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Abstract 

The rock cutting industry has experienced important changes with the introduction 

of diamond-based drilling tools in the last few decades. Impregnated diamond (ID) 

bits are part of that introduction and their main use is to drill hard and abrasive rock 

formations. ID core drilling has emerged as the most commonly used technology 

employed in the advanced stages of mineral exploration. Through this technology, 

existing resources - mineral and energy - are expanded and greenfield exploration 

is carried out. As near-surface deposits are depleted, there is a global trend towards 

targeting deeper for exploration. Currently, in near-surface drilling, bit wear 

condition is determined by the experience of drilling operators –trial and error–. 

Although it makes the evaluation very subjective and prone to errors, it is an 

accepted practice. Conversely, in deep drilling, direct assessment of the bit wear 

condition is difficult and time consuming. Therefore, alternative techniques must 

be developed in order to evaluate, in real time, the wear condition of the bit and 

properties of the drilling medium. In this thesis, Acoustic Emission (AE) along with 

Measuring While Drilling (MWD) parameters are considered as an alternative 

technique to remotely monitor the ID bit wear condition (sharp and blunt) and rock 

properties (abrasivity). A series of rigorous and specialized drilling and abrasivity 

tests are utilised to generate the acoustic signatures with (topologically variant) and 

without (topologically invariant) changes in the topology of the tool cutting face.  

Main findings of this work are as follows: firstly, based on the step test results, 

linear relationships were developed that make it possible to estimate the depth of 

cut, weight on the bit (WOB) and torque on the bit (TOB) by simply using the time 

domain parameters of the AE signals. Wear tests also showed that AE amplitudes 

start to trend down as wear begins to accelerate. Secondly, acceptable pattern 

recognition rates are obtained for the majority of tool condition monitoring systems 

developed for predicting sharpness or bluntness of ID bits. In particular, the system 
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composed by AErms and TOB excels due to the high classification performance rates 

and the fewer input variables compared to other tool condition monitoring systems.  

Lastly, AE parameters, such as total number of events and root mean square of 

AE, in addition to testing parameters are found to accurately predict rock abrasivity 

measured via Cerchar Abrasivity Index (CAI). The importance of this index lies on: 

(i) the fact that ID drilling is commonly used in abrasive rock formations, and (ii) 

the way CAI has been defined (length of wear flat exerted on a steel pin after being 

scratched on one centimetre of rock surface), which intrinsically relates it to wear 

condition of the tool. The insights presented in this thesis open up a new promising 

field of study, impregnated diamond drilling using AE as an indirect technique to 

evaluate tool condition.
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Introduction 

1.1 Background 

Exploration industry of mineral (coal, iron, potash, limestone, etc.) and energy 

(uranium, geothermal, fossil fuels, etc.) resources is a crucial industry for the 

lifestyle of the modern society. In Australia, for example, total mineral exploration 

expenditure decreased from roughly $1 billion in September of 2011 to $400 

million in September 2015 [1], this generates the need of improved and cheaper 

techniques for the industry. Existing mineral and energy resources are expanded 

and new resources are discovered through mainly mechanical drilling. This, in turn, 

may be classified into two categories: rotary and percussive drilling [2].  

Impregnated diamond (ID) core drilling is a key rotary drilling technology 

employed in the advanced stages of mineral and energy resources exploration. 

Currently diamond drilling relies on the drillers expertise to assess and adjust 

drilling parameters. Operators use operational parameters, such as weight-on-bit 

(WOB) and cutting speed (RPM), to control the performance, measured by torque-

on-bit (TOB) and rate of penetration (ROP). The process is subjective and prone to 

errors. Both disadvantages are susceptible to escalate during deep exploration, 

which is significantly increasing as near surface deposits are being depleted at 

higher rates than new mineral deposits are being discovered. 
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Since direct measurement and visualization of the ID bit/rock interface is 

extremely difficult and time consuming in deep exploration drilling, indirect 

techniques have to be sought in order to remotely assess the interaction of ID drill 

bit and rock, including the diamond bit wear state.  

Given the importance of mineral and energy resources industries in today's 

international market, overall growth and modern lifestyle, it is imperative that 

improvements be made to current drilling practices. Therefore, in this thesis 

acoustic emission (AE) is employed as alternative technique to remotely study ID 

drilling and closely related rock properties. Although AE monitoring has been used 

extensively to monitor different aspects of drilling across different manufacturing 

processes, and to better understand the mechanisms behind the drilling process, it 

has not yet been applied to impregnated diamond drilling in order to remotely assess 

drilling conditions. 

1.2 Literature review 

An overview of the literature covering Acoustic Emission (AE) on rock drilling and 

rock properties is presented in this section. However, more comprehensible and 

detailed information pertaining each topic is given in respective chapters. 

1.2.1 Acoustic emission 

AE signals are transient elastic stress waves generated as a result of the rapid release 

of strain during transformation, plastic deformation and changes in the internal 

structure of a material [3]. AE signals are dependent on the basic deformation 

mechanism. They are dislocation motion, grain boundary sliding which is defined  

as the process in which grains slide past each other along or in a zone immediately 

adjacent to their common boundary [4], twinning which occurs when two crystals 

share lattice points in a symmetrical manner and vacancy coalescence which takes 

place when two or more vacancies, point defects that arise when an atom is 'missing' 

from the ideal crystal structure, merge [5]. All of these mechanisms occur during 

ID drilling.  

Frequency ranges of the emitted waves range from as low as the audible 

frequency range up to megahertz frequencies [6].  Amongst the large number of 
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materials from which AE can be detected is rock. Characteristics of the AE signals 

produced ultimately depend on the material properties and the source of generation 

[7]. AE signals are unique therefore cannot be reproduced. Thus, statistical analysis 

is to be applied to measure signals. The stochastic nature of the signals is generated 

by factors affecting the signal generation, transmission and detection [8]. 

Acoustic emissions can produce two types of signals, burst (discrete) emissions 

or continuous emissions (see Figure 1-1); the continuous signals are of lower 

amplitude and of high frequency (minimal separation of occurrence). They are 

associated erosion processes in brittle materials [7]. These types of signals are 

appropriate for controlling the operation of machines [9]. In cutting processes, burst 

signals appear to be continuous signals as there is always present a cutting force, 

which emits burst signals so close in time [3]. In contrast, the burst signal consists 

of pulses with amplitudes substantially larger than the background noise and well 

separated in time of occurrence that are generated by spontaneous release of energy 

[6, 10]. The energy of the elastic wave generated in burst signals may exceed several 

orders of magnitude to that of elastic waves in continuous emission. These 

emissions are characterized by an increase in amplitude of acoustic pulses and is 

therefore registered as a discrete (or burst) AE [11]. 

Figure 1-1. Burst and continuous acoustic signals [9]. 
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Baranov, et al. [11] explain that the sources of AE can be from several different 

nature: elastic deformation, changes in stress-strain state of a local volume of solid 

surface layer, plastic deformation, energy liberation at repeated deformation phase 

hardening-weakening and damage on surface layer, changes in friction surface 

structure, formation of microcracks, appearance of wear debris or surface spalling. 

AE has been utilized to monitor not only tool condition but also tool breakage in 

single-contact turning operation at laboratory scale for approximately 20 years in 

different manufacturing processes. [12]. Sudev and Ravindra [13] studied the 

correlation between drill bit wear and measured AE parameters using empirical 

methods including multiple regression and Group Method Data Handling (GMDH). 

The AE parameters were measured during drilling of cast iron with a high-speed 

steel drill bit. From their investigation, it was concluded that AE parameters 

provided sufficient warning of the resulting changes in tool wear and tool breakage. 

The models developed provided numerical estimates of tool wear and correlated 

well with the measured values [13]. Gómez, et al. [14] investigated possible 

relationships between AE, torque and drill bit wear using steel samples. The drill 

bits were modified with artificial and real failures in order to simulate different 

degrees of wear 

AE parameters 

AE parameters are used to extract information from the detected AE signals in order 

to infer physical phenomena such as tool wear and material fracture. Commonly 

used signal parameters are defined as follows (Figure 1-2): 

Frequency (Hz) is defined as the number of times an event (waveform) occurs 

over a one second interval. 

Sampling frequency (Hz) is defined as 1/δt, where δt is the regular time interval 

of which the samples are recorded.  Sampling Frequency is measured in cycles per 

second or Hertz (Hz). 

Sampling interval is defined as the time-domain between two sampling points. 

The time between successive points is generally equal. 
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Frequency Domain is obtained using a mathematical transformation known as 

the Discrete Fourier Transform (DFT).  This is a very important domain over which 

signal information is interpreted. Understanding the distribution of signal strength 

or power over different frequency components is fundamental in signal analysis.  

The frequency spectrum provides information regarding the nature of the AE 

source. 

Threshold is a specific voltage level above which AE response will be detected 

and will convert the AE signal to a pulse format. [13, 15]  

Amplitude is defined as the peak voltage of the signal waveform.  It simply 

provides information regarding the energy of the AE source. The peak amplitude is 

the maximum amplitude reached by a signal during an event. Magnitude of source 

event and  amplitude have a strong connection [16]. 

AE events count is defined as the number of times the threshold value is 

exceeded (waveform).  The AE events count rate provides information regarding 

the rate of defect growth [11]. However, Hardy [15] states that for continuous type 

signals AErms value is more practicable than AE count. Other name for this 

parameter are: number of events [16].  

 

Figure 1-2. AE signal parameters [16] 
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Factors influencing the AE and its sources 

Acoustic emissions generated during the ID drilling are very complex due to rock 

fracture, chip formation, wear and friction. As it will be discussed later (Section 

1.2.2), ID drilling is a friction intensive process whereby diamonds set in the matrix 

dislodge rock crystals by forces exceeding their cohesive strength. ID drilling is a 

thermodynamically interchangeable process whereby energy is interchanged with 

the environment in the form of a number of sources including acoustic energy, 

which is the focus of this research. The characteristics of the AE signals produced 

in drilling are still largely unknown and there is no literature available which 

directly addresses AE sources from ID drilling and drilling-associated rock 

properties. 

The AE generated by frictional processes occur mainly due to the same 

phenomena as the mechanical loading and failure of material. The main distinction 

between the frictional process of ID drilling and mechanical loading is the presence 

of additional AE sources resulting from frictional process. These processes include 

elastic interaction of surface asperities, chemical processes including corrosion 

which accompany friction in many cases, and the formation and rupture of adhesion 

joints. It is difficult to provide experimental conditions isolating one of these forms 

of AE from the other and it is therefore impossible to study a single source of exact 

AE during friction [11]. One of the dominate sources of AE signals during diamond 

drilling results from the IDs having to overcoming both surface interaction forces 

and mechanical resistance related to surface deformation. The identification of 

discrete AE sources is a future research topic as the current research is to investigate 

the feasibility of identifying overall signal characteristics associated with IDD. 

The presence of drilling fluids on the surface of the rock weakens its surface 

bonds and affects the overall characteristics of the AE generated. The influence of 

drilling fluids may be more pronounced if lubricants other than water are used. For 

instance, monomolecular layers of fatty acids or soaps in the lubricant form a film 

on the surface, encouraging sliding and hence reducing friction and affecting the 

resulting AE [11]. Reducing the friction between surfaces influences the 

characteristics of the AE emissions. Drilling fluids also fill and expand 
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discontinuities in the rock, leading to additional fracturing which also affect AE 

signals. 

Rapid temperature increases (flashes) occur at frictional contact spots, such as 

the area of immediate contact of the diamond and rock. The presence of these 

temperature flashes coupled with heavy contact dynamic loads and high energy 

absorption also cause a range of emission processes, including AE [11]. 

The wear stages a diamond drill bit experiences also affects AE. Higher wear-

rates at the initial running in stages of drilling results in higher amplitude AE as a 

result of the initial frictional relief, bit matrix decay and the exposure of fresh 

diamonds.  As the wear-rate stabilises the AE signals reduce their amplitude and 

become more continuous, with minimal occurrence of burst signals. During the 

catastrophic stage of wear, the increase in frictional wear characteristics leads to the 

generation of higher frequency and higher amplitude AE signals. The AE signals 

may exhibit burst behaviour due to the higher wear-rates and the increased friction. 

In this wear state, the diamond bit is likely to experience catastrophic wear such as 

segment failure or complete erosion of the crown. Such failures increase drilling 

pressures and forces, which translates to pronounced burst signals and higher 

amplitudes. 

Acoustic emissions in friction are commonly attributed to changes in the stress-

strain state of contact spots and to the appearance of wear debris due to surface 

damage [11]. The wear modes contributing to frictional surface damage include 

adhesion, abrasion, fatigue, corrosion and erosion may contribute to the AE. The 

surface damage is a combined effect of several elementary processes including 

micro-cutting, plastic deformation, delaminating, bulking and pit tearing; one of 

which may dominate. The dominant form of damage is likely to have the greatest 

influence on the AE characteristics. The deformation occurring at the diamond 

drilling interface is still not well understood [17]. The AE emissions at any time 

come from one dominant source or from a combination of them. Some of the 

sources expected to emit during ID drilling are [3]: 

 Friction between tool and rock interfaces 
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 The interaction between the rock and loose cutting 

 Rock fracturing 

 Tool chipping and fracturing 

 Shear and plastic deformation of the rock 

 Collision between drill bits and rock face 

 Entrapment of drill cuttings between drill flue and cylindrical wall. 

 

The amplitude is the most informative AE characteristic generated during IDD 

and it depends on properties of the mating materials, load, frictional conditions 

(wear state of the bit), surface roughness, temperature and other factors.The wear 

mode of the bit influences AE characteristics. In comparison to adhesive and fatigue 

wear, abrasive wear is synonymous with higher intensity AE. Generally, materials 

damaged by adhesion and fatigue produce continuous signals with small amplitudes 

while materials damaged by adhesion with seizure produce burst type signals. 

Abrasive wear can increase the amplitude signals 2-3 times in size when it 

dominates the frictional process [11].  

The AE sources, listed in Table 1-1, may apply to ID drilling given the signals 

from drilling tend to be continuous in nature.  However as there is no literature 

addressing AE monitoring of ID drilling the AE sources inherent in this process are 

still largely unknown. 

Sensors and preamplifiers 

AE sensors detect the stress induced elastic waves propagating through the rock and 

convert them into electrical signal. Transducer elements which are contained inside 

the sensor are classified as either resonant or broadband and are selected based on 

the desired operating frequency and environmental characteristics.  Piezoelectric 

crystals are most commonly used as transducer elements in AE sensors. 

Piezoelectric (PZT) sensors operate in resonance and typically transform elastic 

motions of 1 Pico meter into electrical signals of 1μV voltage.  In contrast, 

broadband sensors are operated outside their resonant frequencies [9]. 
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Table 1-1 AE Sources Generated by Frictional Process [11] 

Factors increasing amplitude Factors decreasing amplitude 

Rough relief Smooth relief 

High hardness Low Hardness 

Surface anisotropy Surface isotropy 

Inhomogeneity in surface properties Homogeneity of surface properties 

Coarse grains Fine grains 

Absence of texture Presence of texture 

Low toughness High toughness 

Defects in surface layers Absence of defects in surface layers 

Low temperature Elevated temperature 

High sliding velocity Slow sliding velocity 

Heavy load Light load 

Non-stationary friction conditions Stationary friction conditions 

Abrasive wear Adhesive wear 

Failure due to micro-cutting Failure due to plastic deformation 

Dry Friction Presence of a lubricant 

Boundary friction with a liquid lubricant Boundary friction with solid lubricants 

Presence of surfactants Absence of surfactants 

Presence of corrosive environment Absence of corrosive environment 

 

In order to maximise the preservation of signal characteristics, sensors with a 

frequency range of 100-900 kHz are required to detect the AE signals generated 

during the rock drilling process. This range would be suitable for sampling properly 

the emitted signals, as demonstrated by [18] who used SE375-MI AE sensors with 

a smaller frequency range of 50-500 KHz in a similar rock drilling experiment. A 

minimum preamplifier gain of 40 dB was also determined to be necessary. To 

minimise the loss of signal energy, sensors need to be firmly attached to the test 

material. Crosland, et al. [19] investigated options to attach the sensor using both 

bees-wax and superglue. However better signal resolutions were achieved using 

superglue as a result of less attenuation in comparison to bees-wax. Other couplants 

commonly used include vacuum greases, water soluble glycols, solvent-soluble 

resins and proprietary ultrasonic couplants [9]. 
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Crosland, et al. [19] also found that the sensor locations influence the signal 

strength due to the attenuation properties of the rock mass, and suggested sensors 

should be located on the test material so that they provide good signal coverage. 

Pre-amplifiers are employed in the AE testing circuit to magnify AE signals. In 

order to reduce the amount of electronic noise, pre-amplifiers with modern 

transistors should be used [9]. Preamplifiers can either be integrated or non-

integrated. Integrated pre-amplifiers are located within the sensor and as a result are 

advantageous as they simplify the AE circuit setup. In  [19], pre-amplifiers with 

three selectable gain settings (20 dB, 40 dB and 60 dB) were used.  Different 

researchers [6, 13, 14, 20] have used preamplifiers with a 40 dB gain in their drilling 

experiments. 

Signal processing 

The recorded acoustic emissions signals contain large amounts of information, it is 

therefore important to be able to distinguish between relevant data and background 

noise. Signal processing is an operation, which can both extract and enhance the 

valuable data from a busy signal. Due to the stochastic nature of acoustic emission 

signals, the use of statistical methods and signal analysis tools are required [8]. 

There are varieties of tools and techniques that can be implemented in order to 

interpret signals. Amongst them, the following ones are of particular interest and 

will be utilised in this work. 

Root Mean Square method (AErms), described in Eq. 1.1, provides a measure 

of magnitude of the signal, despite the shape of the waveform [21]. 

Chandrashekhar, et al. [22] successfully developed an empirical relationship to 

estimate the Root Mean Square (RMS) error value of an AE signal generated during 

the drilling of a ‘Hasteloy’ with tin and zircon coated drill bits.  The AErms values 

correlated well with those values measured using a new drill bit during the 

experiment.  However, as the drill bit wore, a significant difference between the 

estimated and measured AErms values was observed. A conclusion was drawn that 

the difference between the estimated and measured AErms values can be used to 

infer drill bit wear [22].    
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

T

iRMS dtV
T

V
0

21
                            (1.1) 

where T = period of the waveform and Vi is the instantaneous voltage [21]. RMS is 

similar to a moving average, capable of ‘smoothing’ out the data, helping to make 

any present trends in the data more obvious. In a study by Jemielniak and Otman 

[23], the AErms value was considered as a useful mean of tool failure detection, 

although further studies revealed that this may not be the case. Kannatey-Asibu Jr 

and Dornfeld [8] concluded that the AErms values and associated distribution 

parameters can be very sensitive in regard to the degree of tool wear. Most of tool 

condition monitoring systems make use of AErms of the signal to detect tool wearing 

state or even tool breakage [12].  

Fast Fourier transform (FFT) is a well-known algorithm used to compute the 

continuous time Fourier transform (CTFT), described in Equation 1.2, on signals 

[24]. 






 dtetxfX ftj 2)()(                                                      (1.2) 

where 𝑓 is the frequency, 𝑥(𝑡)  is signal in time domain and 𝑋(𝑓) is the signal in 

frequency domain. Heideman, et al. [25] give a detail history of the FFT dating 

back to 1800s and especial editions with publications about FFT have also been 

published by the Institute of Electrical and Electronics Engineering (IEEE) [26]. 

This tool aids to convert a signal in the time domain, to one in the frequency domain, 

highlighting characteristic frequencies which would not have been clear otherwise 

[27]. 

The FFT has been extensively used by engineers across a variety of applications. 

Li and Li [28] performed an extensive study on AE analysis to monitor bearing 

conditions. They used a number of observations which were based on the 

characteristic frequencies related to the failure of bearings, found by using the FFT. 

Williams and Hagan (2002) studied the AE levels present with changes in rock 

cutting conditions. They found that due to their relatively low sampling rate, FFT 

did not produce any worthwhile results. This introduces the concept of Nyquist 
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theorem, which states that the maximum frequency that can be calculated from a 

sampling frequency is half of such a frequency [24, 26]. Although acoustic data is 

initially recorded as function of time, much of the analysis is performed in the 

frequency domain. For this reason, FFT is considered to be a key tool when it comes 

to signal analysis. 

1.2.2 Impregnated diamond drilling 

Drilling is a tribological process used to penetrate the subject mass. Three of the 

most common types of rock drilling include percussive, rotary crushing and roto-

percussive drilling, each with vastly different applications, methods and tools [29, 

30].  A similarity between the fundamental drilling processes common to most 

drilling methods, regardless of subject mass, is the use of a rotating tool to assist 

indentation. In rock drilling, this tool is referred to as the bit [31]. Applications of 

ID drilling include exploration drilling, precision machining and manufacturing. 

Impregnated diamond (ID) drilling refers to drilling with bits that contain an 

arrangement of diamonds in a layer or layers of binding matrices. There are two 

major categories including ID bits  and surface set bits. IDBs are used in medium 

to ultra-hard deep geological formations, whilst surface set bits are used in softer 

formations that are common in shallow drilling [32]. 

ID drilling products are becoming more specialised in order to cater for 

increasingly complex applications enabling a wider range of rock strata to be drilled 

more effectively and efficiently. This has been possible by optimising a range of 

critical drill bit parameter. 

In order to study rock drillability, which is defined by Huang and Wang [33] as 

the performance prediction of a specific rig drilling on a rock mass with known 

properties, using IDBs, two main processes occurring at the rock/bit interface must 

be separately studied. Namely, bit or matrix wear and diamond wear process. 

Before going into the details of these two processes, a brief review on the principal 

drilling parameters is presented in the next section. 



