plant growth rate (measured as leaf 

expansion through time) by 20%, plant height by 15% and shoot biomass by 28%. 

Additionally, salinity induced pod abortion and inhibited pod filling, which consequently 

reduced seed number and seed yield by 16% and 32%, respectively. Importantly, 

moderate to strong correlation was observed for different traits measured between 

glasshouse and two field sites indicating that the glasshouse assays are relevant to field 

performance. Using an image-based phenotyping platform, we were able to measure 

plant growth rate under salinity, and subsequently elucidate the role of shoot ion 

independent stress in chickpea. Broad genetic variation for salinity tolerance was 

observed in the diversity panel with seed number being the major determinant for 

salinity tolerance measured as yield. This study proposes seed number as a selection trait 

in breeding salt tolerant chickpea cultivars.  
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Introduction 

Chickpea (Cicer arietinum L.) is an important legume crop used as human food, animal 

feed and is also grown in rotation with cereal crops to fix nitrogen in the soil and to act 

as a disease break 1. Chickpea is generally grown in semi-arid regions which can be 

prone to soil salinity but it is considered to be very sensitive to salinity with an estimated 

global annual chickpea yield loss of between 8%-10% attributed to salinity 2. Salinity 

impacts negatively on both the vegetative 3-5 and reproductive growth stages 6-9, with the 

reproductive stage the more salt sensitive 10. The above studies show salinity has an 

adverse effect on shoot biomass, podding, and pod filling in chickpea. 

Salinity limits plant growth and development through both shoot ion independent and 

shoot ion dependent stresses 11,12. Shoot ion independent stress immediately follows 

salinity stress, whereas ionic stress manifests after several days or weeks following 

exposure to salt, once ions accumulate in the shoot 11,12. Shoot ion independent stress 

results from hydraulic resistance imposed by NaCl in the plant xylem 13 as well as the 

reduction in external osmotic potential (osmotic stress) which interferes with water 

uptake leading to a reduction in plant growth rate 14-16. Such a reduction in growth rate 

due to salinity must ultimately translate to a reduction in shoot biomass. Turner, et al. 6 

and Vadez, et al. 17 found that salt tolerant chickpea genotypes (measured as seed yield 

under low to medium salinity) are able to maintain high shoot biomass under salinity. 

 Many plants species, including chickpea, can tolerate osmotic stress by producing 

metabolites for osmotic adjustment 11. Recently, a study conducted by Dias, et al. 18 

established differential accumulation of metabolites involved in the TCA cycle, carbon 

and amino acid metabolism in two chickpea genotypes (*enesis��� & Rupali) that have 

been shown to contrast in salinity tolerance 4. Rupali was found to have increased levels 

of amino acids, sugars and organic acids from TCA cycle compared to *enesis��� 
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following salinity treatment 18. Production of these metabolites would be energy 

demanding which explains reduction in growth in Rupali when exposed to salinity. 

Prolonged exposure of plants to salinity causes Na+ and Cl- to accumulate in plant tissues 

to toxic levels leading to plant death manifested by leaf senescence and necrosis 11,19-21. 

To protect the photosynthetic apparatus in young developing leaves from ion toxicity, 

plants exclude sodium from the transpiration stream by regulating as best as possible 

sodium net uptake and sequestering ions in the root cell vacuoles. Ions in the 

transpiration stream which enters the shoot can be sequestered in the lower, older leaves 

11. Screening diverse germplasm of chickpea for salinity tolerance revealed a wide

spectrum of senescence displayed by different chickpea genotypes under salinity stress 

22, which demonstrated that different chickpea genotypes have varying levels of ion 

exclusion or tissue tolerance. The contribution of ions to salt sensitivity in chickpea has 

recently gained interest, with Na+ rather than Cl- found to be toxic 6,8,23. Vadez, et al. 7 

did not find an association between salinity tolerance (seed yield per plant in saline soil) 

and accumulation of Na+ in total vegetative biomass at 50 days after sowing (DAS) in a 

germplasm collection of chickpea, whereas, Turner, et al. 6 established a negative 

correlation between Na+ accumulation in the youngest fully expanded leaf at 98 DAS 

with salinity tolerance (seed yield under 40 mM NaCl) in 55 chickpea genotypes. These 

differences could be attributed to different sampling strategies for leaf tissues (different 

time points and developmental stage) employed in the two studies. 

Genetic variation within cultivated chickpea (Cicer arietinum) and related species can be 

exploited to improve salinity tolerance in future varieties. Previous studies on limited 

numbers of chickpea genotypes suggested the availability of limited genetic variation for 

salinity tolerance in chickpea 24,25. However, more recent research to explore variation in 

chickpea germplasm collections has demonstrated a broad range of genetic variation for 
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salinity tolerance, such as that represented in the chickpea Reference Set 6,7,9. Formed to 

enable efficient utilisation of chickpea genetic resources, the Reference Set is composed 

of geographically diverse material that includes; 267 landraces, 13 advanced lines and 

cultivars, 7 wild Cicer accessions and 13 accessions whose classification is unknown 26. 

Characterisation of the Reference Set using 50 SSR markers revealed that it is rich in 

allelic diversity 26 and can be mined for genetic variation of value in breeding.  

The rapid development of new, high-resolution and high-throughput phenotyping 

technologies in plant science has provided the opportunity to more deeply explore 

genetic variation for salinity tolerance in crop species and identify traits that are 

potentially novel and relevant to yield improvement. Vadez, et al. 27 utilised a high-

throughput, 3D scanning technique to monitor leaf area development in relation to plant 

water use in cowpea and peanut. Several studies in cereals have used high-throughput 

phenotyping technology under controlled environmental conditions to gain a better 

understanding of the physiological processes associated with salinity stress 20,21,28-32. In 

contrast, similar studies examining salinity response in legume species have not been 

reported. Salinity response, measured as effect of salt on growth rate at different 

developmental times, could explain genotypic variation for salinity tolerance in 

chickpea. To investigate this hypothesis, we have utilised an image-based phenotyping 

platform to enable quantitative, non-destructive assessment of temporal responses of 

chickpea to salinity and we relate these responses to seed yield under saline conditions. 

This has allowed investigation into the complex relationship between different traits, 

with the aim of identifying novel traits that can be applied as selection tools in breeding 

programs.  
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Materials and methods 

Plant material 

Experimental plant material consisted of 245 lines from the chickpea Reference Set 26 

along with two Australian chickpea cultivars, *enesis��� and Rupali. Out of the 245 

lines, 186 lines were of desi type while 59 lines were of kabuli type. 95% of the lines 

were landraces with the rest being advanced cultivars and breeding lines (Table S1). 

Phenotyping in the glasshouse 

The Reference Set, along with *enesis��� and Rupali, were phenotyped in an 

experiment carried out from June 2014 to November 2014 in The Plant Accelerator 

(http://www.plantphenomics.org.au/services/accelerator/) located at the Waite Campus of 

the University of Adelaide. The Plant Accelerator is a Plexiglas-clad greenhouse system 

which allows high penetration of natural light. Temperature and relative humidity in the 

glasshouse was controlled and ranged from 22±2ºC and 40% (day) and 15±2ºC and 90% 

(night), respectively. It was set up in two Smarthouses (separate growth rooms) utilising 

24 lanes by 22 positions. Each Smarthouse was divided into six zones/blocks, each 

comprising 4 lanes by 22 positions. The design employed for the experiment was a split-

plot design in which two consecutive carts formed a main plot (Figure S1). The split-plot 

design assigned genotypes to main plots, the genotypes being unequally replicated 2-3 

times. Treatments (non-saline, saline) were randomized to the two subplots (carts) within 

each main plot. The main plot design was generated using Digger 33 and the subplot 

randomization was done using dae 34, packages for the R statistical computing 

environment 35 � The experimental layout used is shown in Figure 1.

Prior to sowing, seeds were pickled with Pickle-T fungicide and 5 seeds sown 2 cm deep 

in draining pots (19.5 cm height × 14.9 cm diameter) filled with 2.5 kg of 50% (v/v) 
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University of California (UC) mixture (1:1 peat: sand) and 50% (v/v) cocopeat amended 

with osmocote (pH 7.5; electrical conductivity (EC1:5 603 µS/cm). Rhizobium inoculum 

(Group N) was added to each planting hole at sowing. For the first 28 days after sowing 

(DAS), the volume of water in the pots was maintained approximately at 375 mL (field 

capacity equivalent to 15% (w/w) water content). Plants were uniformly thinned to two 

plants per pot. To quantify plant growth rate before salt application and to have a 

baseline for individual plant growth rate, plants were imaged at 28 DAS for three days 

(prior to 40 mM NaCl application) using a fixed 5 megapixel visible/RGB camera 

(Basler Pilot piA2400-12gc) with images taken from three different views (from the top 

and two side views, rotated at 90º).  At 31 and 34 DAS, each pot received 0 or 40 mM 

NaCl (based on pilot study where 40 mM NaCl was sufficient to discriminate between 

sensitive and tolerant genotypes), equivalent to applying 100 mL of 0 or 150 mM NaCl, 

respectively. 40 mM NaCl was delivered in two increments through the base of the pots 

by standing an individual pot in its own square container containing saline solution. 

Saline solution moved into the soil through capillary action. Pots were watered and 

maintained at field capacity (15% (w/w), determined gravimetrically) to maintain salt 

concentration and to avoid salt leaching. Plants were imaged for a further 22 days after 

exposure to salt to quantify growth under saline and non-saline conditions. A total of 

28,405 visible light (RGB) images obtained were processed in LemnaGrid (LemnaTec) 

and plant pixels used to compute projected shoot area. Cubic smoothing splines were 

fitted for each cart to the projected shoot areas for the observed days after sowing using 

the function smooth.splines in the R statistical computing environment with df set to 5. 

Relative growth rates (RGR) were computed from the smoothed projected shoot area for 

each cart for each day of imaging, as described by 36. It was calculated as the difference 

in the logarithms of the smoothed projected shoot area for two consecutive days of 

imaging, which is then divided by the number of days between the imagings. Also 
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calculated was the RGR for the interval 32–56 DAS by taking the difference between the 

logarithms of the smoothed projected shoot area for 32 DAS and 56 DAS and then 

dividing by 24.  

In addition to data extracted from high-resolution imaging, visual measurements of 

flowering time (day to first flower) and leaf chlorosis and necrosis on a scale of 1 

(healthy) - 9 (dead) according to Maliro, et al. 22, were also taken. Other traits measured 

included leaf sodium (Na+) and potassium (K+) ion content, plant height, yield and yield 

components including shoot biomass, seed number, total pod number, empty pod 

number, filled pod number and 100-seed weight.  

Sodium (Na+) and potassium (K+) ion content determination

At the podding stage, a single sample of the youngest fully expanded leaf was collected 

from each pot. Samples were oven dried at 60ºC for 48 hours. Leaf samples were 

weighed and extracted in 2 mL of 1% (w/w) nitric acid (70% [w/w] Nitric Acid; Chem-

Supply NA001-500M, Gillman) at 70°C for 24 hours, then analysed for Na+ and K+ 

content using flame photometry (Model 420 Flame Photometer, Sherwood Scientific).  

Phenotyping in the field 

The Reference Set, along with some extra genotypes, was evaluated at two field sites, 

Turretfield in 2013 and Snowtown in 2014, located in the mid-North of South Australia. 

Soil cores up to a depth of 20 cm were used to establish pH and electrical conductivity 

of the soil solution (EC1:5) of the two sites. At Turretfield, a randomized complete block 

design with three replicates was used to assign the 255 genotypes to plots that consisted 

of 1 m paired rows. At Snowtown, the randomized complete block design had four 

replicates of 250 genotypes assigned to plots measuring 5 m by 4 m. Prior to sowing, 

seed was pickled with Pickle T fungicide and Rhizobium inoculum (Group N) applied to 
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sowing furrows. Data including, days to flower, plant height at maturity, seed number, 

and 100-seed weight were collected. 

Data analysis 

Linear mixed models employed in GenStat 17th Edition software were used to analyse a 

trait and to calculate Best Linear Unbiased Estimates (BLUE) for each genotype. The 

model for a trait from the glasshouse experiment was: 

= + +y Xβ Zu e , 

where  is the response vector of values for the trait being analysed; β is the vector of 

fixed effects; u is the vector of random effects; and e is the vector of residual effects. , 

and  are the design matrices corresponding to β and u, respectively. The fixed effect 

vector, ′β , is partitioned as follows: ( ) ( ) ( )G T G:T
246 1 2 1 492 1µ × × ×

ª º′ ′ ′
« »¬ ¼

β β β , where µ is the 

overall mean and the sβ  are the vectors of, Genotype main effects, Treatment main 

effects and Genotypes-by-Treatment interaction effects, respectively. Also, the random 

effects vector, ,′u  is partitioned as follows: ( ) ( ) ( )S S:Z S:Z:M
2 1 12 1 528 1× × ×

ª º′ ′ ′
« »¬ ¼

u u u , where the us are 

the vectors of, 2 Smarthouse random effects, 6 Zone random effects for each Smarthouse 

and 44 Main-plot random effects within each Zone within each Smarthouse, 

respectively. The design matrices X and Z are partitioned to conform to the partitioning 

of β and u, respectively. It is assumed that each subvector of random effects, iu , is 

distributed ( )2, σm i mN 0 I , where m0  is the m-vector of zeroes, 2σ i  is the variance of the

ith set of random effects, mI  is the identity matrix of order m, and m is the order of iu . 

Further, residual effects e are assumed to be ( )2
1056 1056,N σ ⊗0 I , where 2σ  is the 

variance of individual plants after all other effects have been taken into account. 
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For the field studies the same general form of mixed model was used, but with the fixed-

effect vector partitioned as follows: ( ) ( )R C B G
1 1b gµ β β × ×

ª º′ ′
« »¬ ¼

β β  where  µ  is the overall

mean, βR and βC are the linear coefficients for Rows and Columns, and the sβ  are the 

vectors of Block (b = 4 or 3) and Genotype (g = 255 or 250) main effects, 

respectively. Also, the random effects vector, ,′u  is partitioned as follows: 

( ) ( )R C
1 1r c× ×

ª º′ ′
« »¬ ¼

u u , where the us are the vectors of Row (r = 12 or 21) and Column (c =

87 or 35)  random effects, respectively. The residual effects e are assumed to be 

( )2
R C,nN σ ⊗0 Σ Σ , where 2σ  is the variance of individual plots after all other effects 

have been taken into account and ΣR and ΣC are first-order autocorrelation matrices for 

Rows and Columns, respectively, and n = 1020 or 75  0. $dditionally, estimates of Eroad�

sense heritaEility (+�) for traits measured Eoth in the glasshouse and field enYironments 

Zere calculated using the formula deriYed from ���  

Pearson’s correlation analysis and Path analysis 

Pearson’s correlation analysis was conducted in the GenStat 17th edition to

establish association between traits. Path analysis was conducted using SmartPLS, 

software for partial least squares structural equation modelling (PLS-SEM) 38, with 

the objective of decomposing correlation coefficients into components of direct and 

indirect effects to examine the strength of contribution of the different measured traits 

on seed yield. 
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Results 

A diversity collection, known as the chickpea Reference Set 27 was phenotyped under 

salinity in The Plant Accelerator. Broad genetic variation for salinity response exists in 

the collection (Table 1; Figure 2; Figure 3), varying significantly between genotypes as 

evidenced by significant (p≤0.05) genotype-by-treatment interaction for nearly all traits 

(Table 1).  

0oYed to glasshouse 
Figure 1: Salinity tolerance phenotyping in The Plant Accelerator. Plants were imaged at 28 DAS for 
3 consecutive days prior to 40 mM NaCl application in two increments over 2 days. Plants were 
daily imaged until 56 DAS. Right pane shows 6 week old chickpea plants on conveyor belts leaving the 
imaging hall proceeding to an automatic weighing and watering station.  

40 mM NaCl

 0 28 31 56Day

Imaging x 27

34
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Validation of methodology 

To evaluate the suitability of the methodology utilised in this experiment, two genotypes 

in the Reference Set previously shown to contrast for salinity tolerance were evaluated. 

The genotypes were ICC 95; highly tolerant to 80 mM NaCl 10 and ICC 2720; highly 

sensitive to 100 mM NaCl 39. In our experiment, ICC 95 and ICC 2720 were shown to 

greatly differ in their response to salinity. At 53 DAS (21 days after salt application) the 

significant effect of salinity, manifested by stunted growth, was first seen in ICC 2720, 

with growth reduction as early as 35 DAS (3 days after salt application). Consequently, 

ICC 2720 experienced a 50% growth reduction under salinity compared to ICC 95 

(Figure 2). Additionally, these two genotypes differed in their ability to maintain seed 

yield under salinity. There was a 25% and 80% reduction in seed yield due to salinity in 

ICC 95 and ICC 2720, respectively (Figure S2).
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Figure 2: N
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To further validate the methodology used in the glasshouse experiment, measurements 

of days to flower, plant height, 100-seed weight, seed number and seed yield from 

Turretfield field site (pH 6.9 and electrical conductivity (EC1:5 ) 151±20 µS/cm), and 

Snowtown field site (pH 7.4 and EC1:5 ranging from 406 µS/cm to 173 µS/cm at the 

start and at the end of the trial, respectively), were established with the same 

measurements in the glasshouse under non-saline conditions. Over 50% of phenotypic 

variation for plant height, days to flower, 100-seed weight, and seed number could be 

attributed to genetic variation (Table 2). There was a strong positive correlation of 

r=0.72-r=0.74 for 100-seed weight, and moderate correlations of r=0.46, r=0.49, and 

r=0.24-0.34 for plant height, days to flower and seed number, respectively between the 

two field sites and the glasshouse.  All these relationships were highly significant 

(p<0.001) (Table 2). 

Figure 3: Genotypic variation for salinity response in the chickpea Reference Set. Varying levels of 
salinity tolerance exhibited by different chickpea genotypes. Exposure of sensitive genotypes to 40 mM 
NaCl caused severe stunted growth , leaf damage  and reduced reproductiYe sites (numEer of floZers and 
pods) compared to moderately tolerant and tolerant genotypes 
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Table 2: Broad-sense heritability (H2) and pairwise correlations between glasshouse and two field sites 
for seed number, 100-seed weight, days to flower and plant height. Level of significance (***=p<0.001) 

Large effect of salt on plant measurements in the glasshouse 

A significant genotype-by-treatment interaction (p≤0.05) was observed for nearly all 

traits except for leaf potassium content, plant height, RGR and shoot biomass (Table 1). 

In cases where genotype-by-treatment interaction was not significant, there was 

significant genotype variation (p<0.001) and a significant treatment effect (p<0.001). 

Generally, plant growth was negatively impacted by salinity, with plants under saline 

conditions growing 20% slower compared to plants under non-saline conditions (Table 

1; Figure S3). Salinity had a more detrimental effect on growth rate of ICC 2720 

compared to ICC 95 (Figure 2), two genotypes previously reported to contrast for 

salinity tolerance.  

On average salinity reduced shoot biomass and plant height at maturity by 28% and 

15%, respectively, compared to non-saline condition (Table 1). Plants grown under 

saline conditions had greater leaf tissue damage, evidenced by 68% more leaf chlorosis 

and necrosis in these plants, compared to plants under non-saline conditions (Table 1). 

Salinity delayed the first appearance of flowers by two days. Plants under non-saline 

Traits Heritability (%) Site Glasshouse Snowtown 

Seed number 61 Snowtown 0.24*** 

Turretfield 0.34*** 0.48*** 

100-seed weight 93 Snowtown 0.74*** 

Turretfield 0.72*** 0.97*** 

Days to flower 65 Turretfield 0.49*** 

Plant height 61 Turretfield 0.46*** 
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conditions flowered on average at 67 DAS while plants under salinity treatment 

flowered on average at 69 DAS (Table 1). 

The number of total pods and filled pods was negatively impacted under salinity, with 

plants grown under salt treatment recording a reduction of 9% and 14% in number of 

pods and filled pods, respectively compared to plants under non-saline conditions (Table 

1). On average, the number of empty pods following salt treatment was only slightly 

increased by 2% (Table 1). Seed number and 100-seed weight (proxy for seed size) were 

significantly reduced by salt treatment by 16% and 26%, respectively (Table 1). 

Consequently, seed yield under saline conditions was reduced by 32% relative to non-

saline conditions (Table 1). 

Plants grown under saline conditions had more Na+ in the youngest fully expanded leaf 

tissues compared to plants grown under non-saline conditions (Table 1). Salt treated 

plants accumulated 67% more Na+ compared to plants under non-saline conditions 

(Table 1). The range of Na+ accumulation in plants under saline treatment ranged from 

10 µmol/g DW to 394 µmol/g DW (Table 1) with less than 10% of the genotypes 

accumulating more than 200 µmol/g DW. A significant genotype-by-treatment 

interaction (p<0.001) was observed for Na+ and K:Na. Although, the genotype-by-

treatment interaction (p=0.970) was not significant for K+, a significant genotype 

variation (p<0.001) and a significant difference between the treatments (p<0.001) was 

observed (Table 1).  
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Relationship between traits in the glasshouse 

Pearson’s correlation analysis 

Pearson’s correlation analysis was performed to examine the relationship between 

different traits and seed yield. Seed yield under salinity had a moderate positive 

correlation with seed yield under non-saline conditions (R2=0.20), a relationship that was 

significant (Figure 4) and confirms that yield potential explained 20% of seed yield under 

salinity. Hence, in this study, salinity tolerance is defined as the ratio of seed yield under 

salinity over seed yield under non-saline conditions (seed yield salt/seed yield control). 

To examine the relationship between traits, ratios of individual traits under saline and 

non-saline conditions were used. Salinity tolerance was strongly associated with seed 

number, total number of pods, number of filled pods and harvest index (Table 3; Figure 

S4). Seed number and number of filled pods accounted for 86% and 79%, respectively, 

of the variation in salinity tolerance while total number of pods accounted for 70% of the 

variation in salinity tolerance (Figure S4), harvest index accounted for 68% of this 

variation (Figure S4). RGR for the entire imaging period (r=0.33), shoot biomass 

(r=0.67), plant height (r=0.49) and 100-seed weight (r=0.56) had moderate correlation 

with salinity tolerance while RGR for the period 41-50 DAS (r=0.23) was weakly but 

significantly correlated with salinity tolerance (Table 3). RGR for the period 32-40 DAS 

(r=0.09) was not significantly correlated with seed yield (Table 3). Flowering time 

(r=0.08) did not play a role in seed yield determination in this study as it had a weak and 

non-significant relationship with salinity tolerance (Table 3). 

To further explore the relationship between traits measured with seed yield, correlation 

analysis was conducted separately on data obtained from non-saline and saline 

conditions. Generally, correlations were stronger for traits measured under salinity 

(Table S2) compared to non-saline conditions (Table S3). Under salinity, seed number 
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(r=0.83) and number of filled pods (r=0.86) were strongly correlated with seed yield 

(Table S2). On the other hand, shoot biomass (r=0.68), total number of pods (r=0.66), 

100-seed weight (r=0.50) plant height (r=0.52) and RGR for the entire imaging period

(r=0.39) had a moderate correlation with seed yield (Table S2). Leaf Na+ content had a

moderate but significant negative relationship with seed yield (r=-0.3) (Table S4) while

leaf K+ had a weak relationship with seed yield (r=-0.19) (Table S4). K:Na was

moderately but significantly correlated with seed yield (r=0.29) (Table S4). Na+ had a

moderately positive correlation with K+ (r=0.52) and a negative correlation with K:Na

(r=-0.64) (Table S4).

Seed number (r=0.75) and number of filled pods (r=0.80) had a high correlation with 

seed yield under non-saline conditions while shoot biomass (r=0.39) and total pods 

(r=0.53) had a moderate correlation with seed yield (Table S3). Conversely, 100-seed 

weight (r=0.17), plant height (r=0.21) and RGR for the whole period the plants were 

imaged for (r=0.21) were weakly correlated with seed yield under non-saline conditions 

(Table S3).  
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Figure 4: Relationship between seed yield under non-saline conditions and seed yield under salinity 
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Path analysis 

Path analysis, a standardised partial regression coefficient, was performed to decompose 

correlation coefficients into components of direct and indirect effects and examine the 

strength of contribution of the different measured traits on seed yield. Under non-saline 

conditions, the number of filled pods, seed number and 100-seed weight had a moderate 

direct positive contribution of 0.50, 0.45 and 0.39, respectively, on seed yield while total 

number of pods had a moderate indirect positive effect of 0.38 and 0.31, respectively, on 

seed yield through number of filled pods and seed number (Table S5). Likewise, the 

number of filled pods had a moderate indirect positive effect of 0.43 on seed yield 

through seed number (Table S5).   

Under salinity, the number of filled pods and seed number had a moderate positive direct 

effect of 0.45 and 0.41, respectively, on seed yield while 100-seed weight had a weak 

positive direct effect of 0.28 on seed yield (Table S6). While number of total pods had a 

moderate indirect positive effect of 0.37 and 0.33, respectively, on seed yield through 

number of filled pods and seed number, filled pods had a moderate indirect positive 

effect of 0.4 on seed yield through seed number (Table S6).  

Salinity tolerance, defined as seed yield under salinity compared to seed yield under 

non-saline conditions, was directly predominantly influenced by seed number (0.90) and 

least influenced by senescence score (-0.006) (Table 4). The total number of pods and 

filled pods had a strong indirect effect of 0.77 and 0.87, respectively, through seed 

number, whereas RGR (0.31), plant height (0.44), shoot biomass (0.57) and 100-seed 

weight (0.41) had a moderate indirect effect on salinity tolerance through seed number 

(Table 4).  

A path analysis diagram was used to examine the relationships between salinity 

tolerance and seed yield components. Relative growth rate (0.27) and plant height (0.37) 
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were found to play a bigger role on shoot biomass than leaf senescence score (-0.02) and 

days to flowering (0.05) (Figure 5). Total number of pods was mainly influenced by 

number of filled pods (0.67), which consequently had a major effect on seed number 

(0.86), which was the key trait influencing salinity tolerance (0.88) (Figure 5). Residual 

variation of only 0.12 was missing from the path diagram developed to determine traits 

that play direct and indirect role in salinity tolerance determination (Figure 5). The low 

residual demonstrates the strength of the model to explain the relationship existing 

between the traits measured. 
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Discussion 

Salinity tolerance in higher plants is a complex trait comprised of many sub-traits, 

suggesting there may be multiple mechanisms and these are likely under the control of 

many genes 40. Consequently, efforts to understand the genetic control of salinity tolerance 

have been challenging. Previous studies have not been able to tease apart the effect of 

shoot ion independent and shoot ion dependent stress on chickpea growth and yield. In a 

study of two genotypes contrasting for salinity tolerance (Genesis836 and Rupali), Khan, 

et al. 23 found that osmotic stress imposed in the form of concentrated macronutrient 

solution, did not have an impact on chickpea biomass. This study looked at osmotic stress, 

a component of shoot ion independent stress. Other salinity studies in chickpea have 

shown growth impairment even when toxic ion levels have not been reached in plant 

tissues including young and old leaves 6-8. This suggests shoot ion independent stress plays 

a role in salinity response in chickpea. It is therefore crucial to look at this form of stress, 

which represents an early response to NaCl exposure. 

Image-based phenotyping allows for non-destructive detection of early onset of salinity 

stress through measurement of plant growth before ions start accumulating in plant tissues. 

Similar studies have been conducted in barley 32, and rice 20,31. Our study showed that 40 

mM NaCl significantly reduced chickpea growth rate with a greater reduction observed in 

some genotypes. There was broad variation for a range in response time when growth 

decline was first observed. 20% of the genotypes showed a decline in growth within five 

days of salt application. For instance, ICC 2720 experienced a significant growth 

reduction within only three days of salt application, a reduction attributed to shoot ion 

independent stress (Figure 2).  

Ion regulation plays a major role in salinity tolerance. Leaf senescence/necrosis scores 

together with measurements of accumulated toxic ions in the shoot can be used to make 
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inferences on salinity tolerance mechanisms 21. These measures indicate the ability of 

plants to cope with high salt levels or to reduce salt uptake through the roots and transport 

to the shoots where significant tissue damage can occur. Maliro, et al. 22 scored leaf 

senescence in a diverse germplasm collection exposed to 60 mM NaCl and identified 

genotypes with low senescence. However, the genotypes were evaluated for salinity 

tolerance at the vegetative stage, which does not always translate to tolerance at the 

reproductive stage 10. Our study scored leaf senescence at 60 days post salt application 

and found that some genotypes had started naturally senescing and most scores were 

confounded by plant age. This partly explains the weak relationship established between 

leaf senescence and salinity tolerance. 

It is thought that Na+ but not Cl-, is toxic in chickpea 6,8,23. Previous studies have 

established a negative relationship between Na+ content in leaves and seed yield under 

salinity 6,8. We observed a moderate negative correlation of r=-0.3 between seed yield 

under salinity and Na+ content in the youngest fully expanded leaf expressed per unit dry 

matter (Table S4) with about 10% of the genotypes accumulating more than 200 µmol/g 

DW. As this study utilised a diverse collection of lines, it was expected that different 

genotypes may express different salinity tolerance mechanisms, which could explain the 

moderate correlation. The moderate negative correlation between Na+ accumulation and 

seed yield demonstrates that salinity tolerance in the chickpea Reference Set is partly 

explained by sodium exclusion. Plants accumulating high Na+, generally had more K+, an 

observation also made by Turner et al. (2013). Further research is needed to investigate 

the role of K+ and its uptake, efflux, translocation and interaction with Na+ during salinity 

stress in chickpea. 

The availability of genetic variation for salinity tolerance is a prerequisite to improve 

salinity tolerance in chickpea through selection and breeding. Until recently, a lack of 
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streamlined phenotyping facilities has been a bottleneck in studying large diverse 

collections of chickpea. Previous studies made inferences regarding availability of limited 

genetic variation for salinity tolerance based on examinations of a relatively small number 

of chickpea genotypes 24,25,41. However, Vadez, et al. 7 demonstrated broad genetic 

variation for salinity tolerance (measure as seed yield per plant under soil salinity) exists 

in the chickpea germplasm. In this work we have utilised a high-throughput, non-

destructive, efficient, and accurate phenotyping platform to study a diverse collection of 

chickpea, with the aim of determining traits of relevance for selection in breeding 

programs. Broad genetic variation for growth rate, plant height, days to flower, leaf 

senescence, shoot Na+ and K+ content, shoot biomass, pod number, seed number under 

salinity and salinity tolerance (measured as seed yield under salinity/seed yield under 

control) exists in the collection studied here (Table 1). 

