
 

 

Identifying the pathological changes caused by familial 

Alzheimer’s disease-like mutations in zebrafish psen2 

Haowei Jiang 

 

School of Biological Sciences 

 

A thesis submitted for the degree of Doctor of Philosophy 

The University of Adelaide 

May 2018 











3 
 

Acknowledgement 

 

I would like to express my most sincere gratitude to my principle supervisor Dr Michael 

Lardelli and co-supervisor Dr Morgan Newman, for their invaluable help with my 

research projects and my thesis writing. Without their help, it would be impossible for 

me to finish my PhD research. 

 

I also want to thank the previous and present members in Lardelli lab for their support 

in my research, including Dr Seyyed Hani Moussavi Nik, Tanya Jayne, Karissa 

Barthelson and Yang Dong.  

 

I would like to thank Dr Stephen Martin Pederson and Dr Dhanushika Ratnayake for 

their valuable comments and help for preparing my research manuscripts. 

 

Last but not least, I want to thank my parents and grandparents for their firm support 

and encouragements during the last three and a half years of my PhD. It would be 

impossible for me to adhere to my dream of being a scientist without their support. 

 

 

  



4 
 

Chapter 1 Literature Review 

 

1.1 Introduction 

 

In this project, different mutations were generated in the zebrafish gene presenilin 2, 

(psen2), which is orthologous to human PRESENILIN 2, (PSEN2), to improve our 

understanding of the role(s) of PSEN2 in Alzheimer’s disease (AD). Therefore, this 

chapter reviews the roles of PSEN2 in AD pathogenesis through previous studies on 

how PSEN2 function contributes to γ-secretase activity, innate immunity, 

neurodevelopment, calcium homeostasis, autophagy, mitochondrial function, and 

ischemic oxidative stress. These are all cellular functions that have been found to be 

associated with the progression of AD pathology.  

 

1.2 A review of PRESENILIN2 and its roles in Alzheimer’s disease pathogenesis 

 

Abstract 

 

PRESENILIN2 (PSEN2) is one of the causative genes associated with autosomal 

dominant familial Alzheimer’s disease (fAD). However, the function of this gene and 

how it contributes to fAD pathogenesis has not been fully determined. In this brief 

review we give an overview of recent research on PSEN2 to generate an outline of its 

role in AD progression. As a core component of the γ-secretase complex, the PSEN2 

protein is involved in many γ-secretase-related physiological activities, including innate 



5 
 

immunity, Notch signaling, autophagy, mitochondrial function etc. These physiological 

activities have all been associated with AD progression, which indicates that PSEN2 

plays a particular role in AD pathogenesis. 

 

The PSEN2 gene 

 

PRESENILINs are essential components of the γ-secretase complex, and both 

PRESENILIN 1 (PSEN1) and PRESENILIN 2 (PSEN2) are loci for mutations causing 

familial Alzheimer disease (fAD) (Hutton 1997). Interestingly, there have been nearly 

200 potentially pathogenic mutations identified in PSEN1, but only about 20 mutations 

have been reported in PSEN2 to date (Jayadev, Leverenz et al. 2010). It seems that, 

although these two PRESENILINs are highly homologous (they share 62% identity at 

the amino acid residue sequence level (Newman, Musgrave et al. 2007)), they can 

contribute to different biological processes (Lee, Slunt et al. 1996; Lai, Chen et al. 2003). 

However, the complete function of the two PRESENILIN genes and how they 

contribute to fAD pathogenesis has not yet been determined. In this review, we focus 

specifically on the multiple roles of PSEN2 and how it contributes to fAD pathogenesis. 

 

PSEN2 protein and γ-secretase 

 

PSEN2 was first identified as STM2, a candidate gene for the chromosome 1 AD locus, 

when a point mutation resulting in the substitution of an isoleucine for an asparagine 



6 
 

(N141I) was found in a Volga German AD family in 1995 (Levy-Lahad, Wasco et al. 

1995). PSEN2 is identified as a 50 to 55kDa protein that consists of nine transmembrane 

domains (TMDs), a cytosolic N-terminus, a luminal C-terminus and a “cytosolic loop” 

between the sixth and seventh TMD (Figure 4) (Jayadev, Leverenz et al. 2010). The 

active site of the γ-secretase complex is thought to be formed by two aspartyl residues 

in adjacent TMDs, residues D263 and D366 of PSEN2 (residues D257 and D385 in 

PSEN1). PSEN2 can be cleaved by γ-secretase itself, within the cytosolic loop, to 

generate a longer N-terminal fragment (NTF) and a shorter C-terminal fragment (CTF) 

(Thinakaran, Borchelt et al. 1996; Tomita, Maruyama et al. 1997). Other type I 

membrane proteins, such as APP and Notch, are also identified as substrates of γ-

secretase. A cytosolic CTF is normally generated by the cleavage of these 

transmembrane proteins by γ-secretase. For Notch, this fragment is identified as Notch 

intracellular domain (NICD) (De Strooper, Annaert et al. 1999). The CTF produced by 

γ-secretase is then translocated to the nucleus to modulate gene expression (Cao and 

Sudhof 2001).  
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Figure 1.2.1. γ-secretase complex (Steiner, Fluhrer et al. 2008). 

PRESENILINs are the catalytic core of the γ-secretase complex that can cleave the Aβ 

peptide from APP (following cleavage by - or -secretase). The other three structural 

subunits of the γ-secretase complex are nicastrin (NCT), PSEN enhancer 2 (PSENEN 

or PEN-2), and either anterior pharynx 1 (APH-1) a or b (Steiner, Fluhrer et al. 2008). 

NCT functions as a γ-secretase substrate receptor (Shah, Lee et al. 2005). PSENEN is 

required for the stabilization of the heterodimer of PRESENILIN N- and C-terminal 

fragments within the γ-secretase complex (Prokop, Shirotani et al. 2004). APH-1 

stabilizes newly synthesized PRESENILIN holoprotein, and is possibly able to 

downregulate the activity of uncleaved PRESENILIN holoprotein (Cooper, Deng et al.). 

 

As a type I transmembrane protein, APP is one of the substrates of γ-secretase. After 

synthesis, APP can be cleaved through either the non-amyloidogenic or amyloidogenic 

pathways (Figure 1.2.2). The non-amyloidogenic pathway is more prevalent in most 

cell types. In this pathway, APP is first cleaved by α-secretase into a soluble N-terminal 
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fragment (sAPPα) and an 83 amino acid C-terminal fragment (named as α-CTF or C83). 

The C83 fragment is then cleaved by γ-secretase into an APP intracellular domain 

(AICD) and a p3 peptide. The amyloidogenic pathway is an important processing 

pathway for neurons. In this pathway, APP is first cleaved by β-secretase into sAPPβ 

and β-CTF (also named C99). The C99 fragment is then cleaved by γ-secretase into 

AICD and Aβ (Thinakaran and Koo 2008). Cleavage at three major sites in APP is 

mediated by γ-secretase (Figure 1.2.3), namely ε-site cleavage (Aβ 49), ζ-site cleavage 

(Aβ 46) and γ-site cleavage (Aβ 42/40) (Xu 2009; Zhang, Thompson et al. 2011). 

 

Aβ40 (the 40aa form of Aβ) is the predominant Aβ species, while Aβ42 is a minor 

product of APP cleavage. Aβ40 and Aβ42 are produced from two different “production 

lines” of sequential cleavage by the γ-secretase enzyme, Aβ49→Aβ46→Aβ43→Aβ40 

and Aβ48→Aβ45→Aβ42→Aβ38 (Figure 1.2.4). In these production lines, long Aβs 

are shortened by consecutive carboxypeptidase-like γ-cleavages, and the 

hydrophobicity of Aβs can be decreased during this process, so that these Aβs are more 

easily moved into the extracellular environment (Chavez-Gutierrez, Bammens et al. 

2012). Aβ42 has a much stronger tendency to aggregate than Aβ40, as the biophysical 

and biochemical properties of Aβ vary strongly with its length. Normally, Aβ42 only 

contributes about 10% of the total secreted Aβ (Suzuki, Cheung et al. 1994). However, 

since longer Aβ peptides promote aggregation and neurotoxicity, an increase of the 

relative amount of Aβ42 versus Aβ40, which may be caused by either an increase in 

Aβ42 production or a decrease in Aβ40 levels, has been proposed to be involved in the 
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pathogenesis of AD (Kuperstein, Broersen et al. 2010). Some of the fAD mutations in 

PSEN1 and PSEN2 have been reported to cause increased ratios of Aβ42/40 (Xu 2009). 

 

 

Figure 1.2.2. APP processing (Zhang, Thompson et al. 2011). 
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Figure 1.2.3. Complexities of PRESENILIN-dependent cleavage (St George-Hyslop 

and Schmitt-Ulms 2010) 

The CTF of APP can be cleaved by γ-secretase at three main sites, ε, ζ and γ, generating 

various cleavage products. 
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Figure 1.2.4. γ-secretase-mediated processing of APP βCTF to Aβ (Siegel, Gerber et 

al. 2017). 

 

The absence of PSEN1 is thought to reduce the activity of γ-secretase complexes (De 

Strooper, Saftig et al. 1998; Naruse, Thinakaran et al. 1998), and the absence of both 

PSEN1 and PSEN2 is thought to eliminate the function of γ-secretase complexes 

completely (Herreman, Serneels et al. 2000; Zhang, Nadeau et al. 2000). Although these 

two PRESENILINs are thought to complement each other, their functions may not be 

completely the same. In mouse blastocyst-derived (BD) cells that were transiently 

transfected with the C100 fragment of APP, the relative cellular activity (measured by 

secreted Aβ per total Psen1 or Psen2) of Psen1-associated-γ-secretase complexes (in 
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Psen1+/-Psen2-/- BD cells) was found to be ~38-fold greater than that of Psen2-

associated-γ-secretase complexes (in Psen1-/-Psen2+/+ BD cells), indicating that Psen1 

is more active than Psen2 toward the APP’s C100 fragment (Lai, Chen et al. 2003). In 

a yeast reconstitution system, it has been found that PSEN1-associated-γ-secretase 

complexes can generate ~ 24-fold more total Aβ than PSEN2-associated-γ-secretase 

complexes (measured by secreted Aβ per γ-secretase complex), but since the amount of 

PSEN1 in the γ-secretase complexes was ~28 times higher than that of PSEN2, PSEN1 

seemed to not have significantly higher activity than PSEN2 when calculating γ-

secretase activity per one γ-secretase complex (Yonemura, Futai et al. 2011). Another 

study in a Psen1-/-Psen2-/- mouse fibroblast line showed that human PSEN1 generated 

more Aβ (resulting from γ-site cleavage) than PSEN2, while the levels of the 

physiologically active APP intracellular domain (AICD) product (resulting from ε-site 

cleavage) provided by these two PRESENILINs were the same (Pintchovski, Schenk 

et al. 2013). 

 

Interestingly, a hypothesis suggested that since PSEN2 provides less Aβ than PSEN1, 

mutations in PSEN2 that cause AD must result in a more severe impact on γ-secretase 

than those in PSEN1, so that the effect on Aβ levels can be strong enough to produce 

the disease with the presence of normal PSEN1 alleles (Walker, Martinez et al. 2005). 

Functional analyses of putative PSEN2 fAD mutations also supported this hypothesis, 

as these mutations cause dramatic changes in the Aβ 42/40 ratio (Walker, Martinez et 

al. 2005) and this ratio is proposed to be related to development of AD (Graff-Radford, 
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Crook et al. 2007; Barucker, Harmeier et al. 2014). Furthermore, these analyses 

revealed that most of the PSEN2 mutations also show parallel decreases in the 

generation of CTFγ, a CTF generated from the cleavage of APP by γ-secretase, as well 

as in Notch intracellular domain (NICD) production. Some very early-onset age PSEN1 

fAD mutations also show similar effects on CTFγ and NICD production (Walker, 

Martinez et al. 2005). 

 

PSEN2 and innate immunity associated with γ-secretase activity 

 

Dysfunction of the immune system has been considered a possible major factor in AD 

(Jevtic, Sengar et al. 2017). As one of the important immune cell types, microglia are 

essential for surveillance in, and rapidly respond to changes in, the central nervous 

system (CNS) (Salter and Beggs 2014). However, in some neurodegenerative diseases, 

microglia may also cause neuronal injury through upregulating the production of 

inflammatory cytokines, neurotoxins, excitotoxins and other reactive oxygen species 

(Jayadev, Case et al. 2010; Heneka, Kummer et al. 2014). In AD, microglia are able to 

bind to Aβ through cell-surface receptors and drive Aβ fibrils into the endolysosomal 

pathway (Heneka, Carson et al. 2015). 

 

In previous studies, Psen1 was thought to contribute more to γ-secretase-associated 

APP and Notch cleavage than Psen2 since knockout of Psen1 in mice resulted in an 

embryonic lethal phenotype and a significant decrease in Aβ levels (Shen, Bronson et 
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al. 1997; Palacino, Berechid et al. 2000), while knockout of Psen2 resulted in no overt 

embryonic phenotype or change of Aβ levels (Herreman, Hartmann et al. 1999). 

Another study showed that, in mouse BD cells, the activities of Psen1-associated γ-

secretase complexes and Psen2-associated γ-secretase complexes could be 

discriminated based on their susceptibility to potent γ-secretase inhibitors, indicating 

that these two classes of γ-secretase complexes may have different active sites with  

different substrate preferences (Lai, Chen et al. 2003). This study also revealed that 

only ~14% of the Psen1 in wild-type BD cells was engaged in active γ-secretase 

complexes, suggesting that the remaining Psen1 serves other biological functions rather 

than forming γ-secretase complexes (Lai, Chen et al. 2003). Additionally, there is 

supporting evidence that Psen2 is the predominant γ-secretase in microglia (from where 

inflammatory cytokines, neurotoxins and excitotoxins are released) (Jayadev, Case et 

al. 2010). In mouse microglia, although Psen1 and Psen2 show compensatory 

regulation (i.e. knockdown of one leads to upregulation of the other), only Psen2 

knockdown leads to markedly decreased γ-secretase activity that leads to an 

exaggerated proinflammatory cytokine release from microglia (Jayadev, Case et al. 

2010).  

 

A negative regulator of monocyte pro-inflammatory response, miR146, has been 

reported to be constitutively downregulated in the microglia of Psen2 knockout mice, 

showing that the absence of Psen2 activity may impact neurodegeneration by disturbing 

the pro-inflammatory behavior of microglia (Jayadev, Case et al. 2013). Reduced 
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responsiveness to lipopolysaccharide (LPS), decreased nuclear factor kappa-light-

chain-enhancer of activated B cells (NF-κB), mitogen-activated protein kinase (MAPK) 

activity and pro-inflammatory cytokine production have also been reported in Psen2- 

(but not Psen1-) knockout mice (Agrawal, Sawhney et al. 2016). All these studies 

indicate that Psen2 may play a specific role in central nervous system (CNS) innate 

immunity not performed by Psen1. 

 

PSEN2 and neurodevelopment (Notch signaling) 

 

In mice, the absence of both Presenilin genes results in embryonic lethality, indicating 

that Presenilins are essential for embryonic development (Donoviel, Hadjantonakis et 

al. 1999; Palacino, Berechid et al. 2000). In embryos of Presenilin double knockout 

mice (mice lacking both Psen1 and Psen2 activity), there is a loss of neural progenitor 

cells (NPCs) and disrupted neuronal migration at embryonic day 11 (Kim and Shen 

2008). The Notch signaling pathway, which controls cellular fate choices throughout 

neurodevelopment (Louvi and Artavanis-Tsakonas 2006), was also found to be blocked 

in Presenilin double knockout mice embryos, indicating that Presenilins are essential 

for neurodevelopment (Kim and Shen 2008; Shen 2014). Premature differentiation of 

NPCs and inhibition of the Notch signaling pathway (as well as skeletal defects (Shen, 

Bronson et al. 1997)) were also found in Psen1 knockout mice and resulted in perinatal 

lethality (Handler, Yang et al. 2000; Palacino, Berechid et al. 2000). However, the 

absence of Psen2 in mice did not show any effect on the physiologically important 
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process of apoptosis during embryonic development (Brill, Torchinsky et al. 1999). 

This indicated that, in mice, Psen1 is essential for neurodevelopment, in contrast to 

Psen2 (Herreman, Hartmann et al. 1999). 

 

PSEN2 and tumorigenesis 

 

An inverse association between cancer and AD has been observed in a population-based 

cohort study, which revealed that patients with prevalent cancer had a 43% lower risk 

of developing AD, while those with AD had a 69% lower risk of having cancer (Driver, 

Beiser et al. 2012). Presenilins are thought to have an anti-oncogenic function since the 

overexpression of both Presenilins promotes cellular apoptosis (Kovacs, Mancini et al. 

1999; Yun, Park et al. 2016), and the knockout of either Presenilin results in higher 

rates of tumorigenesis (Xia, Qian et al. 2001; Serrano, Fernandez et al. 2010; Yun, Park 

et al. 2014).  

 

The AICD produced through γ-secretase cleavage of APP was found to be able to 

regulate epidermal growth factor receptor (EGFR) transcription (which is upregulated 

in a wide variety of tumors) via binding to the EGFR promoter to provide a tumor 

suppressive effect (Zhang, Wang et al. 2007). The anti-apoptotic oncogene bcl-2 was 

found to be downregulated during PSEN2-mediated apoptosis in primary cultured 

neurons (Suh and Checler 2002). The expression of PEROXIREDOXIN 6 (PRDX6), a 

tumor-promoting protein, was also found decreased in AD patients through elevated γ-
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secretase activity induced by mutation of PSEN2 (Park, Yun et al. 2017). A mouse 

model also verified that an fAD mutation of PSEN2 (N141I) could reduce PRDX6 

activity via increased γ-secretase activity, leading to a reduced incidence of spontaneous 

and carcinogen-induced lung tumor development (Park, Yun et al. 2017). 

 

PSEN2 and autophagy 

 

Autophagic/lysosomal dysfunction is thought to be extensively involved in the 

neurodegenerative process in AD since the endosomal-lysosomal system is a prominent 

site of APP processing, Aβ uptake, and Aβ production (Orr and Oddo 2013). The 

transport of autophagic vacuoles (AVs) and their maturation to lysosomes may be 

impaired in AD brains (Yu, Cuervo et al. 2005), and significant accumulations of AVs 

have also been detected in AD brains (Nixon, Wegiel et al. 2005). 

 

Deletion of the Psen1 gene in murine blastocysts was found to cause complete loss of 

macroautophagy without affecting non-lysosomal forms of proteolysis. This was due 

to the failure of the V0a1 subunit of v-ATPase to become N-glycosylated in the 

endoplasmic reticulum (ER), resulting in a selective impairment of autolysosome 

acidification and cathepsin activation (Lee, Yu et al. 2010). In human fibroblasts, fAD 

mutations in PSEN1 resulted in even more severe impairment of lysosomal/autophagic 

functions compared to the affects seen in PSEN1 knockout cells (Lee, Yu et al. 2010). 

However, the roles of PRESENILINs in lysosomal/autophagic functions are still 
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controversial. Another study in mouse cells revealed that, although the deletion of either 

Psen1 or Psen2 in mouse embryonic fibroblasts caused impaired autophagic function, 

no deficits in lysosomal acidification were found (Neely, Green et al. 2011). In that 

study, it was also found that deletion of both Presenilins in mouse fibroblasts (which 

resulted in loss of γ-secretase activity) led to impaired autophagic function, while γ-

secretase inhibitors (which also led to loss of γ-secretase activity) did not adversely 

impact autophagy, indicating that Presenilins are involved in the autophagic function 

in a γ-secretase-independent manner (Neely, Green et al. 2011). It was also revealed 

that, although both Presenilins are involved in regulating autophagy, one cannot 

compensate for the loss of the other (Neely, Green et al. 2011). Additionally, in PSEN1-

/- hippocampal neurons, a greatly decreased lysosomal calcium release that altered ion 

channels in the endoplasmic reticulum has been reported (Coen, Flannagan et al. 2012). 

Similar alterations in calcium homeostasis and reduced autophagic function were also 

observed in Presenilin-double knockout mouse embryonic fibroblasts, which seemed 

to indicate that Presenilins are necessary for calcium homeostasis (Neely Kayala, 

Dickinson et al. 2012) 

 

PSEN2 and mitochondrial function 

 

Evidence suggests that PRESENILINs play roles in mitochondrial function (Behbahani, 

Shabalina et al. 2006) which is essential for energy supply in cells and for other cellular 

processes such as apoptosis, reactive oxygen species (ROS) production, and calcium 



19 
 

homeostasis (Hroudova, Singh et al. 2014). For neuronal survival, due to the limited 

glycolytic capacity of neurons, their energy supply is highly dependent on aerobic 

oxidative phosphorylation (OXPHOS) that occurs in mitochondria (Moreira, Carvalho 

et al. 2010). Moreover, the “mitochondrial cascade hypothesis” postulates that 

mitochondrial dysfunction is a primary event in both sporadic and autosomal dominant 

forms of AD (Swerdlow and Khan 2004; Swerdlow and Khan 2009). Although 

mutations in both PSEN1 and PSEN2 have been shown to sensitize cells to apoptosis 

through impaired mitochondrial function, there is evidence suggesting that PSEN2 

(PSEN2-associated γ-secretase activity) may play a specific role required for proper 

mitochondrial function (Yun, Park et al. 2016). Some early studies in cell lines showed 

that the apoptotic cell death induced by overexpression of a fAD mutant form of PSEN2 

(N141I) was sensitive to inhibition by pertussis toxin, indicating that heterotrimeric 

GTP-binding proteins were involved in this process (Wolozin, Iwasaki et al. 1996). 

Furthermore, the overexpression of this fAD mutation in mice caused up-regulated γ-

secretase activity specifically in mitochondrial fractions. This induced the production 

of Aβ-42 peptides and contributed to mitochondrial dysfunction and AD pathology 

(Yun, Park et al. 2016). In mouse embryonic fibroblasts, it has been found that knockout 

of Psen2 caused a significantly lower basal respiratory rate compared to knockout of 

Psen1 or compared to wild type cells, and the percentage of fully functional 

mitochondria in Psen2 knockout cells (and Presenilin double knockout cells) was much 

lower than that in wild type cells or cells lacking only Psen1. (Behbahani, Shabalina et 

al. 2006). Another study in mouse embryonic fibroblasts indicated that deficiency of 
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Psen2 led to a reduction in subunits responsible for mitochondrial OXPHOS with an 

altered morphology of the mitochondrial cristae, as well as an increase in glycolytic 

flux. This indicated that absence of Psen2 causes an impairment in respiratory capacity 

but also an increase in glycolytic flux to support energy needs (Contino, Porporato et 

al. 2017). 

 

PSEN2 and calcium homeostasis 

 

Calcium homeostasis has been found to play an important role in AD progression, and 

calcium dysregulation may contribute to increased Aβ production (Querfurth, Jiang et 

al. 1997), enhanced vulnerability to neuronal apoptosis (Mattson, Guo et al. 1998), and 

numerous processes underlying aging-related changes in the brain (Disterhoft, Moyer 

et al. 1994). Moreover, the changes in the concentration of calcium ions not only affect 

membrane channels but also diverse intracellular calcium-regulating structures and 

systems, such as mitochondria, and enzymes like calcium-dependent ATPases (Korol’, 

Korol’ et al. 2008). 

 

Independent of their role in γ-secretase activity, PRESENILINs also appear to function 

as passive ER Ca2+ leak channels (Tu, Nelson et al. 2006). Mutations in both PSEN1 

and PSEN2 were found able to affect intracellular calcium homeostasis (Leissring, 

Parker et al. 1999; Mattson, Chan et al. 2001). Overexpression of fAD PSEN1 

mutations in cultured neural cells resulted in increased cytoplasmic calcium and 
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induced calcium release from the ER when stimulated by agonists (such as carbachol 

and bradykinin) (Guo, Furukawa et al. 1996). It was reported that such elevations of 

calcium can induce oxidative stress (Lafon-Cazal, Pietri et al. 1993; Mattson, Lovell et 

al. 1995), which mediates staurosporine-induced mitochondrial dysfunction and 

apoptosis (Kruman, Guo et al. 1998). M146L and M146V are both human fAD 

mutations in PSEN1. Mice with a knock-in of M146V show elevation of cytoplasmic 

calcium levels in synaptosomes, but this was not seen in M146L knock-in mice 

expressing lower (closer to physiologic) levels of mutant PSEN1 (Begley, Duan et al. 

1999). Mitochondrial dysfunction and caspase activation were also observed in 

synaptosomes of PSEN1 mutant (M146V) knockin mice (Begley, Duan et al. 1999; Pak, 

Chan et al. 2003).  

 

The level of calcium in the ER is also dependent on plasma membrane store-operated 

calcium channels (SOCCs) during capacitative calcium entry (CCE) (also known as 

store-operated calcium entry, which is triggered by depletion of intracellular calcium 

stores) (Putney 1986). In fAD PSEN1 mutation (M146V) knockin mouse fibroblasts, 

elevated ER calcium levels and deficits in CCE (but functional SOCCs) were detected 

(Leissring, Akbari et al. 2000). Additionally, in CHO cells that stably overexpress wild 

type APP, both overexpression of the PSEN1 mutation, D257A, and co-expression of 

D257A and the PSEN2 mutation, D366A, (mutations decreasing γ-secretase activity) 

resulted in reduced intracellular calcium stores and enhanced CCE compared to 

overexpression of wild type PSEN1. However, expression of another dominant negative 
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isoform of PSEN1, ΔTM1-2 (which also abrogates γ-secretase activity), led to reduced 

intracellular calcium stores and a deficit of CCE (Akbari, Hitt et al. 2004). Thus, 

modulation of CCE appears to be independent of the function of PRESENILINs in γ-

secretase activity (Akbari, Hitt et al. 2004).  

 

The knockdown of the gene PRESENILIN ENHANCER 2, C. ELEGANS, HOMOLOG 

OF (PSENEN) in Hela cells, results in inhibition of proteolytic processing of 

PRESENILINs (Bandara, Malmersjo et al. 2013), thus, increasing the holoprotein form 

of these proteins. The holoprotein form of Psen1 in Aph-1abc−/− mouse embryonic 

fibroblasts (where -secretase activity is completely absent and Psen1 is present as a 

holoprotein) was found to greatly increase the calcium leak rate, strongly suggesting 

that the holoprotein forms of the Presenilins are the functional forms in calcium leakage 

(Tu, Nelson et al. 2006). 

 

Knockdown of PSEN2 activity in Hela cells was found to reduce dramatically the ER 

calcium leak rate and to produce a large increase in ER calcium load (Bandara, 

Malmersjo et al. 2013). The PSEN2 mutation, N141I, was found to induce ER calcium 

leak and reduce the ER calcium pool (Tu, Nelson et al. 2006; Kipanyula, Contreras et 

al. 2012). However, in SH-SY5Y neuroblastoma cell lines, it has been reported that 

PSEN2, but not PSEN1, modulates the shuttling of Ca2+ between the ER and 

mitochondria since mitochondrial Ca2+ dynamics were reduced by PSEN2 down-

regulation and enhanced by the expression of the PSEN2 mutant forms, N141I, D366A 
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and T122R (Zampese, Fasolato et al. 2011).  

 

Over-expression of both wild type and mutant PSEN2 (N141I) in cultured neural cells 

(PC12 cells) was found to induce apoptosis in the absence of an apoptotic insult (Deng, 

Pike et al. 1996; Wolozin, Iwasaki et al. 1996), while no spontaneous apoptosis was 

observed in PC12 cells with overexpression of either wild type or mutant PSEN1 (either 

the L286V or M146V mutations) (Guo, Christakos et al. 1998). 

 

PSEN2 and ischemic oxidative stress 

 

Brain ischemia has long been considered one of the possible causes of AD (Pluta, 

Jablonski et al. 2013). Dysregulated APP, the PRESENILINs, β-secretase and 

APOLIPOPROTEINs (the APOE4 allele is considered to be the major genetic risk 

factor for late onset, sporadic AD (Kim, Basak et al. 2009)) have been observed in 

experimental models of incomplete brain ischemia (Pluta, Furmaga-Jablonska et al. 

2013). In rats, after 10 min of global brain ischemia, the expression of Psen1 showed a 

modest trend of downregulation from days 2 to 7 post-ischemia, with an opposite trend 

at day 30. The expression of Psen2 showed significant overexpression on day 2 post-

ischemia and was only modestly elevated on day 7 followed by a slight down-regulation 

on day 30, indicating that the two Presenilins may have different roles during brain 

ischemia (Pluta, Kocki et al. 2016). This brain ischemia model supported that PSEN2 

plays a role in the modulation of apoptosis (Suh and Checler 2002), since neurons in 
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ischemic injured areas of the brain began to die from days 2 to 7 post-ischemia (Pluta, 

Kocki et al. 2016). Although the PRESENILINs appear to complement each other’s 

functions, PSEN1 seems to provide a basic constitutive function, while PSEN2 appears 

to operate as an emergency helper under ischemic oxidative stress (Kocki, Ulamek-

Koziol et al. 2015). 

 

Interestingly, PS2V, a truncated isoform of PSEN2 protein produced by alternative 

PSEN2 gene transcript splicing that excludes exon 5 sequence from PSEN2 (Figure 

1.2.5), is preferentially expressed in AD brains (Sato, Hori et al. 1999). In human 

neuroblastoma SK-N-SH cells, the expression of PS2V is induced by hypoxia, but not 

by many other stresses (Sato, Imaizumi et al. 2001). This finding is also supported by 

observations in animal models, i.e. in a guinea pig model (Sharman, Moussavi Nik et 

al. 2013) and in a zebrafish model (Moussavi Nik, Newman et al. 2015). However, in 

zebrafish, hypoxia induces alternative splicing of transcripts of the psen1 gene rather 

than psen2 to produce a PS2V-equivalent isform named PS1IV. Alhough PS1IV is far 

smaller than PS2V, it is still able to stimulate γ-secretase activity (Moussavi Nik, 

Newman et al. 2015). Further study of PS1IV revealed that the absence of PS1IV under 

hypoxia-like conditions changes the expression of genes involved in inflammation (i.e. 

gene IL1B which is recognised as an AD risk locus (Sciacca, Ferri et al. 2003)) 

(Ebrahimie, Moussavi Nik et al. 2016) 
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Figure 1.2.5. The generation of PS2V (Moussavi Nik, Newman et al. 2015). 

Under hypoxia, reactive oxygen species are released from mitochondria and induce the 

expression of HMGA1a that binds to PSEN2 transcripts at the 3’ end of exon 5. This 

excludes splicing factors causing exon 4 to be ligated to exon 6. This causes a frameshift 

that results in early termination of the coding sequence, translation of which produces 

PS2V (Moussavi Nik, Newman et al. 2015). 

 

PSEN2 and gonadal steroids 

 

AD has been found to be more prevalent in women than in men (Vina and Lloret 2010). 

AD histopathology (Barnes, Wilson et al. 2005) and AD-related cognitive decline 

(Sinforiani, Citterio et al. 2010) have been reported to be greater in women than in men. 

Although the mechanism of this gender difference in the development of AD is still 

unclear, sex steroid hormones are thought to be one possible cause since it is known 

that sex steroid hormones are involved in neural development (Bowers, Waddell et al. 

