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SUMBMARY

The problem of lonizetion produced by s hot ster embedded
in a hydrogen nebuls is studied fram 2 basic standpoint. The
necessery equetion of radistive trensfer is derived by introducing
s distribution function in photon phase-space, and subjecting i
to the procedures of classieal kinetic theorye It is Found that
the distribubion function cen bDe seperated into & singular part
sorrespordling to "direct” radiation frem the star, snd s non-singulsr
part corresponding to "diffuse™ radiation, The concept of sitatistical
equilibrium is applied te the electron population te provide an
auxiliery equation, and the Stromgren equsiion derived as an spproxi-
mation.

A guelitstive discussion of the exset equations shows that
for e wide range of physicel peremeiers & well defined ionized region
gurrounds the ster, JIonizing radiation undergoes little absorption
within this region, but it is repidly extinguished at the boundary.
The radius of the ionised region and the form of the boundery sre
discussed, and thelr dependencs on the various physical parameters
interpreted. MNumerical solutions noglecting the effect of diffuse

radiation confirm the predictions for that case.
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I, INTRODUCTION

Consider = hot ster embedded in interstellar gas. Eadiation
in the lyman econtinwm is sbsorbed and neulral hydrogen dissociated
by the mechanism of photo-lonizstion. On the other hand dissceisted
electrons and protons continuelly recombine, end if recombinstion
oceurs directly to ground a%‘:&z%é then ionizing radistien is returned
%o the system. The intensity of high energy radistion thus depends
on the distribution of elsctrons, protons and neutrsl hydrogen stoms
throughout the system; bowever, the rete of digsooiation of hydrogen
atomg itsell depends on the redistion field,

In this peper we study the manner in which lonizing radiation
is freunsferred through the gas, and the consequent state of the gas, on
the sssunption that a steady state is atteined. To render the problem
tractsble the interstellar gas is assumed to be pure hydrogen, and to
be stationary and of uniform density. Two coupled egquations in the
rediation field and the degree of lonization canm then be obtained,
their solution providing & complete description of the system. 4
simpler spprosch has been given by Stromgren (1939), who modified
the Saha equation with s "dilution factor™. Stromgren's eguetion can
be obtained from the exsect equations, thus revealing its inherent
approxinations.

The equations governing the system are developed in Chapter Il.

The Tirst expresses the rodiziion intensity at a point as s function

of the degree of imnization at all points of the system, The derivation

employs & distribution function in photon phasesspace, which is
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subjected to the methods of classical kinetic theory. It is found
that the radistion field can be split intc two components, one
corresponding to "direet” vadiation from the stsr, the other to
sccondary "diffuse® radistion from pecombinstions., The second
aguation is obtained iziﬁéatim‘xé."ﬁ byap,lyingthﬁe ééﬁé&@t of
statistical eguilibriwm %o the electron @9@315@3‘.@3!&.  The systemn
of eguations is finslly expressed in dimensionless form in Seotion
2.7. Stromgren's spproximetion is obtained in Section Z.6.

Chapter ITI is devoted to a qualitative discussion of the
equations; in Part 4 the diffuse rediation is neglected, but its
effect is included in Pert B, The method in Part 4 is to consider
first s crude approximation which aduits of an analytical aaluﬁian;
the discussion is then extended to a more refined spproximation, and
finally to the ecorrect equations. In the ﬁ‘i;*a’t approximation loniza=-
tion is confined to a fairly well defined region, with i' ﬁ.i.meiemEﬁ%}
radius Q@,én& the solution depends only on Ry. Bp is defined in
Ege {(3.11) and preceding equations, and is a complicated function of
thig ;gshysicél parausters. The fur'@h@r éimussi&n raimas %;m complete
sysbem of equatiocns to the simple solution. The second spproximsilon
is of & similar form to the Stromgren equsiiony it is therefore aslso
possible to predict gemcrally the radius of the ilonized syhere in the

Stromgren ap roximation. This is given by Hge {3.34).
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A numerical treatment is given in Chapter IV, with the aim
of verifying ceriain predictions of Chapler IIL, Part Aj diffuse
m&iati@xi is neglected., The degree of iocnizstion is determined as
| ﬁm&:‘ti@n of radius for wvéral sets of physical parameters, the
radius in each case being exmressed in units of R,

The values of all physical quantities used were tsken from

Raye and laby (1957 ).




Il., BRIVATON OF T ZQUATIONE

21, Bediation Transfer; Introduction.

A distribution function £{t,r,p) is introduced in the &=D

photon phese-space; p is the photon momentum defined by
. cesess (2.1)

If drdp is 2 volume element of phase=space at position r, mementun
Dy then £{t,r,p) drdp is the probability of finding a vhoton in this
element at time t. The normmlizetion is such that the integral of T
over the whole of phase-space eguals the iotal aumber of pholonsg
thus fdpdp is the expected mumber of photons in the element. HMore
usually considered is the gquentiiy Iy 3 I,dddQis the intensity of
radiation with frequency in the raenge 4V and direction in the solid
angle dQ, From the definition of f,

I, J%% £ . corees (202)

e
The methods of classical kinetie thecory (ezfg, Chapman and

Cowling 1939) are used to d.e;v«sla? an equation in f”‘. A photon with
momentum p has constant wgl&zci’hy eﬁ , Where ¢ is the speed of light
and .§ a unit vector in the direction of p. Hence & photon with position
Iz end momentum p at time t is at positionr + eééit at time & + 4. If

drdp is initially at r,p at time %, end moves in phase-space with
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the photons 1t contains, then the number of photons in the element
at time t + 4t is #(t + at, r + cPdt,plardp; end provided thet no
 photons enter or lesve the element during 4%, this is equal to

£( %,z ,p)dzdp.

In the nsbule photons ave being contimually ebsorbed and
enitted, scattered by firee elecirons or otherwise deflected; by
enslegy with kinetie theory all these processes are referred to as
®ecllisions®™. The effect of collisions is %o csuse photons to enter
o leave the element drdp dwring dt, If the net incresse is é@mﬁeﬁ

éﬁ-* drdpdt, then
e e et , ,_ ; def 45
£(% + at, r + opdt, plardp - £(t,r,plirdp = S ¢ Sxdpdt

o * %« Q,g;‘ ée..i‘ esspee L 2e3)

de8e
a4t

As in kinetic theory, %ﬁ-i; is palled the "ecollision ferm™, It is
defined by the statement that %ﬁf drdpdt is the net incresse due to
collisions in the muber of photons in the element drdp during dt,

evaluated at r,p,t.

2s2, The Collision Term,
For redistion in the Lymsn contimum, the only important pro=

cesses cccuring in the nebule are sbsorpiion as a resulit of photo-

ionization and enission during recombination of slectrons and protons.
Scattering by free electrons is unimportant becsuse of the very small

cross-section ¢6 for this process (according to Heltler 194k, p.37,




2k g ,
5 emé;.} The soatbering of radistion along a path

¢ = 6.57 x 107
of length I mey be represented by exp {'ﬂl¢or) » where n) is the
electron mumber density. Now in Chapter III it is shown that the
nydrogen is ionized cnly within s limited sphericsl regions

Subs titubing mmerical values it csn be shown in retrospect that

the effect of slectron scatiering mﬁ‘zizz this mgmﬁ is negligible

for any physically ressomsble values of the paramelers.

I% is sssumed tm% the g;watgns and hydrogen stoms are station=
ary, and that the electroms have a 1@%1 ly Hamwellian vsloeity
distribution corresponding to a constant eleciron temperature I,
Spitzer {1954 ) has estsblished that the distribution 1@ é@amellian
by showing that even if impurities are prescni elestie collisions
cocur for more often than either inelsstic mlli&imm s photo=
ionization or recombinations. He has slso shown thsi in a real
nebuls the temperature is substentislly determined by the impurities
{e%;:aaially the 0% ion} and not by the radiation field; iypically
T, = 10,000 °K. ‘The sssumption of fixed heavy particles is considered
in Appendix 1, where it is found that the approxi mation leads to
negligible errores

As the shar itself is alsc e sowee of radiation, we write

'aé%i:'( ) ( ) 3%) coseen (Zol)

where the separate collisien terms sre %o account for the effects of
recombine tion, photo-elseiric sbsorption and stellar emission res-

pectively.
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{a) Recombinstionss (-gef) » The mmber densities of electrons,
1

protons snd neutral stoms sre denoted by wm, Ngs 03 vespectively,

and the elecirenic mass and veloeity by m and u. BSime the velocity

distribution is Maxwellien, if

‘.P = l%“%(’g:%g%;‘) exp ("" ?%?;) u* seee®n {E:E)

then there axe \ﬂ)&a slettrons per unit volume with @%ﬁﬁ in the renge
u, u + du. Rediation in the lymen sontinuum is prodused only by
Eeﬁéﬂi%:im%mn direetly to the ground sete atom. If Q‘I(xz} is the
ﬁs&-&%ﬁi«m for slectron snd proton recoubimation to ground state,
then for eclectronic speed in the renge du the number of sush rae

gombinations in time 4t in the volume elevent dr is 8, whers

@ = ngpu a;{u)audrat . vesees (2.6)

Bsch recombimation to ground state yields a photon with
momentum p given by

% = 5 %3 m‘ag eseese {207)

where & is the ionization potential of the hydrogen stom, The
photons sre emitted isotropicelly, hence we can write

dp = #ﬂp’%ip ®
ar from Eqe (2.7),

=) o
udu = immgg é‘E & ssm0a 0 (‘ﬁf.ﬁ‘}

Then using Egs. (2.5), (2.7) end (2.8),@ can be expressed in the




form

and is the muber of photons emitted in dr during dt with momentum

in dp., Thus by definition of the collision term,
def
(54), v -
Performing the veriocus substitutions, Tinally

