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In this thesis we present calculations of photo-
ionization cross sections for the diatomic molecules
NZ’ O2 and NO, These are expected'to have important

astrophysical applications.

The necessary formulae and the justification of
the one electron approach far evaluating electronic
matrix elements for many-electron systems are giveﬁ
in Chapter 1, where an attempt is also made to survey
briefly the relatively well known field of atomic
calculations. The Chapter concludes with a resume
of previous theoretical work on photo-ionization cross

gections for molecules.

In Chapters 2 and 3 the electronic wave functions
needed for the evaluation of the matrix elements are
presented and discussed. It is apparent that approximate
me thods must be used for both the initial and final states.
S.C.F.—LLC.A.O.—M.O. wave functions are found most
convenient for the bourd states and analytic expressions
for these M.0.'s are derived for the case of Slater type
A.0.'s, using prolatelspheroidal co-ordinates. Tor the

first attempt at calculations of the cross sections,



Flannery and Opik's final state model is chosen by
analogy with Coulomb waves which are a first approximation

for atomic calculations.

The first parts of Chapter 4 are concerned with the
evaluation of the electronic matrix elements with the
initial and final states of Chapters 2 amd 3. In the
final part, a calculation of the cross section using
plane wave final states is prgsented for a Tt} electron,
this approach not being pursued in subsequent ngmerical

work.

The results of the calculations for fixed nuwcleil
reveal several interesting features. Bach bound state
orbital type has a characteristic cross section curve and
this is explained.’ . In the high energy behaviour of the
cross sections for NT} and 3Q} orbitals, we observe
peaks which are interpreted as the basis of Cohen and
Fano's "shoulder" effect. We also incorporate changes
in the parameters for JI M.0.'s and also in the amount of

hybridization for 0" M.0.'s and discuss their effects,

The inclusion of the vibrational eigenstates is

considered necessary in the evaluation of the cross



sections near threshold and in Chapter 6 we develop

formulae for the cross section using the Franck-~Condon
factor approximation. Comparigson with experiment reveals
that our approach is reliable for the /7Ty, My and 303
orbitals of N2 and O2 (if occupied). For the transitions
to 02+(th'ﬁ;, A‘m.) an anomalous effect is fourd near
threshold but for all ?-0} and 20% orbitals, the model meets
with a radical failure which is discussed in detail. Before
the total cross sections for N2 and O2 are discussed, we
investigate the validity of the Franck-Condon factor
approximation in the case of photo-ionization of the lﬂ}
electron (of zero kinetic energy) in 02. We find the
variation of the electronic transition moment with inter-

nuc lear separation amd reach the conclusion that the Franck-

Condon factor approximation is valid to within a few percent.

In Chapter 7 we evaluate the electronic ma trix elements
for the 21 electron of nitric oxide. We fird that much
computational work can be avoided with an approximate

approach which proves reliable near threshold.

Finally in Chapter 8, general conclusions are given
with a discussion of possible methods for further work

in this field.
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{TRODUC'ION,

1.1, JHIRRACTIONS OF PHOTONS WITH ROUND RLECTRONIC SYSTEMS.

A bound system of electrons in an atom may interact
with photons in a variety of distinct ways. A photon of
frequency “Vha can be gpontaneously emitted when a transition
ocours between two discrete levels of energies F, and Fas
where Vo =2 (E"“ EE , or photon emiszsion can be
induced by an external radiation field. The presence
of an external field may also give rise to absorption of a
photon with a transition from a lower to a higher electronic
state. If the incident radiation is of sufficiently short
wavelength, tle atom can absorb the photon and an electron
may be ejected, in which case a transition to the continuum

of pogitive energy states occurs. This phenomenon is

called photo-ionigzation and the kinetic energy g€ of the

ejected electron is given by the Hinstein relation.
= ¢{VP'“ £;C (1)
where ¥~ is the frequency of the incident quanta and E. is

the ionization potential of the initial electronic state.

For a molecular system the above remarks also apply

except that the bound states available then consist of a
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gseries of vibrational and rotational eigenstates
superimposed on the electronic states. Thus the spectra
of molecules have many features not found in those of atoms.

Further, the absorption of a photon can mroduce dissociation

of a molecule into one or more of its atomic components so
that the total absorption coefficient has this additional
contribution. Thus photons of sufficient energy to produce
ionization can also produce dissociation and experimentalists
have the additional task of determining the relative
contributions of photo-ionization and dissociation from

the total measured absorbtion coefficients,

There is one other important process that incident
photons can produce. The photén energy may be sufficient
to promote an inner shell electron to a higher energy state
i.e. a bound-bound transition may occur. The final state of
this transition may be in the continuum relativento the
jonization potential of a less negative stationary state.

This enhances the probability of an electron spontaneously -~

or auto-ionizing. Thus the continuous absorption spectra
of atoms may be characterized by a number of autoionization
lines, For molecules the corresponding process is called

pre-ionization.



) 3.
1.2 TIUR DEPEUDENT PERTURBATTON THEORY. FORMULAR

FOR_PHOTQIONIZATION GROSS_ SFCTIONS.

The expression for the photoionization cross sectic()n )
1,2
for a bound system can be deduced by quantum_electrodynamicg

or by the methed of time dependent perturbation theou(3’4).

In the latter approach the perturbation which ensures a
finite probability for a transition from a bourd state of
negative energy eigenvalue to a state belonging to the
continuum of positive energy states is the vector potential
A(x,t) of the radiation field, providing Rv > Ei 3
Letting the unperturbed Hamiltonian Ho have eigenstates

according to the Schrodinger equation

HOW»': E\% (1.2)

where [f; (< O) are the eigenvalues of the energy, and
then considering the perturbed Hamiltonian H=He+ H'®, we
can write down the time dependent Schrodinger equation

satisfied by the wave solutions "I/ of the whole sysi:em,

C'L 2 = o !
A 3% [ Ho+ H(e)]}# (1.3)

as an expansion in terms of the stationary states %((:) =

- LERE
% e ek of the undisturbed system, with time dependent
coefficients. Following the method amd notation of Schiff(z)

it can be readily shown that the differential cross section
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for photo-ionization is,
- -ik.r by :
Q’r(e°9¢o)= . K.M‘g"m" fe - ‘f t}{\t{f‘ (1 4)
GTI‘CT{ 77 g
where € = electronic charge,f = P/ﬂﬂc , 'a/’n = (Eﬁ—EA)/# "
<¢J* = angular frequency of radiation, m = electronic ma-é_‘s;g,
In derivirg (1 .4) the average has been taken over the
polarization directions of the incident radiation. Two

assunptions have been made, namely that the final states

can be represented by momentum eigsnstates e 4 T )

and that the wavelength A of the incident radiation is
sufficiently greater than the dimensions of the atomic or
molecular system involved in the process to render the

. ck.t 3 :
approximation € ~ | a valid one, X being the

propagation vector of the radj.ation. This latter
approximation is known as the dipole approximation because
it leads to the evaluation of the dipole length matrix

elements (ef) In ° Integration of (1.4) over gll

(9,, ¢°) yields a formula for the total cross section

(5)

which is essentially that quoted by Bates ’

o) = 32Time Z('wr)lfl;/ +(/';¢h:} (1.5)
ERE

where U~ is the velocity of the ejected photo-electron,



V*’,c being the more general final state wave function.
(1)is

The formula derived in Quantum Electrodynamics

ugually written f
— %
o) = STwet / f v dt‘ (1.6)
3c

the different factors outside the matrix elements being
due to the different normalization conditions, Freom -
gquation (1.6) we obtain the formula which is most suitable

for calculations; $

0(e) = 4w oA (Ec+€ "’ U, + 4 )" (1.7)
3 ( )%— J‘Vci/f T

i

where X = fine structure constant, & = Bohr radius and
E:, € are both measured in units of L4, the first
jonization potential of atomic hydrogen (= 13-595 eV) .

Evaluating the constant factors in (1.7) gives the result

G) = 2:687x (Ev +€)x

x ; U%fwa

—

2
X 10 om.

(1.8).

In formula (1 .7) the normalization conditiens for the bound

states l)l{ and the continuun states (.//.,6 are respectively

[V dt =1 (1.9)

and



f@(flli')%(fli‘)if= sle-¢7) (1.10)

The application of (1.9) to the various bound states
appropriate to the problems to be treated in this work,
will be discussed in Appendix 1l; that of,(1.10) will be

discussed in Ch.3.

There are two other forms which the matrix elements

in (1.6) may take. These are known as the dipole velocity

and dipole acceleration forms and the usefulness of having

(6)

these alternatives was pointed out by Chandrasekhar .

To derive the dipole velocity form we utilize the

standard relations

(‘ﬂ;ﬁf@f%dr = (mec)"(;e),q (1.11)

and p—>-ih ¥ (1.12)

whence the result follows,
(t)s =-4€[mwﬁ)”f@§2’% dT (1.13).

The dipole acceleration form follows by using the reldtions
E— (R (1.14)
and B = [GEIVYAT (1.15)

whereupon the final result is

() = -(MWZ)"/ T VY de  (1.16)



Congidering the dipole acceleration form, it is clear

that the quantity %{V’ will become less appreciable at

large distances from the bound sygtem so this form relies
most heavily on an accurate knowledge of y& and V? at
small values of the radial co-ordinate r. Similarly, it
can be argued that by virtue of the factor r , the dipole
length form requires an accurate knowledge of. the initial and
final state wave functions at large values of r. The dipole
velocity form, by virtue of the factor g% depends for its
evaluation more on the values of QQ and %? at intermediate
values of T Thus the choice of which of the three
equivalent forms of the matrix elements to use for a
photoionization calculation on a given system depends on the
relaéive accuracies of one's knowledge of the state functions
concerned at the various distances from the centre of mass,.
In our treatments of N2 and O2 we adopt the dipole length
form of the matrix elements for reasons which wiil become
apparent in Ch. 3, where the final state waves are presented

and discussed.
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1.3. MANY PARTICLE WAVE FUNCTIONS AND THE ONE

BLECTRON_APPROXIMATION.

In a full treatment of photo-ionization of an N -
electron system, one should use an antisymmetric product
vave function q? of the Slater determinant type, in

sccordance with the Pauli exclusion principle;

A BT €
Bla o= (NE [ U - BB (1.17)

V)~ - Vo)

where the ?Q (CZ:thn-NQ are one particle wave functions,

appropriately normalized. If we denote the initial and final
nmany particle state functions by q?L and l{# , then the

appropriate dipole length matrix elements to evaluate are

M{L f j“-j (*v ‘f'.. ...fu X
(1.18),

N [Z;lb’“} l:yc("ﬁ',ﬁ»---l’w) “(-f‘dfl"'ifw

We wish to show that this many-particle matrix element can

be written as a one electron transition integral multiplied

by a numerigal distortion factor. To this end we write our

initial state determinantal function as
P (4,200 2) =

(n1)*t T PaIMEHG)- ey



and our final state function as

P (8,0 1) =
N ZO S @AC- B Al 120

where Z: a..b..c..d represents the sum over &ll
permutat:'.ons of 1,2,...N, t—-)’ is + 1 if a permutation is
even and is - 1 if it is odd. - Further, W, “,--- %

are ‘the individq;a;]; bO}md orbitals in the system before
ionization; ¢,,¢z’. . ¢~ are the corresponding bound

state orbitals in the final system, and generally % and
¢J (j#) have the same set of quantum numbers (n, €, my, Ms) .
In (1.19) (.//,: is the bound state orbital which is not present
in the final state and in (1.20), ¢.,C represents the one
particle continuum wave function for' the ejected electron.

We notice that ‘//L and 9'.;' being,eigenstates of. the same
hamiltonian of different energy eigenvalues, must be
orthogonal, so that ffé'f;z/‘ Jf =0 . Furthermore,

we require that |

fﬁﬁ l,l/eir= 6155‘46,('&#1[, f#i) (1.21)

and this defines the factors‘cfl o We now use the notation
of alternation, used by Roothaan(7), whereby the quantities
in (1.17) are written (n! )J: (//‘ ' (ﬂ_l. .. l}/~”3 . Then from

(1.18) we obtain
Mg = (N'!>J"’f¢'m¢:"¢4E-¢~"3 X (1.22)
<[]yl b
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which, on invoking Roothaan's relation for an operator
which acts symmetrically on all superscripts of an anti-

gymmetric product wave function, can be written

fo‘"J}’é(f)@?(z)---¢,¢{_£)...§z}v(~) [érﬁ] x

(Y ‘ NJ
X S‘/‘ ({4,,,5[/‘\-»% dT“"itN (1.23).

Using the relation of alternation to the determinantal

wave function we obtain,

j¢m¢ @ Fe(0) - P @[;; ] x

(1.24).
. SEPR@UE). . Y () YT
P

Let

- Mi (1.25)
sl
where fﬂ{gk is the dipole length matrix element for the

l.

fA -th electron, Then

ML= FZ(-)'/...‘(;?,(',);»‘(L) o B Bu(W) T =

(1.26).
~ W@ U®) -~ Yl Y () dT - - dTa
Suppose 4 = i and further that {1 2..1..N}${a b ..c..d);
then at least one electron is in orthogonal initial and final
bound states.and all such terms vanish. Thus the only

contribution is 7

f' ) JSZI(’);é;(l)--¢f((-)-»¢~(~)r" 9/[(/)([{ (z).,M-[(‘}. . %(N)dt’-rvdr”




1

= dydyeodivgdier - du [5}(;}1 Vs () Ao
(1.27).

Consider now the case/lL ;é i. The result is then
Ser f...j;'b,(o@&}"f el Pl <
P

x Yl Yt) <o Wil - PulWdT oo dT (q,28),

Then terms with {1 2..i..N}$— {a b..c..d} vanish because
at least one electron is in orthogonal initial ard final
bound s tates and that with {1 2..i.,N} = {a b..c..d}
also vanishes by the orthogonality of % and ﬁ,& o

Thus we can write, from (1.27),

(16T = | (Fer pede]”

(1.29)
vhich is the required result. Providing the initial and
final one-electron bound states are not very mch different,
each dzyl so that D=/ and the cross sectién for the process
can be found once the one-electron wave functions 5514 and

V‘: are known,
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1.,4. ATOMIC PHOTO-IONIZATION CROSS SECTIONS.

Since 1927 the quantum mechanical calculation of
photo-ionization cross sections for many atoms and atomic
ions have been performed by one or more methods._ Surveys
of the progress made at different times have been made by
Bates(B), Ditchburn and bpik(g), and Marr(1o). The o#ly
system that can be treated exactly is atomic hydrogen where
there exist analytic expressions for the bound state

functions and the well known Coulomb scattered waves expanded

(Messiah's notation(11)), thus

o =" Z G TROIR) (5

for the continuum waves. Although the experimental result

o (12
is only known at 850-64 ( ), the value lies precisely on the

(13)

theoretical curve. Furthermore, the calculations of the
photo-ionization cross section of 13 electrons have not been
restricted to non relativistic energies. See for instance

the work of Erber(14)who employed exact Dirac wave functions

for the bound and free states.

Turning our attention to sysf%ms which contain more
than one bournd electron, we recall that in section 1.3 it
was indicated that in such cases sufficiently accurate
calculations could be performed if reliable one electron

/
wave functions could be found for the photo-electron’s
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initiél and final states. The best first approximation,
which has the advantage of an analytic formulation, is to

(15'16)f0r the bound states

use Slater type atomic orbitals
and ordinary Coulomb scattered waves, as given by (1.30) for
the final states. Such a calculation was performed by

Bates(17)who wrote the bound state radial wave function as

i _ 4 £~ (5,6¢
Rn’e(*)n,;?é (s, E)ve - (1.31)

and ad justed the values of the coefficients G(éﬂé) go that

£1g(+> was a goqd approximation to the corresponding
function calculated by the Hartrees using the self congistent
field method.(18) It can be seen that substituting (1.31) and
(1,30) in (1.29) will give rise to contributing radial

transition integrals whose form is
o8

J‘f"e'c”r. |(‘:‘n£’3°¢)‘£"' (1.32).

An integral of this type yields an analytic result, due to

(19)

Burhop

_}1;’;:‘ oF (e pti ;65 ¢/y)
Y (1.33)

where ,F, and ,F, are the confluent hypergeome tric function
and the hypergeometric function respectively. Generally, due
to the dipole selection rule for the angular momentum quantum

number

Al =+ | (1.34)
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there are two finsl state waves which contribute. The
exception of course is a bound s- state which gives rise

only to F%continuum waves, The above m2thod was applied

+ +
by Bates<17)to the ions C+, N+, 0+, r, Ne+, Na and to

neutral Be, This work supplemented his previous work(S)
where the neutral atoms3B,C,N,07F,Ne had been treated but

self consistent field radial bound state functions were
enployed and a continuvm function calculated from the sclf
consistent potential for the case of oxygen. It is
interesting to compare the results obtained for the individual
gystens, For Be the cross section¢diminiSheS rapidly from
its value at the spectral head (E'=()) and the rate of deccline
decreases as Z (atomic number) inc reases until Z=7 (Hitrogen);
for Z->'7 the cross section increases from threshold, the rate
of increase itself increasing until 2=10 (Neon). The
explanation of the differences in behaviour near threshold
lies in the relative ﬁlacement of the nodes of the continuum
functions with respect to the regions where the bound state
functions atfain their maximum or minimum values. Such an
explanation will not be enlarged upon here, the reader being

referred to the relevant papers by Bates(5'8'17),

w ¥ " The term cross section will hereafter mean
photo~ionization cross section unless stated

otherwise,
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lost attempts at reliable calculations on atomic systens
have cmployed bound and free wave functions calculated by
the self congistent field method, originally introduced by

(21’22)on atonic

Hartrce(zo)and expounded in several texts
rhyaics. In the calculations of atomic spectra, it is
essential to f£ind the bound wave functions; if this is

done by the Hartrece mzthod then the reaulting self consistent
potentials can be used in the Schrodinger equation for the
continuum eigenfunctions and hence the dipole length matrix
elements can be calculatecd numorically. However, results
obtained by such metheds may not be accurate unless

exchenge effects are taken into account, This was made
clear by the two sets of results of Bates and Massey(23),

who found the cross sections for Ca and cat with and without
the inclusion of exchange terms in the radial equations.-

The effect of exchange was to make the nodes of the free

radial wave functions occur at smaller radial distances.

Thus if the chances of cancellation in the transition integrals
are high, then exchange can have a radical effect on the cross
gection versus energy curve. More recent work, when aimed

at as accurate results as possible within the central field
framework at non relativistic energiles, has thus uged the

Hartree~Fock form of the wave equations which include the

exchange integrals. See for instance the calculationa of
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Bates and Seaton(24)on ¢, N, O at the 'spectral head and

(25). _

thogs of Dalgarno et al for O at energies from
throshold to photon wavelengths of 252 (and therefore
including the photcejection of the inner shell electrona,

excaept 13).

Refore discussing recent works which have aimed at
treating a large number of atomic gystems in an approximate
fashion, we mention two other refinements in the wave functions
uzed in special cases. These make allowance for the
prilorization of the core electrons and the non-goparability
of the core electron functions together with the inclusion of
corralation tewss in the bound states. Only one calculation

jneluding each of these is known to the author,.

Bates(zs)included in the wave equation for the continuum

functiong for potassium an attractive potential

V() =3 (P/GrepY) (1.35)
where P is the polarizability (in em®) , and P 1is the
core radius, This potential represents the influence of
the electric dipole induced in the core by the ejected
electron on the force field in which the latter moves. As
mentioned above, inclusion of exchange terms tends to pull in
the continuum functions so in a sense including the potential

(1.35) compensates for the neglect of exchange.



17

Values of P for atoms and their ions can be obtained

theoretically and experimentally by many methods, as

(27)

indicated in the comprehensive work of Dalgarno

(28)

previously by Buckingham . However, because the

, and

experinental curve for the potassium cross section showed

(29),

a distinct minimum near threshold indicating that
cancellation effects would be so important that small errors
in either the initial or final state functions could lead

to drastic changes in the results, Bates chose to treat P

as a parameter., The effects of varying P from O to

2 X 10“24cm3 were investigated and the value at which

theory best agreced with experiment was found to be

-24cm3

16 X 10 B That this was higher than the independent

result of Buckingham was attributed to the neglect of

exchange .

(30)

Turning to Tait's calculation on the 2s electron of

lithium we see the only attempt to take account of electron

correlation. For the initial state the wave function of

(31)

James and Coolidge , a 17 term function depending on

ot and r3 and also the inter-electron distances Ty ete,

was used. For the final state the ion + free electron

Y., T
13

func tions were written
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S?}f(ﬁ,ﬁ_’f}) = (1.36)
LY (5, 2) )+ W e, U G - b O, 5 ()]

where y{ is the core function and gg is that of the free

electron, so that the separability of the core electron

func tions is not assum=d. No electiron correlation terms

riﬁ are included in (1.36).

(32)

Celtman had found such terms made a negligible
difference to the cross section of H_, and correlation
effects should be even lesg important in the more compact

Li atom, Tait used both the dipole length and dipole
velocity forms of ths matrix elements (cf. section 1.3) and
found that the length calculations gave better agrecement with

(33)

the experimental crogs sections of Marr , indicating that
the wave functions employed were less accurate at intermediate

values of re

T™vwo facts that have probably become apparent by now are-
that in seeking an accurate determination of the cross section
curve for:a given system, there is a large amount of computational
labour involved and that each system presents its own special
difficulties, Furthermore, it is almost too great a task to
work in a completely rigorous framework and include all
possible refinerents in the wave functions, a summary of

which is given at the end of this section. Owing to



19

this state of affairs som theorists have aimed at less
accuracy and sought application to a greater number of

(34)and Burgess and

systems, Such are the methods of Cooper
Seaton(BS), whose work will now be briefly described . before
we discuss the less investigated field of molecular

calculations.

Cooper has calculated cross section curves for
He, Ne, Ar, Kr, HNa, cut and Ag+. The “unrelaxed ionie
cora" assumption was made so that the distortion factor
D in (1.29 ) was assumsd equal to unity. Further, the

radial transition integrals

B ;
Reer = [ Re@reRan®de (.
ware evaluated by using bound orbitals Fil satisfying

the radial Hartree-Fock equation.

[gz_‘ ¢ Gugl) + 6.4 - 20241 ]gﬁxhl (1.38)
ol+* .

where G‘hg is the potential and A,¢ represents the exch}ange
terms, with continuum orbitals satisfying tle same radial
equation but with E}e replaced by € B the positive energy
of the free electron. The results were in fair agreement
with experiment but somewhat surprising was the agreement to

within 10% of the length, velocity and acceleration
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results, for He, Ne, Cu+. However, the bound state functions
"have no nodes and hence, at relatively low electron energies,
there is no strong cancellation in the trunéition integrals.
This however, is in icontrast with the apparently more

(30)

accurate above mentioned calculations of Tait on lithium,
where the length and velocity results differed by a factor

of almost 2. Burgess and Seaton used the quantum defect

method (QDM) to calculate cross sections for He, Li, Na,
wgt, si*, k, ca*, 0, 0", 0" and 0" for transitions

involving s, p and d electroms. QDM is based on the

(36)

ideas of Bates and Damgaard for calculations on bound-

bound transition probabilities. The major contributions
to transition integrals ch'r?Rfd'c , which arise in the
dipole length form for oscillator strengths may come from
large valuea of r. At such values the accurate Hartree-

Fock potential reaches its asymptotic form ~~ 2Z/r and the

radial wave functions for positive energy have réached their

’

asymptotic form which can be written

By ~ (A o # ¥z ResogfHDE (1 5
+—yco + 5(€) .

where 3(6) is the phase shift with respect to ordinary
(37)

Coulomb waves., Following Seaton the effective
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quantum number ¥5f of an energy level T2 is defined by

n bt K‘Zz .1 *
Tne /e (1.40)

whers R is the Rydberg constant, Z = +the residual charge
on the ion after the removal of the electron. Conmparing
this with the energy level of the corresponding hydrogenic

gystem leads to the natural definition of the guantum defect

Jint = =R (1.41) .

As 4L increases for a given £ , the energy levels of a given
sories become closer spaced until at N = <0 the spectral
head is attained. It had been shown previously by Seaton(38)
that at such an energy the phase shift S(b) was given by
Mot . In general §(&)= 7Eﬁ¢ag and the values of
the quantum defects are obtained by extrapolating from known
values of M€  for discrete levels. With this
technique for finding the asymptotic form for the continuun
functioﬁs, Burgess and Seaton derived general formulae for
the cross sections but these are too lengthy to ?F displayed
here. In general, thé results compare favourably with those
obtained with Hartree-Fock wave functions but in cases where

comparison with experiment is possible, the results are as

often as not in disagreement with measured values,
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The discussion in this section of calculations of
atomic cross sections-has served a useful purpose, we hope,
in that knowledge of the difficulties and relative
importances Bf the different approximations used may help
in estimating the important factors in calculations on
molecular cross sections. We now give a list of the factors

which may or may not be important in a particular calculation,

most of which have already been discussed in some detail.

(1) Relativistic effccts - negligible at low energies.
(11) Separability of the many electron wave functions

into products of one electron functions.
Probably not a significant source of error,

(111) Electron correlation - may be large near threshold,

especially for loosely bound electrons.

(1V) Exchange - may be large near threshold, especially
in heavierr systenms. =

(V) Dipole approximation - should be valid for photon

wavelengths )~ 25A .

(v1) Core distortion - possible error ~ 10%.
(v11) Polarizability of the core - may be very important

for senaitive cases e.g. K.

(V111) Configuration interaction ~ not yet investigated -

only important for non clogsed shells,
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(1X) Pransitions to excited states of the ion - not

investigated. Could be appreciable,
(x) Auto-ionization - can be very important at and

near specific energies.

Finally, it is worth pointing out that the published method
(39)

and results of Herman and Skillman on caléulations of
potential functions and normalized radial waves for atoms
by the Hartree-Fock-Slater method should make it possible to
estimate, fairly reliably, by a method such as that of

Cooper(34)the cross section for any known atomic system.
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1.5. DPREVIOUS WORK ON MOLKCULES.

Cross sections for molecular systems have not
enjoyed the same attention as atoms and their ions.
This is surprising if one realizes the importance of
absorption by molecules, chiefly Né and 02, in upper
atmosphere studies, and of gases such as NO, which is used
in ion chambers for roéket experimeﬁts o; absorption of
solar radiatiqn by O2 s0 that the gas density as a function
of altitude can be found. There have been many
laboratory studies of absorption by the above gases
(ses Ch. 6) as well as certain polyatomic molecules such

as NH H20, and CH,. The discrepancy between the advances

3’ 4

of the theoretical end experimental studies is due to the
difficulty at present in finding suitable one electron
wave functions for bound and free molecular orbitals in all

.cases except the H2+ ion. The first system studied in

(40)

detail was thus H + as reported by Bates et al The

2
bound state functions for this system had been given by

Bates et a1(41)in an earlier paper where the Schrodinger

equation for the electronic motion was solved in‘prolate

spheroidal co~ordinates, Writing the total wave function as

-

P O =AM PP (1.42)
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with  Am(hehdR, p= Gi-n)/R, &= azimuthal  (1.43)
angle where T, ard r, are the distances of the electron
from the protons amd R is the inter-proton distance, the
golutions for N and @ can be obtained (see Ch. 3)

analytically. The bound state "radial"* func tions can

be written in the form

AQ = G- ) e y0)

(1.44)
after Jaffe(42). . For the continuum waves M and @ can
again be written down but the radial functions must be

: . (40)_, ..
obtained numerically. (See Ch. 3). Bates et al studied

in detail the cross section for the process in which R i's
fixed at 24, while the energy of the electron, e,varies,

and they also considered the effects of different values

of R for the case €& = O. In these cases the dipole length
matrix elements were regarded as functions of € only and
not of the interproton distance. Transitions from the ISO‘}, N
250} and 350} atates were studied and in all cases the

/b”:» final state waves gave the greatest contributions,
with appreciable cross sections for transitions to ro'w

states only if R is appreciably greater or less than 24,

1 In future, we will refer to func tions of A in prolate

spheroidal co-ordinates as ‘“radial® func tions, without the

use of inverted commas,
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The calculations were extended to include the vibrational
and rotational eigenfunctions and hence necessitated the
evaliiation of the electronic matrix elements as functions
of R, The final state vibrational wave functions were
approximated by ¢ - functions (this me thod beiﬂg due to

(43) (44)

Winens and Stueckélberg : see Herzberg for further
discussion) and trénsitions were considered from the zeroth
vibrational level and the rotational levels J = O, 4, 8,
The cross section for a given J is small near threshold
and rises to a maximum near photon wave numbers of

2.5 X 1OScm_1, after which it decreases steadily as the
energy increases, It will be seen in Ch, 5, that this
behaviour is characteristic for bound state molecular
orbitals of the S0y type. Furthermore, the different
values of J in the initial state give rise to ohly minor
differences in the magnitudes of the cross section at a
given photon energy. N

Dalgarno(45)had treated the case of CH, by approximate

4
me thods. The calculationtwas essentially reduced to an
atomic one because it was assumed that the motion of the

electrons and protons of the H atoms in the tetrahedral

CH, structure could be averaged to give a central potential,

4
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) . 2 2
with the occupation of elecironic subshells (13) ’ (23) ’

(2p)6. The effect of the 4 protons (from the H atoms) on the

self ccnsistent field wave func tions had been found previously by

46)

Buckingham et alg The value obtained for the cross section

at the spectral head, is about twice the experimental value

(47) (48)

reported by Metzger ami Cook and Ditchburn , assuming an

ionization efficiency of 100%.

