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SUMMARY 

The pursuit of flavour and phenolic ripeness, augmented by climate warming and extreme 

weather events, often leads to excessive sugar accumulation in grapes translating to undesirably 

high ethanol content in wines. Other common characteristics of such grapes and wines are 

inadequate acidity and aroma profiles, which all together compromise the quality and 

marketability of the final product. To tackle these issues, research has devised a number of 

methods implemented across the entire grape and wine production chain. Among these, partial 

fermentations with non-Saccharomyces yeasts is of particular interest, as it represents an 

undemanding approach that can also impart ‘complexity’ and distinctness. However, the full 

potential of non-Saccharomyces yeasts in wine ethanol and flavour management remains 

elusive, and this work aimed to further explore it. 

Research has shown that mixed fermentations with non-Saccharomyces yeasts can lead to 

enhanced wine aroma and sensory properties, and albeit limited, the current range of non-

Saccharomyces is indeed marketed for this purpose. The potential of commercially available 

(and thus readily implementable) non-Saccharomyces co-inocula was assessed in Shiraz 

fermentations at two maturity levels; earlier harvest (24 °Brix) and technical ripeness (29 

°Brix). Eight yeast treatments trialled in pilot scale fermentations included sequential 

inoculations using three Torulaspora delbureckii strains, one strain each of Lachancea 

thermotolerans and Metschnikowia pulcherrima, a commercial blend of non-Saccharomyces 

and S. cerevisiae, and appropriate S. cerevisiae controls. Fermentation monitoring and 

comprehensive chemical and sensory analysis allowed for the comparison of the treatments. 

The results showed a pronounced matrix-derived modulation of wine profiles which was 

reflective of grape maturity levels. Within each harvest date, however, the yeast treatments had 
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a significant impact on a range of compositional and wine sensory characters. At earlier harvest 

stage, certain non-Saccharomyces treatments, in particular T. delbrueckii, led to an increased 

wine sensory appeal (i.e. ‘floral’, ‘red fruit’, ‘aroma intensity’, ‘spice’) compared to the S. 

cerevisiae control (‘vegetal, ‘acidic’ and ‘bitter’). These treatments, however, were related to 

incomplete fermentations in higher ripeness conditions. Thus, some non-Saccharomyces yeast 

showed promise in enhancing the quality of wines produced from earlier harvested grapes and 

as such represent a complementary approach in managing wine ethanol concentrations. 

The following study addressed the selection of lower-ethanol producing non-Saccharomyces 

strain(s) for use in sequential cultures with Saccharomyces cerevisiae. Oenological 

performances of six M. pulcherrima strains were evaluated in fermentations with S. cerevisiae 

inoculated after seven days. The best-performing M. pulcherrima MP2 strain was further 

characterised in six sequential fermentations with different S. cerevisiae inoculation delays in 

both synthetic and white grape juice. The analysis of main metabolites, undertaken prior to 

sequential inoculations and upon fermentation completion, highlighted metabolic interactions 

and carbon sinks other than ethanol in mixed culture fermentations. Depending on the 

inoculation delay, MP2 white wines contained between 0.6% and 1.2% (v/v) less ethanol than 

the S. cerevisiae control, with even larger decreases achieved in the synthetic juice. The MP2 

wines also had higher concentrations of glycerol and lower concentrations of acetic acid. The 

analysis of volatile compounds revealed compositional alterations arising from the S. 

cerevisiae inoculation delay, with increased acetate esters and higher alcohols detected in all 

analysed MP2 treatments. 

The concept of intra-specific variability was studied using L. thermotolerans as a model. This 

species harbours several metabolic traits that are of value in oenology, including lactic acid 

production, potential to decrease ethanol content and modulate flavour in wines. The 
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relationships between 172 L. thermotolerans isolates, sourced from natural and anthropic 

habitats worldwide, were studied using a 14-microsatellite genotyping method. The resultant 

clustering revealed that the evolution of L. thermotolerans has been driven by the geography 

and ecological niche of the isolation sources. Isolates originating from anthropic, in particular 

oenological environments, were genetically close, thus suggesting domestication events within 

the species. The phenotypic performance of the strains, assessed using a number of agar plate-

based growth assays with different carbon sources and physicochemical conditions, provided 

further support for the observed clustering. 

To determine whether, and to what extent, L. thermotolerans strains differ in the traits of 

oenological importance, and harbour signatures of domestication and/or local divergence, 94 

previously genotyped strains were trialled in Chardonnay fermentations. The strains and the 

genetic groups were compared for their fermentation performance, production of primary and 

secondary metabolites and pH modulation. The common traits of L. thermotolerans strains 

were their glucophilic character, relatively extensive fermentation ability, low production of 

acetic acid and formation of lactic acid, which significantly affected the pH of the wines. An 

untargeted analysis of volatile compounds revealed that 58 out of 90 volatiles were affected at 

an L. thermotolerans strain level. Besides the remarkable extent of intra-specific diversity, 

results confirmed the distinct phenotypic performance of L. thermotolerans genetic groups. 