(égg op = B

1 -
o 1;)3_ 172\ 2fmk?T, ( KT,

)%g@ﬂm}?}% 0:"'1'"' {2"§}
o*

where @, is now ecnsidered to be s function of p by use of BEg. (2.7}

(b) Photo-ionization 3 (%3-%)(. It is sssumed that all neubral

2
hydrogen stoms are in the ground siste; this is Justified im Appendiz

2., The eross-se¢tion for photo=ionization of the ground state atom
is denoted by &(p). By definition of £, the mmber of vholens per
unit volume with momenitwn in dp is fdp. Thus ss the speed of each
photon is e, the number of photons absorbed from the momentym range

dp during 4t in a volume element & is

%ﬁfuégﬁgdt.
Henece
def |
(’5‘; 2’3 = ﬂnﬁ&f @ PEYYY T (2@1&}

{o) Stellar Emission : (%&g)ﬁ . The suwrfece of the star is sssumed

to radiate as 2 black body % a tempersture Tg. For the low gas
Aensities ocowring in nebulae, the radius of the star is mauy orders
of magnitude smaller then the linesr dimensions of the system, hence

the ster may be spproximated by e point source. The collision term
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The recombination cross=section @, is replaced by
{Q—I (») *G(P}f] )

since it is necessary in principle %o consider stimulated recombie-
metions. The apmopriate form of £ is that for 2 thermodynamie
enclosure; using Eq. (2.2) this is

« ‘ g}
£ = ;§ [@K? (i%)-‘ll . cesene (2.13)

An independent equation in the nurber densities is reguired:
this is given by the Saha equation (Saha 1920, Seha and Seha 1934),
which is an expression for the degree of ionization in & thermoe

dynamic enclosure. The equation is

%;;2 = ('gﬂf%@) 2 exp (- %) f;& ' sssens (2e14)

where Wy, L), Ly are statisticsl weights of the elzctron, the ion
and the ground state atom respectively. The statistical weight has
in each case the value (2j + 1), thusWy = 2, snd for the case of
hydrogen W, = 1, % = 2,
Ege (2.12) then becomes
ler 220 oo () - @ - )= om () -
?

Since neither 07 nor € depend on T, it is necessary thet

1 s | o :
é awéhﬁg‘l » sese0 (2015)’
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and

men e B ]
..,(.@m%mjg;ﬁ e eneoae i;?,lé}

P
These relstions ere true in sny system. Stimulated recombinations
are unimportent in most sstrophysiecsl epolications because the

radlation is extremely diluted. Even in thermodynamic eguilibrium,

€Ef = =0y [exy “-E) - 3.] - P
with T = 10,000 %% this gives €f six orders of megnitude smaller
than 03 for radistion in the Lymen eontinuum,
Using Bge (2,16} and neglecting the time dependence of £,

the trensfer equstion (2.3) ean now bs written as

é‘gf, = = ng0f + H S(r}gﬁ; -8 r} +

3 -
e;gp (— kﬁz-&) & ;a.a.o (2'17)

1
+ 2n,n u( \)
1725\ 2AmkT o

This is lineer in [, consequently f mey be sepsrabed:

f = fi * fg e ses e 62.15)
A af& .
where Bos= = = n3 & £ ¢ H{(r) 5(1 -2;&) veeess (2.15)
and ‘%eafg = - R3Qf # %’sggnga(mw % “SHp ( sec060n iefw’%}
dr Z "N\ oM

The functions £, end f, respectively regresent the "direct” radistion

from the ster and the "diffuse™ radistion srising from recombinstions.,




2ok Spherigal Symmetry.

Spherical symmetry is sssumed, thus ny, np, n3 sre functions

of r, and f depends only on p, r and B, where § is the angle between
‘the radius vector and the forwerd direction of the momentum p. I

is comvenient %o introduce M
j“.ﬁﬁﬁﬁa ﬂgﬁ s YT Y {?n?l)

The equation in the direct radiation, Eg. (2,15}, can then
be solved in terms of nz, giving

£ H , Jr (o ‘

1 ’m exp (=o o 73 dr ) (L e cevess (2.22)
The solution may be verified by substituting it in Eqe (2.19) and
integrating each side over any volume appropriste to the spherical
coordinstes, keeping p constant. The left hand side becomes & surface
integral using the Geuss theorem, and the right hand side is eveluated

as a volume integral, using the relations
e Ok £ d
n30:f1r2 = =37 (1"2?1)

and 2 8(g) = g {(e) .

The Scf‘matian in the solution implies that fl is zero except for
M=1, or § =0, thus a1l photons travel directly outwards from the

star until they are absorbed. Absorption is represented by the
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v 1
exponential term, and the lnverse squars decrease by the ;‘;’2 term.

To determine H(p), the ensrgy density at the surfsce of the
star is derived from ¥g. {2,22) and compersd with the expected value.

If 24P iz %the energy density in the frequency range 4V, then
: w2 [
235 = ; I ;l» ﬁn

where the integration is over all solid angles, Using Bge (2.2},

®

. Thus if r, is the stellar redius, the energy density at the swiace

of the star is
B

heZ o7

But the energy density at the surfsee of the ster is ome quarter

of that appropriste to a thermod nemic enclosuwre a2t tempersture Tg,

‘ ) -1
i.e. E@ = 3‘”’? - [exg(&) - ]

c ﬁ&
. ’anzn‘?é ep =1
oo Hs= hﬁ [éxy (k?g) - 1] .

If T4 is mot too large, then for radistion in the Lymen continuum

exp (fﬁ;}’)} 1, henece
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e’
2 :
E% = ? g’ﬁ@ (— ﬁ) e 228000 £2923)
8

Substitubing in Eq. (2.22),

2p? r
?l = "'ﬁ” g ok g ("' Otf ﬂgﬁr' - ﬁ%g{f& “;u} ® speeen {2.3@}

o
In terms of p, v, Wy 5qe (2.20) for the diffuse rediation
becomes |
dfp (1 -u®) Iy
b TRt v LEER
L 3 gﬂlﬁga(’”m&% 2 exp (" %g). sevcae {2925}
‘e

Mkl ‘

This bas the form of the stenferd radi

ative trensfer equation for
gpherical symmetry. In most estrophysical spplications it is

replaced by an epiroximete form (Eddington 1926, Rosseland 1936),
and this approximstion hag been used in s a’%uﬂy of jonizaiion in

hydrogen nebulae (Pottasch and Jeffries 1959). Some objections to
the use of the spmoximste equation in this situstion are raised and
discussed in 4dppendix 3. Accordingly, the exact equation is retained

in the following worke

2.5, Statisticel Fguilibriy

Bgse (2.24) and (2.25) describe radiative transfer through
the nebula in terms of electron, proton and Heatom densities. To

obtain an independent equation in my, n,, Ry the concept of stetistical
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equilibriun is applied ic the electron population. EDlegtrons are

woduced by photolonization and logt through recombinetions; singe
B remsing constent in time these processes musi balsnve. 4coords
ingly the anuwber of electrons emitted per unit time and volume is
equated tc the ﬁmr absorbed. It mpy be woted thet detailed

balsnce in phase-space does not spplye. 48 in Section Z.2. photo-

electric exission occours oaly from ground state, but recombiretions

to all states must be considered. The toisl recombizstion orosse
section upon all bound stebes is denoied by gluje
The nurber of recocbimstions ger wilt tine and voluwe for

electrons with speed in the ranges u,; u + du 15

fau = a\peiu) wiv

where P is piven by Bg. {2.5). Integraiing over u, the rate of

lose of selectrons per unlt volume is
oD
o
It is comwenient to iniroduce p defined by

ap = B s % Eﬁﬁg [XXE XY} (goa?%}

a5 & parameter., However, the momentum of the emdited photon is p

. only if the recoobinstion is to ground state., The cross-section @ is

expreased in terss of g




o {p) = s(p) (v} . sssees (2:27)

Tous s(p) is the ratio of the total cross-section to the partial
cross=section 03. FPerforming the verious substitutions and using

ﬁgo (golé}, é
() w2
"@'1 = éﬂaulug 2hmkT, exp lﬁ‘@ x

- -]
cp
x ]_g %@P('}% s(p)x{o)p®ar . cessse (2,28)
&

The numbsr of electrons produced per unit time and volume

by absorption of photons in the momentum range dp is

enijy 2‘&9&% »

le including the wnit vector Eé.

where 4P is an element of solid ang
Thus the rate of eleotron production due to all radistion beyond the

Lyman limit is

00 : .
V, = enjjg (J fdﬁ)ocpgﬂx? ,

where the inner infegretion is over sll solid sngles. A4s f hss

anguler dependence on ponly,

0 !
vg = ?ﬂcﬁ f@‘gk?gﬁp L] o002 €,2.§§}
5 e\ ).

The sssumption of ststistical equilibrium then gives

Vl gvg e Bees (205@)
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where V, and vg are given by Egs. (2.28) and (2.29).

2:6s__The Stromeren Equstion.
The Stromgren equation (Stromgren 1939) oan nor be obtained
as en approximation. The diffuse radistion is nepglected, or £y taken

as zero. Then from Ege (2.24),

! 2 r
Tdj = = exp (—ajndr' » £2, s
L 7T R 02 zﬁg)

The ebsorption ecefficient a is assumed o be constant, and set

equal to @y, its value at the Iymen limit, Then if

r
T "-u’aof !1553" »

o
2
g E - ep,
j-'fd#%;;%z e SXp ("’ g%;) ® tsc0see (2.31)

2‘2 ko]
Wt 4 , - 20N 2
Vg = EHQQG?R l”x’?’z*g e jg exp ( k?s) pdp

‘w

Yo

T8 =T T\ Kl /E\ °
“Aeans ez e () B0 (5)

In evaluating the integral, p2 has been replaced by its value at

the lower limit of integrsiion.