Two distinct calculations for H2 have appeared, one by

(49)and more recently by Flanﬁery and Opik(so). Shimizu

Shimizu
determined the ratio of concentrations of Bt and H2+, produced by
photon bombardment, as a function of the mixing pa?ameter A in
the synthesis of the 'Zy state written as o3* + Aou’,

vhere q; and Ju are thained as linear combinations of 1s atomic
orbitals. For the final states, momentum eigenfpnctions Ei"'I

were used and compared with waves scattered from two half

R, - It was

elementary positive charges separated by a distance
.found that the Born approximation should be valid at photqn wave=
lengths <20/.\ . No magnitudes for the cross section were obtain-
ed however, but interesting results were given for the dependence

of the relative yields of H" and H," on the parameter A .

2

In contrast with the earlier calculation, that of Flannery
and Opik, was concerned with the near threshold values of the

cross section. The same bound state functions, i.e. those of

(51)

Weinbaum, were employed. Results from threshold to

o
rhoton wavelengths of about 640A
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were found for the case of fixed nuclel, using final state

waves appropriafe to an electron moving in the field of two
half elementary positive charges placed at such a separation
that the quadrupole moment of the system (IqR , with q = %e)
was the same as that of the H2 ion, which had been -

previously given by Bates and'Poots(Sz).

Quantum defects
(see Section 1.4) were estimated for several e;cited states
of H2 but these were not employed in the determination of
the final state radial wave functions. The results were in

| (53)
very good agreement with the experimental results of Wainfain

and Cook and Metzger(54)

over the range of energies considered.
The initial state rotational quantum numbers J = O and

J = 6 were used but again the effects of including rotational
eigenfunctions are small, Furthermore, at a photon wave-
length of 7002, the relative transition probabilities for
different vibrational quantum numbers of the final state

were found with an assumed zeroth lbvel imitial siade (
(Vv=0), For the V=0 vibrational state of H, a series
of harmonic oscillator wave functions was used whereas for
the vibrational states of H2+ the Schrodinger equation for

the eigenfunctions was solved numerically with the previously
determined potential energy function of Bates et a1(41).
The results show a widespread distribution over the final

vibrational states as is expected when the initial and



29

final electronic states have greatly differing equilibrium
internuclear separations (see Ch. 6 for a detailed

/

explanation). . S

To complete our resume of calculations on molecules,
we have yet to discuss the threshold dependence of the
cross sections and the relatively high energy phenomenon
of "shoulders". The first topic was studied by Geltmasssz
chiefly for the photodetachment of negative diatomie
molecular ions. This process is similar to photo-ionization
except that the products are a free electron and a neutral
molecule, The validity of Geltman's assumption that the
energy dependence of the photodetachment cross section is
contained entirely in the quantity ¥R fUI *Uolr/
can be questioned on the following grounds. A photo-
detachment process involves a transition from some initial
molecular ion state for whose complete descriptigh in the

(56)

Born-Oppenheimer approximation one needs\a knowledge of
the 3 eigenfunctions; electronic, vibrational and rotational,
To accurately evaluate the transition probability to even a
8ingle final vibrational state, one must include the
dependence of the transition integrand on the internuclear

separation and the photo-electron's co-ordinates,
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The integrations can be carried out by regarding the
electronic matri; element as a function of R and thep
performing the integration 6ver the latter variable.

An easier treatment is to separate the R and I integrations
altogether.- In this case only vibrational overlap
integrals need be determined and these multiply the above
quantity involving the electronic matrix elements for

each possible combination of initial and final vibratiocnal
states. These points will be enlarged upon in Ch, 6 where
similar problems arise in the case of photo-ionization of
N2 am 02. Geltman's remarks are thus only approximately
true but his results for photodetachmen% are nevertheless
interesting in that they indicate how the cross section .
might depend on the initial state's component of angular
momentum along the internuclear axis and, in the case of

homonuclear diatomic molecules on the symmetry type .

Furthermore, Geltman has claimed that for photo-
ionization of neutral diatomic molecules, the threshold
dependence of the cross section should be of the form

’V'("" C-mﬂ)"'(l +ak +%14';-~~) where /"= frequency
of radiation and k = p/h, independent of the initigl
molecular orbital or the type of molecule, This prediction

can be immediately seen to be false if one considers the
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expression for the cross section; the latter quantity's
dependence on the energy is clearly different for different
types of initial orbital because these will have different «.
radial functions., As the energy increases, the cross.
section may fall or rise or remain almost steady with
resp;ct to its value at the spectral head according to
the cases of diminishing, increasing or steady transition
integrals. This point too will become clearer in Ch., 5

where the results for different bound state molecular -

orbitals in N2 and 02 will be discussed.

The last topic in this section, that of the shoulders
or bumps in the experimental absorption cross sections of
N2 and 02 as foud by Samson and Cairns(57) at photon wave-
lengths of around 2002, was first investigated theoretically

by Cohen and Fano(ss).

They regarded the atoms of
diatomic molecules as independent absorbers of light and
argued that scattered electron waves from each centre

should produce interference effects, Thus the undulations
in the cross sections were explained qualitatively on the
basis of the resulting modulatiqn factor for the net
intensity from the two sources. It was also suggested

on a quantum mechanical basis that since the selection rule

for atoms is no longer valid for an axially symmetric field,
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but rather Al can take any odd value, the transition
probabilities for successively higher 2 final state
waves should increase with increasing energy. Fur ther,
an estimate of the photo-electron energy k2 at which cross
sections for a given£' should become important is obtained
from 2 . [(L{,)l voo

A+ 22fr - LD = (1.45)
where 2 is the effective charge on the ion. To investigate
tentatively their hypotheses Cohen and Fano made an approxim te

calculation for a lSoé, state of H,¥ using a free spherical

2
wave ( r | k1l m) for the calculation of the dipole length
matrix elements. With somewhat crude arguments they

deduced an expression for the total cross section
g(f)=Sop=s 6 [1 + sinAR/(RD]/(149) (1.46)
< .

where O-H is the cross section for a hydrogen like atom,

and S = 46,

Thus the total cross section has the modula tion
factor! + s in k B/(kR) but because Oy (R) is a rapidly
decreasing function, the total cross section should only

show undulations of a small magnitude,
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In response to Cohen and Fano's work, Bates and
have extended their cross sections for H2+ to
electron energies of 16 r&dbergs. The results for the
total cross section decline steadily with no trace of a
shoulder effect at high energies, The partial cross
sections for fo _and Fz-r continuum waves do however
grow from threshold to 1°44 rydbergs whereupon they also
steadily diminish, The effects of the maxima in these
partial cross sections are nevertheless masked in the
overall cross section, because of the dominance of the
steadily decreasing contributions from the ‘bo" and
FTT continuum waves. We will see in Ch., 5 that the

shoulder effect is noticeable in the computed cross sections

far 30';, and HT;, (or IFT;. ) orbitals.

(59)

Finally, we note that Bates aﬁd Opik have also
investigated the cross section for a model complex molecule,
for which they used the same final state waves as for H2+
and initial bound state 35q3, functions appropriate for a
single electron moving in the field of two nuclei separated
by R = 2ay and each carrying a charge +2e. The results
obtained show no discernible shoulder effect due to higher
angular momentum states but a slight bump near threshold as

certain electronic matrix elements pass through zero when

cancellation in the transition integrals is complete.
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CHAPTER 2,

+ +
ELECTRONIC STATES OE N2, N2 5 02, 02

2.1, ELECTRONIC TERMS,

In the Born-Oppenheimer approximation the total wave
function for a molecule is separated into the 3 components
which describe. the electronic motion, and the vibrational

and rotational motions, thus

\Ij(t’g):: %Iec‘\'.(i’f‘\)%"LSR)%‘*(&é) | (2.1)

Wy and Y4 can be regarded as functions of the nuclear
co-ordinates B(K,@,@) only, because of the smallness of
the ratio of the electronic to the nuclear mass. %,“f(t,ﬁ)
can be regarded as depending only parametrically on R »
These topics are discussed in greater detail in Ch. 6 where
the rotational and vibrational eigenstates are taken into
account in the calculation of the ¢ ross sections. Th/is
gection is meant only to define the gpectroscopic notation
for the electronic states, further details of which can be

found in reference 44,

In atoms the (assumed) spherically symmetric
potential renders the angular momentum quantum number A

a "z0ood" quantum number but for diatomic molecules there
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is only axial symmetry about the internuclear axis, so that
only the component of angular momentum along this axis has
an associzted quantum number. Denoting this quahtum
number by A , the electronic statcs are called Z,TT, A,
etc as I = O, 2,.... Further, there is 2 fold degeneracy
when [al 3 0 . To further identify the electronic
state the multiplicity 2S+1 is used, S being the total spin
quantum number, and this is attached as a left superscript
e.g. 32 R :'TT,... . The symmetry of the state under
ipversion in the mid point between the nuclei is usually
attached as a right subscript which will be either g or u
corresponding to total wave func tions which are even or odd
under inversion. It is worth noting that inversion in the
prolate co-ordinates defined in equation (1.43) is equivalent
to the transformations
XX, p s P (2.2),

¥ states are also distinguished by their properties under
reflection in a plane containing: the nuclei. Thus Z+
states are even under such a reflection whereas > “states
are odd. Finally lower and upper case letters are used
for convenience to identify states of different energies.
X denotes the ground state, A, B, C are used for higher

states of same multiplicity.

For N2 and 02 the ground electronic states are X'Z?"
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and X’ZE respectively. If we use "+" and "-" to

represent the 2 spin states for a molecular orbital,
then the electronic configurations of these states are

given in Table 2.1.

TABLE 2,1

ELECTRONIC CONFIGURATIONS OF THE GROUND STATES,
ORBITAL

, CARCAR A A AL AR AL
NAX'ES) |4 8, par 4 Il e 4 i el B 4

STATE
v

01(x32_-a-,) ¥ |+ =|e-le-|+-|4-|+-|+ | +

In the above table lO}, 20%.. etc. represent one
electron spatial wave functions, usually called molecular
orbitals (M.0.), and these togethei- with the spin functions
are molecular spin orbitals (M.s.0.). We will now see
how the initial state wave functions for a given photo-
ionization process in N2 and 02 can be found from the above

electronic configurations.
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2,2, S.C,F, -~ L.C.A.O0. - MOLECULAR ORBITALS.

The starting point for self consistent field/(S.C.F.)
wave functions for the electronic states of molecules is the
determinantal expression (1.17). Each ‘VQ then represents
a one-electron M.S.O. The individual M.S.0's are assumed
to form an orthonormal set and the total wave function

gatisfies the normalization ceendition (1.9), Roothaan(7)
has developed the theory of two approaches to the problem
of determining the best M.0.'s. The better but more

difficult me thod results in the Hartree-Fock M.0.'s while

that which is more amenable’ to computational work finds

the best L.C.A.0., -~ M.0.'s (Linear Combination of atomic

orbitals). In the L.C.A.0. method an orthonormal set of
atomic orbitals ‘X} is used to construct the QQ j
% = %’Xf clu' (2.3)
where the C}c are the L.C.A.0. coefficients. Starting
with (2.3) and (1.17), one asks for the sets of Cf': which
ninimize the electronic energy
E “"IT#‘P““ (2.4)
where Qf ig the total hamiltonian operator
|
G = ZH* v Lt 2 3 (2.5)
z PET
where the HM is the hamiltonian operator for the /~»+Lx

electron consisting of its kinetic energy and potential



energy due to the nuclei only. After setting up the 38
variational equations for §E£=0, the task remains, having

chosen the atomic orbitals, to solve the secular equation

Det (F-£S) =0 (2.6)
where S is the matrix whose elements are defined by
(S = JTp Xyt (2.7)
and for F
(F)yy = jxr Ry X dt (2.8)

where F;r.is the Hartree-Fock hamiltonian operator. The
eigenvalues Ei and the corresponding set of C}i give the
energies of the different orbitals and the optimum L.C.A.O.

coefficients.

Roothasn's treatment of the L.C.A.0. method for closed

shell systems was extended to electronic configurations

(60)

with open shells by Pople and Nesbet N Many calculations
of S.C.F. - L.C.A.0. - M.0.'s for different molecules have
gince appeared in the literature. Those of special interest
here are those of Scherr(61)on N2 and in particular those of
Sahni and Lorenzo(62) who treated several electronic states

A}

* 0. and 0%,

of Ny» N7y 0, 2

2’ B

The formulation of a given M.0. is in terms of a basic

set of primitive symmetry M.0.'s. Those necded in the
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present cases have been given by Scherr:

o}ls = 2"1'(|;a+ 15;) o ;2'§ (1s, - I5,) 1 (2.9)
st s, v2g)  GLs=2t2se-28) (50
Grp= 2t lprap)  OpsMep )
Ty 2p, =27 E (2pn, = 2p ) Taop,= 25 (2p, +2p,) (2.12)
oy=2Cpzan)  TapediGprap)

where 1sa represents a 1s atomic orbital on centre a etec.
and the axes Za and Zb lie along the internuclear axis and

have their positive directions towards one another.

The normalized orbitals used are of the real Slater type:

IS = (‘3,3/11’){-@'3'* (2.14)
.3
25%= (553 v (2.15)
* o £ ‘;:,~ =%t si:n.ecmy!
ZP{Z < (e ¥ {smomp (g

except that the 2s* orbital is usually replaced by a 2s

function which is orthogonal and has a node:
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26 o (1= 527 tl2s? 51“37] (2.17)

where Si £ (18‘28*) is the monortclear ovexrlap integral
which can easily be shown to be
Ciolzs®) = 24850 (29, /3)5/¢ 3« ) (2.18).

The values of the orbital exponents 3; and §; obtained
(15)are

from Slaters rules

§,= TeT, ‘3‘:1: 2275 for 0 and
S =67, § =1:95 for N,

From the primitive M.0.'s defined in (2.9)?(2.13)
the wave function for a given M.0. is constructed by (2.3)
with the restriction that each primitive so used has the
same symmetry. Complete mixing within an L.C.A.0. - M.O.
class is allowed so that, for example, the 3(%} M.0. consists

of a combination of }S0:. 250% and 2p, 03 primitive orbitals.
A 2 F

For closed shell gtructures such as NZ' the spatial

parts of the M.S.0.'s for a given M.0. are the same and there
is a 2-fold degeneracy in the energy eigenvalues for such

states. = For an open shell structure such as 02 there is

no such degeneracy and in general the M.S5.0.'s for a given
M.0. type have different spatial wave functions (except for

the case of an M.0. containing only one kind of primitive
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H.0. in which case the spatial function is completely
determined by the normalization condition to unit total
probability density, whether or not the system is the closed
or open shell type). Sahni and Lorenzo performed two sets
of calculations for O, ( >(3§:§ ). In their restricted
treatment the spatial parts of the M.S.0. pairs for a given

M.0. were identical, whereas in their gpin polarizged

treatment 2 sets of secular equations were solved, one for
each spin set. Ve have chosen to use the results of their
restricted treatment and this choice has one notable
consequence. The electronic matrix elements in (1.29) for
two M.S.0.'s of the same shell are then the same at a given
kinetic energy of the ejected electron, For transitions
involving such M.S.0.'s the only difference in the martial
cross section curves will then be due to the difference in
jonization energies between the 2 processes. Since such
differences are only of th; order of a few eV, and the
ionization potentials are of order 12-40eV, the partial

cross section curves will differ bnly slightly (see Ch.5).

In our calculations we have adopted the L.C.A.0. - M.0.'s
of Sahni and Lorenzo as the one electron initial state wave

func tions. The coefficients of (2.3.) which result from the

solution of (2.6) are thus basic input data for our
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e

~20+6305
-1+53986
-0°5965
~20+6311
-1-0820
-0-6965
-0°+3969
~0+6965

-0°3969

£

205097
14750
~0°5259

~20°599%
-0+8862

-0°4227

~*4227

A.  L.C.A.0.=M.0,'s FOR O, (X¥Zg) FROM THE RESTRICTED

resmsnt, (62)

qéxn L.C.A;dt* "

:65 +0=§§96(6}fs) +0°o1;%20}25) *O'Oooz&ﬁé;;;

20, | -0+0410(03ts) |+0-8054(0y2s) |+0-2153(e32p,)

303,|+0-0206(0y 15) |+0-4232(0328) | -0°8745(033p2)

[0, | +1-0006( 05 ts) [+0-0204(0%2s) |+0-0065(T 2p,)

20| +00033(0,18 ) |+1°0798(0725) [-0-2010(c2yp, )

1T, | +0*9340(TT,x )

H5+P%M(%x)

(M| +0+9340( Tay)

rﬁ} +1-0824( Ty 4)

% In units of IH'

il




L.C.A.0.-M.0.'s FOR N, (}(fEf*).(sz)
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—O°0815(O}ls)
~0°0430(T3)5)
+1+0025( @, 15)
~0+0106( gy )5)

+0+8831 ( TTux)

+0-88%1( m))

L.C.A.0, £:
i;;;oi16(o}zs) +0'0026(c3;P2) -15+7219
+0°6723(032) | +0-3391(0ppe) | ~1-4527
~0+5589(25) | 08551 (02ps) | -0-5446
+0-0272( Gas) |+0-0121(0%zyp,) | -15-7197

.
-1-0207(0y2s) | +0-3759(0w2p,) | -0°7306
-0-5797
-0+5797
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2.3 PHOTO-IONIZATION PROCESSES FROX 0, (X*Za) anp N, (X'ZaF)
C ; 9

2
., FOR FIXED NUCLEI.

v
Ionization potentials for molecular or atomic systems

can be foumd by electron impact or photon bombardment
expariments, At incident particle energies of 12°08 ef

and 15°6 eV for 0, (x3}:§) and N, (X'Z;,)' respectively

the most loosely bound eléctrons, which occupy the Iﬂ}(ouff;)
and /7. (& |7 orbitals, may be ejected according. -

to the general scheme

-

M, + Ay —> r’I,_* + € (2.19).

The thesholds for disscciation are at 3°65 eV and 9-75 eV

respectively so that the continvous absorption coefficient

ig finite at lower photon energies. Measurement of ion
chamber currents, however enables the absorption due to
ionization to be found, despite these competing processes.
We expect that photo-ionization would take precedence

over dissociation and dissociative ionization above the
1st ionization potentials on account of the smallness of
the ratio of thz dlectronic to the nuclear mass,. This makes
it difficult to understand why the ionization efficiencies,
Yi’ defined by

photo-ionization croas section (2.20)

D G R S e I C L Y P S g 00

e total absorption cross section
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are relatively small well above the 1lst ionization potentials
of 0, and N2 (see for instance the experimental results of Cook

2
and Metzger(63)).

Further discussion on this and similar
questions will, however, be postponed until Ch.6. As the photon
energy is increased above the 1st ionization potentials, other
states of the ions Hé+ become accessible when the ionization
potentials for the inner orbitals are attained. ' Many
dissociative and pre-ionizing téansitions also become possible
but it is not our purpose here to investigate their absorption
cross sections, In table 2.3 are displayed the possible

final electronic states resulting from the ejection of a single
electron from the various orbitals in N, (X'Z}*) and O, (X?ZJ')
together with their corresponding appearance thresholds. We

ignore photo-ionization from the inner most orbitals, |Cﬂ}

and 10w. , from which photo-ejection only occurs for A < 30A .
It is worth noting that many of the excited states of 02 and

N2+ shown in Table 2.3 have not been experimentally identified.
Most of these therefore carry a "?" alongside thei;\term
designations. The ionization potentials for such states are

thus subject to considerable uncertainty as they are obtained

by using the relation
E(§°) E(@ ) (2.21)

t The same symbol A is used for photon wavelength and the
prolate spheroidal co-ordinate (r1 + r2)/R. but the context

should make it clear which use is intended.
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where E(@o) and E(@:) are the energies obtained from

the S.C.F.~L.C.A.0.-M.0. method for the ground state of

M2 and a particular state of M2+.

For all transitions from N, to N * there are degenerate

2 2
initial states, For the process
NJX'ZS) + Av —> NP(A'TL) + & (2.22)

there is a 4-fold degeneracy as each M.S5.0. connected with
the spatial orbitals I, and lﬁ;_ has the same energy.
For all other processes in N2 the order of degeneracy

is 2, We follow Bates(B) and assume that the total cross
section for such processes as (2.22) are obtained by
multiplying the cross section for one electron by the order

of degeneracy, 4,
: ol

Tput = ‘2__-—' o (2.23).
Similarly for the process |
0,(05) + hr —> QXTI +E
(2.24)
the one electron cross section is multiplied by 2 as the
orbitals HT'g‘ and l'ﬁ'} have the same energies. For
transitions to 0," (A*Mand 0,"( a*TTw) a factor of 2

must also be employed but for all other processes in 02

no multiplicative factors are needed.
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TABLE 2.3

ELECTRONIC STATES OF N2+ AND 02+-,

oy STATE THRESHOLD MOLECULAR ORBITAL
Ha eV A (R) VACATED ( () IN M,
AR
AT, 167 742 i, ot 1T,
&St 18°8 661 20,
[ 39:-5% | 314 203
Q;' X'y | 1291 1025 1Ty, ot 17Ty
a* T, 1621 770 (Tr ok 1T,
AT 169 34 P, or 1TV
g,*z; 1842 681 30}
?123‘ 20°3 611 30}
sz‘: 245 506 20,
vy 29.47 | 422 200
LAp2Y qo-1¥ | 309 20,
1Ig 43.5F| 285 20,

1

Data obtained from self corésistent field calculations of
2

Sahni and Lorenzo (1965).(

from the potential energy curves of Gilmore (1965).(64)

The remaining data were taken
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2.4 EXPRESSIONS FOR BOUND STATE M.0. WAVE FUNCTIONS IN

PROLATE_SPHEROIDAL CO-ORDINATES,.

! In table 2.2 we have given the L.C.A.O.—M.O.'s'for

0, <§{3>:£) and N, (X.Z;') . For a given photo-ionization
process we take the appropriate one electron initial state
wave function ({!‘. to be the molecular spin orbital which is
occupied in the molecule and vacated in the ion. Thus for
the process (2.22), for example, (j/‘- is the wave function for
the orbital /7w or I o In order to compgte the
cross sections, we find it convenient to work in prolate
spheroidal co-ordinates. We now deduce expressions for
each basic orbital type TTy ,7"']} , The ﬁw, 03 and O

in these co-ordinates. The 3 sets of axes involved, one
on each nucleus and one at the C.0.M. are shown in figure
2.1 (c.t. Scherr(61)).

FIG, 2,1

CO-ORDINATE SYSTEMS IN THE ATOMS AND MOLECULE,

™ com. 1

"\s 1
wvereusy | f T3 NUCLEUS 2

~
{;\ X, ““'\ % f
, -
f'f \‘\‘4
- - PO Y . = . Z
s ~ Ca
///// - "
Xy

a
s
v
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With this choice of axes we have
w W = ¢ Lizpy = Cpy]

= C [e-?‘f'h sin D) Sinf

ey Sin0, Sing, ]

= Cy [é‘f’;ﬂ/r)(u,«)_ e@sia/z)(A-A]

and since 3’ = (R/2) (N~ I)%(I -/‘t'“}{ S(’m.ld

we have
g, TP (CR/2) (=yH0=pt sin » o
x [e-<3iR/2)>~][e-( SR/M él-(:ﬁR/z),u.]

SN

2 —erR (=TT e T

x Simh (ﬁl/«-) Sing (2.26)

¥ - :
where & = E’,R/Z and C is a normalization constant.

Utilizing the expression
L
x = R2)(O- 1)*(:-—,“‘)*03;6 (2.27)
we sce that the expression for a Tg, orbital is identical

to (2.26) except that St?n;ﬁ is replaced by ca&‘}ﬁ 5

¥ We have previously used the symbol & to represent the
fine structure constant but that use will not occur again

in this part, so no ambiguity should arise,
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Further, that the above expréssion (2.26) has g symnmetry
can be verified by making the transform tions (2.2) and

/

observing that there is no change of sign of y’.: °

For a ITw orbital we have,

'Z () = ¢ (lfw) + 2py,)]

= CR(X"*—I)*’(I—/}‘:)‘Y e f‘%osk@w_)g,:”sg (2.28)

and for a Tl state Stnfis replaced by w;ﬂ .
For the & states the expressions are more complicated because
3 primitive orbitals are involved. Thus for O} states we
let the L.C.A.0. coefficients of table 2.2 be 8,0 85 a3,

for 130'} y 25 0’3, and ZPZO’Q/ primitives respectively

and also write
g St % -5 -5
\§ = ‘&,e » 28 = &e g*, 2F2=£Je +cos@ (2‘29).
We let
¢ = al#‘/\ri » C1=(l—$c‘).%3;az/wfi (2 30)

G=-sTeSa i, 6= GbNT (o

so that
- [ -yl £Y "S’n. =
%(op = (-c3)(¢e St €7 + a(ne e 5%

-X ¥ -
+ € (1672 cos 4 e hcose,)  (2.32)
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Since Ycos9 =2, =2+ Rz = (A 1)R)2 (2.33)

4,080, = Z,= Rj2=2Z = (1= Ap)R/2 o

we obtain

P = (omep B0, O8]

+ [0 DO

+ G [(>~/w+|)( R/2) e~ (% RN+ )

+(n_x,u)(&/z>€'(§‘8/2)0‘—’9] - (2.35)

which after letting p = g.R/Z and some simple manipulation

yields the result’

iy >3
%(O})-‘-' 2(¢-¢c3)e _ﬁ cosh (ﬁ,«)

L =X 2.36

+ Re 0( [{C,.X-I-Cq,}msl\(-yn)—{C,+Cu),}/w$u'nk@(/u.)] (2.36)
Similar}ly we find for Ou orbitals
(0:4-) "y'f‘ -'g"#
. = (G-CG)(e - it

t}{ @ 3)( e ) (2.57)

-5 N < - -
+ CL("‘le Ylere ;+) + C»(e y‘*’ﬁase,- e r"f‘«r;Casez)
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w2 _2(c,-c3)e’sz&m((;3f~) 1
" R e.. N%[{Cv‘) +‘ct}/~\,m$!\(dﬂ) - {CV.'PC,_X} SV‘V\A&. ("9“‘-)]
(2.38).

The properties of expressions (2.28),»(2.36) and (2.38)
under the operation of inversion can also be shown to be

correct by applying (2.2).

In sections 5.3 and 5.4 we will use the above expressions

for the molecular orbitals with different valueé of 3;

for TI orbitals and different values of the L.C.A.O.

coefficients for & orbitals. These mod if ications mean

that the wave functions given by Sahni and Lorenzo which are

displayed in Table 2.2 are no longer normalized. Thus we

had to determine normalization coefficients from @026)(2.28,)
(2.36)and (2,38)in accordance with (1.9). The formulae

involved tend to be somewhat long and of 1itt1eNinterest

to the main purpose of the worke. They are given, for the

sake of completeness in Appendix 1.

The above expressions for the bound state molecular
orbitals will be used in Ch.4 to evaluate the electronic
mitrix elements for the processes shown in Table 2.3, We
now turn our attention to the continuum waves that will be

employed in the evaluation of the matrix elements.
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ELECTRONIC STATES OF THE CONTINUUM.

3.1 DISCUSSION OF THE FINAL STATE MODEL.

We have seen in Ch, 1 that for calculations on atomic
cross sections one has the choice of the following

continuum wave functions:

(1) ~ Plane waves

(11) Coulomb scattered waves.for Z = +1 or some
effective nuclear charge.