These observations provide further support for the occurrence of domestication events and 

allopatric differentiation in L. thermotolerans population. 
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CHAPTER 1 

Literature Review and Research Aims

This Literature Review was prepared within the first six months of PhD candidature

(December 2014) to provide the background material to the project and define the research 

aims. Thus, it contains only references published to that point. The relevant literature beyond 

this review is included in the following Chapters. 
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1.1. Literature review 

1.1.1. Increasing ethanol concentrations in wines 

1.1.1.1. Causes and consequences 

Wine alcohol content has been progressively rising. Since domestication in Neolithic 

times, human selection has driven the evolution of grapevine (Vitis vinifera L.) towards 

elevated sugar accumulation, one of the key traits differentiating cultivated grape varieties 

(Vitis vinifera subsp. sativa) from their wild ancestors (Vitis vinifera subsp. sylvestris) (This et 

al., 2006). Concomitantly to grapevine domestication, subpopulations of Saccharomyces 

cerevisiae, the main fermenting agent, were differentiated and co-evolved to persist in the 

newly-created oenological environments (Legras et al., 2007, Sicard and Legras, 2011, 

Camarasa et al., 2011). After the development of starter cultures for fermentations in the early 

20th century, efficiency in sugar fermentation imposed itself as a major selection criterion for 

S. cerevisiae yeasts used in the wine industry (González et al., 2011, Pretorius, 2000). Further

technological advances in viticulture and oenology, allowing for the cultivation and 

vinification of longer-ripening fruit, as well as consumer preferences for riper wine flavours, 

have been other driving forces for increased ethanol levels in wines (Alston et al., 2012, 

Godden and Muhlack, 2010). A worrisome prediction is the exacerbation of this trend through 

occurring/projected climate change scenarios, and an increased spate of extreme weather 

events (Schultz and Jones, 2010).  

Excess ethanol content in wines has various negative implications, ranging from health 

related concerns of consumers and policy makers, to additional trade costs and limitations (de 

Barros Lopes et al., 2003). High potential alcoholic content often exerts difficulties during both 

alcoholic and malolactic fermentations, jeopardising their timely completion and likelihood of 
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success (Sumby et al., 2014, Malacrino et al., 2005, Bisson, 1999). The quality of the obtained 

wines is also compromised, due to potential off-flavour production (e.g. volatile acidity), and 

inferior sensory properties related to increased perceptions of ‘hotness’ and decreased aroma 

‘complexity’ (King et al., 2013, Meillon et al., 2010, Escudero et al., 2007, Goldner et al., 

2009). There is therefore a strong demand to develop strategies to manage ethanol content in 

wines.  

1.1.1.2. Mitigation strategies 

Over the last decades, various methods for wine ethanol reduction were developed 

across the whole grape and wine production chain (Pickering, 2000, Schmidtke et al., 2012). 

These include altered viticultural management leading to lower sugar accumulation during 

ripening (Stoll et al., 2010, Novello and de Palma, 2013), earlier harvest dates (Bindon et al., 

2013), establishment of winemaking practices for unripe grapes (Kontoudakis et al., 2011), 

stripping the juice of fermentable sugars (Pickering et al., 1999, García-Martín et al., 2010), 

and, most commonly, physical dealcoholisation of wines post-fermentation via spinning cone 

columns and membrane technologies (Schmidtke et al., 2012, Saha et al., 2013). Albeit 

effective, these methods have considerable limitations associated with their cost, additional 

labour and/or equipment, and detrimental effects on wine quality (Schmidtke et al., 2012). In 

comparison, the use of lower-ethanol yielding yeast in fermentation represents an inexpensive 

and readily-implementable alternative, and microbiological methods for ethanol reduction are 

therefore of great interest.   
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1.1.1.2.1. Microbiological strategies in ethanol reduction 

Two distinct approaches have been pursued in microbiological ethanol reduction: 

genetic modification (GM) and non-GM strategies (Kutyna et al., 2010). Regardless of the 

approach, decreased ethanol yields in completed fermentations imply partial diversion of 

carbon from ethanol formation to alternate metabolic pathways and sinks. This is, in fact, 

challenging, as the carbon, redox and energy balance in fermenting yeast cells need to be fully 

maintained (Figure 1). It is also of critical importance that the resulting carbon sinks remain 

quantitatively and qualitatively compatible with wine sensory quality.  

Figure 1. Overview of sugar catabolism in yeast cells. Grape hexoses are metabolised to 

pyruvate during glycolysis (multiple enzymatic steps). Pyruvate is converted to acetaldehyde 

(pyruvate decarboxylase, PDC) which is further reduced to ethanol (alcohol dehydrogenase, ADH) in 

alcoholic fermentation. Acetaldehyde can also be oxidised to acetate (aldehyde dehydrogenase, 
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ALD) and decarboxylated to acetoin which is further reduced to 2,3-butanediol (butanediol 

dehydrogenase, BDH). Pyruvate originating is partially shuttled to the mitochondrion and 

incorporated into the tricarboxylic acid (TCA) cycle. Glycerol is produced via dihydroxyacetone 

phosphate (glycerol-3-phosphate dehydrogenase, GPD; triosephosphate isomerase, TPI).  