Bge (2.28) giving the rate of electron recombimtions is

simplified by neglecting recombinations to exeited states; thus

ag(p) is replaced by Ti{p), or equivalently s{p) becomes one, Then
k m;"m) 2 w mﬁ Q
Vy = Slleagny 52‘““1’4’1}, f g P (- & ) o
2

)

ooy, imr) @)
=glie monln 2 lgnmk‘f& p P .

Bince Vi = V5, we obtain

n.n SNk T 5 \ T -T '
3. 2 PO [Pet .E) w;ei- (_. ~m) "‘E [ e @09 {2032)
. ( o3 jTa xp =T} br )

which is the Stromgren equs tion, originally derived by mdlfy;tng

the Saba egustions The impor tant. ép@roxismtians in the shove
derivation lie in neglecting the diffuse radistion, snd in assuming
all recombinstions to occur to ground state., The effect of diffuse
radistion is discussed in Chapter IIIB snd is shown %o be significant.
Tecombinations to excited states sre of importanceouly for slow
elsotrons, but the Maxwellisn velecity distribution and the form of the
recombinstion eross-section both ensure thet in most cases the absorbed
electron is in fact slow. (Bge (2.16) shows that for small electron
energies @7 varies inversely s the energy). The solution of the

Stromgren equation is discussed in Section 3.5.




Z2efe  The Exact Equations.

We return now to the exact equations (2.24), (2.25) and

(2.30)s To simplify the system it is assumed that
ng + n3 = n LE XA NE (2033}
and that nl = n2 = XN s . seevo® {2.5%)

vwhere n is & constant. Then

%

233 = (l - X}n . e B aeB (2‘55}

The sbsorption cross-ssetion alp) is assumed to vary as 23"5. The
exsct dependence on p is of 2 complicsted form (Heitler 194k, p 124) R
but 2 mumerigal analysis shows that the veriation is reasonsbly

represented by @'5.

From the same source, the cras%ws%’ﬁi@ﬁ xg at
the threshold (p = §) is 6.28 x 20™° em?.

It is cowvenient to write the equations in dimensionless form,.
ﬂimnéionzless forms of the faﬁial distance, the momentum and the

distribution function respectively are

H = na°z‘ ‘ ces eon (2056‘}

e | s
P = 'ﬁp : eesses (2':57}
Pabde veeees (2.38)

men o = o | vene (239)




The following quentities asre slsc defined:
[TXNEE (20%}

sescen (Zohsl)

€ = 41 [EEXE R (2.1&2}

. A e »

JiF) = ’ - Tm ' GoveeD 2.@5

o ) =53 ex mQ soes (2:43)

E(%) = I (1.}?}@’ ‘ ) boo0e e (QQM?“E

O ‘ ) A

where Ké?{} = Xﬁf} - J ) ' Ty RN T (a‘w’i%g}
and S(P) = s(p) o " ‘ vesess (2:46)

The determination of S(P) and the eveluation of I in &
particulsr case are ﬁigcmseﬁ in Appendix be

With these definitions the equstions become

2
2 P2 B(z

F}ﬂ = ;;% XD (.%@; = ‘”Lg%) S(l ',‘l) see e ¥ (2.1}7}

3F, (1 aify 2Fp_ o2 1. ”
!‘1 5—§2 & i-tg—-&») yﬁ = J(P}X - y (1 - K)FZ ' e-o‘, (a.i@ﬁ)
x2 (% j' ) & 2445 )
C 1aX = f| ( ‘IF@!U. P eseeoe ( o3 J
where ¥ = F) + F, . sesses (2:50)

These equations together with @ suitable boundary condition

on Ege (2.48) form a closed system.




Eqe (2.48), describing trensfer of diffuse radiation, can
be expressed in 2 more illuminating form wiih the introduction of

new coordinates £ and ¥ $o replece B and us

zsgﬂaﬁ cos @ vesese (2.51}
N i -
T =18 i -ﬂ =% gin . eoecs e £2.E§£’j

If the momentum vector P at a point B defines e straight line through
B, then Y is the (dimensionless) distance of this line from the origing
% is the distance along the line from the point of closest approach

to R. 4 photon which undergoes no “"collisions" has ¥ constant along
its ﬁraj@etﬁry, and frevels in the diresction of increasing Z. ¥ith

these coordinates, ¥ is a function ofjﬁg + Yz, and Eg. (2.48)

becones
oF ,
2,3 (1L-X)F 2 :
L 3 k b W E-1 J}{ @ 220009 @ (42055)
r- A 2
The boundary condition is that no radiation enters the system from

infinity, thus in terms of Xq. (2,53},
F‘g 208t 2 = =-o00 .

Using Bge (2.53), F, may be expressed explicity as an integral:
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Z ‘
Fy = j_j(:as}xz exp (= 3‘;3 fz.(i = XJAEYJAZPT ) seeees (2.54)

where the integrations are carried out keeping Y constant. This
equstion is resdily interpreted if the outer integral is written ss

a sums
2 p
F, () ‘ziﬂi&ﬁi exp (‘%3 jz.(l.-x},,d‘zﬂj .
: i

2
The factor JX;AZ, represents the emission in the Z direction from
the line element AZ,; each such contribution to the diffuse radiation

field at 2 is modified by absorption along the path from Z; to Z.
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11T QALTPATIVE DISCUSSION
Ae Direct Radiation

3el. Introduction.
In this Chapter the equations derived vin Chapter II sre
discussed qualitatively. In Part A4 the diffuse radistion srising

from recombinations is neglected; the modifying effect of diffuse
rediation is considered in Part B.

¥ith F, tsken as zero, Egs. (2.47) and (2.49) give

2 Ry ‘
§ e 1}{3{ =““"‘K(R}  egeend (301)
where K(’% j exp ( F - "u) sescen (3-2)
: 8
and B(MZ) = J (l-ﬁ{)dﬁn » eesoe e (3-3)
e ‘ L] [ETX N Y (5-16-}
kTS

A modified form of Eqe. (3.2) leads to an equstion of more tractable
form: replacing the faotor E?:f?z’ by B, Ege (3.2) becomes
' o0
K:-.I exp (-:ﬁ-@?)% .
§ -

Provided thet T; is not too large, exp (= GP) varies more rapidly
‘than 1/P in the range of integration, and 1/P may be replaced by one,

its velue at the lower limit. (For ’E‘s = 40,000 Q‘K, G=4,) Thus




8o , G =l
L exp (=GP, == & exp (= 6G) sesses (35)
and . kscltexp(=€-B) cessce (3e6)

If Eqge (3.6) is regarded as exact, Xq. (3.1) then becomes

1l =3 ' .
”"’fé" = 332 exp (E) seee on é:)o?}
X .
where | a = % G exp (ﬁ'} . ’oo-aot (3033
3 .

abgorption coefficient is independent of frequency; it will be showm
in Section 3.4 that an understanding of this system is useful in con-
sidering the original system., Even .é;‘q. {3.7) cannot be salved analyti-
ecally, but it is closely r=lated to an equetion with an e‘iamanﬁary

solubions
1 "«E = 332 exp (ﬁ} ® 288008 {395’*’%

Acecordinsly, Bqs (3.9) is solved first and used %o study the behaviour

of Eqgs (3.7); this in turn is used to discuss Egs. (3.1} and (3.2]).
3e2. Eguation (3.9).

%al-}i

where B(0) =0




Thus Eqe (3.9) cen be written

a;{ = aR? exp (B)
B | R
[ exp(-fs')aﬁ'={ 2 gy
- Jo A e
. , i ,
e o B = 3.21 (m;%z’“) ® [EE N2 Y 3 (:fhw}
3 |
For real B, Bg. (3.10) is valid only fmr%’ aR2< 1o Define R , y end
b by |
A
3
EQ = (é} es000 0 (3:11)
B -
¥y =5 sevess {3012}
, i
b o= aRQ = (9&:}3 s 800D {331§}
, , i -
Then Baeln (""“"‘"—‘"3‘) for y(l 9 scesee (Ewl@v}f
1=y

snd from Bg. (3.9),

1-X= bI:Y? . veases (3.15)

Physically Bge {3.9) may be interpreted as describing en
arhificial situstion in which the raite of recombinstions is inrﬁépenﬁsn‘k
of the electron density (wheress in She actual system the rate of
recombinations veries az«:Xz.} Bge {3.15) is then valid only for

X 2 0. If y1 is the solution of
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bylg = ] - yg sEece e (3016}

then g, (3.15) (and consequently slso . (3.14)) is valid for yg
y1<1; for y >y, X is szerc.

| From Eq. (3.15), X is uniy for y zero, and falls monotonically
to zerc as y increases to yj; however, the detailed bghavisw depends
on the value of a. In all cases with vhich we sre concerned, e is 2
very smsll number. For example, with an slectron tempersture I, =
11

10,000 °K, end a star of ten solar radii (rg =7 x 107" em),

8 = 1.36 x 107 ¢ exp (G). % (n in cm.':é) .

(Here we have used the velue of I calculsted in Appendix 4, ) If
attention is restricted o stellar temperatures T, grester then
20,000 °K, and densities a greater than 100 atoms or ioms v"per om” .
then a is not greater than 2;5;% x 1&"?. Consequently from Eq. (3.13),
b is not greater than 3.0 x 107,

The value of yj is then seen from Ege {3.16) %o be very close
to unily {approximstely yp=1- %? » hemee

E(yl) = 1ln E‘:%}u)
i
2 1n (2 ,
=6

For the limited range of paremeters, B(yy) is not less than 5.8.

On the other hand, at




1
vet- é‘}ﬁ = 048582,

Egse {3e1h) and {3.15; give

B el
‘ 1‘%,
s 1-2&%%{(1 -‘;}3 . %]
= 2eU0 b

vhich is less then & x fm-% for parsmeters of interest.