(111)  Waves calculated from a Hartree type self
consistent potential,

(1V) Waves calculated from a Hartree-Fock potential,

including exchange terms.

From (1) to (1V) the results obtained should be
progressively more accurate, Plane waves should only
yield the correct magnitudes at high energies where € )D’\/Gﬂ,
Vfﬂ being the potential energy function and & being the
photo-electron's kinetic energy. | As E-—’ 00, the Coulomdb
waves will of course approximate tb plane waves, Coulomb
type functions can give a reasonable degree of accuracy
even at low energies if the dipole length form of the matrix
elements is used and a suitable method is used to determine

the phase shifts 5‘(67 . The results of calculations
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with type (1V) functions may or may not give significantly
more ;ccurate results than those with type (111) but in

any case the latter should generally give at least,the |
right order of magnitude for the cross sections even if

the details of the variation with energy are not correct.

The most striking feature of the above continuum waves
for atoms‘is that they are based on models which assume
a central potential V = V(r) ( except in the triyial
case (1) where V= 0 ). Spherical harmonics can then
be used for the angular dependence of the one electron
wave functions which are used to comnstruct either the

product wave funections (Hartree method) or the determin-

antal wave func tions (Fock method).

Turning to the present problems connected with finding
continuum waves for electrons moving in the field of a
homonuclear‘diatomic ion, such as N2+ or 02+, we see
that type (l) wave functions go straight over from the
atomic case providing the kinetic energy of the photo-
electron is high enough, One has a convenient expansion

6
for free particle states in prolate spharoidal co-ordinétgg,

satisfying ‘Vz(/ + élq/-': o,

e hr 2 lez(em "-Q/N..‘z('lt)) x (3.1)'
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X Sug (hieosoo)eesm (B-ga)) S, ( (R, 0 fene (4,3)

where é = (12,9‘,);4,),1:(1, 9,;5), Nmz(-ﬁ) is the

normalization factor for the "angular" functions S,,‘e

Noo =flsmelto9u (3.2)
£ =4+ RA

and Ehm is the Neumann factor (=1 if m = o, =2 otherwise).

(3.3)

The radial solutions jemg ()) can be expanded in terms of

spherical Bessel functions jn(z) of the 1st kind;

jeme (A = (‘e—-m_'” N '{:m
(&+m)! ( )

, Z T2, (Dt 20 e CRD) e

It can be seen that for any 1n1t1a1 state Wt » described

in gsection 2.4 for each molecular orbital type, one merely
has to substitute (3.1) and the expression for W,_ in

equation (1.7) for the differential cross section whereupon
all integrations that occur in the evaluation of the dipole

length matrix elements can be performed analytically.

1  Functions of M- and ¢ in prolate spheroidal co-

-

ordinates will subsequently be referred to as angular

functions without the use of inverted commas,
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Integration over all angles (Go,gﬁ) will of course

give the cross section for the process in which yQ is
vacated, We do not wish to pursue this method in detail
however, because we are primarily interested in the cross
sections at low energies, Furthermore the calcula?ions
we shall describe should give identical results to the
above Born approximation calculation when used at high
energies. Nevertheless we did perform the above
integrations for a Iii}_ initial state in 02 (see Ch.4)

but did not find numerical results.

Since we are interested in low energy cross sections
we seek an approximation for the final state waves for
diatomic molecules which is of the same degree of accuracy
as type (11) waves for atoms., Such waves have already

(50)

been used in the calculations of Flannery and Opik

(49)

on H2 and were discussed by Shimizu 5 Theéé are the
waves for an electron moving in the field of 2 half
elementary positive charges placed at the nuclei. Such
spheroidal waves bear much the same mathematical and
physical relationships to diatomic molecules as Coulomb

scattered waves do to atomic systems. We have noted

in section 1.5 that Flannery and Opik adjusted the
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separation of the positive charges in the final state

so that the quadrupole moment was the same as that of

+ While there is no doubt that such a modification

2 L
has an appealing physical foundation, we foumd, after

H

estimting: quadrupole moments in 02+ and N +, basefi on
data from the microwave collision experiments of Smith

and Howard(66), that such a modifitcationuwould make the
integrations in the matrix elements exceedingly difficult,.
This would be the case if there were any difference between
the internuclear separation of the ground states of the
neutral molecules and the separation of the 2 half
elementary charges, because, if we worked in prolate
spheroidal co-ordinates there would be 2 sets ()\n,/“b¢'>

ard C>\a.,/‘-1, ¢z.) involved and no simple relations
could be found to write either the bound state functions

in terms of the set ()L)/A'L, $2) , for the final
state internuclear separation or the continuum waves in
terms of ( )\l,/‘" ¢'> ' . Consequently, we have
chosen the separation of the half elementary charges to

be the equilibrium internuclear separation of ths grourd
state neutral molecules, so that integrations over the
angular val:iables can be performed analytically and

those over the radial variable can be done straightforwardly

by numerical methods.,
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It is natural to ask why we should stop our considera-
tions of final state waves at the analogue to type (11),
especially since type (11) waves for atoms are only an
approximation and can be improved by using Hartree or
Hartree-Fock methods. A brief discussion should justify

our choice,

The difference between the symmetries of atoms and
diatomic molecules is the major factor, as we have already
pointed out in section 2.1. It is true of course that
the use of spherically symmetric potentials is not completely
accurate for atoms but the departuresfrom the approximation
are either expected to be sma11(21)or at least to take them
into account is too much labour for too little improvement,

80 in either case they are usually ignored.

However, if we use the Hartree method, we can find
from the one electron wave functions at any stage of the
self consistency calculations a potential V(r)Afrom the
charge density distribution function. Similarly the
Hartree-Fock method results in a potential function for the
motion of each electron, Since Hartree-Fock M.0.'s
are not usually found but rather the best L.C.A.0.-M.0O.'s

in the case of molecules, there is no analogous self



consistent potential; the usual criterion(sz)is that the
energy elgenvalues reach a pre-determined degree of
)

consistency in successive iterative solutions of the Fock
equations (2.6) . It is certain that a "self consistent
potential" could be found from the resulting L.C.A.0.-M.0.'s
by obtaining the total charge density distribution function
from the individual one electron wave functions. The
potential so obtained would, however, be of little practical
use because it would be a function of the 2 variables )\ and

/A— . Only urder extremely fortuitous conditions,
such as the fitting of this V(% M) to a function of
(67)

VO = § PSR

the form

(3.5)
would the Schrodinger equation be separable in prolate
spheroidal co-ordinates, One could of course take

(68)has done for studies

functions of the form (3.5), as Fisk
of elastic scattering of slow electrons by 'diatomie

molecules, with adjustable parameters. Such a method is

not used in the present calculations but it is likely that
such an approach will be useful in futuwe work (see Cnh. 8).
Ye have chosen Flannery and Opik's final state model for the

continuum s tates throughout these calculations.



60
This model is based on effective screening of the

ejected electron from the nuclei by the remaining bourd
electrons in the ion. We expect of course that this
screening will be most effective for electrons ejected
from the most loosely bound states. Further, the use of
this model also means that the continuum waves should be
most reliable at large distances from the nuclei and hence
we use the dipole length forn; of the matrix elements in
preference to their velocity and acceleration forms for

the reasons given in Ch. 1,
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3.2 THE SCHRODINGER EQUATION IN PROLATE SPHEROIDAL

CO-~ORDINATES.

)
The Schrodinger eigenvalue equation
H g/ = E(P (3.6)
for an electron moving in the field of 2 half elementary
positive charges whose separation is |ﬁl= R can be

easily found. The potential term is simply

V= = efany =y + €/4R (3.7)

where r1 and r2 are the distances of the electron from the

positive charges. The kinetic erergy operator is
0% 3 : .
et "“/““)v so that, on noting that a = £‘/me‘, where

a, is the Bohr radius, we obtain from(3.6,)

€ lav +J7+~—:--—‘]gy EQ (3.8) .

If we-let the energy of the electron be Ee relative *to

the repulsive energy of the positive charges,

1
Ecz E 3/4'& (3.9)

and write

2
W= 2E [ae (3.10)

we obtain

[V‘-+ % J— =r-—-)+w:u7 ) (3.11),



62
Using the relations

++%)= D (3:12)
and
Ve ) N [» {@ {(‘ % }(3.13)
(>\ :)CI-— ")3}5

we obtain, using (1 .42), the unseparated equation

b r )‘P 2 — L?ﬂ !
33\[0\ ) 37\] + %[-_(l ,*>}/A +
(3.14).

B Ly iy
+[..L_ - T.';I S%‘ +[_% +%v_y_(>\-—,~)]gl.-:o

P

Noting that §t_,» ) +__|___‘_- (3.15)
CDHITE B S I

and introducing the separation constants -m2 and -A,

we obtain the 3 ordinary differential equations

d}@/ifsk +m-§ =0 (3.16)

23[;[ "’A%%]*'[A_ K‘,»‘-;:m/:} =0 (.m)

%[O\L .)oL/\]+[A+K>r + AN = ]A- (3.18)
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L= R :
where = R&/+ , € veing the kinetic energy of the
.electfon in Rydbergs (1 Rydverg = IH = 1st ionization

potential of atomic hydrogeﬂ e 62/28.0). , /

The solutions of (3.16) and (3.17) have been much
discussed (65, 69, 70) and in the next section a brief

summary of their properties are given.
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The solutions of (3.16) for i can be simply written

S = &2 (m)

where the periodicity requirément makes m take only

(3.19)

“integer values, Clearly for m ;4 O we have 2 ~ fold
degeneracy because each solution c,os(m;é) and ﬁ/n-(mgﬁ)
gives the same energy eigenvalue. Further, the usual
notation is that m = O waves are called O  waves;

m=1, 7 waves; m = 2 ) waves; etc,

The solutions of (3.17) can be written as expansions
in associated Legendre functions of the first or second
kinds, Only those inwvolving functions of the 1st kind
are of physical interest, Further, these are obtained
only for discrete values of the separation constant A
which is thus labelled A% (A) ; with each (m,2) one
has a solution which is either odd or even in M , the

even solution being written

™M ?(I)( &,/w) = E/dn(Klm,g) Pn:—\m. (/“') )

(3.20)

ol o= MmymE2 mtd,. ..
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and the odd solution,

® 2 N
“ = 5 dn (Rm OPMM('*))
?‘M &, %’-_': Chim, 4 (3.21).

L= patp, mt3mis....

We note that as K-*}o {ir R —>0) ) A?(O —> L(2+1) )

vhich is the separation constant for a qentral potential,

and ”? - P_El y 80 that as A =30 the angular solutions
bc;have as spherical harmonics. In (3.20) and (3.21)

the primes on the summations mean that only alternate

values of n are taken into account, The M?(ﬁ,/w)

are normalized in the sense that Mz‘[/u, 2y — Pé"é«)

as /W"'-?l °

The values of the coefficients dh[ﬂlm;z)in the
expansions (3.20) and (3.21), for discrete values of h,
can be obtained directly from the tahles of reference 69.
Further, in that refer!'eince, values of (.’E‘ (&) are tab-

ulated from which the separation constants can be found;

migy 2 28(L+) -2m'~1 m _
AZ(R) = 24 + R [7;2:3"5@;3‘)“ + & (JK)] (3.22) .
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3.4 THE RADIAL SOLUTIONS,
Analytic expressions for the solutions of the radial
equation (3.18) cannat be found. Clearly there will be
2 linearly independent solutions AW , and JAL;

and_their behaviour near X\ =| can be obtained from the

+

indicial equation to be,

AL (3 f‘v?.- ‘) (1 + >_°‘v\. O-Y) (3.23)

L () ;:,Em)'l”“(w hz;&.,(u-D") | (3.24)

Clearly (3.23) provides the solution of physical interest,
Further we know the asymptotic forms afqﬁ\. and JALZ

must be the same as those of the free particle solutions
together with a logarithmic term and a phase shift S 62) .
It can be shown by the amplitude and phase method of

(1)

Buckingham that the asymptotic form at large«)\ for
the solution JAL. which is regular at A=) should
therefore bg

iy ~ c(j —K)\ b = R @0\ -
_/\'ﬂ(‘e\,ﬂ N >0 -.3 W\( 2#\. (3.25)‘,

T If the recurrence relatlon for the coefficients b breaks

down, a second solutlon can of course be found of the form

A logr=0 + =17 "2 (¢ ZL.(a-Q") but such a solution is not
needed here,
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where S(h) are the phase shifts and C(4) is a normal-

ization factor.

The method of numerical solution to (3.18) has been
given by Bates(42)whose method will be briefly described.
A few alterations are required because of the slightly
different forms of the radial equations. Near X==I

a power series expansion is used; we write

AW =0T ER)

(3.26)
with T= N-I . Then F(T) satisfies the different-
ial equation,

20 (THp2T) + 2 (THDMEN P+

¢ FlR(THI-A # R(THITH0) + & 200

+ F(m(mﬂﬂ = Q

We put
K= mm+) +R-Aa + A - (3.28)
= R+2h (3.29)
®

FO = 1+ 2Za,T" (3.30)

n=t

and obtain for the coefficients

0= ~K[2lm+) (3.31)
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@, = -EHJ— a, {llmﬂ) 4 K}] /4(m+z_)

(3.32)
and for i\»3'3 we have the recurrence relation
Ca, o (R ok Hag, ¢ 8 [B0D $ 2ldR 1G]

DM&H i'l(W\i’l)”vH)] (3.33).

After the first few values of .A. have been thus obtained,

(11)

the recurrence relation

(=316, = (2 #1086~ (1- )6 + 4 (3.34)

A= {-(l/z+o)§6+ <l3/IS'l7.o)Sg—'-3G° (3.35)

where

Y :_ (AI
¢(X}= "[-A 4+ RX + AN. - M/(& ’?] -—i- (3.36)
4~ being the interval in A and where

G0 = (¥~ DALY, T (3.37)

is used to generate values of ./\ at grerater values of >\

The normalization oonditior_1 (1.10) when applied to
the continuum waves llj (5,'\)/"')/5) = A<£}>‘) N("://\“")ﬁlﬂs)
results in a specific value at a given energy for the
asymptotic amplitudes of the normalized ,radial functions.

Bates(42)has shown that the values of C(éh), the
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asynptotic amplitudes of the Ge ()\) defined in

(3.37), are . Y
C(R) = 2 (TARYY)

(3.38)
whera LU '
Y= j O f Fi{p) $10) dpe
o 4 (3.39).
Fu.rthermore, the asymptotic amplitudes of the
unnormalized GE‘(}\) are -
(2) = @A)« f [a0 + 20T secx O, +
Y "l‘
sLa() ~a ()] cosec x(ln,h)} (3.40)
where a() = GONU (3.41)
Ue) = w0 + w) (3.42)
e 2N -RA=A g 1)
VA S DA TRATIL T e
(%) - Bt (3.43)
.5 (v L v
w () W‘(dl) v e (3.44)
A
. 1, A = < u(wd
of (M, Jx. (WX (5.15)

and Nt and \ﬁ are 2 values of >\ g0 hosen that

they make Av v,

The details of the application of the above
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numerical methods will be discussed in Ch. 5. We note
that the somewhat troublesome ﬁormalization of zero
enargy eigenfunctions for which a method had been

(72)

given in the case of atoms by Hargreaves , is neatly
rerformed by using (3.38) and (3.40) in the case of

vanishingly gmall h, because C(h)/D(h) is always finite,

The determination of /(M amd ¥’() is of
course immediate from (3.43). We have in the

present case

D) (3.46)

v = 2(,\‘4}_ (6 A%+ 3R - K‘-A);‘s‘i\ 14 yA* N + 3R =N (2R442A)-R)
(N—1)?

(3.47).
<+ (l»rﬂ”)és}\""' )]

e g

CEHM

The application of (3.39) is straightforward from (3.20)

or (3.21) together with the relation for associated

Legendre functions
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I
D 5 1 = 2 !
A P v\)o A -
-1 (3.48)
The resulting oxpresgsiong Y for the various continuum woves

which arise in the calculations for N2 and O2 will be

given in Ch, 4,

To conclude this section we wish to point out that in
calculating the continuum waves for the transitions of
table 2.3, we have not included the phase shif ts éél)in
(3.25). Rough estimates of these could probably be made
from the energy level data for the excited states of 05
and N2(64). However, the quantum defect method whfich
has been used to estimate phase shifts for continuunm
orbitals for atoms has not been rigorously developed for
scattering by diatomic molecular ioﬁs. Flannery and Oﬁgi)
have propoged a method of application without the theory.

o
If Eir— are the discrete eigenvalues for the 2 half

elementary positive charge system, then put

- = ! —
E ~— "—“; ,'V“'vIJL-—.

20,2 (3.29).

Further if £;~ are the corresponding eigenvalues for

the diatomic molecule in question, then define the quantum
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defects gp by
Eve = =5 (3.50).

Then if the radial function for the 1st case i3

asymptotically

AT 82 wysia[ OO
LI (3.51)

then in the second case we should have,

A 72 w(Nsia[OD + 6]

(3.52).
k,:,}@;, ;

Using the extrapolation method to find S;r for continuum
waves, Flannery and Opik estimated the quantum defects

for excited states of st However, the functions used

in evaluating the matrix elements were taken as the zero
phase shift solutions (3.51), chiefly because of the
uncertainties in the Q.D.M. phase shifts, Flannery and
Opik also estimated that the error likely to be introduced
in the cross sections by adopting (3,51) instead of (3.52)
was 12%. We consider that the errors introduced in the
present calculations by making this approximation, should
not be significantly greater than this. Clearly more work
could be done in developing the quantum defect method
(though this name is slightly misleading) for diatomic ions
and possibly some improvement achieved in the calculation of

‘cross sections for H2 as well as N2 ard 02.
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CHAPTER 4,

EVALUATION OF THE ELECTRONIC MATRIX ELEMENTS.

In this chapter we derive expressions for the dipole
length matrix elements using the final state model we have
discussed in Ch. 3 and the expressions for the L.C.A.0.-
M.0.'s which occur in the electron@c configurations of 02
XE“ZZ;) and N, (X‘Z%+) , for which expressions have

been found in Ch, 2. We now bear in mind that jbhe cross

section depends on )

A =)0t = WL e Lo P WL (4.1)

and that for a given photo-ionization process we must sum
over degenerate final state waves. We have four basiec

bound orbital types to consider; ﬂ;, M 0} and Oa .
It will be obvious that the results for ﬁ;. and 7'7'“ orbitals
are equivalent to those for 77} and T respectively so we

do not treat them separately. We devote one section to

each of the above initial state functions.

4.1 T (or Ty ) INITIAL STATES.

Examination of (2.26), (3.19) and the relations for

(x,l Y z) in prolate spheroidal co-ordinates

x = (RID(N-N2(1-p%) %Ct"ﬁs
y = WDO-0Y (1=p2) sing (4.2)
z = (Rl2) Apa
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shows that for (c/vlz, Ay,f/%z) the ﬂ-dependences of the
respective transition integrals are (605/6 sing, sin' 8,

SLY\¢>X { (Mﬂ‘) or (;5£a2¢) ;(I-Coslﬁ),smp) {COS ('“ﬁ)

Utilizing the general relations

o

/Cosn}ﬁCo.sn;zS oL/ = S,
o

jx'gtftxmﬁjc:‘n.ﬁ/';d¢ = YT'S,“

/m Sin Mg Cos nddp =0
(]

we see that t/‘{x and l/'{;, have contributions from & - waves,

(4.3)

M) also has contributions from ¢ - waves, and (/‘{z only has

contributions from 7 waves.

We can anticipate the selection rules on M for various

initial state functions. If we let the initial state
have a @ -dependence of ‘°’(n¢) then via the integrals
75 g DeapLlopes L (nPsing Gi(mD g
and [ ( ;5) i (mp)d¢ we obtain
Am = 0, %1 B (4.4)
where the first case always applied to the z component. For

initial O states clearly Am =~/ does not apply.

Returning to the cdse of 77} orbitals, we decide on
tha notation dyln,g etc, for cach contribution to the
comnponents of M, Then we have

- et Jerona-p9€ 358531,
x (N dpd)

)

(4.5)
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Mt =/l " (4.6)
U/{;;-Z = f_??'@f/ (;\‘"')G'?"e-) e"l{;é‘»@@ﬁ‘“) M50 (/“)A 8,8 O) x
LT "
o0 i
A7 = €T [ [In=nt-prte Psibege) A Mt <
= x I, 2 () (= peljud A (4.8).

The integrands of (4.5), (4.7) and (4.8), excluding the
functions Mm,g(/f.) are odd, odd and even functions of s
respectively. Thus we have to use expansions of the form
(3.21) for the first two and one of form (3,20) for the last
for non vanishing contributions to the matrix elements.

Then we have to find the sums,

M f= 2 1l

s (4.9)
o« } v QJ,l 3 I,_
'Hall = Z_ |(/V(—1,Ll +_Z mo,l
L4235, 0=1,3.. (4.10)
M [= 27 'M'}r (4.11),
2:,)3.,
Our mat¥ix elements for § - waves are now
p @ 4 PN
Slog s L fﬁ"t“')(w@e sinflega) =
- (4.12)

o [ Z 1,080 A R pd b A
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which we write as

Moy = I /(» Ne AL «

(Sl RO N (cf () = H)+ Tabd = Hal) JAX (4.13)

hey

where we have defined the angular integrals

bR, T ) = B3, (5 g ps p ) (4.14).

For the contributions from 0~ waves we have,
c/fl:‘t Cv&f f,(»")lr-ﬁ*‘)e smﬁ(“/*) x
5 [ Z/talllo, O BTN 0 eO) (N pDdudd  (4.15)
hzy

I

RS °°z__ -t
‘/Z'],O‘ e A, elN)
« [Z 402100 N (A0 -8,60) #G.)- BTN

where

An) 86,6 ) = f B skl (s p Ve (4.16).

Finally for W continuum waves we have

ol = erg //O\L 0 1) B Ay Mk

[7"d (P//ﬂ)l’h,,(/«).]/\,e(/\)@ ) dyud ) (4.17)

hBo



cw«]cv DEC NN - m

*f“d,‘(u,,o{» () — B ] d
(4.18)

where

! . ' a
Dule), Bl = f(u ) T sink () B, DHm )M (4.19).

We can evaluate the above angular integrals as follows,

Define , o Py L
. [ - A X X & X
fné‘) :/SMJ{-(%M)# 99“"‘ o a )
° (4.20)
and utilize the series form of Legendre polynomials
l‘l-l
Bl = SO CaDIWI
w20 28+ (n=-1) I (n-20)! (4.21)

whence

fulon
AL (0, B, (), (nle) = i ¢-)*(2n- *)-,j;'hlr,n-l‘f-#z_,n-zrf% (=)
) ,En —
tz0 4! 2" a-0)! (n-24)] (4.22).

In Appendix 2 the coefficients in the above summations
are evaluated explicitly for the first six values of n.
Inspection of tables of the coefficients dn (&/m,@) shows
that including only the first six values of n should be
sufficiently accurate, Fur the rmore the \?n(d)'satjsfy the
recurrence relation

J,,= ({(”"')[cz”cosl\o( —n" sl +

(4.23)
+ nlnh-1) c(n—(‘}r}-z]



18

which facilitates their machine computation.

To evaluate D, (X ) and En (%) we use the ‘standard

relations

Pft.+| (/W) = (\ "f"") Pﬂ.ﬂ OW) (4.é4)

T4
ol

(n~,u‘)j-’1 Pros () =Gt [ P = pa Py (o)

(4.25)
so that
|
'D,;(x)= (n+D£[PaO*> “/“P"*‘ Ow)]si««ﬂ(ow%% (4.26),
Utilizing (4.26) we obtain
1 N/
e Gonf [3 eromop
S Ero 2%l ) (h-2vd!
w2
o ahr-zr (4.27)
~£() (2'14-7-"").(/“' - ":""L(Nf"')/“%"

lhu(hfl-—'i\)!(n-fl-:r)!

n/2

= ("' + ') Z(E_)f_[_ff:*-)-'—,—-*——- X {“}n Fy 21"'(°<) -

teo ) (=D n-24!

—| (3ns 2-0a 41— '_}"l;i-?_“l r @.] }

2(nt 1) (nt) - 27) -

ard a similar expression for Eh(d ).

Finally, we can obtain G, (X ), Hy (x), I(x)

by using
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Phh. (/“) - ‘/‘*)% ML(/‘) (4.28)

so that

G ()= Z (- TP(%}-T#’ ! {}'?—f(“) }n_,_,.+,_ («)}

r=o 2" (R +)‘(h~1f)

(4.29)

with similar expressions for Ha(X ) and In(x),

To determine the cross section for a given final state
wave there remains to find the asymptotic ampliﬁd_eg of the
normalized radial functions in accordance with (3.38). This
means that we have to evaluate the Y(h) given by (3.39) for

each type of continuum wave, We have for the 0 - waves,

iy
Y,,0(8)= f 4 f M, 2 (819Mo, 0 RlpdH (4,30
- o / (T4, 2100 B (ZBIORM) dne
S N = (4.31)
Q{c{ *
= n(A,0)
”rnél ?ln+/) (4.32),

For " - continuum waves,

e

‘/ 2(f) = /ff( '4. /4(0;6)&,{,&)[74 (4//,2)&,//4))(/%



= 21T z' dn (&) (n“')(’li’i)

80

¢ ohzo Qatd) (4.34).

Finaliy, for & - wavés,

ar

Yyelh) = fm (’7&)&#/”‘2[‘{/’”}(‘1"'(&,’»% (4.35)

o / (3 4006, av(ﬁdn (1,0 By () 4

e (4.36)
= /

= 20 ) dalAl2,8) (nr)(nt Dt 2)(04)
= (2n +5) (4.37).

We note that the unnormalized asymptotic:amplitudes must be

found numerically for a given final state wave.
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4.2, T (or Ty ) INITIAL STATES.

Wo have noted in section 4.1 that the selection rule
on m 1is At:n=0,'-'«’l : Since T orbitals have m = 1 we
again find that 0" , 7~ and §-waves contribute to the
cross gsections., We find for ﬁt orbitals, from (2.28)
and the expressions for the angular solutions @ and M,
that equations (4.5) —> (4.8) for T3 orbitals are also

applicable, In this case however when we consider the

parity of the integrands we obtain

a-o

'Mx'L l‘/{léi

_1)

(4.38)

Myl'= L 1M, |+Z JMZ] (4.39)

€= 4., €=0,-.
L iy (/v(-'z I‘
[ M2 —QZ_ [ e (4.40).
.‘.'}'Vv.—.

Following the same procedures as in the last sc:tion we find

Mgz cm/(» ne’ Azz(,\) *

L—Zd (Ala, E){\(G’(«) Hné‘)) + I, ()-- /4,.@)]]13{)‘(4 41)

Azo0

]
where Gn ; Hn ’ In are defined by the expressions in (4.14)

except that S(;n.fz\-(%«) is replaced by oos/x(c;u) , and



wll = <k f(x‘vl)e""“/\-o e(M x J 82
[Z’dnwo,e){x (AL B ) +61 )~ B @)}]@\ (4.42)

where A , B ~, C = are defined by (4.16) with send (=)

replaced by co‘L,(oyM) . Further
P =2 [os* DAL 0) «
[ A1) {3 DI - & DFJAr

A=

(4.43)

] L]
where D and E are the same as D_ and E_ except for the
n n n n

replacement of S‘J(DW by 6051\@354) . FEquation (4.6)
also applies for 7HI:M orbitals.

To evaluate the angular integrals An 3 Bn etec. we define

ol
T(d) = j/vu m\k@w)d/\«." o coshx % dx (4.44)

o

where the Jn satisfy the recurrence relation

Tn = ,[(’”n [o( Msodot ~n " ash e + n(a-0) o2 JT,_,_]
(4.45).

We then have )

nfa

DA QBHLGH = DT D) Taca,n-anprynoir e (2, (4.46)
=0 ’\l‘f‘" (h'_ )’(il 2*), e
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DU, Ea () = (e t) > SR LT
T=o0 3-'\ ‘('\-f)'(l\-lf)'

(4.47)
2 {I“M-‘J&,nél-h‘(“) . (lklil»j—)wc-m:f) J; nydeae n+$-1r(@]§

Ui+ i-Ine1-2+4)

2% +1

G = :. (‘“)”-(_}n..{- +'+)_’ L {J:\_z_‘_(o() —Jacarnn (m)}

:o 2 (- (-3
(4.48)

L] 1
with similar expressions for Hn (X) and In (X).

