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Abstract 

Tyrosine phosphorylation is a critical regulator of bacterial virulence, with the 

associated protein tyrosine phosphatases (PTPs) and bacterial tyrosine kinases (BY-kinases) 

recognised as major virulence factors in a range of bacterial pathogens including 

Streptococcus pneumoniae (the pneumococcus). The pneumococcus has a 

phosphoregulatory system comprising of CpsB (a PTP) and CpsC and CpsD, which together 

form an active BY-kinase. This system plays a crucial role in the regulation of the pathogen’s 

major virulence factor, the capsular polysaccharide (CPS). One open reading frame in the 

pneumococcal chromosome (designated spd1837) shows homology to the low molecular 

weight protein tyrosine phosphatases (LMWPTPs). LMWPTPs mediate CPS regulation in 

many other bacteria. Thus, investigating what role this protein plays in pneumococcal 

biology is the overreaching goal of this study. Purification of the phosphatase expressed in 

E. coli showed that Spd1837 was indeed a LMWPTP, with specificity against 

phosphotyrosine. spd1837 mutation was constructed on the chromosome of the 

pneumococcus and it was found that Spd1837 does not play a role in the regulation of CPS. 

The use of substrate-trapping assays, demonstrated that the phosphatase may interact 

with a variety of metabolic enzymes such as ATP-dependent-6-phosphofructokinase and 

Hpr kinase/phosphorylase, suggesting that the phosphatase may have roles in 

pneumococcal metabolism.  

In the chromosome of approximately 90% of pneumococcal strains with available 

genome sequence, spd1837 is co-transcribed together in the OM001 operon with the 

upstream translocase subunit YajC (Spd1838), and a downstream hypothetical protein 

(Spd1836). The OM001 operon was previously implicated to be important for 

pneumococcal virulence in a number of in vivo models. Here, we found that Spd1836 was 

essential for the bacterial ability to cause invasive disease in an established mouse model. 

Additionally, a previous genome-wide screen identified the OM001 operon to be important 

for pneumococcal growth and survival in human saliva. The data collected from this study 

suggest that human saliva can support the survival of the wildtype pneumococcal strain but 

not the mutant strain that carries a chromosomal deletions in spd1836 and spd1838.  
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The pneumococcus is known to produce large quantities of hydrogen peroxide 

(H2O2) predominantly via the pyruvate oxidase, SpxB. It was found that the phosphatase 

activity of Spd1837 could be inhibited by H2O2 in vitro and Spd1837 itself confers protection 

against killing by H2O2. Whether SpxB played a role in regulating the activity of Spd1837 

was then further investigated. Interestingly, in SpxB-deficient backgrounds and under 

aerobic conditions, Spd1837 modulated CPS biosynthesis, with Δspd1837∆spxB and 

Spd1837C8S∆spxB showing significantly reduced CPS relative to both the wildtype and the 

∆spxB strains. Therefore, the phosphatase Spd1837 does play a role in the pneumococcal 

CPS biosynthesis in an SpxB-dependent manner.  

The outcomes of this thesis highlight the importance of a number of previously 

unknown and uncharacterised bacterial factors during different stages of pneumococcal 

pathogenesis. Such research is critical to identify novel targets for anti-microbials against 

pneumococcal infection. 
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Chapter 1: Introduction 

1.1 Streptococcus pneumoniae: disease burden, vaccines and challenges 

Streptococcus pneumoniae or the pneumococcus is a Gram positive, human-

specific bacterial pathogen. The bacteria are normally observed as lancet-shaped diplococci 

or in short chains (Ramirez, 2015). Despite contributing to significant morbidity and 

mortality worldwide, the pneumococcus is a frequent commensal of the upper respiratory 

tract (Lipsitch et al., 2000). The pneumococcus can be the aetiological agent of mucosal 

diseases such as acute otitis media (Syrjanen et al., 2006) and sinusitis (Petraitiene et al., 

2015). However, more concerning is the ability of the bacteria to invade deeper, normally 

sterile tissues causing pneumonia, bacteraemia and meningitis (Simell et al., 2012).  In 

2015, pneumococcal pneumonia was responsible for 921,000 deaths of children under the 

age of five (Wang et al., 2017). Indeed, the pneumococcus is the leading cause of 

community-acquired pneumonia (CAP) in both adults and children including in developed 

countries (McIntosh, 2002, O'Brien et al., 2009, Said et al., 2013, Cilloniz et al., 2016). The 

elderly and patients with chronic respiratory diseases and immunosuppression are more 

likely to succumb to CAP with the survivors having a higher chance of being readmitted 

after recovery (Blasi et al., 2012, Prescott et al., 2014). Additionally, not only does 

pneumococcal meningitis result in 34% mortality (van de Beek  et al., 2006), 30 - 50% of 

survivors end up with persistent neurological sequelae (van de Beek et al., 2002). Despite 

implementation of the World Health Organisation recommendations for treatment, 

pneumococcal bacteraemia and meningitis can still rapidly lead to fatalities due to delay in 

24 to 48 hours window required for causative agent identification (Berkley et al., 2005).  

To date, there are two classes of vaccines that have been developed against 

pneumococcal disease; these are the polysaccharide vaccines and the conjugate vaccines. 

A 23-valent pneumococcal polysaccharide vaccine (PPV23)1  was introduced in 1983. PPV23 

is generally effective against invasive pneumococcal disease in the elderly (Falkenhorst et 

al., 2017). However, to overcome PPV23’s poor immunogenicity in children (Douglas et al., 

1983, Huss et al., 2009, Postma et al., 2012, Moberley et al., 2013), the capsular 

                                                      
1 PNEUMOVAX® 23, (pneumococcal vaccine polyvalent). Full Prescribing Information, Merck & Co., Inc., 
Whitehouse Station, NJ 08889, USA 2013 
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polysaccharide was conjugated to a carrier protein giving rise to pneumococcal conjugate 

vaccines (PCVs) containing 7 (PCV7)2, 10 (PCV10)3, or 13 (PCV13)4 serotypes. The 

conjugation to a carrier protein has the ability to induce a T-cell-dependent antibody 

response leading to the much needed immunological memory in children (O'Brien et al., 

1996). As of June 2017, 141 countries have included the PCVs in their infant National 

Immunisation Program as reported by Johns Hopkins Bloomberg School of Public Health 

International Vaccine Access Center (2017).  

The widespread administration of the vaccines has resulted in some success by 

limiting the carriage of serotypes included in the vaccine formulation (Whitney et al., 2003, 

Bonten et al., 2015). Unfortunately, due to the sheer number of pneumococcal serotypes 

(almost reaching 100 to date), based on its capsular polysaccharide, the problem of 

serotype replacement has arisen (Nigrovic et al., 2008, Aguiar et al., 2010, Miller et al., 

2011, Weinberger et al., 2011). Serotype replacement describes the phenomena whereby 

the non-vaccine serotypes have replaced the niches vacated by the serotypes included in 

the vaccine formulation (Hicks et al., 2007, Singleton et al., 2007, van der Linden et al., 

2015). There are also increasing problems with geographical and temporal vaccine 

coverage with the advent of vaccine escape strains (Lynch & Zhanel, 2010, Davis et al., 

2013). Another apparent problem is the observed declining levels of antibody against 

pneumococcus below the protective threshold just two years after immunisation (De 

Schutter et al., 2014).  

Furthermore, pneumococcal strains resistant to antibiotics including 

cephalosporins, macrolides and fluoroquinolones continue to emerge (Lau et al., 2001, 

Song & Chung, 2010). This resistance against almost all classes of available antibiotics 

means that treatment is becoming more and more difficult (Mendes et al., 2014). Not only 

does overprescribing and overuse of antibiotics exacerbate this problem (Keenan et al., 

2015), the vaccines can act as a double-edge sword, putting a selective pressure for current 

                                                      
2 Prevnar/Prevenar®, (Wyeth Lederle Vaccines) [Prevnar® (pneumococcal 7-valent conjugate vaccine 
[diphtheria CRM197 protein]). Full Prescribing Information, Wyeth Pharmaceuticals, Inc., Philadelphia, PA, 
2008] 
3 Synflorix®, (GlaxoSmithKline Biologicals S.A.) [SYNFLORIX Product Monograph (pneumococcal conjugate 
vaccine [non-typeable Haemophilus influenzae (NTHi) protein D, diphtheria or tetanus toxoid conjugates]). 
Full Prescribing Information, GlaxoSmithKline, Mississauga, ON, 2015] 
4 Prevnar 13/Prevenar 13®, (Wyeth/Pfizer Vaccines) [Prevnar 13® (pneumococcal 13-valent conjugate 
vaccine [diphtheria CRM197 protein]). Full Prescribing Information, Pfizer Inc, Collegeville, PA, 2016] 
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strains to undergo clonal expansion (Song et al., 2012). Additionally, the pneumococcus is 

naturally competent – it readily acquires new antibiotic resistance genes, pathogenicity 

islands and also undergoes capsule switching, rendering vaccine administration ineffective 

(Ferrandiz et al., 2000, Johnston et al., 2014). Based on high-throughput genome 

comparisons of 240 S. pneumoniae isolates of one pneumococcal lineage, PMEN1 (Spain23F-

1), more than 700 recombination events were detected and non-essential antigens were 

shown to be quickly removed from the chromosome. The study therefore showed that this 

single pneumococcal lineage has acquired drug resistance and the ability to evade vaccine 

pressure on a number of occasions in just over a few decades (Croucher et al., 2011). 

1.2 Pathogenesis of S. pneumoniae 

The first step in pneumococcal pathogenesis is asymptomatic colonisation of 

the nasopharynx. Most children are transiently colonised by the pneumococcus at some 

point of their life right after birth up to six years of age, with the peak being at three years 

(Bogaert et al., 2004, Regev-Yochay et al., 2004, Mackenzie et al., 2010, Tan, 2012, Le Polain 

de Waroux et al., 2014). Generally less than 10% of adults are colonised by the 

pneumococcus and they typically acquire the bacteria from children, although the risk of 

severe disease increases in the elderly (Henriques-Normark & Tuomanen, 2013, Mosser et 

al., 2014). The colonisation of the nasopharynx always precedes the pneumococcal disease 

state (Simell et al., 2012). Interestingly, while successful pneumococcal colonisation is 

associated with increased viral carriage (Glennie et al., 2016), pneumococcal carriage does 

not increased the likelihood of co-colonisation with other common nasopharyngeal flora 

such as Staphylococcus aureus, Moraxella catarrhalis or Haemophilus influenzae (Shak et 

al., 2014).  

From an evolutionary point of view, it is important for the pneumococcus to be 

able to exit the current host and successfully transmit to the next host. Although 

transmission is the important first step that precedes carriage and disease (in fact none of 

the pneumococcal disease states facilitate contagion (Musher, 2003)), pneumococcal 

factors that foster transmission are not well characterised due to a lack of tractable models 

to study this process until recently (Zafar et al., 2017). Indeed, pneumococcal disease 

occurrence is directly linked to the strains circulating in carriage (Simell et al., 2012). 
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Transmission is thought to require close contact, such as between individuals within the 

same households or day care centre (Pessoa et al., 2013, Mosser et al., 2014). While it is 

generally accepted that the pneumococcus is a human-obligate pathogen with no known 

environmental or animal reservoir, evidence accumulating is that the bacteria can survive 

outside of the human host. For instance, rehydrated pneumococci were able to infect mice 

after being left desiccated for four weeks (Walsh & Camilli, 2011).  

It is believed that pneumococci exist in very low numbers in the nasopharynx 

(LeMessurier et al., 2006, Oggioni et al., 2006, Mahdi et al., 2008). This possibly explains 

why although adherence of the bacteria onto bronchio-epithelial cells triggers cytokine-

induced cell activation and inflammation (Bergeron et al., 1998, Catterall, 1999), the overall 

carriage process remains relatively asymptomatic. The appropriate expression of capsular 

polysaccharide was also shown to be essential for prolonged colonisation in mice (Bender 

& Yother, 2001, Magee & Yother, 2001, Morona et al., 2004). 

The precise mechanisms underlying the pneumococcal transition from a 

harmless commensal to an invasive pathogen remain elusive. It is understood that S. 

pneumoniae can utilise both clathrin- and caveolae-mediated endocytosis to enter the 

endothelial host cell. The majority of the endocytosed bacteria do get neutralised by 

lysosomes, however, a small proportion of the bacteria was shown to have the capacity to 

evade lysosomal degradation. These surviving bacteria can later be translocated out of the 

cell, further disseminating the bacteria throughout the host (Gradstedt et al., 2013). The 

bacteria in the bloodstream can then cross the blood–brain barrier via receptor-mediated 

transcytosis across endothelial and epithelial cell layers (Ring et al., 1998, Zhang et al., 

2000, Mook-Kanamori et al., 2011) to enter the brain meninges and cause infection (Iovino 

et al., 2016).  

1.2.1 S. pneumoniae major virulence factors 

S. pneumoniae possess the exquisite ability to alter the expression of complex 

sets of genes according to the new microenvironment (Ogunniyi et al., 2002, Orihuela et 

al., 2004, LeMessurier et al., 2006). Some of the main pneumococcal virulence factors and 

their roles are outlined below; 
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1.2.1.1 Teichoic acids 

Lipoteichoic acids (LTA) and wall teichoic acids (WTA) are mainly masked by the 

capsular polysaccharide layer (Figure 1.1) (Skov Sorensen et al., 1988). The distinction 

between WTA and LTA is that WTA are covalently linked to the cell wall peptidoglycan while 

LTA is tethered on the cytoplasmic membrane by a lipid anchor (Fischer, 2000). Otherwise, 

they both are decorated with phosphoryl choline (ChoP) and share the same structural 

repeating unit (Fischer, 2000, Gisch et al., 2013). Although the mechanism is not fully 

understood, ChoP was shown to facilitate bacterial adherence and the subsequent invasion 

of eukaryotic cells and transmigration of the bacteria to the basolateral surface during 

invasive pneumococcal disease (Cundell et al., 1995b, Swords et al., 2001). 

 

 

Figure 1.1: S. pneumoniae major virulence factors. 

Important pneumococcal virulence factors include the capsular polysaccharide, teichoic 
acids, pneumolysin, pneumococcal surface antigen A (PsaA), choline-binding protein A 
(CbpA), pneumococcal surface protein A (PspA), neuraminidase A (NanA), pneumococcal 
adherence and virulence factor A (PavA), α-enolase (Eno) and the autolysin, LytA. 

1.2.1.2 Pneumolysin 

Pneumolysin is a cholesterol-binding toxin containing a choline-binding domain 

that oligomerises to form pores in eukaryotic cell membranes (Rossjohn et al., 1998). The 

cytolysin pneumolysin, being one of the more widely-studied pneumococcal virulence 

factors is known to contribute to the invasive nature of pneumococcal infections (Canvin 
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et al., 1995, Mitchell & Andrew, 1997, Paton et al., 1997, Zysk et al., 2001). Specifically, 

pneumolysin interferes with components of the host immunity and inflammatory 

responses (Hirst et al., 2000, Marriott et al., 2008). 

1.2.1.3 Pneumococcal surface antigen A (PsaA) 

PsaA is the lipoprotein component of an iron uptake ABC transporter that 

functions to transport Mn2+ and Zn2+ into the bacterial cytoplasm (Dintilhac et al., 1997). A 

psaA deletion mutant displayed growth perturbation, reduced competence, adherence and 

virulence and was also more sensitive to oxidative stress (Dintilhac et al., 1997, Briles et al., 

2000, Tseng et al., 2002, Johnston et al., 2004, McAllister et al., 2004).  

1.2.1.4 Choline-binding protein A (CbpA) 

CbpA (also known as PspC) is the most abundant choline-binding protein in the 

pneumococcus (Jedrzejas, 2001). CbpA is anchored to the surface of the pneumococcus by 

its binding to the terminal choline residues of wall teichoic acid and lipoteichoic acids. CbpA 

itself is an adhesin and it mediates the binding of pneumococci to human respiratory 

epithelial cells and later, pneumococcal invasion and translocation across human 

nasopharyngeal epithelial layer (Rosenow et al., 1997, Zhang et al., 2000). 

1.2.1.5 Pneumococcal surface protein A (PspA) 

PspA is another choline-binding protein, highly variable and expressed by all 

important clinical pneumococcal serotypes. PspA consists of five domains including an α-

helical domain and a proline-rich region (Yother & White, 1994). PspA protects 

pneumococcus from host immune response during colonisation and invasion by 

neutralising the antimicrobial activity of apolactoferrin (Shaper et al., 2004) and inhibiting 

complement-mediated opsonisation (Mukerji et al., 2012).  

1.2.1.6 Neuraminidase A (NanA) 

S. pneumoniae expresses at least three types of neuraminidases, the three 

characterised ones so far are NanA, NanB and NanC. However, only NanA contains an 

LPxTG anchoring motif and is expressed by all pneumococcal strains. NanA cleaves terminal 

sialic acid residues from glycolipids, glycoproteins and oligosaccharides on host cell 

surfaces, promoting pneumococcal adherence to lung epithelial cells (Brittan et al., 2012). 
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Additionally, NanA was also shown to be important for resistance to opsonophagocytic 

killing in ex vivo killing assays using human neutrophils (Dalia et al., 2010). 

1.2.1.7 LytA 

LytA is an amidase responsible for autolysis during the stationary phase of the 

pneumococcal growth (Goebel & Avery, 1929) and implicated to be important for the 

release of pneumolysin (Martner et al., 2008) and bacterial fratricide (Eldholm et al., 2009). 

Fratricide promotes the release of virulence factors in a small portion of non-competent 

cells (Claverys et al. 2007), releasing cell components including pneumolysin, which 

damage host cells directly and provides benefits for nearby pneumococcus cells. Autolysis 

by LytA also mediates gene transfer as the competence regulon is activated within local 

pneumococcal populations (Claverys & Havarstein, 2007). 

1.2.1.8 Moonlighting proteins 

Moonlighting proteins are mainly housekeeping cytosolic enzymes that are 

secreted and attached to the bacterial cell wall (Bittaye & Cash, 2015). The mechanism that 

results in the surface exposure of these proteins is still unclear – it has been proposed that 

these proteins are either actively transported to the pneumococcal surface or they are 

derived from lysed cells in the vicinity. The best characterised moonlighting proteins in S. 

pneumoniae are pneumococcal adherence and virulence factor A (PavA), α-enolase (Eno) 

and glyceraldehyde 3-phosphate dehydrogenase (GAPDH). PavA was shown to modulate 

the immune response by conferring resistance from phagocytosis by dendritic cells (Noske 

et al., 2009). On the other hand, Eno and GAPDH mediate pneumococcal attachment to 

plasminogen, subsequently contributing to bacterial migration through the basement 

membrane (Bergmann et al., 2004, Bergmann et al., 2005). Eno also interferes with 

complement activation by interacting with the complement inhibitor C4b-binding protein 

(Agarwal et al., 2012). 

1.3 Capsular polysaccharide (CPS) 

As mentioned previously, capsular polysaccharide (CPS) which makes up the 

outermost layer of the pneumococcus is the antigen of which the current pneumococcal 

vaccines is targeted. Although unencapsulated or rough pneumococci have been 
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implicated in outbreaks of conjunctivitis (Ramirez, 2015), CPS remains the single most 

important virulence factor of the pneumococcus especially during invasive disease (Avery 

& Dubos, 1931, Winkelstein, 1984, Brown, 1985, Hardy et al., 2001, Magee & Yother, 2001). 

The role of CPS is multi-faceted (Figure 1.2) – perhaps the most important one is to shield 

the bacteria from phagocytosis and complement-mediated killing mounted by the host. 

Specifically, CPS limits the deposition of complement and recognition of cell wall antigens 

(Winkelstein, 1981, Hardy et al., 2001, Abeyta et al., 2003, Hyams et al., 2010). Also, for IgG 

or C3b/iC3b that is successfully bound to the bacterial cell surface, CPS may prevent the 

interaction of its Fc region to the phagocytic cells (Avery & Dubos, 1931, Mac & Kraus, 1950, 

Musher, 1992, Hardy et al., 2001, Magee & Yother, 2001, Ogunniyi et al., 2002, Kjos et al., 

2015) such as neutrophils that are critical for the bacterial clearance (Standish & Weiser, 

2009). CPS also limits mucus-mediated clearance during colonisation (Nelson et al., 2007). 

Additionally, most serotypes possess highly-charged CPS at physiological pH and this may 

interfere with cell-to-cell interactions with phagocytes (Kozel et al., 1980, Lee et al., 1991, 

Weinberger et al., 2009). Furthermore, there is evidence that released CPS, particularly 

anionic CPS, can act as a decoy to neutralise cationic antimicrobial peptides (Llobet et al., 

2008). Recently, CPS is found to have a possible role in transmission as bacterial shedding 

was shown to require CPS expression in the mouse infant model (Zafar et al., 2016).  

 

Figure 1.2: Roles of S. pneumoniae capsular polysaccharide (CPS). 

Characterised roles of S. pneumoniae CPS include (A) limits the deposition of complement 
and recognition of cell wall antigens, (B) prevent the interaction of complement and 
antibodies to the phagocytic cells, (C) limits mucus-mediated clearance during colonisation 
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and (D) potentially mediates transmission as bacterial shedding was shown to require CPS 
expression in mouse infant model. 

1.3.1 Phase variation 

During pathogenesis, the pneumococci are able to switch from highly 

encapsulated to a less encapsulated variant depending on the host environment that the 

bacteria is currently reside in. Indeed, S. pneumoniae clinical isolates derived from different 

host environments displayed these phenotypic differences. Termed phase variation, this 

reversible process is still ill-defined, with the mechanisms and environmental conditions 

which govern the switching between the two phenotypes, opaque and transparent not well 

understood (Weiser et al., 1994, Cundell et al., 1995a, Weiser et al., 1996, Kim & Weiser, 

1998, Morona et al., 2000). Phase variation has been linked to changes in DNA methylation 

(Manso et al., 2014, Li et al., 2016). Additionally, a recent proteomic analysis of the opaque 

and transparent variants of three pneumococcal strains with different pathogenicity 

patterns suggest that a combination of metabolic activities and overall protein expression 

patterns contribute to the phase variations and these are likely to be strain-dependent 

(Chai et al., 2017). Phase variation could still be observed in unencapsulated pneumooccal 

mutants (Weiser et al., 1994) suggesting that factors other than CPS are contributing to this 

bidirectional change.  

The proposed basis for phase variation is that minimal CPS expression is 

important during colonisation as CPS thickness determines how exposed bacterial surface 

factors are such as adhesins which are important for the process. In contrast, maximal 

expression of CPS is regarded to be advantageous during systemic infections, providing 

resistance to opsonophagocytosis and also masking a potent activator of complement 

pathway, namely the cell wall teichoic acid (Winkelstein & Tomasz, 1978). Pneumococcal 

phase variants were shown to also differ in the amount of teichoic acids, particularly cell 

wall teichoic acid, with teichoic acids in transparent variants being more abundant than in 

opaque variants (Weiser et al., 1994, Cundell et al., 1995a), contrary to what was found for 

CPS. 
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1.3.2 CPS biosynthesis 

To date, there are 98 pneumococcal serotypes that have been identified, each 

differing in sugar composition and linkage (Bentley et al., 2006, Geno et al., 2017). CPS 

biosynthesis is mainly controlled by cps locus. The overall locus is conserved across all 

serotypes except in serotype 3 and 37 (Figure 1.3). At the 5’ end of the locus, there are four 

common regulatory genes, cpsA, cpsB, cpsC and cpsD followed by serotype-specific genes. 

These serotype-specific regions encode the enzymes responsible for the synthesis of NDP-

sugars unique to the CPS structure, polymerisation (Wzy polymerase), transport (Wzx 

flippase), glycosidic linkages (glycosyltransferases), and sugar modification (O-acetylases) 

(Garcia & Lopez, 1997, Morona et al., 1999a, Morona et al., 1999b). CPS is synthesised via 

lipid-linked repeat unit intermediates termed Wzy-dependent mechanism in a manner 

similar to O-antigen biosynthesis in Gram negative bacteria (Whitfield, 1995, Morona et al., 

1999b, Morona et al., 1999a), except in serotypes 3 and 37 in which CPS is synthesised via 

synthase-dependent mechanism by a processive transferase in the same manner as 

hyaluronic acid synthesis in Group A Streptococci (DeAngelis et al., 1994, Arrecubieta et al., 

1995, Llull et al., 1999).  

 

Figure 1.3: Schematic organisation of the pneumococcal cps locus for serotype 2 and 3. 

The cps locus for serotype 2 D39 strain is represented as (A) and for serotype 3 WU2 (B). 
The genes that encode for CPS assembly machinery are denoted in blue, glycosyl 
transferases in pink, phosphotyrosineregulatory system in green and UDP-sugar synthases 
in yellow. Only genes that do not possess mutations and/or are functional are shown for 
serotype 3. 
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Figure 1.4: The model of Wzy-dependent mechanism of CPS assembly in S. pneumoniae. 

CPS assembly starts in the cytoplasm with the synthesis of CPS subunits. The repeat unit is 
assembled onto the undecaprenyl-diphosphate lipid carrier by CpsE. Then, these subunits 
are flipped across by CpsJ. CpsH polymerises the polysaccharide repeat units. The polymer 
is eventually transferred onto peptidoglycan by the phosphotransferase CpsA. CpsC is 
required for the localisation of CpsD and likely acts as a scaffold, organising the others. CpsC 
triggers CpsD kinase activity, allowing autophosphorylation of its C-terminal cluster. 
Phosphorylated CpsD can be dephopshorylated by CpsB. 

1.3.2.1 Serotype 2 

To delve further into Wzy-dependent synthesis of CPS, we are utilising serotype 2 

as an example. The cps locus that encodes the enzymes required to produce the serotype 

2 CPS is approximately 18 kb in length and is predicted to comprise a single operon (Iannelli 

et al., 1999) (Figure 1.3A). Similar to other Gram positive bacteria, in this serotype, CPS is 

linked either to the cytoplasmic membrane or the cell wall.  

It is understood that the first step in CPS biosynthesis in serotype 2 is the transfer 

of a sugar-phosphate to a lipid acceptor on the cytoplasmic side by the UDP-glycosyl 

transferase CpsE (Cartee et al., 2005). Glucose-1-phosphate is the most common initiating 

sugar but other sugars can be used (Bentley et al., 2006). Following that is the addition of 

monosaccharide to the repeat unit by serotype-specific glycosyltransferases (James & 
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Yother, 2012, James et al., 2013). The completed repeat subunit is then translocated across 

the cytoplasmic membrane by a Wzx flippase, CpsJ. Wzy polymerase, CpsH then links the 

repeat units into long-chain polymers at the reducing end of the polysaccharide (Robbins 

et al., 1967). In serotype 2, the repeat unit contains a backbone of Glc-Rha-Rha-Rha and a 

side chain of Glc-GlcUA (Xayarath & Yother, 2007). Once synthesised, some or all of the 

polymers are attached to the peptidoglycan by CpsA (Eberhardt et al., 2012, Chan et al., 

2014) with the remainder being membrane-associated (Sorensen et al., 1990). The 

attachment occurs via the reducing end glucose of CPS and the β-D-N-acetylglucosamine 

(GlcNAc) residues of peptidoglycan via 1,6 glycosidic bond (Larson & Yother, 2017). CPS-

peptidoglycan linkage in serotype 2, 8 and 31 which all utilises different initiating sugars is 

similar, suggesting a common linking mechanism across serotypes utilising the Wzy-

dependent mechanism (Larson & Yother, 2017). 

The full assembly and transfer of CPS to peptidoglycan appears to be essential as 

any mutations that inhibit this process results in lethality. Toxic accumulation of lipid 

intermediate and/or reduced turnover of undecaprenyl phosphate (Und-P) for other 

pathways such as peptidoglycan and teichoic acids synthesis has been proposed to be 

responsible for the lethality phenotype (Xayarath & Yother, 2007, James et al., 2013). 

Experimental data also suggest there are a limited number of available CPS attachment 

sites on the surface of the pneumococcus and this overrides any observable increase in the 

efficiency of the ligation machinery (Byrne et al., 2011).  

1.3.2.2 Serotype 3 

In serotype 3, most of the genes in the cps locus are truncated or otherwise 

mutated (Figure 1.3B), and the functions they encode are irrelevant to CPS synthesis 

(Dillard & Yother, 1994, Arrecubieta et al., 1995, Caimano et al., 1998, Cartee et al., 2000). 

Synthesis of serotype 3 CPS requires a UDP-glucose dehydrogenase, Cps3D which converts 

UDP-glucose to UDP-glucuronic acid and the polysaccharide synthase, Cps3S. Both 

enzymes are encoded in the serotype 3 capsule locus, which is transcribed as a single 

operon (cps3DSUM-tnpAplpA) (Figure 1.3B) (Dillard & Yother, 1994, Arrecubieta et al., 

1995, Dillard et al., 1995, Caimano et al., 1998, Magee & Yother, 2001). Serotype 3 CPS is 

synthesised by a processive mechanism in which repeat units are not formed (Cartee et al., 

2000), and polysaccharide that is released from the membrane into the surrounding cell 
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wall and environment is not covalently attached to the peptidoglycan (Sorensen et al., 

1990, Forsee et al., 2000, Hardy et al., 2000). Spontaneous sequence duplications tend to 

occur within the cps3D (cap3A) gene, causing high-frequency CPS phase variations (Waite 

et al., 2001).  

1.4 Post-translational modifications 

Post-translational modifications (PTM) are changes in proteins that are not 

genetically encoded. PTMs have the ability to alter protein folding, stability, structure, 

cellular localisation and interaction with other macromolecules (Mijakovic et al., 2016). 

PTM may take the form of covalently modified amino acids within a protein structure 

resulting in, for example, phosphorylation or oxidation which are the two PTMs which will 

be the main focus of this thesis. Phosphorylated proteins are abundant - about 50% of all 

eukaryotic proteins are phosphorylated once in their lifetime and about 30% of all human 

proteins are phosphorylated at a given time (Olsen et al., 2006).  

1.4.1 Tyrosine phosphorylation 

The first evidence that protein phosphorylation on hydroxyl amino acids serine, 

threonine and tyrosine was not phylogenetically confined to eukaryotes but could occur in 

bacteria as well, was provided by two independent works conducted in the late 1970s in 

Escherichia coli and Salmonella (Wang & Koshland, 1978, Garnak & Reeves, 1979, Manai & 

Cozzone, 1979). Phosphorylated serine (pSer) and phosphorylated threonine (pThr) are 

chemically distinct from phosphorylated tyrosine (pTyr) such that the distance between the 

phosphoester group to the peptide chain in pTyr is longer due to the para position of the 

hydroxyl in the benzene group of tyrosine. This more exposed position of the phosphate is 

speculated to facilitate a better interaction with phosphotyrosine-binding protein domains 

and the phosphoester bond is also thermodynamically stable (Mijakovic et al., 2016). It is 

now recognised that tyrosine phosphorylation is critical for bacterial virulence (Whitmore 

& Lamont, 2012). Protein phosphorylation on tyrosine in bacteria has been reported to be 

implicated in the control of heat shock response (Klein et al., 2003), adaptation to cold (Ray 

et al., 1994), adaptation to light (Warner & Bullerjahn, 1994), flagellin export (South et al., 

1994), cell aggregation and sporulation (Frasch & Dworkin, 1996), and cell division and 
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differentiation (Wu et al., 1999) as reviewed by Cozzone (2005) and Chao et al. (2014). 

More prominently, tyrosine phosphorylation is closely linked to CPS and exopolysaccharide 

(EPS) regulation as reviewed by Standish &  Morona (2014). CPSs are high-molecular weight 

polysaccharides that are covalently/non-covalently attached to cell as discussed previously 

while EPS is loosely in association with the cell surface, and are usually secreted to the 

extracellular environment to facilitate biofilm formation (Schmid et al., 2015). 

The two protein classes that modulate tyrosine phosphorylation are protein 

tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). PTKs function to transfer 

the γ-phosphate from ATP to the side chains of specific tyrosine residues and PTPs reverse 

this process (Hanks & Hunter, 1995). Advances in phosphoproteomics revealed that 

tyrosine phosphorylation in bacteria is more important than originally thought. This was 

highlighted by two recent studies; 512 unique phosphotyrosine sites were discovered on 

384 E. coli proteins, corresponding to up to 6% of the E. coli proteome (Hansen et al., 2013) 

and 905 unique phosphotyrosine sites was discovered on at least 573 Shigella flexneri 

proteins, corresponding to approximately 15% of all S. flexneri proteins (Standish et al., 

2016). These identified tyrosine-phosphorylated proteins are involved in important cellular 

processes including cell division, virulence, transport, transcription, translation, and are 

central to numerous metabolic pathways (Hansen et al., 2013, Standish et al., 2016). 

Another study detected a total of 272 phosphorylation events in Bacillus subtilis with the 

ratio of pSer:pThr:pTyr sites in humans is 86:12:2 compared to 70:20:10 in B. subtilis 

(Ravikumar et al., 2014). Overall, these studies suggest that bacteria rely on 

phosphotyrosine signalling more heavily than eukaryotes.  