Salinity had a negative effect on shoot biomass as well as yield and yield components 

(Table 1). The reduction in seed yield under salinity was attributed to direct reduction in 

relative growth rate and plant biomass as well as damage to reproductive tissues leading 

to reductions in number of filled pods, seed number, and 100-seed weight (Table 1). 

Relative growth rate was only moderately related to shoot biomass at maturity and seed 

yield. This is because we derived these measurements at the vegetative stage, which 

emphasizes measurements made at this stage do not always translate to salinity tolerance 

determined as seed yield under salinity. The number of filled pods and seed number were 

major determinants of seed yield under salinity, as opposed to 100-seed weight. This is in 

accordance with previous studies that suggested salinity tolerance in chickpea depends on 

successful production of reproductive structures under salinity but not the ability to fill 

seeds 7,9. Phenotyping platform development to additionally measure traits such as flower 

and pod number would assist in the analysis of genetic variation for salinity tolerance in 
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chickpea. Surprisingly, compared to performance under non-saline conditions, 24 

genotypes performed better (10% more yield) under the salinity stress imposed in this 

experiment. This indicates that 40 mM NaCl was perceived as moderate stress by tolerant 

genotypes, which utilised sodium as an inexpensive osmoticum to stimulate growth and 

subsequently yield. This phenomenon has previously been observed by Abideen, et al. 42 

in Phragmites karka, a potential bioenergy crop. Moderate salinity treatments have also 

been shown to stimulate flower production in chickpea 5 which could ultimately be 

advantageous to tolerant genotypes. 

Correlation and path analysis create an understanding of the relationship between traits. 

This study showed the role of seed number as the major determinant of improved 

performance under salinity (Table 3; Table 4; Figure 5), in line with previous studies by 

Krishnamurthy, et al. 9, Vadez, et al. 7 and Vadez, et al. 10. However, in contrast to the 

earlier studies, the phenotyping platform used here allowed us to decompose the 

correlation analysis into path coefficients to quantify the direct effect of seed number on 

salinity tolerance. The importance of seed number was masked when performing path 

analysis on data from either non-saline or salinity conditions. Hence, this points to the 

importance of defining salinity tolerance and removing the confounding effect of yield 

potential. Flowering time had no correlation with salinity tolerance (Table 3), an 

observation also made by other studies evaluating the chickpea Reference Set 6,9. This 

observation resulted from the plants being grown under optimised conditions with 

adequate water and nutrients ensuring that late flowering genotypes had sufficient time to 

complete their growth cycles.  

Field phenotyping is needed to complement findings from controlled environments to a 

breeding and agronomic context 43. However, phenotyping under field conditions is 

challenging due to the spatial and temporal variability of salinity in the soil profile and the 
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restriction of trials to only one to two periods per year. The variability in stress was evident 

in the Snowtown field site where moderate salt levels in the soil gradually reduced with 

season progression possibly due to the dropping of the water table. Carefully designed pot 

experiments under controlled environments can help identify traits of importance 44. A 

relationship was established between data obtained from the glasshouse under non-saline 

conditions with data from two field sites (typical field site and moderately saline- low 

salinity field site). Notably, a large proportion of phenotypic variation for all traits 

measured under both field and control conditions could be attributed to genetic variation. 

The two field sites had very strong correlation with each other as well as with the 

glasshouse for 100-seed weight.  Moderate but significant correlation was observed 

between the glasshouse and the two field sites for plant height, days to flower and seed 

number. This validates the phenotyping methodology used in the glasshouse. However, 

there is a need to evaluate the chickpea Reference Set in a saline field environment to 

substantiate the results reported here. 
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Conclusion 

Image-based phenotyping is a reliable platform for exploring genetic variation for salinity 

response in chickpea. The methodology used here, coupled with phenotyping platform 

development through implementation of algorithms to recognise and quantify pod number 

on plants, can be used to efficiently screen large numbers of accessions. Salt tolerant plants 

had the ability to maintain growth, successfully produce reproductive tissues, and 

maintain low levels of Na+ in young leaves under salt stress. The study has demonstrated 

that chickpea is affected by shoot ion independent and to a small extent shoot ion 

dependent stress and hence there is a need to identify genomic regions that could 

contribute loci enabling chickpea to withstand the two phases of salinity stress. Seed 

number was found to be a major contributor to seed yield under salinity and therefore an 

important selection trait for breeding chickpea cultivars with improved tolerance. 

Phenotypic data collected from this study can now be linked with genotypic data from all 

genotypes to conduct genome-wide association mapping with the aim of identifying loci 

that underlie salinity tolerance in chickpea.
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Link to chapter 3 

Studies on metabolic responses to environmental stresses increase our understanding of 

pathways involved in stress response and pin point key metabolites that can be used to 

discriminate between tolerant and sensitive genotypes. This chapter focuses on 

optimisation of methods to quantify metabolite accumulation in complex biological 

tissues. GC-QqQ-MS was compared to a more developed platform, LC-QqQ-MS, to 

compare its reproducibility, linearity and recovery. Quantification of metabolites from 4 

major classes (sugars, sugar acids, sugar phosphates and organic acids) were carried out 

in flowers and pods of two chickpea cultivars (*enesis��� and Rupali) that contrast in 

salinity tolerance, prior to and after salt application. GC-QqQ-MS was seen to detect 

large number of polar metabolites in low concentrations and in a single analysis. 

Interestingly, elevated levels of amino acids, proline and sugars were noted in Rupali 

compared to Genesis836. In contrast to other studies carried out in different plants, this 

study found proline to have limited role as osmoprotectant. Additionally, this study also 

found metabolic differences between Genesis836 and Rupali following salt stress is 

associated with metabolites involved in carbon metabolism, TCA cycle as well as amino 

acid metabolism. This work has been published in Journal of Chromatography B as 

follows; Dias D.A, Hill C.B, Jayasinghe N.S, Atieno J, Sutton T, Roessner U (2015) 

Quantitative profiling of polar primary metabolites of two chickpea cultivars with 

contrasting responses to salinity. Journal of Chromatography B 1000:1-

13.doi:10.1016/j.jchromb.2015.07.002.

Page 76



Journal of Chromatography B, 1000 (2015) 1–13

Contents lists available at ScienceDirect

Journal of Chromatography B

journa l homepage: www.e lsev ier .com/ locate /chromb

Quantitative profiling of polar primary metabolites of two chickpea
cultivars with contrasting responses to salinity

Daniel Anthony Diasa,1, Camilla Beate Hill b,∗,1, Nirupama Samanmalie Jayasinghea,
Judith Atienoc, Tim Suttonc,d, Ute Roessnera,b

a Metabolomics Australia, School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
b School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
c Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, South Australia, 5064,
Australia
d South Australian Research and Development Institute, GPO Box 397 Adelaide, South Australia 5001, Australia

a r t i c l e i n f o

Article history:
Received 11 February 2015
Received in revised form 28 June 2015
Accepted 2 July 2015
Available online 13 July 2015

Keywords:
Quantitative profiling
Primary metabolites
GC–QqQ–MS
LC–QqQ–MS
Chickpea
Salinity

a b s t r a c t

This study reports a GC–QqQ–MS method for the quantification of forty-eight primary metabolites from
four major classes (sugars, sugar acids, sugar phosphates, and organic acids) which can be applied to
a number of biological systems. The method was validated in terms of linearity, reproducibility and
recovery, using both calibration standards and real samples. Additionally, twenty-eight biogenic amines
and amino acids were quantified using an established LC–QqQ–MS method. Both GC–QqQ–MS and
LC–QqQ–MS quantitative methods were applied to plant extracts from flower and pod tissue of two chick-
pea (Cicer arietinum L.) cultivars differing in their ability to tolerate salinity, which were grown under
control and salt-treated conditions. Statistical analysis was applied to the data sets using the absolute
concentrations of metabolites to investigate the differences in metabolite profiles between the different
cultivars, plant tissues, and treatments. The method is a significant improvement of present methodol-
ogy for quantitative GC–MS metabolite profiling of organic acids and sugars, and provides new insights
of chickpea metabolic responses to salinity stress. It is applicable to the analysis of dynamic changes in
endogenous concentrations of polar primary metabolites to study metabolic responses to environmental
stresses in complex biological tissues.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Salinity and other environmental stresses directly affect the
normal growth, development, and reproduction of a plant, and
therefore the primary metabolites involved in these processes. The
diversity and fluctuation in biological stresses faced by a plant has
led to adaptation through biochemical defense mechanisms includ-
ing both primary and secondary metabolites to directly manage

Abbreviations: DAS, days after sowing; BSTFA, N,O-bis-
(trimethylsilyl)trifluoroacetamide; CE, collision energy; EI, electron ionization; ESI,
electrospray ionization; GC–QqQ–MS, gas chromatography-triple quadrupole-mass
spectrometry; ISTD, internal standard; LC–QqQ–MS, liquid chromatography–triple
quadrupole-mass spectrometry; LOQ, limit of quantification; MRM, multiple reac-
tion monitoring; m/z, mass-to-charge ratio; Pro, proline; PBQC, pooled biological
quality control sample; QC, quality control calibration standard mix; RI, retention
time index; R2, linear correlation coefficient; SRM, selected reaction monitoring.

∗ Corresponding Author.
E-mail address: camilla.hill@unimelb.edu.au (C.B. Hill).

1 Equal first authors (D.A.D. and C.B.H.).

environmental perturbations. With the development of specialized
protocols, targeted analysis of primary metabolites can provide a
substantial amount of information to investigate complex changes
in metabolism caused by different genotypic and/or environmental
perturbations.

Chickpea (Cicer arietinum L.) is one of the world’s most impor-
tant pulse crops and ranks third in the world for food legume
production [1]. Chickpea plants suffer damage even on moder-
ately saline soils that have little impact on bread wheat, which
in turn impacts on potential yields of chickpea in rotation with
wheat on areas with sub-soil salinity. The reproductive phase is
known to be even more sensitive to NaCl exposure than vegeta-
tive growth and germination [2], the early development of flower
meristems, the conversion of flowers to pods, and the development
of seeds in the pods are particularly susceptible to salinity stress.
The number of flowers, pods, and seeds is significantly decreased
in salt sensitive cultivars compared to tolerant chickpea lines upon
salinity treatment [3], and carbohydrate supply to reproductive
structures, such as the developing embryo is believed to be a limi-
tation.

http://dx.doi.org/10.1016/j.jchromb.2015.07.002
1570-0232/© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Plants have developed an extraordinary genetic diversity con-
trolling the synthesis and regulation of metabolites that has largely
been unexplored in the grain legumes. Data based on transcrip-
tomics and proteomics analyses are insufficient to provide an
understanding of all aspects of biological processes in response
to abiotic stress, since those are ultimately mediated by metabo-
lites. For example, changes in transcript or protein levels do not
always correlate to actual changes of cell metabolites due to post-
transcriptional and post-translational modifications that modulate
protein activities [4]. However, only a few studies on primary
metabolism in legumes are available, and these studies cover the
model legumes Medicago truncatula [5], both model and cultivated
legume species of the Lotus genus [6,7] and soybean [8].

Metabolomics is now being explored as a possible solution
to these problems because it can capture the “ultimate pheno-
type” of such gene networks and their complex interaction with
the environment [9]. Primary metabolites are mostly hydrophilic
molecules directly involved in all biochemical processes, includ-
ing growth, development, and reproduction. Compounds present
in carbohydrate metabolism can be challenging to analyze due to
the high diversity of compounds with a diverse array of function-
alities (including neutral carbohydrates such as saccharides and
polyalcohols, polysaccharides, and sugar acids), the often very sim-
ilar fragmentation of isomers, and the co-elution of two or more
compounds with very similar retention times which give rise to
complex chromatograms. More effective tools and methods are
required for efficient identification and quantification of compound
classes, i.e., sugars and organic acids.

Liquid chromatography (LC) coupled to triple quadrupole
(QqQ)–MS systems have benefited greatly from the high sensitivity
and selectivity of tandem MS in the selected reaction monitor-
ing (SRM) mode. Although the coupling of gas-chromatography
(GC) to electron impact ionization (EI) mass spectrometry (MS) is
one of most well-known and established techniques in analytical
chemistry and one of the most developed instrument platforms for
metabolite analysis [9]. GC-based methods have suffered a notable
delay in the wide acceptance of the QqQ analyzer in comparison to
LC–MS/MS. GC–MS has been widely used in metabolomics since it
has significant separating power, is reproducible, easy to establish
and requires a relatively low capital investment compared to other
analytical technologies. GC–MS is an ideal analytical technology for
the analysis of volatile compounds however most metabolites are
not volatile and therefore need to be chemically derivatized in order
to make them amenable for GC–MS.

In recent years, there has been a strong emphasis within the
metabolomics community that quantitative data is important for
biological studies since they describe accurately the actual concen-
tration of the metabolites of interest. New QqQ instrumentation
allows for higher selectivity and sensitivity and minimizes chro-
matographic interferences and is typically operated in multiple
reactions monitoring (MRM) mode in which collision energies,
dwell times and resolution parameters for each individual target
compound is optimized using authentic standards, thus, enhancing
sensitivity and selectivity [10]. In a single chromatographic run, the
application of MRM can simultaneously monitor a large number of
MS–MS transitions.

Metabolomics aims to provide a comprehensive and unbiased
analysis of all metabolites with a low molecular weight present in
a biological sample [4,9]. Due to the structural diversity of metabo-
lites, there is currently no single methodology that can detect
the complete metabolome, which is why several extraction meth-
ods and instrument platforms are established to analyze highly
complex mixtures. Here we used both GC–MS and LC–MS tech-
niques as they are complementary to each other: to accurately
quantify primary metabolites of carbon and nitrogen metabolism,
GC–MS-based metabolite analysis of organic acids, sugars, sugar

alcohols, and sugar acids was carried out on a GC–QqQ–MS (Agi-
lent 7890 GC coupled to 7000 Triple quadrupole MS). We have
demonstrated the applicability of the method specifically to the
extraction of metabolites of flower and pod tissue of two chickpea
cultivars, ‘ and ‘Rupali’, before and after salinity stress. To
investigate the effects of salinity on other metabolite classes of
primary metabolism, we have combined it with an established LC–
MS-based metabolomics method for quantification of amine-
containing metabolites carried out on a LC–QqQ–MS (Agilent 1290
LC coupled to 6490 triple quadrupole MS) according to the stan-
dardized protocol developed by [11].

2. Materials and methods

2.1. Chemicals and reagents

All chemicals and solvents were purchased from Sigma–Aldrich
(Australia) and were either of analytical or mass spectrometric
grades. Deionized water (18.2 M!) was produced using a Synergy
UV Millipore System (Millipore) was used throughout.

2.2. Plant growth and harvest

The desi chickpea cultivars used in the experiment were
(salt tolerant) and Rupali (salt sensitive). is a

direct introduction from the International Centre for Research in
the Semi-Arid Tropics (ICRISAT, Syria), while Rupali was bred by
the Department of Agriculture, Western Australia (DAWA), and
the Centre for Legumes in Mediterranean Agriculture (CLIMA), The
University of Western Australia.

The experiment was conducted in a glasshouse at the Univer-
sity of Adelaide Plant Accelerator facility (Waite Campus, South
Australia). Temperature and humidity were controlled and ranged
from 24 ± 2 ◦C and 40% (day), and 18 ± 2 ◦C and 90% (night), respec-
tively.

Five seeds of each of the cultivars were sown 2 cm deep in pots
(19.46 cm height × 14.94 cm diameter) filled with 2.5 kg of 50% Uni-
versity of California (UC) mixture (1:1 peat:sand) and 50% cocopeat
(pH 7.5; electrical conductivity (EC1:5 603 !s/cm)). The soil was
inoculated with Rhizobium inoculum (Group N) prior to sowing.
Prior to salt application, plants in each pot were thinned to two
uniform plants. At flowering, 21 and 25 days after sowing (DAS) for
Rupali and respectively, each pot received either 0 or 60
mM NaCl (1.3149 g NaCl pot−1) equivalent to applying 100 ml of
0mM NaCl (untreated pots) or 225 mM NaCl (treated pots) deliv-
ered in two increments through the base of the pots by standing
the pots in saucers containing saline solution. Each treatment was
replicated four times and randomized in a randomized complete
block design (RCBD). The pots were watered every two days and
maintained at field capacity, 15% (w/w)-determined gravimetri-
cally to maintain salt concentration in the pots and to also avoid
salt leaching out of the pots as a result of over watering.

Flowers and pods were harvested and pooled from two plants
in each pot 31 and 48 DAS (for cv. Rupali) or 35 and 52 DAS (for
cv. ). The samples were immediately frozen in liquid
nitrogen, and thereafter stored at −80 ◦C.

2.3. Plant sample extraction and preparation

A modified method for the preparation of plant extracts was
used as described previously by [24]. For each chickpea cultivar,
approximately 30 mg of frozen flower and pod tissues was weighed
into cryomill tubes (Precellys lysing kit, Bertin Technologies).
Subsequently, 400 !L of 100% methanol containing 4% internal
standard (from a stock solution containing 0.5 mg mL−113C6-
sorbitol and 0.5 mg mL 13C5–15N valine) was added to the samples,
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followed by vortex-mixing for 30 s, and homogenization (3 × 45 s at
6400 rpm) and −10 ◦C using a Cryomill (Precellys 24, Bertin Tech-
nologies). The samples were then extracted for 15 min at 70 ◦C
in a thermomixer at 850 rpm, and subsequently centrifuged for
5 min at 4 ◦C and at 13,000 rpm. The supernatants were transferred
into new reaction tubes, and 400 !L of water was added into the
cryo-mill tubes containing the previously ground tissue pellet. The
samples were vortex-mixed for 30 s, and centrifuged at 13,000 rpm
for 10 min at 4 ◦C. The supernatants were then transferred into the
reaction tube containing the original supernatant from the previ-
ous centrifugation. After the pooled samples were vortex-mixed
for 30 s, 5 and 125 !L aliquots of the supernatants were transferred
into glass vial inserts and dried in vacuo for GC–QqQ–MS analysis.
In addition, 10 !L aliquots were transferred into glass vial inserts
and used for LC–QqQ–MS amino acid analysis.

2.4. Gas chromatography–mass spectrometry

2.4.1. Calibration standard sample preparation
Twenty-eight sugars, sugar phosphates, sugar acids, and sugar

alcohols, as well as twenty organic acids were purchased from
Sigma–Aldrich (Australia). Ten millimole stock solutions were pre-
pared for each individual standard except for 2-ketogluconic acid
for which a 2 mM stock solution was prepared. One-hundred and
sixty microliters of each sugar standard was subsequently pooled
to reach a final volume of 4.48 mL. A 520 !L aliquot of 50% aqueous
mixture of methanol was then added to the pooled sugar stan-
dards resulting in a final volume of 5 mL with a final concentration
of 320 !M. For organic acids, 160 !L of each standard was sub-
sequently pooled to reach a final volume of 4.16 mL, and a 840 !L
aliquot of 50% aqueous mixture of methanol was then added result-
ing in a final volume of 5 mL with a final concentration of 320 !M.

The stock solutions were serially diluted with 50% aqueous mix-
ture of methanol resulting in the following calibration series: 320,
160, 80, 40, 20, 10, 5, 2.5, 1.25 and 0.625 !M calibration points for
xylose, malonate, maleate, succinate, fumarate, pipecolate, malate,
salicylate, 2-oxoglutarate, aconitate, ferulic acid, raffinose, erlose,
and melezitose, respectively; 160, 80, 40, 20, 10, 5, 2.5, 1.25
and 0.625 !M calibration points for itaconate, erythritol, arabi-
nose, ribose, xylitol, rhamnose, arabitol, fucose, citrate, isocitrate,
quinate, fructose, mannose, 2-keto gluconic acid, glucose, syringic
acid, mannitol, glucuronate, galactitol, gluconate, inositol, uric acid,
caffeic acid, fructose-6-phosphate, sucrose, maltose, trehalose,
turanose, "-gentiobiose, and melibiose, respectively; 80, 40, 20, 10,
5, 2.5, 1.25 and 0.625 !M calibration points for galactose; and 160,
80, 40, 20, and 10 !M calibration points for nicotinic acid, shiki-
mate, and glucose-6-phosphate, respectively. Forty microliters of
each calibration stock was transferred into glass vial inserts, dried
in vacuo, and stored at −20 ◦C before subjecting to GC–QqQ–MS
analysis.

2.4.2. Sugar and organic acid derivatization
All samples were re-dissolved in 20 !L of 30 mg mL−1

methoxyamine hydrochloride in pyridine and derivatized at 37 ◦C
for 120 min with mixing at 500 rpm. The samples were incubated
for 30 min with mixing at 500 rpm after addition of both 20 !L N,O-
bis -(trimethylsilyl)trifluoroacetamide (BSTFA) and 1 !L retention
time standard mixture [0.029% (v/v) n-dodecane, n-pentadecane,
n-nonadecane, n-docosane, n-octacosane, n-dotriacontane, n-
hexatriacontane dissolved in pyridine]. Each derivatized sample
was allowed to rest for 60 min prior to injection.

2.4.3. GC–MS Instrument conditions
Samples (1 !L) were injected into a GC–QqQ–MS system com-

prising of a Gerstel 2.5.2 Autosampler, a 7890A Agilent gas
chromatograph and a 7000 Agilent triple-quadrupole MS (Agilent,

Santa Clara, USA) with an electron impact (EI) ion source. The GC
was operated in constant pressure mode (20 psi) with helium as
the carrier gas and using mannitol as a standard for retention
time locking of the method. The MS was adjusted according to
the manufacturer’s recommendations using tris-(perfluorobutyl)-
amine (CF43). A J&W Scientific VF-5MS column (30 m long with
10 m guard column, 0.25 mm inner diameter, 0.25 !m film thick-
ness) was used. The injection temperature was set at 250 ◦C, the
MS transfer line at 280 ◦C, the ion source adjusted to 250 ◦C and the
quadrupole at 150 ◦C. Helium was used as the carrier gas at a flow
rate of 1 mL min−1. Nitrogen (UHP 5.0) was used as the collision cell
gas at a flow rate of 1.5 mL min−1. Helium (UHP 5.0) was used as
the quenching gas at a flow rate of 2.25 mL min−1. The following
temperature program was used; injection at 70 ◦C, hold for 1 min,
followed by a 7 ◦C min−1 oven temperature, ramp to 325 ◦C and a
final 6 min heating at 325 ◦C.

2.4.4. Method optimization
Individual sugars, organic acids and internal standards were

subsequently analyzed on the GC–QqQ–MS to obtain retention
times and to identify a corresponding unique, precursor ion. For
each precursor ion, two product ion scans were carried out using
four collision energies (0, 5, 10 and 20 V) to identify product ions
in which two product ions were identified. Subsequently, for the
two generated products the collision energies for each major reac-
tion monitoring (MRM) transition was optimized using a series of
collision energies (CEs) between 0 and 30 V. Collision energy opti-
mization plots for each compound are presented in Additional file
3.

Once collision energies were optimized for each MRM transition,
a product ion was selected as the corresponding target ion (T) and
the subsequent MRM transition was deemed as the qualifier ion
(Q). In some cases, especially for organic acids, a target ion was
only provided due to the lack of observable fragment ions and low
molecule weight. Absolute concentrations (!M) of targeted sugar
and organic acids were quantified using a MRM target ion based on
the linear response of the calibration series as described previously.
For PBQC samples, additional normalization steps were required to
include the weight of the samples as well as the area response for
13C6-sorbitol (extraction internal standard).

2.4.5. Method validation
Calibration standards were analyzed for each metabolite to

determine retention times, retention time indices relative to the
retention time standard mixture, linear correlation coefficient (R2),
recovery, and reproducibility experiments. Calibration curves cre-
ated for each analyte were fitted using linear regression. Response
ratios were calculated relative to the internal standards 13C1-
mannitol, and the linearity was determined by calculating the
corresponding R2 value. Method reproducibility and recovery was
assessed by analysis of calibration standards and of extractions of
chickpea samples analyzed in hexaplicates on separate days. The
concentrations of the analytes and the standard error of the mean
were calculated at each concentration within the linear range of
the assay.

2.5. Liquid chromatography–mass spectrometry

2.5.1. Calibration standard sample preparation
Two stock solutions were also prepared: (i) an amino

acid solution containing a standard mix of 28 amino acids
and amines (4-hydroxyproline, histidine, asparagine, arginine,
serine, glutamine, homoserine, glycine, aspartate, citrulline, glu-
tamate, threonine, alanine, #-aminobutyric acid, proline, cysteine,
ornithine, octopamine, lysine, putrescine, tyrosine, methionine,
valine, tyramine, isoleucine, leucine, phenylalanine, and trypto-

Page 79



4 D.A. Dias et al. / J. Chromatogr. B 1000 (2015) 1–13

Table 1
Optimized GC–QqQ–MS parameters in multiple reaction monitoring mode (MRM) for the quantification of primary metabolites. Dwell time: 5 s. *Target (T) or qualifier (Q)
transition. CE, collision energy.

Compound name Precursor ion Product ion Transition* CE (V)

Internal standards
13C1-mannitol 320 130 T 5
13C6-sorbitol 323 132 T 8

Organic acids
2-Ketogluconic acid 349 201 T 8

349 186 Q 4
2-Oxoglutarate 198 167 Q 2

198 154 T 6
Aconitate 375 211 T 4

375 285 Q 4
Caffeic acid 219 191 T 12
Citrate 183 138.7 T 4
Ferulic acid 308 219 T 4

308 293 Q 18
Fumarate 245 217 T 6

245 170.9 Q 12
Isocitrate 257 200.7 T 4
Itaconate 215 132.8 T 18

259 130.8 Q 20
Malate 233 189 T 2
Maleate 245 216.7 T 4

245 132.7 Q 12
Malonate 233 216.8 T 2

233 142.8 Q 8
Nicotinic acid 180 105.9 T 8

180 135.9 Q 14
Pipecolate 156 83.9 T 6

156 127.9 Q 6
Quinate 255 239 T 8

345 255.1 Q 8
Salicylate 267 209 T 8

209 91 Q 8
Shikimate 255 239 T 4

204 189 Q 8
Succinate 172 112.9 T 4

172 155.9 Q 0
Syringic acid 327 312 T 18
Uric acid 456 441.1 T 4

456 382.1 Q 4

Sugars
Arabinose 307 217 T 2
"-Gentibiose 361 243 T 6
Erlose 361 169.1 T 10
Fructose 307 217 T 2
Fucose 321 117 T 2
Galactose 319 157 T 4
Glucose 319 129 T 10
Maltose 361 169 T 10
Mannose 319 129 T 6
Melezitose 361 169 T 10
Melibiose 361 169 T 6
Raffinose 361 169 T 10
Rhamnose 364 160 T 4
Ribose 307 217 T 2
Sucrose 361 169 T 6
Trehalose 361 169 T 8
Turanose 361 169 T 6
Xylose 307 217 T 2

Sugar phosphates
Fructose-6-phosphate 204 189 T 4
Glucose-6-phosphate 364 160 T 4

Sugar alcohols
Arabitol 319 129 T 4
Erythritol 307 217 T 2
Galactitol 319 129 T 10
Gluconic Acid 423 333 T 4
Glucuronate 364 160 T 4
Inositol 305 217 T 8
Mannitol 319 157 T 4
Xylitol 319 157 T 2
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Fig. 1. GC–QqQ–MS chromatographic traces showing the separation of 45 primary metabolites within the standard mixes of the developed methodology. Detailed chro-
matograms are provided (Additional file 2).

phan) in deionized water supplemented with 0.1% formic acid, and
(ii) a sulfur-containing compound solution containing glutathione
(2.5 mM) and S215 adenosylhomocysteine in deionized water sup-
plemented with 10 mM tris(2-carboxyethyl) phosphine (TCEP) and
1 mM ascorbate. The two stock solutions were mixed and diluted
using volumetric glassware with water containing 10 mM TCEP,
1 mM ascorbate and 0.1% formate to produce the following cali-
bration series of combined standards: 0.1, 0.5, 1, 5, 10, 20, 50, 100
and 150 !M.

2.5.2. Amino acid derivatization
For derivatization, an aliquot of each standard or sample

(10 !L) was added to 70 !L of borate buffer (200 mM, pH 8.8 at
25 ◦C) containing 10 mM TCEP, 1 mM ascorbic acid and 50 !M
2-aminobutyrate. The resulting solution was vortexed before
adding 20 !L of 6-aminoquinolyl-N-hydrosysuccinimidyl carba-
mate (AQC) reagent [200 mM dissolved in 100% acetonitrile (ACN)]
immediately vortexing as described [11]. The 6-aminoquinolyl-N-
hydroxysuccinimidyl carbamate (AQC) reagent was synthesized
according to [25]. The samples were heated with shaking at 55 ◦C for
10 min then centrifuged (13,000 rpm at RT) and transferred to HPLC
vials containing inserts (Agilent, springless glass inserts 250 !L)
prior to injection.

2.5.3. LC–MS Instrument Conditions
An Agilent 1200 LC-system coupled to an Agilent 6410 Electro-

spray Ionisation-Triple Quadrupole-MS was used for quantification
experiments. The injection volume used for the samples or stan-
dards was 1 !L. Ions were monitored in the positive mode using a
Dynamic Multiple Reaction Monitoring (DMRM) method optimized
for each analyte. The source, collision energies and fragmentor
voltages were optimiszed for each analyte by infusing a deriva-
tized standard with LC eluent. The following source conditions
were used: sheath gas temperature 315 ◦C, gas flow 10 L min−1,
nebulizer pressure 45 psi and capillary voltage 3800 V. For the
chromatography, an Agilent Zorbax Eclipse XDB-C18 Rapid Reso-
lution HT 2.1 × 50 mm, 1.8 !m column was used with a flow rate of

300 !L min−1, maintained at 30 ◦C, resulting in operating pressures
below 400 bar with a 19 min run time as described in Boughton
et al. [11]. A gradient LC method was used with mobile phases that
comprised of (A) water 0.1% formic acid and (B) acetonitrile 0.1%
formic acid (such that at 0.0 and 2.0 min, the % of B was 1 and then
increased to 15 and 30% at 9.0 and 14.0 min, respectively, followed
by a reduction to 1% at 14.1 and 19.0 min). These conditions pro-
vided suitable chromatographic separation of modified amino acids
and although co-elution was observed for some of the species, this
could be overcome by the mass-selective capabilities of the mass
spectrometer using MRM.