Introduction 

 

13 

 

Drilling parameters 

There are operational parameters that are controllable during drilling. The 

combination of correct bit properties and operational parameters for the drilling 

conditions will result in the optimum drilling rate and meters drilled achieved per 

bit. A number of authors have studied the tribological process during various types 

of drilling to ultimately optimise drilling performance. Many of these studies have 

resulted in the derivation of some mathematical relationships referred to as 

drillability equations [33]. While the literature has covered a range of different types 

of drilling, operational parameters that are similar between various types of drilling 

have been found to have similar effects on the respective drilling performance. 

Major diamond drilling operational and performance parameters include 

penetration rate, rotational speed, thrust, penetration per revolution, specific energy 

and fluid flow volume and pressure. There are many relationships between various 

parameters and drilling performance published in the literature. Some better known 

relationships are reviewed in the following sections. Notably while these 

parameters are critical to drilling performance, there have been no attempts in the 

literature at determining these relationships in ID drilling through the measurement 

of acoustic emissions. 

Penetration rate (V) 

Penetration depth is the depth of a drill hole from the hole collar to the cutting face 

of the hole, while hole length is the target drilling distance. While neither of these 

is controlled in the drilling process, their intended values strongly influence drilling 

strategy. The penetration rate is the derivative of penetration depth with respect to 

time, or the drilled distance per unit of time. However, Tian and Tian [34] suggest 

that the depth of cut per revolution is the most important factor influencing 

impregnated diamond bit wear, as opposed to depth of cut over time. 

Much of the literature has indicated that attempting to maintain a constant 

penetration rate leads to faster bit wear as a constant penetration rate requires 

adjusting other parameters to values outside their optimum range, leading to sub 

optimal drilling conditions. The penetration rate decreases with an increase in rock 
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strength, hardness and abrasivity as these conditions require greater energy for rock 

breakage thus causing the penetration rate to slow down  [35]. 

Rotational speed (Ω) 

The rotational speed is the quantity of revolutions of the drill string with respect to 

time, and is usually measured in revolutions per minute (RPM). Typical rotational 

speeds in diamond drilling range from 300 RPM to over 2000 RPM.   Bhatnagar, 

et al. [36] found that in harder rock formations low rotational speeds (300 RPM) 

resulted in insignificant penetration rates. Additionally, Tian and Tian [34] 

observed that low rotational speeds (500 RPM) resulted in a faster rate of bit wear. 

These findings agree with the suggestion from Jones [37] that if the penetration rate 

is increased, rotational speed must be increased accordingly in order to avoid the 

occurrence of high bit wear-rate and concave face wear. Further, this suggests that 

penetration per revolution is a critical factor to control to achieve optimal drilling 

conditions. 

Tian and Tian [34] also suggests that an increase in rotational speed reduces bit 

wear due to the faster displacement of loose cuttings at the drilling interface. 

Whereas at low rotational speeds, loose cuttings can act as a third body in the 

friction interaction, thus resulting in unnecessary drill bit wear. Contrary to this 

theory,  Huang and Wang [33] suggests that increasing rotational speed results in 

excessive friction and heat which increases bit wear-rate. However both of these 

interactions may be taking place simultaneously. 

Applied torque (TOB) 

Applied torque is the rotational moment applied, in units of Nm. This can be 

measured using a tachometer. Rock properties determine the requirement of applied 

torque. Rao, et al. [38] could not define a definite relationship between torque and 

rock strength, however the author noted that in general the softer the rock, the higher 

the torque. Huang and Wang [33] presented this concept in more detail, suggesting 

that rock types with UCS <100 MPa became significantly harder to drill due to the 

large torque required. Above this level of UCS, torque requirements do not change 

significantly. 
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Various authors [33, 36, 38] have found that rotational speed had little effect on 

applied torque. The difference in magnitude of torque forces between the centre and 

side of a non-hollow bit is significant; however a typical coring diamond drill bit 

does not experience this phenomenon. Rao, et al. [38] determined that torque 

developed at the drilling interface increased linearly with bit pressure irrespective 

of rotational speed. 

While drill bit diameter has been kept constant throughout the project, it is 

worthwhile mentioning that Rao, et al. [38] observed a general increase in measured 

torque with increasing bit diameter. 

Axial force (WOB) 

The axial force is the normal force applied in the direction of drilling. Excessive 

rotational speeds for the axial force being applied can lead to polishing of the cutting 

face and wear flat generation due to insufficient depth of cut per revolution  [34, 

35, 37, 38]. As axial force increases, the rate of penetration increases linearly; 

noting however that beyond an optimum thrust level there is no significant increase 

in penetration rate and the occurrence of hole deviation will increase [36]. 

Huang and Wang [33] investigated experimentally the effect of axial thrust on 

penetration rate and suggests a thrust range from 5-9kN for an optimised 

penetration rate. They also developed drillability equations relating penetration rate 

(ROP) and rotational speed (RPM), and penetration rate and axial force (WOB) 

where penetration rate is in m/hr, rotational speed in RPM and axial force in 

Newtons. 

Weight on bit was found to be the most influential factor on drilling efficiency 

compared to rotational speed and rock type [33]. A higher bit weight also increases 

bit cutting efficiency up to a certain threshold force whilst a lower bit pressure 

decreases penetration rate [35, 38]. 

In line with the findings by Huang and Wang [33], Miller and Ball [39] found 

that the transition from wear flat dominated to micro-fracturing dominated wear 

type occurs at around 5-6 MPa of bit pressure. At this transition pressure, the 

specific energy of drilling was the minimum as this is the axial force at which the 



Introduction 

 

16 

 

optimum relationship between wear flat generation and micro-cracking occurs, thus 

maximising the cutting potential of each diamond. 

In general, the literature suggests that for the subject rock mass the most critical 

drilling parameters influencing bit wear and rate of penetration are rotational speed 

and axial force, for which the depth of cut per revolution is the critical factor to 

control. 

Fluid flow rate and pressure 

The fluid flow rate and pressure are two characteristics of the flushing media 

applied to the drilling interface. The purposes of using a flushing media are to cool 

the drilling interface, remove cuttings, lubricate the drill string and also to stabilise 

the drill hole [35-38]. 

During the drilling process high temperatures can be reached at the drilling 

interface and along the drill string due to frictional interaction with the wall of the 

drill hole. Miller and Ball [35]  suggests that the hardness of diamonds is 

significantly reduced above 700 oC, while  Rao, et al. [38] found the binding matrix 

softens with temperatures in excess of 500 oC. This indicates that excessive 

temperatures are detrimental to drilling efficiency and bit wear. Miller and Ball [35] 

found a water flow rate of 350 l/hr at 200 kPa to be sufficient, while Huang (1997) 

used a flow rate of 340 l/hr. Water is the standard flushing media used in diamond 

drilling due to its low cost, although Bhatnagar, et al. [36] conducted laboratory 

experiments that confirmed an enhanced penetration rate can be achieved by adding 

Poly Ethylene Oxide to the water. 

Micro-scale parameters 

From Figure 1-3, the cutting force vectors (fc) are directional towards velocity (V), 

which also applies to the rubbing forces from the matrix (fm) and diamonds (fd). 

However, the more important features are both the depth of cut (d) and diamond 

protrusion (Φp). Although these parameters are harder to measure than the 

penetration rate, they are the predominant factor affecting diamond drill bit wear 

[34]. At the moderate value of penetration per revolution, the matrix is worn down 

at an acceptable rate while there are sufficient forces to cause diamond 
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microfracturing. If the penetration per revolution is too high, excessive wear of both 

the matrix and the diamonds can occur, limiting the life and effectiveness of the bit. 

It has also been found that of all the drilling parameters, the penetration per 

revolution has the most effect on bit wear [34]. 

   

Figure 1-3 Diamond ad rock interaction (Reconstructed from [40]) 

Softer rock formations require lower drilling speeds for optimised drilling 

conditions in comparison to harder rock formations provided the bit properties are 

also adjusted accordingly [37]. 

Bit wear process 

Bullen [32] describes three sequential stages in the bit wear process which typically 

occurs when drilling hard rocks. Firstly, active diamonds at the bit surface become 

worn due to interactions with hard asperities in the rock. This is then followed by a 

rapid stripping of blunted diamonds from the matrix structure. Finally, the matrix 

is worn until fresh sharp diamonds are exposed again. A steady penetration rate can 

be achieved so long as this wear cycle (see Figure 1-4) is sustained. Failure to 

replace blunted diamonds with fresh diamonds results in a smooth bit surface and, 

consequently, a decrease in the drilling performance. Therefore, the wear rate of the 

matrix structure serves an important role in maintaining the sharpness of the bit. In 

order to determine the most suitable wear rate for the matrix, it is vital to understand 

the conditions which allow for the most favourable balance of wear and 

performance at the diamond/rock contact. 
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Figure 1-4. ID bits wear cycle 

Diamond  wear 

In the current literature, the most prominent work investigating the behaviour of 

diamond wear in IDBs was conducted in 1990 by Miller and Ball. Using micro  

IDBs to drill into various types of hard rock, the diamond wear was studied by 

optical and SEM analyses over a range of different bit pressures (up to 12 MPa), 

penetration rates (up to 0.1 mm/rev) and sliding speeds (1 – 4 m/s). Set drilling 

conditions were repeated in a sequence of individual drill holes which were 

concatenated for a total drilling depth of approximately 1.5 m. For each test, tap 

water was used as the flushing coolant and the bits were preconditioned by drilling 

0.3 to 0.5 m into abrasive sandstone to expose a fresh layer of diamonds. 

At regular intervals of set incremental drilling distances, the wear of each 

exposed diamond was classified into four distinct wear modes. Typical SEM 

images of these wear modes are shown in Figure 1-5. Miller and Ball [39] found 

that, for all of the different rock types tested, the general nature of the diamond wear 

modes was the same. At low bit pressures, the depth of cut is very shallow and, 

therefore, less energy is transmitted into cutting. Instead, the exposed diamonds 

tend to slide over the rock surface producing wear flats due to cold hard mineral 

asperities ploughing through the heated plastically deformed diamond layers. At 

high velocities, it is also possible for diamonds to develop wear flats by 

graphitisation due to the high flash temperatures generated at the diamond surface 

[41]. 
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Figure 1-5. Scanning electron images of typical examples of diamond wear: (a) 

diamond fall-out; (b) wear flat; (c) microfracture; (d) macrofracture [35] 

As bit pressure increases, a larger proportion of diamonds are able to cut the 

rock. This corresponds to a larger number of diamonds exhibiting microfracture 

whereby cyclical stresses, from the rock cutting process, build up strain and initiate 

cleavage microcracks which eventually lead to brittle failure. At a certain threshold 

pressure, the cutting work reaches an optimum level that can be provided by the 

exposed diamonds. Increasing the pressure above this point induces a high depth of 

cut and excessive forces which results in larger sized fractures, referred to as hackly 

macrofracture. Diamond fall-out can also occur when the depth of cut of a particular 

diamond is sufficiently large. The severe loss of diamonds, as a result of either 

macrofractures or diamond fall-outs, causes a rapid decrease in the protrusion of 

diamonds and, therefore, exposes more of the matrix at the bit-rock interface. This 

in turn reduces the cutting ability of the bit until a sufficient layer of the matrix is 

worn again to expose fresh sharp diamonds.  

It was also observed that the drilling performance of ID microbits was related to 

the relative proportions of the different modes of diamond wear occurring at the bit-

rock interface. For stable drilling in any given rock type a characteristic threshold 

pressure existed above which desirable microfracture of the exposed diamonds was 
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promoted over undesirable wear flat generation [35]. Furthermore, this stable 

drilling pressure corresponded closely with the minimum specific energy. 

Based on the experimental results, Miller and Ball [39] proposed a general 

performance model outlining the drilling behaviour of ID bits in relation to thrust, 

specific energy and diamond wear. At bit pressures below the transitional phase, 

shallow depths of cut promote slippage and, consequently, wear flats develop. 

When drilling at set bit pressures, the increase of wear flat areas causes the 

penetration rate to continually drop and the specific energy to rise. Conversely, 

when drilling at a set penetration rate, the bit pressure generated will continually 

increase. At the transitional phase, bit pressure is sufficient for a maximal number 

of diamonds to sustain an optimum depth of cut. Here, microfractures become the 

predominant mode of wear as high rock cutting forces generate cyclical shear 

stresses at the diamond free-surface. Although this causes the bit wear rate to 

increase, it also prolongs the bit’s cutting ability through a favourable balance of 

diamond and matrix wear. As a result, the penetration rate stabilises and the specific 

energy approaches a minimum. Steady drilling continues until diamonds begin to 

macrofracture or are prematurely removed. Such extreme pressures are considered 

to be inefficient as high penetration rates are coerced at the expense of a greater 

wear rate and specific energy. Additionally, large wear particles (or detritus), along 

with the diminished clearance between bit and rock, that are ineffectively flushed 

from the bit-rock interface can cause stalling or seizures which generate an 

additional reactive torque on the bit. This is often referred to as the ‘cleaning 

problem’ that is observed by drillers. 

Effect of drilling parameters on diamond wear 

To investigate the integrated process of diamond and matrix wear, Tian and Tian 

[34] conducted microbit drilling tests and measured the wear coefficients (defined 

as the bit mass loss over the penetration depth) against varying depths of cut and 

rotational speeds. Results from these tests indicate that the depth of cut plays a 

greater role in the wear rate of IDBs than the rotational speed. From this work, it 

can be concluded that the wear coefficient increased drastically when the depth of 

cut was increased whereas the wear coefficient only decreased slightly when the 
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rotational speed was increased. Tian and Tian [34] also observed a threshold depth 

of cut above which the drilling forces started to fluctuate significantly. From SEM 

analyses of the exposed diamonds, it was found that this threshold depth of cut was 

associated with a predominance of microfractures. For tests conducted below the 

threshold depth of cut, fluctuations in the drilling forces were much less pronounced 

and more wear flats were observed. Furthermore, when drilling at the threshold 

depth of cut, the drilling response appeared to be optimal. This behaviour is 

consistent with  Miller and Ball’s (1990) performance model [42]. 

1.2.3 Pattern recognition 

Pattern recognition is part of machine learning [43] which, in turn, is a subfield of 

artificial intelligence (AI) [44]. The objective of machine learning is to develop 

algorithms that allow computers to learn from data. These algorithms are of 

particular importance because they are able to induce models that continually 

improve their performance over time as new data is available [45]. In the context 

of machine learning, two main classes of learning algorithms can be distinguished 

based upon their application and functionality: 

Supervised learning: these algorithms learn from a labelled set of data. They 

analyse the training data and produce decision functions that are used to classify the 

response of new data. These sorts of algorithms are commonly used in classification 

and regression problems.  

Unsupervised learning: those algorithms learning from non-labelled data. Their 

goal is to recognized different groups of data that share similar characteristics 

amongst themselves. These groups are the so-called clusters. 

Hence, pattern recognition can be understood as the categorization of input data 

into identifiable classes through the extraction of significant features or attributes 

of the data. Formally, pattern recognition assigns new data into different discrete 

categories and/or classes. This is achieved by using a multidimensional input vector 

X=[x1, x2, ..., xn], where xi are components associated to the vector X in an n-

dimensional feature space, in order to calculate the optimal vector θ=[θ0, θ1,…, θn], 

where θi are the weight coefficients components of vector θ. These two vectors 
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constitute the so-called decision boundaries when their product equals to zero, 

θTX=0. Decision boundaries can be linear or non-linear functions of the vector X 

[43].  

Accordingly, decision boundaries can be interpreted as functions that divide the 

feature space into different discrete regions. Ideally, each region corresponds to one 

and only one of the discrete classes. Implementation of a pattern recognition system 

consists of two phases, training phase and classification phase. In training, the 

vector of weight coefficients (θT) of the decision boundary is obtained from the 

training dataset using an algorithm, which helps finding the decision boundary that 

minimises the classification error. Whilst in classification phase, the pattern 

classifier, which consists of decision boundaries, classifies incoming signal into one 

of the predefined classes. As the focus of this work is on the application of tool 

condition monitoring systems to ID drilling, more details on the theoretical 

background of pattern recognition and how to choose the parameters of vector θ via 

different algorithms can be found in [31, 32]. 

In this thesis, different patter recognition algorithms are used i.e. simple trees 

(ST), support vector machine (SVM) [46], K-nearest neighbour (KNN) with k=1 

[47], boosted trees (BT) [48] and artificial neural networks (ANN) [15, 49]. A brief 

for these pattern recognition algorithms is given as follows since they are of 

particular interest on this research. 

Simple trees (ST) and boosted trees (BT) 

Both these algorithms are part of a bigger family of algorithms known as decision 

trees [44, 48, 50]. Decision trees are trees that consist of three types of nodes. Each 

internal node (or decision node) is initially labelled with an input feature. Then, the 

arcs (branches or links) coming from a decision node are branded with the possible 

values of the features. Finally, leaf nodes (or end nodes) of the trees are labelled 

with a class or a probability distribution over the classes. In this case, classes are 

sharp ID bit or blunt ID bit. (see Chapter 4). 

Decision trees classify patterns or classes through a sequence of questions. In 

such a sequence, the n question strictly depends on the n-1 answer. Decision trees 
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have the benefits of: i) being expressed as a logical expression, ii) rapid 

classification as a result of simple queries and iii) higher accuracy and speed [51].  

Support vector machines (SVM) 

SVMs generate one hyperplane or multiple hyperplanes in high-dimensional 

spaces. Such hyperplanes are then used for classifying the different classes. For 

instance, in a two-class classification problem using linear models of the form 

y(X)=wTφ(X)+b where φ(X) denotes a fixed feature-space transformation  and b the 

bias parameter. Training dataset is X=[x1, x2, ..., xn], and associated targets values 

(classes) T=[t1, t2, ..., tn],  where ti belongs to {-1,1}[44] and new data points X are 

classified by the sign of y(X)[50]. 

Assuming that the training data set is linearly separable in feature space, there 

exists at least one choice of the parameters w and b such that a the linear function 

satisfies y(xn)>0 for points having tn=+1 and y(xn) <0 for points having tn=−1, so 

that tny(xn) >0 for all training data points. Certainly, there may be many solutions 

that separate the classes exactly, in this case, it is ideal that the solution will give 

the smallest generalization error.  

Support vector machine approaches this problem by the concept of the margin, 

which is defined to be the smallest distance between the decision boundary and any 

of the samples [50]. In support vector machines the decision boundary is chosen to 

be the one for which the margin is maximized. The maximum margin solution can 

be found using statistical learning theory [50]. 

k-nearest neighbour (KNN) 

KNN is a non-parametric algorithm based on the probability theory [44, 50]. For 

this algorithm a basic definition of local density estimation is required (Eq. 1.3). 

Instead of fixing V and determining the value of K from the data, KNN algorithm 

requires a fixed value of K and use the data to find an appropriate value for V. To 

do this, a small sphere is considered on the point x is at which the estimation of the 

density p(x) is required. Next, the radius of the sphere is expanded until it contains 

precisely K data points. The estimate of the density p(x) is then given by (Eq. 1.3) 
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with V set to the volume of the resulting sphere. In other words, the class value of 

a point is determined by the average of the k-nearest neighbours. 

𝑃(𝑥) =  
𝐾

𝑁𝑉
     (1.3) 

where P(x) is probability density in D-dimension space, K is the number of points 

inside the selected region, N is number of observations (data points) and V is the 

volume of the selected region. 

The particular case of K=1 is called the nearest-neighbour rule, because a test 

point is simply assigned to the same class as the nearest point from the training set.  

Artificial neural networks (ANN) 

ANNs are extensively used in different engineering applications due to their well-

known capabilities of performing non-linear modelling of multiple variables. ANNs 

imitate the behaviour of the real neural system. The basic principle is given by the 

neuron activation mechanism, where a neuron is activated by an input and only 

responds if the input magnitude is greater than a determined threshold [52]. The 

type of neural network used in this study is termed Multi Layered Perception 

(MLP). A MLP neural network consists of an input layer, a hidden layer and an 

output layer. The input layer represents all selected AE features and rock properties, 

the hidden layer contains non-linear relationships and finally, the output layer 

corresponds to the prediction neurons. Each layer contains one or more processing 

units (neurons). Each neuron has a set of weights and an activation function in order 

to emulate the threshold activation that exists on real neural systems. The output of 

one weighted processing unit (neuron) can be calculated using Eq. (1.3). 

y = 𝑓(∑ w𝑘𝑥𝑘
𝑛
𝑘=1 )     (1.4)  

where f is the activation function, wk is the weight for the k-input and xk is the k-th 

independent variable [52]. For the most problems, sigmoid or hyperbolic tangent 

function can be considered a good activation function. 

The weights are the interconnection between layers that contribute to the 

prediction and classification power of the ANN. During the learning phase, these 
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interconnections learn from experimental data by optimizing the quadratic error 

between the prediction and real value of the output variable. A widely used 

optimization method is the gradient descendent method. For performance 

assessment of the ANN model, three datasets are required: training, validation and 

testing datasets. The training dataset is used to find the optimal weights. Validation 

dataset is utilized in order to avoid overfitting, which occurs when the ANN 

memorizes and replicates the training dataset. For more information on ANN refer 

to [50]. 

1.2.4 Rock drilling studies and AE 

Acoustic emission and ID drilling are two individually well-studied fields as 

evidenced above. Plenty of literature is available for individual fields; however, 

literature covering both fields is more limited. A review of this literature, studying 

the relations of AE with ID drilling and drilling-related rock properties, is given as 

follows. 

Acoustic emission applied to rock drilling/cutting 

Acoustic Emission has been successfully applied to monitor rock drilling at 

laboratory-scale and field-scale. Niitsuma and Chubachi [53] investigated the AE 

generated by a tri-cone bit in order to evaluate different rock formation and special 

drilling processes. In their paper, they demonstrated the feasibility of the AE 

monitoring in well-drilling. One of their two most outstanding findings is that the 

Root Mean Square signal (AErms) level was higher at welding and fractured zones, 

which in fact implies that AE is sensitive to different rock formations specifically 

its hardness [53]. Further, their other important finding is that special drilling 

processes, e.g. rubbing of drill collar, jarring and reaming, were clearly 

differentiable from the AE signature. In conclusion, well-drilling can be 

successfully monitored by applying AE technique [53]. 