1.4.2 Tyrosine phosphorylation in S. pneumoniae 

The predominant research into tyrosine phosphorylation in the pneumococcus 

has focused on the phosphoregulatory system and its role in the regulation of CPS which 

will be explained in greater details below. Tyrosine phosphorylation also plays a significant 

role in regulating the autolysin LytA (Standish et al., 2014). Additionally, Nourikyan et al. 

(2015) demonstrated that, in order for the CPS assembly machinery to localise at the 

division site to synthesise CPS for the daughter cells, CpsD localisation and 

autophosphorylation is required. These coordinated actions ensure the concealment of the 

daughter cell by CPS. 
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1.4.2.1 The phosphoregulatory circuit in S. pneumoniae and its link to CPS biosynthesis 

and cell division 

This section also refers to Figure 1.4. As mentioned previously, the first four 

genes in the cps locus are highly conserved across all pneumococcal serotypes except in 

serotype 3 and 37. Homologs of cpsB, cpsC, and cpsD are also found in capsule loci from 

other Gram positive genera (Morona et al., 2002) and they are also arranged in the genome 

in a similar manner (Standish & Morona, 2014).   

1.4.2.1.1 CpsA 

Technically not a part of the phosphoregulatory system, CpsA was shown to 

interact with the pyrophosphoryl-lipid carrier of the polysaccharide precursor and is 

proposed to attach CPS to cell wall peptidoglycan as mentioned previously (Kawai et al., 

2011, Eberhardt et al., 2012). cpsA mutant colonies appear smaller and duller. However the 

smooth, partially encapsulated strain was as virulent as the wildtype strain in mice (Morona 

et al., 2004).  

1.4.2.1.2 CpsB 

The only verified PTP in the pneumococcus before the start of this study is CpsB 

– a manganese-dependent PTP from the polymerase and histidinol phosphatase family 

(Morona et al., 2002). cpsB mutants were attenuated in virulence following intravenous 

inoculation of mice and were unable to colonise the nasopharynx (Bender et al., 2003). 

While cpsB mutants produce significantly lower levels of CPS compared to the wildtype, 

they attach significantly more CPS to the cell wall (Morona et al., 2006).  

1.4.2.1.3 CpsC 

CpsC is a membrane protein that contains two short cytoplasmic regions at the 

amino and carboxy terminals, two transmembrane helices and a series of alternating α-

helices and β-strands within a large extracellular loop region of the protein (Byrne et al., 

2011). Deletion of cpsC induces the Wzy polymerase, CpsH delocalisation (Nourikyan et al., 

2015). For clarity, the function of CpsC will be discussed together with CpsD as below. 
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1.4.2.1.4 CpsD 

CpsD is an autophosphorylating bacterial tyrosine kinase (BY-kinase) which 

requires interaction with CpsC for its function. CpsC and CpsD belong to polysaccharide 

copolymerase 2b protein family (Morona et al., 2000). Although CpsC is required for the 

initial autophosphorylation of CpsD, it is not needed for subsequent transphosphorylation 

(Bender & Yother, 2001). Deletion of cpsD resulted in the loss of most of the CPS while the 

relative amounts of CPS attached to the cell wall remained similar to the wildtype (Morona 

et al., 2000, Bender et al., 2003, Morona et al., 2006, Geno et al., 2014). Additionally, a cpsC 

deletion mutant essentially had no detectable level of CpsD despite having similar level of 

cpsD transcript compared to the wildtype and as the result, the mutant failed to achieve 

full encapsulation (Morona et al., 2000, Bender et al., 2003). Interestingly, mucoid strains 

containing mutations in the [YGX]3-repeat domain of CpsD were unable to cause 

bacteraemia after intranasal challenge of CD1 mice, even though such strains were capable 

of killing BALB/c mice after intraperitoneal challenge. This suggests that the ability of S. 

pneumoniae to regulate CPS production, via CpsD phosphorylation, appears to be required 

for its transition from the lung to the bloodstream (Kadioglu et al., 2001, Morona et al., 

2004).  

While the mechanism of how the phosphoregulatory system regulates CPS 

biosynthesis is still not completely understood, the cycling between phosphorylated and 

non-phosphorylated form of the BY-kinase, CpsD is thought to be essential as the 

phosphorylated form of BY-kinase in a number of bacteria has been shown to either 

promote (Wugeditsch et al., 2001, Bender et al., 2003) or block CPS synthesis (Morona et 

al., 2003, Nakar & Gutnick, 2003, Obadia et al., 2007). BY-kinase can adopt distinct 

configurations depending on whether it is phosphorylated or not. For instance, the non-

phosphorylated form of BY-kinase domain of Wzc (the E. coli homolog of CpsC and CpsD as 

CpsCD homologs in Gram negative bacteria are encoded as a single protein) forms an 

octomer and this configuration is disrupted when Wzc becomes phosphorylated 

(Wugeditsch et al., 2001). Similarly, homologs from the Gram positive bacteria, S. aureus, 

CapB (equivalent to S. pneumoniae CpsD) and C-terminal of CapA (equivalent to S. 

pneumoniae CpsC) forms a ring-shaped octomer and the oligomerisation is disrupted upon 

phosphorylation and CapAB then becomes a monomer (Paiment et al., 2002, Olivares-Illana 

et al., 2008, Bechet et al., 2010). CpsC is proposed to work in concert to ensure that the 
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conformational change in CpsD is relayed to the CPS assembly machinery. The dissociation 

of CpsD into monomers would be transmitted to CpsC which then modifies its interaction 

with the other members of CPS assembly (Grangeasse, 2016). 

The role of tyrosine phosphoregulatory system in pneumococcal cell division 

has become more apparent in the recent years. This was initiated by the observations that 

CpsC and CpsD are both localised to the division site in the serotype 14 strain (Henriques 

et al., 2011). It was later demonstrated that CpsC is not only required for CpsD 

autophosphorylation but also for CpsD localisation at mid-cell. Following that, the CpsC-

CpsD complex further contributes to proper cell division by recruiting the Wzy polymerase, 

CpsH. As a homolog of ParA-like ATPases, CpsD also interact with the Noc-like, chromosome 

partitioning protein, ParB (Nourikyan et al., 2015). 

1.4.2.2 The association between tyrosine phosphorylation, CPS and oxygen levels in the 

pneumococcus 

S. pneumoniae is an aerotolerant anaerobe that encounters a range of oxygen 

pressures in the host. In sites such as the middle ear or pleural fluid, oxygen pressure may 

be 20 mmHg or lower (Treacher & Leach, 1998). In vitro, low oxygen levels have been 

shown to increase CPS levels in clinical isolates of various serotypes compared to the same 

isolates grown in atmospheric oxygen (159 mmHg) (Treacher & Leach, 1998, Weiser et al., 

2001). In a highly aerobic microenvironment such as the mucosal airways, the production 

of CPS is suppressed (Weiser et al., 2001). This reduced level of CPS was correlated with 

decreased tyrosine phosphorylation of CpsD (Magee & Yother, 2001, Weiser et al., 2001). 

Intriguingly, at lower oxygen levels, CpsB protein but not its phosphatase activity is needed 

for parental CPS levels (Geno et al., 2014). Therefore, S. pneumoniae may alter CPS 

production in response to environmental conditions by sensing and responding to 

environmental oxygen via the tyrosine phosphoregulatory system. 

1.5 Protein tyrosine phosphatases in bacteria 

PTPs can function as important effector proteins during active infections. For 

instance, Yersinia YopH and Salmonella SptP are secreted out of the bacterial cell via type 

III secretion systems to prevent bacterial internalisation in macrophages and to promote 
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bacterial intracellular replication respectively (Dean, 2011). More recently, a plant 

pathogen, Pseudomonas syringae was shown to possess a PTP HopAOI with a unique 

property; it targets the pattern recognition receptors (most are kinases), a component of 

innate immunity in the plant, Arabidopsis (Macho et al., 2014).  

In the context of bacteria, PTPs can be categorised into three families; i. 

eukaryotic-like and dual-specificity phosphatases (DUSPs); ii. low molecular weight protein 

tyrosine phosphatases (LMWPTPs); and iii. the polymerase and histidinol family of 

phosphoesterases (PHPs), one example we encountered earlier being CpsB (Section 1.4.2). 

PHPs have a completely different, conserved 30-kDa active site with a series of coordinated 

histidine and aspartic acid residues while DUSPs and LMWPTPs harbour the same active 

site, the C(X)5R motif (Aravind & Koonin, 1998, Mijakovic et al., 2003, Madhurantakam et 

al., 2005, Hagelueken et al., 2009, Kim et al., 2011). A few important distinctions between 

the active site of these two families include the consensus amino acid sequence, the 

number of flanking residues between the C(X)5R motif and the downstream aspartic acid, 

and the relative location of the phosphate binding site along the polypeptide chain 

(Cozzone et al., 2004). The DUSPs are also capable of dephosphorylating pSer and pThr in 

addition to pTyr.  

1.5.1 Low molecular weight protein tyrosine phosphatases (LMWPTPs) 

1.5.1.1 Role in CPS and EPS biosynthesis 

Based on Table 1.1, the control of CPS and EPS by a BY-kinase-LMWPTP pair 

encoded in the cps or cps-like operon has been found to be a conserved feature among 

Gram negative bacteria (Vincent et al., 2000). In fact, there are significant differences in 

chromosomal and operon structures between LMWPTPs in Gram negative bacteria and the 

Gram positive bacteria, B. subtilis and S. aureus (Soulat et al., 2002, Musumeci et al., 2005) 

and also in the pneumococcus (our observations). One exception is the Gram negative 

bacteria, Porphyromonas gingivalis whereby the LMWPTP, Ltp1 and its cognate BY-kinase 

which contribute to EPS and biofilm formation, are present at distant sites on the 

chromosome (Maeda et al., 2008).  
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Table 1.1: Bacterial LMWPTPs involved in capsular polysaccharide   
(CPS)/exopolysaccharide (EPS) biosynthesis 

Bacteria LMWPTP  BY-

kinase 

Function References 

E.coli K-30 Wzb Wzc Group 1 CPS 

assembly 

(Wugeditsch et al., 

2001) 

E. coli K-12 Wzb Wzc Colanic acid 

production 

(Vincent et al., 

2000) 

Enteropathogenic 

E. coli 

Etp Etk Secretion and 

assembly of the 

group 4 CPS 

(Ilan et al., 1999, 

Peleg et al., 2005) 

Acinetobacter 

iwoffii 

Wzb Wzc Emulsan production (Nakar & Gutnick, 

2003) 

Acinetobacter 

johnsonii 

Ptp Ptk Colanic acid/EPS 

synthesis 

(Grangeasse et al., 

1998) 

Erwinia 

amylovora 

AsmI AsmH Amylovoran 

production  

(Bugert & Geider, 

1997) 

Klebsiella 

pneumoniae 

Yor5/ 

Wzb 

Yco6/Wzc CPS production (Preneta et al., 

2002) 

Pseudomonas 

solanacearum 

EpsP EpsK EPS I production (Huang & Schell, 

1995) 

1.5.1.2 Role in processes other than CPS and EPS biosynthesis 

P. gingivalis Ltp1 does have a second function which is to regulate 

transcriptional activity of the global regulator LuxS (Maeda et al., 2008). In addition, while 

Burkholderia contaminans LMWPTP BceD does not affect the production of EPS (cepacian), 

the bceD mutant forms biofilms at a much lower level than the wildtype (Ferreira et al., 

2007, Ferreira et al., 2015). In another study, E. coli Etp was shown to regulate heat shock 

resistance by dephosphorylating the sigma factor RpoH and the anti-sigma factor RseA 

(Klein et al., 2003).   

Similar to a number of bacterial high molecular weight PTPs such as Yersinia 

YopH, a couple of LMWPTPs can also be secreted into host cells and subvert the regular 

host signalling process. Mycobacterium tuberculosis PtpA is secreted into the host 

macrophage during infection. In the host, PtpA binds to subunit H of the human vacuolar-

H+-ATPase pump and dephosphorylates human vaculoar protein sorting 33B to inhibit 

phagosome acidification and block fusion with lysosomes (Bach et al., 2008, Wong et al., 
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2011, Poirier et al., 2014).  Ultimately, PtpA is also required for successful long-term M. 

tuberculosis infection (Bach et al., 2008). More recently, Burkholderia cenocepacia, an 

opportunistic pathogen associated with cystic fibrosis and chronic granulomatous disease 

was also shown to possess a secreted LMWPTP, Dpm. Dpm facilitates B. cenocepacia 

survival in membrane-bound vacuoles of macrophages by directly contributing to the 

phagosome maturation arrest, independent of its phosphatase activity (Dpm is an inactive 

phosphatase) (Andrade & Valvano, 2014). 

1.5.2 Eukaryotic LMWPTPs 

Biochemical and structural studies have demonstrated that the eukaryotic 

LMWPTPs share a similar catalytic mechanism to their bacterial counterparts, and that 

common steps are involved in dephosphorylation process (Su et al., 1994, Zhang et al., 

1998, Wang et al., 2000). While in general, eukaryotic and prokaryotic PTPs are quite 

different, LMWPTPs are found abundantly in both eukaryotes and bacteria and also 

Archaea (Mustelin, 2007). The conservation of LMWPTPs or Class II PTPs through evolution 

to humans indicates that LMWPTPs are likely involved in fundamental processes in cell 

physiology. As S. pneumoniae is a human-adapted pathogen and as any potential drug that 

is developed against the putative pneumococcal LMWPTP (more details in Section 1.6) runs 

a chance of cross-reacting with human LMWPTP, it is of interest to look further into the 

human LMWPTP.  

All mammals including humans possess a single gene encoding LMWPTP which 

would then be spliced into two active isoforms, HCPTP-A and HCPTP-B (Wo et al., 1992, 

Dissing et al., 1993, Modesti et al., 1998). This results in the change of the surface charges 

near the active site in otherwise minor shape variation between these two isoforms (Zabell 

et al., 2006). Human LMWPTP is known to downregulate the platelet-derived growth factor 

(PDGF)-stimulated cell proliferation by dephosphorylating the PDGF receptor (Berti et al., 

1994, Chiarugi et al., 1995). This event has the overall effects of modulating cytoskeleton 

rearrangement, cell motility, cell proliferation and cell adhesion (Chiarugi et al., 2000a, 

Chiarugi et al., 2000b, Raugei et al., 2002). Mammalian LMWPTPs have been observed to 

be overexpressed in certain tumours, and thus are considered oncogenes (Kikawa et al., 

2002, Malentacchi et al., 2005). Human LMWPTP has also identified as a key promoter of 

obesity-induced diabetes and a recent study has characterised the first orally bioavailable 
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human LMWPTP inhibitor to combat obesity-associated insulin resistance (Stanford et al., 

2017), a testament to the potential of LMWPTP as a potential drug target. 

1.5.3 LMWPTP structural topology and specificity 

In general, LMWPTPs exhibit low sequence identities, although they form 

similar folds and overall 3D structure. LMWPTP consists of a central four-stranded parallel 

β-sheet flanked by five α-helices; α1, α2, α5 on one side and α3, α4 on the other side with 

three loops connecting β2-α2, α2-α3 and β4-α5. Sequence identities do exist in two 

domains, P-loop and D-loop (Figure 1.5) which harbour the two signature motif, the C(X)5R 

motif and the DPY motif respectively. 

 

Figure 1.5: 3D representation of LMWPTP structure modelled from solved crystal 
structures of E. coli Wzb. 

The structure of E. coli Wzb as modelled by The NGL Viewer 
(http://proteinformatics.charite.de/ngl) according to its solved crystal structures. The 
image generated is colour-coded according to its secondary structure; magenta represents 
α-helix, yellow represents β-strand and purple represent 310 helix. (A) shows a clearer 
representation of Wzb’s secondary structure with its N- and C-terminal while (B) shows the 
domains, P-loop and D-loop with greater clarity. 

http://proteinformatics.charite.de/ngl
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1.5.3.1 The C(X)5R motif 

The C(X)5R motif resides within the phosphate-binding loop or P-loop 

(Tabernero et al., 2008). The catalytic cysteine, absolutely critical for the phosphatase 

activity, is positioned within this motif (Vega et al., 2011). Structural studies of LMWPTPs 

revealed that the phosphate ion is cradled and stabilised between the catalytic cysteine 

and the downstream arginine, giving rise to a cysteinyl-phosphate intermediate (Pannifer 

et al., 1998). In the first step of the dephosphorylation process, the catalytic cysteine 

functions as the nucleophile and its thiolate form attacks and binds the phosphate ion of 

the substrate (Su et al., 1994). Also, the backbone nitrogens of the P-loop form hydrogen 

bonds with the phosphate group of the substrate (Madhurantakam et al., 2005). In the 

second step, the cysteinyl-phosphate intermediate is then hydrolysed by a water molecule, 

generating free phosphate and regenerating the thiol (Hagelueken et al., 2009, Stanford et 

al., 2014). This step is rate-limiting for most substrates (Zhang & VanEtten, 1991). 

1.5.3.2 The DPY motif  

The DPY motif in the D-loop between the last two helices is also conserved in 

LMWPTPs. The hydrophobic nature and the orientation of the aromatic residue in this motif 

are important for the affinity of the enzyme towards different substrates (Xu et al., 2006). 

This loop becomes displaced by substrate binding and closes around the side chain of the 

pTyr residue. This conformational change places the distant aspartate residue in a position 

where it can function as a general acid for the first step of catalysis and a general base in 

the second (Stanford et al., 2014). In addition, LMWPTPs commonly have two adjacent 

tyrosine residues in the D-loop, whose phosphorylation status appear to regulate its 

functional activity (Tailor et al., 1997, Bucciantini et al., 1999). For human LMWPTP HCPTP-

A, phosphorylation of Tyr131 increases the enzyme activity 25-fold while phosphorylation 

of Tyr132 does not affect the enzyme activity but leads to the recruitment of an adaptor 

protein, important for downstream signal transduction (Tailor et al., 1997, Bucciantini et 

al., 1999, Raugei et al., 2002). In NIH3T3 cells, human LMWPTP is constitutively localised in 

both cytoplasmic and cytoskeleton-associated fractions, however, only the cytoskeleton-

associated LMWPTP fraction is specifically phosphorylated by c-Src after PDGF stimulation 

(Cirri et al., 1998). In E.coli Etp and B. cenocepacia BCAL2200, the consecutive tyrosine 

residues are also tyrosine phosphorylated (Nadler et al., 2012, Andrade et al., 2015). The 
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effect of this phosphorylation on BCAL2200 is still unknown although the overall deletion 

of BCAL2200 led to growth defects in minimal media (Andrade, 2015). In the case of Etp, it 

was found that the non-phosphorylated form of Etp inhibits CPS biosynthesis regardless of 

its phosphatase activity while the phosphorylated form alleviates this inhibition (Nadler, 

2012).  

1.5.4 LMWPTP substrate specificity 

Despite the conserved fold, LMWPTPs have highly specific substrate 

preferences. The active sites in LMWPTPs are relatively deep (∼9˚A) compared to that of 

DUSPs and this is predicted to exclude pSer and pThr from being recognised (Su et al., 1994, 

Jia et al., 1995, Moorhead et al., 2009). Both the catalytic domain and non-catalytic domain 

of the LMWPTPs contribute to substrate specificity in vivo. Distinct charge distribution 

around the catalytic site of different LMWPTPs is expected to recognize amino acids with 

different charges (Zhang, 2003a). Likewise, the non-catalytic segments of LMWPTPs can 

facilitate substrate specificity by targeting LMWPTPs to specific intracellular compartments 

whereby the effective local concentration of substrate is high (Andersen et al. 2001; Fischer 

1999; Forman-Kay & Pawson 1999). In summary, the three known regulation mechanisms 

for LMWPTPs are: i. phosphate binding in the C(X)5R active site motif, ii. phosphorylation 

of the adjacent tyrosines in the DPY motif and iii. oxidation of catalytic cysteine residue 

which will be discussed next. 

1.5.5 Redox regulation of LMWPTPs 

Oxidation of the protein backbone could lead to direct protein fragmentation 

or to irreversibly oxidised, non-functional proteins (Berlett, 1997). On the other hand, 

regulated oxidation of amino acid side chains and in particular of cysteine residues is a 

functional regulation of proteins because the oxidation can be reversed by the redox 

cellular systems (thioredoxin and GSH/glutaredoxin) (Chiarugi, 2001). Redox regulation is 

now recognised as a critical mechanism in regulating the activity of PTPs with the C(X)5R 

active site as reviewed by Tanner et al. (2011). In fact, PTPs are emerging as important 

redox sensors in cells.  
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Experimental and computational studies of several eukaryotic PTPs, including 

DUSPs and LMWPTPs, have demonstrated that the cysteine within the C(X)5R motif exhibits 

a perturbed pKa and exists as a thiolate anion at physiological conditions (Denu & Dixon, 

1995, Evans et al., 1996, Czyryca & Hengge, 2001). The low pKa (pKa of around 5 instead of 

8) of the conserved cysteine ensures that it remains deprotonated which is essential for its 

function as a nucleophile and has the overall effect of enhancing the rate of reaction 

(Jackson & Denu, 2001, Jensen et al., 2009). The highly positively-charged environment of 

the active site however, results in the catalytic cysteine being very sensitive to oxidation 

(Zhang & Dixon, 1993, Peters et al., 1998). As the result, the oxidised cysteine is unable to 

act as a nucleophile, rendering the phosphatase inactive as cysteinyl-phosphate 

intermediate cannot be formed during the first step of the catalysis (Böhmer et al., 2013). 

Oxidation is an attractive regulatory mechanism for PTPs because reactive oxygen species 

(ROS) are readily formed in response to various stimuli, and as mentioned previously, it is 

also reversible (Denu & Tanner, 1998, den Hertog et al., 2005, Groen et al., 2005).  

Intramolecular disulfide bond formation of both cysteines in the active site of 

human LMWPTP, Cys12 and Cys17 has been observed, given their proximity (Caselli et al., 

1998). By forming the disulfide bond, the catalytic cysteine is protected against further, 

irreversible oxidation to sulfinic acid or sulfonic acid (Caselli et al., 1998, Chiarugi et al., 

2001, Lee et al., 2002, Savitsky & Finkel, 2002, Jensen et al., 2009). ROS-mediated inhibition 

of PTPs is essential for PDGF signalling (Meng et al., 2002) because strict subcellular 

localisation of PTP oxidation provides specificity to the PDGF response in that not all PTPs 

throughout the stimulated cell are inactivated, but only the ones very close to the PDGF 

receptor (den Hertog et al., 2005) 

Caselli and colleagues have demonstrated that hydrogen peroxide (H2O2) and 

nitric oxide can lead to the specific oxidation of Cys12 and Cys17 in the catalytic pocket of 

human LMWPTP. The oxidation/inactivation of LMWPTP both endogenously and when 

overexpressed is transient, and the enzyme is reduced/reactivated after the removal of the 

oxidants (Caselli et al., 1995, Caselli et al., 1998). H2O2, being produced in cells downstream 

of many surface receptors (Rhee et al., 2000, Veal et al., 2007), is a physiologically relevant 

PTP oxidant. PTP oxidation has therefore been suggested to be highly compartmentalised 

to areas of decreased H2O2 clearance (Ostman et al., 2011). 
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1.6 Spd1837 is a S. pneumoniae putative LMWPTP 

In the annotated genome of all sequenced pneumococcal strains to date, lies 

as yet an uncharacterised PTP, designated Spd1837. The PTP shows homology to the 

members of LMWPTPs (Figure 1.6). As expected for Gram positive bacteria, further analysis 

of S. pneumoniae genome sequence revealed no potential neighbouring BY-kinase within 

spd1837 gene vicinity. 

 

Figure 1.6: A sequence alignment for selected bacterial LMWPTPs. 

The alignment was generated using Clustal Omega program. Identical amino acids are 
indicated by (*), conserved amino acids are depicted by (:), whereas semi-conserved amino 
acids are depicted by (.). The cysteine residue critical for enzymatic activity is framed. 
GenBank accession numbers for the LMWPTPs are as follows; Streptococcus pneumoniae 
Spd1837, WP_000737448; Erwinia amylovora Amsl, CBA21355; Acinetobacter johnsonii 
Ptp, O52787; Escherichia coli Wzb, NP_416565; Escherichia coli Etp, NP_415502; Klebsiella 
pneumoniae Wzb, BAF47013; Bacillus subtilis YfkJ, NP_388669; and Mycobacterium 
tuberculosis PtpA, NP_216750. Shaded areas indicate the location of the P-loop and D-loop. 
The numbers indicate amino acid position. 
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1.6.1 Spd1837 is encoded in the OM001 operon 

On the serotype 2 D39 S. pneumoniae chromosome, spd1837 is arranged in 

OM001 operon together with an upstream translocase, YajC subunit, Spd1838 (99 a.a) and 

a downstream hypothetical protein, Spd1836 (136 a.a) (Figure 1.7). In E. coli, a YajC subunit 

participates in the Sec-dependent secretion by forming a complex with SecDF and YidC 

which may associate with the SecYEG and SecA ATPase to improve protein translocation 

efficiency (Schulze et al., 2014). Although the Sec-dependent pathway has been extensively 

studied, the precise role of SecDF-YidC-YajC complex is largely unknown. On the other 

hand, Spd1836 contains a multiple membrane occupation and recognition nexus (MORN)-

repeat motif. According to studies in eukaryotes especially in the parasite, Toxoplasma 

gondii and the plant, Arabidopsis, the MORN-repeat motif may function to localise and 

tether specific proteins to the membrane (Lorestani et al., 2010, Mikami et al., 2010). Using 

differential fluorescence induction (DFI) technique, Marra et al. (2002) showed that the 

OM001 operon might be important for pneumococcal virulence in a number of animal 

models. 

 

Figure 1.7: Schematic representation of the OM001 operon. 

In the chromosome, the operon consists of spd1838 which encodes for a translocase, YajC 
(99 amino acids); spd1837 which encodes for a low molecular weight protein tyrosine 
phosphatase (142 amino acids); and spd1836 which encodes for a Membrane Occupation 
and Recognition Nexus (MORN) repeats-containing protein (136 amino acids). The arrow 
indicates the direction of the transcription. 

The DFI technique employed by Marra et al. (2002) used a library of random 

small fragments of S. pneumoniae chromosomal DNA fused upstream of a promoterless 

gfp gene on an E. coli shuttle plasmid (Bartilson et al., 2001). The resulting library was 

transformed into S. pneumoniae and grown under in vitro conditions that mimic infections 

(high osmolarity, temperature shift, change in carbon dioxide (CO2) concentration, change 

to blood agar medium and iron limitation). If a promoter fragment controls genes that are 

important for survival under the said condition, gfp would be expressed and fluorescent 

cells could be isolated and analysed by flow cytometry (Marra et al., 2002). Subsequently, 
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the sequence of the promoter containing the specific fragment was determined and 

compared to the S. pneumoniae genome sequence, facilitating identification of genes 

downstream of the promoter; one of such was the OM001 operon. The contribution of 

genes in this operon to infection was then assessed by directed mutagenesis and virulence 

studies of the mutants (Marra et al., 2002, Schneider et al., 2002).  

In a model for more localised infection, the respiratory tract infection mice 

models, deleting this entire operon was found to severely attenuate the pneumococcus 

abilities to cause lung infection and the bacteria could not disseminate through the blood. 

Similar levels of attenuation were also found when using two other infection models, gerbil 

model of otitis media and the intraperitoneal chamber implant model (Marra et al., 2002). 

This study therefore provide some evidence for the importance of spd1837 and the other 

two genes in the operon, spd1838 and spd1836 in some aspect of bacterial growth, survival 

or/and virulence. Other LMWPTPs that had prominent effects on virulence as shown by 

animal studies include Streptococcus pyogenes SP-PTP (Kant et al., 2015) and M. 

tuberculosis PtpA (Singh et al., 2003). 

1.7 The pyruvate oxidase, SpxB  

S. pneumoniae is known to produce large quantities of H2O2 (Pericone et al., 

2003). However, it lacks the typical peroxide-detoxifying enzymes and regulators such as 

catalase, OxyR, PerR and NADH peroxidase (Tettelin et al., 2002, Hua et al., 2014). The 

pyruvate oxidase, SpxB, is the main enzyme responsible for H2O2 production in the 

pneumococcus (Spellerberg et al., 1996). SpxB catalyses the conversion of pyruvate, 

inorganic phosphate (Pi), and molecular oxygen (O2) to hydrogen peroxide (H2O2), carbon 

dioxide (CO2) and acetyl phosphate (Blanchette-Cain et al., 2013). Interestingly, aside from 

the pneumococcus, the spxB gene is only present in some streptococcal species that 

colonise the oropharynx, such as Streptococcus gordonii, Streptococcus oralis, and 

Streptococcus sanguinis (Okahashi et al., 2013).  

1.7.1 SpxB is required for H2O2 resistance 

A peculiar phenotype displayed by the pneumococcus when expressing SpxB is 

its inherent ability to resist death by SpxB’s own toxic byproduct, H2O2. spxB mutant was 
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previously shown to have 102- to 103-fold lower survival after exposure to 20 mM of 

exogenously added H2O2 compared to the SpxB-expressing wildtype strain (Pericone et al., 

2003). De novo protein synthesis does not appear to be required for pneumococcal H2O2 

resistance (Pericone et al., 2003). Additionally, prior exposure to sub-inhibitory 

concentrations of H2O2 for several bacterial generations did not improve pneumococcal 

H2O2 resistance (Syk et al., 2014). H2O2 is known to cause damage via the Fenton reaction 

which involves the generation of hydroxyl radicals by interacting with Fe2+ ions. However, 

treatment with the iron chelators dipyridyl or desferrioxamine did not alter the survival of 

both spxB mutant and wildtype strain (Pericone et al., 2003). The pneumococcus also 

expresses Dpr which has the capacity to protect the bacteria against death by Fenton 

reaction (Hua et al., 2014). Echlin et al. (2016) and Carvalho et al. (2013) showed that spxB 

mutation resulted in only 20% of H2O2 being produced relative to the wildtype. However, 

it is worth noting that during infection of human alveolar epithelial cells, the ability of S. 

pneumoniae to produce H2O2 appears to be strain-dependent, at least in the three 

serotypes tested, serotype 19F, 3 and 4 (Rai et al., 2015).  

1.7.2 The effects of SpxB on pneumococcal pathogenesis 

The contribution of SpxB to pneumococcal pathogenesis is still unclear. The 

H2O2 produced was shown to be able to kill or inhibit the growth of other co-colonisers of 

the nasopharynx such as H. influenzae and Neisseria meningitidis (Pericone et al., 2000, 

Regev-Yochay et al., 2006). The lack of spxB was shown to reduce virulence in a number of 

in vivo murine models (Spellerberg et al., 1996, Regev-Yochay et al., 2007, Ramos-

Montanez et al., 2008). However, another recent study has shown that the lack of spxB can 

actually contribute to pneumococcal hypervirulence during invasive disease in mice and 

spontaneous spxB mutants could be recovered from patients with invasive disease. The 

authors suggested that the expression of SpxB is detrimental for survival in the 

bloodstream given the mutants were cleared later by splenic macrophages (but not 

neutrophils) from the bloodstream despite having similar growth rate (Syk et al., 2014).  

The inconsistency in the in vivo data is not surprising given the intricate 

interaction between SpxB and other pneumococcal factors such as pneumolysin (Bryant et 

al., 2016), the overall colonisation process (Orihuela et al., 2004, Regev-Yochay et al., 2007) 

and metabolism (Echlin et al., 2016). For instance, a study found that spxB mutant strains 
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are less efficient in colonising (Syk et al., 2014) while SpxB was shown to contribute to the 

initial ability to colonise a naïve animal and prolonged nasopharyngeal colonisation in 

another study (Orihuela et al., 2004). Additionally, based on real-time PCR data, various 

pneumococcal serotypes including serotype 2 D39 were implicated to require SpxB for 

colonisation and the spxB transcripts were dramatically downregulated in the lung and 

bloodstream (Orihuela et al., 2004, LeMessurier et al., 2006, Mahdi et al., 2008). One 

known regulator of SpxB is SpxR, which regulates other genes during colonisation. SpxR 

positively regulates SpxB and this was proposed to be in response to differences in 

metabolic state as SpxR can bind adenosyl and CoA-containing products (Ramos-Montanez 

et al., 2008). Furthermore, SpxB was also shown to be required for competence (Battig & 

Muhlemann, 2008) and resistance to fluoroquinolone antibiotics (Ferrandiz et al., 2015).  

1.7.3 The effects of SpxB on CPS and metabolism 

The reported effects of spxB mutations on CPS production have varied from 

either increased CPS levels (Carvalho et al., 2013), decreased CPS levels (Echlin et al., 2016) 

to no change in CPS levels (Echlin et al., 2016) and this seems to be dependent on the 

serotype tested and the detection method used. SpxB also appears to play a role in phase 

variation as the opaque variant was found to produce less SpxB (Overweg et al., 2000).  It 

should be noted that the R6x and Rx1 (unencapsulated derivatives of D39) had a lower 

resistance to H2O2 than D39, the strain from which they were derived. Although these 

strains do possess null mutations in the hexA locus, which confer a DNA mismatch repair 

defect and increased sensitivity to DNA damage (Tiraby & Fox, 1973), this cannot explain 

the more severe defect in Rx1 resistance to H2O2, which had lower expression of SpxB, 

compared to R6x strain (Pericone et al., 2003).  