2.6. Data processing and statistical analysis

Data were processed using the Agilent MassHunter Workstation
Software, Quantitative Analysis, Version B.05.00/Build 5.0.291.0 for
quantitation of all compounds. Differences between samples were
validated by the Student’s t -test. Statistical analysis was performed
using Excel (Microsoft, www.microsoft.com/).

3. Results and discussion

3.1. Optimization of precursor-to-product ion transitions

The following polar primary metabolites and their internal stan-
dards were analysed using GC–QqQ–MS: sugars (xylose, arabinose,
ribose, rhamnose, fucose, fructose, mannose, galactose, glucose,
sucrose, maltose, trehalose, turanose, "-gentiobiose, melibiose,
raffinose, erlose, melizitose), sugar phosphates (fructose-6-
phosphate, glucose-6-phosphate), sugar alcohols (erithritol, xylitol,
arabitol, mannitol, galactitol, inositol), as well as organic acids
(malonate, nicotinic acid, maleate, succinate, itaconate, fumarate,
pipecolate, malate, salicylate, 2-oxoglutarate, aconitate, shikimate,
citrate, isocitrate, quinate, 2-oxogluconate, gluconic acid, glu-
curonic acid, syringic acid, ferulic acid, uric acid and caffeic acid).
13C6-Sorbitol and 13C5–15N valine of extraction internal standards
which were added into the extraction solvent to compensate for
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Table 2
GC–QqQ–MS method validation: linearity and recovery. SE, standard error. RI, retention time index. QC, quality control sample. PBQC, pooled biological quality control sample.
R2, linear correlation coefficient.

Metabolite RI R2 QC % recovery(mean + SE) PBQC % recovery(mean + SE)

Malonate 1046.7 0.9977 105.92 ± 14.68 109.5 ± 14.34
Nicotinic acid 1296.9 0.9977 118.93 ± 12.26 92.24 ± 6.14
Maleate 1300.7 0.9928 91.2 ± 18.28 85.51 ± 5.75
Succinate 1311.7 0.9992 129.23 ± 18.81 106.13 ± 4.79
Itaconate 1339.8 0.9936 103.92 ± 15.6 107.37 ± 5.66
Fumarate 1349.2 0.9982 112.55 ± 13.15 101.87 ± 11.48
Pipecolate 1361.8 0.9982 118.97 ± 21.38 106.5 ± 10.79
Malate 1481.8 0.9972 113.87 ± 12.84 110.64 ± 18.56
Erythritol 1496.8 0.9998 91.24 ± 7.03 103.05 ± 2.09
Salicylate 1506.1 0.9709 125 ± 11.7 82 ± 5.4
2-Oxoglutarate 1577.5 0.9978 114.52 ± 9.24 77.69 ± 12.82
Xylose 1644.1 0.9992 113.9 ± 10.1 97.88 ± 3.39
Arabinose 1660 0.9984 88.93 ± 6.97 100.58 ± 6.35
Ribose 1675.2 0.9985 89.41 ± 7.31 95.86 ± 2.23
Xylitol 1702.5 0.9986 88.78 ± 6.39 114.9 ± 2.23
Rhamnose 1715.2 0.9984 88 ± 7.52 114.63 ± 3
Arabitol 1716.5 0.9985 87.58 ± 6.91 126.66 ± 2.07
Aconitate 1752.1 0.995 120.23 ± 10.4 89.91 ± 10.39
Fucose 1758.4 0.9975 96.51 ± 9.07 89.16 ± 6.53
Shikimate 1807.9 0.9952 121.42 ± 14.98 106.17 ± 4.1
Citrate 1815.6 0.9907 115.62 ± 15.67 106.79 ± 2.52
Isocitrate 1818.1 0.9926 112.57 ± 16.61 109.08 ± 5.99
Quinate 1849.2 0.9984 120.54 ± 16.84 131.25 ± 3.28
Fructose 1860.6 0.9998 86.84 ± 8.96 117.21 ± 17.72
Mannose 1870.1 0.9972 88.21 ± 9.39 106.7 ± 3.03
Galactose 1875.4 0.9986 104.92 ± 7.14 108.71 ± 2.99
2-Ketogluconic acid 1877.8 0.9948 51.31 ± 18.19 97.69 ± 2.18
Glucose 1881.3 0.9948 103 ± 6.43 110.27 ± 24.08
Syringic acid 1896.2 0.9977 85.08 ± 17.05 110.25 ± 5.36
Mannitol 1914.9 0.9957 100.02 ± 7.19 110.53 ± 3.85
Glucuronate 1922.4 0.998 90.35 ± 8.62 100.59 ± 3.21
Galactitol 1926.9 0.9961 101.66 ± 6.69 106.56 ± 1.86
Gluconate 1987.3 0.9985 99.06 ± 13.94 101.99 ± 2.35
Inositol 2080.8 0.9978 84.42 ± 9.68 105.06 ± 3.09
Ferulic acid 2097 0.9951 121.45 ± 16.02 102.71 ± 8.57
Uric acid 2097 0.9931 113.01 ± 18.16 103.3 ± 7.01
Caffeic acid 2136.6 0.9927 100.96 ± 14.22 102.57 ± 7.69
Fructose-6-P 2297.9 0.9963 99.99 ± 7.62 97.95 ± 5.51
Glucose-6-P 2311.4 0.9986 106.79 ± 14.57 104.67 ± 7.1
Sucrose 2627.5 0.9927 48.13 ± 7.5 104.9 ± 6.9
Maltose 2721.9 0.9992 94.3 ± 12.41 93.16 ± 4.05
Trehalose 2727.2 0.9921 79.86 ± 6.56 103.52 ± 4.46
Turanose 2732.6 0.9973 92.15 ± 14.15 84.97 ± 3.87
beta-Gentibiose 2797.9 0.9951 107.07 ± 17.57 99.52 ± 9.77
Melibiose 2842.9 0.9966 90.28 ± 5.8 104.56 ± 10.12
Raffinose 3346.9 0.9844 102.77 ± 6.28 98.14 ± 14.92
Erlose 3385.4 0.9809 117.63 ± 20.38 95.96 ± 24.21
Melezitose 3426.2 0.9931 113.05 ± 14.84 114.78 ± 17.74

the inefficiencies or losses in the extraction and sample preparation
steps. 13C6-Sorbitol and 13C5-15N Valine act as internal standards
for GC–QqQ–MS analysis and LC–QqQ–MS analysis respectively.
13C1-Mannitol accounts for the variations during data acquisition
in GC–QqQ–MS including derivatization, ionization and detection
of sugars, sugar acids, sugar phosphates, sugar alcohols and organic
acids. Optimal MRM transitions, dwell time, and collision ener-
gies were identified using authentic standards for each metabolite
(Table 1, Additional file 1).

Fig. 1 and Additional file 2 show the final chromatographic sep-
aration achieved for the 45 metabolites using GC–QqQ–MS. MS/MS
conditions were optimized to produce maximal signal, and plots
(intensity vs collision energy) showing the optimization of transi-
tions are provided in Additional file 3.

3.2. Method validation

The validation experiments were conducted to demonstrate
robustness, precision, and accuracy of this method, and to ensure
that the measured concentrations are close to the unknown con-

tent of the metabolite present in real samples. For this study we
evaluated the linear correlation coefficient (R2), higher and lower
limits of quantitation, recovery, and reproducibility of the analyt-
ical method for quantitation of organic acids, sugar phosphates,
sugar alcohols, and sugars, in samples spiked with a known con-
centration of calibration standard mix as well as samples prepared
from pooled biological quality control (PBQC) samples of chickpea
tissues (Tables 2 and 3).

3.3. Calibration curve, limit of quantitation, and linearity

Linearity of the calibration curve for each organic acid and sugar
was assessed by preparing serial dilutions of the calibration stan-
dards mixes ranging from 320 !M to 0.625 !M in triplicate for each
metabolite (as detailed in Section 2). The limits of quantification
(LOQ) are defined as the highest and lowest analyte concentration,
which can be quantified precisely and accurately, and is identical
to the lowest and highest point of the calibration curve. A linear
regression was used in the calibration curve for all metabolites. For
mannitol, galactitol, gluconate, caffeic acid, fructose-6-phosphate,
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Table 3
GC–QqQ–MS method validation: reproducibility. Values obtained during the validation of the method for quantification of sugars and organic acids in spiked/unspiked QC
and PBQC samples. QC, quality control sample. PBQC, pooled biological quality control sample. Mean in !M. SE, standard error, n.d.: not detected, CV: coefficient of variation;
concentration of the spike: 50 !M.

Metabolite QC spiked QC not spiked PBQC spiked PBQC not spiked

(Mean ± SE) CV (Mean ± SE) CV (Mean ± SE) CV (Mean ± SE) CV

2-Ketogluconic acid 83.46 ± 1.68 0.02 64.11 ± ±1.03 0.02 51.4 ± 0.98 0.02 2.56 ± 0.01 0.00
2-Oxoglutarate 118.06 ± 4.56 0.04 61.45 ± 3.37 0.05 72.78 ± 6.92 0.10 33.93 ± 2.09 0.06
Aconitate 127.82 ± 4.97 0.04 67.54 ± 3.03 0.04 52.38 ± 4.42 0.08 7.43 ± 0.51 0.07
Caffeic acid 116.02 ± 4.85 0.04 66.94 ± 1.57 0.02 56.77 ± 3.35 0.06 5.48 ± 0.13 0.02
Citrate 140.62 ± 3.86 0.03 86.33 ± 1.97 0.02 78.39 ± 2.43 0.03 25 ± 1.68 0.07
Ferulic acid 135.33 ± 6.76 0.05 74.16 ± 1.37 0.02 54.84 ± 3.85 0.07 3.49 ± 0.02 0.01
Fumarate 137.24 ± 7.18 0.05 79.35 ± 2 0.03 72.64 ± 4.75 0.07 21.71 ± 1.23 0.06
Isocitrate 133.99 ± 5.08 0.04 80.32 ± 2.22 0.03 60.29 ± 2.64 0.04 5.75 ± 0.2 0.03
Itaconate 134.55 ± 7.71 0.06 81.23 ± 1.62 0.02 56.36 ± 2.6 0.05 2.68 ± 0.31 0.11
Malate 140.7 ± 6.35 0.05 83 ± 1.44 0.02 226.29 ± 3.49 0.02 170.97 ± 10.29 0.06
Maleate 109.58 ± 4.75 0.04 69.65 ± ±3.08 0.04 44.52 ± 2.32 0.05 1.76 ± 0.5 0.28
Malonate 120.78 ± 9.25 0.08 62.98 ± 4.42 0.07 63.56 ± 6.86 0.11 8.81 ± 0.55 0.06
Nicotinic acid 135.55 ± 8.18 0.06 71.66 ± 1.11 0.02 78.35 ± 7.75 0.10 22.3 ± 2.34 0.10
Pipecolate 133.23 ± 9.2 0.07 78.7 ± 2.69 0.03 61.22 ± 4.65 0.08 7.97 ± 0.25 0.03
Quinate 149.72 ± 5.41 0.04 91.79 ± 0.92 0.01 70.12 ± 1.5 0.02 4.49 ± 0.04 0.01
Salicylate 124.31 ± 6.19 0.05 59.27 ± 3.8 0.06 81.63 ± 3.6 0.04 13.5 ± 0.05 0.00
Shikimate 137.77 ± 8.66 0.06 73.26 ± 0.47 0.01 66.45 ± 2.09 0.03 13.36 ± 0.42 0.03
Succinate 139.51 ± 7.39 0.05 76.52 ± 1.38 0.02 138.67 ± 8.65 0.06 86.34±4.57 0.05
Syringic acid 112.93 ± 3.73 0.03 74.45 ± 0.99 0.01 56.18 ± 2.39 0.04 1.06 ± 0.02 0.02
Uric acid 131.75 ± 6.07 0.05 77.26 ± 1.26 0.02 56.34 ± 3.14 0.06 4.69 ± 0.04 0.01
Erlose 114.67 ± 12.15 0.11 47.32 ± 2.68 0.06 49.68 ± 10.84 0.22 1.67 ± 0.04 0.02
Arabinose 124.27 ± 5.37 0.04 75.5 ± 1.21 0.02 56.79 ± 2.7 0.05 6.57 ± 0.21 0.03
Arabitol 137.93 ± 4.85 0.04 90.65 ± 1.14 0.01 64.37 ± 0.91 0.01 1.02 ± 0.04 0.04
"-Gentibiose 116.86 ± 7.48 0.06 60.24 ± 1.41 0.02 58.24 ± 4.72 0.08 8.47 ± 0.41 0.05
Erythritol 125.25 ± 5.81 0.05 74.83 ± 1.27 0.02 52.79 ± 0.93 0.02 1.27 ± 0.01 0.00
Fructose 122.87 ± 5.77 0.05 74.99 ± 0.71 0.01 174.73 ± 6.35 0.04 116.38 ± 1.67 0.01
Fructose-6-P 115.93 ± 4.21 0.04 63.14 ± 1.76 0.03 53.61 ± 2.47 0.05 4.64 ± 0 0.00
Fucose MX1 117.88 ± 6.34 0.05 64.64 ± 0.95 0.01 54.26 ± 3.13 0.06 9.74 ± 0.52 0.05
Galactitol 129.71 ± 4.26 0.03 75.76 ± 0.73 0.01 54.02 ± 0.84 0.02 0.72 ± 0.04 0.04
Galactose 111.02 ± 2.57 0.02 59.18 ± 4.45 0.08 54.46 ± 1.34 0.02 0.1 ± 0 0.00
Gluconate 108.57 ± 7.55 0.07 54.22 ± 1.2 0.02 51 ± 1.05 0.02 n.d. -
Glucose 126.79 ± 4.29 0.03 72.33 ± 0.96 0.01 227.41 ± 7.93 0.03 172.25 ± 2.94 0.02
Glucose-6-P 113.79 ± 6.95 0.06 56.74 ± 1.22 0.02 54.95 ± 3.82 0.07 6.53 ± 0.01 0.00
Glucuronate 120.37 ± 5.13 0.04 71.66 ± 1.09 0.02 51 ± 1.44 0.03 0.71 ± 0.01 0.00
Inositol 122.87 ± 5.26 0.04 77.2 ± 1.42 0.02 69.62 ± 1.7 0.02 16.67 ± 1.12 0.07
Maltose 112.59 ± 5.18 0.05 63.54 ± 1.81 0.03 49.39 ± 1.81 0.04 2.82 ± 0.01 0.00
Mannitol 125.36 ± 4.52 0.04 71.94 ± 0.82 0.01 55.74 ± 1.72 0.03 0.48 ± 0.02 0.03
Mannose 121.61 ± 4.99 0.04 74.16 ± 0.8 0.01 53.35 ± 1.36 0.03 n.d. -
Melezitose 121.59 ± 13.14 0.11 52.02 ± 2.25 0.04 63.29 ± 7.99 0.13 5.94 ± 0.08 0.01
Melibiose 117.96 ± 7.17 0.06 62.33 ± 1.56 0.02 57.25 ± 4.57 0.08 4.98 ± 0.07 0.01
Raffinose 133.74 ± 16.41 0.12 60.25 ± 1.04 0.02 69.66 ± 6.75 0.10 20.59 ± 0.07 0.00
Rhamnose 126.78 ± 5.51 0.04 78.46 ± 1.01 0.01 57.52 ± 1.26 0.02 0.52 ± 0 0.00
Ribose 124.76 ± 5.48 0.04 75.76 ± 1.22 0.02 48.54 ± 1.34 0.03 0.61 ± 0.01 0.00
Sucrose 91.39 ± 3.03 0.03 66.06 ± 1.27 0.02 86.25 ± 2.53 0.03 33.73 ± 0.69 0.02
Trehalose 117.41 ± 3.11 0.03 78.39 ± 1.97 0.03 51.76 ± 2 0.04 n.d. -
Turanose 110.73 ± 6.43 0.06 61.66 ± 1.5 0.02 43.85 ± 1.9 0.04 1.14 ± 0.36 0.32
Xylitol 126.13 ± 4.96 0.04 77.76 ± 0.95 0.01 57.69 ± 1 0.02 0.24 ± 0.01 0.01
Xylose 139.1 ± 7.57 0.05 75.91 ± 0.96 0.01 52.55 ± 1.52 0.03 3.62 ± 0.01 0.00

and "-gentiobiose, a weighting of (1/x) would then be applied to
calculate the concentration(s) for metabolites detected at the lower
range of the calibration curves. For all other analytes no weight-
ing factor was applied. Thus, these factors and regression were
applied in every analytical curve during the whole validation study.
Response ratios were calculated relative to the internal standard
13C1-mannitol. R2 values ranged from 0.9809 (for erlose) to 0.9998
(for both erythritol and fructose) (Table 2).

3.4. Recovery

The recovery of an analyte from a biological matrix is based upon
the efficiency of the solvent(s) of choice in the extraction process
as well as the instrument response which can affect the determi-
nation of final concentrations [12–14]. Recovery was calculated by
comparing the amount of each metabolite present in (i) a calibra-
tion standard mix (QC) with a concentration of 80 !M spiked with

additional 50 !M of the same calibration standard mix, as well as
in (ii) PBQC sample (100 !M and 5 !M) spiked with the calibration
standard mix (80 !M). All recovery tests were prepared in hexapli-
cates, and the values of recovery for the QC and PBQC samples are
provided in Table 2.

The recovery values for the spiked QC samples were high
(90–110%) for 28 out of the analyzed 48 metabolites, including
fucose (100%), pipecolate (99%), and erythritol (99%). However,
for 2-keto gluconic acid and sucrose the overall recoveries were
34% and 49%, respectively. Several sugars, including erlose (135%),
raffinose (147%), and melezitose (133%), show a slightly higher
recoveries as previously reported [15–18].

The recovery values for the spiked PBQC samples were high
(90–110%) for 37 out of the analysed 48 metabolites, including nico-
tinic acid (101%), arabinose (99%), and glucuronate (100%). Only
arabitol (127%) and quinate (126%) showed slightly higher recover-
ies as previously reported [15–18]. For most metabolites recovery
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Fig. 2. Logarithmic ratios of sugar and organic acid contents in flowers (black bars) and pods (white bars) of chickpea cvs Rupali (left column), and (right column).
Comparisons are made before (control) and after treatment with 60 mM NaCl for four weeks. Relative response ratios were calculated using the metabolite peak area divided
by both the peak area of the internal standard and the sample dry weight (g). Fold changes were calculated by dividing the response ratios of control by the response ratios
of salt treated per line. Values that are significantly higher at the *P < 0.05 and **P < 0.01 level are indicated with asterisks. The threshold of a ±2-fold change is indicated as a
dashed line. P: phosphate

values for the spiked versus unspiked PBQC samples were in the
range of 72–110% which is in close agreement with previous reports
for polar metabolite determination via GC–MS [18].

3.5. Reproducibility

The validation of reproducibility (standard error) assesses the
variability observed within an instrument over a short period to

assess the method’s accuracy and precision. Reproducibility was
evaluated by spiking (i) a calibration standard mix (QC) with a
concentration of 80 !M with additional 50 !M of the same calibra-
tion standard mix, as well as spiking (ii) 100 !M of PBQC sample
with the calibration standard mix (80 !M). For malonate, malate,
shikimate, citrate, fructose, glucose and sucrose only 5 !L of PBQC
standard mix was used. All reproducibility tests were prepared in
hexaplicates. The determined variability values (standard errors)

Page 84



D.A. Dias et al. / J. Chromatogr. B 1000 (2015) 1–13 9( )( ) ( )( )
Amino acids and amines

Ala 
Arg
Asn 
Asp 
Citrulline 
Cys
GABA 
Gln 
Glu 
Gly 
His 
Homoserine 
Hydroxypro 
Ile 
Leu 
Lys
Met 
Octopamine 
Orn 
Phe 
Pro 
Putrescine
Ser 
Thr 
Trp 
Tyr 
Tyramine 
Val

Fold change -2 0 +2 -2 0 +2

****
******

**
**

****

** **

**

**

*
* * *

**
*

*

*
*** *

*

*

*

Fig. 3. Logarithmic ratios of amino acid and amine contents in flowers (black bars) and pods (white bars) of cvs Rupali (left column), and (right column).
Comparisons are made before (control) and after treatment with 60 mM NaCl. Other details are the same as in the legend to Fig. 2.

are listed in Table 3. The standard error for practically all metabo-
lites were below 10% for both the spiked calibration standards and
PBQC samples, indicating that this method is precise and accurate
for quantification of organic acids and sugars. These levels of vari-
ability are broadly in agreement with previously reported values
for metabolite profiling of different compound classes using GC or
LC-MS/MS systems [15–19].

3.6. Comparison of primary metabolite concentrations of tissues
from two chickpea cultivars upon salinity stress

Following the validation of the GC–QqQ–MS method, it was
applied to study metabolic responses in flower and pod tissue of
the desi-type chickpea cultivars ‘ and ‘Rupali’ which
differ in their tolerance to salinity [20]. Cv. Rupali is salt sensi-
tive, whereas cv. is more tolerant to salt, and plants of
both cultivars were grown in the greenhouse under control and
salinity stress (60 mM NaCl for four weeks). To account for dif-

ferences in maturity, salt treatment was performed 21 days after
sowing (DAS) for cv. Rupali, and 25 DAS for cv. Flow-ers
and seeds were harvested after 31 and 48 DAS (for cv. Rupali) or
35 and 52 DAS (for cv. ), and immediately frozen in
liquid nitrogen (N2). Frozen tissue (∼30 mg) was extracted in 50
% methanol-water solution including the internal standards 13C6
-sorbitol and 13C5–15N valine, and organic acid and sugar concen-
trations were analyzed using GC–QqQ–MS using three replicates
per cultivar and treatment.

The objective of this part of the study was to understand how
salt imposition affects the primary metabolite profile of flowers
and pods of the different chickpea cultivars. Therefore, pairwise
comparisons between the concentrations of sugars and organic
acids of flowers and pods before and after salinity stress for Rupali
(Fig. 2, left column) and (Fig. 2, right column) was per-
formed (Additional file 4). Unless otherwise stated, only
metabolite changes which are considered as statistically
significant (Student’s t-test p-value < 0.05) will be discussed.
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Fig. 4. Metabolic pathway altered by salinity treatment in flowers and pods of chickpea cv Rupali. Changes in concentration are indicated by the size of either the circles (for
flowers) or rhombi (for pods). Metabolites that were not measured in this study are depicted by squares. Metabolites that show significant changes (P > 0.05) after salinity
stress of less than two-fold are highlighted with light colors, whereas significant changes of more than two-fold are highlighted with dark colors. More details are provided
in the legend.

In total, eleven sugars, three sugar alcohols, two sugar
phosphates, and sixteen organic acids could be detected and
quantified in both tissues of the cultivars. Profiles of the
metabolites in Rupali show small reductions in the concentra-
tion of arabinose (−1.4-fold), but also small increases in the
concentrations of "-gentiobiose, fructose and sucrose in pods
of between 1.2 and 1.4-fold after salinity stress. Furthermore,
erythritol and inositol levels were depleted in flowers, but
increased (erythritol) or unchanged (inositol) in pods after salinity
stress.

Noticeably, the magnitude of changes was generally larger
for organic acids, with particularly pipecolate showing a large
increase (flowers and pods, 12.6 and 2.5-fold, respectively) after
salinity stress. The tricarboxylic acid (TCA) cycle metabolites isoci-
trate (flowers, 11.5-fold), cis-aconitate (flowers and pods, 1.33-fold
and 1.31-fold, respectively), citrate (flowers and pods, both 1.18-

fold), fumarate (pods, 1.28-fold), and malate (pods, 1.11-fold) also
showed large salinity stress-induced increases.

Fewer differences in sugar levels were noted in flowers and
pods of the salinity tolerant cultivar compared to Rupali,
with only turanose showing a small but significant increase of 1.8
fold after salinity stress. No significant changes were detected for
sugar phosphates or sugar acids, and only two small but sig-
nificant increases in the levels of the organic acids citrate and 2-
oxoglutarate in pods were measured after salinity stress.

3.7. Alteration of amino acid and amine contents after salinity
stress in two chickpea cultivars

To accurately quantify additional metabolites of the carbon and
nitrogen metabolism, LC–MS-based metabolite quantification of
amino acids and amines was carried out on a LC–QqQ–MS accord-
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Fig. 5. Metabolic pathway altered by salinity treatment in flowers and pods of chickpea cv Other details are the same as in the legend to Fig. 4.

ing to the standardized protocol developed by Boughton et al. [11]
(Fig. 3, Additional file 4).

Striking differences were seen in the amino acid concentrations
in flowers following salt treatment of the salt sensitive cv. Rupali
compared to the salt tolerant cv. In cv. Rupali, 14 out of
the 28 measured amines and amino acids (Arg, Glu, Gly, His,
homoserine, hydroxyproline, Ile, Leu, Lys, Met, Pro, Thr, Trp, Val)
had significantly higher concentrations of between 1.4 and 4.7-
fold, and three (Cys, GABA, putrescine) had significantly lower
concentrations of between 1.5 and −1.9-fold after salinity treat-
ment compared to control conditions. With the exception of Trp,
the concentrations of these amino acids and amines were also much
higher in salt affected flowers than pods. On the other hand, cv.

only showed very few significant changes in amino acid
concentrations: Gly, hydroxyproline, and tyramine concentra-

tions increased between 1.5 and 3.5-fold, and putrescine decreased
−1.5-fold in pods after salinity treatment. Interestingly, the vast
majority of amino acids and amines measured in this study were
depleted (although not significantly) in flowers of after
salinity stress, whereas the opposite trend is seen in Rupali, where
the vast majority of amino acids and amines increased in flowers
after salinity stress.

To compile information on connections between all primary
metabolites quantified in this study upon salinity exposure and
to determine possible sites of metabolic regulation, we created an
author-generated metabolite pathway map of primary metabolism
of cv Rupali (Fig. 4) and cv (Fig. 5). Both maps show
metabolite concentrations in flowers and pods, the fold change
and the significance of changes after salinity stress. Although the
overall concentrations of the metabolites are nearly identical after
salinity
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stress for both cultivars, the primary metabolite pathway map of
the salt-sensitive cv Rupali shows significantly higher concentra-
tions for amino acids derived from glucose-6-phosphate, aspartate,
and pyruvate upon exposure to salt than in the salt-tolerant cv

The elevated amino acid levels can be a reaction to salt
stress and related to tissue damage in the salt-sensitive culti-var
rather than a plant response associated with tolerance, which is
supported by many other recent studies studying the effect of
salinity on the metabolite levels in Arabidopsis thaliana, Lotus
japon-icus, Oryza sativa, Hordeum vulgare, and Triticum aestivum
[7,21,22]. Although many studies suggest a link between increased
levels of osmolytes such as proline and sugars, as well as an
induction of metabolic pathways including glycolysis and sugar
metabolism, and salinity tolerance, the results in this study do not
support this: Both Pro and its hydroxylation product 5-
hydroxyproline as well as sucrose and fructose were significantly
increased in the salt-sensitive cultivar Rupali but not in salt-
tolerant after salinity stress, supporting recent findings
that the contribution of Pro to osmotic pressure being relatively
small [23] and not always correlated with enhanced salinity
tolerance [22].However, many organic acids from the TCA cycle including isoc-
itrate and aconitate were also increased in cv Rupali upon stress
but not in cv consistent with recent findings showing
that salt-sensitive plant lines use these metabolites increasingly as
pre-cursors for de novo amino acid biosynthesis after exposure to
salt. As these changes in the pool of metabolites from the TCA cycle
coin-cided with a decrease of several sugars (particularly in pods),
this points towards an increased rate of glycolysis to provide
carbohy-drates for use in the TCA cycle, which in turn provides
precursors for other reactions such as amino acid synthesis and
organic acid as well as chemical energy in the form of adenosine
triphosphate (ATP) and reduced nicotinamide adenine
dinucleotide (NADH) at an increased rate to support plant survival
under salinity stress.

4. Conclusions

Despite improvements in analytical techniques for GC–QqQ–MS,
the comprehensive analysis and quantitation of metabolites in
complex samples remains a challenge, particularly when they are
present at varying concentration levels. The ability to detect a large
number of polar metabolites in low concentrations in a single analy-
sis offers important benefits compared to other analytical methods.
We developed a profiling method which was validated for the quan-
tification of more than 40 metabolites from four major classes of
polar compounds, including sugars, sugar alcohols, sugar phos-
phates, and organic acids. This method was applied to flower and
pod samples from two chickpea cultivars differing in their ability to
tolerate salt. In this study we were unable to find any evidence that
Pro, the most highly studied osmoprotectant, was affected by salin-
ity when comparing metabolite concentrations in the control and
the salt-treated samples of the tolerant and the intolerant chick-
pea line. Instead, we conclude that metabolic differences between
cvs Rupali and following salt stress involve metabo-lites
involved in carbon metabolism and in the TCA cycle, as well as
amino acid metabolism. The integration of the developed metabo-
lite profiling method provided unambiguous metabolite identities
and absolute quantitative data. Although the method was applied
to the analysis of chickpea samples, it is equally applicable for
metabolic profiling of other biological samples as the majority of
the metabolites play key roles in central biosynthetic pathways.
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Link to chapter 4 

Leaf senescence is a trait that has an application in assessing plant’s response to salinity 

stress. Leaf senescence can be scored manually, but this is time consuming, inaccurate 

and subjective. High-throughput platforms like the LemnaTec imaging system provide a 

sound alternative to screen a large number of plants within a short time. However, these 

images could be blurred and as a result senescence quantification and progression would 

be error prone. This chapter focuses on quantifying the onset and progression of plant 

senescence by colour image analysis for high-throughput applications, using a new 

algorithm which has the capability to correct for colour distortion and restore image 

quality. Australian spring wheat cultivars, Gladius and Kukri, and chickpea cultivars, 

Genesis836 and Rupali, were exposed to different levels of nitrogen and salt, 

respectively. Plant senescence was quantified using manual inspection and colour image 

analysis using the new algorithm. A strong relationship was obtained between the two 

methods, validating the use of this algorithm in quantifying the onset and progression of 

senescence in monocots and dicots. This work has been published in PLoS ONE as 

follows; Cai J, Okamoto M, Atieno J, Sutton T, Li Y, Miklavcic SJ (2016) Quantifying 

the Onset and Progression of Plant Senescence by Color Image Analysis for High 

Throughput Applications. PLoS ONE 11(6): e0157102. 

doi:10.1371/journal.pone.0157102. 
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Abstract
Leaf senescence, an indicator of plant age and ill health, is an important phenotypic trait for
the assessment of a plant’s response to stress. Manual inspection of senescence, however,
is time consuming, inaccurate and subjective. In this paper we propose an objective evalua-
tion of plant senescence by color image analysis for use in a high throughput plant pheno-
typing pipeline. As high throughput phenotyping platforms are designed to capture whole-
of-plant features, camera lenses and camera settings are inappropriate for the capture of
fine detail. Specifically, plant colors in images may not represent true plant colors, leading to
errors in senescence estimation. Our algorithm features a color distortion correction and
image restoration step prior to a senescence analysis. We apply our algorithm to two time
series of images of wheat and chickpea plants to quantify the onset and progression of
senescence. We compare our results with senescence scores resulting from manual
inspection. We demonstrate that our procedure is able to process images in an automated
way for an accurate estimation of plant senescence even from color distorted and blurred
images obtained under high throughput conditions.