~ Thus Eq. {349) has = solution with X close o unity until R
is close 1o Ry, when it falls very repidly %o zerog the ra@id
 decresese is sssociated with a rapid ineresse in B, On the other hand,
if Ege (3.9} is modified sc that absorption is naglected {i.e. B
token as sere), ige (3.15) is replsced by

1 -X = %y*ﬁ ® 00600 ‘;.;%01?3

The velues of (1 = X) are similar in the two cases until y is
fairly close %o one, for example if" y = i:;, Ege (3.17) over-estimetes
(1 -X)bya f&i’t@r of only &/7. Hovwever, fig. (3.17) gives X

zero for y = h‘%, which is 2 large number igr%‘%sez' than 18 for

the parameters eonsidered), in contrast to g, (3.15) which gives

X zero for sows y<1l, The inlterpredation of the behaviouwr of

the solubtion of Bqg. {3.9) i= then that for y small {y S% 88y ),

X is determined entirely by the %%g term, but a8 y approazches

one the exponentisl term domimetes completely, snd reduces X %o
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zero within = short distance. Physically, the inverse sgusre
decrease of intensity weakens the radiation initially, allowing
re@mhimtimm 1o predominate. ”?hen the density of neutral hydrogen
ztoms is sufficient to causs substantial absorption, the absorption.
plays the dominent role in weakening the radiation.

The qualitative b&%}gviam of %hé solution changes az a increases
and it is instructive to &mnsidaz'* the solution f’br 2 large (physically
unreal) velue of a, Taking a = %, then from Egs. (3.11) snd (5.13),

R, =3endb = 1. From Bg. (3.16}), ¥1 is given by

2 :
371&3.-»9‘;

or y1 = 0.76 .

Thus X Falls %o zero at R = 0.75 ?ﬁtg, where R, is itself small, From

2
1= miﬂ‘?; for y <y,

henge X falls smoothly to zero with no sppesrance of a sharp edge,

The opticel depth st ¥ = ¥ 4= smalls

1
B(y1) z in (mz)
= Qafﬁﬁ &

On the other hand, with absorption entirely neglected,




lmz 3:;7‘2

2

giving X zero at y = 1l¢ The effect of absorption is thus %o
modify only slightly the deersase in X which resulis from inverse
square weskening.

| large valuss of & {(or smll valuse of ;Eg) sorrespond to low
stellar temperatures snd low densities, It may therefore Se inferred
that as the stellar tewperature and the densilty are decrsased, the
edge of the icmized rezion loses precision, and absorption becomes
less importent. Furthermore, the extent of the ionized region is
reduced (in terms of the dimensionless coordinate R). The explanation
is thet with low walues of % and ny; the output of lonizing radiation
from the ster is very low, and the hydrogen atoms sparsely distributed,
The radistion intensity is initially low, and decresses ss ';gg, ellowe
ing the degree of ionizetion to decrease mpid:ly. Any giwnﬁphéwn
thus reaches the edge of the ionized region before it has encountered
many hydrogen atoms.

These remsrks apply strictly only to Ege. (3.9), but it will be
shown that Hg. (3.7) and the original equations are closely relateds.
Thus for values of iy and n of physical interest, a large ionized
region with' 2 rather shsrp boundary surrounds the star. For lower
temperatures and densities the reglon has s more diffuse boundary ,

and the ionized region is somewhsat reduced in (dimensionless) extente




Using R, y and b defined by Egs. (3.11), (3.12) and (3.13),

Egse (3.3) and {3.7) can be writien

N4 ‘
3 =2 T2 -0 cevune (5:28)
mﬁgﬁ = We XD (E} ® ‘ eeones (3.19)
) 4 A

4s y veries from o to oo, the right hand side of Ege. {3.19) increases
monotonically from o to oo, hence from the form of the left hand side

X deereases monstonically from 1 %o oo Thus for any ¥ in the range

o<%WL 1, there exists ¥ satisfying

55 ny? e (2 (M@ - x) oy - 2
S wew (2[00 0, s (30

and X 2 ¥ if and omly if‘ygyw. From Eg. {3.19)
; 22
1 =X =bXy exp (B)

henee if y<y,,

L =xX2 5%23’2 exp (B) sesone (3.21)
b d&
iegs. 3 % > owéy? exp (Eﬁ}.

Using the boundary comdition B = 0 at 3 = 0, it follows that

> ()
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for ¥ yj <lendy< ¥, For this renge of y, Hge {3e71) then

glves

@ ssaoes iﬁog’:‘}}

Ll

Since the right hend side of Hg, (3.22) approaches =e0 88 ¥
- ‘

- G : ‘ _2

sprroaches ¥ 3 from below, it is concluded that ¥, is less than W 3t
far if the contrary is supposed then for some ¥y < Vs & is zere,

contradicting the assumption thet X > ¥ > 0 for all y<y,. Thus if
-
y =¥ 3, then

¥ > ¥

o Myi<w

2
ieds Myi<y @
This inequality heolds for agy y2 1, since given y, the corresponding
% may be defined by y = ¥ 3, Hence for y31

z

1=X>21=y

But from Bg, (3,16}, since (L =X} 20 ,

%zﬁ]f’il -X) ayt .
Hence 2> 2[Y (1 -5 %) o




. 2 -3
i.ee B> v+ 2y 2.3 .

Then using Eqge (3.19)

Lo soy? a2y e 2- 5) v eene (3423)
X

valid for y 2 1.
As moted in Section 3.8, b is less than 3.0 x 107 far a
restricted range of physical parameters. The factor % ocours in the

exponential of Eg. {3.23), hence the right hand side increases véw
rapidly as y increases from one. 4£s an indication, for y = l.1 and

b= 3.0 x 10=3 s the right bhanﬁ side is e monotonically decrsasing
function of b, hence evalusting it with y = 1.1 and b = 3,0 x 107,
Ca=E s
X
or X < 0.3%9
valid vfar 2ll parameters in the restricted renge. 4As y increases from
1.1, X falls very rapidly.

It is clear then that for :p‘éfzysically interesting values of the
parameters, the ionized region does not extend far beyond Rye On the
~ other hand, elementary considerations show that for any value of a,
the function X(R) derived from T, (3.7) is everywhere greater than

the solution of Ege {3.9) discussed in Section 3.2. Thus as before,

high values of T and n give a well-defined ionized region, with its
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boundary close to R . Low values of T  and n give a less definite
boundery, less definite even than in the previous case as X is every=
where lerger. The only essential difference betwsen the $wo ceses is
thet with Eq. (3.7) X is everyvhere greater then zerc - the ionized
region exhibits o teil. This is becsuse as the degree of ionization

falls, the elsctron and proion populstions sre diminished, and the

reconbination process opoours less of ten.

In the preceding sections Egs. (3.9) and (3.7) have been anslysed,

and conplusions.

drawn concerning the bshaviowr of the corresponding
systems., It remains to indieate how the actual physical system is
related.

Bgs (3+2) may be written es

00 , ‘ '
k= [Tox (- o) % esnee (3:20)
' \
vhere g(p) =GP+ 23 | sevene (3:25)

For P21, g (P) € & + B,
oo exp (- g(P))exp (<P =B) .

" The exponential form on %he right was that used to derive Eq. (3.7):

hence for given B, the correct value of K, and thus also the correct




value of X, are greater than those found from Eq, (3.7« (This

ie not strictly correct in that Bg. (3.5) is only approximte; for
the prescnt this complication is ignored). It can be inferred that
for a given R the value of X is larger amﬁ that of & smeller than for
the previous case.

The function g(F) hes a single minimum 2% F_ = (i' }E hence

1

exp { = g{¥F)) has 2 meximum at ?'Q. If B < g& then ?@( 1, and

exp { = g{P)}) decresses monotonically to zere as P incresses from

1 toeoe For B swmll compsred fo %ﬁ% it differs only slightly from

exp { = CP = B}, hence X is clese to the value corresponding to
£ge (3.7}, mavely

K = g exp { =G =8B} esssss (5e26)
and ¥ is close to its %111@ in the preceding gaaﬁian.

Ira> %@.‘% then F_> i, and exp (, - g(¥}) hes its weximum inside

the region of integration. It is ‘tﬁ be expechted then that K an@ X
are considersbly larger than the corresponding velues calculated
from Rge (3.7)e For B sufficiently lsrge an spproximete expression
csn be obtained for K. The function g(?} i expended in a power series
about F_, retaining only seccnd erder terms. This gives

&zjw@x?(-ﬁﬁgr——%A 5;% EE-’ ?] )._.
) 5

o

3
[#] :?@

=i exp (- --ijlexy( {%‘-@] )a;% .
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For 3 sufficiently large, P, is considerably greater than one, and
it can be shown that the intagraﬁé becomes small at the lower limit.

Replacing the lower limit by =eo ,

28Xy (“ %@ = %;‘"3)
o

‘ , 1 1
iee. K= 1,003 (78)B exp (= 1754 (e23)F) ., L...ee (Be2D)

The approximstions can be shown %o improve as B increasses, and for

cases of interest Ege (3.27) is ressonsbly scourate for 3> 10.
¥e thus have expressions for K for B small and B large; with

intermediate values of B, K may be expected to lie between the values
given by Egs. (3.26) and (3.27). In genersl the latter equation gives

K decreasing far less rapidly with increasing B than does Eq. (3.26)
sinee B oeours only to the power %. Thig is particularly so for small

walues of &, corresponding to large Ts‘ Nevertheless 2 fairly sherp
edge may still be found provided that B incoreases sufficiently rapidly
with R, Considering only densities n > 10° om™3, R@ is large, and it
ié la#gast for the smallest values of G, hence it is possible for B to
incresse very considerably within a relstively short distance, (E.g.
With T, = 4 x 10%, G = 3.9%; if n = 10° then R = 4.7 x 10°.) Ve
expect therefore e fairly well defined ionized region for all values
of Gy but if ¢ is varied keeping constant E,, the boundary should be
most diffuse for small values of G.