Additionally, SpxB has recently been recognised as a link between CPS 

biosynthesis and metabolism as reduced acetyl-CoA availability resulted from spxB deletion 

led to CPS defects in pneumococcal serotypes possessing CPS with acetylated sugars (Echlin 

et al., 2016). spxB deletion was also shown to alter sugar utilisation pattern in the 

pneumococcus such that, the carbon sources are likely being redirected away from 

glycolysis to produce more CPS. The authors observed a reduction in the levels of upper 

glycolytic metabolites glucose 6-phosphate (G6P) and fructose 1,6-bisphosphate (FBP) in 

late-exponential phase. G6P is a key metabolite at the hub of glycolysis and several 
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biosynthetic pathways, and its conversion to α-glucose 1-phosphate (α-G1P) is the first step 

that commits it to the synthesis of many structural polysaccharides, including serotype 2 

CPS, the strain of which the study was conducted on (Carvalho et al., 2013). It should be 

noted that the intracellular concentration of α-G1P and the UDP-activated CPS precursors, 

UDP-Glc and UDP-GlcUA were similar in the wildtype and its spxB mutant.  

1.7.4 The effects of H2O2 produced by the pneumococcus 

For the pneumococcus, the H2O2 produced can cause changes in membrane 

fatty acid composition (Pesakhov et al., 2007) and fatty acid saturation and chain length 

(Benisty et al., 2010). Other studies showed that the frequency of spontaneous mutations 

in pneumococcal genes is influenced by endogenous H2O2 production (Pericone et al., 2000, 

Pericone et al., 2002). From the host perspective, H2O2 produced by S. pneumoniae was 

shown to induce toxic DNA double-strand breaks in human alveolar epithelial cells and this 

occurs in a bacterial contact-independent manner. The damage to alveolar epithelium was 

also demonstrated to disintegrate pulmonary architecture and weaken the alveolar-blood 

barrier which was speculated to assist bacterial entry into the blood and therefore facilitate 

systemic bacterial dissemination (Rai et al., 2015). In addition, the presence of H2O2 slows 

ciliary beating, thereby promoting pneumococcal progression to the lungs (Hirst et al., 

2000). 

1.7.5 The possible interaction between SpxB-produced H2O2 and Spd1837 

As with other protein tyrosine phosphatases which harbour the CX5R motif in 

their active site, Spd1837’s catalytic cysteine is predicted to be deprotonated at 

physiological pH. As alluded to in Section 1.5.5, this highly positive environment of the 

cysteine’s thiol group is required for the phosphatase enzymatic activity (Tanner et al., 

2011).  However, this also potentially renders the phosphatase susceptible to oxidation 

leading to its transient inactivation (Chiarugi & Buricchi, 2007). This observation has been 

documented for many eukaryotic phosphatases with the CX5R active site including PTP-IB, 

the dual-specificity phosphatase PTEN, and PRL-1 (phosphatase of regenerating liver-1) 

(van Montfort et al., 2003, den Hertog et al., 2005, Sun et al., 2005). The H2O2 produced by 

the pneumococcus is therefore predicted to have the ability to oxidise and inactivate PTP 

with CX5R active site such as Spd1837 (Figure 1.8). 
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Figure 1.8: Schematic representation of the model of Spd1837 regulation by SpxB-
produced H2O2. 

ROS appear to oxidise selected PTPs, leading to inactivation by modification of the catalytic 
cysteine (shown in the thiolate state) to different possible oxidation products (denoted SO-
x).  

 

1.8 Research Questions and Aims 

As shown in Figure 1.6, Spd1837 is putative PTP in the pneumococcus which 

shows homology to the members of LMWPTPs in bacteria. Members of the LMWPTP family 

in bacteria most commonly play a role in CPS and EPS biosynthesis, although they can also 

facilitate a range of other processes which emphasises the versatility of LMWPTPs.  

Cumulatively, this suggests that LMWPTPs are pivotal for the physiology and pathogenicity 

of many bacteria and this may also apply to Spd1837 in the pneumococcus. This study also 

set out to investigate the role of the OM001 operon, the operon which encodes Spd1837, 

in CPS biosynthesis, virulence and survival in human saliva. The possibility that the SpxB-

produced H2O2 may regulate Spd1837 activity also drove us to investigate if Spd1837 may 

have a role in CPS production in the pneumococcus in certain conditions. 

Hypothesis 1: Spd1837 is an active LMWPTP in vitro which modulates important metabolic 

enzymes in the pneumococcus. 

Aim 1.1: To enzymatically and biochemically characterise Spd1837 as a LMWPTP in 

vitro.  
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Aim 1.2: To identify potential substrates of Spd1837 using a combination of pull-

down assays and mass spectrometry. 

Hypothesis 2: The operon encoding spd1837, the OM001 operon has a role in CPS 

biosynthesis, in vivo virulence and survival in human saliva in S. pneumoniae. 

Aim 2.1: To generate non-polar, markerless mutations in the genes of the OM001 

operon in the chromosome of S. pneumoniae. 

Aim 2.2: To assess the effects of the mutations in OM001 operon on pneumococcal 

CPS biosynthesis. 

Aim 2.3: To determine the contributions of the genes in the OM001 operon to 

pneumococcal in vivo virulence. 

Aim 2.4: To determine the contributions of the genes in the OM001 operon to 

pneumococcal survival in human saliva which could potentially further our 

understanding of the bacterial transmission process.  

Hypothesis 3: Spd1837 modulates pneumococcal CPS biosynthesis in a SpxB-dependent 

manner. 

Aim 3.1: To examine the sensitivity of Spd1837 to H2O2 as a C(X)5R active site-

containing PTP. 

Aim 3.2: To discover the link between SpxB, Spd1837 and the regulation of CPS, the 

major virulence factor of the pneumococcus.  
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Chapter Two 
MATERIALS AND METHODS 
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Chapter 2: Materials and Methods 

2.1 Growth Media 

2.1.1 Liquid growth media, solid growth media and selection 

All E. coli strains were routinely grown at 37 °C in Lysogeny Broth (LB) (10 g l-1 

tryptone (Becton, Dickinson and Co.; BD), 5 g l-1 yeast extract (BD), 5 g l-1 NaCl) with aeration 

at 180 rpm. For spread and streak plating, all E. coli strains were grown on LB agar (LB, 15 

g l-1 agar (BD)) for 16 hr at 37 °C. To store E. coli strains, bacteria were grown on solid media 

as a lawn, harvested by a sterile loop, and stored at -80 ˚C in 30 % (v/v) glycerol, 1 % (w/v) 

peptone in glass vials (Wheaton). 

All S. pneumoniae strains were routinely grown at 37 °C with 5% CO2 in Todd-

Hewitt broth (Oxoid) with 1% yeast extract (Oxoid) (THY) without aeration. For spread, 

streak, and patch plating, all S. pneumoniae strains were grown on Columbia blood agar 

(39 g l-1 Columbia base agar (Oxoid), 1% (w/v) agar (Bacto), 5% (v/v) defibrinated horse 

blood (Australian Ethical Biologicals)) for 16 hr at 37 °C with 5% CO2. On blood agar (BA), S. 

pneumoniae forms alpha haemolytic colonies, 1-2 mm in diameter (Ramirez et al., 2015). 

For mouse challenge, S. pneumoniae strains were grown in serum broth (10% (v/v) heat-

inactivated horse serum in nutrient broth (25 g l-1 of nutrient broth no. 2 (Oxoid) in MilliQ 

water (MQ) (Millipore) (18.2 MΩ cm-1)). To store S. pneumoniae strains, bacteria were 

grown in THY until high optical density, and stored at -80 ˚C in 30 % (v/v) glycerol. 

Antibiotics were added as required to the media at the following final 

concentrations: for E. coli, ampicillin (Amp) at 100 μg ml-1 (Roche) and for S. pneumoniae, 

streptomycin (Sm) at 150 µg ml-1 (Sigma), kanamycin (Km) at 200 µg ml-1 (A.G. Scientific 

Inc), chloramphenicol (Cml) at 6 μg ml-1 (Sigma) and gentamicin (Gm) at 10 µg mL-1(Sigma).  

Bacterial concentration in liquid growth media was measured by optical density 

at 600 nm (OD600) where an OD600 reading of 1.0 was equivalent to 5 x 108 CFU ml-1. 
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2.2 Bacterial strains and plasmids 

All E. coli and S. pneumoniae strains and plasmids utilised or constructed in this 

work are listed in Appendix A.  

2.3 Antibodies and antisera  

THETM His Tag Antibody (mouse monoclonal, GenScript) was used at 1 in 10,000 

dilution. Monoclonal mouse anti-phosphotyrosine (anti-PY) 4G10 antibodies (Bio X Cell) 

were used at 1 in 5,000 dilution. Polyclonal affinity-purified rabbit anti-CpsB and rabbit anti-

CpsD antibodies were produced and validated as described previously (Whittall et al., 2015) 

and both were used at 1 in 500 dilution. Polyclonal affinity-purified mouse anti-SpxB was 

gifted by Prof James Paton and validated as described previously (Chai et al., 2017). 

Polyclonal affinity-purified anti-CbpA was validated as described previously (Standish et al., 

2005). Both anti-SpxB and anti-CbpA were used at 1 in 5,000 dilution. Horseradish peroxidase-

conjugated goat ant-rabbit secondary antibodies (KPL) (1 mg ml-1) were used at 1 in 30,000 

dilution. Horseradish peroxidase-conjugated goat ant-mouse secondary antibodies (Cell 

Signalling) were used at 1 in 5,000 dilution. 

Antibodies were raised against Spd1837 (purified protein > 95% pure as 

determined by Coomassie-stained SDS-PAGE) in rabbits (Institute of Medical and 

Veterinary Science, Veterinary Services (Gilles Plain, SA, Australia). The antiserum was 

produced under the National Health and Medical Research Council (NHMRC) Australian 

Code of Practice for the Care and Use of Animals for Scientific Purposes and was approved 

by the University of Adelaide Animal Ethics Committee. The crude antibodies were 

enriched and affinity-purified as described previously (Van den Bosch et al., 1997) before 

being stored at -20 °C in 50% (v/v) glycerol. Anti-Spd1837 antibodies were used at 1 in 500 

dilution. 
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2.4 DNA techniques 

2.4.1 Oligonucleotides 

All oligonucleotides as listed in Appendix B were ordered from Integrated DNA 

Technologies (IDT), resuspended in MQ to a storage stock concentration of 100 µM, and 

stored at -20 °C. Oligonucleotides were diluted to 10 µM before use in polymerase chain 

reactions (PCR) at 0.2 – 0.5 µM. 

2.4.2 Polymerase chain reaction (PCR) 

PCR reactions were conducted according to the supplied protocols either in a 

25 or 50 µl volume. In general, Taq DNA polymerase with 1 X ThermoPol Reaction Buffer 

(New England Biolab; NEB) was only used for screening purposes. For cloning and 

maintenance of sequence fidelity, Phusion Pfu High-Fidelity DNA Polymerase (NEB) was 

used. For difficult amplification, Q5® Hot Start High-Fidelity DNA Polymerase (NEB) was 

used. Deoxynucleic triphosphates (dNTPs) (Sigma) was used at a final reaction 

concentration of 200 µM. An Eppendorf Mastercycler Gradient thermocycler was used for 

all reactions.  Standard cycles for Taq reaction were 30 × denaturation (98 °C, 30 sec), 

annealing (55 °C, 30 sec), and extension (68 °C, 1 min kb-1). Standard cycles for Phusion 

reaction were 25 × denaturation (95 °C, 10 sec), annealing (55 °C, 3 min), and extension (68 

°C, 30 sec kb-1). Standard cycles for Q5 reaction were 35 × denaturation (98 °C, 30 sec), 

annealing (55 °C, 30 sec), and extension (72 °C, 30 sec kb-1). 

2.4.3 Agarose gel electrophoresis 

Prior to loading DNA samples, 5 μl of loading buffer (1 mg ml-1 bromophenol 

blue, 20 % (v/v) glycerol, 0.1 mg ml-1 RNase) for every 5 μl of sample was added. Samples 

were separated through horizontal 1% (w/v) agarose TBE (70 mM Tris, 20 mM boric acid, 1 

mM EDTA) gels supplemented with the required volume of 20,000 x RedSafe nucleic acid 

staining solution (iNtRON Biotechnology). Size markers used were SPP1 phage DNA EcoRI 

fragments made in-house (sizes (kb): 8.51, 7.35, 6.11, 4.84, 3.59, 2.81, 1.95, 1.86, 1.51 1.39, 

1.16, 0.98, 0.72, 0.48 0.36 and 0.09). The EcoRI digested SPP1 molecular weight standards 
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were prepared as described previously (Ratcliff et al., 1979). Gels were run at 120 V for 30 

min and visualised using a GelDoc XR system (BioRad). 

2.4.4 PCR product purification 

A QIAquick PCR purification kit (Qiagen) or illustraTM GFXTM PCR DNA 

Purification Kit (GE Healthcare) was used according to the supplied protocols for purifying 

PCR products. DNA was eluted in 20 - 50 μl of MQ and stored at -20 °C. 

2.4.5 DNA quantification 

NanoDrop 2000c Spectrophotometer (Thermo Scientific) was used for 

measurements of DNA sample concentration by absorption at 260 nm. 

2.4.6 DNA sequencing 

The samples (purified DNA in the form of double-stranded plasmid or PCR 

product) were sequenced by the Australian Genome Research Facility (AGRF) sequencing 

service. In the case of PCR product, sequencing primer was designed such that it binds more 

internally than the oligonucleotides used to amplify the PCR product. The sequencing 

primer was added at a final concentration of 0.8 μM to purified DNA (at a concentration 

following the facility’s recommendation depending on the type and/or size of the DNA) and 

adjusted to a volume of 12 μl using MQ in a 1.5 ml Eppendorf tube. DNA sequencing data 

obtained from AGRF was checked for quality using Chromas version 2.6.4 and aligned with 

the native DNA sequence using DNAMAN version 4.22. 

2.4.7 Cloning of spd1837 into pET-15b 

2.4.7.1 The vector pET-15b 

The vector pET-15b (Novagen) carries an N-terminal His-tag sequence followed 

by a thrombin site and three cloning sites. The cloning/expression region of the coding 

strand is transcribed by T7 RNA polymerase. The spd1837 gene from S. pneumoniae 

serotype 2 D39 strain (NCBI protein ID ABJ55438) was cloned between the NdeI and BamHI 

sites and the transformants were selected by plating on ampicillin plate. 
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2.4.7.2 The plasmid pET-15b isolation 

pET-15b was isolated from overnight bacterial culture of RMA2302 (LB, 10 ml) 

according to the QIAprep Spin Miniprep kit (Qiagen) protocol, eluted in MQ and was stored 

at -4 °C. 

2.4.7.3 Restriction endonuclease digests 

In a total volume of 20 µl, 2 µl of CutSmart buffer (NEB), 1 µl of each BamHI and 

NdeI-HF (NEB), 10 µl of isolated pET-15b or PCR-amplified spd1837 and 16 µl MQ were 

added. Digestion was incubated for 1.5 hr at 37 °C. Following digestion, the sample was 

PCR purified as BamHI cannot be heat-inactivated.  

2.4.7.4 Ligation into pET-15b 

Ligation reaction was performed following the manufacturer’s (NEB) protocol 

where PCR product and plasmid for ligations were mixed in a molar ratio of 3:1 

(insert:vector) in a total volume of 10 µl containing 2 U of T4 DNA ligase (NEB) and 1 X T4 

DNA ligase buffer (NEB) for 1 hr at 25 °C.  

2.4.7.5 Preparation of chemically competent E. coli DH5α  

Overnight DH5α culture was diluted 1:20 in 10 ml LB. Mid-exponential phase 

(OD600 ~ 0.5) DH5α was harvested by centrifugation (2,200 × g, 10 min, 4 °C), washed in 5 

ml of ice-cold 100 mM MgCl2, resuspended in 1 ml of ice-cold 100 mM CaCl2, and incubated 

on ice for 1 hr. Bacteria were then centrifuged (16,000 × g, 1 min, 4 ˚C), resuspended in 500 

μl of 100 mM CaCl2 containing 15 % (v/v) glycerol, and split into 100 μl aliquots. Aliquots 

were stored at -80 °C. 

2.4.7.6 Heat-shock transformation of chemically competent E. coli 

The entire volume of the ligation reaction was added to the thawed, chemically 

competent E. coli DH5α aliquot and incubated on ice for 30 min. Bacteria were then heat-

shocked at 37 °C for 3 min and then incubated on ice for 5 min. 1 ml of LB was added and 

the mixture was incubated at 37 °C for 30 min to allow the expression of the ampicillin 

antibiotic resistance genes in the plasmids before spread-plating. The resultant strain is ZA1 

(Appendix A). 
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2.4.7.7 Site-directed mutagenesis 

Single amino acid substitution in spd1837 was constructed using the 

QuikChange Lightning Site-directed Mutagenesis kit (Agilent Technologies) according to the 

supplied protocols with some modifications. For the synthesis of the mutant strand, Q5® 

Hot Start High-Fidelity DNA Polymerase was used with primers ZA11 and ZA12 primers 

(Appendix B) instead of the supplied QuikChange Lightning Enzyme. Plasmid DNA was 

added at a final concentration of approximately 40 ng µl-1. Then, during the transformation 

of XL-10 Gold Ultracompetent cells, the recommended NZY+ broth was substituted to 

regular LB. The resultant strain is ZA11 (Appendix A). 

2.4.7.8 Strains construction for Spd1837 and Spd1837C8S protein over-expression 

The constructed pET-15b-Spd1837 and pET-15b-Spd1837C8S were isolated from 

ZA1 and ZA11 strain respectively and transformed into Lemo21 (DE3) strain as per section 

2.4.7.5 and 2.4.7.6, giving rise to ZA2 and ZA12 strains (Appendix A). 

2.4.8 Construction of chromosomal mutations in S. pneumoniae  

2.4.8.1 S. pneumoniae chromosomal DNA isolation 

Pneumococcal chromosomal DNA was isolated using the Wizard Genomic DNA 

purification kit (Promega) according to the manufacturer’s instructions. Sodium 

deoxycholate (DOC) (Sigma) was used at 0.1% to lyse the cells. DNA isolated was rehydrated 

in 20 – 50 µl MQ.  

2.4.8.2 Overlap-extension PCR 

All the deletion and point mutation in S. pneumoniae chromosome (except spxB 

deletion) were constructed using the Janus cassette system (Sung et al., 2001). This 

involved a two-step transformation process which resulted in non-polar, markerless 

mutation of the target gene. For example, to generate D39Δspd1837 strain, firstly, PCR 

products which encodes for the 2kb upstream region of spd1837 gene and the 2kb 

downstream region of spd1837 gene were amplified using overlap-extension PCR with 

oligonucleotides which have homologous region to the Janus cassette (Horton, 1993). Next, 

these three separate PCR products were PCR-purified and combined, serving as the 
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template DNA for the second round of PCR using only the external 

oligonucleotides/primers (Figure 2.1A). Then, a streptomycin-resistant D39 was 

transformed with PCR product generated earlier. The Janus cassette carries a kanamycin-

resistant cassette and the dominant rpsl+ gene that encodes for streptomycin-sensitivity. 

Hence, for this first transformation, D39spd1837::janus strain was generated by selecting 

for colonies which were streptomycin-sensitive and kanamycin-resistant (Figure 2.1B). In 

the second round of overlap-extension PCR, similar process was repeated except that this 

time, the primers utilised were designed to delete spd1837 in place of the Janus cassette 

(Figure 2.1C). Thus, for this second transformation, D39Δspd1837 mutants were generated 

by selecting for colonies which were streptomycin-resistant and kanamycin-sensitive due 

to the loss of the Janus cassette (Figure 2.1D). It is also critical that before the next 

amplification process, the PCR products which would serve as the template DNA in the 

second step was PCR-purified twice, one in separate tubes then again in the same tube 

(Section 2.4.4)  
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Figure 2.1: Construction of spd1837 chromosomal deletion in S. pneumoniae D39. 

All the deletion and point mutation in S. pneumoniae chromosome (except spxB deletion) 
were constructed using the Janus cassette system and overlap-extension PCR (A) and (C), 
in combination with two-step transformation process (B) and (D), which resulted in non-
polar, markerless mutation of the target gene. Transformation of S. pneumoniae 

The strain was grown to mid-log phase (OD600 ~ 0.5) and 100 µl of the culture 

was added to 10 ml THY, 10 µl 0.1 M CaCl2, 25 µl 8% (w/v) Bovine Serum Albumin (BSA) and 

10 µl of the  PCR product. The PCR product containing the desired mutation or deletion was 

transformed directly into S. pneumoniae without being PCR-purified first. For 

transformation into D39, the culture was also supplemented with 10 ng ml-1 competence-

stimulating peptide-1 (CSP-1) (amino acid sequence: MRLSKFFDFILQRKK (Chirontech 

(Victoria, Australia)) while for transformation into WU2, both CSP-1 and competence-

stimulating peptide-2 (CSP-2) (amino acid sequence: EMRISRIILDFLFLRKK (Mimotopes 

(Victoria, Australia)) were added (Havarstein et al., 1995).  

2.4.8.3 Complementation  

To create the OM001 complemented strain, firstly, the 2 kb region upstream of 

the deleted OM001 operon was amplified using the primers ZA3 and ZA16 and the 2 kb 
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region downstream of the deleted OM001 operon was amplified using the primers ZA4 and 

ZA19. These two PCR products and the amplified Janus cassette were combined and 

amplified again using just the primers ZA3 and ZA4. The approximately 2.4 kb PCR product 

was then used to transform D39ΔOM001. The transformants were selected on kanamycin 

plates, resulted in the intermediate strain, D39ΔOM001::janus. Next, the OM001 operon 

region including 1 kb of flanking genomic DNA from D39 was amplified using the primers 

ZA36 and ZA37. This product was then used to transform D39ΔOM001::janus to replace the 

Janus cassette with the wild type copy of the OM001 operon. The successful transformants 

were selected on streptomycin plate and one of them was sequenced and verified (Section 

2.4.6) to have acquired the OM001 operon back and this strain is called 

D39ΔOM001::OM001+. 

2.4.8.4 Deletion of spxB 

To construct spxB deletion mutation, a chloramphenicol resistance cassette 

with 2 kb homology to upstream and downstream region of spxB gene in S. pneumoniae 

serotype 2 D39 genome was amplified using the primers AS253 and AS254 (Appendix B). 

The PCR products were then transformed into the D39 WT, Δspd1837 and Spd1837C8S 

strains as per Section 0 to delete and replace the open reading frame encoding SpxB with 

the chloramphenicol resistance cassette. 

2.5 Protein techniques 

2.5.1 Whole bacterial lysate samples 

A total of 2.5 x 108 bacteria from a mid-log phase (OD600 ~ 0.5) culture were 

harvested (16,000 × g, 1 min, 4 ˚C) and resuspended in 50 μl of sample buffer (4 % (w/v) 

SDS, 20 % (v/v) glycerol, 10 % (v/v) β-mercaptoethanol, 1 % (w/v) bromophenol blue, 0.25 

M Tris pH 6.8). Samples were heated at 100 ˚C for 5 min and either stored at -20 °C or used 

immediately for SDS-PAGE.  
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2.5.2 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) 

SDS-PAGE was conducted using BioRad self-cast Mini-Protean System III and a 

Tris-Glycine buffer system. Acrylamide and ammonium persulfate were purchased from 

BioRad while N,N,N',N'-Tetramethyl-ethylenediamine (TEMED) was purchased from Sigma. 

Samples were electrophoresed on 12% or 15% (w/v) acrylamide gels depending on the size 

of the protein(s) of interest. The running buffer (pH 8.3) was consisted of 25 mM Tris-HCl, 

200 mM glycine, and 0.1 % (w/v) SDS. Gels were generally electrophoresed between 100 – 

200 V for 1 – 2 hr. Low molecular weight markers (LMWM) (Invitrogen) (sizes (kDa): 97.0, 

66.0, 45.0, 30.0, 20.1, 14.4) were used as guides to estimate the protein molecular mass if 

the gel was intended for Coomassie staining (Section 2.5.3). BenchMark Prestained Protein 

standard (Invitrogen) (sizes (kDa): 190, 120, 85, 60, 50, 40, 25, 20, 15, 10) or SeeBlue™ Plus2 

Pre-stained Protein Standard (Thermo Scientific) (sizes (kDa): 155, 100, 65, 41, 33, 23, 12) 

were used as guides to estimate the protein molecular mass if the gel was intended for 

Western immunoblotting (Section 2.5.4). For mass spectrometry analysis (Section 2.5.7), 

the samples were electrophoresed on a 4-12% Bolt™ Bis-Tris Plus Gel (Thermo Scientific). 

2.5.3 Coomassie blue staining 

SDS-PAGE-separated proteins were stained by incubating the gel in Coomassie 

blue stain solution (0.3 % (w/v) Coomassie Brilliant Blue R-250 (Thermo Scientific), 10 % 

(v/v) acetic acid, 45 % (v/v) methanol) at room temperature with shaking at least 1 hr to 

overnight. Gels were destained with repeated washes of Destain solution (10 % (v/v) acetic 

acid, 50 % (v/v) methanol). 

2.5.4 Western immunoblotting and detection 

SDS-PAGE-separated proteins were transferred to nitrocellulose membranes 

(NitroBind, pure nitrocellulose, 0.45 μm (BioRad)) using BioRad Trans-Blot® TurboTM 

Transfer System. Transfer was conducted under turbo mode according to manufacturer’s 

recommendations (7 min at 1.3 A, 25 V for one mini gel or 7 min at 2.5 A, 25V for two mini 

gels in 1 × transfer buffer (200 ml 5 × transfer buffer, 600 ml reverse osmosis (RO) water 

and 200 ml ethanol). Ponceau S stain (0.1% (w/v) Ponceau S (Sigma), 5% acetic acid) was 

used to visualise if the transfer was successful. For the detection using all primary 
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antibodies except anti-PY 4G10, the blots were blocked with 5 % (w/v) skim milk in TTBS 

buffer (16 mM TrisHCl, 120 mM NaCl, 0.05 % (v/v) Tween-20 (Sigma)) for 1 hr before 

overnight incubation with primary antibody diluted in 5 % (w/v) skim milk in TTBS. Blots 

were then washed three times with TTBS for 10 min and incubated with HRP-conjugated 

secondary antibody diluted in TTBS for 2 hr. For anti-PY blots, following transfer, the blots 

were blocked with 5 % (w/v) BSA in TTBS overnight. The blots were then incubated in 

primary antibody diluted in 5% (w/v) BSA in TTBS for 1 hr. Following washes as described 

previously, the blots were incubated with HRP-conjugated secondary antibody diluted in 5 

% (w/v) skim milk in TTBS for 2 hr. The following steps applied for all blots including anti-

PY blots; blots were then washed three times with TTBS and three times with TBS (TTBS 

without Tween-20) for 5 min. Blots were incubated with Chemiluminescent substrate 

(Sigma) and then developed digitally using a ChemiDoc MP System (BioRad). Where 

appropriate, the blots were re-probed using another primary antibodies after incubation 

with RestoreTM Western Blot Stripping Buffer (Thermo Scientific) following the 

manufacturer’s instructions. 

2.5.5 Over-expression and purification of Spd1837 and Spd1837C8S 

The Spd1837 from S. pneumoniae D39 (serotype 2) and the protein with a point 

mutation in its active site, Spd1837C8S were expressed as His6-recombinant proteins using 

the vector pET-15b as described in Section 2.4.7. Spd1837 and Spd1837C8S proteins were 

expressed in E. coli Lemo21 (DE3), grown at 37 °C for 16 hr LB, sub-cultured 1:20 in 1 l LB 

at 37 °C for 2 hr with the expression of recombinant protein induced with 0.1 mM isopropyl 

β-ᴅ-1-thiogalactopyranoside (IPTG) (Biovectra) and incubation was proceeded for another 

3 hr at 37 °C.  

Spd1837 and Spd1837C8S were purified essentially as described by Romero et 

al. (2007). Briefly, to harvest the cells, the cultures of the indicated strains were centrifuged 

at 8,000 × g for 20 min at 4 °C. The cell pellet was resuspended in 10 ml Buffer A (100 mM 

Tris, 200 mM NaCl, 20% (v/v) glycerol, 20 mM imidazole (Sigma), pH 7.4) containing 100 µg 

ml-1 deoxyribonuclease I (Sigma) and 1 x protease inhibitor (BioSciences). The cells were 

disrupted by French press at >1000 p.s.i. (~6.9 MPa). The crude lysate was ultracentrifuged 

at 288,000 × g for 1 hr at 4 °C to remove insoluble material. The isolated soluble fraction 

was loaded onto a 5 ml HisTrap FF column (GE Healthcare) previously equilibrated with 
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Buffer A. The protein was then eluted with Buffer B (100 mM Tris, 200 mM NaCl, 20% (v/v) 

glycerol, 500 mM imidazole, pH 7.4). The homogeneity of the purified proteins was 

determined using 15% (v/v) SDS-PAGE. Fractions containing the proteins were pooled and 

desalted using a PD-10 column (GE Healthcare) pre-equilibrated with Buffer A. The 6×His-

tag was then cleaved with Thrombin (Sigma) (10 µl per 1.5 ml of sample). The final 

purification of the protein from contaminating proteins was achieved by buffer exchange, 

size-exclusion filtration using HiLoad 16/600 and 26/600 Superdex 200 prep grade column 

(GE Healthcare). The concentrations of both wild type and mutant proteins were 

determined using the Pierce BCA Protein Assay Kit (Thermo Scientific).  

2.5.6 In vitro substrate-trapping assay 

The method involved substituting the critical cysteine residue to a serine 

residue which was successfully constructed as per Section 2.4.7.8. Replacement of the 

catalytic site cysteine by a serine has been shown to completely abolish phosphatase 

activity (Castandet et al., 2005, Maeda et al., 2008, Linford et al., 2014, Nath et al., 2014). 

Such mutation has been shown previously to result in a mutant form of the enzyme that is 

able to bind substrates to the same affinity as the wildtype enzyme i.e. the substrate is 

‘trapped’ in the catalytic pocket but can no longer be dephosphorylated, resulting in a 

stable non-covalent PTP-Ser-PO3 complex (Davis et al., 1994, Buist et al., 2000, Zhang, 

2003a, Zhang, 2003b, Blanchetot et al., 2005, Trentini et al., 2014). 

The assay was performed essentially as described by Blanchetot et al. (2005) 

with some modifications. 500 ml THY media was inoculated with D39Δspd1837 strain and 

grown for 6 hr (OD600 ~ 0.2). 1 mM of freshly-prepared pervanadate (1 mM H2O2, 1 mM 

sodium orthovanadate (Na2VO3)) was added to the culture and the incubation was 

continued for another 30 min. Pervanadate is a strong oxidant of the PTPs active site 

cysteine (Chiarugi, 2001). Once added to the cells, pervanadate disrupts the balance 

between tyrosine phosphatases and tyrosine kinases in favour of the tyrosine kinases which 

results in increased tyrosine phosphorylation. To harvest the cells, the culture was 

centrifuged at 8,000 × g for 20 min at 4 °C, the supernatant removed and the pellet frozen 

at -80 °C. 100 µl of Ni-charged MagBeads slurry (GenScript) per sample was equilibrated 

with cold lysis buffer (20 mM Tris, pH 7.5, 300 mM NaCl, 0.1 mM EDTA, 1% (v/v) Triton X-

100 (Sigma), 10% (v/v) glycerol, 1 mM imidazole) twice. 125 µg of His6-Spd1837, His6-
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Spd1837C8S, or BSA in conjugation buffer (1 × TBS, 10% (v/v) glycerol, 1 mM dithiothreitol 

(DTT)) were incubated with the equilibrated magnetic beads at 4 °C overnight, and beads 

only sample was incubated with conjugation buffer only. 

The next day, the frozen pellet was resuspended in cold lysis buffer freshly 

supplemented with 5 mM iodoacetic acid (IAA) (Sigma), 1 mM Na3VO4 and 1 × proteases 

inhibitor (BioSciences). IAA irreversibly inactivates the endogenous tyrosine phosphatase 

and EDTA chelates and inactivates the vanadate(s). The resuspended cells were then 

disrupted by sonication on ice (Branson B15). Cleared cell lysate was incubated with 5 mM 

DTT on ice for 15 min. The crude lysate was ultracentrifuged at 450,000 × g for 1 hr at 4 °C 

to separate the soluble and insoluble fractions. After the supernatant (the soluble fraction) 

was collected, the pellet (the insoluble fraction) was solubilised with 1% (w/v) n-dodecyl-

β-ᴅ-maltoside (DDM) (Anatrace). The conjugation buffer from the beads was removed and 

the soluble fraction and insoluble fraction were incubated separately with the beads 

overnight at 4 °C. Step-wise elution with imidazole during the washes was implemented 

with 250 mM imidazole as the final elution step. The eluted samples were collected and 

subjected to SDS-PAGE on a 4-12% Bolt™ Bis-Tris Plus Gel (Thermo Scientific) and 

subsequently Coomassie-stained. 