Asanuma, et al. [54], [55] also carried out studies monitoring tri-cone bit drilling 

with AE technique. They also found a correlation between the mean amplitude 

RMS level of the signal and the hardness of the rock formation being drilled. 

Furthermore, homogeneity of the formation is represented by the frequency and 
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amplitude of peaks on the RMS signal. Rock characteristics have a direct influence 

on RMS level per unit of drilling advanced [56]. In addition, they also found that 

an increase in higher frequency emissions occurs when the drillability of rocks 

decreases. This occurs despite the fact that the shape of power spectrum of the AE 

has little variation when changing the rock types.  

A landmark study is Xiaoqing Sun’s work in 1999 [18], in which he made 

interesting conclusions from his tungsten carbide rotary drill field test, drilling in 

two different rock formations. Important results with regard to AE parameters and 

specific drilling scenario can be drawn from this research work. He concluded that 

AE count and AE event count linearly increase with the record time. In contrast, 

the rate of the AE count and AE event count remain at constant levels. Another 

notable conclusion is that the total AE count number is higher for drilling with a 

new bit compared to a worn bit. Finally, he utilised a pattern recognition analysis 

to demonstrate that different drilling situations may be identified by the 

characteristics of AE signals generated at the rock/bit interface [18].  

In a similar study to that of [18], Gradl, et al. [57] utilise frequency-domain 

analysis of the sound generated by Polycrystalline Diamond Compact (PDC) bits 

and roller cone bits. Their principal findings are that: i) The sound generated by 

PDC bits shows a clear relation with their design. Such relation matches with 

predictions made by slip-stick process. ii) Roller cone bits do not show rotational-

related peaks in their frequency spectrum. They claim that the study offers a starting 

point for further research using sound in order to measure bit performance or detect 

bit problems (wear).  

Williams and Hagan [58] utilised wide tungsten carbide bits in their coal cutting 

experiments and found that drilling with a worn bit produced a signal with lower 

AErms. More recently, Klaic, et al. [59] create a tool condition monitoring (TCM) 

system to predict wear of small diameter twist drill bit. They use pattern 

recognition/machine learning techniques in order to infer the wear condition (sharp 

or worn) of the bits. As further work, they recommend drilling in different type of 

rocks with different drill designs at various degrees of wear. 
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Acoustic Emission and drilling related rock properties 

In term of rock properties that have been studied using AE, there are various studies 

focusing on explicitly drilling-related [21] and non-explicitly drilling-related [60] 

properties of the rocks. 

 Jung, et al. [21] conducted indentation tests to demonstrate that AE 

characteristic, including AE rate, total even number, peak value of AE amplitude 

and total AE energy, depend to a large extent on indentation hardness. The primary 

aim of the study was to predict indentation hardness of rocks through AE. The study 

found a marked correlation between RMS of AE events with indentation hardness. 

As a conclusion Jung, et al. [21] stated that integrated RMS is the index with the 

highest correlation to the indentation hardness of rock. It is also suggested that peak 

RMS may be further employed in the prediction of rock drillability if associated 

with penetration rates of drilling. 

In a laboratory-scale study conducted by Kumar, et al. [60], sound generated 

from carbide drill bits of multiple diameters is used to predict rock properties. 

Empirical relations are derived between A-weighted equivalent sound level and 

Uniaxial Compressive Strength, Schmidt Rebound Number and Young’s Modulus 

while considering changes due to speed, diameter and penetration rate of the drill 

bit. They suggest further studies not only to cover a wider range of rock but also 

different rock properties.  

1.3 Shortcoming of previous contributions 

Based on the literature review on AE technique applied to rock drilling and drilling-

related rock properties, it is evident that there is a lack of research covering both 

AE monitoring of Impregnated Diamond (ID) drilling and evaluation of ID drilling-

related rock properties through AE. 

When it comes to specifically AE monitoring of ID drilling, two important 

drawbacks can be identified. Firstly, the influence of ID drilling parameters, rate of 

penetration (v), angular velocity (Ω), weight-on-bit (WOB) and torque-on-bit 

(TOB), on the AE signature is unknown. Secondly, the influence of ID tool 

condition on the AE signature and its utility are not known.  
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Regarding the evaluation of ID drilling-related rock properties through AE, it is 

clear that the property that is believed to control the wear rate of ID tools, abrasivity 

[35, 61], has not yet been studied using AE. 

1.4 Objectives and thesis overview 

The primary objective of this thesis is to study the applicability of AE technique to 

ID rock drilling and drilling-related rock properties. More specifically, to address 

the drawbacks mentioned in Section 1.3 which can be achieved by addressing the 

following sub-objectives.  

1. To develop testing methodology using AE that will allow us to examine 

relations between AE signals and drilling parameters (TOB, WOB, v 

and Ω). This objective is addressed by defining relations between TOB, 

WOB and depth of cut with acoustic parameters (AErms) during 

topologically-invariant drilling tests. See Chapter 3 for more details in 

regard to this objective. 

2. To define ID bits wear states in order to study the influence of the tool 

condition on the AE signature. Completion of this objective is done by 

defining important wear states, sharp and blunt, for ID bits. Then, 

topologically-invariant tests are carried out at the two wear states and a 

series of tool condition monitoring (TCM) systems are generated. For more 

details see Chapter 4 

3. To identify the principal rock property directly affecting the wear rate 

of ID tools and study it utilising AE. Objective 3 is addressed in Chapter 

5 and Chapter 6 where abrasivity is identified as the rock property that 

mainly affects the wear rate of ID drilling tools. Cerchar Abrasivity Index 

(CAI), due to its definition, is used and studied via AE.  

This document is presented in the format of combination of 

publications/conventional thesis. It consists of 7 chapters. Following Chapter 1, 

which introduces the research work, Chapter 2 provides an overview of the 

experimental methodology utilised in the research work. Chapters 3 to 6 present the 

main part of the work in which research outcomes and contributions are presented. 
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Lastly, conclusions of the work and recommendations for further work are 

presented in Chapter 7.  

Chapter 2 describes the experimental methodology employed in the research 

work. Initially, it provides an overview on the experimental setups –drilling rig and 

abrasivity apparatus- and different systems –AE system and MWD system- used in 

the research as well as a generalisation of the procedures followed in testing, both 

drilling tests and abrasivity tests. 

Chapter 3 is aimed at determining the relations between acoustic emission 

parameters and operational parameters of the drill rig taking into account the bit 

wear state. Echidna drill apparatus was used to monitor AE during rock–bit 

interaction. AE sensors are attached to both the drill and the rock under study to 

record acoustic signals being emitted during drilling. Two different types of tests 

were conducted – step tests, topologically-invariant, and wear tests, topologically- 

variant. Step tests included stepping down the depth of cut from 130 µm/rev to 0 

µm/rev. Wear tests involved accelerating the wear rate of the drill bit by using it to 

cut highly abrasive rock while keeping the depth of cut constant. Based on the step 

test results, a series of linear relationships were developed. These relationships 

make it possible to estimate the depth of cut, WOB and TOB by simply using the 

time spectrum of the AE signals. 

Chapter 4 the applicability of artificial intelligence (AI) based techniques to 

monitor tool condition of ID bits, sharp and/or blunt. Hence, topologically-invariant 

tests are performed with sharp and blunt bits while recording AE and measuring-

while-drilling variables. These are then used as inputs variables to create two 

approaches for the prediction of bit bluntness. The first is based on the 

aforementioned variables and the second is by using the concept of specific energy 

in drilling.  

Chapter 5 presents a new AI-based model to predict rock abrasiveness via CAI. 

It utilizes AE and “classical” rock properties as main indicators of rock abrasivity. 

AE sensors are attached to both the Cerchar testing apparatus and the rock in 

question while conducting scratch tests using hardened steel pins of 42 and 56 HRC. 
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Prior to the implementation of Artificial Neural Network (ANN) modelling, the 

selection of independent variables was carried out via Gamma test and V-ratio 

analyses. As a result, AE parameters, such as total number of events and root mean 

square of signal, in addition to testing parameters (i.e. uniaxial compressive 

strength, Young's Modulus, quartz content and pin hardness) are found to be the 

optimum model input combination needed to accurately predict CAI. 

Similarly, in Chapter 6 the influence of mineral composition of granitic rocks on 

the AE whilst scratching rocks with a single contact tool and the feasibility of AE 

as a means to infer CAI are presented. Single contact tool is utilised since it allows 

a better understanding and identification of the mechanism generating the AE 

waves. A Cerchar apparatus that was modified to provide constant scratching speed 

is utilized to monitor AE during rock/tool interaction. HRC-56 steel pins are used 

for scratching the rocks. Two AE PICO sensors with an operating frequency range 

of 200-750 kHz were used. Continuous AE signals were recorded with 1 MHz 

sampling rate during scratching. Tests on the modified Cerchar apparatus are 

carried out under the static load of 70N and cutting speed of 1 mm/s. A Scanning 

Electron Microscope (SEM) is utilized to visualize the groove in the rock and to 

identify the mineral composition through Back-Scattered Electrons (BSE) reflected 

from the rock sample. 

Finally, Chapter 7 summarises the main contributions and conclusions. The 

limitations and recommendation for further work are also discussed. 
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Experimental Methodology 

This chapter describes the proposed experimental program and tools employed in 

the research. Initially, the experimental setup, which is composed of drilling rig, 

Cerchar apparatus, AE system and SEM microscope, is described. Following, a 

detailed description of the testing procedure employed in drilling and CAI testing 

is given. More details on how the drilling or CAI testing systems are integrated to 

the AE system as well as respective experimental procedures are given on the 

respective chapters. 

2.1 Experimental setups 

2.1.1 Echidna drilling rig 

Echidna is a computer controlled laboratory drilling rig that is utilized to investigate 

the drilling action of ID bits. Kinematic controlled tests are exerted with this setup, 

that is, Ω and V are imposed via a rotary drive mechanism and an upper motor 

assembly respectively (Figure 4-1). Echidna rig is used to study the relations 

between AE signal and drilling variables in Chapter 3. Tests utilised to develop the 

tool condition monitoring systems, Chapter 4, also make use of Echidna rig. 

A linear actuator and a geared brushless electrical servo-motor compose the 

upper motor assembly. This assembly has a load capacity of up to 40 kN and can 

provide a precise V ranging from 0.1 to 13 mm/s. Weight on bit, WOB is measured 

by a uniaxial force transducer placed on the end of the actuator shaft. The rotary 
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drive mechanism consists of an electrical brushless servo-motor, a timing belt 

pulley system and a torque sensor (sprocket pulley sensor). The maximum TOB 

capacity of this system is 94 Nm and provides rotary speed, Ω, ranging from 10 to 

250 rad/s. Accurate depth of cuts from 1 to 200 µm/rev can be exerted by combining 

these two systems, the rotary drive system and the upper motor assembly. 

2.1.2 Cerchar apparatus 

A conventional West Cerchar apparatus has been used (see Figure 5-2). It has been 

equipped with a stepper motor. The stepper motor has been directly installed to one 

of the two hand cranks driving the screws in the two-axis cross table. The purpose 

of the modification that has been carried out is not only to match acoustic emission 

with the spatial location in the rock specimen but also to ensure constant velocity 

of scratching in the tests. 56 HRC and 42 HRC pins will be used in order to avoid 

discrepancies found in the literature. The adopted velocity for the current series of 

tests is 1 mm/s. The modified Cerchar apparatus is used for testing in Chapter 5 and 

Chapter 6 to evaluate abrasivity of various rock while recording AE signals. 

2.1.3 AE system 

The AE system used consists of a WDI-AST and PICO sensor (with pre-amplifier) 

sensor along with a data acquisition card (DAQ) and a LabView program developed 

in-house at the University of Adelaide. The WDI-AST is a wide band AE sensor 

with 40 dB gain integrated pre-amplifier and an operating frequency range of 200-

900 kHz and the PICO AE sensors had a frequency range of 200–800 kHz and 

required external preamplifiers to magnify the AE signals  

The DAQ is a NI PCI-61333 (16 M Samples) S Series Multifunction DAQ 

Device. The DAQ card has eight analogue channels each of which is able to collect 

up to 3 million samples per second. Sampling rate for the AE signals during drilling 

and scratching tests is 0.8 MHz and 1.5 MHz respectively. The WDI sensor is 

placed on the upper surface of the rock sample, and for safety reasons, at the furthest 

edge from drilling and/or scratching while the PICO sensor is place on the tool, 

either Echidna drill rig or Cerchar apparatus. Silicone gel is used as ultrasonic 

couplant between the sensors and the rock surface. The AE system is utilised in all 
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chapters of this thesis with only slight variations according to the experimental 

setup which is being used for testing. 

2.2 Experimental procedure 

Two experimental procedures are implemented for this research work. First, drilling 

tests procedure is oriented to fulfil objective 1 and 2 of this research. Secondly, the 

abrasivity tests procedure is applied in order to achieve objective 3 of the current 

work. 

2.2.1 Drilling tests 

Continuous topological changes take place, constantly, in the cutting face of the ID 

tools. These changes in the topology of the ID tools are important to define source 

of AE generated while drilling. Therefore, two specific responses are here 

considered, topologically variant (considering wear) and topologically invariant 

(without wear) [1]. 

Topologically variant 

Topologically variant tests are non-stationary responses characterised by changes 

in the topology of the drilling face. The evidence of the changes is the variation of 

WOB and TOB while cutting under constant depth of cut. Non-stationary responses 

are conducted for determining the influence of bit wear cycle on the AE signature. 

These tests include weight and height losses of the bits. 

Topologically invariant 

For performing topologically invariant (instantaneous) tests, a rigorous test protocol 

proposed by Franca et al [1] is followed. The protocol is composed by three stages: 

pre-test, test, and post-test. (see Figure 2-1)  

In the pre-test, tool conditioning is performed at the cutting face, sharpening or 

blunting, by imposing a depth of cut (kinematically controlled test) of 5 to 10 

µm/rev greater than the maximum depth of cut to be applied during the testing 

phase.  
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Drilling tests (Figure 2-2) are carried out at various depths of cut with increments 

of 5 - 10 µm/rev for ID core bits, while the AE and drilling forces are recorded. The 

time interval of each depth of cut is set  at about 5 s, or about 130 revolutions, which 

is sufficiently long to record a stationary signal while guaranteeing a topologically 

invariant response of the ID bit. 

 

Figure 2-1. Topologically invariant testing procedure. 

 

Figure 2-2. Depth of cut variation during topologically invariant testing. 
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2.2.2  Abrasivity tests 

Abrasivity tests are performed according to ASTM [2] [63]. A conventional West 

Cerchar apparatus is used to scratch steel stylus with a 90° conical tip are along 10 

mm of the rock surface. 42HRC and 56 HRC pin hardness are used. The surface of 

the rock specimens used are considered smooth as specimens were diamond sawn, 

according to ASTM [2]. Tests on the modified Cerchar apparatus are carried out 

under a static load of 70 N at a velocity of 1 mm/s. to ensure constant velocity, a 

stepper motor is installed in one of the two axis of the Cerchar apparatus (see Figure 

2 3). One CAI is equivalent to 0.1 mm measured at the top of the conical pin. For 

fine-grained rocks, the reported CAI is the result of 3 individual  tests are; whereas 

for coarse-grained rocks, 5 tests are averaged in order to obtain the reported CAI. 
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interactions in impregnated diamond drilling 

Abstract 

Our goal was to determine the relationship between acoustic emission (AE) signals 

and diamond drill bit wear in order to gather and interpret data to allow overall 

improvement of drilling performance. Achieving improved performance required 

investigating various drilling parameters to understand the characteristics of the AE 

signals in terms of their interaction with the operational parameters of the drilling 

apparatus. Echidna drill apparatus that simulates field exploration diamond drilling 

on a small scale was used to monitor AEs during rock–bit interaction. AE sensors 

were attached to both the drill and the rock in question to record acoustic signals 

being emitted during the process of drilling. Two different types of tests were 

conducted – step tests and wear tests. Step tests on the Echidna drill included 

stepping down the depth of cut from 130 µm/rev to 0 µm/rev, while the cutting 

speed remained constant. Wear tests, again using the Echidna drill, involved 

accelerating the wear rate of the drill bit by using it to cut highly abrasive rock in 

two different ways. Based on the step test results, a series of linear relationships 

were developed. These relationships make it possible to estimate the depth of cut, 

weight on the bit (WOB) and torque on the bit (TOB) by simply using the time 

spectrum of the AE signals. Wear tests also showed that AE amplitudes start to 

trend down as wear begins to accelerate. 
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3.1 Introduction 

Impregnated diamond core drilling is a key technology employed in the advanced 

stages of mineral exploration. Through this technology, existing resources are 

expanded and new mineral deposits are discovered. In Australia, for example, total 

mineral exploration expenditure increased to $790.2 million in the last quarter of 

2012 from $200 million in 2003 [1]. Currently diamond drill operators use 

operational parameters such as weight on the bit (WOB), cutting speed (rpm), depth 

of cut, torque on the bit (TOB) and mud pressure to control drilling performance, 

and usually rely on experience to anticipate and recognise changes in drilling 

conditions associated with different diamond wear states and rock formations. The 

process is subjective and prone to error, which escalates during deep exploration, 

which is increasing dramatically as near surface mineral deposits are rapidly being 

depleted at rates significantly higher than new mineral deposits are being 

discovered. 

Given that the direct measurement and visualization of the impregnated diamond 

drill bit–rock interface is extremely difficult in deep exploration drilling, AE 

monitoring could be a viable technique to remotely assess the interaction at the 

impregnated diamond drill bit–rock interface, including the diamond bit wear state. 

Although AE monitoring has been used extensively to monitor different aspects of 

drilling across different manufacturing processes, and to better understand the 

mechanisms behind the drilling process, it has not yet been applied to impregnated 

diamond drilling in order to remotely assess drilling conditions. Given the 

importance of mining in today's international market, overall growth and modern 

lifestyle, it is imperative that improvements be made to current drilling practices in 

order to achieve optimal performance. 

Research in the laboratory has shown that the use of AE for detecting tool wear 

and breakage in single-contact turning operations is feasible [3]. Furthermore, the 

sudden release of energy that emanates from a deforming or stressed material 

through acoustic waves [2], i.e., AE, can also detect other aspects of rock drilling 

situations [4]. Therefore, the ultimate goal of the current research was to develop a 

drill bit–rock interface monitoring technology capable of providing the operator 
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with live information about the condition of the down-hole drill bit. It is anticipated 

that the successful implementation of this technology may lead to increased 

efficiency, extended drill bit life and reduced drilling costs. 

3.2  Impregnated diamond core drilling 

Impregnated diamond core drilling is a dynamic tribological process involving the 

interaction of surfaces in relative motion, which are affected by friction and wear 

and require lubrication [5]. Processes including indentation, cutting, scratching, 

grinding, ploughing, shearing and crushing are all present at the drilling interface 

in varying proportions depending on drilling conditions [6,7]. These interactions 

are accompanied by friction, which is generated by diamonds and matrix sliding 

along the rock surface, no matter how small the relative motion between them. 

Baranov et al. [12] have stated that materials under friction conditions pass 

through three different stages of wear – running-in, steady state and catastrophic. 

The running-in stage shows changes in the friction surface and the physical–

chemical characteristics of the bit and the rock. As long as external parameters 

remain constant, these changes will result in a decrease of the friction force, the 

temperature of the mating materials, and the wear rate [12]. Following the initial 

running-in, the steady state is characterized by constant values of the friction 

coefficient, wear rate, temperature and roughness. The processes of friction and 

wear are stationary, and the geometry of the friction surfaces is continuously 

reproduced [12]. During the stage of catastrophic wear, there are sharp changes in 

the characteristics of the friction state. The friction coefficient, wear rate and 

constant temperature all increase [12]. 

Operational variables during drilling are both dynamic and kinematic (see Figure 

3-1), and are controllable. These parameters are chosen according to the drilling 

conditions in an attempt to optimize performance. 
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Figure 3-1. Diamond core drilling variables: (A) side view, (B) bit/rock interface view 

(close-up) and (C) top view (modified from [29]). 

Dynamic variables include the torque-on-the-bit (TOB) and weight-on-bit 

(WOB). The former is the rotational moment applied to the drill bit and is 

conventionally stated in Newton meters (Nm), while the latter, also known as thrust, 

is the axial load applied in the direction of drilling. WOB is a major drilling 

parameter and is regarded as the most influential wear factor when compared to 

rotational speed and rock type [13]. WOB is responsible for maintaining rock–bit 

interaction. 

On the other hand, kinematic variables include the rate of penetration (ROP) and 

angular velocity (Ω). For the current study, a unit defined as the depth of cut (d), 

measured in micrometres per revolution of the drill bit (µm/rev), was frequently 

used and gathered the kinematic variables into a single variable. 

A diamond-impregnated bit is typically constructed of a steel, cylindrical body 

with a metal matrix attached to form a cutting tip. The matrix, commonly made 

from mixtures of tungsten, tungsten carbide and bronze, contains dispersed 

synthetic diamonds [8]. The cylindrical design of the bit allows the recovery of a 

solid rock core, providing information about the structural geology and 

mineralogical features of the formations. 

Impregnated diamond drilling utilises a rotary drilling mechanism; a normal 

force (WOB) is applied to the bit, whilst another, torsional force (TOB), rotates the 

bit parallel to the rock surface. 
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This generates both tensile and shear stresses in the adjacent material [9]. As the 

bit rotates, the face of the diamonds moves along the rock surface, inducing failure 

in the rock through a combination of scratching, grinding, crushing and cutting [6]. 

Gradually the diamonds in contact with the rock surface begin to wear until the 

diamonds break away from the matrix and are removed by the flushing media, 

allowing new diamonds with fresh cutting faces to be exposed [8]. 