2010). 
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The expression of PRESENILINs has been found to change with age and sex. In mice, 

it was found that, in old mice, Psen1 is down-regulated and Psen2 is upregulated in 

both sexes, while the expression of Psen1 is relatively higher and that of Psen2 is lower 

in female compared to male mice (Thakur and Ghosh 2007). This research group found 

that the expression of Psen1 is down-regulated by gonadal hormones (17β-estradiol and 

testosterone in the cerebral cortex) in all females and adult male mice, while in old male 

mice, it is up-regulated (Ghosh and Thakur 2008). The expression of Psen2 is down-

regulated after gonadectomy, while supplementation of gonadal steroids is able to up-

regulate the expression of Psen2 in both mouse sexes (Ghosh and Thakur 2008). 

Another research group found that there is no difference between female hypogonadal 

mice and their littermate controls in expression of Alzheimer’s disease-related proteins, 

while male hypogonadal mice show altered expression of these proteins (Drummond, 

Martins et al. 2012). It appears that the expression of gonadal steroids (perhaps mainly 

related to the concentration of androgen) may affect the expression of the Presenilins 

and subsequently affect Presenilin-related pathways.  

 

Zebrafish as a model for investigation of AD 

 

For modelling of Alzheimer's disease pathology, both mammalian and non-mammalian 

animals have been used. Danio rerio, also known as the zebrafish, presents many 

advantages as a model organism for the study of AD. 
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Both the organization of zebrafish and human genome structures and the genetic 

pathways (controlling signal transduction and development) in zebrafish and humans 

are highly conserved (Postlethwait, Woods et al. 2000). The genome and anatomy of 

zebrafish are the result of ~420 million years of divergent evolution from the human 

lineage (Ravi and Venkatesh 2008), and most human genes have clearly identifiable 

orthologues in zebrafish. The size of the zebrafish genome is only half that of the human 

genome, but there are more genes in the zebrafish genome because of a whole genome 

duplication that occurred early in the history of the teleost lineage (Wittbrodt, Meyer et 

al. 1998). As gene regulatory regions may diverge after a duplication event, these 

duplicates may, together, fulfill the function of their single mammalian orthologues. 

Thus, a single gene may be represented by one or more “co-orthologues” in the 

zebrafish, allowing a more detailed dissection of gene function (Force, Lynch et al. 

1999). 

 

The small size of zebrafish eggs and larvae is another property that makes zebrafish an 

excellent model system for studies on human diseases. Due to this small size, the eggs 

or larvae can be incubated in 96 well plates, which allows for high throughput in vivo 

screening of responses to chemicals in their support medium. The high fecundity of the 

zebrafish also guarantees plentiful supplies of eggs or larvae for in vivo analysis (Best 

and Alderton 2008). This also allows us to raise a large number of siblings from pair 

matings in the same environment (the same tank) to reduce environmental and genetic 

variability in transcriptomic and other “omics” analyses. Moreover, the zebrafish model 
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is an excellent system for study of AD-relevant genes and pathways. The genes apoea 

and apoeb in zebrafish are co-orthologues of human APOE (Babin, Thisse et al. 1997; 

Woods, Wilson et al. 2005), genes appa and appb are co-orthologues of human APP, 

and genes psen1 (Leimer, Lun et al. 1999) and psen2 (Groth, Nornes et al. 2002) are 

orthologues of human PSEN1 and PSEN2, respectively. 

 

Conclusion 

 

PSEN2 is one of the genes implicated in fAD pathogenesis, but our understanding of 

how it contributes to AD progression is still limited. As one of the essential components 

of the γ-secretase complex, PSEN2 protein has been found to be involved in γ-

secretase-related physiological activities that are associated with AD progression such 

as innate immunity, Notch signaling, tumorigenesis and autophagy. It has also been 

found that PSEN2 plays a specific role(s) in mitochondrial function since it is involved 

in regulating calcium homeostasis. Research using animal models has also found that 

expression of Psen2 changes with age and sex, and, significantly, is altered under 

ischemic oxidative stress which is probably a major contributor to AD pathogenesis. 

However, this may be only the tip of the iceberg of PSEN2’s functions, and more 

research must be done to fully identify and understand PSEN2’s roles in normal cell 

biology and AD. 
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Chapter 2 Identifying the transcriptomic changes caused by a premature 

termination codon mutation in psen2, using the zebrafish model 

 

2.1 Introduction, Significance and Commentary 

 

Although hundreds of different fAD mutations in PSEN1 and PSEN2 have been 

identified, none of them are null mutations. Thus, we need to examine the specific 

cellular changes caused by null mutation of psen2, so that when we identify the changes 

caused by fAD-like mutations in the same gene, the null mutation effects can be 

identified as less likely to be critical to the fAD pathology.  

 

In this chapter, a premature termination codon mutation in psen2, psen2S4Ter, which 

refers to a deletion of 8 nucleotides resulting in a translation termination codon at the 

4th codon, was generated in the zebrafish genome using the CRISPR/Cas9 system. 

Transcriptomic changes caused by this mutation in adult fish brains were predicted to 

affect brain mitochondrial activity, glucocorticoid signalling activity and intracellular 

iron trafficking. A severe haploinsufficiency phenotype due to this mutation was 

identified since no significant differences were observed between the heterozygous and 

homozygous brain states. 

 

The significances of this work includes: 
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1. This is the first generation of a premature termination codon mutation in psen2 in the 

zebrafish model. This can be used for future studies on PSEN2 functions and fAD-like 

mutations. 

 

2. The transcriptomic analysis that indicated psen2 is likely involved in brain 

mitochondrial activity, glucocorticoid signalling activity and intracellular iron 

trafficking strongly supporting that PSEN2 plays an important role in the development 

of AD pathology. 

 

2.2 Transcriptome analysis indicates significant effects on mitochondrial function of 

heterozygosity for a premature termination codon mutation in the zebrafish gene psen2. 

 

This chapter is included in the thesis in the form of a research paper manuscript 

authored by H. Jiang, S. M. Pederson, M. Newman, and M. Lardelli, and which is ready 

for submission for peer review by a scientific journal. 
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Abstract 

PRESENILIN 2 (PSEN2) is one of the genes mutated in early onset familial Alzheimer’s 

disease (EOfAD). PSEN2 shares significant amino acid sequence identity with another 

EOfAD-related gene PRESENILIN 1 (PSEN1), and partial functional overlap is seen 

between these two genes. However, the complete range of functions of PSEN1 and 

PSEN2 is not yet understood. In this study, we performed targeted mutagenesis using 

the CRISPR Cas9 system to generate a premature termination codon close to the 

translation start of the psen2 coding sequence, psen2S4Ter. Homozygotes for this 

mutation are viable and fertile, and adults do not show any gross pigmentation defects. 

Transcripts containing the mutation do not appear affected by nonsense-mediated decay. 

Transcriptome analysis of brains from a family of wild type, heterozygous and 

homozygous mutant female siblings predicts very significant effects on mitochondrial 

function and, potentially, glucocorticoid signaling and iron homeostasis. No significant 

gene expression differences were observed between heterozygous and homozygous 

mutant brains indicating either widespread haploinsufficiency or a neomorphic, 

dominant phenotype of the S4Ter mutation. Assessment of the numbers of Dorsal 

Longitudinal Ascending (DoLA) interneurons that are responsive to psen2 but not 

psen1 activity during embryogenesis did not support that S4Ter decreases psen2 

function.  
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Introduction 

 

PRESENILIN 2 (PSEN2) was first identified as a candidate locus for mutations causing 

familial Alzheimer’s disease (fAD) with early onset (EOfAD) when a point mutation 

resulting in the substitution of an isoleucine residue for an asparagine residue (N141I) 

was found in a Volga German AD family in 1995 (Levy-Lahad, Wasco et al. 1995). 

PSEN2 is similar in structure to the major fAD gene PRESENILIN 1 (PSEN1). The two 

genes encode proteins sharing 62% amino acid sequence identity (Newman, Musgrave 

et al. 2007). The age of onset of Alzheimer’s disease (AD) caused by mutations in 

PSEN2 ranges from 39 to 75 years, which overlaps both with PSEN1 EOfAD-

associated mutation disease onset ages and with late onset, sporadic AD (Ryman, 

Acosta-Baena et al. 2014). The later mean onset age of AD caused by PSEN2 mutations 

compared to mutations in PSEN1 is still unexplained, but some studies suggest that it 

may be caused by the partial replacement of PSEN2 function by PSEN1 (Jayadev, 

Leverenz et al. 2010). However, the functions of PSEN1 and PSEN2 have not yet been 

comprehensively determined. Moreover, despite the partial functional overlap between 

PSEN1 and PSEN2, in vitro studies have shown that the protein products of the two 

genes also play divergent roles in cellular physiology (Lee, Slunt et al. 1996; Kang, 

Yoon et al. 2005).  

 

Both PSEN1 and PSEN2 proteins are components of γ-secretase complexes. The 

absence of PSEN1 is thought to reduce γ-secretase activity in mammalian cells (De 
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Strooper, Saftig et al. 1998; Naruse, Thinakaran et al. 1998), while the absence of both 

PSEN1 and PSEN2 is thought to eliminate it completely (Herreman, Serneels et al. 

2000; Zhang, Nadeau et al. 2000) although some data does not agree with this (reviewed 

in Jayne et al. (Jayne, Newman et al. 2016)). In mice, the loss of Psen1 causes premature 

differentiation of neural progenitor cells (NPC) and inhibition of Notch signaling 

leading to skeletal defects (Shen, Bronson et al. 1997), and, ultimately, perinatal 

lethality (Handler, Yang et al. 2000). Mouse embryos lacking both Psen1 and Psen2 

activity are more severely affected with earlier lethality and a developmental phenotype 

similar to loss of Notch1 activity (Donoviel, Hadjantonakis et al. 1999; Ferjentsik, 

Hayashi et al. 2009). However, by itself, the absence of Psen2 activity in mice does not 

appear to affect development significantly (Herreman, Hartmann et al. 1999). In 

zebrafish, the inhibition of either Psen1 or Psen2 translation caused decreased 

melanocyte numbers in trunk and tail and other effects of decreased Notch signaling 

indicating a possibly greater role in Notch signaling for Psen2 protein in zebrafish 

compared to in mammals (Nornes, Newman et al. 2008). Inhibition of Psen2 translation 

also led to increased Dorsal Longitudinal Ascending (DoLA) interneuron number, 

while inhibition of Psen1 translation showed no effect on this neuronal cell type 

(Nornes, Newman et al. 2008). Thus, in zebrafish, Psen2 apparently plays greater roles 

in Notch signalling and embryo development than in mammals. 

 

Although Psen1 and Psen2 show compensatory regulation with forced down-regulation 

of one causing up-regulation of the other (Wang, Pereira et al. 2003; Jayadev, Case et 
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al. 2010), only Psen2 down-regulation causes markedly decreased γ-secretase activity 

in the microglial cells of mice. The inhibition of γ-secretase activity caused by forced 

down-regulation of Psen2 led to exaggerated proinflammatory cytokine release from 

microglia, indicating that Psen2 plays an important role in central nervous system (CNS) 

innate immunity (Jayadev, Case et al. 2010). Furthermore, a negative regulator of 

monocyte pro-inflammatory response, miR146, was found to be constitutively down-

regulated in the microglia of a Psen2 knockout mouse strain, supporting that Psen2 

dysfunction may be involved in neurodegeneration through its impacts on the pro-

inflammatory behavior of microglia (Jayadev, Case et al. 2013). Also, Psen2 (but not 

Psen1) knockout mice show reduced responsiveness to lipopolysaccharide (LPS) as 

well as decreased expression of nuclear factor kappa-light-chain-enhancer of activated 

B cells (NF-kappaB), reduced mitogen-activated protein kinase (MAPK) activity and 

reduced pro-inflammatory cytokine production. This indicates that Psen2 has a specific 

function(s) in innate immunity independent of Psen1 (Agrawal, Sawhney et al. 2016). 

 

The particular role of mammalian PSEN2 protein in inflammation is consistent with its 

restricted localisation to the mitochondrial associated membranes (MAM) of the 

endoplasmic reticulum (ER) (Area-Gomez, de Groof et al. 2009). MAM formation has 

been shown to influence inflammatory responses, is the site of autophagosome 

initiation, and plays a major role in regulating mitochondrial activity (reviewed in 

Marchi et al (Marchi, Patergnani et al. 2014)).  
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Considerable evidence supports roles for PRESENILIN proteins in the function of 

mitochondria (Behbahani, Shabalina et al. 2006), which are central to energy 

production in cells and to other cellular processes affected in AD such as apoptosis, 

reactive oxygen species (ROS) production, and calcium homeostasis (Hroudova, Singh 

et al. 2014). In human cell lines, it has been reported that PSEN2, but not PSEN1, 

modulates the Ca2+ shuttling between the ER and mitochondria since mitochondrial 

Ca2+ dynamics are reduced by PSEN2 down-regulation and enhanced by the expression 

of mutant forms of PSEN2 (Zampese, Fasolato et al. 2011). In mouse cell lines, 

deficiency of Psen2 led to reduced expression of subunits responsible for mitochondrial 

oxidative phosphorylation (OXPHOS) with altered morphology of the mitochondrial 

cristae, as well as an increase in glycolytic flux. This indicated that the absence of Psen2 

protein causes an impairment in respiratory capacity with a corresponding increase in 

glycolytic flux to support cells’ energy needs (Contino, Porporato et al. 2017). 

 

 

Despite the identification of hundreds of different fAD mutations in human PSEN1 and 

PSEN2, none of these appear to remove all gene function (i.e. none are null mutations). 

As part of an effort using zebrafish to identify the specific cellular changes caused by 

fAD-like mutations in these genes, we wished to examine null mutations so that their 

effects could be excluded from consideration. In this paper we describe attempted 

generation of a null mutation of the zebrafish orthologue of the human PSEN2 gene, 

psen2, by introduction of a premature termination codon downstream of the asssumed 
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translation start codon. We then examined the transcriptome of young adult brains either 

heterozygous or homozygous for this mutation. Gene ontology analysis supports very 

significant changes in brain mitochondrial activity with significant changes also 

predicted in glucocorticoid signalling activity and intracellular iron trafficking. 

Surprisingly we see evidence of either widespread haploinsufficiency or a dominant, 

neomorphic effect since no significant differences are noted between the heterozygous 

and homozygous brain states. 

 

Method and Materials 

 

Animal ethics 

 

All experiments using zebrafish were conducted under the auspices of the Animal 

Ethics Committee of the University of Adelaide. Permits S-2014-108 and S-2017-073. 

 

sgRNA design and synthesis 

 

The target sequence of Ps2Ex3 sgRNA is 5’-CAGACAGTGAAGAGGAC TCC-3’. 

This target sequence was cloned into the plasmid pDR274 (Addgene plasmid # 42250) 

(Hwang, Fu et al. 2013). The Ps2Ex3 pDR274 plasmid was linearised with HindIII-HF 

® (NEB, Ipswich, Massachusetts, USA, R3104S), and then used as a template for 

synthesis of Ps2Ex3 sgRNA with the MAXIscript™ T7 Transcription Kit (Ambion, 
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Inc, Foster City, California, USA, AM1312). 

 

Injection of zebrafish embryos 

 

Tübingen (wild type) embryos were generated by mass mating. Ps2Ex3 sgRNA (90 

ng/μL final concentration) was first mixed with Cas9 nuclease (Invitrogen, 

Carlsbad, California, USA, B25640), and then incubated at 37°C for 15 min to 

maximise cleavage efficiency. 5-10 nL of the mixture was injected into zebrafish 

embryos at the one-cell stage. The injected embryos were subsequently raised up for 

mutation screening. 

 

Mutation detection in G0 injected embryos T7 endonuclease I 

 

Mutation detection was based on the T7 endonuclease I assay (Babon, McKenzie et al. 

2003). Since mismatches, small insertions or deletions generated through non-

homologous end joining (NHEJ) result in failure of base-pairing in heteroduplexes at 

mutation sites, T7 endonuclease I is able to recognise and cleave at the sites of these 

mutations. 

 

To test whether the CRISPR/Cas9 system had functioned in the injected G0 embryos, 

10 embryos were randomly selected from each injected batch and pooled together for 

genomic DNA extraction at ~24 hours post fertilisation (hpf). To extract the genomic 
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DNA, these 10 embryos were placed in 100 μL of 50 mM NaOH and then heated to 

95°C for 15 min, and then 1/10th volume of 1 M Tris-HCl, pH 8.0 was added to each 

sample to neutralise the basic solution after cooling to 4°C (Meeker, Hutchinson et al. 

2007). A pair of primers (5’- AGGCCACATCACGATACAC -3’ and 5’-

TGACCCGTTTGCTGTCTG-3’) binding to the flanking regions of the intended 

cleavage site was designed to amplify the test region (~472 bp) through PCR. The PCR 

conditions for this amplification reaction were 95°C, 2 min; 31 cycles of [95°C, 30 s; 

58°C, 30 s; 72°C, 30 s]; then 72°C, 5 min. The PCR products were purified using the 

Wizard® SV Gel and PCR Clean-Up System (Promega, Wisconsin, USA, A9281) and 

annealed (denaturation at 95°C for 5 min and then slow cooling of the samples at the 

rate of -2°C/sec from 95°C to 85°C and then -0.1°C/sec from 85°C to 25°C for 

annealing of heteroduplexes) before addition of T7 endonuclease I (NEB, Ipswich, 

Massachusetts, USA, M0302S). Heteroduplexes containing small mutations at the 

intended site should be cleaved into two fragments, ~313 bp (upstream) and ~159 bp 

(downstream).  

 

When the T7 endonuclease I assay on injected G0 embryos showed the presence of 

mutation at the target site, the remaining embryos from the same injection batch were 

raised for further mutation screening and breeding.  

 

Mutation detection in adult G0 and F1 fish using T7 endonuclease I and Sanger 

sequencing 
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When a G0 injected fish had grown to sufficient size (>2 cm in length, 2 to 3 months 

old), the tip of its tail (~2 mm in length) was biopsied (clipped) under Tricaine 

(1.68μg/mL) anaesthesia for genomic DNA extraction. The clipped tail was placed in 

100 μL of 50 mM NaOH and then heated to 95°C for 15 min to extract genomic DNA. 

The sample was then cooled to 4°C, and a 1/10th volume of 1 M Tris-HCl, pH 8.0 was 

then added to each sample to neutralise the basic solution (Meeker, Hutchinson et al. 

2007). The same T7 endonuclease I assay used previously for mutation detection in G0 

embryos was then applied to the genomic DNA extracted from the G0 adult fish biopsy 

(S1A and S1B Figures). However, since each G0 mutation-carrying fish was probably 

mosaic for several different mutations at the target site, each G0 fish was outbred to a 

wild type Tübingen fish, to produce the F1 progeny, some of which could be 

heterozygous for single mutations. The F1 fish were biopsied and screened using the 

T7 endonuclease I assay when large enough (S1C and S1D Figures). For F1 fish found 

to carry mutations, the PCR-amplified fragments were sent to the Australian Genome 

Research Facility (AGRF, North Melbourne, VIC, Australia) for Sanger sequencing to 

identify the mutations. 

 

An 8-bp deletion resulting in a frameshift downstream of the start codon of psen2, 

psen2S4Ter (Figure 1), was identified. PCR primers specifically detecting this mutation 

were designed (psen2S4Ter forward primer: 5’-TTCATGAATACCTGAAGAGG-3’, 

wild type forward primer: 5’- TTCATGAATACCTCAGACAGTG-3’, and reverse 
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primer: 5’-GAACAGAGAATGTACTGGCAGC-3’) for further screening. The PCR 

conditions for psen2S4Ter mutant detection are 95°C, 2 min; 31 cycles of [95°C, 30 s; 

55°C, 30 s; and then 72°C, 30 s]; 72°C, 5 min. The length of PCR products is ~230 bp. 

The PCR conditions for wild type-specific detection are 95°C, 2 min; 31 cycles of 

[95°C, 30 s; 60°C, 30 s; and 72°C 30 s]; 72°C, 5 min and the anticipated length of the 

PCR products is ~230 bp (S1E and S1F Figures). 

 

 

Figure 1. Predicted protein sequence of psen2S4Ter. An 8-bp deletion resulted in a 

frameshift downstream of the nominal translation start codon of psen2 creating a stop 

codon as the 4th codon. 

 

Breeding of psen2S4Ter mutant fish 

 

The initial F1 fish carrying the psen2S4Ter mutation was outbred to a wild type fish to 

generate a population of F2 progeny that was 50% heterozygous mutants and 50% wild 

type fish. Two F2 heterozygous mutant fish were then inbred to generate a family of F3 

fish consisting of (theoretically) 50% heterozygous mutants, 25% homozygous mutants 

and 25% wild type fish. This F3 family was then allowed to age for six months before 

brain removal and total brain RNA extraction for RNA-seq and other analyses. 
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Total RNA extraction from 6-month-old zebrafish brains 

 

Individual fish were genotyped using PCR and then brains from desired genotypes were 

removed for extraction of total RNA for either digital quantitative PCR (dqPCR) on 

cDNA or RNA-seq (below). 

 

For dqPCR tests, six wild type, six heterozygous and six homozygous fish from the F3 

family were selected. Three of each genotype were then exposed to hypoxia (dissolved 

oxygen content of the water was ~1.0 mg/L) for ~2.5 h, while the remaining three of 

each genotype were exposed to normoxia. The brains of these fish were subsequently 

removed after humane killing, and total RNA was extracted using the RNeasy Mini Kit 

(QIAGEN, Venlo, Netherlands, 74104). cDNA was synthesised from brain RNAs using 

the SuperScript™ III First-Strand Synthesis System (Invitrogen, Carlsbad, California, 

USA, 18080051) with Random Primers (Promega, Madison, Wisconsin, USA, C1181). 

 

For RNA-seq, four wild type, four psen2S4Ter heterozygous and four psen2S4Ter 

homozygous mutant brains (all from female fish) were extracted from the same family. 

Total RNA from these brains was extracted using the mirVana™ miRNA Isolation Kit 

(Ambion, Inc, Foster City, California, USA, AM1560). RNA samples were sent to the 

Australian Cancer Research Foundation (ACRF) Cancer Genomics Facility, 

Adelaide SA, Australia for sequencing. 
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Allele specific expression analysis by dqPCR 

 

Primers for dqPCR, including a reverse primer specifically detecting the wild type allele 

(5’-TCGTTGTAGGAGTCCTCTTCACTG-3’), a reverse primer specifically detecting 

the psen2S4Ter allele (5’-TCGTTGTAGGAGTCCTCTTCAGG-3’) and a common 

forward primer (5’-TTCCTCACTGAATTGGCGATG-3’), were designed for allele 

specific expression analysis of the F3 family using the QuantStudio™ 3D Digital PCR 

System (Life Sciences, Waltham, MA, USA) with the QuantStudio™ 3D Digital PCR 

20K Chip Kit v2 and Master Mix (Life Sciences, Waltham, MA, USA, A26317) and 

SYBR™ Green I Nucleic Acid Gel Stain (Life Sciences, Waltham, MA, USA, S7563). 

The dqPCR conditions for assays of mutant allele or wild type allele expression were 

96°C, 10 min; 49 cycles of [62°C, 2 min; 98°C, 30 s]; 62°C, 2 min. The lengths of the 

anticipated PCR products are ~130 bp. 25 ng of total cDNA* from a sample was loaded 

into one chip for the dqPCR. The chips were read using QuantStudio™ 3D 

AnalysisSuite Cloud Software (Life Sciences, Waltham, MA, USA). 

 

*Stated cDNA concentrations are based on measured concentrations of RNA under the 

assumption that subsequent reverse transcription is completely efficient. 

 

RNA-seq data processing  

 

Paired-end (2x150bp) RNA-seq libraries were generated for n = 4 samples from each 
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of the genotypes: wild type (WT, psen2+/+), heterozygous (Het, psen2S4Ter/+) and 

homozygous (Hom, psen2S4Ter/psen2S4Ter), ranging in size from 27,979,654 to 

37,144,975 reads. Libraries were trimmed to remove Illumina Adapter sequences, bases 

with a PHRED score < 20 were removed, and reads shorter than 35bp after trimming 

were discarded. Libraries were aligned to known rRNA sequences obtained from the 

SILVA project (Quast, Pruesse et al. 2013) on 2017/05/24 before alignment to build 

GRCz10 of zebrafish genome, using the default settings of the splice-aware aligner 

HISAT2 (Kim, Langmead et al. 2015). Alignments were deduplicated after 

identification of duplicate alignments using MarkDuplicates from the Picard suite of 

tools (http://broadinstitute.github.io/picard/). 

 

RNA-seq Analysis  

 

Unique alignments corresponding to gene models in Ensembl release 88 were counted 

using featureCounts from the Subread package (Liao, Smyth et al. 2013), giving total 

counts per sample which ranged between 8,844,634 and 10,850,749. Genes with counts 

per million (CPM) > 0.9 in at least four samples were retained, with genes 

corresponding to rRNAs additionally removed from the dataset, giving 19,211 genes 

for differential expression analysis. Voom precision weights (Law, Chen et al. 2014) 

were calculated incorporating sample-level weights using the function 

voomWithQualityWeights, and pair-wise comparisons were performed between all 

three genotypes. P-values from moderated t-tests were adjusted using the Benjamini-
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Hochberg procedure. Genes with an FDR-adjusted p-value < 0.05 and estimates of log2 

fold-change (logFC) beyond the range ±1 were considered as differentially-expressed 

(DE) between sample groups. When defining DE genes common to both comparisons 

of mutant and wild type fish, genes were considered as commonly DE if both FDR-

adjusted p-values were < 0.05, and logFC was beyond the range ±1 in at least one of 

the two comparisons. 

 

GO enrichment analysis 

 

Each set of differentially expressed (DE) genes was tested for enrichment of Gene 

Ontology (GO) terms in comparison to the set of genes not considered as DE in any 

comparison. Only GO terms represented amongst each set of DE genes were tested, and 

terms with fewer than three steps back to the ontology root terms were also excluded 

from testing. Enrichment was assessed using Fisher’s Exact Test and p-values were 

adjusted using the False Discovery Rate of Benjamini-Hochberg (Benjamini and 

Hochberg 1995). 

 

In situ transcript hybridisation analysis of DoLA neuron number 

 

This was performed as previously described (Nornes, Newman et al. 2009) on embryos 

from a pair mating of two S4Ter heterozygous mutants. After counting of DoLA neurons 

in an embryo by direct observation, the embryo was subjected to DNA extraction as for 
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the tail biopsies (above) and then its psen2 genotype was determined by allele-specific 

PCRs.  

 

Results 

 

Generation of a putatively null mutation in zebrafish psen2 

 

As part of a program analysing the function of genes involved in familial Alzheimer’s 

disease, we wished to identify changes in the expression of genes in adult brains due to 

simple loss of PSEN2 activity. We previously identified the psen2 gene in zebrafish 

(Groth, Nornes et al. 2002) and the ENSEMBL database (http://asia.ensembl.org) 

reports one psen2 transcript (ENSDART00000006381.7) with 11 exons and the 

translation start codon residing in exon 2. Therefore, we used the CRISPR Cas9 system 

to generate a frameshift mutation just downstream of this transcript’s nominal 

translation start codon (to allow ribosomes to initiate translation but not translate Psen2 

protein). A frameshift mutation (a deletion of 8 nucleotides) starting in the 4th codon 

and resulting in the creation of a translation termination codon was isolated (Figure 1). 

The mutant allele is designated psen2S4Ter. 

 

Large zebrafish families facilitate reduction of genetic and environmental noise 

 

An advantage of genetic analysis in zebrafish is the ability to reduce genetic and 
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environmental variation in statistical analyses through breeding of large families of 

siblings that are then raised under near identical environmental conditions (i.e. in the 

same fish tank or recirculated water aquarium system). The initial heterozygous 

individual fish identified as carrying psen2S4Ter was outbred to a wild type fish of the 

same strain (Tübingen) and then two heterozygous individuals were mated to produce 

a large family of siblings with wild type (+/+), heterozygous (psen2S4Ter/+), or 

homozygous (psen2S4Ter/ psen2S4Ter) genotypes. (We have subsequently established a 

line of fish homozygous for the psen2S4Ter mutant allele, demonstrating that these fish 

are both viable and fertile.) 

 

Laboratory zebrafish become sexually mature at between 3 and 5 months of age. 

Therefore, to examine the transcriptome of young adult zebrafish brains we identified 

individuals of the desired genotype using PCRs specific for the mutant and wild type 

alleles on DNA from tail biopsies (“tail clips”) and then removed brains from fish of 

the desired genotypes at 6 months of age. Total RNA was then purified from these and 

subjected to either RNA-Seq analysis or digital quantitative PCR (dqPCR).  

 

 

No decreased stability of mutant allele transcripts under normoxia or hypoxia 

 

Premature termination codons in transcripts frequently cause nonsense-mediated decay 

when more than 50-55 nucleotides upstream of an exon-exon boundary (Brogna and 
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Wen 2009). Also, hypoxia appears to be an important element in AD (Zetterberg, 

Mortberg et al. 2011; Gao, Tian et al. 2013) and increases expression of PSEN gene 

transcripts in both human and zebrafish cells (Mohuczy, Qian et al. 2002; Ebrahimie, 

Moussavi Nik et al. 2016). Therefore, we sought to determine whether psen2S4Ter allele 

transcripts are less stable than wild type transcripts and to observe the expression of 

mutant allele transcripts under acute hypoxia. We used dqPCR with allele-specific 

primer pairs to quantify relative transcript numbers in cDNA synthesised from wild 

type, heterozygous and homozygous mutant fish brains under normoxia or acute 

hypoxia (see Materials and Methods). The results of this analysis are shown in Figure 

2. In heterozygous fish under normoxia, both wild type and mutant allele transcripts are 

expressed at similar levels in 6-month-old brains, with the wild type allele expressed at 

approximately half the level seen in wild type fish (i.e. that possess two wild type 

alleles). As expected, acute hypoxia increases the expression of the wild type transcript 

and this is also observed for the mutant transcript that shows no evidence of 

destablisation (Figure 2).  
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Figure 2. Allele-specific mRNA expression in the brains of 6-month-old fish of 
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different genotypes under normoxia or acute hypoxia. (as copies per 25 ng of brain 

cDNA in each digital qPCR) (A) The levels of wild type psen2 allele mRNA in the 

psen2S4Ter/+ fish (~700 copies) were significantly (p=0.0115) lower than in their wild 

type siblings (~1,300 copies) under normoxia. Under hypoxia, the levels of wild type 

psen2 allele mRNA in both the psen2S4Ter/+ fish (~1,000 copies) and their wild type 

siblings (~1,800 copies) were up-regulated, but only the higher levels in the wild type 

fish showed a statistically significant increase (p=0.0313) compared to the normoxic 

controls. (B) The levels of psen2S4Ter allele mRNA in the psen2S4Ter/+ fish (~700 copies) 

were significantly (p=0.0498) lower than in the psen2S4Ter/psen2S4Ter fish (~1,000 copies) 

under normoxia. Under hypoxia, the levels of psen2S4Ter allele mRNA in both the 

psen2S4Ter/+ fish (~1,000 copies) and the psen2S4Ter/psen2S4Ter fish (~1,900 copies) were 

upregulated. This up-regulation (Figure 2B) in the psen2S4Ter/psen2S4Ter fish was clearly 

significant (p=0.0049), while that in the psen2S4Ter/+ fish was apparent, but not 

statistically significant (p=0.0837). 