2.5.7 Liquid chromatography – electrospray ionisation tandem mass spectrometry  

2.5.7.1 Sample preparation 

The substrate-trapping assay were repeated three times with consistent results 

and one of the Coomassie-stained whole gels was submitted to the Adelaide Proteomics 

Centre for trypsin digestion and mass spectrometry analysis of tryptic peptides of the 

selected bands. Firstly, the gel bands were destained with 100 mM ammonium bicarbonate 

in 30% acetonitrile (ACN), washed with 50 mM ammonium bicarbonate (NH4HCO3) and 

digested with 100 ng of sequencing grade modified trypsin (Promega) in 5 mM ammonium 

bicarbonate in 10% ACN. Resulting peptides were extracted using 3 washes of 1% formic 

acid (FA) in water, 1% FA in 50% ACN and 100% ACN respectively. The volumes of the 

resulting peptide extracts were reduced by vacuum centrifugation to approximately 1 µl 

then resuspended with 0.1% FA in 2% ACN to a total volume of ~10 µl. 
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2.5.7.2 Data acquisition 

Data acquisition was also performed by Adelaide Proteomics Centre. Nano-

liquid chromatography-electrospray ionisation tandem mass spectrometry was performed 

on an Ultimate 3000 RSLC system coupled to a LTQ Orbitrap XL ETD MS instrument (both 

Thermo Scientific). Peptide samples (5 µl) were pre-concentrated onto a C18 trapping 

column (Acclaim PepMap100 C18 75 μm × 20 mm, Thermo Scientific) at a flow rate of 5 μl 

min-1 in 2% ACN 0.1% FA for 5 min. Peptide separation was performed using a 75 μm ID 

C18 column (Acclaim PepMap100 C18 75 μm × 15 cm, Thermo Scientific) at a flow rate of 

0.3 μl min-1 using a linear gradient from 5 to 45% B (A: 5% ACN 0.1% FA, B: 80% ACN 0.1% 

FA) over 30 minutes, followed by a 10 min wash with 90% B, and an 15 min equilibration 

with 5% B. Mass spectrometry (MS) scans were acquired in the mass range of 300 to 2,000 

m/z at a resolution of 60,000. The six most intense precursor ions selected for isolation and 

were subjected to collision-induced dissociation (CID) fragmentation using a dynamic 

exclusion of 5 sec. Dynamic exclusion criteria included a minimum relative signal intensity 

of 1,000, and ≥ 2+ charge state. An isolation width of 3.0 was used with a normalised 

collision energy of 35. 

 RAW files were submitted directly to Mascot via Proteome Daemon (1.3, 

Thermo Scientific). Acquired data was searched against the Swiss-Prot database in MASCOT 

(V2.3.02). Search parameters were set as Streptococcus pneumoniae strain D39 

(Taxonomy), trypsin digestion with 2 missed cleavages, fixed modification of 

carbamidomethyl of cysteine, variable modification of oxidation of methionine, precursor 

ion mass tolerance of 10 ppm, and product ion mass tolerance of 0.8 Da. Further analysis 

of the data was carried out in Proteome Discoverer (V1.1, Thermo Scientific). Data was 

searched against decoy database for false discovery rate calculations (approximately 1%). 

Peptides with p < 0.05 are reported. Identifications can be made if at least two unique 

peptides were sequenced from a protein and had individual ion scores above the homology 

threshold. Multiple charge states were not considered as unique. 
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2.6 Tissue culture techniques 

2.6.1 Tissue culture and maintenance 

The cell line used was A549 (human type II pneumocytes) ATCC CCL-185. Cells 

were grown and maintained in Falcon 75 cm2 vented tissue culture flasks (BD Corning). Cells 

were grown in 20 ml Dulbecco’s Modified Eagle’s medium (DMEM) with HEPES minus 

sodium pyruvate (Life Technologies). The medium was supplemented with 5 % (v/v) foetal 

calf serum, 4 mM L-glutamine (replaced every 7 days), 100 U ml-1 penicillin and 100 U ml-1 

streptomycin. Cells were maintained at 37 °C in a humidified incubator with a constant 5 % 

CO2. Upon reaching confluence, A549 cells were washed three times in 1 × PBS, detached 

with 1 ml 0.25% (w/v) trypsin and 0.02% (w/v) EDTA and counted. Flasks were re-seeded 

at a ratio of 1:4 (cell suspension:media). Cells were stored in the growth medium 

supplemented with 10% (v/v) demthylsufoxide (DMSO) (Sigma) at -80 °C for long-term 

storage.  

2.6.2 Mycoplasma detection by PCR-based method 

As the A549 was a new cell line to enter the laboratory, it was subjected to 

identification of mycoplasma contamination before any assays were conducted using the 

cell line. Firstly, 300 µl of media supernatant was heated at 100 °C for 3 min. Following that, 

300 µl of phenol/chloroform mix were added and the mixture was centrifuged at 13,000 × 

g for 10 min. 25 µl of the supernatant was removed and added to 75 µl MQ. 1 µl of this 

mixture was used as the template for PCR reaction using Taq polymerase as described in 

Section 2.4.2 and MycoF and MycoR oligonucleotides (Appendix B). With the appropriate 

positive (supernatant of Caco-2 cells that were previously shown to be mycoplasma 

positive) and negative (miliQ) controls, the A549 cell line was determined to be 

mycoplasma negative. 

2.6.3 Adherence assays 

The method was adapted from Talbot et al. (1996). To achieve approximately 

90% confluency so that the adherence sites remained fully exposed, 4.5 x 104 cells/well 

were seeded in 24-well plates and incubated overnight at 37 °C in 5% CO2. The strains were 
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grown in THY until the OD600 of 0.5, washed and resuspended in culture media before being 

added to four wells per strain at a density of 5 x 106 CFU ml-1. Infected A549 cells were 

incubated for 1.30 hr at 37 °C in 5% CO2 followed by three washes in Dulbecco’s PBS (0.1% 

(v/v) CaCl2, 0.1% (v/v) MgCl2 in 1 × PBS). To detach the adherent bacteria, 100 µl of 0.25% 

(v/v) trypsin with 0.02% (w/v) EDTA and 400 µl of 0.25% (v/v) Triton X-100 were added to 

the wells. 100 µl lysate from each well and serial dilutions (up to 10-3) thereof were plated 

onto BA. Adherent pneumococci were then quantified and expressed as percentage of 

adherent cells relative to the wildtype. Results were analysed using Student’s unpaired t-

test (2-tailed). 

2.7 Phosphatase assays 

Phosphatase activity was monitored at 37 °C by using a continuous method 

based on the detection of p-nitrophenol (pNP) formed from p-nitrophenyl phosphate 

(pNPP). Assay linearity over at least 10 min was established. The amount of pNP released 

was estimated by using a molar extinction coefficient of 18,000 M-1 cm-1 (Cirri et al., 1993). 

The assay was optimised with respect to protein concentration, time, and pH. Absorbance 

readings at 410 nm were carried out on a PowerWaveX340 microplate spectrophotometer 

(Bio-Tek Instruments, Inc.). Kinetic reaction mixtures were thermally equilibrated for 30 

min at 37°C prior to reaction initiation. Kinetic parameters were determined by fitting the 

data to the Michaelis-Menten equation, using non-linear regression (GraphPad Prism 6 

Software). Phosphatase activities at different temperatures were compared at 

temperatures ranging from 25 to 50 °C using 100 mM Tris pH 7.0 as buffer. Phosphatase 

activities at different pH values were compared with the following buffers: 100 mM sodium 

citrate (pH 4.0-6.5), and 100 mM Tris (pH 7.0-9.5) at 37 °C. In varied pH, temperature and 

inhibitors concentration assays, 400 ng of Spd1837 and 8.0 mM pNPP was used. Na2VO3 

(Sigma) was added from 200 mM stocks according to manufacturer’s instructions. 

Phosphotyrosine phosphatase activity was also analysed using the Tyrosine Phosphatase 

Assay System (Promega), according to the manufacturer’s instructions.  

For the Na2VO3 and the sodium fluoride (NaF) (Sigma) inhibition assay, both 

Na2VO3 and NaF were added in the range of 0-100 mM. For the H2O2 inhibition assay, H2O2 

was added in the range of 0-500 µM. To rescue the phosphatase activity, catalase from 
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Bovine liver (Sigma) in the range of 2-175 ng ml-1 was added to the reaction containing 100 

µM of H2O2 in a separate assay. In all inhibition assays, 400 ng of Spd1837 and 8.0 mM 

pNPP was used in 100 mM Tris pH 7.0 as buffer at 37 °C.  

2.8 Quantification of pneumococcal CPS 

2.8.1 Preparation of pneumococcal CPS 

CPS was prepared from the indicated strains grown either aerobically (BA at 37 

°C with 5% CO2) or anaerobically (BA at 37 °C with 5% CO2 in a BD GasPak™ Anaerobic Jar 

(BD)). The cells were resuspended in 10 ml PBS and adjusted to an OD600 of 0.5. The 

resuspended bacteria were then separated into two 5 ml aliquots and centrifuged (4,500 × 

g, 30 min). The aliquots were then resuspended differently depending on the preparation 

as described below; 

2.8.1.1 Total CPS (T-CPS) samples 

The cell pellet was resuspended in 150 mM Tris (pH 7.0), 1 mM MgSO4 to a final 

volume of 250 µl. 5 µl of 10 % (w/v) DOC was added and incubated for 30 min at 37 °C to 

lyse the cells.  

2.8.1.2 Cell wall-associated (CW-CPS) samples 

The cell pellet was resuspended in 5 ml of 2% SDS in 1 × PBS and heated at 100 

°C for 30 min. The cells were cooled to room temperature and then centrifuged at 3,500 x 

g and washed in 1 × PBS three times. The pellet was resuspended in 150 mM Tris (pH 7.0), 

1 mM MgSO4 to a final volume of 250 µl.  

Following that, 100 U of mutanolysin and 0.5 mg of both DNaseI and RNase (all 

from Sigma) were added and the solution was incubated at 37 °C overnight. Then, 50 µg of 

proteinase K (Thermo Scientific) was added before a further incubation at 56 °C for 4 hr. 

The T-CPS and CW-CPS samples were stored at -20 °C.  
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2.8.2 Uronic acid assays 

The uronic acid assay was performed as described previously (Morona et al., 2006, 

Standish et al., 2012). 600 µl of 0.0125 M di‐sodium tetraborate (Na2B4O4) in concentrated 

H2SO4 was added to 35 µl of sample plus 65 µl MQ water while on ice. Samples were 

vortexed, heated at 100 °C for 5 min and then immediately cooled on ice. To one tube of 

the aliquot, 10 µl of 0.15% (w/v) 3-phenylphenol (Sigma) dissolved in 0.5% (v/v) NaOH was 

added, while the second tube (the internal negative control) had 10 µl of 0.5% NaOH, and 

the tubes were immediately inverted several times to mix the samples. The A520nm of a 200 

µl aliquot was measured on a PowerWaveX340 microplate spectrophotometer (Bio-Tek 

Instruments, Inc.). The data were processed by first subtracting the value of the NaOH 

control from 3-phenylphenol/NaOH value. Then, the amount of CPS present in each sample 

was expressed as a percentage of the T-CPS present in D39 or WU2. Levels were related 

back to a standard curve of D-glucuronic acid (Sigma). Differences in CPS levels were 

analysed by one-way analysis of variance (ANOVA) with Dunnett’s post-hoc test. 

2.9 Hydrogen peroxide sensitivity assay 

Hydrogen peroxide sensitivity assays were conducted essentially as described 

previously (Pericone et al., 2003). Briefly, bacteria were grown until early-log phase (OD600 

0.3-0.4), and each culture was added to 100 µl of THY medium or 100 µl of THY medium 

containing either 15 mM or 5 mM H2O2, followed by incubation at 37 °C for 30 min. Serial 

dilutions from each tube were then prepared in ice-cold 1 × PBS to minimise Fenton 

reaction (Pesakhov et al., 2007), and duplicate aliquots were spotted onto BA plates with 

half of the plate spotted with the strain treated with H2O2 and the other half without H2O2 

treatment. The percent survival was calculated by dividing the CFU of cultures after 

exposure to H2O2 by the CFU of cultures without H2O2. Results were analysed using 

Student’s unpaired t-test (2-tailed). 
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2.10 Animal studies 

2.10.1 Ethics statement 

This study was carried out in strict accordance with the recommendations in 

the Australian Code of Practice for the Care and Use of Animals for Scientific Purposes (7th 

Edition (2004) and 8th Edition (2013)) and the South Australian Animal Welfare Act 1985. 

The protocol was approved by the Animal Ethics Committee at The University of Adelaide 

(approval number S/2013/053). 

2.10.2 Intranasal challenge of Swiss mice 

Outbred 5-to-6-week-old female CD1 (Swiss) mice were used in all animal 

experiments. For intranasal (i.n.) challenge, mice were anesthetised by intraperitoneal (i.p.) 

injection of pentobarbital sodium (Nembutal; Rhone-Merieux) at a dose of 66 μg per g of 

body weight, followed by i.n. challenge with 50 μl of bacterial suspension containing 

approximately 1 × 107 CFU ml-1 bacteria in serum broth. The challenge dose was confirmed 

retrospectively by serial dilution and plating on BA. Mice were euthanised by 

CO2 asphyxiation at the 48 hr post-challenge. Blood was collected by syringe from the 

posterior vena cava. The pleural cavity was lavaged with 1 ml sterile PBS containing 2 mM 

EDTA introduced through the diaphragm. Pulmonary vasculature was perfused by infusion 

of sterile PBS through the heart. Lungs were subsequently excised into 2-ml vials containing 

1 ml sterile PBS and 2.8-mm-diameter ceramic beads (GeneWorks) for CFU counts. To 

obtain unattached pneumococci, the nasopharynx was subjected to lavage by insertion of 

a 26-gauge needle sheathed in tubing into the tracheal end of the upper respiratory tract 

and injection of 1 ml 0.5% trypsin in 1 × PBS through the nasopharynx. Additionally, the 

upper palate and nasopharynx were excised and placed into 2-ml vials containing 1 ml 

sterile PBS and 2.8-mm-diameter ceramic beads to obtain attached pneumococci. Lung and 

nasopharyngeal tissues were homogenised using a Precellys 24 tissue homogenizer (Bertin 

Technologies) at 3 cycles of 30 sec and 5,000 rpm. 40 μl aliquots of lung homogenate, 

nasopharyngeal tissues homogenate and pleural lavage, and 20 μl aliquots of blood were 

serially diluted and plated on BA supplemented with gentamicin to determine the number 

of CFU in these niches. CFU counts for both the nasal wash and nasal tissue samples were 

combined to determine the total number of bacteria in the nasopharynx. Data were 
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analysed using non-parametric Mann-Whitney test. The incidence of pneumococcal 

invasion into the lungs and blood of mice were compared using two-tailed Fisher’s exact 

test. 

2.11 Evaluation of the survival of S. pneumoniae strains in human saliva 

The University of Adelaide Human Research Ethics Committee approved the 

study protocol and the written informed consent form with approval number of H-2016-

224. Saliva collection and S. pneumoniae survival tests were conducted essentially as 

described by Verhagen et al. (2014) with a few modifications. The additional criteria for 

recruiting participants include ‘currently a non-smoker’ and ‘no respiratory or periodontal 

disease or infection’ as smokers and individuals with such disease or infection were shown 

previously to have human leukocyte elastase in their saliva and therefore is not 

representative of general, healthy population (Nedzi-Gora et al., 2014, Patel et al., 2015). 

Briefly, fasting saliva of the donors was pooled and centrifuged at 16,000 × g at 4 °C for 15 

minutes. The supernatant was sterilised by ultrafiltration with 0.45 µm Minisart filters 

(Sartorius Stedim Biotech). Before inoculation in saliva, the strains were grown in THY for 

2 hr, diluted to a starting concentration of 106 CFU ml-1 and washed twice in sterile PBS. 

The bacteria was incubated with at least 500 µl saliva at two conditions: 37°C with 5% CO2 

(representing in-host carriage) and 25°C without CO2 (representing transmission). At t = 0, 

t = 3, t = 22, and t = 24 hr, samples were taken for CFU count. The number of bacteria at 

specific time point was enumerated by plating serial dilutions on BA plates. Experiments 

were performed in duplicates and repeated three times independently. Statistical 

differences between survival of S. pneumoniae in multiple dilutions of saliva were assessed 

by a one-way ANOVA and Dunnett’s post hoc tests. 

  



70 
 

 

 

Chapter Three 
RESEARCH ARTICLE ONE:  

In vitro characterization and identification 
of potential substrates of a low molecular 

weight protein tyrosine phosphatase in 
Streptococcus pneumoniae 



71 
 

In vitro characterization and identification of potential substrates of a low molecular 

weight protein tyrosine phosphatase in Streptococcus pneumoniae 

 

Zuleeza Ahmad1, Renato Morona1, and Alistair J. Standish1 

1Research Centre for Infectious Diseases, Department of Molecular & Cellular Biology, 

School of Biological Sciences, The University of Adelaide, 5005 South Australia, Australia. 

 

Corresponding author: Alistair J. Standish  

alistair.standish@adelaide.edu.au 

Telephone: 61 468744170 

Keywords: tyrosine phosphorylation; low molecular weight phosphatase; pneumococcus; 

Streptococcus pneumoniae; phosphatase substrates identification 

Subject category: Regulation 

Word count: 2770 

Abbreviations: BA, Colombia blood agar; BY-kinase, bacterial tyrosine kinase; C8S, cysteine 

8 to serine; CPS, capsular polysaccharide; DDM, n-dodecyl-β-ᴅ-maltoside; EPS, 

exopolysaccharide; IAA, iodoacetic acid; LB, Lysogeny Broth; LMWPTP, low molecular 

weight protein tyrosine phosphatase; NaF, sodium fluoride; Na3VO4, sodium 

orthovanadate; pNP, p-nitrophenol; pNPP, p-nitrophenyl phosphate; PTP, protein tyrosine 

phosphatase; THY, Todd-Hewitt broth with 1% Bacto yeast extract. 

  

mailto:alistair.standish@adelaide.edu.au


72 
 

Statement of Authorship 

Title of Paper In vitro characterization and identification of potential substrates of a low 

molecular weight protein tyrosine phosphatase in Streptococcus 

pneumoniae 

Publication Status Published

Accepted for Publication
 

Submitted for Publication

Unpublished and Unsubmitted w ork w ritten in 

manuscript style  

Publication Details Ahmad Z, Morona R, Standish AJ. In vitro characterization and 

identification of potential substrates of a low molecular weight protein 

tyrosine phosphatase in Streptococcus pneumoniae. Microbiology. 2018. 

doi: doi:10.1099/mic.0.000631 

Principal Author 

Name of Principal Author 

(Candidate) 

Zuleeza Ahmad 

Contribution to the Paper 

 

 

Performed all experiments, performed analysis on all samples, interpreted 

data, constructed all figures, tables, and supplementary, wrote manuscript 

and acted as corresponding author for the submission.  

Overall percentage (%) 100% 

Certification: This paper reports on original research I conducted during the period of 

my Higher Degree by Research candidature and is not subject to any 

obligations or contractual agreements with a third party that would 

constrain its inclusion in this thesis. I am the primary author of this paper. 

Signature  

 

Date 14/12/17 

Co-Author Contributions 

By signing the Statement of Authorship, each author certifies that: 

i. the candidate’s stated contribution to the publication is accurate (as detailed above); 

ii. permission is granted for the candidate in include the publication in the thesis; and 

iii. the sum of all co-author contributions is equal to 100% less the candidate’s stated contribution.  

 

Name of Co-Author Renato Morona 

Contribution to the Paper Supervised development of work, helped in data interpretation, helped to 

evaluate and edit the manuscript and provision of laboratory and 

materials. 

Signature 

 

Date 14/12/17 

 

 



73 
 

 

Name of Co-Author Alistair J. Standish 

Contribution to the Paper Supervised development of work, helped in data interpretation, helped to 

evaluate and edit the manuscript. Act as the final corresponding author. 

Signature 

 

Date 12/12/2017 

 

 



74 
 

Chapter 3: Research Article 1: In vitro characterization and identification of 

potential substrates of a low molecular weight protein tyrosine 

phosphatase in Streptococcus pneumoniae 

3.1 Abstract 

Streptococcus pneumoniae is a major human pathogen responsible for 

significant mortality and morbidity worldwide. Within the annotated genome of the 

pneumococcus lies a previously uncharacterized protein tyrosine phosphatase which 

shows homology to Low Molecular Weight Protein Tyrosine Phosphatases (LMWPTPs). 

LMWPTPs modulate many processes critical for the pathogenicity of a number of bacteria 

including capsular polysaccharide biosynthesis, stress response and persistence in host 

macrophages. Here, we demonstrate that Spd1837 is indeed a LMWPTP, by purifying the 

protein, and characterizing its phosphatase activity. Spd1837 showed specific tyrosine 

phosphatase activity, and it did not form higher order oligomers in contrast to many other 

LMWPTPs. Substrate-trapping assays using the wild-type and the phosphatase-deficient 

Spd1837 identified potential substrates/interacting proteins including major metabolic 

enzymes such as ATP-dependent-6-phosphofructokinase and Hpr kinase/phosphorylase. 

Given the tight association between the bacterial basic physiology and virulence, this study 

hopes to prompt further investigation of how the pneumococcus controls its metabolic flux 

via the LMWPTP Spd1837. 

3.2 Introduction 

Streptococcus pneumoniae is a human specific bacterial pathogen responsible 

for a range of diseases such as pneumonia, bacteremia and meningitis. Research into 

tyrosine phosphorylation in the pneumococcus has focused on the role of protein tyrosine 

phosphatase (PTP) CpsB and the bacterial tyrosine kinase (BY-kinase) CpsD, on capsular 

polysaccharide (CPS) biosynthesis [1-3]. Further, tyrosine phosphorylation can alter the 

activity of the pneumococcal amidase LytA [4] and the Noc-like protein ParB during cell 

division [5] suggesting tyrosine phosphorylation plays a diversity of roles in the 

pneumococcus. 
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Our analysis of the S. pneumoniae genome sequence identified another 

putative PTP besides CpsB, designated as Spd1837. Spd1837 shows homology to the low 

molecular weight protein tyrosine phosphatase (LMWPTP) family (Figure 3.4S). Members 

of the LMWPTP family in bacteria most commonly play a role in CPS and exopolysaccharide 

biosynthesis [6]. Spd1837 is not present in an operon with a BY-kinase [7] which has been 

shown to reliably predict a LMWPTP’s role in CPS and exopolysaccharide regulation. 

LMWPTPs encoded independently of a BY-kinase often play species-specific functions such 

as stress response and heat shock resistance which emphasizes the versatility of LMWPTPs 

[8, 9]. Thus, identification of potential substrates for Spd1837 would greatly assist in 

determining this putative phosphatase’s role in the pneumococcus.  

Here, we present evidence that Spd1837 of S. pneumoniae is indeed a PTP in 

vitro with kinetic parameters and characteristics typical of a LMWPTP. A substrate-trapping 

approach and subsequent identification via mass spectrometry revealed possible 

substrates that may also act as binding partners. The identification of possible interacting 

proteins sheds light on the potential role of Spd1837 in the physiology of the 

pneumococcus, especially in central carbon metabolism. 

3.3 Materials and Methods 

3.3.1 Growth media, growth conditions, DNA manipulation, E. coli and S. pneumoniae 

transformation 

S. pneumoniae and E. coli strains (listed in Table 3.2S) were routinely grown as 

described previously [4]. DNA manipulation, PCR and transformation into E. coli were 

performed as previously described [10]. Oligonucleotides (Integrated DNA Technologies) 

are listed in Table 3.3S. The gene encoding Spd1837 was amplified from S. pneumoniae D39 

genomic DNA with primers ZA1 and ZA2. The PCR product was digested with BamHI and 

NdeI, the restriction sites for which were included in ZA1 and ZA2. This digested PCR 

product was then ligated into similarly digested pET-15b and transformed into strain DH5α 

and screened by PCR, with the correct plasmid confirmed by DNA sequencing (pET-15b-

Spd1837) (Australian Genome Research Facility Ltd). Site-directed mutagenesis of cysteine 

8 to serine (C8S) was conducted according to the manufacturer’s instructions using 
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oligonucleotides ZA11 and ZA12 (Quikchange® Lightning Site-Directed Mutagenesis - 

Agilent Technologies). The mutation was confirmed by DNA sequencing (pET-15b-

Spd1837C8S). Markerless, non-polar, in-frame deletion in spd1837 was constructed in a 

Serotype 2 D39 streptomycin resistant strain essentially as previously described [4]. 

3.3.2 Purification of Spd1837 and Spd1837C8S 

Spd1837 and Spd1837C8S proteins were expressed in Lemo21 (DE3), grown at 

37 °C for 16 hr in Lysogeny Broth (LB), sub-cultured 1/20 in 1 L LB at 37 °C for 2 hr with 

expression of recombinant protein then induced with 0.1 mM IPTG for 3 hr. Spd1837 and 

Spd1837C8S were purified essentially as described [11]. The 6×His-tag was cleaved with 

Thrombin (Sigma Aldrich) and the final purification from contaminating proteins was 

achieved by buffer exchange, size-exclusion filtration using HiLoad 16/600 and 26/600 

Superdex 200 prep grade columns (GE Healthcare). The concentrations of both wild-type 

and mutant proteins were determined using Pierce BCA Protein Assay Kit (Thermo 

Scientific). Approximately 44 mg of both purified Spd1837 and Spd1837C8S was obtained 

from 1 l of bacterial culture. 

3.3.3 Phosphatase assays 

Phosphatase activity was monitored at 37 °C by using a continuous method 

based on the detection of p-nitrophenol (pNP) formed from p-nitrophenyl phosphate 

(pNPP) as described previously [12]. Kinetic parameters were determined by fitting the data 

to the Michaelis-Menten equation, using non-linear regression (GraphPad Prism 6 

Software). Phosphatase activities at different temperatures were compared at 

temperatures ranging from 25 to 50 °C using 100 mM Tris pH 7.0 as the buffer. Phosphatase 

activities at different pH values were compared with the following buffers: 100 mM sodium 

citrate (pH 4.0-6.5), and 100 mM Tris (pH 7.0-9.5) at 37 °C. In varied pH, temperature and 

inhibitors concentration assays, 400 ng of Spd1837 and 8.0 mM pNPP was used. 

Phosphotyrosine phosphatase activity was also analysed using the Tyrosine Phosphatase 

Assay System (Promega), according to the manufacturer’s instructions. All experiments 

were conducted in duplicates and repeated three times independently and values reported 

represent the means and the standard errors. 
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3.3.4 In vitro substrate-trapping assay 

The assay was performed essentially as described by Blanchetot et. al. [13] with 

some modifications. 500 ml THY (Todd-Hewitt broth with 1% Bacto yeast extract) media 

was inoculated with D39Δspd1837 strain and grown for 6 hr until the OD600nm was 

approximately 0.2. 1 mM pervanadate was added to the culture and the incubation was 

continued for another 30 min. To harvest the cells, the culture was centrifuged at 8000 g 

for 20 min at 4 °C, the supernatant removed and the pellet frozen at -80 °C. Then, 100 µL 

of Ni-charged MagBeads slurry (GenScript) per sample was equilibrated with cold lysis 

buffer (20 mM Tris, pH 7.5, 300 mM NaCl, 0.1 mM EDTA, 1% (v/v) Triton X-100, 10% (v/v) 

glycerol, 1 mM imidazole) twice. In total, 125 µg of His6-Spd1837, His6-Spd1837C8S, or 

Bovine Serum Albumin (BSA) in conjugation buffer (1 × TBS, 10% (v/v) glycerol, 1 mM 

dithiothreitol (DTT)) were incubated with the equilibrated magnetic beads at 4 °C 

overnight, and the bead’s only sample was incubated with conjugation buffer only. 

The next day, the frozen pellet was resuspended in cold lysis buffer freshly 

supplemented with 5 mM iodoacetic acid (IAA), 1 mM sodium orthovanadate (Na3VO4) and 

1 × proteases inhibitor (BioSciences). The resuspended cells were then disrupted by 

sonication on ice (Branson B15). Cleared cell lysate was incubated with 5 mM DTT on ice 

for 15 min. The crude lysate was ultracentrifuged at 450 000 g for 1 hr at 4 °C to separate 

the soluble and insoluble fractions. After the supernatant (the soluble fraction) was 

collected, the pellet (the insoluble fraction) was solubilized with 1% (w/v) n-dodecyl-β-ᴅ-

maltoside (DDM) (Anatrace). The conjugation buffer from the beads was removed and the 

soluble fraction and insoluble fraction were incubated separately with the beads overnight 

at 4 °C. Step-wise elution with imidazole during the washes was implemented with 250 mM 

imidazole as the final elution step. The eluted samples were collected and subjected to SDS-

PAGE on a 4-12% Bolt™ Bis-Tris Plus Gel (Thermo-Fisher Scientific) and subsequently 

Coomassie-stained. 

3.3.5 Liquid chromatography – electrospray ionisation tandem mass spectrometry 

The substrate-trapping assays were repeated three times with consistent 

results and one of the Coomassie-stained whole gels was submitted to the Adelaide 

Proteomics Centre for trypsin digestion and mass spectrometry analysis of tryptic peptides 
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of the selected bands. A total of six bands were excised from the gel. Liquid 

chromatography – electrospray ionisation tandem mass spectrometry was performed on 

an Ultimate 3000 RSLC system coupled to a LTQ Orbitrap XL ETD MS instrument (both 

Thermo-Fisher Scientific) as previously described [14]. MS scans were acquired in the mass 

range of 300 to 2000 m z-1 at a resolution of 60 000. The six most intense precursor ions 

selected for isolation and were subjected to CID fragmentation using a dynamic exclusion 

of 5 s. Dynamic exclusion criteria included a minimum relative signal intensity of 1000 and 

≥ 2+ charge state. An isolation width of 3.0 was used with a normalized collision energy of 

35. RAW files were submitted directly to Mascot via Proteome Daemon (1.3, Thermo-Fisher 

Scientific). Acquired data was searched against the Swiss-Prot database in MASCOT 

(V2.3.02). Search parameters were set as S. pneumoniae strain D39 (Taxonomy), trypsin 

digestion with two missed cleavages, fixed modification of carbamidomethyl of cysteine, 

variable modification of oxidation of methionine, precursor ion mass tolerance of 10 ppm, 

and product ion mass tolerance of 0.8 Da. Further analysis of the data was carried out in 

Proteome Discoverer (V1.1, Thermo Scientific). Data was searched against decoy database 

for false discovery rate calculations (approximately 1%). Peptides with p < 0.05 are 

reported. 

3.3.6 SDS-PAGE and Western immunoblotting 

Samples from substrate-trapping assay were also subjected to 12% (v/v) SDS-

PAGE and Western immunoblotting using mouse anti-phosphotyrosine 4G10 antibodies 

(Bio X Cell) or rabbit anti-CpsD antibodies as described previously [4]. The experiment was 

repeated three times independently with similar results and the representative blots are 

presented. 
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3.4 Results 

3.4.1 Spd1837 possesses tyrosine phosphatase activity 

In order to investigate whether Spd1837 was indeed a tyrosine phosphatase, 

Spd1837 along with a protein with a mutation in the putative active site cysteine 

(Spd1837C8S) were purified from E.coli as described in Materials and Methods (Figure 3.1A). 

Using size exclusion chromatography as the final purification step, the apparent molecular 

mass of Spd1837 was approximately 15.8 kDa (Figure 3.5S), suggesting that the native 

protein exists as a monomer. The phosphatase activity of Spd1837 was determined in vitro 

by using the cleavage of pNPP as a substrate. Spd1837 could dephosphorylate pNPP in a 

concentration-dependent manner while Spd1837C8S did not have activity against pNPP 

(Figure 3.1B). 

In order to verify that Spd1837 possessed specific tyrosine phosphatase 

activity, we utilized the Tyrosine Phosphatase Assay System (Promega) which measures the 

release of inorganic phosphate from two different phosphotyrosine-containing peptides. 

Our results indicated that 1687 ± 76 pmol and 1515 ± 223 pmol of inorganic phosphate was 

released from the phosphotyrosine-containing peptide 1 and 2 respectively per 300 pmol 

of Spd1837. This assay also showed the importance of cysteine-8 in the activity of Spd1837 

as the mutant protein Spd1837C8S lacked any activity against these two phosphotyrosine-

containing phosphopeptides (Figure 3.1C). 
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Figure 3.1: In vitro activity of Spd1837. 

(A) Proteins were purified by affinity chromatography from the soluble fraction of E. coli 
Lemo21 (DE3) cells grown at 37°C in the presence of 0.1 mM IPTG followed by separation 
by SDS-PAGE and staining by Coomassie. Lane 1, Spd1837 protein purified from 
Lemo21[pET15b-Spd1837]. Lane 2, Spd1837C8S protein purified from Lemo21[pET15b-
Spd1837C8S]. Approximately 6.5 µg of protein was loaded into each lane. (B) Spd1837 
steadily dephosphorylated the synthetic phosphatase substrate, pNPP, releasing pNP, a 
yellow product that can be detected by absorbance at 410 nm. (C) Spd1837 had activity 
against two phosphotyrosine-containing peptides, phosphopeptdie-1 (END(pY)INASL) and 
phosphopeptide-2 (DADE(pY)LIPQQG) as the mutant protein Spd1837C8S lacked activity 
against these two phosphotyrosine-containing phosphopeptides. For (B) and (C), data were 
from three independent experiments represented as mean and SEM.  

