
UNIVERSITY OF ADELAIDE

DOCTORAL THESIS

Quantification of uncertainty of geometallurgical

variables for mine planning optimisation

Author:
Exequiel SEPÚLVEDA

ESCOBEDO

Supervisors:
Professor Peter DOWD

Associate Professor Chaoshui XU

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in the

School of Civil, Environmental and Mining Engineering

April 22, 2018

http://www.adelaide.edu.au
https://www.researchgate.net/profile/Exequiel_Sepulveda
https://www.researchgate.net/profile/Exequiel_Sepulveda
https://ecms.adelaide.edu.au/civeng/




iii

Declaration of Authorship
I, Exequiel SEPÚLVEDA ESCOBEDO, certify that this work contains no mate-
rial which has been accepted for the award of any other degree or diploma in
my name, in any university or other tertiary institution and, to the best of my
knowledge and belief, contains no material previously published or written by
another person, except where due reference has been made in the text. In addi-
tion, I certify that no part of this work will, in the future, be used in a submis-
sion in my name, for any other degree or diploma in any university or other
tertiary institution without the prior approval of the University of Adelaide
and where applicable, any partner institution responsible for the joint-award
of this degree.

I give consent to this copy of my thesis when deposited in the University Li-
brary, being made available for loan and photocopying, subject to the provi-
sions of the Copyright Act 1968.

I acknowledge that copyright of published works contained within this thesis
resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available
on the web, via the University’s digital research repository, the Library Search
and also through web search engines, unless permission has been granted by
the University to restrict access for a period of time.

I acknowledge the support I have received for my research through the provi-
sion of an Becas Chile Scholarship by Conicyt.





v

“We have all learned to kill our dreams.”

Twenty One Pilots
“Yo también creía que era imposible hasta que lo intenté.”

Fausto Murillo





vii

UNIVERSITY OF ADELAIDE

Abstract
Faculty of Engineering

School of Civil, Environmental and Mining Engineering

Doctor of Philosophy

Quantification of uncertainty of geometallurgical variables for mine
planning optimisation

by Exequiel SEPÚLVEDA ESCOBEDO

Interest in geometallurgy has increased significantly over the past 15 years or
so because of the benefits it brings to mine planning and operation. Its use
and integration into design, planning and operation is becoming increasingly
critical especially in the context of declining ore grades and increasing mining
and processing costs.

This thesis, comprising four papers, offers methodologies and methods to
quantify geometallurgical uncertainty and enrich the block model with ge-
ometallurgical variables, which contribute to improved optimisation of min-
ing operations. This enhanced block model is termed a geometallurgical block
model.

Bootstrapped non-linear regression models by projection pursuit were built
to predict grindability indices and recovery, and quantify model uncertainty.
These models are useful for populating the geometallurgical block model with
response attributes. New multi-objective optimisation formulations for block
caving mining were formulated and solved by a meta-heuristics solver fo-
cussing on maximising the project revenue and, at the same time, minimis-
ing several risk measures. A novel clustering method, which is able to use
both continuous and categorical attributes and incorporate expert knowledge,
was also developed for geometallurgical domaining which characterises the
deposit according to its metallurgical response. The concept of geometallurgi-
cal dilution was formulated and used for optimising production scheduling in
an open-pit case study.

HTTP://WWW.ADELAIDE.EDU.AU
https://ecms.adelaide.edu.au/
https://ecms.adelaide.edu.au/civeng/




ix

Acknowledgements
I thank my supervisors Professor Peter Dowd and A/Professor Chaoshui Xu
for their supervision, guidance and support during my time as a PhD student.

Many thanks to my family; nothing could be possible without their support
and love.

Many old and new friends were very important in this achievement; I ac-
knowledge all of them. I am also very grateful for the support I have received
from school staff, professors, PhD students and colleagues.

I am indebted to my dear friend Edgardo Toro who first encouraged me
to undertake a PhD almost six years ago; it was the beginning of everything.
Special thanks go to all people that helped me during this time in little and big
things.

I thank the University of Talca for trusting in me and supporting me with
a partial scholarship. A position as assistant professor in the School of Mining
Engineering is waiting for me.

Finally, my gratitude to the people of Chile, who support the Becas Chile
program, my main sponsorship for my PhD. It is time to pay back.





xi

Contents

Declaration of Authorship iii

Abstract vii

Acknowledgements ix

1 Introduction 1
1.1 Importance of geometallurgy . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Comminution . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Concentration . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Primary-Response framework . . . . . . . . . . . . . . . 5
1.1.4 Geometallurgical characterisation . . . . . . . . . . . . . 6

1.2 Quantifying uncertainty . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.1 Financial uncertainty . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 Geological uncertainty . . . . . . . . . . . . . . . . . . . . 9
1.2.3 Geometallurgical uncertainty . . . . . . . . . . . . . . . . 11
1.2.4 Risk assessment . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Geometallurgical domaining . . . . . . . . . . . . . . . . . . . . 13
1.4 Geometallurgy applied to mine planning problems . . . . . . . 14

1.4.1 Open-pit mining . . . . . . . . . . . . . . . . . . . . . . . 15
1.4.2 Underground mining . . . . . . . . . . . . . . . . . . . . 16
1.4.3 Optimisation in mine planning . . . . . . . . . . . . . . . 18

Stochastic optimisation . . . . . . . . . . . . . . . . . . . 19
Multi-objective optimisation . . . . . . . . . . . . . . . . 20

1.5 Addressed gaps in knowledge . . . . . . . . . . . . . . . . . . . . 22
1.6 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.7 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Multivariate modelling of geometallurgical variables by projection
pursuit 35
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41



xii

2.2.1 Projection pursuit . . . . . . . . . . . . . . . . . . . . . . . 41
2.2.2 Projection pursuit regression . . . . . . . . . . . . . . . . 42

2.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.4 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.4.1 Feature selection . . . . . . . . . . . . . . . . . . . . . . . 49
2.4.2 Optimal number of directions . . . . . . . . . . . . . . . . 49
2.4.3 PPR compared with MLR . . . . . . . . . . . . . . . . . . 51
2.4.4 Bootstrapping . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.4.5 Model selection . . . . . . . . . . . . . . . . . . . . . . . . 53

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3 The optimisation of block caving production scheduling with geomet-
allurgical uncertainty - A multi objective approach 63
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.2.1 Quantification of uncertainty . . . . . . . . . . . . . . . . 69
Geometallurgical uncertainty . . . . . . . . . . . . . . . . 70

3.2.2 Risk measures . . . . . . . . . . . . . . . . . . . . . . . . . 70
Volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Value at risk . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Conditional value at risk . . . . . . . . . . . . . . . . . . . 71

3.2.3 Optimisation under uncertainty . . . . . . . . . . . . . . 73
Necessity for multi-objective optimisation . . . . . . . . 74
Genetic algorithms . . . . . . . . . . . . . . . . . . . . . . 76

3.2.4 Mathematical formulation . . . . . . . . . . . . . . . . . . 77
Definitions and parameters . . . . . . . . . . . . . . . . . 78
Decision variables . . . . . . . . . . . . . . . . . . . . . . 78
Objective formulations . . . . . . . . . . . . . . . . . . . . 79
Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.3 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.3.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.3.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.3.3 GA enconding . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.4.1 Independent maximisation of each scenario . . . . . . . . 88
3.4.2 Optimisation of the expected NSR and volatility . . . . . 88



xiii

3.4.3 Optimisation of the expected NSR and the VaR and CVaR
of NSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.4.4 Optimisation of NSR and deviation from targets . . . . . 90
3.4.5 Detailed view of some solutions from the Pareto front . . 92

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4 A new clustering method with spatial correction and its application
to geometallurgical domaining 101
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.2.1 Definition of symbols and indices . . . . . . . . . . . . . 108
4.2.2 Hard clustering . . . . . . . . . . . . . . . . . . . . . . . . 108
4.2.3 Fuzzy clustering . . . . . . . . . . . . . . . . . . . . . . . 109
4.2.4 Distance metrics . . . . . . . . . . . . . . . . . . . . . . . 110

Continuous attributes . . . . . . . . . . . . . . . . . . . . 110
Categorical attributes . . . . . . . . . . . . . . . . . . . . 110
Targeted attributes . . . . . . . . . . . . . . . . . . . . . . 111

4.2.5 Feature selection . . . . . . . . . . . . . . . . . . . . . . . 112
4.2.6 Spatial correction . . . . . . . . . . . . . . . . . . . . . . . 114

4.3 Proposed method . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.3.1 Optimisation formulations . . . . . . . . . . . . . . . . . 115

Compactness . . . . . . . . . . . . . . . . . . . . . . . . . 115
Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.3.2 Implementations . . . . . . . . . . . . . . . . . . . . . . . 117
Genetic algorithm . . . . . . . . . . . . . . . . . . . . . . . 117
GA for optimising centroids . . . . . . . . . . . . . . . . . 117
GA for optimising weights . . . . . . . . . . . . . . . . . 119
Proposed clustering method (SWFC) . . . . . . . . . . . . 119
Efficiency and scalability . . . . . . . . . . . . . . . . . . . 121
Assessing the number of clusters . . . . . . . . . . . . . . 122

4.4 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.4.1 Illustrative example . . . . . . . . . . . . . . . . . . . . . 124
4.4.2 Simulated copper porphyry deposit example . . . . . . . 131
4.4.3 Simulated geometallurgical block model example . . . . 135

4.5 Conclusions and future work . . . . . . . . . . . . . . . . . . . . 139



xiv

5 Optimization of planning and scheduling of ore body with open pit
extraction considering homogeneity in clays as geometallurgical vari-
ables 145
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . 151
5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6 Conclusions, limitations, and future work 157
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160



xv

List of Figures

1.1 Scatter plot of total Cu vs. (A) Cu Recovery and (B) BWi. . . . . 5
1.2 Standard deviation, VaR and CVaR in a generic loss distribution. 12
1.3 Pareto front with non-convex feasible regions for two-objective

problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1 Projection and its smoother of the first direction found by PPR
for BWi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.2 R2 coefficient using from one to twenty directions. Optimized
models and base models correspond to upper and lower charts
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.3 Comparison of performance (R2) of optimized and base models
for PPR and MLR. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.4 Average values of R, R2, RMSE, MAE and ME of optimized and
base PPR models. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.5 Boxplot of optimized and base PPR bootstrapped models. Rows
are R, R2, RMSE, MAE and ME; columns are the six response
variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.6 QQ-plots of true value and predictions: optimized (A) and base
(B) PPR models, and optimized (C) and base (D) MLR models. . 55

3.1 Volatility, VaR and CVaR in a (A) loss and (B) revenue distribution. 72
3.2 Pareto Front diagram. A, B and C are non-dominated solutions.

D is unfeasible and E is feasible but dominated. . . . . . . . . . 75
3.3 Distribution of maximum NSR values for each scenario. . . . . . 88
3.4 Pareto front of maximisation of NSR and minimisation of volatil-

ity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.5 Pareto front of maximisation of NSR and maximisation of (A)

VaR and (B) CVaR. . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.6 Pareto front of maximisation of NSR and minimisation of devi-

ation from production targets. . . . . . . . . . . . . . . . . . . . . 91
3.7 Pareto Front of maximisation of NSR-VaR and minimisation of

deviation from production targets. . . . . . . . . . . . . . . . . . 92



xvi

4.1 Scatter plot of true four clusters . . . . . . . . . . . . . . . . . . . 125
4.2 Boxplots of all attributes in clusters found by (A) K-Means, (B)

SK-Means, (C) PCA, (D) SPCA, (E) WFC, and (F) SWFC. At-
tributes from top to down are Cu, Fe, Au and Re . . . . . . . . . 127

4.3 Scatter plot of clusters found by (A) K-Means, (B) SK-Means, (C)
PCA, (D) SPCA, (E) WFC, and (F) SWFC . . . . . . . . . . . . . . 128

4.4 Confusion matrix of clusters found by (A) K-Means, (B) SK-
Means, (C) PCA, (D) SPCA, (E) WFC, and (F) SWFC . . . . . . . 129

4.5 Projection on first and second principal components of PCA . . 130
4.6 Weights (left y-axis) of the four attributes for different values

of λ (x-axis). The black points indicate the number of weights
greater than 0.05 (right y-axis) at each value of λ . . . . . . . . . 130

4.7 Statistics of the four most relevant attributes for all observations
and for the four clusters by (A-D) K-Means, (E-H) PCA, and (I-
L) WFC. Attributes are from left to right: clay content, copper,
arsenic, and recovery . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.8 Map of (A) K-Means, (B) SK-Means, (C) PCA, (D) SPCA, (E)
WFC, and (F) SWFC. Black represents waste rock. Red, Yellow,
Green and Blue represent the four clusters . . . . . . . . . . . . . 134

4.9 Distribution of (A) Lithology, (B) Fe, (C) Fe recovery, (D) Ap-
atite, and (E) Magnetite. Clustering methods from left to right
are: K-Means, SK-Means, PCA, SPCA, WFC and SWFC . . . . . 137

4.10 (A) Pairwise cluster discrepancy between K-Means, PCA and
WFC. (B) Pairwise cluster comparison between each clustering
method before and after spatial correction . . . . . . . . . . . . . 138

5.1 Typical cross-section of the orebody used for the optimisation.
Red and blue blocks are ore and waste blocks respectively. . . . 149

5.2 Clays modelled on a typical cross-section: Blue is minimum clay
presence, cyan represents small clay presence, yellow is moder-
ate clay presence, and red is large clay presence. . . . . . . . . . 150

5.3 Schedules for different periods. Each contour plot corresponds
to the pit limit in a period. . . . . . . . . . . . . . . . . . . . . . . 152

5.4 Tonnage and grades average by period. . . . . . . . . . . . . . . 152



xvii

List of Tables

1.1 Metaheuristic algorithms for optimisation. . . . . . . . . . . . . 20

2.1 Basic statistics of six geometallurgical response variables. . . . . 46
2.2 Correlations between primary and response variables. The sym-

bol “-" denotes missing value. Correlations with absolute value
greater than 0.4 are highlighted. . . . . . . . . . . . . . . . . . . . 48

2.3 Final feature selection for PPR and MLR models. . . . . . . . . . 49
2.4 Summary of R2 coefficient for PPR models. . . . . . . . . . . . . 50
2.5 Summary of statistics of true and predicted values of selected

optimized PPR models. . . . . . . . . . . . . . . . . . . . . . . . . 54
2.6 Directions of the best selected PPR model for BWi. . . . . . . . . 54

3.1 Parameters used in block caving optimisation. . . . . . . . . . . 87
3.2 Parameters used in GA. . . . . . . . . . . . . . . . . . . . . . . . 87
3.3 Statistics of all bi-objective formulations. Good solutions are

highlighted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.1 Parameters used in the algorithms . . . . . . . . . . . . . . . . . 124
4.2 The design of four clusters based on combination of Cu, Fe, Au

and Rec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.3 Davies-Bouldin and Silhouette indices of K-Means, PCA, and

WFC for different number of clusters . . . . . . . . . . . . . . . . 125
4.4 Explained variance of PCA components . . . . . . . . . . . . . . 126
4.5 Explained variance of PCA components . . . . . . . . . . . . . . 131
4.6 Centroids of the four clusters found by SWFC . . . . . . . . . . . 132
4.7 Weights of the four clusters found by SWFC . . . . . . . . . . . . 132
4.8 Attribute descriptions of the geometallurgical block model . . . 136
4.9 Explained variance of PCA components . . . . . . . . . . . . . . 136
4.10 DBI and SI of K-Means, PCA, and WFC for different number of

clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
4.11 Centroids of the three clusters for lithology, apatite, magnetite,

iron and iron recovery found by SK-Means, SPCA and SFWC. . 139



xviii

5.1 Comparison between base case and dilution case. Base case
does not consider plant processing costs. . . . . . . . . . . . . . 153



xix

Dedicated to my loved Paola, Catalina and Trinidad





1

Chapter 1

Introduction

The concept of geometallurgy has long been used in mining and many defini-
tions have been proposed. Johnson et al. (2007) used the term geometallurgy
to mean the impact of ore quality on mine planning, plant performance and
product quality. Geometallurgy requires a complete understanding of geology,
mineralogy and metallurgy. Dunham and Vann (2007) defined geometallurgy
as a cross-disciplinary approach which aims to improve resource economics by
integrating geology, mining planning, operational design, mineral processing
and metallurgy. Coward et al. (2009) similarly stated that the value of geomet-
allurgy is in the improvement of mining and ore treatment in both the design
phase and operation by improving the understanding of rock properties. All
these definitions agree that a proper integration of the available geological and
metallurgical information should yield substantial improvement in mine plan-
ning and operation.

The term geometallurgy was used for first time by McQuiston and Bechaud
(1968) in a textbook in which they emphasised the importance of understand-
ing geology before beginning any mining development. A full understanding
of geology can reveal useful, and often critical, relationships between geology
and process responses that have not only a critical impact on operations and
revenue, but also on risk assessment. Since then, geometallurgy has gained sig-
nificant interest and application, especially over the last decade. A number of
initiatives have been developed and deployed within the mining industry, sev-
eral dedicated geometallurgical conferences have been held, many academic
programmes are now offered, and there has been an increased research focus
on geometallurgy.

The increasing attention given to geometallurgy is due to its potential to de-
liver significant operational advantages and increased profitability. In general,
the effective, integrated application of geometallurgy in mining operations is
still at a low level and more research is required into the integration of geology
and metallurgical performance.



2 Chapter 1. Introduction

The production of metals and other valuable elements involves the quanti-
tative and qualitative characterisation of geological, metallurgical, operational,
and economic variables, each of which is a complex aspect of the mine plan-
ning process. Optimal mine planning and design require detailed understand-
ing of the ore, procedures to extract and process the ore, and appropriate mea-
sures of economic performance. Planning and design can only be done on the
basis of models informed by data, which are often sparse or unknown and
subject to uncertainty.

There is strong historical evidence showing that there is a serious problem
in reconciling mine production output with predicted output, reflecting the
importance of quantifying uncertainty. In the 1980s a survey of 35 Australian
gold mines showed that 68% of them could not deliver planned head grade
(Burmeister, 1988). Similar results were obtained in a survey of North Amer-
ican projects, where only 10% of the projects achieved the expected results
(Harquail, 1991). The study by Ward and McCarthy (1999) revealed that only
50% of nine Australian underground projects achieved designed throughput
by the third year and 25% of them never achieved it. A survey by Vallee (2000)
showed that for 60% of all mining projects in Canada actual production was
less than predicted. Tatman (2001) compared the predicted and final produc-
tion rates from 60 deposits in the United States and found that 35% did not
reach their expected production rates.

These examples show how frequently mining project forecasts differ from
the reality of mining. The assessment of uncertainty is critical to reducing the
risk associated with achieving expected outcomes.

1.1 Importance of geometallurgy

Understanding how geology impacts on metallurgical performance is critical
for mine planning. From the processing perspective, there are many processes,
such as blasting and stockpiling, that affect the final product, but both com-
minution and concentration are critical. For example, grinding is generally the
most expensive process representing approximately between 30% and 50% of
overall operational expenditure of a mining project (Moema et al., 2009). Ad-
ditionally, the mineralogical characterisation of a deposit usually provides a
better understanding of metallurgical responses (Yildirim et al., 2014). Includ-
ing the prediction of grinding performance and mineralogy as inputs to pro-
duction planning optimisation is a key step in improving project profitability
and minimising operational risk.



1.1. Importance of geometallurgy 3

1.1.1 Comminution

Comminution is the process of reducing the size of rocks in order to liberate
particles of interest (minerals). Comminution includes primary crushing and
milling and constitutes one of the most energy-intensive processes in all the
processing chain (Ballantyne et al., 2012; Curry et al., 2014). The rock charac-
teristics play an important role in the response to comminution. Softer rocks
will require less energy to yield the required particle size, whereas harder rocks
will consume more energy. There are several indices that reflect the responses
to different processes in comminution. The Bond crushing work index (CWi)
is a measure of the energy consumption required in the primary crushing pro-
cess. The Bond ball mill work index (BWi) relates to the energy used in a
ball mill, whereas the Bond rod mill work index (RWi) is for a rod mill. The
Bond abrasion index (Ai) measures the rate at which steel is abraded in contact
with ore, which is important for equipment maintenance purposes. The drop
weight test is used to derive two comminution metrics: the drop weight index
(DWi), which is a measure of the strength of the rock to breakage, and the A×b
breakage parameters. Both are used to predict the performance of autogenous
and semi-autogenous mills. Another measure of hardness for autogenous and
semi-autogenous mills (SAG) is the SAG Power Index (SPI), which is a mea-
sure of the energy required to reduce rock to a standard particle size.

Among comminution indices, BWi, SPI and A×b are the most widely used
in practice and are very useful for predicting energy consumption.

The energy consumption in ball mills can be modelled by the following
equation (Bond, 1961):

E = BWi(10/
√

P80 − 10/
√

F80) (1.1)

where P80 and F80 are the passing size of product and feed respectively. The en-
ergy consumption in SAG mills is given in the following relationship (Starkey
and Dobby, 1996):

E = C1

(
SPI√

P80

)C2

(1.2)

where C1 and C2 are calibration parameters. The relationship between the A×b
index and the specific comminution energy (kW h/t) is given by:

t10 = A(1− e−bE) (1.3)

where t10 is the percent passing one tenth of the initial mean particle size.
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1.1.2 Concentration

After the rock is ground, the next step is to concentrate the valuable elements
by separating gangue and ore. There are many processes for concentrating
minerals, for example, magnetic separation, gravity separation, but the most
commonly used is forth flotation.

The froth flotation process recovers target minerals from an ore feed tak-
ing advantage of the hydrophobic and hydrophilic properties of minerals and
gangue with the assistance of chemical reagents. The ore is ground to a fine
powder and mixed in a cell with water, frothing reagents and collecting reagents
to create a feed. When air is forced through the mixture, mineral particles cling
to air bubbles that are skimmed from the surface to create a concentrate while
waste material sinks to the bottom of the cell to become the tailings. Based on
conservation of the ore and contained metal quantity:

Qh = Qc + Qt (1.4)

Recovery =
Qc

Qh
(1.5)

where Qh, Qc and Qt are the metal quantity corresponding to the head grade,
concentrate grade and tailing grade respectively.

It is possible to measure grinding properties and recoveries under various
conditions using laboratory experiments. Including grinding characteristics
and recoveries in block models will have a significant impact on the economic
valuation and process performance assessment. For example, Gregory et al.
(2013) illustrated the importance of recovery in a porphyry copper and gold
deposit. Their case study showed that increasing the total gold recovery by
1% increased production by 1.07 million oz. valued at $1.5 billion. A small
increase in recovery can significantly increase the economic return.

In the flotation process, the particle size distribution has a critical influence
on recovery. Suazo et al. (2010) proposed a model for flotation recovery per-
formance for a copper mine. They successfully incorporated a new parameter,
the floatability of the ore for each geometallurgical unit. The importance of
this parameter is that it does not depend on mine operating conditions and it
can be estimated from laboratory tests in the early stages or from direct mea-
surements in flotation plants. As a result of their fifteen-month case study
for six geometallurgical units, they obtained a relative error of 1.8% for recov-
ery estimation. Geological units were defined according to similar geological
compositions (lithology and alteration), as well as the volumetric fraction in
the material.
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1.1.3 Primary-Response framework

The primary-response framework documented in Coward and Dowd (2015)
and Coward et al. (2009, 2013) allows primary rock properties (intrinsic rock at-
tributes directly measured from rock samples) to be used to predict processing
response properties, such as recovery factors and comminution performance,
and incorporate them into the resource model. Using only additive primary
variables to predict non-additive response variables minimises the biases re-
lated to non-additivity (Carrasco et al., 2008; Newton and Graham, 2001).

The prediction models for metallurgical responses can be generated by pro-
cess simulation or regression. Process simulation is, in general, more accurate
because it is based on physical and chemical behaviour, which are often very
well understood. For example, both JKSimFloat (Runge et al., 1998) and SU-
PASIM (Hay and Rule, 2003) are flotation circuit simulators used to simulate
the flotation process and predict metallurgical recovery. Usually, they need to
be calibrated using standardised tests at laboratory scale.

Those laboratory tests can also be used to fit regression models to predict
metallurgical responses. The predictions are consequently at the laboratory
scale and may need to be scaled up to the block model scale.

Formally, using the primary-response framework, any response variable y
can be represented by a function of a multivariate X and an error term:

y = f (X) + ε, (1.6)

where X is a set of primary variables, the function f can be either a simulation
process or a regression function, and ε ∼ N (0, σ) is the error.

(A) (B)

FIGURE 1.1: Scatter plot of total Cu vs. (A) Cu Recovery and (B)
BWi.
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In mining applications, in general, the relationship between X and y is not
linear (Barnett and Deutsch, 2012). For example, fig. 1.1 illustrates the relation-
ship between (a) total Cu and Cu Recovery for 930 samples from laboratory
testwork, and (b) total Cu and BWi for 840 samples; both scatter plots show a
very low coefficient of correlation for a predictive linear model. Despite this
observation, multilinear regression is the most commonly used model for pre-
dicting geometallurgical variables; examples can be found in Montoya et al.
(2011); Boisvert et al. (2013) and Hunt et al. (2013). Very few applications of
non-linear regression models can be found in the literature. Keeney and Wal-
ters (2011) used explicit non-linear models in three geometallurgical domains
using additive variables. Sepúlveda et al. (2017) used a non-parametric regres-
sion model and projection pursuit to predict four grinding indices and two
recovery rates.

1.1.4 Geometallurgical characterisation

Some primary properties, such as metal content (grades) and qualitative geo-
logical features (lithology, alteration and mineralisation style) are abundantly
available in most mining projects. Grades are fundamental properties, as they
measure the metal content of ore, and they have valuable attributes: they are
quantitative, continuous and additive. Geological features are qualitative and
subject to the interpretation of geologists (which may be re-interpreted and
vary over time). Less abundant variables (compared to grades and geological
variables) are mineralogical compositions or mineralogy in short. More expen-
sive acquisition methods are required to obtain mineralogical information, for
example, X-ray diffraction (XRS), Semi-quantitative X-ray diffraction (QXRD)
and Scanning electron microscopy (QEMSCAN). Mineralogy is a better indica-
tor of grindability and recovery, mainly because mineralogy is closely related
to the particle liberation profile (Johnson et al., 2007; Walters, 2008; Lutz et al.,
2010; Lamberg, 2011; Bradshaw et al., 2012; Hoal et al., 2013; Tungpalan et al.,
2015).

Models based on grades and mineralogy have very good prediction per-
formance (Lamberg, 2011; Hunt et al., 2013; Lund et al., 2015). However, when
mineralogy is unavailable, models based only on grades and geological char-
acterisation can perform well (Hunt et al., 2014; Sepúlveda et al., 2017).

A good geometallurgical characterisation provides more variables, which
is good in general, but may make it more difficult to build prediction models.
Some critical aspects to consider are: (i) compositional data, (ii) redundant
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attributes, (iii) mixed continuous and categorical attributes, and (iv) the curse
of dimensionality. Feature selection, dimensionality reduction and clustering
are data mining techniques that may help to overcome these aspects.

The ultimate goal of geometallurgical characterisation is to enrich the re-
source model with geometallurgical properties, which is transformed into a
geometallurgical block model to be used in mine planning optimisation.