 

No increase in DoLA neuron number in embryos homozygous for S4Ter 

 

Currently, we do not have an antibody against zebrafish Psen2 protein that would allow 

us to demonstrate loss of Psen2 in homozygous mutants. Also concerning is that a 

frameshift allele of psen2 that we have isolated, N140fs, shows a surface pigmentation 

phenotype when homozygous suggestive of loss of -secretase activity (Jiang, 

unpublished results) whereas homozygous S4Ter mutants do not. Therefore, we sought 
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an alternative method to demonstrate loss of psen2 function due to the S4Ter mutation. 

 

Inhibition of psen2 mRNA translation has been shown to increase the number of a 

particular spinal cord interneuron – the Dorsal Longitudinal Ascending (DoLA) neuron 

in zebrafish embryos at 24 hpf (Nornes, Newman et al. 2009). Therefore, if S4Ter 

decreases psen2 function, it might be expected to increase DoLA number (although, as 

an endogenous mutation rather than blockage of gene expression using a morpholino, 

S4Ter might induce genetic compensation to suppress this phenotype (Rossi, 

Kontarakis et al. 2015)). To examine the effect of S4Ter on DoLA number, we collected 

embryos from a pair-mating of two psen2S4Ter/+ fish to generate a family of embryos 

comprised, theoretically, of 50% heterozygous mutants, 25% homozygous mutants and 

25% wild type genotypes. The embryos were allowed to develop to the 24 hpf stage 

before in situ transcript hybridisation against transcripts of the gene tbx16 that labels 

DoLA neurons (Tamme, Wells et al. 2002). After the number of DoLA neurons in each 

embryo had been recorded, each embryo was genotyped using PCRs specific for the 

mutant and wild type alleles. Two-tailed t-tests found no significant differences in 

DoLA number between any two genotypes which does not support that S4Ter reduces 

psen2 activity (Figure 3). Nevertheless, transcriptome analysis (below) shows distinct 

differences between the brain transcriptomes of S4Ter mutant and wild type siblings. 
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Figure 3. DoLA neuron number assessment of psen2 activity. 42 embryos at 24 hpf 

from a pair-mating of a psen2S4Ter/+ female and a psen2S4Ter/+ male were subjected to 

in situ hybridisation to detect DoLA neurons that were then counted. Subsequent 

genotyping of individual embryos revealed 21 heterozygous mutants, 16 homozygous 

mutants and 5 wild type embryos. Values of p were determined in two-tailed t-tests. 

 

RNA-seq data and analysis 

 

To analyse and compare the brain transcriptomes of 6-month-old wild type, 

heterozygous and homozygous mutant siblings, four female fish of each genotype were 
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examined. An exploratory principal component analysis (PCA) of gene expression 

across all samples was generated using gene-level, log2-transformed counts per million 

(Figure 4), indicating that the difference between wild type (+/+) samples and mutant 

samples was the dominant source of variability, with PC1 (23.7% of variance) clearly 

separating both mutant types from the wild type fish. The separation between 

homozygous (psen2S4Ter/psen2S4Ter) and heterozygous (psen2S4Ter/+) mutants was much 

less pronounced along PC2 (14.3% of variance), and after calculation of sample-

weights the center of mass for each mutant sample group was clearly located near each 

other, leaving within group variability as the dominant characteristic for PC2.  
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Figure 4. PCA analysis showing PC1 and PC2 for TMM normalised counts. Point 

sizes indicate sample weights as calculated by voomWithQualityWeights from the R 

package limma. Lower weights indicate samples which were downweighted during 

differential expression analysis. The largest source of variability within this dataset was 

clearly the difference between wild type samples and those containing one or two copies 

of the psen2S4Ter allele. 

 

Three pairwise comparisons were performed between the sample groups and a ranked 

list of genes was obtained for each comparison, with genes being considered as 

differentially expressed (DE) if receiving a false discovery rate (FDR)-adjusted p-value 

<0.05 and an estimated log2 fold change (logFC) beyond the range of ±1. This 

gave 665 and 527 significantly DE genes in the homozygous (psen2S4Ter/+) and 

heterozygous (psen2S4Ter/psen2S4Ter) comparisons against wild type (+/+) samples 

respectively (Figure 5). No DE genes were detected in the comparison between 

homozygous and heterozygous fish. However, this does not mean that there are no DE 

genes between these two mutant genotypes, rather, that none were able to be detected 

given the samples analysed here, as the variability observed between samples was 

generally greater than the extent of differential gene expression. Estimates of fold-

change (logFC) were compared across both mutant versus wild type comparisons, with 

a strong overall correlation of ρ = 0.818 and 439 common DE genes. 
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Figure 5. Numbers of genes differentially expressed in comparisons between 

mutant and wild type genotypes. The psen2 genotypes for each comparison are given 

in each label. No genes were detected as differentially expressed between the 

heterozygous and homozygous mutant genotypes. 

 

As seen in Figure 6, many of the genes considered as DE in only one comparison 

showed similar trends in the alternate comparison, with no genes detected as DE 

between the two mutant genotypes. Along with the observation that the majority of 

genes from each comparison were shared with the alternate comparison, this clearly 

suggests that the psen2S4Ter mutation acts in a dominant manner for the majority of 

genes impacted by the presence of the mutation.  
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Figure 6. A) Mean-Difference plots and, B) transposed volcano plots, for each of 

the three pair-wise comparisons. Volcano plots are transposed for easier comparison 

with MD plots. The psen2 genotypes for each comparison are indicated in the panel 

strips. Genes considered as differentially expressed are shown in red, corresponding to 

an FDR of 0.05 and estimated logFC beyond the range ±1 in at least one comparison. 

Red dashed lines indicate a logFC of ±1. Vertical blue lines indicate a raw p-value of 

0.001 with the corresponding FDR for each comparison given at this value. 
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Based on the FDR-adjusted p-value, the top 20 DE genes of each comparison are listed 

in Tables 1-3, with the full set of results provided in Supplementary File 

RNAseq_results.xlsx. Some genes appearing among the top 20 DE genes in both 

mutant comparisons against wild type (Tables 1 and 2) have functions possibly 

important in AD pathological processes. These include: sox11b (a transcription factor 

playing a role in adult neurogenesis (Haslinger, Schwarz et al. 2009)), nr4a1 (nuclear 

receptor subfamily 4 group A member 1) that has key roles in the cell cycle, 

inflammation and apoptosis (Pei, Castrillo et al. 2006)), pcbp3 (Poly(rC)-binding 

protein 3 that has iron chaperone activity (Leidgens, Bullough et al. 2013)), nocta 

(nocturnin) encoding a protein involved in lipid metabolism, adipogenesis, glucose 

homeostasis, inflammation and osteogenesis (Stubblefield, Terrien et al. 2012)), and 

kdm4aa (lysine (K)-specific demethylase 4A, genome duplicate a), the human homolog 

of which has been found to regulate the PDK-dependent metabolic switch between 

mitochondrial oxidative phosphorylation and glycolysis (Wang, Hung et al. 2016). 

 

Table 1. Top 20 differentially expressed genes in the comparison between 

heterozygous mutant (psen2S4Ter/+) and wild-type (+/+) fish. Average Expression is 

given using log2CPM as the units. 

Gene Name logFC Average 

Expression 

P-Value FDR 

ENSDARG00000095743 sox11b 1.49 5.14 1.18e-08 2.26e-

04 

ENSDARG00000054378 pcbp3 -1.21 7.59 7.80e-08 7.50e-

04 

ENSDARG00000075666 tsc22d3 1.11 6.67 2.79e-07 7.86e-

04 
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ENSDARG00000043858 cdk19 -1.06 5.01 4.35e-07 7.86e-

04 

ENSDARG00000099719 cdkn1d 1.27 5.49 5.68e-07 7.86e-

04 

ENSDARG00000004187 DNAJB5 1.14 6.89 6.10e-07 7.86e-

04 

ENSDARG00000092115 eif4a1a 1.12 6.98 6.17e-07 7.86e-

04 

ENSDARG00000000796 nr4a1 1.82 3.47 3.33e-07 7.86e-

04 

ENSDARG00000068708 ifrd1 1.00 6.89 7.50e-07 7.86e-

04 

ENSDARG00000076239 si:ch211-74f19.2 1.50 5.00 7.36e-07 7.86e-

04 

ENSDARG00000077810 otud4 -1.15 4.62 7.94e-07 7.86e-

04 

ENSDARG00000100003 glulb 1.34 7.63 9.10e-07 7.86e-

04 

ENSDARG00000018782 kdm4aa -1.12 7.18 1.03e-06 7.87e-

04 

ENSDARG00000044751 ddt 1.71 4.71 9.11e-07 7.86e-

04 

ENSDARG00000029500 rpl34 1.03 6.65 1.42e-06 7.87e-

04 

ENSDARG00000099453 elof1 1.05 5.53 1.53e-06 7.87e-

04 

ENSDARG00000055760 srm 1.32 4.10 1.45e-06 7.87e-

04 

ENSDARG00000077726 nocta 2.18 3.87 1.23e-06 7.87e-

04 

ENSDARG00000054063 arpc4 1.15 3.95 1.68e-06 7.87e-

04 

ENSDARG00000016200 trib3 1.26 3.35 1.35e-06 7.87e-

04 

All genes are protein-coding. Genes are ranked by p-value. FDR, FDR-corrected p-

value 

 

Table 2. Top 20 differentially expressed genes in the comparison between 

homozygous mutant (psen2S4Ter/psen2S4Ter) and wild-type (+/+) fish. Average 
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Expression is given using log2CPM as the units. 

Gene Name logFC Average 

Expression 

P-Value FDR 

ENSDARG00000054378 pcbp3 -1.25 7.59 4.82e-08 4.63e-

04 

ENSDARG00000075397 cipca -1.19 5.15 3.95e-08 4.63e-

04 

ENSDARG00000033160 nr1d1 -1.19 7.63 4.45e-07 1.42e-

03 

ENSDARG00000095743 sox11b 1.11 5.14 4.17e-07 1.42e-

03 

ENSDARG00000018782 kdm4aa -1.11 7.18 1.04e-06 1.43e-

03 

ENSDARG00000056885 per1a -1.02 7.34 1.43e-06 1.43e-

03 

ENSDARG00000036587 cbr1 2.03 4.98 1.22e-06 1.43e-

03 

ENSDARG00000074337 cbfa2t2 -1.38 5.64 2.06e-06 1.43e-

03 

ENSDARG00000088882 si:ch211-

149b19.2 

-1.32 4.30 2.28e-06 1.43e-

03 

ENSDARG00000000796 nr4a1 1.63 3.47 1.24e-06 1.43e-

03 

ENSDARG00000019396 rergla 1.22 4.31 2.34e-06 1.43e-

03 

ENSDARG00000036107 txnipa 1.04 5.36 3.67e-06 1.60e-

03 

ENSDARG00000040944 ntd5 1.23 2.75 1.49e-06 1.43e-

03 

ENSDARG00000077726 nocta 2.03 3.87 2.73e-06 1.43e-

03 

ENSDARG00000098968 RSBN1 -1.11 5.98 5.46e-06 1.83e-

03 

ENSDARG00000057000 camkvl -1.12 6.29 6.05e-06 1.83e-

03 

ENSDARG00000099002 creb5a -1.43 3.80 8.27e-06 2.10e-

03 

ENSDARG00000076239 si:ch211-74f19.2 1.20 5.00 9.10e-06 2.16e-

03 

ENSDARG00000102042 CABZ01004876.1 -1.46 4.91 9.44e-06 2.16e-

03 

ENSDARG00000061030 vezf1b -1.11 5.12 9.94e-06 2.16e-

03 
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All genes are protein-coding. Genes are ranked by p-value. FDR, FDR-corrected p-

value 

 

Table 3. Top 20 ranked genes in the comparison between homozygous 

(psen2S4Ter/psen2S4Ter) and heterozygous (psen2S4Ter/+) mutant fish. Average 

Expression is given using log2CPM as the units. 

Gene Name logFC Average 

Expression 

P-Value FDR 

ENSDARG00000100690 si:ch211-

256e16.11 

1.29 2.95 1.71e-

05 

0.281 

ENSDARG00000041411 rad51 -1.58 3.08 6.45e-

05 

0.281 

ENSDARG00000005690 slc25a23a -0.70 5.89 1.06e-

04 

0.290 

ENSDARG00000036840 krt15 1.62 3.43 7.31e-

05 

0.281 

ENSDARG00000019601 col12a1b 1.65 2.71 1.05e-

04 

0.290 

ENSDARG00000052625 fkbp1b 0.60 4.49 2.03e-

04 

0.322 

ENSDARG00000099197 actc1b 2.63 4.53 2.15e-

04 

0.322 

ENSDARG00000100952 wu:fj16a03 -0.63 5.99 3.51e-

04 

0.422 

ENSDARG00000102744 mgst3a 0.95 3.17 4.08e-

04 

0.423 

ENSDARG00000099420 nme2b.2 2.15 4.68 5.00e-

04 

0.423 

ENSDARG00000088736 si:ch211-250n8.1 -1.01 2.69 4.13e-

04 

0.423 

ENSDARG00000070038 rbp2a 1.62 1.45 1.61e-

04 

0.322 

ENSDARG00000005057 dimt1l -0.77 2.37 4.25e-

04 

0.423 

ENSDARG00000052515 calcoco2 0.91 2.28 3.30e-

04 

0.422 

ENSDARG00000026726 anxa1a 1.13 3.47 5.41e-

04 

0.423 
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ENSDARG00000025325 ccsapa -0.36 6.29 5.63e-

04 

0.423 

ENSDARG00000090980 apof -0.71 5.57 6.34e-

04 

0.423 

ENSDARG00000055754 smc1a 0.37 8.17 6.61e-

04 

0.423 

ENSDARG00000001431 actn3b 2.19 2.16 3.20e-

04 

0.422 

ENSDARG00000041402 zc3h14 -0.36 5.37 7.61e-

04 

0.429 

No genes were considered as differentially expressed. All genes are protein-coding. 

Genes are ranked by p-value. FDR, FDR-corrected p-value. 

 

Heatmaps of genes with strongest differential expression were constructed showing the 

top 25 most DE genes unique to each of the mutant comparisons against wild type 

(Figures 7A and 7B), and the 50 most DE genes shared between the two comparisons 

(Figure 7C). This showed large numbers of commonly up-regulated genes in both 

comparisons with many having functions possibly important in AD pathological 

processes. For example, the human orthologue of fkbp5 (fk506 binding protein 5), 

encodes a protein acting as a co-chaperone of the glucocorticoid receptor (Binder 2009) 

and a negative regulator of glucocorticoid signaling (Stechschulte and Sanchez 2011; 

Sinclair, Fillman et al. 2013). fkbp5 transcription is also a directly regulated by 

glucocorticoid receptor (Guidotti, Calabrese et al. 2012; Jubb, Boyle et al. 2017) so 

increased fkbp5 transcript levels likely indicate increased glucocorticoid receptor 

activation of transcription and that mutant brains are under some form of stress. caspb 

(caspase b) was also seen to be upregulated and, in humans, this encodes a cysteine-

aspartic protease that plays an essential role in programmed cell death and the innate 
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immune system (McIlwain, Berger et al. 2013). Upregulated mt2 (metallothionein 2) 

provides protection against metal toxicity and oxidative stress (Hidalgo, Penkowa et al. 

2006). 

 

 

Figure 7. Overall heatmaps. Heatmaps showing A) the 25 top-ranked differentially 
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expressed genes only in homozygous mutants compared to wild type; B) the 25 top-

ranked differentially expressed genes only in heterozygous mutants compared to wild 

type; and, C) the 50 top-ranked genes common to both comparisons between mutant 

and wild type fish. Genes are ranked by fold-change. 

 

The heatmaps include numerous non-identified genes, with the most strongly 

upregulated of the common genes being si:ch211-281l24.3. The protein encoded by 

gene si:ch211-281l24.3 is predicted to interact with ubiquitin-conjugating enzymes and 

sirtuin proteins (http://bit.ly/2FuyvfH). Thus, si:ch211-281l24.3 may be involved in the 

ubiquitin-proteasome system and play a role in inflammation and apoptosis. 

 

According to the heatmap, a number of genes show down-regulation in the psen2S4Ter/+ 

and psen2S4Ter/psen2S4Ter mutant fish brains compared to their +/+ siblings, such as 

gbe1a, olfm2b and eomesb (Figure 7C). Among these down-regulated genes, there are 

also two “non-identified” genes, si:ch211-286k11.4 and si:dkey-22n8.3. The gene 

si:ch211-286k11.4 has subsequently been identified as cdhr5b (cadherin-related family 

member 5b), the human homolog of which, once named MUCDHL (MUCIN AND 

CADHERIN-LIKE) has been found to consist of nonpolymorphic tandem repeats 

similar to mucin proteins and a consensus calcium-binding motif found in all cadherins 

(Paris and Williams 2000). The gene si:dkey-22n8.3 encodes an uncharacterised protein, 

which, according to the prediction of interactors from the STRING database 

(https://string-db.org/network/7955.ENSDARP00000108110), encodes the 
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mitochondrial protein ATP synthase, H+ transporting, mitochondrial Fo complex, 

subunit F6, consistent with the remarkable effects of putative loss of psen2 activity on 

mitochondrial function (see GO analysis below). 

 

It is also interesting to observe members of the vitellogenin gene family (vtg2 and vtg7) 

strongly down-regulated in comparisons of both mutant genotypes against their +/+ 

siblings (Figure 7C). While these genes are named for their contribution to the protein 

composition of egg yolk, here their transcripts are expressed in brain. Vitellogenin 

proteins are thought to contribute, possibly, to antioxidant capacity (Nakamura, Yasuda 

et al. 1999; Seehuus, Norberg et al. 2006) and the innate immune system (Harman 1956; 

Gatschenberger, Gimple et al. 2012) and are often responsive to estrogens (Amdam, 

Simoes et al. 2004) (which may be important in this case since all the brains analysed 

were from female fish).  

 

Although no gene has been detected as DE between the two mutant genotypes, some 

genes are seen as DE only in homozygous mutants compared to wild type, or in 

heterozygous mutants compared to wild type (Figure 7A). Interestingly, the gene 

zgc:194626, now known as leap2 (liver-expressed antimicrobial peptide 2), was found 

upregulated in homozygous mutants compared to wild type, but downregulated in 

heterozygous mutants compared to wild type. The human homolog of gene leap2, 

LEAP2, encodes a peptide hormone that functions as an endogenous antagonist of the 

growth hormone secretagogue receptor (GHSR) that, in mammals, binds the hormone 
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ghrelin to regulate energy homeostasis (Ge, Yang et al. 2018). 

 

The gene slc16a6a (solute carrier family 16, member 6a) was found apparently greatly 

upregulated in heterozygous mutants compared to wild type (Figure 7B), while 

remaining almost unchanged in homozygous mutants compared to wild type. The 

human homolog of this gene, SLC16A6, encodes proton-linked monocarboxylate 

transporter, a transporter of the major ketone body -hydroxybutyrate, which is 

involved in fasting energy metabolism and catalyses the rapid transport across the 

plasma membrane of many monocarboxylates such as lactate and pyruvate (Hugo, 

Cruz-Garcia et al. 2012). 

 

Gene Ontology (GO) analysis 

 

A simple GO enrichment analysis was performed on the common DE genes (Table 4) 

and those considered uniquely DE in one of the two comparisons against wild type 

(Tables 5 and 6). The most highly ranked GO terms from common DE genes were all 

associated with mitochondria, i.e. mitochondrial inner membrane, mitochondrial 

envelope, mitochondrial membrane, organelle inner membrane, mitochondrial protein 

complex etc.. Interestingly, the GO terms most significantly enriched from genes 

considered as uniquely DE in the comparisons between homozygous mutant and wild 

type brains indicated functions in immune responses. This indicates one area where the 

effects of homozygosity for S4Ter may be quite distinct from those in heterozygous 
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mutants. 

 

Table 4. GO terms considered as significantly enriched within the set of 439 DE 

genes common to both comparisons between mutant and wild-type fish, to an FDR 

of 5%.  

GOID Term Ontology Total DE 

Genes 

P-

value 

FDR 

GO:0005743 mitochondrial inner membrane CC 224 15 6.34e-

05 

0.014 

GO:0005740 mitochondrial envelope CC 337 19 7.34e-

05 

0.014 

GO:0031966 mitochondrial membrane CC 318 18 1.08e-

04 

0.014 

GO:0019866 organelle inner membrane CC 238 15 1.25e-

04 

0.014 

GO:0098798 mitochondrial protein complex CC 99 9 2.00e-

04 

0.019 

GO:0015980 energy derivation by oxidation of 

organic compounds 

BP 106 9 3.35e-

04 

0.026 

GO:0098800 inner mitochondrial membrane 

protein complex 

CC 88 8 4.50e-

04 

0.030 

GO:0031967 organelle envelope CC 441 20 8.31e-

04 

0.039 

GO:0044429 mitochondrial part CC 441 20 8.31e-

04 

0.039 

GO:0005746 mitochondrial respiratory chain CC 56 6 9.84e-

04 

0.039 

GO:0015849 organic acid transport BP 77 7 1.02e-

03 

0.039 

GO:0046942 carboxylic acid transport BP 77 7 1.02e-

03 

0.039 

GO:0000786 nucleosome CC 59 6 1.30e-

03 

0.046 

The total number of genes matching each term is given for both the set of expressed 

genes and those considered as differentially expressed (DE). BP, biological process. CC, 

cellular component. FDR, FDR-corrected p-value. 
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Table 5. GO terms considered as significantly enriched within the set of 226 DE 

genes unique to the comparison between heterozygous mutant and wild-type fish, 

to an FDR of 5%.  

GOID Term Ontology Total DE 

Genes 

P-

value 

FDR 

GO:0005578 proteinaceous extracellular 

matrix 

CC 127 8 2.60e-

05 

0.005 

GO:0030017 sarcomere CC 53 5 1.36e-

04 

0.010 

GO:0030016 myofibril CC 56 5 1.77e-

04 

0.010 

GO:0043292 contractile fiber CC 57 5 1.92e-

04 

0.010 

 

The total number of genes matching each term is given for both the set of expressed 

genes and those considered as differentially expressed (DE). CC, cellular component. 

FDR, FDR-corrected p-value. 

 

Table 6. GO terms considered as significantly enriched within the set of 88 DE 

genes unique to the comparison between homozygous mutant and wild-type fish, 

to an FDR of 5%.  

GOID Term Ontology Total DE 

Genes 

P-

value 

FDR 

GO:0009617 response to bacterium BP 73 4 2.48e-

04 

0.020 

GO:0006869 lipid transport BP 91 4 5.76e-

04 

0.020 

GO:0010876 lipid localization BP 95 4 6.77e-

04 

0.020 

GO:0043207 response to external biotic stimulus BP 121 4 1.67e-

03 

0.029 
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GO:0007186 G-protein coupled receptor 

signaling pathway 

BP 414 7 1.71e-

03 

0.029 

GO:0006952 defense response BP 212 5 1.95e-

03 

0.029 

The total number of genes matching each term is given for both the set of expressed 

genes and those considered as differentially expressed (DE). BP, biological process. 

FDR, FDR-corrected p-value. 

 

Discussion 

 

Well over 200 mutations causing familial Alzheimer’s disease have been identified in 

the human PSEN1 and PSEN2 genes. However, none of these mutations are obviously 

null (e.g. are frameshift or nonsense mutations) (Jayne, Newman et al. 2016). 

Knowledge of the molecular effects of null mutations in these genes is, therefore, useful 

since, by exclusion, it can help us determine the functions critically affected by fAD 

mutations. Alzheimer’s disease takes decades to develop, but we are unable to 

investigate in detail the molecular changes occurring in the brains of young human 

carriers of fAD mutations since biopsies cannot be taken. Consequently, analysis in 

animal models is necessary.  

 

In this study, we generated an 8-bp deletion (psen2S4Ter) in the zebrafish psen2 gene. 

This results in formation of a premature termination codon (PTC) at the fourth codon 

position downstream of the start codon. This PTC should prevent translation of the 

protein product of psen2. However, three observations suggest caution in this 
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interpretation. The first is that homozygosity for S4Ter does not cause an obvious 

surface pigmentation phenotype as might be expected for partial loss of -secretase 

activity (Nornes, Newman et al. 2009), although we, and others, have not noted 

pigmentation defects in apparent psen1 loss-of-function homozygous mutants 

((Sundvik, Chen et al. 2013) and Newman et al. unpublished data). However, psen2 

shows particularly high levels of transcription in melanocytes (Groth, Nornes et al. 

2002) and another, yet-to-be-published frameshift mutation in zebrafish psen2 does 

show a pigmentation phenotype (Jiang et al. unpublished results). The second reason to 

suspect that S4Ter does not cause a complete loss of psen2 function is that there is no 

apparent nonsense-mediated mRNA decay (NMD) of mutant S4Ter transcripts despite 

the presence of the PTC (2). One possible explanation for this might be read-through 

of the PTC and re-initiation of translation at a second start codon farther downstream. 

Indeed, it has been reported in mammalian genes that PTCs close to the start codon may 

cause reduced NMD if there is a downstream AUG codon that can re-initiate translation 

(Zhang and Maquat 1997; Silva, Ribeiro et al. 2008), and some PTCs close to the start 

codon may even escape NMD (Romao, Inacio et al. 2000). In fact, a second potential 

translation start codon exists at codon 34 of the coding sequence. This codon and 

flanking nucleotides appear closer to the consensus Kozac sequence controlling 

translation initiation (Kozak 1984) than even the nominal start codon. Thirdly, unlike 

when psen2 translation is blocked by morpholino injection, analysis of DoLA neuron 

number at 24 hpf shows no significant difference between wild type embryos and S4Ter 

homozygotes, (although genetic compensation might be suppressing a loss-of-function 
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psen2 phenotype in this case). Since we do not currently possess an antibody that 

recognises zebrafish Psen2 protein, additional tests should be performed to investigate 

whether or not the S4Ter mutation represents a loss of function. 

 

Dominance due to haploinsufficiency or neomorphism? 

 

The molecular phenotype of the S4Ter mutation (as reflected in our transcriptome 

analyses) is remarkable in that heterozygous and homozygous mutant fish show broadly 

similar effects on gene expression. If S4Ter is a loss-of-function mutation then this 

reflects very widespread haploinsufficiency of psen2 function. An alternative is that the 

mutation is neomorphic and causes a gain of function. Conceivably, S4Ter may be 

acting in a dominant negative manner although, in that case, only on psen2 activity 

since, if the activity of both psen1 and psen2 were suppressed, this would most likely 

be lethal during embryo development. 

 

Remarkably, the GO analysis of the transcriptomic data (Table 4) revealed that the 

common changes in psen2 activity caused by S4Ter mainly affect mitochondrion 

formation and function, including alterations proposed to contribute to the neuronal 

death associated with AD pathology (Hedskog, Pinho et al. 2013). Of particular 

importance to mitochondrial function may be decreased expression of the gene pcbp3, 

the human orthologue of which encodes Poly(rC)-binding protein 3 that has an iron 

chaperone activity toward ferritin (Leidgens, Bullough et al. 2013). pcbp3 may play an 
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important role in the distribution of iron in the cytosolic labile iron pool to various 

destinations including mitochondria (Philpott and Ryu 2014). Iron is essential to normal 

mitochondrial function due to the many iron-sulfur cluster binding proteins 

mitochondria contain, including many involved in oxidative phosphorylation. 

 

Two reports have shown that loss of PSEN2 activity in mammalian cells causes 

increased juxtaposition between mitochondria and the endoplasmic reticulum (the 

mitochondrial associated membranes, MAM) (Zampese, Fasolato et al. 2011; Filadi, 

Greotti et al. 2016) and this can inhibit respiration by mitochondria (Contino, Porporato 

et al. 2017). It may be that the widespread effects we have observed on mitochondria 

due to S4Ter are partially a reflection of decreased delivery to them of Fe2+ from the 

labile iron pool. Alternatively, many other genes involved in mitochondrial function are 

affected by the S4Ter mutation of psen2 and may also play a significant role in 

regulating the transcriptomic changes we have observed. 

 

In conclusion, we found that the S4Ter mutation of zebrafish psen2 acts in a dominant 

manner to affect significantly mitochondrial function but does not induce NMD of 

mutant transcripts. Our results support previous findings on the importance of 

mammalian PSEN2 in control of mitochondrial function via MAM formation. Future 

work should involve detailed analysis of the ability of the psen2S4Ter transcript to be 

translated into protein and the function of any protein produced. This work contributes 

to our analysis of the effects of fAD mutations on brain biology. 
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2.3 Supplementary Information 

 

This section is included in the thesis as information supplementary to Section 2.2. It 

contains additional information not included in the main text of the manuscript. 

 

File S1. Mutation screening and breeding of CRISPR/Cas9-injected fish. 

 

The T7 endonuclease I assay was applied to G0 embryos injected with the CRISPR 

Cas9 mutagenesis system components to test whether double-stranded breaks (DSBs) 

were generated at the target site. DNA amplified from uninjected wild type Tübingen 

embryos showed cleavage products, one of ~180 bp and the other ~280 bp (Figure S1A), 

which were not the sizes expected for mutations at the target site. However, the 

CRISPR/Cas9-injected G0 embryos showed two different cleavage bands, one of ~150 

bp and the other ~300 bp (Figure S1A), which were close to the sizes expected. Thus, 

we assumed that this CRISPR/Cas9 system could generate DSBs at the appropriate 

locus in the genomes of the injected G0 embryos. The cleavage products detected in the 

wild type Tübingen embryos may have been caused by single nucleotide 

polymorphisms (SNPs) (Babon, McKenzie et al. 2003). 
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Figure S1. T7 endonuclease assays and PCRs for fish from different generations. 

(A) 10 of the CRISPR/Cas9-injected G0 embryos were pooled together and then tested 

with the T7 endonuclease I assay. The positive cleavage pattern was detected. 

(B) 39 of the CRISPR/Cas9-injected G0 fish were tested, and 13 out of these showed 

positive cleavage patterns, indicating that they carried mutations. 

(C) 10 F1 embryos were pooled before testing with the T7 endonuclease I assay. The 

positive cleavage patterns observed indicated that mutations have been passed through 

the germline. 

(D) 5 out of 10 tested F1 fish showed positive cleavage in the T7 endonuclease I assay. 

(E) psen2S4Ter allele-specific detection PCR. 

(F) Wild type allele-specific detection PCR. 

 

When injected G0 embryos had become adults, DNA from tail fin biopsies was tested 

using the T7 endonuclease I assay to detect for mutations generated through non-

homologous end joining (NHEJ) pathway repair of DSBs at the target site (Hwang, Fu 
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et al. 2013). Some of the G0 fish showed similar cleavage patterns to that of the pooled 

G0 embryos (S1B Fig), indicating the presence of cells with mutations at the target site. 