For the functions Y(h) which are used in (3.38) to
find the asymptotic amplitudes of the normalized‘ functions
G‘m‘ (K,k) the express'sions (4.32). (4.34) and (4.37) which
were developed for the Trg. initial state can also be used
for m orbitals except that the summations commence with

n =0, 1, and O respectively.
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4.3, 0} INITIAL STATES.

Initial O st:tes ran only give rise to continuum
waves with m = O or 1, We find then that on performing
the }5 ~ integrations and considering the parities of the
/- dependent parts of the integrands, that the contributions

to the matrix elements are, in the case of a 0} bound state,

M = gl‘/vl; I (4.49)

Ity )" = AN (4.50)

L=1
et = 2 | A
R v 0t (4.51)
and clearlf M:L = ‘/\7_,?—1 .

We find it convenient to write

‘M:Tz = Ilr-f-* lffl—'fs)ﬂ,cr—#K[(/‘AI.. ,EE}J (4.52)

where @

I L |
/\(f;: /j {chosl\;(s/w)(k‘—t)%(l—/f)‘ x
x A, g ) Mye () (N pet)efnd A (4.53)
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fe Prs-dtA, (J_(A)

« [ >“d 41,0 X - pfr
with
!
A, ka) = [ sk Pl () Uy
" (4.55).
For the second 'tomponent" of Mg{_ we obtain,
® 1
- 1_NA
ME= ( l ™ M Cn € Feashtopd (=) g
AL 0 O) Mg () (o= pDfpn A
f e PN e G A «
LfowWw) {Np6 .61 (4.57)
and fo-r the third component,
oo i . . :
- —AA . r NN
= f‘—fle {C;,-I-Cu»)‘}/ASwA(c%)()s D) (1.55)
x (1 —~pa 1) ’/z/\-nz (A> Mn,l 4““) (Al—’/MOo&wa(/\
- J e_x){ﬁv"‘M}(AL“')VV\,,(ZCA),:
o (4.59).

0 p ¥
X [%oa’n(&/:, 4){ MWDy (%) - Ep\(‘*?}JC()\
Similarly for Lﬂzo,ﬂ we adopt the notation

(/'( = /TR [(C.»(;)M 4_‘,{{(/77:_/42111}]

4.60)
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with
. ‘ -pA
M’ZZI‘://@ PCoSl\gﬂ/t‘)’\/“Ao)eO')MO,e (/«)(At_/“'-)o(/u,a(,\ (4 61)'
= [ePan.en] Zea (410,8) [RE) - Kn(p}] da
' =1 (4.62)
where
‘
R (Pl = f <oshp) B () (e (4.63).
For the decond part of Uﬁzz we find
N (& N AseD[ Z delb1o D F¥ - n O] J (4.64)
] A= 4.64

and finally

Mfr:[ e*d"((wtw\)),/\,,c(ﬂ[%idufuo,g)[/\t&(d)—-C\[d)}]ou (4.65).
!

For the angular integrals we have

O (1 =(aed [ whPrd [B.4 b (S e (4.66)

so that, by comparing this equation with (4.26) for Dn(“)

we have immediately
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QP=( T QD]
+20 2" -y} (n-29) ] (4.67)

x { J;-uqz) - [(%ﬁ:&:ﬂ@.’.‘.ttﬁlﬁﬂ—w( ﬂ)]}

Llntt—+) (Nt l=2)

with a similar expression for Rn(P ). Further, by comparing

the definitions of Fn(f ) and A _(X) ve find

n-i

Fulp) Knlp) = > OO Ty na430p)
F2o w1 -y (n-24)!] (4.68)

The normalization functions Y(h) in the case of trans-
itions from 05, states have already been given in section
4.1, because the final state functions for 7T and 0 waves
are identical to those for 750 orbitals, We now turn our

attention to the bound state orbital, (w. .



4.4, 0w INITIAL STATES. &8

From (2.38) and the equations for continuum states we
find, as in the case of Q}, orbitals, that only 7/ and 0~
final state waves contribute for a Ja bound state. The

total cross section is obtained from

IP«: 'z: ICﬁ(l,L'

(4.69)

ety )= :Z"'m'ﬁ J (4.70)
=2

It = Z ] L (4.71)

: *
where again M,,g = (/\(.32 °

To evaluate the contributions from /I - continuum

waves we write

Mo = TR [2le-a)ME4 R (7 Mx’lﬂ.”]]

% (4.72)

whence,
2
M= /e'/j (,\t-l)t/\_,zf,\) x
' [Z da(lxh,l){k‘l, (p) — i1 (ﬁ)])o(,\

Az}

(4.73)

with

Lo (B, Mn(p) = [sngﬁ/n)(l—/« P (M1, A (4.74)
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‘/\1 fe (fv)-f'ﬁ)(x' D) L-/\-,,Z(A):

(4.75)
[Zdﬂcml,e){ N D, () = 6T ] d
® L
M [ € Uew + X080, e (D s,

o[ Z dn (R11,0) ¥ Lo - M1a 0T ]

Further we find for transitions to 0 - continuum states,

on letting
Z _ piing
f/‘zo)g- Lo [ CCS—CO‘Mz "'K{f/\{z Mz }J (a)
that
ME = f P\ Ao () [Z s BloOfX S, -T( D) ]
“ ! e ~ (4.78)
where !
Su(BL ) = f 56 5 B () (ool -
~! 4.79).

¥4
Furthermore, we have for the second and third parts of UA{; ¢

a
AT = / & “Tern £ Aot [ S0, Of X 80- (;'@}]4 3
h=0
/

(4.80)
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©

(/‘{ZZC = [8- d?cv T C; >\> )\ As0)2()\‘)[?;;6{\(g(o)e){/\l‘g;cd’) - 7;‘ (K)}(ZO(B)1 )

To evaluate the angular integrals we note that
Lalp) = Cnan f 'SMz/z,»q[m,.o = By (W] A A
-

so that by comparison with D (%) we find
n-L =

(n+p 2 O Gn-n! X

+20 M= (n-10)!

La(p)

(4.83)

x

¢ (ﬁ)..F?“+1iﬂﬁﬂﬁi:fl;ﬁgﬁxiaﬂﬂ]

.2 (a1 =) (R —2t)

and a similar expression for Mn(P ). Furthermore we find

nfa
SR TPz 2O Cn-0l 21, ne20 £3(B)
r2o ") (n =2 (4.84).

We also note that for transitions from 074, states the values

of Y(h) can be obtained from those for Tﬁ,‘_ initial states.

One final point on gelection rules for dipole transitions

concerns the symmetry (g or u) of the initial and final
states, We have already seen that the selection rule on
the azim-uthal quantum number n is Ain o4 In
addition we find that the symmetry propertiecs with resrect
to inversion must be different for the initial and final

electronic states. Thus we have



91
g —> u,u —> g (4.85)
as a further requirement for allowed transitions.
Combining ‘the two selection rules (4.4) and (4.8%) we find
that the following transitions may occur for the different

bound state orbitals.

““ALLOWED ELECTRONIC

TRANSITIONS IN PHOTO-

—> O
—_ & (4.86).
Ty . TONIZATION OF HOMONUCLEAR

T, Tha == 0} DIATOMIC MOLECULES

.n})ﬁg —y G&
| Y

2 /)
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4.5. HIGH FNERGY CALCULATION IOR TT:,  ORBITALS.
In section 3.1 it was indicated that plane waves
could be used to describe the ejected electrons at high
cnergies and that such a formulation had the advantage
of being analyﬁic by virtue of the expansion (3.1).
Though we do not use this approach in finding numeriecal
values for the cross section, it is interesting to see
the form that the matrix elements take in this framework.
We restrict ouwr attention to photoionization from HEP(orIﬁE,)_

orbitals.,

From the formulae of section 1.2 we have for the

total cross section

T

It is clear that the selection rule on m still applies,

o (v) = Q?Tamzelﬂ Z_ ’_’1{,‘.’ ,L (4.87),

Then, with the notation of section 4.1 we havei, from

(2.26) and (3.1),

M i’Z[K, 0o, #o) = ~CTRECEM 0 (L ,058,)

FN o (R) (4.88)
| x sin 2, X704,
with o,
XL ) == j S dn (812, 2) [N {6 1) = Hu (O] + Tl ~In]
i h=t

x @ N1 o (2N o (4.89)

F The angular functions [M.¢are equivalent to the-ngof

(3.1).
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_ e _ 2, £ :
ST (4,0,0) = /12" (R,60, ) (4.90)

y; 0, :
W ‘:} (8,00, 3,) = =€ Mo o f2, cos o) X ¥ %0, )
g/%e (‘) (4.91)

where

x4l = f()& e Jeoe(K » [Z “du(hlo, ) { ¥ (A0~

= Bal) + CalD = B} ]

and finally, (4.92)
1/*{": (4,6.,4,) = —ﬂ‘rrc-)‘cfl’“l,e (4, cas 00 )sin B, ;
HNie (L) (4.93)
X),t(z °<>
Xk = fe Je,e(e A= YT RIne) x
AT O
x {A'DnC) = EncO}dd (4.94).

Integrations over ( Qo,¢b) can be easily performed to give

for the total eross section

by ey o ——

6%
+~L? "l Xt a0 + zz ”%d)u (4.95).
= L=3

10 eb 1 2 2% ¢ %
a(w) = CROT ey [le" RO +
L=
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It can be seen from (3.4) and the above expressions
for the matrix elements that the evaulation of the latter

will involve integrals of the types

. .
[N O e () da
[

(4.96)
[05)
J aPer My
l (4.97).
For these the asymptotic relation
oy ~ )"
1.3.5. .« {an+) (4.98)

was found to be not valid in the important range of X o
Furthermore, although integrals of the above type may be
evaluated analytically it wouldyprobably be more efficient
to use numerical methods for them if the results of this

gection were employed to calculate the cross section.
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CHAPTER 5,

RESULTS AND DISCUSSION FOR FIXED NUCLEI.

We have noted in Ch, 1 that the vibrational and
rotational eigenfunctions should be taken into account in
accurate calculations of transition probabilities for .
molecular processes. In this chapter we give results
for the cross sections obtained by the formulae developed
in Ch. 4 where the nuclei were assumed fixed in the trans-
itions so that the integrands of the various matrix
elements have only been regarded as functions of r, the
electron co-ordinate. In most cases where the equilibrium
internuclear separations of the ground electronic states
of the molecule and the ion are not very much different
we expect that including the effects of the different
vibrational states of the ion (assuming a zeroth vibrational
level for the molgcule) will only affect the transition prob-
abilities near the thresholds for photo-ionization.
Studyinglthe variation of the cross section curves with
energy for figﬁd nuwe lei is expected to reveal their
important overall features., This chapter divides into
five parts, the first of which is concerned with details
of the numerical procedures, the remainder being concerned

with specific results,
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For fixed nuclei calculations four programmes,
one for each kind of initial state orbital, were written
for a C.D.C. 6400 computer. Listings of these are
given in appendix 3 together with brief explanatory

notes.

h -

The parameter ’{= (Kle/‘f‘) ’is the basic energy variable,
Values of the coefficients dn (/m,;€) in (3.20) and
(3.21) and the éme () in (3.22) are given only for
discrete values of K . The values emplbyed vere h = 0(‘1)1;
h = 1(*2)2¢2 ; h = 3(1)5 , which gives energies above the
thresholds 19-2 Iy for 0, and 23+4 1, for N,, if we use

the equilibrium internuclear separations of 2-282a, and

2'0678.0 respectively as given by Herzberé 44).

The normalized radial functions ./\-,.,E(K,A) were
evaluated at intervals of *1 in A from A = 1“to A =11,
at which latter value the bound state radial functions have
become negligible. The power series expansion (3.30) was
used to find unnormalized /\...,e(k,h) at A =1, 1°1,
1°2 amd then the recurrence relation (3.34) was employed
to extend the corresponding G;,..Q(g;)s) to A =11,

Correcction terms as given by (3.35) were found to be
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negligible in the cases tried. The application of the
normalization procedure as described in section 3.4 was
_ carried out by means of a subroutine (AMP) which geAerated

QMQ(R) X)) to A o= 4‘0'7, so that the function U(N)
could be determined in the interval [ 397, 40-7 1 .

This latter step was found necessary in order to make W Kv

The various continuum waves which-were tsken into

account for the various orbitals are given in table 5.1.

TABLE 1.
Initial State. Continuum Waves.
Oz fai,fa;,‘ﬁoa; Py £, A
W |55.4%5.0% 3 5T 4.07
Ty poi, FOu RO 5 pTla, FTTay KT ; 6, A S
T $G3,d03,49% 5 AT, 373,0T5; 455,45, (S

Because ¢ = 5 and £ - 6 waves only play a minor role in
the total cross sections the inclusion of states with
higher angular momentum than those in table 5.1 was not
necessary. In the evaluation of the radial transition
integrals a subroutine for Simpson's rule (SIMP2) was

employed, whose accuracy had becen tested on certain standard

integrals,
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5.2 PARTIAL CROSS SECTIONS FOR INDIVIDUAL ORBITALS AND

THEIR BEHAVIOUR_NEAR THRESHOLDS.

Cross sections for the nine transitions from 02
and for the four transitions in N2 indicated in table 2,
were calculated using Sahni and Lorenzo's initial state
L.C.A.0.-M.0.'s. As mentioned in Ch. 2 transitions from
pairs of M.S.0.'s in O2 which have the same spatial wave
functions in the restricted treatment have very similar

cross section curves. We note that all results quoted

in this section are for the photo-ejection of one electron.

The results for individual orbitals are presented in
figs. 5.1 to 5.9 where the independant variable is taken
as the incident photon wavelength. For /Fg!or /4— )
orbitals there is only one transition i.e. O, (X’Z;') —>

Og*(X‘”}) . (See fig. 5.1).  The chief contributions
for this process near threshold ceme from fm and /"’Tt waves,
the transition probabilities to which both decrease
rapidly as the energy increases. The declines can be
explained by reference to figs. 5.10 and 5.11, where there
are shown the most important final state radial functions
for selected values of h, together with the bound state
radial func tion, The first nodes o;‘ the continuum

waves occur at relatively small values of P (& ‘f—) for

h=0(§f =0, spectral head). As h increases the node
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moves inward causing the negative contributions to the
transition integrals f'?x‘-—;)e""“/\.,,e dX  and
f;?}\‘_,){'e"xx./\_,)ldx to increase with a consequent'
decrease in the corresponding matrix elements. The fact
that the cross section remains almost steady (see fig.5.1)
is due to the increasing value of € in the term ( Eg+ € )
in (1 .'7), which compensates the above decrease, as well as
growing contributions from higher angular momentum states.

(See sedtion 5.5). ;

For O} orbitals, as the cwrves in figs. 5.3, 5.5, 5.6

B

and 5.9 indicate, the cross sections sre high at the
spectral head and decrease rapidly as {re energy increases,
This behaviour is attributable to the decreasing matrix
elements for the most important continuum waves,}DOT;. gnd
PTTW . The fact that the bound state function

has a node near the nodes of the continuum waves enl}{a.nces
the possibility of a rapid decrease, We note that a
factor which makes the ¢ ross section decrease ( in contrast
with TFJ ) is that AE/EL is smll so there is little
chance of the increase of & seriously compensating the
decreasing transition integrals, The chief reason for

a decrease, however, is that the /3074, waves comple tely
dominate the low energy cross section so that despite

their increases,-contributions from higher angular
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momentum states have no effect until much higher energies
where the /’rw contributions ar'e negligible. In section
5.4 we will discuss the relative importances of ﬁn;

various atomic orbitals in the Q} L.C.A.0. wave functions

in connection with this near threshold behaviour,

The cross sections for orbitals of u-symmetry behave
in the opposite fashion to those of g-symmbiry near
threshold. In figures 5.2 and 5.7|'.are shown the cross
gsections for processes to 02+ (a*ﬂ?«,A‘”E) and! N2+(ALm) .
The curves steadily increase because of the increasing
matrix elements involving d"} and 0(%— continuum waves
near threshold. We seek an explanation in terms of the
positions of the nodes of the final state waves and to
this end we have plotted these for the cases h = O and
h = +6 in figures 5.12 and 5.13 for O,. (The bound
state radial function is the same as the /g func tion
which is shown in fig. 5.10) For the waves concerned

the first nodes at h = O are at relatively large values

of A . The negative parts of the important trans ition
® L ool 5 e -
integrals, f (E-nte A/\;,; AX and /(z\"-'l) € Np2d)
! [
are thus very small. As h increases the nodes move

-

inwards but the negative parts of the integrals, still

. -
occurring at large )\ and hence very small ¢ , are

sm:tly further the positive parts of the integrals increase ,
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as can be seen by comparing the waves Al,z (h = ’6),

Ay (h=e6) with Aya(h =0), Ay (h=0) in

the region / {) /(2'-7 where the bound function is’ greatest.
The net effect is an increase in the matrix elements

with a subsequent rise in the cross section above threshold.
Not until 'K- 22+ 7 does cancellation become appreciable

enough to cause the above transition integrals to decreasew.

The remaining orbital type, 0 , gives rise to cross
section curves ;hich increase even more rapidly i -
from threshold than 7y orbitals as can be seen in
figs. 5.4 and 5.8, In this case the major contributions
are from d.O} and ‘U} states, the former providing the
dominant influence, Since these states have relatively
high angular momentm;l ( £ = 2), their first nodes occur at

large X\ and the near threshold behaviour can be explained

by the same arguments as for the M case. =

The angular integrals An(x) , 8Ba () .... etc. have
little influence on the variation of the cross sections
with energy but are important in determining their
magnitudes at a given energy. Tables 5.2 to 5.8 show

the computed values of these integrals.



TABLE 5,2
ANGULAR INTEGRALS FOR TRANSITIONS IN O, USING L.C.A40.-M.0.'S
n An(d) Bn(d) Cn(d)
1 3213959 2°119753 1593764
3 <478443 *804782 *810172
5 *029233 *111676 0220889
7 * 000952 > 006780 «027521
9 «000019 + 000222 .001624
11] +000000 * 000004 -000043
n | Gn(d) Hn(d) In(d)
16°413096 7°889823 4+701555
3 25+397306 21751945 16487217
5 | 26+585077 26+157581 24608654
T | 264652262 26+629756 -
9 | 264654338 - -
11 = - -
n| Dn(&) _ﬁn(d)
0| 1°094206 525988
2303602 1:5617%
4 | °586028 994172
6 *050573 *193706
8 002127 *015159
10 | =000056 *000716

102

(62)
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(62)

TABLE 5.2
ANGULAR INTEGRALS FOR TRANSITIONS IN O2 USING L.C.A.0.-M.O.'S
n| An'(d) Bn' (&) Cn'(«)
O | 5-134948 2°658280 1°867997
2 1419946 12472855 1241746
4 *129542 *337789 *460740
6 005646 030058 086361
8 °000142 *001312 °007268
10 000002 ° 000033 *000312
n Gn'(&) Hn' (&) In' (ef)
0| 7-430003 2370849 12252501
2| 22914855 15991645 104624575
4126631726 |25°223583 214855933
6[26-939926 [26°833336 26°285141
8126°952537 [26-948424 26°911214
10 - - -
n| Dn'(x) En' (@)
1 12-370849 1252501
3 11°379133 1°454023
5 | .191428 501444
7 *011190 059665
9 | 000354 003269
K11 000035 001141
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_TABLE 5.4
ANGULAR INTEGRALS FOR TRANSITIONS IN N, USING L.C.A.0. -M.O.'S.
n An' &) Bn' (&) Cn' &)
0 | 3-657634 1697764 1-151296
2 +717829 .878062 « 740581
4 +041917 *158304 * 250269
6 | -001135 | -009370 -037998
8 | -000018 000258 002188
10| -000000 «000004 000062
n Gn' (%) Hn' (X) In'(X)
0 | 5-879610 1-639404 821429
2 |13.990550 10+276494 6705173
4 | 159214000 14744517 13.073304
6 | 15.276599 15.254777 | 15-078650
8 |[15-278166 154277648 154270005
" Dn"' () En' (&)
1 |1.639404 821429
3 | 693158 +866010
51 +061815 234415
7 | -002248 018576
9 | -000043 - 000622
11 |-.000084 ~+005090




TABLE 5,5 105
(62)

ANGULAR INTEGRALS FOR TRANSITIONS IN 02 USING L.C.A.0,-M.0.'S

n Qn(®) an(f) Rn(X) Rn(p)
0 | 2-476668 150°014646 - 790283 96+ 258580
2 | 2.212121 496917378 1945828 367569674
.T *337898 44_2-' 266851 +839267 407657827
6 | 020547 198357519 107317 236719568
8 *000664 54+0834% - 006057 84315469
10 *000014 9:891060 000202 19994730

n | Fa(x) Fn(p) Kn (%) Kn(f)

. 1 22658280 593522208 1.867997 497263629
15| “6az572 352-875759 +324246 3264611114
5 | 061962 140°193044 | .169935 153187130
7| 002711 380145114 -014727 51427078
g | 000069 7.341147 | -000639 12.468746
11ﬂ * 000001 3 1033610 » 000015 20219497




TABLE 5.6 106

NCULAR INTEGRALS FOR TRANSITIONS IN N, USING L.C.A.O.-M.g??g.
n Qn(x) Qn(p) ' Rn(X) Rn(f)
0| 1.959870 36321858 *546468 20890733
2 1+158706 | 102°197713 1-233870 73+530971
4| 111223 700273856 406184 69-999438
6| -004173 | 22853558 - 003402 32+404576
8 + 000082 4+333640 «001204 8°637391
10 000000 -536057 —+000018 1.461522
[ Fn(X) Fn(ls) Kn(x) Kn(g)
W 111697764 110-680416 1151296 89789682
3 *331594 58¢453582 °466772 54833992
5| 019673 18+849383 2077067 22451362
7| +000539 3-872279 004510 6155563
9| 000008 534069 000124 10145281
11 | +000000 «005197 « 000006 +148677
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ANGULAR INTEGRALS FOR TRANSITIONS IN 02 USING L.C.A.0.-M.0.'S.

TABLE

-n _ Ln() Ln(P) Mn (%) Mn g@ )
1| 34282619 354160899 1577964 241024510
3| .998246 5204574060 1540236 426792886
_.“5 -091367 317863647 *338895 332506447
7| +003952 109°424783 2027775 1492281279
9| +000099 24.202890 001141 43+032328
11| -o00009 | 3e717804 | 000253 8513026
n Sn(x) sn(p) Tn () Tn(ln)
0 | 3°213959 658893970 | 2°119753 540°8403§7
2 | 1572649 481813521 | 1°330770 420°328082
4 +228882 233.616373 °419723 233°288357
6 | -014005 760524286 | 055194 92512039
| s | -000458 17°437096‘ -003308 26°350958
10 | 000009 2.858497 | ~000108 5460917




ANGULAR INTEGRALS FOR TRANSITIONS

TABLE
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(62)

IN N2 USING L.C.A.0.-M.0.'S,

n Ln () Lo(p) Mn () Mn ()
1 | 2.136729 80¢153346 . 987040 50640685
3 | 415909 95°020633% -882959 79°848596
5 | 023658 43+281932 133905 51429704
7 * 000628 10+558100 -006993 17-800805
9 | <000011 1.599489 - 000240 3.742464
11 +000268 ¢164460 *014170 *518599
n Sn(x) sa(p) Tn (o) Tn(f)
0 | 1-975240 1259776895 10262997 99:059113
2 «906875 85700222 + 769477 73738711
4 + 090655 350227282 «219724 36+896393
6 *003530 9009500 020815 12355057
8 | 000072 1506605 000811 2+782856
0| 000001 | 173534 +000010 +430742
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5.3 EFFECTS OF VARYING THE BOUND STATE PARAMETER ~§i

FOR__ T ORBITALS.

The atomic orbitals used to synthesize the molecular
orbitals in S.C.F.-L.C.A.0.-M.0.'s in most calculations
done so far have been of the Slater type. These are
chosen presumably because of their simblicity and
convenience in the formulation of primitive M.0.'s. It
has been pointed out by various authors that L.C.A.0.-
M.0.'s are not as accurate in their description of molecular
wave functions as Hartree;Fock M.0.'s, There is however,
considerably uncertainty about the best A.0.'s to use in
an L.C.A0+«-M.0, 8alculation; the S.C.F.-Hartree-Fock
A.0.'s which are best for atoms, apparently have no claims
to superiority in describing the electronic states of
molecules which contain those atoms. Further, the
accuracy of L.C.A.0.-M.0.'s can be tested only by comparing
the two calculated quantities in the R.H.S. of>équation (2.21).
Thus even though the value of &'é may be close to the
experimental ionization potential there may be no reason
for assuming that molecular wave func tions themselves
are accurate, For these reasons it seemed worthwhile
to sce the effects of varying the tound state parameten:S;
which is basic in the formulation of 7 molecular orbitals,

As mentioned before, the normalization condition (1.9)
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comple tely determines these orbitals, and the application
of this condition is straightforward from the formulae

in Appendix 1.

We have used modiiied orbital exponents i}il for the
atomic orbitals, but rather than choose the new values in

an arbitrary way, their values were found from

"
D/ =
= (e/E) 3. (5.1)

where Ee and Et are the experimental and theoretical
ionization potentials. The factor (Ee/Et)% was chosen

in a heuristic yet physically meaningful way, by considering
the energy levels of a hydrogen like atom, &p ¢ Zl/h‘ ’
and then regarding the term € g in the M.0. wave
function as analogous to the bound state radial factor

- Zv/n ) )
in atomic states,

For\ the ”Tg, (or lﬁ:} ) orbital in 02, we obtain
;;_I = é°408 and the use of this value lowers the cross
section by about °6 Megabarns/electron from threshold to
the maximum of the curve after which there is 1little
difference, The results for this are shown by the
dashed curve in fig. S5.1. TFor the /7,  electron in .

" 14
N, (.x('ZJ”), S, =2°006 which effects a reduction of

about 10% in the cross section from the threshold to the



peak of the curve; see fig. 5.7, 111

In the case of the ﬁﬁ‘(or Iﬁ; ) electrons of 62
wo consider the twosfinal states & /Land AT  for
which S;’ = 2+692 and Sil = 2+142 respectively.
The reaults for the quartet state are reduced by 40%
and those for the doublet increased by 10% from the
thresholds to the region of the maxima, which means a
net reduction in cross section for most photon eqergies

where both states are energetically possible.

It will be seen in Ch, 6 that the modified orbital
exponents lead to cross sections which are in better
agreement with experiment for the above orbitals.
Further discussion of %hig point is postponed until

section 6.3,
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5.4 HIGH ENERGY BEHAVIQUR OF THE CROSS SECTIONS.

At very high energiegs the continuum waves described

in Ch, 3 must approximate very clcsely to the plane wave
solutions ‘given by (3.1). Eventually, when the

De Broglie wavelength of the ejected electrons is nuch
smaller than the molecular dimensions, the positive and
negative parts of the transition integrals will very
nearly cancel each other and the «¢cross sections become
very small, Hence when the photon wavelength is SOK,‘

=1 2
the cross sections are only of order 10 9cm and they

(o}
usually diminish further for ,\ { 50A.

The most interesting wavelength region, however
is near )\ = 2002 where for transitions to the well
knbwn excited states of 02+ and'N2+ the photo-electrons
have energies =% 35eV, At such energies the cross
sections for ’T@, (or ’ﬁ;} ) and 30}, bound orbitals have
peaks. We note that the maxima obtained (if any) in
atomic cross sections (e.g. potassium) have been due to
fluctuations in the transition integrals for a given pair
of intitial and final states. The maxima observed in
the above molecular cross sections, however, are of an

-

entirely different origin,

The occurrence of such maxima has been anticipated by
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(58)

Cohen and Fano , whose approach has already been discussed
in section 1.5, Their prediction of shoulders due to
increasing contributions from higher angular momentum

final state waves is certainly borne out by our results

for 3(‘:} and Iﬁg_ (or N?;,) orbitals, as can be seen from

figures 5.1, 5.3 and 5.6,

The origins of the maxima at high energies can be
fully understood by reference to figures 5.14 amd 5.15 where
the partial cross sections are plotted for the more
important (.m,-a) contributions for the transitions to
the states 02+ (X"”}) and N2+ (szg). " Figures
5.16 and 5.17 show the corresponding information for
JiTa (or 1ila ) and O orbitals, the particular final

states involved beiné N2+ (Az Tru) and N2+(8"Z-g+) .