1.2 Quantifying uncertainty

Many sources of uncertainty affect the expected project profitability. These
sources can be grouped in two categories: technical and financial (Dowd, 1994;
Dimitrakopoulos, 1998). Technical sources are usually classified into geolog-
ical, mining and metallurgical, such as grades, tonnages, density, lithology,
recovery, pit slope, and excavation capacities. Financial sources are related to
market conditions. Price is undoubtedly the most significant source of finan-
cial uncertainty, affecting not only the long-term economic viability of a mine,
but also short-term decision-making. In addition to prices, foreign exchange
rates affect non-dollar producers and fuel costs. Moreover, increasingly, envi-
ronmental variables significantly impact on mine approvals, mine operation
and financial matters, for instance, waste disposal, ecology, carbon dioxide
emissions and water requirements.

For the purpose of this thesis, the main sources are classified in three groups
of uncertainties: financial, geological and metallurgical.

1.2.1 Financial uncertainty

Prices, foreign exchange rates, and operating costs are the most common ex-
amples of uncertain financial variables. All these variables are included in the
majority of mine planning optimisation problems and have a high impact on
project valuation.

Metal price is the most important financial variable because it not only im-
pacts revenue, it also impacts the mine design through ore-waste discrimina-
tion (economic cut-off grade). The economic cut-off grade approach is com-
monly used in the optimisation problem of open-pit mines. In addition, prices
can change the mine operation status. In very low-price scenarios the suspen-
sion or closure of the mine may be the only alternative. In contrast, in high-
price scenarios it can lead to the extension of the life of the mine (by mining
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lower grades), increased production and/or the early processing of low-grade
stockpiles.

It is common practice to treat metal price as a fixed-value parameter in all
evaluation periods or fixed at different values at different periods, which is a
rudimentary approach to address the uncertainty concern.

A more sophisticated approach is to treat price as a random variable with a
known distribution. Amankwah et al. (2013) assumed that metal prices follow
a lognormal distribution. Dowd (1976) used dynamic and stochastic program-
ming to optimise the sequence of cut-off grade grades over the life of a mine
and used transition state probability matrices to include price uncertainty. Bet-
ter price models follow a Wiener process (Dimitrakopoulos and Sabour, 2007;
Evatt et al., 2012). Grobler et al. (2011) used the empirical historic distribution
of prices. This is a questionable practice because Monte Carlo simulations will
reproduce the historical distribution, potentially an unrealistic assumption for
future variation.

For producers with domestic currency different to the currencies used in
the global markets, such as Australia, South Africa, Canada and Chile, the
quantfication of exchange rate uncertainty is critial (Dimitrakopoulos and Sabour,
2007). As exchange rates can be highly volatile, importing and exporting can
be favourably or adversely affected by appreciation in the real value of the
domestic currency (Bailey and Chung, 1995).

According to Dimitrakopoulos and Sabour (2007), there are two models ap-
plied to market and economic variables, prices and exchange rates in particu-
lar, the simple geometric Brownian motion (GBM) and mean-reverting process
(MRP) model.

The GBM model is represented as

dS
S

= µdt + σdz, (1.7)

where S is the financial variable, µ is the expected trend, σ is its standard de-
viation, dz represents an increment in a standard Weiner process and dt is the
time increment. Alternatively, a MRP model is represented as

dS
S

= κ(µ− ln(S))dt + σdz, (1.8)

where κ is the reversion speed at which the log of the variable S reverts back
to a long-term equilibrium of log price µ.

Despite its relevance in any mining project evaluation, financial uncertainty
is not the focus of this thesis.
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1.2.2 Geological uncertainty

The estimation of resources is traditionally done by using drill hole samples to
estimate the grades of blocks in a block model of the deposit. The most com-
mon method used is the geostatistical estimation technique of kriging, which
is a smooth regression of samples that includes spatial and grade correlations
(Matheron, 1963). Kriging is the most widely used geostatistical technique in
the mining industry. The main problem with the standard linear form of krig-
ing is the smoothing effect (extreme values are not properly represented). Lin-
ear kriging gives the minimum variance, unbiased linear estimator, and not the
estimated distribution of all possible values except for the special, but unrep-
resentative, case of normally distributed sample values. Non-linear forms of
kriging can provide estimates of grade distributions for blocks. The parametric
forms of non-linear kriging assume specific distributions and results may not
be robust to departures from this assumption; the non-parametric forms (Jour-
nel, 1983) are robust and have been much more widely used. Geostatistical
simulation (Journel, 1974) is much more widely used for quantifying spatial
uncertainty.

Geostatistical simulation has been the most significant development in quan-
tifying geological uncertainty. Early research (Dowd, 1994; Dimitrakopoulos,
1998) used ore grade simulations in open pit optimisation and production
scheduling. Subsequent research continued to focus on integrating these sim-
ulations with mining processes using process simulation, stochastic optimisa-
tion, traditional integer and mixed programming, heuristic and metaheuris-
tic optimisation (e.g. Dowd and Dare-Bryan, 2004). Most of these studies fo-
cussed on open-pit mines with very few applications to underground mines.
However, uncertainty of metallurgical variables has only recently begun to be
included (Coward et al., 2013; Coward and Dowd, 2015).

In the 1980s, researchers developed various stochastic methods to gener-
ate simulations of grades and rock types, the most common being sequen-
tial Gaussian, turning bands, multiple indicator and plurigaussian simulation
methods (Chilès and Delfiner, 1999).

The use of these simulations for risk analysis started in the 1990s. Dowd
(1994) used geostatistical simulations for risk analysis of reserves. Sequential
Gaussian simulation was used to generate many equally probable grade sce-
narios. Each scenario was used to generate the corresponding optimal open-
pit design. A proposed framework combined these optimal designs and other
distributions of costs and financial variables. The output was a risk analy-
sis using the generated distributions of probable NPV. Dimitrakopoulos (1998)
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proposed a framework to deal with geological uncertainty in open-pit design
and scheduling. Dimitrakopoulos et al. (2002) extended their earlier work to a
probability analysis of NPV. In their work, an important result (in an open-pit
gold deposit) was that the NPV of an estimated model had a very low proba-
bility of occurring. They raised the concern of high computation cost of using
simulations of grades, but this is now less relevant because of the availability
of more efficient implementations and more powerful computers. Since this
early research, geostatistical simulations have become the standard for quan-
tifying geological uncertainty (e.g. Boisvert et al., 2013; Deutsch et al., 2016;
Goodfellow and Dimitrakopoulos, 2017).

Geometallurgical characterisation implies an increasing number of attributes
to be simulated (section 1.1.4). Traditional geostatistical simulations for multi-
variate cases are challenging to use because, as the number of simulation vari-
ables increases, the number of direct and cross-variogram models increases
in a quadratic manner. Fitting a linear model of coregionalisation for n vari-
ables requires n(n − 1)/2 variogram models. When n is a small number (no
more than six), co-simulation methods can be applied with little or moderate
effort providing linear models of co-regionalisation can be assumed (Xu and
Dowd, 2009; Tehrani et al., 2013; Maleki and Emery, 2015; Adeli et al., 2017).
When the number of variables is greater than six, traditional co-simulation
methods become difficult to use in practice. The projection pursuit multivari-
ate transformation (PPMT) (Barnett et al., 2014) is able to map multivariate
data with very complex relationships into a set of uncorrelated variables fol-
lowing multi-Gaussian distributions. A secondary outcome of PPMT is that
transformed variables often show little or no spatial cross-correlation. In this
case, the multi-Gaussian transformed variables can be independently simu-
lated by any univariate geostatistical method. In cases where some spatial
cross-correlation remains, methods such as Maximum Autocorrelation Factors
(MAF) (Desbarats and Dimitrakopoulos, 2000), Uniformly Weighted Exhaus-
tive Diagonalization with Gauss iterations (U-WEDG) (Mueller and Ferreira,
2012), or Minimum Spatial Cross Correlation (MSC) (Sohrabian and Tercan,
2014), among others, can be applied to handle the remaining spatial cross-
correlation.

Irrespective of the simulation method, having a block model with many
realisations of primary variables provides a means of quantifying the uncer-
tainty of geometallurgical response variables.
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1.2.3 Geometallurgical uncertainty

The quantification of the uncertainty of geometallurgical variables could be
done by geostatistical simulations similar to the simulation of primary vari-
ables. Unfortunately, there are three main problems that often complicate this
option. First, there is usually a relatively small number of geometallurgical
samples compared to geological and grade variables, largely because geomet-
allurgical sampling is very expensive. This issue imposes a challenge for ro-
bust modelling. Second, the non-additivity property of the majority of geomet-
allurgical variables. In mathematical terms, the actual average (or other linear
combination) of two non-additive variables is not simply their arithmetic av-
erage (Carrasco et al., 2008; Boisvert et al., 2013). Recovery is one example of
these variables. This issue is commonly ignored when traditional estimation
methods (e.g. kriging) are used and, unfortunately, standard geostatistical es-
timations or simulations will be biased for non-additive variables. Therefore,
a different strategy must be used such as that implemented by Carrasco et al.
(2008) in which additive auxiliary variables are used instead. Third, they do
not necessarily scale up in a linear manner. Many geometallurgical variables
are estimated by laboratory tests on different scales (or supports). Assuming
that these variables will linearly scale up from the small laboratory scale to
large plant scales may be incorrect. For instance, grindability indices mea-
sured in laboratory tests on the scale of core samples, using kilograms of sam-
ples with a specific and standardised instrumentation could differ significantly
from those measured in plant conditions.

To overcome the first two problems, the quantification of the uncertainty
can be done by quantifying the uncertainty of primary variables and the model
uncertainty associated with the function f (Eq. 1.6) in the Primary-Response
framework. One way of doing the latter is to apply the statistical method of
bootstrapping (Efron and Gong, 1983). This method seeks to determine the
effect on the model parameters when sample values vary. The application of
bootstrapping for quantifying uncertainty of response variables is part of this
thesis and is detailed in Chapter 2.

The upscaling problem alone could constitute a PhD thesis and therefore
in the work presented in this thesis it is assumed that response variables will
scale up from the sample scale to the block scale and to the plant scale.
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1.2.4 Risk assessment

Several methodologies have been developed to assess risk; the most common
and classic methods are based on scenarios (Schoemaker, 1995). However,
scenario-based methods require the definition of a risk measure in order to
include them in optimisation problems. According to the literature, there are
two relevant risk measures: Value at Risk (VaR) and Conditional Value at Risk
(CVaR) (Rockafellar and Uryasev, 2000). The VaR is defined as a threshold at
some risk level α, at which the probability of a loss function does not exceed
the threshold. The VaR for a loss function Ψ and threshold ζ is:

VaR
α

= inf ζ ∈ R : Ψ(X, ζ) ≥ α. (1.9)

CVaR is an improved risk measure defined as the expectation of the loss
function L, subject to it being at least the VaR:

CVaR(α) = E(L|L > VaR(α)). (1.10)

The loss function can be defined as the negative of profit, deviation from
production targets or similar objectives.

FIGURE 1.2: Standard deviation, VaR and CVaR in a generic loss
distribution.
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Figure 1.2 depicts three risk measures: the standard deviation, VaR and
CVaR for a generic loss distribution. The standard deviation is a basic measure
of dispersion, whereas VaR focusses on the tail of the distribution. CVaR is the
conditional expected value given the loss is greater than VaR.

Lagos et al. (2011) compared VaR with CVaR approaches under grade un-
certainty for an orebody comprising small size veins. They concluded that
VaR is risky and only appropriate for less risk-averse scenarios, and CVaR is
less risky but expected profits are lower. Similar research by Amankwah et al.
(2013), introduced a CVaR measure with both geological and price uncertain-
ties. They formulated a linear programming problem in which the expected
profit was maximised and the CVaR was minimised, using synthetic cases in
two dimensions. As expected, there are higher expected profits for lower con-
fidence levels.

Chapter 3 details the use of risk measures based on VaR and CVaR to opti-
mise production scheduling in a block caving mine.

1.3 Geometallurgical domaining

The concept of geometallurgical domaining assumes that similar geometallur-
gical characteristics will have similar responses in mineral processing, which is
observed in practice. Geometallurgical domaining is as critical from a process-
ing perspective as geological domaining is for resource estimation; although
these two forms of domaining are different they are complementary.

Automated domaining is equivalent to the machine learning method of
clustering. Geological clustering, or rock type domaining, is important in un-
derstanding the nature of the deposit, however, it does not necessarily explain
the responses of the ore to the various processing stages (Keeney and Walters,
2011). Geometallurgical clustering focusses on the geometallurgical character-
istics of the orebody to provide a basis for integrated optimisation from mining
to processing (Hoal et al., 2013).

The main objective of clustering is to partition the dataset into P different
partitions or clusters. These clusters should have two desirable properties: (i)
samples within a cluster are very similar, and (ii) samples of different clusters
are well separated. These two concepts of similarity and separation are critical
to achieve a good partition. The most used method to account for similarity is
the variance, whereas for separation it is the distance among cluster centres. A
complete review of different cluster indices is given in Halkidi et al. (2001).
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Several authors have used different techniques for geometallurgical cluster-
ing, for example, Principal Component Analysis (Keeney and Walters, 2011),
K-Means (Del Castillo and Dimitrakopoulos, 2016; Goodfellow and Dimitrakopou-
los, 2017) , and hierarchical clustering (Nguyen and Keeney, 2014). In Chapter
4 a variation of fuzzy clustering is used for geometallurgical clustering consid-
ering also spatial connectivity.

1.4 Geometallurgy applied to mine planning prob-

lems

The main benefit of geometallurgy is a substantial improvement in mine plan-
ning optimisation. To achieve this benefit, the traditional way of evaluating
a mining project and, therefore, the optimisation formulation, needs to be
adapted to include geometallurgical variables under uncertainty.

The evaluation of a mining project involves technical, operational and eco-
nomic factors. Typically, the net present value (NPV) is used to measure the
project return in economic terms. In mine projects, it is also the most com-
monly used method to evaluate project profitability. Specifically, in mine plan-
ning, the most accepted formulation for the calculation of the optimal NPV is
maximising the total block economic value as follows:

max ∑
i∈B

vi

(1 + r)i (1.11)

where:

vi = tigiRP− tiCM −

0 if waste

tiCP else
, ∀i ∈ B, (1.12)

and B is the block model, ti the tonnage of the block i, gi is the grade of the
block i, R is the recovery rate, P the metal price, CM the cost of mining, CP the
cost of processing and r is the discount rate.

This fundamental formulation has been widely used for several decades,
although risk analysis has been incorporated in more recent research with the
use of random variables (with their respective distributions). Many scenarios
are built using values of these variables generated from their distributions to
generate a probability distribution for the NPV. Dowd (1994) identified two
main weaknesses in this methodology: the assumption of independence of the
variables, and the ignorance of the fact that geological variables are spatially
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correlated. The latter requires the use of geostatistical modelling for geological
variables.

1.4.1 Open-pit mining

Optimisation problems in open-pit mines make up the majority of past re-
search because open-pit mines are broadly similar compared with underground
operations and thus the problem slightly easier. In addition, open-pit design
and operation is simpler than underground mining. Open-pit mine optimisa-
tion involves three main problems: ultimate pit, pushback design and produc-
tion scheduling.

The ultimate pit problem consists of determining all blocks that will be
mined in order to maximise the NPV subject to slope constraints and fixed
cut-off grades. The classic formulation as an integer linear programming is as
follows (Newman et al., 2010):

max ∑
i∈B

viyi (1.13)

subject to:
yi ≤ yj, ∀(i, j) ∈ PB. (1.14)

The objective function to be maximised is given in Eq. 1.13, where vi is the
profit generated by mining and processing the i-th block, yi is a binary variable
with a value of 1 if the i-th block is mined and processed or 0 if not, and B is the
set of all blocks. The constraint on slope angles is achieved by Eq. 1.14 where
(i, j) ∈ PB is the precedence set.

This deterministic problem was solved by Lerchs and Grossman (1965) us-
ing a graph theory formulation, and by Picard (1976), using a more efficient
max-flow algorithm. Whittle (1998) proposed a price parametrisation method
based on the Lerchs and Grossman algorithm to select the pushbacks.

The long-term schedule optimisation problem consists of determining all
blocks that will be mined in successive periods in order to maximise the NPV
subject to slope, technical and operational constraints, given a fixed cut-off
discriminator. According to Newman et al. (2010), a typical integer linear pro-
gramming formulation of long-term schedule optimisation is:

max ∑
i∈B

∑
j∈P

vijyij (1.15)
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subject to:

∑
j∈P

yij ≤ 1, ∀i ∈ B (1.16)

Cmin ≤ ∑
i∈B

cijyij ≤ Cmax, ∀j ∈ P (1.17)

yij ≤ ∑
j∈P

ykj, ∀i, k ∈ Bi, j (1.18)

where Eq. 1.15 is the objective function to be maximised, vij is the profit of
the block, yij is a binary variable with a value of 1 if the block will be mined
and processed or 0 if not, B is the set of all blocks, and P is the set of all peri-
ods. cij is the amount of resource (tonnage) of the block i in the period j. The
constraint 1.16 ensures that a block can only be mined once. Eq. 1.17 ensures
that the minimum and maximum operational resources capacities are met for
each period. Finally, Eq. 1.18 ensures a feasible block extraction sequence is
followed in order to mine a block.

The short-term scheduling problem is based on the long-term scheduling
but focuses on short periods such as a day, weeks and months of a year period.
According to the block mining sequence, operational aspects are considered
such as equipment requirements, equipment operative scheduling and plant
scheduling.

There is a significant amount of research on production scheduling opti-
misation in open-pit mining under uncertainty (Marcotte and Caron, 2013;
Lamghari et al., 2014; Silva et al., 2015; Goodfellow and Dimitrakopoulos, 2016,
2017; Del Castillo and Dimitrakopoulos, 2016; Montiel and Dimitrakopoulos,
2017; Navarra et al., 2018), but there no formulations that incorporate geomet-
allurgical uncertainty.

1.4.2 Underground mining

Because underground mines are more complex and diverse (Dimitrakopoulos
and Grieco, 2009; Epstein et al., 2012), limited research has been undertaken
to quantify uncertainty in mining processes. The diversity of underground
methods does not allow the generalisation of optimisation methods as used for
open-pit mines. Underground designs can be classified into three main groups:
artificially supported, unsupported and caving. Examples of artificially sup-
ported methods are room and pillar, cut and fill, squared set and long wall.
Unsupported methods are, for example, sublevel stoping, shrinkage stoping.
Sublevel caving and block caving are examples of caving methods.
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In caving methods, the material breaks and flows by gravity. Block caving
is the most suitable option for massive mining and is considered the cheapest
mining method for large orebodies.

The major complexity in the optimisation of underground mines is the sig-
nificant number of geomechanical, sequencing and economic constraints that
are difficult for mixed integer programming optimisation (MIP) methods to
handle (Newman and Kuchta, 2007; Topal, 2008; Epstein et al., 2012). For this
reason, a major research focus has been on reducing the number of constraints
and creating new algorithms to accommodate this reduction.

Newman and Kuchta (2007) formulated a new MIP optimisation problem
based on aggregation for a large underground gold mine using sublevel cav-
ing. Their goal was to minimise the difference between production of, and
demand for, ore by considering vertical sequencing, horizontal sequencing,
and machinery placement constraints. Topal (2008) developed two new opti-
misation algorithms for the same mine in order to reduce the complexity of the
MIP formulation and allow optimal long-term scheduling. Martinez and New-
man (2011) proposed a new MIP formulation, focusing on variable elimination
and a decomposition based-heuristic in order to cope with realistic problems
in reasonable processing times. Bley and Terblanche (2012) focus on selectiv-
ity and propose a new MIP formulation of the generic underground mining
method. Bai et al. (2013) propose a new algorithm for optimising stopes in
sublevel stoping mining using maximum flow algorithms. However, all this
research uses only deterministic models and does not consider uncertainties.

Despite all these efforts, the inclusion of grade uncertainty for underground
operations remains limited. Dimitrakopoulos and Grieco (2009) developed a
new MIP formulation to quantify the uncertainty of grades in a poly-metallic
underground mine. They optimised the stope outline using an estimated block
model as a base case and used a series of simulated realisations of the block
model to quantify uncertainty. The risk profile built from simulations shows a
high variability of profit (varying from 1.8 million dollars to as much as 5.9
million). Their proposed solution re-blocked the block model into a set of
mineable units called rings. Each ring has a distribution of grades enabling
a risk profile after optimisation. The optimisation problem can include a risk
level as the probability of each ring to be above some threshold. Nevertheless,
the stope design does not constitute part of the optimisation problem and the
grade uncertainty is quantified as the probability above the cut-off grade.

There is an additional complexity in caving methods, which is the focus in
this research. In these underground operations, rocks move by gravity flow
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and the original locations of blocks in the block model change. The simulation
of gravity flow enables the understanding of how the rock flows when it is
extracted. Simple models do not take this issue into account and use a simple
vertical gravity flow. In reality, the rock flow is much more complex than this.

Gravity flow simulation methods can be classified into two categories: em-
pirical and mathematical methods (Castro et al., 2009). Empirical methods are
based on volumetric mixing. Probably the most popular empirical method is
the commercial software PC-BC (Diering et al., 2010). Mathematical methods
may be classified according to the fundamentals and principles on which they
have been developed. The two main mathematical methods are dynamic and
kinematic based. Dynamic methods model gravity flows through the mechan-
ics of particle interactions. Kinematic models use mass balance principles to
balance extraction and moving zones. REBOP software (Pierce, 2010) uses this
kinematic principle to track the growth of Isolated Movement Zones (IMZs)
at each draw-point. Another kinematic model is based on cellular automata
(Sharrock et al., 2004). The fragmented rock particles fill the vacant space
(starting in the extraction zone) stochastically following a pattern according
to the probability function of their neighbourhood, until an equilibrium state
is reached. The software FLOWSIM is an implementation of the cellular au-
tomata approach (Castro et al., 2009) and gave very good results in three case
studies.

Limited research has been done to incorporate uncertainty into production
scheduling optimisation in block caving mining. Rubio and Dunbar (2005) in-
tegrated the uncertainty of the deviation from production targets into produc-
tion scheduling optimisation for block caving. Khodayari and Pourrahimian
(2018) propose an optimisation formulation that takes into account the uncer-
tainty of material flow. The material flow uncertainty is quantified with several
scenarios of grade mixing.

The use of many simulations of the ore body in underground mine plan-
ning optimisation is still a challenge. The same effort to develop models and
methodologies applicable to open-pit mines should be applied to underground
mines.

1.4.3 Optimisation in mine planning

Because mine planning optimisation requires a stochastic block model in order
to incorporate uncertainty, the optimisation process must also follow a stochas-
tic approach.
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Stochastic optimisation

There are two main approaches to stochastic optimisation. The first is stochas-
tic programming, which is based on linear, or mixed integer, programming
(Dimitrakopoulos, 2011), and the second is metaheuristic optimisation (Kum-
ral and Dowd, 2005; Lamghari and Dimitrakopoulos, 2012).

The general idea behind stochastic programming is to extend a determinis-
tic optimisation formulation by using random variables in the objective func-
tion and constraints. For example, the objective function that maximises the
profit of the ultimate pit for the block model B is:

max ∑
i∈B

viyi (1.19)

where vi is the profit of block i and yi is a binary variable indicating whether
or not block i will be mined and processed. This deterministic formulation can
be converted to a stochastic programming formulation as follows:

max ∑
i∈B

E[vi]yi (1.20)

where E[viyi] is the expectation of the profit of block i. Here, the profit depends
mainly on grade and the cut-off definition. In a stochastic scenario, grade is
a random variable and, therefore, the expectation must be used. If the block
model has m equally probable realisations, the expectation is the average profit
among all realisations:

E[vi] =
1
m

m

∑
k=1

vik (1.21)

This example illustrates how a deterministic formulation can lead to stochas-
tic programming. Obviously, optimisation formulations for mine planning are
more complex, having several constraints on the problem to be solved.

Stochastic programming is an exact approach to optimisation problems but
requires considerable computational effort especially in large-scale problems.

Metaheuristic optimisation is a method based on randomly searching a so-
lution space. Contrary to stochastic programming, metaheuristic approaches
can deal with large-scale problems at reasonable computing cost, but exact so-
lutions cannot be guaranteed although the solutions are close to the exact ones.
Simulated Annealing (SA), Tabu Search (TS), Genetic Algorithms (GA) and
Artificial Ant Colony (ACO) are examples of metaheuristic approaches that
have been successfully used for mine planning optimisation with grade uncer-
tainty (Denby et al., 1998; Kumral, 2004; Kumral and Dowd, 2005; Lamghari
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and Dimitrakopoulos, 2012; Shishvan and Sattarvand, 2015).
Metaheuristic approaches have two crucial properties. The first is the man-

ner in which new solutions are generated from the current solution. This is a
key aspect, because new solutions have to explore the solution space as much
as possible. The second is to avoid local minima. Table 1.1 summarises these
two key aspects for Simulated Annealing, Tabu Search, Genetic Algorithms
and Artificial Ant Colony.

TABLE 1.1: Metaheuristic algorithms for optimisation.

Method Solution space exploration Escaping from local min-
ima

Simulated
Annealing

One new solution at each
iteration

Accepting worse solutions
randomly

Tabu Search Several new solutions at
each iteration

A short taboo list and
defining an aspirational
criterion

Genetic
Algorithms

Based on a population
with many individuals

Selection, crossover and
mutation procedures

Artificial Ant
Colony

Based on a population
with many individuals

An individual stores its
best solution so far, com-
bined with the global best
solution, and uses a veloc-
ity component to move to-
ward a new position in the
solution space

Multi-objective optimisation

Complex optimisation problems may require two or more objective functions.
Mine planning optimisation problems can include objectives in addition to
the typical maximisation of NPV. For instance, the minimisation of deviations
from target production, minimisation of energy consumption in the comminu-
tion process, secondary metal production, and control of deleterious material
presence are also important objectives in mine planning from the geometallur-
gical perspective.

A multi-objective optimisation formulation is defined as:

min[ f1(x), f2(x), . . . , fn(x)] (1.22)
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where the n objective functions are simultaneously optimised. Multi-objective
optimisation methods are capable of building the Pareto-frontier with all Pareto
non-dominated solutions found by multi-objective optimisers, giving a com-
plete picture of optimality according to different objectives (Yano and McFad-
den, 2014). As it is impossible, a priori, to decide which criterion is more rele-
vant, the decision-maker can choose from the Pareto-frontier the optimal solu-
tion according to some criterion based on strategic decisions. Figure 1.3 shows
the solutions of a two-objective optimisation problem. Minimising only the
first objective will increase the second objective and vice versa. Any point
at the feasible region is a feasible solution but is dominated by some solu-
tion at the Pareto frontier, which means that Pareto frontier solutions are non-
dominated solutions and, therefore, they are optimal.

The traditional optimisers, such as mixed integer programming and integer
programming are not designed to solve multi-objective problems. For this rea-
son, multi-objective problems are commonly converted into a single-objective
problem using a weighted sum objective:

min[w1 f1(x) + w2 f2(x) + · · ·+ wn fn(x)]. (1.23)

The main disadvantages of this approach are that the weights must be de-
fined at the beginning and therefore the results are conditioned to these speci-
fied weights, and some non-dominated solutions are missed. In Fig. 1.3, when
the feasible solution region is not convex, the solution at B cannot be reached,
and the solution at A is the weighted unique optimal solution (the solution at
A depends on weights). When the feasible solution region is non-convex, all
solutions between A and C are unreachable.
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FIGURE 1.3: Pareto front with non-convex feasible regions for
two-objective problems.

In conclusion, metaheuristic approaches have the advantage of finding the
Pareto frontier in both convex and non-convex regions. They are also efficient
in terms of computational costs.

1.5 Addressed gaps in knowledge

The three principal gaps in knowledge addressed in this thesis are:

1. Geometallurgical response properties rarely have linear relationships with
primary properties and they are usually non-additive.

2. Mine planning optimisation problems need to be adapted in order to con-
sider geometallurgical variables with uncertainty.