Introduction
Even though image processing and computer vision methods have been applied in a range of
plant biology contexts and over a span of years [1–6], the use of these techniques in a fully
automated and high-throughput setting is still being established. This applies particularly to
the topic addressed in this paper: the automated phenotypic analysis of leaf senescence, one of
the trademark indicators of plant age and ill health.

Leaf senescence is the integral response of leaf cells to the regular ageing process but also to
unfavorable environmental conditions [7]. Many physiological, biochemical, and molecular
studies of leaf senescence [7–11] have shown that during senescence, leaf cells undergo highly
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coordinated changes in cell structure, metabolism and gene expression. The earliest and most
significant change is the breakdown of chloroplasts; leaf senescence leads to the degradation of
photosynthetic pigments such as chlorophyll, with the degradation manifested in observable
leaf colour changes from the usual deep green to pale green, to yellow and finally to brown.
Given our ability to observe these visual cues, it would be natural to consider the use of image
processing techniques for a high-throughput plant leaf senescence analysis.

In this respect it would seem reasonable to consider employing the Normalized Difference
Vegetation Index (NDVI), which indeed has been widely used for vegetative studies to estimate
crop yield, pasture performance as well as plant senescence [12, 13]. However, this measure is
sensitive to many factors including soil condition and water content [14]. This sensitivity limits
the reliable and practical use of NDVI to the detection of vegetation coverage. With the intro-
duction of hyperspectral imaging, a richer variety of quantitative measures (vegetation indices)
is possible and indeed has already been introduced [15, 16] to quantify leaf traits (such as chlo-
rophyll content, detection of leaf disease symptoms or indeed senescence determination). The
simplex volume maximization concept [15] appears particularly promising for drought stress
detection. A particularly recent technological development is HyperART [16], a hyperspectral
imaging system which utilizes both reflectance and transmittance information to determine an
absorption spectrum, used to estimate leaf chlorophyll content. One key innovation with
HyperART lies in its ability to non-destructively scan an entire leaf still attached to a plant.
This represents an advance on previous methodologies which were limited to point measure-
ments (scan area of a few cm2) and being of lower resolution. Despite advances such as Hyper-
ART, the state of the art technology (compounded by the practical problem of cost
effectiveness) is not yet geared for high throughput phenotyping applications on the whole
plant scale (or whole canopy scale). With NDVI unsuitable for senescence analysis and with
visual inspection [13], even by trained inspectors, being slow, weakly quantitative and prone to
human subjectivity, and until high throughput hyperspectral phenotyping becomes viable, a
need exists in the interim for the application of non-destructive and fully automated RGB
image-based techniques for the objective estimation of plant senescence.

Ideally, using high definition, high resolution RGB images at the leaf level, one could attri-
bute leaf image color into a few categories of classification and use the ensuing full color distri-
bution to estimate the senescence level of an entire plant. However, for the high-throughput
practices we envisage, it is not feasible to take high definition images of all individual plant
leaves. Instead, one resorts to taking a single image, or at most a few images from different per-
spectives, of a whole plant, which are then analyzed to determine the degree of senescence at
the whole plant level. Under these pragmatic conditions, even if the global image resolution is
high, the local resolution, at the leaf level, may not be. For example, Fig 1 shows an image of a
young plant that in reality exhibits no actual senescence, but based on the image itself (a target
for an automated procedure) would be assessed as already exhibiting senescence. Conse-
quently, it can be problematic to apply a color classification scheme as such images may suffer
from significant image blurring and therefore significant image color distortion, at the level of
an individual leaf. It is an inescapable fact that the color of a pixel in a blurred image is affected
by the colors of neighboring pixels [17]; the color of a pixel in a blurred image would then not
represent the true color of an object feature at that specific location. For the analysis of plant
senescence, this has unfavorable implications: the application of an image-based, color classifi-
cation scheme could result in significant error. Consequently, a deblurring or restoration stage
is required to reduce the extent of color distortion in such blurred images.

In this paper, we propose a new approach for color distortion correction in blurred images
for the specific purpose of analyzing plant senescence. While this is important for the accurate
quantification of senescence over the lifetime of the plant, it is absolutely essential for the
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purpose of pinpointing the time at which senescence in a plant first appears. Both aspects are
important phenotypic traits. The approach we adopt, described in the next section, does not
assume any of the currently adopted circumstances (color channel independence and point
spread function (PSF)-based model de-blurring). However, we do make the reasonable and
practical assumption that during the course of an experiment, or for a given image data set to

Fig 1. The color distortion effect and its correction using the method presented in this paper. (a) original image of a young and green
leaf; (b) the corresponding color profile at the cross-section indicated by the arrow in (a); (c) image of the same leaf after color distortion
correction; (d) corresponding color profile at the exact same cross-section.

doi:10.1371/journal.pone.0157102.g001
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be analyzed, the camera settings remain fixed. That is, we assume that the effects of blurring
and color distortion remain consistent across all images acquired in a complete experiment.
With this reasonable assumption of constant camera settings, we can take advantage of a priori
knowledge of the conditions of the experiment to develop an algorithm for the correction of
color distortion. In the results section we demonstrate and discuss the performance of our cor-
rection and analysis approach through applications to two time series of images for two differ-
ent plant types, wheat and chickpea plants. We make concluding comments in the final
section, where we point out that the proposal has the potential for a broader range of applica-
tions to quantify other phenotypic traits based on color discrimination.

Materials and Methods
Plant material and growth condition
Wheat: Australian spring wheat (Triticum aestivum) cultivars Gladius and Kukri were grown in
pots in glasshouse conditions between January and June, and between August and December,
2013. Preselected similar sized seeds were sown in pots filled with 2.5kg of soil mix (coco-peat
based potting media containing different amounts of nitrogen (N)). Nitrogen as urea was
applied at sowing at 10mg (N1), 25mg (N2), 75mg (N3), 150mg (N4), and 450mg (N5) N/kg of
soil. Plants were grown and watered in a glasshouse with average temperatures ranging between
22°C during the day and 15°C at night. At four weeks, the plants were transferred into a special
growth room at the Australian Plant Phenomics Facility, University of Adelaide, Australia (The
Plant Accelerator) for regular automated imaging using a LemnaTec imaging system (Lemna-
Tec GbmH, Aachen, Germany). RGB images were automatically captured daily for 21 days.

Chickpea pilot experiment: Plant material consisted of two Cicer arietinum genotypes
( and Rupali). Experiments were again conducted in The Plant Accelerator. Tem-
perature and humidity were controlled in the glasshouse and ranged from 24±2°C, 40% (day)
and 16±2°C, and 90% (night), respectively. Three seeds were sown 2 cm deep in pots contain-
ing Goldilocks mix (50% clay loam, 25% University of California (UC) mixture, and 25% coco-
peat). Rhizobium inoculum was added to each planting hole at sowing. Prior to salt
application, plants were uniformly thinned to 1 plant per pot. At 25 days after sowing (DAS),
each pot received either 0, 30, 40 or 60 mMNaCl. Each treatment was replicated 4 times in a
Randomized Complete Block Design (RCBD). Pots were watered and maintained at field
capacity to maintain the salt concentration and to avoid salt leaching.

Imaging and manual senescence scoring
To allow for quantification of onset and to track the progression of plant senescence (chlorosis
and necrosis), plants were imaged from 18 DAS up to 39 DAS. For each plant, RGB images
were taken automatically from three different views (one top and two side views, the latter with
a relative rotation of 90°).

To establish a correlation between visual scoring and digital image estimation of plant
senescence, visual scores of the plants were taken based on a 1–10 scale [18] at 41 and 42 DAS.

Scoring scale:

1 = A green and healthy plant with no symptoms of illhealth (e.g., salinity stress);

2 = Bottom leaves beginning to yellow or become necrotic;

3 = Necrosis on a quarter of bottom leaves (25%) and yellowing on the rest of the bottom half
of the plant;
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4 = Necrosis on bottom half (50%) of plant;

5 = Necrosis on bottom half and yellowing appearing in the top half of the plant;

6 = Necrosis in the range 50%–75% of the plant;

7 = Necrosis on 75% of the plant;

8 = Necrosis on the whole plant with apical leaves still green/yellowing;

9 = Only stems and shoot tips remain green;

10 = Plant death.

Modeling color distortion
Deblurring has been a subject of intensive study for decades [19]. Most deblurring algorithms
developed thus far focus on estimating so-called shift-invariant point spread functions (PSFs)
[20], under the assumption that blurring is caused either by the relative motion of the camera-
object system, camera defocussing or by lens aberrations [21]. Recent research has also
included the study of images blurred as a result of large depth differences (caused mainly by
the limited focal depth of cameras). In this case, the focus is placed on estimating the PSFs [19,
21, 22] to produce better quality images, similar to those produced by an ideal pin-hole camera,
except possibly for “ringing artifacts” [17, 20], a problem yet to be solved.

One assumption commonly adopted in previous works on deblurring is that the different
spectral bands of visible light have the same properties, which implies that these spectral bands
have identical PSFs. A second assumption is that of no interference between spectral band sig-
nals detected by different image sensors. Unfortunately, as Fig 1 indicates, these assumptions
are not valid in the present context. Fig 1(a) is (actually) an image of a healthy green leaf of a
young wheat plant. The image itself, however, clearly possesses significant yellowness around
the leaf edges, this color distortion effect is quantified in Fig 1(b). The latter figure demon-
strates that the three spectral bands are affected to different degrees and thus have different
PSFs. Moreover, the curves appear asymmetric suggesting that they are not amenable to
modelling by PSFs at all. In summary, existing deblurring algorithms are not applicable and
indeed do not produce restored images of suitable quality. To improve the quality of restored
images for an accurate estimation of plant senescence requires a less restrictive approach.

The task of deblurring an image is commonly called image deconvolution. If the blur kernel
is not known, the problem is referred to as blind image deconvolution. Many methods have
been proposed for deblurring from a single image [23, 24]. Existing blind deconvolution meth-
ods assume that the blur kernel has a simple parametric form, such as a Gaussian or a composi-
tion of low-frequency Fourier components [25].

In our procedure, we define the blurring degradation process by the expression

X ¼ GDþ N; ð1Þ

where X is the observed or degraded image, D is the degradation matrix or PSF, G is the image
without degradation or blurring, andN denotes noise in the observed image. Note that we do
not assume that any two spectral bands have the same PSF (D), nor do we assume that the PSF
of a particular spectral band is independent of other spectral bands. In contrast to established
methods where knowledge of the PSF is essential, in the formulation represented by Eq 1, the
PSF is not invertible as it is inhomogeneous and multi-channelled. In the approach proposed
here, we attempt to estimate directly the color distortion correction matrix (C) defined in the
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deblurring process, expressed mathematically as,

G ¼ ðX % NÞC;
or

E ¼ G% XC:

ð2Þ

The matrix C denotes the matrix for the color distortion correction and E is the estimation
error for the given level of noise. By minimising the mean square error, we can estimate the
correction matrix using knowledge of both the undistorted and the observed images

C ¼ ðXtXÞ%1XtG; ð3Þ

where Xt denotes the transpose of the matrix X and X−1 denotes the inverse of X. In Eq (3), we
assume that at least one undistorted image G is available for the estimation of C.

Estimation of ground-truth color
In a pragmatic sense, the problem of estimating the color distortion correction matrix in Eq (1)
reduces to the problem of obtaining at least one undistorted image for the subsequent application
of Eq (3) to all distorted images assuming the same camera settings. The solution of the reduced
problem could form part of an initialization step, being camera calibration; a standard color chart
can be used to reconstruct an undistorted image given that the colors of the individual pixels of
the color chart image are known. However, in the possibly more common event that camera cali-
bration has not been attempted, with the notional consequence that an undistorted image cannot
be reconstructed, it is still possible to estimate the undistorted image from the distorted image.

In the current application (which can be modified to suit other applications) we rely on the
premise that plant leaves are green at the early stage of plant growth and development, particu-
larly under advantageous conditions (i.e., under no stress) to infer that any yellowness appear-
ing in images of leaf edges is due solely to color distortion. As with conventional blind
deblurring approaches, we exploit the information from the edges of two objects. We observe
that the red channel signal in Fig 1(a) is sharpest at the edges of leaves. With this feature, the
red channel of an image of a young plant can be used in an initial segmentation attempt in
order to estimate the undistorted image of the young plant, for which leaf and stem color is
unvarying across the whole plant. In this specific application we can estimate the real color at a
leaf edge by the color of the interior section of that leaf image. We also manually select simple
background regions of one image of the training set to estimate the true background color at
boundaries between the plant and the background (and in this instance also between the blue
plant support frame and the background). As there is color distortion in the original image, the
initial segmentation attempt based on the red channel signal alone is not perfect. To improve
the result, a manual correction is performed on this initial segmented image.

The results at the end of each step in the sequence of ground-truth color estimation are illus-
trated in Fig 2. A tell-tale sign that the initial attempt at color estimation is imperfect, is the blu-
ish appearance of the leaf tips and of leaves of only a few pixels width.

Color distortion correction
Now that an undistorted image has been obtained, we can use Eq (3) to estimate the correction
matrix C. However, any two-dimensional image with multiple color channels cannot be
directly represented by a single two-dimensional matrix. If, on the other hand, we assume that
each channel is independent of others, Eq (3) can be directly used to deduce the correction
matrix for each channel. Unfortunately, different color sensor cells corresponding to a given
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pixel are physically close to each other in the sensor panel. Therefore, it is possible that blurring
effects are not channel independent. To treat the general case, we consider the correction
matrix as aM × Ncmatrix, whereM = L2 × Nc, L is the kernel size of the correction matrix, and
Nc is the number of color channels, usually with Nc = 3. Furthermore, we arrange the estimated
undistorted image into a Si × Nc matrix, where Si is the image size, i.e., the total number of
image pixels. We arrange the original, distorted image into a Si ×Mmatrix, which means that
all pixels within the kernel are included for a given position. With this formulation, we make
no explicit assumption about the correction matrix. The only disadvantage with this formula-
tion is that the resulting size of matrix X is considerable making the calculation of C slow. For-
tunately, the calculation of C is only required once for an entire experiment.

The final color distortion corrected matrix, R (the restored image), is obtained by a simple
matrix multiplication: R = XC.

Results and Discussion
Analysis of the color distortion correction
Given the absence of actual ground-truth information and given that a correction matrix is
constructed from distorted data, it is prudent to first assess the performance of our approach
based on an image of a young plant that we have used for training. Comparing Fig 3(a) with
Fig 3(b) and Fig 3(c) with Fig 3(d), the restored images are sharper than the original images
and the problem of yellowish tinge between green leaves has been significantly reduced. Confir-
mation of the effectiveness of the scheme can be derived from Fig 1(c) and 1(d), which high-
light the improvement in color representation of the single leaf in Fig 1(a) and the effect on the
color intensity profiles over the lateral cross-section indicated. The key feature of Fig 1(d) to
note is the increased sharpness in the intensity changes across the boundaries of the leaf, now

Fig 2. Example results at the end of each step in the process of ground-truth color estimation. In sequence:
(a) the original image of a young plant; (b) the automatically segmented plant leaves with manual correction; (c)
the automatically segmented frame with manual correction; and (d) the estimated image of the young plant after
color distortion correction.

doi:10.1371/journal.pone.0157102.g002
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consistent across all three color channels. Admittedly, the process has introduced ringing arti-
facts [17, 20] in the restored images. As in the case of ringing resulting from deblurring algo-
rithms, this problem has yet to be solved. Fortunately, the color possessed by the artifacts is
bluish, which is thus distinct from the color of either green or senescent leaves. Therefore, such
artifacts do not affect our senescence analysis.

With regard to images of plants with both green and yellow leaves, the restored image in Fig
4(b) has sharper edges than the original image (Fig 4(a)). Comparing Fig 4(c) with Fig 4(d), a
significant amount of the blurred background area with characteristic yellow has been
removed; such areas would lead to an overestimation of leaf senescence. Indeed it can be con-
cluded from Fig 4(e) and 4(f) that our procedure does not affect the coloration of senescent
leaves. In fact, the opposite appears to be the case, the color contrast between the green and the
senescence regions of leaves is enhanced, which only benefits a color classification assessment.
Although our procedure corrects for color distortion and enhances resolution and color con-
trast, the procedure is not perfect, as evidenced by the traces of yellow tinge found at leaf tips
and corners of leaf image overlap.

Senescence analysis
To analyze leaf senescence in plants, we first separate plant objects from background and then
divide the segmented plant image into three vertical regions (zones) equidistant in height, as

Fig 3. Result of a color distortion correction as applied to a young (non-senescent) plant. (a) the original image used
for training;(b) the restored image after color distortion correction from (a); (c) the original image and (d) the restored image
after color distortion correction from (c).

doi:10.1371/journal.pone.0157102.g003
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Fig 4. Results of application of the color correction process on plants exhibiting senescence. (a)
shows the original image, while (b) shows the post processed, restored image. Panels (c) and (e) are
enlarged regions of the original image in (a), while (d) and (f) are corresponding enlarged regions of the
restored image (b).

doi:10.1371/journal.pone.0157102.g004
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illustrated in Fig 5 (see also S1 Appendix). In each zone, the colors are classified into four cate-
gories: dark green, light green, light yellow and brown. Any part of a leaf with yellow or brown
color is classified as undergoing or having succumbed to senescence. Note that any leaves that
have dropped below the bottom line are assigned to the bottom zone.

Wheat experiment. Our procedure (as well as a color classification analysis) was applied
to images of wheat plants to assess the affect of nitrogen availability on the development of leaf
senescence. A full biological analysis of this experiment will appear elsewhere. For the purposes
of this paper, we show in Fig 6 examples of the color analysis on images of three plants, each
exposed to a different level of nitrogen (low, medium and high, respectively). The top row of
figures shows restored images of the plants as they appeared on the same day. The bottom row
shows the corresponding four-category, color classification assessment as a function of zone as
well as measured overall.

It should come as no surprise that all images exhibit some degree of blurring and color dis-
tortion. These effects can be substantial if the camera setting is far from optimal and if the
plants being imaged are small; color distortion effects, extending across several pixels orthogo-
nal as well as along leaf boundaries, can be significant. With the view to applying our method
in high throughput facilities. It makes sense to compare the outcome of our analysis with the
options currently available in such systems. Accordingly, we consider results using a typical
system’s in-built, color analysis software (in the present case, The Plant Accelerator’s Lemna-
Tec imaging system software). A direct application on the original images gives an estimated
senescence level, measured as a percentage of whole plant area, of greater than 10%, even for
initial images in the sequence known not to exhibit any senescence. A quantitative comparison

Fig 5. Demonstration of the image segmentation process and zonal partitioning of plant foreground. (a) is the original image, while
(b) shows just the segmented plant image with overlayed horizontal lines partitioning the image foreground into three zones.

doi:10.1371/journal.pone.0157102.g005
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of results using our method with those of a direct color scheme analysis applied to a specific
plant image series is shown in Fig 7. In the case of our method, the results include an “Overall”
measure (whole plant) and two separated measures, “Mid” and “Bottom”, to indicate that
onset appears primarily (though not always) in the bottom zone. Results of the LemnaTec sys-
tem is not separated so only the “Overall”measure is given.

It is clear from Fig 7 that a direct application of color analysis results in a significant error.
Two facts emerge from that analysis: first, when the plant is young and therefore small, blur-
ring and color distortion significantly distorts the senescence estimation; second, when actual

Fig 6. Zonal assessment of green versus senescence leaf areas in pixels. Top figures show original images of three Gladius plants each grown
under a different level of nitrogen (N1, N3 and N5). The bottom figures show the results of color classification in pixel area as a function of zone, according
to our four-category color scheme: dark green, light green, yellow and brown.

doi:10.1371/journal.pone.0157102.g006
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senescence is present and significant, the estimated level may qualitatively mimic the true
development, but (a) is quantitatively overestimated and (b) cannot be used to establish the
point of onset.

A recent LemnaTec software upgrade offers the user the option of using machine learning
methods to learn color differences between typical plant greens, recurring background colors
and colors associated with senescent leaves as well as the colors (usually light yellow) caused
by burring and color distortion. This refinement dramatically improves the accuracy of the
in-built tool. An updated comparison for the same image sequence is given in Fig 8; the differ-
ence between the two analyses is significantly reduced (the bias is now between 2.0% and
5.0%). To be more precise, when the plants are young, possessing small green leaves, the
machine learning result slightly overestimates the senescence level (see figure inset), which is
enough to eliminate any possibility of using this method to detect the onset of senescence. The
disparity between the estimated senescence levels becomes greater when there is a significant
level of senescence present. The disparity is due to the machine learning procedure itself: the
color subspaces associated with the yellow due to blurring and color distortion and the yellow
of plant senescence overlap. It is therefore inevitable that some parts of senescent leaves will
be classified as background, resulting in an underestimation of the level of senescence actually
present.

Fig 7. Comparison of senescence estimations using the method proposed here (curves denoted Overall, Mid and
Bottom) and a direct application of the color analysis software provided by The Plant Accelerator’s LemnaTec
imaging system. For the Lemnatec results, only a whole-of-plant measure is available with which we compare a
corresponding measure, which in turn is broken down into the senescence levels determined in the bottom and middle
zones.

doi:10.1371/journal.pone.0157102.g007
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It is important also to point out that although there is a clear improvement in the LemnaTec
system’s senescence estimation, it comes at a price and with limitations. The price is that some
manual labelling of images is required for training of the machine learning algorithm. This
detracts from the use of this solution for high throughput applications. As with all machine
learning techniques, another limitation is that the learning step, which is valid for one experi-
ment, may not be valid for another experiment, even for the same plant species, if the camera
settings differ.

In Fig 9 we summarize the overall measures for two individual plants over the 15 days that
images were taken. Two time series are shown. Fig 9(a) features the time series of total visible
plant area for the two plants, while Fig 9(b) highlights the percentage of senescence (yellow and
brown color categories) present relative to total plant area as a function of time.

The regular imaging of plants (particularly imaging from several perspectives at once) over
a significant period of time offers the potential for the time-course capture of a significant
amount of information on a number of important phenotypic traits. Realizing that potential
cannot be achieved using either subjective means or inadequate processing tools. Fig 9 high-
lights the possibility of realizing the potential with the application of our color correction and
classification procedure to quantify traits such as plant growth over time. What is particularly
clear from Fig 9(b) is that the development of plant senescence and its dependence on applied
stress can now be quantified rigorously. Indeed, two specific features of the senescence process
can be quantified, namely, the day on which senescence first appears (onset) on an individual
plant (and where) and the rate at which senescence progresses, either absolutely or as a relative

Fig 8. Comparison of senescence estimations using the method proposed here (curves denoted Overall and
Bottom) and the application of a machine-learned, color analysis provided by The Plant Accelerator’s LemnaTec
imaging system (curve labelled “LemnaTec”.

doi:10.1371/journal.pone.0157102.g008
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Fig 9. Whole-of-plant assessment of growth (plant area) and senescence as a function of time for two
individual plants under N2, chosen arbitrarily. Top figure features the time developments of total projected
plant area (all leaves and stems) for the two plants, depicting similar growth behavior. Bottom figure shows
the percentage of senescence present in the leaves of these plants relative to their total plant area. The two
individual plants exhibit different rates of senescence development as well as different onset dates.

doi:10.1371/journal.pone.0157102.g009
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percentage of leaf area. Moreover, the latter information can be refined into zones for a detailed
study of senescence.

These two specific features are exemplified in Fig 10, which summarizes the effects of nitrogen
treatment on both the time of onset and on the final degree of senescence, the latter relative to
the total projected leaf area. Only one wheat variety (the genotype Gladius) is represented, with
results averaged over a number of repeats. The error bars therefore refer to variation over the
repeats and are not indicative of errors in senescence estimation. A more extensive study com-
paring plant responses to nitrogen across a range of genotypes is the subject of a separate publica-
tion. Although the Gladius variety appears less sensitive to nitrogen level than do other varieties,
it is nevertheless evident that the method is able to detect even minor variations with added
nitrogen for this genotype. The delay of onset seen here with application of medium levels of
nitrogen agree with previous observations. The results in Fig 10 also demonstrate that our
method can quantify the final proportion of senescent leaves relative to the total leaf area, reflect-
ing the stasis in senescence relative to total leaf mass that manifests with the addition of nitrogen.

Chickpea pilot experiment. The experiment on chickpea plants represents a pilot study of
the effects of salt stress as well the influence of soil condition. This experiment exemplifies a
common case where only post-processing of an image sequence is possible, and where the reso-
lution of plant images is satisfactory to quantify some features but is not sufficiently high to
assess plant senescence. In these images, the color distortion between two pixels along leaf
boundaries is significant. Application of the in-built color analysis software on the original
images estimated a senescence level, measured in terms of percentage of senescence to whole
plant area, of greater than 10% even for the first images in the sequence, of young plants exhib-
iting no senescence. An application of our color correction procedure followed by a color anal-
ysis on the recovered images found an estimated senescence level of less than 1.0%, while the
in-built, machine-learned color analysis tool estimated a senescence level of around 2.0% for
these first images.

Fig 10. Summary of senescence dependence on nitrogen treatment (N1 −N5, horizontal axis) for the
Gladius wheat plant variety. Shown are mean values of onset determination (days after sowing, DAS,
dashed curve and solid triangles, left vertical axis) and final degree of senescence (percentage of total project
leaf area, solid curve and open diamonds, right vertical axis). Error bars show the variation across three
repeats.

doi:10.1371/journal.pone.0157102.g010
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To further evaluate the performance of our color correction procedure, our results were
compared with those of manual inspection based on the 1–10 scale [18] described in the Mate-
rials and Methods section. Note that the manual inspection was undertaken 2 and 3 days after
the last imaging day. The results of both the subjective and the objective means of quantifying
senescence level are presented for comparison in Table 1.

Despite the two diametrically contrasting measures of senescence, there remains a definite
correlation between the outcomes, even though the manual inspections were conducted 2 and 3
days after the final images were taken. This is demonstrated quite convincingly in Fig 11, which
exhibits a highly correlated functional (logarithmic) relationship between the two measures; the
R-squared values are 0.7503 (0.754 in the case of the LemnaTec estimate) and 0.536, respec-
tively, for the manual inspection 2 and 3 days after the last image was taken. A decreasing R-
squared value is expected with increasing time difference between the day of imaging and the
day of manual inspection. What is not yet clear from the results obtained so far (Fig 11), is
whether a more refined manual inspection score and more frequent inspections, to compare
with a simultaneous objective senescence measure, will add meaning to the fitted functional
relationship. Unfortunately, manual inspection is time consuming, costly and highly subjective,
which only highlights the effectiveness of the automated and objective process proposed here.

As with the wheat experiment, by utilizing the regularly taken sequence of chickpea plant
images we are able to track both the growth behavior as well as the senescence process over
time. In Fig 12 we demonstrate this functionality based on the time series of images for two
individual plants. Although the growth behavior, in terms of projected plant area (all types), is
similar to wheat in the sense of increasing with time, in contrast to the wheat experiment, the
analysis reveals a decreasing trend in senescence of one plant and a semi-steady, but fluctuating
behavior for the other plant. The differences can be attributed to the genotypic responses of the
two plants under salt stress: for one plant (blue curve), the senescence pattern did not spread

Table 1. Evaluation of the performance of our senescence analysis algorithm as applied to chickpea images.

Treatment Our method Manual (after 2 days) Manual (after 3 days)

(Percentage of senescent leaves) (Senescence score) (Senescence score)

(mM NaCl) Rupali Rupali Rupali

0 0.73 1.64 1 4 3 4

0.53 8.03 1 5 2 6

3.30 1.08 2 2 4 5

0.53 2.27 1 4 3 3

30 1.14 3.69 2 5 5 5

0.34 5.65 1 4 4 5

0.91 11.81 2 7 3 10

0.84 1.71 2 4 3 7

40 0.71 3.13 2 4 5 5

1.05 9.80 2 7 5 8

0.91 11.81 2 4 3 6

0.78 10.15 2 8 3 10

60 0.99 1.40 4 5 5 5

0.50 2.77 1 5 4 5

0.81 2.70 1 5 4 10

1.81 25.75 2 8 3 10

In this table our estimated level or percentage of leaf senescence is based on the last image in the sequence of 8 chickpea plant images.

doi:10.1371/journal.pone.0157102.t001
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over the plant during the plant’s continual growth, leading to a decreasing fraction of leaf
senescence. This can be verified by appeal to the image comparison in Fig 13(a) and 13(b). In
contrast, for the other plant (red curve) senescence increased with time, but leaf fall resulted in
a significant fluctuation in the percentage of leaves exhibiting senescence. This is exemplified
in Fig 13(c) and 13(d).