39 injected G0 fish were tested, with 13 of these showing the cleavage pattern indicating 

the presence of mutations. However, since different cells in each mutated G0 fish may 

carry different mutations, each of the positive GO fish was outbred to a wild type 

Tübingen fish, so that any mutant F1 progeny would be completely heterozygous for a 

single mutation at the intended site. 10 F1 embryos were pooled and then tested using 

the T7 endonuclease I assay, and the expected cleavage pattern observed (S1C Fig) 

indicated that these mutations had passed through the germline. When the F1 progeny 

had become adult, DNA from biopsies was tested again using the T7 endonuclease I 

assay to detect mutation-carrying heterozygous fish. 5 out of 10 tested F1 fish showed 

the expected cleavage pattern (S1D Fig). After sequencing genomic DNA from these 5 

heterozygous mutants, 3 different mutations were identified. One of these was an 8-bp 

deletion resulting in a premature termination codon close downstream of the start codon 

of psen2 (Figure 1). It is designated psen2S4Ter. 
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File S2. Additional discussion on the members of the vitellogenin gene family. 

 

Since vitellogenin is a major target of oxidative carbonylation (Seehuus, Norberg et al. 

2006), the binding of it to live cells is suggested to improve cell oxidative stress 

tolerance (Havukainen, Munch et al. 2013). Based on the free radical theory of aging, 

the balance between reactive oxygen species (ROS) and antioxidants is an important 

factor in chronic inflammation and aging-associated diseases (Harman 1956). It was 

also found that the levels of vitellogenin in honey bee are negatively correlated with the 

aging rate in workers (Seehuus, Norberg et al. 2006; Havukainen, Munch et al. 2013; 

Munch, Ihle et al. 2015). This antioxidant activity of vitellogenin is also found in the 

nematode (Caenorhabditis elegans) (Nakamura, Yasuda et al. 1999). Studies in some 

fish species found that vitellogenin acts as an antimicrobial agent involved in immune 

defense (Wang, Wang et al. 2011; Zhang, Wang et al. 2011). Furthermore, phosvitin, a 

vitellogenin-derived protein, is also able to recognise pathogen-associated molecular 

patterns (PAMPs) and to inhibit the growth of Gram-negative bacteria (Escherichia coli 

strain was used as test bacterium) by chelating ions through its numerous 

phosphorylated serine residues (Sattar Khan, Nakamura et al. 2000). In our study, 

members of the vitellogenin gene family were found strongly down-regulated in both 

homozygous and heterozygous mutant genotypes compared to their wild type siblings 

(Figure 7). Since the total RNA purified for RNA-seq was extracted from the brains of 

zebrafish, the down-regulating of vitellogenin genes observed in mutants seems more 

likely related to reduced antioxidant activity or antimicrobial activity rather than 
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reproduction. 
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File S3. Supporting tables. 

 

Table S1. Expression levels of the wild type psen2 allele in 25ng total adult brain 

cDNA.  

+/+ fish under 

normoxia 

psen2S4Ter/+ fish under 

normoxia 

psen2S4Ter/psen2S4Ter fish under 

normoxia 

1241.5 696.48 2.538 

1116.2 658.88 2.765 

1539.4 793.29 3.445 

 

+/+ fish under 

hypoxia psen2S4Ter/+ fish under hypoxia 

psen2S4Ter/psen2S4Ter fish under 

hypoxia 

1739.8 893.43 2.862 

1667.6 837.51 3.562 

1925.9 1280.4 0.966 

 

Table S2. Expression levels of the psen2S4Ter allele in 25ng total adult brain cDNA. 

+/+ fish under 

normoxia 

psen2S4Ter/+ fish under 

normoxia 

psen2S4Ter/psen2S4Ter fish under 

normoxia 

0.11 818.48 832.91 

0.364 561.92 1144.2 

0.108 655.45 1204.1 

 

+/+ fish under 

hypoxia 

psen2S4Ter/+ fish under 

hypoxia 

psen2S4Ter/psen2S4Ter fish under 

hypoxia 

5.432 940.09 1721.5 

4.297 855.15 2048.8 

4.732 1289.4 1931.8 

 

Table S3. Numbers of DoLA neurons in 24 hpf embryos (revealed by in situ 

transcript hybridization against tbx16). 

+/+ psen2S4Ter/+ psen2S4Ter/psen2S4Ter 

20 16 19 

23 9 20 
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22 17 18 

17 23 27 

17 21 22 

 18 23 

 22 20 

 26 17 

 24 27 

 23 23 

 26 17 

 23 18 

 18 22 

 14 20 

 17 20 

 16 24 

 23  

 17  

 17  

 17  

 16  

 

 

File S4 Gene-Level report.html 

 

File S5 RNAseq_results.xlsx 
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Chapter 3 Generation of familial Alzheimer’s disease-like mutations in zebrafish 

psen2 using the CRISPR/Cas9 system 

 

3.1 Introduction, Significance and Commentary 

 

In the work described in this chapter, we attempted to generate two fAD-related 

mutations in the zebrafish psen2 gene using the CRISPR/Cas9 system. However, due 

(most likely) to the low efficency of homology-directed repair, we failed to identify any 

of these mutations. Instead, an in-frame mutation, psen2T141_L142delinsMISLISV, and a coding 

sequence-truncating mutation, psen2N140fs, were generated in zebrafish. Nonsense-

mediated decay was found occur for the psen2N140fs mutant transcript, while the 

psen2T141_L142delinsMISLISV mutant transcript is stable. Gross loss of melanotic 

pigmentation was observed in the skin of N140fs homozygous adults, indicating a loss 

of -secretase activity, while T141_L142delinsMISLISV homozygous adults retain faint 

melanotic pigmentation, most likely indicating that weak -secretase activity still 

retains. Therefore, N140fs is most likely a true null mutation while, 

T141_L142delinsMISLISV appears to be a fAD-like mutation in zebrafish. 

 

The significances of this work includes: 

1. N140fs most likely represents a true null (or severely hypomorphic) allele of 

zebrafish psen2, in contrast to another frameshift mutation, S4Ter, described in Chapter 

2, that shows grossly normal adult pigmentation. 
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2. This is the first time that a fAD-like mutation has been identified in zebrafish psen2, 

T141_L142delinsMISLISV. This can be exploited in future analyses, such as in 

comparison of the transcriptomic effects of this mutation relative to the wild type allele 

and to those of a psen2 null mutation (either N140fs or S4Ter). 

 

3.2 The zebrafish orthologue of familial Alzheimer’s disease gene PRESENILIN 2 is 

required for normal adult melanotic skin pigmentation. 

 

This chapter is included in the thesis in the form of a research paper manuscript 

authored by H. Jiang, M. Newman, and M. Lardelli, and which is ready for submission 

for peer review by a scientific journal. 
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Abstract 

 

Alzheimer’s disease is the most common form of age-related dementia. At least 15 

mutations in the human gene PRESENILIN 2 (PSEN2) have been found to cause 

familial Alzheimer’s disease (fAD). Zebrafish possess an orthologous gene, psen2, and 

present opportunities for investigation of PRESENILIN function related to Alzheimer’s 

disease. The most prevalent and best characterized fAD mutation in PSEN2 is N141I. 

The equivalent codon in zebrafish psen2 is N140. We used genome editing technology 

in zebrafish to target generation of mutations to the N140 codon. We isolated two 

mutations: N140fs, causing truncation of the coding sequence, and 

T141_L142delinsMISLISV, that deletes the two codons immediately downstream of 

N140 and replaces them with seven codons coding for amino acid residues MISLISV. 

Thus, like almost every fAD mutation in the PRESENILIN genes, this latter mutation 

does not truncate the gene’s open reading frame. Both mutations are homozygous viable 

although N140fs transcripts are subject to nonsense-mediated decay and lack any 

possibility of coding for an active -secretase enzyme. N140fs homozygous larvae 

initially show grossly normal melanotic skin pigmentation but subsequently lose this 

by age while retaining pigmentation in the retinal pigmented epithelium. 

T141_L142delinsMISLISV homozygotes retain faint skin melanotic pigmentation as 

adults, most likely indicating that the protein encoded by this allele retains weak -

secretase activity. Null mutations in the human PRESENILIN genes do not cause 

Alzheimer’s disease so these two mutations may be useful for future investigation of 
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the differential effects of null and fAD-like PRESENILIN mutations on brain aging. 

 

Introduction 

 

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder, and is the most 

common form of age-related dementia, accounting for 50-75% of dementia cases 

worldwide (alz.co.uk 2014). Most AD occurs after the age of 65 years (late onset) and 

is sporadic. Early onset AD is far less common and approximately 13% of early onset 

cases are familial AD (fAD) (Campion, Dumanchin et al.). Autosomal dominant 

inheritance of mutations in the AMYLOID BETA A4 PRECURSOR PROTEIN gene 

(APP) (Guerreiro and Hardy 2014), PRESENILIN 1 and 2 genes (PSEN1, PSEN2) 

(Jayadev, Leverenz et al. 2010), and SORTILIN-RELATED RECEPTOR gene (SORL1) 

(Scherzer, Offe et al. 2004; Pottier, Hannequin et al. 2012) are considered to be the 

major cause of fAD. Of the two PRESENILIN genes, PSEN2 is a less common locus 

for fAD mutations than PSEN1. Only around 15 fAD mutations have been reported in 

PSEN2 to date, compared to over two hundred mutations reported in PSEN1 (Jayadev, 

Leverenz et al. 2010). All but one of the many different fAD mutations in the PSEN 

genes do not cause truncation of coding sequences, a phenomenon we have previously 

described as the “fAD mutation reading frame preservation rule” (Jayne, Newman et al. 

2016). 

 

PSEN proteins become endoproteolytically cleaved during activation of -secretase 
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activity to form N- and C-terminal fragments (NTF and CTF resprectively) (Jumpertz, 

Rennhack et al. 2012). The NTFs and CTFs of PSEN2 predominantly localise to the 

endoplasmic reticulum (ER) (Area-Gomez, de Groof et al. 2009), and the first two 

transmembrane domains (TMDs) of PSEN2 are thought to be necessary for ER 

localisation (Tomita, Tokuhiro et al. 1998). The first fAD mutation reported in PSEN2 

was N141I, caused by an A-to-T transition at the second position of codon 141 (Levy-

Lahad, Wasco et al. 1995). The N141I mutation alters the N-terminal flank of the second 

TMD (TMD2) of PSEN2 by substituting a hydrophobic isoleucine residue for the 

hydrophilic asparagine residue immediately downstream of the first residue of TMD2. 

This position is thought to be important for accurate positioning of the transmembrane 

α-helix structure (Hardy 1997). A PolyPhen-2 (Adzhubei, Schmidt et al.) analysis of 

the N141I mutation indicates probable damage to protein structure with a score of 0.934 

(sensitivity: 0.80; specificity: 0.94). The mean age of Alzheimer’s disease onset for 

carriers of N141I is 53.7 years old, but with a very wide range of 39 to 75 years (Jayadev, 

Leverenz et al. 2010). Thus, N141I has an age of onset overlapping those of PSEN1 

fAD families (mean age of onset of 45.5 years) and sporadic AD (mean age of onset of 

71.5) (Jayadev, Leverenz et al. 2010). The N141I mutation is thought to increase the 

ratio of Aβ42 to Aβ40 via abnormal γ-secretase activity (Tomita, Maruyama et al. 1997). 

A more recent transgenic mouse model of AD suggested that both Aβ42 and Aβ40 

production are enhanced by N141I, and this can signficantly accelerate Aβ-dependent 

dysfunction in spatial learning and memory (Toda, Noda et al. 2011). 
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Mammalian PRESENILINs have also been found necessary for tyrosinase trafficking 

and melanin formation by a -secretase-dependent mechanism (Wang, Tang et al. 2006). 

TYROSINASE is a key enzyme in melanin synthesis (Tief, Hahne et al. 1996). The 

two TYROSINASE-related proteins, TYROSINASE-related protein 1 (Tyrp1) and 

DOPACHROME TAUTOMERASE (DCT) (also known as TYROSINASE-related 

protein 2 (Tyrp2)) (del Marmol and Beermann 1996), are implicated in the activity of 

the intramembrane protease, -secretase (Vetrivel, Zhang et al. 2006; Wang, Tang et al. 

2006). A partial loss-of-function in melanotic pigment formation has been observed in 

a mouse model of the PSEN1 fAD mutation M146V (Wang, Tang et al. 2006).  

 

In mammals, the protein SILVER, MOUSE, HOMOLOG OF (SILV, also known as 

PREMELANOSOMAL PROTEIN, PMEL) (Watt, van Niel et al. 2013) is another type 

1 membrane protein that can be cleaved by proteases including -secretase (Kummer, 

Maruyama et al. 2009) to form a natural functional amyloid that facilitates melanin 

formation (Bissig, Rochin et al. 2016). SILV is expressed in pigment cells of the eye 

and skin, which synthesise melanin pigments within melanosomes (Raposo and Marks 

2007). After a juxtamembrane cleavage, the C-terminal fragment of SILV is then 

processed by the -secretase complex to release an intracellular domain fragment 

(Kummer, Maruyama et al. 2009) into endosomal precursors to form amyloid fibrils. 

These ultimately become melanosomes (Fowler, Koulov et al. 2005; Rochin, Hurbain 

et al. 2013). 
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Zebrafish are a versatile system in which to investigate, at the molecular level, the 

effects on the brain and other tissues of fAD mutations (Hin, Newman et al. 2018). The 

ability to generate large families of siblings and then raise these in a near identical 

environment (the same tank or the same recirculated-water system) can reduce genetic 

and environmental variability to allow more sensitive detection of mutation-dependent 

changes. The organisation of the genome and the genetic pathways controlling signal 

transduction and development of zebrafish and humans are highly conserved 

(Postlethwait, Woods et al. 2000). Despite ~420 million years of divergent evolution of 

the human and zebrafish lineages (Ravi and Venkatesh 2008), most human genes have 

clearly identifiable orthologues in zebrafish. Thus, the zebrafish genes psen1 (Leimer, 

Lun et al. 1999) and psen2 (Groth, Nornes et al. 2002) are orthologues of human PSEN1 

and PSEN2, respectively. The Presenilin protein sequences of zebrafish show 

considerable identity with those of humans. The zebrafish Psen1 protein shows 73.9% 

amino acid residue (aa) identity with human PSEN1 (Leimer, Lun et al. 1999), while 

zebrafish Psen2 shows 74% identity with human PSEN2 (Groth, Nornes et al. 2002). 

 

In this paper we describe an attempt to generate a zebrafish model of the N141I fAD 

mutation of human PSEN2 by introducing an equivalent mutation into the zebrafish 

psen2 gene. While homology-directed repair (HDR) after CRISPR Cas9 cleavage at the 

relevant site in zebrafish psen2 was not successful, we did find products of non-

homologous end joining (NHEJ) that will prove useful in future analyses. We identified 

both a frameshift mutation and a reading frame-preserving indel mutation close to the 
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N141-equivalent codon of zebrafish psen2. Surprisingly, we discovered that the -

secretase activity of Psen2 (unlike that of Psen1) appears essential for melanotic 

pigment formation in the skin of zebrafish adults but not in their retinal pigmented 

epithelium. 

 

Materials and Methods 

 

Animal ethics 

 

All experiments using zebrafish were conducted under the auspices of the Animal 

Ethics Committee of the University of Adelaide. Permits S-2014-108 and S-2017-073. 

 

CRISPR guide RNA (sgRNA) design and synthesis 

 

The target sequence of the sgRNA used to generate double-stranded breaks near the 

N140 codon in zebrafish psen2 is 5’-GAATTCGGTGCTCAACACTC TGG-3’. The 

template for sgRNA transcription was synthesised by PCR (Bassett and Liu 2014). The 

forward primer for this template synthesis PCR contains a T7 polymerase binding site 

(the underlined region), the target sequence (bold) and a region complementary to a 

common reverse primer (italicised): 5’-

GAAATTAATACGACTCACTATAGGGAATTCGGTGCTCAACACTCGTTTTAG

AGCTAGAAATAGC-3’. The sequence of the reverse primer is 5’- 
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AAAAGCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCCTTA

TTTTAACTTGCTATTTCTAGCTCTAAAAC-3’. This synthesis PCR used Phusion® 

High-Fidelity DNA Polymerase (NEB, Ipswich, Massachusetts, USA, M0530S) and 

cycle conditions of 98°C for 30 s and then 35 cycles of [98°C, 10 s; 60°C, 30 s; 72°C, 

15 s] then 72°C, 10 min. The template was then gel-purified using the Wizard® SV Gel 

and PCR Clean-Up System (Promega, Madison, Wisconsin, USA, A9281). The target 

sgRNA was synthesized from this template using the HiScribe™ T7 Quick High Yield 

RNA Synthesis Kit (NEB, Ipswich, Massachusetts, USA, E2050S). 

 

Design of single-stranded oligonucleotide templates for homology-directed repair 

(HDR) 

 

To attempt to introduce the N140I mutation into zebrafish psen2 (equivalent to human 

PSEN2 N141I), a single stranded oligonucleotide template (“N140I oligo”) containing 

the N>I mutation (A>T, bold italics and underlined) followed by two silent 

(synonymous codon) mutations (T>C and G>C, italicised and underlined) was designed: 

5’-

ACTCAGTGGGCCAGCGTCTGCTGAATTCGGTGCTCATCACCCTCGTCATGAT

CAGTGTGATTGTCTTCATGACC-3’. 

 

We also attempted (unsuccessfully) to introduce the V147I mutation into zebrafish 

psen2, (equivalent to V148I in human PSEN2) using a single-stranded oligonucleotide 
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template (“V147I oligo”), containing the V>I mutation (G>A and G>C, bold italics and 

underlined) followed by two silent (synonymous codon) mutations (T>A and C>G, 

italicised and underlined): 5’- 

CTGAATTCGGTGCTCAACACTCTGGTCATGATCAGTATCATAGTGTTCATGA

CCATCATCCTGGTGCTGCTCTAC-3’. The attempted mutation of the V147 site in 

psen2 is only describe and discussed in Supplemental Information. 

 

The single-stranded oligonucleotide templates were co-injected with their 

corresponding CRISPR/Cas9 systems, so that any induced double-stranded DNA 

breaks (DSBs) might be repaired through the HDR pathway (Bassett and Liu 2014) to 

insert desired mutations into the zebrafish genome. 

 

Injection of zebrafish embryos 

 

Tübingen (TU) strain wildtype embryos were collected from mass spawning. The target 

sgRNA (70 ng/μL final concentration) was mixed with “N140I oligo” (30 ng/μL for 

final concentration) and Cas9 nuclease (1μg/μL for final concentration) (Invitrogen, 

Carlsbad, California, USA, B25640), and then incubated at 37°C for 15 min to 

maximize formation of active CRISPR Cas9 complexes. 5-10 nL of the mixture was 

then injected into zebrafish embryos at the one-cell stage. The injected embryos were 

subsequently raised for mutation screening. 
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Mutation detection in CRISPR Cas9-injected G0 fish 

 

From each batch of injected embryos, 10 embryos were selected at random at ~24 hpf 

and pooled for genomic DNA extraction. The genomic DNA of these embryos was 

extracted using sodium hydroxide (Meeker, Hutchinson et al. 2007). The 10 embryos 

were placed in 100 μL of 50 mM NaOH and then heated to 95°C for 15 min. They were 

then cooled to 4°C followed by addition of 1/10th volume of 1 M Tris-HCl, pH 8.0 to 

neutralize the basic solution (Meeker, Hutchinson et al. 2007). 

 

Mutation-specific primers were designed to detect mutation-carrying fish by PCR. For 

the “N140I oligo”-injected embryos, a mutation-specific forward primer was designed: 

5’-TCGGTGCTCATCACCCTC-3’. A wild type-specific forward primer (5’-

TCGGTGCTCAACACTCTG-3’) and a common reverse primer (5’-

ACCAAGGACCACTGATTCAGC-3’) were also designed. The PCR conditions for 

both these reactions are: 95°C, 2 min and then 31 cycles of [95°C, 30 s; 58°C, 30 s; 

72°C 30 s], then 72°C, 5 min. The lengths of the expected PCR products of these 

reactions are all ~300 nucleotides. 

 

For the “V147I oligo”-injected embryos, a mutation-specific forward primer was 

designed: 5’-TCTGGTCATGATCAGTATCATAGTG-3’. A wild type-specific forward 

primer (5’-TCTGGTCATGATCAGTGTGATTGTC-3’) and a common reverse primer 

(5’-TCACCAAGGACCACTGATTCAGC-3’) were also designed. The PCR 
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conditions for all these three reactions are: 95°C, 2 min, and then 31 cycles of [95°C, 

30 s; 58°C, 30 s; 72°C, 30 s], then 72°C 5 min. The lengths of the PCR products of 

these reactions are ~280 nucleotides. 

 

The F1 progeny of the mosaic, mutation-carrying G0 fish were also screened with these 

mutation-specific PCR reactions. 

 

Mutation detection in F1 fish using the T7 endonuclease I assay 

 

Since the DSBs induced by the CRISPR/Cas9 system may also be repaired through the 

NHEJ pathway (Bibikova, Golic et al. 2002; Bassett and Liu 2014), random mutations 

may also be generated at the DSB sites. Thus, the F1 progeny of the mosaic, mutation-

carrying G0 fish may be heterozygous for such random mutations.  

 

To screen for these mutations, the genomic DNA of tail biopsies from F1 fish was 

extracted using sodium hydroxide as above, followed by analysis using the T7 

endonuclease I assay (since T7 endonuclease I is able to recognize and cleave at the 

sites of mismatches in DNA heteroduplexes (Babon, McKenzie et al. 2003)).  

 

A pair of amplification primers binding in the regions flanking the N140 target site was 

designed: 5’-AGCATCACCTTGATTCAAGG-3’ and 5’-

GGTTCCTGATGACACACTGA-3’. The PCR conditions for this amplification 
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reaction are 95°C, 2 min and then 31 cycles of [95°C, 30 s; 58°C, 30 s; 72°C, 30 s], 

then 72°C, 5 min and the amplified fragment is predicted to be 473 nucleotides in length. 

The PCR products were purified using the Wizard® SV Gel and PCR Clean-Up System 

(Promega, Wisconsin, USA, A9281) and then denatured and annealed (denaturation at 

95°C for 5 min and then annealing by slow cooling of the samples at -2°C/sec from 

95°C to 85°C and then -0.1°C/sec from 85°C to 25°C) before addition of the T7 

endonuclease I (NEB, Ipswich, Massachusetts, USA, M0302S). If reannealed 

fragments contained mismatches due to mutations, they would be cleaved by T7 

endonuclease I into two fragments; ~109 nucleotides (upstream) and ~364 nucleotides 

(downstream). Those amplified and reannealed fragments showing positive signals 

(cleavage) in T7 endonuclease I assays were then sent to the Australian Genome 

Research Facility (AGRF, North Melbourne, VIC, Australia) for Sanger sequencing to 

identify the mutations. 

 

Mutation detection in F2 fish using PCR 

 

Mutation-specific PCR primers were designed to detect the two mutations (N140fs and 

T141_L142delinsMISLISV) identified in F1 fish. For N140fs, a mutation-specific 

forward primer (5’-TGCTGAATTCGGTGCTCTG-3’) was designed. For 

T141_L142delinsMISLISV, another mutation-specific forward primer (5’- 

TGAATTCGGTGCTCAACATG-3’) was designed. A wild type-specific forward 

primer (5’-TGAATTCGGTGCTCAACACTC-3’) was designed as a control. A 
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common reverse primer (5’-TCACCAAGGACCACTGATTCAGC-3’) was used with 

these three different forward primers. The temperature cycling conditions for these 

PCRs are identical for the wild type and N140fs alleles: 95°C, 2 min, and then 31 cycles 

of [95°C, 30 s; 60°C, 30 s; 72°C, 30 s], then 72°C, 5 min. For detection of the 

T141_L142delinsMISLISV allele, the annealing temperature was altered to 61.5°C. The 

PCR products of these reactions are all predicted to be ~320 nucleotides in length. 

 

Breeding of mutant fish 

 

Since the mutation-carrying G0 fish were mosaic for mutations, these were outbred 

with wildtype TU fish so that their progeny (F1 fish) would be completely heterozygous 

for any mutations. 

 

The F1 fish carrying the psen2T141_L142delinsMISLISV or psen2N140fs alleles were outbred with 

wild type TU fish to generate additional individuals heterozygous for the mutations.  

(The families of progeny of such matings would consist of 50% heterozygous mutants 

and 50% wild type fish). When these F2 progeny were sexually mature, pairs of 

heterozygous individuals were in-crossed to generate F3 families containing 

homozygous mutant, heterozygous mutant and wild type siblings for further analysis. 

 

 

Imaging of skin pigmentation in zebrafish 
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The pigmentation patterns of mutant zebrafish were imaged using a Leica 

Microsystems, Type DFC450 C microscope, and the software Leica Application Suite, 

Version 4.9.0 (Leica Microsystems, Wetzlar, Germany). 

 

Total RNA extraction from 6-month-old zebrafish brains 

 

When F2 fish families from outcrossed heterozygous mutant F1 fish were 6 months of 

age, eight female fish of each genotype (i.e. eight wild type and eight heterozygous 

mutant individuals) were selected for brain removal and total RNA extraction. From 

these fish, four of each genotype were exposed to hypoxia (the dissolved oxygen 

content of the water was ~1.00 mg/L) for ~2.5 h, while the other four of each genotype 

were exposed to normoxia (the dissolved oxygen content of the water was ~6.60 mg/L). 

Total RNA was extracted from these brains using the mirVana™ miRNA Isolation Kit 

(Ambion, Inc, Foster City, California, USA, AM1560). cDNA was synthesised from the 

RNA using the SuperScript™ III First-Strand Synthesis System (Invitrogen, Carlsbad, 

California, USA, 18080051) and Random Primers (Promega, Madison, Wisconsin, 

USA, C1181). 

 

Allele-specific expression analysis by digital quantitative PCR (dqPCR) 

 

PCR primer pairs detecting specific alleles were designed for dqPCR: a specific 
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forward primer for mutation psen2T141_L142delinsMISLISV (5’-

TGAATTCGGTGCTCAACATG-3’), a specific forward primer for mutation 

psen2N140fs (5’-TGCTGAATTCGGTGCTCTG-3’), and a specific forward primer for 

the wild type allele (5’-TGAATTCGGTGCTCAACACTC-3’). A common reverse 

primer (5’-AAGAGCAGCATCAGCGAGG-3’) was used with all these three forward 

primers. Allele-specific dqPCR was performed using the QuantStudio™ 3D Digital 

PCR System (Life Sciences, Waltham, MA, USA) with QuantStudio™ 3D Digital PCR 

20K Chip Kit v2 and Master Mix (Life Sciences, Waltham, MA, USA, A26317) and 

SYBR™ Green I Nucleic Acid Gel Stain (Life Sciences, Waltham, MA, USA, S7563). 

The dqPCR conditions for allele-specific expression detection are 96°C, 10 min, then 

49 cycles of [62°C, 2 min; 98°C, 30 s], then 62°C 2 min. The expected length of the 

PCR products is ~130 bp. 25ng of cDNA (based on quantification of RNA 

concentration and the assumption of complete reverse transcription into cDNA) of each 

sample was loaded into each chip. The chips were analysed using QuantStudio™ 3D 

AnalysisSuite Cloud Software (Life Sciences, Waltham, MA, USA). 

 

Results 

 

fAD-like and coding sequence-truncating mutations in psen2 

 

Our initial aim was to create mutations in zebrafish psen2 equivalent to the fAD 

mutations of human PSEN2, N141I and V148I (N140I and V147I in zebrafish 
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respectively). However, while CRISPR Cas9-targetting of these sites appeared feasible, 

no incorporation of desired mutations via homology-directed repair was found. 

Nevertheless, two mutations at the N140 site were ultimately identified. One of these 

is an indel mutation removing two codons (T141 and L142) and replacing these with 

seven novel codons (MISLISV). Consequently, this allele is designated 

psen2T141_L142delinsMISLISV and may be considered EOfAD-like in that it does not truncate 

the coding sequence (Figure 1). The second mutation is a deletion of 7 nucleotides 

causing a frameshift that does truncate the coding sequence (CDS), psen2N140fs, due to 

a premature termination codon (PTC) at the 142nd codon position. 

 

 

Figure 1. Predicted protein primary and secondary structures. 

(A) The protein coding sequence of zebrafish Psen2 is altered by the mutations. 
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(B) The predicted protein structures of zebrafish Psen2 are also changed by the two 

identified mutations (and are shown relative to the wild type structure and a structure 

incorporating a hypothetical N140I mutation. Purple bar: helix; yellow arrow: strand; 

black line: coil; Conf: confidence of prediction; Pred: predicted secondary structure; 

AA: target sequence. 

 

Inbreeding of T141_L142MISLISV and N140fs mutant fish showed both mutations to 

be homozygous viable although both showed severe defects in skin pigmentation in 

post-larval stages (described later).  

 

Changes of protein structure caused by the mutations 

 

PRESENILINs have a complex structure with multiple TMDs. Therefore, mutations 

have the potential to greatly disturb protein structure by interfering with normal 

membrane insertion. To understand the possible consequences of, in particular, the 

T141_L142delinsMISLISV mutation, we compared theoretical hydropathicity plots 

(Gasteiger, Hoogland et al. 2005) for our isolated mutations with those for wild type 

psen2 and a mutation equivalent to human N141I (Figure 2). The 

T141_L142delinsMISLISV mutation contributes only non-polar (M, I, L, V) or, at least, 

uncharged, polar (S) amino acid residues (aa) to the protein structure, presumably 

expanding the hydrophobic stretch of aas that form TMD2. Presumably, this mutation 

allows overall correct membrane insertion but disrupts the conformation of the protein 
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sufficiently to almost entirely, but not completely, destroy its -secretase activity (see 

later). 

 

 

Figure 2. Predicted protein hydropathicity plots. 

The blue line refers to wild type Psen2. The red lines refer to the mutants. 

 

The N140fs mutation cannot possibly express a catalytically active -secretase enzyme 

since it truncates the CDS at the start of TMD2. Thus, it lacks both the aspartate residues 

required for the -secretase catalytic domain (Wolfe, Xia et al. 1999; Fraering 2007).  

 

N140fs transcripts are subject to nonsense-mediated decay 
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Mutations creating premature termination codons (PTCs) in coding sequences upstream 

of exon-exon junctions in spliced transcripts can result in destabilisation of the 

transcripts through nonsense-mediated decay (NMD, reviewed by (Chang, Imam et al. 

2007)). Therefore, we expected that transcripts from the T141_L142delinsMISLISV 

allele might be similarly stable to wild type transcripts while N140fs allele transcripts 

would show decreased stability and abundance. To test this we performed dqPCR that 

allows direct comparison of transcript abundances. We extracted total RNA from the 

brains of 6-month-old adult zebrafish, reverse transcribed this to cDNA, and then 

performed dqPCR with primers specifically detecting the wild type or mutant alleles. 

The results confirmed similar levels of T141_L142delinsMISLISV and wild type 

transcripts in heterozygous mutant brains but levels of N140fs transcripts are only 

approximately 25% of those for wild type transcripts in heterozygous mutant brains 

(Figure 4). The first round of translation of a transcript is critical for NMD and so 

inhibition of translation (e.g. with cycloheximide) can increase the stability of 

transcripts with PTCs (Carter, Doskow et al. 1995; Hurt, Robertson et al. 2013). 

Cycloheximide treatment of a group of embryos heterozygous for N140fs caused an 

approximately 5-fold increase in N140fs allele-derived transcripts but only an 

approximately 2-fold increase in wild type transcripts (File S4) supporting that NMD 

destabilises N140fs transcripts.  