Purthermore the edge of the ionized region may be not far beyond




R, at least for & not too smells The solution for ¥ follews that
of Bge {3.7) until B ~%‘;%g if G is reasonably large the solutions msy
?e similer out to s radius at which the boundery is effectively
esteblished. Thersafter X will dacr@ésa far more slowly with B than
was the case praviously, but as m:z‘%ad sbove, a large increase in B
m;y be achieved in 2 rgslatimly,smrt distance. Any extension of the
ianizeé region beyond Rg will be favoured by smsll values of ¢ s OT
correspondingly, by iarge %,

To interpret physically the above behaviour, we observe that
the rediation 5}3@%@%!‘1}%1 deviates incressingly from the blacke-body form
as the effect of sbsorption incresses. Radiation with frequency well
above the Lymen limit is absorbed only slizhtly, hence venstrates
further; and although such radiation is initially only a small proportion
of the total radiation, ultimetely it is more important then radistion
near the threshold, For high stellar temperstures, the propertion of
high frequency radiation reletive %o radiation nesr the threshold is
large in the initial black-body spectrum, and the disturbing effect

is Tavoured,

The conclusions are slightly modified if the spproximation of
Eqe (3.5) is considersd, Strictly, the sctusl system should be compared

to a system of vadius R3, vhere

Eé = (;?}3 TTTRY ¥ (,3028}
g had Az =1
and at zﬁ (I' exp (= GP) g) ® vessss (3.29)




. 1, .
Since Tl decreasing function of P,

e -1 |
f‘ exp (= @?}%ﬁﬁ exp (= G)
o.ﬁ a? > &
’ |
e Re' <R, o

To show thet this effect iz not importent; we observe thai

nesr P o= 1,,*% behaves as sxp {1 = P}, and that for #> l,
1 ,
> exp (1 -F)

r -3 o N "'1
> . f%xg(-GP}*%?){@%l} exp (=)
]

]
L at < _;ga (& + 1) exp (8)
8
_E=x1
iz
e 2
e P 3
& B E@>E@{W§%%E) &

.1
| & 3
For T, < 50,000 K, (==—13>0.91.

Thus the discrepancy is fairly small, snd R} is close to R, The
apmroximation is worst for small G {ie.es large ?‘E) s thus tending to
offset the high temperature =ffect of incressed penetration.

The firel conclusion is that the effeet of direet radiation

alone is % give a fairly well defined s-herical region in vhich




ionization is subsiantially complete; ocutside this region the degree
of ionizstion falls rapidly, and the donizing redistion is extine
guished, The radius of the sphere (in dimensionless form) is closely
relsted to K., where R, is given by Ege (3.11). For high stellar
temperstures the radius mey be sowswhat larger than R, becsuse of

the small sbsovrpiion armgqamtiéz; for high frequencsy radiation.

228s_ The Stromeren ¥ cuation.
| 4s has been shown in Section 2.6, the Stromgren aporoximation
includes the effect of direct radiation only, and neglects varistion
of the absorpiion cross-section with frequency. It does in fact
correspond very closely to Zg. {3.7).
Using the dimensionless quantities defined in Section 2.7,

Eg, (2.32) becomes

P I : B
G J‘”aaﬁle@ (—G-E) [XYIEX X} (3?'36)
- 2
where ¢* = art
and I+ = 2 exp (ﬂ “‘:'@“) ET;% » eees0 (3‘31}
k) g

The guantity ¥ is anplogous to I; repleacing I by I' gorresponds %o
neglecting electron recombinstions on excited states. Defining slso
+ gt »
2 = %‘é B exp (G,
s




Ege (3.30) becomes

1 =X
Z
X

= a'R? exp (3) ,

which hss the form of Zq. (3.7). Hence by the arpgument of Section 3.3,

the ionized region has 2 sharp boundery at a radius E;, where
1

X

8

B

o %

i.e. E

o

= (;:)3 EQ ° . 2% 2@ 0B (5'52}

In Appendix k., I is evalusted for T_ = 10,000 °K, giving

I=25T1

icﬁ. Rz = 19“:56 }?;0 LR R- N (3953}

It is 2lso suggested thers that the ratio of T to 1¥is substantially
independent of T_, hence Eq. (3.33) should be reasombly velid for any
Tge

Thus the Stromgren equetion leads to e sharply bounded ionized
B . +
region of radius R _, which is significantly lsrger than Rg. The
discrepancy arises because recombinations to excited states have been
neglected. The rate of electron reconbinations is diminished by this
sssumption, giving 2 larger electron density and a smeller He-atom

density, end allowing the ionizing radiation o penetrete further.

For astrophysicel aspplications, it mey be useful to have an




-w‘

L ' % .
explicit formula for the redius r, of the ionized sphere under the

Stromeren spproximetion. Using the equation

+ ot
310&1'@ aﬂﬁ &

and the aquafiﬂnﬁ of this seétian, we Find

Qﬂka % %
et s / .. E_ | ¥
Q ng )] ° e 9060 @ (3032&-‘&

This will prwbably be & betier approximation than is indicsted abuve,
sinee diffuse radisiion tends to incresse the true radius (see Chapier -

IIIs ),
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B, Total Badiation

3.6, Introduction.

It has been shovn in Part 4 thet if diffuse radiation is
neglected, the ionization is sustantiszlly confined to a spherical
region swrounding the star. The region is rether sharply bounded,
and has radius close 1o Ry, It is expected that the diffuse radiation
will cause the ionized region to be somevwhat extended, to a radius
Eg say. To gain some idea of the importanse of diffuse radiation, a
gimplified mﬁal of the nebule is adopted; the gas is taken o be

‘completely ionized within a sphere of radius R_, and unionized outside.

Z

Thus

X=1 for R{R,

X=0 for R")Rg,

Eqe (2.49) is written as
XE
X =1y (®R) + Ly ®)

0, .1
where Iy (R) aéj (J Fi@)%g . evesss (3435)

i -l

The functions I, end Ly describe the effect of direct and diffuse
radiation respectively. They will be evaluated approximately using
the above form of X, and the relative magnitudes at B, used to give

some information on the imporbtsnce of 4iffuse radiation.




e 4P -

3:7. Ra’%i@ Qf Lg t'D I{l-

where a is defined by Zge (3.8}

. \ ~ 1 o
h ' LL’L (ﬁg)"' aﬁg . evosss (3e36)
P

In ealculating LE” the integral form of ¥, (Ege {2.54)) is used:

z 1 [z
Fy = J_j(f’)x‘? exp (-%L"(l - X) az')az*"

where X is a function of Z and Y (defined by Egs. (2.51) and (2.52))

and ¥ is constant in the integration. In terms of Z and ¥,

X=lrr |22+12gn,

2

X =0 for ,[:’222% Y2>§22,
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thus for |2]¢ B2 - 2,
Z

F, = S AL

.= |

=3(z+ Ri-ﬁ)

i.es Fz = J(Rjﬂl-l' ﬁ!Rg —EE + E%ﬂg) TRy Y (3-3?}

B
s j deﬂ = J(E}ﬁ(ﬂ} TTXIX) (joj@}

" (&5 -B) Rg + R 2 e
W}lm (K} ﬁﬁg * R ln R;ﬁ - R & @sere & (505?)

Egse {3.38) and (3.39) are valid for R{ R

20
Then from Eqs (3.35),
1 g "‘T&.
L®) =3 j, lJ(P}%ﬁ(R
and using Eq. (2.43),
@01 ‘
Lo(R) = 5 MR ) j' o P ( ﬁ%)ﬁ°

e

With T@ = 10,000 °K, %ﬁ? X 16, and for P 2 1 the exponential term
e

dominstes the factor P,

MBI Ee L B
I B LS ®
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where we have used C = 4L, The quentity 8 is defined by

W;% w;%w 3
I = 2B B EED { - %gfg}? ® 220689 (595@)

Hence fimlly

L;ﬁgigg} = L 3 ®
R, ‘,
If we define u = %{“ , then from Ege (3.11),
R,

3 3
7 b = = u [ I EEERE X ] i}oi}};j
mﬁzﬁ?s vy |

In Appendix b it is shown thet for T, = 10,000 %%, 3 . 2.5, and B is
substantially independent of ?@. Thus "prwiciig@ ‘thg%; i is fairly elose
to unity, the effegts of diffuse and direct redisiion are ,f comparable
magnitude, & surprising feature of Zge (Ze41) is that the ratio is
independent of all the physicel parsmeters of the system, Since it wmas
sssumed tist direct radisiion elone would produce sn ionized regiom of

radius B, it mey therefore be expected thet the diffuse radiation will
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increase the radius to W, where u is independent of the physical
paramaters. Ye note that the relative lwpordtance of diffuse rediation
would be merkedly increased if recosbinations to excited é%atm were
neglected (di.ee B = 1),

Rather drastic approximstions have been introduced, snd no
relisnce can be placed on the numerical quentities in Bqe (3.41);
nevertheless it seens clesr that the diffuse radistion will produce
a significant effect, and thet the mgnitude of the effect will be to
a2 large extent independent of the parasmeters of the system. However,
the spproasch is toe orude %o give a worthvhiles estimate of Eg,

#ith the limited range of physical parsvefers considered in
Part 4, the boundary of the ionized region should remsin well defined
when diffuse redistion is included, becauss the same physical condi-
tions preveil (R is large, hence there can be conmsiderable absurption
in a relatively short distance). The situation is somevhat more
complicated in that diffuse radistion is emitited everywhere, even a%
the boundary itself. However, the preceding analysis shows that the
total effect of diffuse radistion at the edge of the sphers is not
overwhelming, hence the contribution due to locel emission at the
boundery must be negligible., Furinermore the form of J(P) (Eq. (2.43))
shows that the emitted diffuse radistion is stronczly concentrated near

the Iyman threshold, where the absorption coefficient is greatest.