Conclusions and Future Work
In plant phenomics it is not only those characteristics associated with the plant growth phase
that are important factors to capture to assess a plant’s performance against growth conditions,

Fig 11. Scatter plots of manual inspection scores versus the objectively estimated senescence
measure proposed in this paper and that of the machine learningmethod adapted by the LemnaTec
system for a set of chickpea plants.Manual scoring was performed on two occasions: 2 days after the last
imaging day (top panel) and 3 days after the last imaging day (bottom panel).

doi:10.1371/journal.pone.0157102.g011
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i.e., a plant’s stress response. It is equally important to quantify traits indicative of a plant’s age
and ill health, such as senescence. In this paper we have proposed a fully automated algorithmic
tool for senescence estimation, encompassing the restoration of color, plant foreground seg-
mentation and a color classification for senescence analysis. One less obvious outcome of our
efforts is the demonstration that manual inspection is inadequate as a means of assessing the
senescence state of a plant. Image analysis based on color differentiation is a sound alternative.
However, under high throughput conditions where the entire plant is imaged, the resolution

Fig 12. Whole-of-plant assessment of growth (plant area) and senescence as a function of time for
two individual chickpea plants. Top figure shows the time developments of total projected plant area (all
leaves and stems) for the two plants, depicting qualitatively similar but quantitatively different growth
behavior. Bottom figure shows the percentage of senescence present in the leaves of these plants relative to
their total plant area. The two individual plants exhibit different rates of senescence development.

doi:10.1371/journal.pone.0157102.g012
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may be insufficient to accurately capture senescence onset and development. Another related
major problem is the absence of adequate camera color calibration. The approach we advo-
cated here addresses, in a practical way, these major problems. As a result, we not only can
reduce image color distortion but also improve image quality sufficiently to quantify senes-
cence accurately. To verify the procedure’s effectiveness, we compared our results with senes-
cence scores attained by manual inspection and the senescence levels estimated by the in-built
tool. We found that there is a correlation between the these measures, which no doubt has its
origins in the fact that these measures are based on plant appearance.

It is worth reiterating that the process of labelling or annotating of images for the training of
a machine learning approach is time consuming, with the final result intrinsically dependent
on the quality of annotation. As mentioned already, machine learning approaches have their
limitations, which can prevent them from being used in high throughput applications. In con-
trast, the philosophy of the approach proposed here is inherently high throughput, and whose

Fig 13. Two examples of senescence patterns. (a) and (b) depict similar sized leaf areas of the same plant
on different days; in (b) the plant has grown a little larger. Figs (c) and (d) show the same plant (different from
(a) and (b)) on different days but at a much later stage of development when more leaves have become
senescent and after some senescent leaves have fallen off.

doi:10.1371/journal.pone.0157102.g013
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full automation can be reinforced by using, as benchmark, the image of a standard color chart
at the beginning of an experiment, instead of estimating an undistorted image of a young plant.

One direction for further study is to undertake a more extensive comparison between the
manual and the automated approaches to identify (if possible) a reason for the observed func-
tional form for this correlation. A second direction for further study was identified in the chick-
pea study, where both the decreasing senescence trend and the fluctuating behavior of the two
curves in Fig 12(b) indicate that a detailed and aggregated monitoring of leaf senescence,
including the (time) tracking of leaf fall, is required for a complete assessment of senescence
for this phenotypic trait to properly characterize a plant’s stress response.

Supporting Information
S1 Appendix. Detailed description of the segmentation process.
(PDF)
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Link to chapter 5 

Limited genetic studies in chickpea have been done to understand the genetic control of 

important salinity tolerance related traits. Linkage mapping and a high-resolution 

genome-Zide association study (GWAS) were utilised to identify QTL underlying 

salinity tolerance, with the ultimate objective of introgressing salinity tolerance traits into 

sensitive varieties. The confounding influence of population structure and flowering time 

were taken into account. Several loci controlling plant growth, water use and yield and 

yield related traits under salinity were identified. Loci on chromosome 4 and chromosome 

7 controlling growth, yield and yield related traits were identified by both mapping 

approaches. Molecular markers tightly linked to these QTL will be validated as a 

selection tool in breeding to improve salinity tolerance in chickpea. This work is written 

in manuscript format and will shortly be submitted for peer review. 
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Abstract 

Salinity tolerance is a complex trait under the control of several quantitative trait loci 

(QTL) and genes. This study combined approaches involving linkage mapping and a 

high-resolution genome-wide association study (GWAS) to identify QTL underlying 

salinity tolerance in chickpea, with the ultimate objective of introgressing salinity 

tolerance traits into new varieties. The influence of flowering time and population 

structure were taken into account to ensure QTL found were not related with maturity and 

population stratification. Linkage mapping conducted on a bi-parental population at F6 

generation identified 57 QTL while GWAS utilising a diversity panel known as the 

chickpea Reference Set, identified 54 marker-trait associations (MTAs) linked to growth 

rate, yield and yield components and ion accumulation under salt stress. Both GWAS and 

linkage mapping identified two loci regulating several yield and yield related traits 

including seed number under both salt and control conditions. Firstly, a locus on 

chromosome 4 regulating relative growth rate with LOD score of 3.6 explaining 42.6% of 

genetic variation was detected by both approaches. This QTL was found to co-locate with 

QTL for projected shoot area, water use, 100-seed weight, number of filled pods and seed 

number under salt. The second locus on chromosome 7 controlled seed number under 

both salt and control conditions with LOD score of 4.4 and explaining 12.6 % of genetic 

variation. This QTL co-located with other QTL for number of pods, number of filled pods 

and harvest index. Molecular markers linked to these loci will be Yalidated in diIIerent 

sets of JerPSlasP Xnder diIIerent enYironPents and developed for marker-assisted 

breeding to improve salinity tolerance in sensitive cultivars. 
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Introduction 

Salinity is an abiotic stress, which severely impacts on crops’ productivity (Nawaz et al., 

2010; Rengasamy, 2006). Grain legumes are generally sensitive to salinity, with faba 

bean, field pea and chickpea being the most sensitive (Maas and Hoffman, 1977). 

Chickpea is the second most cultivated legume globally (FAOSTAT, 2014) and sensitive 

genotypes can be killed by as little as 25 mM NaCl in hydroponics (Flowers et al., 2010). 

Several studies have shown that chickpea is most sensitive at the reproductive stage 

(Krishnamurthy et al., 2011; Samineni et al., 2011; Vadez et al., 2007; Vadez et al., 

2012b).  

Salinity has been reported to delay the time to flower and maturity in chickpea 

(Krishnamurthy et al., 2011; Pushpavalli et al., 2015a; Vadez et al., 2012a). Vadez et al. 

(2007) described a relationship between days to flower and seed yield with very early and 

late maturing genotypes having increased sensitivity to salt dXe to the conIoXndinJ eIIect 

oI SXtatiYe heat stress toZards the end oI the season. This phenomenon was not observed

in studies conducted by Turner et al. (2013) and Krishnamurthy et al. (2011)� ThereIore, it 

is crucial to address flowering time during analyses to remove the confounding effect of 

flowering and allow for accurate quantification of salinity tolerance. Vadez et al. (2012a) 

conducted separate analyses within early and late flowering groups in a population 

developed between JG 62 (tolerant) and ICCV 2 (sensitive) chickpea genotypes 

segregating for flowering time to reduce the confounding effect of maturity. This 

analysis, however, results in small sample size, which considerably lowers the power and 

reliability of QTL detection. This study describes an effective strategy to control the 

effects of flowering time by incorporating flowering loci as cofactors during the genetic 

analysis in a mapping population developed between Genesis836 (salt tolerant) and 

Rupali (salt sensitive). Utilising bi-parental populations to map QTL, can result in the 

identification of chromosomal regions controlling different traits (Mackay et al., 2009). 
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Linkage mapping has been used to identify chromosome segments underlying salinity 

tolerance related traits in the model plant Arabidopsis (DeRose-Wilson and Gaut, 2011; 

Kobayashi et al., 2016) as well as in crops, such as wheat (Genc et al., 2014; Genc et al., 

2013), barley (Fan et al., 2015; Ma et al., 2015; Nguyen et al., 2013), rice (Tiwari et al., 

2016; Zheng et al., 2015), and soybean (Qi et al., 2014; Zhang et al., 2014). To date, there 

are only three studies that have employed linkage mapping to identify loci controlling 

salinity tolerance in chickpea (Pushpavalli et al., 2015b; Samineni, 2010; Vadez et al., 

2012a). Using linkage maps with low marker density, these studies identified QTL within 

big intervals associated with seed yield and yield related traits under salinity. All three of 

these studies utilised Indian adapted cultivars and the QTL detected may not be useful in 

other production environments such as Australia. Our study has utilised a linkage map 

with high marker density to map salt-tolerance related traits in a population developed 

between two Australian adapted cultivars. 

GWAS takes advantage of natural genetic variation and historic recombination in diverse 

germplasm to generally provide higher resolution mapping compared to biparental 

linkage mapping (Cardon and Bell, 2001; Sonah et al., 2015). GWAS has been used to 

identify regions controlling salinity tolerance in several crops, such as Arabidopsis 

(DeRose-Wilson and Gaut, 2011), rice (Campbell et al., 2015; Kumar et al., 2015), barley 

(Nguyen et al., 2013), and soybean (Kan et al., 2015). In chickpea, GWAS has been 

successfully utilised to identify genomic regions associated with phenology (Upadhyaya 

et al., 2015), agronomic traits including pod number, seed number and 100-seed weight 

(Kujur et al., 2015), drought and heat stress, (Thudi et al., 2014), seed quality, (Bajaj et 

al., 2015; Upadhyaya et al., 2016), and plant architecture (Bajaj et al., 2016). However, 

this approach has not yet been used to analyse salinity tolerance in chickpea.  

The aim of this study is to understand the physiological and genetic mechanisms 
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underlying salinity tolerance in chickpea. This study integrates image-based phenotyping 

described in Atieno et al. (2016), linkage mapping and GWAS while controlling for 

phenology to identify tolerance QTL.  

Material and methods 

Plant material 

Recombinant Inbred Line (RIL) population 

A RIL population consisting of 200 lines was developed from a cross between two desi 

Australian adapted chickpea cultivars, Genesis836 and Rupali, previously shown to 

contrast for salinity tolerance (Khan et al., 2015; Turner et al., 2013). Genesis836 is a 

direct introduction from the International Centre for Research in the Semi-Arid Tropics 

(ICRISAT, India) while Rupali was bred by the Department of Agriculture and Food 

Western Australia (DAFWA) and the Centre for Legumes in Mediterranean Agriculture 

(CLIMA), based at the University of Western Australia. Genesis836 and Rupali generally 

flower at 52 days after sowing (DAS) and 48 DAS, respectively, under glasshouse 

conditions. F1 plants derived from Genesis836 & Rupali cross were vegetatively 

propagated according to the protocol of Danehloueipour et al. (2006). F2 plants were 

advanced to F5 generation by assisted single seed descent using a protocol developed by 

Dr Janine croser and team based at the University of Western Australia. ,n this Srotocol� 

Pature embryos from developing pods were collected and put through precocious 

germination treatment. Plants were grown in growth rooms with optimised light and 

temperature for rapid generation turnover� achieYinJ ��� Jenerations Ser \ear. 

Chickpea Reference Set 

A subset of the chickpea Reference Set (Upadhyaya et al., 2008) composed of 245 diverse 

genotypes was utilised in this study. Details of this set are shown in Table S1. 
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Phenotyping in the glasshouse 

Phenotyping of the Reference Set was conducted in The Plant Accelerator 

(http://www.plantphenomics.org.au/services/accelerator/), located at the Waite Campus of 

the University of Adelaide as described in Atieno et al. (2016). Phenotyping of the RIL 

population followed the same protocol as that used for the Reference Set with minor 

modifications. The experiment was conducted between June 2015 and November 2015. 

The glasshouse temperature and humidity were controlled and ranged from 24±2ºC and 

40% (day) and 16±2ºC and 90% (night), respectively. The experiment was set up in two 

smarthouses (growth rooms) utilising 20 lanes and 22 positions. Each RIL was replicated 

twice while the parents were replicated 10 times in a design described in Atieno et al. 

(2016). Four hrs of supplemental lighting was provided in growth rooms to extend 

daylight to 12 hrs. Plants were first imaged at 30 days after sowing (DAS) for three days 

prior to salt application to quantify plant growth rate before salt application. At 33 DAS, 

each pot received either 0 or 70 mM NaCl, equivalent to applying 100 ml of 0 or 250 mM 

NaCl respectively. To maintain salt concentration in the pots, all pots were watered and 

maintained at field capacity (17% (w/w), determined gravimetrically). Plants were 

imaged for a further 13 days to quantify growth under salt. A total of 14,080 visible light 

(RGB) images were obtained and processed in LemnaGrid (LemnaTec, Germany) to 

compute projected shoot area (PSA). Relative growth rates (RGR) were computed from 

smoothed cubic splines fitted for each cart to the observed PSA for each day of imaging. 

The difference in the logarithms of the smoothed projected shoot area for two consecutive 

days of imaging was divided by the number of days between imagings to constitute RGR. 

In addition to measurements extracted from high-resolution imaging, other measurements 

taken included; days to first flower, leaf sodium (Na+) ion and potassium (K+) ion content, 

plant height, yield and yield components including shoot biomass at maturity, seed 

number, total pod number, empty pod number, filled pod number and 100 -seed weight. 
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To check for the effect of photoperiod on flowering, Genesis836 and Rupali were grown 

under 3 different light regimes (8 hrs, 12 hrs 16 hrs). Similarly, genotypes from the RIL 

population with relatively early and late flowering times under 12 hrs of light were also 

grown under 16 hrs of light.  

Genotyping 

DNA was extracted from 200 RILs and parents (Genesis836 and Rupali) using DNeasy 

plant mini kit (QIAGEN). The quantity and quality of DNA was checked using a Nano 

drop (ND-100 spectrophotometer, Biolab). Genotyping was performed using DArTseq, a 

next generation sequencing (NGS) based platform that uses genome complexity reduction 

to capture informative segments in the genome (http://www.diversityarrays.com/dart-

application-dartseq). 

SNP data, in HapMap format, resulting from whole genome resequencing of the 

Reference Set with 5× -13× coverage was obtained from Dr Rajeev K. Varshney at the 

International Crops Research Institute for the Semi-Arid Tropics (ICRISAT). SNPs with 

minor allele frequency lower than 5% and SNPs that were not biallelic were eliminated 

from the genotypic data with the remaining 562,000 SNPs used for population structure 

determination and GWAS.  

Linkage map construction 

The linkage map of the Genesis836 x Rupali RIL population was constructed using a 

synergistic combination of qtl (Broman and Sen, 2009; Broman and Wu, 2016) and 

ASMap (Taylor and Butler, 2016) R packages available in the R Statistical Computing 

Environment (RCoreTeam, 2016). Preceding linkage map construction, the genetic 

marker set was diagnostically analysed. This included a dissimilarity analysis of the 

progeny to determine their relatedness. Individuals sharing more than 90% of their alleles 
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across the markers set were deemed to be genetic clones and used to form consensus 

genotypes. Marker quality was refined through the removal of markers with less than 

80% observed allelic information. Additionally, markers were removed if they exhibited 

significant segregation distortion greater than a Bonferroni corrected p-value for a 

familywise alpha level equal to 0.05. The remaining set of markers was then initially 

clustered into nine linkage groups and the markers were optimally ordered within each 

linkage group using the MSTMap algorithm (Wu et al., 2008) functionality available in 

the ASMap package. A graphical diagnosis of the recombinations and double 

recombinations of the genotypes for the initial constructed map revealed several 

genotypes to be removed from further linkage map construction. After this removal, the 

markers within each linkage group were reordered and a simultaneous graphical 

examination of the marker and interval profiles was conducted. This indicated several 

markers with excessive double recombinations and these were removed. The markers 

within linkage groups were optimally ordered a final time and the identification and 

orientation of the linkage groups occurred through marker sequence comparison using the 

BLAST portal https://blast.ncbi.nlm.nih.gov/Blast.cgi. From this information, two linkage 

groups were merged to form the final linkage map. 

The linkage map was prepared for analysis, by condensing each co-locating set of 

markers to form a representative consensus marker with a unique map position. Alleles 

were numerically encoded (AA = 1, BB = -1) and the remaining missing allele calls were 

numerically imputed using the flanking marker rules of Martinez and Curnow (1992). 

This complete marker information was then used to calculate pseudo mid-point markers 

using the formulae derived in Verbyla et al. (2007). 
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Phenotypic linear mixed model analysis 

All phenotypic traits of the RIL population and Reference Set were analysed using a 

linear mixed model that appropriately partitioned and accounted for genetic and non-

genetic sources of variation (Gilmour et al., 1997). Where necessary, traits were 

transformed to satisfy modelling assumptions. For each of the traits, the linear mixed 

model consisted of fixed effects containing a term to differentiate smarthouses in the 

Plant Accelerator as well as model linear spatial trend across rows within each 

smarthouse. The fixed model also contained an indicator term to ensure estimation of an 

overall mean effect for the RIL lines, and the population parents independently for the salt 

and control treatments. To ensure the genetic component of the traits was adjusted for 

flowering time, two previously identified flowering loci were also included in the fixed 

model as numerical covariates and modelled independently for both treatments. 

Extraneous non-genetic variation arising from the experiment including variation from 

zones in the smarthouse and non-linear trend across the ranges within smarthouses was 

captured using random effects. The residuals of the linear mixed model; were partitioned 

to ensure the control and salt treatments had their own residual variance.  The random 

component of the model also contained a genetic term consisting of a factor with a level 

for each member of the RIL population and this was also partitioned to ensure separate 

genetic variances were estimated for the control and salt treatments. From this model best 

linear unbiased predictors (BLUPs) of the individual RILs for each treatment trait were 

extracted and used to calculate heritability using the formula derived in Cullis et al. 

(2006) and to perform correlation analysis. All linear mixed model analysis of the RIL 

population was conducted in GenStat 17th Edition software. 
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Whole genome QTL analysis 

The whole genome average interval mapping (WGAIM) approach of Verbyla et al. 

(2007) and Verbyla et al. (2012) was used for detection and summary of QTL for the 

traits of the RIL population. The WGAIM approach uses an extension of linear mixed 

models by incorporating the complete set of linkage map intervals into the random 

component of the linear mixed model as a single term containing a contiguous block of 

covariates. The inclusion of this term is then tested and if found to be significant at an 

alpha level equal to 0.05, an outlier detection method is used to select a putative interval 

QTL to move to the fixed part of the linear mixed model. This forward selection process 

is repeated until the term containing the remaining set of linkage map intervals is non-

significant. The selected set of additive QTL intervals are then summarised with their 

flanking markers, interval distance, size of the putative QTL effect, contribution to 

genetic variance and LOD score.  All QTL analyses and summaries were performed using 

the wgaim R package (Taylor and Verbyla, 2011) available in the R Statistical Computing 

Environment. To derive confidence intervals for selected QTL, LOD drop-off of 1.5 units 

on each side of QTL was applied according to Lander and Botstein (1989) in GenStat 17th 

Edition software. MapChart 2.3 software (Voorrips, 2002) was used to graphically 

represent QTL with confidence intervals on linkage map. 

Population structure 

To determine the population structure of the Reference Set, the ADMIXTURE 1.23 

program (Alexander et al., 2009) was used to identify patterns of ancestry, admixture and 

the number of underlying population sub-groups (K).  To select the number of population 

sub-groups, a range of K = 1, …,10 was chosen and a maximum likelihood estimation 

(MLE) approach of ancestry (Alexander et al., 2009) was conducted for each K  based on 

562,000 SNP markers (Figure S1).The estimated number of subgroups of the population 
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was then chosen using the cross validation method of Alexander and Lange (2011). 

Additionally, a neighbor-joining clustering method utilising the 562,000 SNP markers 

was run in Trait Analysis by aSSociation, Evolution, and Linkage (TASSEL) 5.2.19 

program (Bradbury et al., 2007) and a phylogenetic tree was produced showing clustering 

of genotypes in the Reference Set.  

Genome-wide association mapping (GWAS) 

For each of the traits measured from the Reference Set, Best Linear Unbiased Estimates 

(BLUE) were extracted from the associated linear mixed model and used as a phenotype 

in GWAS. The GWAS approach used a linear mixed model that partitioned and 

accounted for several components of genetic variation. To ensure the global genetic 

population structure of the Reference Set was captured, the ancestry fractions returned 

from using ADMIXTURE 1.23 with 562,000 SNP markers and K = 9 population 

subgroups was added as a set of fixed covariates. Additionally, family relatedness was 

also included in the model through a kinship matrix calculated using the method of Van 

Raden (2008).  Marker-trait associations were then determined by including individual 

markers as fixed covariates in the model and scanning across the complete set of 562 000 

SNP markers. Marker effects were found to be significant if they exceeded a Bonferroni 

corrected p-value threshold of 9 x 10-8. All computations were carried out using the 

Genome Association and Prediction Integrated Tool (GAPIT) software available as 

standalone functions (Lipka et al., 2012) in the R Statistical Computing Environment. 

Using Legume Information System gbrowse 

http://legumeinfo.org/genomes/gbrowse/cicar. CDCFrontier.v1.0, genes within 190 kb of 

significant SNPs were identified as candidates for salinity tolerance. This was based on 

the estimation from analysis of the Reference Collection that LD decayed in landraces at 

an average distance of 190 kb (Dr Rajeev K. Varshney, personal communication, March 

2015). 
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Results 

Phenotyping 

Phenotypic data from the Reference Set has been described in detail in (Atieno et al., 

2016). This section will describe phenotypic data from Genesis836 and Rupali bi-parental 

population. Means of most traits measured for the RILs were within range of Genesis836 

and Rupali means with the exception of plant height and days to flower, where the RILs 

displayed transgressive phenotypes compared to the parents (Table 1). Significant 

genotype by treatment interaction (G×T) was observed for most traits but not for 100-seed 

weight, plant height, projected shoot area, relative growth rate, days to flower, potassium 

ions, water use and water use efficiency (Table 1). In instances where G×T was not 

significant, genotype and treatment effects were significant (< .001) (Table 1). As seed 

yield under salinity was independent of yield potential (Figure S2), salinity stress 

response was defined in terms of seed yield under salt (70 mM NaCl). Salinity treatment 

led to a significant reduction on seed yield and yield components. Seed yield reduction of 

34%, 50% and 16% was observed in parents (Genesis836, Rupali), and RILs under 

salinity, respectively (Table 1). Genesis836 was observed to yield 43% more under salt 

compared to Rupali (Table 1). Even though the parents clearly contrasted for reductions 

in seed number, (19% and 35% for Genesis836 and Rupali, respectively) and number of 

filled pods, (19% and 32% for Genesis836 and Rupali, respectively) as a result of salinity 

treatment, an average small reduction of 4% and 7% in RILs was observed for seed 

number and number of filled pods, respectively with some RILs affected more than others 

(Table 1).  A reduction of 23% in 100-seed weight was recorded in RILs, although G×T 

for 100-seed weight was not significant (Table 1). Similarly, relative growth rate and 

shoot biomass were reduced by 25% and 36%, respectively, in RILs (Table 1). Rupali 

accumulated 74% more sodium ions (Na+) compared to Genesis836 under salt with RILs 
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accumulating an average of 78.13 µmol/gDW of Na+ in leaves (Table 1). Days to flower 

was not affected by salinity, both parents and RILs recorded similar days to flower under 

both salt and control conditions. Additionally, G×T for days to flower was not significant 

(Table 1). Heritability indices of the traits under salinity ranged from 27% for water use 

efficiency to 96% for days to flower (Table 1).  

Relationship between yield and yield related traits 

Strong positive correlations of r=0.78, r=0.70, r=0.78 under salt and r=0.8, r=0.74, r=0.82 

under control was observed between seed yield and seed number, total pod number, and 

number of filled pods, respectively (Table 2). This demonstrates the important role these 

traits play in yield determination under both salt and control conditions. Strong 

correlations of r=0.71, r=0.65, r=0.41 under salt was established between seed yield and 

shoot biomass, plant height and days to flower, respectively (Table 2). However, negative 

albeit weak correlations of r=-0.33, r=-0.27, r=-0.35 under control, was observed between 

seed yield and shoot biomass, plant height and days to flower, respectively (Table 2). 

Even though harvest index was highly and positively correlated with seed yield under 

control conditions (r=0.70), it was only weakly correlated with seed yield under salt 

(r=0.28) (Table 2). Under salt treatment, a moderate relationship of r=0.64 and r=0.40 

was observed between seed yield and 100-seed weight and relative growth rate (RGR), 

respectively (Table 2). Conversely, seed yield did not have a significant relationship with 

these traits under control conditions (Table 2). Seed yield under salt treatment had 

moderate negative correlations of r=-0.49, r=-0.48, with sodium (Na+) and potassium 

(K+), respectively (Table 2). Water use efficiency and number of empty pods did not have 

a significant relationship with seed yield under both salt and control (Table 2). However, 

water use had strong correlations of r=0.73 and r=0.84 with projected shoot area under 

salt and control conditions, respectively (Table 2).  
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Table 1: Sum
m

ary of m
easurem

ents taken in the glasshouse under salt and control conditions. O
verall trait m

eans, and P-value for effects of genotypes (G
), treatm

ents 

(T)
and genotype by treatm

ent interaction (G
×T) for G

enesis836 and Rupali and RIL population consisting of 200 genotypes. n.a is indicated for non-inform
ative p-values

w
here G

×T is significant. Broad-sense heritability is indicated by H
2.

T
raits 

T
reatm

ent 
G

enesis836 
R

upali 
M

ean 
M

in 
M

ax 
G

 
T

 
G
×T

 
H

2 
Seed yield (g) 

Control 
6.7 

5.05 
4.79 

1.03 
7.99 

51 
Salt 

4.4 
2.5 

4.03 
0.7 

7.43 
n.a

n.a
< .001 

69 
Seed num

ber 
Control 

32 
37 

26.9 
8.11 

48.72 
61 

Salt 
26 

24 
25.8 

4.34 
48.17 

n.a
n.a

< .001 
54 

100-seed w
eight (g) 

Control
21.3 

13.91 
19.27 

10.62 
27.91 

74 
Salt 

17.12 
10.04 

14.92 
5.11 

25.1 
< .001 

< .001 
0.67 

79 
T

otal pod num
ber 

Control 
30 

32 
24.47 

5 
42.39 

59 
Salt 

24 
25 

23.75 
7.89 

45.39 
n.a

n.a
< .001 

57 
Filled pod num

ber 
Control 

27 
28 

20.9 
6.54 

40.96 
85 

Salt 
22 

19 
19.44 

3.08 
35.43 

n.a
n.a

< .001 
56 

E
m

pty pod num
ber 

Control 
4 

4 
5.04 

-0.24
15.44 

88 
Salt 

2 
6 

2.87 
-0.44

13.02 
n.a

n.a
0.024 

52 
H

arvest index 
Control 

0.44 
0.32 

0.31 
0.06 

0.51 
82 

Salt 
0.45 

0.3 
0.36 

0.18 
0.5 

n.a
n.a

< .001 
51 

R
elative grow

th rate 
Control 

0.07 
0.07 

0.08 
0.05 

0.1 
52 

Salt 
0.06 

0.05 
0.06 

0.04 
0.09 

< .001 
< .001 

0.29 
49 

Plant height (cm
) 

Control 
53.8 

52.8 
61.72 

34.96 
86.44 

89 
Salt 

41.6 
41.2 

51.54 
27.96 

72.41 
< .001 

< .001 
0.645 

88 
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T
raits 

T
reatm

ent 
G

enesis836 
R

upali 
M

ean 
M

in 
M

ax 
G

 
T

 
G
×T

 
H

2 
Shoot biom

ass 
(g) 

Control 
8.5 

10.6 
11.29 

2.19 
21.43 

84 

Salt 
5.2 

5.6 
7.18 

2.23 
13.18 

n.a
n.a

< .001 
78 

Projected 
shoot area 

(pixels) 

Control 
3.12×10

5 
3.38×10

5 
3.22×10

5 
1.29×10

5 
5.17×10

5 
79 

Salt 
2.72×10

5 
2.90×10

5 
2.78×10

5 
1.24×10

5 
4.87×10

5 
< .001 

< .001 
0.159 

81 
W

ater use (m
l) 

Control 
43.2 

42.6 
43.87 

18.57 
65 

50 
Salt 

26.88 
29.27 

28.48 
12.76 

46.32 
< .001 

< .001 
0.242 

41 
A

pparent 
w

ater use 
efficiency 
(pixels/m

l) 

Control 
7.67×10

3 
7.20×10

3 
7.49×10

3 
2.87×10

3 
1.13×10

4 
37 

Salt 
1.04×10

4 
1.02×10

4 
1.05×10

4 
5.49×10

3 
1.68×10

4 
< .001 

< .001 
0.263 

27 
Potassium

 
(µm

ol/gD
W

) 
Control 

982 
969 

905.87 
519 

1554 
43 

Salt 
1361 

1374 
1329.71 

795 
2549 

< .001 
< .001 

0.283 
52 

Sodium
 

(µm
ol/gD

W
) 

Control 
5.2 

9.57 
8.43 

5.61 
80.32 

53 

Salt 
49.9 

193.43 
78.13 

2.47 
452.28 

n.a
n.a

< .001 
61 

Potassium
: 

Sodium
 

Control 
189.94 

101.25 
107.04 

1.64 
980.85 

47 

Salt 
27.27 

7.1 
17.18 

3.63 
148.57 

n.a
n.a

< .001 
63 

D
ays to flow

er 
Control 

48 
46 

59.5 
35 

90 
97 

Salt 
48 

46 
60.3 

36 
95 

< .001 
< .001 

0.26 
96 
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Traits Seed 
yield 

Seed 
number 

100-seed
weight

Total 
pods 

Filled 
pods 

Empty 
pods 

Days to 
flower 

Shoot 
biomass 

Seed 
yield 

1 0.80*** 0.09 ns 0.74*** 0.82*** 0.04 ns -0.35*** -0.33***

Seed 
number 

0.78*** 1 -0.48*** 0.81*** 0.95*** -0.05 ns -0.48*** -0.54***

100-seed
weight

0.64*** 0.04 ns 1 -0.24*** -0.37*** 0.16* 0.35*** 0.49*** 

Total 
pods 

0.70*** 0.84*** 0.10 ns 1 0.87*** 0.49*** -0.26*** -0.26***

Filled 
pods 

0.78*** 0.92*** 0.15* 0.94*** 1 0.00 ns -0.43*** -0.46***

Empty 
pods 

-0.02 ns 0.02 ns -0.09 ns 0.44*** 0.10 ns 1 0.23** 0.28*** 

Days to 
flower 

0.41*** 0.23*** 0.38*** 0.36*** 0.31*** 0.21** 1 0.74*** 

Shoot 
biomass 

0.71*** 0.46*** 0.59*** 0.62*** 0.58*** 0.27*** 0.72*** 1 

Harvest 
index 

0.28*** 0.32*** 0.07 ns -0.01 ns 0.17* -0.45*** -0.46*** -0.43***

Sodium 
(Na+) 

-0.49*** -0.32*** -0.37*** -0.38*** -0.40*** -0.07 ns -0.52*** -0.56***

Potassium 
(K+) 

-0.48*** -0.27*** -0.42*** -0.34*** -0.33*** -0.12 ns -0.61*** -0.60***

K:Na 
ratio 

0.37*** 0.18** 0.34*** 0.24*** 0.23** 0.10 ns 0.27*** 0.32*** 

Plant 
height 

0.65*** 0.39*** 0.58*** 0.55*** 0.49*** 0.28*** 0.75*** 0.90*** 

Relative 
growth 

rate 

0.40*** 0.48*** 0.02 ns 0.50*** 0.49*** 0.14* 0.19** 0.32*** 

Water use 0.30*** 0.27*** 0.15* 0.21** 0.24*** 0.00 ns -0.29*** 0.14 ns 

Projected 
shoot area 

0.27*** 0.04 ns 0.38*** 0.00 ns 0.06 -0.14 -0.34*** 0.10 ns 

Water use 
efficiency 

-0.10 ns -0.24*** 0.12 ns -0.22** -0.19** -0.16* 0.02 ns -0.04 ns

Table 2: Relationship between traits, under control (left panel) and salt (right panel) determined by Pearson’s 

correla tion analysis. Highlighted, are moderate to high correlation coefficients. Level of significance 

(***=P<0.001, **= P<0.01, *= P<0.05, ns=non-significant). 
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Harvest 
index 

Sodium 
(Na+) 

Potassiu
m (K+) 

K:Na 
ratio 

Plant 
height 

Relative 
growth 

rate 

Water 
use 

Projecte
d shoot 

area 

Water 
use 

efficiency 
0.70*** -0.12 ns 0.11 ns -0.01 ns -0.27*** 0.01 ns 0.14* 0.16* 0.07 ns 

0.77*** 0.06 ns 0.37*** 0.04 ns -0.52*** -0.08 ns 0.00 ns -0.04 ns 0.01 ns 

-0.32*** -0.35*** -0.49*** -0.10 ns 0.52*** 0.17* 0.28*** 0.33*** 0.06 ns 

0.50*** -0.18* 0.15* 0.08 ns -0.22** 0.16* 0.02 ns -0.04 ns -0.02 ns

0.70*** -0.03 ns 0.32*** 0.06 ns -0.43*** -0.01 ns 0.02 ns 0 ns 0.05 ns 

-0.23*** -0.29*** -0.25*** 0.05 ns 0.31** 0.34** 0.01 ns -0.09 ns -0.13 ns

-0.73*** -0.39*** -0.49*** -0.02 ns 0.75*** 0.41*** -0.17** -0.26*** -0.18**

-0.89*** -0.47*** -0.57*** -0.04 ns 0.90*** 0.40*** 0.16* 0.07 ns -0.12 ns

1 0.33*** 0.50*** 0.01 ns -0.81*** -0.32*** -0.04 ns 0.03 ns 0.10 ns 

0.18** 1 0.48*** -0.03 ns -0.48*** -0.35*** -0.18* -0.12 ns -0.02 ns

0.23*** 0.70*** 1 -0.01 ns -0.64*** -0.23** -0.17* -0.18* -0.06 ns

-0.02 ns -0.54*** -0.42*** 1 -0.01 0.00 ns -0.12 ns -0.11 ns 0.00 ns 

-0.39*** -0.63*** -0.67*** 0.42*** 1 0.41*** 0.12 ns 0.06 ns -0.10 ns

-0.01 ns -0.35*** -0.20** 0.27*** 0.35* 1 0.00 ns -0.19** -0.31***

0.20** 0.11 ns 0.13 ns -0.01 ns 0.05 0.28*** 1 0.84*** 0.00 ns 

0.23** 0.10 ns 0.11 ns 0.02 ns 0.02 -0.08 ns 0.73*** 1 0.38*** 

-0.06 ns -0.01 ns -0.02 ns -0.03 ns -0.04 -0.28*** -0.28*** 0.17** 1 
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Genetic analysis 

Rupali/Genesis836 Genetic linkage map 

An intra-specific genetic map for Rupali/Genesis836 spanned 1043.3 cM and consisted of 

614 polymorphic markers (391 DArT and 223 SNP) mapped on 8 linkage groups (Table 

3; Figure S3). A heat map was used to confirm the quality of the constructed map and 

correct order of markers along the linkage groups (Figure S4).  This is the first high-

resolution genetic linkage map developed to map QTL for salinity tolerance in chickpea. 