A number of S. cerevisiae strains were genetically engineered to yield less ethanol via 

modifications targeting different points of carbohydrate metabolism by exploring either 

inherent S. cerevisiae pathways (Nevoigt and Stahl, 1996, de Barros Lopes et al., 2000, 

Cambon et al., 2006, Ehsani et al., 2009, Varela et al., 2012, Rossouw et al., 2013) or 

heterologous gene expression (Dequin and Barre, 1994, Malherbe et al., 2003, Heux et al., 

2006, Varela et al., 2012). Among these, the most efficient approaches involve enhanced 

glycerol production by overexpression of the GPD1 or GPD2 genes (Varela et al., 2012, 

Kutyna et al., 2010, de Barros Lopes et al., 2000). However, even though increased glycerol 

concentrations per se are non-detrimental or even positive for wine quality (Ribéreau-Gayon 

et al., 2006), glycerol increase leads to excessive acetic acid formation required to maintain a 

balanced NADH/NAD+ ratio (Figure 1; Eglinton et al., 2002, de Barros Lopes et al., 2003, 

Cambon et al., 2006, Kutyna et al., 2010). The GPD1/2 overexpressing S. cerevisiae strains 

were also reported to increase the concentrations of other unfavourable metabolites, i.e. 

acetaldehyde and acetoin (Eglinton et al., 2002, Cambon et al., 2006, Kutyna et al., 2010). 

Accordingly, Varela et al. (2012) observed up to a 3.6% (v/v) ethanol decrease in wines 

produced upon GPD1 overexpression, however, with side-effects of increased acetate, 

acetaldehyde and acetoin concentrations in reduced-alcohol wines. Upon ALD6 deletion, 

acetate concentrations were acceptable, whereas high acetaldehyde and acetoin levels were 

only to a degree ameliorated by increasing BDH1 expression (Varela et al. 2012). 
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Accumulation of undesired metabolites is, in fact, common not only for glycerol 

overproducers, but also strains engineered differently to reduce alcohol levels in wines (Dequin 

and Barre, 1994, Malherbe et al., 2003, Heux et al., 2006, Kutyna et al., 2010). Albeit further 

modifications can alleviate such anomalies (Varela et al., 2012, Ehsani et al., 2009), 

maintaining fermentation performance and wine quality in low-alcohol GM yeasts remains a 

major challenge.  

Another barrier ruling out implementation of GM yeasts in the wine industry are the 

legislative regulations, prompted by perceptions of public opinion. Consequently, 

microbiological strategies for ethanol reduction that do not involve genetic engineering, and 

instead rely on natural variation, breeding and/or non-GM mutagenesis, are in high demand. 

Selection of lower-ethanol producing S. cerevisiae strains represents one explored possibility 

(Loira et al., 2011, Palacios et al., 2007). However, the evolution of S. cerevisiae has been 

thoroughly driven towards quick and efficient conversion of sugars to ethanol as part of the 

‘make-accumulate-consume’ strategy (Piškur et al., 2006). The backbone of such a lifestyle is 

the Crabtree-effect, i.e. preferential fermentative metabolism in high sugar substrates even in 

presence of oxygen, contributing to out-competition of other microorganisms (Pronk et al., 

1996). Given the genetic differentiation in S. cerevisiae populations related to oenological 

environments (Legras et al., 2007), and its phenotypic manifestation (Camarasa et al., 2011), 

human selection (albeit initially inadvertent) has further accentuated traits related to 

fermentation efficiency.  Consequently, ethanol yield is rather invariant among S. cerevisiae 

wine strains (Palacios et al., 2007, Varela et al., 2008). Other members of the Saccharomyces 

genus, as well as their inter- and intra-specific hybrids, originating either from natural habitats 

or breeding programs, were screened for reduced ethanol yields (Bely et al., 2013, Arroyo-

López et al., 2010), but their benefits in ethanol reduction appear to be similarly modest. For 
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example, Bely et al. (2013) observed ethanol decreases of merely 0.34% (v/v) when comparing 

interspecific S. uvarum and S. cerevisiae hybrids to S. cerevisiae wine strains. 

More recently, the concept of evolutionary engineering has been applied to more pro-

actively redirect S. cerevisiae metabolism away from ethanol production. It involves microbial 

cultivation in a selective, increasingly challenging environment in order to induce spontaneous 

mutations and allow for the selection of superior target phenotypes (Portnoy et al., 2011). 

Osmotic stress treatment with KCl to enhance glycerol production, followed by breeding 

(Tilloy et al., 2014), resulted in a higher diversion of carbon away from ethanol compared to 

attempts to stimulate the pentose phosphate pathway using gluconate (Cadière et al., 2011) or 

glycerol synthesis using sulfites (Kutyna et al., 2012). An ethanol reduction of 1.3% (v/v) 

relative to the ancestral strain (EC-1118) in Syrah pilot vinifications, accompanied with 

enhanced glycerol and 2,3-butanediol production without an increase in acetate, have laid 

ground to claim a research breakthrough for generating the first non-GM S. cerevisiae wine 

strain capable of prominently lowering wine ethanol by Tilloy et al. (2014).  

Selection of wine strains has also extended beyond the conventional wine yeast, S. 

cerevisiae, to so-called non-Saccharomyces yeasts that offer remarkable variability not only in 

ethanol yield, but also other oenologically-relevant traits (Jolly et al., 2014). Despite an 

increasing number of studies focusing on the characterisation of different non-Saccharomyces 

species and strains, their potential in ethanol and wine quality management remains largely 

underexplored.    
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1.1.2. Non-Saccharomyces yeasts in oenology 

1.1.2.1. Ecology of non-Saccharomyces yeasts 

In oenology, the term ‘non-Saccharomyces yeasts’ refers to a number of yeast species, 

excluding S. cerevisiae, that have been described in the wine-related environments (Jolly et al., 

2014). About 40 yeast species been cultured from grape and must substrates (Jolly et al., 2014).  