We also demonstrated that Spd1837 dephosphorylated pNPP according to 

Michaelis-Menten kinetics (Figure 3.2A), with a Km of 8.0 mM and a Vmax of 1.34 µmol min-

1 mg-1 5. These Km values are within the range of Km reported for other LMWPTPs (Table 

3.4S). Spd1837 showed optimum activity at 37 °C (Figure 3.2B) and pH 7.0 (Figure 3.2C), 

both of which are similar to the optimum conditions for most LMWPTPs (Table 3.5S). The 

                                                      
5 Km and Vmax inherently have large variances or standard errors, therefore these are not routinely reported 
(Ritchie RJ, Prvan T. Current statistical methods for estimating the Km and Vmax of Michaelis-Menten 
kinetics. Biochemical Education. 1996;24(4):196-206. doi: https://doi.org/10.1016/S0307-4412(96)00089-
1).  
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strict specificity of Spd1837 for phosphotyrosine residues was confirmed by analysing the 

effect of sodium orthovanadate (Na3VO4), which specifically inhibits tyrosine 

phosphatases. Na3VO4 strongly inhibited Spd1837 phosphatase activity (IC50 ≈ 0.1 µM) 

(Figure 3.2D). No reduction of Spd1837 phosphatase activity was observed when a serine 

and threonine phosphatase inhibitor, sodium fluoride was added up to 100 mM of 

concentration in a separate inhibition assay (Figure 3.2D).  

 

Figure 3.2: Phosphatase activity of Spd1837. 

(A) Spd1837 enzymatic activity in the presence of increasing concentrations of the 
substrate pNPP. The graph represents mean activities and non-linear fits of the 
experimental data to the Michaelis-Menten equation. The Km value of Spd1837 for pNPP in 
100 mM Tris buffer (pH 7.0) was measured when 400 ng Spd1837 was used for the assay. 
(B) Relative Spd1837 phosphatase activity with various temperatures. The absolute value 
of enzyme activity corresponds to 100% is 0.409 µmol min-1 (C) Relative Spd1837 
phosphatase activity with various pHs. The assays contained 8.0 mM pNPP as the substrate. 
Buffers used were sodium citrate (pHs 4.5-6.5), and Tris-HCl (pHs 7.0-9.5). The absolute 
value of enzyme activity corresponds to 100% is 0.487 µmol min-1 (D) Effects of sodium 
orthovanadate (Na3VO4) and sodium fluoride (NaF) inhibitors on the phosphatase activity 
of Spd1837. Results were expressed as a percentage of the phosphatase activity measured 
in the absence of inhibitor, taken as 100%. The absolute value of enzyme activity 
corresponds to 100% is 0.502 µmol min-1. Error bars in all graphs represent the standard 
errors. 
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3.4.2 Spd1837 potential substrates include major metabolic enzymes 

Having confirmed that Spd1837 was a PTP, we then investigated whether the 

purified form of the mutant enzyme could pull-down potential substrates from a S. 

pneumoniae lysate. A strain deficient in Spd1837 was used to prevent any competition for 

substrate binding from endogenous Spd1837. Three unique bands of ~37 (numbered 1 and 

4 on Figure 3.3), 35 (numbered 2 and 5 on Figure 3.3) and 25 (numbered 3 and 6 on Figure 

3.3) kDa were present in Coomassie-stained SDS-PAGE gels when Spd1837 and Spd1837C8S 

were incubated with lysate samples (both in the soluble and insoluble fractions) that were 

not present when the fractions were incubated with BSA or beads only (Figure 3.3A). 

Putative substrates identified by mass spectrometry analysis are listed in Table 3.1 while 

specific proteins identified from each band and their tryptic peptides are listed in Table 

3.6S. 

 

Figure 3.3: Substrate-trapping assay using wildtype and mutant Spd1837. 

(A) A representative Coomassie-stained gel of pulldowns was submitted for tryptic digest 
and mass spectrometry analysis. Wild-type Spd1837, Spd1837C8S or BSA were coupled to 
the beads, and beads alone were incubated with buffer only. Beads were incubated with 
lysate from S. pneumoniae D39Δspd1837 pre-treated with pervanadate. Samples were 
subjected to SDS–PAGE and Coomassie-stained. Bolded numbers 1-6 indicate band excised 
for mass spectrometry analysis (B) Western immunoblot of S. pneumoniae D39Δspd1837 
pull-down samples probed for tyrosine-phosphorylated proteins using an anti-PY (anti-
4G10) antibody (upper panel) and anti-CpsD antibodies (lower panel). Arrow indicates 
bands of CpsD at ~25 kDa. Red-coloured numbers represent common bands in lanes 1-2.
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Table 3.1: Putative substrate proteins identified by mass spectrometry. Candidates from the ∼25 kDa (bands 1 & 2 on Fig. 3A), ~35 kDa 
(bands 3 & 4 on Fig. 3A) and ∼37 kDa (bands 5 & 6 on Fig. 3A) bands were included if they were approximately the correct size 
(± 2 kDa). 

# Identified protein Gene 
GenBank 
accession number 

Spd no 
Number of 
unique 
peptides 

Peptide coverage of 
protein 

Gene Ontology 
(GO) category 

1 30s ribosomal protein S3 rpsC ABJ53698.1 spd0199 129 64.5% Translation 

2  
ATP-dependent-6-
phosphofructokinase 

pfkA WP_000820847 spd0789 75 85.0% Glycolytic process 

3 HPr kinase/phosphorylase hprK WP_000115140.1 spd1244 74 80.1% 
Carbohydrate 
metabolic process 

4 30s ribosomal protein S4 rpsD ABJ54877.1 spd0083 52 72.4% Translation 

5 
Glycerol-3-phosphate 
dehydrogenase 

gpsA ABJ55291.1 spd1918 34 74.0% Lipid biosynthesis 

6 
Redox-sensing transcriptional 
repressor Rex 

rex ABJ53704.1 spd0976 32 65.3% Redox response 

7 
Nucleotide binding protein 
SPD1396 

  spd1396 23 61.1% ATP binding 

8 Aspartate carbamoyltransferase pyrB ABJ55115.1 spd1133 18 47.9% 
Pyrimidine 
biosynthesis 

9 GMP reductase guaC ABJ54561.1 spd1107 18 52.7% 
Purine nucleotide 
metabolic process 

10 L-lactate dehydrogenase ldh ABJ53898.1 spd1078 18 40.5% 
Carbohydrate 
metabolic process 

11 
2,3-bisphosphoglycerate-
dependent phosphoglycerate 
mutase 

gpmA WP_000240129.1 spd1468 13 77.0% Glycolytic process 

12 Cell division protein FtsX ftsX ABJ54921.1 spd0660 8 23.0% Cell division 

13 3-dehydroquinate dehydratase aroD ABJ55361.1 spd1211 6 26.2% 
Amino acid 
biosynthesis 
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We observed qualitatively that the intensity of bands in the wild-type His6-

Spd1837 were greater than when His6-Spd1837C8S incubated with lysate (compare lanes 1 

and 2, and lanes 5 and 6 on Figure 3.3A) when the same amount of total protein was loaded 

for each sample. To further investigate if the identified proteins are actual phosphatase 

substrates, pulled-down proteins were probed with a specific anti-phosphotyrosine 

antibody (Figure 3.3B, top panel). Bands with apparent molecular weight of ~15 kDa, ~25 

kDa, ~40 kDa and ~50 kDa (labelled as 1-4 on Figure 3.3B, top panel) were detected in lanes 

1 and 2. The ~25 kDa band is particularly strong and was also present in the beads only 

control (lane 3). A separate blot (Figure 3.3B, bottom panel), revealed the ~25 kDa band to 

most likely correspond to strongly tyrosine-phosphorylated CpsD [15], which bound non-

specifically to the beads. Ultimately, by comparing lanes 1 and 2 in Fig. 3B, top panel, the 

proteins pulled-down with His6-Spd1837C8S did not appear to be more tyrosine-

phosphorylated than those pulled-down with His6-Spd1837. 

3.5 Discussion 

Protein tyrosine phosphorylation in bacteria is now recognized as a critical post-

translational regulatory system for bacterial survival and virulence, modulating the 

pathogenic ability of many human pathogens [6]. For this reason, we set out to confirm if 

a gene encoding a protein of high homology to the family of LMWPTPs, Spd1837, did indeed 

exhibit PTP activity, and to discover putative substrates or interacting proteins in the major 

human pathogen, S. pneumoniae. 

Purification and enzymatic activity assays showed that the spd1837 gene did 

encode an active PTP, with specific activity against synthetic tyrosine phosphatase 

substrates, but not serine and threonine. While the specific phosphatase activity of 

Spd1837 (Km, Vmax and optimum pH and temperature) was similar to other LMWPTPs, a 

difference was that Spd1837 existed as a monomer in solution similar to Erwinia amylovora 

AmsI [16]. Many other LMWPTPs such as Bovine LMWPTP and Bacillus subtilis YwlE form 

dimers [17-19], with data suggesting dimers are inactive enzymes. The only known 

LMWPTP that forms active dimer instead of a monomer is Vibrio cholerae VcLMWPTP-1 

[20]. It is interesting to speculate that the lack of oligomerization may suggest alternative 
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methods of regulation for Spd1837, although further studies are required to investigate 

what occurs in vivo. 

Substrate-trapping studies were subsequently undertaken in order to help 

determine Spd1837 function in the pneumococcus. The presence of proteins of similar sizes 

interacting with both Spd1837 and Spd1837C8S suggest these may be interacting proteins 

rather than phosphatase substrates, with phosphotyrosine Western immunoblots 

providing further evidence for this. This is not unprecedented as several PTP substrates do 

interact with other domains of the phosphatase (away from the active site) before 

dephosphorylation takes place [13]. One also cannot exclude the possibility that Spd1837 

exerts functions independent of its phosphatase activity in the pneumococcus. A number 

of LMWPTPs have phosphatase-independent functions, including Burkholderia 

cenocepacia Dpm and Mycobacterium tuberculosis PtpA [21, 22]. In the pneumococcus, the 

other verified PTP, CpsB also has a phosphatase-independent role, modulating CPS levels 

under reduced-oxygen conditions [23]. Interestingly, while purified Spd1837 was an active 

phosphatase in vitro, we could not detect any in vivo phosphatase activity from Spd1837 

unlike for CpsB (data not shown, [2]), suggesting that its phosphatase activity may not be 

critical for its function in the pneumococcus. 

Regardless of whether these proteins are phosphatase substrates or not, their 

identity may prove invaluable in order to determine Spd1837’s function in the 

pneumococcus. Two out of the thirteen proteins identified are ribosomal proteins, while 

amongst the others, many participate in precursors biosynthesis and metabolic processes 

(Table 3.1). These finding are perhaps unsurprising given many ribosomal proteins are 

tyrosine phosphorylated [24, 25], while enzymes involved in central carbon metabolism 

makes up the single largest subset of phosphorylated proteins in E. coli, Bacillus subtilis and 

Lactobacillus lactis [24, 25]. Currently only 14 proteins are known to be tyrosine 

phosphorylated in the pneumococcus [26], none of which were identified from our pull-

down studies. Therefore, an updated tyrosine phosphoproteome analysis as performed in 

other bacteria may help with the interpretation of our finding. Although we do not know if 

these are substrates or interacting proteins, their identification suggests Spd1837 may play 

a role in growth in different carbon sources, and subsequently in the ability of the 

pneumococcus to survive in the different niches it encounters during human infection.  
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Our current work is focused on verifying if the identified proteins are biological 

interactants of Spd1837, and using these findings to uncover the role that Spd1837 plays 

in the physiology and virulence of the pneumococcus. Investigating the role of such factors 

is critical if we are to uncover novel methods to combat pneumococcal disease in the age 

of ever-increasing antimicrobial resistance. 
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3.7 Supplementary Material Files 

 

Figure 3.4S: A sequence alignment for selected bacterial LMWPTPs.  

The alignment was generated using Clustal Omega program. Identical amino acids are 
indicated by (*), conserved amino acids are depicted by (:), whereas semi-conserved amino 
acids are depicted by (.). The cysteine residue critical for enzymatic activity is framed. 
GenBank accession numbers for the LMWPTPs are as follows; Streptococcus pneumoniae 
Spd1837, WP_000737448; Erwinia amylovora Amsl, CBA21355; Acinetobacter johnsonii 
Ptp, O52787; Escherichia coli Wzb, NP_416565; Escherichia coli Etp, NP_415502; Klebsiella 
pneumoniae Wzb, BAF47013; Bacillus subtilis YfkJ, NP_388669; and Mycobacterium 
tuberculosis PtpA, NP_216750. Shaded areas indicate the location of the P-loop and D-loop. 
The numbers indicate amino acid position. 
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Table 3.2S: List of strains and plasmids used 

# Amp, Ampicillin; Sm, Streptomycin; Km, Kanamycin

Strain/plasmid Description/antibiotic 
resistance# 

Source/reference 

E. coli 
DH5α 

 
E. coli transformation strain 

 
Gibco-BRL 

Lemo21 (DE3) E. coli expression strain New England BioLabs 

Plasmid 
pET-15b 

 
Amp 

 
Novagen 

pET-15b-Spd1837 Amp This work 
pET-15b-Spd1837C8S Amp This work 
S. pneumoniae 
D39 

 
Sm 

 
[1] 

D39spd1837::janus Km This work 
D39Δspd1837 Sm This work 



91 
 

Table 3.3S: List of oligonucleotides used. All primers were designed according to S. pneumoniae serotype 2 D39 sequence. 

Oligonucleotide Sequence Purpose 

ZA1 5’-GCCCATATGATGAAAAAATTAGTCTTTGTCTGTCTG-3’  F, amplify spd1837 
ZA2 5’-CCGGGATCCTTATTAACTCTCCTTTTCTAAACGTTCTAAC-3’  R, amplify spd1837 
ZA3 5’-ATACTTACGTTATCTGTGG-3’ F, amplify spd1837 upstream region 
ZA4 5’-AAGAAGGCATTGTAAACGTCCCCG-3’ R, amplify spd1837 downstream region 

ZA5 5’-GGAAAGGGGCCCAGGTCTCTGAAAAGGAGAGTTAAGGTGGAAAATC-3’ F, for overlap extension PCR of spd1837, 
complimentary to janus cassette 

ZA6 5’-

CATTATCCATTAAAAATCAAACGGCCCATTTCCTTTCTTTTATAGAAAAACGG

-3’ 

R, for overlap extension PCR of spd1837, 
complimentary to janus cassette 

ZA7 5’-GAAAGGAAATGGGGAAAAGGAGAGTTAAGGTGGAAAATC-3’ F, delete spd1837, complimentary to upstream of 
spd1837 

ZA8 5’-CTTAACTCTCCTTTTCCCCATTTCCTTTCTTTTATAGAAAAACGG-3’ R, delete spd1837, complimentary to downstream 
of spd1837 

ZA11 
 

5’-GAAAAAATTAGTCTTTGTCAGTCTGGGAAATATTTGCCGTAGCCC-3’ 

 

F, exchange spd1837 C8S in Quikchange® Lightning 
Site-Directed Mutagenesis 

ZA12 
 

5’-GGGCTACGGCAAATATTTCCCAGACTGACAAAGACTAATTTTTTC-3’ 

 

R, exchange spd1837 C8S in  Quikchange® Lightning 
Site-Directed Mutagenesis 

AS113 5’- CCGTTTGATTTTTAATGGATAATG-3’ F, amplify janus cassette 
AS114 5’- AGAGACCTGGGCCCCTTTCC-3’ R, amplify janus cassette 
AS120 5’-TGTTCCCAGCTATTTTTATTCAGA-3’ F, amplify rpsl 
AS121 5’-TCTCTTTATCCCCTTTCCTTATGC-3’ R, amplify rpsl 

Forward and reverse primers are represented by plus (F) or minus (R), respectively. 
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Figure 3.5S: Elution profile of the size-exclusion chromatography.  

This was carried out as the final step of the purification using a HiLoad 16/600 and 26/600 
Superdex 200 prep grade column (GE Healthcare). The injection volume was 500 µl protein 
solution (the blue line represents the UV absorption at 280 nm). This step was used as a 
desalting step as well (the red line respresents the conductivity of the solution). The column 
was calibrated with protein mixtures of known molecular weight (cytochrome, MW12.4 
kDa; carbonic anhydrate, MW 29.0 kDa and Bovine serum albumin, MW 66.0 kDa). Using 
the standard curve drawn based on the elution profile of these protein mixtures, we found 
that Spd1837 exist in monomeric form in solution (MW 15.8 kDa). 
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Table 3.4S: Known Km and Vmax for pNPP of LMWPTPs. 

Organism LMWPTP Km (mM) Vmax (µmol min-1 
mg-1) 

Reference 

Burkholderia cepacia BceD 3.7 8.8  [2] 
Bovine heart BLACP1 0.38 114  [3] 
Klebsiella pneumoniae Yor5 1.81 11.2  [4] 
Streptomyces coelicolor PtpA 0.75 4.85  [5] 
Bacillus subtilis YfkJ 0.157 No information [6] 
 YwlE 0.25 No information [6] 
Escherichia coli Wzb 1.0 4.6  [7] 
Staphylococcus aureus PtpA 1.2 1.4 [8] 
 PtpB 1.5 33.6 [8] 
Acinetobacter johnsonii Ptp 

 
5.0 
 

9.75 
 

[9] 

Sinorhizobium meliloti SMc02309 
 

10.88 
 

135.17 
 

[10] 

Acinetobacter iwoffii Wzb 8.0 12.0 [11] 
Group A Streptococcus SP-PTP 0.39 60.2 [12] 
Synechocystis sp. PCC 
6803 

SynPTP 0.6 3.2 [13] 

Saccharomyces cerevisiae Ltp1 0.02 3.2 [14] 
Saccharomyces pombe Stp1 0.21 12.8 [15] 
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Table 3.5S: Known optimum temperature and optimum pH of LMWPTPs. 

Organism LMWPTP Optimum 
temperature (°C) 

Optimum 
pH (pH) 

Reference 

Campylobacter jejuni Cj1258 37 6.5 [16] 
Vibrio cholerae VcLMWPTP-1 25 7.6 [17] 
Staphylococcus aureus PtpA 

PtpB 
40 6.2 [8] 

Klebsiella pneumoniae Yor5 37 6.5 [4] 
Burkholderia cepacia BceD 30 6.5 [2] 
Bovine heart BLACP1 37 5.3 [3] 
Schizosaccharomyces pombe Stp1 30 6.0 [15] 
Streptomyces coelicolor Sco3700 No information 6.8 [18] 
 PtpA 37 6.0 [5] 
Tritrichomonas foetus Tptp 37 5.0 [19] 
Bacillus subtilis YfkJ No information 6.0 [6] 
 YwlE No information 5.5 [6] 
Acinetobacter johnsonii Ptp 37 6.5 [9] 
Coxiella burnetii 
 

ACP 
 

No information 6.0 
 

[20] 

Sinorhizobium meliloti SMc02309 37 6.0 [10] 
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Table 3.6S: Putative substrate proteins identified by mass spectrometry. The Mascot protein identities (maximum of top 10 for each gel 
band) are listed. Identifications can be made if at least two unique peptides were sequenced from a protein and had individual 
ion scores above the homology threshold. Multiple charge states were not considered as unique. The individual unique peptide 
sequences are shown with the number in parentheses denotes the number of spectra correspond to each peptide. 

Excised region Identified protein 
Calculated 
mass (kDa) 

Observed 
mass (kDa) 

Unique peptides identified 

Gel band 1 
(insoluble fraction) 

HPr 
kinase/phosphorylase 

35  37 

IAILTSR 
IQLLGMK (2) 
GLVVPEEMLK 
SETGLELVKR 
MFLPETPAVIVAR 
NISVVIEAAAMNYR 
KMFLPETPAVIVAR 
DEITLWGEPAEILK (2) 
GVGIIDVMSLYGASAVK 
NISVVIEAAAMNYRAK 
LGNNAEELEVSGVAIPR 
TSVHGVLMDIYGMGVLIQGDSGIGK 
EINIADITRPGLEMTGYFDYYTPER 

ATP-dependent-6-
phosphofructokinase 

35  37 

EGIGGVAVGIR 
TFVIEVMGR 
LKEAGDISDLR 
EGIGGVAVGIRNEK 
YPEFAQLEGQLK 
IAVLTSGGDAPGMNAAIR (2) 
IVVNNPHEADIELSSLNK (2) 
MVENPILGTAEEGALFSLTAEGK 
NAGDIALWAGIATGADEIIIPEAGFK (2) 

L-lactate 
dehydrogenase 

35  37 
DAAYTIINKK 
VIGSGTSLDSAR 
AVGDALDLSHALAFTSPK (2) 

Glycerol-3-phosphate 
dehydrogenase 

37  37 
DLTLITAASK 
NVDAILFVVPTK 
LVAQQVAQTLDHK 
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NIIAVGAGALHGLGFGDNAK 

Gel band 2 
(insoluble fraction) 

Nucleotide binding 
protein SPD1396 

34  35 

ILDGIKLER 
QLHLVIVTGMGGAGK 
FLPNPYYLPELR 
ILFLDAADKELVAR (2) 
NMSQNVVDTTELTPR 
TLAEQFSDQEQAQSFR 
ELLAPLKNMSQNVVDTTELTPR 
TVAIQSFEDLGYFTIDNMPPALLPK 

L-lactate 
dehydrogenase 

35  35 

NLAINK 
VIGSGTSLDSAR 
GATYYGIAVALAR 
AVGDALDLSHALAFTSPK 
GIFLVAANPVDVLTYSTWK 

Glycerol-3-phosphate 
dehydrogenase 

37  35 
LVAQQVAQTLDHK 
NIIAVGAGALHGLGFGDNAK 
LGVALGASPLTYSGLSGVGDLIVTGTSIHSR 

Gel band 3 
(insoluble fraction) 

30s ribosomal protein 
S3 

24 25 

VWIYR (4) 
GGANVDALR 
VGIIRDWDAK (2) 
QVHINIIEIK (4) 
VWIYRGEVLPAR 
ELADAAVSTIEIER (4) 
QPDLDAHLVGEGIAR (2) 
EYADYLHEDLAIR (2) 
AEGYSEGTVPLHTLR (4) 
VNVSLHTAKPGMVIGK (10) 
EYADYLHEDLAIRK (3) 
ADIDYAWEEADTTYGK (3) 
AVNKVNVSLHTAKPGMVIGK 
WYAEKEYADYLHEDLAIR (4) 
WYAEKEYADYLHEDLAIRK (2) 
QVHINIIEIKQPDLDAHLVGEGIAR (11) 

30s ribosomal protein 
S4 

23 25 
VDIPSYR 
NLFVQATK 



97 
 

RVDIPSYR (2) 
RLDNVVYR 
SRYTGPSWK 
RLGLSLTGTGK 
LSEYGLQLAEK 
NYVPGQHGPNNR 
SKLSEYGLQLAEK (2) 
RNYVPGQHGPNNR (3) 
GGILGFNFMLLLER 
QFVNHGHILVDGKR (2) 
IKGGILGFNFMLLLER (2) 
VPAILEAVEATLGRPAFVSFDAEK 
LPERDEINPEINEALVVEFYNK (2) 
SLKVPAILEAVEATLGRPAFVSFDAEK 
VPAILEAVEATLGRPAFVSFDAEKLEGSLTR 

Redox-sensing 
transcriptional 
repressor Rex 

24  25 

LSLYYR 
RGFGYDVK 
SQEVANLLVDAGVK (2) 
QIAEAIGIDSATVR 
GILSFSPVHLHLPK (2) 
IIMAFDLDDHPEVGTQTPDGIPIYGISQIK 
IIMAFDLDDHPEVGTQTPDGIPIYGISQIKDK 

3-dehydroquinate 
dehydratase 

26  25 

ELVFTLR 
LIVSVMPR 
SLEEAQALDATR 
EAILQVAPAIFEK 
VAVMAHTEQDVLDLMNYTR (2) 

Gel band 4 (soluble 
fraction) 

ATP-dependent-6-
phosphofructokinase 

35  37 

MEDIVASIK 
EGIGGVAVGIR 
TFVIEVMGR (2) 
VTELGHIQR 
LKEAGDISDLR (4) 
EGIGGVAVGIRNEK 
YPEFAQLEGQLK 
IAVLTSGGDAPGMNAAIR (4) 
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IVVNNPHEADIELSSLNK (2) 
HGIEGVVVIGGDGSYHGAMR (8) 
HNIIVLAEGVMSAAEFGQK (3) 
KHNIIVLAEGVMSAAEFGQK 
LKEAGDISDLRVTELGHIQR (3) 
MVENPILGTAEEGALFSLTAEGK (2) 
NAGDIALWAGIATGADEIIIPEAGFK (5) 
NAGDIALWAGIATGADEIIIPEAGFKMEDIVASIK (3) 
QAISEGMEVFGIYDGYAGMVAGEIHPLDAASVGDIISR (5) 
LTEHGFPAIGLPGTIDNDIVGTDFTIGFDTAVTTAMDAIDK (2) 
LTEHGFPAIGLPGTIDNDIVGTDFTIGFDTAVTTAMDAIDKIR 

HPr 
kinase/phosphorylase 

35  37 

IRIPVK 
IAILTSR 
LTSLIAR 
HLIEIR 
IQLLGMK 
SETGLELVK 
GLVVPEEMLK (2) 
SETGLELVKR 
LSGELSSYLDSR (2) 
MFLPETPAVIVAR (4) 
LDIVYGEPELLEK 
NISVVIEAAAMNYR (5) 
KMFLPETPAVIVAR (2) 
DEITLWGEPAEILK 
GVGIIDVMSLYGASAVK (3) 
LGNNAEELEVSGVAIPR 
LRLDIVYGEPELLEK 
DSSQVQLAVYLENYDTHK 
VDIFAKDEITLWGEPAEILK 
IQLLGMKEWSYLISMPSNSR 
TSVHGVLMDIYGMGVLIQGDSGIGK (6) 
LVADDRVDIFAKDEITLWGEPAEILK (3) 
EINIADITRPGLEMTGYFDYYTPER (4) 
TSVHGVLMDIYGMGVLIQGDSGIGKSETGLELVK 
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Glycerol-3-phosphate 
dehydrogenase  

37 37 

LVAQQVAQTLDHK (2) 
LSTILEEEIPEHLR 
LYTNTDVIGVETAGALK 
RLSTILEEEIPEHLR 
SDIVVVSGPSHAEETIVR (2) 
NIIAVGAGALHGLGFGDNAK (3) 
DVVLDENIIAYTDLAETLK 
IWGNLPEQINEINTHHTNK (2) 
DLQTAQYVQELFSNHYFR 
GESLADIEANMGMVIEGISTTR (4) 
AGDALGRGESLADIEANMGMVIEGISTTR (2) 
LGVALGASPLTYSGLSGVGDLIVTGTSIHSR 
AAYELAQELGVYMPITQAIYQVIYHGTNIK (4) 
LSTILEEEIPEHLRSDIVVVSGPSHAEETIVR (2) 

Aspartate 
carbamoyltransferase 

35  37 

LDFDVK 
HPEVDYYR 
VAIAGDLDHSR (2) 
MAILESVLASR 
IVQQMTNGVFVR 
DVEIADHLVEAPK (2) 
LGSELFFAGPEEWR 
LKETAILMHPAPINR (3) 
RLGSELFFAGPEEWR 
EDYHAQHGLTQERYDR 
FVTIDEIIDQVDVMMFLR 
SENQQALNHVVSMEDLTVDQVMK (3) 

GMP reductase 36  37 

IPFIK 
ILLPAK 
KPIIADGGIR 
TIEVDGEQFK 
FDEAGRIPFIK 
TGFGTGGWQLAALR 
SRAEADTSVTLGNHTFK (2) 
ELPDTFVIAGNVGTPEAVR 
FGASMIMIGSLFAGHIESPGK (3) 
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MLNEFPIFDYEDIQLIPNK 
LPVVPANMQTILDENVAEQLAK (2) 
GHLQDTLTEMEQDLQSAISYAGGR (2) 
ELPDTFVIAGNVGTPEAVRELENAGADATK 

L-lactate 
dehydrogenase 

35  37 

FSGFPK 
DAAYTIINKK (2) 
VIGSGTSLDSAR 
SIVTQVVESGFK 
GATYYGIAVALAR 
AVGDALDLSHALAFTSPK (2) 
VILVGDGAVGSSYAFALVNQGIAQELGIIEIPQLHEK 

Gel band 5 (soluble 
fraction) 

ATP-dependent-6-
phosphofructokinase 

35 35 

MEDIVASIK 
EGIGGVAVGIR 
EGIGGVAVGIRNEK 
IAVLTSGGDAPGMNAAIR (2) 
HNIIVLAEGVMSAAEFGQK 
LKEAGDISDLRVTELGHIQR 
MVENPILGTAEEGALFSLTAEGK 
NAGDIALWAGIATGADEIIIPEAGFK (2) 
NAGDIALWAGIATGADEIIIPEAGFKMEDIVASIK 
QAISEGMEVFGIYDGYAGMVAGEIHPLDAASVGDIISR (2) 

Nucleotide binding 
protein SPD1396 

34  35 

LALVVDMR 
ILFLDAADK 
ILDGIKLER 
QLHLVIVTGMGGAGK (2) 
FLPNPYYLPELR 
ILFLDAADKELVAR 
NMSQNVVDTTELTPR (2) 
TLAEQFSDQEQAQSFR 
ELLAPLKNMSQNVVDTTELTPR 
SFFSEIQAVLDELENQDGLDFK 
TVAIQSFEDLGYFTIDNMPPALLPK 
NQTGVDEPVYDYVMNHPESEDFYQHLLALIEPILPSYQK 

HPr 
kinase/phosphorylase 

35  35 
IAILTSR 
GLVVPEEMLK 
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SETGLELVKR 
LSGELSSYLDSR 
NISVVIEAAAMNYR 
GVGIIDVMSLYGASAVK 
LRLDIVYGEPELLEK 
TGRNISVVIEAAAMNYR 
DSSQVQLAVYLENYDTHK 
TSVHGVLMDIYGMGVLIQGDSGIGK (2) 
LVADDRVDIFAKDEITLWGEPAEILK 
EINIADITRPGLEMTGYFDYYTPER 

Cell division protein 
FtsX 

34  35 

LASFIR 
VVVYIR 
SREIQIMR 
LATDIENNVR 
KIEGVSEVQDGGANTER (2) 
IFEGDANPLYDAYIVEANAPNDVK (2) 

Gel band 6 (soluble 
fraction) 

30s ribosomal protein 
S3 

24 25 

VWIYR (5) 
GGANVDALR 
VGIIRDWDAK (3) 
QVHINIIEIK (5) 
VWIYRGEVLPAR 
ELADAAVSTIEIER (5) 
QPDLDAHLVGEGIAR (3) 
EYADYLHEDLAIR (3) 
AEGYSEGTVPLHTLR (6) 
VNVSLHTAKPGMVIGK (9) 
EYADYLHEDLAIRK (3) 
ADIDYAWEEADTTYGK (3) 
AVNKVNVSLHTAKPGMVIGK (3) 
WYAEKEYADYLHEDLAIR (5) 
WYAEKEYADYLHEDLAIRK (2) 
QVHINIIEIKQPDLDAHLVGEGIAR (13) 

30s ribosomal protein 
S4 

23 25 
VDIPSYR 
FTYGVGEK 
NLFVQATK 
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LGLSLTGTGK 
RVDIPSYR 
RLDNVVYR (2) 
SRYTGPSWK 
RLGLSLTGTGK 
LSEYGLQLAEK 
NYVPGQHGPNNR 
QFVNHGHILVDGK (2) 
SKLSEYGLQLAEK 
RNYVPGQHGPNNR (2) 
GGILGFNFMLLLER 
QFVNHGHILVDGKR (3) 
IKGGILGFNFMLLLER (2) 
VPAILEAVEATLGRPAFVSFDAEK (2) 
LPERDEINPEINEALVVEFYNK (2) 
SLKVPAILEAVEATLGRPAFVSFDAEK (2) 
VPAILEAVEATLGRPAFVSFDAEKLEGSLTR 

Redox-sensing 
transcriptional 
repressor Rex 

24  25 

QFAIPK 
LSLYYR 
IKDTDVK 
RGFGYDVK 
RLSLYYR 
DFSYFGELGR 
MKDKQFAIPK 
RDFSYFGELGR (2) 
DFSYFGELGRR 
SQEVANLLVDAGVK (2) 
QIAEAIGIDSATVR (2) 
GILSFSPVHLHLPK (3) 
QIAEAIGIDSATVRR (2) 
DVVVQYVDLTSELQTLLYFMR 
DVVVQYVDLTSELQTLLYFMRKED 
IIMAFDLDDHPEVGTQTPDGIPIYGISQIK 
IIMAFDLDDHPEVGTQTPDGIPIYGISQIKDK 
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2,3-
bisphosphoglycerate-
dependent 
phosphoglycerate 
mutase 

26  25 

NVFVGAHGNSIR (2) 
LNVVSEYYLGK 
ALPFWEDKIAPALK 
EAGIEFDQAYTSVLK 
YASLDDSVIPDAENLK 
EAGIEFDQAYTSVLKR 
TTNLALEASDQLWVPVEK 
NKAEAAEQFGDEQVHIWR 
SYDVLPPNMDRDDEHSAHTDRR 
ANLFTGWADVDLSEKGTQQAIDAGK 
SYDVLPPNMDRDDEHSAHTDRR 
GLSDDEIMDVEIPNFPPLVFEFDEK 
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Chapter 4: Research Article 2: Role of Streptococcus pneumoniae OM001 

operon in capsular polysaccharide production, virulence and 

survival in human saliva 

4.1 Abstract 

Streptococcus pneumoniae is the leading cause of community-acquired 

pneumonia in all ages worldwide, and with ever-increasing antibiotic resistance, the 

understanding of its pathogenesis and spread is as important as ever. Recently, we 

reported the presence of a Low Molecular Weight Tyrosine Phosphatase (LMWPTP) 

Spd1837 in the pneumococcus. This protein is encoded in an operon, OM001 with two 

other genes, with previous work implicating this operon as important for pneumococcal 

virulence. Thus, we set out to investigate the role of the individual genes in the operon 

during pneumococcal pathogenesis. As LMWPTPs play a major role in capsular 

polysaccharide (CPS) biosynthesis in many bacteria, we tested the effect of mutating 

spd1837 and its adjacent genes, spd1836 and spd1838 on CPS levels. Our results suggest 

that individual deletion of the genes, including the LMWPTP, did not modulate CPS levels, 

in multiple conditions, and in different strain backgrounds. Following in vivo studies, 

Spd1836 was identified as a novel virulence factor during pneumococcal invasive disease, 

in both the lungs and blood, with this protein alone responsible for the effects of operon’s 

role in virulence. We also showed that a deletion in spd1836, spd1838 or the overall OM001 

operon reduced survival in human saliva during the conditions that mimic transmission 

compared to the wildtype strain. With studies suggesting that survival in human saliva may 

be important for transmission, this study identifies Spd1836 and Spd1838 as transmission 

factors, potentially facilitating the spread of the pneumococcus from person to person.  