Ve RUBERICAL S0LUTION NEGLECTIIG DIFFISE RADIATION

4o1, Introduction.

The eqguations derived in Chspter II have been solved mumerieally,
neglecting the effect of diffuse radiation. Hgs. (2,47) end (2.L9)

czn then be written

j.:ﬁ!dﬂ=§% exp (‘- &p -%ﬁl) ETEXY (&:ul’}

x2 °°( g )ﬁi .

¥ 'i"“:“x = , I-'@dﬂ P [ TR X (i%QE}

R ‘

whers B(Q) = f . (1 - X) an’ 2 socane (&QE}
o

and &= kTE 0 2evss e (lgu,h)

The solution for X was obteined by an iterative technigue.
To begin the process a i’unstiomi form of X was postulated, and speci-
fied a2t evenly spaced wlues of R. The correspomding values of B
were compuled from Eq. (&.3),“&;11@11 those of ( E.Fd;.c) from Eqgs (kal)e
Finally new values of X were obbtained from Eqe. (4.2), and used to
commence a new iteration, the process continuing until converpencs

was estsblished., The computing was carried out on the I.B.M, 7090
computer at the ¥Weapons Research Esteblishment, Selisbury. The

Fortran programme and computing details are given in Appendix 5.
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b2, Humerical Results.
From the discussion of Chapter IIIA, the solution for X is
é;g@e&%m‘i to depend anly‘ma the stellsr temperature i’i’*a and the pare=

meber H,, defined by
3 2
By = (£)°
43
where a =7% & exp (&) .
R
s
Aocordingly the solution wes obisined for several sets of physiesl '
parameters , chosen to reveal the dependence on T  and L

In each case the electron temperature and the stﬂi&r radius

were teken as 10,000 °K snd 7 x wu cm. The varisble parameters,

Ty and n, are given in Teble 1, and the corresponding velues of R
are also listed (the vslue of I necessery in calculating R was taken

from Appendix L. ). The solutions for the various cases sre given in

Table 2,

Teble 1, FPhysiesl Paraneters and Eﬁ

(i‘@ = 104 %Ky vy = 7 x 10 cm. in each case)

n I, ‘ Rg
(em=3) (°x}

(1) 10° box 0% | 4715 x 107

(i) | 10° b ox 10%] 1,016 x 0%

(1i1) 10 b x mz 2.189 x 10

(iv) 102 2 x 10 1.005 x 109

(v) ‘ 1,033 x 1(!*‘ 2 x lﬁh Le715 x lﬁj
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Table 2(a)s Degree of Ionization (T = 4 x 0% %),

PR R (0 | 1) | ()
27 | 0.6 5997 | w9998 | .9999
36 | 0.8 9992 | .9996 | .9998
45 1.00 9976 1 9989 » 9595
49 | 1.089 09939 | 9972 | .9987
51 | 1.133 986 | oo | 997
52 | 1.156 975 | 4987 | .99
55 | 1.78 929 | W58 | 975
s | 1.200 555 | .58 | .076
55 l.222 098 «OL3 LU0L

Teble 2(bj. Degree of Ionization {’i’% = 2 x 10" AR

.
wi-| — ‘
o] e (iv) (v)
27 0.6 +9986 *9997
36 | 0.8 - 9965 -9993
L5 1.000 +986 «9968
L7 1 1.0k »973 #9936
43 1,067 «956 . 989
4 1 1.089 <906 <559
50 1.111 <634 .075
51 1.133 .150 001
52 1.156 029
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Jo__ Discussion of Results.

In each of the five csses it is found as predicted in Chapter
ITI4 that the ionized region is well defined, with radius somewhat
greater thsn E@g The manner in which the solulbion varies with Ry
can be seen from either of the two series (i), (ii), (3ii) ar (iv)},
(v); it is evident thet for constant T, the boundery becomes incresse |
ingly sharp as Ry ingreases, The behaviour is in sccord with prediction,
and is due to the incressing imporitance of sbsorption compared to
inverse squsre weakening. On ithe other hand ceses (i) snd (v)
illustrate the effect of varying Ty keeping Eg constant. 4As expected,

the higher tempereture ster produces a more extended region (in terms
of i%}, and the houndery is move diffuse, Case {(iv) is the extreme

low density and low temperature cese, corrssponding %o the smallest
value of B, (and thus the largest velue of 2) considered in Chapter
IIIA. Here it is found that X falls off to zero relatively slowly,
again in acecord with prediction.

The redius (in units of Ry) is seen to depend almost entirely
onT_, In Table 3 the redius is given for esch case, both in units

of R_ and in centimetres (by use of Table 1 and Bq. (2.36)).




Table 3. Radius of Ionized Region
B r
Re {cm)
(1) 1.20 | 9.01 x 1018
(ii) 1.20 | 1.9k x 1918
(ii1) 115 | 435 x 2077
(iv) 1.1 | 1.78 x 1018
(v) 1.10 | 8.00 x 1016

Loke The Optical Depth, B,
Table 4 lists the computed walues of B for sach of the five
cases. It was predicted in Chapter IIIA that for 11%; small, B should

have the seme functional dependence on % for all physicsl paraneters
(the functional form is given by Eqge. {3e14))s This is seen to be true
for constant T_, but there is s smell discrepancy between the values
in Tables 4(a) and (k). However, a discrepancy of this nature is

to be expected, since it was shown in Section 3.4. thet expressing

the radius in terms of % is not strictly correct. Rather should

the radius be compared to the slightly smaller quantity RS (@efined
by Eqs (3.28)); and the difference between R, and R! increases with

inereasing T..
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Table 4(2)s Optical Depth (T, = & x 10" °K)

L Ry (1) (1) {311)
o7 0o 0,275 0e275 | 0,276
36 0.8 0,751 | 0.751 ] 0.752
L5 1,000 2,03 | 203 24 Oly
49 1,089 3.62 3.63 3.65
51 L1335 [ 5.52 | 5.5 | 5.6
58 1,156 Teb7 | 759 | 7.3
53 1,178 12.8 13,0 1o 2
5l 1,200 358 7.1 175
55 1,220 108 314 779

Table 4(b). Optical Depth (T = 2 x 10% %)

B

. ® B

Yeao | T T
Te {iv} {v)
27 0.6 0255 04255
35 0.8 Lo 700 0,710
L5 i b L Zal3
&7 1044 e 1 2,06
L8 1,067 3e72 3695
45 1.088 5,16 6,31
50 14111 .56 L2
51 1.133 23,3 iz

1,156

b, 8




Correlating Tables 2 and 4, one notes the large value of B
echieved within the ionized region, perticularly for the high
temperature ceses ((i), (ii), (iii)). For exsmple, in ease (i),

B = 12,0 whers X = ,929, This effect cen be understood from the
discussion of Section 3.h. In brief, radiation st the Lyman limit
is absorbed as exp (-B), éu*i: higgh@ri frequency radiation only as

exp (= '@3}, hence the latter penetrates further; snd a high tempera-
ture stﬁr emits a bigger proportion of high frequency radiation.

1t is in fact for this reeson that the high tempersture cases (i),

(ii), (4ii) give a more extended ionized region.




V CONCLUSION

With diffuse rodistion neglected, it has been shown that
a hot star ionizes a limited region of a surrounding hydrogen
nebula, In circumstsnces of physicel interest the ionized region
is well defined, the degree of ionization falling from close to
unity to near zero within e relstively short distance. Vithin the
ionized region radiation in the lyman continuum is little absorbed,
but 25 the boundary is spproached it is extinguished extremely
rapidly,

For lav stellar temperatures and low gas densities the effect
of sbsorption is less domirent, and eanaeqummtly’th@ boundary less
e¢learly defineds 4 similar effect also ocours with s very hot star,
since such s ster emits much of its radiation with freguencies well
beyond the Lymen limit, where the absorption crosse-secbion ie small.
This part of the rodistion penetrates further into the nebula, cause
ing some loss of definition at the boundary.

It has also been shown that the effect of diffuse radiation is
probebly %o extend the ionized region by a significent but not over-
whelming smount, the relative increase being substantially independent
of the physical perameters. Otherwise the conclusions remsin unaltered.
The true radius may be ressomsbly aspproximated by the Stromgren
radius, as the chief errors in that approximation have opposing

gffects,
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dppondix 1

The Aprroximation of Fixed Hesvy Particles

For either recosbinations to the ground state hydrogen atom
or photolonization from the ground state, the equations of conser-

vation of ensrgy end momentum are
4 2 .1 z 1 2 ,,
E+ 5 ml Gl % 5 m2 QQ = Op % 2 mﬁoﬁs eenesp (g&l.ﬁ.)
™E + Mg, = R F Mgy seesee (41,2)

where the suffices 1, 2, 3 refer to electrons, protons and hydrogen

atoms respectively. It is convenient to introduce G and g

E!@% = ml_g-l 4 mggz svesve {7&1&3}
E = Ez - 21 cdogoéb {Alni?f}
where By = i o+ oy ® seae e (ﬁlaﬁ}

Solving for gy and g,y

51 =§ -ME g I ETYXEX" (.ﬁloﬁ}
32’3,‘%*@*{15 & 260060 («ﬁl;?}

Then Egs. (41.1) amd {41.2} become




-ﬁ‘

) ,
W+%Wiggg%%m@2mg@%£mﬁe§?
[5)

mS =p + g3

or eliminsting g,

- j_ mma 2 1 B, .2
] . E— - On = e w 1l ww) i =
Ty A 2 (o1 s
- m} %-E k4 5 3 g <] s eseve® (?ﬁlné«%}

Bach particle spsoies is assumed to have a Heaxwellian velocity
distribution corresponding to the tempersture T, It will be shown
that under ressonable physical conditions the ter me on the rwht of
Ege (41.8) are negligible for almost sll reactions. Suppose £y, f,
ere the velocity distribution functions of the electrons and protons
resprctivelys The product f1f2 conta :mé the fgat::r

ex 2 1_ .27,
exp Eﬁ[? me) +p L, }9

s enp (o [1T1%2 2 3 ]
uam(mig%g s2me ) .