The wearing and breaking away of the diamonds occur in two different ways – 

through the formation of wear-flats and diamond micro fracturing [10]. Less than 

optimal drilling conditions may result in diamond wear-flats. Since they no longer 

protrude far from the matrix surface, the effectiveness of the drill bit is greatly 

reduced. Increase in WOB alone is not sufficient to cause rock fracturing, and only 

by physically breaking the diamonds or re-dressing the bit face, the bit can operate 

efficiently again [11]. 

In optimal drilling conditions, the sharp edges of the diamond are worn to 

transitionary wear-flats, which then begin to fracture [10]. Eventually this leads to 

entire failure of the diamond and its removal automatically from the surrounding 

matrix. The wear process of the impregnated diamond bit is, therefore, critical to 

its overall functioning and depends not only on the properties of the bit, but also on 

the operational drilling parameters [8]. 

3.3 Acoustic emission 

Acoustic emissions are simply transient stress waves generated when the 

deformation state of a body changes [14]. The elastic stress waves generated as a 

result of the rapid release of strain energy during fracturing, plastic deformation and 

changes in the internal structure of a material [15] are a form of acoustic emission. 

Acoustic emissions consist of two types of signals – burst (discrete) or 

continuous. Continuous emissions are of lower amplitude and of high frequency 

(minimal separation of occurrence). In this case, the energy released in a single 

event is small and the energy state of the solid changes insignificantly [12]. Burst 

emissions signals consist of pulses with amplitudes substantially larger than the 

background noise and well separated in time of occurrence [14]. The energy of the 
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elastic waves may exceed by several orders of magnitude the energy of elastic 

waves in continuous emission. Burst emissions are characterized by an increase in 

the amplitude of the acoustic pulses and are therefore registered as discrete (or 

burst) AEs [12]. 

Baranov et al. [12] explained that the sources of AE are various, and include 

elastic deformation; changes in the stress–strain state of a local volume of a solid 

surface layer; plastic deformation; energy liberation at a repeated deformation; 

phase hardening– weakening and damage on a surface layer; changes in friction 

surface structure; formation of micro cracks; appearance of wear debris or surface 

spalling. 

AE has been used to monitor tool condition, including breakage, in single-

contact drilling operations at the laboratory scale for the past two decades [20] in 

the manufacturing industry [3]. Sudev and Ravindra [16] studied the correlation 

between drill bit wear and measured AE parameters using empirical methods, 

including multiple regression and group method data handling (GMDH). The AE 

parameters were measured during drilling of cast iron with a high-speed steel drill 

bit. The researchers concluded that AE parameters provided sufficient warning of 

the resulting changes in tool wear and tool breakage. The models developed 

provided numerical estimates of tool wear and correlated well with the measured 

values [16]. Gomez et al. [17] investigated possible relations between AE, torque 

and drill bit wear using steel samples. The drill bits were modified with artificial 

and real failures in order to simulate different degrees of wear. 

Sun [4] used acoustic emission to monitor bit wear during drilling using two 

different types of rocks and concluded that different drilling situations may be 

identified by the characteristics of AE signals generated at the rock/bit failure. He 

had extracted useful information pertaining to the degree of bit wear, impending bit 

failure and formation change. The experimental setup consisted of a tricone rotary 

drill bit in a field drilling scenario. The results showed that the AE signals collected 

during drilling with the worn bit were higher and rougher compared with signals 

from drilling with the new bit. However, research that focuses on diamond-
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impregnated core drilling and its relation with AE is needed because there is no 

research work currently to address this specific problem. 

3.3.1 Signal analysis 

Acoustic emissions contain large amounts of information, and it is important to be 

able to distinguish between relevant data and background noise. Signal processing 

is an operation, which can both extract and enhance the desired data from a busy 

signal. Due to the stochastic nature of acoustic emission signals, the use of statistical 

methods and signal analysis tools is required [18], and a variety of tools and 

techniques have been developed in order to interpret signals. Amongst them, two 

of particular interests were used in the current work – the root mean square (RMS) 

and the fast Fourier transform (FFT). 

The root mean square method (RMS), described in Eq. 3.1, provides a measure 

of magnitude of the signal, regardless of the shape of the waveform [19]. 

Chandrashekhar et al. [20] successfully developed an empirical relation to estimate 

the root mean square (RMS) error value of an AE signal generated during the 

drilling of a ‘Hasteloy’ with tin and zircon coated drill bits. The RMS values 

correlated well with those values measured using a new drill bit during the 

experiment. However, as the drill bit wore, a significant difference between the 

estimated and measured RMS values was observed. It was concluded that the 

difference between the values could be used to infer drill bit wear [20]. 

𝑉𝑅𝑀𝑆 = √
1

𝑇
∫ 𝑉𝑖

2𝑇

0
𝑑𝑡     (3.1) 

where T is the period of the waveform, and Vi is the instantaneous voltage [19]. 

RMS is similar to a moving average, capable of ‘smoothing’ out the data, helping 

to make any present trends in the data more obvious. In a study by Jemielniak and 

Otman [21], the RMS value was considered to be a useful means of tool failure 

detection. Further studies [18], however, revealed that this might not be the case. 

These researchers concluded that the RMs values and associated distribution 

parameters could be very sensitive in terms of assessing the degree of tool wear. 

Nevertheless, most tool condition monitoring systems make use of the RMS of a 
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signal to detect the tool wear state or even tool breakage [3], although Williams and 

Hagan [22] found that cutting with a worn pick produced a signal with a lower RMS 

amplitude. 

The fast Fourier transform (FFT) is a renowned algorithm used to compute the 

continuous time Fourier transform (CTFT) of signals [23], as follows: 

    𝑋(𝑓) = ∫ 𝑥(𝑡) 𝑒−𝑗2𝜋𝑓𝑡 𝑑𝑡
∞

−∞
      (3.2)  

where f is the frequency, X (t) is the signal in time domain and X (f) is the signal in 

the frequency domain. 

Heideman et al. [24] have provided a detailed history of FFT dating back to 

1800s. Special editions with publications about FFT have also been published by 

the Institute of Electrical and Electronics Engineering (IEEE) [25]. The FFT can 

convert a signal in the time domain to one in the frequency domain, highlighting 

characteristic frequencies which would not have been clear otherwise [26]. 

The FFT has been extensively used by engineers across a variety of applications. 

Li and Li [27] performed an extensive study on AE analysis to monitor rolling 

element bearing condition, for example. They used a number of observations based 

on the characteristic frequencies related to the failure of bearings found by using 

the FFT. Williams and Hagan [22], on the other hand, studied the AE levels present 

as rock cutting conditions changed. They found that due to their relatively low 

sampling rate, FFT did not produce any worthwhile results, reinforcing the 

observation that the highest frequency, or Nyquist frequency, that can be reliably 

calculated from the computation of the FFT equals half the sampling frequency 

[23]. 

Although raw data is recorded as a function of time, much of the analysis in FFT 

is performed in the frequency domain. For this reason, FFT was considered to be a 

vital tool for signal analysis during the current study. 
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3.4  Material and methods 

For testing, a laboratory-scale drill rig, ‘Echidna rig’, which is capable of simulating 

real rig conditions, was used in order to conduct seven ‘step tests’ to interrogate 

drilling performance and two ‘wear tests’ to examine bit wear. All tests were 

performed at the Australian Resource Research Centre (ARRC), CSIRO in Perth, 

WA. 

The Echidna rig is able to exert either kinematic or dynamic variables control 

over the drilling operation. For the majority of the testing, the rig maintained 

kinematic variables control, a constant RPM and ROP in order to achieve a 

predefined depth of cut. The machine then switched to a dynamic variables 

condition in order to investigate the effects of WOB and TOB variations on the AE, 

while the depth of cut was kept constant. Sensors attached to the machine measured 

and recorded the variable magnitude for post-drilling analysis. Analysis of the 

results indicated that, despite the fact that the operational drilling parameters did 

not remain perfectly constant in the Echidna drill rig, the rig could maintain the 

parameters in a range sufficiently accurate to obtain meaningful AE signals in the 

context of drill bit testing. Drill bits 36 mm in diameter, drilled into rock samples 

approximately 32*32*32 cm were used. Two rock types are utilized in the drilling 

tests (see Table 3-1). 

Table 3-1. Rock type characteristics 

Rock Type 
UCS 

(MPa) 

Quartz 

(%) 

Feldspar 

(%) 

Biotite 

(%) 
Grain size 

American Black 300 3 97 0 Fine-medium 

Radiant Red 180 35 53 18 Coarse 

 

Two different drill bits were tested, both supplied by Dimatec Inc. (see Figure 

3-2). They were, ‘HR14’, which has a soft matrix for hard, fine grained rock cutting 

and ‘D2’, which has a hard matrix for cutting soft, fracture rocks. Both bits were 

selected in order to meet their respective test requirements. 
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Figure 3-2. Matrix selection chart from Dimatec Inc. for ID bits [30]. 

The AE system for the tests consisted of one WDI sensor and one PICO sensor 

(with pre-amplifier) along with a data acquisition card (DAQ) and a LabView 

program developed at the University of Adelaide. The WDI AST wideband integral 

preamplifier sensors were equipped with 40 dB integrated preamplifiers and had a 

frequency bandwidth of 200–900 kHz. The PICO AE sensors had a frequency range 

of 200–800 kHz and required external preamplifiers to magnify the AE signals. The 

DAQ was a NI PCI-61333 (16 M Samples) S Series Multifunction DAQ Device, 

and was used to sample the AE data. The DAQ card had eight analogue channels, 

each of which was able to collect up to three million samples per second. Sampling 

rate for the AE was 800 kHz during all tests. 

The PICO sensor was placed on a stationary part of the rig platform, as close as 

possible to the drill bit and as far away as possible from the machine motor. While 

the WDI sensor was placed on the upper surface of the rock sample, and at the edge 

furthest from drilling for safety reasons. The stress waves formed by the wear event 

propagated throughout the material and it was therefore not necessary to mount the 

sensor at the source of the waves [28]. Silicone gel was used as a medium between 

the sensors and the rock for even AE distribution across the sensors. Due to the 

large amount of drilling fluid outflow, however, the WDI sensor was attached with 

epoxy adhesive glue. For each test, data were initially saved in a binary ‘.dat’ 

format. For ease of use, the files were converted to a double columned ASCII text 
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format with each column containing the voltage recorded from each sensor. Finally, 

data files were imported into MATLAB, where signal analysis was performed. 

3.4.1 Step test 

Initial testing involved a series of ‘step’ tests in which the depth of cut was steadily 

decreased. They were performed at 1600 RPM using a HR14 bit in American Black, 

with the WOB and TOB varying in order to maintain the predefined depth of cut. 

The drill bit was sharpened prior to the commencement of each test. In all, four tests 

were conducted using the sharp H14 bit. The depth of cut (d) started from 130 

µm/rev to 50 µm/rev, reducing by 10 µm/rev steps. Then depth of cut started from 

50 µm/rev to 5 µm/rev, reducing by 5 µm/rev steps. 

In order to relate these tests to bit wear, similar tests were repeated using a worn 

D2 drill bit. Although the second set of bit wear tests had initially been programmed 

identically to the sharp bit tests, the WOB/TOB limits were quickly exceeded, 

meaning that drilling had to be stopped instantly for safety reasons. Two 

experimental tests were carried out to determine a depth of cut that would not 

exceed the WOB/TOB limits. 90 µm/rev was found to be the maximum achievable 

depth. Three step tests were therefore conducted using the worn D2 bit, beginning 

at 90 µm/rev and following steps similar to those adopted for the sharp H14 bit 

tests, but taking into account the issues discovered with the worn bit. 

3.4.2 Wear test 

Secondary testing was aimed at wearing the drill bits as much as possible in order 

to relate bit wear to AE. Bit mass loss was used to assess bit wear. The rock type 

was changed to Radiant Red, which has a higher abrasiveness resulting in an 

increased wear rate. Throughout the tests cutting speed was constant at 1600 RPM. 

Two types of wear tests were performed – one to induce matrix wear and one 

promoting diamond wear. At high depths of cut, matrix wear increased as there was 

more contact between the matrix and the rock, as well as more displacement of rock 

particles. At low depths of cut, on the other hand, the wearing flat of the diamonds 

became a prominent feature of the tests due to the grinding behaviour of the bit. 
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The matrix wear test used a HR14 drill bit with d=60 µm/rev while the diamond 

wear test was performed with the D2 bit. Due to the hardness of the matrix and the 

relatively low depth of cut, it was assumed that the matrix would experience 

minimal wear, while hopefully causing a polishing effect on the diamonds. The 

HR14 drill bit was sharpened and weighed before each of the tests. WOB/TOB 

limits were again reached, so the depth of cut had to be reduced to 50 µm/rev which 

provided a successful test for the diamond wear test. 

3.5 Evaluation of the results 

Prior to the analysis of the test results, the influence of background and machine 

noise, as well as correlation between the two signals coming from the two sensors 

had to be determined. As anticipated, both sensors were susceptible to background 

interference and detected vibrations coming from the rig motor and the laboratory 

environment. Being the noise source from which there were more vibrations, the 

rig motor had the greatest influence, especially in the rig sensor as it was closer to 

the source of noise than the rock sensor. 

A spectral analysis of the recorded noise signals was conducted. As a result, a 

peak frequency of 30 kHz was detected, which suggests that the rig, the motor to 

be more specific, was producing this lower frequency range signal. Results from 

the spectral analysis were used in the filtering stage of the data processing. 

As both sensors were recording simultaneously, it was expected that they would 

produce similar signals. Figure 3-3 illustrates the direct correlation between the 

signals recorded by both sensors during the matrix wear test. Circled are sections 

of the data which clearly highlight the correlation. While the signals were similar 

in structure, a large, approximately constant, difference in amplitude was observed 

due to the attenuation of the signals within the transferring mediums. However, the 

visual similarities of the two signals confirm the ability of a rig-based sensor to 

accurately detect rock–bit interaction. 
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Figure 3-3. Matrix wear test correlation. 

3.5.1 Step test results 

The signal recorded during one of the sharp step tests is shown in Figure 3-4a. From 

these results, it is clear that the change in the depth of cut had a direct effect on the 

AE detected by both sensors. Each step reduction in the depth of cut clearly resulted 

in a reduction in amplitude of the two recorded signals. For depths of cut less than 

approximately 80 µm/rev, the steps are much clearer in the resultant signal 

amplitude. Above this level, the amplitude is more variable and it is difficult to 

determine the stepping trend. This large drop in amplitude occurring at 

approximately 80 µm/rev appeared in each of the sharp bit step test results. The 

drop can be attributed to a change in cutting behaviour as the depth of the cut varies. 

The results indicate that above 80 µm/rev depth of cut, the drill bit cuts 

aggressively, causing macro cracking in both the diamonds and rock. Once the 

depth of the cut drops below approximately 80 µm/rev, the bit behaves less 

aggressively, acting in more of a grinding/rubbing manner. The less forceful drilling 

causes less cracking, less particle displacement and more of a steady rock–bit 

interaction, thus reducing movements and vibrations. There is an accompanying 

decrease in signal amplitude (see Figure 3-4a). In other words, at higher depths of 
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cut, the cutting mechanism is governed by the contact of the matrix with the rock, 

as well as with the rock chips formed; but as the depth of cut decreases, the diamond 

cutting mechanism dominates the interaction with the rock and the AE amplitude 

steadies. 

 

Figure 3-4. a-Sharp and b- blunt tests signal amplitude correlation with d. 

Although for the step tests the depth of cut was the controlled parameter, in 

reality this is simply a measurement of bit performance and is directly controlled 

by the WOB and TOB. Therefore, relations between the depth of cut and the WOB 

and TOB have to be established. These relations were derived from drilling 

performance data recorded while drilling (see Figure 3-5). 

Neither the (d) vs. WOB relation nor the (d) vs. TOB could accurately be 

described by a single linear equation. Instead, three linear different phases were 

identified (see Figure 3-5). These three phases correspond to the three cutting 

regimes described by Mostofi et al. [29]. 
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Figure 3-5. Drilling parameters relationships. 

The variations in AE are therefore due to changes in dynamic variables applied 

to the bit. Direct relations between signal amplitude and operational drilling 

parameters were established. As the large increase in amplitude was common 

throughout the various sharp bit tests, separate relations were developed for the data 

above and below this value. The threshold depth of cut was estimated to be 80 

µm/rev, corresponding to an approximate WOB and TOB of 2 kN and 14 Nm 

respectively. 

Figure 3-6 illustrates the relationship between (d) and signal amplitude for sharp 

and blunt bits in the step tests. A similar plot would allow an operator to estimate 

the depth of cut solely by analysing the AE produced. Similar relations were 

developed which could be used to estimate, or as a secondary measure, to confirm, 

the WOB or TOB (see Figure 3-7 and Figure 3-8). 

While these equations describe a direct relation between signal amplitude and 

drilling parameters, they are estimates for particular (d) ranges and the current 

experimental set up only. Changing the rock type, bit, RPM and drilling fluid would 

likely alter the results and hence the accuracy of these equations. Further testing 
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implementing the variation of these parameters is required to confirm their 

influence. 

 

Figure 3-6. Signal amplitude of sharp/blunt bits varying depth of cut. 

 

Figure 3-7. Signal amplitude of sharp/blunt bits varying WOB. 
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Figure 3-8. Signal amplitude of sharp/blunt bits varying TOB. 

After the completion of the sharp bit step tests, the tests were repeated using a 

blunt bit in order to establish the effect of bit wear on AE. These tests revealed 

similar results (see Figure 3-4), with well-defined step like features corresponding 

to decreases in depth of cut. The primary observation from these tests was that a 

worn bit results in a lower average signal amplitude. This is likely due to the 

inability of the worn bit to aggressively cut the rock surface. 

While the worn bit used in these tests was of the same dimensions as the sharp 

HR14 bit, the matrix was much harder, meaning that it was difficult to confirm the 

change in the AE was due solely to the different wear stages of the bit. Another 

important difference was the absence of the drop that existed at 80 µm/rev depth of 

cut for sharp bit tests. It was believed that this was due to the less aggressive cutting 

behaviour. This observation highlights the fact that the wear state of the bit is a 

significant variable affecting the AE emitted. 

3.5.2 Wear test results 

The secondary stage of testing focused on relating drill bit wear directly to the 

recorded AE. As bit wear is a relatively slow process, the amount of wear that could 

be caused was limited by the practical capabilities of the Echidna rig. Two primary 
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tests were developed. The first was designed to cause rapid wear of the bit matrix, 

while the second targeted diamonds' wear flat development. Due to the small scale 

of bit wear incurred, it proved difficult to assess and quantify the wear caused during 

drilling. 

The signals recorded during the matrix wear test are depicted in Figure 3-9. Both 

amplitudes fluctuated during the length of the test, with the small scale variations 

likely due to factors, such as small changes in drilling parameters WOB and TOB, 

vibrations of particles at the cutting face, or the encountering of irregularities in the 

rock. 

 

Figure 3-9. Matrix wear test. 

As the drilling parameters remained constant throughout the test, the decrease in 

amplitude could be attributed to the bit becoming worn and hence producing less 

AE. The bit incurred a total mass loss of 1.42 g during the three minutes test. The 

cyclic trend of the amplitude may be due to the cyclic sharpening of the drill bit. At 

the beginning of the test, with the matrix worn away, fresh diamond cutting faces 

were revealed. The fresh cutting face began operation by cutting the rock 

aggressively, resulting in a peak of signal amplitude. As the diamonds were stripped 

away by the abrasive rock, cutting efficiency and signal amplitude both decreased. 

This cycle repeats as fresh diamonds are revealed following each breakdown of the 
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worn matrix. It was difficult to confirm this theory due to the small sample time, 

however. 

In order to further investigate the effect of bit wear on AE, the FFT was used to 

determine the frequency domain of the signal. These FFTs were carried out during 

one second windows every 10 s in order to determine any changes in the frequency 

content of the signal as the drill bit became more worn. Once the FFT was calculated 

and plotted (see Figure 3-10) for 18 windows, the frequency range and peak 

frequency were collected. 

 

Figure 3-10. Typical frequency spectrum in wear tests. 

Analysing the collected results (Table 3-2), it proved difficult to derive any 

significant conclusion regarding the relationship between peak frequency and 

progressive bit wear. Table 3-2 shows no observable trend relating peak frequency 

to the time or wear of the bit. This might be due to the small scale of the induced 

wear, however, and continuous drilling over longer periods might possibly reveal 

more conclusive results. 
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Table 3-2. Matrix wear test peak frequencies and frequency range. 

Beginning of 

window 

Rig sensor Rock sensor 

Peak 

frequency 

(kHz) 

Frequency 

range (kHz) 

Peak 

frequency 

(kHz) 

Frequency 

range (kHz) 

From To From To 

10 30 16 45 32 18 32 

20 30 16 62 22 18 32 

30 30 16 62 25 19 34 

40 31 24 62 25 22 52 

50 31 16 62 25 19 46 

60 28 16 62 31 16 62 

70 26 22 62 31 16 62 

80 31 16 62 31 18 51 

90 31 16 62 31 16 62 

100 31 16 62 31 16 62 

110 31 16 62 28 18 33 

120 31 27 39 28 18 33 

130 31 27 39 29 17 45 

140 31 16 62 25 17 52 

150 31 16 62 29 18 52 

160 31 27 39 25 17 52 

170 31 22 62 25 19 32 

180 31 22 62 25 19 35 

 

The aim of the next wear test was to cause diamond wear-flat development while 

minimizing matrix wear. The harder D2 bit lost 1.20 g over the 90-s drilling period. 

While the results appeared similar to those of the matrix test, four prominent peaks 

were detected by the rock sensor, as shown in Figure 3-11. 
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Figure 3-11. Diamond wear test. 