3. Lack of clustering techniques for geometallurgical domaining that con-
sider multivariate, mixed attributes and spatial continuity.
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1.6 Research objectives

The main objective of this thesis is to develop methodologies and methods for
quantifying the uncertainty of geometallurgical variables and their inclusion
in mine planning optimisation problems in a practical way to contribute to
the accomplishment of the main goal of geometallurgy which is improving
mine planning, plant performance and product quality. To do so, the following
research objectives were pursued:

1. Propose a methodology to quantify the uncertainty of geometallurgical
variables for practical applications in mine planning optimisation prob-
lems.

2. Formulate risk measures to account for geometallurgical uncertainty and
their application in mine planning optimisation problems.

3. Improve formulations of production scheduling optimisation problems
for open pit and underground mining to include geometallurgical vari-
ables and risk measures.

4. Application of metaheuristics to optimise production scheduling prob-
lems for open pit and underground mining.

1.7 Thesis overview

Paper 1 (Chapter 2) addresses the problems of non-additivity and non-linear
relationships in geometallurgical variables and the quantification of uncer-
tainty of response variables. Applying the primary-response rock property
framework and using quantitative and qualitative primary properties, metal-
lurgical response prediction models were built using projection pursuit regres-
sion (PPR). Projection pursuit is a statistical modelling technique in which data
from a significant number of variables are projected onto a set of directions
that optimise the fit of the model with the purpose of revealing underlying re-
lationships. PPR is applied to modelling six geometallurgical variables. The
results show a significant improvement compared with traditional multivari-
ate linear regression models. The models were also bootstrapped to generate
distributions of feasible scenarios for the response variables, which are critical
for assessing the associated uncertainty.
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Paper 2 (Chapter 3) optimises the production scheduling of a block cav-
ing operation using geometallurgical variables with uncertainty. The optimi-
sation focuses on maximising economic return and minimising the risk aris-
ing from the uncertainty associated with several geometallurgical variables.
The geometallurgical uncertainty was quantified by geostatistical simulations
of primary properties and bootstrapped project pursuit regression models for
response variables. Several two-objective optimisation problems were formu-
lated to assess the impact of geometallurgical uncertainty. The first objective is
the maximisation of the Net Smelter Return. This objective was combined with
four different objectives to measure risk: volatility, value at risk, conditional
value at risk and deviation from the planned production target. A genetic al-
gorithm was used to optimise the problems and generate the Pareto fronts to
support the decision-making process.

Paper 3 (Chapter 4) proposes a new method for clustering geometallurgical
attributes to build geometallurgical domains considering the spatial variability
of variables and the uncertainty of cluster membership. Geometallurgical do-
mains can be used to ensure consistent feed to a processing plant by minimis-
ing transitions between different feeds coming from different domains. Fuzzy
clustering was used to account for the clustering uncertainty and the spatial
continuity was achieved by energy minimisation via graph cuts. In addition,
two problems with existing clustering methods applied to geometallurgy were
addressed: (i) incapability of using subsets of attributes at the cluster level, and
(ii) incapability of considering spatial relationships to avoid dispersed and/or
overlapped clusters. In addition, a set of new distance metrics were proposed
to target geometallurgical responses in the resulting cluster. The resulting clus-
ters can be used directly in mine planning to optimise the ore feed to be deliv-
ered to the processing plant.

In paper 4 (Chapter 5), geometallurgical domaining was used to define the
concept of geometallurgical dilution. The well-known constrained pit limit
optimisation problem (CPIT) is reformulated as a bi-objective formulation that
adds to the NPV maximisation objective, the minimisation of geometallurgical
dilution. A case study is presented in which clay content has a strong impact
on the flotation recovery. Geometallurgical dilution, therefore, is defined as
the ratio of the dominant clay domain to the other domains in any time period.
The results show that geometallurgical domaining can improve the economic
valuation while controlling the negative effect of clay content.

Chapter 6 summarises the key findings and outlines the potential for fur-
ther research.
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Abstract

The integration of geological and geometallurgical data can significantly im-
prove decision-making and optimize mining production due to a better under-
standing of the resources and their metallurgical performances. The primary-
response rock property framework is an approach to the modelling of geomet-
allurgy in which quantitative and qualitative primary properties are used as
proxies of metallurgical responses. Within this framework, primary variables
are used to fit regression models to predict metallurgical responses. Whilst
primary rock property data are relatively abundant, metallurgical response
property data are not, which makes it difficult to establish predictive response
relationships. Relationships between primary input variables and geometal-
lurgical responses are, in general, complex and the response variables are often
non-additive which further complicates the prediction process.

Consequently, in many cases, traditional multivariate linear regression mod-
els (MLR) of primary-response relationships perform poorly and a better alter-
native is required for prediction. Projection pursuit is a powerful exploratory
statistical modelling technique in which data from a number of variables are
projected onto a set of directions that optimize the fit of the model. The pur-
pose of the projection is to reveal underlying relationships. Projection pursuit
regression (PPR) fits standard regression models to the projected data vectors.
In this paper, PPR is applied to the modelling of geometallurgical response
variables. A case study with six geometallurgical variables is used to demon-
strate the modelling approach. The results from the proposed PPR models
show a significant improvement over those from MLR models. In addition,
the models were bootstrapped to generate distributions of feasible scenarios
for the response variables. Our results show that PPR is a robust technique
for modelling geometallurgical response variables and for assessing the un-
certainty associated with these variables.

Keywords Geometallurgical modelling; Projection pursuit regression; Risk
management.

2.1 Introduction

Geometallurgy has the potential to yield substantial improvement in mine
planning and operation by properly integrating the available geological and
metallurgical information (Dunham and Vann, 2007; Walters, 2008; Coward
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et al., 2009, 2013; Coward and Dowd, 2015). The incorporation of metallurgi-
cal response variables into the resource model allows not only a more realis-
tic optimization of economic objectives, but also the assessment of processing
performances, leading to a more robust project evaluation under uncertainty
(Dowd et al., 2016). It also provides the basis for optimizing the net present
value of the final product rather than the net present value of a simplistic
function of in situ grades and tons. Comminution performance and mineral
processing recovery factors are key parameters that directly affect production
and the value of the final product and their prediction in the early stages of a
mining operation is important for mine planning and project risk assessment.

The most widely used tests for determining comminution performances
are the Bond mill work index (BWi), Bond rod mill work index (RWi), resis-
tance to abrasion and breakage index (A×b) and the drop-weight index (DWi).
The most common processing recovery tests are based either on flotation or
leaching operations. An increasingly better understanding of the physical and
chemical principles on which these performance indices are based has con-
tributed to the growing acceptance and use of the concept of geometallurgy.
Basic geology and mineral processing knowledge are now enriched with min-
eralogy (the proportion and/or size distribution of minerals in a rock sample),
lithology, textural characteristics and particle liberation profiles that can quan-
tify more precisely the comminution and recovery performances (Keeney and
Walters, 2011; Hunt et al., 2013, 2014). However, there remain significant im-
pediments to the incorporation into resource models of these variables and
the mineral processing responses in a manner that can be used effectively in
practice. In most projects, due to the lack of appropriate geometallurgical data
collection and analysis, or their complete absence, there are usually insuffi-
cient test-work results for reliable metallurgical response modelling. The sig-
nificant difference between the large numbers of samples recorded in geologi-
cal databases (logging, assaying and geotechnical data) and the relatively few
metallurgical test-work samples impedes the successful integration of metal-
lurgical responses into the resource model using geostatistical methods (Hunt
et al., 2013). Additional issues arise from the non-additivity of many metallur-
gical response variables (Dunham and Vann, 2007), which may require indirect
methods of up-scaling from the laboratory (sample) scale to production scales.
The primary-response framework documented in Coward and Dowd (2015)
and Coward et al. (2009, 2013) allows primary rock properties (intrinsic rock at-
tributes directly measured from rock samples) to be used to predict processing
response properties, such as recovery factors and comminution performance,
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and incorporate them into the resource model. Using only additive primary
variables to predict non-additive response variables minimizes the biases re-
lated to non-additivity (Carrasco et al., 2008).

Under the primary-response framework, two key aspects are considered.
The first aspect is the selection of a relationship that has good prediction per-
formance. The statistical model most commonly used to derive relationships
for predicting a dependent variable from a set of input variables is regression
(Friedman, 1994). Regression is based on the assumption of a functional rela-
tionship between a dependent variable and one or more explanatory variables.
There are several regression models and methods but the most commonly used
is multivariate linear regression (MLR). However, as MLR requires strong lin-
ear relationships between dependent and explanatory variables, its predictive
performance is extremely poor when the relationships are non-linear.

As strong non-linear relationships are often observed between primary and
response geometallurgical variables, MLR is unlikely to be the best option for
predicting response variables and other types of regression models should be
considered. There are several non-linear regression techniques that are more
able to model complex relationships, including machine learning methods,
polynomial regression and projection pursuit methods (Friedman, 1994).

The second key aspect is to identify the most important variables in terms
of predictive performance given a set of available primary variables. This issue
is related to the difficulty in geometallurgy of handling high-dimensional data.
Higher dimensions require much more data and are much more difficult to
model as when the dimensionality is high, data become sparser and, therefore,
finding the best relationship becomes more difficult. In this case, reducing
dimensionality could lead to better and simpler models.

Geometallurgical characterization using regression and dimensionality re-
duction is a common general approach. Keeney and Walters (2011) used prin-
cipal component analysis (PCA) to define nine geometallurgical domains based
on 500 samples using mineralogy and assay data to build prediction models
for two comminution indices: BWi and A×b. PCA was used to map multi-
dimensional information onto a two-dimensional scatter plot for the first and
second principal components. This mapping was used to identify mineralogi-
cal trends and associations for geometallurgical domain definition. Regression
models with high coefficients of determination (R2) were fitted for each de-
fined geometallurgical domain.

Boisvert et al. (2013) merged variables to reduce dimensionality. They used
grades, mineralogy and association data, defined as the contact area between
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two adjacent minerals within a single grain of crushed material, to predict six
plant performance variables. In their model, from a total of 204 input variables,
four different subsets were created in several amalgamation steps. Finally,
three different kinds of models, each containing different subsets of merged
variables, were fitted by multilinear regressions. Reasonable to good correla-
tions between true and estimated values were achieved, ranging from 0.533 to
0.9. These MLR models were used to include plant performance indices in a
resource model. Similarly, Hunt et al. (2013) used grades, mineralogy, lithol-
ogy, and alteration data to predict three comminution indices: SAG power
index, BWi and A×b. They applied a feature selection method to select the
best predictive variables and used multivariate linear regression models. They
reported average relative errors in the range of 6-12%.

Recent research by Hunt et al. (2014) used both qualitative and quantita-
tive primary rock properties (grades, lithology, sulfide class and gangue class).
They defined archetypes or geometallurgical domains and established several
linear regression models for each different archetype for copper recovery. Us-
ing 162 samples, they obtained good model performances with RS between
0.69 and 0.85.

There is no clear or unique set of rules for choosing a particular modelling
technique, as the choice is case dependent. In geometallurgical characteriza-
tions, there is often no clear linear relationship and a non-linear method may
work better than MLR. In the case study presented here, MLR does not per-
form well.

Although PPR has been successfully applied in many disciplines, it has not
been used in geometallurgy modelling but in related disciplines, such as envi-
ronmental engineering and geoscience (Qianjian and Jianguo, 2011; Ghasemi
and Zolfonoun, 2013). PPR is a good alternative for geometallurgical mod-
elling, particularly for this case study, and a robust modelling method that can
be easily used for uncertainty and risk assessments applying techniques, such
as bootstrapping.
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2.2 Method

2.2.1 Projection pursuit

Projection pursuit (PP) is a statistical method developed by Friedman and
Tukey (1974) initially for exploratory data analysis. The visualization of a mul-
tidimensional dataset is very difficult due to the limitations of finding use-
ful features in a lower dimensional space (two or three dimensions) for easier
human interpretation. PP is a linear transformation method that focuses on
projections rather than an orthogonal global transformation such as PCA and
factor analysis, the two most popular linear transformation methods.

The core component of PP is to find some directions onto which the multi-
dimensional data can be projected to reveal useful characteristics.

Formally, let X be n observations of a k-dimensional random vector X =

(x1, x2, ..., xk), xi ∈ Rn, where xi is a random variable representing a feature.
A direction α is a normalized vector in Rk and the projection p of X onto α is
p = αTX.

The key aspects of PP are in the definition of a measure of “interestingness”
and in the search of a direction onto which the projection of X maximizes “in-
terestingness”. This “interestingness” can be represented by a projection index
function

I(p) = f (p) : Rn → R. (2.1)

Since any interesting property is subjective and depends on the problem to
be solved, a specific projection index is defined for each specific application
and hence different indices are obtained for different projections. For example,
projection indices have been defined for exploratory data analysis (Friedman
and Tukey, 1974), density estimation (Friedman et al., 1984), regression (Fried-
man and Stuetzle, 1981), classification (Lee et al., 2005) and de-correlating vari-
ables (Barnett et al., 2014). Finally, the PP objective can be seen as an opti-
mization problem in which it is required to find one or more directions that
maximize a specific projection index

α = arg max
α

(I(αTX)), ‖α‖ = 1. (2.2)
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2.2.2 Projection pursuit regression

Regression is a statistical technique for predicting a dependent variable y using
a function of explanatory variables X with an error component ε, i.e.,

y = f (X) + ε. (2.3)

The function f can be linear or non-linear, and the error ε is independent
and normally distributed with a mean of zero. Due to its simplicity the most
commonly used regression technique is multivariate linear regression (Weis-
berg, 2005)

y = b0 −
n

∑
i=1

bixi + ε, (2.4)

where factors bi are found by minimizing the squared error between measured
and predicted values of the dependent variable

[y− b0 −
n

∑
i=1

bixi]
2. (2.5)

However, when there are strong non-linear relationships between the de-
pendent and explanatory variables, the predictive power of MLR significantly
decreases. PPR can handle this problem by adding several linear combinations
of smoothed projections.

PPR has two main features: (i) instead of using the raw input, it uses a
projection; and (ii) the projection is smoothed to capture the main trend in the
relationship. The smoothing procedure is important, since its application gives
a good generalization and attenuates extreme values. Figure 2.1 illustrates the
projection and its smoother for the response variable BWi using the first di-
rection. In addition, PPR uses an iterative algorithm to find more appropriate
projection directions. The PPR can be expressed as

y =
m

∑
k=1

sk(α
T
k X), (2.6)

where s is the smoother and Îś is the direction at step k. There are several types
of smoothers. The most common is the spline smoother (Silverman, 1984), but
the super-smoother (Friedman, 1984) is used in this work. The super-smoother
uses short, middle and large spans at 5%, 20% and 50% of the number of sam-
ples respectively, to determine an optimal span by cross-validation. The use of
a smoother enhances the capability of PPR to deal with non-linear relationship
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problems.
The critical component of PPR is to define an appropriate projection index.

For regression models, the explained variance is an effective indicator of model
accuracy. As the explained variance is 1.0 for a perfect model, the projection
index can be defined as

I(α) = 1− [∑n
i=1 ri − sα(αX)]2

∑n
i=1 r2

i
, (2.7)

where ri are the current residuals.
The best direction is the one that maximizes I(α). When the projection

index for a direction is close to zero, the contribution of that direction is not
significant and no more directions are needed. This projection index is differ-
entiable if the smoother is differentiable. Although the super-smoother is not
differentiable and, therefore the global optimum is not guaranteed, finding
successively local-optimum directions using a gradient-based optimization al-
gorithm leads to satisfactory results.

The final PPR algorithm is as follows:

1. Let y be the dependent variable, initially standardized (centered with
unit variance).

2. Let r1 = y be the initial residuals.

3. Let α and sα be the best direction and smoother respectively, where the
smoothed projection onto α maximizes the projection index (Eq. 2.7).

4. If the explained variance is not sufficiently small (a user-defined value,
but a variation less than 1% is a good value in practice), store the direction
and the smoother, update the residual: ri+1 = ri − sα(αX) and go to step
2 to find a new direction.

PPR is very efficient in terms of computational cost. For a dataset of n
samples, k dimensions and m projections, the required computation is of the
order of m ∗ k ∗ n ∗ log(n).

2.3 Methodology

Projection pursuit is used in this work to build prediction models for response
properties under the primary-response framework discussed above. Both geo-
logical and metallurgical variables are used initially in this case to construct the
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FIGURE 2.1: Projection and its smoother of the first direction
found by PPR for BWi.

PPR models, which must be based on a good training data set. Training regres-
sion models with a reduced number of data may be challenging as models may
be very sensitive to the presence/absence of a datum. There is a temptation
to use all data available without any validation. This approach may produce a
very good fit for the data available but the final outcome may be misleading. A
good model should predict unknown data as well as training data. A common
approach involves randomly partitioning the input data into two datasets: one
for training and one for validation. This procedure, however, is very biased on
small datasets, because obtaining similar distributions on both sets is hard to
achieve in practice. For example, if there are outlier data, the probability of
having outliers in the validation set is higher if the dataset is small. The k-fold
cross-validation technique was developed to overcome this drawback by vary-
ing the training and validation datasets. A more robust validation technique is
bootstrapping. This technique involves sampling randomly from the original
dataset with replacement to form a subset of samples, which is then used to
train the regression model. The trained regression model is then tested on the
complete original dataset. An additional advantage of this approach is that,
by repeating the process a certain number of times, a complete distribution of
models can be generated to assess the uncertainty involved. This could be very
useful in the case of modelling metallurgical responses. A good discussion of
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these cross-validation methods can be found in (Efron and Gong, 1983) and
(Arlot et al., 2010).

Five goodness-of-fit measurements are used to evaluate the performance of
regression models: correlation coefficient (R), coefficient of determination (R2),
root mean squared error (RMSE), mean absolute error (MAE), and the mean
error (ME)

R(y, ŷ) =
cov(y, ŷ)

σyσŷ
, (2.8)

R2(y, ŷ) = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2 , (2.9)

RMSE(y, ŷ) =

√
1
n

n

∑
i=1

(yi − ŷi)2, (2.10)

MAE(y, ŷ) =
1
n

n

∑
i=1
|yi − ŷi|, (2.11)

ME(y, ŷ) =
1
n

n

∑
i=1

[(yi − ŷi)− (yi − ŷi)], (2.12)

where cov(y, ŷ) is the covariance between y and its prediction ŷ ; ȳ is the mean
value of y and σ is the standard deviation.

A value of R, between true and predicted values, close to -1 or 1 is an indi-
cation of good prediction performance. A good model should also explain as
much as possible the variance of the true value; R2 = 1.0 means that the model
fully explains the total variance and R2 = 0.0 means that the model does not
explain any of the variance. RMSE and MAE are different measurements of
prediction error. ME gives an indication of the level of bias; a value close to 0
indicates that the prediction is globally unbiased.

The following four steps are used to derive the best PPR model:

1. Feature selection.

2. Optimal number of directions.

3. Bootstrapping.

4. Model selection.

The main purpose of feature selection is to choose the subset of input vari-
ables that has the best predictive capability. This procedure in general leads to
dimensionality reduction as usually the subset is substantially smaller than the
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TABLE 2.1: Basic statistics of six geometallurgical response vari-
ables.

Variable #Samples Minimum Mean Maximum Variance
Resistance to abrasion breakage (A×b) 64 24.4 31.45 51.20 19.28
Drop-weight index (DWi) 58 5.5 8.90 10.77 1.10
ond ball mill work index (BWi) 36 18.1 20.14 23.60 1.81
Bond rod mill work index (RWi) 33 22.9 28.45 34.00 10.36
Gold rougher recovery (Au Rec) 247 42.9 80.36 94.70 77.40
Copper rougher recovery (Cu Rec) 247 55.9 88.93 98.50 69.19

complete set of input variables. A combination of a forward selection and the
meta-heuristic optimization method are used in this work. Forward selection
(Chatterjee and Hadi, 2015) adds variables one by one by selecting the vari-
able that best improves the model when it is included. Forward selection does
not necessarily select the best subset of input variables because it is a greedy
procedure. For this reason, the forward selection result is the initial solution
that is further refined using the Tabu search meta-heuristic optimizer (Glover,
1990).

After the best features are selected, the number of directions used by PPR
can be optimized. Since the most critical parameters are now fixed, all models
are exhaustively bootstrapped using the five goodness-of-fit measurements to
conduct the final model selection. A good model should not only have good
performance indices, but should also be unbiased. The structure of the residu-
als is, therefore, very important in the final choice of model.

A stochastic geometallurgical block model may be derived from simula-
tions of all primary input variables, which could be generated by geostatistical
simulation techniques. Since all PPR models are based on testwork values at
the laboratory scale they must be scaled up to the block volumes before being
included into the block model. The up-scaling problem is not addressed in the
work presented here.

Finally, a complete geological and geometallurgical block model such as
this will contribute to improved mine planning and mine-to-mill optimization.

2.4 Case study

PPR is applied to the geometallurgical characterization of a poly-metallic de-
posit in which gold-copper mineralization occurs in a porphyry intrusion and
adjacent wall rock. The rocks in the study area are feldspathic siltstones with
lesser sandstones, underlain by volcanic rocks. Several geological and metal-
lurgical samples were taken from the study area and were used as proxies to
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predict key metallurgical and processing responses. There are six geometal-
lurgical response variables to be modelled: the recovery rates of two metals in
a rougher flotation circuit and four comminution indices. Table 2.1 shows the
basic statistics for the six response variables. The main difficulties in this case
study are the small number of samples for the four comminution indices and
the high variance of recovery variables.

As all test-work results are recorded against the drill holes from which the
core samples were taken it is easy to link the geometallurgical response vari-
ables to the geological and assay databases. In this case study, grades, lithol-
ogy, alteration and mineralization style are available as input variables. Grades
are quantitative (continuous) variables while lithology, alteration and mineral-
ization styles are qualitative (categorical) variables. Qualitative data are spec-
ified as proportions of each category, for example, a volcaniclastic lithology
value of 0.8 means that 80% of the sample comprises that particular lithology.

Within the primary-response framework, models are sought to estimate the
six response variables using the available primary variables. This process is
not difficult if the relationships are simple. However, in this case study, there
are two problems. The first one is the high dimensionality of the input space
(57 variables) especially when combined with less number of samples than
dimensions, such as BWi, RWi and DWi. The second is the complexity of the
relationships between primary and response variables. The first problem is ad-
dressed by the application of a feature selection method and the second prob-
lem by PPR. Details are given below.

There are two objectives in the multivariate modelling. The first is to deter-
mine whether the inclusion of the qualitative information (alteration, mineral-
ization and lithology) improves the performance of models compared with us-
ing only quantitative information (grades). Two models are defined: the “Base
Model” which includes only grade variables and the “Optimized Model” which
includes the best selection from the feature selection process of both quantita-
tive and qualitative variables. The second objective is to compare the perfor-
mances of the derived PPR models with those of the traditional MLR models.

To select the best features for fitting a regression model, the correlation co-
efficients between dependent and all explanatory variables are examined, as
shown in Table 2.2. In general, there are no strong correlations between pri-
mary and response variables.

For A×b and DWi, there is no strong correlation as all absolute coefficients
are less than 0.3. BWi has an absolute correlation coefficient greater than 0.5
with Fe and Ql mineralization and 0.4 with Se alteration and ST lithology.
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TABLE 2.2: Correlations between primary and response vari-
ables. The symbol “-" denotes missing value. Correlations with

absolute value greater than 0.4 are highlighted.

Variable A×b BWi DWi RWi Au Rec Cu Rec
Grades Au 0.068 -0.254 -0.163 -0.085 0.245 0.003

Cu 0.056 -0.105 -0.092 -0.120 0.216 0.344
S -0.062 0.160 0.023 -0.019 0.286 0.192
Fe -0.100 0.559 0.177 0.395 -0.270 -0.195
Mo 0.173 -0.178 -0.219 -0.195 -0.376 -0.499

Alteration Ab -0.209 0.352 0.183 0.163 -0.120 -0.347
B 0.002 - 0.009 - -0.082 0.064
Bt -0.095 0.223 0.092 0.388 0.021 0.097
Ca -0.095 -0.209 0.120 -0.181 -0.071 -0.114
Cb 0.156 -0.170 -0.115 0.134 -0.005 -0.084
Ch 0.030 0.183 0.006 0.141 0.030 -0.074
Cy 0.101 0.194 -0.138 0.124 - -
Ep 0.128 - -0.161 - - -
H -0.071 -0.069 0.064 -0.109 0.019 -0.153
He - - - - 0.130 0.246
I -0.053 -0.315 0.075 -0.346 0.013 -0.013
Ka 0.117 - -0.165 - 0.068 0.246
Kf -0.006 0.115 -0.015 0.162 -0.010 -0.015
Mt 0.076 0.047 -0.061 -0.253 0.076 0.213
Py 0.099 0.022 -0.136 0.007 -0.095 -0.109
Q -0.075 0.111 -0.136 0.445 0.042 0.136
R 0.174 -0.099 -0.163 0.072 0.091 -0.098
S 0.073 -0.060 -0.060 -0.122 0.025 0.179
Se 0.058 -0.410 -0.028 -0.385 -0.265 -0.421
To -0.132 -0.301 0.154 -0.363 -0.071 -0.103
U -0.013 - 0.052 - -0.238 -0.242

Mineralization Bo-Cp-Mo 0.016 0.011 -0.038 -0.435 0.037 0.033
BV - - - - -0.007 0.149
CP 0.064 -0.038 -0.076 -0.126 -0.030 -0.026
Cp-Bo 0.016 0.097 -0.038 -0.215 - -
CV 0.006 -0.167 -0.059 -0.234 -0.015 -0.080
EV - - - - 0.113 -0.032
GQZ -0.181 0.199 0.239 0.180 -0.041 -0.141
MV -0.136 0.085 -0.055 0.168 -0.144 -0.149
PY 0.056 -0.009 -0.088 -0.112 0.030 -0.019
Py-Cp 0.161 0.073 -0.191 -0.082 0.024 -0.032
QCK -0.263 0.180 0.271 0.572 0.022 0.096
QCP 0.212 -0.215 -0.183 -0.210 -0.063 -0.045
Ql -0.119 0.659 0.185 0.482 0.114 0.017
QPY 0.163 -0.057 -0.146 0.078 -0.036 0.014
QZB 0.120 -0.045 -0.155 -0.040 0.019 -0.066
QZC -0.029 0.044 0.032 0.070 0.133 -0.007

Rock type A -0.019 -0.078 -0.033 0.175 -0.206 -0.419
BX 0.095 -0.160 -0.191 -0.149 -0.022 -0.122
CC 0.179 0.020 -0.214 -0.299 -0.009 -0.130
CP -0.137 0.204 0.162 0.203 -0.069 0.058
FT 0.104 0.169 -0.150 0.247 0.013 0.016
G -0.008 -0.057 -0.045 0.024 -0.021 -0.049
M -0.064 -0.148 0.031 0.089 0.019 0.130
PF 0.157 0.086 -0.126 -0.021 -0.128 -0.163
PP 0.181 -0.140 -0.141 -0.105 -0.025 0.013
ST -0.131 0.440 0.182 0.154 -0.062 -0.200
V -0.293 0.141 0.323 0.235 0.122 0.230
VB -0.081 -0.092 -0.088 -0.060 0.090 -0.073
VC -0.017 0.129 0.039 -0.311 -0.028 0.086
VP -0.007 -0.062 -0.032 0.173 0.142 0.041
VX 0.023 -0.134 0.001 -0.202 0.008 -0.005
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TABLE 2.3: Final feature selection for PPR and MLR models.