The number of markers and length of linkage groups varied, with linkage group (LG) 3, 

corresponding to chromosome 7 having the most number of mapped markers (139) and 

LG 2, corresponding to chromosome 5 having the least number of mapped markers (47) 

(Table 3). Overall, chromosome 7 was densely populated with markers with an average 

spacing and maximum spacing between markers of 0.8 cM and 10.8 cM, respectively 

(Table 3). Chromosome 1 was least populated with markers; it consisted of 49 markers 

with an average spacing and maximum spacing between markers of 3.3 cM and 70.4 cM, 

respectively (Table 3) 

Table 3: Rupali/Genesis836 genetic linkage map. Each linkage group has a corresponding chromosome 

number derived from anchoring the genetic map to the chickpea physical map. Length of each linkage 

group, average and maximum spacing between markers are indicated using centimorgan (cM) units. 

Linkage 
group 

Chromosome 
number 

Number of 
markers 

Length 
cM) 

Average spacing 
(cM) 

Maximum 
spacing (cM) 

L.1 2 110 143.5 1.3 16.3 
L.2 5 47 142.9 3.1 14.3 
L.3 7 139 111.3 0.8 10.8 
L.4 4 112 150.5 1.4 26.8 
L.5 6 59 138.4 2.4 28 
L.6 8 49 75.7 1.6 12.4 
L.7 3 49 121.5 2.5 20.1 
L.8 1 49 159.4 3.3 70.4 
OVERALL 614 1043.3 1.7 70.4 
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QTL mapped in Rupali/Genesis836 population 

Flowering time can have confounding effects on salinity. Therefore, we first investigated 

genetic control of flowering time in the Rupali/Genesis836 RIL population. Days to 

flower followed a bimodal distribution, with most genotypes flowering at 45 days after 

sowing (DAS) and 70 DAS. The distribution was largely skewed to the right showing 

most genotypes belonged to the late flowering group (Figure 1a). While the RIL 

population flowered from 35-90 DAS, Rupali and Genesis836 flowered at 45 DAS and 48 

DAS, respectively (Figure 1a). This demonstrates the presence of transgressive 

segregation, with most RILs flowering much later compared to the parents. Mapping for 

QTL controlling flowering in this population revealed two loci on chromosome 5 and 

chromosome 3 (Figure 1b) with 49.7 % and 4.3 % of genotypic variation explaned 

(GVE), respectively. Extended photoperiod from 12 hrs to 16 hrs drastically shortened 

days to flower especially in the late flowering RILs (Figure 2a). Genesis836 and Rupali 

time to flowering was equally progressively shortened by increasing daylength from 8 hrs 

to 16 hrs (Figure 2b). 
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Figure 1: Flowering in Rupali/Genesis836 RIL mapping population. a). Bimodal distribution showing 

transgressive segregation for flowering time in the RIL population. Red arrows indicate flowering times for 

Rupali and Genesis836. b). LOD curve derived from QTL analysis of days to flower, showing flowering 

time in Rupali/Genesis836 population is controlled by two loci on choPosoPes three and IiYe. 

a). 

b). 

Chromosome
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Figure 2: Effect of photoperiod on flowering. a). Bar graph showing flowering times of Genesis836, 

Rupali, and 5 recombinant inbred lines under 12 hrs and 16 hrs of lighting. b). Bar graph showing flowering 

times of Genesis836 and Rupali under 8 hrs, 12 hrs and 16 hrs of lighting. In all cases, temperature was 

maintained at 24±2ºC and 16±2ºC (night). Error bars indicate standard error. 

a

b
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Conducting QTL analysis on Rupali/Genesis836 population prior to adjusting for 

flowering, found all QTL to locate on the same position as flowering loci on either 

chromosome 5 or chromosome 3.  After adjusting for flowering, 57 QTL, 32 QTL under 

control (Figure 3a; Table S2;) and 25 QTL under salt (Figure 3b; Table S2) spread across 

all chromosomes for 19 traits. Major QTL found under salt comprised of QTL for  water 

use (10.7% GVE), water use efficiency (WUE) (18.5%-23.9% GVE), projected shoot 

area (15.2% GVE), relative growth rate (37%-42.6% GVE), number of filled pods (18.2% 

GVE), 100-seed weight (14.1% GVE), and harvest index (14.9% GVE) (Table S2). 

Additionally, major QTL detected under control conditions included QTL for water use 

(21.9% GVE projected shoot area (10.6% GVE, relative growth rate (17.9% GVE), 

number of filled pods (12.5% GVE), seed number (12.6% GVE), 100-seed weight (18.7% 

GVE), and harvest index (19.4% GVE) (Table S2). There were QTL found to control the 

same traits under both control and salt treatments. For instance, a locus on chromosome 4 

flanked by SNP201 and SNP1069 controlled water use, plant growth rate, seed number, 

and 100-seed weight under both control and saline conditions (Table S2). Some of the 

loci detected were seen to regulate many traits. For example, a locus on chromosome 7 

flanked by DArT1046 and DArT1128 was seen to control plant height, total pod number, 

number of filled pods, seed number and harvest index under control conditions (Table 

S2). Similarly, total pod number, number of filled pods, seed number, 100-seed weight, 

WUE, projected shoot area, and relative growth rate under salt were under the control of a 

locus on chromosome 4 flanked by SNP201 and SNP1069 (Table S2).  
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Chromosome 

Figure 3a: Q
T

L
 position on R

upali/G
enesis genetic linkage m

ap from
 control condition. Linkage groups and corresSondinJ chroP

osoP
e nXP

bers are indicated on x-

axis w
hile genetic distances in cM

 are indicated on y-axis. The different colour bars indicate Q
TL for different traits. D

ifferent colour bars on one region show
 co-located 

Q
TL. O

n each of the linkage groups, Q
TL nam

es are indicated on the left in black w
hile flanking m

arkers are indicated on the right. A
bbreviations of the traits are given in 

supplem
entary Table S2.  
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Linkage groups 

Figure 3b: Q
TL position on R

upali/G
enesis genetic linkage m

ap from
 salinity treatm

ent. Linkage groups are indicated on x-axis w
hile genetic distances in cM

 are 

indicated on y-axis. The different colour bars indicate Q
TL for different traits. D

ifferent colour bars on one region show
 co-located Q

TL. O
n each of the linkage groups, 

Q
TL nam

es are indicated on the left in black w
hile flanking m

arkers are indicated on the right. A
bbreviations of the traits are given in supplem

entary Table S2.  

Chromosome
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 Population structure 

The ADMIXTURE software, employing maximum likelihood estimation of ancestry with 

membership coefficient threshold of 0.7, identified 9 groups in the chickpea Reference 

Set (Figure 4). Phylogenetic analysis based on the neighbour-joining clustering method 

grouped the genotypes in the same manner as the ADMIXTURE software. All nine 

clusters were interspersed with landraces, advanced cultivars and breeding lines. Desi and 

Kabuli types were generally seen to cluster in different groups, with groups 5 and 7 

dominated with kabuli in proportions of 89% and 77%, respectively. The rest of the 

groups were 85%-100% predominantly comprised of desi. A cluster comprised of groups 

1-4, consisting of genotypes from India, separated out from the rest of the groups (Figure

4). Groups 5, 6 and 9 were predominantly made up of genotypes from the Middle East 

including Afghanistan, Iran, and Turkey. Even though groups 7 and 8 were comprised of 

genotypes from different geographic origin all genotypes from Ethiopia were found in 

group 8 (Figure 4). 
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(a) 

(b) 

Figure 4: Population structure of genotypes in the chickpea R
eference Set derived using the A

D
M

IX
TU

R
E softw

are. K
=9 w

ith low
est cross validation error 

represents the num
ber of groups in the Reference Set (a) Structure plot show

ing grouping of genotypes in the Reference Set. G
roups are denoted by different colours and 

each genotype is represented by a single vertical line (b) Phylogenetic tree constructed using neighbour-joining clustering m
ethod. 
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Genome-wide association mapping (GWAS) 

Phenotypic data (Atieno et al., 2016) together with SNP marker data from Dr Rajeev K. 

Varshney were used to perform GWAS. A total of 54 marker-trait associations (MTAs) 

were identified for 10 salinity tolerance traits (Table 4; Figure S5). 21 MTAs for plant 

relative growth rate (for period 32-56 and 41-50) with phenotypic variation explained 

(PVE) ranging 12.5%-23.8% (Table 4) were identified. SNP locus 33012193 on 

chromosome 7 in linkage disequilibrium (LD) with a cation/calcium exchanger 4 gene 

had the highest PVE of 23.8% (Table 4). Projected shoot area had 14 MTAs, with SNP 

36364948 on LG1 having a PVE of 17.9%. This SNP was in LD with Ubiquitin-

associated/translation elongation factor EF1B gene (Table 4). Twelve MTAs were found 

for harvest index with 20.4% PVE observed for SNP 42203447 on chromosome 4, a SNP 

in LD with transcription factor TGA6 (Table 4). Additionally, 5 MTAs were observed for 

Na+ and K+ homeostasis with 16.1% PVE observed for SNP 47763801 on chromosome 4. 

This SNP was found to be in LD with MYB family transcription factor and a 

Sugar/inositol transporter gene (Table 4). Additionally, 2 MTAs were found for filled pod 

number with PVE of 14.5% found for SNP 42203447 on chromosome 4, a SNP in LD 

with various genes previously reported to be associated with salinity tolerance including 

Serine/threonine-protein phosphatase 7 long form homolog and Potassium channel 

AKT1-like genes (Table 4). Some MTAs were found to control more than one trait. For 

example, SNP 42633538 on chromosome 4 was shown to control both filled pod ratio and 

harvest index and was in LD with Serine/threonine-protein phosphatase 7 long form 

homolog and Trihelix transcription factor ASIL1 (Table 4). Several traits including 

relative growth rate, harvest index, seed number and seed yield under salt were under the 

control of two genomic regions located on chromosomes 4 and 7 (Figure 5). 
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Table 4: Significant m
arker-trait association (M

TA
s) for salinity tolerance related traits using m

ixed linear m
odel (M

LM
) analysis. Significant M

TA
s determ

ined by alpha 

threshold of 9.0×10-8, equivalent to Bonferroni-adjusted alpha threshold of 0.05. PV
E (%

): Phenotypic variation explained. Salinity tolerance candidate genes w
ere identified 

w
ithin 190 kb of a significant M

TA
. RG

R: relative grow
th rate; PSA

: projected shoot area; SC: ratio of salt over control; S: under salt; Chr: Chrom
osom

e; BP: Position 

Trait 
C

hr 
BP 

P.value
PV

E(%
) 

C
andidate genes 

32-56 O
ST

7 
15724015 

4.207E-09 
15.872045 

U
biquitin-A

ssociated/translation elongation factor EF1B; G
lutathione s-

transferase;Transducin/W
D

40 repeat protein 

32-56 O
ST

5 
6458423 

2.473E-08 
14.177996 

Transm
em

brane protein putative; Zinc finger C3H
C4 type (Ring finger) protein 

32-56 O
ST

7 
15682837 

2.667E-08 
14.106431 

U
biquitin-A

ssociated/translation elongation factor EF1B; glutathione S-transferase zeta 
class-like;Transducin/W

D
40 repeat protein 

32-56 R
G

R
S

7 
15724015 

2.092E-10 
17.825905 

U
biquitin-A

ssociated/translation elongation factor EF1B; glutathione S-transferase zeta 
class-like;Transducin/W

D
40 repeat protein; 

32-56R
G

R
S

7 
15682837 

1.912E-09 
15.765538 

U
biquitin-A

ssociated/translation elongation factor EF1B; glutathione S-transferase zeta 
class-like;Transducin/W

D
40 repeat protein 

32-56 R
G

R
S

4 
29622025 

2.409E-09 
15.552803 

Zinc finger protein 7-like; E3 U
biquitin-protein ligase SIN

A
T-2 like 

32-56R
G

R
S

5 
6458423 

5.307E-09 
14.829714 

Transm
em

brane protein putative; Zinc finger C3H
C4 type (Ring finger) protein 

32-56 R
G

R
S

4 
25984043 

1.197E-08 
14.091269 

Zinc finger C3H
C4 type (Ring finger) protein;probable voltage-gated potassium

 channel 

32-56R
G

R
S

7 
16149182 

2.072E-08 
13.596205 

Sugar/Inositol transporter/M
onosaccharide sensing protein 2-like;serine/threonine-

protein phosphatase 7 

32-56 R
G

R
S

7 
15704848 

2.613E-08 
13.38787 

U
biquitin-A

ssociated/translation elongation factor EF1B; glutathione S-transferase zeta 
class-like;Transducin/W

D
40 repeat protein; 

32-56R
G

R
S

7 
32569714 

3.906E-08 
13.02775 

V
acuolar protein sorting-associated protein 2 hom

olog 1-like; RIN
G

-H
2 finger protein 

A
TL52-like;Calcium

- binding EF-H
and 1 

32-56 R
G

R
S

7 
32673647 

4.068E-08 
12.991554 

ubiquitin-like protein A
TG

12; A
P2-like ethylene-responsive transcription factor 

;V
acuolar protein sorting-associated protein 2 hom

olog 1-like; RIN
G

-H
2 finger protein 

A
TL52-like;Calcium

- binding EF-H
and 1 
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32-56R
G

R
S

7 
15704842 

5.203E-08 
12.771953 

U
biquitin-A

ssociated/translation elongation factor EF1B; glutathione S-transferase zeta 
class-like;Transducin/W

D
40 repeat protein 

32-56 R
G

R
S

4 
34282038 

6.381E-08 
12.590339 

Sucrose-phosphatase 1-like 

41-50 O
ST

7 
33012193 

7.248E-13 
23.883076 

Cation/calcium
 exchanger 4 

41-50 O
ST

7 
48065892 

3.342E-08 
13.488204 

Serine-threonine/tyrosine-protein kinase 

41-50 O
ST

4 
35233486 

3.773E-08 
13.377039 

Type I inositol 1,4,5-trisphosphate 5-phosphatase CV
P2-like, Peroxidase 5-like 

41-50 O
ST

4 
31127132 

5.874E-08 
12.972415 

C2 calcium
-dependent m

em
brane targeting; ras-related protein RA

BA
4d; Transcription 

factor bH
LH

130 

41-50 O
ST

4 
30245455 

5.962E-08 
12.958871 

H
eat shock protein D

naJ; Probable protein phosphatase 2C 25; 11 kD
a late 

em
bryogenesis abundant protein-like 

41-50 O
ST

4 
30576733 

7.946E-08 
12.697323 

M
yb-like transcription factor; G

 patch dom
ain-containing protein 11;  C2 calcium

-
dependent m

em
brane targeting 

41-50 O
ST

4 
35368828 

8.095E-08 
12.680444 

Type I inositol 1,4,5-trisphosphate 5-phosphatase CV
P2-like; Peroxidase 5-like; Sugar 

transport protein 10-like 

PSA
56 SC

 
1 

36364948 
3.733E-10 

17.90417 
U

biquitin-associated/translation elongation factor EF1B; 

PSA
56 SC

 
8 

8287297 
1.763E-09 

16.411177 
V

acuolar protein sorting-associated protein 25; Probable transcription factor K
A

N
2; 

Transcription factor H
BP-1a 

PSA
56 SC

 
4 

508770 
2.765E-09 

15.98237 
Zinc finger H

IT dom
ain-containing protein 3; Transcription factor PIF1-like 

PSA
56 SC

 
2 

28631550 
4.174E-09 

15.591867 
Serine/threonine-protein phosphatase 7 long form

 hom
olog;  Calcium

-binding protein 
CM

L24 

PSA
56 SC

 
7 

26746935 
8.306E-09 

14.942942 
Serine/threonine-protein kinase H

T1-like; Probable polyol transporter 6; Proline-rich 
receptor-like protein kinase PERK

4;  Sugar transporter ERD
6-like 6 

PSA
56 SC

 
2 

13779408 
1.902E-08 

14.167401 
Serine/threonine-protein phosphatase 7 long form

 hom
olog; Probable W

RK
Y

 
transcription factor 57; Probable W

RK
Y

 transcription factor 26 

PSA
56 SC

 
2 

36186009 
1.989E-08 

14.125846 
Probable serine/threonine-protein kinase W

N
K

11; SN
F1-related protein kinase 

regulatory subunit beta-2-like 
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PSA
56 SC

 
5 

20791466 
2.263E-08 

14.005454 
Threonine--tRN

A
 ligase, cytoplasm

ic-like 

PSA
56 SC

 
2 

19770625 
2.321E-08 

13.982057 
A

gam
ous-like M

A
D

S-box protein A
G

L5 

PSA
56 SC

 
1 

40809430 
3E-08 

13.74364 
C2 dom

ain-containing protein A
t1g53590-like 

PSA
56 SC

 
4 

17837766 
3.748E-08 

13.537165 
Calum

enin; Probable glutathione S-transferase; RIN
G

-H
2 finger protein A

TL18-like; 
ras-related protein RA

BE1c-like; aquaporin TIP1-3-like; G
lutathione S-transferase 

D
H

A
R2-like 

PSA
56 SC

 
4 

35114839 
5.247E-08 

13.226414 
Phytochrom

e-associated serine/threonine-protein phosphatase; Type I inositol 1,4,5-
trisphosphate 5-phosphatase CV

P2-like; 65-kD
a m

icrotubule-associated protein 6 

PSA
56 SC

 
3 

28198290 
5.934E-08 

13.112992 
W

A
T1-related protein A

t5g07050-like;  ubiquitin carboxyl-term
inal hydrolase 5; protein 

N
RT1/ PTR FA

M
ILY

 3.1-like; bZIP transcription factor 17-like; tw
o-com

ponent 
response regulator A

RR22-like; calm
odulin-interacting protein 111 

PSA
56 SC

 
4 

40933826 
6.132E-08 

13.082684 
D

ehydration-responsive protein RD
22; transcriptional activator M

yb-like; 
glycosyltransferase fam

ily protein 64 C3 

H
arvest index S 

4 
42203447 

7.205E-11 
19.792389 

Transcription factor TG
A

6 

H
arvest index S 

7 
37531520 

2.307E-09 
16.384389 

Inositol polyphosphate m
ultikinase beta 

H
arvest index S 

2 
31451065 

3.297E-09 
16.040144 

Transcription factor ICE ;  Cation/H
+ exchanger;    E3 U

biquitin protein ligase BREA
-1 

like 

H
arvest index S 

4 
42633538 

7.352E-09 
15.270849 

Serine/threonine-protein phosphatase 7 long form
 hom

olog;  Trihelix transcription factor 
A

SIL1 

H
arvest index S 

4 
25167467 

5.735E-08 
13.32889 

G
D

SL esterase/lipase A
t1g29670-like; Probable indole-3-pyruvate m

onooxygenase 

H
arvest index SC

 
4 

42203447 
9.129E-11 

20.404478 
Transcription factor TG

A
6 

H
arvest index SC

 
2 

31451065 
3.889E-09 

16.570213 
Transcription factor ICE1 ;  Cation/H

+ exchanger;    E3 U
biquitin protein ligase BREA

-
1 like 

H
arvest index SC

 
4 

42633538 
1.03E-08 

15.597869 
Serine/threonine-protein phosphatase 7 long form

 hom
olog;  Trihelix transcription factor 

A
SIL1 
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H
arvest index SC

 
7 

29241909 
1.613E-08 

15.153192 
putative A

BC transporter C fam
ily m

em
ber 15;  N

A
D

H
 dehydrogenase [ubiquinone] 1 

alpha subcom
plex assem

bly factor 3; EF- H
A

N
D

 2; N
A

C transcription factor 29-like 

H
arvest index SC

 
7 

29329744 
4.592E-08 

14.124235 
Calcium

-binding EF hand protein; probable polygalacturonase  A
t3g15720; ubiquitin-

like-conjugating enzym
e A

TG
10 

H
arvest index SC

 
3 

23515029 
5.464E-08 

13.954372 
E3 ubiquitin-protein ligase A

t3g02290-like ; Probable receptor-like protein kinase 
A

t5g24010; desiccation protectant protein Lea14 hom
olog; W

RK
Y

 transcription factor 
22; W

all-associated kinase receptor-like 1 

H
arvest index SC

 
4 

25167467 
5.899E-08 

13.879678 
G

D
SL esterase/lipase A

t1g29670-like; Probable indole-3-pyruvate m
onooxygenase 

Sodium
 ionsSC

 
4 

35441496 
4.899E-08 

13.719363 
Peroxidase 5-like; Sugar transport protein 10-like 

Sodium
 ionsSC

 
4 

1059487 
9.581E-08 

13.081274 
V

acuolar protein sorting-associated protein 2 hom
olog 3-like; Serine/threonine-protein 

kinase 19; Ethylene-responsive transcription factor ERF098-like; CH
RO

M
A

TIN
 

REM
O

D
ELIN

G
 8 

Potassium
 ions SC

 
7 

33247108 
1.355E-08 

14.953624 
Cation/calcium

 exchanger 4; sm
-like protein LSM

1B 

N
a:K

 SC
 

4 
47763801 

3.2E-09 
16.149237 

M
Y

B fam
ily transcription factor;  Sugar/inositol transporter 

N
a:K

 SC
 

3 
8730808 

3.267E-08 
13.924232 

V
acuolar-processing enzym

e-like;  W
all-associated receptor kinase-like 20 

Filled pod ratioSC
 

4 
42203447 

3.718E-08 
14.545036 

Potassium
 channel A

K
T1-like; Serine/threonine-protein phosphatase 7 long form

 
hom

olog; Basic-leucine zipper (bZIP) transcription factor TG
A

6; 

Filled pod ratioSC
 

4 
42633538 

9.908E-08 
13.574799 

E3 ubiquitin-protein ligase K
EG

; Serine/threonine-protein phosphatase 7 long form
 

hom
olog 
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Figure 5: Genetic loci controlling salinity tolerance in chickpea. Graphical representation of two 

genomic regions on chromosome 4 and 7 on genetic linkage map and Manhattan plots identified by 

linkage mapping and GWAS respectively, showing several co-locating QTL controlling salinity 

tolerance in chickpea. SNPs above a set threshold are considered to be significantly associated with the 

trait under analysis. Blue line and red line indicate a significant threshold of   1.4×10
-5 

and 9.0×10
-8

,

respectively.  
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Discussion 

Genetic analysis integrates phenotypic data and molecular markers to identify regions in 

the genome underlying traits of interest. Recently, large numbers of SNP markers became 

available for chickpea due to advances in DNA sequencing technologies (Shendure and 

Ji, 2008) and cost-effective genotyping platforms (Elshire et al., 2011). This has improved 

the progress for the identification and introgression of useful quantitative trail loci (QTL) 

and genes for crop improvement. 

Linkage mapping and GWAS are complementary approaches that have been used in the 

identification of loci underlying agronomically important traits in plants (Li et al., 2016; 

Mahuku et al., 2016; Mammadov et al., 2015; Sonah et al., 2015). In chickpea, an 

integrated approach combining linkage mapping and GWAS has been used to identify 

loci regulating flowering (Upadhyaya et al., 2015), seed protein content (Upadhyaya et 

al., 2016) and seed coat color (Bajaj et al., 2015). These approaches rely on reliable and 

accurate phenotyping methodology to achieve meaningful outcomes. We reported on 

high-throughput phenotyping methodology (Atieno et al., 2016) which is now coupled 

with linkage mapping and GWAS to identify genomic regions that regulate salinity 

tolerance in chickpea. 

Salinity tolerance is a complex polygenic trait and achieving improvements in tolerance 

levels in breeding germplasm has been challenging. “Sub-traits” that contribute to salinity 

tolerance depend on the plant species and mapping population under study. This study 

found that seed number and number of filled pods play major roles in salinity tolerance in 

the Rupali/Genesis836 mapping population, a finding in line with previous studies 

(Krishnamurthy et al., 2011; Vadez et al., 2007; Vadez et al., 2012a). Similarly, shoot 

biomass was found to strongly associate with salinity tolerance in this population. This 

finding is consistent with Vadez et al. (2012a), where shoot biomass showed a strong 
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relationship with seed yield under salinity in early flowering genotypes. Performance 

under salt was independent of yield potential as demonstrated by different mechanisms 

underlying the different traits measured under control and salt conditions. For example, 

plants with large biomass were generally high yielding under salt. This was not true under 

control conditions where plants partitioned more resources to reproductive structures 

compared to vegetative structures. This explains the high correlation observed between 

harvest index and seed yield under control and not salt conditions (Table 2). Growth of 

plants in both treatments was dependent on plant water uptake. Projected shoot area, a 

surrogate for shoot fresh weight, was higher in plants with greater water use. However, 

this relationship weakened at plant maturity as water use was only quantified at the pre-

flowering stage. Plant growth dynamics would have changed between pre-flowering and 

maturity altering this relationship.   

To precisely understand the genetic control of salinity tolerance related traits, 

confounding factors such as flowering, population structure and familial relatedness of 

the population under study must be taken into account. Flowering plays a major role in 

influencing crop duration. Thus, early flowering, usually associated with early maturity in 

most genotypes, has an influence in crop adaptation. It is therefore critical to eliminate the 

confounding effect of flowering time by choosing genotypes with minimal differences in 

flowering time as parents for mapping population development (Pinto et al., 2010). 

Rupali and Genesis836 were chosen as parents because besides contrasting for salinity 

tolerance, they have restricted range in flowering time (Genesis836 and Rupali flower in 

52 DAS and 48 DAS, respectively under glasshouse conditions). However, transgressive 

segregation, likely due to complementary gene action, was observed for flowering time in 

the RIL population with the majority of lines flowering later than the parents. In this 

study, it was established that 16 hr days reduced the observed flowering variation in the 

RILs. However, phenotyping plants under long day conditions would have an impact on 
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plant development and may not be optimal for studying yield related traits. During QTL 

analysis, all detected QTL were shown to co-locate with two major flowering loci, on 

chromosome 3 and chromosome 5, segregating in this population (Figure 1). Fitting 

flowering allele scores to each genotype during QTL analysis enabled the detection of 

true QTL underlying salinity tolerance. 

The complexity of salinity tolerance poses a challenge when it comes to understanding 

and unravelling mechanisms and genes underlying this trait. Previous studies have used 

traditional linkage mapping approaches to study the genetic basis of salinity tolerance in 

chickpea (Pushpavalli et al., 2015b; Samineni, 2010; Vadez et al., 2012a). However, these 

studies utilised sparsely populated genetic linkage maps, which have limited resolution. 