 

Stability of mutant allele transcripts under normoxia compared to hypoxia 
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Numerous lines of evidence support that hypoxia is an important factor in the 

development of AD (reviewed in (Salminen, Kauppinen et al. 2017)). This includes that 

expression of the fAD genes, PSEN1, PSEN2 and APP are upregulated under hypoxia 

(Sato, Hori et al. 1999; Nishikawa, Manabe et al. 2004; Zhang, Zhou et al. 2007; De 

Gasperi, Sosa et al. 2010), phenomena that are conserved in zebrafish (Moussavi Nik, 

Wilson et al. 2012) despite ~420 million years of divergent evolution from mammals 

(Detrich III, Zon et al. 2009). Also, hypoxia has previously been observed to inhibit 

NMD (Gardner 2008). Therefore, to observe how hypoxia might affect the levels of 

transcripts from our mutant alleles we performed dqPCR using total RNA extracted 

from the brains of 6-month-old zebrafish exposed to normoxia or hypoxia (Figures 3 

and 4). This revealed little effect of hypoxia on the levels of transcripts from wild type 

or T141_L142delinsMISLISV alleles (Figure 3) in heterozygous fish brains (that is most 

likely due to the young age of the fish, see Discussion) and a small, but apparently 

statistically significant increase in the levels of N140fs allele transcripts (Figure 4). 

However, we cannot distinguish whether this increase is due to induction of 

transcription, or inhibition of NMD, or both (or other factors that could increase 

transcript levels).  
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Figure 3. psen2 wild type and psen2T141_L142delinsMISLISV allele-specific expression (as 

copies per the 25 ng of total brain cDNA in each dqPCR). 

The expression levels of wild type psen2 alleles in psen2T141_L142delinsMISLISV/+ fish (~460 

copies) were significantly (p=0.0024) lower than in their wild type siblings (~950 

copies) under normoxia. Under hypoxia, the expression levels of wild type psen2 alleles 

in both psen2T141_L142delinsMISLISV/+ fish (~1,000 copies) and their wild type siblings 

(~510 copies) were up-regulated, but neither of the genotypes showed statistically 
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significant differences compared to their normoxic controls. The expression levels of 

the psen2T141_L142delinsMISLISV alleles in psen2T141_L142delinsMISLISV/+ fish (~520 copies under 

normoxia) were increased by acute hypoxia (~580 copies), but without statistical 

significance. Means with SDs are indicated. 

 

 

 

Figure 4. psen2 wild type allele and psen2N140fs allele-specific expression (as copies 

per the 25 ng of total brain cDNA in each dqPCR). 

The expression levels of wild type psen2 alleles in psen2N140fs/+ fish (~860 copies) were 

significantly (p=0.0024) lower than in their wild type siblings (~1,600 copies) under 



121 
 

normoxia. Under hypoxia, the expression levels of wild type psen2 alleles in both 

psen2N140fs/+ fish (~860 copies) and their wild type siblings (~1,700 copies) were 

slightly up-regulated, but not with statistical significance compared to these genotypes 

under normoxia. The expression levels of psen2N140fs alleles in psen2N140fs/+ fish (~150 

copies under normoxia) were increased (p=0.0513) by acute hypoxia (~160 copies). 

Means with SDs are indicated. 

 

Pigment phenotypes of mutation-carrying fish 

 

During the process of isolating mutations in psen2, we observed that some of the G0 

CRISPR Cas9-injected, mosaic, mutation-carrying fish showed unique patches of 

pigmentation loss in their skin (Figure 5A). (Four of 12 G0 fish injected with the 

CRISPR Cas9 complex targeting the N140 codon showed this phenotype). None of the 

F1 progeny of these fish (heterozygous for either of the mutations in psen2) showed 

apparent pigmentation loss. However, when inbreeding F2 heterozygous mutant fish 

we found that some of the F3 progeny for either the T141_L142delinsMISLISV 

mutation or the N140fs mutation showed differences in surface melanotic pigmentation 

pattern obvious to the unaided eye by one month of age. Genotyping of these fish using 

allele-specific PCR on tail biopsies showed them to be homozygous mutants. 

Subsequently, we observed the development of surface pigmentation with age for these 

fish families and saw that fish heterozygous for either the T141_L142delinsMISLISV or 

N140fs mutation were indistinguishable from wild type fish in surface pigmentation but 
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that homozygous T141_L142delinsMISLISV fish had much fainter melanotic 

pigmentation, with many faintly melanotic cells arranged in apparently normal stripes 

(Figure 5B). In contrast, homozygous N140fs fish appeared to lack surface melanotic 

stripes (although a very faint impression of striping was still visible, Figure 5C). Since 

-secretase activity is required for melanin formation (Wang, Tang et al. 2006; Kummer, 

Maruyama et al. 2009), and psen2 appears relatively highly expressed in melanocytes 

(Groth, Nornes et al. 2002) it is likely that N140fs homozygous fish lack melanin due 

to absence of -secretase activity from psen2 while T141_L142delinsMISLISV 

homozygous fish retain low levels of psen2-derived -secretase activity. 
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Figure 5. Surface melanotic pigmentation phenotypes. 

(A) Patches of pigmentation loss in the skin of mosaic mutant G0 fish. 

(B) psen2T141_L142delinsMISLISV mutants and +/+ sibling fish. 

(C) psen2N140fs mutants and +/+ sibling fish. 

(D) No gross melanotic pigmentation phenotype was observed in psen2N140fs 

homozygous embryos at 50 hpf. 

 

The intracellar distribution of pigment also appeared to change with age in the skin 

melanophores of T141_L142delinsMISLISV homozygous fish. At two months of age 

pigment appeared evenly distributed in these cells but excluded from their central, 

presumably nuclear, regions (Figure 5B). However, by six months of age, the pigment 

appeared concentrated at the centre of cells and was, presumably, perinuclear. The 
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density of pigment formation in heterozygous and wild type fish made it difficult to see 

whether a similar phenomenon was also occurring in those.  

 

Curiously, the N140fs homozygous fish lacking surface melanotic pigmentation 

retained strong melanotic pigmentation in their retinal pigmented epithelium. This is 

obvious as the dark eyes of the fish shown in Figure 5C and was confirmed by dissection 

of these eyes (not shown). Also, the 48 hpf larval N140fs homozygous progeny of 

homozygous parents showed abundant surface melanocytes that cannot be due to 

maternal inheritance of wild type psen2 function (Figure 5D). Thus, the dependence of 

zebrafish adult skin melanotic pigmentation on psen2 function is both cell type- and 

age-specific. 

 

Discussion 

 

Our attempts at generation of point mutations in the zebrafish psen2 gene by HDR were 

unsuccessful. However, we did succeed in identifying two mutations (formed by the 

NHEJ pathway) that may prove useful in analysing the role of the human PSEN2 gene 

in familial Alzheimer’s disease; an in-frame mutation, psen2T141_L142delinsMISLISV, and a 

frame-shift mutation, psen2N140fs.  

 

The in-frame mutation psen2T141_L142delinsMISLISV is an indel mutation altering two codons 

and inserting an additional 5 codons. Although this mutation changes the length of the 
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protein coding sequence, the predicted protein hydropathicity plot of the putative 

mutant protein (Figure 2) supports that the mutation does not completely destroy the 

transmembrane structure of Psen2. Since most of the fAD mutations in human PSEN2 

are in-frame mutations that may change hydropathicity without destroying the overall 

transmembrane structure of the protein (Jayadev, Leverenz et al. 2010), the 

T141_L142delinsMISLISV mutation would appear to be more fAD-like than null. 

 

The frame-shift mutation psen2N140fs was caused by a deletion of 7 nucleotides and 

results in a PTC at the 142nd codon position. This mutation causes truncation of the 

coding sequence at the upstream end of TMD2 of zebrafish Psen2. The first two TMDs 

of human PSEN2 are thought to be necessary for ER localisation (Tomita, Tokuhiro et 

al. 1998). Since coding sequence truncation occurs at the upstream end of TMD2, if 

this mutant allele expressed a protein, it would most likely not be able to form TMD 

structures for ER localization. Neither could it possibly have -secretase activity since 

it lacks the aspartate residues required (Wolfe, Xia et al. 1999; Fraering 2007). 

Moreover, since dqPCR showed that the levels of N140fs transcripts are only 

approximately 25% of those for wild type transcripts in heterozygous mutant brains, 

N140fs expression appears limited by NMD (a fact supported by the ~5-fold increased 

N140fs transcript level in the presence of the translation inhibitor, cycloheximide (File 

S4). Our previous work has shown that zebrafish psen2 does not express a truncated 

isoform equivalent to the PS2V isoform of human PSEN2 (Moussavi Nik, Newman et 

al. 2011) and that a PS2V-like truncation of zebrafish Psen2 does not have PS2V-like 



127 
 

activity (Moussavi Nik, Newman et al. 2015). (Instead a PS2V-like function is 

expressed from zebrafish psen1 (Moussavi Nik, Newman et al. 2015)). Therefore, 

N140fs most likely represents a true null (or severely hypomorphic) allele of zebrafish 

psen2, unlike another frameshift mutation, S4Ter, that we recently analysed and that 

shows grossly normal adult pigmentation (Jiang et al., manuscript submitted).  

 

In human cells, expression of the APP, PSEN1 and PSEN2 genes can be upregulated 

by hypoxia (Moussavi Nik, Wilson et al. 2012) and we previously showed that this 

phenomenon has been conserved during the nearly half a billion years since the 

divergence of the zebrafish and human evolutionary lineages (Moussavi Nik, Wilson et 

al. 2012). In that earlier paper we saw nearly a two-fold increase in zebrafish brain 

psen2 mRNA levels under hypoxia compared to normoxia while, in this work, no 

significant differences were seen (except for N140fs allele transcripts where hypoxia 

may be inhibiting NMD (Gardner 2008)). Upon checking our laboratory records we 

found that the fish used in the earlier publication were around 12 months old compared 

to the six months of age in this work. In other, yet unpublished work we have observed 

that differences in adult age make very significant differences to brain transcriptional 

responses to hypoxia with young adult fish showing the mildest responses (Newman et 

al. unpublished results).   

 

In previous research we showed that blockage of psen2 function using morpholino 

antisense nucleotides injected into zebrafish zygotes increases the number of DoLA 
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neurons at 24 hpf (Nornes, Newman et al. 2009). Despite the evidence that the N140fs 

mutation is null, we did not see increased DoLA neuron numbers in N140fs 

homozygous embryos at 24 hpf  (See S3 Files for experiment description and data). 

The observation of differing developmental phenotypes from decreased gene function 

due to mutation or morpholino injection is a common occurrence (Kok, Shin et al. 2015). 

It is thought to be due to the phenomenon of “genetic compensation” whereby only 

decreased gene function through mutation, (and not by morpholino injection), causes 

compensatory upregulation of other genes with similar activities (Rossi, Kontarakis et 

al. 2015). It is likely that genetic compensation is causing the lack of response of DoLA 

neuron number to the N140fs mutation. An alternative explanation would be a maternal 

contribution of wild type psen2 activity from the heterozygous N140fs mother of the 

embryos examined. Further experimentation such as blockage of psen1 translation by 

morpholino injection into psen2N140fs homozygous embryos or analysis of DoLA 

numbers in psen2N140fs homozygous embryos from homozygous parents might resolve 

this question. 

 

Skin pigmentation pattern is severely affected in adult fish homozygous for the 

mutation T141_L142delinsMISLISV. These fish show surface melanotic stripes that 

appear approximately the same width as in wild type fish but are much fainter. Closer 

examination of these stripes at 6 months of age reveals cells with vestigial, and likely 

perinuclear, pigment. The number of cells is not obviously affected, only the 

pigmentation they show. Thus, loss of psen2 function does not appear to affect 
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melanophore viability (although, in an animal as highly regenerative as the zebrafish, 

further tests would be required to conclude this with certainty). By extrapolation it 

appears likely that N140fs homozygous adult fish still possess skin melanophores but 

that these lack melanin. The retention of some adult skin melanin formation in 

T141_L142delinsMISLISV homozygotes but not N140fs homozygotes, and the roles 

played by -secretase in melanosome function (Kumano, Masuda et al. 2008; Yang, 

Arslanova et al. 2010; Rochin, Hurbain et al. 2013), support that 

T141_L142delinsMISLISV mutant Psen2 protein molecules retain some level of -

secretase activity. This supports that the T141_L142delinsMISLISV mutation of 

zebrafish Psen2 does not seriously disrupt the protein’s overall pattern of folding for 

membrane insertion, but does distort its conformation sufficiently to reduce -secretase 

activity. Partial loss of -secretase activity is a commonly observed characteristic of 

fAD-like mutations in PRESENILIN genes. For example, mouse skin completely 

lacking expression of wild type Psen1 and Psen2 genes but with a single knock-in 

M146V fAD-like allele of Psen1 show lighter skin and coat colour than similar mice 

possessing a single wild type allele of Psen1 (Wang, Tang et al. 2006). These data, and 

the fact that the T141_L142delinsMISLISV mutation obeys the “fAD mutation reading 

frame preservation rule” (Jayne, Newman et al. 2016), support that this mutation should 

be investigated for its utility in zebrafish-based fAD research. 

 

Intriguingly, only the melanotic pigmentation of adult zebrafish skin is dependent on 

psen2 function while larvae and cells of the retinal pigmented epithelium do not show 
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this dependency. This most likely indicates that the Psen1 protein (or, possibly, another 

protein with -secretase-like activity (Jayne, Newman et al. 2016)) contributes to 

normal melanosome formation in these remaining pigmented cells. That different 

PRESENILIN proteins might contribute to melanosome formation in different cells or 

in the same cell type at different ages is a level of developmental complexity that has 

not previously been appreciated. Alternatively, the skin melanophores of adult fish 

might, for some unknown reason, be incapable of genetic compensation (e.g. 

upregulation of psen1 activity when psen2 activity is lost through mutation). The 

possibility of cell type-specificity of genetic compensation has also not previously been 

considered. The lack of an obvious larval pigmentation phenotype explains why psen2 

was not identified by the large mutation screens for developmental phenotypes 

conducted by the laboratories of Christiane Nüsslein-Volhard (Kelsh, Brand et al. 1996) 

and Wolfgang Driever (Driever, Solnica-Krezel et al. 1996) and published in 1996.  

 

In conclusion, we have generated in zebrafish an EOfAD-like mutation, 

psen2T141_L142delinsMISLISV, and an apparent null, loss-of-function mutation psen2N140fs. 

Since none of the over 200 human fAD mutations in PSEN1 and PSEN2 are obviously 

null alleles, these two zebrafish mutations may prove useful for defining the gene 

regulatory and other molecular changes that are particular to fAD mutations in the 

PRESENILIN genes. Our future work will use these and other zebrafish mutation 

models to dissect how fAD-like mutations cause Alzheimer’s disease. 
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3.3 Supplementary Information 

 

This section is included in the thesis as information supplementary to Section 3.2. It 

contains additional information not included in the main text of the manuscript. 

 

File S1. Mutation screening and breeding. 

 

In addition to the mutation N141I, another missense mutation in the human PSEN2 gene, 

V148I, was also considered for introduction into zebrafish psen2. V148I is a missense 

mutation caused by a G-to-A transition at the first position of codon 148 of PSEN2 (Lao, 

Beyer et al. 1998). Like N141I, this mutation is also located within TMD2. However, 

since both valine and isoleucine are hydrophobic (with the hydrophobicity of isoleucine 

slightly stronger than that of valine), the PolyPhen-2 prediction score (Adzhubei, 

Schmidt et al.) for V148I (0.222 with sensitivity of 0.91 and specificity of 0.88) is more 

benign than that for N141I (i.e. 0.934). The age of onset of Alzheimer’s disease in the 

individual with the V148I mutation was age 71 (Lao, Beyer et al. 1998), which is also 

much later than the mean onset age for the N141I mutation (age 53.7). It is also reported 

that V148I does not significantly change the Aβ 42/40 ratio (Walker, Martinez et al. 

2005). 

 

Mutation screening and breeding of the CRISPR/Cas9 and template oligo-injected 

G0 fish 
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The in vivo cleavage activity of the CRISPR/Cas9 system used in this study was tested 

using the T7 endonuclease I assay. It is interesting that even the uninjected TU embryos 

showed two cleavage bands in a T7 endonuclease I assay, although the sizes of these 

bands were different to those expected for the samples injected with the CRISPR/Cas9 

system (Figure S1A). This may due to that the T7 endonuclease I assay system is so 

sensitive that it cleavage can occur at sites of single mismatched bases heteroduplexes 

(Babon, McKenzie et al. 2003), i.e. due to single nucleotide polymorphisms (SNPs). 

The CRISPR/Cas9 system-injected TU embryos showed four cleavage bands in the T7 

endonuclease I assay (Figure S1A), two of which were the same as those for the 

uninjected TU embryos (possibly caused by SNPs in the TU genome), while the other 

two were the sizes expected for mutation produced by the DNA cleavage activity of the 

CRISPR/Cas9 system. Therefore, the CRISPR/Cas9 system used in this study showed 

cleavage activity in the TU genome, and we could use this system to attempt to generate 

the mutations desired by co-injecting it together with homology-directed repair (HDR) 

oligonucleotide templates. 
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Figure S1. T7 endonuclease assays and mutation-specific PCRs for embryos at 24 

hpf. 

(A) T7 endonuclease I assay for testing the cleavage activity of the CRISPR/Cas9 
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system.  

(B) “N140I” allele-detection PCR for testing of CRISPR/Cas9 plus “N140I oligo” co-

injected TU embryos. 10 embryos from each injection batch were pooled for these tests. 

Both batches of the injected TU embryos showed positive signals in the “N140I” allele-

detection PCR. Therefore, some of these “N140I oligo” injected TU embryos may have 

carried the “N140I” allele in the genomes of some cells.  

(C) “V147I” allele-detection PCR for testing the CRISPR/Cas9 plus “V147I oligo” 

injected TU embryos. 10 embryos from each batch were pooled for these tests. Both 

batches of the injected TU embryos showed positive signals from the “V147I” allele-

detection PCR. Therefore, some of these “V147I oligo” injected TU embryos may have 

carried the “V147I” allele in the genomes of some cells. 

(D) T7 endonuclease I assay for detecting random mutations at the CRISPR/Cas9 target 

site in the F1 progeny. Tail-clip biopsies from 46 of the F1 progeny from the 

CRISPR/Cas9 plus “V147I oligo” injected mosaic G0 fish were tested using the T7 

endonuclease I assay to screen for the presence of cells with mutations at the target site. 

Only 5 fish showed cleavage patterns indicating the presence of mutations. 

 

For the “N140I oligo” injected TU embryos, 10 embryos from each batch were pooled 

and tested using the “N140I” allele-specific detection PCR (Figure S1B). Positive 

signals showed that there should be mutant fish carrying the “N140I” mutation in both 

batches. The remaining G0 embryos were raised to adulthood and then genotyped using 

the “N140I” allele-specific detection PCR (Figure S2A). Twelve of these genotyped G0 
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fish (from a total of 120) showed positive signals in the “N140I” allele-specific 

detection PCR (Figure S2A). All these “N140I” allele-carrying G0 fish were then 

outbred with TU wild type fish to generate F1 fish potentially heterozygous for the 

“N140I” allele. 10 F1 embryos from each “N140I” allele carrying G0 fish crossed with 

a TU wild type fish were pooled for the “N140I” allele-specific detection PCR. 

Unfortunately, none of these progeny showed any positive signal from the “N140I” 

allele-specific detection PCR, indicating that the “N140I” allele was not present in the 

F1 progeny. Interestingly, the “N140I” allele-specific detection PCR for the F1 progeny 

from one “N140I” allele-carrying G0 fish produced a DNA fragment of ~400 

nucleotides in size (Figure S2B), while the positive signal for the “N140I” allele-

specific detection PCR was calculated to be ~300 nucleotides. This probably indicates 

the existence of a DNA rearrangement at the cleavage site that incorporated all or part 

of the oligonucleotide sequence in an unintended manner.  
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Figure S2. Mutation-specific PCR tests of G0 and F1 fish. 

(A) “N140I” allele-specific detection PCRs on tail-clip biopsies from G0 fish. Twelve 

G0 fish (120 in total) showed positive signals in the “N140I” allele-specific detection 

PCR. 

(B) “N140I” allele-specific detection PCRs from F1 embryos of the G0 mosaic fish 

showing “N140I” allele-positive signals. 10 F1 embryos at 24 hpf from each “N140I” 

allele-carrying G0 fish were pooled for testing. The F1 progeny from one “N140I” 

allele-carrying G0 fish showed a signal at ~400 bp, which may result from imperfect 

incorporation of the “N140I oligo” sequence into the target site of the CRISPR/Cas9 

system. 

(C) “V147I” allele-specific PCRs from F1 embryos of the G0 mosaic fish showing 

“V147I” allele-positive signals. 10 F1 embryos at 24 hpf from each “V147I” allele 

carrying G0 fish were pooled for testing. The F1 progeny from one of the “V147I” 

allele-carrying G0 fish showed the same positive signal as the injected G0 embryos. 

(D) “V147I” allele-specific detection PCR from tail-clip biopsies of F1 fish. Two out of 

twelve tested F1 fish (raised from the positive batch of embryos observed above in D) 

showed positive signals, indicating they might carry the desired “V147I” allele. 
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(E) “V147I” allele-specific detection PCR using the same forward primer as in (E) but 

a different reverse primer binding farther downstream in psen2 DNA. While the pooled 

F1 embryos still gave a positive signal, the two F1 fish no longer showed a positive 

signal using this PCR, revealing that the previously seen positive signals (in E) were 

artefacts. 

 

For the “V147I oligo” injected TU embryos, positive signals were also detected using 

the “V147I” allele-specific detection PCR (Figure S1C, signal from10 embryos pooled). 

Six of the 36 tested G0 fish showed positive signals using the “V147I” allele-specific 

detection PCR. The six “V147I” allele-carrying G0 fish were then outbred with TU wild 

type fish. 10 embryos from the F1 progeny from each “V147I” allele-carrying G0 fish 

with a TU wild type fish were pooled for the “V147I” allele-specific detection PCR. 

The F1 progeny from one of the “V147I” allele carrying G0 fish showed the same 

positive signal as the injected G0 embryos (Figure S2C). It seemed that these F1 

progeny might carry the “V147I” allele. When these F1 progeny were raised, they were 

genotyped using the “V147I” allele-specific detection PCR. Two out of twelve tested 

F1 fish showed positive signals, indicating they might carry the “V147I” allele. To 

verify these results, a region encompassing the intended mutation site in these two fish 

was amplified by PCR using the primers for the T7 endonuclease assay, and then 

sequenced. However, only wild type DNA sequences were seen. To check subsequently 

the previous positive “V147I” allele-specific detection PCR, the PCR was modified to 

use the same forward primer (specific to the desired mutation) but a different reverse 
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primer (farther downstream of the previously used reverse primer). Interestingly, 

although the genomic DNA from the pooled F1 embryos still showed a positive signal, 

the DNAs from the two F1 positive fish no longer showed a positive signal using this 

PCR test (Figure S2E). Thus, the previous positive signals detected for these two fish 

were aretefacts. It seems that, in the pooled F1 embryos, the “V147I” allele did exist, 

but the allele was either at too low a frequency to be likely to be detected using the 

number of fish that we observed or, possibly, cannot be passed through the germline 

(i.e. for some reason it may be lethal to gamete formation or embryo development). 

 

In conclusion, in this study we used the CRISPR/Cas9 system to attempt to insert fAD 

mutations (point mutations) into the zebrafish genome to investigate the pathological 

changes caused by these mutations. However, while we could detect the likely existence 

of these point mutations in the G0 fish, we did not see them transmitted to F1 progeny.  

 

NHEJ-generated mutations at the CRISPR/Cas9 target site in F1 progeny 

 

46 of the F1 progeny from the “V147I” allele-carrying mosaic G0 fish were tested using 

T7 endonuclease I assays to detect mutations generated through NHEJ. The mutation-

carrying F1 progeny showed different cleavage patterns to the wild type fish (Figure 

S1D), but similar patterns to that from embryos injected only with the CRISPR/Cas9 

system without mutation-containing oligonucleotides (Figure S1A), indicating these 

mutations were likely induced by the injected CRISPR/Cas9 system alone. Among the 
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46 F1 fish tested, only five fish showed cleavage patterns indicating the presence of 

mutations. Sequencing across the target site in these five fish showed the presence of 

only two different mutations. One mutation (carried by two of the fish) was a 15 

nucleotide-indel mutation (an in-frame mutation) that deleted two codons (T141 and 

L142) with an insertion of another seven codons (MISLISV) and was consequently 

named psen2T141_L142delinsMISLISV (Figure 1A). The other mutation (carried by three of the 

fish) was a seven nucleotide -deletion resulting in a frameshift mutation downstream 

from N140 leading to a premature termination codon at the 142th codon position. It was 

consequently named psen2N140fs (Figure 1A). 
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File S2. dqPCR results for allele-specific transcript quantification in six month old 

brains. 

 

Table S1. Allele-specific transcript quantification in six month old 

psen2T141_L142delinsMISLISV/+ and wild type sibling brains. Copies per 25ng of total brain 

cDNA (assuming complete reverse transcription of total brain RNA). 

psen2 wild type allele 

+/+ wild type allele under normoxia 

psen2T141_L142delinsMISLISV/+ wild type allele under 

normoxia 

895.88 450.69 

954.56 579.27 

827.13 309.93 

1196.3 531.43 

+/+ wild type allele under hypoxia 

psen2T141_L142delinsMISLISV/+ wild type allele under 

hypoxia 

1187.5 250.22 

1048.5 561.6 

981.92 557.32 

956.9 709.39 

 

psen2T141_L142delinsMISLISV mutant allele 

+/+ mutant allele under normoxia 

psen2T141_L142delinsMISLISV/+ mutant allele under 

normoxia 

2.862 565.52 

0.103 634.11 

1.2 297.33 

2.963 604.62 

+/+ mutant allele under hypoxia psen2T141_L142delinsMISLISV/+ mutant allele under hypoxia 

4.137 264.77 

3.156 671.13 

2.232 656.45 

2.972 722.62 

 

Table S2. Allele-specific transcript quantification in six month old psen2N140fs/+ fish 

and wild type sibling brains. Copies per 25ng of total brain cDNA (assuming complete 
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reverse transcription of total brain RNA). 

psen2 wild type allele 

+/+ wild type allele under normoxia psen2N140fs/+ wild type allele under normoxia 

1346.8 918.15 

1806.9 885.32 

1729.6 842.01 

1630.9 837.78 

+/+ wild type allele under hypoxia psen2N140fs/+ wild type allele under hypoxia 

1678.6 838.53 

1601.3 903.36 

1635.7 815.97 

1718.4 866.78 

 

psen2N140fs mutant allele 

+/+ mutant allele under normoxia psen2N140fs/+ mutant allele under normoxia 

11.017 154.64 

29.408 165.58 

18.746 141.68 

10.673 148.65 

+/+ mutant allele under hypoxia psen2N140fs/+ mutant allele under hypoxia 

7.767 164.15 

12.353 167.54 

22.487 174.94 

10.041 161.02 
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File S3. In situ transcript hybridization analysis of DoLA neuron number. 

 

Blockage of the expression of psen2 using a morpholino has been shown to increase 

the number of a particular spinal cord interneuron – the Dorsal Longitudinal Ascending 

(DoLA) neuron (Nornes, Newman et al. 2009). Since the loss of pigmentation 

phenotype in homozygous N140fs mutants is suggestive of loss of -secretase activity, 

we assumed this mutation might result in loss of all psen2 function. As there is currently 

no antibody detecting zebrafish Psen2 protein available, we attempted to demonstrate 

loss of psen2 function for N140fs by observing DoLA neuron number in embryos at 24 

hpf. 

 

To examine the effect of N140fs on DoLA number, embryos from mating of a pair of 

heterozygous fish were collected. Theoretically, this family would be comprised of 

approximately 50% heterozygous mutant, 25% homozygous mutant and 25% wild type 

genotypes. In situ transcript hybridization against transcripts of the gene tbx16 that 

labels DoLA neurons (Tamme, Wells et al. 2002) was then performed on these embryos 

at 24 hpf. Genotyping of each embryo was performed after the number of DoLA 

neurons in each embryo had been recorded by direct observation, using PCRs specific 

for the mutant and wild type alleles. However, two-tailed t-tests assuming either equal 

or unequal variances found no significant differences in DoLA number between any 

two genotypes (Figure S3), (similar to observations for the S4Ter mutation, Jiang, 

unpublished results), suggesting that genetic compensation may be induced by these 
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endogenous mutations to suppress the phenotype of increased DoLA number after loss 

of psen2 activity from morpholino injection (Rossi, Kontarakis et al. 2015). 

 

 

Figure S3. DoLA neuron numbers.  

DoLA neuron numbers in wild type and psen2N140fs mutant embryos as revealed by in 

situ hybridisation against tbx16 transcripts. 

 

44 embryos from a pair-mating of fish heterozygous for the psen2N140fs mutation were 

subjected to in situ transcript hybridisation at 24 hpf. Genotyping subsequent to DoLA 
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quantification showed that this family included 24 heterozygous mutants, 10 

homozygous mutants and 10 wild type sibling embryos. Values of p were determined 

in two-tailed t-tests. 

 

S3 Table. In situ hybridization against tbx16 transcripts in DoLA neurons. 

DoLA numbers in +/+ DoLA numbers in 

psen2N140fs/+ 

DoLA numbers in 

psen2N140fs/psen2N140fs 

18 18 25 

24 20 21 

24 25 23 

25 19 26 

24 20 25 

21 21 21 

17 28 21 

19 26 22 

24 24 23 

17 20 20 

 17  

 17  

 17  

 26  

 25  

 24  

 21  

 25  

 20  

 23  

 25  

 18  

 16  

 26  
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S4 File. Cycloheximide treatment of psen2N140fs/+ embryos from 48 to 50 hpf. 

 

To verify whether NMD is occurring for psen2N140Wfs allele transcripts we treated 

psen2N140Wfs/+ embryos with cycloheximide at 48 hpf for two hours to stabilize any 

NMD-targeted mRNA (Carter, Doskow et al. 1995; Hurt, Robertson et al. 2013). 

Cycloheximide (CHX) is a potent translation elongation inhibitor, and a short treatment 

with this drug can be used to stabilize NMD-targeted mRNAs (Carter, Doskow et al. 

1995; Hurt, Robertson et al. 2013). In our study, we treated psen2N140fs/+ embryos 

(generated by pair-mating of a psen2N140fs/psen2N140fs female and a +/+ male fish) at 48 

hpf with 200 μg/mL of cycloheximide (Sigma-Aldrich, St. Louis, Missouri, USA, 

C4859) at 28.5°C for two hours. 20 of the treated psen2N140fs/+ embryos were pooled 

for total RNA extraction with the RNeasy Mini Kit (QIAGEN, Venlo, Netherlands, 

74104). 20 non-treated psen2N140fs/+ embryos were used as a control group. The RNAs 

from the pooled embryos were used to prepare cDNA using the SuperScript™ III First-

Strand Synthesis System (Invitrogen, Carlsbad, California, USA, 18080051) and 

Random Primers (Promega, Madison, Wisconsin, USA, C1181). A pair of PCR primers 

(forward primer 5’-AAGAAGACCCGAACTCAGTGG-3’, reverse primer: 5’-

CTTGTAGAGCAGCACCAGGATG-3’) were used to amplify a region spanning the 

mutation site. The PCR cycling conditions were: 95°C, 2 min, and then 31 cycles of 

[95°C, 30 s; 60°C, 30 s; 72°C, 30 s], 72°C 5 min. The PCR products were predicted to 

be ~110 nucleotides in length (with fragments amplified from the N140fs deletion 

mutation allele cDNA being 7 nucleotides shorter than from the wild type allele). The 
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PCR products were separated by electrophoresis through a 20% polyacrylamide gel, at 

120V for five hours. 