We have already discussed, in section 5.2, the
reasons for the different near threshold behaviours
of the u and g symmetry orbitals, in terms of the relation
between positions of nodes and angular momentum quantum
numbers of Ythe final state waves. We now seek an
explanation of the difference in behaviour of the cross

sections at high energies where we find again that the

positions of the first nodes of the continuum waves play
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an important part.
In figures 5.18 ard 5.19 are plotted the continuum

waves /)Tﬂ.. and LT for the process to 02+ (x"fl;a.)
and the 0(77}« and ‘}75« waves for transitions to
N2+ (;AL7I;) , for energies corresponding to h = 1,2,3,
We know from section 5.2 that the transition integrals
involving /bm waves decrease from their threshold values,
whereas those for dJEP at first increase and then,
at 'rp\.-ff *9 they too decrease, Compare the h = il fﬂk,
waves of figure 5.18 with the ¥ 7w waves of fig. 5.19, .
for the same energy, and bear in mind the bound state
fuiction of /T  orbitals of fig. 5.10. For the lower
angular momentum /b waves there is a good chance of
cancellation in the transition integrals whereas for the
7{‘ waves thére is only a smll chance of cancel lation
occurring, As h increases, the first nodes of both
waves of course move inwards and when h = 2 cancellation is
very strong for the'e = 1 waves but is only slight for
the £ = 3 waves., Hence contributions from the latter
dominate the cross section and a shoulder effect occurs.
These remarks are also applicable to trangitions involving
electrons ejected from bound3C§§,orbitals,’fbr which, in
our model, the m = 0 and m = 1 waves are the same as those

for /'/'2;- orbitals at a given energy of the electron.
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For the transitions involving bournd orbitals of
u-symmetry the situation is different. We consider
figures 5.20 and 5.21 where the drﬁ and ;JT;, continuum
waves are plotted for h = 1,2,3. At h = 1 the first
nodes of poth d and g waves are beyond the region where
the bound state function is greatest. Cancellation
is thus not strong for either. As h increases the
nodes again move inwards but at h = 2 they are still as
far out as A = 2.7 for the d - waves and A = 3.7
for the g - waves, Examina tion of the Tr'bound state
radial function shows that the greatest contributions
to the transition integrals should occur in the range
of ‘k from 1.2 to 2.5 so cancellation is not strong
for even the lower angular momentum waves, Since
these have greater ma-gnitudes than the }77}, watves in
the important range of pN , the latter cannot dominate
the cross section. Most of the remarks for 77y bound
states apply to g bound states for which the m = O,
m = 1 continuum waves are the sare.

)

We have seen that maxima in the cross sections occur
at high energies for IQ},(or lﬁ; ) and 3€§'initial states.
Since the expressions for 2{} orbitals (and (QE, ) orbitals

are formally identical, except for the coefficients with
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which the I$03 i 7-30'} and sz 0} primitive orbitals
enter into the expressions for the molecular orbital

wave function, it might be expected that a similar effect
should occur at high energies for the vacation of the Zg}
and /0} M.0.'s. The explanation of this apparent
anoxﬁaly lies in the relative magnitudes of the L.C.A.O.
coefficients, We defer discussion of this point until
the next section where the effects of varying the L.C.A.O.

coefficients for 30} and 20y orbitals is investigated.

Cohen and Fano's simple treatment of photo-ionization
of diatomic molecules has yielded some of the general
features of the results of our more detailed calculations.
However they have taken a O}orbital containing only /§
atomic orbitals wherea‘s the L.C.A.0.-M.0. wave functions
used for 30} orbitals in our calculations have 2$ and sz
orbitals as well. In the next section, it will be seen
why Cohen and Fano did not obtain an appreciable shoulder
effect and that the reason may or may not be the rapidly
declining (y (Z“') factor in (1.46), but is more than
likely due to the nmature of the initial state wave function,
Furthermore, their prediction that the interference effects
should result. in a shoulder at longer photon wavelengths

in O2 than in N2 is not borne out by the present results,



117

In the case of a 3<§Lbound orbital where a comparison is
possible between the two molecules, we have obtained

peaks in the partial cross sections and thus the
possibility of a shoulder effect in the total cross section,

o o
at 185A for O2 and 230A for N2.
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‘5.5 THE EFFECTS OF CHANGING THE L.C.A.0, COEFFICIENTS

OF _J_ ORBITALS,

Thus far the results have bee;n given for the case
of S.C.F.-L.C.A.0.-M.0.'s for initial states where the
¢~ orbitals consist of combinations of /S , 23S and
1/1 atomic orbitals, Besides the coefficients for
the molecular orbitals of N, (X! Z;,*) and 0, (X°%")
which were obtained by Sahni and Lorenzo (see Ch. 2)
we have tried the extreme sets of coefficients which
ignore the presence of /S orbitals and take eithelr
linear combinations of 2S5 orbitals only or 2p2 orbitals
only, i.e. we remove hybridization and consider pure 30}
and 20w functions, The new ( were normalized
which involves somewhat lengthy formulae whose details
are given in Appendix 1, and the same values for the
internuclear separations and orbital exponends: for

atomic orbitals as before were used.

In figures 5.6 and 5.8 the results are shown for
the non hybrid orbitals in the processes leading to
N2+ ( x). Z? +) and N2+ (B‘Z .‘_'r) : The results
for the former case, involving a 3‘{} bound state, are of

much interest, It can be seen that high threshold cross
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section is due almogt entirely to the 25‘5 component
and that contributions from this component diminish
steadily as the energy increases. Further, the cross
section for the %ﬂz q;/ function remains low until
photon wavelengths of around 4002 vwhere it commences on
a high energy maximum, Thus the peaks in the cross
sections at high energies for 323,7orbita1§ in our
calculations which were discussed in the last section,
can be attributed to the JePz component of the L.C.A.O.
furnc tion, There is thus no discrepancy bhetween
Bate's results for H * at high energies and ours for

2

, N, because the bound state functions in the H *
2’ 72 2

0
calculations were composed of pure § states and these
do not give rise to substantial peaks at high energies.

It is also very interesting to note the similarity of

the cross section curve in the case of a pure 3S€}orbital
ard the results of Bates and Opik(59)f0r the model complex
molecule which has been mentioned in section 1.5. The
ginmilerity is noticeable in the shape of the curve as

well as in the orders of magnitude, We would expect
this to some extent but it is somewhat surprising that

the agrcement is good despite the fact that we are

using positive charges of Se whereas Bates and Opik's

model hod +2e,
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Yo can now see why cross- section curves for photo
ejection from 7—“} orbitals do not have peaks at higher
energies, In the L.C.A.0.-M.0. formulation, the wave
functions contain 7§ , 2§ and 2p>.  atomic orbitals
but for these M.0.'s the coefficients of the 1/57_
components are much smaller than those for the 30} orbitals,
The jmmediate consequence of this is the absence of the

high energy peak for the reasons given above,

We offer a tentative explanation of the differences
in bchaviour of the cross sections for q; 28 and (709‘-’-/2.
initial states, At higher energies the "molecular"
features of the orbitals are lost to the outgoing electron,
50 we can congider the effects of atomic selection rules.
For bound p - states, of which the 0}2/; molecular
orbitals are composed, € =O0anmd € =2 final state
waves are allowed whereas only L - 1 waves are possible
for bound S - states. The high energy peaks are due to
transitions to € = 3 waves and these are more accessible
to electrons ejected from 0;2,02 states than those
ejected from 05-25 states. Thus the latter do not

have a peak in their cross section curves at high energies.

Finally, we note that the effects of removing the
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hybridization of the 20w orbitals has a much less

striking effect on the cross section curves for sgch

states. The results for 200( 25 ) and 20w ( %z )
"pure" molecular orbitals are shown in figure 5.8 for the
transition to N2+ (BLZM-*) . The result for 29% (2pz)
is slightly higher and that for 20w ( 28 ) slightly

lower than that for the hybrid 29w orbitale Clearly we

do not expect to fird a peak in the ?-Ull(l/bz) case at

high energies by the arguments given in section 5.4,
explaining the absence of peaks in the cross sections for

hybrid orbitals of u symmeiry,.

Qur discussion of the cross sections for the various
orbitals by calculations in which it has been assumed
that the internuclear separation is fixed has revealed
many interesting features. A brief summary will be given
in Chapter 8 where the general conclusions are presented.
We now turn to the inclusion of the rotational and
vibrational eigenfunctions and determine the effects they
have on the cross sections for different ionization \

procesges in N, and 02.

2

-
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CHAPTER 6.,

INCLUSION OF THE VIBRATIONAL AND ROTATIONAL EIGENSTATES.

6.1. THE BORN-OPPENHEIMER APPROXIMATION.

The Schrodinger equation for a molepuldf system
containing n electrons and N nuclei, the latter carrying

charges of +Ze, can be easily written down

[-1§_7v £ Z_V‘ _Z_QZ%_)

Lo (21 2.M J=! ‘J I*L——KJ _(6.1)

+ 5 Leth) (z'e*/2)

LG L Yo K= EWlwe g
(»L;,U?L;L*i, t,’ J“J';JIFI.,KJ, K,_]_l ]ql(_:&l) {I’(i,&')

where m and M are the electronic and nuclear masses. In
the Born-Oppenheimer approximation(ss), the nuclear and
electronic motions are separated by writing
SP(%@') = %(c/g)w(gj) (6.2)
where the electronic wave function ﬂ“@,ﬁ?depends only
parametrically on Ej“ If we let U(gj) be the energy
vigenvalue of the electronic state, according to

| ~~:_-> VAV ] o) = UG ()

2m ¢

then as Ej varies we can regard U as the potential energy
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"_'CZVJ}" U(Kjﬂur(K_j)= Ew(R)) (6.4).

2M j:,

~ Solutions to (6.3) for the electronic states have been
discussed in Chapter 2. Turning to the case of a diatomic
molecule we find that (6.4) Becomes,for the 8.0.M. particle,
similar to that for the electronic states of the hydrogen
atom, i

) T k. —\
Ay pa + V(RW(8) = EY(p)

where R =Ry - Ry (6.6)

and/ﬁb-is the reduced mass.,

The Solutions to (6.5) can be separated in the

cus tomary way

(,;/(6) = WV’/R)‘;V(T/ @)é_) (6.7)

where R, ® ’ @ are the .pherical polar co-ordinates
for the C.0.M., and v and J indicate vibrational.and
rotational quantum numbers respectively. The angular
dependence of 99(5) can be most simply represented by

spherical harmonics
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NJ(@ @) Y17 [@T+0(T- 1) ! f] P @>em:§
Yw {7+ )} (6.8)

My
PJ— being associated Legendre functions of the first

kind. The radial functions 9VJYG”/§> then satisfy

d /pr | _
2 (R4 + [oule- ven- 202 p=o

whereupon on making the substitution W’: P/R we obtain
d:(ie.' — .T(T+I>P+ :g_[g U(K)JP 0o (6.10)
R TR RO
The potential energy function U(R) can be found by
numerical me thods such as the Rydberg-Klein-Rees-method
(see reference 64 for a modified version) if the spectro-
scopic constants of the molecule are known, It has been

found however, that potentials of the form

~ X (R-Re)]*
~ = -
VR = Eyq + DL ] —

where D-=the dissociation energy, Re = equilibrium -
internuclear separation, which were first proposed by

(74)

Morse , brovide excellent approxim tions to the actual
potential energy curves calculated by numerical methods.
We found that Morse potentials fit the potential energy
curves for most of the electronic states of 02+ and N2+

with a fairly high degree of accuracy. Morse had given
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solutions to (6.10) with U of the form (6.11) for the case

J = O only and the more general case, J ;4 O was considered

(75)

in detail by Pekeris y using perturbation theory techniques.

(76)

The solutions have been discussed by Learner and also

(77).

for the case J = O by Nicholls The general solution

can be written, for J = 0

P(»IR) = Nv-e—-*zzﬂ/zlﬁ (v, 6+1;2)

(6.12)
whére zZ= {C‘ s (6.13)
k= e/ Wexe (6.14)

AJe 4 WeXe Dbeing the standard spectroscopic constants,

AL = 4@-—!——2v~

(6.15)
and 1F‘1 is the confluent hypergeometric function
v
,ﬁ(‘VJ(’*}J*’): Z(:l’)_f_z_t_ (6.16)

rzolltidy +/

which is of course a polynomial of degree v in z. The

normalization factor Nv obtained from the condition

f{P’LJ—R:I is given by -

+4 “
V.
M= | R ( v ) (6.17).

———— e

L6
Equations (6.8) and (6.12) provide us with analytic
wave func tions for the rotational and vibrational motion

of the nuclei which are of sufficient accuracy to justify



126

their use in the study of photo-ionization processes. The
rotational eigenfunc tions could be improved upon by those
of the symmetric top but since rotational effécts are
expected to be smll the simpler rigid rotator eigenfunc tions

will be employed.
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6.2 EXPRESSIONS FOR _THE CROSS_SECTION.

In Chapter 1 formulae were given for the cross
section for transitions between electronic states only,
We recall that the complete expression for the cross

section is

33~ 2:2,.. ”jc%r'

0‘40 = A,
( e - (6.18)
L
where 2: 2: ird icates summatioh over all combinations
i F

of degenerate initial and final states, di is the number of

degenerate initial states (statistical weight).

My = f‘n_‘/: Ul/jfdt (6.19)

is the dipole length matrix elements For a diatomiec
molecule, the electric dipole morment M= ok }{{&

X
obtained from all the charges of the system %4 and their
position vectors «ifk : Following Herzberg(44)we can
resolve M into an electronic component Me and a nuclear

component Mn. If we write a general molecular wave function

WinT,els,0 = Wl Y(176,8) Ylf1,8) (s.20)

Y then

Mg = f f P (v GIOE) P (), e W) (] 0B) W lee] v £)krag
+
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+ J’ [ Pl RO P0) [ (e [2,8) Y (veR) (4] 0,8)
x Wlee| o, R)ds &

(6.21)
where the integrations are over all electronic and nuclear
co-ordinates, We aséume that Mn does not depend on the
electronic co-ordinates so that since the initial and
final electronic states are orthogonal the second term

in (6.21) vanishes. : ;

Let E(Vf,Jf) be the energy level of the ion and
E(vi,Ji) that of the molecule before photoionization,
both measured with respect to their zero point energies
and let I be the energy ‘difference between the initial
level (Vi,Ji) and the vibrationless-rotationless state
of the ion. Consideration of figwe 6,1, which is an
energy level diagram for molecule ard ion, shows that

the kinetic energy E of an ejected electron is

E(ve,70) = Rv- = ( T+ E(v47%) (6.22)

providing of course that a transition to the (Vf,Jf)
level of the ion is energetically possible, i.e. that

& (Vf,Jf) >\ 0. The photoionization cross section
at frequency A~ for an initial state ‘”(‘VL} T, ed/ 2’,_/3)

is then
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o(v)=(wraa/3) 2 2 (r+ s(w,gfp

TCRED Mg v TNy
el (6.23).

N z-;- I.’f’(ec,Ji:,v,;)a, az,fw)e)r

Consideration of Boltzmann factors for standard
temperatures(44)shows that the vy = 0 level is most
probable for the initial vibrational states but that f"

=T and J = 8 are the most probable rotational states

for N2 and 02 respectively. =  Assuming Ji = 0 is not
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expected to have any significant effect on the calculated

cross sections. Assuming A = 0, Ji = 0 we have

Aec e vy, g, €)= fj?(o,qeali, R)r pvh e e, € ¢, R)dn R
(6.24) .

Performning the integrations over ® 5 @ gives a factor
of unity and no change of the rotational quantum nugber .
by virtue of the orthonormality of the Y:"(@, Q) . .
We note that the resultant selection rule on J is . AJ =0
in contrast with the case where symmetric top eigenfunc tions

are employed. M now takes the simple form

M (ec,Ce, Ve,€) =U PoROY (e: [1,8) 2 PVl RO BLEe, e [t,R) dy AR

(6.25),

The simplest approach to adopt in evaluating the matrix
element (6.25) is to assume that the electronic wave
functions do not depend on the nuclear radial variable R,

Then we can write
Y

M(Cc,fﬂ €) L= P(o[RY P(vt/RDAR ]+ 2 (ef,fli)dl“ -
[_ V¢ / [f fsu % (6‘,’26)

= 4040 | [plete)r g s, chrte]
(6.27)
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where Cp(w,o} ig the Franck-Condon factor, introduced
by Bates(78), for the zeroth vibrational level of the
molecule and the vf'-th level of the ion., Franck-Condon
factors are usually calculated for the c'ase where U (in 6.10),
is a Morse potential in which case the vibrational wave
functions are given by (6.12). Such calculat;lons have
been performed for transitions to the ion states 02+( X"“},
a"m,ﬁ(‘ﬂ\.,l,'l,’,) by Wacks(79), O2+(‘}:3.) by Bahr(so),
and Nz"*(x'i*, A‘m,s"?-'uﬁ' by Nicholls(77). | :
With the above simplifications the cross section can
be writ ten
) = (em ot ar/3) Z (T +EMNY(vh0)«
1A
x2. ”@“ﬂr)tﬂ&,ﬂz)hl‘
e
(6.28)
where ZW_ means summation over the energetically .possible
vibrational levels of the ion. The use of Franck-Condon
factors has thke consequence that the vibrational contribution
to the total transition probability is ird ependent of the

photon energy. This means that to firnd the total cross
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gection for all vf one needs to determine from (6.22)
at a given photon energy, subject to the condition D) >\O,
the value of the electron kinetic energies for alllvf.
The corresponding values of h(= RS%/Z.) can then be found
and hence, by graphical methods the electronic matrix
elements. Alternatively the known values of the
electronic matrix elements at the tabulatud values of
h can be used to determine‘the crogs sections for each
Ve and then the corresponding values of the photon energy
so that the variation of the total cross section with
energy can be found by graphical methods. Both of
these methods were used for the transitions to the states
mentioned above for which Franck-Comion factors are known.
The first method proved somewhat laborious, especially
when up to 20 vibrational levels of the ion had
appreciable Franck-Condon factors so a programme
(included in Appendix 3) was written for the second
methoq which provided a more efficient method of evaluating

the total cross section.



133
6.3 RESULTS FOR PARTIAL CROSS SECTIONS CALCULATED WITH

FRANCK--CONDON _FACTORS AND COMPARISON WITH EXPERIMENT.

i

In figures 6.2 %o 6.7 are shown the results obtained
from (6.28) for the transitions from the ground electronie
states of N2 and 02 to the ion electronic states Oé+(}(rTﬁ%),
0,"( & lw ), 0, ( ATTw ), 0,7( &¥2g ), 0,7( *Zy ),
XIS ), mH AT ), 1,7 8RS ). For ald of
these the partial cross sections have been found from
photoelectron spectroscopy by Blake and Carver(81). In
Chapter 5 the cross sections obtained for fixed nuclei
were discussed and comparisons between the curves for
different electronic states were made and the differences
in variation with energy explained. Those results
would have been obtained by setting va (‘}/(‘Uf, o) = |
independent of the photon energy and putting all €Cvf)=0
in (6.28). Including the Ffanck—Condon factors has
the most noticeable effect for those transitions in which
the grourd electronic state of the neutral molecule snd the
final state of the ion have appreciably different equilibrium
internuclear separations, Under these circurms tances, the
Franck--Condon factors are small for small vibrational
quantum numbers of the ion and increase slowly to achieve

a maximum at a higher value of v In figures 6.2 to

f.
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6.7, the experimental points of Blake and Carver in the
wavelength ranges from first threshold to 5842 are shown
for the above transitions. It should be remembered
that Blake and Carver applied their branching ratios to
the total photoionization cross sections of Cook and
Metzg@r(aa), Other reports of experimental total photo-
ionization cross sections have tended to be somewhat
higher than Cook and Metzger's results (see for instance
the results of Wainfain et al(53), Matzanuga and\Watanabe(83)
(02 only) ), and these would of course give rise to higher
partial cross sections, In the wavelength ranges of

o (o] (o]
10278 to T70A for O, and 796A to 743A for N, the partial

2
cross sections for transitions to the ion states O2+( X })
and N2+(><325') are of course identical to the total cross
sections. Further i% is worth pointing out that there

are two initial electron states to account for in the
transitions to 0,"( X'T), 0,"(aTlu), o (AT ),

N2+( X"Z;), N2+( 812: ), and four in the transitions to
N2+( /\LTﬁh). These multiplicati#e factors Have been

included in the final results.

For most of the transitions considered the caleulated

-

values agree well with the experimental results near the

thresholds. We now discuss the results for each orbital type.
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?fy . The calculated cross section near threshold has
large éteps due to the large Franck-Condon factors for the
small vibrational quantum numbers of the ion, (Lf'(XLTE}) .
Cook and Metzger's readings seem to ascend in close agree-—
ment with the calculated valuos. Near 9SOX however, the
experimental points are up to three times the calculated
values which may be attributable to autoionization lines

o
which we have not taken into account. From 9SOK to 584A

the experimental points tend to oscillate about a mean
which is close to the almost steady value of the calculated

cross section in this wavelength region.

e « For the transition to N2+(Aan;) the agreement

of calculated and expe?imental partial cross section is

very good from 7432 to 6602. At higher energies however,
the calculated values increase steadily in contrast to

the experimental results. This indicates that the critical
first nodes of the important continuum waves are not
occurring at sufficiently small values of the radial co-
ordinate X aril so not causing the corresponding $ransition
integréls to diminish at low enough energies, For the
transitions’to the kfﬁb states of 02+ the last remark also

applies, but here the experimental results lie well above the

[o} [o]
calculated cross section from 770A to 675A. Since the
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Franck-Condon factors are responsible for the sluggish
increase of the calculated cross section just above the

Q%Tm-threshold, it is difficult to see why the experimental

points should show such a rapid increase in this region. A
tentative explanation would be that the electronic matrix
element is sensitive to changés in internuvclear separation
so that the Franck-Condon factor approximation is no
longer valid, Otherwise the threshold value of the
cross gection for the case of fixed nuclei would have to
be several orders of magnitude greater than that calculated
with our model and show an extremely rapid decrease for
increasing energy. In the light of the good agreerent
for the corresponding orbital in N2, however, we suspect

that the calculated valpes cannot be too much in error.

3@5. There is insufficient experimental data for the

e +, N . .
transition to O2 ( Z} ); the only available experimental
point is about one third of the calculated value. The
transitions to O +(;3r‘?2‘_§) and N.Y(X*ZF) show good

2 2 I'4
agrcement between experiment and theory near their thresholds,
o)

For the former the agreement remains to almost 600A and
again we seeithe Franck-Condon factors dominating the
calculated cross section and probably the experimental

readings as well, For N2+(>(3?§:) the calculated and
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experimental values depart considerably from 750X to

6503 after which they approach one another. The drop
in the experimental curve at energies above 7SOX which is
not noticeably in the computed results could possibly be
explained by the above argwsents for this phenomenon in

the case of the Tf. orbital in N2.

20w . The calculated results for the transition to
NZ+( G"ZJ) are two to three times the experimental values
from threshold to GlSX and the discrepancy may be even
greater than this at higher energies. The final state
vaves are more likely to be seriously in error than the
bourd state functions for the following reasons., It is
unrealistic that the continuum waves for electrons ejected
from 7 and O orbital’s should be identical which is the
case in our calculations for the q;— and Q}‘continuum
waves for processes involving these orbitals. - Since

the agreement be tween experiment and our approxima te
theory is good for the 7Tw bourd states near threshold, we
consider that the continuum waves for electrons ejfected
from the 0w, orbitals need to te greatly improved upon.
Clearly we are testing Flannery and Opik's final state
medel to its limit when we use it for photoionization

of inner shells Tccause we cannot expect the screening of



138
the nuclei to be as effective as in the case of ejection
from the more loosaely bourd T, amd 7!} orbitals, It
is somewhat surprising that the final state approximation
has produced results vhich are of the correct orders of

magnitude for photoionization from even 30} orbitals,
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6.4 INCLUSION OF THE DRPENDENCE OF THE ELECTRONIC

TRANSITION MOMENT ON INTERNUCLEAR DISTANCE,

We recall that in the derivation of (6.28) the
simplifying assumption was made that the electronic tr_ans-
ition moment was independent of internuclear separation,
Franck-Cordon factors were used to account for the
vibrational contribution to the transition probabilities.,
This approach has been generally adopted in the study of

' (84)

band intensities in emission and absorption . For

the latter we have

Kyr ~ NV | (0 R(OR04R]"  (6.29)
where Ny, is the relative population of the V" level
of the initial state,¥i.= ( Ewu = Eye )/-A and R, (R)
is the electronic transition moment. Because the
dependence of Re on the internuclear separation usually
presents a difficult mathematical problem, the usual procedure

is to write

Kv_,v "'v”v" RC (‘rv'v") % (6.30)

< *
where %"v" = l [P\,n Por AR l is the Franck-Condon

'Er'v" f’%' R %"G{R/ S Pun P.,od}{

factor and

(6.31)
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85)

is the r ~ centroid( . The justification for taking an
average value for the transition moment has been the

assumption that the variation of Re with R is slow.

The above definition of the r - centroid and the
inherent assumption is usually made in the context of
bound ~bound transitions but it has obvious application
to bound-free transitions. We have therefore invest-
igated the effects of including the dependence of the matrix
elements of (6.24) on the internuclear distance R, At

the time of writing we had only treated the single process

2 ) -
OL()(BZg')V,;zo,J'Z=O> +44 —> O (X'Tlg) (ve, T¢=0) + €

(6.32)

and found the correspoﬁding cross sections at the thresholds
for each final vibrational level of the ion i.e. zero

kinetic energy of the ejected electons. -x

For the process (6.32) the cross sections for each

value of vf are

O'(W]é:o) == Qrﬁda}/_-,)]:(w)éz'_ Ifi (Vv‘,e;,e¢';5=o)11'
1{
(6.33)
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M (v, e0,00,620) =

“F}’(&h‘, K) ?(ol&)-g @ (e, E=ol, R) Pl d2 4R (6.34).

The firstcstage of the calculation was the evaluation

of the electronic transition moment as a function of R

Re(R) = j Plecte, Ot plecoole, s

The previous programme which we had used for the evaluation
of the electronic matrix elements for fixed nue le:%. was
extended to calculate these quantities in the range of R
from 1:6 to 30 ao in steps of Q2 a,. The significant
range of R was obtained by the method of Nicholls(77).

For the process (6.32) the chief contributions to the cross
section come from /DO"W z:{nd Prrwcontinuum waves and in figure
6.8 are plotted the corresponding matrix elements for these
final states as functions of the internuclear separation,
It can be seen that the variation with R is indeed slow
which lends support to the assumptions which have been
previously made in the calculation of transition prob-
abilities between molecular states. We feel that this
result cannot be disregarded on the grounds that our final
state model is only an approximate one. Cur justification

lies in the agreement of the magnitudes and variation
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with energy of the cross sections near threshold as
indicated in the last section.
V

To complete the calculations we have to multiply )
Re(R) by the initial and final state vibrational wave
functions and integrate over R. The vibrational wave
functions employed were those for the Morse potential
for which the solutions have already been given in
section 6.1, The relevant spectroscopic constapts
for 0,*( xz-n-a) are'79) te= 197¢- 4o, WeXe = 15.53
om 'y to= 112274, Ma=791386 , In figure 6.8 we have
also plotted the normalized vibrational wave functions
for the zeroth vibrational levels of OZ(XBZ;) and
02+( X‘TT?). It can be seen that in the region of
appreciable contributisns to the overlap integral which
when squared gives the Franck-Condon factor, the electronie
transition moment is varying so slowly with R that the
cross sections obtained by the method of this section
should not differ appreeciably from those obtained by
using the Franck-Condon factor approximation. This is
certainly borne out by the computed result for the trans—
ition from the v, = O state of 02( x3 2; ) to the Ve = 0
state of 02""( XLTTa, ), which is given, together xfith the

cross sections for all Ve at the corresponding thresholds,
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TABLE 6.1.

CROSS_SECTIONS IN Mbn FOR PHOTOIONIZATION TO 02+( X1y )

FOR VARIOUS v. AT THRESHOIDS (€ =0)

CROSS SECTION INCLUDING THE
R - DEPENDENCE OF THE
TRANSITION MOMENTS.