Response
variable

Inputs variables
Total

number
of

variables

Grades Lithology codes Alteration
codes

Mineralization
codes

PPR models
A×b 5 Mo V, VX Ch, Cy
BWi 3 Fe G Ql
DWi 6 Au, Fe V Ab, Q QCK
RWi 7 Fe, Mo I, Mt, Q, Bt Ql
Au Recovery 20 Au, Mo PF, G, CP, VX,

VC, FT, BX
Ab, B, He, Q, R,
S, U

EV, QCK, QZC,
Ql

Cu Recovery 20 Cu, Mo, S A, BX, CC, CP,
PP, ST, VB

Ab, B, He, I, Ka,
R, S

BV, Py-Cp, Ql

MLR models
A×b 10 Au, Cu G, V, VC Ab, I, Q, R QCK
BWi 9 Au, Cu G, VC, FT Se Ql, GQZ, CP
DWi 8 Au, Cu V, VC Ab, I, R QCK
RWi 7 Fe VC R, Q, Se GQZ, QCK
Au Recovery 22 Au, Cu, Fe, Mo PF, G, CP, CC,

VC, FT
He, B, Kf, I, U,
Se

QCK, QZC,
QZB, PY, Ql, EV

Cu Recovery 25 Cu, Mo, S PF, G, CC, VB,
M, VC, BX, ST,
PP, V, A

QZB, GQZ, Ql,
BV

He, Ka, Kf, I, H,
Q, R, U, Se, Ab

RWi is moderately correlated with Q alteration (positive) and three mineraliza-
tion styles: Bo-Cp-Mo (negative), QCK and Ql (both positive). Gold recovery
shows negligible correlation with primary variables. Copper recovery corre-
lates positively, but only moderately, with copper grade; and negatively with
molybdenum, Se alteration and A lithology.

2.4.1 Feature selection

Weak correlations make it difficult to find the most appropriate input variables.
Feature selection techniques seek to reduce the number of input variables by
identifying and discarding variables that do not contribute significantly to the
performance of a regression model. In our study, the optimal subset of input
variables was found for each response variable by using the forward selec-
tion and meta-heuristic optimization procedures explained in Sect. 2.3. Table
2.3 shows the input variables found by the optimization procedure for each
response variable.

2.4.2 Optimal number of directions

The number of projections is one of the most important parameters of PPR.
Although, in general, the predictability increases as the number of projections
increases, too many projections can result in over-fitting. Figure 2.2 shows the
improvement in R2 between predicted and true values of all response variables
as the number of projections increases from 1 to 20.
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FIGURE 2.2: R2 coefficient using from one to twenty directions.
Optimized models and base models correspond to upper and

lower charts respectively.

TABLE 2.4: Summary of R2 coefficient for PPR models.

Optimized Base Improvement
R2 Directions R2 Directions

A×b 0.509 8 0.242 11 110%
BWi 0.762 9 0.501 9 52%
DWi 0.492 15 0.300 13 64%
RWi 0.749 6 0.471 11 59%
Au Rec 0.457 4 0.401 11 14%
Cu Rec 0.756 20 0.656 17 15%
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FIGURE 2.3: Comparison of performance (R2) of optimized and
base models for PPR and MLR.

All optimized models reach a plateau using seven or more projection di-
rections. For base models, between 5 and 12 directions are required for R2 to
stabilize. The comparison of the performances at the maximum R2 (Table 2.4)
shows that optimized models consistently out-perform the base models with
a significant improvement of 110% in the A×b index model. Both recovery
rates show modest improvements. For copper recovery, the base model ex-
plains nearly 65% and the optimized model explains a little more than 75%
of the variance. This is still considered a significant improvement in terms of
reducing the variability of predictions.

2.4.3 PPR compared with MLR

MLR models were also generated and bootstrapped to compare the predic-
tion performances of the traditional approach with those of the proposed PPR
models. To obtain the optimized MLR models, the same procedure of feature
selection and optimization was followed. Note that the optimized subsets of
variables for PPR and MLR are different (Table 2.3). For base models, the same
five grade variables were used.

It can be observed from Figure 2.3 that optimized PPR models consistently
out-perform the MLR models. In the case of A×b, DWi and Au recovery, even
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FIGURE 2.4: Average values of R, R2, RMSE, MAE and ME of
optimized and base PPR models.

base PPR models have performances similar to those of the optimized MLR
models. While the base MLR models for three grindability indices perform
extremely poorly (with R2 close to zero), base PPR models can still be used if
simple models are required. It is clear from this comparison study that models
perform significantly better when qualitative information is included.

Finally, Figure 2.4 summarizes the five goodness-of-fit indices for both op-
timized models and base models from the bootstrapping procedure for both
PPR and MLR models. All values show clearly the advantage of using PPR
over MLR. Not only is R2 substantially improved, both error measurements,
RMSE and MAE, are significantly reduced.

2.4.4 Bootstrapping

To assess the accuracy and final predictive performance, both the optimized
and base PPR models were bootstrapped. A total of 500 samples with replace-
ment were generated from the original dataset in order to assess the variability
and uncertainty associated with each model. This number of samples was se-
lected as it is the number at which all indices become stable, and also avoids
having different numbers of samples for the variables. This is specifically use-
ful in cases where some variables have fewer data, which may require a smaller
number of samples. Figure 2.5 shows boxplots of all goodness-of-fit indices for
optimized and base PPR models. Comparing the performance of both models
based on the bootstrapping results, it is evident that for the four grindabil-
ity indices, the inclusion of categorical variables has significantly improved
the model predictability. Although for recovery variables the improvement is
only marginal, categorical variables increase the predictive performance of the
models. This observation is consistent with the geology as grindability indices
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FIGURE 2.5: Boxplot of optimized and base PPR bootstrapped
models. Rows are R, R2, RMSE, MAE and ME; columns are the

six response variables.

depend largely on geological rock properties rather than on chemical element
concentrations.

Copper recovery (Cu Rec) has the lowest variability for R2, which indi-
cates that the PPR models are very stable. Low variability is observed for BWi,
RWi and gold recovery (Au Rec), but A×b and DWi have higher variability of
R2. As expected, most of the optimized models vary less than the base mod-
els. Only for gold recovery, do the optimized models have higher variability,
which suggests that some goodness-of-fit measures are very dependent on the
selected features. Overall, the optimized models have consistently lower error
measures and their biases, given by the mean errors (fifth row Figure 2.5), in-
dicate that mean prediction errors are concentrated close to zero; nevertheless,
some models with high mean error (bias) should be rejected.

2.4.5 Model selection

To incorporate the uncertainty of a model for risk assessment, a subset of valid
bootstrapped models should be used to guarantee a good reproduction of all
possible predictions. To ensure unbiasedness, only models with mean predic-
tion errors between -0.05 and 0.05 are considered valid models. The mean and
standard deviation of measured (true) and predicted values are very similar
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TABLE 2.5: Summary of statistics of true and predicted values of
selected optimized PPR models.

Variables Models True Value Prediction
µ σ µ σ

A×b 42 31.447 4.356 31.446 4.186
BWi 164 20.142 1.328 20.117 1.325
DWi 169 8.895 1.039 8.853 1.118
RWi 56 28.448 3.164 28.439 3.609
Au Recovery 42 80.355 8.780 80.356 7.805
Cu Recovery 63 88.933 8.301 88.814 7.702

TABLE 2.6: Directions of the best selected PPR model for BWi.

Direction [Ql] Quartz
Limonite
Vein Style

Mineralization

[Fe] Iron Grade [G]
Volcaniclastic -
Conglomerate

Lithology
1 0.994 0.076 -0.079
2 0.837 -0.439 0.326
3 -0.104 -0.447 0.888
4 0.170 -0.050 0.984
5 0.880 -0.225 0.418
6 -0.960 0.273 -0.062
7 1.000 -0.020 0.019

(Table 2.5). All QQ-plots show that optimized and base PPR models produce
values very close to the true distributions (Figure 2.6). In contrast, the MLR
models do not reproduce the true value distributions especially in the tails.

It is useful to inspect the projection directions of the PPR models and, to do
so, the best model for BWi is used as an example. The best model is chosen as
the one with the best balance of all five goodness-of-fit indices.

There is no obvious interpretation of PPR beyond the first direction because
each additional direction operates over the residuals; nevertheless, some find-
ings are highlighted.

Table 2.6 shows that in the first direction the most relevant variable for BWi
is Ql mineralization. Because all proportions of qualitative variables are within
the range of (0.0 - 1.0) and the values of iron content are within the range of
(0.0 - 6.0), the second most important variable is iron. The R2 plot for BWi
(Figure 2.2), indicates clearly that the performance of the model is sufficient
using only the first direction whereas contributions from additional directions
are insignificant compared with the first.
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FIGURE 2.6: QQ-plots of true value and predictions: optimized
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MLR models.
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2.5 Discussion

The success of geometallurgical modelling depends largely on the available
data. Access to quantitative data such as mineralogy, liberation profiles and
particle size distribution surely will improve geometallurgical modelling, but
quite often these data are not collected or are collected in insufficient numbers.
This case study focusses on modelling geometallurgical response variables us-
ing data that are abundant in most mining operations (assays and geological
logging). When the number of testwork samples is limited, the selection of an
appropriate regression model is critical to the derivation of an accurate predic-
tion model.

Two different models were defined to quantify the impact of including
qualitative information. The base models are defined to assess the perfor-
mance of a model using only grade variables which are usually considered
the most relevant. When all variables are included to derive the optimized
models, the modelling becomes a high dimensionality problem. Feature selec-
tion techniques are then used to identify the most significant input variables,
defined as the set of variables that best balances the amount of data with a
coherent representation of geology and metallurgy.

For BWi, the most relevant variables selected were quartz limonite min-
eralization (Ql code), iron grade and volcaniclastic conglomerate lithology (G
code). The quartz-limonite mineralization silicifies the surrounding rocks. The
degree of silicification has an effect on the hardness of surrounding rocks. Lutz
et al. (2010) showed in their mechanical rock testing of siliceous rocks that these
rocks are stronger and harder compared to the non-siliceous rocks. Also, high
iron content makes the rocks denser and the hardness of the rock will increase
as the amount of contained iron increases. Finally, the volcaniclastic conglom-
erate lithology is normally made up of volcanic breccias and clastic material
with a high percentage of quartz and feldspar-bearing minerals. These quartz
and feldspar-bearing breccias and clastic materials have hardness of 6.0 to 7.0
on the Mohs scale and will affect the overall hardness of the volcaniclastic con-
glomerates lithology. All variables selected by the model have an impact on
rock hardness, which is directly related to the BWi. These relationships sup-
port the inclusion of quartz limonite mineralization, iron grades and volcani-
clastic conglomerates as the most relevant variables for predicting BWi. For
other response variables, similar conclusions can also be drawn from the per-
spectives of geology and metallurgy to support the features selected to fit the
PPR models. These selected features are also optimal in the sense of predictive
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performance.
All PPR models only use additive variables which overcomes the non-

additivity problem when geostatistical methods are applied. When qualita-
tive information is included, all optimized models perform significantly better
with better goodness-of-fit measures compared with base models. For grind-
ability response models, this improvement is much more noticeable because
rock characteristics are more relevant than grades to these response variables.

Base PPR models are capable of performing at similar levels to optimized
MLR models. This is a clear demonstration of the power of the PPR technique.
Projections can reveal structures and relationships where simple linear com-
binations cannot. Moreover, optimized PPR models consistently out-perform
their corresponding base MLR models.

Reducing the number of inputs is important as it will greatly simplify the
process of populating the response variables into the resource model using
geostatistical estimation or simulation. Traditionally in geostatistics, spatially
correlated variables require modelling of auto- and cross-variograms in esti-
mation or simulation, and the complexity of this procedure increases as the
number of input variables increases (Goulard and Voltz, 1992). An additional
complexity may be present when some variables are categorical and spatially
correlated with the continuous variables. Joint geostatistical modelling of a
large number of continuous and categorical variables is still very challenging,
although there are approaches to do so with one categorical variable (Xu and
Dowd, 2009; Emery and Silva, 2009; Maleki and Emery, 2015).

The bootstrapping procedure is highly recommended for uncertainty and
risk assessment. The uncertainty of models due to small numbers of samples
can be assessed. Among all bootstrapped models, unbiased models are rec-
ommend, i.e., with the lowest possible prediction error, for a more realistic
incorporation of uncertainty. For the best model, the recommendation is to
select the one with the best balance of goodness-of-fit indices.

Response properties can be incorporated into the resource model assuming
that the PPR models, built at the scale (support) of laboratory samples, can be
up-scaled to block model volumes. If the focus is on minimum variance unbi-
ased estimates, using kriged inputs, the best selected models should be used
to predict the response variables. If the focus is on uncertainty quantifica-
tion and risk assessment, geostatistical simulations should be used to generate
many realizations of the block model. For each realization, all selected PPR
models should be applied to quantify the metallurgical response variables.
Some authors suggest that few realizations, from 10 to 25, are sufficient for



58 Chapter 2. Multivariate modelling of geometallurgical variables

optimization problems (Ramazan and Dimitrakopoulos, 2013; Marcotte and
Caron, 2013; Kumral, 2013) and others use more than 25 realizations (Arm-
strong and Galli, 2012; Lagos et al., 2011; Amankwah et al., 2013). For example,
if there are 100 realizations of the block model and 20 different bootstrapped
recovery models, the total number of realizations incorporating geometallur-
gical variables would be 2,000. A large number of realizations such as this can
effectively quantify the uncertainty in mine planning and design, although the
optimization procedures in this context remain extremely challenging. Fortu-
nately, the combination of increasing computing power and more efficient op-
timizers should enable large numbers of realizations to be dealt with, a topic
that the authors are working on.

2.6 Conclusions

The presented results have demonstrated that PPR models are superior to MLR
models mainly due to their ability to find the best directions onto which data
can be projected to reveal underlying relationships and correlations. The im-
provement in prediction performances of PPR over MLR models is consistent
and in some cases very significant. Feature selection proved to be efficient in
the case study. For comminution response variables, the inclusion of qualita-
tive information significantly enhanced the performance of the models, sug-
gesting that rock properties are more important than grade variables for these
response variables. For recovery response variables, the inclusion of qualita-
tive information also improves (but more modestly) the prediction capability
of the PPR models. A selected subset of unbiased bootstrapped models can
provide a means of quantifying uncertainty for risk assessment purposes. Fur-
ther research could be done on formulating interestingness indices other than
explained variance; in particular, an index that measures the linearity of rela-
tionships between predictors and dependent variable may provide an effective
means of dealing with non-additivity of many geometallurgical variables. This
could be an initial step towards transforming a non-linear problem into a linear
one, and thereby solve the upscaling problem.
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Abstract

The incorporation of the uncertainties of geometallurgical variables in mine
planning provides new opportunities for decision-makers to analyse, compare
and choose among many scenarios to achieve an optimal balance between
economic and operational objectives. This research focuses on maximising
economic return and minimising the risk arising from the uncertainty asso-
ciated with geometallurgical variables. We formulate two-objective optimisa-
tion problems based on an underground mining operation. The first objective
is the maximisation of the Net Smelter Return, which includes penalties as-
sociated with deleterious elements in concentrates. Four different objectives
were tested as candidates for the second objective: Volatility, Value at Risk,
Conditional Value at Risk and deviation from the planned production target.
The first three are measures of economic risk and the fourth is a measure of
operational risk. Uncertainties in metal grades, geometallurgical recoveries
and grades in concentrate are included in the proposed model. Our results
demonstrate that geometallurgical uncertainties can be successfully integrated
into production scheduling optimisation in a multi-objective approach and the
problem can be solved using genetic algorithms to yield useful conclusions to
support the decision-making process.

Keywords Geometallurgy; uncertainty; risk assessment; production schedul-
ing optimisation; multi-objective optimisation; block caving.

3.1 Introduction

The complete value chain of a mining project is subject to uncertainties that
complicate the decision-making process. Internal uncertainties are present
in resource models and in processes such as blasting, grinding and mineral
processing, whereas external uncertainties are present in, but not limited to,
prices, commodities costs and other externalities (Vann et al., 2012). These
uncertainties are probably the most significant causes of projects not meeting
initial expectations and it is, therefore, crucial to quantify them to assess com-
pletely the risk of not achieving expected outcomes. McCarthy (2003) reports
that, among the causes of project failure, the three most important are mine de-
sign and scheduling, geology, and metallurgy. The sources of risk in a mining
operation that can affect its feasibility can be classified into three groups: tech-
nical, financial and environmental (Dimitrakopoulos, 1998; Dowd, 1994, 1997).
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Commodity prices, foreign exchange rates and production costs are the most
common examples of uncertain financial variables, while geological, geotech-
nical, and metallurgical variables are examples of technical risk sources. En-
vironmental risk is largely technical in nature and has consequences that are
technical, financial, organisational, and the social licence to operate.

Financial uncertainty is regarded as a critical component and has been a
significant focus of research in uncertainty assessments of mining operations.
Grobler et al. (2011) presented a strategic mine planning optimisation prob-
lem considering multiple processing and mining capacities as well as the price
uncertainty. This study showed a trade-off between return and risk, which
is defined as the probability of making a loss. Groeneveld and Topal (2011)
modelled the uncertainties in metal prices, capital costs, operating costs and
plant performance using Monte Carlo simulations with some well-known dis-
tributions. They developed a new algorithm based on dynamic programming
and the branch and bound method with price uncertainty. Amankwah et al.
(2013) modelled the uncertainty in metal prices using the lognormal distribu-
tion while others used the Wiener process (Dimitrakopoulos and Sabour, 2007;
Evatt et al., 2012). Whilst financial uncertainty assessment is obviously impor-
tant for mining operations, the focus of the work reported here is geological
and metallurgical uncertainty.

Geometallurgy is emerging as a specific sub-discipline in the assessment,
evaluation and design of mining projects. It combines expert knowledge and
data from geology and metallurgy, and it claims to have made a substantial
improvement in the design, operation and evaluation of mining operations
(Dunham and Vann, 2007; Coward and Dowd, 2015). Among all technical
risks, geometallurgy plays a critical role. Geological uncertainty has been a
focus of research for many years and geostatistical simulation (Journel, 1974;
Dowd, 1994) is widely used to quantify geological risk and its impact on plan-
ning, design and production. Geostatistical simulations overcome the prob-
lems of bias and unrealistic production expectations associated with conven-
tional approaches that are in general, based on a fixed (deterministic) resource
model, often generated by kriging or other spatial weighting methods (Dowd
and Dare-Bryan, 2004; Dimitrakopoulos, 2011). Early work in minerals project
risk assessment focused on generating stochastic block models and indepen-
dently optimising realisations of the block model to generate a complete dis-
tribution of possible values of an objective, usually the NPV (Dowd, 1994,
1997) as a means of quantifying risk. The next development in stochastic
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risk assessment was the application of stochastic optimisation. Dimitrakopou-
los (2011) optimised the scheduling of an open-pit mine including geological
uncertainty and offered two stochastic methods. In another development, a
two-stage simultaneous stochastic optimisation method was used to solve si-
multaneously the problems of ore-waste discrimination and block sequencing
(Kumral, 2013). Similarly, grade uncertainty was included in the production
scheduling problem using meta-heuristic stochastic optimisation (Lamghari
and Dimitrakopoulos, 2012). Benndorf and Dimitrakopoulos (2013) combined
three objectives - the maximisation of NPV, minimisation of deviations from
production targets, and smoother mining sequences - into a single optimi-
sation problem using 20 simulated orebodies generated by geostatistical co-
simulations. Montiel et al. (2016) presented a method that optimises mining
complexes (open-pit and underground operations) and multiple processing
destinations. They accounted for geological uncertainty by orebody simu-
lations and the optimisation was performed using the Simulated Annealing
metaheuristic. Their results showed a higher NPV and a reduced risk. Here,
risk is quantified by deviations from capacities in mines, transport systems,
processing destinations and operational properties.

Geometallurgy enriches the block model with additional information that
should improve the overall optimisation of a mining operation. Important
metallurgical performance indices, such as recovery and grindability, can be
predicted largely by indirect methods such as regressions or simulations of the
milling and recovery processes.

The element-to-mineral approach (Lamberg, 2011; Lund et al., 2015; Parian
et al., 2015) is based on regressing mineralogy data on metallurgical perfor-
mance measures. Grades may be good predictors of mineralogy but, in gen-
eral, they do not directly explain metallurgical performance. Techniques such
as QEMSCAM, X-ray diffraction and scanning electron microscopy are nor-
mally used to characterise mineralogy, which is then used to improve the pre-
diction of mineral grades and metallurgical response properties. Boisvert et al.
(2013) modelled head grades, mineralogy (mineral size and distribution) and
mineral associations using multivariate linear regressions and these regression
models were used to predict several plant performance variables. Hunt et al.
(2014) used both qualitative and quantitative primary rock properties such as
multi-element geochemistry and sulphide speciation classes, and derived lin-
ear regression models for copper recovery. Similar qualitative and quantita-
tive primary rock properties were also used recently to build models that can
overcome non-linearity by project pursuit regression (Sepúlveda et al., 2017).
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An alternative to regression models is via direct simulations of metallurgical
processes. For example, Tungpalan et al. (2015) used mineralogical character-
isation to simulate the processes of comminution, classification and flotation
to predict metallurgical performance. This simulation approach is promis-
ing but it remains a challenge to include it directly in planning optimisation
problems because process simulations are generally computationally expen-
sive and highly time-consuming.

Regression models and simulations can be used to populate block models
with geometallurgical values to improve decision-making. Whilst this is the
primary purpose of geometallurgical modelling, there has thus far been very
little research into incorporating geometallurgical variables and their uncer-
tainties directly into mine optimisation.

Production scheduling is an integral part of mine optimisation. The stochas-
tic scheduling problem for open-pit mines has been covered extensively by
many researchers (Gholamnejad and Osanloo, 2007; Ramazan and Dimitrakopou-
los, 2013; Lamghari and Dimitrakopoulos, 2012; Silva et al., 2015; Goodfellow
and Dimitrakopoulos, 2016). The problem for underground mines is much
more complex because there are many variations in mining methods and a
generalized approach is impractical. In this research, we target a block caving
mining operation because this mining method is increasingly being used in
deeper and lower grade orebodies.

The deterministic scheduling problem has been solved using various meth-
ods. By way of example, Yashar et al. (2013) used a multi-step, mixed inte-
ger linear programming (MILP) formulation. To overcome the size problem, a
clustering technique was applied to solve the problem at different scales. The
NPV was maximised for 298 draw-points over 15 years. Rahal et al. (2003) used
a different MILP formulation to reduce deviations in two objectives: the ideal
depletion rate and the deviation from production targets. Compared with
open-pit mining, there has been very little research into stochastic schedul-
ing of block caving; this view is supported by the review of mathematical
methods for block caving scheduling problem undertaken by Khodayari and
Pourrahimian (2015). Rubio and Dunbar (2005) used historical forecasts and
production data to define the reliability of a draw-point in a block caving oper-
ation as the ability of different production strategies to achieve production tar-
gets. The reliability index, defined as an indicator of the deviation of planned
tonnage to be drawn from a draw-point, could be used as a measure of risk.
Nezhadshahmohammad et al. (2017) presented a MILP formulation to opti-
mise the scheduling of draw columns in a block caving operation subject to
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the depletion rates of all adjacent draw-points. They applied the model to a
case study of 325 draw-points over 15 production periods.

Including some risk minimisation is a significant step forward in realistic
stochastic optimisation. However, the issue of providing a meaningful final
decision remains, i.e., the selection of a schedule given all available informa-
tion and the associated risk. This is not a simple issue and, in general, it is a
compromise between economic and operational objectives. In other words,
pursuing higher economic returns would attract higher risk, but less risky
schedules may be less attractive in terms of potential economic returns. In gen-
eral, this trade-off can be quantified by using multi-objective optimisations.
However, the majority of formulations in published research in this area are
based on weighted objectives that transform the problem into a supposedly
equivalent single objective problem, which does not guarantee that the origi-
nal multiple objectives are optimised. The work reported in this paper offers
a methodology to formulate a multi-objective optimisation that can be used to
assist effective decision-making in block caving mining operations, including
the uncertainties in the geometallurgical variables.

In the following sections the methodology is explained in detail, the con-
cepts of quantifying uncertainty, risk measures and optimisation under uncer-
tainty are discussed, and a set of bi-objective formulations is proposed. The
proposed methodology is implemented on a case study and the results and
further research recommendations are discussed.

3.2 Methodology

3.2.1 Quantification of uncertainty

Uncertainties are present in the entire mining value chain. In resource mod-
els, uncertainty of grades and tonnage are usually quantified by geostatis-
tical simulations. Geological uncertainty may be misunderstood or under-
estimated due to averaging at different scales, producing a double-smoothing
effect, which can impact on the prediction of processing performances. In pro-
cessing, there are additional uncertainties related to deleterious elements and
contaminants that affect performance, and they must be incorporated. Other
sources of uncertainties can be included by incorporating them at appropri-
ate stages, for example, mining depletion, mining allocation, stockpiling and
blending, mineral processing. Metallurgical responses (and their uncertain-
ties) can be predicted by process simulation, which may be accurate but require
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calibration using standardised laboratory-scale tests. Linear, or non-linear, re-
gression models based on laboratory tests are also used for predicting metal-
lurgical responses (Vann et al., 2012). The uncertainties in geology and mineral
processing can be classified as geometallurgical uncertainties.

The primary-response framework (Coward et al., 2009) allows the quan-
tification of geometallurgical uncertainties. In this framework, primary ge-
ological variables, such as grades, mineralogy and rock type, are identified
as proxies for some response variables such as recoveries and grindability in-
dices. The prediction models for metallurgical responses can be generated by
regressions or process simulations, as discussed above.

In this paper, the focus is solely on quantifying geometallurgical uncertain-
ties, but the methodology can also be used to incorporate other uncertainties
in the value chain.

Geometallurgical uncertainty

Geostatistical techniques can be used to quantify the uncertainties of vari-
ables that are spatially correlated. The kriging estimator, for instance, gives
smoothed, minimum variance, unbiased estimations of the variables, which
gives a rudimentary measure of the uncertainty associated with the estimated
values of the variables. Geostatistical simulation provides a more comprehen-
sive and realistic quantification of uncertainty that can give a full distribution
of possible values at the desired scale. However, many geometallurgical vari-
ables, such as recovery rate and comminution energy consumption, have non-
linear relationships with primary variables and are non-additive. These issues
make it inappropriate to use standard geostatistical methods to simulate the
variables directly. A data-driven approach is used in this research to derive a
clear relationship between primary and metallurgical response variables. The
method used is projection pursuit regression (PPR), which can deal effectively
with non-linearity and performs very well in geometallurgical variable mod-
elling (Sepúlveda et al., 2017).

3.2.2 Risk measures

The following basic risk measure is used in this research. Let X be a random
variable with a cumulative distribution function:

Ψ(X, ζ) = P(X|X < ζ). (3.1)
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If the distribution of X represents a loss function, the focus would be on
its upper tail. For instance, for the distribution of deviations from production
targets, the interest would be in the deviations that exceed certain thresholds.
On the other hand, if the distribution is for the financial return or revenue, the
focus would be in the lower tail, i.e., the value of the economic return less than
a minimum target value. In this case, the risk measure can be quantified using
the probability function (Eq. 3.1) and the threshold.

Volatility

The simplest and most widely used measurement of risk is the variance (or
some function of variance, such as the coefficient of variation), which quanti-
fies the variability or volatility of the variable.

Volatility is a non-negative value. Zero volatility means there is no uncer-
tainty. Higher values mean higher dispersion, implying higher risk.