 

As shown in Figure S4A, PCR on cDNA from the CHX–treated psen2N140fs/+ embryos, 

resulted in two bands in the electrophoretic gel of approximately equal intensity, while 

PCR on cDNA from non-treated psen2N140fs/+ embryos resulted in only one band at the 

apparent same size as the upper band of the treated group. However, the bands in Figure 

S4A are not well resolved probably due to limitations of the separation technique. 

Therefore, digital quantitative PCR (dqPCR) designed for allele-specific expression 

analysis (see Materials and Methods) was performed on the same cDNAs from these 

samples. As show in Figure S4B, expression of both the wild type psen2 allele and the 

psen2N140fs allele was upregulated after CHX-treatment, but the fold change (FC) of the 

upregulation of the psen2N140fs allele (FC=5.601) was significantly higher than that for 

the wild type psen2 allele (FC=2.373), indicating that the NMD-targeted mutant 

mRNAs were stabilized by CHX in the psen2N140fs/+ embryos. 
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Figure S4. dqPCRs detecting wild type and mutant alleles in psen2N140fs/+ embryos 

at 50 hpf after two hours of cycloheximide treatment relative to untreated embryos. 

(A) In a 20% polyacrylamide gel, amplification of cDNA fragments spanning the 

mutation (7 nucleotides shorter than wild type) was only observed in the CHX-treated 

group, while only one higher molecular weight band (from the wild type allele) was 

observed in the non-treated group. This supports that NMD is destabilising the mutant 

transcript in heterozygous embryos. 
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(B) In dqPCR, both the wild type psen2 allele and the psen2N140fs allele were observed 

to be upregulated after the CHX-treatment. The fold change (FC) of the upregulation 

of the psen2N140fs allele transcripts (FC=5.601) was significantly higher than that for the 

wild type psen2 allele transcripts (FC=2.373). 

 

S4 Table. Allele-specific expression analysis on the psen2N140fs/+ embryos (non-

treated and CHX–treated) at 50 hpf in 25ng of total embryo cDNA. Copies per 25ng 

(assuming complete reverse transcription of total RNA). 

psen2 wild type allele 

Non-treated psen2N140fs/+ CHX-treated psen2N140fs/+ 

194.99 462.66 

 

psen2N140fs mutant allele 

Non-treated psen2N140fs/+ CHX-treated psen2N140fs/+ 

43.63 244.37 
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Chapter 4 Ratiometric assays of autophagic flux in zebrafish for analysis of 

familial Alzheimer’s disease-like mutations 

 

4.1 Introduction, Significance and Commentary 

 

To detect possible changes in autophagic flux in zebrafish models of fAD mutations, 

we designed a GFP-based assay construct, GFP-Lc3a-GFP, which is able to generate 

equimolar amounts of GFP-Lc3a and a free GFP internal control within cells. This assay 

construct was expressed in zebrafish larvae of different genotypes, including larvae 

homozygous for a putative psen2 null mutation (S4Ter), heterozygous for the same 

putative psen2 null mutation, heterozygous for a fAD-like and reading-frame-

preserving mutation in zebrafish psen1, and heterozygous for a fAD-related, reading-

frame-truncating mutation in psen1. Significantly decreased autophagic flux was 

detected in larvae both heterozygous and homozygous for the putative psen2 null 

mutation, as well as larvae heterozygous for the fAD-like, reading-frame-preserving 

psen1 mutation, while a trend of increased autophagic flux was seen in larvae 

heterozygous for the fAD-related reading-frame-truncating mutation of psen1. 

 

The significances of this work includes: 

 

1. We designed an internally controlled GFP-based assay to monitor autophagic flux in 

the zebrafish model, such that results from separate western immunoblots are 
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comparable and providing a higher throughput for measurement of autophagic flux via 

western immunoblotting. 

 

2. This is the first measurement of changes in autophagic flux caused by fAD-related 

mutations in the zebrafish model. 

 

3. The similar changes in autophagic flux observed in larvae heterozygous or 

homozygous for the putative psen2 null mutation S4Ter provide evidence supporting 

the transcriptomic observations made in a previous paper (Chapter 2). 

 

4.2 Ratiometric assays of autophagic flux in zebrafish for analysis of familial 

Alzheimer’s disease-like mutations 

 

This chapter is included in the thesis in the form of a research paper manuscript 

authored by H. Jiang, M. Newman, D. Ratnayake, and M. Lardelli, and which is ready 

for submission for peer review by a scientific journal. 
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Abstract 

 

Protein aggregates such as those formed in neurodegenerative diseases can be degraded 

via autophagy. To assess changes in autophagic flux in zebrafish models of familial 

Alzheimer’s disease (fAD) mutations, we first developed a transgene, polyQ80-GFP-

v2A-GFP, expressing equimolar amounts of aggregating polyQ80-GFP and a free GFP 

internal control in zebrafish embryos and larvae. This assay detects changes in 

autophagic flux by comparing the relative strength of polyQ80-GFP and free GFP 

moiety signals on western immunoblots probed with an antibody detecting GFP. 

However, the assay’s application is limited by the toxicity of polyQ80-GFP, and 

because aggregation of this protein may, itself, induce autophagy. To overcome these 

issues, we subsequently developed a similar ratiometric assay where expression of a 

GFP-Lc3a-GFP transgene generates initially equimolar amounts of GFP-Lc3a (directed 

to autophagic degradation) and a free GFP internal control. The sensitivity of this latter 

assay is reduced by a cellular protease activity that separates Lc3a from GFP-Lc3a, thus 

contributing to the apparent free GFP signal and somewhat masking decreases in 

autophagic flux. Nevertheless, the assay demonstrates significantly decreased 

autophagic flux in zebrafish lacking presenilin2 gene activity supporting that the 

Presenilin2 protein, like human PRESENILIN1, plays a role(s) in autophagy. Zebrafish 

heterozygous for a typical fAD-like, reading-frame-preserving mutation in psen1 show 

decreased autophagic flux consistent with observations in mammalian systems. 

Unexpectedly, a zebrafish model of the only confirmed reading-frame-truncating fAD 
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mutation in a human PRESENILIN gene, the K115Efs mutation of human PSEN2, 

shows possibly increased autophagic flux in young zebrafish (larvae). 

 

Introduction 

 

Autophagic/lysosomal dysfunction is thought to be involved in the neurodegenerative 

process of Alzheimer’s disease (AD) (Boland, Kumar et al. 2008). The endosomal-

lysosomal system is a prominent site for the processing of the AMYLOID BETA A4 

PRECURSOR PROTEIN (APP) to form the aggregating peptide amyloidβ (Aβ) (Orr 

and Oddo 2013), which is the major component of the amyloid plaques observed in AD 

brains. Autophagic vacuoles (AVs) are thought to be the major reservoirs of 

intracellular Aβ, and accumulation of immature AVs has been detected in AD brains， 

suggesting that the maturation of AVs to lysosomes may be impaired (Nixon, Wegiel 

et al. 2005; Yu, Cuervo et al. 2005). Both full-length APP and β-secretase-cleaved APP 

are found in such AVs, which are also highly enriched in PRESENILIN (PSEN) 

proteins (Area-Gomez, de Groof et al. 2009) (components of the γ-secretase complexes 

that cleave APP to form Aβ) suggesting that a link may exist between Aβ production 

and cell survival pathways through activated autophagy in AD. The Aβ accumulation 

is thought to be induced by the combination of increased autophagy induction and 

defective clearance of Aβ-generating AVs (Boland, Kumar et al. 2008). 
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Dominant mutations in the PRESENILIN (PSEN) genes cause the majority of familial, 

early onset AD (fAD, (Pottier, Hannequin et al. 2012)). We have previously argued that 

a body of evidence supports that the AD-relevant effect of these mutations may be to 

alter the activity of PSEN holoproteins rather than the endoproteolysed forms that are 

active in the -secretase complexes that cleave APP (Jayne, Newman et al. 2016). 

Indeed, in 2010 Lee et al. showed that changes in PSEN1 holoprotein function, rather 

than γ-secretase activity, appear to affect lysosomal function in PSEN1 fAD mutant 

human fibroblasts (Lee, Yu et al. 2010). However, the effects of PSEN fAD mutations 

on autophagy are currently debated (Zhang, Garbett et al. 2012) and it has not yet been 

shown that the related protein, PSEN2, plays a role in autophagic flux. Thus, the roles 

of the multifunctional PSEN proteins in cellular function and AD require further 

investigation. 

 

Non-mammalian animal models including the zebrafish can facilitate AD research 

through development of rapid, novel assays for cellular processes such as autophagy. 

An excellent example is the fluorescent protein-based assay published by Kaizuka et al 

in 2016 that allows qualitative visualization of differences in autophagic flux within 

cells (Kaizuka, Morishita et al. 2016). However, it is also desirable to make simple, 

quantitative assessments of relative differences in autophagic flux in whole 

tissues/animals e.g. when these are subjected to different drug treatments or have 

different genotypes. In this paper we describe the development of two, internally-

controlled assays using zebrafish embryos/larvae that allow rapid quantitative 
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comparison of relative autophagic flux using western immunoblotting. We describe 

exploitation of the superior of these two assays to demonstrate that activity of the 

zebrafish PSEN2-orthologous gene, psen2, is required for efficient autophagy. We also 

investigate changes in autophagic flux in two novel zebrafish models of fAD-like 

mutations in the human PSEN genes. While a typical, reading frame-preserving fAD-

like mutation in zebrafish psen1 significantly decreases autophagic flux, a model of the 

only known reading frame-truncating PSEN fAD mutation does not and may possibly 

increase autophagic flux in young fish. 

 

Methods and Materials  

 

Zebrafish husbandry and animal ethics 

 

All the wild-type and mutant zebrafish were maintained in a recirculated water system. 

All work with zebrafish was conducted under the auspices of the Animal Ethics 

Committee of the University of Adelaide. 

 

Construction of the polyQ80-GFP-v2A-GFP transgene 

 

A DNA sequence coding for polyQ80-GFP-v2A-GFP (Figure 2A and S1 File A) was 

synthesized by Biomatik Corp. and subsequently ligated into the pT2AL200R150G 

(Tol2 transposon-based) (S1 File D) gene transfer vector for expression from the 
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ubiquitously-transcribed elongation factor 1 alpha promoter (EF1α-p) (Clark, Urban et 

al. 2011). The polyQ80-GFP-v2A-GFP transgene codes for two proteins, an 80-residue 

polyglutamine repeat sequence (polyQ80) fused to the N-terminal of GFP protein as 

well as a free GFP protein. A viral 2A peptide (v2A) sequence between the two GFP 

sequences allows their synthesis as separate entities by a “ribosomal-skip” mechanism 

(Provost, Rhee et al. 2007). Thus, translation of polyQ80-GFP-v2A-GFP mRNA gives 

1:1 stoichiometric synthesis of polyQ80-GFP and free GFP. PolyQ80-GFP 

subsequently aggregates and should be degraded by autophagy, while the free GFP 

remains soluble in the cytosol to act as an internal control.  
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Figure 2. Design of three GFP-based constructs for assay of autophagic flux. 

(A) Transgene PolyQ80-GFP-v2A-GFP. 

(B) Transgene GFP-Lc3a-GFP. 

(C) Transgene GFP-Lc3a. 

 

Construction of the GPF-Lc3a-GFP transgene 
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A sequence coding for GFP-Lc3a-GFP (Figure 2B and S1 File B) was synthesized by 

Biomatik and ligated into the pT2AL200R150G (Kawakami 2007) gene transfer vector 

(S1 File D). This construct encodes a fusion protein where GFP is linked to the N-

terminal of zebrafish Lc3a which, at its C-terminal, is linked to an additional GFP. 

When this transgene is expressed in cells, the most C-terminal glycine residue of Lc3a 

is cleaved by an endogenous ATG4 family protease, producing equimolar amounts of 

GFP-Lc3a and free GFP. GFP-Lc3a is conjugated to PE and localizes to 

autophagosomes (Kaizuka, Morishita et al. 2016). The GFP-Lc3a molecules attached 

to the autophagosomal inner membrane are subsequently degraded after fusion with 

lysosomes, while those on the outer membrane are deconjugated by Atg4 proteins and 

recycled back to the cytosol. The free GFP exists in the cytoplasm and functions as an 

internal control. Relative autophagic activity is measured as changes in the ratio of 

GFP-Lc3a / free GFP via western immunoblotting.  

 

Construction of the GFP-Lc3a transgene 

 

The GFP-Lc3a transgene (Figure 2C and S1 File C) in the pT2AL200R150G vector 

was derived from GFP-Lc3a-GFP by PCR amplification using 5’-phosphorylated 

primers to exclude the downstream GFP coding sequence followed by ligation to 

recircularise the plasmid. The sequences of the PCR primers used were 5’-

TAGATCGATGATGATCCAGACATGA-3’ and 5’-GCAGCCGAAGGTCTCCT-3’. 
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Zebrafish embryos 

 

Three mutations were involved in our research, a putatively null mutation in zebrafish 

psen2, psen2S4Ter, a model of a typical reading-frame-preserving fAD-type mutation in 

psen1, psen1Q96K97del, and a model of human PSEN2K115Efs (Jayadev, Leverenz et al. 

2010), psen1K97Gfs. Descriptions of the generation of these mutations were listed in S3 

File.  

 

Five different genotypes of zebrafish embryos, Tübingen (TU) wildtype (+/+), 

putatively psen2 null heterozygous (psen2S4Ter/+), putatively psen2 null homozygous 

(psen2S4Ter/psen2S4Ter), psen1Q96K97del heterozygous (psen1Q96K97del/+), and psen1K97Gfs 

heterozygous (psen1K97Gfs/+), were spawned either by mass mating or pair-mating of 

individuals. 

 

Microinjection of zebrafish embryos 

 

For the polyQ80-GFP-v2A-GFP assay, zebrafish zygotes were injected with ~5-10 nL 

of a solution containing 25ng/μL of the polyQ80-GFP-v2A-GFP transgene with 

25ng/μL of Tol2 transposase mRNA (Clark, Urban et al. 2011). For the GFP-Lc3a-GFP 

and GFP-Lc3a assays, zebrafish zygotes were injected with ~5-10 nL of a solution of 

50ng/μL of the GFP-Lc3a-GFP or GFP-Lc3a transgenes respectively with 25ng/μL of 
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the Tol2 transposase mRNA. The injected embryos were incubated at 28.5°C in E3 

medium (2011). At ~24 hours post fertilization (hpf), embryos showing widely 

distributed GFP expression (as visualized by fluorescence microscopy) were selected 

for subsequent analysis (Figure 1). 
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Figure 1. Experimental flow chart. 
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Rapamycin and Chloroquine treatments 

 

For the PolyQ80-GFP-v2A-GFP assay, GFP-expressing zebrafish embryos from 

microinjection of polyQ80-GFP-v2A-GFP were separated randomly into three groups 

at ~30 hpf. Two groups were treated with either 1μM rapamycin (Rapa) (SIGMA, 

R8781) or 50mM chloroquine (CQ) (SIGMA, C6628) from 30 hpf until 48 hpf, with 

one group remaining untreated as a control. The embryos were chilled and then lysed 

for western immunoblotting at ~48 hpf. 

 

For the GPF-Lc3a-GFP assay (or GFP-Lc3a expression analysis) at 48 hpf in +/+ 

embryos, GFP-expressing zebrafish embryos from microinjection were separated 

randomly into four groups at ~24 hpf. Three of these groups were treated with 

rapamycin (1μM) or chloroquine (50μM or 50mM) from 30 hpf until 48 hpf, and the 

remaining group remained untreated as a control. The embryos were chilled and then 

lysed immediately for western immunoblotting at ~48 hpf. 

 

For the GPF-Lc3a-GFP assay (or GFP-Lc3a expression analysis) at 96 hpf in +/+ larvae, 

GFP-expressing zebrafish embryos from microinjection were selected at ~24 hpf and 

randomly separated into several groups for treatment with rapamycin (1μM) or 

chloroquine (various concentrations) from 78 hpf until 96 hpf. Larvae were then chilled 

and lysed immediately for western immunoblotting at ~96 hpf. 
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Western immunoblot analyses 

 

48 and 52 hpf-old embryos were firstly dechorionated and deyolked and then placed in 

sample buffer (2% sodium dodecyl sulphate (SDS), 5% β-mercaptoethanol, 25% v/v 

glycerol, 0.0625 M Tris–HCl [pH 6.8], and bromophenol blue) (Ganesan, Moussavi 

Nik et al. 2014), heated immediately to 95°C for 10 min and then sonicated (Diagenode 

Bioruptor UCD-200) in an ice-water bath at high power mode for 10 min before loading 

onto polyacrylamide gels for electrophoresis (see below). The 96 hpf-old larvae were 

not deyolked before lysis in sample buffer. 

 

Samples were loaded onto NuPAGE™ 4-12% Bis-Tris Protein Gels (Invitrogen, 

NP0323BOX), and the separated proteins were subsequently transferred to 

nitrocellulose membrane (BIO-RAD, 1620115) using the Mini Gel Tank and Blot 

Module Set (Life technologies, NW2000). The nitrocellulose membranes were 

subsequently blocked with blocking reagent (Roche, 11921681001) and then probed 

with the primary antibody, polyclonal anti-GFP goat (ROCKLANDTM, 600-101-215), 

followed by secondary antibody, horseradish peroxidase (HRP) conjugated anti-goat 

antibody (ROCKLANDTM, 605-703-125). Finally, bound antibody was detected by 

chemiluminescence using SuperSignal™ West Pico PLUS Chemiluminescent 

Substrate (ThermoFisher, 34580). The ChemiDoc™ MP Imaging System (Bio-Rad) 

was used to image all the western immunoblots. The intensity of each band from 

western immunoblots was measured by Image Lab™ Software (Bio-Rad). All these 
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intensity data are presented in S2 File. 

 

Statistical tests 

 

For data sets with non-independent variables, one-way ANOVA was used if the data 

showed equal variances (Welch's ANOVA was used instead if the data showed unequal 

variances), followed by Games-Howell tests of significance between pairs of data 

columns. 

 

For data sets with independent variables, F-tests were first applied between different 

groups of data. If the p value of the F-test was >0.05, reflecting no significant difference 

between the variances of two groups, then a two-tailed t-test assuming equal variances 

was applied to the two groups. If the p value of the F-test was <0.05, reflecting a 

significant difference between the variances of two groups, then a two-tailed t-test 

assuming unequal variances was applied to the two groups. 

 

Results 

 

PolyQ80-based autophagy assay in zebrafish 

 

The viral 2A (v2A) system for simultaneous, stoichiometric expression of two peptides 

from single mRNA transcripts was first applied in zebrafish by Provost et al. (Provost, 
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Rhee et al. 2007). The presence of the v2A linker in a coding sequence causes ribosomes 

to “skip” production of a peptide bond without terminating translation. We sought to 

exploit this to adapt Ju et al.’s polyQ80-based assay of autophagic flux (described in 

2009) to zebrafish. Ju et al expressed fusions to luciferase of aggregating polyQ80 and 

non-aggregating polyQ21 in separate thigh muscles of mice (Ju, Miller et al. 2009). As 

a more direct measure of protein concentration we sought to measure by western 

immunoblotting the relative amounts of a polyQ80-GFP fusion and free GFP when 

these are translated in a 1:1 ratio from a single mRNA (Figureures 1 and 2A). The 

polyQ80-GFP-v2A-GFP transgene expressing these proteins is carried in a Tol2 

transposon vector and introduced into fertilized zebrafish eggs by microinjection 

together with transposase mRNA (see Materials and Methods, Figure 2A) (Note: We 

initially developed a polyQ80-GFP-v2A-mCherry-based system but this required 

immunoblotting against GFP followed by stripping and reprobing the blot to detect 

mCherry, and the expression ratios thus produced were then only comparable between 

the samples on individual blots – data not shown.) To allow stable propagation of the 

polyQ80-GFP-v2A-GFP transgene in Escherichia coli (i.e. to avoid recombination 

between the directly repeated GFP coding sequences) we introduced numerous silent 

mutations into the degenerate codon positions in the downstream, free GFP coding 

sequence (see Supplementary Data File 1). 

 

Injection of the polyQ80-GFP-v2A-GFP transgene into fertilized zebrafish eggs results 

in its widespread insertion into the chromosomes of embryonic cells. Expression of 
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GFP is detectable for weeks afterwards although the transgene does not appear to 

transmit through the germline (data not shown). Western immunoblotting of embryos 

(up to 48 hours post fertilization, hpf) or larvae (after 48 hpf) from these injected eggs 

identified three expected bands of protein: a small fraction of full-length polyQ80-GFP-

v2A-GFP, and greater amounts of separated polyQ80-GFP and free GFP proteins 

(Figure 3A).  
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Figure 3. polyQ80-GFP-v2A-GFP assay of autophagy. 

(A) Western immunoblots from polyQ80-GFP-v2A-GFP-injected +/+ embryos at 48 

hpf after treatment with rapamycin (Rapa) or chloroquine (CQ). 
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(B) Ratios (polyQ80-GFP / free GFP) in polyQ80-GFP-v2A-GFP-injected +/+ embryos 

at 48hpf after treatment with Rapa or CQ. Means with standard deviations (SDs) 

are shown. p-values are from two-tailed t-tests assuming equal variance (shown by 

results of F-tests). 

(C) Western immunoblots from polyQ80-GFP-v2A-GFP-injected +/+ embryos at 24 

hpf, 48 hpf, 72 hpf, and 96 hpf. 

(D) Ratios (polyQ80-GFP / free GFP) in polyQ80-GFP-v2A-GFP-injected +/+ 

embryos at 24 hpf, 48 hpf, 72 hpf, and 96 hpf. Means with SDs are indicated. The p 

value from a one-way ANOVA is 0.266>0.05, indicating that no significant difference 

in autophagic flux was found over the different time points. 

 

An advantage of zebrafish over mammalian models is the easy treatment of their living 

embryos with drugs by placement of these in the embryos’ aqueous support medium 

for direct absorption. (The absorption of less soluble drugs can be facilitated by co-

exposure to 1% DMSO, e.g. (Grunwald and Eisen 2002)). To test whether polyQ80-

GFP was being degraded by autophagy selectively relative to free GFP we sought to 

enhance autophagy induction or block autophagic flux using rapamycin, (Fleming and 

Rubinsztein 2011) or chloroquine (Yoon, Cho et al. 2010). Both drugs have previously 

been used successfully to modulate autophagy in zebrafish (Fleming and Rubinsztein 

2011; Cui, Sim et al. 2012).  
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In zebrafish embryos, autophagy is up-regulated at the pharyngula stage (24~48 hpf), 

and the earliest time point at which the phosphatidylethanolamin (PE)-Lc3-II conjugate 

(critical for autophagy induction) has been detected is 32 hpf (He, Bartholomew et al. 

2009). Therefore, in our research, injected embryos were exposed to 1μM rapamycin 

or 50mM chloroquine from 30 hpf before lysis at 48 hpf for analysis. The ratios of 

polyQ80-GFP to free GFP observed from both drug treatments compared to non-

treatment controls are presented in Figure 3B. The ratio (poly80Q-GFP / free GFP) was 

significantly reduced through rapamycin treatment (p=0.0090), indicating that 

autophagy was induced. The ratio (poly80Q-GFP / free GFP) was apparently increased 

through chloroquine treatment (p=0.0708), consistent with inhibition of autophagy. 

Since the changes in the ratios of poly80Q-GFP / free GFP are consistent with the 

changes in autophagy expected from these different drug treatments, the polyQ80-GFP-

v2A-GFP assay appears able to measure autophagic flux in zebrafish. 

 

The polyQ80-GFP / free GFP ratio observed from the polyQ80-GFP-v2A-GFP 

transgene possibly decreases between 24 hpf and 96 hpf as indicated by a statistically 

non-significant trend (Figure 3C and 3D) Also, we noticed that this assay itself is 

somewhat toxic to zebrafish embryos with approximately half of the injected embryos 

showing abnormal development at 24 hpf (data not shown). This may be due to the 

previously observed toxicity of polyglutamine proteins in zebrafish (Schiffer, Broadley 

et al. 2007; van Bebber, Paquet et al. 2010). Furthermore, in 2007, Schiffer et al. 

reported that polyQ102-GFP could aggregate to form large SDS-insoluble inclusions, 
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while free GFP was observed to be produced by removal of polyQ moieties from polyQ-

GFP fusion proteins (Schiffer, Broadley et al. 2007). All these phenomena might 

introduce unanticipated variability into observed polyQ80 / free GFP ratios (although 

this can be overcome somewhat by the extensive experimental replication that is 

facilitated by use of the zebrafish model system). For this reason we sought a less-toxic, 

aggregation-independent, but still internally-controlled alternative assay system. 

 

GFP-LC3-GFP probe to quantify autophagic flux by western immunoblotting 

 

In 2016, Kaizuka et al. (Kaizuka, Morishita et al. 2016) described constructs to visualize 

autophagic flux in zebrafish embryos. Their GFP-LC3-RFP fusion protein is cleaved 

into separate GFP-LC3 and RFP proteins by embryos’ endogenous ATG4 activity. The 

GFP-LC3 then associates with autophagosomes while the RFP acts as an internal 

control. 

  

We wished to adapt the assay from Kaizuka et al. to allow quantification of autophagic 

flux by western immunoblotting while avoiding the difficulties posed by use of 

polyQ80-GFP. However, we knew from previous unpublished work with GFP-v2A-

RFP fusion proteins that use of an RFP internal control for normalization of GFP 

expression is problematic since results are only comparable between samples on the 

same immunoblot. This difficulty could be overcome if GFP served both as autophagy 

target and as the internal control. Therefore we applied the tandem GFP principle of the 
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polyQ80-GFP-v2A-GFP construct to create GFP-LC3-GFP. This is cleaved by ATG4 

within cells to give, initially, equimolar amounts of GFP-LC3 and free GFP proteins 

(Figure 2B). When assayed, these proteins have discernibly different molecular masses 

identifiable on western immunoblots probed with a single anti-GFP primary antibody 

(Figure 2B). The mean GFP-Lc3a / free GFP ratio observed in wild type (+/+) embryos 

at 48 hpf is slightly higher than at 96 hpf (1.22 vs 1.13 in Figure 5A and 5B respectively). 

However, similar to the polyQ80-GFP-v2A-GFP assay, this difference is not 

statistically significant (p=0.42).  

 

To test whether changes in the GFP-Lc3a / free GFP ratio reflect changes in autophagic 

flux, the GPF-Lc3a-GFP construct was expressed in embryos subjected to treatment 

with rapamycin or chloroquine. Treatment with rapamycin produced a significant 

decrease in the GFP-Lc3a / free GFP ratio (p=0.001, Figure 5A), reflecting the expected 

increase in autophagy. Unexpectedly, treatment with chloroquine, both at high (50mM) 

and low (50μM) concentrations resulted in significant decreases in the GFP-Lc3a / free 

GFP ratio (Figure 5A). This apparent increase in autophagy conflicted with 

chloroquine’s activity as an autophagy inhibitor, which implied that an unanticipated 

factor could be distorting the observed ratio during the chloroquine treatments. 
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Figure 5. Ratios (GFP-Lc3a / free GFP) from the GFP-Lc3a-GFP assay of 

autophagy. 

(A) Embryos at 48 hpf. +/+ embryos were treated with rapamycin, Rapa, or various 

concentrations of chloroquine, CQ. psen2S4Ter mutant embryos were not treated 

with these drugs. p-values are from two-tailed t-tests assuming either equal or 

unequal variances as appropriate. 

(B) +/+ embryos at 96 hpf after treatment with various concentrations of chloroquine. 

The p value from Welch's ANOVA is 0.04<0.05, showing that there was significant 

difference in autophagic flux over the concentrations of chloroquine treatment. p-



184 
 

values from following Games-Howell tests are presented. 

(C) Zebrafish embryos of various genotypes at 96 hpf. Only +/+ embryos were treated 

with rapamycin or chloroquine as indicated. p-values are from two-tailed t-tests 

assuming either equal or unequal variances as appropriate. 

 

 

After investigating the scientific literature we discovered a report from Ni et al. in 2011 

describing that both chloroquine and rapamycin treatments of HeLa cells can cause 

increased lysosomal pH and cleavage of GFP-LC3 to release free GFP (similar to the 

removal of polyQ from polyQ-GFP as observed by Schiffer et al (Schiffer, Broadley et 

al. 2007)). If this form of cleavage also existed in zebrafish it might provide an 

additional source of free GFP that would affect observed GFP-Lc3a / GFP ratios in 

embryos expressing the GPF-Lc3a-GFP assay transgene. To test this possibility we 

constructed a simple fusion of GFP to Lc3a by deleting the downstream GFP coding 

sequences from the GFP-Lc3a-GFP transgene to create GFP-Lc3a (Figure 2C). The 

GFP-Lc3a transgene was then expressed in zebrafish embryos in the same way as for 

GFP-Lc3a-GFP and the rapamycin and chloroquine treatments were then repeated. At 

48 hpf, free GFP (i.e. not fused to Lc3a) can clearly be observed on western 

immunoblots (Figure 6A), confirming that a protease activity that separates GFP from 

Lc3a exists in zebrafish. Interestingly, the GFP-Lc3a protein from this transgene is 

apparently observable as both GFP-Lc3a-I and GFP-Lc3a-II forms whereas we have 

only observed a single form of GFP-Lc3a protein when this is produced from the GFP-
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Lc3a-GFP transgene. A similar observation was made by Kaizuka et al. (Kaizuka, 

Morishita et al. 2016) for expression of GFP-LC3 from their GFP-LC3-RFP-LC3G 

construct when this was expressed from a transgene (as our protein fusions are) rather 

than from injected mRNA. The free-GFP derived from our GFP-Lc3a transgene is 

certainly non-negligible relative to the observed GFP-Lc3a-I (e.g. in untreated, wild 

type embryos, see Figure 6A) at 48 hpf. This implies that free GFP from cleavage of 

GFP-Lc3a may significantly affect GFP-Lc3a / GFP ratios from GFP-Lc3a-GFP-

injected embryos at this developmental time point. When we observed cleavage of 

GFP-Lc3a in 96 hpf larvae, far less free GFP was seen relative to GFP-Lc3a-I. 

Therefore, the ratio of GFP-Lc3a to GFP may be less distorted by free GFP from 

cleavage of GFP-Lc3a at 96 hpf. 
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Figure 6. Western immunoblots from GFP-Lc3a-injected embryos and larvae. 

(A) 48 hpf and (B) 96 hpf respectively. +/+ embryos and larvae were also treated with 

rapamycin (Rapa) or chloroquine (CQ) as indicated. 