CRSSS SECTION USING
Ve FRANCK-CONDON FACTORS.
0 *83055
1 1-40248
2 +96173
3 *34252
4 *06708
5 *00706
6 ° 00031
7 *00000
8 «00000
9 * 00000

*80531
1°39410
97894
*35572
Q7066
*00741
00035
- 00005
* 00000

* 00000

It can be seen that the difference in the results obtained

by the two methods is only of the order of a few per cent

for the most important contributions.

Our conclusion that the Franck-Condon factor
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approximation is valid for photo-ionization calculations
~cannot at this stage be generalized. We have restricted
our attention to a single process in 02 and only considered
the case of continuum waves for zero energy. We will be
employing the methods of this section to investigate

other transitions in O2 as well as photéionizgtion processes
in N2 in those cases where use of Flannery and:0pik's final
state model has given good agreement between experimental
and calculated cross sections near threshold. We will
then reach a more general conclusion concerning‘tﬁe
Franck-Cordon factor approxim tion, though the above

results point to its validity.
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6.5. TOTAL CROSS SFCTIONb FOR N AND 0 FROM
THRESHOLDS TO SOA.

Most experimental reports on photo-ionization of N2
and O2 have given total cross sections or total absorption
cross sections with or without photoionizétion efficiency

data. The total absorption coefficient, ‘k , defined by

I=Te e (6.36)

has contributions from photoionization (above thresholds),
pre-ionization, dissociation, dissociative ionization,

band absorption etc. The processes of band absorption

and pre-ionization are expected to have large cross sections -
at and near specific photon frequencies (for allowed trans—
itions).

The early experimental work of Weissler and Lee(86)
on 02 was performed with line sources and results were

o
given for the total absorption coefficient from 1306A to

304A.  In 1955, Wainfain et all3)deternined absorption
cross sections and photoionization cross sections for several
gases including O2 and N2 from 4732 to 9912. At certain
frequencies measurements were made with large and small
ion-chambers which usually give slightly different results,

In figures 6.9 and 6,10 these results are shown. Averages
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were taken for the two ion chambers if both were employed
at a given frequency, Further, as is the case for the
plotted results of Samson and Cairns(57’87), the measurements.
are averaged over 102 intervals for the sake of clarity,
That such an averaging'procedure is necessary is unfortunate
because some exceptionally high readings which are probably
due to pre-ionization or discrete absorption, influeﬁce
the photoioﬂization results, There have been many other
reports of absorption amd photoionization cross sections
(88'89'90’63’83), the reference list not being eihaustive.
We have chosen not to include the more recent results of

(63) (83)

Cook and Metzger and Matzanuga ahd Watanabe because
of the large fluctuations in the magnitudes of the cross
sections, These arise when the experiments are performed
with very accurate frequency measurement and are clearly
not due to the transitions from the bourd states of the
ground electronic states of the molecules to the»continuum.
This explains why we only show the more smoothly varying
(due to less accurate frequency measurement) results of
Samson and Cairns and Wainfain et al. The results of
Samson and Cairns(87)give the photoionization cross
sections from threshold to BOOX. These experimentalists

have also investigated the absorption cross sections from

o
5502 -~ 200A and though no photoionization efficiencies
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were given we have included this set of results in the
absence of any othér data in the above wavelength region.

The results of our calculations for the total photoionization
cross sections for N, and O, from first thresholds to

2 2
o
50A are also shown in figures 6,9 and 6.10,

Results for O,. (See fig. 6.9). Ve have already

0 o :
discussed the cross section from 10274 to 796A in section

6.3. At higher energies we must add the partial cross
sections due to all energetically possible processes., It

can be seen that the general trends of the calculated and
' 0

I+

experimental results are in concurrence from 7962 to 600A.

We note that whereas the onsets of the transitions to the
TE; states of 02+ result in fairly smooth increases in

the cross section, those for the EQ} states are sudden

because of the large Franck-Comdon factors. There is

little agreement be tween calculated ard observed cross

sections above 6002 though the general trends ré;ain

similar to the onset of the transition to 02+( vz )

at 5103. At higher energies the two curves depart

radically indicating a general failure of the model we

have employed in our calculations. More specifically

the results where transitions only occur to the ]1’ states,

LA S 2
and to the ( 4—5%}, 22; ) states are in reasonable

agreement with experiment., When our model'is used
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for 20w and 2-0:} orbitals (see Ch. 5) the calculated
values are mxh too large. Finally we note that the
experimental absorption cross sections decrease at higher
energies to a value of about 10Mbn near 200?.. The
calculated cross sections also diminish at high energies
but do not fall to 10Mbn until photon wavelengths of about

o
‘704,

2
+
four photoionization processes for N2( X'Z} ) in the

Results for N.. (See fig. 6.10). There are only

wavelength range 796 —>» 502. However, agreement between
calculated and measured cross sections is found over a much
narrower wavelength range for N2 than for 02. Only from
the first ionization potential to the N.¥( B*Za' )

2

threshold do the two séts of results resemble one another,
This disagreement was anticipated in section 6.3 where we
saw that the transition involving the 20Q orbital gives
calculated results which are nearly three times as large
as the neasured values.. The partial cross sections for
the A‘ TR and Btzq"- final states increase from
threshold to reach maxima at much shorter wavelengths and
the diminishing contribution from the X‘Z; final state

cannot compensate these increases, Consequently, the

calculated cross sections remain far too high even when
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the photon wavelength is of order ISOX. In Chapter 8

the failures and successes of our model for the various

trensitions will be discussed in greater detail,
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CHAPTER 7.

PHOTOIONIZATION OF THE 2T~ ELECTRON OF NITRIC OXIDE.

T.l. BOUND STATE WAVE FUNICTION.

In heteronuclear diatomic molecules the molecular
orbitals can not be ameribed.g or u - symmetry on
inversion because, in an L.C.A.O. framework, different
atomic orbitals from which an M.0. is synthesised are
employed for each centre, S.C.F.-L.C.A.0.-M.0, wave
(91,92)

functions have been found for nitric oxide by Brion et al.

The electronic structure of NO was given as

RO TR & (o) o (30) @) G o) (IM)*(21r) s

In this chapter we restrict our attention to the photo-
ionization of the 27T electron which occurs at the first
ionization potential of the molecule, and results in the

*
produc tion of the X'Z state of N0+.

Brion et al have employed real Slater type A.0.'s
(with the orthogonal 2s func tion)which have been discussed
in Ch, 2. Using subscripts O and N to denote orbitals

on the oxygen and nitrogen centres respectively, the
above workers found in their complete treatment that the

coefficients a, and a2 in the expression

w(zn) = Q2PN - A 2pT, (7.2)
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should be a, = «8781, a, = -+6936, Denoting the

orbital exponents of the oxygen and nitrogen Slater

type 2/07T orbitals by ¥, and ?N ‘respectively we have

. y/("r) = a A sin8icosg e :"*'+ Al sinbr cospr€ To .
. 15 )
where Q:, = ( er/ "') and Q..' = ®, ( S:S/TT) “

We can write (7.3) in prolate spheroidal co-ordinates

am ) " / SEG -l pm
= BOODE0-p0) Pcosglae Ve -
T R iy 1) Peasp [ e (7.4)
-a,/e" "¢ or]
with
dy = SuR/2 o= JoR/2 (7.5).

Clearly (7.4) has no definite symmetry property under

the inversion operation.

O

7
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7.2, MATRIX ELEMENTS.

We have seen that Flannery and Opik;s final state
model has proved fairly reliable for the most loosely
bound electrons in 02 and N2. We hence feel, that
despite the oBvious limitation of the model when applied
to heteronwclear diatomic moleé%lar ions in that the
field of the latter will not be symmetric between the
nuclei, we should be able to obtain fairly reliable
continuum waves in such cases when the difference in
atomic numbers of the two atoms in the molecule is not
too large, With this latter condition certainly
fulfilled in the case of NO, we now determine the
expressions for the electronic matrix elements for photo-

ejection from the 2T orbital given in (7.4).

Clearly by comparison with the case of ejection
fromlTEJuorbitals for which the electronic mtrix
elements have been evaluated in sections 4.1 and 4.2, ve
find that only O , T  and § continuum waves
éontribute in the present case, Thus the selection
rule on M is still satisfied. The analogous
behaviour ceases when we consider the integrations over

the angular co-ordinate‘/“—. The expression (7.4)

clearly admits mixtures of g and u symmetry waves in the
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final states and further we expect that since both
(3.20) and (.21) will be valid for the functions M(m)

that the continuum waves will have both even and odd ¥4

If we denote the components due to (3.20) and (3.21)

by I and II respectively, then

*,

A0y = %’/f(h‘—n)chﬂ‘)(_"_"/")" ' (7.6)
§ =

o0
[a/e™ e~ _ ale¢ —’“)C da’“J x X (dn(R10,0) x
x d -

h=0
x Pl Ao, @(Ddpmdr 5 £=02%. ..

) ’, - 2 -6V w,

= AT T dnCklo®) [ O Aoy (D fa,e” > [X (AY len) - 62 (=)
-3? neo ’ N

o) -8 0] e N (A2 -8 o) - B2 (7. 7)

where ., .,

A), B, Ctee) = P (o p I (1.8)
! 5 cxo,t

ASe), BO6e), €<= R pts ) €70 (0 oy

With n = O, 2' 4...--

o,€
When we consider 0/71‘3- we find that the expressions
o, ¢
are identical to those for Uﬂt.xlr . However, the

values of £ are now 1, 3, 5.... and those of n are

i 5 Bilvrs



154

We find for the contributlons from § - waves,

N2E L = P Td, (ﬂ/zﬁ/(*"')/‘a,e(i)'

6y nEo '
’{Q re e ”1[.1\1(6'”[4,) -H [B(”)) + I“(ctn)- H:(d,.)) e \
- aem "0 (62 (o) - H2 o) + L)t Jar  (7410)

Ld=12,v,6...

where

G2 (40, H e, T = [ BRI M pa e

62K), Ko (k) IR (<o) f ,\“(,\.)e“”u(l,/ﬁp*)% i

4L
and for ‘/'1_ 'n— the values of ‘e are 3, 5, 7.... and
those of n are 1, 3, S.c.. Finally we find for

dontrlbutlons from - continuum waves,

L 2 -
z,:r = ! Zd ULII,C)[O‘"/) “Aig) ja'e %)EAI D) =
32 aveo

- BN - ale" e (xo)-?(xo)]} I (7.13)
(:/,3,:.,,; ‘/‘(z'zr €= 2,%6-- ,ne3,5.:0.

where

D (), ENC) =f<'— DT () Gupd i (7.14)

\.)T e°<o/‘~ Pnﬂ (/“) (m /ws)‘#‘_

(7.15).

!
D2, Enteds | G
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It can be seen that the labour involved in
computing the cross sections for molecular orbitals
in NO will be at least twice that for those, of
homonuclear diatomic molecules. "The cross sectioms
could indeed be found from the expressions we have
developed in this section but we now turn to an
approxime te approach which we expect to yield

reliable results,



156
Te3 APPROXIMATE CALCULATION OF THE CROSS SECTION

0
FROM 1340 - 10224,

We have noted that the calculation of the cross
section for ejection from even the 27 electron of NO
by the methods of section 7.2 would involve much
computational labour, Fur thermore, since accurate -
methods have not yet been developed for firding continuum
waves for electrons ejected.from homonuclear diatomic
molecules, it seems probable that accurate methods for
finding wave functions for electrons ejected ffom hetero-
nuc lear diatomic molecules will not be found in the near
future, We thus feel that some progress would be made
in this field if a fairly reliable approximte method

could be developed.

The most appealing simplification in the treat-
ment of heteronuclear molecules in which the atomic
numbers of the component atoms do not differ v;ry much,
is to regard the molecule as composed of two atoms

whose properties represent the average properties of

the two individual atoms, )

In the case of NO the difference in atomic

numbers is of course unity, Fur thermore, NO is
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isoelectronic with 02+, both having 15 electrons and
ground electronic states denoted by XtTr . We have
constructed a 77} orbital on two centres separated by
the ground state equilibrium internuclear separation
of NO, r, = 2‘17471&0(79), using atomic Slater 247
orbitals whose orbital exponent is the average of the
values for N and O atoms, This yields a value of

}‘zm = 2+*1125, The only otiler; ?arame ter needed for
the programme used in the evaluation of the cross section
is the threshold energy, which, from_Gilmore(Gwis
9°25eV for transitions to the zeroth vibrational level
of NOY( X'Z*). Furthermore, to account for transitions
to different vibrational quantum levels of the ion,Franck-
Condon factors are again employed and we expect from the
discussion in section 6.4 that this approximation should
be fairly reliable. Franck-Condon factors for the
transition v |

NO(X*Th) + &+ —» NoH(X'Z) + € o

have been calculated by Wﬁclcs(79)and these were employed
in the present calculations according to the expression

\
6.28,
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T.4. RESULTS AND DISCUSSION,

In figure 7.1 are shown the results for the cross
section calculated by the method outlined in the previous
section for photon wavelengths from 134OX(threshold) to
10222; Experimental cross sections in this wavelength

(93) {94).

region have been obtained by Marmo » Watanabe et a

(95,96)

and Watanabe and those of the last reference have

been shown in figure 7.1 for the wavelength region from

13408 to 10608,

Since the equilibrium internuclear separations of
NO( X*TT+) and NOY( X'Z*¥ ) are not very much different,
the Franck-Condon factors are large for small vibrational
quantum numbers of the ion, As we have seen in section
6.4, this means that the cross section has large steps
near the first ionization potential, Watanabe's
experimental results show the onset of transitibns to
the various vibrational levels of NO+ in a most striking
manner, the Ve = 0, 1, 2 and 3 thresholds being most
prominent, The general agreement between the calculated
and experimental cross sections in the above wavelength
region is surprisingly good, considering the approximate

methods we have employed in determining the cross sections,
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These results are sufficiently encouraging to warrant the
use of our method for determining the cross sections fof
the /M and possibly the 50 electrons of NO. We willv
also be able to investigate the reliability of our model
for carbon monoxide, Furthermore, the results for the

- 27 electron in NO can be easily extended to higher
energies and comparison will then be possiblé with the -

experimental partial cross section obtained for the

J .
process (7.16) by Kumar(97),
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CHAPTER 8,

CONCLUSIONS.

Wo have seen in Ch. 1 that photo-ionization cross
sections for any bound electronic system, whe ther atomic
or molecular?:can be reliably calculated if accurate one-
electron initial and final state wave functions can be
fourd , Further, for atomic calculations the problem of
finding such wave functions can usually be solved by
employing self consistent field methods, with or without
exchange terms in the radial equations. That the problem

can be solved in this manner is due to the high reliability

of the central field approximation for atoms.

We are not suggesting that the problems concerned
with atomic cross sections are at all finalized. Some
systems have their special difficulties, especially when
there is a strong chance of cancellation in the radial
trans%tion integrals, However such difficulties, though
they may not be removable by exact methods, can at least
be subject to a phenomenological approach and suitable
mathematical models determined. e note that in atomie

calculations the amount of labour involved in finding the

variation of the cross section with the incident photon

——

T Assuming of course, for molecules, that accurate

vibrational eigenfunctions are available.



161

energy is at least subject to an upper linit insofar as
there are, for a given bourd state orbital, at most two

final state waves which need to be taken into account.

Turning our attention to molecules we see that cross
sections for the simplest molecule, H2+, as is the case
with the simplest atom, H, can be found exactly. The
analogy is not complete however, for whereas in the caée
of H the final state waves can be expressed analytically
(Coulonmb scattered waves), in the case of Hzf the important
radial equations must be solved numerically. Fur the rmore,
whereas for the ground state of H(1=0), there is only one
continuum wave, in the case of H2+ there are an infinite
number, However, only those with angular momentum of
order 1 = 1 will of course give rise to appreciable dipole
iength matrix elements. Nevertheless there is much

more computational labour for H i than H,

2
In the history of atomic cross section calculations

for more complex gys tems, it was found that the best

simple approximation is to use Slater type A.0.'s and

Coulomb scattered waves for the final states. This latter

approximation has a physical foundation for clectrons

ejected from outer shells in that the remaining electrons
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should screen the free electron from the nuclei, and
a mathematical foundation in that the dipole length
matrix elements rely most heavily on the form of the
wave functions at largé r where the continuum waves
achieve their asymptotic forms, In a sense, our
calculations for diatomic molecules, especially N, and

2

0,, bave been of the same order of approximation as the

2’
above method for atoms, We expecf that for electrons
ejected from the most loosely bourd molecular orbitals

the effective field at large distarces from the ﬁolecule
will be approximately that of two half elementary positive
charges placed at the nuclei, This approximation is
justified for homonuclear diatomic molecules because

such systems have no dipole moment, Fur ther, the
initial state electronic wave functi;ns which were of the
S.C.F.~L.C.A.0.-M.0. type in our calculations should be
fairly reliable though as we have pointed out previously
there is some uncertainty in the predicted ionization

potentials which constitute one of the criteria for

assessing their accuracy.

The inclusion of vibrational and rotational states
for molecular calculations has no analogy in calculations

for atoms. In Chapter 6 we developed a method for taking
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the vibrational motion of the molecule into account, making
use of the concept of Franck-Condon factors, With these
three gpproximations i.e. S.C.F.-L.C.A.0.-M.0. initial
elec¢tronic wave functions, Flanmmery and Opik's final
state model and Franck--Cordon factors we found that the
calculated partial cross sections for theITT} y JTTw
and ECG? electrons of N2 and O2 were in fair agreement
with the experimental values. This agreément was very
good near threshold for transitions +to 02+( XZTT? ,@-H‘Z; )
and N2+( A1), fair for the trans ition: to N2+( }{zz; )
and uncertain dve to insufficient experimental data for
0,"( "’}..’_;). The calculated results for the transitions
to 02+((L&Tn%,ﬁ§zrn*) were somewhat lower than the
experimental readings but it is difficult to find support
for the latter if the Franck-Condon factor approximation
is wvalid, The experimental results show an extremely
rapid increase above threshold whereas the Franck-Condon
factors indicafe a slowly increasing cross section, If
of course, the ground state equilibrium internuclear
separations of 02+((£*TT;,/EPFL&) were revised so that
they were closer to that of 02( }(Biig? ), there would be
a greater chance of agreement between the calcuiated and
ﬁeasured values for transitions to these states.

Fur thermore the general trends of the calculated and

¥ Alternatively agreement would be te tter if the
experimental thresholds were lower by about *4eV.
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exparimental cross gsections for these transitions are
similar and the magnitudes of the same order. The major
difference is that a given value of the cross section is

attained at shorter photon wavelengths for the calculated

resultse.

When we apﬁlied the above methods to thg 20 andé!@}

electrons in N2 and O2 a radicgl failure of the
model was encountered, For all such orbitals the
calculated results were far too high. We could only
compare calculated and experimental cross sections for the
transition to N2+( BLZ:: ), experimental figures not being
available for the other transitions involving 2 orbitals,
Nevertheless we can see that the calculated partial cross
sections for these other transitions are far too high

because the total cross sections show no noticeable

increases near the expected thresholds.,

The failure of the method in describing the-processes
involving the20&ani203 orbitals can be traced primarily
to the final state model though we cannot deem the bound
state electronic wave functions beyond improvement by any
means., We are led to suspect that the final state model
is the cause of the break-~down for physical and mathemat—

ical wcasons., Physically, we expect that the screening
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of the ejected electron from the nuclei by the outer
¢lectrons would not be as great for processes involving
thase orbitals, Mathematically, we see that with
Flannery and Opik's final state model the continuum
waves for a given (m, 1, h) are the same for transitions
involving 2w and ?.0} bourd orbitals as for those
involvinngﬁ*andIﬂ%,bound orbitéls. For example, it
is ¢learly unrealistic that the 7T and & continuum
waves for the iTa,case be the same as the corresponding
wvaves for ﬂma?L@%case. To further emphasize this point,
consider the atomic case vhere continuum waves for 1 = 1
initial states have 1 = O ard 1 = 2, Foranl =0
initial state there is only an 1 = 1 continuum wave which
means different radial equations and hence solutions for
the continuum waves in each case. Thus the final state
model is most probably at fault, We have of course only
explained why the results for the 23, and ZG’:_ orbitals are
in error, not why they are too high, A full explanation
is too difficult a task but tentatively it would seem
that the inner orhital electrons which are not vacated
may have a repulsive effect on the free electron and
ghould therefore diminish the continuum waves in the region
where the initial bound state functions for?2.4G, and ?.0'3, are
appreciable, thus lowering the values of the transition:

integrals and hence the cross sections for these orbitals.
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With regard to final state waves for electrons

moving in the field of a homonuclear diatomic molecular
ion, our final conclusion is that Flannery and Opik's model
is satisfactory, and is in fact quite good near threshold,
for electrons ejected from H"f:g, ’ lﬁ} , T, , Iit, and
EQ}orbitals. Calculations for other molecules such
as F2 or Ne2 would, if the experimental results were found,

further substantiate or otherwise our claim which so far is

(50)

> and the

based on Flannery and Opik's results for H

results of this work for O2 and Né. ?
In Ch, 5 several results of interest were obtained.

We had seen that in the calculations for fixed nuclei,

the cross sections for.3@} and ”ﬂ? electrons have

pronounced peaks near ZOOX where the contributions from

higher angular momentum final state waves dominate the

cross section, This effect was found to be absent for

orbitals of u~symmetry and a tentative explanation of this

difference was given in section 5.5. One of the most

interesting phenomena was observed when we considered

the effects of varying the degree of hybridization in

the 3i;orbitals. It was found that when only 2s atomic

orbitals were present the cross section steadily diminished

0
from threshold to 50A. In fact we found that high energy
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peaks only arose when there were 2pz atomic orbitals
present in the initial state wave functions In addition
we found that the effects of hybridization on the cross
sections for 20 orbitals were far less important than
for-Eq}orbitals. The use of 2p_ atomic orbitals only
gave results which were higher at all energies than those
for the hybrid (S.C.F.—L.C.A.O.—M.O.) orbital, whereas '
the use of 28 atomic orbitals only gave results which

were lower at all energies.

0
The "shoulders" observed near 200A in the absorption
(57)

cross sections for N2 and O2 by Samson and Cairns

have been discussed recently by several workers
(58)’(59)'(82). Our high energy peaks in the cross sections
for3d}.and'ﬂ} orbitals are pertinent to this subject.

We feel that these peaks are definitely the effect

that Cohen and Fano(58)

discovered in their simple

treatment of photoionization from a 03, state, -.We suspect
that the failure of Bates and Opik to find any appreciable
shoulder effect for H2+ and for their model complex molecule
was due to the ahsence of 2pz orbitals in the bourd states.
which as pointed out above are responsible for the high

energy peaks, The locations of our peaks are at the

right wavelengths to bBe considered as the cause of a
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shoulder effect. However, in our total cross section
¢gurves for O2 and N2 these ¢ffects are masked because
of the dominance of the partial cross sections for 20a ard

20} states which we have noted are far too high.

In Chapter 6-we devoted a section to finding the
effects of including the dependence of electronic
dipole matrix elements on internuclear separation for the
transition oz(x"z'.; ) + fw > 02+(X"Tr%) +9 , The
r - centroid approximation which has been often uéed for
describing band intensities in emission and absorption
‘depends on the assumption that the electronic transition
moment is a slowly varying function of internuclear
separation, For the case we investigated we found that
this variation was indeed slow. Furthermore, by performing
the double integration over the electronic and nuclear
co-ordinates we were able to investigate for the case of
zero energy continuum waves, the reliability of the Franck-
Condon factor approximation. We found that the results
of the double integration method and the Franck-Condon

factor approach gave results which agreed to within a

+

few percent for those vibrational levels of fhe ion O2

which have appreciable partial cross sections, Thus

the results/of this investigation pointed to the validity
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of the Franck-Condon factof approximation though we could
not at the time of writing generalize this conclusion.
However, the fact that the shapes near threshold of the
partial cross sections obtained by using Franck-Cordon
factors for those initial states where Flannery and
Opik's model for the final electronic states should be
reliable were similar to those of the experimental partial
cross sections lends support to tie validity of the Franck-
Condon factor approximation for ionizing transitions in

{
homonuclear diatomic molecules.

Our final investigation presented in Ch. 7 concerned
rhotoionization cross sections for heteronuclear dia tomic
molecules, We only had space to investigate the trans-
ition from the ground state of NO to the ground state of
NO*. Ve found thet since the initial states have no
definite symmetry properties on inversion in the mi@
point between the nuclei, both g and u-symmetry final
state continuum waves were allowed and further-more that
both odd and even 1 continuum states contributed to the
cross section, Since the computational work would then
be at least twice as much as for a homonucle;r molecule

we pursued an approximate treatment where the molecule

NO was replaced by a homonuclear molecule composed of



170
two atoms whose properties were, in the sense described
in Ch. 7, the average of the ﬁroperties of N and O, The
results obtained with this approximation were suff?ciently
promising in the wavelength range 13408 to 10224 that
we feel it will be worthwhile to apply the technique at
higher energies for the transition considered, for other
orbitals of NO and also for other heteronuclear diatomic
molecules such as CO where the atomic numbers of'the
constituent atoms do not differ appreciably.

\

At present, calculations on molecular photoionization
cross sections have reached the stage that atomic calculations
had reached in the late 1930's when approximate methods were
being sought in order to obtain results for many systems
without too much computational labour, Modern ¢omputers
make the numerical work much easier of course, but it is
difficult to see exactly what form the next steps should
take in estimating molecular cross sections. At present
it does not seem that a method analogous to be the self
consistent field approach for atoms will be found in the
near future, Thus a phenomenological approach, though it
would not incorporate rigorous methods and generalized |
formula tions of the various problems, would perhaps be

the best way of gaining insight into the nature of the
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various effects involved. The greatest problem at present
appears to be the determination of reliable continuum

waves for electrons ejected from the inner shells 20, and
20} B A phenomenological approach to this kind of problem
has already been mentioned in Ch., 3, where the method of

piox(68)

for calculations on elastic scattering of slow
electrons by diatomic molecules was mentioned. The basic
approach would then be to try different g(A) in the
potential V(A ,%) = g(A)/5-49, One could then work
with a Schrodinger equation whose solutions are|separable
in prolate spheroidal co-ordinates which has the distinct
advantage that since the S.C.F.-L.C.A.O.—M.O.'; can be
written (as in Ch. 2) in ahalytic form if Slater type
A.0.'s are used (not necessafily with the original Slater
values for the orbital exponents), then the evaluation

of the dipole length matrix elements can be performed

for a great pmrt by analytic methods.

Calculation of molecular photoionization cross
sections presents difficult problems which have not been
solved or to a large extent even tackled. In the light
of the important astrophysical applications, it is clear
that a vigorous research programme is needed in order to

bring this field to a more advanced level, or at least
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to the level that has been attained for calculations

of atomic cross sections,
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CHAPTER 9,

APPENDICES,

9.1. NORMALIZATION OF THE BOUND 'MOLECULAR ORBITALS

OF CHAPTER 2,

Throughout this work we have employed L.C.A.0.-
M.0. wave functions for the initial electronic states.
In some of our calculations we employed the S.C.F.~L.C.A.0.-
M.0.'s of Sahni and Lorenzo(62)but in several others,
such as those described in sections 5.3, 5.5, 6.4 and
7.3, we employed modified forms of the wave functions,
The algebra involved in the normalization procedures is
presented beiow, and subroutines (XNORM) were employed
for their evaluation, Further all these formulae
were checked by using the L.C.A.O. coefficients of Sahni
and Lorenzo and then verifying that the condition

f{ Wi dT = was in fact satisfied.

TI}, (01‘ T_f? ) Orbitals,

From (2.26) and (1.9) we find on vriting

W TR < oy v-nt (l-/‘*‘)'il e} G Gpltiag )
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that
)C(-O //(7@‘-1)(/— t)e‘z MLL(GQM)A-—/L )d/t‘l

= [Gmycerd/m (9.2).

Eventually we find

=2/ R (LB LGB n -]} (ou3)

where ‘
1,5 T = [ e (9.4)
00 .
D,5,7 = [ €N (9.5).
0 [}
Explicitly we have
I = ™ ([ sind 25 /2 - o] on
5= < [selaad {a¥a + i) - § Xeoshln) ~ Y3 ] o
Ty= o [FRED[<e 37 4 34) — (9.8)
u ";,‘“5"@-“‘7(44?4- () — =757
Bi= paen ™ o
S SO S (.10

- - <! . -3 3 - _
R e e B S N I T (9.11).



175

772.(01- 7_7:& ) Orvitals.