A possible explanation for these observations could be the progressive wear of 

the diamonds with the highest protrusion. At the beginning of the test, only a small 

number of diamonds are in direct contact with the rock. As the test proceeds, these 

diamonds begin cutting, increasing the signal amplitude. Due to the highly abrasive 

radiant red rock and the low depth of cut, these diamonds rapidly wear flat, resulting 

in a reduction of signal amplitude. As the initial diamonds flatten out, their 

protrusion from the matrix surface decreases, allowing other protruding diamonds 

to initiate contact with the rock surface. These fresh diamonds cut until they too are 

worn flat, allowing other diamonds to begin cutting. This cycle repeats until all 

diamonds on the surface of the bit are worn flat, greatly reducing any remaining 

cutting efficiency. While this theory explains the continuous sharp fluctuations in 

signal amplitude, longer cutting times could possibly confirm it. Frequency 

analyses were performed on the diamond wear tests, as they had been for the matrix 

tests, and following the same procedure. But the results were inconclusive (Table 

3-3). The wear mode of the drill bit had little effect on peak frequency. Despite the 

use of two different bits, and changes in depth of cut, it is possible that the bit was 

wearing in the same fashion in both tests, explaining the similarity of results. 
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Table 3-3. Diamond wear test peak frequencies and frequency range. 

Beginning of 

window 

Rig sensor Rock sensor 

Peak 

frequency 

(kHz) 

Frequency 

range (kHz) 

Peak 

frequency 

(kHz) 

Frequency range 

(kHz) 

From To From To 

10 27 16 38 24 17 28 

20 27 16 38 25 17 40 

30 38 23 38 23 21 26 

40 27 16 38 52 17 52 

50 26 23 35 25 17 28 

60 27 23 38 25 17 40 

70 27 23 38 52 17 61 

80 27 23 38 25 17 65 

90 27 23 38 25 17 70 

3.6 Conclusions 

The outcomes of this research indicate that AE monitoring techniques are a feasible 

option to optimize diamond core drilling performance. Changes in drilling 

conditions and the effect of drilling parameters can be accurately mapped by 

analysing AE. The results from the findings can be summarized as follows. 

Preliminary ‘step tests’ have concluded that there is a direct link between AE 

amplitude and drilling parameters. A series of linear relations have concluded that 

the signal amplitude alone could accurately estimate the current depth of cut, WOB 

or TOB in real time. 

Step tests also indicated that at a certain depth of cut, approximately 80 µm/rev, 

AE amplitude behaves erratically before decreasing voltage suddenly. This can be 

explained as a change in cutting behaviour of the bit, from an aggressive nature, to 

a more stable, grinding mechanism. 

Under accelerated wear, AE amplitude decreased over drilling time. A 

relationship could not be established since the decrease could be due to variation of 

other drilling parameters, which did not remain constant. 
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Frequency analysis was performed on the AE at accelerated wear, which 

revealed that there was little variation in the AE's peak frequency and frequency 

range over time. From the frequency spectrum, we found that fundamental 

frequencies ranged from 20 to 50 kHz. 

Further investigations performed under both laboratory and field conditions are 

required to accurately relate AE and bit wear. Overall, the conclusions drawn from 

this research shed further light on the field of AE monitoring of impregnated 

diamond drill bits, but more work is required. 
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Abstract 

The great success and widespread use of impregnated diamond (ID) bits are due to 

their self-sharpening mechanism, which consists of a constant renewal of diamonds 

acting in the cutting face as matrix wear takes place. This mechanism, however, can 

be altered by the blunting of the bit. Therefore, this paper aims at investigating the 

applicability of artificial intelligence (AI) based techniques to monitor tool 

condition of ID bits, sharp or blunt. Accordingly, topologically-invariant tests are 

performed with sharp and blunt bits while recording acoustic emissions (AE) and 

measuring-while-drilling variables. These are then used as inputs variables to create 

two approaches for the prediction of bit bluntness. The first is based on the 

aforementioned variables and the second is by using the concept of specific energy 

in drilling. Acceptable pattern recognition rates were obtained for both approaches 

with different pattern recognition algorithms, particularly, that composed by AErms 

and torque-on-bit.  
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4.1 Introduction 

In the last few decades, the rock cutting industry has experienced economic 

advantages with the introduction of diamond bits. Impregnated diamond (ID) bits 

are part of that introduction and they are mainly used for drilling hard and abrasive 

rock formations. Performance in ID drilling operations is based on the experience 

of the operator who controls the operational parameters of the drill rig in order to 

achieve optimal drilling conditions. This increases the susceptibility to errors during 

the process.  

An important part of the success of the ID bits is due to the so-called self-

sharpening mechanism. Considerable amounts of research have been devoted to 

better understand this mechanism of ID bits [1-5]. It is widely accepted that the 

wear process of ID bits is, ideally, composed of three sequential stages. Initially, 

active diamonds are worn because of their contact with the rock (polishing process). 

Then, blunted diamonds are stripped off the matrix bonding. Finally, the matrix is 

worn until fresh diamonds are exposed again (or self-sharpening mechanism). It is 

also known that any interruption in the replacement of blunt diamonds can alter the 

balance between wear rate of diamonds and matrix, resulting in an unstable 

response or bluntness of the bit [6]. This bluntness can eventually lead to a less than 

optimal performance of the bit which is reflected in lower rates of penetration. 

Therefore, the importance of on-line identification of the wear state, sharp or blunt, 

at which the bit is so that the drilling process can be performed in optimal 

conditions, that is, going constantly through the three aforementioned stages.  

Since direct assessment of the bit wear condition is difficult and time consuming 

in deep drilling, alternative techniques must be developed in order to evaluate, in 

real time, the wear condition of the bit. It is for this reason that in this work we use 

acoustic emission (AE) along with measuring while drilling (MWD), that is depth 

of cut (d) and torque (TOB) and weight on bit (WOB), variables as an alternative 

methodology in order to find a solution for such a problem. 
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Laboratory and field-scale drilling researches have been done in order to monitor 

tool condition in rock drilling applications using artificial intelligence (AI) based 

approaches. On the one hand, field-scale drilling experiments have been performed 

to evaluate the wear state of regular carbide drill bits [7]. It was found that useful 

information referring to bit wear and impending bit failure can be extracted with an 

AI-based approach from the AE waveforms. On the other hand, laboratory-scale 

drilling experiments have also shown that tool condition monitoring can be 

effectively carried out in rock drilling using AI based methods such as decision 

trees [8]. Furthermore, Karakus and Perez [9] found clear differences on the AE 

signatures generated when drilling with different bit wear conditions. Although they 

did not attribute such difference to uniquely the tool condition of the ID bits used, 

such a study provides the basis for the current research.  

For the above reasons we, in this paper, primarily aim at developing and 

evaluating the performance of multiple tool condition monitoring systems for 

classifying ID tool wear state, namely sharp and blunt, using different pattern 

recognition techniques based on multiple time-domain input parameters at 

laboratory scale under same ID bit properties. Successful adoption of this 

methodology may lead to constant optimal conditions in the drilling operation. 

4.2 Materials and methods 

For testing, a laboratory-scale drill rig labelled ‘Echidna rig’, which can simulate 

real rig conditions, is utilized. All tests were performed at CSIRO Drilling 

Mechanics Laboratory. Figure 4-1 shows the general setup of the AE equipment 

and drilling apparatus used during the topologically-invariant, as defined in [6], 

cutting experiments.  

The testing program included a series of sharp and blunt tests in which the depth 

of cut was steadily decreased. 54 sharp tests were performed, at 1600 RPM, using 

kinematic control while recording AErms, WOB and TOB. Similarly, 42 blunt tests 

were performed using a worn (blunt) drill bit under the same conditions. Although 

blunt tests had initially been programmed similarly to the sharp tests, the dynamic 
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variable limits of the drilling system were reached, ceasing drilling instantly due to 

safety reasons.  

  

Figure 4-1. Experimental setup  

Figure 4-2 shows the characteristics of both, sharp and blunt, topologically-

invariant drilling tests in a depth of cut vs. time space.Blunting and sharpening 

process are part of a pre-conditioning phase carried out before testing. The former 

is achieved by drilling at high Ω and low ROP, whilst the latter is achieved by 

drilling with larger than the maximum d so that the diamond protrusion increases 

[6]. The duration of each test is approximately 5 s, or about 130 revolutions, which 

guarantees a topologically invariant response of the ID bit.  

In total 96 drilling tests were carried out in granite called “American Black” 

under laboratory conditions. This rock has a uniaxial compressive strength of 300 

MPa and 3% of quartz content. HR14 drill bits, sourced from Dimatec Inc., were 

utilized since they are recommended for hard, fine grained rock cutting.  
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Figure 4-2. Drilling tests under controlled d. 

Although there is no explicit answer in the literature for the number of prototype 

patterns (topologically-invariant tests) required to obtain good generalization 

properties with the classifiers, Tou and Gonzalez [10] recommend a rule of thumb 

in which the number of prototype patterns (topologically-invariant tests) required 

is of the order of ten times Ck, where Ck equals to twice the number of weights in 

the decision function (θT). In our worst case scenario (subset 1), Ck=8, therefore the 

number of prototype patterns required should be of the order of 80, which is less 

than the 96 drilling tests performed. 

4.2.1 Drilling apparatus 

Echidna is a computer controlled laboratory drilling rig that is utilized to investigate 

the drilling action of ID bits. Kinematic controlled tests are exerted with this setup, 

that is, Ω and V are imposed via a rotary drive mechanism and an upper motor 

assembly respectively (Figure 4-1). A linear actuator and a geared brushless 

electrical servo-motor compose the upper motor assembly. This assembly has a load 

capacity of up to 40 kN and can provide a precise V ranging from 0.1 to 13 mm/s. 

Weight on bit, WOB is measured by a uniaxial force transducer placed on the end 

of the actuator shaft. The rotary drive mechanism consists of an electrical brushless 
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servo-motor, a timing belt pulley system and a torque sensor (sprocket pulley 

sensor). The maximum TOB capacity of this system is 94 Nm and provides rotary 

speed, Ω, ranging from 10 to 250 rad/s. Accurate depth of cuts from 1 to 200 µm/rev 

can be exerted by combining these two systems, the rotary drive system and the 

upper motor assembly. Further details on the Echidna rig can be found in [11]. 

4.2.2 AE instrumentation 

The AE system used consists of a WDI-AST sensor along with a data acquisition 

card (DAQ) and a LabView program developed in-house at the University of 

Adelaide. The WDI-AST is a wide band AE sensor with 40 dB gain integrated pre-

amplifier and an operating frequency range of 200-900 kHz. The DAQ is a NI PCI-

61333 (16M Samples) S Series Multifunction DAQ Device. The DAQ card has 

eight analogue channels each of which was able to collect up to 3 million samples 

per second. Sampling rate for the AErms during drilling tests was 0.8 MHz. The WDI 

sensor was placed on the upper surface of the rock sample, and for safety reasons, 

at the furthest edge from drilling (Figure 4-1). Silicone gel is used as ultrasonic 

couplant between the sensors and the rock surface.  

4.2.3 Data analysis 

All data processing was performed off-line using Matlab R2015a ®. Two statistical 

techniques are mainly employed in the signal processing: root mean square 

(quadratic mean) and mean. The former is utilised in the AE signal processing and 

the latter is utilised for the WOB and TOB signal processing. Once this is 

completed, bias removal and normalization are applied to the dataset following a 

similar procedure to that of [7]. Normalization and bias removal give a more general 

meaning to the results. This study will be based on the normalized dataset.  

K-fold cross-validation was used before training the different algorithms. Five 

divisions (k=5) are used to partition the data. Each division is held out to test the 

model while the training phase is carried out with the rest of the data. The final 

result of the pattern recognition classifiers is the average of the results from the five 

divisions. For performance evaluation of the pattern recognition system, the 
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confusion matrix is utilised (see Table 4-1). In fact, the performance values display 

in Table 4-2 and Table 4-3 are calculated as per Equation 4.1. 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 (%) =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
∗ 100  (4.1)  

where TP, TF, FP, and FN are the components of the confusion matrix. Table 4-1 

represents the confusion matrix for our study.  

Table 4-1. Confusion matrix components 

 Sharp (Predicted) Blunt (Predicted) 

Sharp (actual) True positive (TP) False negative (FN) 

Blunt (actual) False positive (FP) True negative (TN) 

 

The typical architecture used during the ANN analyses is as follows: input 

neurons varies accordingly to the number of input variables in each subset, the 

number of hidden neurons was fixed at six neurons for all subset analyses, output 

neurons and transfer function were hyperbolic tangent and gradient descent 

respectively for all subsets. 

4.3 Theory  

Extended and more detailed information regarding the three main components (i) 

impregnated diamond drilling, (ii) acoustic emission and (iii) machine 

learning/pattern recognition is given as follows. 

4.3.1 Impregnated diamond drilling 

Impregnated diamond rock drilling is a technology commonly used for core 

retrieval in medium to hard rocks environments. A typical ID bit consists of several 

matrix crowns or segments, typically made out from mixtures of tungsten, tungsten 

carbide and bronze, with synthetic diamonds uniformly embedded over its volume. 

This crown is normally attached to a steel cylindrical body [4]. ID bits are designed 

to act as grinders. As such, they gradually wear away, exposing sharp and fresh 
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diamonds to come in contact with the rock being cut. This cycle characterized by 

the renewal of the bit face is known as self-sharpening [12].  

ID drilling can be characterized by a set of relations between four operational 

variables: torque-on-bit (TOB), weight-on-bit (WOB), rate of penetration (V) and 

rotary speed (Ω) [13, 14]. TOB, WOB and V, Ω can be classified into dynamic 

variables and kinematic variables respectively (see Figure 4-3). In the current work, 

assuming that processes taking place at the bit-rock interface are rate-independent 

[14], a variable name as the depth of cut (d), measured in micrometres per 

revolution of the drill bit (µm/rev), will be extensively used (Eq. 4.2).  

𝑑 =
2𝜋 𝑉

Ω
      (4.2)  

The depth of cut, d, is an important variable since it controls the magnitude of 

the forces acting on the tool. For our experiments, d is the variable that will be pre-

set whilst TOB and WOB will be measured. In addition, defining d in this length 

scale makes it comparable to other parameters such as rock grain size and diamond 

grit size. 

ID drilling can be considered as a rotary mechanism in which a normal force 

keeps the new (fresh) diamonds in contact with the rock, whilst a torsional force 

rotates the bit parallel to the rock surface. This mobilization generates both tensile 

and shear stresses in the rock, which eventually induce failure in the rock by a 

combination of scratching, grinding, crushing and cutting [15, 16]. Gradually new 

diamonds begin to wear until they are stripped off the matrix and removed by the 

flushing media, thus, exposing again new diamonds. 

Thus in optimal drilling conditions, sharp diamonds wear to transitory wear-flats 

that are later remove from the matrix. However, in less than optimal conditions 

wear-flats developed in the diamonds are not transitory and, since they no longer 

protrude from the matrix, the effectiveness of the ID is greatly compromised due to 

the bluntness of the bit. We will define to this undesirable phenomenon as a blunt 

bit. According to Bullen [17], optimal drilling condition can only be achieve again 
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by physically breaking the diamonds or re-dressing the bit face since increasing 

WOB, which is consider to be the most influential wear factor [18], is not sufficient 

to cause rock drilling in optimal conditions. 

 

Figure 4-3. Drilling variables 

An alternative and widely accepted approach to characterise the drilling process 

is with the concept of specific energy (SE) introduced to drilling by Teale [19]. SE 

is defined as the amount of work required to break a unit volume of rock (see Eq. 

4.3). The specific energy can be expressed as shown below: 

𝑆𝐸 =
𝑤𝑜𝑏

𝐴
+ 2𝜋 

𝑡𝑜𝑏

𝐴 𝑑 
    (4.3)  

where A is the area of the bit/rock interface (see Figure 4-3), TOB is torque-on-bit, 

WOB refers to weight-on-bit and d is depth of cut. Energy resulting from TOB is 

the main part of the drilling specific energy. Investigations have shown that the 

value of the second term (TOB) is about 10–200 times greater than the first (WOB) 

in Eq. 4.3[20].  
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4.3.2 Acoustic emission/micro-seismic 

Transient stress waves generated when the deformation state of a body changes are 

known as Acoustic Emissions (AE), “rock talk” or microseismic activity [21, 22]. 

AE can be detected as two different types of signals: continuous emissions or burst 

(discrete) emissions. Continuous emissions are characterized by lower amplitude 

and least separation of occurrence (higher frequency). Whilst discrete emissions are 

characterized by a sudden increase of amplitude or pulses and are therefore 

registered as a burst-type AE [23].  

Sources of AE encountered while drilling can be from several different natures: 

changes in friction surface structure, elastic deformation, changes in stress-strain 

state of a local volume of solid surface layer, plastic deformation, energy liberation 

at repeated deformation, phase hardening-weakening, damage on surface layer, 

formation and propagation of micro cracks and appearance of wear debris or surface 

spalling [23, 24].  

The advantage of utilising acoustic signal for on-line detection of tool wear is 

that the frequency range of the signal (100kHz-1MHz) is far above that of drill rig 

vibration (0-20kHz) and other sources of noise. Thus, a high pass filter can easily 

remove unwanted noise and vibration components [25].  

It is important to extract relevant information regarding the drilling process from 

the large amounts of information contained within continuous AE generated at the 

rock-bit interface. Statistical methods are used in AE signal analysis since AE 

signals are of stochastic nature [22]. Amongst these methods, there is one in 

particular, root mean square (AErms), that we will be using in this study since it has 

been demonstrated that has a high sensitivity to the wear state of the drilling tools 

[9, 26 27]. AErms, estimated via Eq. 4.4, generally makes any present trend in the 

data more noticeable. It works akin a moving average smoothing the data.  

𝐴𝐸𝑟𝑚𝑠 = √
1

𝑛
(𝑥1

2 + 𝑥2
2 + ⋯ + 𝑥𝑛

2)    (4.4)  

where xi is the instantaneous value of the voltage and n is the number of points. 
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The analysis of AE signals generated during the drilling process has been 

suggested as both a technique for further studying the rock drilling process [9, 28] 

as well as a technique for detecting tool wear and failure on line [7, 29]. Although 

Karakus and Perez [9] found clear differences on the AE signatures generated at 

different states of wear, they did not attribute such difference to the wear state 

uniquely since ID bits used had different properties. However, AE signatures 

generated in a field experiment carried out with regular carbide rotary drilling by 

Sun [7] can be clearly attributed to the different states of bit wear.  

4.3.3 Machine learning 

Machine learning is a subfield of artificial intelligence (AI) [30] that incorporates 

pattern recognition [31]. The objective of machine learning is to develop algorithms 

that allow computers to learn from data. These algorithms are of particular 

importance because they are able to induce models that continually improve their 

performance over time as new data is available [32]. In the context of machine 

learning, two main classes of learning algorithms can be distinguished based upon 

their application and functionality: 

Supervised learning: these algorithms learn from a labelled set of data. They 

analyse the training data and produce decision functions that are used to classify the 

response of new data. These sorts of algorithms are commonly used in classification 

and regression problems.  

Unsupervised learning: those algorithms learning from non-labelled data. Their 

goal is to recognized different groups of data that share similar characteristics 

amongst themselves. These groups are the so-called clusters. 

Hence, pattern recognition can be understood as the categorization of input data 

into identifiable classes through the extraction of significant features or attributes 

of the data. Formally, pattern recognition assigns new data into different discrete 

categories and/or classes. This is achieved by using a multidimensional input vector 

X=[x1, x2, ..., xn], where xi are components associated to the vector X in an n-

dimensional feature space, in order to calculate the optimal vector θ=[θ0, θ1,…, θn], 
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where θi are the weight coefficients components of vector θ. These two vectors 

constitute the so-called decision boundaries when their product equals to zero, 

θTX=0 (See Figure 4-4). Decision boundaries can be linear or non-linear functions 

of the vector X [31]. 

 

Figure 4-4. Schematic of the essential components of a PR system 

Accordingly, decision boundaries can be interpreted as functions that divide the 

feature space into different discrete regions (See Figure 4-4). Ideally, each region 

corresponds to one and only one of the discrete classes, as can be seen in the lower 

space of Figure 4-4.  

Implementation of a pattern recognition system consists of two phases, training 

phase and classification phase. In training, the vector of weight coefficients (θT) of 
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the decision boundary is obtained from the training dataset using an algorithm, 

which helps finding the decision boundary that minimises the classification error. 

Whilst in classification phase, the pattern classifier, which consists of decision 

boundaries, classifies incoming signal into one of the predefined classes. As the 

focus of this work is on the application of tool condition monitoring systems to ID 

drilling, more details on the theoretical background of pattern recognition and how 

to choose the parameters of vector θ via different algorithms can be found in [31, 

32]. 

Pattern recognition algorithms have been extensively used in metal cutting as 

pointed out in different reviews [33-35] for the detection of wear states of the 

cutting tools. Conversely, in rock cutting these algorithms have been barely used 

[7, 8]. Researchers have studied, under laboratory conditions, the AE signals 

generated during rotary coal cutting and concluded that AE techniques are feasible 

to monitor coal cutting and dust generation in underground mines [28]. Similarly, 

Sun [7] studied in a field experiment the technical feasibility for AI-based AE 

monitoring for bit-wear during regular carbide rotary drilling. He concluded that 

useful information pertaining to degree of bit-wear, formation change and 

impending bit failure can be extracted via pattern recognition analyses from the AE 

signals generated at the rock/bit interface. Also, Klainc, et al. [8] developed a 

system for tool condition monitoring of small diameter twist drill using features 

extracted from the force sensor and feed drive current sensors. These features were 

extracted from both time and frequency domain of the signals generated with 

drilling the rock. Two tool conditions, namely sharp and worn, were monitor with 

such a system. 

Most pattern recognition applications in drilling rely on using features derived 

from the frequency spectra of AE signals [7, 28. 36, 37]. The present paper aims at 

developing a system based on time domain output of the drilling variable and AE 

signals. For this investigation, different patter recognition algorithms are used i.e. 

simple trees (ST), support vector machine (SVM) [38], K-nearest neighbour (KNN) 
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with k=1 [21, 28], boosted trees (BT) [39] and artificial neural networks (ANN) 

[21,37].  