 

 

When we repeated the chloroquine treatments on GFP-Lc3a-GFP transgene-injected 

zebrafish embryos with lysis at 96hpf we then observed a slightly increased GFP-Lc3a 

/ free GFP ratio at the lowest chloroquine dosage (50μM) although without apparent 

statistical significance (p=0.6232, Figure 5B). At higher concentrations of chloroquine 
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(12.5 mM and above) the GFP-Lc3a / free GFP ratio was decreased or was very variable 

(Figure 5B). Ni et al. reported that saturating doses of chloroquine in HeLa cells are 

able to block GFP-LC3 cleavage completely (Ni, Bockus et al. 2011) and this may also 

be occurring in some zebrafish embryos treated with 50 mM chloroquine. A large 

proportion of larvae (~80%) were dead at 96 hpf after the 50mM chloroquine treatment 

indicating high lethality of this chloroquine concentration. 

 

We conclude that exploitation of the GFP-Lc3a-GFP assay is best performed at 96hpf 

or later to minimize the influence of generation of free GFP from cleavage of GFP-

Lc3a. Generation of free GFP from cleavage of GFP-Lc3a reduces the sensitivity of the 

GPF-Lc3a-GFP construct for detecting decreases in autophagic flux.  

 

Autophagic flux in zebrafish psen mutants expressing GFP-Lc3a-GFP 

Our tests of the GFP-Lc3a-GFP assay indicated that, when used at 96 hpf, it can reveal 

changes in autophagic flux without the toxicity and other problems encountered with 

the aggregation-based polyQ80-GFP-v2A-GFP assay. Therefore, we exploited the 

GFP-Lc3a-GFP assay to examine autophagic flux changes in a number of zebrafish 

presenilin mutants that we have generated in our laboratory (S3 File). These are: a 

typical fAD-like mutation in psen1 lacking two codons but preserving the open reading 

frame, psen1Q96K97del; a putatively null mutation of the psen2 gene, psen2S4Ter; and a 

zebrafish model of the unique, open reading frame-truncating PSEN fAD mutation 

PSEN2K115Efs (Jayadev, Leverenz et al. 2010). We have previously suggested that this 
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latter mutation causes fAD by inappropriate mimicry of expression of an hypoxia-

induced, naturally-occurring truncated isoform of PSEN2 denoted PS2V (Moussavi 

Nik, Newman et al. 2015). In zebrafish, the PS2V-equivalent isoform is expressed from 

the PSEN1-orthologous gene, psen1. Therefore, we have modeled this mutation in 

zebrafish by generation of the psen1 allele, K97Gfs. 

 

The effects of the fAD-like mutations were tested in the heterozygous state 

corresponding to the dominant inheritance pattern shown by such mutations in humans. 

The effects of the putatively null mutation of psen2 were tested in both homozygous 

and heterozygous embryos to examine, respectively, whether psen2 activity has any 

effect on autophagy and whether this effect is haploinsufficient. Fertilized eggs bearing 

presenilin mutations were injected with the GFP-Lc3a-GFP transgene and then 

examined by western immunoblotting at 96 hpf (Figure 5C). Both heterozygosity for 

the fAD-like psen1Q96K97del mutation and loss of psen2 activity were observed to 

decrease autophagic flux significantly (p=0.0268 and p=0.0086 respectively) as 

expected from previous analysis of fAD mutations in human PSEN1 (Lee, Yu et al. 

2010) and confirming that psen2 also functions in autophagy. Heterozygosity for the 

putatively null mutation in psen2 also appeared to reduce the GFP-Lc3a / free GFP ratio 

indicating decreased autophagic flux although this did not reach statistical significance 

(p=0.063).  

 

Discussion 
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To monitor autophagic flux in zebrafish embryos, we first designed the polyQ80-GFP-

v2A-GFP assay that is based on the assumption that polyQ80-GFP aggregates and is a 

target for autophagy while free GFP is primarily degraded via the proteasome. Since 

this assay provides 1:1 stoichiometric co-expression of polyQ80-GFP and free GFP 

protein within the same cells in vivo it should reflect changes in autophagic flux by 

changes in the ratio of polyQ80-GFP / free GFP as observed by western immunoblotting. 

Since both the polyQ80-GFP and the free GFP protein are detected simultaneously by 

the same primary antibody, polyQ80-GFP / free GFP ratios can be compared on separate 

immunoblots which greatly facilitates experimental replication and statistical analysis. 

Unfortunately, due to an error at the beginning of this project, the concentration of the 

chloroquine treatment used for manipulating the autophagic flux (50mM) was 1,000-

fold higher than it should have been (50μM). However, the results (Figure 3) showed 

that the polyQ80-GFP-v2A-GFP assay was still revealed inhibition caused by treatment 

with chloroquine treatment at the extremely high concentration, possibly due to the 

internal control involved in this assay. While the rapamycin and chloroquine treatments 

of embryos injected with the polyQ80-GFP-v2A-GFP transgene produced ratio changes 

indicative of the expected changes in autophagic flux, the aggregation of polyQ80 may, 

itself, induce autophagy and this would limit the assay’s sensitivity. This issue was 

overcome by replacing the polyQ80-GFP protein with a non-aggregating GFP-Lc3a 

fusion protein, based on the approach taken by Kaizuka et al. (Kaizuka, Morishita et al. 

2016). Like the polyQ80-GFP-v2A-GFP construct, the GFP-Lc3a-GFP construct 
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produces 1:1 stoichiometric co-expression of two proteins in the same cells in vivo 

(GFP-Lc3a and free GFP proteins).  

 

The GFP-Lc3a-GFP assay assumes that GFP-Lc3a protein is a target of autophagy 

while the free GFP protein remains in the cytosol as an internal control. However, the 

GFP-Lc3a-GFP transgene should not affect autophagic flux itself nor TORC1 activity 

as the related GFP-LC3-RFP-LC3G construct of Kaizuka et al. did not appear to do 

so (Kaizuka, Morishita et al. 2016). Nevertheless, the GFP-Lc3a-GFP assay has its own 

particular limitations. Cleavage of LC3 away from GFP was reported in HeLa cells 

when lysosomal pH was increased by chloroquine or rapamycin treatments (Ni, Bockus 

et al. 2011). Consistent with this, we also saw production of free GFP by cleavage of 

GFP-Lc3a in zebrafish embryos and larvae (Figure 6A and 5B). Since the free GFP 

produced by GFP-Lc3a cleavage provided an additional source of free GFP, this could 

affect the measured ratio of GFP-Lc3a / free GFP and reduce the sensitivity of the assay 

to detect decreases in autophagic flux. We found that this effect was minimized at 96 

hpf compared to 48 hpf. (Note that the observations by Schiffer et al. imply that 

polyQ80-GFP will also form free GFP by removal of polyQ80 in zebrafish embryos 

(Schiffer, Broadley et al. 2007).) 

 

It is possible that development of a GFP-Lc3a-RFP-GFP transgene-based autophagy 

assay might overcome the insensitivity caused by generation of free GFP from GFP-

Lc3a since an RFP-GFP fusion would be easy to identify separately from any free GFP 
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in western immunoblotting. The accumulation of free GFP versus GFP-Lc3a in such an 

assay would be additionally informative regarding autophagic flux versus lysosomal 

accumulation.   

 

Using the GFP-Lc3a-GFP assay, we were able to compare the levels of autophagic flux 

in zebrafish mutant and wild type larvae. In psen2S4Ter/psen2S4Ter larvae, and possibly 

psen2S4Ter/+ larvae, we detected decreased autophagic flux (Figure 5C), supporting that 

psen2, like psen1, plays a role in regulating cells’ autophagic activity. This has not 

previously been tested. However, we should note that, in terms of Psen2 protein’s role 

in -secretase activity, our previous work has shown that zebrafish Psen2 plays a greater 

role in Notch signaling than its corresponding mammalian orthologue (Selkoe and 

Kopan 2003) and we cannot exclude that zebrafish Psen2 is more similar to Psen1 in 

its role in autophagy than mammalian PSEN2 is similar to PSEN1. In heterozygous 

larvae of the “typical” (reading frame-preserving) fAD mutation model psen1Q96K97del, 

we also observed decreased autophagic flux (Figure 5C).  

 

The K115Efs mutation of human PSEN2 is unique among the human PRESENILIN fAD 

mutations in that it truncates the open reading frame of the gene. Nevertheless, our 

unpublished analyses of aged adult fish modelling this mutation show similar 

alterations in expression of the genes responding to hypoxia to those seen in aged fish 

carrying the more “typical” fAD-like mutation Q96K97del (Newman et al. manuscript 

in preparation). Therefore, it will be interesting to examine autophagic flux in such 
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aged fish to see whether it subsequently becomes inhibited (as is typical in Alzheimer’s 

disease (Nixon, Wegiel et al. 2005)). To this end, we are currently determining whether 

the GFP-Lc3a-GFP transgene can be transmitted through the zebrafish germline for 

widespread expression in adult tissues. 

 

In summary, we tested two GFP-based assays intended to detect changes in autophagic 

flux in zebrafish embryos and larvae by western immunoblotting: polyQ80-GFP-v2A-

GFP and GFP-Lc3a-GFP. Both transgenes provide 1:1 stoichiometric co-expression of 

an autophagy target protein and of free GFP as an internal control. The two assays both 

appeared able to reflect changes in autophagic flux although each assay displayed 

particular limitations. Using the GFP-Lc3a-GFP assay, we found that lack of psen2 

activity in zebrafish reduces autophagic flux as does heterozygosity for a typically 

reading-frame-preserving fAD-like mutation of psen1 (Q96K97del). 
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4.3 Supplementary Information 

 

This section is included in the thesis as information supplementary to Section 4.2. It 

contains additional information not included in the main text of the manuscript. 

 

Supporting Information File S1 

 

(A) Sequence design for the polyQ80-GFP-v2A-GFP construct 

 

Different regions of the sequence are labeled with different highlight colours 

corresponding to the legends below: 

 

 EcoRV-BamHI-Kozak-Start-polyGlu80-GFP-v2A-GFP-Stop-ClaI-EcoRI-EcoRV 

 G in polyGlu80 region refers to numerous silent mutations introduced in to the 

degenerate codon positions 

 X in the downstream GFP region refers to numerous silent mutations introduced in 

to the degenerate codon positions 

 

Sequence of polyQ80-GFP-v2A-GFP construct: 

 

5’- 

GATATCGGATCCGCCACCATGCAACAGCAACAGCAACAACAGCAGCAACA

GCAACAACAACAGCAGCAGCAACAACAACAGCAACAGCAACAGCAGCAA

CAACAACAGCAGCAACAGCAACAACAACAACAACAGCAACAGCAACAAC

AACAACAGCAACAGCAGCAACAGCAGCAACAACAGCAGCAGCAGCAACA

ACAGCAACAACAGCAACAACAACAACAACAACAGCAACAACAACAGCAA

CAACAGCAGCAACAAATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGG

TGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAGTTC

AGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCT

GAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGT

GACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACAT

GAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGG

AGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAG

GTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCAT

CGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACT

ACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATC

AAGGTGAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCT

CGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGC

TGCCCGACAACCACTACCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCC
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AACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGG

GATCACTCTCGGCATGGACGAGCTGTACAAGGGCTCCGGAGCTACAAATTT

CTCTCTGTTGAAACAGGCTGGTGACGTCGAGGAGAATCCTGGCCCAATGG

TGAGCAAGGGAGAGGAGCTGTTCACAGGAGTGGTGCCTATCCTGGTGGAG

CTGGACGGAGACGTGAACGGACACAAGTTCAGCGTGAGCGGAGAGGGAG

AGGGAGACGCTACATACGGAAAGCTGACACTGAAGTTCATCTGTACAACA

GGAAAGCTGCCTGTGCCTTGGCCTACACTGGTGACAACACTGACATACGG

AGTGCAGTGTTTCAGCAGATACCCTGACCACATGAAGCAGCACGACTTCTT

CAAGAGCGCTATGCCTGAGGGATACGTGCAGGAGAGAACAATCTTCTTCA

AGGACGACGGAAACTACAAGACAAGAGCTGAGGTGAAGTTCGAGGGAGA

CACACTGGTGAACAGAATCGAGCTGAAGGGAATCGACTTCAAGGAGGACG

GAAACATCCTGGGACACAAGCTGGAGTACAACTACAACAGCCACAACGTG

TACATCATGGCTGACAAGCAGAAGAACGGAATCAAGGTGAACTTCAAGAT

CAGACACAACATCGAGGACGGAAGCGTGCAGCTGGCTGACCACTACCAGC

AGAACACACCTATCGGAGACGGACCTGTGCTGCTGCCTGACAACCACTAC

CTGAGCACACAGAGCGCTCTGAGCAAGGACCCTAACGAGAAGAGAGACC

ACATGGTGCTGCTGGAGTTCGTGACAGCTGCTGGAATCACACTGGGAATG

GACGAGCTGTACAAGTAGATCGATGAATTCGATATC-3’ 
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(B) Sequence design for the GFP-Lc3a-GFP construct 

 

Different regions of the sequence are labeled with different highlight colours 

corresponding to the legends below: 

 

 EcoRV-BamHI-Kozak-StartGFP-LC3a-GFP-Stop-ClaI-EcoRI-EcoRV 

 X in the downstream GFP region refers to numerous silent mutations introduced in 

to the degenerate codon positions 

 

Sequence of GFP-Lc3a-GFP construct: 

 

5’- 

GATATCGGATCCGCCACCATGGTGAGCAAGGGCGAGGAGCTGTTCACCGG

GGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAGT

TCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACC

CTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTC

GTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCAC

ATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAG

GAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGA

GGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCA

TCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAAC

TACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATC

AAGGTGAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCT

CGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGC

TGCCCGACAACCACTACCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCC

AACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGG

GATCACTCTCGGCATGGACGAGCTGTACAAGATGCCATCCGACAGACCCTT

CAAACAACGACGGAGCTTCGCTGATCGTTGCAAGGAAGTGCAGCAGATCC

GAGAGCAGCATCCTAATAAAATTCCGGTGATCATTGAGAGGTATAAGGGGG

AAAAGCAACTTCCAGTCTTGGACAAGACCAAGTTCCTTGTCCCTGACCATG

TTAACATGAGTGAGCTGGTAAAGATTATCAGGCGTCGATTGCAGCTCAACC

CCACCCAGGCCTTTTTCCTTCTTGTCAATCAGCACAGCATGGTCAGCGTGT

CCACCCCCATTTCTGAGATCTACGAACAAGAGCGGGACGAAGACGGCTTC

CTCTACATGGTTTACGCCTCCCAGGAGACCTTCGGCTGCATGGTGAGCAAG

GGAGAGGAGCTGTTCACAGGAGTGGTGCCTATCCTGGTGGAGCTGGACGG

AGACGTGAACGGACACAAGTTCAGCGTGAGCGGAGAGGGAGAGGGAGAC

GCTACATACGGAAAGCTGACACTGAAGTTCATCTGTACAACAGGAAAGCT

GCCTGTGCCTTGGCCTACACTGGTGACAACACTGACATACGGAGTGCAGTG

TTTCAGCAGATACCCTGACCACATGAAGCAGCACGACTTCTTCAAGAGCGC

TATGCCTGAGGGATACGTGCAGGAGAGAACAATCTTCTTCAAGGACGACG

GAAACTACAAGACAAGAGCTGAGGTGAAGTTCGAGGGAGACACACTGGT

GAACAGAATCGAGCTGAAGGGAATCGACTTCAAGGAGGACGGAAACATCC

TGGGACACAAGCTGGAGTACAACTACAACAGCCACAACGTGTACATCATG

GCTGACAAGCAGAAGAACGGAATCAAGGTGAACTTCAAGATCAGACACA
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ACATCGAGGACGGAAGCGTGCAGCTGGCTGACCACTACCAGCAGAACACA

CCTATCGGAGACGGACCTGTGCTGCTGCCTGACAACCACTACCTGAGCACA

CAGAGCGCTCTGAGCAAGGACCCTAACGAGAAGAGAGACCACATGGTGCT

GCTGGAGTTCGTGACAGCTGCTGGAATCACACTGGGAATGGACGAGCTGT

ACAAGTAGATCGATGAATTCGATATC-3’ 
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(C) Sequence design for the GFP-Lc3a construct 

 

Different regions of the sequence are labeled with different highlight colours 

corresponding to the legend below: 

 

 EcoRV-BamHI-Kozak-StartGFP-LC3a-Stop-ClaI-EcoRI-EcoRV 

 

Sequence of the GFP-Lc3a construct: 

 

5’- 

GATATCGGATCCGCCACCATGGTGAGCAAGGGCGAGGAGCTGTTCACCGG

GGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAGT

TCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACC

CTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTC

GTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCAC

ATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAG

GAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGA

GGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCA

TCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAAC

TACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATC

AAGGTGAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCT

CGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGC

TGCCCGACAACCACTACCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCC

AACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGG

GATCACTCTCGGCATGGACGAGCTGTACAAGATGCCATCCGACAGACCCTT

CAAACAACGACGGAGCTTCGCTGATCGTTGCAAGGAAGTGCAGCAGATCC

GAGAGCAGCATCCTAATAAAATTCCGGTGATCATTGAGAGGTATAAGGGGG

AAAAGCAACTTCCAGTCTTGGACAAGACCAAGTTCCTTGTCCCTGACCATG

TTAACATGAGTGAGCTGGTAAAGATTATCAGGCGTCGATTGCAGCTCAACC

CCACCCAGGCCTTTTTCCTTCTTGTCAATCAGCACAGCATGGTCAGCGTGT

CCACCCCCATTTCTGAGATCTACGAACAAGAGCGGGACGAAGACGGCTTC

CTCTACATGGTTTACGCCTCCCAGGAGACCTTCGGCTGCTAGATCGATGAAT

TCGATATC-3’ 
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(D) Sub-cloning of the GFP-based constructs into the Tol2 vector 

 

The pT2AL200R150G (Tol2) vector (~5.5 kbp) was provided by the Kawakami 

laboratory (Kawakami 2007). It contains a GFP expression cassette flanked by BamHI 

and ClaI restriction sites. The GFP expression cassette (~700 bp) was removed through 

dual restriction enzyme cleavage using BamHI-HF ® and ClaI (NEB, R3136S and 

R0197S).  

 

Both the polyQ80-GFP-v2A-GFP and the GFP-Lc3a-GFP coding sequences were 

synthesized by Biomatik. They were originally provided in the pBluescript II SK(+) 

vector. Both the polyQ80-GFP-v2A-GFP region (~1.8 kbp) and the GFP-Lc3a-GFP 

region (~1.8 kbp) were excised from their vectors using restriction enzyme cleavage 

with BamHI-HF ® and ClaI (NEB, R3136S and R0197S respectively), and then ligated 

into the Tol2 backbone (~4.7 kbp) using T4 DNA ligase (Sigma-Aldrich, KEM0020). 

 

 

 
Kawakami, K. (2007). "Tol2: a versatile gene transfer vector in vertebrates." Genome Biol 8(1). 
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Supporting Information File S2 

 

Table 1. Intensity ratios of western immunoblots for Figure 3B 

TU polyQ80-GFP-v2A-GFP injected with nontreatment at 48 hpf 

polyQ80-GFP free GFP polyQ80-GFP / free GFP 

14,498,847 7,759,620 1.868499617 

21,474,160 11,707,000 1.834300846 

7,731,342 4,183,250 1.848166378 

3,826,060 1,909,124 2.004091929 

TU polyQ80-GFP-v2A-GFP injected with 50mM Chloroquine at 48 hpf 

polyQ80-GFP free GFP polyQ80-GFP / free GFP 

11,681,868 5,942,475 1.965825351 

8,149,416 3,414,906 2.386424692 

3,437,312 1,763,456 1.94919068 

1,254,030 544,200 2.304355017 

TU polyQ80-GFP-v2A-GFP injected with 1μM Rapamycin at 48 hpf 

polyQ80-GFP free GFP polyQ80-GFP / free GFP 

9,733,899 8,463,586 1.150091581 

11,274,655 7,505,820 1.502121687 

8,219,406 5,247,346 1.566392992 

5,336,812 3,293,472 1.620421245 

 

Table2. Intensity ratios of western immunoblots for Figure 3D 

TU polyQ80-GFP-v2A-GFP injected with nontreatment at 24 hpf 

polyQ80-GFP free GFP polyQ80-GFP / free GFP 

8,653,702 4,962,268 1.74390057 

5,754,224 2,276,400 2.527773678 

5,565,504 2,795,436 1.990925208 

TU polyQ80-GFP-v2A-GFP injected with nontreatment at 48 hpf 

polyQ80-GFP free GFP polyQ80-GFP / free GFP 

10,040,730 5,601,680 1.79244977 

8,491,950 5,235,390 1.622028158 

2,155,167 1,046,925 2.058568665 

TU polyQ80-GFP-v2A-GFP injected with nontreatment at 72 hpf 

polyQ80-GFP free GFP polyQ80-GFP / free GFP 

2,893,472 1,839,744 1.57275795 

4,548,273 3,152,068 1.442948883 

2,000,684 1,056,104 1.894400551 
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TU polyQ80-GFP-v2A-GFP injected with nontreatment at 96 hpf 

polyQ80-GFP free GFP polyQ80-GFP / free GFP 

2,893,472 1,839,744 1.84518448 

7,826,031 10,280,358 0.761260551 

1,209,186 727,078 1.663076039 

 

Table 3. Intensity ratios of western immunoblots for Figure 5A 

TU GFP-Lc3a-GFP injected with nontreatment at 48 hpf 

GFP-Lc3a free GFP GFP-Lc3a / free GFP 

3,950,212 3,817,744 1.034698 

3,145,700 2,042,920 1.539806 

2,258,838 2,032,146 1.111553 

1,990,170 1,769,940 1.124428 

1,872,738 1,852,812 1.010754 

1,870,272 1,643,058 1.138287 

2,176,832 1,416,072 1.537233 

1,259,356 1,205,064 1.045053 

285,824 150,500 1.899163 

3,577,644 3,187,072 1.122549 

510,228 438,912 1.1624836 

2,153,067 1,220,709 1.763784 

2,583,780 2,129,060 1.21357782 

495,615 434,188 1.14147558 

1,319,140 984,260 1.3402353 

1,621,326 1,431,948 1.132252 

1,269,960 1,671,040 0.759982 

1,737,144 1,988,946 0.87339928 

1,640,484 1,659,114 0.98877112 

1,687,770 1,345,734 1.25416316 

2,796,020 2,066,900 1.35276017 

TU GFP-Lc3a-GFP injected with 1μM Rapamycin at 48 hpf 

GFP-Lc3a free GFP GFP-Lc3a / free GFP 

3,056,022 3,190,032 0.957991 

3,069,846 3,277,116 0.936752 

3,184,326 3,182,652 1.000526 

2,986,326 2,895,606 1.03133 

203,084 185,864 1.092648 

1,223,712 1,233,512 0.992055 

652,232 828,240 0.787492 

1,032,108 849,772 1.21457 

1,079,280 1,241,838 0.86909887 
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4,372,164 5,062,572 0.86362505 

2,510,760 2,936,700 0.85495965 

3,938,634 4,079,355 0.96550411 

TU GFP-Lc3a-GFP injected with 50μM Chloroquine at 48 hpf 

GFP-Lc3a free GFP GFP-Lc3a / free GFP 

2,660,580 3,439,260 0.77359083 

4,291,002 4,516,974 0.9499727 

2,539,680 2,421,820 1.04866588 

5,487,020 6,388,080 0.85894666 

TU GFP-Lc3a-GFP injected with 50mM Chloroquine at 48 hpf 

GFP-Lc3a free GFP GFP-Lc3a / free GFP 

1,320,066 1,605,960 0.82197938 

1,180,674 1,763,874 0.66936414 

1,300,356 1,865,430 0.6970811 

1,048,014 1,414,134 0.7410995 

4,167,744 3,251,640 1.28173599 

1,106,560 1,029,260 1.0751025 

2,059,860 1,968,560 1.04637908 

4,037,334 3,353,574 1.20388994 

psen2S4Ter/+ GFP-Lc3a-GFP injected with nontreatment at 48 hpf 

GFP-Lc3a free GFP GFP-Lc3a / free GFP 

1,480,332 727,412 2.03506678 

2,954,842 2,146,870 1.37634882 

3,056,151 2,480,247 1.23219623 

1,030,086 589,680 1.746855922 

psen2S4Ter/psen2S4Ter GFP-Lc3a-GFP injected with nontreatment at 48 hpf 

GFP-Lc3a free GFP GFP-Lc3a / free GFP 

927,675 709,737 1.3070687 

3,620,232 2,372,526 1.525898 

3,099,942 2,199,834 1.409171 

1,388,289 963,543 1.44081686 

1,790,558 1,295,206 1.38245036 

2,729,748 1,561,875 1.74773782 

2,639,472 1,454,112 1.81517792 

1,605,076 1,205,336 1.331641965 

853,360 489,720 1.742547 

2,311,940 2,299,320 1.005489 

 

Table 4. Intensity ratios of western immunoblots for Figure 5B 

TU GFP-Lc3a-GFP injected with nontreatment at 96 hpf 

GFP-Lc3a free GFP GFP-Lc3a / free GFP 
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1,183,302 1,604,538 0.73747209 

906,930 916,056 0.990038 

814,536 537,282 1.516030688 

720,846 820,116 0.878956 

1,417,731 1,306,368 1.085246 

782,800 620,380 1.26180728 

286,300 397,800 0.719708 

186,240 227,000 0.820441 

128,840 154,120 0.835972 

154,300 290,100 0.531886 

851,634 912,345 0.933456 

1,503,630 1,548,756 0.970863 

1,448,503 921,025 1.572708 

830,235 386,358 2.148875 

913,857 842,646 1.084509 

2,881,120 2,286,856 1.259861 

2,525,309 3,718,528 0.679115 

8,115,093 7,072,527 1.147411 

4,307,205 4,169,592 1.033004 

3,074,640 2,100,680 1.46364 

7,226,899 3,639,635 1.985611 

TU GFP-Lc3a-GFP injected with 50μM Chloroquine at 96 hpf 

GFP-Lc3a free GFP GFP-Lc3a / free GFP 

413,010 362,484 1.13938822 

655,082 780,596 0.839207 

1,854,580 2,293,360 0.808673736 

2,189,237 2,138,773 1.023595 

481,257 332,052 1.449342 

918,206 832,416 1.103061 

732,424 642,774 1.139474 

525,609 237,468 2.213389 

TU GFP-Lc3a-GFP injected with 12.5mM Chloroquine at 96 hpf 

GFP-Lc3a free GFP GFP-Lc3a / free GFP 

154,780 461,240 0.335574 

204,360 384,580 0.531385 

211,740 365,740 0.578936 

129,306 286,534 0.451276 

TU GFP-Lc3a-GFP injected with 25mM Chloroquine at 96 hpf 

GFP-Lc3a free GFP GFP-Lc3a / free GFP 

327,810 286,755 1.143171 

291,260 338,720 0.859884 

293,664 446,754 0.657328 

TU GFP-Lc3a-GFP injected with 50mM Chloroquine at 96 hpf 
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GFP-Lc3a free GFP GFP-Lc3a / free GFP 

880,380 725,814 1.21295539 

248,382 328,680 0.755695509 

175,518 64,962 2.701856 

 

Table 5. Intensity ratios of western immunoblots for Figure 5C 

TU GFP-Lc3a-GFP injected with nontreatment at 96 hpf 

GFP-Lc3a free GFP GFP-Lc3a / free GFP 

1,183,302 1,604,538 0.73747209 

906,930 916,056 0.990038 

814,536 537,282 1.516030688 

720,846 820,116 0.878956 

1,417,731 1,306,368 1.085246 

782,800 620,380 1.26180728 

286,300 397,800 0.719708 

186,240 227,000 0.820441 

128,840 154,120 0.835972 

154,300 290,100 0.531886 

851,634 912,345 0.933456 

1,503,630 1,548,756 0.970863 

1,448,503 921,025 1.572708 

830,235 386,358 2.148875 

913,857 842,646 1.084509 

2,881,120 2,286,856 1.259861 

2,525,309 3,718,528 0.679115 

8,115,093 7,072,527 1.147411 

4,307,205 4,169,592 1.033004 

3,074,640 2,100,680 1.46364 

7,226,899 3,639,635 1.985611 

TU GFP-Lc3a-GFP injected with 50μM Chloroquine at 96 hpf 

GFP-Lc3a free GFP GFP-Lc3a / free GFP 

413,010 362,484 1.13938822 

655,082 780,596 0.839207 

1,854,580 2,293,360 0.808673736 

2,189,237 2,138,773 1.023595 

481,257 332,052 1.449342 

918,206 832,416 1.103061 

732,424 642,774 1.139474 

525,609 237,468 2.213389 

TU GFP-Lc3a-GFP injected with 1μM Rapamycin at 96 hpf 

GFP-Lc3a free GFP GFP-Lc3a / free GFP 
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802,548 906,804 0.88502918 

824,562 1,422,612 0.579611 

563,238 583,290 0.965622589 

592,434 828,972 0.714661 

402,174 651,654 0.617159 

803,901 1,434,615 0.56036 

825,740 1,256,160 0.657353 

195,860 410,160 0.47752097 

1,500,282 1,790,460 0.837931 

1,335,810 2,551,395 0.523561 

557,194 325,261 1.713067 

972,660 1,243,780 0.782019 

296,560 380,974 0.778425824 

531,916 497,530 1.06911342 

756,860 407,580 1.856960597 

914,980 977,520 0.936021769 

psen2S4Ter/+ GFP-Lc3a-GFP injected with nontreatment at 96 hpf 

GFP-Lc3a free GFP GFP-Lc3a / free GFP 

273,903 374,997 0.73041384 

488,103 331,527 1.472287 

90,951 58,569 1.552886 

212,760 222,660 0.955538 

1,018,160 531,784 1.914612 

1,400,720 471,960 2.967879 

2,093,889 1,122,198 1.86588196 

2,996,340 1,544,660 1.939806 

psen2S4Ter/psen2S4Ter GFP-Lc3a-GFP injected with nontreatment at 96 hpf 

GFP-Lc3a free GFP GFP-Lc3a / free GFP 

1,401,444 443,052 3.16315918 

1,165,986 469,530 2.483305 

341,316 195,426 1.746522981 

206,400 125,120 1.649616 

308,300 107,400 2.870577 

463,840 330,120 1.405065 

126,440 131,580 0.960936 

1,986,270 809,666 2.45319675 

psen1Q96K97del/+ GFP-Lc3a-GFP injected with nontreatment at 96 hpf 

GFP-Lc3a free GFP GFP-Lc3a / free GFP 

565,824 663,705 0.852523335 

300,090 236,460 1.269094 

709,403 260,243 2.725925 

3,511,318 3,143,709 1.11693481 

2,228,380 795,900 2.799824 
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1,154,868 962,390 1.2 

1,386,546 502,173 2.761092 

2,239,568 1,545,061 1.449501 

1,333,517 307,694 4.333906 

1,370,622 260,986 5.251707 

psen1K97Gfs/+ GFP-Lc3a-GFP injected with nontreatment at 96 hpf 

GFP-Lc3a free GFP GFP-Lc3a / free GFP 

7,916,256 10,610,544 0.746074 

4,420,980 6,906,720 0.640098339 

2,937,921 4,154,871 0.707103 

2,226,860 1,710,620 1.301785 

4,459,158 9,294,142 0.47978157 

6,757,366 9,708,578 0.69602 
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Supporting Information File S3 

 

(A) Mutagenesis and breeding of the psen2S4Ter-carrying zebrafish 

The putatively null mutation in zebrafish psen2, psen2S4Ter, was generated by 

CRISPR/Cas9 system (Hwang, Fu et al. 2013). A brief description of the mutagenesis 

of psen2S4Ter mutation were presented below. (The details of the mutagenesis process 

were published elsewhere, Jiang et al. manuscripts in preparation.) 