Comparatively, the use of culture-independent high-throughput sequencing methods revealed 

much higher diversity of the microbiota on grapes, whilst also unravelling their regional, site 

and grape variety-specific dispersal (Bokulich et al., 2014, Taylor et al., 2014, David et al., 

2014). While some are arguably rather inconsequential for wine quality, primarily due to their 

aerobic metabolism (Jolly et al., 2014), a number of yeasts that are found on grapes are 

subsequently encountered in fermenting grape juices/musts, including Hansenisapora spp., 

Candida spp., Metschnikowia spp., Torulaspora delbrueckii, Lachancea thermotolerans, 

Starmella bacillaris (Cocolin et al., 2000, Fleet, 2003, Jolly et al., 2003, Combina et al., 2005, 

Zott et al., 2008, Jolly et al., 2014, David et al., 2014). Grapes are in fact the primary source of 

these yeasts, whereas the occurrence of S. cerevisiae in vineyards is conspicuously rare 

(Mortimer and Polsinelli, 1999, Taylor et al., 2014). Upon their transfer into the winery, the 

persistence of non-Saccharomyces highly depends on various oenological practices, in 

particular additions of starter cultures and sulfur dioxide, temperature, clarification, and overall 

cellar hygiene (Jolly et al., 2003, Zott et al., 2008, Jolly et al., 2014, Albertin et al., 2014). In 

general, their prevalence is limited, and shortly upon fermentation commencement S. 

cerevisiae becomes a predominant species due to quick ethanol formation and tolerance as its 

competitive evolutionary edge (Pretorius, 2000, Piškur et al., 2006). While accumulating 

ethanol concentrations largely determine the survival and succession of species and strains in 

fermentation, this is not the sole cause for the population decline of non-Saccharomyces yeasts 
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(Holm Hansen et al., 2001, Perez-Nevado et al., 2006, Renault et al., 2013). Research has 

highlighted the importance of higher oxygen availability for prolonged survival of L. 

thermotolerans and T. delbreuckii (Holm Hansen et al., 2001), as well as the mechanisms of 

quorum sensing and/or cell-cell contact with S. cerevisiae as a cause of non-Saccharomyces 

cell death (Nissen and Arneborg, 2003, Nissen et al., 2003, Renault et al., 2013). 

1.1.2.2. Mixed culture fermentations 

Non-Saccharomyces yeasts display sensitivity to a range of (a)biotic stressors and, 

unlike S. cerevisiae, cannot deplete all sugars from the grape juice/must, i.e. ‘complete’ wine 

fermentation (Jolly et al., 2014). Moreover, due to the isolation from incomplete or protracted 

fermentations and/or analytically anomalous wines, these yeasts were long regarded solely as 

spoilage organisms (Loureiro, 2003, Ciani et al., 2010). Winemakers would therefore generally 

seek to unselectively inhibit their growth, which is in most cases achieved by the addition of 

commercially acquired S. cerevisiae as a high density inoculum, commonly coupled with SO2 

addition in concentrations toxic for most other microorganisms (Pretorius, 2000).  Inoculating 

a fermentation in such a manner has become a ubiquitous oenological practice, as it ensures 

reliable and timely processing with a consistent outcome (Pretorius, 2000, González et al., 

2011).  Nowadays, however, the large inter- and intra-species diversity amongst non-

Saccharomyces has become more apparent; while some strains cause wine spoilage, others can 

improve its overall quality. Moreover, co-existence and progression of multiple species results 

in a more diverse metabolic matrix compared to a S. cerevisiae monoculture, which can lead 

to increased aroma/flavour complexity and palate structure (Lambrechts and Pretorius, 2000, 

Varela et al., 2009, Ciani et al., 2010). Promoting the proliferation of native microflora by 

omitting additions of S. cerevisiae starter cultures can therefore be beneficial for wine quality. 
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However, the lack of predictability and reproducibility hinders wider industrial applicability of 

the un-inoculated fermentation modality.  

In an attempt to address the sensory uniformity and decreased complexity of inoculated 

wines, while avoiding the risks of un-inoculated fermentation, mixed culture inoculation has 

been proposed as an innovative fermentation management approach in winemaking (Ciani et 

al., 2010). It implies simultaneous or sequential inoculation of selected non-Saccharomyces 

and Saccharomyces strains, where non-Saccharomyces proliferate in the early stages of the 

fermentation, contributing to the chemical and sensory properties of the wine, whereas the later 

stages are dominated by more competitive Saccharomyces yeasts, ensuring fermentation 

completion. At an industrial level, however, this concept is still in its infancy; as of now only 

a few non-Saccharomyces starters representing four yeast species (i.e. T. delbrueckii, L. 

thermotolerans, M. pulcherrima and Pichia kluyveri) are available on a market saturated with 

hundreds of S. cerevisiae products (Jolly et al., 2014). However, multiple non-Saccharomyces 

selection and characterisation efforts delivering promising results in terms of chemical and 

sensorial modulation of wine suggest a likely emergence of novel non-Saccharomyces starters 

for the industry in the near future. 

