

Winding Current Reconstruction of Brushless Permanent Magnet Motor

Wisaruda Wiriyakitja

Submitted to the Faculty of Engineering for the degree of Master of Engineering Science

Department of Electrical and Electronic Engineering Adelaide University Australia

2 April 2001

Table of Contents

Table of Contents	i
Abstract	iv
Declaration	v
Acknowledgments	vi
Abbreviations	vii
List of Figures	ix
List of Tables	xiv

Chapter 1:

Introduction	1
1.1 Overview and Problem	1
1.2 Outline of the Thesis	2

Chapter 2:

Brushless Permanent Magnet Drive
2.1 Introduction
2.2 Comparison of Brushless Permanent Magnet Motor and Other Types of Motors 5
2.3 Mathematical Model of the Motor and Drive System
2.4 Inverter and Current Commutation States
2.4.1 Commutation Interval
2.4.2 Conduction Interval15
2.5 Current Control mode15
2.5.1 Hysteresis Control15
2.5.2 PWM Current Control16
2.6 Conclusion

Chapter 3:

Current Measurement Techniques and Switching States in Three-phase

Inverter	18
3.1 Introduction	18
3.2 Current Sensing Device	19

3.3 The Number of the Sensor and their Locations in the Inverter 1	19
3.4 Literature Survey on the Use of DC Link Current	24
3.4.1 Voltage Space Vector	26
3.4.2 Switching State Analysis2	27
3.5 The Relationship between the Phase Currents and the DC Link Current	27
3.5.1 Switching Pattern	29
3.5.2 Current Direction Pattern	30
3.5.3 Conducting Devices and the DC Link Current	31
3.6 Conclusion	37

Chapter 4:

Computer Simulation of the Motor Drive and Reconstruction of Phase		
Currents	38	
4.1 Introduction	38	
4.2 Basic Layout of the Simulation Model	38	
4.3 Motor Simulation Program	40	
4.3.1 Motor SubVI	44	
4.3.2 Drive SubVI	44	
4.4 Simulation Results of the Motor Drive	46	
4.5 Analysis of the Inverter Currents	58	
4.6 Implementation of the DC Link Current	60	
4.7 The Current Reconstruction Module	70	
4.8 The Simulation Results of the Phase Current Reconstruction	72	
4.9 Conclusion	79	

Chapter 5:

Experiment Results	31
5.1 Introduction	31
5.2 Hardware of the experimental setup	32
5.3 Current Reconstruction Algorithm used in the real tests	35
5.4 Experiment results	38
5.5 Conclusion) 5

Chapter 6:

Conclusions and Suggestions	96
6.1 Conclusions	96
6.2 Suggestions	99

Reference 1	10	1
-------------	----	---

Appendices

ł

A-1	The detailed analysis of the switching state
A-2	The details in the block diagram of the motor simulation program
A-3	The details in the main block diagram of the program to reconstruct the
	phase current using the experimental data

Abstract

Brushless Permanent Magnet (BLPM) motors have many benefits, such as high efficiency and high power density, which make them a popular choice in advance motor drive systems. However, the values of the three-phase currents of the motor are required to control the torque of the motor, which has to be measured using multiple current sensors. The current sensors are expensive and reduce the reliability of the system. In addition to this, current sensors may degrade the signal and introduce errors, which may results in torque ripple in a practical motor drive.

Ŋ

Several researchers have proposed various methods to reduce the number of current sensors. One of those methods suggested using a single current sensor to measure the DC link current and using the switching signals to reconstruct the three-phase currents of the motor. Although this was possible, it should be emphasised that in some instances of the switching state, the motor current does not flow through the DC link, but it circulates inside the inverter circuit. In several articles, the method to find the three-phase currents using a similar method was explained. However, none of these studies considered the circulating inverter current in the reconstruction of the phase currents.

This thesis provides a comprehensive motor simulation program that can be used to study a number of operating modes of the motor drive, and can introduce artificial faults and noises that may appear in the real drive. The thesis also provides a detailed analysis of the DC link current and inverter switching states. The current reconstruction algorithm and a compensation routine are given in the thesis. The practical data from the real motor drive are obtained, the simulation studies are verified, and the limitations of the method are highlighted. It is demonstrated that a single current sensor on the DC link and the switching signals can be used to reconstruct the three-phase currents of the BLPM motor. However, a real-time implementation of such a method requires a noise-free measurement and further improvements on the current compensation technique, which can be investigated in the future.

Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Libraries, being available for photocopying and loan.

Date: 2/4/01

Signature:...

ł

Acknowledgment

This research was conducted under the supervision of Dr. Nesimi Ertugrul. I wish to thank him for his patience and guidance to bring this thesis completion. I am also grateful to Mr. Li Ying for providing the experimental data and many suggestions. Finally, special thanks to Karen, my family and friends for encouragement and understanding for all times.