Value at risk

The value at risk (VaR) is a measure of the risk of extreme events occurring
(Rockafellar and Uryasev, 1997). For a given confidence interval α, the VaR is
the value ζ such that the probability of all values is greater than ζ is at least α,
i.e.,

VaR
α

= inf ζ ∈ R : Ψ(X, ζ) ≥ α. (3.2)

Taking the economic return as an example, a 95% VaR of $10M means that
there is 95% of probability that the economic return will be at least $10M. If the
random variable represents deviation from production targets, a 90% VaR of
10Mt means that there is a 90% chance that production will deviate from target
for less than 10Mt.

Conditional value at risk

The VaR indicates only a threshold of a distribution at a certain confidence
level but it does not indicate the magnitude of possible values greater than
the threshold. For the former example, a VaR for the deviation from a target
of more than 10Mt at 90% probability does not give the expected deviation of
all deviations greater than the threshold. From an operational point of view,
quantifying the expected deviation from the production target in an extreme
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(A) (B)

FIGURE 3.1: Volatility, VaR and CVaR in a (A) loss and (B) rev-
enue distribution.

event (VaR) would be helpful and the minimisation of this value may assist in
identifying less risky scenarios.

Conditional value at risk (CVaR) is therefore defined as the expectation of a
revenue function for an extreme event (VaR) at some level of risk (Rockafellar
and Uryasev, 1997). Formally CVaR is defined as:

CVaRα = E(R|R < VaRα). (3.3)

The relationships between VaR and CVaR defined above are shown in Fig.
3.1 using both a generic (A) loss and (B) revenue distribution (Sarykalin et al.,
2008).

Once the distribution is known, the risk measures discussed above can then
be quantified at a desired confidence level. For the geometallurgical problem,
there are two basic distributions to be derived for risk quantification. The first
is the distribution of variables at block scale, such as metal content (grades), re-
coveries and concentration of deleterious elements in each block. The second
distribution corresponds to derived variables as a function of the stochastic
block model and the operations, such as total NSR, energy costs and concen-
tration of deleterious elements in concentrates for a given schedule. Both these
distributions will be used in the following sections to formulate the optimisa-
tion problems.
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3.2.3 Optimisation under uncertainty

The mine optimisation problem with deterministic variables has been exten-
sively studied. If the problem can be formulated as a linear problem with lin-
ear constraints, techniques such as linear programing (LP) and mixed integer
linear programming (MILP) can be used to find the exact optimum solution.
For non-linear optimisation problems, the common approach is to formulate
the optimisation as a linear or quadratic problem and then solve the problem
using LP, but unfortunately not all problems can be transformed into a linear
formulation. A method for solving LP and MILP is the branch and bound
technique, which involves representing the solution space (set of all feasible
solutions) by a rooted tree (with branches representing subsets of the space)
and reducing this space as quickly as possible after discarding branches that
are non-optimal. The branch and bound technique, devised by Land and Doig
(1960), is particularly useful for solving combinatorial optimisation problems.
Although exact optimisers for solving LP and MILP models are ideal, many
problems either cannot be formulated in the manner required by exact al-
gorithms or the size of the problem makes it computationally intractable for
them.

The complexity increases significantly for optimisation problems that in-
clude stochastic variables. If the stochastic variables can be defined analyti-
cally there is a good chance that the problem can be solved mathematically un-
der the condition of convexity. Unfortunately, this condition is frequently not
met. If an analytical solution is not possible, the problem can be solved numer-
ically using Monte Carlo sampling. In this approach, the decision variables are
repeatedly sampled a certain number of times to form the sample space within
which the problem becomes deterministic. This method is simple but may be
difficult to implement in practice when there are many stochastic variables in-
volved and Monte Carlo sampling may become computationally expensive.
In addition, objectives and constraints might include some features of these
variables, such as their expectation, variance and probabilities. Another solu-
tion method is stochastic programming with two-stage programming as the
most popular option. To solve the problem, a decision needs to be taken (first
stage), and once that decision is taken the problem becomes deterministic (sec-
ond stage). This strategy can be extended to multi-stage formulations. For
large-size problems, this method is often more computationally expensive to
solve that LP and MILP problems.

To overcome these practical problems, heuristic approaches can be applied
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to obtain good solutions in a reasonable amount of time. Among these ap-
proaches, meta-heuristic methods have shown excellent capabilities for solv-
ing complex stochastic optimisation problems. One significant advantage of
the meta-heuristic approaches is that they are algorithmic-oriented, i.e., objec-
tives and constraints are defined as functions of stochastic variables. Thus,
provided an efficient computing algorithm is used to evaluate these functions,
the meta-heuristic method can solve the problem irrespective of the complexity
of the functions and problem size, giving good scaling properties. This feature
makes meta-heuristic methods a very attractive option for solving complex op-
timisation problems. For example, although in principle VaR and CVaR can be
formulated as a MILP, the optimisation can be very complex (Rockafellar and
Uryasev, 1997; Schultz and Tiedemann, 2006). If the meta-heuristic method
is used, the computation of objectives and constraints becomes much easier.
For example, VaR and CVaR are computed by building the cumulative sample
distribution and selecting the desired quantile.

Necessity for multi-objective optimisation

In a decision-making process, there are very often two or more competing ob-
jectives. If uncertainties are included, any objective may be restricted by a risk
threshold defined by the decision-maker. When the only criterion is the max-
imisation of the economic return, other criteria may be affected; for example, it
may be that the schedule with the highest revenue incurs the highest deviation
from some production target or that it has the highest variance among all sce-
narios. It is important to understand this trade-off, which in multi-objective
optimisation, is expressed as the Pareto front (PF) (Marler and Arora, 2004).
For two objectives, the PF is a curve but it can easily be generalised. The PF
has an important characteristic: for any pair of solutions S1 and S2 on the PF, S1

does not dominate S2 and vice versa, but both dominate any feasible solution
S3 not on the PF. The concept of dominance allows the finding of solutions that
are optimal but different. Formally, a solution S1 dominates a solution S2: (i) if
at least one objective is improved, (ii) any objective does not worsen. In the ex-
ample shown in Fig. 3.2, C improves both objectives compared to E, therefore
C dominates E, but A does not dominate C because A improves f1 but worsens
f2. Finding this PF is not trivial.

A general multi-objective optimisation problem can be formulated as fol-
lows:

arg min f1(x, Y), f2(x, Y), . . . , fn(x, Y) (3.4)
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FIGURE 3.2: Pareto Front diagram. A, B and C are non-
dominated solutions. D is unfeasible and E is feasible but domi-

nated.



76 Chapter 3. The optimisation of block caving production scheduling

g(x, Y) ≤ 0 (3.5)

h(x, Y) = 0 (3.6)

LB ≤ x ≤ UB (3.7)

where fi(x, Y) is the set of objective functions being optimised, g(x, Y) repre-
sents the inequality constraints, h(x, Y) the equality constraints, and LB/UB
are the lower and upper bounds of the decision variable x. The variable Y
denotes the variable under uncertainty.

For convex PF, the problem can be reduced to a weighted single objective
problem:

arg min
n

∑
i−1

wi fi(x). (3.8)

The PF can be approximated by using appropriate values of w, which are
unknown in practice and hard to calibrate. When the PF is not convex, this
approach fails to find hidden optimal solutions, solution B in Fig. 3.2 for ex-
ample, which may be relevant to decision-making processes, and they should
not be ignored.

Meta-heuristic approaches have several important characteristics: first, they
are algorithmic-oriented, which facilitates the computation of complex objec-
tives and constraints; second, they offer a good approximate solution to the PF
for convex and non-convex problems, and third, they can solve large problems
that cannot be solved by traditional solvers. However, these approaches can-
not guarantee that the PF solution is optimal, but they do provide good quality
solutions in a reasonable amount of time.

Genetic algorithms

There are several meta-heuristic methods that have been successfully used
for multi-objective optimisation problems. These include: local search, tabu
search, simulated annealing, evolutionary algorithms and swarm intelligence
(Bianchi et al., 2009). Among evolutionary algorithms, genetic algorithms (GA)
have been extensively and successfully used in many areas of engineering. It
is not the intention in this paper to give an exhaustive account of GA, but a
general overview is given below.

GA imitates the evolutionary process in nature by applying selection, mu-
tation and mating to a population over many generations. A population in this



3.2. Methodology 77

case is formed by a set of individuals that represent the solutions. An individ-
ual has a genome, which is improved (as measured by objective functions) by
genetic operations in the evolutionary process. For a specific problem, coding
a solution into a genome is one of the most important steps in a GA approach.
Whitley (1994) gives a detailed review of GA.

GA has been a very active research topic and it has many specific imple-
mentations. In the case of multi-objective optimisation, the fast non-dominated
sorting genetic algorithm, NSGA-II, performs well in approximating the PF
(Deb et al., 2002) and has been used in the research presented here.

3.2.4 Mathematical formulation

The formulation for optimising block caving scheduling presented here is based
on a simplified formulation of the work by Nezhadshahmohammad et al. (2017).
In that formulation, which uses a deterministic model instead of simulated
scenarios, the objective function is the maximisation of the NPV. The con-
straints are mining capacity, production grade, maximum number of active
draw-points, precedence of draw-points, continuous extraction, number of
new draw-points, reserves and, draw rate. Three decision variables were used:
a) a continuous variable defined as the portion of a draw column to be ex-
tracted in a period, b) a binary variable that indicates whether a draw-point
is active in a period, and c) a binary variable that controls the starting period
for extraction from a draw-point. They used simulations to characterise the
material drawn from a draw column comprised of several consecutive slices.
Each slice contains an economic value, tonnage, grade and dilution.

In our simplified formulation, the most significant differences are that we
use only one decision variable, include geometallurgical variables under un-
certainty, and use block-scale revenue. A simple gravity flow procedure de-
termines the blocks that will be drawn from a draw-point as a deterministic
sequence. Also, for simplicity, the only constraints used here are mining capac-
ity and reserves, as we assume all draw-points are active from the first period.
However, any additional constraints can be included in the GA algorithm.

The use of block-scale revenue, which is a distribution of possible values
depending on the scenarios, allows geometallurgical variables to be incorpo-
rated at the appropriate scale as we show in the formulation section.



78 Chapter 3. The optimisation of block caving production scheduling

Definitions and parameters

The following definitions are used in the formulation of objectives and con-
straints:

B the number of blocks in the block model.
S the number of scenarios.
T the number of periods.
D the number of drawpoints.
b index for blocks, b ∈ [1, 2, . . . , B].
s index for scenarios, s ∈ [1, 2, . . . , S].
t index for periods, t ∈ [1, 2, . . . , T].
d index for draw-points, d ∈ [1, 2, . . . , D].
Fd the queue of all blocks to be drawn from the d-th draw-point. Fd

j
denotes the j-th index of Fd.

nsrb,s pre-calculated net smelter return (NSR) value for each block per
scenario. This is a matrix of rank (B, S).

tonsb tonnage for each block. This is a vector of size B and calculated
as the product of density and volume.

dr discount rate.
C production target.
LT lower bound for tonnage.
UT upper bound for tonnage.
MAXBd maximum number of blocks to be extracted from any draw-point

d in any period.
α confidence level for VaR and CVaR.

Decision variables

Production scheduling is defined as the tonnage drawn from each draw-point
in each time period. This is equivalent to determining the number of blocks
that can be extracted from each draw-point in each time period. Once the
sequence F is determined for each draw-point, it is straightforward to calculate
the subset of blocks to be drawn from a draw-point in any period. For example,
if the numbers of extracted blocks are 40 and 50 for the first and second periods
respectively, the extracted blocks in the first period are the first 40 elements of
F and for the second period, are the following 50 elements of F starting at
position 41. In general terms, the blocks extracted in any period depend on the
accumulated extraction of all previous periods. For such a simplified approach
for ore-drawing, the only decision variable related to ore extraction is:
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xdt: number of blocks to be extracted from the draw-point d in period t.

We can, therefore, define the following function EB(x, d, t) to determine the
subset of blocks to be extracted from draw-point d in any period t that depends
on x and F:

EB(x, d, t) = {Fd
j }, ∀j ∈ {k, . . . , k + xdt}, k =

t−1

∑
i=1

xd,i. (3.9)

The EB function is the base function for the calculation of several different
objectives.

Objective formulations

The traditional net present value (NPV) approach does not usually take into
account the effect of geometallurgical variables and is generally calculated as
NPV = grade ∗ tonnage ∗ recovery. The use of the net smelter return (NSR),
as an alternative to the traditional NPV, is a more useful way of incorporat-
ing geometallurgical variables. NSR is defined as the value of minerals after
the deduction of all off-mine processing and selling costs (Goldie and Tredger,
1991). The NSR calculation involves not only grades, but also recoveries, grade
in concentrate, smelting and treatment charges, marketing, freight costs, metal
prices and any deductions such as penalties for high concentrations of delete-
rious elements and other losses. The NSR valuation is clearly closely related to
the purpose of including geometallurgy in mine optimisation, i.e., to improve
decision-making through the integration of geology and metallurgical knowl-
edge. The NSR calculation involves both primary variables and geometallur-
gical response variables.

NSR calculation The Net Smelter Return includes the value of any element
of interest, such as copper and gold, in concentrate after any deductions.

The NSR value for each block model is a function of ore grades, geometal-
lurgical variables, costs and prices as listed in the following table:
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Symbol Description Example

Gcu Copper grade (geometallurgical). 2.3%
Rcu Recovery rate of copper to concentrate (ge-

ometallurgical).
80%

Ccu Copper grade in concentrate (geometallur-
gical).

31.2%

Pcu Copper price. 3.10 $/lb
Gau Gold grade (geometallurgical). 0.3g/t
Rau Recovery rate of gold in concentrate (ge-

ometallurgical).
72%

Cau Gold grade in concentrate (geometallurgi-
cal).

5.7g/t

Pau Gold price. 1,316.43 $/oz
Dcu Copper deduction. 1.0 untis
Ycu Payable copper percentage. 100%
RFcu Copper refining charge. $0.08
Dau Gold deduction. 0.7 oz/t
Yau Gold deduction percentage. 88%
RFau Gold refining charge. $6.0
K f Penalty charge of fluorine. $1.5 each

100ppm
TK f Threshold to apply penalty (in concen-

trate).
300ppm

S: Smelter charge. $80
F Freight cost. $1.94

Gross value in concentrate is:

CGcu = (Ccu/100.0) ∗ Pcu ∗ 2204.6

CGau = Cau ∗ Pau ∗ 0.03215
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Payable metal in concentrate:

PYcu = (Ccu − Dcu) ∗Ycu

PYMcu = PYcu ∗ Pcu ∗ 2204.6/100.0

PYau = (Cau − Dau) ∗Yau

PYMau = PYau ∗ Pau ∗ 0.03215

TP = PYMcu + PYMau

Penalties due to fluorine in concentrate:

N f = 0 if(C f > TK f ) else C f ∗ K f

Payable gross value:

TGP = TP− (S + F + N f )

NSR per metal:

PPcu = PYcu/TP

GPcu = PPcu ∗ TGP

RVcu = Rcu ∗ 2204.6 ∗ (PYcu/100.0)

PPau = PYMau/TP

GPau = PPau ∗ TGP

RVau = Rau ∗ 0.03215 ∗ PYcu

CNSRcu = GPcu − RFcu − N f

CNSRau = GPau − RFau

NSRcu = CNSRcu/Ccu ∗ (Rcu/100.0) ∗Gcu

NSRau = CNSRau/Cau ∗ (Rau/100.0) ∗Gau

nsr = NSRcu + NSRcu

A complete guide to NSR calculation can be found in Goldie and Tredger
(1991).
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NSR function Five of the six objectives used in our formulations depend on
the distribution of NSR calculated for a feasible solution over all scenarios.
The calculation of NSR for a scenario s is the basis for generating the NSR
distribution. NSR is given by:

NSRs(x) =
D

∑
d=1

T

∑
t=1

1
(1− dr)t−1 ∑

b∈EB(xdt)

nsrbs. (3.10)

The distribution of NSR is denoted as PDF(NSR) and it is represented by the
discrete set given by:

PDF(NSR) = {NSRs(x), ∀s ∈ S}. (3.11)

Expectation and variance of NSR The expected NSR value is calculated as
the expected value of PDF(NSR):

f1(x) = [PDF(NSR)] = 1/S
S

∑
s=1

NSRs(x). (3.12)

The standard deviation of NSR is also straightforward to calculate:

f2(x) =

√√√√1/S
S

∑
s=1

[NSRs(x)]2 − [1/S
S

∑
s=1

NSRs(x)]2. (3.13)

Value at risk and conditional value at risk of NSR The calculation of VaR
and CVaR is done over the NSR distribution. Conceptually both are simple to
formulate and calculate, but difficult to optimise as MILP formulations. How-
ever, as the formulation here are not necessarily MILP, only their evaluations
are needed.

The objective function for maximising VaR is given by:

f3(x) = VaRα(NSR(x)), (3.14)

for this case, Ψ(x, ζ) (from Eq. 3.2) is calculated algorithmically, this is, sorting
all NSR values and finding the NSR value at the location b(1− α)Sc. For ex-
ample, for S = 100 and α = 90%, the VaRα is located at the 10-th sorted NSR
value.

Consequently, the objective function to maximise the CVaR is given by:

f4(x) = CVaRα(NSR(x)). (3.15)
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Similar to VaR, CVaR is calculated sorting all NSR and calculating the av-
erage of all NSR located to the left where the VaR value is located.

Deviations from production targets Under the assumption of fixed density
of any block, the deviation from production targets calculation is given by:

f5(x) = |C−
D

∑
d=1

T

∑
t=1

∑
b∈EB(xdt)

tonsb|. (3.16)

NSR of VaR at block scale An alternative for risk minimisation is to use the
VaR at block scale, i.e. the VaR of all nsrbs, for any block b. This is a measure of
the worst possible case for each block, which is a very pessimistic, and highly
unlikely, case. This value, denoted by VaR(nsrb), transforms the discrete ran-
dom variable nsr into to a deterministic value and the objective function is,
therefore, also deterministic, as opposed to Eq. 3.12, in which the expectation
is used.

The calculation of NSR using VaR(nsrb) is given by:

f6(x) = NSRVaR(x) =
D

∑
d=1

T

∑
t=1

1/(1− dr)t−1 ∑
b∈EB(xdt)

VaR(nsrb). (3.17)

Note that VaR(nsrb) can be pre-calculated for all blocks.

Bi-objective optimisation problems Maximising NSR is one of the most im-
portant objectives for medium- and long-term mine planning. Operational
objectives, such as meeting production targets, are also important especially
when there are contractual obligations. In this case, the minimisation of devi-
ations from production targets (DPT) will contribute to reducing operational
risk. For both objectives, the risk associated with geometallurgical uncertainty
can also can be minimised using the proposed risk measures.

The traditional approach of optimising each scenario independently is use-
ful as a general way to assess risk. When each scenario is independently op-
timised, the resulting distribution of all maxima can be used to quantify the
risk involved (Fig. 3.3). The objectives of economic valuation and deviation
from production targets are combined to define the following five bi-objective
problems (also denominated cases):

A Maximisation of the expected NSR and minimisation of the standard de-
viation of NSR (Eq. 3.12 and 3.13).
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B Maximisation of the expected NSR and maximisation of VaR(NSR) (Eq.
3.12 and 3.14).

C Maximisation of the expected NSR and maximisation of CVaR(NSR) (Eq.
3.12 and 3.15).

D Maximisation of the expected NSR and minimisation of DPT (Eq. 3.12
and 3.16).

E Maximisation of the NSR of the VaR at block scale and minimisation of
DPT (Eq. 3.17 and 3.16).

The first four problems involve the maximisation of the expected NSR.
There is a subtle difference between the fifth problem and the other problems.
Instead of calculating the NSR for all scenarios, the VaR of the NSR are calcu-
lated at block scale, which represents the extreme event for each block over all
scenarios.

Constraints

Mining capacities

LT ≤ g1(x) =
D

∑
d=1

T

∑
t=1

∑
b∈EB(xdt)

tonsb ≤ UT. (3.18)

Lower and upper bounds on decision variables As xdt represents the num-
ber of blocks drawn from draw-point d in the period t, X ≥ 0 and the upper
bound is the parameter MAXBd:

0 ≤ xdt ≤ MAXBd, ∀d, ∀t. (3.19)

3.3 Case Study

3.3.1 Description

This case study uses real data from an operating mine but with a set of fictitious
parameters. The mine is a massive panel caving operation and the main metals
are gold and copper, which are mainly sold in copper concentrates. A block
caving plan has been defined for a volume of approximately 380×120×150 m;
it contains 231 draw-points with an average draw of 464.4 kt per draw-point
per year.
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The block model for this caving volume comprises 560,000 blocks of size
5×5×5 m. In addition to gold and copper, the block model has five additional
elements: iron, sulphur, molybdenum, copper cyanide and fluorine. Fluorine
is a deleterious element and a high level in the concentrate will attract a penalty
as it will have a negative impact on the smelting process. As the impact of
deleterious elements could be high, the use of the NSR valuation model incor-
porating geometallurgy is more realistic than the simple NPV valuation.

The NSR calculation requires the grades of copper and gold, grade of flu-
orine as a deleterious element, ore recovery of copper and gold, and grade in
concentrate for copper, gold and fluorine.

From more than 200 metallurgical tests at laboratory scale, regression mod-
els for ore recovery a) of copper and b) gold, grade in concentrate for c) copper,
d) gold and e) fluorine were built using projection pursuit regression (PPR),
as detailed in Sepúlveda et al. (2017). The input variables for these five PPR
models are seven ore grades: copper, gold, iron, sulphur, molybdenum, cop-
per cyanide and fluorine. To quantify the model uncertainty, 25 bootstrapped
PPR models were evaluated. The regression models were applied under the
assumption that the response variables are linearly scalable.

To quantify geological uncertainty, geostatistical simulations of these seven
inputs (grade variables) were used to build 25 realisations of the block model.
The framework of projection pursuit multivariate transform (Barnett et al.,
2014, 2016) was used in together with sequential Gaussian geostatistical simu-
lation.

In summary, the inclusion of geometallurgical uncertainty involves 625
combined realisations from the 25 geostatistical realisations of input variables
and the 25 PPR bootstrapped models applied to predict recoveries and grades
in concentrate. These 625 realisations are the scenarios used in all formulations
(parameter S = 625).

The geometallurgical block model used contains:

• Primary variables:

– Copper grade

– Gold grade

– Fluorine grade

– Specific gravity (to calculate tonnage)

• Secondary variables:

– Iron grade
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– Sulphur grade

– Molybdenum grade

– Copper cyanide grade

• Response variables:

– Copper recovery

– Gold recovery

– Copper grade in Concentrate

– Gold grade in Concentrate

– Fluorine grade in Concentrate

• Economic variables:

– Net smelter return

A hypothetical life of mine of 12 periods of one year each are used for this
study. All economic values are expressed in a fictitious monetary unit, but
using the dollar symbol $, to maintain the confidentiality of the real data used
in this paper.

3.3.2 Assumptions

As the main objective of this paper is to demonstrate a method for includ-
ing geometallurgical uncertainty in mine optimisation, four main assumptions
and simplifications were used:

• The caving process was simulated as a simple vertical particle flow with
no horizontal interactions.

• All draw-points are developed and active from the beginning.

• No operational constraints are imposed on neighbouring draw-points.

• Recovery and concentrate models derived from laboratory tests on sam-
ples can be scaled up to blocks.

More complex models without using these assumptions can also be built.
For example, instead of using a simple vertical flow for ore extraction, a more
realistic ore draw model can be used but with an increase in computational
cost. We are addressing the general upscaling problem (for the case of non-
linearity) in on-going research. The addition of more constraints is also simple
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TABLE 3.1: Parameters used in block caving optimisation.

Parameter Value
D 231
T 12
S 625
dr 10%
C 7500kt.
LT 7000kt.
UT 8000kt.
MAXB 200
α 90%

TABLE 3.2: Parameters used in GA.

Parameter Value
Population size 100
Number of generations 100
Probability of crossover 1.0
Probability of mutation 0.4
Tournament size 20

in the GA approach. Each constraint is simply a function to be evaluated and
evolution will ensure that bad (unfeasible) solutions are eliminated.

The values of the parameters used in the case study are presented in Table
3.1.

3.3.3 GA enconding

The GA coding is simple in this case and is based on the definition of the
decision variables. For D draw-points and T periods, the genome is a two-
dimensional array of integers of size (D, T). In any period, the maximum num-
ber of blocks to be extracted is 200 in any draw-point, and thus the maximum
tonnage in any period is 69.6 kt.

Three operators must be specified for GA: crossover, mutation and selec-
tion. For this case study, we have chosen the uniform binary crossover as the
operator. The mutation operator uses the uniform integer mutation and for
selection, the operator is tournament selection. We do not tune these operators
or their parameters (Table 3.2). The optimisation was performed several times
with different random number seeds all with similar results. As the focus of
this paper is not the GA optimisation itself, one representative instance is used
for illustration.
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FIGURE 3.3: Distribution of maximum NSR values for each sce-
nario.

3.4 Discussion

3.4.1 Independent maximisation of each scenario

The traditional approach for examining multiple scenarios in an optimisation
problem is to optimise them independently to produce the distribution of all
optimum values for each scenario (Dowd, 1994; Coward et al., 2013; Dowd
et al., 2016).

For the case study, as a result of maximising the NSR for each scenario,
there are 625 equally probable optimum schedules. Given all these schedules,
and assuming that all data are known with certainty, it is possible to calculate
the distribution of NSR (Fig. 3.3) and the deviation from production targets.
This provides an upper bound for the stochastic optimisation formulations; for
example, with 90% confidence the NSR will be at least $665.70 (VaR) and the
expected NSR for all values less than the VaR will be $655.25 (CVaR).

The results from this single objective approach will be compared to those
obtained from the bi-objective formulations discussed below.

3.4.2 Optimisation of the expected NSR and volatility

Volatility is the simplest measure of risk and it is added as a secondary objec-
tive in this combination. The primary objective is still the maximisation of the
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FIGURE 3.4: Pareto front of maximisation of NSR and minimisa-
tion of volatility.

expected NSR. The standard deviation of the distribution of NSR in all scenar-
ios is used here as a volatility measure.

The Pareto front in this case shows the expected economic return that would
have to be sacrificed to reduce the volatility or risk (Fig. 3.4). For example, 1.0
unit of risk volatility reduction corresponds to an approximate $14M reduction
in expected NSR for this operation.

3.4.3 Optimisation of the expected NSR and the VaR and CVaR

of NSR

One of the shortcomings of the volatility risk measure is that it does not de-
scribe the shape of the distribution and, in particular, the critical part of the
distribution, i.e., the tails. For example, two distributions could have similar
volatility but very different extreme values. Value at risk and conditional value
at risk take this into account. From a risk perspective, maximising the VaR and
CVaR of NSR would force the optimiser to find less risky solutions because
higher VaR and CVaR may imply a solution with favourable extreme events.

These two secondary objectives show a very narrow range for the case
study (Fig. 3.5). For example, VaR ranges from $613.58 to $613.71. The same
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(A) (B)

FIGURE 3.5: Pareto front of maximisation of NSR and maximisa-
tion of (A) VaR and (B) CVaR.

occurs with CVaR with values ranging from $597.38 to $597.41. The reason is
that the distribution of the global NSR changes very little in the left tail. This is
consistent with the scale effect. At block cave scale the VaR (at 90% confidence)
is very stable. This observation indicates that the global VaR and CVaR are not
good measures of risk for this case study.

3.4.4 Optimisation of NSR and deviation from targets

Another important objective from the operational perspective is to keep the
production tonnage as close as possible to the target so as to feed the plant.
When this objective is not considered in the maximisation of economic re-
turns, the resulting schedules usually have higher tonnages in early periods
and lower tonnages in later periods so as to maximise the return as soon as
possible, even if lower and upper bounds are imposed as in this case study.
Unfortunately, imposing a small, hard bound for tonnage could lead to infea-
sible solutions. A better approach is to use a larger bound and minimise the
deviations. Understanding the cost of such deviations is important for risk
assessment. The Pareto front of this bi-objective problem, shown in Fig. 3.6,
reflects exactly this point.