1.1.2.3. Contribution of non-Saccharomyces yeasts in winemaking 

In mixed culture fermentations, the oenological contribution of non-Saccharomyces 

strains is largely defined by the fermentation management. The initial absence of S. cerevisiae 

in sequential inoculations allows for a greater impact of non-Saccharomyces yeasts compared 

to the co-inoculated modality (Ciani et al., 2010). The time interval between the two 

inoculations and/or inoculation density further affects the fermentation outcome (Kapsopoulou 

et al., 2007, Ciani et al., 2010, Comitini et al., 2011, Bely et al., 2013). Major alterations in 
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wine analytical parameters obtained in mixed culture fermentations compared to S. cerevisiae 

controls were reported for concentrations of glycerol (Gobbi et al., 2013, Contreras et al., 2014, 

Comitini et al., 2011), different organic acids (Gobbi et al., 2013, Bely et al., 2008, Comitini 

et al., 2011, Kapsopoulou et al., 2005, Kapsopoulou et al., 2007, Contreras et al., 2014), yeast-

derived polysaccharides (Comitini et al., 2011, Domizio et al., 2014, Domizio et al., 2011b, 

Domizio et al., 2011a), phenolic compounds (Benito et al., 2011, Morata et al., 2012, Benito et 

al., 2012) and a range of flavour-active compounds (Gobbi et al., 2013, Comitini et al., 2011, 

Zott et al., 2011, Sadoudi et al., 2012, Anfang et al., 2009). Not surprisingly, the main 

fermentation metabolite is also affected. 

1.1.2.3.1. Non-Saccharomyces yeasts in ethanol management 

The potential of non-Saccharomyces diversity in ethanol reduction has initially been 

overlooked. At the time a number of S. cerevisiae strains had been genetically modified to yield 

less ethanol in wine, and lengthy evolutionary engineering programs had already commenced, 

this phenotype was not a selection criterion for non-Saccharomyces yeasts. There is, 

accordingly, no mention of yeasts other than S. cerevisiae in a review on microbiological 

methods in ethanol reduction by Kutyna et al. (2010).  Nonetheless, lower ethanol yields of 

some non-Saccharomyces yeasts were noticed in several studies that evaluated their 

oenological potential with another primary focus (Ciani and Maccarelli, 1997, Ciani et al., 

2006, Magyar and Tóth, 2011). Likewise, ethanol decreases ranging between 0.2% - 0.9% (v/v) 

compared to S. cerevisiae controls were haphazardly observed in ‘dry’ mix-fermented wines 

in multiple studies (Ferraro et al., 2000, Soden et al., 2000, Comitini et al., 2011, Di Maio et 

al., 2011, Sadoudi et al., 2012, Gobbi et al., 2013). Recently, two lines of research on lower-
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alcohol non-Saccharomyces yeasts emerged concurrently: selection under anaerobic, i.e. 

typical winemaking conditions, and under aerobic conditions. 

1.1.2.3.1.1. Selection of lower-alcohol non-Saccharomyces yeasts under anaerobic 

conditions  

The first systematic attempt to select lower-alcohol non-Saccharomyces (and non-

cerevisiae) yeasts under winemaking conditions was reported by Bely et al. (2013), 

highlighting a St. bacillaris strain capable of decreasing wine ethanol in sequential 

fermentation with S. cerevisiae. Upon initial screening of 59 St. bacillaris strains, five strains 

showing acceptable aroma profiles were selected for co- and sequential inoculation trials. 

While the former modality did not elicit significant ethanol decreases, sequential cultures led 

to a 0.4 – 0.9% (v/v) ethanol reduction. However, the organoleptic properties of the obtained 

wines were unsatisfactory. The same authors did not find significant differences between the 

ethanol yields of S. cerevisiae and 30 T. delbureckii strains (Bely et al., 2013).  

Shortly after, Gobbi et al. (2014) conducted non-Saccharomyces pure culture grape 

juice fermentation trials using 33 strains belonging to nine different yeast species. Comparing 

pooled strains of single species to the S. cerevisiae control, the authors observed significantly 

lower ethanol yields in H. uvarum, Zygosaccharomyces bailii, Z. sapae and Z. bisporus 

fermentations, and an increased formation of other fermentation by-products. However, these 

were not evaluated in co-cultures with S. cerevisiae, and thus wines contained high levels of 

residual sugar (31-116 g/L).  

Broader characterisation of non-Saccharomyces yeasts was undertaken by Contreras et 

al. (2014), who screened 50 strains belonging to 40 species of 24 genera with the aim of 

identifying candidates to be used for ethanol reduction in sequential inoculation with S. 
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cerevisiae. Out of the initial number, only fifteen yeasts with lower ethanol yield than S. 

cerevisiae metabolised more than 20% of sugar in a monoculture and were chosen for further 

trials. Sequential inoculation with two strains of M. pulcherrima and one strain each of 

Schizosaccharomyces malidevorans and C. stellata reached completion and yielded 

significantly lower ethanol concentrations than the S. cerevisiae control. The most prominent 

ethanol decrease of 1.3% (v/v) was observed with the use of M. pulcherrima AWRI1149 and 

the consistency of results was confirmed in Chardonnay and Shiraz fermentations, with ethanol 

reductions of 0.9 and 1.3% (v/v), respectively. As stated by the authors, increased production 

of glycerol (observed in all mixed fermentations) and some organic acids could partially 

explain the ethanol reduction, however additional carbon sinks are likely to exist. Chemical 

composition of obtained wines was mainly analytically satisfactory, apart from the 

concentration of ethyl acetate in white wine (207.6 mg/L) being above the level (150 mg/L) 

considered detrimental for quality.  