If we write

() = CEIO-D 1™ ashin (o si)

then using the above notation we find

C(«):zﬁ&'V{(% J';-%J’.fi(f,) + I(T3-7) +
]

' I
+L(5-3) + (e -'.Tc)}

Ug. Orbitals,
We have

y/(‘r.‘!) = c(p) [z(c,—c,) e."“wsksofb +

+ Re aLX{(,&‘(%)(Cy. +CN) —(Cz-r(.'_k)lu-:ﬁ;& (a(/n)}]

Applying the normalization condition (1.9) gives

o) = 2/ {R3T TP

where

T= T, ¢ RLuf2cRTs &= 2(¢,-¢)

Ii= Hedf\c@;vgﬂﬁ)(#— ")d/u,o[)\
1 -

(9.12)

(9.13) .

(9.14).

(9.15)

(9.16)

(9.17)
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L' . . i
I, :f[e‘qu{cosl\(c(/u) (Cyt (l,,)‘) ~(C + 6N M 5“‘“"9")3, (O.15)
[ ) / i

x (\L— /A") o{p\.o()

Co

- - (t4p) _
IJ = {-fe (4P ;Lgb/u) {Cosl{oyu)((v_ +c,_)\> -((&+ cv-))/*s;—vt("?«)}(g' 1 9) .

« (N pdp

We find we can write

I, = % C_l/}[f' [z, (l+,o"+{p“‘) ~zc]

(9.20)
where
y Py
Ty o = [ R () 4 (9.21)
which gives
Ty = 257 [ésu‘z/s + P (9.22) .
Is = 7L p{Lsisepr s ph) - P/
—XL Z/) @SLQ/S)—SMZA)}J (9.23).
Further we find
IL.= 7T, [2. I"CLC* —I,o Cz_“ - I,C‘r"]
+ 27 [I..(Cf‘+ ) - Gl €I + 1)) .
' , (9.24)
t n[er(L,-Iy) + 6 (Tu-L0) -2GC¢(15-1,)]

+ 133[(‘('*(I6f 1'7) -Ig (Cv'+(§>] + J-v[_I'GC,_‘J-I’C,_"_zIs,C._(.,_]



where
D

- —2&KA
-Th'fle AT SN =0,1,2,3,

so that
-2 —2aC B
TL=¢ fex; Ti=e [+ <)

fi= te x4 1a)
= Loy 2% 3¢~ -2 -
=y« € ["':"‘ + 3 +2u 7)
Ty =(e'“(/za<) + 2773
We have defined
[
Ti, Ty = [ coslitope) Copr)dhn
o]
Iy, Lo = f sink* (o) (a2, )l

Iy T = [ otk s (peopdipe

I, and Iq have been developed for argument P

I, and Ly ~ see equations (9.22) and (9.23).

can be easily seen to be
-3 2 , of 3 S,
v I = 2< [t {ambast - 0} + <

— & fax ke - sel2=0] |

and we have

-2 — Al
I, = i< [ 2e¢coh2at = sih2x]
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(9.25)

(9.26)

(9.27)
(9.28)

(9.29).

(9.30)
(9.31)

(9.32)

Iy

(9.33)

(9.34)
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o Sy S (9.35)
T ,("[-a(*sd:(?—d = é_{(aoc‘.;-n.x)coskzx N
~(n<*+0) s?«AQoO] - "'%r] o)
T, = __L_o("‘ [(2>+ 12<) cosh 2
7
= (2o 6)sink 2o & (9.37).
We find we can write
I; = LJ[K'('- - k-‘cv) + Ll.{.Knr\P "'Ks(z}
+ Ll {kvcy—ﬂ"' K;_C).} + L, [K‘D'CL"'kl.c'f'J (9.38)
[ o]
with L, = f,,ev(‘*’b)x‘d’\ (9.39)
so that
Lo= & %g(+/,) L, = HP [wp+eerp)]
| (9.40)
‘(“"'/’)[C Y+ 28y 2(x 4 )"J
L,= ¢ X+p) + A+ B ( )
9.41
) . -
L;=e B e 'y 30 A+ 6 (et p)” (9.42)
+ (,(a<+ﬁ)'ﬂ
Further we have put'
]
Kiyky = [ om0k () (1) do (9.43)
= J



kS)k‘f = /:°‘L9’/‘$5MM(/~,/&3)#L

so that

/(‘:czt/.;[ffrs‘\(_a(f‘ﬁ)] + F‘—_;([SM(/}-«)]
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(9.44)

(9.45)

Kl: G:l:/_ﬁa [{(g(.\t-P) e l}S;ML (et P) -2 ("C-I'p)‘o"‘@ "'P)]

o {p- 02} sl - 2(p= D (p-]

T x4p) [@*P)“’“é“’/“)“ wdictp) ]

’z«“'-?)‘l'_‘“-f”““*‘“-f’? s (-]

K= f‘E sJ.,L(d.+F),... + S;aul(d—p)/"]/‘la%

(43 + L ( +p)} cosh(x+g) -
P B

N (et+ g’
B {3(o<+ Y +¢ § sk Coc+p)_]

[{ &= PY° + 6{t=p)Y cosh (ot - )
— {3(x-p)*+ 6] sl (ot-p)]

which completes the calculation.

Gx

(9.46)

(9.47)

(9.48)

(9.49)
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Cw Orbitals.,

If we.write
(Iu(oﬂ‘J = C(xp [Cf E—PXSLLQ/&) +

+ Re- .o{(mc«fx),&asu«,a ~@v +a) sideg} foust)

then equations (9.15) and (0.16) can be used to find

c(«,p) but that the following definitions apply;

/l TP ) (N7 (9.51)

I,= f fe' P lert okl -yt GV sihegad }
- v (W= p) chpn A (9.52)

=f fe'(up)?'{(c; #0e2) pucoshigm) — :
N | (8.53).
~ 0y + e ) st lip) ) sibifp) () dpnd )

In order not to make the appendices unduly long we do not
display the results for the evaluation of I1, I2 and 13

in this case, They are very similar to those for

0}', orbitals,
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9.2, ANGULAR INTEGRALS,

In séctions 4.1 to 4.4, various definitiohs of
angular integralsl were given as well as exp‘ressior;s for
evalvating them in series form. In most cases we
evaluated these integrals for the first six values of
n by using tables of coefficients of Legendrel polynomialng
In any group of two or three integrals, e.g. An' Bn' Cn,
those whose integrands contain the higher powers of

IM' can be found from the expressions for the integral
containing the lowest power of /% simply by adding two
or four to the suffices on the angular integrals In or Jn
in terms of which our expressions are written. Thus
for example,

As(<) = [ Bl siLogqordhn = SS5 33,

k : (9.54)

whereupon 33@()= 5—"-'"3’:; . _ (9.55),

We then have

A=2% A3=5—-’J'3,; Ag = {”:(635':_70}3 +"-’;) (9.56)

A, = }’—(9279,-6739: +3"93“35-f9') (9.57)



Aq= i(mf}" we2o Yy + 180180 —257v0 &,
‘ + lll$$°\’9>

Ay= IJI}(—G?.%Z + 1501593 — 9009005 + 27979055
— 2307%5)y + 92179 51)
Further
Eo= 2(4-J) Ev= 3(5"*"‘\73—5}7)
Ec,.-'—‘ (y‘f-)[-gy; — ¥s)-+1losJ, -(.3j,]
E¢= 7 [‘?1‘9-97-— 630974— 1409r ’5’3 —Lf—zq}‘,—]
and
G = 30(."-9}) 63 = 5(89‘}3-2l3| -63 9‘) =
G = L (1053, -875% + (711J¢ - 10019,)
Y
)

6'-, = i;-(—z.’»ljrf‘ 313*}3 - uon-J} + 1630737

- '7173.9’9)
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(9.58)

(9.59).

(9.60)

(9:61)

(9.62)

(9.63)

(9.64)

(9.65)
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Gy = _%s__ (3003}, - 620635 + 3663¢6 %5 — veos 74 9,
&

+ 977591 %, - 323323%,) (9.66)

For the angular integrals for 7l orbitals, we find

Ad= 2To , Ad=3T, ~To ,Ae= L35 T, -307m + 3%)  (9,67)

AL = é—, (3130 -315, r105T; - 53) (9.68)

L
Agt = w((:‘fsﬂ':-l?—ol’-fc +63307 “’"(’°T"'"3§J3) (9.69)

A .
.Alo. = 29 ("K‘:‘ 2930 —|0‘13‘1f3; + 9001 3-; - 300303;,

«70).
+ 3‘1'§S'J'L -—-4»3:]-0) (9.70)
Also
D'= 6(Rm-T) , Ds'= (10T -35-770) (9.71)
De' = %(HQ—ITL —231 T3 245 {—35‘1&) \
v - p
D7 - ‘Sll—'\"‘f‘J_g = Q‘f’z-g-J;o "'7—‘?7‘?3—‘ +37€0\Ty- - ( )
9.73

- 3(5’31)
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Dq= 5_; <‘33—,°5—T,0 Y18 T — 1157075 +

+ 6 60b6T6 —12 705 T 4+ 693 T1)

(9.74)
D= 3 (2.2‘!26$+Jh—- 3002285 T, + 1896190Ty
e (9.75).
-~ 595585T, + 78078 Ty — 30037
— 676039 J;;)
Further we have
Go' = 6(T,-30) , G = 1S(PR~To - 75%) (9.76)
6o '= _3;_{(1533; -577, = Tu 4 3T0) - (9.1)
G = 85(190|9.T.,_||ogzr,_+z,+;_:r,_—c.3:. (9.78)
- — Qo004 Jg)
Gg'= 15 (230 To- 1385077, 4 3F27 Ty —29%29¢T0
b | (9.79).

F102r 102 T — {2243 31>

The extra integrals involved for @ orbitals are

’

Po=2(To~1) | @, = 3(ehi-To-5a,) (9.80)
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Q, = _’% (105 Ty 5T +375 -63T8) (9.81)

o= ,87_(92 ¢ Jo—630T4 +1%0T, ~*19T5 ~5%)

(9.82)
+ 35T5 —12J5°S Tio)
(9.83)
- [
P = 7—7.’3 { 27734 T —328/85 T + 1201807, —
T ¥s0vs T+ s —3do —2279,)
(9.84)

and A=2% | Fy= ST =33, , Fr = (639¢- 205, +15%) (9.85)

o A
= o (255T0 2574075 18012 7, (9.86)
— %6207, +"3/r‘~71)
F7 e

_L .
5 (‘*7-73:9 —613 % +315Ty ~357;) (9.87)



R = 25 (831795 - 2309¢5 7, 4 2,97907;

=t009076 + 150/5 T, 693 1)

Finally, for the extra angular integrals involved

for J. orbitals we have

L= 6(3-%) |, L= 5(0Kk-33_74)

i
Ly = —3; (wurde — 2219 — 2459, ~+359)
Ly = (159 J7 - 04359 - 12%2¢9, -+ 37304,

— 315’},)

- 5
Lq = E:;— (I337of.97 - ?—6!?7"}; . I‘Plf?O}-,

+ bLOGLIr —1270543 +6134)

3
Lu= 73 (1212653, 300228545 +- 18941504, -

186

(9.88).

(9.89)

(9.90)

(9.91)

(9.92)

(9.93)

— 585595 4 75078 %5) - 3 (30039 44 7603950

and finally

So =28, 8,235, -0, Sy = L(5H ~30% +3%)

(9.94)



Su= F(3)-31595 + 1055 -5H)

S} = ‘;"-'_ (Gl*'sf.",—lzolz’? +6130) _,1‘033

+354,)

h -
S‘N: ‘18(‘4'6‘91}" "O?S?f.qq + 900?0}7

- 30030 I + 3%esd; —635)

187

(9.95)

(9.96)

(9.97).
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9.3 BRIEF DESCRIPTION OF PROGRAMMES.

The calculations of the cross sections reported
in section 5.2 which were then used in conjgnction with
Franck-Condon factors to obtain the results of sections
6.3 and 6.5 were performed by means of four main programmes,
PHOTO1, PHOTO02, PHOTO3, PHOTO4, one for each orbital type.
We have included a listing of the programme PHOTO2 only,

all the others being very similar,

The basic input data needed for the programmes are

listed in table 9.1,

TABLE 9.1

INPUT FOR_PHQTOZ2,

Programme symbol, Variable.,
ET Threshold energy I in eV.
R ) Internuclear separation of molecule.
S Slater 6rbital exponent, §,
DZ(L,N,K) Coefficients in series (3020) for 0" waves
D1 (L,N.K) " n " n w T w
D2(L,N,K) n " n " w g on

, 70)
TZ(L,K) Stratton et al's 6,& (R.)( foro-waves
T (L,K) " " " " w I n
T2(L,K) " W n " n S
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Throughout the programme listing are inserted comment

cards which should explain the various stages in the
computations. The following steps were taken in

obtaining the final results.

EVALUATE _SEPARATION CONSTANTS, The tml(h> tabulated
by Stratton et al are here used to find the values of
the Aml(h) in accordance with (3.?2). Four runs were
made fdr each process considered in order to cover the

o
wavelength range from first ionization potentials to 50A.

ANGULAR INTEGRATIONS. The various angular integrals

defined in sections 4.1 to 4.4 and tabulated in 9.2

are here found from the values of the Jn(c(), the latter
being called XJ(I). Further, the recurrence relation
(4.45) was used to find all the Jn needed so that by
means of three DO LOOPS all the angular integrals could

be obtained by using the dummy variables BX(I),

EVALUATE SCATTERED WAVES. This involved a tri-nested

DO LOOP for values of m = 0,1,2, of 1, and of h, the

energy variable, (the correspording symbols being M,L,X).

The COEFRICIENTS OF POWER SERIES section is of course

devoted to the determination of the a in the expansion

for F(T) according to (3.30). Recurrence relations
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were used for the higher values of n, The values of A
for which the radial functions were evaluated by this
method were A = 10, 11, 1.2 and this gave the .
unnormalized func tions Gml(h,)\) at these values of

the radial co-ordinate,

RECURRENCE RELATIONS NOW _USED TO GENERATE G FUNCTIONS

o LAM = 10°9.

The Gml(h,X) are programmed as GZ,G1,G2(L,N,K) for
g , T and $ — continuum waves respectively; The
subscript N is used for the radial co-ordinate A .
By means of the recurrence relation (3.34), the values

of the G, to A = 10+9 in °*1 steps of A are obtained

1
from the first few values by the power series method.
The func tion 53 (N) in (3.36) is programmed as the

dummy variable XF(NN) for all m, 1 and h.

NORMALIZED AMPLITURES. Here the values of the le(h)
given in (3.39) are evaluated, the programme symbols
being YZ, Y1 and Y2(L,N,K) where N now represents n in
@
the expansions of the type ;Z:/ci (n/0,1)P €p¢l
n=o 1 n
The first six values of n were employed whereupon the
'\L

values of the normalized asymptotic amplitudes of the

Gml(h')\) could be found. These amplitudes are called
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YZ7Z, Y1Z and Y2Z(L,X),

EVALUATE UNNORMALIZED ASYMPTOTIC AMPLITUDES. We found

that calculating the values of U{A) and hence o ( My
(see section 3.4) was not satisfactory if A was less
than 1049 because the condition w {4 v was then not
always satisfied. Thus we employed a special sub-
routine AMP which carried the calculations of the un-
normalized Gml(h,k) out to M = 407 by means of (3.34).
The values of G({A)iin the range [39-7, 40-7] were
then used to calculate the U(A) in this range and
eventually the values of Dml(h) in (3.40) could be

determined,

EVALUATE NORMALIZED RADIAL FUNCTIONS . The normalized

Gml(h,k) are used to determine the final radial solutions

_A‘_ml(h,k) which are needed to evaluate the electronic

matrix elements,

RADIAL INTEGRATIONS.  Having found the 4\ 1 (mN)

the programme then computes the MA-dependent parts of
the matrix elements in the range [1-0, 10'9] . The
integrations for each m,l and h are then performed by

our subroutine SIMP2 which evaluates integrals by
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Simpson's rule., The final radial integrals so obtained
are then coupled with the previously determined angular
integrals and the resulting squares of the matrix
elements obtained. These latter quantities have the
programre names T3, TP and TD(L,K) for O , ™ and
§ - wave contributions. The total of the electronic
matrix elements is then found (TOTCO (K)) whereupon the.
cross section can be immediately found from (1-8).
The output consisted of the photon wavelengths and
corresponding cross sections together with values of
the angular integrals, the normalized radial functions
/\al(h,w\ ), and all the radial integrals.

For the calculations described in section 6.4 the
programme PHOTO1 was modif ied and extended in the
following manner, Instead of setting R = ry the value
of R was varied from R = 1'6ao to 3-0&0 in st?psodf
'02a°. The matrix elements were then found (for zero
energy) for each R, The Morse functions nceded for
the vibrational wave functions were determined at the
correspornding values of R whereupon the complete matrix
elements c¢ould be obtained py'using SIMP2 in the range
[1-6, 3oOJ B The modified part of the programme for

this calculation is also shown in the listings, together
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with examples of XNORM which were used to normalize

the bound orbitals of Ch, 2.



1.

2,

5.

4.

5e

FROGRAM_PHOTO2:

SUBROUTINE XNORM:

SUBROUTINE AMP:

PROGRAM VBFC:

PROGRAM PHOTO1:

FORTRAN PROGRAMMES.

Calculation of photoionization
cross section for -fixed nuclei
for an initial /7, molecular

orbital.

Evaluation of normalization integrals

for (T« molecular orbital,

Calculation of asympfo%ic amplitudes

of unnormalized (;nQ(Al))o

Calculation of cross sections for
different vibrational states using

Franck-Condon factors.

Modifications to "photo!" to include
the dependence of the electronic trans-
ition moment on internuc lear separation
for the transition to 02+( X‘]Ta)

(for zero kinetic energy of ejected

electrons).



OO0

1004

1005

56

lol1l

lu12

PROGRAMPHOTOZ2 (INPUT s OUTPUT)

CALCULATION OF PARTIAL PHOTO=IONIZATIOM CROSS SECTION FROM

AN LaCoeAaOa 1PL(U) MOLECULLAR ORBITAL

FOR VARIOUS TRANSITIONS IN N2 AND 02

DIFENSTONDZ (3965 7) 9TZ(307) 501 (396s7) 9T1(397) 902(340647) s

1T2(3a7)9AZ(397) gAL(307) s A2(397) 9 XJ(1Q)9BXLT) 9AACT) 33BLT) sCC(T)
200(6) sFE(H) sG55 (H) 1QB(6) 9 TT ()

DIMENSTONXX(397) 9PSC(AH) 9 XLP(6) 4GZ(397+100) 3G1(3972100) 962(3, 7,100)
1o XF(100) s XLAMCC100)

DIMENSTONYZ (396, /)9YZL(3,691)7YZZ(3 TYaY1 (3963 7)9Y1C(39697)
1Y1Z(397) 9Y2(396457)aY2C(34697)sY22(357)
“IMFMSIOMYAM(lOO)sYUM(lOO)vXAl(100),<u|L(100)thX(IOO)guFN(lOO)9

(100) »TSA(397+6) 9TSB(39756) 2 TS(397) ,SIGMUW(T) 9 TPA(3,796) s TPB (397,

ru),TP(?;/),PYNAV(7)9TDA(397?$)9TDR(3 795)9TD(397)9DE[WV(/)sTOT(O(I

3V 9 CROSS(T) s WAVL ()
DIMENSTONTSI(3,7)9TS2(3, 7) s TP1I(397) 9 TRPZ2(397)sTOL(3457)9TD2(347)
READ IN DATA

READT 9 (((DZ (L aNsK) al.m193) sN=196) oK=24T)
READT 0 ((TZ(LaK) 3 L=193) sK=297)

READLs (D] (LaNsK) ol.=143) sN=1ap) 9K=2,7)
READYLs ((T1(LsK),L=193)9K=2s7)

READT s (L(DZ2(LoNsK) aL=)113) sN=196) s K=247)
READ Ly ((T2( oK) gLl 93) oK=2s7)
FORMAT(BF105) :

DOZ2L=1+3

NO3N=14+6

TF (L EQeN) 100441005

A Lssl)=1a

Dl (LaNyLY=1,

D2(LaNa1)=10

GOTO3

PDZLsNsy1)=0a

DI(LeNs1)=00

ND2(LsNs1)=00

CONTINUE

CONTINUE , 7
DovGIL=1+3

TZ{Le1)=0

TL(Lel)=0o

T2(Lsl)=0.

CONTINUE

PY=3,1415926
DOIDLOTX=1a3
[FOI<eFQ,1)1011,10142
ET=10.7 '
P 047309

521,95
SubhITAE T/ 191 T4) %8
GOTOL013

ReZa2831061)
IF(IXWEDa2) Lula, 1G)5



1014

1015

1013

326
327

1000

100

ET=1641
S=SORT (ET/1145) #S

G0T01013

ET=16,8

S=SART(ET/18,95) #S

EVALUATE SEPARATION CONSTANTS

DOGL=1,3

Xl.=2%L =2

DO6GK=1,7

H=(K=1)%#,1 :
A21=(2.*(XL**2)+2.*XL-1.)/(((2.*XL)-1.)*((2.*XQ)+3.))
AZ(LsK)=(XL*(XL+1->)+(H**2)?(AZl+TZ(L;K))

CONTINUE

DO7L=1,3

Xl=2%L

DO7TK=147

M= (K~=1)%,1 .
A11=(2.*(XL**Z)+Eo*XL-3.1/(((2.*XL)—1.)*((2.*Xg{+3.))
Al(L.K)=(XL*(XL+1.))+(H**2}f{A11+T1(L;K))
n21=l2.*(xL*%2;+a.ﬂXL~9.>/(t(a.*xL)-l.)*((2.*XL)+3.))

A2 AL oK) = (XL (XL #La) )+ (H#3#2) % (A21+T2 (LK) )

CONTINUE

CALLXNORM(R9SsCCO)

CCC=CCO*SORT (S#+5/(2,%pY))

ETR=ET/13.595 »

AL=R#S/2.

CA=(EXP (AL) +EXP (=AL)) /2,

SA=(EXP(AL) ~EXP (=AL)) /2,

PRINT325,R

FORMAT(1M1,10x,24HINTERNUCLEAR SEPARATION=43F94 79 10HBOHR RADTY)
PRINT326,S '

FORMAT (2X+8(/).510Xs3THORBITAL EXPONENT FOR ATOMIC ORBITALS=,F5,3)
PRINT327,ET « . -
FORMAT(2X94(/) 51 0Xs LTHTHRESHOLD ENERGY=9F5,292HEV)
PRINT1000+,CCO

FORMAT (2X98(/) 91 0X923HNORMALLZATION CONSTANT=,E15.8)

ANGULLAR INTEGRATIONS

XJ(1)= SA/AL

DO100 1=2,9.

11 =241=2

11 = II-}

12 = 11 +1 : _ -

XJ(T)= ((AL##I[)#SA = TI#(AL¥#T1)Y#CA + )I*Il*(AL**Il)*XJ(I—l))/
1 (Als#12) ‘

COMTINUE

DOLOL T=1,43

BX(1)= 2w%#xJ(])

HXA(2)= 3e%XJ(I+1)~XJ(])

BX(3) = 0258 (35,4 XJ(142)=304%XJ([+1])+ 3,%XJ (1))

BY(4)= .125%¢ 231-*XJ(I+3)-315.*XJ([+2)+105.*XJ(I+1) =5 XJYI))
Bx(S),—,—_((5/,,_’35,’.!-)(\)(]_+4)-]_2012-’TXJ(I+3)* 69303%XJ(.I+23)~1260.**XJ(I+1)_
L #3525 J(TY)/ 64

BX(6)=(40159o*XJ(1+5)*109395-*XJ(I+4)+900?0.%XJ(I+3)~30030.*XJ(I+2

D) #3465, %0 J([+1)=03,%XJ (1)) /128,




BX(T)=(6T6039,%XJ(1+6)=1939938 #XJ(I+5)+ 2073505,

1*XJ(I+3)+225225.*XJ(I+2)-18018.*XJ(I+1)+231.*XJ(I)

DO 1ol I1 =197

IF(I=-2)103+1044105
103 AA(Il)= BX(I1)

GO TO 101
104 BBE(I1)Y = BX(Il)

GO TO 101
105 CCc(I1) = BX(I1)
101 CONTINUE

DO106 I=142

RX(1)= 6% (XJ(T+1)= XJ(I+2))

BX(2)= S5a3(10e#XJ(142)= 34#XJ(I+1)= Te#XJ([+3))

BX(3)=,75% (44) o ¥ XJ(I+3)~23Le#XJ(I+4)=245,%XJ(1+2)+35,¥XJ(I+]1))

BX(4)=(15444,%¥XJ(1+4)~ 6435#KJ(1+5)=124T4¥XJ(1+3)4+3780,#XJ(1+2)
1 =315.4XJ(I+1)) /8. ‘

BX(5)= S54# (133709 XJ(1+5)~46189.%¥XJ(1+6)~141570, *XJ(I+4)+66066 #
IXJ(T+3)=12705.9#XJ(I+2) +693e¥XJ(I+1)) /6%,

BX (6)= 3,%(2292654+#XJ(1+6)= 30022854#XJ(I1+5)+ 1896180.%XJ(1+4)
1= 5855354#XJ(I+3)+ TB0TB#XJ(1+2)~ 3003%XJ(I+1)=67603F#XJI(I+7))
2/128,

PO10AKIL =146

IF(I-1)10851084109

108 DD(IL) = BX(I1)

GO TO 106

109 EE(IL) =BX(I1)
106 CONTINUE
DO110 I=1+3

XJ(I+4)=-1021020.,
) /5120

BX (1) = 643t (XJ(I)= XJ(I+1))

BX(2) = 15e#( B.#XJ(I+1)=XJ(D) =T4etXJ(I+2)) ~

BX(3) = 35,#(1534%XJ(1+2)=57a#XJ(1+1)=99,%XJ(I1+3) +3.%XJ(1)) /4,
BX(4) = o625#(18018,#XJ(1+3)-11088,#XJ(1+2)+2142,%xJ(1+1)=63.4XJ(]

1)=9009.%XJ(1+4))
BX(5)= 15.%# (=13856T7a%XJ(I+5) 4231 #RJ(1)+342T7T1e#¥XJI(I1+4)=294294 4%
IXJ(I+3)+105103.*XJ(I+2)-1824 W XJ(1+1)) /64,
DOL10I1=1+5 - '
TF(T1=2)11141124113
111 G8(I1)=Bx(1I1)
GOTO110
112 08(1I)~6X(11)
GOTOL11ln
113 TT(I1)=8BX(I1)
110 CONTINUE
PRINT31Z2
312 FORMAT(lHl,lUAo)OHANbULAH INTEGRATLONS)
PRINT313
313 FORMAT (2Xe// s L0OX s LHMy TX 9 4HAIN) 9 13X 943 (N) 913X s AHC(NY)
DO314I=1+7 ;
M= [=P
PRINT315sNgAA(T) «+BB(T),CC(I)
314 CONTINUE
315 FORMAT(LOXs12e3(1XsEL15,8))
PRINT316
316 FORMAT(Z2Xs//a10X o 1HNe 7X e 4HDIN) ¢ 13X 4010 (NY)



DO317I=1s6
N=2%#[~1 ‘
PRINT318yN,DD(I)+EE(I)

318 FORMAT(10X912+2(1X9E15,8))

317 CONTINUE
PRINT319

319 FORMAT(2X9// 510X s 1HNs TX 9 4HG (N) 5 13X 4HH (N) 13X s 4HI (N))
NO320TI=145 '
N=2#[=2 :
PRINT3154NyGB(I)sQ8(I)5TT(I)

320 CONTINUE

EVALUATE SCATTERED WAVES

Do12M=1+3 =~ 7 7 ;
DO121.=1+3 .. |
DOLl2K=14s7 |
PRINT199sMylL oK |

199 FORMAT(ZX!ZHM=9IavzHL=91292HK=912)
IF(M=2)18419420

18 XX(l.9yK)=AZ (LK) - :
GO TO 21

19 XX (LsK)y=A1l (LK)
GO To 21 -

20 XXA{LyK)=A2 (L yK)

21 XM = M=l
H= (K1) #,1

leNe)

-COEFFICIENTS OF POWER SERIES

XK=Xp# (XM+10) =XX (LoK) +R+H##2

XH=R#2 ,# (H##2)

PSC(1)==XK/ (2e# (XM+1,4)) -

PSC(a)=-(XH+PSC(1)*(XK+2.*(XM+1.>))/(4.*(XM+2.))