The two tails of the Pareto front show that there is a difference of 120k
tonnes from production targets with a value of $12M. Decision-makers can
evaluate the cost per tonne of deviation. Some researchers have introduced
penalties for each unit of deviation so that the optimiser seeks to reduce such
penalties in open-pit problems (Ramazan and Dimitrakopoulos, 2013; Good-
fellow and Dimitrakopoulos, 2016). This approach, however, has two main
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FIGURE 3.6: Pareto front of maximisation of NSR and minimisa-
tion of deviation from production targets.

drawbacks: (i) the optimal solution depends largely on the calibration of the
magnitude of the penalties, and (ii) it is not easy to discern the cost of the devi-
ation in terms of economic valuation. The bi-objective optimisation presented
here overcomes these drawbacks. No parameters are required except for the
production targets, which are known, and the generated Pareto front reveals
the structure of the cost of deviation.

The inclusion of the minimisation of the deviation from production targets
is very useful for minimising one particular component of operational risk.
The addition of the minimisation of economic risk would be better for general
risk assessment. One way to do so is to formulate a three-objective optimi-
sation problem: (i) the maximisation of average NSR, (ii) the minimisation of
deviations from production targets, and (iii) the minimisation of any risk mea-
sure such as volatility, VaR and CVaR. In practice, the Pareto front for a three-
objective problem is hard to visualise and interpret. A simplified and useful
alternative is to merge the objectives of maximising the economic return and
minimising economic risk. A combined strategy can be applied as the block
model contains the complete distribution of NSR at the block scale, which can
be used directly instead of using the expected NSR at block scale to compute
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FIGURE 3.7: Pareto Front of maximisation of NSR-VaR and min-
imisation of deviation from production targets.

the global NSR and minimising the VaR of the generated global NSR distri-
bution. The VaR of the NSR distribution at block scale can be used as a risk
measure at that scale. The main goal can then be achieved by maximising the
global NSR using the VaR at block scale where the optimiser finds a good solu-
tion based on a pessimistic situation (which is the VaR) and therefore the risk
is minimised jointly with maximised NSR. This approach allows the definition
of a new bi-objective optimisation problem: the maximisation of the NSR-VaR
and the minimisation of deviations from production targets.

The Pareto front shown in Fig. 3.7 may be difficult to interpret compared
with the previous ones. The NSR in this case is in fact the VaR at block scale,
which is negative in this case study, indicating losses, but these losses are min-
imised assuming the pessimistic event occurs. To see the actual NSR value, all
solutions from the Pareto front need to be used to calculate the average NSR.

3.4.5 Detailed view of some solutions from the Pareto front

The bi-objective formulations discussed above try to find optimal solutions
that maximise economic returns and minimise some risk measures. The re-
sults are summarised in Table 3.3 in which the extreme solutions at the Pareto
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TABLE 3.3: Statistics of all bi-objective formulations. Good solu-
tions are highlighted.

Schedule
Statistic

NSR vs Volatility NSR vs VaR NSR vs CVaR NSR vs DFT NSR-VaR vs DFT
(A) (B) (C) (D) (E)

LT UT LT UT LT UT LT UT LT UT
NSR-Mean 665.88 678.30 678.28 678.38 679.35 679.38 678.81 687.84 676.48 682.80
NSR-VaR 604.45 615.66 613.71 613.58 614.46 614.46 616.41 625.03 616.01 620.02
NSR-CVaR 588.81 599.16 596.67 596.77 597.76 597.73 598.56 606.53 598.82 602.99
Tonnage-1 7654.92 7857.65 7994.75 7986.07 7992.03 7995.16 7540.70 7861.10 7002.49 7232.99
Tonnage-2 7613.60 7752.75 7992.37 7992.38 7981.91 7981.91 7700.84 7833.51 7016.47 7331.48
Tonnage-3 7690.83 7818.97 7984.95 7984.95 7993.92 7993.92 7509.42 7814.38 7029.75 7431.58
Tonnage-4 7758.80 7849.92 7992.35 7999.64 7986.61 7986.61 7500.87 7609.87 7037.28 7493.37
Tonnage-5 7796.18 7913.80 7970.54 7970.54 7992.80 7996.28 7499.98 7613.75 7016.23 7498.93
Tonnage-6 7795.53 7890.76 7999.02 7999.02 7962.95 7972.66 7499.98 7567.24 7318.01 7499.67
Tonnage-7 7694.57 7842.07 7978.11 7978.47 7992.05 7994.13 7501.29 7531.84 7215.85 7500.87
Tonnage-8 7462.95 7533.80 7847.16 7856.89 7896.85 7896.86 7499.96 7502.43 7322.41 7498.15
Tonnage-9 7003.59 7027.19 7115.29 7124.65 7171.54 7171.53 7498.70 7508.29 7224.66 7499.39
Tonnage-10 7001.71 7003.80 7002.71 7020.17 7053.31 7052.61 7501.80 7484.93 7263.81 7494.21
Tonnage-11 7001.02 7008.49 7019.19 7019.11 7002.67 7006.15 7490.31 7328.56 7281.34 7499.09
Tonnage-12 7002.30 7004.31 7011.48 7016.67 7000.80 7006.69 7317.94 7161.87 7346.56 7494.52
DFT 294.41 368.00 467.55 465.61 464.23 465.05 37.34 155.59 327.10 43.96

front are evaluated (LT and UT stand for lower and upper tails of the PF).
Extreme solutions here represent extreme schedules reflecting the trade-off be-
tween two objectives. The mean global NSR and the VaR and CVaR are in-
cluded. The tonnage for each period is also included together with the mean
deviation from the production target (DFT).

Note the values when all scenarios are optimised independently: the mean
NSR is $693.81, VaR is $665.70 and CVaR is $655.25. These values can be com-
pared with the results presented in Table 3.3 to assess the effect of multiple-
objective optimisations.

Overall, if the DFT objective is not included in the optimisation, the devia-
tion is consistently higher (cases A, B and C). This is as expected as in earlier
periods the optimiser will try to use a schedule to extract as much as possi-
ble (but less than the set upper bound) to maximise the expected NSR. The
solutions are very similar when VaR and CVaR are used as risk measures be-
cause schedules show similar economic returns in the pessimistic case. VaR
and CVaR of NSR are not particularly useful in quantifying risks for this case
study. On the other hand, if the DFT objective is included in the optimisation,
(i.e., all risk components, economic valuation and operational constraints are
considered together in the optimisation), solutions appear to be more realistic.
For case D, as the expected NSR is jointly maximised with minimising DFT, the
corresponding DFT is lower than for cases A, B and C. Case D and E produce a
balanced trade-off among economic valuation, economic risk and operational
risk. The minimum DFT for case E is also a very good solution, because it
also has a high average NSR, and is better than the average solution from all
scenarios.
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These bi-objective optimisations offer two benefits compared with the inde-
pendent optimisation of all scenarios. Firstly, any solution in the Pareto fronts
is a good schedule and can be chosen by the decision-maker based on the pre-
ferred criteria and potential risks involved. Secondly, not only can the eco-
nomic return be maximised, which is the de facto objective for most optimisa-
tion formulations, the minimisation of risk has also been successfully included
in the evaluations as demonstrated in this study.

3.5 Conclusions

This paper presents some techniques for the optimisation under uncertainty
of a block caving mining operation using meta-heuristic approaches. Five bi-
objective formulations are described which can incorporate risk measures re-
lated to geometallurgical uncertainties. The Pareto fronts show the relation-
ship and trade-off between the two objectives, which provides a useful tool
for decision-makers in understanding and selecting the optimal solution at
the desired risk level. The total NSR values, based on VaR and CVaR, do not
show significant uncertainty at the caving scale but some useful results are ob-
tained by using the VaR at the block scale. The maximisation of the NSR-VaR
formulation combined with the minimisation of the deviations from produc-
tion targets yields better results in terms of risk reduction. In addition, it was
demonstrated that the genetic algorithm is capable of producing an approx-
imate Pareto front for real-sized problems for which traditional optimisation
methods will struggle. Further research could focus on using more advanced
simulations of the caving flow of rock and incorporating other constraints such
as the control of relative draw rates between adjacent draw-points. These ad-
ditional variables can readily be included in the proposed algorithm-oriented
methodology described in this paper.
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Abstract

This paper describes a proposed method for clustering attributes on the ba-
sis of their spatial variability and the uncertainty of cluster membership. The
method is applied to geometallurgical domaining in mining applications. The
main objective of geometallurgical clustering is to ensure consistent feed to
a processing plant by minimising transitions between different types of feed
coming from different domains (clusters). For this purpose, clusters should
contain not only similar geometallurgical characteristics but also be located
in as few contiguous and compact spatial locations as possible so as to max-
imise the homogeneity of ore delivered to the plant. Most existing clustering
methods applied to geometallurgy have two problems. Firstly, they are unable
to differentiate subsets of attributes at the cluster level and therefore cluster
membership can only be assigned on the basis of exactly identical attributes,
which may not be the case in practice. Secondly, they do not take account of
the spatial relationships and therefore they can produce clusters which may
be spatially dispersed and/or overlapped. In the work described in this pa-
per a new clustering method is introduced that integrates three distinct steps
to ensure quality clustering. In the first step, the fuzzy membership informa-
tion is used to minimise compactness and maximise separation. In the second
step, the best subsets of attributes are defined and applied for domaining pur-
poses. These two steps are iterated to convergence. In the final step a graph-
based labelling method, which takes spatial constraints into account, is used
to produce the final clusters. Three examples are presented to illustrate the
application of the proposed method. These examples demonstrate that the
proposed method can reveal useful relationships among geometallurgical at-
tributes within a clear and compact spatial structure. The resulting clusters can
be used directly in mine planning to optimise the ore feed to be delivered to
the processing plant.

Keywords Geometallurgy; Clustering; Geometallurgical Domaining.

4.1 Introduction

Geometallurgy provides new opportunities for mine planning by integrating
primary and response properties to enhance the value of information for decision-
making processes (Coward et al., 2009, 2013; Coward and Dowd, 2015). Even
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though significant progress has been made in sensing and collecting geomet-
allurgical data, there is still a significant gap in achieving effective use of these
data in practical applications. Discriminating among geometallurgical charac-
teristics is a step towards an effective use of geometallurgy for mine planning,
as similar geometallurgical characteristics will have similar responses in min-
eral processing. From this perspective, a proper clustering of in-situ resources
based on geometallurgical characteristics is essential to optimising operations
across the entire value chain from mining to mineral processing.

Traditional geological clustering, commonly known as rock type domain-
ing, is important in understanding the nature of the deposit but it does not
necessarily reflect the responses of the ore to the various processing stages.
Geometallurgical clustering (or domaining) is similar to geological clustering
but focusses on the geometallurgical characteristics of the orebody to provide a
basis for integrated optimisation from mining to processing (Hoal et al., 2013).

Clustering is an important problem in machine learning and, for unsuper-
vised problems, it is one of the hardest to formulate and solve. Regression or
classification is supervised because the response is known, whereas clustering
partitions data on the basis of similar characteristics and, at the same time,
maximises the separation of those partitions.

The classic cut-off grade approach to ore selection clearly does not con-
sider the mineral complexity and its responses to processing, such as the en-
ergy consumption due to different hardness and grindability, concentration of
deleterious elements, different recovery rates due to different geometallurgical
attributes. Clustering based on geometallurgical attributes has been an active
research topic over the past decade. Having more material classes (clusters)
may improve the ability to select the best processing route for each parcel of
mined ore so that the overall operation is optimised (Dunham and Vann, 2007;
Hunt et al., 2013). However, the risk of misclassification increases as more
clusters are defined and this risk must be considered in any geometallurgical
clustering.

Geological domains are not necessarily useful in defining processing do-
mains that are required to reflect characteristics such as the Bond Ball Mill
Work index (BMWi), which relates to the energy used in a ball mill (Bond,
1961), or the A×b comminution index (Napier-Munn et al., 1996), which is
a measure of the ore impact breakage resistance. To remediate this problem,
Keeney and Walters (2011) used Principal Component Analysis (PCA) (Wold
et al., 1987) to project variables onto a two-dimensional space representing



4.1. Introduction 105

geometallurgical attributes such as mineralogy and grindability indices. Dif-
ferent classes were then manually defined by drawing polygons around spa-
tially contiguous projected points on the basis of mineralogical association.
These classes were used to build predictive models and propagate them into
the block model using standard geostatistical indicator approaches. The same
method was used in a similar case study to define four geometallurgical do-
mains at drill-hole scale which were then scaled up to block scale by four differ-
ent methods: sectional interpretation and wireframe modelling, nearest neigh-
bour assignment, indicator kriging, and stochastic trend analysis (Newton and
Graham, 2011). The two comminution parameters, A×b and BMWi, were then
populated into the block model by applying specific regression models in each
geometallurgical domain.

Leichliter and Larson (2013) developed a geometallurgical model to cluster
a deposit into two classes for two different recovery circuits: flotation circuit
for less oxidized ore and heap leaching for oxidized ore. They used the vari-
ables of assays, geological mapping, mineralogy, hardness, gravity and floata-
bility attributes to define the classes.

Hunt et al. (2014) manually clustered copper recovery domains on the basis
of Al and Fe content (Low Al - High Fe and High Al - Low Fe). They pre-
clustered 24 archetypes using chemical and mineralogical information. For
each recovery domain, they built linear regression models using Al, Cu, Fe
and grinding index from drill hole data and batch flotation tests. These models
were scaled up for the block model using standard geostatistical methods.

A geometallurgical domaining system was built by hierarchical clustering
at sample scale using assay values, geotechnical logging and petrophysical
attributes to model and estimate grindability response indices (Nguyen and
Keeney, 2014). Goodfellow and Dimitrakopoulos (2017) performed clustering
using grades and material types to define different ore destination policies,
which were used to optimise scheduling.

Garrido et al. (2017) used clay content as a measure to define the concept
of geometallurgical dilution in a manner similar to mining dilution. Here, the
geometallurgical dilution is formally defined as the ratio between the most
common clay cluster and all other clusters. This dilution concept can be used
in scheduling optimisation to avoid excessive changes in clay content in the
ore to be sent to the processing plant.



106 Chapter 4. A new clustering method with spatial correction

The research discussed above demonstrates the use and ability of geometal-
lurgical domaining in improving processing decisions and optimising schedul-
ing to processing plants. However, most of this research uses standard cluster-
ing methods and the resulting clusters are then up-scaled to the block model
using geostatistical approaches. There is no explicit imposition of spatial con-
tiguity and compactness in the determination of clusters. In addition, the un-
certainty of the clustering is not assessed.

For the explicit use of the spatial component, Oliver and Webster (1989) in-
corporated into the dissimilarity measure a spatial variogram model, using an
isotropic exponential structure with parameters of nugget effect, sill and range.
Bourgault et al. (1992) generalised the Oliver and Webster (1989) method by
using a multivariate (co)variogram to account for both spatial and attributes
correlations in clustering. Allard and Guillot (2000) modelled the hard cluster-
ing problem as a mosaic of independent stationary normal random functions
for the univariate case. Three different optimisation approaches were tested.
One approach was based on minimising the ratio between the variance inside
a cluster and the variance between clusters. The second optimisation method
used negative log-likelihood to estimate the parameters. Finally, in the third
approach they used the Expectation-Maximisation (EM) algorithm. The spa-
tial structure is accounted for by the kriged (estimated) mean of the random
function and the associated kriging variance. Guillot et al. (2006) assumed that
the spatial component is characterised by a second order stationary random
field. The inference of the parameters that define the covariance function and
the clusters are found by a Markov Chain Monte Carlo algorithm. This method
uses quantitative and categorical multivariate data. For hard clustering in the
univariate case, Carlo et al. (2017) incorporated the spatial component as a
non-stationary Markov random field conditioned to the k-nearest neighbour-
hood structure. The optimisation was performed by the EM algorithm. The
method allows each cluster to have different spatial interaction modulated by
a spatial covariate. Fouedjio (2016) incorporated the spatial component in the
definition of the dissimilarity measure in the agglomerative hierarchical clus-
tering method. The dissimilarity/similarity between two observations is not a
simple Euclidean measure but rather a function of their spatial correlation. It
is not clear what effect negative correlations in cross-variograms have on this
dissimilarity measure and its performance when the spatial correlation is low,
but the method is consistent with geostatistical approaches.

Based on Gaussian mixture models, Ambroise et al. (1996) proposed a method
that adds a regularisation component, derived from the spatial structure, to the
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clustering optimisation formulation. This method takes into account the mem-
bership of all neighbours of any observation for clustering. Romary et al. (2015)
incorporated the spatial component into the distance metric using a hierarchi-
cal clustering method. The distance function takes into account the spatial con-
nectivity introduced by a moving neighbourhood. Weights for each attribute
can be defined by the user and incorporated into the distance function. The
coordinates are also included as attributes.

In addition to clustering methods that incorporate a spatial component,
cleaning realisations of lithofacies in a regular grid, or image, helps to pre-
serve spatial continuity. Schnetzler (1994) used two image processing pixel-
base methods of dilatation and erosion, to produce cleaner images. The re-
sulting grid does not necessarily reproduce the original statistics of the litho-
facies. To overcome this issue, a post-process changes the categorical value of
the pixels to match the original statistics. The probability of accepting changes
is defined as the ratio of the kriging variance to the total variance. This method
is only applicable to a regular grid as it was designed to correct ’noisy’ grids
for visualisation purposes. Deutsch (1998) improved the method of Schnetzler
(1994) by using the quantile transformation to correct proportions and pro-
duce less-noisy realisations. Locations in the borders between regions are can-
didates for relocation. The maximum a posteriori selection algorithm replaces
each location by the most probable value according to the local neighbourhood
structure, based on three aspects: closeness, conditioning data, and target pro-
portions.

In this paper, a new adapted method is proposed to cluster diverse at-
tributes to build geometallurgical domains. The method, Spatial Weighted
Fuzzy Clustering (SWFC), is based on traditional fuzzy clustering (Dunn, 1973)
with a novel adaptation to support mixed attributes together with the capac-
ity to include expert knowledge and spatial structures. The formulation of the
clustering algorithm based on fuzzy clustering, flexible distance metrics and
feature selection is given in the methodology section. The mathematics of the
proposed SWFC method is then described in the following section. Three case
studies are presented to illustrate the application of SWFC, starting with a very
simple illustrative example, followed by a two-dimensional case, and finally, a
comprehensive three-dimensional synthetic geometallurgical block model.
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4.2 Methodology

A dataset is defined as a set of observations or samples. Each sample is a k-
dimensional vector, where each dimension represents a feature or an attribute.
Each attribute can be a continuous or a categorical variable (ordinal or nomi-
nal). The goal of clustering is to partition the dataset into P sets where samples
within a partition are similar and partitions are well separated. The concept of
similarity within a cluster (defined as compactness, see below) and separation
distance between clusters are key aspects of clustering.

4.2.1 Definition of symbols and indices

Symbols:
P is a set of partitions or clusters.
P is the number of partitions or clusters.
K is the number of dimensions of a multivariate sample.
N is the total number of samples.
Sj is the number of samples in the jth cluster.
vj is the centroid of the jth cluster.
m is the fuzzier used in the fuzzy clustering algorithm.
u is the membership matrix with N rows and P columns.
w are the weights of attributes.

Indices:
i indicates the ith sample, 1 <= i <= N. For example xi.
j indicates the jth cluster, 1 <= j <= P. For example vj.
k indicates the kth dimension, 1 <= k <= K. For example wk.

4.2.2 Hard clustering

Hard clustering, or crisp clustering in the machine learning literature, seeks a
non-overlapped, hard partition of a dataset and therefore the partitions P are
disjoint sets and each sample belongs only to one partition. One option for
clustering is to find the centroids of clusters that minimise the overall distance
of each sample to the centroid of its cluster, i.e.,

(v∗i , . . . , v∗p) = arg min
vi,...,vp

P

∑
j=1

Sj

∑
i=1

D(xi, vj),
P

∑
j=1

Sj = N, (4.1)

where D is any distance metric, xi is the ith sample belonging to the jth cluster.
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There are many hard clustering methods and among the most used are K-
Means, for continuous variables, K-Mode for categorical variables and several
variants for mixed variables.

K-Means is probably the most used clustering method due to its simplicity.
K-Means is solved by a two-stage iterative procedure to minimise the variance
of the distances within clusters. In the first stage the centroids of clusters are
assumed to be fixed and each sample is assigned to the closest centroid. In the
second stage, the centroids are updated as the average of all samples within
a cluster. The two stages are iterated until overall variance of clusters is min-
imised. It is common to select initial centroids at random.

A very common variation is to perform an initial dimension reduction to
compress the information into two or three dimensions by PCA (Ding and He,
2004). After the dimensionality has been reduced, K-Means is applied to the
compressed data.

For geometallurgical applications, it is important to quantify the uncer-
tainty of belonging to a cluster but hard clustering cannot provide this assess-
ment. The fuzzy clustering method assigns the grade of cluster membership
to all samples. This grade can be used as a probability measure and, therefore,
it can provide a simple way to quantify the uncertainty of clustering.

4.2.3 Fuzzy clustering

Fuzzy clustering, as opposed to hard clustering, is a method that seeks to find
the grade of membership of a sample with regard to each cluster (Ruspini,
1969). The objective for optimisation, therefore, changes to

u∗ = arg min
u

N

∑
i=1

P

∑
j=1

(uij)
mD(xi, vj),

P

∑
j=1

uij = 1, ∀i = 1, . . . , N (4.2)

and

u−1
ij =

P

∑
j′=1

[
D(xi, vj)

D(xi, vj′)

]2/(m−1)

(4.3)

where m is the fuzzier, which controls the degree of fuzziness. When m is close
to 1, the fuzzy partition becomes a hard partition, i.e. uij will be 0 or 1 (Pal
and Bezdek, 1995; Ren et al., 2016), and when m is large, uij will tend to be
uniformly distributed, but always subject to ∑P

j=1 uij = 1, ∀i.
There are several methods to find the optimal membership, for example,

fuzzy c-means, fuzzy k-modes and fuzzy k-prototypes. These methods are not
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designed to use mixed attributes and they do not perform feature selection. To
take these features into account, a distance-based approach must be used.

4.2.4 Distance metrics

Clustering essentially relies on similarity among observations and therefore
the most critical aspect is the definition of a distance metric between observa-
tions. In general, the Euclidian distance (Eq. 4.4) is the default selection when
all attributes are continuous, however when there is a mix of continuous and
categorical attributes the Euclidian distance is not the best choice.

Deuclidean(x, y) =

√√√√ K

∑
k=1

(xk − yk)2. (4.4)

For two multivariate attributes x and y, the distance function can be for-
mulated as the contribution of each dimension to the total distance (Friedman
and Meulman, 2004)

D(1)(x, y) =
K

∑
k=1

dk(xk, yk). (4.5)

This formulation gives a high degree of flexibility in the definition of spe-
cific distance functions for different kinds of attributes.

Continuous attributes

For continuous attributes, such as grades, recovery rates and milling indices,
the distance function is defined as

dk(x, y) = |x− y|/sk, (4.6)

where sk is any measure of dispersion, such as variance, standard deviation, in-
terquartile range (Friedman and Meulman, 2004). The importance of including
dispersion is to avoid distortions with different scale values of the attributes.
In this paper the standard deviation was used as dispersion measure.

Categorical attributes

For categorical attributes, such as lithology, alteration types and mineralisation
styles, the distance function is defined by a distance matrix, which is a sym-
metric square matrix of size M×M, where M is number of unique values of
that attribute. For example, for a categorical attribute taking a set of possible
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values h1, h2, . . . , hM, the distance matrix is

0 . . . θ1j . . . θ1M
... 0

...
...

...
θj1 . . . 0 . . . θjM
...

...
... 0

...
θM1 . . . θMj . . . 0


,

where each θij is a fixed value corresponding to the distance between the value
hi and hj and θij = θji, ∀i, j as the distance is symmetric.

If the categorical attribute has no preference among values, θij can be a
constant positive value for all i and j ∈ 1, . . . , M. For example, when θij is 1, the
matrix becomes the traditional transformation to indicators, and is equivalent
to

dk(x, y) =

0, if x = y

1, else
. (4.7)

The flexibility of the matrix distance function allows for the definition of
distance between categorical values, which is very useful for geometallurgi-
cal applications since there are, in general, categorical variables related to rock
property attributes involved. For example, silication and silicification alter-
ations are more similar compared to silication and argillic alteration. In this
case, the distance between silication and silicification alterations should be
smaller than that between silication and argillic alterations based on the def-
inition above. The same can be considered in the case of metamorphic rocks,
for example, phyllite and schist rocks are more similar compared to slate and
gneiss.

The distance for the categorical attribute can be defined as

dk(x, y) = θh(x)h(y)/sk, (4.8)

where h(x) denotes the value of the categorical variable x used in the definition
of its distance matrix.

Targeted attributes

Another flexibility of the proposed distance function is the option of including
a target value in any distance function. There are situations when similarity
needs to be defined as closeness to a target value; for example, we could be
interested in low, medium and high recoveries. Setting specific low, medium
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and high values of recoveries will tend to yield clusters according to those
targets. Friedman and Meulman (2004) defined a distance function for one
and two targets, t and u, as

gk(x, y, t) = max(dk(x, t), dk(y, t)) (4.9)

and
gk(x, y, t, u) = min (gk(x, y, t), gk(x, y, u)). (4.10)

These two metrics are not strictly distance metrics because they violate the
identity property, but they work in practice. The problem arises when they
are used to compare two values very close to each other. For example, both
distances, gk(x, y, t) and gk(x + ε, y, t) with x + ε < y, are the same, due to the
maximisation criterion in Eq. 4.9.

To correct this problem a new criterion for a single target t is defined as

gk(x, y, t) = dk(x, t) + dk(y, t) (4.11)

and its extension to multiple targets T is given by

gk(x, y, T) = min(gk(x, y, t)), ∀t ∈ T. (4.12)

Including the target is applicable to both continuous and categorical distance
functions.

4.2.5 Feature selection

In geometallurgy there are, in general, many attributes that can be used for
clustering. The contributions of attributes to clustering may vary from very
important to little or no importance. It is desirable that the clustering pro-
cedure considers the degree of importance of different attributes, which can
sometimes be defined by expert knowledge. In this context, feature selection
is an important procedure to determine the involvement of attributes and their
degree of involvement as part of the clustering process. The most basic method
is to consider all permutations of attributes and to select a set which performs
the best. This approach obviously is computationally intensive and, as the
number of attributes increases, the number of possible permutations increases
exponentially. Note that the number of permutations of n attributes without
repetitions is 2n − 1, which is equal to 1,048,575 permutations for a reason-
able case of 20 attributes. On the other hand, forward and backward methods
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are greedy methods for feature selection. The forward method starts with one
attribute and iteratively adds the attribute that most improves the distance
metric. The backward method starts with all variables and removes the least
useful attribute one at a time.

Another strategy is based on weights. Each attribute has, as an indicator
of its degree of importance, a positive number within the range of [0, 1] as its
weight. This weight can then be included in the distance metric as follows

D(2)(x, y, w) =
K

∑
k=1

wkdk(xk, yk), (4.13)

where wk is the weight of the k-feature, subject to ∑K
k=1 wk = 1.