1.1.2.3.1.2. Respiration-based approach in ethanol reduction 

An alternative approach in using non-Saccharomyces for wine ethanol reduction, as 

outlined by González et al. (2013), is based on the different regulatory mechanisms of the 

respiro-fermentative metabolism among yeasts. Unlike S. cerevisiae, the archetypical Crabtree-

positive species which favours fermentation when sugar concentrations exceed 10 g/L, many 

non-Saccharomyces yeasts do not display such respiration repression (de Deken, 1966). 

Therefore, aeration during the initial stage of fermentation conducted by a suitable non-

Saccharomyces strain, followed by the arrest of the aeration coinciding with S. cerevisiae 

sequential inoculation, was proposed to achieve ethanol reduction due to respiration (González 

et al., 2013). Experimental work exploring this concept is scarce, as is the information 
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regarding exact metabolic characteristics of different yeasts; nonetheless several early reports 

(Smith, 1995, Erten and Campbell, 2001) suggested its feasibility.  

Use of non-Saccharomyces for lowering ethanol levels in wine via respiration was 

extensively evaluated by Quiros et al. (2014). The screening of 59 non-Saccharomyces yeasts 

under aerated conditions involved the estimation of the respiration quotient (RQ), i.e. ratio of 

CO2 produced per O2 consumed, and concentrations and yields of other key metabolites. 

Several strains were suitable for lowering ethanol levels by respiration, in particular M. 

pulcherrima IFI1244.  Interestingly, the comparison of M. pulcherrima and S. cerevisiae 

performance in aerated fermentations revealed that ethanol reduction could be achieved using 

either of the two species. However, in the case of S. cerevisiae, it was accompanied with an 

increase in acetic acid, whereas in M. pulcherrima fermentation acetate concentrations 

remained undetectable. This novel research avenue will have to carefully assess and fine-tune 

oxygenation regimes so as to avoid the negative impact of oxygen on wine phenolic and flavour 

profile.  

1.1.2.3.2. Acidity modulation by non-Saccharomyces yeasts 

Non-Saccharomyces yeasts were reported to modulate both volatile and non-volatile 

acidity in wines. Acetic acid is the main contributor to wine volatile acidity (90-95%), and 

concentrations above 1 g/L are unacceptable in most wine styles (Ribéreau-Gayon et al., 2006). 

In S. cerevisiae increased production of acetate in high sugar musts is linked to glycerol 

synthesis in response to hyperosmotic stress due to redox balance restoration (Figure 1; 

Blomberg and Alder, 1989). However, glycerol and acetate production are not positively 

correlated in some non-Saccharomyces species, in particular T. delbrueckii, which was 

proposed for use in botrytised musts (Bely et al., 2008). Other species reported to produce low 
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acetate are M. pulcherrima and L. thermotolerans (Comitini et al., 2011, Gobbi et al., 2013, 

Contreras et al., 2014). Conversely, high-acetate producers commonly belong to species of 

Hanseniaspora, Zygosaccharomyces and Schizosaccharomyces, albeit this phenotype, much 

like others, is largely strain-dependent (Ciani et al., 2006, Benito et al., 2014, Jolly et al., 2014). 

Extensively ripened grapes from hot climates often contain low concentrations of 

organic acids, which may cause imbalance in wines and facilitate microbial spoilage due to pH 

dependent SO2 fractionation (Ribéreau-Gayon et al., 2006). Low acidity is most commonly   

corrected by addition of tartaric acid, and to a lesser extent other organic acids (Ribéreau-

Gayon et al., 2006). Other methods, such as ion exchange (Minguez, 2003),  electrodialysis 

(Ochoa et al., 1999) and blending regimes with grapes/cultivars with retained acidity 

(Ribéreau-Gayon et al., 2006, Kontoudakis et al., 2011) are also in practice. Alternatively, 

acidification can be achieved via metabolic activity of some species, in particular L. 

thermotolerans, which is characterised by production of lactic acid in orders of magnitude that 

by far surpass any other non-GM yeast (Kapsopoulou et al., 2005, Mora et al., 1990, Su et al., 

2014). In contrast, some species can have a de-acidifying character, mainly related to, either 

partial or complete, malic acid degradation (Su et al., 2014). This trait is of particular interest 

in cooler vine-growing regions where grapes at ripeness contain high levels of malic acid, 

which in wine imparts ‘harsh’ acidity, and can support growth of spoilage organisms (Sumby 

et al., 2014). Among the yeasts reported to (partially) degrade extracellular malate, e.g. 