PSC(3)=—(H**2+XH?P§C(1)+PSC(2)*(6.+4.*XM+XK))/(18q+6.*XM)

D03241V=3+5 )

V=TV , '

PSC(IV+1)=-((H**E)#PSC(IV-Z)+P5C<Iv-1)*XH+PSC(IV)?(V%(v-l.)+2.*V»

LIXM+14) +XK))

PSC(IV+1)=PSC(Iv+1)/(2.*v*(V+1.)+2.*(xm+13)*(v+1.))
328 CONTINUE ;
C - :
C OBTAIN STARTING VALUES FOR RADIAL FUNCTIONS AND UNNORMALIZED G FNS|

DO22NN=1,3 - v

XL=(NN=1)#,1 :

D0329J72=146

XLP(JZ)=XLesJZ !
329 CONTINUE . .

IF (M EN.1) 23924
23 GZ(L,K.NN)=1.+PSC(1)%XLP(1)+PSc(2)*XLP(2)+PSC(3>%XLp(3)+PSC(4>*

LXLP(4) +PSC(5) #XIP (5) +PSC(6) *XLp (6)

GZLyKaNNY=SQRT ((XL+1a)#52=14) #GZ (s K NN)

GOTO22 ' '
24 (F(11.EN.2) 25426
25 6] (L-KANI"J):SQRT((XL+1.)**2-1-)**(PSC(I)*XLP_(I)ff’SC(Z)w“rXLAP_(Z‘)fA l. +




]PbC(J)*XLP(3)+PH((4)"XLP(4)*V5F(5)4KIP(B)*PJC(Q)*<LP(6))
Gl (Lo KaNN)Y=SQRT ((XL+] o) #3#2=]4) #G1 (L yKyNN)
GO TO 22

26 G2(LaKyNN)=((XL+1e)%#22=],)%(1e+PSC(1)#XLP (1) +PSC(2)#XLP (2)
1+PSC(J)*XLP(3)+PSC(4>*xLP(4>+PSC(G)wXLP(5)+PSC(6)*xLP(6))
G2 (L oKy NN) =SORT ((XL+1a)##2=14) 262 (LyKsNN)

22 CONTINUE

c RECURRENCE RELATIONS NOW USED TO GENERATE G FUNCTIONS TO LAM=1049
IF(M=2)28429430
28 XZ = AZ(LyK)
GO TO 31 3
29 XZ= Al(L,K)
GO T 31 ‘
30 XZ =A2(LyK)
31 DORTNN=24+100
XL=(NN~1)#,1+1,
XFINN)=(=XxZ +R#xl +(H4%2)*(XL**2))/(xL%*? =l.)+(1, 'XM**Z)/((XL**Z—I
1e)%#i2)
XF(NN)--.Ol*XF(NN)/lZ.
27 CONTINUE
DO32NN=44100
IF(M~2)33434,35
33 GZ(L»K;NN)=(2.+1U-*KF(NN-1))?Gz(L»K;NN—l)

GZ L yKyNN)=GZ (L yIKyNN) = (1 ¢ =XF (NN=2) ) #GZ (L ,K,NN~2)
GZ (L s KyNNY=GZ (LaKsNN)/ (14=XF (NN))
. GO TO 32
34 GLIL oKy NN)=(2e+10e%XF (NN=1))#G) (LoKoNN=1)
Gl(L,K,NH):Gl(L,K,NN)—(l.-XF(NN—E))*Gl(L,K,NN-Z)
G) (LLaKgNN)=G1 (LLyKsNN)/ (1,=XF (NN)) _
GO Tu 32
35 G2(LoKyNN)= (20410 XF (NN=1))#G2 (LyKyNN=1)
G2 (Lo KyNN) =G2 (L4 KeNN) = (1.=XF (NN=2) ) #G2 (L4 KyNN=2)
G2 LKy NN) =62 (L yKyNN) / (1o=XF (NN))
32 CONTINUE
NO335NV=1,100
XLLAM(NV) = (NV=1)#sl+1ls : ) |
335 CONTINUE 4 |

C NORMALLTZED AMPLITUDES
IF(M=2)36937938
36 DO39N=146 \ ;
Y/(L.N K)—@.*PY*(DZ(L,No K)ststed) / (4% N=3)
39 MT IMUE
YLC(L&lsK)—YZ(L;laK).
% DO40=2496
YZC (L sideR)=YZOU (I N=19K)+YZ (IlLaN4K)
40 CONTINUE
Y72 aK) =24 /SURT(PY#R#YZC (LD 9K))
GOof04}
37 DO42N=) 96
Y1 (L oNoK) =40 Y (D1 (L gNgK) ##2) & (2% ¢+ 1) #N/ (41+ 1)
42 CONTINUE '
YIC (Lol sK)=Y1l (1 41 aK) _ |




43

38

44

45

41

46
47

48

49

58

59

60
57

12

348

349

DO43H=206 B
YIC(LoNoK)=YLIC (LoN=19K)+YL (LaNyK)

CONTINUE

Y1Z(LoK)=24/SQRT(PY#R#*YIC(Ls6yK))

GOTO41 i

DO44N=146

Y2(LoNyK)=8a#PYs (D2(LoNpK)##2) 3 (2N= 1)*N*(a*N+l)*(N+1)/(4*N+1)
CONTINUE

Y2C(LoloK)=Y2(Ls1sK)

DO4BN=246

Y2C .y NgK) =Y2C (ILyN=14K) +Y2LL s NyK)

CONTINUE

Y2Z (L. 9K)=2,/SQRT(R¥PY#Y2C(L916sK))

CONTINUE ‘

EVALUATE UNNORMALIZED ASYMPTOTIC AMPLITQDES

IF (M=2) 46947948 -
CALLAMP(MoAZ(LyK)9HsRvGZ(L9K!99)9GZ(L K9y100),Cl) :
GOTO49

CALLAMP (MeAl{LoK) sHsRsGl (LoKy 99)9bl(L9K 100)+Cl)

GQTO49

CALLAMP (MsAZ (LsK) 9yHyRyG2(L9Ks199) yG2(L+Ks100),+CL)

CONTINUE"

EVALUATE NORMALTZED RADIAL EUNCTIONS
DOSTHN=29100

YAMINNY) =] o+ (NN=7 ) %,1

YURMNN) = 1-/SQRTE(YAM(NN)f*2—1.)

IF( M=2)52459460
GZLoeKyNN)=YUMINN)RYZZ (LK) *GZ (LLaKsNN) /C]

‘GO TO%7

Gl(L-K,NN)-YUM(NN)*YlZ(L,K)*bl(L,K NN) /C1

GO TO &7

G2 Lo KyNN) =YUM(NN) #Y2Z (L oK) #*G2 (lLeKeNN) /C1]
CONTINUE

TF(MeEQe)l)GZ(LoKs1)I=YZZ(LsKI/C1

IF(MaEQe2)Gl (LeKel)=0,

IF(M.EQ-:B)GZ(LOK’].):OQ

CONTINUE

NO347M=1+3

DO3471.=1+3

DO34TK=1,7

KKK=K=1 »

PRINT348siMql 9 KKK .

FORMAT (1H1 520X 9 2iHM=9 T 1y 1X92HL=3 I1y 1 Xy 21iK=9T1)
PRINT349 R '
FORMAT(2X9//910Xs20HNORMALLIZED RADIAL FUNCTION)
PRINT352 '
FORMAT (10X 948H |LAM ILAM LAM)
PDO34TNN=1+33
IF(MaFEQe1)PRINTIS 1o XLAMINNY 9GZ (LoKyNN) o XLAM(NN+33) ¢G7Z (LaKyNN+33)
TaXLAM(NN+66) oGZ(LeKsNN+66)

IF(MaEQe2) PRINTIOL o XLAM(HN) 9GL (L oK oNN) o XLAMINN+33) 9 G1 (L2 KyNN+33)
1o XLAM (WN+6G6) 961 (e Ky NN+66)

¢



IFAMaEQe3) PRI 351 9 XLAMINND 9 G2 (Lys s NN 9 XLAM(NN+33) G2 (L aKyNN+33)
Lo XLAM(NN+66) 902 (LsKyNN+66)
3“1 FORMAT (10Xy3(F54191X4E15.8))
347 CONTINUE

RADT AL INTEbRATIONS

DO360N=14100

XAL(N)=1le® (N=1)st,1

XALL (N) =XAL (N) ##%2=1,

PEX(NY=EXP (=AL#XAL (N))

BFN(N)=PEX (N)#SQRT (XALL(N))
360 CONTINUE

PRINT343

363 FORMAT (1H1410Xs32HWAVELENGTH(A) CROSS SECTION(CM2))
DOBIK=1+7 ' ‘
SIGMA WAVES CONTRIBUTION TO CROSS SECTION
N082L=1+3 :

DO361IN=14100
Y(N)-XALL(N)*PEX(N)*(XAL(N)**Z)*GZ(L,K N)

361 CONTINUE -
CALL SIMP2(1les10e9e1sYsTS1(LyK))
DO362N=]14100
Y(N)-XALL(N)*P&X(N)*GZ(LsK N)

362 CONTINUE
CALL SIMP2(lesl0eselsYsTS2(LyK))
TSA(LyKy1) = DZ(LslsK)#(AA(L)=BB (1))
TSB(LsKy1)=DZ(Ly1yK)#(CC(1)~BB(1))
NOGBMS=246 |
TSA(LeK9MS)= TSA(LsKsMS=~1)+ DZ(LeMSyK)¥* (AA(MS) ~BB(MS)) |
TSBLyKsMS)=TSB(LsKyMS~1) +DZ (L 4MSyK) % (CC(MS) =B (MS) )

68 CONTINUE
TSILsKY=TSA(L oK, 6)*TSl(LyK)*lSB(L’K96)*T52(L K) a
TS(Ly K)—CCC*PY*(R**b)*TS(L,K)/lé. ‘
TS(LeK)=STS(LoK)wst2 , ‘ I

82 CONTINUE
SIGMW(K)=  TS(14K) + TS(2sK) & TS(3,4K)

PI WAVES CONTRIBUTION TO CROSS SECTION
D069 L =143
NO70N=1+100
Y(”)“SQRT(XALL(N))*(XAL(N)**3)*PFX(N)*GI(L,K,N)
70 CONTINUE
CALL SIMP2(1-91G-;-1;Y;TP1(L,K))
DO390N= 19100
Y(h)—SQRT(XALL(N))*PtX(N)*XAL(N)*bl(LoK;M)
390 CONTIMNUE
CALL STMP2(leslneselaYsTP2(LeK))
TRA(.sKs 1) D1 Ly lsaKYH#DOC(1)
TRB(LsKe)) D1 (LsloK)=EE (L) i
DO 72 MT =246 N
TRPAC LyKoMT)= TPA( LeKy MT=1) + DL{LgMT oK) #DD(MT)
TPB (LLeKeMT) = TPB( LoKsMT~1) + DI LamTyKy #EE(MT)
(2 CONTINUE g
TP(L»K)=(TPA(L9Ka6)*TPl(L’K)"rPH(LyKoﬁ)*IPZ(LaK))* CCCHPYH* (R¥#%5) /
Pl




69

T4

75

76

73

364

TP( LeK) = TP (LK) ##2
CONTINUE *
PYWAVIK) = TP(1sK) + TP(2:sK) + TP (34K)

DELTA WAVES

DOT73L=)+3

DOT4nN=19100

Y (N)=XALL (N)#PEX (N) # (XAL (N) #3#2) #G2 (L yKoN)

CONTINUE

CALL SIMP2(1aes1CessloYsTDl(LsK))

DO75N=1+100 )

Y (N)=XALL (N) #PEX (N) #G2 (LyKsN)

CONTINUE

CALL SIMP2(leslDesselsY TD2(LsK))

TDA(LsaKe1)=D2(LylokKI*(GE8(1)=QA8(1))

TOB(LeKe))=D2(LylsK)H(QB(L)=TT (1))

DOTE MU=2+5

TDA(L sKoMU)=TDA(LoKeMU=1)+D2 (L yMUK) % (6B (MU) =3 (MU))
TOR(LeKyMUY=STDR (Lo KeMU=1) +02 (L yMUeK) % (QB (MU) =TT (MU))

CONTINUE _
TOMLyK)=(TOA (L eKeB)#TDL (LK) =TOB(LyK93) #TD2 (LK) ) CCCHPY* (R#t#5)/

132,

TO (LK) =TD (LyK) ##2
CONTINUE
DELWV(K) = TD(14K) + TD(2+sK) +TD{(3yK)
TOTCO(K) =SIGMA{K) +PYWAV(K) +2«#DELWV (K)
CROSS (K)=TQTCO (K) * (ETR+ (K=1) ##2/ (25 ,# (R#42)) ) #5.377869%1,E~-18
WAVL (K)Y= (4% (((K=1)/10,)%##2)#]13,595/R##*2)+ET
WAVL (K)Y=12398. /wAVL (K) .
PRINT3644wWAVL (K) s CROSS (K) L '
FORMAT(2Xe// 210X sF6s1+5X9E1548)
CONTINUE
PRINTOUT OF SEPARATE CONTRIBUTIONS AND BOUND RADIAL FUNCTION
PRINT454
FORMAT (1H195(/) « LOX925HSIGMA WAVES CONTRIBUTIONS)
PRINT455
FORMAT(2Xe// 910X s IHK g TX94HL=0 413X s4HL=2 913Xy4HL=4 )
PRINT32Ls (KeTS(1sK) 9TS(2aK) 91S(39K) sK=1s7)
FORMAT (10X9I293(1XsE1548))
PRINT4A4S3 .
FORMAT(2X95(/) ¢ 0Xe22HPT WAVES CONTRIBUTIONS)



461

456

458,

459
460
500

501

503

504

505
502

506

507

508

509
1010

PRINT461

FORMAT(2X9//9 10X 1K e TXs4HL=2 913Xe4HL=4 913X94HL=6

PRINT321y (KeTP (1K) s TP(29K) 9 TP (39K) sK=197)
PRINT456

FORMAT(2X95(/) 9 1DX925SHDELTA WAVES CONTRIRUTIONS)

PRINT461
PRINT321s (KeTD(19K) sTD(24K) s TD(39K) sK=197)
PRINT458

FORMAT (1H1410Xs29HRADIAL PART OF BOUND FUNCTION)

PRINT459

FORMAT (2Xe5(/) »10Xs21HLAMBDA BOUND FUNCTION) -
PRINT460s (XAL(N) sBFN(N) ¢+N=1940)
FORMAT(11X,F401,‘+X’E].5-8)

PRINTS5Q0

FORMAT (1M1 910Xs19HRADIAL INTEGRATIONS)
PRINTS01

FORMAT (2X9//915X93HTS110Xs3MTS2)
DOS02K=1+7

PRINTS03+K

FORMAT (15X 42HK=,12)

D0502L=143 ’

PRINTS04 9L

FORMAT (15X 42HL.=412)
PRINTSOS;TSl(I;K)’TSZ(L,K)
FORMAT(10X,2(1X,E15.8))

CONT [NUE

PRINTS5D6

FORMAT (2X9// 915X 93HTPLy10Xs3HTR2)
DO50T7K=1+7

PRINTS5034K

DOS507L=1+3 ,

PRINTS504sL s
PRINTSO59TP1(L9K)QTPZ(LvK) .
CONTINUE

PRINTS08

FORMAT (2X9//915X93HTNL910Xs3HTD2)
DOS503K=1s7

PRINT503¢K

NDO5G9L.=1¢3

PRIMNTSD4 L ,
PRINTS0OSsTDL(LsK) s TR2 (LK)

COMNTINUE '

CONTINUE

STOP

- END

)



SUBROUTINEXNORM (RsSsCCO)

DIMENSIONP (10) - - :

PY=3,1415926 _ L -

ALSR#SZZ | & = B—m e RS S e =

DO783J=1,8

P(J)=AL#**J

783 CONTINUE
DA=2,%AL
. SD=e5* (EXP(DA) <EXP (=DA))

CD=.5% (EXP(DA) +EXP (=DA))

01=(.5%#SD=AL) /AL

02=(SD# (o 5¥P (2) ++25) = SHAL#CD=P(3)/3,)/ P(3) '

03=(SD# (o53P (4) +1e5#P(2) +475) =, 25%CD% (44 4P (3) +6, *AL)-.Z*P(S)

1) /P (%) o

01=2,+01

02=02+(2./34)

03=03+(2+/5)

EO=EXP (=2, #AL) ‘ . =g —

X0l=.54ED/AL *

X02= o BH#EDH ((1e /ALY * (1 o/P(2)) +(5/P(3)))" il s

X03=ED# ((«5/AL) +(1e/P(2))+(L145/P(3)) (1, S/P(4))+ (. 75/P(5)))

CCC=(2./R##2)#SQRT (2.7 (PY¥*R)) ~ - ‘

|
|
|

CCC=CCC/SQRT(01#% (X03= X02)+0_2*l)<01 XO3)+03*(X02 XOl))
CCO=SQRT (2. *PY/(S**S))*CCC '

RETURN

END



SUBROUTINE AMP( MesCOByHeRsA B (C)
DIMENSIONFF(300)9G6(300) oYY (11)pYL(11)+QQ(11),HyDYL(11)sQZ(11)
loQY(ll)soPLA(ll)9D2LB(11)9DdLD(ll)9Dw(11)9UF(11);GU5(2)9Y(15)

2+02L(11)
XM=M=~1
DO1I=1,300
XL=(T=1)#,1+10,.8 |
FFAI)=(=COB+RX_+ (H¥E#2) 3 (XL##2) )/ (XL#%#2=10) + (1 a=XMu#2) / ( (XL ¥#2= 1.)
1332)
FF(I)==o01#FF(I)/12,
1 CONTINUE
GG(l)=A
GG{(2)=B
0021=3,300
GOII)=(2e+10e¥*FF(I~=1))%GG(I~1)
GG(I)=GG(I)~(1,=FF(I=2))#GG(1~2)
GG (I)=GG(I)/(1,~FF (1)) ==
2 CONTINUE
XM= 1le =(l4=1e) u#i#2
DOB2d=1911
YY(J)=(J=1)%#,1+39.7 ‘

Yi.(Jy=( ~COB + R¥YY (J) +(H*“'Z)*(YY(J)"*2))/(YY(J)**2 -ls)
1 + ( le~(M=l, Y##H2)/CIYY (J) #%2=1,) ##2)

QO (J) = YY(J)y##2 = 1,

He = Hx#p

DYLED) =0{QQJ)# (R + 2% (H2)*YY(J))) +( RaYY(J)= COB + Haw#

TOYY (J)y##2) )% (2,8YY (U)) )/ (QQEI)##2) = (4o YY (J)#XM) /(QQ (J) #%3)
WZ () = YY(J)##3 '
QY (J) = YY (J)##2
DRLA(JY =2 % (0 #H2%QY (J) +3, #%R¥*YY (J) =-H2~-COB )
D2LB (J) =4, #H2#QZ (J) +3+5#R#QY (J) =YY (J) # (2e4H2+2,%#C0OB ) =R
DRLD (J) ==d 3t Xinit (B4 ¥QAY (J) +1e) /7 (QQ(J) #24)
D?L(J)“(QN(J)*DRLA(J)-4.*YY(J)*D?L6(J))/(QQ(J)**3)
N2 (J)=D21L(J) ~D2LD (D)
Dw(d) = :.4(UYL(J)**?)/(l6.“(YL(J)**2)) = D2LGJ)/(4emYL(J))
UF (J)=YI.(J)+DW (J)
IF(UF(J) «LE«0a)4009401
400 UF (D) =1, '
| GOTO52
401 UF (J)=SQRT(UF(J))
52 COMTINUE
PRINTS3
53 FORMATH1GXyAHLAMBDA$RX g 1HW 16Xy 1HV 116X, 1rU)
D054 J=1s11
PRINTSSeYY (J)sDWw(J) oYL (J) s UF (J)
55 FORMAT(1UXyFSe293(1X9E15.8))
54 CONTIMUE
DOHBI=1+2
JH=(J=1)%10+220
Kit=(J=]1)%10+1
GUS (J)=SAQRT (UF (KH) ) #GG (JH)
56 CONTINUE ' '
DO345I=1y11



Y(I)=UF (1)
345 CONTINUE

CALLSIMP2(39:7440, 79.1qY XA)

YA-.S*XA

GAS = S(1) + GUS(2)

GOS = GUS(I) - GUS(2)

GES = 1o/ (COSF(XA)#u2)

GIS = 1le/ ( SINF(XA)##2) :

C —.5*SORTF((hAS**?)*GtS+(GOS*%?)*GIS) )
RETURN e

END

PROGRAMVBFC (INPUT,OUTPUT)

DIMENSIONEVIB(ZI)9FC(21)9A(5)98(5)9EN(5;21)9WL(5s21)vCR(S,EI)

CALCULATION OF PHOTOIONIZATION CROSS SECTIONS FOR VARIOUS FINAL

» VIBRATIONAL STATES OF 02+A2PIU
_ READIO(EVIB(J)’J 1921)

FORMAT (16F5.3)
RFADZv(FC(J)!J 1421)
FORMAT(lﬁFS 4)
~D03J=1,21

FC(J)-FC(J)/IO.

EVIB(J)=EVIB(J)+16.8

EVIB(J)-FVIB(J)/13 595

CONTINUE
A(l)-.5628$A(2)—a5628$A(3)—.5894$A(4)--6285$A(5)-.6895
B(l)=0, $B(2)-.00768$B(3)—.03073$R(4)—.06915$B(5)-012?94
DO4K=1,5

N04J= 1'21 _

EN(Ke J)=EVIB(J) +B (K)
WL (KyJ)=9114953/EN(KyJ)

CR(KsJ)y=2, 6889*FN(K!J)“A(K)*FC(J)
, CONTINUE
PRINTS
FORMAT(IHI 5X, IBHPHOTON WAVELENGTHS)
D06J=1,2]
K=J=1
PRINT7 K ,WL(I J) Wi (2, J),WL(3 J),WL(4,J),WL(5|J)
FORMAT(ZX I3!5(2X’F994)) .
CONTINUE
PRINTQ ' :
FORMAT(?X 5(/7) 5%, 14HCR059 SECTIONS)
DORJ=1,21

K=J=1 , L h .
PRINTT74KeCR(19J) sCR(29J)sCR(39.J) sCR{49J)9aCR(GsJ)
COMNTINUE
STOP
END




N

3001

e ]

3000

- 3007

HAVI (IR ZCON+WAY (JR) #WAV T (IR )i e e et i

MODIFICATIONS TO 'PHOTO1' TO INCLUDE THE DEPENDENCE
OF THE ELECTRONIC TRANSITION MOMENT ON INTER- %
NUCLEAR SEPARATION, £ AR e AL O

WE= 158{) 361 T
WX=12, 073 _ Y _ v : :
RE=2. 2316611_”m_.mm,“ SCRE S S SR ML = RO
UA=8, : PR :
ALP-.1?88721*SQDT(UAﬂWX) SRR LN > e Sl B o R M

XKK=WE/WX " 3 _ e , :

XKM=XKK= 1..~.~w_*"<_W"_.@:WA;+3.;»MMHHWW.,M S HRERE SRR
CALLGAMMA(xKM,GKM) . T "

CON=,54 (ALOG (ALP) =GKM) - .onlii v oo
.DATA FOR 02¢(X) N e R
WEF=1876.4 ~:Q o e et o : .
WXF=16,53 SREFZ2.121604 SUAF=7, 99986_‘

XKKF*HFF/WXF~-~-W~——"—u~—"~w~—~g—m R — e
ALpF=.1288721*SQRT(UAF*wa) e
D03000JR=1 9 T il i il

R=1.6+(JR-1) %, 02 : Sl ] .
WAV(JR)-.R*XKM*(ALOG(XKK)-ALP*(R 14 P T A

WAVI (JR) == S#XKK#EXP (=ALP# (R=RE))

uAVI(JB)gExP(WAyI(JR))
PRINT300)yReWAVT (JR).
FonMAT(zx FS.292XyE185, 8)

VIBRATIONAL WAVE FUNCTIOMS FOR ION STATES :
ZFX(JR)‘XKKF*EXD(—ALPF*(P REF)) : . 2 i
D03000JV=1,10— e el e o o " R T, AR sl |
V=JV=1 ‘ - : |
QV XKKF 10"2 *V YAy A - E o iy - = = A -
NORMALIZATION CONSTANT ' |
VV= V"l e N L S el e = IRl dl ek e N s PRy e e ‘
BVV= RV+V+1. ) _ I
BRB=BYV 41 g e _ e
CALLGAMMA(BBB GBB) o f
CALLLGAMMA (RVVsGRV). . . ___ﬁ.w-_wﬂWH“M“m.""m_w_m._.J””.hmmA”w ol

CALLGAMMA (VV 4 GVV) : ; T |

CONF=,5% (ALOG{ALPF) +ALOG (BV) +GRV~ GVV)sGBB

po\,lF...R\,/?. . o . ; -t _ —a =
CALLSUPER (JV BV, ZFX(\JR),(}IN) 7—-Confluent hypergeometric subroutine,
7Fxx(Jp)_DowF*(ALOG(XKKF)—ALPFﬁ(R ~REF) )
WAVE (JR JV)—FONF—.5*7EX(JR)*ZEXX(JR) 1=3 e
WAVFldpoJV)—FXPSNAVF(JR9JV)) 3 1 |l
uAvF(\Mw,JV)-GIAH}wAVF'(JR,.JV) —--Ion vibrational wave funotlons.
CONTINUE - -
PRINT?OO?-(RR(JQ)-WAVF(Jﬂyl)9WAVF(JR.2);UAVF(JR93),UAVF(JR 4).WAVF
l(Jpoﬁ).JR 1+141) [
PPINT300?.(RR(JQ)oUAVF(JDyé)yWAVF(JR 7)9WAVF(JQ98),WAVF(JR-9),WAVF
1(JR910)Y9JR=14141) : e : :
FORMAT(2Y s 1245(2%X9E15,.8)) i . il
NO3009JV=1410 — = R - 1
NO30101.=1,3 ' :
DOBOOQJRﬂ]o71
Y(JRY=TSR (L JR)*dAVI(JR)*WAVF(JQoJV)




3008

3010

3012

3011

3020

3013

3009
3016

3017

3019
3018

3051
3050

CONTINUE - 7
CALLSIMP?2(1.643, 09.02-Y.T$V(L,KoJV)) |
TSVL_eKeJVI=TSY (L. oK JV)**Z : |

CONTINUE ‘ |
TVS(JV.K)-TSV(1.K.JV)+T§v(?o s JVI+TSV (39K e JV)
DO30111.=1,+3 .
DO30172.IR=1, 71
Y(JR)-TPR(LvJR)*wAVI(JR)*WAVF(JR-JV)

CONTINUE ;

. CALLSIMP2 (14643, 09.029Y0TPV(Lv ,JV))

TPV (L oKe JVISTPY (LsKyJV) &2 :

CONTINUE

TVP (VoK) ZTPV (T oKeJV) + TPV (29K s JV) + TPV (39K 9y JV)
DO3013L.=)1+2

DO3020JR=1,71 :
Y(JR)—TDR(LoJR)*WAVI(JR)“WAVF(JR JV)

CONTINUE

Cf\' LgIMp?(] 06 1 0!.029Y9TDV(L 9K9\JV))
TDV(I.K;JV)‘TDV(L KedV)#a2

CONTINUE o

TVD LIV eKI=ZTDV (1o Ke JV) +TDV (29K s JV)
TOTVLUVeKY=TYS(IVeKI+TVYP I JVIK) +2.#TYD (JV4K)
FOLLOWING ONLY APPLIFS AT THRESHOLD FOR LEVEL
CROSSV (JVaK)=TOTV(JIVaK)#FEVIB(JV) #2,68R934E-18

CONT INUE

PPTNT?nl6oK

FOPMAT(IHI.SX;?HK—»I?)

PRINT3017

FnRMaT(5x913HIoM VIB LEVFLs13HCROSS GFCTTON)
NDO301A2JV=1,s10 -~

Jd=Jdv=1

PRINT3019,JJ-CPnSSV(JV.K)

FORMAT (10X 134R%sE15,8) -

CONTINUE

NO3050)V=1,410

KV=Jv=1

ppINTﬂﬁﬁlqKV FVIR(JV)

FORMAT (2Y+42HVY= 4 T349HFN LEVEL=4FR,6)

CONTINUE

STOP

FND
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