Our study used a high-density genetic linkage map, coupled with GWAS employing a 

large amount of SNP information from whole-genome resequencing to discover QTL that 

control salinity tolerance in chickpea. These two approaches are complimentary and can 

be used to validate each other.  

Linkage mapping and GWAS identified 57 and 54 genomic regions, respectively, 

associated with the different traits measured. There were unique and similar genomic 

regions identified by the two approaches, which is not unexpected as there are likely to be 

mechanisms for the genetic control of salinity tolerance unique between the two 

populations studied. For instance, a locus on chromosome 5, (33.6 Mb-47.7 Mb) was seen 

to control number of filled pods under salt by linkage mapping (Table S2) but not GWAS. 

This region was also found to harbour 6 QTL for salinity tolerance related traits in the 

Pushpavalli et al. (2015b) study. Additionally, a study by Samineni (2010) found a minor 

QTL for yield in the same region.  As number of filled pods was demonstrated to strongly 

correlate with seed yield under salt, this region may be important for salt tolerance 

improvement in chickpea. 
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Both linkage mapping and GWAS identified two major genomic regions on 

chromosomes 4 and 7 regulating yield and yield related traits under both salt and control 

treatments (Figure 5). The genomic region on chromosome 7 (13.6 Mb- 37.5 Mb) was 

found to control total pod number, number of filled pods, seed number, and harvest index 

under control conditions using linkage mapping (Table S2). A similar region (33.1 Mb-

44.8 Mb) was previously identified by Pushpavalli et al. (2015b), and was found to be 

associated with above ground dry matter, total pod number, seed number and yield under 

salinity. Based on GWAS, the same region was seen to control relative measures 

(salt/control) of relative growth rate, harvest index and potassium ions and significant 

SNPs were in LD with genes previously reported to be associated with salinity tolerance, 

including Cation/calcium exchanger 4, Serine-threonine/tyrosine-protein kinase and 

Calcium- binding EF-Hand 1 (Table 4). Additionally, both linkage mapping and GWAS 

in our study detected an interesting genomic region on chromosome 4 (12.5 Mb-39.4 Mb) 

which controlled many different physiological and agronomic traits under both salt and 

control conditions (Figure 5), hence this is an important region of the genome associated 

with higher plant vigour. Linkage mapping found this region to harbour clusters of QTL 

including those associated with relative growth rate, 100-seed weight, plant height, seed 

number, water use, and projected shoot area (Table S2). Similarly, GWAS identified this 

region to control relative measures (salt/control) of relative growth rate, harvest index, 

seed number and seed yield. Some of the genes in LD with significant SNPs in this region 

include; Serine-threonine protein kinase (SOS2) which interacts with CBLs (SOS3) upon 

calcium spikes as a result of salinity exposure to maintain sodium potassium homeostasis 

(Ma et al., 2014), E3- Ubiquitin-protein ligase which plays a role in ABA mediated high 

salinity response (Kim and Kim, 2013), and Late-embryogenesis abundant protein and 

Dehydration responsive protein RD22 which play roles in alleviating adverse effects of 

water deficit and high salinity (Xu et al., 1996). The genes identified in this region are 
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potential candidates for marker-assisted breeding. Previous studies by Kale et al. (2015) 

and Varshney et al. (2014) identified the same region as a “QTL-hotspot” for drought 

tolerance in chickpea. Both drought and salt stress have osmotic stress components, 

which would share common tolerance mechanisms.  

Conclusion 

This study has used image-based phenotyping coupled with linkage mapping and GWAS 

to dissect mechanisms and genetic basis of salinity tolerance in chickpea. The analysis 

has not only identified traits related to salinity tolerance but also revealed a novel 

genomic region on chromosome 4 associated with salinity tolerance and high vigour in 

chickpea. GWAS has the potential to offer high resolution mapping compared to 

traditional linkage mapping which allowed us to narrow down to a few salinity tolerance 

candidate genes. Near isogenic lines (NILs) will be developed to fine map the QTL 

detected on chromosome 4 and molecular markers applied in marker assisted breeding to 

improve salinity tolerance in existing chickpea cultivars. 
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Chapter 6 

_____________________________________________________________________________________ 

General discussion 
_____________________________________________________________________________________ 





Soil salinity affects plant growth which results in reduced crop productivity. Chickpea is 

sensitive to sub-soil constraints including boron toxicity, sodicity and salinity. In 

Australia, chickpea is mainly grown in the northern grain production region as a winter 

pulse. In 2012, there were reports from northern New South Wales and southern 

Queensland of chickpea crop lost to salinity. This was attributed to rising water tables 

followed by high evaporation which concentrated salts in the upper soil layers (Moore et 

al., 2013). To improve salinity tolerance in chickpea, there is a need to broaden our 

understanding of the physiology and genetic control of salinity tolerance traits and 

develop tools that can be applied to improve the efficiency of breeding.  

When this research began, the genetic resources needed to map salinity tolerance traits in 

Australian chickpea germplasm had not been established. The objective of this study was 

to exploit diversity in the chickpea germplasm to understand the genetic basis of salinity 

tolerance in chickpea. The chickpea Reference Set was the appropriate germplasm for this 

work as it is thought to represent 78% of allelic diversity present in a much larger 

collection of chickpea referred to as the core collection (Upadhyaya et al., 2008). 

Additionally, the Reference Set was shown to have broad genetic variation for salinity 

tolerance (Krishnamurthy et al., 2011). This set consists of 300 chickpea accessions, of 

which 95% are landraces, collected from 28 different countries (Upadhyaya et al., 2008) 

and is maintained by the International Centre of Agriculture in the Semi-Arid Tropics 

(ICRISAT), India. 

Despite the availability of extensive germplasm collections for chickpea, a major 

challenge faced by genebanks is germplasm flow. Countries that host important plant 

genetic resources may place restrictions on the movement of material to other countries 

for political reasons. Another contentious issue is biopiracy of a country’s genetic 

resources. Countries may be sceptical about sharing germplasm, as there is the possibility 

Page 169



that their local landraces may be utilised commercially with no compensation. In this case 

the research was done in collaboration with ICRISAT, India, making it possible to have 

access to the Reference Set. 

Improved characterisation and cataloguing of germplasm is of utmost importance in 

genebanks. During the course of this research, this study uncovered some discrepancies 

that could have resulted from inaccurate cataloguing and characterisation of material in 

the Reference Set. For instance, phylogenetic analysis of the Reference Set showed 

material from the same geographic origin to generally cluster together but with some 

inconsistencies. These anomalies could be due to two reasons: firstly, some of the 

material may not have been well characterised or there could have been problems 

associated with cataloguing of the material so that inaccurate inferences of countries of 

origin were made for some of the accessions. Secondly, there may have been direct 

introduction of material without proper documentation making it difficult to track the 

flow of germplasm between countries. Additionally, this research found Indian 

germplasm to have less genetic diversity compared to material from other countries. The 

loss of diversity in the material could be due to ongoing selection made by local farmers. 

Alternatively, this material could have been inaccurately classified and may have been 

sourced from breeding programs where diversity had been lost through breeding. Another 

instance where characterisation of the Reference Set could be improved is keeping 

records of exact coordinates where the material was collected. This research was met with 

challenges in trying to understand flowering time in relation to latitude. Material from 

countries at low latitude, like Ethiopia and Tanzania, generally had early flowering times 

compared to material from countries at high latitude, like Turkey and Iran. However, this 

relationship was not maintained in the whole collection. This could be attributed to other 

factors like rainfall and ShotoSeriod sensitiYit\, which has an influence on crop duration. 

Nevertheless, since some countries span a wide range of latitudes, more information on 

exact position where the material was collected could have significantly improved our 
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 understanding of the influence of latitude on flowering time in the Reference set. 

To mitigate problems associated with germplasm characterisation and to identify a bigger 

pool of rare alleles for chickpea improvement, large numbers of wild relatives 

of cultivated chickpea, Cicer reticulutum and Cicer echinospermum, are currently 

being collected in a systematic manner in Southeastern Turkey with the help of 

GPS technology. This material will be evaluated for traits of economic importance and 

novel genes underlying these traits introgressed into modern chickpea cultivars (Prof. 

Doug Cook, University of California’s Davis Campus, personal communication).  

To complement genetic diversity in the Reference Set and for the purposes of 

investigating traits and genetic loci that would be applicable to the Australian 

environment, a bi-parental RIL population was developed from a cross between 

Genesis836 and Rupali, two Australian adapted chickpea cultivars. To rapidly advance 

the generation time of the population, we collaborated with Dr Janine Croser’s group 

based at the University of Western Australia to utilise the latest developments in single 

seed descent technology. Doubled haploid technology utilised in cereals has not 

been very successful in pulses due to technical difficulties. Hence, assisted single seed 

descent has been used as an alternative, reducing generation time and making it 

possible to achieve ��� generations of pulses per year. Pre-breeders and breeders can 

utilise this technology for fast and efficient trait discovery and to lock in improved 

varietal traits. 

Evaluation of germplasm for traits of economic importance requires a streamlined 

phenotyping platform. At the start of this research, there was limited knowledge regarding 

the physiological characteristics of salinity tolerance in chickpea. Conventional 

phenotyping for complex traits like salinity tolerance can be very laborious and time-

consuming, often limiting screening to a few measurements of a small number of lines, 
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resulting in a phenotyping bottleneck. For efficient utilisation of the broad genetic 

variation present in chickpea germplasm collections, and to circumvent the disadvantages 

of conventional phenotyping, high-throughput phenotyping tools are needed to examine 

subtle and complex plant characteristics of a large number of lines within a short period 

of time.  

High-throughput, non-destructive, image-based phenotyping of salinity response has only 

been reported in cereals (Campbell et al., 2015; Hairmansis et al., 2014; Schilling et al., 

2014). In this study, a protocol incorporating image-based phenotyping was established to 

investigate novel traits linked to salinity tolerance in chickpea under a controlled 

environment. 7his study found relatiYe groZth rate to be moderately associated with 

salinity tolerance, hence there is a need to develop and implement algorithms that can 

recognise traits such as pod number, Zhich was found to be highly associated with 

salinity tolerance� &onducting research in a breeding and sound agronomic context 

requires field phenotyping. However, field sites often present with other confounding 

sub-soil constraints such as sodicity and boron toxicity� Additionally, spatial and temporal 

variability of salinity is often observed in the field. To achieve uniform salinity levels in a 

field trial, Saade et al. (2016) used saline water for irrigation. There is also a move 

towards artificially salinizing field trial sites (Dr. Timothy Colmer, personal 

communication; Prof. Rana Munns, personal communication). Further research is needed 

to utilise such fields with ground based and aerial phenotyping platforms (reviewed by 

Araus and Cairns, 2014). The Phenospex FieldScan high-throughput, high precision 

phenotyping platform and the Field Scanalyzer  at Rothamsted Research could be used to 

complement high-throughput phenotyping performed under controlled environments.  

Linking phenotypic to genotypic data relies on both high throughput phenotyping but also 

cheap, high-density DNA marker analysis. Due to the availability of whole-genome 
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resequencing data from the chickpea Reference Set (provided by Dr Rajeev K. Varshney, 

ICRISAT), a large number of SNP markers became available for genetic analysis. 

Conducting genetic analysis in the Reference Set met with some challenges. Firstly, 

population structure was detected in this panel, with accessions from the same geographic 

origin generally clustering together. However, using different molecular markers to study 

the population structure in the panel also resulted in different outcomes, which posed a 

challenge in selecting the appropriate Q matrix that would effectively account for 

structure in this panel. Secondly, linkage disequilibrium (LD) on a region on chromosome 

4, found to associate with several salinity tolerance traits, extended over several 

megabases. This made it impossible to narrow down the identified genomic region to a 

few candidate genes. Similarly, the same region spanning several megabases was 

identified in the RIL population. Positional cloning approaches involving population 

development to saturate critical regions with recombination events, followed by targeted 

phenotyping of key recombinant families could significantly narrow the region to a 

genomic interval containing a few candidate genes, which could be functionally 

characterised to determine possible roles in salinity tolerance in chickpea. Moreover, 

further research could utilise mapping populations which are intermediate between bi-

parental populations and natural diverse collections, such as MAGIC and NAM 

populations to take advantage of high-resolution QTL detection, and allelic diversity 

without the confounding effects of population structure. Presently, a MAGIC population 

consisting of 1200 chickpea lines is being screened for different agronomic traits at 

ICRISAT (Dr. Pooran Gaur, personal communication). Additionally, the CGIAR 

consortium, including ICARDA and ICRISAT, is developing a NAM population 

(Nagaraji, 2015).  

An interesting outcome from this study is that loci on chromosome 4 and 7, which were 

independent of flowering time, were identified as being associated with several salinity 
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tolerance traits in the Reference Set and the RIL population. This implies a strong 

positive natural/artificial selection for these two regions and their applicability in 

improving salinity tolerance in a wide range of genetic background. Furthermore, this 

research found these loci were associated with traits under both salt and control 

conditions implying a role in the regulation of plant vigour as opposed to salinity 

tolerance per se. The locus on chromosome 4 has been reported as being associated with 

drought tolerance (Kale et al., 2015). Clearly, these loci are important in maintaining 

yield stability under unfavourable environments. To ensure global food security in the 

face of climate change, a shift to identify loci underlying multiple stress adaptation 

mechanisms would be of utmost importance.   

In conclusion, this study has contributed towards the development of tools that can be 

applied to improve the efficiency of breeding in chickpea. Application of molecular 

markers has a consequence of changing a breeding program considerably. Currently, the 

priority of the Australian chickpea breeding program is maintaining disease resistance 

including resistance to Phytophthora root rot and Botrytis grey mould, earliness and 

chilling tolerance whereas salinity tolerance is classed as a desirable trait. Salinity is a big 

problem in the southern drier regions of Australia like Balaklava and Southern Mallee. 

Developing cultivars which could maintain yield in these areas would improve production 

significantly (Dr. Kristy Hobson, Australian chickpea breeder, personal communication). 

The Australian breeding program uses pot-based assays under controlled conditions to 

screen plants at seedling stage for salinity tolerance (Dr. Kristy Hobson, Australian 

chickpea breeder, personal communication). Molecular markers would save on time and 

speed up selection and breeding process. The two loci, on chromosome 4 and 

chromosome 7, identified in this research are not only associated with salinity tolerance 

but plant vigour which is important for a wide range of traits. Molecular markers closely 
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linked to these loci will be evaluated in the breeding program for their suitability in 

efficiently selecting for lines that can maintain yield across multiple environments under 

salinity and other stress conditions. Once deemed suitable, these markers will be 

implemented in the breeding program for marker-assisted and genomic selection. 
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Chapter 2: Supplem
entary 

Line num
bers: grey - lines replicated tw

ice (1 - 213); green = lines replicated thrice (214 -245);  blue =  check lines (246 - 247) 
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Condition num
bers: 2-control 1-salt 

Figure S1:  A
 split-plot design w

ith unequally-replicated, nearly-trend-free m
ain-plot design 
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Figure S2: G
enotypic variation for salinity tolerance in the chickpea reference set. G

enotypes ranking from
 the m

ost salt tolerant to salt sensitive based on salinity tolerance 

(seed yield under salinity/seed yield under non�saline conditions). 
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Figure S3: N
on-destructive im

aging of chickpea plants to determ
ine average grow

th rate of all genotypes over tim
e under 0 (blue line) and 40 m

M
 N

aC
l (red line). Plant 

grow
th is dem

onstrated by increm
ents in projected shoot area (pixels) over tim

e. Salt application w
as done in tw

o equal increm
ents at 31 D

A
S and 34 D

A
S and the plants w

ere 

im
aged daily up to 56 D

A
S to evaluate the effect of salt application on grow

th of the plants. RG
R (relative grow

th rate) w
as obtained by taking the difference betw

een the 

logarithm
s of the sm

oothed projected shoot area for 32 D
A

S and 56 D
A

S and then dividing by 24. Inset pictures show
 RG

B im
age of a chickpea plant at 31 D

A
S and 56 D

A
S . 

0.06
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Figure S4: R
elationship betw

een seed yield and seed num
ber, 100-seed w

eight, harvest index, filled pod num
ber and total pod num

ber. These are relative m
easurem

ents 

(salt/control) per plant. Level of significance;  ***= p < 0.001  ** =p < 0.01  *= p < 0.05 
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Table S1: Composition of the chickpea reference set 

Genotype Origin Biological status Market type 
ICC 10018 India Landrace Desi 
ICC 10341 Turkey Landrace Pea-shaped 
ICC 10393 India Landrace Desi 
ICC 10399 India Landrace Desi 
ICC 1052 Pakistan Landrace Desi 
ICC 10673 Turkey Landrace Desi 
ICC 10685 Turkey Landrace Desi 
ICC 10755 Turkey Landrace Kabuli 
ICC 1083 Iran Landrace Desi 
ICC 10885 Ethiopia Landrace Kabuli 
ICC 10945 India Landrace Desi 
ICC 1098 Iran Landrace Desi 
ICC 11121 India Landrace Desi 
ICC 11198 India Landrace Desi 
ICC 11279 Pakistan Landrace Desi 
ICC 11284 USSR Landrace Desi 
ICC 11303 Chile Landrace Kabuli 
ICC 11498 India Breeding material Desi 
ICC 11584 India Landrace Desi 
ICC 1161 Pakistan Landrace Desi 
ICC 11627 India Landrace Desi 
ICC 1164 Nigeria Landrace Desi 
ICC 11664 India Landrace Desi 
ICC 11764 Chile Landrace Kabuli 
ICC 1180 India Landrace Desi 
ICC 11879 Turkey Landrace Kabuli 
ICC 11903 Germany Landrace Desi 
ICC 1194 India Landrace Desi 
ICC 11944 Nepal Landrace Desi 
ICC 12028 Mexico Landrace Desi 
ICC 12037 Mexico Breeding material Kabuli 
ICC 1205 India Landrace Desi 
ICC 12155 Bangladesh Landrace Desi 
ICC 12299 Nepal Landrace Desi 
ICC 1230 India Landrace Desi 
ICC 12307 Myanmar Landrace Desi 
ICC 12328 Cyprus Landrace Kabuli 
ICC 12379 Iran Landrace Desi 
ICC 12492 India Landrace Kabuli 
ICC 12537 Ethiopia Landrace Desi 
ICC 12654 Ethiopia Landrace Desi 
ICC 12726 Ethiopia Landrace Desi 
ICC 12824 Ethiopia Landrace Desi 
ICC 12851 Ethiopia Landrace Desi 
ICC 12866 Ethiopia Landrace Desi 
ICC 12916 India Landrace Desi 
ICC 12928 India Landrace Desi 
ICC 12947 India Landrace Desi 
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ICC 13077 India Landrace Kabuli 
ICC 13124 India Landrace Desi 
ICC 13187 Iran Breeding material Kabuli 
ICC 13219 Iran Landrace Desi 
ICC 13283 Iran Landrace Kabuli 
ICC 13357 Iran Landrace Kabuli 
ICC 13441 Iran Landrace Kabuli 
ICC 13461 Iran Landrace Kabuli 
ICC 13523 Iran Landrace Kabuli 
ICC 13524 Iran Landrace Desi 
ICC 1356 India Landrace Desi 
ICC 13599 Iran Landrace Desi 
ICC 13628 Iran Landrace Kabuli 
ICC 13764 Iran Landrace Kabuli 
ICC 13816 USSR Landrace Kabuli 
ICC 13863 Ethiopia Landrace Desi 
ICC 1392 India Landrace Desi 
ICC 1397 India Landrace Desi 
ICC 1398 India Landrace Desi 
ICC 14051 Ethiopia Landrace Desi 
ICC 14077 Ethiopia Landrace Desi 
ICC 14098 Ethiopia Landrace Desi 
ICC 14199 Mexico Breeding material Kabuli 
ICC 1431 India Landrace Desi 
ICC 14402 India Breeding material Desi 
ICC 14595 India Landrace Desi 
ICC 14669 India Landrace Desi 
ICC 14778 India Landrace Desi 
ICC 14799 India Landrace Desi 
ICC 14815 India Landrace Desi 
ICC 14831 India Landrace Desi 
ICC 1510 India Landrace Desi 
ICC 15248 Iran Landrace Desi 
ICC 15294 Iran Landrace Desi 
ICC 15406 Morocco Landrace Kabuli 
ICC 15435 Morocco Landrace Kabuli 
ICC 15510 Morocco Landrace Desi 
ICC 15518 Morocco Landrace Kabuli 
ICC 15567 India Breeding material Desi 
ICC 15606 India Landrace Desi 
ICC 15610 India Landrace Desi 
ICC 15612 Tanzania Landrace Desi 
ICC 15614 Tanzania Landrace Desi 
ICC 15618 India Landrace Desi 
ICC 15697 Syria Landrace Kabuli 
ICC 15762 Syria Landrace Desi 
ICC 15785 Syria Landrace Desi 
ICC 15802 Syria Landrace Kabuli 
ICC 15868 India Landrace Desi 
ICC 15888 India Landrace Pea-shaped 
ICC 16207 Myanmar Landrace Desi 
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ICC 16261 Malawi Landrace Desi 
ICC 16269 Malawi Landrace Desi 
ICC 16374 Malawi Breeding material Desi 
ICC 16524 Pakistan Landrace Desi 
ICC 16654 China Landrace Kabuli 
ICC 16796 Portugal Landrace Kabuli 
ICC 16903 India Landrace Desi 
ICC 16915 India Landrace Desi 
ICC 1710 India Landrace Desi 
ICC 1715 India Landrace Desi 
ICC 1882 India Landrace Desi 
ICC 1915 India Landrace Desi 
ICC 1923 India Landrace Desi 
ICC 2065 India Landrace Desi 
ICC 2072 India Landrace Desi 
ICC 2210 Algeria Landrace Desi 
ICC 2242 India Landrace Desi 
ICC 2263 Iran Landrace Desi 
ICC 2277 Iran Landrace Kabuli 
ICC 2482 Iran Landrace Kabuli 
ICC 2507 Iran Landrace Desi 
ICC 2580 Iran Landrace Desi 
ICC 2593 Iran Landrace Kabuli 
ICC 2629 Iran Landrace Desi 
ICC 2720 Iran Landrace Desi 
ICC 2737 Iran Landrace Desi 
ICC 283 India Landrace Desi 
ICC 2884 Iran Landrace Desi 
ICC 2919 Iran Landrace Desi 
ICC 2969 Iran Landrace Desi 
ICC 2990 Iran Landrace Desi 
ICC 3218 Iran Landrace Desi 
ICC 3230 Iran Landrace Desi 
ICC 3239 Iran Landrace Desi 
ICC 3325 Cyprus Landrace Desi 
ICC 3362 Iran Landrace Desi 
ICC 3391 Iran Landrace Desi 
ICC 3410 Iran Landrace Kabuli 
ICC 3421 Israel Landrace Kabuli 
ICC 3512 Iran Landrace Desi 
ICC 3582 Iran Landrace Desi 
ICC 3631 Iran Landrace Desi 
ICC 3761 Iran Landrace Desi 
ICC 3776 Iran Landrace Desi 
ICC 3946 Iran Landrace Desi 
ICC 4093 Iran Landrace Desi 
ICC 4182 Iran Landrace Desi 
ICC 4363 Iran Landrace Desi 
ICC 440 India Landrace Desi 
ICC 4418 Iran Landrace Desi 
ICC 4463 Iran Landrace Desi 
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ICC 4495 Turkey Landrace Desi 
ICC 4533 India Landrace Desi 
ICC 456 India Landrace Desi 
ICC 4567 India Landrace Desi 
ICC 4593 India Landrace Desi 
ICC 4639 India Landrace Desi 
ICC 4657 India Landrace Desi 
ICC 4814 Iran Landrace Desi 
ICC 4841 Morocco Landrace Kabuli 
ICC 4872 India Landrace Pea-shaped 
ICC 4918 India Advanced cultivar Desi 
ICC 4991 India Advanced cultivar Desi 
ICC 506 India Landrace Desi 
ICC 5135 India Breeding material Desi 
ICC 5221 India Breeding material Desi 
ICC 5337 India Landrace Kabuli 
ICC 5383 India Landrace Desi 
ICC 5434 India Landrace Desi 
ICC 5504 Mexico Landrace Desi 
ICC 5613 India Landrace Desi 
ICC 5639 India Landrace Desi 
ICC 5845 India Landrace Desi 
ICC 5878 India Landrace Desi 
ICC 6263 Union of Soviet Socialist Republics Landrace Kabuli 
ICC 6279 India Landrace Desi 
ICC 6293 Italy Landrace Desi 
ICC 6294 Iran Advanced cultivar Desi 
ICC 6306 Union of Soviet Socialist Republics Advanced cultivar Desi 
ICC 637 India Landrace Desi 
ICC 6537 Iran Breeding material Desi 
ICC 6571 Iran Landrace Desi 
ICC 6579 Iran Landrace Desi 
ICC 67 India Landrace Desi 
ICC 6802 Iran Landrace Desi 
ICC 6811 Iran Landrace Desi 
ICC 6816 Iran Landrace Desi 
ICC 6874 Iran Landrace Desi 
ICC 6875 Iran Landrace Desi 
ICC 6877 Iran Landrace Desi 
ICC 7052 Iran Landrace Desi 
ICC 708 India Landrace Desi 
ICC 7150 Turkey Landrace Desi 
ICC 7184 Turkey Landrace Desi 
ICC 7255 India Landrace Kabuli 
ICC 7272 Algeria Landrace Kabuli 
ICC 7305 Afghanistan Landrace Desi 
ICC 7308 Peru Landrace Kabuli 
ICC 7315 Iran Landrace Kabuli 
ICC 7323 USSR Landrace Pea-shaped 
ICC 7413 India Landrace Pea-shaped 
ICC 7441 India Landrace Desi 
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ICC 7554 Iran Landrace Desi 
ICC 7571 Israel Landrace Kabuli 
ICC 762 India Landrace Desi 
ICC 7668 USSR Landrace Kabuli 
ICC 7819 Iran Landrace Desi 
ICC 7867 Iran Landrace Desi 
ICC 791 India Landrace Desi 
ICC 8151 USA Landrace Kabuli 
ICC 8195 Pakistan Landrace Desi 
ICC 8200 Iran Landrace Desi 
ICC 8261 Turkey Landrace Kabuli 
ICC 8318 India Landrace Desi 
ICC 8350 India Landrace Pea-shaped 
ICC 8384 India Landrace Desi 
ICC 8515 Greece Landrace Desi 
ICC 8522 Italy Landrace Desi 
ICC 8621 Ethiopia Landrace Desi 
ICC 867 India Landrace Desi 
ICC 8718 Afghanistan Landrace Desi 
ICC 8740 Afghanistan Landrace Kabuli 
ICC 8752 Afghanistan Landrace Kabuli 
ICC 8855 Afghanistan Landrace Kabuli 
ICC 8950 India Landrace Desi 
ICC 9002 Iran Landrace Desi 
ICC 9137 Iran Landrace Kabuli 
ICC 9402 Iran Landrace Kabuli 
ICC 9434 Iran Landrace Kabuli 
ICC 95 India Landrace Desi 
ICC 9586 India Landrace Desi 
ICC 9590 Egypt Landrace Desi 
ICC 9636 Afghanistan Landrace Desi 
ICC 9643 Afghanistan Landrace Desi 
ICC 9712 Afghanistan Landrace Desi 
ICC 9755 Afghanistan Landrace Desi 
ICC 9848 Afghanistan Landrace Pea-shaped 
ICC 9862 Afghanistan Landrace Pea-shaped 
ICC 9872 Afghanistan Landrace Kabuli 
ICC 9895 Afghanistan Landrace Pea-shaped 
ICC 9942 India Landrace Desi 
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Table S2: R
elationship betw

een traits m
easured under salinity determ

ined by correlation analysis. H
ighlighted, are m

oderate to high correlation coefficients. Level of 

significance (***=P<0.001, **=P<0.01, *=P<0.05, ns=non-significant) 

Traits 
Seed yield 

Seed num
ber 

Shoot 
biom

ass 
Total pods 

Filled pods 
Em

pty pods 
100-seed
w

eight
Plant height 

Senescence 
score 

RG
R 

32-56
Seed yield 

1 

Seed num
ber 

0.829*** 
1 

Shoot biom
ass 

0.679*** 
0.48*** 

1 

 
Total pods 

0.657*** 
0.796*** 

0.538*** 
1 

Filled pods 
0.86*** 

0.967*** 
0.525*** 

0.817*** 
1 

Em
pty pods 

0.014 ns 
0.115* 

0.245** 
0.661*** 

0.108 ns
1

100-seed w
eight

0.499*** 
0.11* 

0.642*** 
0.099 ns 

0.197* 
-0.083 ns

1 

Plant height 
0.517*** 

0.358*** 
0.604*** 

0.459*** 
0.417*** 

0.247*** 
0.463*** 

1 

Senescence 
score 

-0.292**
-0.192*

-0.259**
-0.178*

-0.196*
-0.052 ns

0.336*** 
-0.349***

1 

RG
R 32-56 

0.378*** 
0.439*** 

0.323*** 
0.405*** 

0.428*** 
0.142*

0.138* 
0.258**

-0.179*
1 

Page 190



Table S3: R
elationship betw

een traits m
easured under non-saline conditions determ

ined by correlation analysis. H
ighlighted, are m

oderate to high correlation coefficients. 

Level of significance (***=P<0.001, **=P<0.01, *=P<0.05, ns=non-significant).  

Traits 
Seed yield 

Seed num
ber 

Shoot 
biom

ass 
Total pods 

Filled pods 
Em

pty 
pods 

100-seed
w

eight
Plant height 

Senescence 
score 

RG
R 32-
56 

Seed yield 
1 

Seed num
ber 

0.75*** 
1 

Shoot biom
ass 

0.392*** 
0.119*

1

 
Total pods 

0.527*** 
0.682*** 

0.215** 
1 

Filled pods 
0.795*** 

0.946*** 
0.187* 

0.751*** 
1 

Em
pty pods 

-0.075 ns
-0.011 ns

0.124* 
0.684*** 

0.033 ns
1

100-seed w
eight

0.169*
-0.322***

0.533*** 
-0.223**

-0.213**
-0.103*

1 

Plant height 
0.211**

0.054 ns
0.516*** 

0.199** 
0.124*

0.163* 
0.337*** 

1 

Senescence 
score 

0.065 ns
0.002 ns

-0.1*
0.036 ns 

0.044 ns
0.001 ns 

-0.067 ns
-0.202**

1 

RG
R 32-56 

0.208**
0.32***

0.14* 
0.274** 

0.312***
0.067 ns 

-0.095 ns
0.051 ns 

-0.089 ns
1 
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Table S4: R
elationship betw

een seed yield and sodium
 and potassium

 ions determ
ined by correlation analysis. H

ighlighted, are m
oderate to high correlation coefficients. 