Issatchenkia orientalis, L. thermotolerans, Z. bailii (Kapsopoulou et al., 2005, Su et al., 2014, 

Jolly et al., 2014,), Sc. pombe has received special attention as it can also lead to wine colour 

improvement (Benito et al., 2012) and increased release of autolytic polysaccharides (Palomero 

et al., 2009). 
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1.1.2.3.3. Impact of non-Saccharomyces yeasts on wine aroma and flavour 

Wine aroma is perhaps the most important intrinsic characteristic of wine. It is often 

subdivided into three categories: primary or varietal aroma, derived from the grapes; secondary 

aroma, formed during fermentation; and tertiary aroma or bouquet, shaped during wine aging 

(Lambrechts and Pretorius, 2000). Non-Saccharomyces yeast can directly affect both primary 

aroma and secondary aroma by specific enzymatic activities and production of metabolites, 

respectively.  

Within the constraints of a variety, the extent of ripeness was shown to affect the main 

classes of compounds that shape the primary aroma of wine (Bindon et al., 2013), i.e. 

methoxypyrazines, C13-norisoprenoids, volatile sulfur compounds and terpenes (Ebeler and 

Thorngate, 2009). Of these, terpenes are important primarily, but not exclusively, for so-called 

aromatic varieties, as they impart floral notes at low sensory thresholds (Strauss et al., 1986, 

Kalua and Boss, 2009). In grapes, terpenes are partially found in the form of odourless 

glycosylated precursors, which are hydrolysed via yeast activity during fermentation, although 

de novo synthesis has also been reported in yeasts (Carrau et al., 2005). The release of terpenes 

occurs in two steps; depending on the substrate, α-L-arabinofuranosidase, α-L-rhamnosidase 

or β-D-apiosidase hydrolyse terpene glycosides to monoterpenyl-β-D-glucosides, which are 

further cleaved by β-glucoside activity (Gunata et al., 1988). The β-D-glucoside activity is 

often assessed during selection and characterisation studies of non-Saccharomyces yeasts, and 

has been described in a number of species, including T. delbrueckii, St. bacillaris, L.  

thermotolerans, M. pulcherrima, H. uvarum and Debaryomyces hansenii (Rosi et al., 1994, 

Comitini et al., 2011), potentially driving the increases in terpenes. For instance, Sauvignon 

Blanc wines co-fermented with S. cerevisiae and either T. delbrueckii or St. bacillaris 

contained more terpenols than the S. cerevisiae monoculture (Sadoudi et al., 2012). Another 
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group of grape-derived compounds that can be modulated by yeast activity are the volatile 

thiols.  Volatile thiols impart the specific varietal character of Sauvignon Blanc, and strains of 

some non-Saccharomyces species, such as P. kluyveri, St. bacillaris, L. thermotolerans, T. 

delbrueckii and M. pulcherrima, were reported to produce an increased amount of volatile 

thiols (Anfang et al., 2009, Zott et al., 2011). 

Major constituent wine secondary aromas are esters and higher alcohols. In S. 

cerevisiae, the biosynthesis of these flavour-active compounds has been well-documented, and 

information is available on both genetic regulation and physicochemical conditions affecting 

their production (Hazelwood et al., 2008, Sumby et al., 2010, Cordente et al., 2012). Much less 

is known about the non-Saccharomyces yeasts. Results on secondary aroma alterations in wines 

produced by non-Saccharomyces yeasts are often rather descriptive, and highlight alterations 

of aroma compounds relative to the S. cerevisiae controls. Regardless, valuable, species-

specific patterns, as well as extensive intra-specific diversity were revealed in such studies. For 

example, L. thermotolerans is a high producer of ethyl lactate (Comitini et al., 2011, Gobbi et 

al., 2013), in line with lactate production, and the importance of precursor availability in ethyl 

ester production (Saerens et al., 2008). Another example is an increased production of ethyl 

acetate by the apiculate yeasts (Ciani and Maccarelli, 1997, Viana et al., 2008), the main wine 

ester that becomes faulty in excess of 150 mg/L (Sumby et al., 2010). Ethyl acetate 

concentrations above this limit were also found in some wines produced with the recently 

selected lower-ethanol M. pulcherrima strain in sequential cultures with S. cerevisiae 

(Contreras et al., 2014). On the other hand, T. delbrueckii strains produced very little ethyl 

acetate and 2-phenylethyl acetate (rose aroma) in Viana et al. (2008). In contrast, 2-phenylethyl 

acetate concentrations were dramatically higher in Pichia and Hanseniaspora fermentations 

(Viana et al., 2008), leading to a remarkable 3- to 9-fold increase in 2-phenylethyl acetate in 
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Hanseniaspora osmophila - Saccharomyces mixed cultures (Viana et al., 2009). The precursor 

of this ester, 2-phenyethanol, was also increased in co-cultures of S. cerevisiae and M. 

pulcherrima, St. bacillaris, T. delbrueckii or L. thermotolerans, but this increase was not 

necessarily observed in their pure cultures (Comitini et al., 2011, Sadoudi et al., 2012, Gobbi 

et al., 2013). Higher alcohols other than 2-phenylethanol were analysed in multiple other 

studies (Renault et al., 2009, Comitini et al., 2011, Sadoudi et al., 2012, Gobbi et al., 2013, 

Contreras et al., 2014) and their concentrations largely depended on the studied species, strain, 

fermentation conditions and modalities.  