4lso, from Egs. (A1.6) and (41.7),

‘de dc_ = dg aC
£, = % B

sinee the Jscobian is unity. Thus the distribution of the relative
‘ mlmg 2 é
%l@mt;y g is Mawwellian, and the mesn value of E e g 4 2= kT,

Q

1
ﬂimlar]y the mean value of “:,2 m, %? is %':g kT, Now the factor

(1- )w_ﬁ_‘:_.;;g_;%

"3 3




is & very small nusber, the numerator being the mess equivalent of
the binding energy E, ani the demominator the atomic mass. Far
hydrogen its value is 1.45 x 1078, The factor % %gg(l - %)
is therefore negligible for probable values of G,

As tﬁmg;emtum T = 10,000 @x, the root measn squere value of
G ois 1.57 x lﬁé om/sec, thus for & aser its mean velue, Gp is fow

orders of meznitude smeller then cp, and the term
m
9 :

2

ean be neglecied., 7The finel term E‘% is small beceuse p is small:s
3 v

at the tlreshold,
oy = 217 <<¢
2
P
% @ ?2};_; << 3}3 -
"3
Almost 21l reschions have p quite close to its threshold value, thus
this factor too can be neglected.

The snergy egquotion then becomes
g mﬁg 2% @p M ' 'TIxTL] {:ﬁal.%}

and the energy of the emibied or absorbed photon ﬁeyeﬁds only on

the relative veloecity g. On the other hand, if the heavy partielas
are assumed to be stationsry, the eguation is

E+ % mlglg = gp sevsow (&l.l@)




-i‘?u

For recombinations this hes the seme validity as Ege (41.9) sinee

i
Le)
&

‘ Mo
we have seen thet the distribution of = Mml, 2 gg iz the seme o8 that

1 ‘
of 3 mlcf. Put in any cese the reduced electron mass differs neglie

gibly from the true mess, and Eg. (£1.10) is » good spproximetion.




Appendix 2

The Ground State Approximetion

It hes bsen sssumed in Chepter II thet all meutral hydrogen
etoms are in the ground state. The assumption is not strictly azfr%zt
as atoms in excited states may result from recombinations, and may
also be producsd by absorption of line radiation or by collisions.
However, the ground state spproximstion is justified if it can be
establishad that ionizaiion rarely occurs from excited states, and
that the lifetime of any excited state before it cascades to gi‘gund
gtate is Sh@r% compared to the Z;if‘a%izae of the ground stats. These
gonditions are shown to be satisfied execept in the immedinte neigh=
bourhood mf the star.

The 11?%;131& of the ground state atom is governed by Lyman coniie

mpm and Lymen line redistion - continuum radiation ionizes the atom,

line radiation excites it. In primciple collisional excitation
should also be considered, but with an slectron temperature of

10,000 °K the electrons are insufficiently snergetic to expite the
ground stetes the meen kinetic energy is~leV, whereas excitation to
the first excited state reguires 10 eV. The effect of line radistion
will be considersd subssguently; for the present we consider only

continmm radistion.




If T is the nuwber density of ground-state hydrogen atoms,

then with the notation of Chapter II,
ood¥y £dpdrds

photons are absorbed in dr during 4% from the momentum range dp.
Lach photon sbsorbed Qﬁrffifépaﬁﬁ% to iomizetion of an atom, hence
the total muber of ground-state atoms lonized in dy during 4t is
@ o
an ] £ f .wslf@upgapa_gat.
-
Thus if T, is the transition probability for photo-ionization from

ground state,

8o,
7' = one JEI f‘d,lm;;agdjp .
z J-1

If @iffuse radiation is neglected (i.e. £, = o], and the effect of
absorption ignare& s Bge (2.24) gives |

' s SR

_lf@}"" Wre exp (- };}?S} >
The absorpbion cefficlent g can be written (Section 2.7.) as

=3
@ = & (‘gﬁ)

L 2

2 soo ‘
, -1 on B3 T cp ydp
e ® T ‘ Q@ = =8 exp (=
3 ﬁ“"gh 43 O(G} rg [E ( kﬁ?g) R




2 2

, =1 2“ B,

LeS e ’c‘,”v 3& ° ué g &@% BEXD ("’ }z{? * cenesd {ﬁzZ.l)
)

- o =
ﬁcll 2= 7.7 = gﬁé ﬁ gﬁ@-i o 260098 (&ng)

It is necessary to show that the trensition probability T T'
is small compsred to the probability for radiative decay from any
excited state, It is sufficient to consider only the most longe
lived excited shats , the 23 state, Breit and Teller (1540) show
that this stete can decay only by emission of two photons = electrie
and segnetic dipole snd slectric guadrupole comtributions are negli=
zila, Aceording to Spitzer snd Greenstein {1951) the transition
probability for Zequantum cmission is 8,23 %{3“3’, Yesr ths star

this probebility is small compsrad to 'E-,',, but for r 2 0% o,

T, <4< 8,23 sec™,

and the sonditlon is satisfisd., The discussion of Chapter II1 shows

that 3.’3&“%% is soveral orders of magnituide smaller than the radius

of the iomized region, hence we concluds that the condi tion is satis-

fied exsept in the immediate neighbowrhood of the star.
Proto=ionization from sn sxcited state will be unimporgent if

i ‘E}hi)t@ﬂ cafl

the shate wndergoss radistive decay before 2 continu

be absorbed. Here again the 28 state is eritical, as eny other




excited state has o lifetime shorter by several orders of magnitude.
The transition probability ’C:; for photo-ionization from the 2s state
can be calculated by the method used for 7. The ionigzation potential
of the Zs state is *j?, henge this replaces E in %g. (42.1). 4lso o,
is replaced by 2340, the sbsorption coefficisnt of the 28 state
atom at the Balmer limit. This was calculated from the known crosse
section fur the converse process {(Bates et al. 193} using the method

of Section 2.3 "For T, = 40,000 9K, it is then found that

- ' 7 2 s
Tysx2,2.% 107 ﬁ sec ~ o

The coandition

o §
ftzs << 3025 &%.l

is thus satisfied for r 3 0%,
Finally the effect of line radisotion is considered. let Ny

be the number density of atoms in the state i; then
whers n3 is the tolal number demsity of neutral hydrogen atoms. Ads
in Chapter Il, m and hy are the nuwdber densities of eleoctrons and

prot ONS.e

Gongider & systen in thermodynamic equilibrium at the tempersture




T.s

with eleciron and proton number densities equal to the loeal

values of n; and nge. Let 2%% be the corresponding populsation of

the state 1. Baker and Mengel (1938) have shown that diffusing
Lyman line radistion in 2 nebuls gives Wi comparabls to ?ﬁf for all
excited states. In particular, for T, = 10,000 °K,

Ny < Nj for 432 coores (42.3)

whatever the assumed optical depth of the nebuls in the Lyman lines.

In the case of thermodynamic equilibrium, the Boltzmeun law

gives
- :?i exp (‘ 4= g
Hf T 5 kTg )

where By is the ionization potential and 5; the statisticsl weight
of the state i, The ground stete population N] is related to m; and

Ny by the Ssha equation (Rqge (2.14))s

Iy Wil [ 2mmkT, \ £ E
N . h =]
1
Thus for any i, 2
_ 2MleT E;
-.13?2 = ("“):L‘g ("""‘"“2"") SED (" E%_) ° 23008 (ﬁ?c‘}%}
z@i g °

On the other hand, in the nebula the ground-state population N is

given sporoximately by the Stromgren equation (Eg. (2.32)):

2
, , 2
1 21 , il :
nl 2 g(")l&? (2“ T@) %@ 63? an 3 ses e (&205}




Here the general ststisticsl weisits {removed in Section 2.3, ) have
been restored %o the equation, but the effect of sbsorpiion has been

neglected, From Egs. (A2.4) and (42.5),

e T T T ( B i\
O wmiy @ e ol W ol
Ao A T ™ A" 2 s S
and using the inequality (42,3)
2
Ny 847 ; E r
i_>®its _. (_E i) 2. :
ST T exo ( Wsa--g@;) Ffor 122 . aeeens (42,6)

The most highly populated state is the first (i = 2). If the

typical temperatures T, = 10,000 °K, T_ = 40,000 °K are assumed, then

gince
1,
Egﬂng’
1 8 3,2
- K
1 1 r

Close to the star the result is not definitive, but for large values
of v it falim%s that vory few atums are in excited states; ceriainly
this is true for r 3 10'rg .