Level of significance (***=P<0.001, **=P<0.01, ns=non-significant).  

N
a 

K
 

K
:N

a 
Seed yield 

N
a 

1 
 

K
 

0.52*** 
1 

 
K

:N
a 

-0.64*** 
-0.16 ns

1 
 

Seed yield 
-0.3**

-0.19 ns 
0.29**

1 

Page 192



Table S5: D
irect and indirect effects of yield com

ponents on seed yield under non-saline conditions determ
ined by partial least squares algorithm

. V
alues in the m

ain 

diagonal part (path coefficients) and off-diagonal part of the table represent direct and indirect effects of yield com
ponents on seed yield. Total effects w

hich corresponds to 

correlation coefficients is derived from
 sum

m
ing up direct and indirect effects. H

ighlighted are direct effects (bold), m
oderate indirect effects (underlined) as w

ell as m
oderate to 

high total effects (underlined).  

Traits 
RG

R 32-56 
Plant height 

Shoot 
biom

ass 
Total pods 

Filled pods 
Seed num

ber 
100-seed
w

eight 
Senescence score 

Total effects 

RG
R 32-56 

-0.041
0 

0.013
-0.024

0.157 
0.145

-0.034
-0.006

0.208 

Plant height 
-0.002

-0.009
0.047

-0.018
0.062 

0.024 
0.121

-0.015
0.211 

Shoot biom
ass 

-0.006
-0.005

0.091 
-0.019

0.094 
0.054 

0.191
-0.007

0.393 

Total pods
-0.011

-0.002
0.02 

-0.089
0.377 

0.309 
-0.08

0.003
0.526 

Filled pods 
-0.013

-0.001
0.017

-0.067
0.502 

0.429 
-0.076

0.003
0.794 

Seed num
ber 

-0.013
0

0.011
-0.061

0.475 
0.453 

-0.115
0 

0.749 

100-seed w
eight

0.004
-0.003

0.049 
0.02

-0.107
-0.146

0.358
-0.005

0.17 

Senescence score 
0.004

0.002
-0.009

-0.003
0.022

0.001
-0.024

0.072
0.064 
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T
able S6: D

irect and indirect effects of yield com
ponents on seed yield under salinity determ

ined by partial least squares algorithm
. V

alues in the m
ain diagonal part (path 

coefficients) and off-diagonal part of the table represent direct and indirect effects of yield com
ponents on seed yield. Total effects w

hich corresponds to correlation coefficients is 

derived from
 sum

m
ing up direct and indirect effects. H

ighlighted are direct effects (bold), m
oderate indirect effects (underlined) as w

ell as m
oderate to high total effects 

(underlined). 

Traits 
RG

R 32-56 
Plant height 

Shoot biom
ass 

Total pods 
Filled pods 

Seed num
ber 

100-seed
w

eight
Senescence score 

RG
R 32-56 

-0.03
0.013 

0.038
-0.059

0.193 
0.182 

0.039 
0.003 

Plant height
-0.01

0.049 
0.071

-0.067
0.188 

0.148 
0.129 

0.005 

Shoot biom
ass

-0.01
0.03 

0.118 
-0.079

0.237 
0.199 

0.179 
0.004 

Total pods
-0.01

0.022 
0.063 

-0.146
0.368 

0.33 
0.028 

0.002 

Filled pods
-0.01

0.02 
0.062 

-0.119
0.451 

0.4 
0.055 

0.003 

Seed num
ber

-0.01
0.018 

0.057
-0.116

0.436 
0.414 

0.031 
0.003 

100-seed w
eight

0
0.023 

0.076
-0.014

0.089 
0.046 

0.279 
0.005 

Senescence score 
0.005

-0.017
-0.031

0.026
-0.088

-0.079
-0.094

-0.014

Page 194



Chapter 3: Supplementary 

Supplementary data associated with this article can be found, in 
the online version, at http://dx.doi.org/10.1016/
j.jchromb.2015.07.002
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Quantifying the onset and progression of plant senescence by

color image analysis for high throughput applications

Jinhai Cai, Mamoru Okamoto, Judith Atieno, Tim Sutton, Yongle Li, Stanley J.

Miklavcic

S1 Appendix

Automated Plant Segmentation

The segmentation between plants and the background is a difficult task for many

reasons, particularly the background is consisting of several objects in the greenhouse

such as the pot and the supporting frame. The change of plant colors is the only

constant thing during the whole life cycle of plants. It is expected that the color of

senescent leaves will be similar to the color of pot rim, where the dirt on the pot rim is

yellow as illustrated in S1 Fig(a). Clearly the color space of pot rims and that of plants

are overlapped, thus significant segmentation error is inevitable if the segmentation

algorithm is based on color analysis. However, this problem can be solved if we known

the background.

The estimation of background

There are many algorithms developed for the estimation of background [1]. Most of

them assume that the background is still and the foreground is moving. However, in

this case, plants cannot move to other locations instead they are growing. These

background estimation algorithms are not suitable for our experiments. The LemnaTec

commercial software uses a pot with no plant in for background estimation. This

approach is useful in reducing the segmentation error. However, pots are different from

each other due to different labels and rim colors.

PLOS 1/4
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In all our experiments conducted in the greenhouse, plants are very young and green

on the first imaging day. This allow us to estimate the background by removing green

areas and replacing with surrounding background in the images from the first imaging

days. In some experiments, a blue frame is used to support the plant in a pot from

falling. The position of a blue frame in a pot can be changed by the plant during its life

cycle, so it is not treated as a part of the background. We use the same way to remove

the frame by replacing blue areas with surrounding background. S1 Fig(b) shows an

example of the background estimation.

S1 Fig. The estimation of the background. (a) is the original image; and (b) is the
estimated background.

The segmentation

With the estimated background, it is common to segment the foreground by subtracting

the background and then thresholding. In the greenhouse, the convey system sends the

pot to almost the same location for imaging. However, there is a small disparity, which

result in a small shift of the pot in the image. In order to handle the small shift, we

calculate the modified difference between the image and the estimated background and

then apply the thresholding. The modified difference is defined as

dm(x, y) = mini=t,j=t
i=−t,j=−t|I(x, y)−B(x+ i, y + j)|, (S1)

PLOS 2/4
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where I(x, y) is the pixel of the image at (x, y), B(x, y) is the pixel of the estimated

background at (x, y) and t is a value for the small shift in images. S2 Fig shows an

example of the segmentation results. The segmentation results are pretty good but not

perfect as very small areas of the blue frame are segmented as plants.

S2 Fig. The image segmentation. Left images are the original images and right
images are the segmented images, where the parts in blue color are the blue frames.

Color Classification

The color classification is relatively straightforward. We selected two segmented images

of plants, one at a relatively early growth stage so that most leaves are with dark green

and light green color and another plant with significant senescence so that some leaves

PLOS 3/4
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are with light yellow color and some leaves (dead leaves) are with brown color. We

labelled these two images with four color categories. The color classification can be

conducted by the k-Nearest Neighbours (kNN) algorithm [2]. In order to reduce the

computational cost, we apply the k-means clustering algorithm [3] to form clusters and

we use the cluster centres instead of directly using pixels in the labelled images as color

feature points in the kNN algorithm. In our experiments, the number of color clusters

for plants is set to 18 as there is no visible difference from using the two labelled images

directly. At the same time, the computational cost is significantly reduced.
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Chapter 5: Supplementary 

Figure S1: Population structure among genotypes in the chickpea Reference Set using SNP markers. 

Structure of sub-populations at K values ranging from 2-10. 

Figure S2: Relationship between seed yield under salt (70 mM NaCl) and seed yield under control 

conditions. Seed yield measurement is on pot basis. 
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Figure S3: R
upali/G

enesis836 genetic linkage m
ap. 614 SN

P and D
A

rT polym
orphic m

arkers w
ere used to construct the m

ap based on recom
bination frequencies. G

enetic 

distances are indicated as centim
organ (cM

) on the y-axis w
hile linkage groups are indicated on the x-axis of the genetic m

ap.   
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Figure S4: Heat-plot for Rupali/Genesis836 genetic map with 614 polymorphic markers (SNP and 

DArT). Upper left of the figure represent recombination fractions while lower right of the figure represent 

LOD scores for linkage for all pairs non-redundant polymorphic markers used in map construction. 

Markers are arranged in order of linkage groups (L.1- L.8). The colour series indicate the strength of linkage 

with red indicating high LOD score and lower recombination fraction while the opposite is true for blue 

color. Correct marker order is indicated by red signals aligning along the diagonal of the figure. 
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Figure S5: Manhattan plots showing significant marker-trait associations for salt tolerance related 

traits. Different colours indicate 8 chromosomes present in chickpea. SNPs above threshold set by 5% 

applied to Bonferroni correction (red line), Alpha threshold of 9.0×10-8, are considered to be significantly 

associated with trait under analysis.  Q-Q plot for the test statistic expected vs. observed show the suitability 

of MLM employing Q+K matrices to control false positives. True positives are enriched in tail. 

Table S1:  Information on association mapping panel used in the study. 

Genotype Origin Biological classification Market type 
ICC 10018 India Landrace Desi 
ICC 10341 Turkey Landrace Pea-shaped 
ICC 10393 India Landrace Desi 
ICC 10399 India Landrace Desi 
ICC 1052 Pakistan Landrace Desi 

ICC 10673 Turkey Landrace Desi 
ICC 10685 Turkey Landrace Desi 
ICC 10755 Turkey Landrace Kabuli 
ICC 1083 Iran Landrace Desi 

ICC 10885 Ethiopia Landrace Kabuli 
ICC 10945 India Landrace Desi 
ICC 1098 Iran Landrace Desi 

ICC 11121 India Landrace Desi 
ICC 11198 India Landrace Desi 
ICC 11279 Pakistan Landrace Desi 
ICC 11284 USSR Landrace Desi 
ICC 11303 Chile Landrace Kabuli 
ICC 11498 India Breeding material Desi 
ICC 11584 India Landrace Desi 
ICC 1161 Pakistan Landrace Desi 

ICC 11627 India Landrace Desi 
ICC 1164 Nigeria Landrace Desi 

ICC 11664 India Landrace Desi 
ICC 11764 Chile Landrace Kabuli 
ICC 1180 India Landrace Desi 

ICC 11879 Turkey Landrace Kabuli 
ICC 11903 Germany Landrace Desi 
ICC 1194 India Landrace Desi 
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ICC 11944 Nepal Landrace Desi 
ICC 12028 Mexico Landrace Desi 
ICC 12037 Mexico Breeding material Kabuli 
ICC 1205 India Landrace Desi 

ICC 12155 Bangladesh Landrace Desi 
ICC 12299 Nepal Landrace Desi 
ICC 1230 India Landrace Desi 

ICC 12307 Myanmar Landrace Desi 
ICC 12328 Cyprus Landrace Kabuli 
ICC 12379 Iran Landrace Desi 
ICC 12492 India Landrace Kabuli 
ICC 12537 Ethiopia Landrace Desi 
ICC 12654 Ethiopia Landrace Desi 
ICC 12726 Ethiopia Landrace Desi 
ICC 12824 Ethiopia Landrace Desi 
ICC 12851 Ethiopia Landrace Desi 
ICC 12866 Ethiopia Landrace Desi 
ICC 12916 India Landrace Desi 
ICC 12928 India Landrace Desi 
ICC 12947 India Landrace Desi 
ICC 13077 India Landrace Kabuli 
ICC 13124 India Landrace Desi 
ICC 13187 Iran Breeding material Kabuli 
ICC 13219 Iran Landrace Desi 
ICC 13283 Iran Landrace Kabuli 
ICC 13357 Iran Landrace Kabuli 
ICC 13441 Iran Landrace Kabuli 
ICC 13461 Iran Landrace Kabuli 
ICC 13523 Iran Landrace Kabuli 
ICC 13524 Iran Landrace Desi 
ICC 1356 India Landrace Desi 

ICC 13599 Iran Landrace Desi 
ICC 13628 Iran Landrace Kabuli 
ICC 13764 Iran Landrace Kabuli 
ICC 13816 USSR Landrace Kabuli 
ICC 13863 Ethiopia Landrace Desi 
ICC 1392 India Landrace Desi 
ICC 1397 India Landrace Desi 
ICC 1398 India Landrace Desi 

ICC 14051 Ethiopia Landrace Desi 
ICC 14077 Ethiopia Landrace Desi 
ICC 14098 Ethiopia Landrace Desi 
ICC 14199 Mexico Breeding material Kabuli 
ICC 1431 India Landrace Desi 

ICC 14402 India Breeding material Desi 
ICC 14595 India Landrace Desi 
ICC 14669 India Landrace Desi 
ICC 14778 India Landrace Desi 
ICC 14799 India Landrace Desi 
ICC 14815 India Landrace Desi 
ICC 14831 India Landrace Desi 
ICC 1510 India Landrace Desi 

ICC 15248 Iran Landrace Desi 
ICC 15294 Iran Landrace Desi 
ICC 15406 Morocco Landrace Kabuli 
ICC 15435 Morocco Landrace Kabuli 
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ICC 15510 Morocco Landrace Desi 
ICC 15518 Morocco Landrace Kabuli 
ICC 15567 India Breeding material Desi 
ICC 15606 India Landrace Desi 
ICC 15610 India Landrace Desi 
ICC 15612 Tanzania Landrace Desi 
ICC 15614 Tanzania Landrace Desi 
ICC 15618 India Landrace Desi 
ICC 15697 Syria Landrace Kabuli 
ICC 15762 Syria Landrace Desi 
ICC 15785 Syria Landrace Desi 
ICC 15802 Syria Landrace Kabuli 
ICC 15868 India Landrace Desi 
ICC 15888 India Landrace Pea-shaped 
ICC 16207 Myanmar Landrace Desi 
ICC 16261 Malawi Landrace Desi 
ICC 16269 Malawi Landrace Desi 
ICC 16374 Malawi Breeding material Desi 
ICC 16524 Pakistan Landrace Desi 
ICC 16654 China Landrace Kabuli 
ICC 16796 Portugal Landrace Kabuli 
ICC 16903 India Landrace Desi 
ICC 16915 India Landrace Desi 
ICC 1710 India Landrace Desi 
ICC 1715 India Landrace Desi 
ICC 1882 India Landrace Desi 
ICC 1915 India Landrace Desi 
ICC 1923 India Landrace Desi 
ICC 2065 India Landrace Desi 
ICC 2072 India Landrace Desi 
ICC 2210 Algeria Landrace Desi 
ICC 2242 India Landrace Desi 
ICC 2263 Iran Landrace Desi 
ICC 2277 Iran Landrace Kabuli 
ICC 2482 Iran Landrace Kabuli 
ICC 2507 Iran Landrace Desi 
ICC 2580 Iran Landrace Desi 
ICC 2593 Iran Landrace Kabuli 
ICC 2629 Iran Landrace Desi 
ICC 2720 Iran Landrace Desi 
ICC 2737 Iran Landrace Desi 
ICC 283 India Landrace Desi 

ICC 2884 Iran Landrace Desi 
ICC 2919 Iran Landrace Desi 
ICC 2969 Iran Landrace Desi 
ICC 2990 Iran Landrace Desi 
ICC 3218 Iran Landrace Desi 
ICC 3230 Iran Landrace Desi 
ICC 3239 Iran Landrace Desi 
ICC 3325 Cyprus Landrace Desi 
ICC 3362 Iran Landrace Desi 
ICC 3391 Iran Landrace Desi 
ICC 3410 Iran Landrace Kabuli 
ICC 3421 Israel Landrace Kabuli 
ICC 3512 Iran Landrace Desi 
ICC 3582 Iran Landrace Desi 
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ICC 3631 Iran Landrace Desi 
ICC 3761 Iran Landrace Desi 
ICC 3776 Iran Landrace Desi 
ICC 3946 Iran Landrace Desi 
ICC 4093 Iran Landrace Desi 
ICC 4182 Iran Landrace Desi 
ICC 4363 Iran Landrace Desi 
ICC 440 India Landrace Desi 

ICC 4418 Iran Landrace Desi 
ICC 4463 Iran Landrace Desi 
ICC 4495 Turkey Landrace Desi 
ICC 4533 India Landrace Desi 
ICC 456 India Landrace Desi 

ICC 4567 India Landrace Desi 
ICC 4593 India Landrace Desi 
ICC 4639 India Landrace Desi 
ICC 4657 India Landrace Desi 
ICC 4814 Iran Landrace Desi 
ICC 4841 Morocco Landrace Kabuli 
ICC 4872 India Landrace Pea-shaped 
ICC 4918 India Advanced cultivar Desi 
ICC 4991 India Advanced cultivar Desi 
ICC 506 India Landrace Desi 

ICC 5135 India Breeding material Desi 
ICC 5221 India Breeding material Desi 
ICC 5337 India Landrace Kabuli 
ICC 5383 India Landrace Desi 
ICC 5434 India Landrace Desi 
ICC 5504 Mexico Landrace Desi 
ICC 5613 India Landrace Desi 
ICC 5639 India Landrace Desi 
ICC 5845 India Landrace Desi 
ICC 5878 India Landrace Desi 
ICC 6263 USSR Landrace Kabuli 
ICC 6279 India Landrace Desi 
ICC 6293 Italy Landrace Desi 
ICC 6294 Iran Advanced cultivar Desi 
ICC 6306 USSR Advanced cultivar Desi 
ICC 637 India Landrace Desi 

ICC 6537 Iran Breeding material Desi 
ICC 6571 Iran Landrace Desi 
ICC 6579 Iran Landrace Desi 
ICC 67 India Landrace Desi 

ICC 6802 Iran Landrace Desi 
ICC 6811 Iran Landrace Desi 
ICC 6816 Iran Landrace Desi 
ICC 6874 Iran Landrace Desi 
ICC 6875 Iran Landrace Desi 
ICC 6877 Iran Landrace Desi 
ICC 7052 Iran Landrace Desi 
ICC 708 India Landrace Desi 

ICC 7150 Turkey Landrace Desi 
ICC 7184 Turkey Landrace Desi 
ICC 7255 India Landrace Kabuli 
ICC 7272 Algeria Landrace Kabuli 
ICC 7305 Afghanistan Landrace Desi 
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ICC 7308 Peru Landrace Kabuli 
ICC 7315 Iran Landrace Kabuli 
ICC 7323 USSR Landrace Pea-shaped 
ICC 7413 India Landrace Pea-shaped 
ICC 7441 India Landrace Desi 
ICC 7554 Iran Landrace Desi 
ICC 7571 Israel Landrace Kabuli 
ICC 762 India Landrace Desi 

ICC 7668 USSR Landrace Kabuli 
ICC 7819 Iran Landrace Desi 
ICC 7867 Iran Landrace Desi 
ICC 791 India Landrace Desi 

ICC 8151 USA Landrace Kabuli 
ICC 8195 Pakistan Landrace Desi 
ICC 8200 Iran Landrace Desi 
ICC 8261 Turkey Landrace Kabuli 
ICC 8318 India Landrace Desi 
ICC 8350 India Landrace Pea-shaped 
ICC 8384 India Landrace Desi 
ICC 8515 Greece Landrace Desi 
ICC 8522 Italy Landrace Desi 
ICC 8621 Ethiopia Landrace Desi 
ICC 867 India Landrace Desi 

ICC 8718 Afghanistan Landrace Desi 
ICC 8740 Afghanistan Landrace Kabuli 
ICC 8752 Afghanistan Landrace Kabuli 
ICC 8855 Afghanistan Landrace Kabuli 
ICC 8950 India Landrace Desi 
ICC 9002 Iran Landrace Desi 
ICC 9137 Iran Landrace Kabuli 
ICC 9402 Iran Landrace Kabuli 
ICC 9434 Iran Landrace Kabuli 
ICC 95 India Landrace Desi 

ICC 9586 India Landrace Desi 
ICC 9590 Egypt Landrace Desi 
ICC 9636 Afghanistan Landrace Desi 
ICC 9643 Afghanistan Landrace Desi 
ICC 9712 Afghanistan Landrace Desi 
ICC 9755 Afghanistan Landrace Desi 
ICC 9848 Afghanistan Landrace Pea-shaped 
ICC 9862 Afghanistan Landrace Pea-shaped 
ICC 9872 Afghanistan Landrace Kabuli 
ICC 9895 Afghanistan Landrace Pea-shaped 
ICC 9942 India Landrace Desi 
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Table S2:  Quantitative trait loci from Genesis836/Rupali mapping population. a).QTLs under control 

condition, b). QTLs under salinity. c). trait abbreviations explained. Chr-chromosome, dist (cM)-genetic 

distance, %Var- genetic variation explained, LOD-logarithm of odds. 

Trait Chr Left Marker dist(cM) Right 
Marker dist(cM) Size Pvalue % Var LOD 

PH L3 DArT850 29.55 DArT1046 40.32 2.457 0 6.9 3.6 

NA L7 DArT272(C) 68.63 DArT254(C) 88.75 -2.498 0.001 7.1 2.38 

NA L8 DArT52(C) 45.28 SNP9 47.32 2.427 0 6.7 4.398 
WU L4 SNP201 37.12 SNP1069(C) 63.87 -3.327 0 21.9 3.65 
NA L8 SNP27 50.65 SNP23 62.57 2.344 0.001 10.9 2.22 

WUE L4 SNP1069(C) 63.87 DArT1813 72.13 -353.758 0 7.5 3.648 
NA L8 DArT1786 18.49 DArT1798 20.52 367.059 0 8.1 4.589 
PSA L3 SNP343 17.13 DArT1762(C) 24.78 0.021 0.006 2.1 1.617 
NA L4 SNP201 37.12 SNP1069(C) 63.87 -0.047 0 10.6 4.743 
NA L4 DArT417 80.34 SNP180(C) 82.89 -0.027 0.001 3.6 2.275 
NA L4 DArT485 137.75 SNP188 139.26 0.031 0 4.6 3.865 
NA L8 DArT1786 18.49 DArT1798 20.52 0.043 0 8.9 8.136 

X30AGR L2 SNP225 61.85 SNP210 64.37 -2.253 0.001 6.4 2.259 
NA L3 SNP343 17.13 DArT1762(C) 24.78 1.783 0.002 4 2.043 
NA L4 SNP201 37.12 SNP1069(C) 63.87 -2.757 0 9.6 2.88 
NA L4 DArT417 80.34 SNP180(C) 82.89 -2.726 0 9.3 3.823 
NA L4 DArT485 137.75 SNP188 139.26 2.041 0 5.2 2.827 
NA L8 SNP27 50.65 SNP23 62.57 3.776 0 17.9 6.157 
NA L8 DArT1756 81.55 DArT10 82.85 -1.7 0.004 3.6 1.774 

X34AGR L4 SNP201 37.12 SNP1069(C) 63.87 -3.378 0 16 2.635 
NA L4 DArT417 80.34 SNP180(C) 82.89 -2.647 0 9.8 2.64 
NA L8 DArT1786 18.49 DArT1798 20.52 2.509 0 8.8 3.289 

ADM L1 SNP69 45.92 SNP423(C) 48.51 -0.582 0.001 5.7 2.541 
NA L3 DArT1750(C) 26.53 DArT850 29.55 0.743 0 9.2 4.042 
NA L7 DArT276 61.25 DArT272(C) 68.63 -0.716 0 8.5 2.978 
NA L8 SNP27 50.65 SNP23 62.57 0.696 0 8.1 2.826 
TP L3 SNP1056(C) 43.73 DArT1128(C) 45.09 -2.021 0.001 8.4 2.626 
FP L3 DArT1046 40.32 SNP1056(C) 43.73 -2.045 0 12.5 4.08 

FPR L8 DArT1251(C) 155.55 SNP11(C) 156.98 -0.012 0.005 25.7 1.706 
SN L2 DArT595 97.52 DArT553 111.41 -2.092 0.002 6.3 2.055 
NA L3 DArT1046 40.32 SNP1056(C) 43.73 -2.956 0 12.6 4.418 
NA L4 SNP1069(C) 63.87 DArT1813 72.13 2.101 0.001 6.4 2.341 
SY L5 SNP243 136.54 SNP613 138.36 0.37 0.001 7.2 2.491 
SW L2 SNP230 92.57 DArT595 97.52 0.941 0 4.2 3.226 
NA L3 DArT1762(C) 24.78 DArT1750(C) 26.53 0.738 0.002 2.6 2.015 
NA L3 SNP357 78.22 DArT1764(C) 81.16 0.735 0.006 2.6 1.659 
NA L4 SNP1069(C) 63.87 DArT1813 72.13 -1.979 0 18.7 13.586 
NA L5 SNP246 131 SNP259(C) 133.94 0.856 0 3.5 2.817 
NA L7 DArT253 102.73 SNP405 106.46 1.427 0.014 9.7 1.309 
HI L2 SNP210 64.37 SNP234 69.37 0.02 0.003 5.7 1.947 

a).
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NA L3 DArT850 29.55 DArT1046 40.32 -0.024 0 8.2 3.024 
NA L6 DArT1785 39.48 SNP397 43.37 0.017 0.003 4.3 1.909 
NA L7 DArT272(C) 68.63 DArT254(C) 88.75 0.037 0 19.4 4.576 
Na L3 SNP370 12.98 SNP343 17.13 -0.037 0.002 7.4 2.057 
K L3 DArT1750(C) 26.53 DArT850 29.55 -0.031 0 20.2 5.161 

NA L4 SNP1069(C) 63.87 DArT1813 72.13 0.025 0 13.3 3.129 
NA L6 SNP397 43.37 DArT148(C) 46.97 0.02 0.002 8.3 2.152 
NA L8 DArT1259(C) 31.28 DArT97(C) 32.27 -0.025 0 13.7 3.709 
KNa L4 SNP203(C) 77.52 DArT419(C) 78.8 0.039 0 11.4 3.386 

 

Trait Chr Left Marker dist(cM) Right Marker dist(cM) Size Pvalue % Var LOD 

PH L3 DArT1750(C) 26.53 DArT850 29.55 2.149 0 5.7 3.183 

WU L4 SNP201 37.12 SNP1069(C) 63.87 -2.201 0 10.7 3.103 

WUE L4 SNP1069(C) 63.87 DArT1813 72.13 -580.139 0 18.5 3.973 

NA L8 DArT97(C) 32.27 SNP406 33.58 660.103 0 23.9 5.803 

PSA L1 SNP81 13.09 DArT210 28.77 0.023 0.007 2.5 1.558 

NA L4 SNP201 37.12 SNP1069(C) 63.87 -0.055 0 15.2 8.653 

NA L4 SNP188 139.26 SNP153(C) 143.33 0.023 0.001 2.6 2.397 

NA L8 DArT1786 18.49 DArT1798 20.52 0.035 0 5.9 3.916 
NA L8 SNP9 47.32 SNP27 50.65 0.019 0.026 1.8 1.074 

X30AGR L4 SNP201 37.12 SNP1069(C) 63.87 -2.534 0 9.9 4.956 
NA L8 SNP5 14.85 DArT1786 18.49 2.267 0 8 6.328 

X34AGR L4 SNP201 37.12 SNP1069(C) 63.87 -2.792 0 10.7 4.97 
NA L8 SNP5 14.85 DArT1786 18.49 2.541 0 8.9 6.341 

X30AOST L4 DArT419(C) 78.8 DArT417 80.34 0.045 0 37 3.654 
X34AOST L4 DArT419(C) 78.8 DArT417 80.34 0.048 0 42.6 3.587 

TP L4 SNP201 37.12 SNP1069(C) 63.87 1.939 0.001 7.6 2.562 
FP L2 DArT1165(C) 1.72 SNP208(C) 5.11 -1.544 0.001 5.7 2.594 
NA L2 SNP233 35.48 SNP277 44.22 2.76 0.001 18.2 2.376 
NA L3 SNP432(C) 57.96 DArT1139(C) 59.11 -1.135 0.004 3.1 1.835 
NA L4 SNP201 37.12 SNP1069(C) 63.87 1.338 0.006 4.3 1.669 
FPR L6 SNP377 14.69 SNP380 22.89 0.01 0.004 16.1 1.842 
SN L2 DArT1165(C) 1.72 SNP208(C) 5.11 -1.562 0.005 3.6 1.743 
NA L4 SNP1069(C) 63.87 DArT1813 72.13 2.346 0 8.2 3.881 
NA L6 DArT990 2.31 SNP377 14.69 1.886 0.001 5.3 2.446 

SY L4 SNP616(C) 147.03 DArT1758(C) 147.86 0.256 0.002 3.4 2.051 

NA L5 SNP246 131 SNP259(C) 133.94 0.317 0 5.3 2.908 
SW L3 SNP357 78.22 DArT1764(C) 81.16 0.984 0 4.7 3.672 
NA L4 SNP1069(C) 63.87 DArT1813 72.13 -1.711 0 14.1 13.106 
NA L5 SNP259(C) 133.94 SNP243 136.54 0.87 0 3.7 3.879 
NA L7 DArT253 102.73 SNP405 106.46 1.478 0.003 10.5 1.852 
NA L8 SNP27 50.65 SNP23 62.57 0.676 0.006 2.2 1.643 

b). 
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HI L1 SNP58(C) 70.26 DArT167 79.15 0.018 0 4.8 2.762 
NA L5 SNP256(C) 106.46 SNP238(C) 113.68 0.013 0.002 2.5 2.101 
NA L6 DArT990 2.31 SNP377 14.69 0.02 0 5.7 4.34 
NA L7 DArT253 102.73 SNP405 106.46 0.032 0.001 14.9 2.217 

Traits Abbreviations 
Plant height PH 
Water use WU 
Water use efficiency WUE 
Projected shoot area PSA 
Relative growth rate from 30 DAS X30 AGR 
Relative growth rate from 34 DAS X34 AGR 
Relative growth rate ratio (salt/control) 30 DAS X30 AOST 
Relative growth rate ratio (salt/control)34 DAS X34 AOST 
Number of total pods TP 
Number of filled pods FP 
Number of filled pods as a ratio of total pods FPR 
Seed number SN 
Seed yield SY 
100-seed weight SW 
Harvest index HI 
Above ground dry matter (shoot biomass) ADM 
Sodium ions Na 
Potassium ions K 
potassium sodium ratio KNa 

c). 
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