4.4 Experimental results 

Topologically-invariant drilling tests were conducted under kinematic control, 

which is by imposing d, as mentioned earlier. The signals, AErms, WOB, and TOB, 

for each drilling test were recorded in a personal computer using a DAQ. 

 

Figure 4-5. TOB, WOB and AErms responses for sharp tests. 

Figure 4-5 shows AErms and the drilling dynamic variables waveforms for sharp 

tests plotted in the time space. AErms, WOB, and TOB responses follow a similar 

trend to that of the imposed d, meaning that there is certain pattern that can be 

revealed by the different techniques applied with pattern recognition system. The 

three waveforms behave as a typical random stationary process as seen in the 
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zoomed-in graphs. However, AErms signal is significantly more variable, this is 

attributed to the higher sensibility that AErms has to rock chip formation compared 

to WOB and TOB waveforms. The red dots in Figure 4-5 represent, as discussed 

earlier, the mean and the RMS (or quadratic mean) of drilling variables and AE 

respectively for total duration of each test.  

Two different approaches are taken into considerations for the development of 

the pattern recognition system. The first approach consists on taking AErms, d, WOB 

and TOB individually as inputs of the system. Whereas the second approach gathers 

d, WOB and TOB into one single input variable, SE. Results of the two approaches 

are given next. 

4.4.1 First pattern recognition approach-drilling variables 

Figure 4-6 shows a matrix of two-dimensional spaces of the inputs of the pattern 

recognition system. Two-dimensional plots are shown rather than three-

dimensional since they provide more clarity to the representation. Results of the 

pattern recognition systems in Table 4-2 are based on the normalised data (see 

Section 4.2.3) in spite of original data being displayed in Figure 4-6.  

It can be foreseen from some of the two-dimensional spaces of the matrix (Figure 

4-6) that the pattern recognition system can be successfully implemented. The 

reason for this is that tests belonging to the two classes (sharp and blunt) are clearly 

scattered in separable regions of the two-dimensional space. For instance, data 

points belonging to sharp class, red dots, can be separated from data point of blunt 

class, blue triangles, by a straight line in the AErms vs. TOB space. Similarly, AErms 

vs. d, and AErms vs. WOB spaces possess a similar regionalization of the data. Such 

observations are confirmed with the results obtained in Table 4-2. 

As mentioned earlier, different pattern recognition algorithms were applied to 

different combination of input variables (subsets) in order to find the subset and 

pattern recognition algorithm for wear state classification of ID drilling.  
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Figure 4-6. Two-dimensional plot matrix for drilling variables. 

Table 4-2 shows the performances of different algorithms throughout the various 

subsets. When it comes to the classification algorithm accuracy, SVM is closely 

followed by KNN (k=1) which on average have performances of 97.92% and 

97.35% respectively. SVM performance ranges from 81.25% to 100% making it 

the pattern recognition algorithm that has a slightly better performance. In the same 

way, the subset that better classifies the two topologically-invariant classes is subset 

1 which includes the four input variables (AErms, d, WOB, TOB). However, it is 

important to note that subset 4 has a fairly good average recognition performance 

of 98.54% considering that it only requires two input variables (AErms and TOB) 

for adequate classification. This is a remarkable finding since it replicates the same 

that has previously been found in tool wear evaluation of drill bits for metal cutting 

[40]. 
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Table 4-2. Performance of different PR techniques using AE and MWD. 

Subset 

Selected variables Performance (%) 

AErms d WOB TOB ST SVM KNN BT ANN 

1     95.79 100 100 98.96 100 

2     91.67 100 100 97.92 100 

3     91.67 100 100 97.92 100 

4     94.79 100 100 97.92 100 

5     91.67 100 91.67 97.92 100 

6     94.79 100 100 97.92 100 

7     94.79 100 100 97.92 100 

8     70.83 81.25 87.50 61.46 61.46 

9     75 98.96 100 60.42 100 

10     75 98.96 100 66.67 51.04 

11     51.04 97.92 91.67 60.42 97.92 

 

4.4.2 Second approach-specific energy 

In a similar manner as the drilling variable approach, the specific energy approach 

results are displayed in two-dimensional spaces (see Figure 4-7). By looking at 

Figure 4-7, it is expected that the general performance of the pattern recognition 

algorithms should decrease compared to the first approach. That is because the two 

classes, sharp and blunt, are spatially scattered around similar regions of the spaces.  

 

Figure 4-7. Two-dimensional spaces for specific energy approach 

Table 4-3 shows the results of the different pattern recognition algorithms 

applied to four different subsets of inputs. As SE gathers information of the drilling 
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variables, only two-dimensional pattern recognition systems are implemented in the 

following approach. Successful classification performance for this energy-based 

approach ranged between 41.67% and 100%. For our second approach, the KNN 

(k=1) is again the algorithm that better classifies, on average, the two classes wear 

states on the two-dimensional spaces. Its classification performance ranged from 

89.58% to 100% for the four subsets. 

In regard to the most appropriate subset of the second approach, subset 1 

composed by SE and AErms is by far the subset in which pattern recognition 

algorithms better perform the classification task. On average the successful 

recognition performance was 98.33%. 

Table 4-3. Performance of different PR techniques (second approach). 

Subset 
Selected variables Performance (%) 

SE AErms d WOB TOB ST SVM KNN BT ANN 

1      94.79 100 98.96 97.92 100 

2      82.29 55.21 89.58 80.21 42.71 

3      91.67 60.42 100 82.29 90.63 

4      82.29 62.50 89.58 80.21 41.67 

 

4.5 Conclusions and recommendations 

Large numbers of ID drilling experiments were conducted at laboratory-scale to 

demonstrate the ability of AErms along with measuring-while-drilling variables as 

variables as input parameters in a tool condition monitoring system of ID bits. 

Initial results obtained demonstrate that pattern recognition/machine learning can 

be successfully implemented in order to predict the ID drilling tool wear state. This 

was achieved via a testing program that included two important topologically-

invariant states of the ID bits, sharp and blunt bits.  

Performance rates for the various input variables subsets and different pattern 

recognition techniques ranged between 51.04% and 100% for the drilling variables 

approach and between 60.42% and 100% for the specific energy approach. Overall, 
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AErms and TOB are considered the most adequate input variables for a wear 

monitoring system of ID bits because of the simpler and more accurate 

classification performance of all the different pattern recognition algorithms. Their 

performances for ST, SVM, KNN, BT and ANN were 94.79%, 100%, 100%, 

97.92% and 100% respectively. Further, this finding is consistent with what has 

already been found for wear evaluation in metal drilling as well as with the major 

contribution in terms of specific energy that TOB provides when compared to WOB 

in MWD. 

ID drilling may be improved by implementing this proposed tool condition 

monitoring system and using it as an early warning system to prevent bit bluntness, 

in other words, to keep the sequence of self-sharpening process continuously 

occurring under optimal operational conditions. Application of this methodology 

may be limited to this particular instrumentation setup and despite bias removal and 

normalization being applied with the purpose of making the findings more general, 

more tests are required to ensure the validity and the potential filed application of 

the proposed methodology. 

Further studies could be undertaken by utilising different bit configurations (size 

and properties), bit geometries as well as different rock types so that robustness of 

the models increases and so does its predictability.  
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Abstract  

The wear rate of working tools during the cutting and drilling of rocks is closely 

related to the abrasiveness of those rocks. As the contact area of the tools increases, 

due to wear, the specific cutting energy will also increase, and that directly affects 

the overall consumption of excavation tools. A new artificial intelligence (AI) based 

model has been developed. It utilizes acoustic emission (AE) and rock properties 

as main indicators of rock abrasivity, estimated by Cerchar Abrasivity Index (CAI). 

AE sensors are attached to both the Cerchar testing apparatus and the rock in 

question while conducting scratch tests using hardened steel pins of 42 and 56 HRC. 

Prior to the implementation of Artificial Neural Network (ANN) modelling, the 

selection of independent variables was carried out via Gamma test and V-ratio 

analyses. As a result, AE parameters, such as total number of events and root mean 

square of signal, in addition to testing parameters (i.e. uniaxial compressive 

strength, Young's Modulus, quartz content and pin hardness) are found to be the 

optimum model input combination needed to accurately predict CAI. 
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5.1 Introduction 

Rock abrasivity is an important factor to be considered in rock excavation. It is 

directly related to wearing processes taking place at the rock–tool interface. As 

such, rock abrasivity has a high impact on lifespan of drilling; tunnelling and 

excavation tools utilized in mineral exploration, oil and gas industry and 

infrastructure projects. Due to high costs associated with excavation tools and 

limited understanding of the laws governing the wearing process, it is important for 

engineers to constantly monitor rock abrasivity during rock cutting. This allows 

better excavation tool selection, decreases downtime caused by tool failure and 

reduces project costs and duration. In mechanical rock cutting, four tests are 

commonly used to assess rock abrasivity. They were developed at different 

laboratories and thus their names: 

 Centre d'Études et Recherches des Charbonnages (Cerchar) test [1], 

 Gouging abrasion test [2], 

 Laboratoire des Ponts et Chaussées (LCPC) abrasivity test [3], 

 Norwegian University of Science and Technology (NTNU) test [4]. 

Many researchers and engineers use Cerchar abrasivity index (CAI) as an 

abrasivity measurement because it has been recommended by the American Society 

for Testing and Materials (ASTM) [5] and the International Society of Rock 

Mechanics (ISRM) [6]. CAI was developed in France for the coal mining industry 

in the 1970s [1] and was defined as the length of the wear flat induced at the top of 

a conic steel pin after being scratched along 10 mm of the rock surface; one CAI is 

equivalent to 0.1 mm of wear flat [5–7]. Various researchers have proposed linear 

and non-linear models to indirectly predict the amount of wear exerted on the pin 

from a geomechanical standpoint. Such models have used different geomechanical 

and geological rock properties, i.e. uniaxial compressive strength (UCS) [8,9], 

Young's modulus (Etan) [10–12] and quartz content (Cqtz) [13,14], as inputs to 

predict CAI. However, none of these models have addressed the matter from a tool 

condition monitoring viewpoint. 
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Tool condition monitoring in metal machining has long utilized AE features as 

a successful methodology in order to infer wear of single/multiple-contact cutting 

tools [15–18]. For instance, Yao et al.[19] described, by means of a fuzzy neural 

network, the relation between tool wear and AE features derived from a wavelet 

analysis. Also, Rangwala and Dornfeld [20] utilized a feedforward neural network 

with error back-propagation for monitoring wear state from AE parameters and 

cutting forces. More detailed and complete descriptions of AE as a means of tool 

condition monitoring can be found in review papers by [21–23]. 

Majority of research covering tool condition monitoring using AE is devoted to 

metal cutting. Fewer studies are focused on the application of those techniques to 

monitor the wear of rock cutting tools [24–28], however, they have been more 

focused in wear of drill bits. In summary, tool condition monitoring through AE 

and rock abrasivity via CAI are two individually well-studied fields that could be 

linked provided that CAI is alternatively understood as a tool condition monitoring 

problem. 

Thus, the primary aim of this study is to analyse various AE features that could 

potentially correlate to the length of the wear flat induced at the top of the steel pin, 

CAI, and to develop an alternative approach to predict CAI from a tool condition 

monitoring point of view using the previously selected AE features and rock 

properties at laboratory scale. The secondary aim is to gain more insight into the 

main mechanisms generating AE during Cerchar abrasivity tests. This work is 

primarily an academic study that looks to set the basis of a relatively new research 

field, applications of tool condition monitoring techniques to rock cutting, and 

currently is at an early stage of development towards a fully AE-based CAI 

prediction model. 

5.2 Materials and methods of analysis 

A series of 88 tests has been carried out in 11 different rock types. The surface of 

the rock specimens used can be considered smooth as specimens were diamond 

sawn according to ASTM [5]. Tests on the modified Cerchar apparatus are carried 
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out under static load of 70 N. One CAI is equivalent to 0.1 mm measured at the top 

of the conical pin (see Figure 5-1). 

 

Figure 5-1. Wear flat incurred at top of a pin. 

A Philips XL40 scanning electron microscope (SEM) is utilized to find out the 

nature of the acoustic emission. Secondary electron and backscattered electron 

images are respectively used to scan the surface for damage and to identify the 

minerals along the groove left by the pin. 

5.2.1 Test method and Materials 

For testing, a conventional West Cerchar apparatus has been used (see Figure 5-2). 

It has been equipped with a stepper motor. The stepper motor has been directly 

installed to one of the two hand cranks driving the screws in the two-axis cross 

table. The purpose of the modification that has been carried out is not only to match 
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acoustic emission with the spatial location in the rock specimen but also to ensure 

constant velocity of scratching in the tests. 

 

Figure 5-2. Modified Cerchar apparatus: 1-Sample holding vice, 2-Electric motor, 3-

Two axis cross table, 4-Tool holder, 5-Pin and 6-Normal force. 

Some discrepancies exist amongst the scientific community regarding adequate 

Cerchar test parameters. The most notable are test velocity and the hardness of the 

pin used during testing. In terms of pin hardness, there is a lack of agreement on 

unique pin hardness. Some researchers claim that 56 HRC should be used 

[6,10,29,30] unlike others suggest that 42 HRC must be used during abrasivity tests 

[9,13,31]. In this study, 56 HRC and 42 HRC pins will be used in order to avoid 

such a discrepancy. 

Additionally, test velocity is another important testing parameter that presents 

discrepancy. The different proposed velocities vary within an order of magnitude. 
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Some researchers suggest testing velocity of 10 mm/s [14,32] in contrast with the 

slower velocities of 1 mm/s proposed in [29] or even as slow as 10 mm/min [13]. 

However, Plinninger, et al.[12] suggest that the values of CAI estimated from the 

different velocities and apparatus setups do not vary significantly. Hence, the 

adopted velocity for the current series of tests is 1 mm/s. 

Rock properties 

UCS tests were carried out on core samples with height to diameter ratio of 

approximately 2 [33]. They were conducted using a servo-controlled stiff testing 

machine (Instron 1342) with 300 kN load capacity. This machine consists of a 

compression loading frame, an axial dynamic loading system and a data acquisition 

card. Core samples were loaded at 0.04 mm per minute under displacement 

controlled. 

During uniaxial compressive strength tests, deformation measurements were 

also performed with dual axial extensometers and a circumferential extensometer, 

model MTS 632.11F-90 and model MTS 632.12F-20 respectively. Tangent Young 

modulus (Etan) values were calculated from the stress–strain curves. 

As mentioned earlier, rock properties also influence the CAI values to some 

extent. There is agreement on that the “classical” rock properties that have more 

influence on CAI are UCS [9,10], Etan [10–12] and Cqtz [9,13]. The three previously 

mentioned rock properties, thus, are considered as inputs for our model. 

AE setup 

AE are transient stress waves, which are generated when the deformation state of a 

body changes [34]. Other sources of AE that are expected to occur during Cerchar 

testing are: elastic deformation, plastic deformation in the work piece and the chips, 

collisions between chips and tool, frictional contact between tool face and rock 

surface, damage on rock surface, formation of micro cracks and appearance of wear 

debris or surface spalling [22,35]. 
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AE is a technique that has previously been used under certain condition to 

monitor CAI [25], rock cutting processes [24, 28, 36] and tool condition monitoring 

in metal cutting [15–23]. Amongst the AE parameters that have been used by 

researchers are: a-value [25], b-value [25], total number of events (∑N) [28] and 

root mean square (RMS) [24]. a-value and b-value are computed from the 

amplitude–frequency distribution analysis [37]. Total number of events (∑N) is 

defined as the number of times that the amplified AE signal crosses the 5 mV pre-

set trigger voltage during a finite time, which in our case is about 10 s [38]. RMS 

as described in Eq. 5.1 provides an indication on the magnitude of the signal, in 

spite of the shape of the waveform [39]. 

𝑉𝑅𝑀𝑆 = √
1

𝑇
∫ 𝑉𝑖

2𝑇

0
𝑑𝑡    (5.1)  

where T is period of the waveform and Vi is the instantaneous voltage. More 

information on acoustic emission can be found in [40,41]. 

Regarding AE system used for testing, AE sensors and their respective 

preamplifiers are utilized along with a data acquisition card (DAQ) and LabVIEW 

program as seen in Figure 5-3. Two PICO AE sensors with flat frequency response 

of approximately 200–750 kHz are utilized. One is firmly attached to rock sample 

for capturing the acoustic signals generated at the pin–rock interface and the other 

to the frame of the apparatus so that vibration emitted from the motor can be 

captured. The latter signals are utilized for high-pass digital filtering at 30 kHz. 

Silicone gel is used as couplant between sensors and their respective attachment 

points. Both Pico sensors are equipped with external 20 dB preamplifiers that 

magnify the AE signal. This magnified signal is then transmitted to a NI PCI-61333 

(16 MS/s) S series multifunction DAQ. Sampling rate used in the DAQ is 1.5 MHz 

for all tests. Finally, a LabVIEW program developed at the University of Adelaide 

and commercially available software, Matlab, are utilized for signal post-

processing. 
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Figure 5-3. Acoustic signals capturing and post-processing setup. 

5.2.2 Data analysis 

 Selection of independent variables 

In a multivariate scenario, a regression model uses a set of independent variables to 

predict a dependent variable, in our case is CAI. Although all independent variables, 

AE features and rock properties, can contribute to the model, there are some 

variables that have more significant contribution compared to others. It is therefore 

better to include only the most relevant variables for simpler modelling. Since we 

have multiple AE features, it is important to apply feature selection to our work. 

Gamma test is a data analysis routine that can measure the noise level of any 

smooth model of the following form (Eq. 5.2) [42]. 

𝑦 = 𝑓(𝑥) +  𝜖    (5.2)  

where f(x) is a smooth function (non-linear) and ϵ is the noise component following 

a normal distribution with zero mean and v variance. The gamma statistic uses the 
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data neighbourhood to estimate the noise variance. The V-ratio, defined as the ratio 

between the gamma statistic and the total variance of the dependent variable, is an 

indicator of model. As V-ratio approximates to zero, the prediction accuracy of the 

model is expected to be higher. More details on this test can be found in [43]. A 

practical use of the Gamma test is feature selection since we can calculate the 

gamma statistic for all input variables combinations in small input variables 

datasets. The independent variables of the combination with the lowest V-ratio are 

considered for further modelling. 

Artificial neural networks 

ANNs are extensively used in different engineering applications due to their well-

known capabilities of performing non-linear modelling amongst multiple variables 

with unknown relations. They are smooth models therefore the gamma statistic is 

suitable to estimate the error variance of some specific ANN architecture. ANNs 

imitate the behaviour of the real neural system. The basic principle is given by the 

neuron activation mechanism, where a neuron is activated by an input and only 

responds if the input magnitude is greater than a determined threshold [44]. The 

type of neural network used in this study is termed Multi Layered Perception 

(MLP). A MLP neural network consists of an input layer, a hidden layer and an 

output layer. The input layer represents all selected AE features and rock properties, 

the hidden layer contains non-linear relationships and finally, the output layer 

corresponds to the prediction neurons, CAI (see Figure 5-4). Each layer contains 

one or more processing units (neurons). Each neuron has a set of weights and an 

activation function in order to emulate the threshold activation that exists on real 

neural systems. The output of one weighted processing unit (neuron) can be 

calculated using Eq. (5.3). 

y = 𝑓(∑ w𝑘𝑥𝑘
𝑛
𝑘=1 )    (5.3)  

where f is the activation function, wk is the weight for the k-input and xk is the k-th 

independent variable [44]. For the most problems, sigmoid or hyperbolic tangent 

function can be considered a good activation function. 
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Figure 5-4 Artificial neural network (ANN) architecture. 

The weights are the interconnection between layers that contribute to the 

prediction and classification power of the ANN. During the learning phase, these 

interconnections learn from experimental data by optimizing the quadratic error 

between the prediction and real value of the output variable. A widely used 

optimization method is the gradient descendent method. For performance 

assessment of the ANN model, three datasets are required: training, validation and 

testing datasets. The training dataset is used to find the optimal weights. Validation 

dataset is utilized in order to avoid overfitting, which occurs when the ANN 

memorizes and replicates the training dataset. Finally, the ANN performance is 

evaluated using the unseen testing dataset. 

ANN has been extensively used in tool condition monitoring as described by 

Sick [23]. However, there is no rule to determine the architecture parameters of an 

appropriate ANN, i.e. number of neurons and activation function in the hidden 
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layer, learning rate and regularization term. Therefore, several ANN were tested 

varying these parameters. The Python library PyBrain [45] was used to train the 

ANN and 70%, 15% and 15% of the dataset is used for training, validation and 

testing of the network, respectively, preserving the mean and standard deviation of 

the dependent variable in the three sets as much as possible to avoid some bias on 

the dataset selection.  

For the prediction performance assessment of the ANN model, four different 

indicators are computed between measured and predicted CAI values. Coefficient 

of determination (r2) quantifies the explained variance of the model; the model has 

better predictions as it approximates 1. Root Mean squared Error (RMSE) is the 

estimator in charge of measuring the magnitude of the estimation errors (Eq. 5.4). 

The closer to zero, the more accurate the model is. Mean Absolute Error (MAE) 

measures how close predictions are to measured data. Similarly to RMSE, the 

smaller MAE is, the more accurate the model (Eq. 5.5). Finally, Variance Account 

For (VAF) indicator is calculated (Eq. 5.6). This is used to verify the correctness of 

the model and is commonly used in rock properties modelling to control model 

prediction performance. 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑦 − 𝑦′)2𝑁

𝑖=1    (5.4)  

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦 − 𝑦′|𝑁

𝑖=1     (5.5)  

𝑉𝐴𝐹 = [1 −
𝑣𝑎𝑟(𝑦−𝑦′)

𝑣𝑎𝑟(𝑦)
] × 100    (5.6)  

where y and y’ are the measured and predicted values respectively, N is number of 

samples and “var” is the variance function. 