Overall, this study hopes to further our understanding of the bacterial transmission that 

precedes disease and outbreaks. 

4.2 Introduction 

Streptococcus pneumoniae (the pneumococcus) predominantly colonizes the 

nasopharynx as a commensal in healthy individuals [1]. However, the bacteria can 

transition to be an opportunistic pathogen, leading to diseases with significant morbidity 
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and mortality such as pneumonia, bacteremia and meningitis. By blocking the colonization 

or carrier state with widespread immunization, rates of transmission within the community 

for the strains that are included in the vaccine formulations have declined and this in turns 

provides herd immunity for the unvaccinated populations [2, 3]. These epidemiological 

studies have also shown that older populations mainly acquire the pneumococcus from 

colonized children [4]. Therefore, this suggests that the vaccine exerts its efficacy by 

limiting the spread between immunized individuals and it is possible to target a specific 

step in pneumococcal pathogenesis which is the colonization stage. 

Much of our work has previously focused on determining the role that tyrosine 

phosphorylation plays in the virulence of S. pneumoniae [5-8]. We have recently 

characterized Spd1837 as a protein tyrosine phosphatase (PTP) of the Low Molecular 

Weight Protein Tyrosine Phosphatase family (LMWPTP) that may interact with proteins 

associated with pneumococcal metabolism (Chapter 3). LMWPTPs are also widely 

established to play a role in regulating capsular polysaccharide (CPS) and exopolysaccharide 

(EPS) biosynthesis [9]. 

In the chromosome of the serotype 2 S. pneumoniae strain D39, spd1837 is co-

transcribed together in the OM001 operon with the upstream translocase subunit YajC 

(Spd1838), and a downstream hypothetical protein (Spd1836) (Figure 1.7S).  While the 

operon is conserved across approximately 90% of pneumococcal strains with available 

genome sequence, little is known concerning the function of Spd1836 and Spd1838. 

Spd1836 consists of one conserved motif, the Membrane Occupation and Recognition 

Nexus (MORN) repeats. Despite being found in all domains of life and some viruses, very 

little is known about the MORN motif function. Based on limited studies conducted in 

apicomplexan parasites and Arabidopsis, the MORN motifs confer the ability of lipid 

binding, however, the subsequent role differs between species from regulating cell size to 

cell budding [10]. On the other hand, Spd1838 homologs have only been studied in Gram 

negative bacteria. In E. coli, YajC participates in Sec-dependent secretion by forming a 

complex with SecDF and YidC which may associate with the SecYEG and SecA ATPase to 

improve protein translocation efficiency [11]. Although the Sec-dependent pathway has 

been extensively studied, the precise role of SecDF-YidC-YajC complex is largely unknown. 
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Using a differential fluorescence induction (DFI) technique, the OM001 operon 

was previously identified to be significantly upregulated in several in vitro conditions that 

mimic infection.  Subsequent deletion of this operon severely attenuated the ability of the 

pneumococcus to cause infection in multiple in vivo infection models [12], however, the 

role of the individual genes of the operon remained unknown. 

In a recent study, Verhagen et. al. [13] conducted a genome-wide negative 

selection screening using Tn-seq and found 147 genes potentially required for the 

pneumococcal survival and growth in human saliva. Of these, two out of the three genes 

from the OM001 operon (spd1836 and spd1837) were identified. Indirect evidence from 

studies in humans suggests saliva is a possible medium for person-to-person spread [14]. 

Not only could live pneumococci be isolated and cultured from human saliva [15], saliva 

culture was also found to be a more robust and sensitive method for detecting the bacteria 

compared to conventional and the more invasive methods of trans-nasal and trans-oral 

swabs [16]. Verhagen et. al [13] have shown that the pneumococcus could survive and even 

grow in pure human saliva in 24 hours period. This highlights the extreme ability of the 

pneumococcus to adapt to different environments, namely the nasopharynx and 

potentially the oropharynx during the colonization step of pneumococcal pathogenesis. 

Although transmission is the important first step that precedes carriage and 

disease (in fact none of pneumococcal disease states facilitate contagion [17]), 

pneumococcal factors that foster transmission are not well characterized due to a lack of 

tractable models to study this process until recently [18]. Indeed, pneumococcal disease 

occurrence is directly linked to the strains circulating in carriage [19]. Transmission is 

thought to require close contact, such as between individuals within the same households 

or day care centre [20, 21]. While it is generally accepted that the pneumococcus is a 

human-obligate pathogen with no known environmental or animal reservoir, evidence 

accumulating is that the bacteria can survive outside of human host. For instance, 

rehydrated pneumococci were able to infect mice after being left desiccated for four weeks 

[22].  

This study set out to investigate the role of the OM001 operon in CPS 

biosynthesis, virulence and survival in human saliva. While there was a minimal role for the 

operon in CPS production, we have shown that the operon is important for the ability of S. 
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pneumoniae to cause invasive disease and the ability to survive in human saliva. 

Specifically, we have identified Spd1836 as a previously uncharacterized virulence factor, 

while Spd1836 and Spd1838 are essential for the pneumococcal survival in human saliva at 

25 °C, a condition to mimic how the bacteria would survive outside of the human body 

during transmission. With ever-increasing antibiotic resistance, the continued 

identification of factors important for the virulence and transmission of the pneumococcus 

is critical to identify new targets for the development of antimicrobials. 

4.3 Materials and Methods 

4.3.1 Growth media and growth conditions 

S. pneumoniae strains (listed in Table 4.1) were routinely grown either in Todd-

Hewitt broth with 1% Bacto yeast extract (THY) at 37 °C as indicated or on Columbia blood 

agar (BA) plates supplemented with 5% (v/v) horse blood and grown at 37 °C in 5% CO2 or, 

for mouse challenge, in serum broth (10% heat-inactivated horse serum in nutrient broth). 

Where appropriate, antibiotics were supplemented at the following concentrations: 

streptomycin at 150 µg mL-1, kanamycin at 200 µg mL-1 and gentamycin at 10 µg mL-1. 

Table 4.1: List of strains used. 

a Sm, Streptomycin; Km, Kanamycin 

4.3.2 Construction of chromosomal mutation in S. pneumoniae D39 

Markerless, non-polar mutant strains were constructed in a serotype 2 D39 

streptomycin resistant strain and serotype 3 WU2 streptomycin resistant strain essentially 

Strain Antibiotic resistancea Source/reference 

D39 Sm [8] 
D39spd1837::janus Km (Chapter 3) 
D39Δspd1837 Sm (Chapter 3) 
D39Spd1837C8S Sm This work 
D39Δspd1836 Sm This work 
D39Δspd1838 Sm This work 
D39ΔOM001 Sm This work 
D39ΔOM001::janus Km This work 
D39ΔOM001::OM001+ Sm This work 
WU2 Sm This work 
WU2spd1837::janus Km This work 
WU2Δspd1837 Sm This work 
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as previously described [8]. First, the Janus cassette was used to target and replace the 

spd1837 operon region in D39 and WU2 background strains [23]. Then the 

D39spd1837::janus strain was transformed with PCR products containing the in-frame 

deletion or point mutation in spd1837, or deletion in spd1836, spd1838 or OM001. 

Additionally, PCR products containing the in-frame deletion of spd1837 was also 

transformed into WU2spd1837::janus strain. All oligonucleotides used are listed in Table 

4.2S. Transformations were carried out as described previously [24]. To create the OM001 

complemented strain, firstly, the 2 kb region upstream of the deleted OM001 operon was 

amplified using the primers ZA3 and ZA16 and the 2 kb region downstream of the deleted 

OM001 operon was amplified using the primers ZA4 and ZA19. These two PCR products 

and the amplified Janus cassette were combined and amplified again using just the primers 

ZA3 and ZA4. The approximately 2.4 kb PCR product was then used to transform 

D39ΔOM001. The transformants were selected on kanamycin plates, resulted in the 

intermediate strain, D39ΔOM001::janus. Next, the OM001 operon region including 1 kb of 

flanking genomic DNA from D39 was amplified using the primers ZA36 and ZA37. This 

product was then used to transform D39ΔOM001::janus to replace the Janus cassette with 

the wild type copy of the OM001 operon. The successful transformants were selected on 

streptomycin plate and one of them was sequenced and verified to have acquired the 

OM001 operon back and this strain is called D39ΔOM001::OM001+. 

4.3.3 The production of polyclonal antibodies against Spd1837 

Antibodies were raised against Spd1837 (purified protein > 95% pure as 

determined by Coomassie-stained SDS-PAGE (Figure 3.1)) (Institute of Medical and 

Veterinary Science, Veterinary Services (Gilles Plain, SA, Australia)) in rabbits. The 

antiserum was produced under the National Health and Medical Research Council 

(NHMRC) Australian Code of Practice for the Care and Use of Animals for Scientific Purposes 

and was approved by the University of Adelaide Animal Ethics Committee. The crude 

antibodies were enriched and affinity-purified using purified Spd1837 before being stored 

at -20 °C in 50% (v/v) glycerol [25]. 
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4.3.4 SDS-PAGE and Western immunoblotting 

The whole cell bacterial lysates were prepared from cultures grown in THY to 

an OD600nm of approximately 0.3 and then subjected to SDS-PAGE and Western 

immunoblotting as described previously [26]. The concentrations of primary antibodies 

used were as follows; mouse anti-phosphotyrosine 4G10 antibodies (Bio X Cell) and mouse 

anti-CbpA at 1/5000 dilution, and rabbit anti-CpsD, rabbit anti-CpsB and rabbit anti-

Spd1837 at 1/500 [27]. 

4.3.5 Uronic acid assay 

CPS was prepared from the indicated strains grown either aerobically (BA at 37 

°C with 5% CO2) or anaerobically (BA at 37 °C with 5% CO2 in a BD GasPak™ Anaerobic Jar 

(Becton, Dickinson and Company)). The uronic acid assay was performed as described 

previously [7, 26]. Levels were related back to a standard curve of D-glucuronic acid (Sigma 

Aldrich). Differences in CPS levels were analyzed by one-way analysis of variance (ANOVA) 

with Dunnett’s post-hoc test. 

4.3.6 Mouse infection model 

This study was carried out in strict accordance with the recommendations in 

the Australian Code of Practice for the Care and Use of Animals for Scientific Purposes (7th 

Edition (2004) and 8th Edition (2013)) and the South Australian Animal Welfare Act 1985. 

The protocol was approved by the Animal Ethics Committee at The University of Adelaide 

(approval number S/2013/053). Outbred 5-to-6-week-old female CD1 (Swiss) mice were 

used in all animal experiments. For intranasal (i.n.) challenge, mice were anesthetized by 

intraperitoneal (i.p.) injection of pentobarbital sodium (Nembutal; Rhone-Merieux) at a 

dose of 66 μg per g of body weight, followed by i.n. challenge with 50 μL of bacterial 

suspension containing approximately 1×107 CFU mL-1 bacteria in serum broth. The 

challenge dose was confirmed retrospectively by serial dilution and plating on BA. Mice 

were euthanized by CO2 asphyxiation at the 48 hr post-challenge. Blood was collected by 

syringe from the posterior vena cava. The pleural cavity was lavaged with 1 mL sterile PBS 

containing 2 mM EDTA introduced through the diaphragm. Pulmonary vasculature was 

perfused by infusion of sterile PBS through the heart. Lungs were subsequently excised into 
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2-mL vials containing 1 mL sterile PBS and 2.8-mm-diameter ceramic beads for CFU counts. 

To obtain unattached pneumococci, the nasopharynx was subjected to lavage by insertion 

of a 26-gauge needle sheathed in tubing into the tracheal end of the upper respiratory tract 

and injection of 1 mL 0.5% trypsin–1×PBS through the nasopharynx. Additionally, the upper 

palate and nasopharynx were excised and placed into 2-mL vials containing 1 mL sterile PBS 

and 2.8-mm-diameter ceramic beads to obtain attached pneumococci. CFU counts for both 

the nasal wash and nasal tissue samples were combined to determine the total number of 

bacteria in the nasopharynx. Lung and nasopharyngeal tissues were homogenized using a 

Precellys 24 tissue homogenizer (Bertin Technologies) at 3 cycles of 30 s and 5,000 rpm. 40 

μL aliquots of lung homogenate, nasopharyngeal tissues homogenate and pleural lavage, 

and 20 μL aliquots of blood were serially diluted and plated on BA supplemented with 

gentamycin to determine the number of CFU in these niches. Data were analyzed using 

non-parametric Mann-Whitney test. The incidence of pneumococcal invasion into the lungs 

and blood of mice were compared using two-tailed Fisher’s exact test. 

4.3.7 Evaluation of the survival of S. pneumoniae strains in human saliva 

The University of Adelaide Human Research Ethics Committee approved the 

study protocol and the written informed consent form with approval number of H-2016-

224. Saliva collection and S. pneumoniae survival tests were conducted essentially as 

described by Verhagen et. al. [13] with a few modifications. The additional criteria for 

recruiting participants include ‘currently a non-smoker’ and ‘no respiratory or periodontal 

disease or infection’ as smokers and individuals with such disease or infection were shown 

previously to have human leukocyte elastase in their saliva and therefore is not 

representative of general, healthy population [28, 29]. Briefly, fasting saliva of the donors 

was pooled and centrifuged at 16,000 g at 4 °C for 15 minutes. The supernatant was 

sterilized by ultrafiltration with 0.45 µm Minisart filters (Sartorius Stedim Biotech). Before 

inoculation in saliva, the strains were grown in THY for 2 hr, diluted to a starting 

concentration of 1 × 106 CFU mL-1 and washed twice in sterile PBS. The bacteria was 

incubated with at least 500 µL saliva at two conditions: 37°C with 5% CO2 (representing in-

host carriage) and 25°C without CO2 (representing transmission). At t = 0, t = 3, t = 22, and 

t = 24 hr, samples were taken for CFU count. The number of bacteria at specific time point 

was enumerated by plating serial dilutions on BA plates. Experiments were performed in 
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duplicates and repeated three times independently. Statistical differences between 

survival of S. pneumoniae in multiple dilutions of saliva were assessed by a one-way ANOVA 

and Dunnett’s post hoc tests. 

4.4 Results 

4.4.1 The proteins encoded in OM001 operon do not play a role in CPS regulation 

In another study, we showed that the Spd1837 was a PTP from the LMWPTP 

family (Chapter 3). As a number of LMWPTPs modulate CPS and EPS biosynthesis, we 

investigated if Spd1837 and the co-transcribed genes encoding Spd1836 and Spd1838 

played a role in the regulation of CPS in S. pneumoniae. Separate non-polar markerless 

deletion mutations in spd1836, spd1837, spd1838 and of all three genes of the OM001 

operon were constructed in the chromosome of D39. We also constructed an in-frame 

unmarked point mutant (D39Spd1837C8S) which would not have any phosphatase activity. 

The strains (D39Δspd1837, D39Spd1837C8S, D39Δspd1838, D39Δspd1836 and D39ΔOM001) 

showed similar growth profiles to the parental strain D39 (Figure 4.6S).  

Western immunoblot analysis with an antibody against Spd1837, showed that 

D39Δspd1837 and D39ΔOM001 did not produce Spd1837 while D39Spd1837C8S still had the 

mutant form of Spd1837 produced at a level equivalent to the wildtype, as did 

D39Δspd1838 and D39Δspd1836 (Figure 4.1A). As tyrosine phosphorylation of CpsD is 

important for the CPS regulation in the pneumococcus [30, 31], we analyzed the overall 

tyrosine phosphorylation profiles of the mutant strains. All six strains had similar levels of 

overall tyrosine phosphorylation, specifically of CpsD (Figure 4.1B and 1C), indicating that 

at least under the growth condition used, Spd1836, Spd1837 and Spd1838 had no 

detectable effect on protein tyrosine phosphorylation. Additionally, the expression of the 

other known PTP in the pneumococcus, CpsB was also similar in these strains (Figure 4.1D). 

As a loading control, the expression of the choline-binding protein A (CbpA) was also 

checked and this verified that similar amount of proteins were loaded into each lane (Figure 

4.1E). 
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Figure 4.1: Proteins encoded by the OM001 operon do not alter tyrosine phosphorylation 
of CpsD.  

Proteins from whole-cell lysates from D39, D39Δspd1837, D39Spd1837C8S, D39Δspd1838, 
D39Δspd1836 and D39ΔOM001 cells were separated by SDS-PAGE, and Western 
immunoblotting was undertaken with anti-Spd1837 (A), anti-CpsD (B), anti-
phosphotyrosine (PY) (C), anti-CpsB (D) and anti-CbpA (E). MW, molecular weight (in kDa). 
The arrow on (C) indicates a band corresponds to CpsD.  

We then investigated whether these mutations modulated the synthesis of the 

CPS, using the uronic acid assay as described in the Materials and Methods. There was no 

significant difference in the amount of both total and cell wall-associated CPS produced by 

D39, D39Δspd1837, D39Spd1837C8S, D39Δspd1838 and D39Δspd1836 while the operon 

deletion mutant, D39ΔOM001 had a slightly higher cell wall-associated CPS compared to 

that of the wildtype D39 strain under aerobic condition (Figure 4.2A). When we 

investigated CPS biosynthesis in anaerobic conditions, the overall total and cell wall-

associated CPS levels of all strains were increased by approximately 20%, as previously 
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observed [32]. However, there was no significant effect of mutating spd1836, spd1837 or 

spd1838 individually or together either on total or cell wall-associated CPS synthesis (Figure 

4.2B).  

 

Figure 4.2: CPS production by D39 and WU2 strains.   

CPS was prepared from equal numbers of bacterial cells of D39, D39∆spd1837, 
D39Spd1837C8S, D39∆spd1838, D39∆spd1836, and D39ΔOM001 grown either aerobically 
(A) or anaerobically (B) and WU2 and WU2Δspd1837 grown either aerobically (C) or grown 
anaerobically (D). The CPS level was determined by uronic acid assay as described in 
Materials and Methods. The white bars represent the total CPS produced by various 
mutants as a percentage of total D39 CPS ((A) and (B)) or total WU2 CPS ((C) and (D)). The 
black bars represent the cell wall-associated CPS produced by mutants as a percentage of 
total D39 CPS ((A) and (B)) or total WU2 CPS ((B) and (C)). Bars represent means from three 
independent replicates while the error bars represent the standard error. 

Serotype 3 strains produce CPS via synthase-dependent mechanism [33], 

compared to the Wzy-dependent mechanism in serotype 2 and all other strains except 
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serotype 37 [34-36]. This implies that Spd1837 is the only identified PTP in this serotype as 

it does not possess CpsB [33]. Thus, in order to investigate if Spd1837 played a role in CPS 

biosynthesis in this background, we also constructed a spd1837 deletion in the serotype 3 

strain WU2. Similar to in D39, there was no significant difference in CPS levels between 

WU2 and WU2Δspd1837, either when the bacteria were grown aerobically (Figure 4.2C) or 

anaerobically (Figure 4.2D). This suggests that Spd1837 plays no role in the regulation of 

CPS biosynthesis in two serotypes of S. pneumoniae that synthesize CPS via two different 

mechanisms. 

4.4.2 Contribution of Spd1836, Spd1837 and Spd1838 to virulence in mouse model of 

infection 

Previous work has shown that the OM001 operon encoding spd1836, spd1837 

and spd1838 plays a role in pneumococcal virulence [12]. We then undertook animal 

experiments to investigate the contribution of the individual genes of the operon to 

virulence in mice using an intranasal model. We found that none of the groups challenged 

with D39Δspd1837, D39Spd1837C8S, D39Δspd1838, D39Δspd1836 and D39∆OM001 

showed statistically reduced number of bacteria recovered from the nasopharynx, pleural 

lavage and lungs compared to the group challenged with the wildtype D39 (Figure 4.3A and 

4.3B). There was however a significant reduction in the number of pneumococci recovered 

in the blood of mice challenged with D39Δspd1836 compared to the wildtype D39 (Figure 

4.3C). Although not reaching statistical significance, a similar trend towards reduced 

number of bacteria recovered from the nasopharynx, pleural lavage, and lungs was 

observed for the group challenged with D39Δspd1836 and D39∆OM001, and D39ΔOM001 

from the blood compared to the group challenged with the wildtype D39 (Figure 4.3). 

Therefore, invasion of the lungs and blood was also compared by Fisher’s exact test. Using 

this test, we found that significantly fewer mice succumbed with invasive disease of lungs 

and blood when challenged with D39Δspd1836 and D39∆OM001 compared to the wildtype 

D39. Eight out of fifteen mice challenged with D39Δspd1836 and three out of eight mice 

challenged with D39∆OM001 had negligible number of pneumococci recovered from their 

lungs and blood while only one out of sixteen mice challenged with the wildtype D39 did 

not succumb to invasive disease. Thus, this showed that the contribution of the OM001 

operon to pneumococcal virulence was solely due to spd1836. 
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Figure 4.3: Infection of mice with D39 bacteria and their mutant derivatives.  

Mice were challenged with D39, D39Δspd1837, D39Spd1837C8S, D39Δspd1838, 
D39Δspd1836 and D39∆OM001. Bacteria were enumerated from the nasopharynx and 
pleural lavage (A), lungs (B) and blood (C) of each mouse at 48 h post-infection (n = at least 
5 per group). Horizontal line represents geometric mean; horizontal broken line denotes 
limit of detection abbreviated as LD (250 CFU for (A), 100 CFU for (B) and 50 CFU for (C)). 
*, P < 0.05; Statistical significance was calculated on log-transformed data using Mann 
Whitney tests. The incidence of pneumococcal invasion into the lungs and blood of mice 
were compared using two-tailed Fisher’s exact test. 

4.4.3 Spd1836 and Spd1838 may be essential for pneumococcal survival in human saliva 

As previous work by Verhagen et. al. [13] had suggested that the OM001 

operon may play a role in the survival in human saliva, we investigated if our defined 

spd1836, spd1837 and spd1838 mutants showed less survival in saliva compared to the 

wildtype D39 strain. Deletion of spd1836, spd1838 and the overall deletion of the operon 

OM001 resulted in lower bacterial survival when grown in human saliva at 25 °C without 
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CO2 compared to the wildtype D39, and complementation of OM001 into D39ΔOM001 

restored the survival percentage to wildtype level (Figure 4.4A). In contrast, none of the 

mutants including the complemented strain showed significant differences in survival when 

incubated in human saliva at 37°C with CO2 compared to the wildtype strain (Figure 4.4B). 

Notably, neither chromosomal deletion nor the active site point mutation of spd1837 

(spd1837C8S) affected pneumococcal survival at 25 °C without CO2 and at 37°C with CO2 

(Figure 4.4A and Figure 4.4B). Overall, the results suggest that deletion in spd1836 and 

spd1838 reduced pneumococcal survival in human saliva during conditions that mimic 

transmission (at 25°C without CO2), but not during conditions that mimic in-host carriage 

(37°C with CO2). With evidence that human saliva can be a potential reservoir for the 

person to person spread of the pneumococcus, this would identify these factors as novel 

factors potentially important for pneumococcal transmission. 

 

Figure 4.4: Survival of D39 bacteria and mutant derivatives in human saliva.  

A starting concentration of 106 CFU mL-1 wildtype or mutant bacteria were incubated with 
saliva at the two conditions; (A) at 25°C without CO2 and (B) at 37°C with CO2. Experiments 
were performed in duplicate and repeated three times, using independent biological 
replicates . There was an approximately 0.5-log decrease in viable count for the D39 strain 
grown at 25°C without CO2 and approximately 2-log decrease in viable count for the D39 
strain grown at 37°C with CO2. The CFU for D39 at t = 24 at 25°C without CO2 was 5 × 105 
and the CFU for D39 at t = 24 at 37°C with CO2 was 1 × 104. Data were normalized such that 
the values represent the survival percentage of the mutant strains relative to the wildtype 
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D39 (taken as 100%) ± SEM. Statistical differences between survival of S. pneumoniae in 
multiple dilutions of saliva were assessed by one-way ANOVA and Dunnett’s post hoc tests. 
**, P < 0.01, ***, P < 0.001. 

 

4.5 Discussion 

While the OM001 operon is highly conserved amongst pneumococcal strains, 

little is known concerning the roles that the individual genes play in the physiology and 

virulence of the pneumococcus. Previously we have shown that Spd1837 is a PTP of the 

LMWPTP family (Chapter 3), and as data suggested importance of the operon in virulence 

[12], we investigated the individual characteristics of the mutants of these three genes in 

the operon. 

Protein tyrosine phosphorylation in bacteria is now recognized as a critical post-

translational regulation of virulence, modulating the pathogenic ability of a range of 

important human pathogens [9, 37]. The pneumococcus is one of the pathogens for which 

tyrosine phosphorylation plays an important role, regulating the biosynthesis of its single 

most important virulence factor, the CPS. The PTP CpsB, has been shown to be required for 

complete pneumococcal encapsulation [7]. Therefore, we investigated if the LMWPTP 

Spd1837 and its adjacent co-transcribed proteins, Spd1836 and Spd1838 play a role in the 

biosynthesis of CPS in the pneumococcus. However, neither Spd1837 nor Spd1836 and 

Spd1838 modulated tyrosine phosphorylation or CPS production under either aerobic or 

anaerobic conditions unlike CpsB [38], although the cumulative effects of deleting spd1836, 

spd1837 and spd1838 resulted in a slight increase in the levels of cell wall-associated CPS 

compared to the wildtype. This is perhaps unsurprising for the LMWPTP Spd1837 as PTPs 

not co-transcribed with bacterial tyrosine kinases generally have species specific roles 

(Table 4.4S and Table 4.5S).  

As a deletion mutation in the OM001 operon was previously reported to 

attenuate pneumococcal virulence in multiple in vivo models of infection [12], we 

investigated the individual contributions of spd1836, spd1837, and spd1838 to 

pneumococcal virulence. Similar to the previous study, we found that the deletion of the 

operon OM001 led to a reduction in in vivo virulence with fewer mice succumbing to 
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invasive disease of the lungs and blood. However, our data suggested that it was spd1836 

absence rather than the combination of spd1836, spd1837 and spd1838 deletion that led 

to the reduced invasive capacity of the pneumococcus, with the D39∆spd1836 mutant 

showing similar results as the D39∆OM001 mutant. Our decrease in virulence were not as 

dramatic an attenuation as seen with the deletion of the operon OM001 previously [12], 

however, the prior study utilized different models including gerbils. Regardless, our study 

identified Spd1836 as a novel virulence factor, playing a role in invasive disease of lungs 

and blood.  

Based on Tn-seq conducted by Verhagen and colleagues [13], the spd1836 and 

spd1837 genes (locus tag SP195_1980 and SP195_1981 respectively in the previous study) 

were implicated as being potentially important for pneumococcal transmission, however, 

no testing of individual mutants was reported. Here, we have shown that Spd1836, and 

Spd1838 along with the operon as a whole play a role in the survival of pneumococci in 

human saliva, with respective mutants showing statistically significant decreases in CFU 

when incubated at 25°C without CO2 but not when incubated at 37°C with CO2. These 

results are slightly different to those found by the previous study, as we did not see any 

difference in D39∆spd1837 and our differences were only seen in conditions which mimic 

transmission (25°C without CO2). However, our study using defined mutants (rather than 

the Tn-seq) in a different strain (serotype 2 D39 vs serotype 19F) allowed for a more 

detailed analysis of the characteristics of these mutants. It would be interesting to 

investigate the precise role of Spd1838 and Spd1836 proteins in transmission via saliva, 

given their effects on pneumococcal survival in saliva as reported here. 

The epidemiological evidence following vaccine administration highlights the 

importance of studying transmission and colonization which was previously overlooked in 

favour of virulence and invasion studies. Given the recent advances in pneumococcal 

transmission studies [39, 40], one can expect more factors important for transmission will 

be characterized in the future. We are currently working to identify the mechanisms by 

which genes of this operon modulate virulence and transmission of the pneumococcus. 

Additionally, Spd1836 emerges from our study to be a previously uncharacterized virulence 

factor that may be important for progression to invasive pneumococcal disease. Further 

work is needed to identify the mechanism for this, and to identify whether this presents as 

a novel target for the development of new antimicrobials. 
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4.7 Supporting Information 

 

Figure 4.5S: Schematic representation of the OM001 operon.  

In the chromosome, the operon consists of spd1838 which encodes for a translocase, YajC 
(99 amino acids); spd1837 which encodes for a low molecular weight protein tyrosine 
phosphatase (142 amino acids); and spd1836 which encodes for a Membrane Occupation 
and Recognition Nexus (MORN) repeats-containing protein (136 amino acids).  
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Table 4.2S: List of oligonucleotides used. Sequence of oligonucleotides were derived from the chromosomal DNA sequence of S. 
pneumoniae serotype 2 D39 and serotype 3 WU2. 

Oligonucleotide Sequence Purpose 

ZA3 5’-ATACTTACGTTATCTGTGG-3’ F, amplify spd1837 upstream region 
ZA4 5’-AAGAAGGCATTGTAAACGTCCCCG-3’ R, amplify spd1837 downstream 

region 
ZA5 5’-GGAAAGGGGCCCAGGTCTCTGAAAAGGAGAGTTAAGGTGGAAAATC-3’ F, for overlap extension PCR of 

spd1837, complimentary to janus 
cassette 

ZA6 5’-

CATTATCCATTAAAAATCAAACGGCCCATTTCCTTTCTTTTATAGAAAAACGG-3’ 

R, for overlap extension PCR of 
spd1837, complimentary to janus 
cassette 

ZA9 5’-GTCTTTGTCAGTCTGGGAAATATTTG-3’ F, exchange spd1837 C8S, 
complimentary to upstream of 
spd1837 

ZA10 5’-CAAATATTTCCCAGACTGACAAAGAC-3’ R, exchange spd1837 C8S, 
complimentary to downstream of 
spd1837 

ZA15 5’- GGAAAGGGGCCCAGGTCTCTAGAAGGCGCAATTGAAAAATAAGACG-3’ F, for overlap extension PCR of 
spd1838, complimentary to janus 
cassette 

ZA16 5’- CATTATCCATTAAAAATCAAACGGTGTTTTCTCCTTTGTCTTTTACATAGG-

3’ 

R, for overlap extension PCR of 
spd1838, complimentary to janus 
cassette 

ZA17 5’- CAAAGGAGAAAACAAGAAGGCGCAATTGAAAAATAAGACG-3’ F, delete spd1838, complimentary to 
upstream of spd1838 

ZA18 5’- CAATTGCGCCTTCTTGTTTTCTCCTTTGTCTTTTACATAGG-3’ R, delete spd1838, complimentary 
to downstream of spd1838 

ZA19 5’-GGAAAGGGGCCCAGGTCTCTAGCCTCCTTATCAAAGGAGGTATTAT-3’ F, for overlap extension PCR of 
spd1836, complimentary to janus 
cassette 
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ZA20 5’-CATTATCCATTAAAAATCAAACGGCTTAACTCTCCTTTTCTAAACGTTC-3’ R, for overlap extension PCR of 
spd1836, complimentary to janus 
cassette 

ZA21 5’-GAAAAGGAGAGTTAAGAGCCTCCTTATCAAAGGAGGTATTAT-3’ F, delete spd1836, complimentary to 
upstream of spd1836 

ZA22 5’-GATAAGGAGGCTCTTAACTCTCCTTTTCTAAACGTTC-3’ R, delete spd1836, complimentary 
to downstream of spd1836 

ZA24 5’- CAAAGGAGAAAACAAGCCTCCTTATCAAAGGAGGTATTAT-3’ F, delete OM001, complimentary to 
upstream of spd1836 

ZA25 5’- GATAAGGAGGCTTGTTTTCTCCTTTGTCTTTTACATAGG-3’ R, delete OM001, complimentary to 
downstream of spd1838 

AS113 5’- CCGTTTGATTTTTAATGGATAATG-3’ F, amplify janus cassette 
AS114 5’- AGAGACCTGGGCCCCTTTCC-3’ R, amplify janus cassette 
AS120 5’-TGTTCCCAGCTATTTTTATTCAGA-3’ F, amplify rpsl 
AS121 5’-TCTCTTTATCCCCTTTCCTTATGC-3’ R, amplify rpsl 
ZA36 5’- CAGCTAAATTACCAACCTTCC-3’ F, 1 kb upstream of spd1838, to 

amplify OM001 for 
complementation 

ZA37 5’- TTTTCAACATAAGCTGGAACGTTTC-3’ R, 1 kb downstream of spd1836, to 
amplify OM001 for 
complementation 

Forward and reverse primers are represented by plus (F) or minus (R), respectively
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Figure 4.6S: Growth profiles of D39 strains.  