A single guide RNA (sgRNA) with its protospacer adjacent motif (PAM) site targeting 

downstream close to the start codon of the psen2 gene was designed and co-injected 

with the Cas9 protein into the Tübingen (TU) wildtype embryo at one-cell stage. Site-

specific DNA double-stranded breaks (DSBs) induced by the CRISPR/Cas9 system 

were then supposed to be repaired through non-homologous end-joining (NHEJ) 

pathway (Hwang, Fu et al. 2013), which resulted in random mutations in zebrafish 

psen2 gene. Thus, the F0 mutation-carrying fish (the CRISPR/Cas9-injected embryos) 

may carrying multiple genomes with different mutations. To separate these mutations, 

the F0 mutation-carrying fish were outbred with TU wildtype fish, so that their F1 

progenies may be heterozygous mutants. Among all the mutations found in these F1 

progenies, psen2S4Ter was selected as a putatively null mutation since its Ser-4 codon 

was substituted by a stop codon. However, this putatively null mutation has not been 

fully characterized, and we do not have an antibody against zebrafish Psen2 yet to 

demonstrate lack of Psen2 protein in homozygous mutants. 

To generate embryos with certain genotype for our assays, the F1 heterozygous 
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(psen2S4Ter/+) parent was firstly outbred with another TU wildtype fish to generate more 

heterozygous (psen2S4Ter/+) fish. Those F2 heterozygous (psen2S4Ter/+) siblings were 

inbred with each other to generate homozygous (psen2S4Ter/psen2S4Ter) fish (F3). The 

homozygous (psen2S4Ter/psen2S4Ter) embryos were collected from pair-mating of 

homozygous (psen2S4Ter/psen2S4Ter) parents, while the heterozygous (psen2S4Ter/+) 

embryos were collected from pair-mating of the homozygous (psen2S4Ter/psen2S4Ter) 

parent and another TU wildtype fish. 

 

(B) Mutagenesis and breeding of the psen1Q96K97del and psen1K97Gfs zebrafish 

The psen1Q96K97del and psen1K97Gfs mutations in zebrafish were also generated through 

CRISPR/Cas9 system, and the details of these mutagenesis were published elsewhere 

(Hin, Newman et al. 2018). 

We pair-mated the homozygous (psen1Q96K97del/psen1Q96K97del) with another TU 

wildtype fish to generate heterozygous (psen1Q96K97del/+) embryos for our assays. The 

heterozygous (psen1K97Gfs/+) embryos were collected through the same process. 

 

 

Hin, N., M. Newman, et al. (2018). "Accelerated brain aging towards transcriptional inversion in a 

zebrafish model of familial Alzheimer&#039;s disease." bioRxiv. 

Hwang, W. Y., Y. Fu, et al. (2013). "Heritable and Precise Zebrafish Genome Editing Using a CRISPR-Cas 

System." PLoS ONE 8(7): e68708. 

Hwang, W. Y., Y. Fu, et al. (2013). "Efficient genome editing in zebrafish using a CRISPR-Cas system." Nat 

Biotech 31(3): 227-229. 
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Chapter 5 locomotion tests on psen2 mutants 

 

5.1 Abstract 

 

Behavior has been considered a key component of phenotypes induced by genetic 

mutations affecting the development of the nervous system in zebrafish. This includes 

mutations that may impair the formation and function of mitochondria. Mutations 

affecting mitochondrial activity are implicated in Alzheimer’s disease risk and since 

larval locomotion requires energy, we expect that mutations affecting mitochondrial 

function might also affect locomotion behavior. In the previous chapter we showed that 

mutation of psen2 is predicted to have extensive effects on mitochondrial function and 

this raises the question of whether larvae bearing mutations in this gene show changes 

in locomotion behaviour. It is relatively easy to assess larval locomotion behavior using 

a DanioVision Observation Chamber. To identify whether the mutations described 

previously in this thesis (psen2S4Ter, psen2T141_L142delinsMISLISV and psen2N140fs) affect the 

locomotion of zebrafish larvae, behavioral analysis on 6-day-old zebrafish larvae was 

performed and is described in this chapter. While we observed some trends of different 

mean velocities in larvae with different genotypes, these differences in velocity were 

not statistically significant. However, since too many unknown variables influenced the 

results of these locomotion tests, the experimental design must be improved for further 

research. 

 



210 
 

5.2 Introduction 

 

Behavior, especially the behavioral development of sensory and motor functions, has 

been considered a key component of phenotypes induced by genetic mutations (Xi, 

Ryan et al. 2010; Mahmood, Fu et al. 2013) and drug treatments (Rihel, Prober et al. 

2010) affecting the development of the nervous system in zebrafish (Elbaz, Yelin-

Bekerman et al. 2012; Zhou, Cattley et al. 2014). Some drug treatments that impair 

mitochondrial bioenergetics affect the locomotion of zebrafish larvae (Zhang, Laurence 

Souders et al. 2017; Wang, Souders et al. 2018) Mutations that may impair the 

formation and function of mitochondria can also have this effect (Bretaud, Lee et al. 

2004; Xi, Ryan et al. 2010). Since the function of mitochondria is thought to have 

important effects on the progression of AD (Hedskog, Pinho et al. 2013), mutations 

affecting mitochondrial activity are implicated in Alzheimer’s disease risk (Moreira, 

Carvalho et al. 2010). Moreover, since larval locomotion requires energy that is 

provided by mitochondria (Voet, Voet et al. 2006), we expect that mutations affecting 

mitochondrial function might also affect locomotion behavior. Our previous studies on 

the putatively null psen2 mutation (psen2S4Ter) indicated that psen2 has important 

functions relating to mitochondria. (Jiang et al. manuscript in preparation). Therefore, 

we assumed the mutations generated previously in this thesis (psen2S4Ter, 

psen2T141_L142delinsMISLISV and psen2N140fs) might affect the locomotion of zebrafish larvae 

as well.  

 



211 
 

In some studies, the behavior of zebrafish larvae in light has been monitored in small 

environments (such as in the wells of 96-well microtiter plates) with optical tracking 

devices (Lockwood, Bjerke et al. 2004; Orger, Gahtan et al. 2004). Some other studies 

have used infrared image analysis to monitor locomotion in both light and darkness 

(Prober, Rihel et al. 2006; Burgess and Granato 2007; Cahill 2007; MacPhail, Brooks 

et al. 2009). In our study, we performed behavioral analysis on 6-day-old zebrafish 

larvae using an infrared imaging system in 24-well plates. This allowed us to monitor 

24 larvae simultaneously so that the behavior of multiple individuals of multiple 

genotypes from one family might be compared statistically. Using a 24-well plate rather 

than a 96-well plate gave each individual larva more space to permit more sophisticated 

behavior (e.g. greater ability to move longer distances). We presumed this might permit 

better resolution of any behavioural differences between genotypes. 

 

5.3 Methods and materials 

 

5.3.1 Larvae and locomotion tests 

 

For analysis of the psen2S4Ter mutation, a psen2S4Ter/+ (heterozygous) fish was mated 

with a +/+ (wild type) fish so that their progeny used for locomotion tests only included 

two genotypes, psen2S4Ter/+ and +/+ in close to a 1:1 ratio. Also, a psen2S4Ter/+ 

(heterozygous) fish was mated with a psen2S4Ter/psen2S4Ter (homozygous) fish so that 

the progeny would only include psen2S4Ter/+ and psen2S4Ter/psen2S4Ter fish in close to a 
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1:1 ratio. For the psen2T141_L142delinsMISLISV and psen2N140fs mutations, a heterozygous 

mutant was mated with a wild type fish to generate embryos containing heterozygous 

mutants and wildtype siblings in a close to 1:1 ratio. 

 

Embryos from each pair-mating were incubated in a 90mm diameter petri dish 

containing E3 embryo medium at 28.5°C. These embryos were light cycle-entrained by 

being placed in a light cycle incubator (lights on from 8:00 am until 10:00 pm, lights 

off from 10:00 pm until 8:00 am each day) from when they were zygotes until 5 days 

post fertilisation (dpf). At 5dpf, 24 larvae from each batch were selected randomly and 

each was placed in a separate well of a 24-well plate while maintaining the same 

light/dark cycle. 6 dpf larvae were then placed in the DanioVision Observation 

Chamber (Noldus Information Technology, Leesburg, VA, www.noldus.com), one hour 

before the tracking program started. The tracking program was set up using the 

EthoVision XT 11.5 software (Noldus Information Technology, Leesburg, VA, 

www.noldus.com), with the tracking time set for between 5:00 pm (at 6 dpf) until 1:00 

pm on the next day (7 dpf) under the same light cycle to which the larvae were entrained. 

 

After motion-tracking (including Velocity-Mean, Distance moved-Total and 

Movement-Cumulative Duration) and data collection of each larva during one hour 

intervals, the larvae were genotyped using the allele-specific PCR reactions designed 

in the previous chapters of this thesis (Methods and Materials sections in Chapter 2 and 

3). The behaviour of each larva could then be associated with its genotype in the 
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EthoVision XT 11.5 software. 

 

5.4 Results 

 

5.4.1 Differences in locomotion between mutant and wild type larvae 

 

Each type of pair-mating was conducted four times to provide four replicates of the 

locomotion tests. The mean velocities (mm/s) of larvae with different genotypes at each 

time point are presented in Figures 5.4.1 to 5.4.4. The mean velocities of replicates were 

highly variable. Although trends of different mean velocities were observed between 

larvae of different genotypes within families of siblings, these trends varied between 

different replicates from the same parents. For example, as shown in Figure 5.4.1 and 

the Appendix, when the data from all four replicates were pooled together, differences 

between the mean velocities of psen2S4Ter/+ and +/+ siblings could be observed, while 

differences between the mean velocities of psen2S4Ter/+ and +/+ siblings during light 

periods were seen for replicates C and D, but not for replicates A and B. When t-tests 

were applied to these data (performed for each hour time point between genotypes), no 

statistically significant differences in locomotion were found between different 

genotypes. 

 

5.5 Discussion 
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5.5.1 Differences in locomotion between mutant and wildtype larvae 

 

The mean velocities of locomotion of fish of the same genotype within replicates of 

pair-matings were variable such that no statistically significant differences could be 

observed between the mean velocities of mutants and their wild type siblings. This may 

have been due to uncontrolled variables affecting the behavior of the fish. For example, 

during their development the larvae were placed in an incubator which was subject to 

opening and closing several times per day by other people working in the laboratory 

and this may have caused fluctuation in light intensity (or in other stresses placed on 

different batches of larvae) between experimental replications. The light cycle 

entrainment of the larvae may have been affected by these uncontrolled factors. 

 

Although trends of difference in mean velocity were observed for larvae with different 

genotypes, none of these differences reached statistical significance. We chose to use 

6-day-old larvae for this locomotion test since these can still rely on their yolk as a food 

source and do not need to be fed. However, these 6-day-old larvae might be too young 

to present any significant differences in locomotion phenotype. The mean velocity of 

the larvae with the same genotype varied greatly in different families used in the 

locomotion tests (i.e. the velocity of wildtype larvae in light in Figure 5.4.1 varied from 

1.5 mm/s to 3.5 mm/s between the four different families.). This may due to the short 

entraining time (from day 0 to day 5) in the light system. However, if we had used older 

larvae and entrained them for longer, we may have needed to feed them during the 
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entraining process, which might have introduced additional variables into the 

experimental system. Thus, the locomotion test we designed for this work may not have 

been an appropriate method for analyzing behavioural differences between the mutant 

fish and their wild type siblings. It may be that psen2 function does not affect the 

locomotion of zebrafish larvae despite its apparent effects on mitochondrial function. 

However, the RNA-seq data that revealed changes in the function of mitochondria 

caused by S4Ter were obtained from 6-month-old adult brains. 6-day-old larvae may 

be too young to present any similar changes. In human AD patients, PSEN2 mutation 

carriers show a wide variability of disease onset age, i.e. 39–83 years (Van 

Cauwenberghe, Van Broeckhoven et al. 2015). Thus, it seems that even for those 

mutations able to cause in AD, overt symptoms may not be observed at very young ages. 

Similar phenomena may occur in zebrafish, although a mutation (i.e. S4Ter) may impair 

the function of mitochondria, overt symptoms (such as behavioral differences) may not 

be detectable during the larval stage. Alternatively, the tests of behavior we performed 

may not have been discriminating for any specific changes in cognition caused by 

mutations in psen2. Thus, it will be interesting to perform behavioural tests (including 

locomotion tests) on adult fish carrying mutations in psen2 (especially S4Ter) and their 

wild type siblings to verify whether those changes in the formation and function of 

mitochondria detected by RNA-seq are also detectable through behavioural tests. 
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Figure 5.4.1. Locomotion tests on psen2S4Ter heterozygous vs wildtype larvae at 6 dpf. 

Red dots represent psen2S4Ter/+ mean velocities; Black squares represent +/+ mean 

velocities. Bars show SDs. Four replicates of locomotion tests were pooled together, 

including 41 psen2S4Ter/+ vs 54 +/+ larvae. 
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Figure 5.4.2. Locomotion tests on psen2S4Ter heterozygous vs homozygous larvae at 6 

dpf. 

Red dots represent psen2S4Ter/+ mean velocities; the blue squares represent 

psen2S4Ter/psen2S4Ter mean velocities. Bars show SDs. Four replicates of locomotion 

tests were pooled together, including 49 psen2S4Ter/+ vs 42 psen2S4Ter/psen2S4Ter larvae. 
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Figure 5.4.3. Locomotion tests on psen2T141_L142delinsMISLISV heterozygous vs wildtype 

larvae at 6 dpf. 

The red dots represent psen2T141_L142delinsMISLISV/+ mean velocities; the black squares 

represent +/+ mean velocities. Bars show SDs. Four replicates of locomotion tests were 

pooled together, including 53 psen2T141_L142delinsMISLISV/+ vs 43 +/+ larvae. 
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Figure 5.4.4. Locomotion tests on psen2N140fs heterozygous vs wildtype larvae at 6 dpf. 

The red dots represent psen2N140fs/+ mean velocities; the black squares represent +/+ 

mean velocities. Bars show SDs. Four replicates of locomotion tests were pooled 

together, including 53 psen2N140fs/+ vs 38 +/+ larvae. 

 

* Data of Locomotion tests from Figure 5.4.1 to 5.4.4 are presented in the Appendix 

with the file name “Mean velocities of Figure 5.4.1 to 5.4.4.xlsx”. 
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Chapter 6 Conclusion and Perspective 

 

6.1 Conclusion 

 

The overall aim of this PhD project was to investigate the molecular changes caused by 

fAD-like mutations in the psen2 gene in the zebrafish model. The conclusions drawn 

from this thesis are: 

 

(1) Three mutations were generated in the zebrafish psen2 gene, a putatively null 

mutation, psen2S4Ter, a fAD-like mutation, psen2T141_L142delinsMISLISV, and the CDS-

truncating mutation, psen2N140Wfs. These mutations provide potentially useful tools for 

identifying the specific cellular changes caused by fAD-like mutation of psen2, and 

may allow us to exclude the non-fAD-causative effects caused by simple loss of psen2 

function. 

 

(2) RNA-seq and gene ontology analysis of the putatively null mutation S4Ter 

suggested changes in brain mitochondrial activity, glucocorticoid signalling activity 

and intracellular iron trafficking. These results are in agreement with, but also increase 

our knowledge regarding how human PSEN2 is involved in AD pathology. We observed 

a severe haploinsufficiency effect of this mutation in relation to its effect in 

homozygous fish. 
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(3) The skin of N140fs homozygous adult fish presented with gross loss of melanotic 

pigmentation while retaining pigmentation in the retinal pigmented epithelium. This 

likely indicates a loss of -secretase activity. The skin of T141_L142delinsMISLISV 

homozygous adult fish presented with faint melanotic pigmentation, indicating that 

some -secretase activity still remains with this mutation. However, S4Ter homozygotes 

have normal adult pigmentation. Thus, the N140fs mutation is most likely a true null 

(or severely hypomorphic) allele of zebrafish psen2, while the S4Ter mutation is not. 

On the other hand, the remaining of -secretase activity (revealed by the faint melanotic 

pigmentation in the skin of homozygous mutants) in T141_L142delinsMISLISV 

homozygous indicates that this mutation is not like a null mutation (since this phenotype 

is different to those in N140fs or S4Ter homozygotes mutants). This mutation is most 

likely a fAD-like mutation since it obeys the “fAD mutation reading frame preservation 

rule” as an in-frame mutation and also remains some -secretase activity.  

 

(4) A GFP-based autophagic flux assay was designed and tested. The assay was 

designed in order to allow comparison of autophagic flux signals on different western 

immunoblots with the free GFP fragment functioning as an internal control. This new 

assay was employed to detect changes in autophagic flux caused by fAD-like mutations 

in psen1 and psen2. The results revealed that the presenilin genes are important for 

autophagy with reduced autophagic flux evident in both heterozygous and homozygous 

psen2S4Ter mutants. This provided further evidence for the haploinsufficiency previously 

indicated by the transcriptomic analysis of this mutant. 



223 
 

 

In summary, three mutations were generated in zebrafish psen2, transcriptomic analysis 

was performed for the S4Ter mutation and a GFP-based assay for monitoring changes 

in autophagic flux was designed and tested on psen1 and psen2 mutants. Further 

analysis of these zebrafish mutation models may help dissect how fAD mutations cause 

Alzheimer’s disease. 

 

6.2 Perspective 

 

The biological effects of the three mutations generated in this thesis have not been fully 

explored. Future work that could be performed includes the following:  

 

(1) Since we did not have an antibody against zebrafish Psen2, we were unable to 

demonstrate loss of Psen2 at the protein level due to the S4Ter or N140fs mutations. 

Although transcriptomic analysis and assays of autophagic flux showed definite 

differences between S4Ter mutants and wildtype sibling zebrafish, additional protein-

level evidence is required before we can be confident (or otherwise) that this mutation 

represents a loss of psen2 function. An antibody against zebrafish Psen2 protein for 

western immunoblotting has been ordered and will be used by others to test for protein 

in S4Ter homozygous fish in future. While the N140fs mutation showed reduced levels 

of mutant transcripts presumably due to nonsense-mediated decay, it will also be useful 

to observe whether this allele allows production of a truncated protein since some 
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truncated Presenilin proteins have been observed previously to have dominant effects, 

even at low levels (Nornes, Newman et al. 2008; Newman, Wilson et al. 2014).  

 

(2) In Chapter 2, we described transcriptomic analysis on S4Ter, which showed a severe 

haploinsufficiency effect of this mutation. Moreover, dqPCR results indicated that no 

NMD occurs in S4Ter mutants, and no gross loss of melanotic pigmentation was 

observed in the skin of S4Ter homozygous adults. All these results appear to indicate 

that S4Ter is likely not a true null mutation. However, to identify the specific cellular 

changes caused by fAD-like mutations, we need to exclude those changes caused by 

null mutations since none of the identified fAD mutations in human PSEN1 and PSEN2 

appear to remove all gene function. Interestingly, the truncating mutation N140fs (in 

Chapter 3) is most likely a true null mutation since NMD occurs (according to the 

dqPCR results) in heterozygous mutants and a gross loss of melanotic pigmentation (a 

loss of -secretase activity) was observed in the skin of homozygous mutants. The other 

mutation that we generated in Chapter 3, T141_L142delinsMISLISV, is most likely a 

fAD-like mutation since it is in-frame mutation and retains some -secretase activity. 

With these two mutations (generated in Chapter 3), i.e. a null mutation and a fAD-like 

mutation, we may be able to achieve our original goals. In order to reduce genetic and 

environmental noise, a T141_L142delinsMISLISV heterozygous 

(psen2T141_L142delinsMISLISV/+) fish will be pair-mated with a N140fs heterozygous 

(psen2N140fs/+) fish to generate a large family of siblings with wild type (+/+), 

psen2T141_L142delinsMISLISV/+, psen2N140fs/+, or psen2T141_L142delinsMISLISV/psen2N140fs 
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genotypes. Total RNA from brains of +/+, psen2T141_L142delinsMISLISV/+ and psen2N140fs/+ 

fish will be sent for RNA-seq analysis when they are 6-month-old, so that the following 

transcriptomic analysis will be able to identify the specific cellular changes caused by 

T141_L142delinsMISLISV, excluding those changes caused by N140fs (Figure 6.2.1). 

Since null mutations in the PRESENILIN genes do not appear to cause fAD, the specific 

cellular changes caused exclusively by T141_L142delinsMISLISV, as represented in the 

three-way comparison diagram below (Figure 6.2.1), may reveal the changes that (in 

humans) are critical for driving onset of Alzheimer’s disease. 

 

 

Figure 6.2.1. Schematic for the proposed transcriptomic analysis. 

The gray part of this figure refers to the specific gene expression states caused by 
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T141_L142delinsMISLISV, excluding those states seen in wild type fish (+/+) or caused 

by N140fs. 

 

(3) Beside molecular biological studies, other studies such as those in behavioristics 

may also be worthwhile to perform using the mutations generated in this thesis, since 

previous studies have shown that behavior can be considered a key component of 

phenotypes induced by genetic mutations (Xi, Ryan et al. 2010; Mahmood, Fu et al. 

2013), especially those mutations affecting development of the nervous system in 

zebrafish (Elbaz, Yelin-Bekerman et al. 2012; Zhou, Cattley et al. 2014). Since the three 

mutations generated in this thesis are all located in psen2, a fAD-related gene, it will be 

interesting to identify whether the specific cellular changes caused by these mutations 

can affect the behavior of fish. Although locomotion tests (which may reflect the 

formation and function of mitochondria) on 6-day-old larvae did not show any 

statistically significant differences between any mutants (S4Ter, 

T141_L142delinsMISLISV or N140fs) and their wild type siblings, whether these 

mutations are able to affect the behavior of adult fish remains to be investigated.  

 

(4) The melanotic pigmentation in the skin of adult mutants may be the subject of 

molecular biology analysis in the future since this phenotype is most likely related to 

-secretase activity (Kummer, Maruyama et al. 2009; Yang, Arslanova et al. 2010; 

Rochin, Hurbain et al. 2013). A gross loss of melanotic pigmentation in the skin of 

homozygous T141_L142delinsMISLISV or N140fs mutants that likely indicates a loss 
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of -secretase activity was observed, but strong melanotic pigmentation remained in 

their retinal pigmented epithelium. Additionally, abundant surface melanocytes in 

homozygous N140fs larvae indicated that the dependence of zebrafish adult skin 

melanotic pigmentation on psen2 function is both cell type- and age-specific. Thus, it 

will be interesting to follow more closely the behaviour of surface melanocytes in aged 

homozygous fish (i.e. two years old or more) to identify whether the melanotic 

pigmentation can be restored by regeneration, or whether the loss of melanotic 

pigmentation becomes even more severe due to age. In-situ hybridisation against genes 

involved in the development of melanocytes in the skin of adult mutant fish may, in 

future, also help reveal how psen2 is involved in melanotic pigmentation. 

 

(5) In the GFP-based assay of autophagic flux, the stability of GFP-Lc3a and the free 

GFP fragments may affect its sensitivity. As Figure 6.2.2A shows, the GFP-Lc3a 

fragment may be cleaved in lysosomes, which provides additional free GFP and reduces 

its sensitivity in detection of decreased autophagic flux. Further improvement, such as 

redesigning the assay to avoid using GFP in both the autophagy-directed and non-

directed arms of the assay construct, may be applied to solve this issue. As Figure 

6.2.2B shows, a poly-FLAG fragment containing four copies of the FLAG tag could be 

added to both sides of the Lc3a-GFP construct, to make a FLAGs-LC3a-GFP-FLAGs 

construct. If this transgene was expressed in cells, the most C-terminal glycine residue 

of Lc3a would be cleaved by an endogenous ATG4 family protease, producing 

equimolar amounts of FLAGs-LC3a and GFP-FLAGs. The FLAGs-LC3a fragment 
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would then be taken into the autophagy pathway for degradation, while the GFP-

FLAGs fragment should remain soluble in the cytosol as an internal control. Retaining 

GFP as part of the construct assists in selection of transiently transgenic embryos. Since 

this FLAG-based assay would use the anti-FLAG antibody for western immunoblotting, 

even if cleavage removing FLAGs from LC3a or GFP occurs in the lysosome, the free 

FLAGs (at ~4kDa in size) will not affect measurement of the ratio of FLAGs-LC3a 

(~20kDa) to GFP-FLAGs (~31kDa). Another issue that may need to be considered for 

such a FLAG-based assay is whether the stability of free GFP in the cytosol affects the 

final ratio of FLAGs-LC3a to GFP-FLAGs. To test this, a odc1PEST fragment can be 

added to the FLAG-based construct (Figure 6.2.2C), to form a FLAGs-LC3a-GFP-

odc1PEST-FLAGs construct. The proline-glutamate-serine-threonine-rish (PEST) 

domain is responsible for the rapid proteasomal degradation of the protein ornithine 

decarboxylase (ODC) (Rechsteiner and Rogers 1996). It has already been reported in 

mice that the half-life of GFP fused to PEST-containing sequences from the mouse Odc 

gene was shortened to 5.5 h in stably transfected cells compared to about 26 h for wild 

type GFP (Corish and Tyler-Smith 1999; Kitsera, Khobta et al. 2007). For a new FLAG-

based construct, a PEST-containing sequences from zebrafish odc1 (the odc1PEST 

fragment) is added to the GFP-FLAGs fragment (Figure 6.2.2C) to destabilize the GFP 

domain. Although the half-life of odc1PESTfused GFP in zebrafish is still unclear, it 

will be interesting to investigate whether this FLAG-based construct with a destabilized 

GFP can increase the sensitivity of the autophagic flux assay. (The sequences of the two 

FLAG-based assays are presented in the Appendix.)   
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Figure 6.2.2. GFP- and FLAG-based assays. 
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(A) GFP-Lc3a-GFP construct.  

(B) FLAGs-LC3a-GFP-FLAGs construct. 

(C) FLAGs-LC3a-GFP-odc1PEST-FLAGs construct. 
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Appendix 

 

(1) Mean velocities of Figure 5.4.1 to 5.4.4.xlsx 

 

(2) Sequences of constructs for FLAG-based assays 

 

Design of FLAGs-LC3a-GFP-FLAGs Construct 
 

Different regions of the sequence are labeled with different highlight colours 

corresponding to the legend below: 

 EcoRV-BamHI-Kozak-StartFLAGs-LC3a- GFP -FLAGsStop-ClaI-EcoRI-EcoRV 

 X in the downstream FLAGs region refers to numerous silent mutations introduced 

in to the degenerate codon positions 

 

Sequence of FLAGs-LC3a-GFP-FLAGs construct 

5’- 

GATATCGGATCCGCCACCATGGACTACAAAGACGATGACGACAAGGATTAC

AAAGACGATGATGACAAAGACTATAAGGACGATGACGATAAGGACTACAA

AGACGATGACGACAAGATGCCATCCGACAGACCCTTCAAACAACGACGGA

GCTTCGCTGATCGTTGCAAGGAAGTGCAGCAGATCCGAGAGCAGCATCCTA

ATAAAATTCCGGTGATCATTGAGAGGTATAAGGGGGAAAAGCAACTTCCAG

TCTTGGACAAGACCAAGTTCCTTGTCCCTGACCATGTTAACATGAGTGAGC

TGGTAAAGATTATCAGGCGTCGATTGCAGCTCAACCCCACCCAGGCCTTTT

TCCTTCTTGTCAATCAGCACAGCATGGTCAGCGTGTCCACCCCCATTTCTGA

GATCTACGAACAAGAGCGGGACGAAGACGGCTTCCTCTACATGGTTTACGC

CTCCCAGGAGACCTTCGGCTGCATGGTGAGCAAGGGCGAGGAGCTGTTCA

CCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCAC

AAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCT

GACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCA

CCCTCGTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCG

ACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTAC

GTCCAGGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCG

CGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGA

AGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGAG

TACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAAC

GGCATCAAGGTGAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGT

GCAGCTCGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCG

TGCTGCTGCCCGACAACCACTACCTGAGCACCCAGTCCGCCCTGAGCAAA

GACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGC

CGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAGATGGATTACAAGGA

CGATGACGATAAGGACTACAAAGATGACGACGACAAAGACTACAACGACG

ACGACGACAAGGACTATAAAGATGATGATGACAAGTAGATCGATGAATTCG

ATATC-3’ 
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Design of FLAGs-LC3a-GFP-odc1PEST-FLAGs Construct 
 

Different regions of the sequence are labeled with different highlight colours 

corresponding to the legend below: 

 EcoRV-BamHI-Kozak-StartFLAGs-LC3a-GFP-odc1PEST-FLAGsStop-ClaI-

EcoRI-EcoRV 

 X in the downstream FLAGs region refers to numerous silent mutations introduced 

in to the degenerate codon positions 

 

Sequence of FLAGs-LC3a-GFP-odc1PEST-FLAGs construct 

5’- 

GATATCGGATCCGCCACCATGGACTACAAAGACGATGACGACAAGGATTAC

AAAGACGATGATGACAAAGACTATAAGGACGATGACGATAAGGACTACAA

AGACGATGACGACAAGATGCCATCCGACAGACCCTTCAAACAACGACGGA

GCTTCGCTGATCGTTGCAAGGAAGTGCAGCAGATCCGAGAGCAGCATCCTA

ATAAAATTCCGGTGATCATTGAGAGGTATAAGGGGGAAAAGCAACTTCCAG

TCTTGGACAAGACCAAGTTCCTTGTCCCTGACCATGTTAACATGAGTGAGC

TGGTAAAGATTATCAGGCGTCGATTGCAGCTCAACCCCACCCAGGCCTTTT

TCCTTCTTGTCAATCAGCACAGCATGGTCAGCGTGTCCACCCCCATTTCTGA

GATCTACGAACAAGAGCGGGACGAAGACGGCTTCCTCTACATGGTTTACGC

CTCCCAGGAGACCTTCGGCTGCATGGTGAGCAAGGGCGAGGAGCTGTTCA

CCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCAC

AAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCT

GACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCA

CCCTCGTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCG

ACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTAC

GTCCAGGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCG

CGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGA

AGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGAG

TACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAAC

GGCATCAAGGTGAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGT

GCAGCTCGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCG

TGCTGCTGCCCGACAACCACTACCTGAGCACCCAGTCCGCCCTGAGCAAA

GACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGC

CGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAGATGCAGGGGATTCC

TGCACTTCCATTGGAGGAGCCGAGCGCTGGAAACGTGCCATCCCACTGCG

GGCGCGAGAGCAGTCTGGATGTTCCCGCCAAACCCTGCCCGACTCAAGTG

CTGATGGATTACAAGGACGATGACGATAAGGACTACAAAGATGACGACGA

CAAAGACTACAACGACGACGACGACAAGGACTATAAAGATGATGATGACA

AGTAGATCGATGAATTCGATATC-3’ 
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