The ground siste approximstion is therefore walid outside the
immediate neizhbourhood of the star. Close to the star the assumption
may ot be true, snd & substantial proportion of neutral atoms may be

in excited states (perticularly the 2s state), However, the discussion

of Chapter III shows that in this region the hydrogen is almost come

pletely ionized, hence the deviation near the a*tér is unimporbant.




dppendix 3
The ﬁ@gﬁ*&gmm Tranafer Eguation
¥ith sphericsl symmetry, the trsnsfer equation has the form

(Eq. ( 294{&83 }¥

oR

In estrophysical spplications it is cus *t@méfy to use an approximate

A‘FQ l-gaF ; i s 9
#m + L—R-&’!——l;ﬁ an}(P)}ig '?3(1 "X) E‘g ® secene (ﬁjol)

eguations
g - 2 ,
“1'& = 4 = g EWX vesesss L 23
. 3 fg-nz@ = @ JP 1 - K | | o0 L] ( -5 £
1 f‘ A ,
where ) m o )4 ﬁ;& oo sew {ﬁ33!3)
% 2 j_, &
1 R
and /4}'7 3%;0 (1 -3;) art ® eveoen iAE-éP}

The sprroximete egustion has been applied to the ease of a low density
nebula {Pottssch amd Jeffries 1959); we intend to show thet g, (43.2)
i@ suspeet in this situation. The two spproximetions inherent in Eqe
{43.2) have been justified z:ey Eddin ton {1926) and Rosselsnd (1936)
for the caséymf stellar interiors.
In the standard derivation, the term
@ -ud) I
R I

is dropped from Eq. (43.1), the justification being that the curvature
of the system is negligible: sccording to Rosselsnd, "In most problems

of stellar stmospheres it is legitimete to sssume the atmosphere %o




be stratified in plane psrallel layers®. The sssumption is ressomable
for stellar interiors, simce in that case the absorption coefficient
per unit length is large, and emission and absorption of radiation is
egsentially = local phenowmenon. The situstion in a nebuls is guite
different, ss abscrption within the ionized region is small (see
Chapter II1), alloring a vhoton %o trawl a distance compsrable with
the dimensions of the system. The effect of cwrvature is tﬁﬁreﬁr@
imver tank,

With that term neglected, Egs. (#3,1) and (A3.4) give

OF, 2 -
#am WJP-} zﬁ“‘;{ “"?2 ® asened (Aﬁng}

Integrsting with respeet o Mo ;

Ja W‘&

R, 4
i

where ?wé[ nguﬁ}i ®
m ¢

4 seeond squetion is obiained from Eq. {43.5) by multiplying through

by /u,hfegf‘ara integrating:

| |
1 2
3 %ﬁ,[,%ﬂ%ﬂh@ :

Then eliminating (,
2

§
2 e
3 El_.j Pl = P - 98 =i .
{1"% -1 E!U @ 1."!"
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Ao spproximetion due %o Bddingion ls then used:

) [
2 -~ L ‘ :
f ?2/,(. ﬂ#“’ "‘5 ["ﬁgﬁ# 9 e es 2@ {A@Eoé}
giving Bge (43.2)s
The two sides of the Eddington approximation cen be eveluated
using the simple model of the nebuls introduced in Chapter IIIB. Vithin

the ionized sthers of radius Rg, f{f’g is given by Bq. (;‘5.57).

B? + REE2) |
R, + B |
+*e - 1n (/ﬁfg‘:‘g)] sosess (43.7)
< : 2 . peye R, + R
and - '(2‘2‘"3"'?5 (ﬁg-ﬁn .

boB GO R (AE&E}
At R = 0, F, is independent of i, and Eq. {23.6) is exmots

H
i N 2 2
3 _,FE du = _FQP‘@““% ST

However, at R =R,

L T = IRy
} .
. 2. 1
and L,-%%gp%# =378,
] 2 1 )
Thus st the boundary of the nebuls the Zddingbon approximstion is

considersbly in eérror. The rsther cxirems model adopted probably

emphasises the discrepancy, bubl according to the discussion of




Chapler ITI the true situstion mey be rather similar.
It ie comeluded that the spproximate transfer eguation is of

doubtful validity in this application.




Appendix L

Recombinntions to 411 Bound States
In 8ection 2.7 the quankity I was defined:
) ,
PE ~ .
I= 2 [ exp ("‘I;m;e) E(P) ‘S‘% [TEE X 2 (A@ol}
[

vhere 3(P) is the ratio of the total recombinstion eross-section T
to the recombination cross-section to ground state, 07 The parameter
P is defined by

1

1 =
P=SB 3. 200 .
E E

If recombinations on excited states are neglected, the right hend

*° EE ., &P
2_[ exp (-5 ) 5
] -

oo B
= 23" exwp (-j@;) .

For T, = 1&3&"” %K, Eg; ~ 16, and the approximetion is better then Gi.
The effect of recombinations on excited states can be expressed in

terms of the quantity B, defined by

I=3 “g exp ("g;%) ® eone0s QM-Q}

I and § have been caloulsted mmerically for sn electron tempersture




= XYL -

of 10,000 Q;Ei, this tempersiure having been suggested by Spitzer (1954}
as characteristic of emission nebulase. Here the method and the results

are indicnted.

It is convenient to introduce s pew perameter 03

1 2
E
Defining ¥(e) = s(p) |,

then V(¢) is the ratio of the wross-gections , where the crosse-sections
are functions of the electron kinetic enecrgy in units of E. In terms

of i,

20 ¢ ‘
| A E Q) e . .ieee. (4k3
Is2 j exp (= KT, Jla+ 1) (44-3)

Before I cen be csloulsted it is necessary to determine V().
The cross-section 0y presents no problem, since it is related %o the
absorption coefficient o by Bg. (2,16}, However, the published informa-
tion on the total recombination cross-section O is limited, Bates,
B«,.@@mmgham s Messey and Umwin (1939} have calculsted 0 for four very low
values of the electron kiretic @mrg, their method being to sum the

pertial cross-sections to esch bound state. Their results are used in

deriving Table 5.
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Pable 5., The Function ¥(}.

f%..@&?
— ,.3 | A
2,50 x in }-ﬁw%
5.07 x 103 3,63
9.56 x 10™ 3,23
-z

The only other available informstion comes from Wessel (1930},

Yessel hes shown thad

oD
v(q) = Z 3‘3 = 1,197 for 4@ 1,
n=l g

V(1) = 1.290 ’
and ¥(0.25) 7 1.512

The results of Table 5 were plotted on a small seale graph,
and a smooth curve dravn through the points. 4 plavsible value of
¥(0) wes found to be 476, From this greph it was also possible to
esbimste the gradients st g = 0 snd st @ = 2 x 1077

V(0= ~-T0

viexwHx -5 .
A large secale graph was then plotted (with domsin (0,1)), using the
latter value of the gradient and the informetion from ¥ essel. In both

cases the gravh sppeered reasonsbly well determined by the reguivemsnt®
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that the curve be smoothly werying, the uncertainty being grestest
for the seconl graph.

The integral in Eg, {AL.3) was then eveluated using Simpson's
rule, cunsidering only the domein (0, %‘é)g for © >% the integrand
is mgl:igibly small. Using 50 points for the integration, it was
Pound that

I =43 x 20670

More then half the contribution to the integral comes from Q €4 x 1077,

in which range ¥(() is expected to be ressonsbly scourate.,

From Bg, (A4.2), it follows that
B =230 ,

The effeet of rscombinstions is thus quite considersble., The
galeulation ms, been carried out for only one value of %’e, but it is
suggested that % will be close o 2.5 over a considerable range of
temperatures. For the guantity © is effectively a wsizhied average of
the function V(Q). In the immediste neighbowrhood of the origin V(4.
veries extremsly rapidly, and there the weight functiom exp (= E?m;

Hos a

is 'rala't:’{wsly o ’rmm except for impossibly high lemperatures. On

the other hand V(¢) flattens out very repidly, and by the time the

weight function sssumes importanse (when V* (ig}"é;*), V(Q) is already
. g

considersbly reduced from its meximum, and theresfter V(Q) chauges

only ﬁlm{ly ®




Computing Details

The Portren Progresme
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3h  IF(EBB+1=1)33,35,35
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2o Ezxplamibtion of the Prograwme,

The general purpose and method of the programme sre outlined

in Section 4.1, The imput dete is as follows:

AYT: The totel me

mber of points at which X is specified

LIM: In all iberations X(I) is teken as one for ILIL

DEITAR: The spacing between the rsdisl points (thus (MAXI) x

{(DELTAR) 4s the totel dimensionless radius of the

system).

¥(I): The initially postulated form of X.

A,0,D, 05 B8y FPhysieal Inta. & and £ are as defined in the

?é; E

NiTy The number of it'@mtiam %o i&e performed,

Ly  The iterated solutions sre printed sfter every L

iterationsy e.g. if HIT = 8 and L = 3 then the

rasulds of the third and sixth iterstions are

printed in addition %o the input form and the

result of the eighth iteration. Print-outs include

the corresponding valuss of the optical depth B(I).

At the beginning of each iteraiion the walues of B(I) are computed

uging »?zimg&saén’s rule; end if I7 (the iterative mwmber) is suitably

related to L the walues of X(I) and B(I) are printed.

point the value of

{ﬁﬁé}}am j exp é'mg- ?}ﬂ}?

Por esch radial
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iz then computed {statement 42}, agein using Simpson's rule. {(In
the sobusl maimlmiﬁn‘% is substituted for Pj. The value of X %o
be used in the next iteration is computed (statement 160}, and stored
as Z(I) until the iteretion is complete; the formal solution of
EE

To% T (RES/C) = (RAT)
is used for émaﬂ valuss of (RAT), but for large values s series
expansion is enmployed. Uthen ?%12{* iterations have been performed, exit
ocours at statement 180, Opbtical depths appropriste %o the output
form of X arve computed as before, snd the values of X(I) and B(I)
printed.

The listed progremmes is a iruncated form of the one actually
used, as the programme wes originally designed to inclule optionally

the effect of diffuse radistiom. That part wes unsucessful, essen-

tially because of the large exient of the ionized region {in terms of
R}; with this circumstence it is difficult to solve Eg. {2.53) numeri-
pally. & degree of clumsiness in the listed programme is due to its

intended dual purpose.

3. Opersitionsl Dstsils.

Preliminary runs showed that if the initially postulated form
of X represents a too smell ionized region then the ilerative process
converges rather slowly - in fact unless the points sre reasonably

closely spasced, iterations only smooth the input data. On the other
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hand convergence is guite rapid if the imput form of X is everywhere

too large, Comparison of the two cases with fine spacing and s large
number of iterations established that the result is independent of
the ipput form of X. The spacing of pointe wes varisd to prove that
the resulis are alse independent of the specing.

The finel resulis guoted in Chepter IV were obtained with

WAXI = 63, LIM = 3 and IZLPAR chosen so that

LE{BRLTAR ) = B, e

In the input date X(I) was taken as one for all welues of I, and in

each case 36 iterations were performed.
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