Growth curves of S. pneumoniae strains grown in THY. Data are mean ± SEM absorbance 
measurements from three independent biological experiments.  
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Table 4.3S: The total number of mice and the number of surviving mice at the end of an 
intranasal challenge experiment with the strains 

Group Total number of mice Number of surviving mice 

D39 16 1 

D39Δspd1837 5 0 

D39Spd1837C8S 6 0 

D39Δspd1838 8 1 

D39Δspd1836 15 7 

D39∆OM001 8 3 
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Figure 4.7S: Viable bacterial count of the strains at different time points after incubation 
in human saliva.  

A starting concentration of 106 CFU mL-1 of wildtype or mutant strain was incubated with 
saliva at two conditions, at 25 °C without CO2 (A) and at 37 °C with CO2 (B). Samples were 
taken for CFU count at t = 0 and 3 hr. Data are mean ± SEM from three independent 
biological experiments. 
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Table 4.4S: LMWPTP-bacterial tyrosine kinase (BY-kinase) pair with a role in capsular 
polysaccharide (CPS)/exopolysaccharide (EPS) biosynthesis. 

Bacteria LMWPTP  BY-kinase Function References 

E.coli K-30 Wzb Wzc Group 1 CPS assembly [1] 

E. coli K-12 Wzb Wzc Colanic acid production [2] 

Enteropathogenic 
E. coli 

Etp Etk Secretion and assembly 
of the group 4 CPS 

[3, 4] 

Acinetobacter 
iwoffii 

Wzb Wzc Emulsan production [5] 

Acinetobacter 
johnsonii 

Ptp Ptk Colanic acid/EPS 
synthesis 

[6] 

Erwinia amylovora AsmI AsmH Amylovoran production  [7] 

Klebsiella 
pneumoniae 

Yor5/ Wzb Yco6/Wzc CPS production [8] 

Pseudomonas 
solanacearum 

EpsP EpsK EPS I production [9] 
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Table 4.5S: LMWPTP with role(s) in processes other than capsular polysaccharide 
(CPS)/exopolysaccharide (EPS) biosynthesis. 

Bacteria LMWPTP  Function References 

Porphyromonas 

gingivalis  

Ltp1 Regulate transcriptional activity of the global 

regulator LuxS 

[10] 

Bacillus subtilis YfkJ Regulate ethanol resistance [11] 

Burkholderia 

contaminans 

BceD Biofilm formation [12, 13] 

E. coli Etp Regulate heat shock resistance [14]  

Mycobacterium 

tuberculosis 

PtpA Inhibit phagosome acidification and block 

fusion with lysosomes 

[15-17] 

Burkholderia 

cenocepacia 

Dpm Inhibit phagosome maturation [18] 
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Chapter 5: Research Article 3: Streptococcus pneumoniae protein tyrosine 

phosphatase Spd1837 confers resistance to hydrogen peroxide 

and modulates capsular polysaccharide production in an SpxB-

dependent manner 

5.1 Abstract and Importance 

Abstract 

Streptococcus pneumoniae (the pneumococcus) is a major human pathogen, 

causing significant mortality and morbidity annually. While the predominant virulence 

factor of the pneumococcus, the capsular polysaccharide is regulated by a phosphotyrosine 

regulatory system, we recently showed that a previously uncharacterised protein tyrosine 

phosphatase, Spd1837, played no role in capsular polysaccharide regulation. However, one 

of the characteristic features of the pneumococcus is its ability to produce large quantities 

of hydrogen peroxide (H2O2) predominantly via the pyruvate oxidase, SpxB. Interestingly, 

as with other protein tyrosine phosphatases, here we show that the phosphatase activity 

of Spd1837 was inhibited by H2O2 in vitro, suggesting that SpxB may play a role in regulating 

Spd1837 activity. Subsequent construction of double mutations in spxB and spd1837 

resulted in significant reductions in capsular polysaccharide production indicating a novel 

cross-talk between SpxB and Spd1837. Furthermore, Spd1837 also confers resistance to 

H2O2 and SpxB impacts this ability, providing further evidence of this link between these 

two proteins. Interestingly, a phosphatase-deficient mutant in spd1837 indicated that 

Spd1837 may have roles independent of its phosphatase activity. With evidence that spxB 

is downregulated and mutated during human infection, these results suggests that 

Spd1837 may be critical for the complete encapsulation of the pneumococcus during 

invasive disease. 

Importance 

The capsular polysaccharide is the single most important virulence factor of the 

pneumococcus, essential for the bacterial survival in every niche it encounters. Thus, its 

regulation is critical for the success of this major human pathogen. Here, we identify a novel 

link between pyruvate oxidase SpxB, the low molecular weight protein tyrosine 
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phosphatase (LMWPTP) Spd1837 and capsular polysaccharide regulation. This study 

provides evidence that indeed, similar to a number of other bacterial LMWPTPs, Spd1837 

does in fact modulate capsular polysaccharide production, albeit in an SpxB-dependent 

manner. Furthermore, we also describe a role for Spd1837 in H2O2 resistance. With recent 

evidence suggesting SpxB is not required during invasive disease, Spd1837 may potentially 

act as a safe-guard mechanism which ensures proper encapsulation during this stage of 

pneumococcal pathogenesis.  

5.2 Introduction 

Streptococcus pneumoniae (the pneumococcus) is a major human pathogen, 

causing numerous debilitating diseases, including pneumonia, meningitis and bacteraemia. 

Despite the use of existing vaccines and antibiotics, pneumococcal infections still cause 

approximately 1.3 million deaths annually especially among children and the elderly (1). 

Normally a harmless coloniser of the nasopharynx, the ability of the pneumococcus to 

invade deeper tissues reflects its ability to respond to changes in nutrient and oxygen 

availability in different niches. The pneumococcus utilises tyrosine phosphorylation to 

modulate some of its most important virulence factors such as capsular polysaccharide 

(CPS) and the autolysin, LytA (2, 3).  

Recently, we have uncovered a protein tyrosine phosphatase, Spd1837 that 

may play a role in pneumococcal metabolism (Chapter 3). As with other protein tyrosine 

phosphatases which harbour the CX5R motif in their active site, Spd1837’s catalytic cysteine 

is predicted to be deprotonated at physiological pH. This highly positive environment of the 

cysteine’s thiol group is required for the phosphatase enzymatic activity (4). However, this 

also potentially renders the phosphatase susceptible to oxidation, leading to its transient 

inactivation (5). This observation has been documented for many eukaryotic phosphatases 

with a CX5R active site including PTP-1B, the dual-specificity phosphatase PTEN, and PRL-1 

(phosphatase of regenerating liver-1) (6-8).  

S. pneumoniae poses an intriguing paradox as it is known to produce large 

quantities of hydrogen peroxide (H2O2) (9) while at the same time lacks the typical 

peroxide-detoxifying enzymes and regulators such as catalase, NADH peroxidase, OxyR and 
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PerR (10, 11). The H2O2 produced is therefore anticipated to have the ability to oxidise and 

inactivate phosphatases with a CX5R active site such as Spd1837. The pyruvate oxidase, 

SpxB, is the main enzyme responsible for H2O2 production in the pneumococcus (12) with 

studies showing that spxB mutation resulted in only 20% of H2O2 being produced relative 

to the wildtype (13, 14). Interestingly, aside from the pneumococcus, the spxB gene is only 

present in some streptococcal species that colonise the oropharynx, such as Streptococcus 

gordonii, Streptococcus oralis, and Streptococcus sanguinis (15).  

 The contribution of SpxB to pneumococcal pathogenesis is still unclear. The 

lack of SpxB was shown to reduce virulence in a number of in vivo murine models (12, 16, 

17). However, another recent study has shown that mutations of spxB can actually 

contribute to pneumococcal hypervirulence during invasive disease in mice, and also 

spontaneous spxB mutants could be recovered from patients with invasive disease (18). 

The inconsistency in the in vivo data is not surprising given the intricate interaction 

between SpxB and other pneumococcal factors such as pneumolysin (19), the overall 

colonisation process (17, 20) and metabolism (13).  

Similarly, the reported effects of spxB mutation on CPS production have varied 

from either increased CPS levels (14), decreased CPS levels (13), to no change in CPS levels 

(13) and this seems to be dependent on the serotype tested and the detection method 

used. SpxB is recognised as a critical link between CPS biosynthesis and metabolism as 

reduced acetyl-CoA availability resulting from spxB deletion lead to CPS defects in 

pneumococcal serotypes possessing CPS with acetylated sugars (13). Additionally, spxB 

deletion was also shown to alter sugar utilisation pattern in the pneumococcus such that 

the carbon sources are likely being redirected away from glycolysis to produce more CPS 

(14).  

Our recent study suggested that the tyrosine phosphatase, Spd1837, played no 

role in CPS biosynthesis (Chapter 4: Figure 4.2). The possibility that the SpxB-produced H2O2 

may regulate Spd1837 activity drove us to investigate the hypothesis that Spd1837 may 

have a role in CPS production in the pneumococcus under specific conditions (Figure 5.1). 

We found that the strains with a double mutation in spd1837 and spxB had much reduced 

levels of CPS. For the Δspd1837∆spxB strain, the effect on CPS was also oxygen-dependent, 

as growth in anaerobic conditions negated this effect while for Spd1837C8S∆spxB strain, the 
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reduced levels of CPS was sustained under anaerobic conditions. Furthermore, Spd1837 

also confers resistance to H2O2 and SpxB impacts this ability, providing further evidence of 

this link between these two proteins. The oxygen-independent effect on CPS observed with 

Spd1837C8S∆spxB and the strains’ extreme sensitivity to H2O2 allude to the possible adverse 

effects of expressing the phosphatase mutant form of Spd1837 in the cells. Overall, this 

study reports a new link between SpxB, Spd1837 and the regulation of CPS, the major 

virulence factor of the pneumococcus. 

 

Figure 5.1: SpxB-produced hydrogen peroxide (H2O2) may regulate Spd1837 activity.  

In many other protein tyrosine phosphatases with similar active site motif as Spd1837, 
reactive oxygen species such as H2O2 can oxidise the catalytic cysteine (shown in the 
thiolate state) leading to its inactivation (shown as different possible oxidation products, 
SO-x). 

 

5.3 Results 

5.3.1 Spd1837 activity is inhibited by hydrogen peroxide 

We have previously characterised Spd1837 as a low molecular weight protein 

tyrosine phosphatase (LMWPTP) in S. pneumoniae (Chapter 3). For a number of protein 

tyrosine phosphatases, their activities have been shown to be regulated by reactive oxygen 

species e.g. the human LMWPTP (21). While no other bacterial LMWPTPs have been 

reported to be sensitive to oxidative stress, S. pneumoniae has the unique feature of 

producing H2O2 which is unlike any other bacteria with a characterised LMWPTP (12). We 

therefore investigated if the H2O2 produced by the pneumococcus would inhibit Spd1837 
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activity. Using the purified protein (Chapter 3: Figure 3.1), we showed that the Spd1837 

phosphatase activity was inhibited by H2O2 (Figure 5.2A). Exogenous addition of catalase 

could recover 100% of Spd1837 phosphatase activity when 175 ng ml-1 or more catalase 

was added (Figure 5.2B) 

 

Figure 5.2: Spd1837 phosphatase activity is inhibited by hydrogen peroxide (H2O2) and 
restored by catalase.  

(A) Effects of H2O2 on the phosphatase activity of Spd1837. The assays were conducted at 
37 °C in 100 mM Tris buffer pH 7.0. With the same amount of purified Spd1837 (400 ng) 
and pNPP concentration (8.0 mM), the H2O2 concentration required to block Spd1837 
activity by 50% (IC50) was 10 µM. (B) Catalase restored Spd1837 phosphatase activities 
inhibited by 100 µM H2O2. Results were expressed as a percentage of the phosphatase 
activity measured in the absence of H2O2, taken as 100%. Data points represent means 
from three independent replicates while the error bars represent the standard error. 

5.3.2 Spd1837 modifies CPS levels in SpxB-deficient backgrounds 

We have previously shown that neither spd1837 deletion nor point mutation 

inactivating phosphatase activity (Spd1837C8S) affects CPS production in the serotype 2 D39 

background, either grown aerobically or anaerobically (Chapter 4: Figure 4.2). We 

introduced a spxB deletion mutation into our existing wildtype and mutant spd1837 strains 

resulting in ΔspxB, Δspd1837ΔspxB and Spd1837C8SΔspxB strains. We then investigated 

whether the mutations modulated CPS biosynthesis using the uronic acid assay. Firstly, we 

measured the CPS levels of ΔspxB strain and found that this strain produced approximately 

50% more total CPS than the wildtype when grown aerobically (Figure 5.3A), similar to a 

previous study (14). It was also of interest to investigate CPS levels of the mutant strains 

under anaerobic condition because: i) the effect of CpsB, the only other verified protein 

tyrosine phosphatase in the pneumococcus on CPS levels is known to vary according to 
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oxygen levels (22), and ii) SpxB relies on oxygen availability to catalyse its reaction (23). In 

fact, spxB expression was previously shown to be severely downregulated in anaerobic 

conditions (24). Indeed, we found that growth in the lack of oxygen restored CPS levels for 

ΔspxB to wildtype levels (Figure 5.3B). 

 

Figure 5.3: CPS production by WT and SpxB-deficient strains.  

CPS was prepared from equal numbers of bacterial cells of wildtype (WT), ∆spxB, 
∆spd1837∆spxB and Spd1837C8SΔspxB grown either aerobically (A) or anaerobically (B). The 
CPS level was determined by uronic acid assay as described in Materials and Methods. The 
white bars represent the total CPS produced by various mutants as a percentage of total 
WT CPS and the black bars represent the cell wall-associated CPS produced by mutants as 
a percentage of total WT. (*, P < 0.05; **, P < 0.01***; P < 0.001; one-way ANOVA with 
Dunnett’s post-hoc test). Bars represent means from three independent replicates while 
the error bars represent the standard error.  

Next, we observed that spd1837 and spxB double deletion resulted in a 

dramatic decrease in total CPS under aerobic conditions when compared to both wildtype 

and ΔspxB strains (Figure 5.3A). The levels of cell wall-associated CPS in these three strains 

were not different, indicating that the difference was specifically in the CPS that was not 

attached to the cell wall (Figure 5.3A).  When CPS levels were then investigated under 

anaerobic conditions, deletion of spxB and spd1837 did not affect CPS production unlike 

when the strain was grown under aerobic conditions. This indicates that the in the presence 

of oxygen, which is the substrate for SpxB reaction, SpxB modulated Spd1837 activity such 

that this resulted in an effect on CPS levels. In contrast, during growth in anaerobic 

conditions, because the SpxB protein is very lowly expressed (24) and deprived of oxygen 

(in wildtype strain), or is missing altogether (in ΔspxB strain), Spd1837 was no longer 
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regulated by SpxB, hence the CPS levels was restored to the wildtype levels (Figure 5.3B). 

Interestingly, the strain with a point mutation in spd1837 in combination with a spxB 

deletion had reduced total CPS production, regardless of whether oxygen is present (Figure 

5.3A) or absent (Figure 5.3B). This implies that the catalytically dead, Spd1837C8S protein 

acted as a possible repressor, leading to a prominent loss of CPS not attached to the cell 

wall, independent of oxygen availability.  

In order to determine if CPS differences were due to changes in the levels of 

CpsB and CpsD, two of the proteins involved in the phosphotyrosine-regulatory circuit, 

Western immunoblotting analyses using specific antibodies against these proteins were 

also undertaken. We found that the levels of CpsD, overall tyrosine phosphorylated 

proteins and CpsB between the wildtype, ΔspxB, Δspd1837ΔspxB and Spd1837C8SΔspxB 

strains were not different. Additional Western immunoblotting analyses also revealed no 

changes in the levels of Spd1837 protein itself between the wildtype, ΔspxB and 

Spd1837C8SΔspxB strains. An anti-CbpA blot was also included as a loading control, and 

there appeared to be equal amount of proteins loaded into all the wells (Figure 5.4). 

Therefore, the differences in CPS levels we have observed in Figure 5.3 were not due to 

altered expression of Spd1837, nor due to varied levels of proteins with major roles in CPS 

biosynthesis, CpsB and CpsD, and also overall tyrosine phosphorylation levels. 
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Figure 5.4: Changes in CPS levels did not result from altered Spd1837, CpsD and CpsB 
expression and also changes in overall tyrosine phosphorylation levels.  

Proteins from whole-cell lysates of ∆spxB, ∆spd1837∆spxB and Spd1837C8SΔspxB cells were 
separated by SDS-PAGE, and Western immunoblotting was undertaken with anti-Spd1837 
(A), anti-CpsD (B), anti-phosphotyrosine (PY) (C), anti-CpsB (D), and anti-CbpA (E). MW, 
molecular weight (in kDa). The arrow on (C) indicates a band corresponds to CpsD.  

5.3.3 Spd1837 contributes to the pneumococcal resistance to hydrogen peroxide 

As well as being responsible for the majority of H2O2 production in the 

pneumococcus, SpxB has also been shown to be essential for the ability of the 

pneumococcus to survive in the presence of H2O2, its own toxic byproduct (9). Thus, we 

investigated if deletion or point mutation in spd1837 affected S. pneumoniae sensitivity to 

H2O2. We found that only 60% of Δspd1837 remained viable after exposure to 15 mM H2O2 

compared to 100% of the wildtype strain (Figure 5.5A). This suggests that Spd1837 confers 

protection against killing from H2O2 exposure in the pneumococcus.  
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Figure 5.5: Effect of Spd1837 and SpxB mutations on the strains’ hydrogen peroxide 
(H2O2) resistance.  

After growth to mid-log phase, cultures of wildtype (WT), ∆spd1837, Spd1837C8S (A) and 
∆spxB, ∆spd1837∆spxB, Spd1837C8SΔspxB (B) were incubated in THY containing either 15 
mM H2O2 (A) or 5 mM H2O2 for 30 min. Values are the mean of three independent biological 
replicates representing the change in CFU expressed as a percentage of the culture without 
H2O2 ± the standard error. (*, P < 0.05; **, P < 0.01***; P < 0.001; Student’s unpaired t-test 
(2-tailed)). 

Similar to previous observations (9, 25), no viable ΔspxB were detected after 

exposure to 15 mM H2O2 while 100% (2.55 x 106 CFU ml-1) of the wildtype survived. We 

titrated H2O2 to as low as 5 mM in order to detect survival of the ΔspxB strain (Figure 5.5B). 

At this concentration, we also tested the H2O2 sensitivity of our double deletion strain, 

Δspd1837ΔspxB. Interestingly, we found that spd1837 deletion together with spxB deletion 

increased the strain’s resistance to H2O2 (up to 16% compared to 7% survival for the single 

spxB deletion mutant strain) (Figure 5.5B). This is in contrast to the decreased resistance to 

H2O2 observed for the spd1837 deletion mutant in the wildtype background (Figure 5.5A). 

Hence, this observation further corroborates for the existence of a cross-talk between 

Spd1837 and SpxB proteins in conferring resistance to H2O2, in addition to modulating CPS 

levels as observed earlier (Figure 5.3). 

Again, it appears that expressing the catalytically-dead Spd1837C8S protein 

contributed to detrimental phenotype in the pneumococcus. Only 30% of Spd1837C8S cells 

were viable after exposure to 15 mM H2O2 (Figure 5.5A) and the Spd1837C8SΔspxB strain 

was even less viable (2% survival) after exposure to 5 mM H2O2 (Figure 5.5B). The difference 
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between the survival of the two spd1837 mutant strains (Δspd1837 compared to 

Spd1837C8S, and Δspd1837ΔspxB compared to ΔspxBSpd1837C8S) was also significant which 

implies that Spd1837 expression and activity is governed by a complex regulatory 

mechanism. 

5.3.4 Role of spd1837 and spxB in cell adherence 

While CPS is important for pneumococcal virulence, a high level of CPS can lead 

to less efficient colonisation due to many adhesins such as CbpA being masked (26, 27). 

Thus, strains with lower levels of CPS have been shown to have greater adherence to 

epithelial cells (2). Therefore, we investigated if the changes in CPS levels resulting from 

spxB and spd1837 mutations would impact adherence levels. We also used a 

D39ΔcpsBCD::Janus mutant as the CPS negative strain. As expected, the ΔcpsBCD::Janus 

strain showed 2.5 fold more adherence to A549 cells than the wildtype (Figure 5.6), similar 

to another study investigating unencapsulated pneumococci (2). Although there was 

approximately 50% more CPS produced by ΔspxB strain as shown in Figure 5.4A, this did 

not translate to detectable changes in adherence levels (Figure 5.6). Furthermore, despite 

possessing reduced levels of CPS, the two mutant strains Δspd187ΔspxB and 

Spd1837C8SΔspxB did not exhibit increased adherence to A549 cells compared to the 

wildtype strain, rather these strains showed slightly less adherence compared to the 

wildtype strain (~ 65% compared to 100% for WT) (Figure 5.6). 
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Figure 5.6: Adherence of wildtype and mutant strains to A549 cells.  

A549 cell monolayers were infected with wildtype (WT) pneumococcus or its derivatives 
for 1.30 hr. Non-adherent pneumococci were washed off, and the number of adherent 
pneumococci was determined by plating on BA agar. The data are representative of three 
independent experiments and expressed as percentage of adherent cells relative to WT ± 
the standard error. (*, P < 0.05; **, P < 0.01, n.s. = not statistically significant; Student’s 
unpaired t-test (2-tailed)). 

 

5.4 Discussion 

One of the unique features of the pneumococcus is its ability to produce high 

levels of H2O2, mainly via the pyruvate oxidase, SpxB. In eukaryotes, H2O2 has been shown 

to play a role as an important signalling molecule (28). While H2O2 offers a rapid and 

efficient way of regulating many biological process due to its being readily generated, its 

toxic properties could lead to aberrant signalling when its expression is not being tightly 

controlled (29). Indeed, in the pneumococcus, previous work has shown that H2O2 

specifically inhibits FabF activity, an elongation condensing enzyme which contributes to 

altered membrane fatty acid composition (30). In previous work, we have shown that 

Spd1837 did not have any effects on the CPS of the pneumococcus (Chapter 4: Figure 4.2). 

However, based on data showing that many eukaryotic protein tyrosine phosphatases rely 

on H2O2 to regulate their activity (6-8), we decided to investigate if this may also be the 

case in the pneumococcus. 

n.s. n.s. 
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In this study, we demonstrated that Spd1837 can modulate CPS biosynthesis in 

the pneumococcus in an SpxB-dependent manner. We observed reduced levels of CPS from 

the lack of Spd1837 in SpxB-deficient background only when oxygen was present whereas 

the CPS levels between ΔspxB strain and ΔspxBΔspd1837 strain were not different when 

grown anaerobically. This supports our hypothesis that SpxB may regulate Spd1837 activity, 

possibly via its production of H2O2, as this would not be produced in anaerobic conditions. 

In contrast, Spd1837C8SΔspxB strain had reduced levels of CPS compared to ΔspxB 

regardless of whether oxygen was present or not. This implies a possible role of Spd1837C8S 

as a repressor in the pneumococcal CPS biosynthesis. As the repression could not be 

observed in a wildtype background (Chapter 4: Figure 4.2), this repressor activity appears 

to be suppressed by the presence of SpxB. 

We also found that a single deletion in spd1837 caused the bacteria to be more 

susceptible to killing by H2O2. The contributions of other known modulators of H2O2 

resistance, SpxB and the lactate oxidase, LctO are very likely due to their role in the 

pneumococcal central carbon metabolism (LctO reverses SpxB reaction, regenerating 

pyruvate) (25). Therefore, Spd1837 effects on the pneumococcal ability to resist death by 

H2O2 exposure may also be due to the involvement of Spd1837 in the pneumococcal 

metabolism as postulated in Chapter 3, although the precise mechanism of Spd1837 

activity is yet to be elucidated. The spxB deletion mutant was, as expected (9), extremely 

sensitive to H2O2. Interestingly, the strain with a double deletion in spxB and spd1837 

exhibited a greater resistance to killing by H2O2 exposure compared to the ΔspxB mutant 

while a single deletion of spd1837 made the strain more susceptible as mentioned 

previously. We speculate that Spd1837 may possibly be involved in the H2O2 killing 

mechanisms, and this is only evident in the absence of SpxB protein. 

Linking the results for uronic acid assay from Figure 5.3 and the results for H2O2 

sensitivity assay from Figure 5.5, one common observation could be gathered. It appears 

that expression of the phosphatase inactive form of Spd1837 (Spd1837C8S) contributed to 

phenotypes that can potentially reduce pneumococcal fitness with lower levels of CPS and 

increased susceptibility to H2O2. We propose that this phosphatase deficient Spd1837 acts 

as a repressor of these phenotypes by an as yet unidentified mechanism, with this being 

controlled by SpxB. This suggests that like the other protein tyrosine phosphatase in the 

pneumococcus CpsB (22), Spd1837 has both phosphatase-dependent as well as 



159 
 

phosphatase-independent roles. Such adverse effects of a phosphatase-deficient mutant 

also has been documented with another phosphatase, PTEN, whereby PTEN with its 

catalytic cysteine replaced with serine contributed to earlier onset of cancer (31).  

In the pneumococcus, spxB deletion was previously shown to result in reduced 

adherence (12) or no change in adherence (32) to epithelial cells, although none of these 

studies investigated the adherence of the encapsulated serotype 2 D39. In our study, we 

did not see any changes in adherence for ΔspxB strain compared to the wildtype. 

Additionally, we found that the Δspd187ΔspxB and Spd1837C8SΔspxB strains had slightly 

reduced adherence to A549 cells compared to the wildtype, but were not significantly 

different from the ΔspxB strain, therefore it is difficult to ascertain the importance of this 

observation. The minimal effects of the spxB and/or spd1837 mutations on adherence 

levels were perhaps not unexpected as while the mutant strains had less CPS, they 

possessed similar amount of cell-wall associated CPS. Previous studies have shown that 

only CPS associated with the cell wall was previously shown to have a role in adherence 

(33).  

Nevertheless, Spd1837 emerges to be yet another LMWPTP that plays a role in 

CPS biosynthesis in S. pneumoniae, although the contribution of Spd1837 to CPS production 

is not as direct as other LMWPTPs. Additionally, we found that Spd1837 provided 

protection against killing by H2O2 exposure, a function that is shared with SpxB and LctO, 

two enzymes which are known to be involved in pneumococcal metabolism (25). Both 

Δspd1837∆spxB and Spd1837C8SΔspxB strains also had altered sensitivity to H2O2 compared 

to the ΔspxB strain, further illustrating a link between these two proteins.  Combined with 

the apparent detrimental effects of expressing the catalytically-dead, mutant form of the 

phosphatase, we believe that Spd1837 expression and activity is governed by a complex 

regulatory mechanism. Further experiments include constructing the complemented 

mutant by restoring the wildtype copy of spd1837 into the Δspd1837∆spxB and 

Spd1837C8SΔspxB to eliminate the possibilities of polar mutations and secondary site 

mutations. The implications of our study could assist in understanding how the 

pneumococcus transitions from a harmless commensal to an invasive pathogen. This is 

based on the observations that spxB is severely downregulated in the lungs and blood (24) 

and the spontaneous deletion of spxB from strains isolated from patients with invasive 

disease (18). Therefore, Spd1837 may play a role in ensuring that the pneumococcus is 
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properly encapsulated in the case where spxB is lost during systemic disease, protecting 

the pneumococcus from opsonophagocytosis and killing by the host.  
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5.5 Materials and Methods 

5.5.1 Growth media and growth conditions 

S. pneumoniae strains (listed in Table 5.1) were routinely grown either in Todd-

Hewitt broth with 1% Bacto yeast extract (THY) at 37 °C as indicated or on Columbia blood 

agar (BA) plates supplemented with 5% (v/v) horse blood and grown at 37 °C in 5% CO2. 

Where appropriate, antibiotics were supplemented at the following concentrations: 

streptomycin at 150 µg ml-1, kanamycin at 200 µg ml-1 and chloramphenicol at 6 µg ml-1.  

Table 5.1: List of strains used 

1 Sm, streptomycin; Cml, chloramphenicol and Km, kanamycin 
2WT is referred to as D39S in this paper 

5.5.2 Construction of chromosomal mutation and transformation into S. pneumoniae 

To construct spxB deletion mutation, a chloramphenicol resistance cassette 

with 2 kb homology to upstream and downstream region of spxB gene in S. pneumoniae 

serotype 2 D39 genome was amplified using the primers AS253 (5’-

TTAGTTGCAGGTAAGCCATATATC-3’) and AS254 (5’-GTCTTTGTAAATGGCATCTCGCAT-3’). 

The PCR products were then transformed into the WT, Δspd1837 and Spd1837C8S strains to 

Strain Antibiotic resistance1 Source/reference 

WT Sm (3)2 

Δspd1837 Sm (Chapter 3) 
Spd1837C8S Sm (Chapter 4) 
ΔspxB Sm & Cml This work 
Δspd1837ΔspxB Sm & Cml This work 
Spd1837C8SΔspxB 
ΔcpsBCD::Janus 

Sm & Cml 
Km 

This work 
This work 
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delete and replace the open reading frame encoding SpxB with the chloramphenicol 

resistance cassette. The ΔcpsBCD::Janus was constructed by deleting and replacing the 

open reading frame encoding CpsB, CpsC and CpsD with the Janus cassette (34) that was 

amplified using overlap extension PCR using the primers AS115 (5’- 

CATTATCCATTAAAAATCAAACGGTTCATCTACCCTCCATCACATCC-3’) and AS116 (5’- 

GGAAAGGGGCCCAGGTCTCTGTCGGGGGATAGAGATGAATG-3’). Transformations were 

carried out as described previously (3). All the mutations constructed were verified by DNA 

sequencing (Australian Genome Research Facility Ltd). All oligonucleotides were purchased 

from Integrated DNA Technologies. 

5.5.3 Phosphatase assays 

Phosphatase assays were conducted essentially as described previously (Chapter 3). 

For the H2O2 inhibition assay, H2O2 was added in the range of 0-500 µM. To rescue the 

phosphatase activity, catalase from Bovine liver (Sigma) in the range of 2-175 ng ml-1 was 

added to the reaction containing 100 µM of H2O2 in a separate assay. In both assays, 400 

ng of Spd1837 and 8.0 mM pNPP was used in 100 mM Tris pH 7.0 as buffer at 37 °C.  

5.5.4 Hydrogen peroxide sensitivity assays 

Hydrogen peroxide sensitivity assays were conducted essentially as described 

previously (9). Briefly, bacteria were grown until mid-log phase (OD600nm 0.3-0.4), and each 

culture was added to 100 µl of THY medium or 100 µl of THY medium containing either 15 

mM or 5 mM H2O2, followed by incubation at 37 °C for 30 min. Serial dilutions from each 

tube were then prepared in ice-cold phosphate-buffered saline to minimise Fenton 

reaction (35), and duplicate aliquots were spotted onto BA plates with half of the plate 

spotted with the strain treated with H2O2 and the other half without H2O2 treatment. The 

percent survival was calculated by dividing the CFU of cultures after exposure to H2O2 by 

the CFU of cultures without H2O2. Results were analysed using Student’s unpaired t-test (2-

tailed). 
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5.5.5 Uronic acid assay 

CPS was prepared from the indicated strains grown either aerobically (BA at 37 

°C with 5% CO2) or anaerobically (BA at 37 °C with 5% CO2 in a BD GasPak™ Anaerobic Jar 

(Becton, Dickinson and Company)). The uronic acid assay was performed as described 

previously (2, 36). Levels were related back to a standard curve of D-glucuronic acid (Sigma 

Aldrich). Differences in CPS levels were analysed by one-way analysis of variance (ANOVA) 

with Dunnett’s post-hoc test. 