In the case of clustering, by default all attributes have the same weight
in different clusters. In practice, it may be desired in some cases to impose
different weights for attributes in different clusters, i.e.,

D(3)(x, y, w, c) =
K

∑
k=1

wckdk(xk, yk), (4.14)

where wck is the weight of the attribute k in the cluster c, subject to

K

∑
k=1

wck = 1, ∀c. (4.15)

This weight-based feature selection mechanism can also be included in the
optimisation process to determine the best weights for each attribute in each
cluster.

As pointed out by Friedman and Meulman (2004), the best minimisation
strategy is to assign all weight to the attribute with the lowest dispersion of
observations in each cluster, which provides an incentive to spread the weights
to more attributes, the distance is defined as

d(4)(x, y, w, c, λ) = wckdk(xk, yk) + λwck log(wck) (4.16)

D(4)(x, y, w, c, λ) =
K

∑
k=1

d(4)(x, y, w, c, λ) + λ log(K). (4.17)

The parameter λ controls how the weights are spread to other attributes. For
larger λ, the weights will tend to be similar for all attributes whereas for smaller
λ the weights will tend to be given one or a few attributes.
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4.2.6 Spatial correction

Another important characteristic is the spatial structure. Traditional cluster-
ing methods do not incorporate any spatial structure. In fact, if coordinates
of samples are included as attributes, traditional methods are likely to pro-
duce erroneous results as samples in the same cluster are not necessarily spa-
tially connected and these clustering procedures will tend to separate them
into different clusters on the basis of their coordinates. Within the geomet-
allurgical context, a cluster (ore parcels with similar geometallurgical charac-
teristics) may be in many sectors not directly spatially connected across the
deposit, and therefore a more advanced technique is required for taking the
coordinates into account. As one of the goals of geometallurgical clustering is
to generate clusters as spatially connected as possible, it is essential to apply a
spatial correction to avoid compact zones that include a few observations that
belong to a cluster different than that to which the majority belong.

Spatial correction is conceptually similar to image segmentation. In com-
puter vision, image segmentation tries to simplify any image by assigning to
each pixel a label (here equivalent to a cluster) from a small set of labels. Im-
age segmentation has been successfully applied for applications such as can-
cer detection and automated driving (López and Malpica, 2008; Tarabalka and
Charpiat, 2013; Tarabalka and Rana, 2014; Wang et al., 2016).

There are many techniques for image segmentation, but the graph cut method
(Boykov and Veksler, 2006) is of special interest in this work because it can be
integrated easily with fuzzy clustering.

The image segmentation, or labelling, problem can be formulated as an
energy minimisation problem in a graph,

E(L) = ∑
p∈I

Dp(Lp) + ∑
pq∈N

Vpq(Lp, Lq), (4.18)

where Lp represents the label of a pixel p of the image I, Dp is the data penalty
function, Vpq is the interaction potential, or the spatial relationship, and N is
the neighbourhood (spatial connectivity).

Clearly there are some similarities between the image segmentation prob-
lem and our proposed clustering method. An image corresponds to the entire
deposit whereas a pixel corresponds to an observation and the pixel value cor-
responds to an attribute of a sample. The fuzzy membership information (Eq.
4.3) of each observation can be interpreted as the data penalty function. This
means that each observation has a probability of belonging to a cluster and
using Dp(Lp) = − log (upLp) assigns a lower data cost when the membership
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probability is higher and vice versa. The interaction potential Vpq corresponds
to the spatial relationship among observations.

The neighbourhood can be determined by the k-nearest neighbour in the
case of unstructured locations, or the surrounding cells in the case of a regular
grid, which defines the connections of data in the form of a graph. Complex
interaction potential functions can be formulated in the form of geostatistical
(co)variograms or correlograms as defined in Bourgault et al. (1992), but a sim-
pler one is the Potts model, which focuses on discontinuities. The Potts model
is defined as

Vpq(Lp, Lq) = Kpq ∗

1, if Lp = Lq

0, else
, (4.19)

where Kpq may be a constant value or the cost of the spatial relationship be-
tween p and q, for example, the distance between p and q. The Potts model
favors a clearer segmentation among clusters, opposite to smooth transitions,
which is desired for domaining.

4.3 Proposed method

Our proposed method, Spatial Weighted Fuzzy Clustering (SWFC), combines
two components: (a) an adapted version of fuzzy clustering, termed Weighted
Fuzzy Clustering (WFC), and (b) the spatial correction by the graph cut method.
Both components are formulated as optimisation problems.

4.3.1 Optimisation formulations

For the proposed fuzzy clustering, the concepts of compactness and separation
are combined in a single objective formulation, and they are defined below.

Compactness

COMP(m, u, v, w, λ) =
P

∑
j=1

N

∑
i=1

um
ij D(4)(xi, vj, w, j, λ), (4.20)

where λ controls the weight values among attributes. The u matrix is given by

u−1
ij =

P

∑
j′=1

K

∑
k=1

[
d(4)k (xi, vj, w, j, λ)

d(4)k (xi, vj′ , w, j′, λ)

]2/(m−1)

. (4.21)
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Separation

SEP(m, v, w, λ) =
P

∑
j=1

P

∑
j′=1,i 6=j′

K

∑
k=1

d(4)k (vik, vj′k, max(wj, wj′), j, λ). (4.22)

The maximum criterion in Eq. (4.22) is required because different clusters may
not share the same weights, in which case the maximum weight is used for the
kth dimension.

Objective

The proposed clustering seeks to minimise compactness of clusters and, at the
same time, to maximise separation between clusters. A single objective formu-
lation that incorporates both aims is defined as

(v∗, w∗) = arg min
v,w

(COMP(m, u, v, w, λ) +
C

SEP(m, v, w, λ)
), (4.23)

where C is a constant which scales the importance of separation as a criterion
in the optimisation formulation. The lower the value of C, the less impor-
tant is any increment in separation. Our experiments indicate that a value of
C = 15 is appropriate to give more relative importance to compactness over
separation but we recommend a complete assessment of the impact of differ-
ent values. Other expressions that combine compactness and separation in a
single objective may also be explored.

There are two main obstacles to solving this optimisation problem. The
first is the non-convexity of the problem, meaning that the global minimum is
hard to find. The second is the difficulty of finding the cluster centroids and
defining a proper set of weights that can be used.

The first obstacle can be dealt with by the use of metaheuristics, which is a
simple technique to solve optimisation problems with many local optima. The
second obstacle is solved by a two-stage procedure in the proposed method.
In the first stage, the optimal centroids and membership are found for a given
set of fixed weights. In the second stage, the weights are optimised given the
clusters and memberships found in the first stage. These two steps are iterated
until convergence.
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4.3.2 Implementations

We use a genetic algorithm (GA) metaheuristic not only because of its simplic-
ity, flexibility and good performance, but also because GA has been success-
fully used as an optimisation method for clustering (Maulik and Bandyopad-
hyay, 2000; Nanda and Panda, 2014; Luchi et al., 2016).

Genetic algorithm

A genetic algorithm is a metaheuristic optimisation method that emulates the
process of evolution. There are three main concepts involved in GA: selection,
crossover and mutation.

The selection operation imitates the natural selection process in which bet-
ter individuals have more chances to pass their genes to the next generation. A
fitness value is assigned to each individual, which corresponds to the evalua-
tion function to be optimised. Crossover produces new individuals combining
the genes of the parents. Mutation produces a new individual by mutating a
small part of the gene of an individual. We refer to both operations as generic
functions crossover() and mutation() respectively in the description of the al-
gorithms which are problem dependent.

These three operations are executed for many generations to ensure that the
best final individual of the population is a good local optimum. A complete
tutorial on GA can be found in Whitley (1994).

The hyper-parameters of GA are the number of individuals in the popu-
lation, the number of generations, the operations of selection, crossover and
mutation, and the probabilities of crossover and mutation. Given these hyper-
parameters, which depend on the problem to be solved, the GA procedure for
minimisation is given by algorithm 1.

The most important design aspect of any GA is the solution codification
(genome), which is problem dependent. For a given problem codification, its
corresponding crossover and mutation operations must also be defined. In
our implementations, the crossover function is the standard uniform crossover.
Selection is performed by tournament selection.

GA for optimising centroids

For the first stage discussed above, the problem reduces to finding the clus-
ter centroids that minimise the objective function given in Eq 4.23. Thus, the
genome in this case represents the centroids of each cluster.
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Algorithm 1: Minimisation by GA
Result: best_individual, best_fitness
Data: npop: size of the population, ngen: number of generations
population← set of random individuals of size npop;
foreach ind ∈ population do

fitness (ind)← evaluation(ind);
end
fitness (ind)← set of random individuals of size npop;
for iteration← 1 to ngen do

offspring← selection(population);
foreach ind ∈ offspring do

if rand() < prbcx then ind← crossover(ind);
if rand() < prbmut then ind←mutation(ind);
fitness (ind)← evaluation(ind);
if fitness (ind) < best_fitness then

best_fitness← fitness (ind);
best_individual← ind;

end
end

end

The initial centroids are selected from samples at random. The mutation
operation perturbs one dimension of one centroid: for continuous variables,
the perturbation corresponds to a random value drawn from a normal distri-
bution N (µ = 0, σ = 0.1), whereas for categorical variables, the perturbation
simply selects a different value of their categories at random.

The evaluation function for optimising centroids is given by algorithm 2
and the mutation operator is given by algorithm 3. The function dim(A) re-
turns the number of the rows and columns of a matrix A.

Algorithm 2: Evaluate clustering criteria for optimising centroids

Result: compactness + C
separation

Data: V: centroids
Parameters: m: the fuzzier, λ: weight strenght, w: weights, C: constant

for the contribution of separation
U ← Equation 4.21;
compactness← Equation 4.20;
separation← Equation 4.22;



4.3. Proposed method 119

Algorithm 3: Mutation for finding centroids
Result: mutated V
Data: V: centroids
Parameters: C: set of categorical values for the attribute k
P, K ← dim(V);
j← randint(1, P);
k← randint(1, K);
if attribute k is continuous then V[j, k]← V[j, k] + randnorm(0, 0.1);
else V[j, k]← select at random from C−V[j, k];

GA for optimising weights

In the second stage, the weights are optimised with fixed centroids, and the
problem reduces to finding the weights that minimise the objective function
given in Eq. 4.23.

As the weights are within the range [0, 1], the mutation adds a small num-
ber drawn from the normal distribution, N (µ = 0.0, σ = 0.01). Two integer
numbers are selected at random, one for a cluster and the other for an attribute
to modify.

Note the weights must sum to one. In addition, if there is expert knowledge
to set a specific weight to an attribute, the perturbation can preserve these
values.

The optimisation of weights is given by algorithm 4 and mutation operator
by algorithm 5.

Algorithm 4: Evaluate clustering criteria for optimising weights

Result: compactness + C
separation

Data: W: weights
Parameters: m: the fuzzier, λ: weight strenght, V: centroids, C: constant

for the contribution of separation
U ← Equation 4.21;
compactness← Equation 4.20;
separation← Equation 4.22;

Proposed clustering method (SWFC)

The final proposed method is shown in the algorithm 6 and the spatial correc-
tion is given by algorithm 7.
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Algorithm 5: Mutation for optimising weights
Result: mutated W
Data: W: weights
P, K ← dim(W);
j← randint(1, P);
k← randint(1, K);
W[j, k]←W[j, k] + randnorm(0, 0.01);
//Normalisation
W[j] = W[j]/ ∑K

k=1 W[j, k], ∀j;

Algorithm 6: Spatial Weighted Fuzzy Clustering
Result: clusters: clusters assigned to each sample, U: membership

matrix, V: centroids, W: weights,
Data: locations: coordinates of observations, samples: multivariate

attributes of observations, P: number of clusters
Parameters: m: the fuzzier, λ: weight strength, V: centroids, C: constant

for the contribution of separation,
//N samples of K attributes
N, K ← dim(samples);
//start with uniform weights on all attributes
CurrentW ← ones(P, K);
CurrentW ← CurrentW/K;
repeat

//stage1
V ← OptimiseCentroids(CurrentW, samples, P, C);
//stage2
W ← OptimiseWeights(CurrentW, V, m, C);
CurrentW ←W;

until ∑ |W − CurrentW| < ε;
//Spatial correction
clusters← SpatialCorrection(locations, U);
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Algorithm 7: Spatial Correction by graph cut method
Result: clusters: clusters assigned to each sample
Data: U: membership matrix, locations: coordinates of observations,
//N samples and P clusters
N, P← dim(U);
//Use K-Nearest-Neighbour or regular grid
edges← BuildNeighbourhood(locations);
//Data penalty is lower for higher probabilities and higher for lower
probabilities

D ← − log(U);
//Interaction potential by Potts model
for i← 1 to P do

for j← 1 to P do
if i = j then V[i, j]← 0;
else V[i, j]← 1;

end
end
clusters← GraphCut(edges,D,V);

The function BuildNeighbourhood(locations) returns the edges of the spa-
tial structure of the locations. The spatial structure can be defined using Delau-
nay tessellation, k-nearest neighbour, or the surrounding blocks in a structured
block model.

Efficiency and scalability

The efficiency of SWFC relies mainly on its two components, the optimisa-
tion of the centroids and weights and the spatial correction by the graph-cut
method.

When the centroids are optimised, GA calculates, for each individual, the
membership matrix, separation and compactness. The complexity of the cal-
culation of the membership matrix is O(N ∗ P2), separation is O(N ∗ P ∗ K),
and compactness is O(K ∗ P2). As usually N � K and assuming that K > P,
an upper bound for the complexity of the evaluation of each individual is
O(N ∗ P ∗ K).

The GA algorithm needs to evaluate npop individuals over ngen genera-
tions, therefore, the total complexity of the WFC algorithm is O(N ∗ P ∗ K ∗
npop ∗ ngen). Our results indicate that WFC converges in less than 20 itera-
tions (main loop in algorithm 6).

The complexity of the graph-cut algorithm used is O(N ∗ P2) (Boykov and
Veksler, 2006).
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The complexity of the fuzzy clustering is comparable to the K-Means al-
gorithm at each iteration, but the difference is in the optimisation procedure,
where SWFC is more computational intensive. Nevertheless, it overcomes two
aspects: the use of GA helps in escaping from local minima and both fuzzy
clustering and feature selection are jointly optimised.

The complexity of SWFC does not have a high impact on the number of
samples N, since it scales linearly as a function of N. Also, P is usually small
for practical reasons (no greater than 10) and K is, in general, less than 100.

GA is a stochastic optimisation method and the results may be affected by
the initial random seed. Our experiments showed that different seeds produce
very stable results. All results reported are based on a single, representative
run.

Assessing the number of clusters

There is no common choice for the number of clusters and this selection largely
depends on the data and the application of the clusters. However, there are
several indices that can be used to assess the cluster quality. The silhouette
index (SI) (Eq. 4.24) comprises compactness and separation (Rousseeuw, 1987).
This index is a real number in the range [-1,1]. An index close to -1 means there
is little or no cluster structure and close to 1 indicates perfect compactness
within clusters and clear separation between clusters. This index uses only the
distance among observations.

SI =
1
N

N

∑
k=1

SIk (4.24)

and

SIk =
1
N

N

∑
i=1

((bi − ai))/(max(bi − ai)), (4.25)

where N is the total number of points, ai is the average distance between point
i and all other points in its own cluster and bi is the minimum of the average
distances between i and points in other clusters.

Another index for assessing the quality of clusters is the Davies-Bouldin in-
dex (DBI), which describes how well the clustering has been done as measured
by the distance between observations and cluster centroids. Values of this in-
dex close to 0 suggest better cluster structures (Davies and Bouldin, 1979). DBI
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is calculated using the following equations:

DBI =
1
P

P

∑
i=1

Di (4.26)

Di = max(Rij), i = 1, . . . , P, j = 1, . . . , P (4.27)

Rij =
Ti + Tj

Mij
(4.28)

Mij =

(
K

∑
k=1
|vik − vjk|p

)1/p

(4.29)

Ti =

(
1
Si

Si

∑
j=1
|xj − vi|p

)1/p

(4.30)

with p = 2 for the Euclidean norm.

4.4 Application

We present three examples to demonstrate the application of the proposed
method. The first example is a simple synthetic case that illustrates the difficul-
ties of traditional methods when clustering using different attributes. The sec-
ond example is a cross-section of a simulated copper porphyry deposit (Gar-
rido et al., 2017). The third example is a full synthetic geometallurgical block
model (Lishchuk, 2016).

The results of K-Means and PCA clustering methods are compared. The
spatial correction also is applied to K-Means and PCA, using the membership
matrix as the inverse of the squared distance between each sample to the cen-
troids

uij =
1/
∥∥xi − vj

∥∥2

∑P
j′=1 1/

∥∥∥xi − vj′
∥∥∥2 . (4.31)

K-Means and PCA with spatial correction are denoted by SK-Means and SPCA
respectively.

Table 4.1 shows the values of the parameters used in the algorithms for the
three examples.
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TABLE 4.1: Parameters used in the algorithms

Parameter Value Observation
npop 100 Population size
ngen 100 Number of generations
prbcx 0.8 Probability of crossover
prbmut 0.4 Probability of mutation
Tournament size 9 9 individuals used in the tournament selection
λ 0.25 Weight strength
m 2.0 Fuzzier
C 15 Constant for the contribution of separation

TABLE 4.2: The design of four clusters based on combination of
Cu, Fe, Au and Rec

Attribute Default C1 (red) C2 (blue) C3 (green) C4 (yellow)
Cu N (0.68, 0.3) N (0.8, 0.05) N (0.9, 0.05) N (0.4, 0.05)
Fe N (2.56,1.15) N (1.5,0.1) N (1.2,0.1) N (4.0,0.1)
Au N (21.5,11.08) N (30.0,1.0) N (15.0,1.0) N (40.0,1.0)
Rec N (81.43,6.04) N (88.0,1.0) N (70.0,2.0)

4.4.1 Illustrative example

In this example, there are four attributes: grades of copper, gold and iron, and
recovery of copper, denoted as Cu, Au, Fe and Rec respectively. Although
these attributes do not usually follow normal distributions, for the sake of
simplicity, they were taken from normal distributions, but their means and
standard deviations are different so as to form four clusters, see Table 4.2.

All attributes follow their default normal distributions but for specific clus-
ters, they follow normal distributions with different means and lower vari-
ances. Cluster 1 includes only Cu, Fe and Rec; cluster 2: Cu, Fe and Au; cluster
3: Cu, Fe, Rec; and cluster 4 only Fe and Au.

A spatial component was assigned to each cluster: half of cluster 1 is uni-
formly located in the region of [(10.0− 35.0), (10.0− 35.0)] and the other half
in [(65.0− 85.0), (65.0− 85.0)]; all of cluster 2 is located uniformly in the re-
gion of [(0.0− 100.0), (30.0− 70.0)]; all of cluster 3 is located uniformly in the
region of [(5.0− 45.0), (65.0− 100.0)]; and finally, cluster 4 is located uniformly
in [(55.0− 100.0), (0.0− 35.0)].

The illustrative example comprises 200 samples of cluster 1, 200 samples of
cluster 2, 400 samples of cluster 3, and 100 samples of cluster 4. Of these 900
samples, the locations of 100 samples are randomised uniformly for the entire
region of [(0.0− 100.0), (0.0− 100.0)]. Figure 4.1 shows the final locations of
all samples.
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FIGURE 4.1: Scatter plot of true four clusters

TABLE 4.3: Davies-Bouldin and Silhouette indices of K-Means,
PCA, and WFC for different number of clusters

Clusters K-Means PCA WFC
DBI SI DBI SI DBI SI

2 0.852 0.504 1.026 0.496 0.234 0.802
3 0.819 0.537 0.801 0.537 0.306 0.776
4 0.974 0.427 0.818 0.520 0.185 0.866
5 0.907 0.452 0.856 0.442 1.771 0.577
6 0.923 0.439 0.931 0.426 1.231 0.600

In this example, the number of clusters is known and therefore, the exam-
ple can be used to assess the efficacy of different clustering methods. Both
K-Means and PCA perform better with three clusters, although PCA has sim-
ilar results with four clusters. The proposed method, with or without spatial
correction, significantly outperforms K-Means and PCA in finding the correct
number of clusters (Table 4.3).

Using four clusters, the performance of different clustering methods can
be further assessed. The imposed spatial structure and added noise make it
difficult for the K-means clustering method to reproduce four clusters (Fig.
4.3A). The poor performance of the K-means method is clearly shown in the
figure in which green and blue clusters are correctly identified but the other
two clusters are not. In addition, the importance of different attributes is not
identified. For example, the Cu attribute is well clustered (good separation
and low variance) across all clusters (see Fig. 4.2A) despite the fact that no Cu
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TABLE 4.4: Explained variance of PCA components

Component Explained variance (%)
1 53.55
2 30.14

dependency is imposed in cluster 4 (Table 4.2).
PCA overcomes some of the problems of K-Means. Two components were

used. Table 4.4 depicts the contribution of each component to the total vari-
ance. When the data are projected, and therefore compressed to only two di-
mensions, the cluster structure can be clearly seen by visual inspection (Fig.
4.5). Despite the obvious cluster structure, PCA clustering performs better
than K-Means but clusters 1 and 4 are still misclassified to some extent (Fig.
4.4).

There are two hyper-parameters that need to be defined to apply SWFC:
the fuzzier m and the parameter λ for weights. Most cases reported in the
literature suggest that a value of 2.0 for m is a reasonable choice to account for
uncertainty (Pal and Bezdek, 1995; Ren et al., 2016), and m = 2.0 is used in all
applications of SWFC discussed in this paper. For parameter λ, there is no rule
of thumb guidance in the literature. A small value close to 0 means that all
weight will be assigned to one attribute, while a large value will tend to assign
the same weights to all attributes. For this example, the influences of different
λ values between 0.05 and 1.0 on the weights assigned to different attributes
are shown in Fig. 4.6. This figure is useful for assessing the impact of λ on
the number of attributes that are considered significant for finding the cluster
structure so that an appropriate λ value can be selected. For this example, a
value of 0.25 was selected for λ because it tends to give importance to two or
three attributes for clustering, which matches the number used to create the
clusters in the first place.

The spatial correction was also applied to the three clustering algorithms,
K-Means, PCA and WFC, to compare the effect of this correction. The spatial
correction applied to K-Means results in the loss of cluster 1 (Fig. 4.4B), due to
its weak membership values, which are reassigned to cluster 4 (Fig. 4.3B). Al-
though the correction improves PCA compared to K-Means, its performance
remains the same as WFC (Fig. 4.3E). The spatial correction applied to PCA
gives results that are similar to SWFC (Fig. 4.4 D and F). WFC is impressively
exact, even identifying the correct clusters for the randomly located observa-
tions. The performance of SWFC slightly decreases but it still significantly
outperforms SK-Means (Fig. 4.4 B and F). The spatial correction alters the final
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FIGURE 4.2: Boxplots of all attributes in clusters found by (A)
K-Means, (B) SK-Means, (C) PCA, (D) SPCA, (E) WFC, and (F)

SWFC. Attributes from top to down are Cu, Fe, Au and Re
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FIGURE 4.3: Scatter plot of clusters found by (A) K-Means, (B)
SK-Means, (C) PCA, (D) SPCA, (E) WFC, and (F) SWFC
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FIGURE 4.4: Confusion matrix of clusters found by (A) K-Means,
(B) SK-Means, (C) PCA, (D) SPCA, (E) WFC, and (F) SWFC
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TABLE 4.5: Explained variance of PCA components

Component Explained variance (%)
1 53.15
2 17.13
3 14.50

cluster membership of only a few observations in order to make the clusters
more spatially compact (Fig. 4.4F). The boxplots for WFC and SWFC show no
substantial difference in their performance statistics (Fig. 4.2 E and F).

This simple illustrative example clearly shows that traditional methods
struggle to find the cluster structure correctly when those clusters are defined
by different attributes. The proposed method significantly outperforms the
traditional methods and can perfectly reveal the cluster structure in this case
as well as producing compact clusters in terms of spatial connectivity.

4.4.2 Simulated copper porphyry deposit example

This example is a simulated deposit based on actual data from a copper por-
phyry deposit (Garrido et al., 2017). The orebody is mainly dominated by dis-
seminated chalcopyrite and with four categories of large, moderate, small and
minimum presence of clay. A cross-section, comprising 6,462 blocks is used
to illustrate the results of SWFC in two dimensions. The first level clustering
results in 4,268 blocks of waste and 2,194 blocks of ore. The ore cluster has
two grade elements (copper and arsenic), two response attributes (copper re-
covery and bond index), and one categorical attribute (presence of clay in low,
medium and high degree). SWFC is applied to the ore super-cluster to find
four sub-clusters using these 5 attributes. For PCA clustering, three princi-
pal components were used. Table 4.5 depicts the explained variance of each
component of the total variance.

Cluster 1 is characterised by high content of clay (category 2), low grade
values of copper and arsenic (detection limit of 20 for arsenic), and low recov-
ery due to the clay content and low hardness. Cluster 2 is characterised by
medium content of clay (category 1), low grade values of copper and arsenic,
and slightly higher recovery. Interestingly, SWFC has identified two additional
clusters for low content of clay (cluster 3 and 4), which are characterised by
high recovery and high bond index but are well separated by arsenic content
(low and high), see Table 4.6.

Table 4.7 lists the weights assigned to different attributes in SWFC, which
effectively shows the degree of importance of each attribute for each cluster.
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TABLE 4.6: Centroids of the four clusters found by SWFC

Cluster Clay Copper Arsenic Recovery Bond index
1 2 0.436 20.00 76.48 10.65
2 1 0.454 20.00 83.03 12.70
3 0 0.968 63.34 94.11 16.04
4 0 0.780 20.00 94.98 16.49

TABLE 4.7: Weights of the four clusters found by SWFC

Cluster Clay Copper Arsenic Recovery Bond index
1 0.5275 0.0971 0.3152 0.007 0.0533
2 0.4017 0.1102 0.3877 0.0357 0.0647
3 0.5159 0.0241 0.0034 0.2786 0.1780
4 0.4595 0.0118 0.2403 0.2039 0.0846

Clay content is the most important attribute for all clusters, which is consis-
tent with the copper recovery performance and hardness as high clay content
is related to low copper recovery and softer rocks. The second most relevant
attribute differs for different clusters. Arsenic content is more relevant for clus-
ters 1, 2 and 4, whereas recovery is for cluster 3. One interpretation is that
SWFC was capable of separating clusters 3 and 4 in terms of arsenic attribute
although both have low clay content.

Fig. 4.7 shows the statistics of the four most relevant attributes for K-
Means, PCA and WFC. Clay content is well separated, but K-Means separates
clays in a different way. The clusters found by PCA and WFC look very simi-
lar, except for the size of cluster 3. For all methods, copper grade is split into
two main groups: low and high. High content of arsenic is very relevant for
cluster 3 in both PCA and WFC, whereas recovery is well separated among
clusters. In general, PCA and WFC perform similarly and both are superior to
K-Means.

The spatial connectivity of the clusters is another important aspect for SWFC.
The results in terms of spatial connectivity for SK-Means, SPCA, and SWFC are
shown in Fig. 4.8. SK-Means does not preserve cluster 2 (Fig. 4.8 A and B) and
SPCA does not preserve cluster 4 (Fig. 4.8 C and D) due to the poor connectiv-
ity of the clusters. For WFC, there are several blocks in cluster 4 (blue) that are
spatially unconnected (Fig. 4.8E); the spatial correction generates much more
spatially compact clusters (Fig. 4.8F), which is a desirable property achieved
by the proposed method.