Abbreviation	Variable Name	Units
θ_{e}	Electrical position	rad
∆error	DC link current error = real DC link current - simulated	А
	DC link current	
Δh	Hysteresis bandwidth for current	А
ω _e	Electrical velocity of the motor	rad/s
ω _r	Angular speed of the rotor	rad/s
Δt	Sampling interval	sec
AC	Alternating current	
В	Damping coefficient	Nm∙s
BLDC	Brushless DC	
BLPM	Brushless Permanent Magnet	
CSI	Current Source Inverter	
DC	Direct current	
e _{1,2,3}	Instantaneous back emf voltages of phase1, 2 and 3	V
	respectively	
11,2,3	Instantaneous phase currents of phase1, 2 and 3	А
	respectively	
I _{compensate1,2,3}	The phase currents of the simulator after compensating	А
I _{dc} or i _{dc}	DC link current, average or instantaneous values	А
	respectively	
I _{dcphase}	The current of a phase of which the absolute amplitude of	А
	the current is equal to the absolute amplitude of the DC	
	link current	
I _{model1,2,3}	The phase currents of the simulator	А
I _{motor1,2,3}	The phase currents of the real motor	А
J	Moment of inertia	kg·m ²
ke	Maximum back emf constant	V·sec/rad
L	Inductance of the motor winding	Η

Abbreviations

Abbreviation	Variable Name	Units
n	The number of step of the integration	
PID	Proportional Integral Differential	
PWM	Pulse Width Modulation	
R	Resistance of the motor winding	Ω
rpm	Revolutions per minute	
Te	Electromagnetic torque	N·m
T_L	Load torque	Nm
V _{1,2,3}	Instantaneous phase voltage	V
V _{a,b,c}	Instantaneous terminal voltage	V
V_{dc}	Voltage between the positive and the negative DC rail	V
Vs	Voltage at the star point in the motor circuit	V
VSI	Voltage Source Inverter	

List of Figures

Figure 2.1 Equivalent circuit model of the BLPM motor circuit
Figure 2.2 Back emf voltage waveforms
Figure 2.3 Common three-phase inverter circuit topology
Figure 2.4 Three-phase inverter connected to the motor windings
Figure 2.5 Hysteresis current control
Figure 2.6 PWM waveform generation method
Figure 3.1 Position of 4 current sensors in the conventional three-phase inverter20
Figure 3.2 Potential fault current paths in the inverter
Figure 3.3 2-sensor method
Figure 3.4 Circuit indicating the method of connection utilising a single sensor 23
Figure 3.5 Equivalent circuit diagram to measure all possible current faults
Figure 3.6 Diagram of electronically commutated motor drive with integrated
current sensor24
Figure 3.7 DC link current in three-phase PWM inverter
Figure 3.8 Equivalent circuits for "one switch active (T6) state" (a), "two switch
active (T1 and T6) state" (b)27
Figure 3.9 Current flow path in the inverter when T2 and T3 are turned on
Figure 3.10 Directions of the currents in phase2 and 3; when T3 and T2 or D5 and
D6 are conducting current
Figure 3.11 Diagram of the direction of phase currents when the switching pattern is
U, O, O
Figure 3.12 Diagram of the direction of phase currents when switching pattern is
U, O, O
Figure 3.13 Diagram of the direction of phase currents when switching pattern is
U, O, O
Figure 3.14 Diagram of the direction of phase currents when the switching pattern is
U, U, O
Figure 3.15 Diagram of the direction of phase currents when the switching pattern is
U, U, O
Figure 3.16 Diagram of the direction of phase currents when the switching pattern is
U, L, U

Figure 3.17 Diagram of the direction of phase currents when the switching pattern is
changed to the U, U, L and the current direction is still $+, -, +$
Figure 4.1 Block diagram of the simulation of the motor drive and current
reconstruction
Figure 4.2 Main loop program of the simulate motor
Figure 4.3 PID SubVI (See Appendix A-2)
Figure 4.4 Chg Point SubVI (See Appendix A-2)
Figure 4.5 Current control SubVI (See Appendix A-2)
Figure 4.6 Drive SubVI (See Appendix A-2)
Figure 4.7 Motor SubVI (See Appendix A-2)
Figure 4.8 ω and rpm SubVI (See Appendix A-2)42
Figure 4.9 TPS SubVI (See Appendix A-2)
Figure 4.10 Block diagram of Motor SubVI
Figure 4.11 The block diagram of Drive SubVI43
Figure 4.12 Emf SubVI (See Appendix A-2)
Figure 4.13 Torque SubVI (See Appendix A-2)
Figure 4.14 Speed SubVI (See Appendix A-2)
Figure 4.15 Position SubVI (See Appendix A-2)
Figure 4.16 Terminal Voltage SubVI (See Appendix A-2)
Figure 4.17 DC link SubVI (See Appendix A-2)
Figure 4.18 Simulation results of the motor drive operating from standstill, with
rectangular current excitation, hysteresis current control and trapezoidal
back emf waveforms
Figure 4.19 Simulation results of the motor drive while it is accelerating from
standstill, the sinusoidal current excitation, PWM current control and
sinusoidal back emf waveforms
Figure 4.20 Simulation results of the motor drive under the transient operation, the
rectangular current excitation, PWM current control and sinusoidal back
emf waveforms
Figure 4.21 Simulation results of the motor drive under the transient operation
starting from standstill, sinusoidal current excitation, hysteresis current
control and trapezoidal back emf waveforms

