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Abstract 

 

Semiconductive quantum dots (QDs) with superior optical properties, have 

been used as unique fluorescent probes in biological sensing and labelling. The 

effective intracellular delivery of QDs is critical to those biological applications. 

Microelectrophoresis is a promising technique to precisely deliver 

monodispersed nanoparticles into target cells with negligible cell membrane 

damage and cell distortion. In addition, it can record the intracellular electrical 

activities of target cells at the same time. This thesis aims to achieve for the first 

time the intracellular delivery of QDs via microelectrophoresis technique. 

 

Microelectrophoresis technique has been well established to eject charged 

substances from fine-tipped glass micropipettes into tissue and cells via 

electrical currents. However, few studies have paid any attention to exploring 

standard experimental protocols for the intracellular microelectrophoretic 

ejection of biocompatible nanoparticles. The success of microelectrophoresis is 

largely limited by the aggregation of nanoparticles and subsequent blockages 

in the tip of micropipettes during ejection, which is caused by the colloidal 

instability of nanoparticles when the attractive van der Waals forces between 

them prevail over the repulsive electrostatic forces. Thus, successful 

microelectrophoresis requires optimized suspensions with monodispersed 

nanoparticles within micropipettes to avoid blockage. To improve the delivery, 

the tip size, current magnitude and ejection duration should be screened in 

parallel for the optimal parameters. 

 

To address the above-mentioned requirements, Chapter 2 provides an effective 

experimental protocol for the preparation of QDs suspensions for filling 
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micropipettes, which has balanced the stability of QDs against the electrolytic 

conductivity of suspensions. In Chapter 3, micropipettes have been designed 

and manufactured with suitable tip inner diameters (IDs) for the size 

distribution of QDs suspensions, which has been demonstrated in Chapter 4 

via microinjection technique. Finally, in Chapter 5, QDs have been successfully 

ejected out of micropipettes via microelectrophoresis and observed under a 

fluorescence microscope. The success of microelectrophoresis technique in 

ejecting semiconductive QDs described in this thesis has paved the way for 

managing a variety of other biocompatible nanoparticles with proper surface 

functional groups in either intracellular or extracellular delivery for various 

biological research. 
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