5.3 Results and discussion 

A total of 88 CAI tests were performed on 11 different rocks (see Table 5-1). They 

consisted of six igneous, one metamorphic and four sedimentary rocks. The softest 

rock has UCS of 8 MPa and the hardest rock 250 MPa approximately. 
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Table 5-1. Classification of rocks under study. 

Rock Name Rock type 
c 

(MPa) 

Etan 

(GPa) 
Cqtz (%) Grain size 

American black Granitoid 250 97.68 3 Fine-medium 

Granodiorite Granitoid 170 47.50 24 Medium 

Monzogranite Granitoid 112 15.60 29 Medium-coarse 

Radiant red Granitoid 249 75.49 39 Medium-coarse 

Riverina Granitoid 159 46.31 32 Medium-coarse 

Hawkesbury Sandstone 43 6.23 65 Fine 

Castlegate Sandstone 16 2.67 60 Fine 

Mountain gold Sandstone 34 5.08 75 Fine 

Brukunga Phyllite 108 39.10 30 Fine 

Mantina Basalt 240 66.37 50 Fine 

Tuffeau Tuff 8 3.41 10 Fine 

 

5.3.1 Gamma test 

Prior to conducting ANN analysis, a set of independent variables, namely, signal 

AErms, a-value, b-value, total number of events (ΣN), UCS (c), quartz content 

(Cqtz), Young's modulus (Etan), and pin hardness (hp), was chosen to be included as 

potential inputs. 

In Table 5-2, the result of seventeen possible variable combinations that were 

Gamma tested can be read. It was found that combination of variables given in sub-

set 10 has the lowest gamma test value and V-ratio at 0.361 and 0.222 respectively 

(see Table 5-2). As a result, optimum input variables are found to be as per Eq. 5.7. 

These variables allow us to simplify the model as well as to avoid overfitting.  

𝐶𝐴𝐼 = 𝑓(ℎ𝑝, 𝜎𝑐, 𝐸𝑡𝑎𝑛, 𝐶𝑞𝑡𝑧, 𝐴𝐸𝑟𝑚𝑠, ∑ 𝑁) +  𝜖  (5.7)  
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Table 5-2. Gamma test results. 

Subset hp σc Cqtz Etan AErms 
a 

value 

b 

value 
∑𝑁 

Gamma 

(Γ) 

V 

Ratio 

1         0.845 0.520 

2         0.54 0.33 

3         0.373 0.230 

4         0.647 0.398 

5         0.720 0.443 

6         0.684 0.421 

7         0.585 0.360 

8         0.543 0.334 

9         0.574 0.353 

10         0.361 0.222 

11         0.608 0.374 

12         0.497 0.306 

13         0.522 0.321 

14         0.493 0.303 

15         0.363 0.223 

16         0.373 0.229 

17         0.465 0.286 

 

In Table 5-3, the correlation matrix of the optimum variables can be seen. 

Although σc and Etan are not statistically independent (correlation=0.96), they both 

were kept as independent input variables since they have been previously 

considered as important rock properties affecting CAI. 
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Table 5-3. Correlation matrix of independent input variables. 

 CAI Etan hp Cqtz AErms ∑𝑁 σc 

CAI 1 0.55 -0.13 -0.19 0.42 -0.02 0.64 

Etan  1 0 -0.48 0.36 -0.33 0.96 

hp   1 0 0.29 0.02 0 

Cqtz    1 -0.31 0.51 -0.38 

RMS     1 -0.09 0.37 

∑𝑁      1 -0.31 

σc       1 

5.3.2 Artificial neural network 

After training different network configurations, it is found that the network with 

better performance has 6 independent input variables, 24 neurons in the hidden 

layer and 1 output neuron for predicting flat wear length, CAI. It is important to 

highlight that the network increases its complexity from 6 neurons in the input layer 

to 24 neurons in the hidden layer. This increment provides the capability of finding 

complex non-linear relations amongst input variables and wear flat measured during 

testing. The architecture of the proposed ANN is illustrated in Figure 5-4. Training 

parameters and algorithm of the neural network can be read from Table 5-4. 

Table 5-4. The architecture of the ANN model. 

IN* HN** ON*** 
Transfer 

function 

Training 

algorithm 

Learning 

rate 
Epochs 

Weight 

decay 

6 24 1 
Hyperbolic 

tangent 

Gradient 

descent 
0.01 125 0.01 

*IN, input neurons; **HN, hidden neurons; ***ON, output neurons 

In Figure 5-5, estimated flat wear measurements are plotted against their 

respective measured values to confirm the prediction capability of the model. As 

the points are uniformly scattered along the 1:1 line (diagonal line), it can be said 

that the model is accurate. These plots are sorted according to the three different 

phases, i.e. training, validation and testing. Their respective coefficient of 
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determination (r2), RMSE, MAE and VAF can be found in Table 5-5. In general, it 

can be said that there is a high consistency between measured and predicted CAI 

for the ANN model. 

 

Figure 5-5. ANN values against experimental values at different stages. 

Also in Table 5-5, the r2, RMSE, MAE and VAF of the multivariate linear 

regression model can be read which allows us to demonstrate that the predictions 

derived from an ANN are more accurate than traditional multi-linear modelling. 

The proposed model enhances the coefficient of determination performance in 

approximately 36% compared to a multivariate linear regression, which is a 

significant improvement for the tool condition monitoring system. 
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Table 5-5. Coefficients of determination and prediction performance of the estimate 

for ANN model compared to a linear regression. 

Model r2 RMSE MAE VAF (%) 

Training 0.94 0.32 0.22 93.9 

Validation 0.93 0.32 0.27 93.3 

Testing 0.87 0.46 0.37 87.3 

All Data 0.93 0.34 0.25 92.7 

Linear regression 0.57 0.82 0.67 58.3 

 

In addition, Figure 5-6 shows the prediction errors distribution for the ANN 

predictions. It can be seen that errors are normally distributed which ensures that 

the prediction model is unbiased. Therefore, the tool condition monitoring using 

AE features along with rock properties can be considered a sensible approach to 

estimate the length of the flat wear, CAI. 

 

Figure 5-6  Distribution of estimation errors. 

5.3.3 Nature of AE 

In order to explore the main source of the AE, scanning electron microscopic (SEM) 

images were carried out, after each abrasivity test, in the grooves created by the pin 

during scratching the rock surface. Figure 5-7 correlates the AE signature with the 
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mineral content and damage generated on the surface of a monzogranite sample. In 

the secondary electrons surface image (Figure 5-7a), the damage generated by the 

pin on the rock surface can clearly be seen. Different types of fracture patterns can 

be identified. From Figure 5-7b, a backscattered electron image, it is seen that such 

damage patterns are associated to different rock minerals. There are clear 

distinctions on the acoustic signal characteristics (Figure 5-7c) generated by the 

different fracture patterns. 

 

Figure 5-7. A-Secondary electrons surface image, B-BSE image and C-Amplitude vs. 

time signal corresponding to the sample. 

In spite of being widely accepted that 85% of the wear occurs in the first 2 mm 

of the test [10], the AE activity recorded during testing is randomly distributed 

throughout the total length of the groove. This means that wear is not the main AE 

source present in the tests. Therefore, it is believed that the main sources of AE for 

crystalline rocks are the fracture generation and propagation processes taking place 

in the steel pin–rock interface (see Figure 5-7). For sedimentary rocks, on the other 
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hand, it is believed that grain dislocation is the main source of AE. This can be 

evidenced from granular character of the rock debris generated during the tests. 

5.4 Conclusions 

In this paper, we discuss from a tool condition monitoring viewpoint the 

applicability and the role of AE as an alternative monitoring technique in order to 

predict rock abrasivity via CAI. The amount of flat wear in the conic steel pin, CAI, 

was accurately predicted from AE parameters, rock properties and Cerchar testing 

parameters using the newly proposed approach. The findings from this research can 

be summarized as follows: 

Gamma test and V-ratio analyses demonstrated that including rock properties 

along with AE features as input variables significantly reduced the noise or error 

variance in the prediction. AE features such as RMS and total number of events are 

found to produce less variance in the CAI prediction model. 

It has also been demonstrated that predicting CAI from a tool condition 

monitoring viewpoint is a feasible approach. This new approach opens up a 

promising research field. Consequently, tool condition monitoring based on AE 

features and rock properties was implemented as a new valid means to estimate the 

length of wear flat in 42 and 56HRC steel pins. 

Finally, the main sources of AE during CAI abrasivity tests are fracture 

generation and propagation for crystalline rocks and grain dislocation and 

appearance of wear debris for sedimentary rocks. 

Further research is required as the current work just sets the basis of the 

applications of tool condition monitoring to rock cutting applications. At present 

the research is on-going and more work is required in the field in order to develop 

the first tool condition monitoring system that may predict CAI from AE features 

exclusively. Although this methodology is still far from having industry 

application, it is a promising field of research. 
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 The influence of mineral 

content of granitic rocks on the 

acoustic emission during single 

contact abrasivity test 

Abstract 

Core drilling is a fundamental process in the mineral exploration industry. As deep 

exploration in hard rocks is accelerated due to the depletion of near ground mineral 

resources, deep-drilling operations need to reduce their reliance in operators 

experience and begin to implement new technologies in order to increase efficiency 

and cost-effectiveness of the overall process. Currently, lack of real-time 

information on the bit/rock interaction is a major problem. Therefore, the 

mechanism behind the acoustic emission, which is a proven technique for remote 

monitoring, generation in mechanical rock cutting must be understood in order to 

provide real time information about the rock. This paper is aimed at identifying the 

influence of mineral composition of granitic rocks on the Acoustic Emission (AE) 

whilst scratching rocks with a single contact tool and evaluating the feasibility of 

AE as a means to infer Cerchar Abrasivity Index (CAI). Single contact tool is 

utilised since it allows a better understanding and identification of the mechanism 

generating the AE waves. A Cerchar apparatus that was modified to provide 

constant scratching speed is utilized to monitor AE during rock/tool interaction. 
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HRC-56 steel pins are used for scratching the rocks. Two AE PICO sensors with an 

operating frequency range of 200-750 kHz were used. One of the AE sensors was 

attached onto the Cerchar frame and the other sensor was on the rock sample. 

Continuous AE signals were recorded with 1 MHz sampling rate during scratching. 

Tests on the modified Cerchar apparatus are carried out under the static load of 70N 

and cutting speed of 1 mm/s. A Scanning Electron Microscope (SEM) is utilized to 

visualize the groove in the rock and to identify the mineral composition through 

Back-Scattered Electrons (BSE) reflected from the rock sample. Based on the 

microscope images, particular rock minerals have been associated with different 

types of AE signals during their fracturing process. These different types of signals 

are in turn evidence of different cutting responses in the respective minerals. For 

instance, biotite shows a larger groove area and plate-like fractures accompanied 

with burst-type AE signal, whereas plagioclase and quartz, which are characterized 

by similar hardness and BSE brightness, possess shattered-like fractures and more 

continuous-type AE signals. Also, A-value of the Gutenberg-Richter scale has been 

found to well correlate with CAI. 

6.1 Introduction  

Automation and remote sensing, which are a relatively new trend in the mining 

industry, require new techniques and strategies for real-time detection of rock 

properties. AE is considered as one of these novel techniques whereby engineers 

and researchers can sort out the newly presented challenges derived from 

automation and remote sensing. Rock cutting, by mechanical means, is a common 

practise not only in mining industry but also in exploration and oil and gas industry. 

As such it is important to understand and identify rock characteristics that affect 

AE while cutting. Amongst the different rock properties there is one which stands 

out, abrasivity, as affecting the process and tool cutting tool life the most. Different 

scratching/cutting configurations clearly generate particular and different acoustic 

signatures. This can even be evidenced when cutting at home through a wall. It 

sounds different when cutting in pure cement than when doing so through a block 

or reinforced concrete. Does the generated sound in rock scratching/cutting behave 
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in a similar manner under different scratching/cutting conditions? Some researchers 

have demonstrated that differences do exist under different cutting conditions [1-4] 

and also that rock properties can be extracted via AE [5, 6]. However, the 

mechanism generating the acoustic waves has not been clearly defined yet and CAI 

from AE has not either been attempted.  

Although this paper is part of a broader research project that focuses on the study 

of acoustic emission as a means to remotely identify particular conditions of the 

rock cutting process and rock properties, for this particular case we will be focusing 

in a very specific type of rocks. It is therefore that this paper aims at:  

• Determining the effect that the mineral content of granitic rocks has in 

the acoustic signature generated while cutting rock.  

• Determining the applicability of AE technique to infer CAI of granitic 

rocks.  

• Characterising the phenomena generating the AE at the rock/tool 

interaction between cutting and friction. 

6.1.1 Cerchar Apparatus 

Cerchar abrasion index (CAI) is widely used in mining and excavation projects. 

Although it is utilised in different applications, for instance, estimation of rock 

cutting tool mean lifetime, project timing and costing, proper selection of rock 

cutting tool, there are some discrepancies with the test results. These are mainly 

attributed to the test subjectivity and, more important, to the lack of repeatability of 

the tests. The latter has been an important focus of research, since the test was first 

introduced in the early 70s, more specifically, test parameters. They are reviewed 

in the following sections. From all the different Cerchar test parameters, the ones 

with more variability and influence in the test results are the test velocity and the 

hardness of the pin used during testing. 

Pin hardness 

After an exhaustive review of literature in regard to stylus hardness, it has been 

found that previous tests have predominantly been carried out with two different 
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pins hardness since the CAI was first introduced. To be precise, 56 HRC [7-9] and 

42 HRC stylus pins [10-12]. Due to this inconsistency, a study completed at the 

University of new south Wales by Stanford and Hagan [11] has come up with a 

useful relation between pin hardness and CAI values (Eq. 6.1). 

80.50766.0  HRCCAI     (6.1)  

where HRC is Rockwell hardness of the steel pin and CAI stands for Cerchar 

abrasivity index. 

Velocity 

As mentioned earlier, one of the more important parameters affecting the CAI is 

the test velocity. The different proposed velocities vary within an order of 

magnitude which is why it is considered as an important source of discussion. Some 

Being the more notorious one the higher velocities of 10mm/s [13, 14] in contrast 

with the slower velocities of 1mm/s proposed by Michalakopoulos et al. [8] or even 

as slow as 10mm/min [10]. However, Plinninger et al. [15] suggest that the values 

of CAI estimated from the different velocities and setups do not vary significantly.  

Number of tests 

The result of the tests is also sensitive to number of tests performed in each 

specimen albeit to a less degree that other parameters. In the Cerchar standard, it is 

recommended to perform 5 tests and average the results to evaluate the abrasivity 

of the rock. with 2 tests in perpendicular direction to the other 3 [16]. However, 

Plinninger et al. [9] consider average grain size as the main feature to determine the 

number of tests. Thus, for fine-grained rocks are subjected to 2-3 tests and for 

coarse-grained 5 or more tests. According to West [10], care must be taken when 

rock present veins or are banded. This situation should be accompanied with an 

increase in the number of tests in order to avoid single mineral or band CAI values. 

Wear measurement and rock surface quality 

Sample surface is the variable that in quantitative terms still needs more detailed 

research. Due to the fact that Plinninger et al. [9] only qualitatively mentions “rough 
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surface” and/or “smooth surface” regardless of how smooth and/or rough the actual 

surface is. Despite this, their relation (Eq. 6.2) is suggested by ASTM (2010) to be 

used in order to normalise the CAI values. Rostami et al. [12] have come up with 

their own relation and analyses between indexes of different surface condition, 

reinforcing the influence that surface quality has on CAI values. 

48.099.0  sCAICAI      (6.2) 

where CAI = Cerchar abrasivity index in natural surface, CAIs = Cerchar abrasivity 

index in smooth surface. 

Lastly, Although CAI unit has been defined by as a 100 µm wear flat diameter 

measured in the stylus wear flat [10], there is ambiguity and lack of information on 

the details of wear flat measurement procedure. Plinninger et al. [9] used a reflected 

light microscope with 50x magnification, whilst the Cerchar standard suggests a 

microscope with minimum 30x magnification [16]. Other discrepancy that exists in 

terms of wear is whether the measurement should be performed looking at the pin 

tip sideways [17] or from the top [10]. 

6.1.2 Acoustic Emission 

Transient elastic waves released during fracture, plastic transformation or changes 

in the internal structure of materials are conventionally defined as AE. Sources of 

AE concerning this study are of mainly of two different natures: material behaviour 

related and friction related. Material related waves include those generated by the 

result of rapid release of strain energy during fracturing, dynamic external force 

presence, plastic deformation, changes in internal structure [18] whilst the friction 

related are due to changes in friction surface structure, surface spalling or 

appearance of wear [19].  

AE is a technique that possesses multiple parameters. These parameters can all 

be utilised to describe the different processes to which AE is applied. In Figure 6-1, 

the two typical types of emissions and some of their parameters are shown 
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Figure 6-1. Schematic representation of AE 

In the past, different researchers have used AE to monitor processes closely 

related to CAI. For instance, Karakus and Perez [1] found that a direct relation 

between AE amplitude and drilling parameters such as thrust, torque and depth of 

cut in impregnated diamond core drilling under kinematic control. Sun [4] used AE 

to monitor predefined bit wear conditions using tricone bits. He concluded that 

different drilling situations may be identified by the characteristics of AE signals 

generated at the rock/bit interaction and also extracted useful information pertaining 

to bit wear and rock formation changes. 

Furthermore, AE has been found to correlate with different rock properties and 

rock fracture. Indentation hardness, in a study by Jung et al. [5], was found to relate 

with some AE parameters. They found a direct relation amongst peak Root Mean 

Square (RMS), number of events and integrated RMS with indentation hardness. 

Considering the correlation between peak RMS and indentation hardness as the 

more pronounced and significant finding from the previously mentioned. 
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6.2 Methods  

A conventional West Cerchar apparatus has been modified for testing. The 

apparatus has been equipped with a stepper motor. The stepper motor has been 

directly installed instead of one of the two hand cranks driving the screws in the 

two-axis cross table (see Figure 6-2). The purpose of the modification that has been 

carried out is not only to better understand and match acoustic emission with its 

source in the microscopic analysis but also to avoid discrepancies in regard to 

velocity of the test. The adopted velocity for the current series of tests is, as 

suggested by Michalakopoulos et al. [8], 1 mm/s. 

 

Figure 6-2. Modified Cerchar apparatus: 1-Sample holding vice, 2-Electric motor, 3-

Two axis cross table, 4-Tool holder, 5-Pin and 6-Normal force. 

56 HRC pin hardness is utilised. Number of tests performed on each rock sample 

equals to four. Two different granitic rocks, named monzogranite and granodiorite 
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of which mineral content analyses are shown in Table 1 [20, 21], are subjected to 

tests. These granitic rock samples used are considered “smooth” surfaces since they 

have been diamond sawn [9] and surface grinded. As a result, a flat surface sample 

with an approximate roughness of less than 10 µm, which is considered appropriate 

to conduct the test, is achieved. The mineral composition was carried out by a series 

of thin section microscopic analyses. 

Table 6-1. Mineral composition of granitic rocks 

Mineral 

Monzogranite Granodiorite 

Average content (%) St. dev. Average content (%) St. dev. 

Quartz 29.2 0.748 24 1.265 

Orthoclase 19.6 3.826 5 3.098 

Plagioclase 17.8 5.845 27.2 7.222 

Biotite 12.8 1.166 37 14.142 

Others 20.6 11.360 6.8 2.926 

 

In terms of AE system (Figure 6-3) used for testing, AE sensors and their 

respective preamplifiers are utilised along with a data acquisition card (DAQ) and 

LabView program. Two PICO AE sensors with flat frequency response of 

approximately 200-750 kHz are utilised. One is firmly attached to rock sample for 

capturing the acoustic signals generated at the pin-rock interface and the other to 

the frame of the apparatus so that vibration emitted from the motor can be captured. 

Silicone gel is used as couplant material between sensors and their respective 

attaching parts. Then, the signal conditioning procedure is undertaken as follows. 

Both Pico sensors are equipped with external 20 dB pre-amplifiers that magnify the 

AE signal. This magnified signal is then transmitted to a NI PCI-61333 (16 MS/s) 

S series multifunction DAQ. Sampling rate used in the DAQ is 1 MHz for all tests. 

Finally, a LabView program developed at the University of Adelaide and 

commercially available software, Matlab, are utilised for post-processing. 
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Figure 6-3. Acoustic emission capturing setup 

A Philips XL40 scanning electron microscopy is utilised for examining the 

groove surfaces and their associated mineral composition. Granitic rocks are silver 

coated so that the secondary electrons (SEl) produced by the beam can be properly 

reflected from the surface. Also, backscatter electrons (BSE) are detected in order 

to identify the mineral content of the specimen surface. Finally, wear flat 

measurement of the pins is carried out after testing. An optical measurement unit 

provided by ErgoTech is used. Calibration is done prior to measurement. Five 

digital measurements are averaged for every wear flat. In cases when there is a burr 

in the pins, the measurements are carried out, as suggested by Rostami, Ghasemi, 

Alavi Gharahbagh, Dogruoz and Dahl [12], from the point of intersection of the 

wear flat with the original shape of the pin. 
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6.3 Results  

6.3.1 Cerchar Abrasivity Index  

Individual wear flat measurements can be visualized in Figure 6-4. Average values 

of the five digitised wear flats of the pins used in testing monzogranite and 

granodiorite can be seen in Figure 6-4a and Figure 6-4b respectively. Average CAI 

value for monzogranite is 5.0 and granodiorite possesses an average CAI value 

equal to 3.5, which according to Stanford and Hagan [11] can be classified as 

“extremely abrasive” and “highly abrasive” rocks respectively. 

 

Figure 6-4. Individual wear flat: a) Monzogranite and b) Granodiorite. 

6.3.2 Acoustic signals 

Signals recorded from the tests can predominantly be considered as burst type AE. 