Figure 4.22 Simulation results of the motor drive with a rectangular current
excitation, hysteresis current control and trapezoidal back emf waveforms
Figure 4.23 Simulation results of the motor drive under the transient operation, the
sinusoidal current excitation with no current control, PWM current
control and sinusoidal back emf waveforms
Figure 4.24 Simulation results of the motor drive under step loading (increasing load
torque), the trapezoidal current excitation, PWM current control and
sinusoidal back emf waveforms56
Figure 4.25 Simulation results of the motor drive under a step load change (reducing
load torque), the trapezoidal current excitation, PWM current control and
sinusoidal back emf waveforms57
Figure 4.26 Bridge inverter diagram when T1, T6, T2 are conducting
Figure 4.27 Bridge inverter diagram when T4, T3, T5 are conducting63
Figure 4.28 Bridge inverter diagram when D3, D4 and D5 are conducting64
Figure 4.29 Bridge inverter diagram when D1, D2 and D6 are conducting65
Figure 4.30 Bridge inverter diagram when T1 and T6 are conducting current

Figure 4.42 Simulation results under PWM current control, rectangular excitation
current, sinusoidal back emf, 2% constant +5% random error on
the DC link current
Figure 4.43 Simulation results under PWM current control, rectangular excitation
current, sinusoidal back emf, 5% constant +5% random error on
the DC link current
Figure 4.44 Simulation results under PWM current control, sinusoidal excitation
current, sinusoidal back emf, 2% constant +5% random error on
the DC link current
Figure 4.45 Simulation results under PWM current control, sinusoidal excitation
current, sinusoidal back emf, 5% constant +5% random error on
the DC link current
Figure 5.1 Steps followed to capture real time data
Figure 5.2 Schematic diagram of the hardware used in the tests
Figure 5.3 Diagram of the program to reconstruct the phase current using
the experimental data
Figure 5.4 Test results at a speed of 50 Hz with the rectangular current excitation of
the motor drive
Figure 5.5 Test results at a speed of 25 Hz with the rectangular current excitation of
the motor drive91
Figure 5.6 Test results at a speed of 50 Hz with the sinusoidal current excitation of
the motor drive
Figure 5.7 Test results at a speed of 25 Hz with the sinusoidal current excitation of
the motor drive94
Figure A.1 Block diagram of PID SubVI114
Figure A.2 Block diagram of Chg point SubVI114
Figure A.3 Block diagram of Current control SubVI
Figure A.4 Block diagram of ω and rpm SubVI116
Figure A.5 Block diagram of TPS SubVI116
Figure A.6 Block diagram of Emf SubVI116
Figure A.7 Block diagram of Torque SubVI117
Figure A.8 Block diagram of Speed SubVI117
Figure A.9 Block diagram of Position SubVI

Figure A.10 The block diagram of Terminal Voltage SubVI	19
Figure A.11 Block diagram of DC link SubVI1	20
Figure A.12 Detail in the block diagram of Comp SubVI1	21
Figure A.13 Detail in the block diagram of Error SubVI1	21
Figure A.14 Input and output of Sep Sigs SubVI	22
Figure A.15 Detail the block diagram of Sep Sigs SubVI1	.23
Figure A.16 Input and output of Vdc SubVI 1	23
Figure A.17 Detail in the block diagram of Vdc SubVI1	.24

List of Tables

Table 2.1 Advantages and Disadvantages of BLPM motors 5
Table 2.2 Summary of the motor features 7
Table 2.3 Possible waveforms of the back emf voltage, the phase current, and
the electromagnetic torque12
Table 3.1 Vector states and corresponding phase currents 26
Table 3.2 Summary of switching patterns in the inverter 30
Table 3.3 Possible state of the directions of the current in the motor phases
Table 4.1 The specification of the motor system in the simulation results
Table 5.1 Specification of the motor in the experimental setup 83
Table 5.2 Specifications of the IRMDAC3
Table 5.3 Specifications of ADMC300 84
Table 5.4 Specifications of PCI6110 DAQ card
Table 5.5 Motor parameters and initial values used in the algorithm
Table A-1 Switching state, conducting device, DC link number and
circulate number