5.5.6 SDS-PAGE and Western Immunoblotting 

The whole cell bacterial lysates were prepared from cultures grown in THY to 

an OD600nm of approximately 0.3 and then subjected to SDS-PAGE and Western 

immunoblotting as described previously (36). The concentrations of primary antibodies 

used were as follows; mouse anti-phosphotyrosine 4G10 antibodies (Bio X Cell), mouse 

anti-CbpA and mouse anti-SpxB at 1/5000 dilution, and rabbit anti-CpsD, rabbit anti-CpsB 

and rabbit anti-Spd1837 at 1/500. 

5.5.7 Adherence assays 

Human epithelial cell line A549 was maintained in DMEM medium (Gibco) 

supplemented with 5% foetal calf serum. To achieve approximately 90% confluency so that 

the adherence sites remained fully exposed, 4.5 x 104 cells/well were seeded in 24-well 

plates and incubated overnight at 37 °C in 5% CO2. The strains were grown in THY until the 

OD600nm of 0.5, washed and resuspended in culture media before being added to four wells 

per strain at a density of 5 x 106 CFU ml-1. Infected A549 cells were incubated for 1.30 hr at 

37 °C in 5% CO2 followed by three washes in PBS. To detach the adherent bacteria, 100 µl 

of 0.25% (v/v) trypsin with 0.02% (w/v) EDTA and 400 µl of 0.25% (v/v) Triton X-100 were 

added to the wells. 100 µl lysate from each well and serial dilutions (up to 10-3) thereof 

were plated onto BA. Adherent pneumococci were then quantified and expressed as 

percentage of adherent cells relative to WT. Results were analysed using Student’s 

unpaired t-test (2-tailed). 
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5.7 Supporting Information 

 

Table 5.2S: Non-normalised data for Figure 5.3 

Stain 

[glucuronic acid], µg ml-1 

Aerobic 

Replicate 1 Replicate 2 Replicate 3 

T-CPS CW-CPS T-CPS CW-CPS T-CPS CW-CPS 

WT 78.90 22.48 82.24 20.10 91.76 23.90 
∆spxB 157.00 12.24 129.86 12.48 135.33 23.90 
Δspd1837ΔspxB 44.86 20.57 36.52 15.81 23.90 14.62 
Spd1837C8SΔspxB 25.33 22.00 19.14 14.62 17.71 6.76 

 Anaerobic 

 T-CPS CW-CPS T-CPS CW-CPS T-CPS CW-CPS 

WT 121.52 32.95 100.81 43.43 109.14 20.81 
∆spxB 81.52 47.48 96.05 30.57 71.76 18.43 
Δspd1837ΔspxB 70.33 20.81 72.00 23.19 109.38 28.43 
Spd1837C8SΔspxB 26.05 22.71 48.43 30.33 35.81 13.19 
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Chapter 6: Overall Discussion and Conclusions 

Almost 150 years after S. pneumoniae was believed to be originally identified 

by Klebs in 1875 (Ramirez, 2015), this human-specific pathogen remains a major cause of 

mortality and morbidity worldwide. With the rise in serotype replacement by non-vaccine 

serotypes and widespread antibiotic resistance, the search for new anti-microbial targets 

in the pneumococcus is now more vital than ever. Recent research has recognised protein 

tyrosine phosphatases as novel anti-microbial targets in bacteria, and thus identification 

and investigation of their roles in the pneumococcus is of the utmost importance 

(Whitmore & Lamont, 2012). 

In bacteria such as E. coli, S. aureus, S. coelicolor, and M. tuberculosis, the 

presence of at least two functionally active protein tyrosine phosphatases has been 

reported (Vincent et al., 1999, Soulat et al., 2002, Wong et al., 2013, Sohoni et al., 2014). 

Additionally, it was demonstrated that in Gram positive bacteria such as B. subtilis and S. 

aureus, multiple, different PTPs exist. Firstly, a PHP, Mn2+-dependent phosphatase encoded 

in a cps or cps-like operon and second, at least one LMWPTP encoded distally from the PHP 

phosphatase (Soulat et al., 2002, Mijakovic et al., 2005, Musumeci et al., 2005). In S. 

pneumoniae, a PHP protein tyrosine phosphatase, CpsB, is involved in CPS biosynthesis 

(Morona et al., 2002, Geno et al., 2014). As predicted on the basis of DNA sequence 

homology, here we show that S. pneumoniae does harbour a second protein tyrosine 

phosphatase, Spd1837, and in Chapter 3 we have biochemically characterised Spd1837 as 

a LMWPTP.  

6.1 Spd1837 is a bona fide LMWPTP with a number of interesting distinctions 

As discussed in Chapter 3, the kinetic parameters of Spd1837 are similar to 

other established members of the LMWPTP family. However, we can identify that the Km 

of Spd1837 falls closer to the end of the spectrum with phosphatases which possess a few 

fold lower Km than most other LMWPTPs (Table 3.4S). This observation possibly implies that 

Spd1837 acts at different ranges of substrate concentration compared to other LMWPTPs 

and that Spd1837 has lower affinity for the substrate. Although, as pNPP is not an authentic 

in vivo substrate, the implication of this is not conclusive. Furthermore, it was also noted 
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previously that the Km value for the pNPP substrate is not a true equilibrium constant that 

reflects affinity in a simple way (Tolkatchev et al., 2006). Nevertheless, amino acid 

substitution of the active cysteine to a serine residue resulted in a complete loss of the 

enzyme activity of Spd1837 which verifies that Spd1837 utilises the same catalytic 

mechanism as other LMWPTPs.  

Again, while Spd1837’s optimum pH matches the optimum pH of many other 

LMWPTPs, Spd1837 peculiarly exhibited more than 50% activity over a neutral to basic 

range of pH (pH 6.5 to 9.0) (Table 3.5S). As LMWPTPs are also previously known as acid 

phosphatases, the tendency of Spd1837 to be more active around neutral to basic pHs 

appears unusual at first. However, a number of other LMWPTPs remain active around 

neutral to basic pHs. For instance, S. coelicolor Sco3700 (up to 23% activity at pH 9) (Sohoni 

et al., 2014), B. cepacia BceD (~70% active at the highest pH tested, pH 7.5) (Ferreira et al., 

2007) and S. aureus PtpA and PtpB (70-80% active at the highest pH tested, 6.75) (Soulat 

et al., 2002). Spd1837 was also relatively more sensitive to vanadate compared to the other 

LMWPTPs as the IC50 of vanadate for other LMWPTPs was 3.0 mM for both S. aureus PtpA 

and PtpB (Soulat et al., 2002), 0.8 mM for S. coelicolor PtpA (Li & Strohl, 1996), 10 µM for 

C. burnetti ACP (Hill & Samuel, 2011) and 35 µM for A. johnsonii Ptp (Grangeasse et al., 

1998) compared to 0.1 µM for Spd1837. Regardless, Na3VO4 still inhibited Spd1837 activity 

while a recognised inhibitor of serine/threonine phosphatases had no effect. This would 

suggest that unlike shown for a homologous LMWPTP in S. pyogenes (Kant et al., 2015), 

Spd1837 does not possess activity against serine and threonine substrates. 

We also found that Spd1837 exist as monomers in solution. The oligomerisation 

states of LMWPTPs are known to be as variable as their functions. Based on solved crystal 

structures, Bovine LMWPTP and B. subtilis YwlE form dimers and the interface surrounding 

the catalytic site is where the dimerisation occurs, subsequently preventing substrates 

from binding (Tabernero et al., 1999, Akerud et al., 2002, Bernado et al., 2003). Self-

association between mammalian LMWPTP have been described whereby the active 

monomers and the inactive oligomers exist in equilibrium such that the D-loop containing 

the consecutive double tyrosines from each monomer are inserted into the active site of 

the other. In the absence of an authentic substrate, phosphorylated Bovine LMWPTP would 

become its own substrate, leading to dephosphorylated phosphatase, and allowing the 

regeneration of the inactive oligomeric structure. The term supramolecular proenzymes 
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has been coined to describe this latent reservoir of phosphatase (Blobel et al., 2009). 

However, in contrast to classical proenzymes, the inactive form can be spontaneously 

regenerated when the substrate concentration diminishes. Additionally, alluding to 

LMWPTP’s exquisite versatility, in the case of V. cholerae VcLMWPTP, the phosphatase 

forms dimers with its catalytic site remaining accessible (Nath et al., 2014). Overall, the 

oligomerisation of LMWPTP appears to be conserved in both prokaryotes and eukaryotes 

which a characteristic that is missing for Spd1837, suggesting that Spd1837 may be 

regulated in a distinct way. In summary, I predict that these few interesting distinctions 

possessed by Spd1837 in contrast to other LMWPTPs are physiologically relevant and will 

become apparent once the exact function(s) of Spd1837 is successfully elucidated. 

6.2 The search for Spd1837’s substrate(s) and function(s) continues 

Only one of the thirteen potential substrates identified in this work has been 

shown to be tyrosine-phosphorylated (L-lactate dehydrogenase), when searched against 

UniProt database. As summarised in Chapter 3, contrary to our expectations, it appears 

that the pulled-down proteins from the assays are likely to be interacting proteins as well 

as phosphatase substrates. To validate this and to obtain more information in regards to 

Spd1837 substrates/binding partners, an alteration to the current method could be 

implemented, by modifying our “substrate trapping mutant”. This would involve the 

substitution of the invariant catalytically essential aspartic acid within the C(X)5R motif with 

a serine residue instead of replacing the nucleophilic cysteine. Previous studies have shown 

that for certain phosphatases, specifically eukaryotic phosphatases, such mutation 

generated phosphatases with improved substrate-trapping properties compared to active 

site cysteine mutants (Garton et al., 1996, Buist et al., 2000). 

Nevertheless, the knowledge of the identity of the proteins that interact with 

Spd1837 may prove valuable in order to determine its function in the pneumococcus. As 

mentioned in Chapter 1, the regulatory mechanism(s) that govern diverse LMWPTP 

biological functions are not well-understood. The back-to-back tyrosine residues in the D-

loop of mammalian LMWPTPs have been shown to be phosphorylated (Tailor et al., 1997, 

Bucciantini et al., 1999). The second tyrosine is conserved in Spd1837; however the first 

tyrosine is replaced with a similarly polar tryptophan residue (Figure 1.6). In mammalian 



171 
 

LMWPTPs, the phosphorylation of the second tyrosine in the D-loop results in the 

recruitment of adapter protein(s). This binding of the adapter protein(s) was also 

speculated to cause enzyme inactivation or to exclude substrates according to their size as 

the D-loop is known to fold over the active site (Schwarzer et al., 2006). Therefore, it is 

possible that Spd1837 can be tyrosine-phosphorylated in the pneumococcus and this 

phosphorylation in turn leads to the recruitment of some of the proteins we have pulled-

down in the described substrate-trapping assays.  

A question arises as to why the detected bands were more intense when the 

lysate was incubated with wild type Spd1837 compared to Spd1837C8S if indeed the bands 

do correspond to interacting proteins that bind Spd1837 away from the active site. 

Although in theory, the rest of Spd1837C8S except from the active site should be identical 

structurally to Spd1837, replacing the catalytic cysteine to serine is not a simple 

substitution of SH group to OH group. The cysteine exists as negatively charged thiolate 

anion at physiological pH (Xie et al., 2002), hence, substitution to a neutral hydroxyl group 

may affect the overall conformation of Spd1837. This substitution has been shown to affect 

the structure in substantial way in the case of PTP1BC215S mutant (Scapin et al., 2001). 

Additionally, in the case of yeast Clp1 protein, a similar observation was reported, i.e. some 

proteins were at least two-fold more enriched in the wild type Clp1 sample compared to 

Clp1 mutant sample (Chen et al., 2013). This led the authors to conclude that these proteins 

are interacting proteins or cofactors, i.e. they need the catalytic cysteine to directly 

regulate Clp1 activity or/and to serve as scaffolding platforms to localise Clp1 activity (Chen 

et al., 2013). Therefore, we speculate that the cysteine to serine substitution disrupted the 

dynamic of Spd1837 in such a way that these interacting proteins could not bind mutant 

Spd1837 as efficiently as to the wild type Spd1837. Additionally, as mentioned in Chapter 

3 discussion, it is also worth noting that several PTP substrates interact with other domains 

of the phosphatase (away from the active site) before dephosphorylation takes place 

(Blanchetot et al., 2005), thus we cannot discount any of these identified proteins as non-

substrates.  

Linking the results from Chapter 3 with Chapter 5, it becomes more apparent 

that indeed, Spd1837 is likely to have phosphatase-dependent and phosphatase-

independent roles as the strain with a complete deletion in spd1837 consistently behaved 

differently than the strain with a point mutation in spd1837 in regards to CPS levels and 
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sensitivity to H2O2 exposure. However, as discussed in Chapter 5, it is currently not possible 

to attribute the phenotypes that we have observed due to Spd1837 only specifically as we 

cannot rule out the possibilities of polar effects and secondary site mutations without 

complementation experiments.  

6.3 Proteins encoded from a previously uncharacterised operon in S. 

pneumoniae are important for virulence and bacterial survival in human 

saliva. 

The next logical step in my project was to try to tease out the function of 

Spd1837 via virulence studies. This is due to the fact that our attempts at substrate 

identification did not provide specific answers without conducting major studies such as 

phosphoproteomic analysis and verifying direct, physical interaction between the pulled-

down proteins with Spd1837 in vivo. spd1837 is encoded in an operon (the OM001 operon) 

and this operon was previously implicated to be important for the pneumococcal virulence 

(Marra et al., 2002). Therefore, animal studies were conducted using defined mutants, 

including the other genes in the operon (spd1838 and spd1836). As a recent study 

implicated the OM001 operon’s importance for pneumococcal survival in human saliva 

(Verhagen et al., 2014), we also tested if our defined mutants were able to survive in human 

saliva as this previous study was conducted using Tn-seq. Overall, in Chapter 4, we 

demonstrated the OM001 operon as a whole, and specifically Spd1838 and Spd1836 

proteins were essential for the ability of the pneumococcus to survive in human saliva in 

conditions that mimic transmission, and that Spd1836 was also important for 

pneumococcal virulence in invasive disease. 

Transmission via saliva is a controversial subject in the S. pneumoniae field. 

Theoretically, it is possible for the pneumococcus to also reside in the oropharynx as there 

is no clear anatomical separation or barrier between the nasopharynx and the oropharynx, 

a characteristic that is displayed by a closely-related species, S. pyogenes (Shelburne et al., 

2006). These two niches do vary considerably – one may argue that the oral cavity is the 

harsher environment due to the fluctuations in temperature, pH and nutrient availability 

(Humphrey & Williamson, 2001). On the other hand, similar to organisms inhabiting the 

gut, the oral cavity may be considered a more forgiving environment because this niche is 
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regularly exposed to food consumed by their host. Colonisation of the oropharynx may be 

advantageous as host actively depletes glucose from the airway (Pezzulo et al., 2011) and 

the pneumococcus requires neuraminidase to liberate sialic acid from the mucus. Arguably, 

saliva might be a more efficient medium of transmitting bacteria compared to nasal 

secretions as healthy individuals are more likely to talk to each other rather than sneezing 

or coughing to expel contents of the airways.  

It is also of interest to expand this study further in the future as we only looked 

at pneumococcal mono-infection in saliva. Other organisms residing in the oral cavity may 

affect pneumococcal survival and host response against the bacteria. Studies on 

colonisation in the nasopharynx showed that pneumococcal colonisation elicited 

antibodies that cross-react with S. aureus (Lijek et al., 2012) and co-colonisation of mice 

with H. influenzae and pneumococci led to synergistic increases in neutrophil 

chemoattractant production and neutrophil influxes (Ratner et al., 2005) which clears 

pneumococcus while H. influenzae persists (Lysenko et al., 2005). In addition to 

interspecies interaction, there is also intraspecies competition whereby an individual 

colonised with a single strain of pneumococcus is less likely to be colonised by a different 

strain compared to a naïve individual (Kono et al., 2016). We could not confirm the 

importance of Spd1837 during transmission as suggested by the Tn-seq conducted by 

Verhagen et al. (2014). This may be due to differences in serotype used or, similar to this 

previous study, the effect may only be detected using a competition assay and not a single 

culture assay. Nevertheless, the difference might stem from the saliva source in the first 

place as the exact composition of human saliva varies considerably between individuals 

(Humphrey & Williamson, 2001). 

Many gaps in knowledge in regards to possible pneumococcal colonisation in 

the oropharynx remain to be addressed. It is unclear if pneumococci in the oral cavity exist 

as planktonic bacteria suspended in saliva (similar to in the blood during sepsis) or the 

bacteria have the ability to attach to epithelial cells in the mouth and to form biofilm similar 

to closely related species, Streptococcus mitis and Streptococcus mutans (Johansson et al., 

2016). One advantage of strong adherence is stable carriage. This however, may lead to 

less efficient exit and spread to a new host. It is established that pneumococci in the 

nasopharynx can be rapidly swept away by mucociliary clearance (Fahy & Dickey, 2010), a 

phenomenon that might apply to pneumococci in the oral cavity due to our food and drink 
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consumption and oral hygiene habit. Another possible disadvantage of not attaching is the 

lower transformation rate compared to during planktonic growth in sepsis (Marks et al., 

2012). However, being suspended in saliva without any cell attachment might offer a 

selective advantage as this would bypass the host innate immune response such as Toll-

like receptor 2, a pattern recognition receptor critical for macrophage recruitment and type 

1 interferon production (Zhang et al., 2009, Parker et al., 2011) and also Toll-like receptor 

4, capable of recognizing pneumolysin (Malley et al., 2003). Another future direction is to 

study the importance of these possible transmission factors across different age group as 

anti-pneumococcal antibodies may also be present in human saliva, especially in children 

(Simell et al., 2001, Simell et al., 2002). 

The virulence studies in Chapter 4 identified Spd1836 as being a newly 

discovered virulence factor in the pneumococcus, especially during its progression to cause 

invasive disease. Very little is known about Spd1836 homolog functions. Thus, more 

investigation of the MORN motif-containing proteins is needed to assess the exact 

contribution of Spd1836 to pneumococcal virulence. It is also worth conducting virulence 

and transmission studies using other serotypes as serotype 2 is shown to be the least shed 

and had the least colonisation density compared to serotype 4, 6A, 19F and 23F in a mouse 

infant model (Zafar et al., 2016).  

6.4 The complex interplay between the pneumococcal Spd1837, SpxB, CPS 

biosynthesis and possibly metabolism 

In Chapter 5, we show that Spd1837 works together with SpxB to modulate CPS 

levels, with this being specifically CPS not attached to the cell wall. All but a few of the > 90 

CPS types, including for serotype 2 CPS, are negatively charged. As mentioned in Chapter 

1, highly-charged CPS may interfere with cell-to-cell interactions with phagocytes (Kozel et 

al., 1980, Lee et al., 1991, Weinberger et al., 2009) and act as a decoy to neutralise cationic 

antimicrobial peptides (Llobet et al., 2008). These roles of CPS is specific for released CPS 

only, i.e. CPS not attached to the cell wall, which is the form that is specifically regulated by 

SpxB and Spd1837. Additionally, as spxB deletion appeared to lead to CPS defects in 

pneumococcal serotypes possessing CPS with acetylated sugars only (Echlin et al., 2016), it 
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is of interest to investigate if the degree of acetylation of pneumococcal CPS determines 

the final charge of a particular CPS type. 

Interestingly, Spd1837C8S showed repressor-like effects when expressed in a 

spxB-deficient background which was not evident in the wildtype background. This 

suggests that SpxB is able to control the repressor activity of this mutant protein, and points 

to the fact that there are likely both phosphatase-dependent and -independent effects of 

SpxB on Spd1837. Additionally, in Chapter 5 we also showed that the manner by which 

SpxB regulates Spd1837 activity is also dependent on the oxygen availability during the 

pneumococcal growth. Therefore, it is of interest to investigate the interplay of SpxB and 

Spd1837 with two genes that were identified as being responsible for the capacity of 

pneumococci to grow under ambient air: pca (encoding a carbonic anhydrase) and folC 

(encoding a dihydrofolate/folylpolyglutamate synthase) (Burghout et al., 2010, Burghout 

et al., 2013). Studying this interaction may also assist in understanding why despite the 

predominantly aerobic lifestyle, the pneumococcus lacks many proteins that have been 

shown to protect against oxidative stress in other bacterial species, such as the global 

regulators OxyR and PerR or the H2O2 scavengers catalase and NADH peroxidase (Tettelin 

et al., 2002, Hua et al., 2014).  

It is yet to be determined if the SpxB protein itself, or H2O2 produced by it, or 

both, modulate Spd1837 activity. Both SpxB and Spd1837 appear to participate in a 

common process, which is pneumococcal metabolism (Carvalho et al., 2013, Echlin et al., 

2016)(Chapter 3). This process is unfortunately still not completely understood at the 

moment. Therefore, more information is needed to establish the nature of the association 

between these two proteins. However, given the possible role of Spd1837 in pneumococcal 

metabolism along with its cross-talk with SpxB, it is likely that Spd1837 may only exert its 

function under specific conditions such as during specific nutrient limitation. This is the case 

for another LMWPTP, B. cenocepacia BCAL2200 as the LMWPTP displayed perturbed 

growth under the lack of amino acid but not glucose (Andrade et al., 2015).  

S. pneumoniae also undergoes a mainly fermentative metabolism and lacks the 

cytochromes and heme-containing proteins involved in aerobic respiration (Pericone et al., 

2003), therefore it relies entirely on the host for carbon sources and energy generation. 

The spxB mutants have decreased ability to maintain ATP levels during sub-lethal or lethal 
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H2O2 stress (Pericone et al., 2003) and a lack of ATP may occur due to inactivation of sugar 

transport or glycolysis, since both processes are known to be particularly sensitive to 

oxidative stress (Barrette et al., 1989, Storz & Imlay, 1999). Whether the effect on Spd1837 

is due to H2O2 requires further experimentation as our CPS preparations were collected off 

blood agar plates (it is not possible to isolate CPS not associated with cell wall from 

pneumococci grown in liquid culture (Morona et al., 2006)). Therefore, the possible effect 

of H2O2 on Spd1837 might have been neutralised by the catalase in the plates.   

Many other proteins which confer protection against H2O2 also modulate H2O2 

production in the pneumococcus. Apart from SpxB, these include LctO (Taniai et al., 2008), 

CarB (Hoffmann et al., 2006), PsaA (Johnston et al., 2004) AhpD (Paterson et al., 2006), 

TpxD (Hajaj et al., 2012), HtrA (Ibrahim et al., 2004), ClpA (Robertson et al., 2002), NmlR 

(Potter et al., 2010) and GlpO (Mahdi et al., 2012). Therefore, given that Spd1837 has a role 

in H2O2 resistance, Spd1837 is potentially another protein in a long list of H2O2 production 

modulators in the pneumococcus and a future direction is to perform H2O2 production 

assays on spd1837 mutants using the horseradish peroxidase/phenol red assay described 

by Okado-Matsumoto &  Fridovich (2000).  

6.5 Conclusions 

In conclusion, this is the first study which describes the existence of a low 

molecular weight protein tyrosine phosphatase in the pneumococcus. Prior to this, only 

CpsD and CpsB have been identified to be a BY-kinase and a PTP, respectively, in the 

pneumococcus. Given that many critical processes such as CPS biosynthesis, cell division 

and autolysis have been identified to be regulated by tyrosine phosphorylation, the 

discovery of Spd1837 as another PTP in the pneumococcus will hopefully accelerate the 

understanding of the importance of tyrosine phosphorylation in this human pathogen. 

Again, similar to CpsD which functions in multiple pathways in the pneumococcus and CpsB 

which has phosphatase-dependent and –independent activities, Spd1837 appears to share 

the same complexity in terms of its function and regulation. Specifically, Spd1837 may be 

involved in the pneumococcal metabolism and CPS biosynthesis in a physiologically-

relevant condition. An updated phosphoproteomic study and validation experiments to 

verify potential substrates/interacting proteins of Spd1837 via bacterial two-hybrid assay 
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is the next logical steps to further our understanding of the function of this PTP. 

Additionally, the other two proteins encoded together with Spd1837 in the OM001 operon, 

Spd1838 and Spd1836 were shown to be essential for the pneumococcal survival in human 

saliva with Spd1836 being potentially important during pneumococcal invasive disease too. 

Therefore, overall this study has provided insights into several stages of pneumococcal 

pathogenesis, namely transmission, colonisation and invasion. 
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 E. coli and S. pneumoniae Strains Utilised/Generated 

 

1 Amp, Ampicillin; Sm, Streptomycin; Km, Kanamycin; Cml, Chloramphenicol 

 

Strain Relevant characteristics1 Source/reference 

E.coli   
RMA2302 Source of pET-15b, Amp Laboratory stock 
DH5α E. coli transformation strain Gibco-BRL 
Lemo21 (DE3) E. coli expression strain New England BioLabs 
XL-10Gold For site-directed mutagenesis Agilent Technologies 
ZA1 DH5α with pET-15b::Spd1837, Amp This work 
ZA2 Lemo21 with pET-15b::Spd1837, Amp This work 
ZA11 XL-10 Gold with pET-15b::Spd1837C8S, Amp This work 
ZA12 Lemo21 with pET-15b::Spd1837C8S, Amp This work 
S. 

pneumoniae  

ZA24 

 

D39, Sm 

 

(Standish et al., 2014) 

ZA3 D39spd1837::janus, Km This work 

ZA6 D39Δspd1837, Sm This work 

ZA8 D39Spd1837C8S, Sm This work 

ZA55 D39Δspd1836, Sm This work 

ZA58 D39Δspd1838, Sm This work 

ZA88 D39ΔOM001, Sm This work 

ZA106 D39ΔOM001::janus, Km This work 

ZA111 D39ΔOM001::OM001+, Sm This work 

ZA39 WU2, Sm This work 

ZA43 WU2spd1837::janus, Km This work 

ZA51 WU2Δspd1837, Km This work 

ZA62 D39ΔspxB, Sm and Cml This work 

ZA63 D39Δspd1837ΔspxB, Sm and Cml This work 

ZA90 D39Spd1837C8SΔspxB, Sm and Cml This work 

ZA30 D39ΔcpsBCD::janus, Km This work 
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 Oligonucleotides 

 

Oligonucleotide Sequence Purpose 

ZA1 5’-GCCCATATGATGAAAAAATTAGTCTTTGTCTGTCTG-3’ F, amplify spd1837; bolded bases indicate NdeI site 
ZA2 5’-CCGGGATCCTTATTAACTCTCCTTTTCTAAACGTTCTAAC-3’ R, amplify spd1837; bolded bases indicate BamHI 

site 
ET5 5’-AATACGACTCACTATAGG-3’ F, to sequence spd1837 inserted into pET-15b 

(binds T7 promoter) 
ET6 5’- GCTAGTTATTGCTCAGCGG-3’ R, to sequence spd1837 inserted into pET-15b 

(binds T7 terminator) 
ZA3 5’-ATACTTACGTTATCTGTGG-3’ F, amplify spd1837 upstream region 
ZA4 5’-AAGAAGGCATTGTAAACGTCCCCG-3’ R, amplify spd1837 downstream region 

ZA5 5’-GGAAAGGGGCCCAGGTCTCTGAAAAGGAGAGTTAAGGTGGAAAATC-3’ F, for overlap extension PCR of spd1837, 
complimentary to janus cassette 

ZA6 5’-

CATTATCCATTAAAAATCAAACGGCCCATTTCCTTTCTTTTATAGAAAAACGG

-3’ 

R, for overlap extension PCR of spd1837, 
complimentary to janus cassette 

ZA7 5’-GAAAGGAAATGGGGAAAAGGAGAGTTAAGGTGGAAAATC-3’ F, delete spd1837, complimentary to upstream of 
spd1837 

ZA8 5’- CTTAACTCTCCTTTTCCCCATTTCCTTTCTTTTATAGAAAAACGG-3’

  

R, delete spd1837, complimentary to downstream 
of spd1837 

ZA11 
 

5’-GAAAAAATTAGTCTTTGTCAGTCTGGGAAATATTTGCCGTAGCCC-3’ 

 

F, exchange spd1837 C8S in Quikchange® Lightning 
Site-Directed Mutagenesis 

ZA12 
 

5’-GGGCTACGGCAAATATTTCCCAGACTGACAAAGACTAATTTTTTC-3’ 

 

R, exchange spd1837 C8S in  Quikchange® Lightning 
Site-Directed Mutagenesis 

AS113 5’- CCGTTTGATTTTTAATGGATAATG-3’ F, amplify janus cassette 
AS114 5’- AGAGACCTGGGCCCCTTTCC-3’ R, amplify janus cassette 
AS120 5’-TGTTCCCAGCTATTTTTATTCAGA-3’ F, amplify rpsl 
AS121 5’-TCTCTTTATCCCCTTTCCTTATGC-3’ R, amplify rpsl 
ZA9 5’-GTCTTTGTCAGTCTGGGAAATATTTG-3’ F, exchange spd1837 C8S, complimentary to 

upstream of spd1837 
ZA10 5’-CAAATATTTCCCAGACTGACAAAGAC-3’ R, exchange spd1837 C8S, complimentary to 

downstream of spd1837 
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ZA13 5’-TGGACTTTATGGAACAGTCGATGAAG-3’ F, 200 nucleotides downstream of spd1837, 
sequencing primer 

ZA14 5’- GGCCATTCATTTTACCGCGGACAAG-3’ R, 200 nucleotides downstream of spd1837, 
sequencing primer 

ZA15 5’- GGAAAGGGGCCCAGGTCTCTAGAAGGCGCAATTGAAAAATAAGACG-3’ F, for overlap extension PCR of spd1838, 
complimentary to janus cassette 

ZA16 5’- 

CATTATCCATTAAAAATCAAACGGTGTTTTCTCCTTTGTCTTTTACATAGG-

3’ 

R, for overlap extension PCR of spd1838, 
complimentary to janus cassette 

ZA17 5’- CAAAGGAGAAAACAAGAAGGCGCAATTGAAAAATAAGACG-3’ F, delete spd1838, complimentary to upstream of 
spd1838 

ZA18 5’- CAATTGCGCCTTCTTGTTTTCTCCTTTGTCTTTTACATAGG-3’ R, delete spd1838, complimentary to downstream 
of spd1838 

ZA19 5’-GGAAAGGGGCCCAGGTCTCTAGCCTCCTTATCAAAGGAGGTATTAT-3’ F, for overlap extension PCR of spd1836, 
complimentary to janus cassette 

ZA20 5’-CATTATCCATTAAAAATCAAACGGCTTAACTCTCCTTTTCTAAACGTTC-

3’ 

R, for overlap extension PCR of spd1836, 
complimentary to janus cassette 

ZA21 5’-GAAAAGGAGAGTTAAGAGCCTCCTTATCAAAGGAGGTATTAT-3’ F, delete spd1836, complimentary to upstream of 
spd1836 

ZA22 5’-GATAAGGAGGCTCTTAACTCTCCTTTTCTAAACGTTC-3’ R, delete spd1836, complimentary to downstream 
of spd1836 

ZA26 5’- GCCTCTGCCCCAGCACCAAAAG-3’ F, 200 nucleotides upstream of spd1838, 
sequencing primer 

ZA27 5’- CAAGAGTTTAAAAATTCTTTGTGAAA-3’ R, 200 nucleotides downstream of spd1836, 
sequencing primer 

ZA24 5’- CAAAGGAGAAAACAAGCCTCCTTATCAAAGGAGGTATTAT-3’ F, delete OM001, complimentary to upstream of 
spd1836 

ZA25 5’- GATAAGGAGGCTTGTTTTCTCCTTTGTCTTTTACATAGG-3’ R, delete OM001, complimentary to downstream of 
spd1838 

ZA36 5’- CAGCTAAATTACCAACCTTCC-3’ F, 1 kb upstream of spd1838, to amplify OM001 for 
complementation 

ZA37 5’- TTTTCAACATAAGCTGGAACGTTTC-3’ R, 1 kb downstream of spd1836, to amplify OM001 
for complementation 

AS253 5’-TTAGTTGCAGGTAAGCCATATATC-3’ F, delete spxB, insert a chloramphenicol resistance 
cassette 
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AS254 5’-GTCTTTGTAAATGGCATCTCGCAT-3’ R, delete spxB, insert a chloramphenicol resistance 
cassette 

AS273 5’- CCATGGACTTCATTTACTGGG-3’ F, binds end of spxB, sequencing primer 
AS274 5’- CTTGTCAGTAAGAAAATAAATGCAGG-3’ R, binds start of spxB, to sequencing primer 
AS115 5’- CATTATCCATTAAAAATCAAACGGTTCATCTACCCTCCATCACATCC-

3’ 

F, for overlap extension PCR of cps locus, 
complimentary to janus cassette 

AS116 5’- GGAAAGGGGCCCAGGTCTCTGTCGGGGGATAGAGATGAATG-3’ R, for overlap extension PCR of cps locus, 
complimentary to janus cassette 

MycoF 5’-GGGAGGAAACAGGATTAGATACCCT-3’ F, for PCR-based mycoplasma detection of cell line 
MycoR 5’-TGCACCATCTGTCACTCTGTTAACCTC-3’ R, for PCR-based mycoplasma detection of cell line 

Forward and reverse primers are represented by plus (F) or minus (R), respectively.   
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