This simple two-dimensional case study illustrates the power of SWFC to
produce compact and well separated clusters while preserving their spatial
connectivity. It does so by selecting the appropriate attributes relevant for the
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FIGURE 4.7: Statistics of the four most relevant attributes for all
observations and for the four clusters by (A-D) K-Means, (E-H)
PCA, and (I-L) WFC. Attributes are from left to right: clay con-

tent, copper, arsenic, and recovery
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FIGURE 4.8: Map of (A) K-Means, (B) SK-Means, (C) PCA, (D)
SPCA, (E) WFC, and (F) SWFC. Black represents waste rock. Red,

Yellow, Green and Blue represent the four clusters
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cluster structure using the optimisation technique discussed above. The re-
sulting clusters can then be much more effectively used for scheduling. Taking
into account the characteristics of each cluster, for example, the scheduler may
avoid too many jumps between different clusters in order to derive sets of
blocks with similar characteristics to be delivered to the plant for a particular
time period.

4.4.3 Simulated geometallurgical block model example

This geometallurgical block model was built based on the Malmberget iron
deposit in northern Sweden using simulation modules for geology, sampling,
production and mining economics. The complete methodology used to build
this geometallurgical block can be found in (Lund et al., 2015; Lishchuk, 2016).

This geometallurgical model has 50 × 50 × 50 number of blocks of size
5× 5× 5m, where 21,710 of them are ore blocks. The 23 attributes used for
clustering are: lithology, 6 mineral grades, 14 chemical element grades, spe-
cific gravity, and iron recovery (Table 4.8).

In this example, we are interested in building geometallurgical domains for
iron recovery. Lithology should play an important role in clustering, but lithol-
ogy alone in this case is not sufficient to discriminate iron recovery.Finding the
other attributes that can contribute to a better identification of clusters is very
important.

We illustrate the flexibility of SWFC by setting the objective as achieving a
geometallurgical domaining for Fe recovery. To do so, we use the targeted dis-
tance for iron recovery with the values at 15%, 50% and 85% percentiles in its
distribution, corresponding to recovery values of 82.41%, 88.98% and 91.22%
respectively, and use a weight of 15% for the recovery attribute. These condi-
tions provide a guide for SWFC to find three clusters. The purpose of impos-
ing the target and weight to Fe recovery is to find which secondary attributes
would be useful for clustering the structure as we can expect that clusters thus
found will tend to have Fe recovery values close to the defined targets.

The number of clusters is set to three according to both DBI and SI values
(Table 4.10). For PCA clustering, three principal components were used. Table
4.9 depicts the explained variance of each component of the total variance.

The results for apatite, magnetite, iron, iron recovery, and rock type are
used to compare the performance of the clustering methods.

Some interesting observations can be made about the centroids of the three
clusters (Table 4.11). The targeted distance applied to iron recovery is very
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TABLE 4.8: Attribute descriptions of the geometallurgical block
model

Type of At-
tribute

Attributes Observation

Rock properties Lithology, Specific
gravity

Lithology codes:
1: Semi-massive ore.
Feldspar rich dominated
with albite.
2: Massive ore. Amphibole
dominated with minor ap-
atite and biotite.
3: Massive ore. Ap-
atite dominated with mi-
nor Amphibole.

Mineral groups Magnetite (Mgt),
Hematite (Hem), Al-
bite (Ab), Actinolite
(Act), Apatite (Ap),
Biotite (Bt)

Fe minerals: magnetite
and hematite.
Gangue: albite, actinolite,
Apatite and biotite.
Actinolite has some recov-
erable content of Fe.

Chemical ele-
ments

O, F, Na, Mg, Al, Si,
P, Cl, K, Ca, Ti, V, Mn
and Fe

Processing Iron recovery Recovery in magnetic sep-
aration process

TABLE 4.9: Explained variance of PCA components

Component Explained variance (%)
1 50.51
2 24.65
3 12.26

TABLE 4.10: DBI and SI of K-Means, PCA, and WFC for different
number of clusters

Clusters K-Means PCA WFC
DBI SI DBI SI DBI SI

2 0.98 0.50 1.05 0.46 0.53 0.69
3 0.95 0.39 1.38 0.33 0.48 0.71
4 0.96 0.44 0.97 0.43 0.63 0.61
5 1.20 0.43 1.27 0.41 1.00 0.53
6 1.21 0.42 1.38 0.41 1.56 0.42
7 1.24 0.41 1.28 0.39 2.57 0.44
8 1.36 0.40 1.27 0.31 2.59 0.36
9 1.34 0.32 1.38 0.30 4.13 0.36

10 1.41 0.32 1.32 0.30 6.40 0.29
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FIGURE 4.9: Distribution of (A) Lithology, (B) Fe, (C) Fe recovery,
(D) Apatite, and (E) Magnetite. Clustering methods from left to

right are: K-Means, SK-Means, PCA, SPCA, WFC and SWFC
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well represented by the SWFC method, but not so by SK-Means and SPCA
because they do not use targeted distance functions. Lithology is also well
discriminated and the positive correlation between apatite and iron recovery
is maintained. Apatite is separated only as low content for cluster 3 in SWFC,
whereas SK-Means and SPCA do not separate apatite to the same extent in
cluster 3 but are similar for clusters 1 and 2. The centroids of the three clusters
for Iron grade show a similar separation for the three methods.

Figure 4.9 shows the statistics of the six clustering methods. SPCA sepa-
rates each lithology into each cluster as does SK-Means. SWFC clusters lithol-
ogy in a different way, for example, cluster 1 contains the three lithologies, but
clusters 2 and 3 contain only lithology 1 and 3 respectively. This difference
may be explained by the fact that WFC and SWFC seek the imposed targets
for iron recovery.

A summary of the differences of clustering among K-Means, PCA and WFC
is given in Fig. 4.10A. K-Means shows some differences compared to PCA and
WFC, while PCA and WFC are very similar in performance (Fig. 4.10B).
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FIGURE 4.10: (A) Pairwise cluster discrepancy between K-
Means, PCA and WFC. (B) Pairwise cluster comparison between

each clustering method before and after spatial correction

This case study of a complete three-dimensional geometallurgical block
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TABLE 4.11: Centroids of the three clusters for lithology, apatite,
magnetite, iron and iron recovery found by SK-Means, SPCA and

SFWC.

Cluster Lithology Apatite Magnetite Iron Iron recovery
SK-Means

1 3 2.85 87.96 64.37 89.60
2 1 3.81 62.20 46.33 87.94
3 2 2.14 81.48 61.07 84.33

SPCA
1 3 2.73 87.78 64.66 89.71
2 1 3.49 65.04 48.35 88.51
3 2 2.30 81.29 60.64 83.07

SWFC
1 3 4.51 88.08 64.87 91.22
2 1 4.88 57.05 42.98 88.98
3 2 1.82 72.87 54.83 82.41

model demonstrates the flexibility of applying SWFC in practice. The objec-
tive was for the three clusters to be centred in specific values of iron recovery,
which was fully achieved. The spatial correction step in the three clustering
methods makes some changes in the final membership (Fig. 4.10B). Although
these changes are small, they are worthwhile as they ensure that the derived
clusters are as spatially compact as possible.

4.5 Conclusions and future work

Identifying geometallurgical clusters or domains in mining applications is very
important not just to characterise geology and geochemistry, but also to assist
in choosing optimal processing routes for parcels of ore with different proper-
ties. Geometallurgy is increasingly incorporating more information and more
variables, which makes it more difficult to find useful cluster structures for
mine planning purposes.

In this paper, the difficulty of traditional clustering methods is demon-
strated when dealing with multivariate scenarios in which the cluster struc-
tures depend on different attributes, as is commonly the case in practice. A
new clustering method is proposed which is based on fuzzy clustering but in-
corporates additional valuable characteristics such as feature selection, spatial
correction and the flexibility of including expert knowledge. Expert knowl-
edge in the proposed method can be incorporated through an appropriate dis-
tance definition (categorical or targeted distances) and forcing a specific weight
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to a particular attribute.
Three case studies were presented to illustrate the application of SWFC.

The first case study was explicitly designed to construct clusters that depend
on different subsets of attributes. While the traditional methods fail to dis-
cover the true clusters, WFC and SWFC can readily find the designed cluster
structure and SWFC also constructs well-connected clusters by incorporating
spatial information. The second case study was used to illustrate graphically
the effectiveness of SWFC using a two-dimensional synthetic geometallurgical
model. The clusters found by SWFC are spatially well-connected and the most
compact. Finally, SWFC was applied to a complete synthetic geometallurgical
block model to demonstrate its capability and flexibility in building clusters,
which in this case are geometallurgical domains for iron recovery. By imposing
a targeted distance for iron recovery and weight, SWFC can find the relevant
secondary attributes that control the cluster structures.

In summary, SWFC has been demonstrated to be capable of defining mean-
ingful geometallurgical domains for different application scales, based either
on samples or complete block models.

In future research, the geometallurgical uncertainty may be also taken into
account for the clustering method. Uncertainty can be introduced by generat-
ing many realisations of the block model. The SWFC method can then include
the distances between realisations to account for uncertainty. Also, the interac-
tion potential could be reformulated to incorporate some form of multivariate
spatial correlation, such as semivariogram or correlogram, instead of the Potts
model. It is also necessary to investigate an optimisation formulation that can
include the minimisation of compactness, maximisation of separation, feature
selection and spatial correction all within a single integrated step.
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Abstract

Mine planning in open pit operations defines the material to be extracted,
when it will be extracted and its final destination. Conventional scheduling
usually considers block values based on geological parameters such the grade
of the metal of interest, its mineralogy, and parameters external to geology. The
latter parameters correspond, for example, to economic parameters, opportu-
nity costs, types of plant and plant processes. The scope of this research is to
include geometallurgical constraints into the optimization problem known in
mine planning as the constrained pit-limit problem.

In recent years, numerous works have proven that clays have a strong on
the flotation recovery process for chalcopyrite or bornite minerals. This impact
generates operational problems that, if not controlled, can decrease metallurgi-
cal recovery. For example, clays are usually soft rocks and hence the grinding
time is modified, thus affecting the operational performance and final recov-
ery. In addition, clays increase the costs associated with water input as they
require additional consumption to obtain the expected recovery. All these fac-
tors can be handled when they are incorporated in medium to long-term plans,
but they are challenging in short-term planning and make most projects uneco-
nomical.

In this work, we propose a methodology which adds a homogeneity condi-
tion to the optimization problem. The condition is that minerals with similar
geometallurgical properties (in this case, the estimated clay content) should be
extracted in each period so that the operational mineral processing parameters
would remain relatively similar. The algorithm was applied to a case study
where zones with different levels of alteration and clay content were modelled.
The valuation used standard mining industry economic parameters.

5.1 Introduction

An approach often used in mine planning is to determine the time-sequence
of blocks to be extracted from a block model so as to maximize the net present
value (NPV) subject to different operational conditions, creating an optimiza-
tion problem that can include many constraints (Lane, 1988). In the case of
an open pit, they include precedence constraints, which are geometric con-
straints associated with the access to blocks and rock slope stability (Whittle,
2009). Current algorithms for this optimization deliver satisfactory solutions
by defining different pushbacks and a final pit, which maximizes the NPV over
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the life of the mining project (Fytas et al., 1993; Johnson, 1968). Often, these
numerically correct solutions are not operationally feasible and hence require
design modifications to define a feasible extraction plan.

Different restrictions can be added to the optimization problem, for exam-
ple: mine production, plant capacity, multiple destinations (stockpile), sched-
ule or sequences (Kim and Zhao, 1994), secondary variables of interest, among
others. However, by adding additional constraints, the optimization problem
becomes very complex, requiring large computing times and sometimes ex-
ceeding the available memory. This scenario motivated us to search for alter-
native methodologies capable of handling the computational complexity.

In this research, we consider geometallurgical variables for the optimiza-
tion problem. Different types of clays cause operational metallurgical prob-
lems in flotation processes. The clay minerals, kaolinite (stratified silicate) and
illite (phyllosilicate), are grouped into four categories according to their pres-
ence in the ore: large (> 30%), moderate (10% -30%), small (2% -10%) and min-
imum (<2%) (Chipera and Bish, 2001). Models of clay are usually built using
categorical variables based on geological mapping and/or X-ray diffraction
(analysis of clay speciation XRD). Clay variability in the metallurgical plant
generates many operational problems which negatively influence the recov-
ery of the metal of interest, generating mineral and economic losses. Bulatovic
states: “Clays are the main reason for low recoveries of copper and gold by
flotation” (Bulatovic, 1997).

The focus of this research is to generate a multi-objective optimization for-
mulation to minimize the variation of clay to be processed in the short term.
This optimization problem was constructed as the constrained pit limit prob-
lem (CPIT) subject to minimising variation in the clay content per period. CPIT
consists of maximising the NPV over a time horizon, subject to block prece-
dence and operational constraints. We used metaheuristic tabu search (TS)
(Glover and Laguna, 1993) to solve this multi-objective optimisation problem
because it can find solutions with a high level of accuracy in reasonable com-
putational time.

The following section describes the methodology used to simulate a deposit
that was used to test the proposed optimisation method. In this study, we
apply TS to the synthetic deposit to maximize NPV and minimize the variation
in clays content. The results are discussed in the conclusions.
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5.2 Methodology

The simulated case study corresponds to the surface area of a copper porphyry
deposit (Camus, 2003). The hydrothermal system which generated the deposit
is much larger than the deposit and has also altered the surrounding rocks
(Burnham, 1979). The rock mass is composed primarily of andesite. The de-
posit dates from the late-eocene and the intrusive complex is of the diorite-
type. Kaolinite clays are strongly associated with sericitic alteration, which
is presented superficially and covers the largest area of the study. The min-
eralization is composed mainly of disseminated chalcopyrite (ore of economic
value) with poor indicators of secondary supergene processes. The dimensions
of the deposit are not known at depth; however, we focused our research on
portions of the deposit with low uncertainty (measured-indicated resources).
For more information on porphyry deposits and hydrothermal systems, see
(Feiss, 1978; Robb et al., 2004). Figure 5.1 shows a typical cross-section of the
orebody.

FIGURE 5.1: Typical cross-section of the orebody used for the op-
timisation. Red and blue blocks are ore and waste blocks respec-

tively.

The clay minerals were modelled on the basis of geological mapping of
sericitic alteration from cores from diamond and reverse circulation drilling.
Four main categories were proposed as areas of large, moderate, small and
minimum presence of clay (increasing towards the edges and surface of the
area) (Figure 5.2).
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FIGURE 5.2: Clays modelled on a typical cross-section: Blue is
minimum clay presence, cyan represents small clay presence, yel-

low is moderate clay presence, and red is large clay presence.

The multi-objective optimization problem is defined as follows. The main
objective is formulated according to CPIT (Espinoza D, 2013) which is the max-
imization of the NPV subject to precedence constraints (pit form) and temporal
constraints (schedule) (Lambert et al., 2014; Lamghari, 2017). The second ob-
jective is addressed as the minimization of dilution of the exploitation over the
time horizon T (Equation 5.1). Dilution (in mining) is the relationship between
waste and ore in the extraction process. In the case of geometallurgical dilu-
tion, ore and waste are redefined; in the case of ore, corresponds to the most
frequent clay domain in a period, and, in the case of waste, to the rest of the
domains. Using this definition, geometallurgical dilution can be described as
the proportion of waste in a period (Equation 5.2). Clay attributes represented
as ai = 0, 1, 2, 3 where 0 is minimum clay presence and 3 is large clay presence.

The minimization of dilution problem is specified as:

min
T

∑
t=1

Dt, (5.1)

where Dt is dilution in the period t:

Dt =
Et

Et + Mt
. (5.2)

Mineral (Mt) and Waste (Et) in the period t are defined as follows:

Mt =
N(t)

∑
i=1

Ii (5.3)

Et =
N(t)

∑
i=1

Ji, (5.4)
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where Ii and Ji are respectively:

Ii =

0, if ai 6= mt

1, if ai = mt
(5.5)

Ji =

0, if ai 6= et

1, if ai = et
, (5.6)

and the parameters determining waste or mineral are defined as:

mt = mode ai

et = ai|ai 6= mt
. (5.7)

Tabu search was developed by Glover at the end of the 1990s (Glover and
Laguna, 1993) and is a metaheuristic optimization method that takes advan-
tage of local search and internal memory. Giving the combinatorial aspect of
the formulation, we considered it appropriate to use of these algorithms that
sacrifice accuracy in the solution to significantly reduce the processing times,
allowing us to have good solutions in a reasonable execution time.

5.3 Results and discussion

Figure 5.3 shows the resources to be extracted in the different time periods.
It should be noted that the solution seeks to maximize the NPV and decrease
the "geometallurgical dilution" per period. In addition, Figure 5.4 shows the
variability of dilution by period, specifying the times at which higher dilution
can be expected. The information generated by this process can used, from a
predictive point of view, to manage operational parameters at the processing
plant as a function of the variability of clay content, which was modelled as
dilution.

The chart in Figure 5.4 summarizes the general schedule for the different
periods of time in terms of tonnage and grade. The optimization did not con-
sider keeping mine or plant tonnages constant over time (this condition could
be added in future work).

The results obtained with the TS algorithm were compared with the opti-
mization problem solved without dilution restriction (CPIT). Table 5.1 shows
the values of NPV for the dilution case and the base case. The dilution case
gives results very similar to the base case in terms of grades and extracted ton-
nages. Both cases have low differences in tonnage by period, which results in a
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FIGURE 5.3: Schedules for different periods. Each contour plot
corresponds to the pit limit in a period.

FIGURE 5.4: Tonnage and grades average by period.
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TABLE 5.1: Comparison between base case and dilution case.
Base case does not consider plant processing costs.

Base case Dilution case Difference
Period Dilution NPV [MUS$] Dilution NPV [MUS$] Dilution NPV [MUS$]

1 10% 135 2.5% 95 -76.0% -30%
2 0.0% 249 0.0% 201 - -19%
3 0.0% 327 0.0% 294 - -10%
4 0.0% 413 0.0% 396 - -4%
5 0.0% 500 0.0% 486 - -3%
6 0.0% 577 0.0% 562 - -3%
7 0.0% 649 0.0% 631 - -3%
8 0.0% 716 0.0% 698 - -2%
9 0.0% 775 0.0% 756 - -2%
10 4.1% 825 2.4% 808 -42% -2%
11 14% 868 15% 851 7.0% -2%
12 32% 896 24% 879 -26% -2%
13 28% 910 16% 883 -43% -3%
14 9.6% 928 8.8% 901 -8.3% -3%

decrease of the NPV in dilution case (6% of difference in average). The dilution
decreases notably in most periods, generating a more homogeneous feed to the
metallurgical processing plant. The reduction in dilution may avoid economic
losses that are not often considered in the standard evaluation since they are
difficult to quantify.

5.4 Conclusions

We propose an addition to traditional optimization of the NPV, by considering
other variables. Considering additional variables can improve the operation in
the short and medium term, but the complexity of the optimization problem is
increased. We considered the deleterious effect on metallurgical processing of
the clay dilution of ore and included the minimisation of clay variability in the
optimisation of production schedules. The problem was solved using the tabu
search metaheuristic and compared the results to the CPIT formulation used
as base case. In terms of tonnage and grade of metal, the application of this
methodology shows promising results. In addition, the methodology deliv-
ers production sequences with lower temporal dilution (higher homogeneity),
which improves the predictive metallurgical capacity.

The metaheuristic approach used in this work enabled additional constraints
to be included in the optimisation which is not possible in traditional formu-
lations because the complexity of the numerical model makes it impossible to
find an optimal solution. We strongly recommend the use of this metaheuristic
(or any other) to tackle additional constraints that are not usually considered.



154 Chapter 5. Optimization of planning and scheduling with homogeneity

Acknowledgements

The authors would like to thank the industrial supporters of ALGES Labo-
ratory, as well as the support from the Advanced Mining Technology Cen-
ter (AMTC), the Department of Mining Engineering and the financial support
from project Fondef “Caracterización y Modelamientos Geo-Minero-Metalúrgicos
Predictivos: Camino a la Minería del Futuro” (IT16M10021). The second au-
thor acknowledges the support of CONICYT in the form of a Becas Chile schol-
arship.

References

Bulatovic, S. (1997), ‘Flotation behaviour of gold during processing of por-
phyry copper-gold ores and refractory gold-bearing sulphides’, Minerals En-
gineering 10(9), 895–908.

Burnham, C. W. (1979), ‘Magmas and hydrothermal fluids’, Geochemistry of Hy-
drothermal Ore Deposits. pp. 71–136.

Camus, F. (2003), ‘Geología de los sistemas porfíricos en los andes de chile’,
Servicio Nacional de Geología y Minería .

Chipera, S. J. and Bish, D. L. (2001), ‘Baseline studies of the clay minerals soci-
ety source clays: powder x-ray diffraction analyses’, Clays and Clay Minerals
49(5), 398–409.

Espinoza D, Goycoolea M, M. E. N. A. (2013), ‘Minelib: a library of open pit
mining problems’, Annals of Operations Research 206(1), 93–114.

Feiss, P. G. (1978), ‘Magmatic sources of copper in porphyry copper deposits’,
Economic geology 73(3), 397–404.

Fytas, K., Hadjigeorgiou, J. and Collins, J. (1993), ‘Production scheduling opti-
mization in open pit mines’, International Journal of Surface Mining and Recla-
mation 7(1), 1–9.

Glover, F. and Laguna, M. (1993), Tabu search, John Wiley & Sons, Inc.

Johnson, T. B. (1968), Optimum open pit mine production scheduling, Techni-
cal report, University of California Berkeley, Operations Research Center.

Kim, Y. and Zhao, Y. (1994), ‘Optimum open pit production sequencing-the
current state of the art’, Preprints - Society of Mining Engineers of AIME .



REFERENCES 155

Lambert, W. B., Brickey, A., Newman, A. M. and Eurek, K. (2014), ‘Open-pit
block-sequencing formulations: a tutorial’, Interfaces 44(2), 127–142.

Lamghari, A. (2017), ‘Mine planning and oil field development: a survey and
research potentials’, Mathematical Geosciences 49(3), 395–437.

Lane, K. F. (1988), The economic definition of ore: cut-off grades in theory and prac-
tice, Mining Journal Books.

Robb, L. et al. (2004), Introduction to ore-forming processes., Blackwell Publishing.

Whittle, J. (2009), ‘Whittle consulting global optimization software. melbourne,
australia’.





157

Chapter 6

Conclusions, limitations, and future
work

The main aim of geometallurgy is the improvement of mine planning by in-
tegrating data and knowledge of geology and metallurgical responses. In ad-
dition to building predictive models of metallurgical responses, it is critical
to incorporate them into the block model. In many mining operations, the
integrated geometallurgical component of this enriched block model can sig-
nificantly improve the outcomes of mine planning optimisation. Geometal-
lurgical block models also bring new challenges: the incorporation of many
new geometallurgical variables increases the total number of variables in the
model; more predictive models have to be fitted; and finding significant re-
lationships between geological and metallurgical response variables is often
difficult. From a decision-making perspective, not only the prediction of met-
allurgical responses is required but also the quantification of their uncertainty
in order to assess economic and operational risk. The benefit of geometallurgy
relies on the ability to integrate geometallurgical variables, together with their
uncertainty, into mine planning.

6.1 Conclusions

This thesis achieves the proposed objectives as exemplified by the following
outcomes:

• Paper 1:

– Paper 1 proposes bootstrapped Projection Pursuit Regression (PPR)
models to quantify the geometallurgical uncertainty of comminu-
tion and recovery responses.
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– PPR has systematically better predictive performance compared to
multilinear regression models despite non-linear relationships found
among predictors and the dependent variables.

– Bootstrapping PPR models provide a means of quantifying the model
uncertainty when the number of samples is limited, which is often
the case in geometallurgical modelling.

• Paper 2:

– The models developed in paper 1 are used to enrich the block model
with several geometallurgical variables for a block caving mine. This
enhanced block model contains many realisations to account for ge-
ometallurgical uncertainty.

– The traditional form of economic valuation using standard NPV
needs to be expanded in order to incorporate geometallurgical vari-
ables, for example, by using the Net Smelter Return valuation method.

– Diverse risk measures are tested in multi-objective formulations to
find the Pareto front for the decision-making process.

– The genetic algorithms metaheuristic is used to optimise the stochas-
tic formulations in a real-size problem. One advantage of using
metaheuristics is that objective functions and constraints do not need
to be linear which provides greater flexibility to incorporate non-
linear functions or their evaluation by an algorithm.

• Paper 3:

– One practical application of machine learning techniques in geomet-
allurgy is building geometallurgical domains. Geometallurgical do-
maining is very useful in identifying contiguous in-situ rock vol-
umes that have similar mineral processing characteristics. Discrim-
inating processing streams according to the characteristics of each
geometallurgical cluster may improve ore processing and metal ben-
eficiation.

– A new clustering method is presented. The clustering method com-
bines fuzzy clustering and spatial continuity to generate potential
geometallurgical domains.

– This new clustering method allows for incorporating expert knowl-
edge by weighting attributes and defining targets in the distance
metric used in fuzzy clustering.
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– Another advantage of this new method is that the weights are found
automatically in the optimisation process that minimises the size of
the set of attributes. This subset of attributes may be different in
each cluster.

• Paper 4:

– This paper shows how geometallurgical clustering helps in produc-
tion scheduling optimisation problems to achieve homogeneity in
ore sent to the processing plant.

– The concept of geometallurgical dilution is introduced as a measure
of the discontinuity of geometallurgical domains.

– The scheduling optimisation problem is reformulated as a bi-objective
problem with a secondary objective being to minimise the geomet-
allurgical dilution.

6.2 Limitations

The research conducted in this thesis has some limitations:

• Geometallurgical responses are assumed to scale up linearly from the
laboratory scale to the block model scale and the plant scale. This is a
strong assumption that, in many cases, is invalid.

• The rock flow in block caving mining has been represented only by ver-
tical interactions. Horizontal interactions are not considered, despite the
fact that, in reality, rock flow is a much more complicated process.

• Although metaheuristics can deal with large optimisation problems, they
do not guarantee near-optimal solutions. In addition, metaheuristics are
stochastic methods and, therefore, different runs may lead to different
results.

• The clustering of geometallurgical data was done only for synthetic datasets
due to the lack of access to large real geometallurgical datasets.

• For assessing risk in project evaluation, only geometallurgical uncertainty
was considered. For an integrated risk assessment, other sources of un-
certainty should be included, such as financial, operating and environ-
mental.
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6.3 Future work

The research conducted in this thesis has identified new research opportunities
for future work. From paper 1 (Chapter 2), projection pursuit appears to have
significant potential for new applications to address the non-additivity and
upscaling issues. Instead of finding projections where the explained variance
is maximised, a new index that measures the linearity of relationships between
predictors and dependent variables may be useful to transform those variables
into a new set of variables that show ‘more’ linearity in their relationships,
similar to the PPMT technique. If this is feasible, the new variables can be used
to estimate or simulate at the block-model scale, applying linear geostatistics
and transforming the values back to the original scale.

In paper 2 (Chapter 3), the uncertainty of geometallurgical variables is
quantified by geostatistical simulations and predictive models. These stochas-
tic block models, which have 625 scenarios, make the bi-objective formulations
very difficult to optimise. In the case of the block caving scheduling problem,
if the uncertainty of the flow process is also included, the number of scenarios
becomes even larger. Metaheuristics can cope with this issue, but further re-
search is needed to assess the quality of the Pareto fronts found by metaheuris-
tics. In addition, more research in computational efficiency and parallelism is
required to solve these large real problems in a tractable computational time.

The new method for geometallurgical domaining, proposed in paper 3 (Chap-
ter 4), also requires further research. Although it was applied to three synthetic
cases, an application to a real geometallurgical database is recommended to
determine whether the generated clusters are coherent with geology and rec-
onciliation data from the plant.

The concept of geometallurgical dilution, introduced in paper 4 (Chapter
5), is promising but more research is needed to develop properly this concept
and its practical use as a risk index to be minimised.
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