However, there are some short time intervals in the signals in which the frequency 

of the generated emissions is so high that the signal can be regarded as continuous 

during such periods. The similarity of the pattern between signals recorded by the 

sensor on the apparatus and on the rock can be visually distinguished, though there 

is a high degree of attenuation on the signal recorded at the apparatus sensor. The 

attenuation of the signal amplitude is of approximately two orders of magnitudes 

(Figure 6-5). 
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Figure 6-5. Apparatus and rock signals in a typical monzogranite test. 

a- and b-value 

An important degree of self-similarity within the signals was recognised after 

carefully analysing the signals. So cumulative hit-amplitude distributions are 

plotted for both rocks and the best linear regression is fitted to each dataset by least 

square method (Figure 6-6).  

The linear best fits for both rocks obey the Gutenberg-Richter law, in which, N, 

provides the number of AE events with amplitude, M, and a and b are the positive 

constants of the linear regression of the form of Eq. 6.3. In this research, a-value is 

related to the total number of events that occur during the testing length and b-value 

indicates the relation that exists between larger and smaller events. 

bMaNLog       (6.3)  
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Figure 6-6. Cumulative hits-amplitude distributions for granitic rocks. 

6.3.3 Relations between AE signals and CAI 

As a-value is directly associated with total number of events generated, it has been 

used for obtaining an equivalent of the AE energy released during a test. Hence, 

eliminating the dependency of AE energy value in the characteristics of the AE 

monitoring facilities [22] i.e. sampling frequency.  

 

Figure 6-7. a-value vs. CAI for granitic rocks 
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Surface analysis  

SEM analyses are carried out in the grooves left by the abrasivity tests in the granitic 

rock samples. Figure 6-8a depicts a typical SEl surface image. In this surface image, 

the damage generated by the pin can be clearly seen. Further, different types of 

fractures can be identified. On Figure 6-8b, it is seen a BSE image from which the 

different minerals in the rock granitic surface are identified and their respective 

damage qualified. Finally, Figure 6-8c shows the correspondent acoustic signature. 

 

Figure 6-8. Rock surface analysis with scanning electron microscopy. 

6.4 Discussion 

Despite the fact that apparatus sensor based measurement was deemed 

inappropriate for this type of test due to the high degree of attenuation of the waves 

traveling to the apparatus sensor, the very few high energy events that can be 

detected in the apparatus signals (Figure 6-5) serve to validate the signals detected 

at the rock sensor. The high degree attenuation may be explained by the fact that 
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the rock sample is mounted in a rubber band in order to isolate it from the motor 

vibration, hence, causing an important loss of energy in the signal.  

From the linear best fit (Figure 6-6), in which, N, provides the number of micro-

seismic events with amplitude, M, and a and b are positive constants, it is important 

to highlight that both rock obey the Richter-Gutenberg law. In regard to a-value, 

which describes the amount of micro-seismic activity, it was expected to be higher 

for more abrasive rocks as an increase in the activity takes place at the rock/pin 

interaction resulting in more AE generation. In fact, a-value is the AE parameter 

that best correlates with the CAI because (Figure 6-7). This result confirms that the 

interaction between pin and rock can be monitored by AE, however it is important 

to highlight that the result may be restricted to certain values of CAI in our case this 

relation can be used in rocks with CAI larger than 1.5 (CAI ≥ 1.5), most granitic 

rock lie in that range. When it comes to b, it is known that b-value, which is a 

measure of the relation amongst the different size events occurring at the interface, 

is highly affected by the heterogeneity of the rock. In this particular case, b-values 

registered during monzogranite, whose average crystal size is smaller, testing are 

larger than those from granodiorite.  

It is widely accepted that 85% of the wear occurs in the first 2 mm of the test. 

However, the AE activity recorded during testing is randomly distributed through 

the total length of the groove. There are two main explanations for such finding. 

They are that either the AE signals generated from the wear are in a different 

frequency range or the friction process occurring at the interface is not an important 

contributor to the AE generation during the tests.  

Based on the microscope images, particular rock minerals have been associated 

with different types of AE signals during the tests. These different types of signals 

are in turn evidence of different fracturing responses in the respective minerals. For 

instance, biotite (Figure 6-8b) shows a larger groove area and plate-like fractures 

(Figure 6-8a) accompanied with burst-type AE signal (Figure 6-8c). Understanding 

by plate-like fracture the process in which cracks grow large enough so that there 

is chip formation, that is to say material removal. In the particular case of biotite, 
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this fracturing type may have been enhanced by the mineral cleavage and its lower 

hardness in the Mohs scale, 2.5-3. On the other hand, plagioclase and quartz, which 

are characterized by similar Mohs scale hardness, 6-6.5 and 7 respectively, and BSE 

brightness (Figure 6-8b), possess shattered-like fractures (Figure 6-8) and more 

continuous-type AE signals (Figure 6-8c). Here, shattered-like fractures are defined 

as superficial cracks that expanded and formed a network of cracks without 

removing material. These harder materials require more energy in order to be cut. 

The generation of the crack network is the process that generates the higher 

frequency and low amplitude signal generated at the rock/pin interface. 

6.5 Conclusion 

Laboratory tests have been performed with the modified Cerchar apparatus in 

granitic rocks. Results indicated that there was a correlation between CAI and AE 

parameters using a-value and b-value. The former, which is related to total number 

of events, has stronger correlation with CAI and the latter corresponds to event size 

and therefore is more related to grain size. The main conclusions draw from this 

research are as follows: A-value is the parameter that is recommended to express 

CAI of granitic rocks through AE as it best correlates with CAI. SEM analyses point 

out fractures propagation as the main source generating the AE in granitic rocks 

during CAI testing. And, finally, apparatus based monitoring is not feasible in this 

type of test since generated waves are of high frequency, thus they suffer higher 

attenuation rate. 
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recommendations 

 

Conclusions and recommendations 

7.1 Conclusions 

The main objective of this thesis is to study the applicability of AE technique to ID 

rock drilling and drilling-related rock properties. Special attention is devoted to the 

shortcomings mentioned in Section 1.3. The major research outcomes of this thesis 

are listed as follows: 

 AE monitoring is a feasible technique to optimize ID drilling performance 

since changes in drilling conditions and effects of drilling parameters can 

be accurately mapped by analysing AE.  

 Through ‘Step tests’, it has been demonstrated that there is a direct link 

between AE amplitude and drilling parameters. A series of linear relations 

have concluded that the signal amplitude alone could accurately estimate 

the current depth of cut, WOB or TOB in real time. Furthermore, it can also 

be determined that AE amplitude behaves erratically before increasing 

voltage suddenly at a certain depth of cut, approximately 80µm/rev. A 

plausible explanation is that there is a change in cutting behaviour of the bit, 

from a more stable, grinding mechanism, to an aggressive nature. 

 Little variation in the  peak frequency and frequency range of AE over time 

was found after performing  frequency analysis on the signals of accelerated 

wear tests. It was also found that fundamental frequencies ranged from 20 

to 50 kHz. 
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 Multiple tool condition monitoring systems are obtained, with AErms and 

measuring-while-drilling variables as input parameters of pattern 

recognition/machine learning techniques, in order to predict the ID drilling 

tool wear state. All in all, AErms and TOB are considered the most adequate 

input variables for a wear monitoring system of ID bits because of the lesser 

input variables and still accurate classification performance with all the 

different pattern recognition algorithms. Further, this finding is consistent 

with what has already been found for wear evaluation in metal drilling as 

well as with the major contribution in terms of specific energy that TOB 

provides when compared to WOB in MWD. 

 The length of flat wear in a conic steel pin, CAI, was accurately predicted 

from AE parameters, rock properties and Cerchar testing parameters using 

the newly proposed approach. The results of Gamma test and V-ratio 

analyses demonstrate the advantages of including rock properties along with 

AE features as input variables. They significantly reduce the noise or error 

variance in the CAI prediction model. It has also been demonstrated that 

predicting CAI from a tool condition monitoring viewpoint is a feasible 

approach. Finally, the main sources of AE during CAI abrasivity tests are 

fracture generation and propagation for crystalline rocks and grain 

dislocation and appearance of wear debris for sedimentary rocks.  

 For granitic rocks, results indicate that there is a correlation between CAI 

and AE parameters derived from the Gutenberg-Richter law, a-value and b-

value. The former, which is related to total number of events, has stronger 

correlation with CAI and the latter corresponds to event size and therefore 

is more related to grain size. The main conclusions draw from this research 

are as follows: A-value is the parameter that is recommended to express 

CAI of granitic rocks through AE as it best correlates with CAI. SEM 

analyses point out fractures propagation as the main source generating the 

AE in granitic rocks during CAI testing.  
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7.2 Recommendations for further work 

As with any research work, there are some limitation in the current work. Future 

work is recommended as follows:  

 In this research, a sudden increase on the AE generated is found at approximately 

80µm/rev. The increase is believed to reflect a change in drilling conditions. In 

this regard, it would be of interest to test different rocks in order to study the 

effect of rock type in the jump (cutting mechanism) generated on the AE 

amplitude at about 80 microns/rev. Also, further studies could be undertaken by 

utilising different bit configurations (size and properties), bit geometries (full 

face) as well as different rock types.  

 Further research is required in terms of tool condition monitoring systems as the 

current work just sets the basis of the applications of tool condition monitoring 

to ID rock cutting applications. Mainly two improvements can be done: (i) One 

research avenue could be focused towards establishing which parameters of the 

AE, both in time-domain and frequency-domain, are better to classified wear 

states of the bits. (ii) The other field in which research is still required is in the 

set-up of ID drilling and the definition of multiple wear states of the tools. Hence, 

robustness of the models increases and so does its predictability. 

 At present, the research is ongoing and more work is required in the field of 

abrasivity in order to develop the first tool condition monitoring system that may 

predict CAI from AE features exclusively. Although this methodology is still far 

from having industry application, it is a promising field of research. Finally, 

apparatus based monitoring is not feasible in this type of abrasivity tests (CAI) 

since generated waves are of high frequency, thus they suffer higher attenuation 

rate
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 Scripts 

 

% Convert input to table 

Input Table =  table(trainingData); 

Input Table.Properties.VariableNames = % {' column '  ; 

  

% Split matrices in the input table into vectors 

inputTable.column_1 = inputTable.column (:,1); 

inputTable.column_2 = inputTable.column (:,2); 

inputTable.column_3 = inputTable.column (:,3); 

inputTable.column_4 = inputTable.column (:,4); 

inputTable.column_5 = inputTable.column (:,5); 

  

% Extract predictors and response 

% This code processes the data into the right shape for training the classifier. 

predictorNames = {'column_1', 'column_2', 'column_3', 'column_4'}; 

predictors = inputTable(:, predictorNames); 

response = inputTable.column_5; 

  

% Train a classifier 

% This code specifies all the classifier options and trains the classifier. 

classificationSVM = fitcsvm(... 

    predictors, ... 

    response, ... 
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    'KernelFunction', 'linear', ... 

    'PolynomialOrder', [], ... 

    'KernelScale', 'auto', ... 

    'BoxConstraint', 1, ... 

    'Standardize', true, ... 

    'ClassNames', [0; 1]); 

  

trainedClassifier.ClassificationSVM = classificationSVM; 

convertMatrixToTableFcn = @(x) table(x, 'VariableNames', 'column'}); 

splitMatricesInTableFcn = @(t) [t(:,setdiff(t.Properties.VariableNames, 

{'column'})), array2table(table2array(t(:,{'column'})), 'VariableNames', 

{'column_1', 'column_2', 'column_3', 'column_4'})]; 

extractPredictorsFromTableFcn = @(t) t(:, predictorNames); 

predictorExtractionFcn = @(x) 

extractPredictorsFromTableFcn(splitMatricesInTableFcn(convertMatrixToTableF

cn(x))); 

svmPredictFcn = @(x) predict(classificationSVM, x); 

trainedClassifier.predictFcn = @(x) svmPredictFcn(predictorExtractionFcn(x)); 

% Convert input to table 

inputTable = table(trainingData); 

inputTable.Properties.VariableNames = {'column'}; 

 

% Split matrices in the input table into vectors 

inputTable.column_1 = inputTable.column(:,1); 

inputTable.column_2 = inputTable.column(:,2); 

inputTable.column_3 = inputTable.column(:,3); 

inputTable.column_4 = inputTable.column(:,4); 

inputTable.column_5 = inputTable.column(:,5); 

  

% Extract predictors and response 

% This code processes the data into the right shape for training the 
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% classifier. 

predictorNames = {'column_1', 'column_2', 'column_3', 'column_4'}; 

predictors = inputTable(:, predictorNames); 

response = inputTable.column_5; 

  

% Perform cross-validation 

partitionedModel = crossval(trainedClassifier.ClassificationSVM, 'KFold', 5); 

  

% Compute validation accuracy 

validationAccuracy = 1 - kfoldLoss(partitionedModel, 'LossFun', 'ClassifError'); 

  

% Compute validation predictions and scores 

[validationPredictions, validationScores] = kfoldPredict(partitionedModel); 
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import sys 

import random 

import numpy as np 

import pandas as pd 

from sklearn import cross_validation 

import sklearn.preprocessing 

import scipy 

import argparse 

import statistics 

import matplotlib.pyplot as plt 

import pickle 

 

from pybrain.structure import FeedForwardNetwork 

from pybrain.structure import LinearLayer, SigmoidLayer,TanhLayer 

from pybrain.structure import FullConnection 

from pybrain.supervised.trainers import BackpropTrainer 

from pybrain.tools.shortcuts import buildNetwork 

from pybrain.datasets import SupervisedDataSet 

 

database = pd.read_csv('/home/Documents/projects/santiago/cai.csv',na_values=[ 

999,""]) 

n = len(database) 

 

#variables = ["hardness","ucs","quartz","rms","a-value","e"] 

variables = ["hardness","ucs","quartz","e","rms","events"] 

 

m = len(variables) 

n = len(database) 

data = np.empty((n,m)) 
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for i,v in enumerate(variables): 

data[:,i] = database[v] 

 

target= np.empty(n) 

tname = "cai" #"cu_roug_rec" #"au_roug_rec" 

target[:] = database[tname] 

 

standardiser_data = sklearn.preprocessing.StandardScaler() 

 

data = standardiser_data.fit_transform(data) 

target_original = target.copy() 

 

seed = 5970777 

 

x_train, x_test, y_train, y_test = sklearn.cross_validation.train_test_split(data, 

target, test_size=0.15, random_state=seed) 

x_train, x_validation, y_train, y_validation = 

sklearn.cross_validation.train_test_split(x_train, y_train, test_size=0.20, 

random_state=seed) 

 

print len(y_train), len(y_validation), len(y_test)  

 

print "stats:" 

print "all :",np.mean(target),np.var(target) 

print "training :",np.mean(y_train),np.var(y_train) 

print "validation:",np.mean(y_validation),np.var(y_validation) 

print "test :",np.mean(y_test),np.var(y_test) 

 

learning_rate = 0.01 

weight = 0.01 # 

max_iterations = 10000 
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iterations_between_reports = 0 

 

#datasets 

ds = SupervisedDataSet(m, 1) 

for i in xrange(len(data)): 

ds.addSample(data[i,:], target[i]) 

 

ds_train = SupervisedDataSet(m, 1) 

for i in xrange(len(x_train)): 

ds_train.addSample(x_train[i,:], y_train[i]) 

 

ds_validation = SupervisedDataSet(m, 1) 

for i in xrange(len(x_validation)): 

ds_validation.addSample(x_validation[i,:], y_validation[i]) 

 

ds_test = SupervisedDataSet(m, 1) 

for i in xrange(len(x_test)): 

ds_test.addSample(x_test[i,:], y_test[i]) 

 

np.random.seed(seed) 

scipy.random.seed(seed) 

random.seed(seed)  

 

ffn = buildNetwork(m,24,1,bias=True,hiddenclass=TanhLayer,outclass= 

LinearLayer) 

trainer = BackpropTrainer(ffn,ds_train,learningrate=learning_rate,verbose=True, 

momentum=0.0,weightdecay=weight) 

 

terror, verror = trainer.trainUntilConvergence(maxEpochs= max_iterations, 

trainingData=ds_train,validationData=ds_validation,testingData=ds_test,continue

Epochs=10) 
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print len(terror),len(verror) 

 

quit() 

training_error = 2 * trainer.testOnData(dataset=ds_train) #, 

trainer.testOnData(dataset=ds_train) 

test_error = 2 * trainer.testOnData(dataset=ds_test) #, 

trainer.testOnData(dataset=ds_train) 

validation_error = 2 * trainer.testOnData(dataset=ds_validation) #, 

trainer.testOnData(dataset=ds_train) 

#save fnn 

pickle.dump(ffn,open("ffn.dump","w")) 

 

#training 

output = np.array([x[0] for x in ffn.activateOnDataset(dataset=ds_train)]) 

r2_tra = sklearn.metrics.r2_score(y_train, output) 

coef_tra = np.corrcoef(y_train, np.array(output))[0,1] 

 

#test 

output = np.array([x[0] for x in ffn.activateOnDataset(dataset=ds_test)]) 

r2_test = sklearn.metrics.r2_score(y_test, output) 

coef_test = np.corrcoef(y_test, np.array(output))[0,1] 

 

#validation 

output = np.array([x[0] for x in ffn.activateOnDataset(dataset=ds_validation)]) 

r2_val = sklearn.metrics.r2_score(y_validation, output) 

coef_val = np.corrcoef(y_validation, np.array(output))[0,1] 

 

#overall 

output = np.array([x[0] for x in ffn.activateOnDataset(dataset=ds)]) 

r2_all = sklearn.metrics.r2_score(target, output) 
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coef_all = np.corrcoef(target, np.array(output))[0,1] 

 

print training_error,validation_error,test_error,r2_tra,r2_test,r2_val,r2_all 

 

#Export 

#restore fnn 

def dump_conections(n): 

for mod in n.modules: 

for conn in n.connections[mod]: 

print conn 

for cc in range(len(conn.params)): 

print conn.whichBuffers(cc), conn.params[cc] 

  

def get_results(ffn,dataset,target): 

output = np.array([x[0] for x in ffn.activateOnDataset(dataset=dataset)]) 

r2 = sklearn.metrics.r2_score(target, output) 

coef = np.corrcoef(target, np.array(output))[0,1] 

results = np.empty((len(output),3)) 

results[:,0] = target 

results[:,1] = output 

results[:,2] = target - output 

return r2,coef,results 

 

if __name__ == "__main__": 

database = pd.read_csv('/home /Documents/projects/santiago/cai.csv', 

na_values=[-999,""]) 

 

variables = ["hardness","ucs","quartz","e","rms","events"] 

n = len(database) 

m = len(variables) 

data = np.empty((n,m)) 
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for i,v in enumerate(variables): 

data[:,i] = database[v] 

target= np.empty(n) 

tname = "cai" 

target[:] = database[tname] 

 

standardiser_data = sklearn.preprocessing.StandardScaler() 

data = standardiser_data.fit_transform(data) 

target_original = target.copy() 

 

seed = 5970777 

 

x_train, x_test, y_train, y_test = sklearn.cross_validation.train_test_split 

(data, target, test_size=0.15, random_state=seed) 

x_train, x_validation, y_train, y_validation = sklearn.cross_validation 

.train_test_split(x_train, y_train, test_size=0.20, random_state=seed) 

 

#datasets 

ds = SupervisedDataSet(m, 1) 

for i in xrange(len(data)): 

ds.addSample(data[i,:], target[i]) 

 

ds_train = SupervisedDataSet(m, 1) 

for i in xrange(len(x_train)): 

ds_train.addSample(x_train[i,:], y_train[i]) 

 

ds_validation = SupervisedDataSet(m, 1) 

for i in xrange(len(x_validation)): 

ds_validation.addSample(x_validation[i,:], y_validation[i]) 
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ds_test = SupervisedDataSet(m, 1) 

for i in xrange(len(x_test)): 

ds_test.addSample(x_test[i,:], y_test[i]) 

 

print len(y_train), len(y_validation), len(y_test)  

print "stats:" 

print "all :",np.mean(target),np.var(target) 

print "training :",np.mean(y_train),np.var(y_train) 

print "validation:",np.mean(y_validation),np.var(y_validation) 

print "test :",np.mean(y_test),np.var(y_test) 

ffn = pickle.load(open("ffn.dump")) 

 

header = "True value, Prediction, Error" 

delimiter = "," 

#training 

r2_tra,coef_tra,results = get_results(ffn,ds_train,y_train) 

np.savetxt("training_results.csv",results,fmt="%10.4f",header=header,deli

miter=delimiter) 

 

#test 

r2_test,coef_test,results = get_results(ffn,ds_test,y_test) 

np.savetxt("test_results.csv",results,fmt="%10.4f",header=header,delimite

r=delimiter) 

 

#validation 

r2_val,coef_val,results = get_results(ffn,ds_validation,y_validation) 

np.savetxt("validation_results.csv",results,fmt="%10.4f",header=header,de

limiter=delimiter) 

 

#overall 

r2_all,coef_all,results = get_results(ffn,ds,target) 
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np.savetxt("all_results.csv",results,fmt="%10.4f",header=header,delimiter

=delimiter) 

 

print "r2 tra :",r2_tra 

print "r2 val :",r2_val 

print "r2 test:",r2_test 

print "r2 all :",r2_all 


	TITLE: Acoustic Analysis of Rock Cutting Process for Impregnated Diamond Drilling
	Contents
	List of figures
	List of tables
	Abstract
	Statement of Originality
	Acknowledgments
	Abbreviations and Symbols

	Chapter 1 Introduction
	Chapter 2 Experimental Methodology
	Chapter 3 Acoustic emission analysis for rock–bit interactions in impregnated diamond drilling
	Paper

	Chapter 4 Development of a tool condition monitoring system for impregnated diamond bits in rock drilling applications
	Paper

	Chapter 5 A preliminary study on the role of AE on inferring Cerchar abrasivity index of rocks using artificial neural network
	Paper

	Chapter 6 The influence of mineral contents of granitic rocks on the acoustic emission during single contact abrasivity test
	Paper

	Chapter 7 Conclusions and recommendations
	Appendix A Scripts