Altogether, modulations in concentration and composition of volatiles highlight the 

immense impact of non-Saccharomyces yeasts in shaping wine aroma and flavour, and 

selection can provide phenotypes suited for specific wine styles. In parallel, more knowledge 

on fundamental metabolic features (e.g. studies of gene expression and enzymatic activity 

involved in amino acid uptake, esterification, fatty acid synthesis and other) will help to 

successfully steer these novel co-starters towards the targeted aroma and flavour profiles.  

1.1.3. Concluding remarks 

Non-Saccharomyces yeasts represent a large pool of inter- and intra-specific diversity 

that has yet to be fully explored and exploited in oenology. Their different metabolic 

characteristics to that of S. cerevisiae, alongside optimisation of oenological practices such as 

inoculation and oxygenation modalities, can be used to fine-tune ethanol levels in wine whilst 

enhancing rather than lessening its overall quality. Thorough selection and characterisation 

generating the basic understanding of non-Saccharomyces growth, metabolic activity and the 

extent of intra-specific diversity is, however, a pre-requirement for their targeted use in the 

wine industry.  
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1.2. Research aims 

This research aims to explore the oenological potential and diversity of non-Saccharomyces 

yeasts to modulate the main compositional parameters of wines, i.e. ethanol content, acidity 

profile and volatile composition, which are often out of balance in the era of excessively ripe 

grapes. This project’s aims will be realised through individual studies comprising the following 

objectives.   

1.2.1. Objective 1: Evaluation of currently available non-Saccharomyces starter 

cultures in the production of Shiraz wines at different grape maturity levels 

Perhaps the simplest and the most intuitive way to decrease ethanol in wines is to 

harvest grapes earlier. However, intense fruit flavours and fuller body are generally preferred 

by consumers and winemakers alike, and wines made from earlier harvested grapes can be 

deficient in such sensory characteristics. Based on the comprehensive literature review, mixed 

culture fermentations with non-Saccharomyces can lead to enhanced wine aroma and sensory 

properties, and albeit limited, the current non-Saccharomyces assortment is indeed marketed 

for this purpose. The potential of commercially available (and thus readily implementable) 

non-Saccharomyces co-inocula was therefore assessed in Shiraz fermentations at two maturity 

levels. Grapes were harvested at 24 °Brix, i.e. earlier harvest representing sub-optimally ripe 

fruit, and 29 °Brix, i.e. concomitant with the commercial harvest in the vineyard. The aim was 

to examine whether the non-Saccharomyces treatments could boost overall quality in the earlier 

harvested fruit, and test their performance at commercial harvest. The fermentations were 

conducted with eight yeast treatments, including non-Saccharomyces starters sequentially 

inoculated with S. cerevisiae, and appropriate S. cerevisiae controls, and managed identically. 

The wines were subjected to an extensive chemical analysis and sensory profiling, allowing for 

the comparison of these treatments, as reported in Chapter 2.  
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1.2.2. Objective 2: Selection and characterisation of non-Saccharomyces strain(s) 

for production of lower-alcohol wines in sequential culture with S. cerevisiae 

Non-Saccharomyces yeasts have shown great potential in managing wine ethanol 

content, however, lower-alcohol starters are still in demand. A study was therefore designed to 

test and select a non-Saccharomyces strain(s) that would decrease wine ethanol in co-culture 

with S. cerevisiae. Strains of M. pulcherrima, pre-selected based on their lower ethanol yields, 

were trialled in a synthetic grape juice medium in sequential inoculations with S. cerevisiae. 

The M. pulcherrima strain leading to the greatest ethanol decrease was further tested in a series 

of sequential inoculations with different time intervals between the two inoculations in both 

synthetic and real grape juice. The analysis of the main metabolites was undertaken prior to S. 

cerevisiae addition and upon fermentation completion, so as to study the compositional 

alterations in terms of ethanol, key metabolites and, for a subset of samples, volatile 

compounds, arising from the delays in sequential inoculation, while highlighting the potential 

carbon sinks other than ethanol. This study is reported in Chapter 3.  

1.2.3. Objective 3: Exploring the intra-specific diversity of L. thermotolerans 

The following studies focused on the concept of intra-specific diversity among non-

Saccharomyces yeast, using L. thermotolerans as a model, a species of remarkable yet under-

explored oenological potential. L. thermotolerans is a unique species among oenologically-

relevant yeasts, as it abundantly produces lactic acid. The resultant acidification is of value in 

warmer vintages and regions, where harvested grapes commonly lack acidity. Moreover, lower 

ethanol yields and aroma enhancement were also reported in wines co-fermented with L. 

thermotolerans. Like many other (non-Saccharomyces) yeasts, L. thermotolerans inhabits both 
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wine-related and natural habitats. A collection of L. thermotolerans isolates sourced from 

different ecological niches worldwide was therefore acquired to be studied at both the genetic 

and phenotypic level. The genetic diversity and population structure in L. thermotolerans was 

studied using a 14-microsatellite set, complemented with plate-based growth assays, as 

reported in Chapter 4. To understand whether and to what extent the observed genetic diversity 

was echoed at a phenotypic level, a subset of strains was further tested for their oenological 

performance in Chardonnay fermentations. Chapter 5 reports the comprehensive oenological 

phenomes of 94 strains, compared for their fermentation kinetics, yields of main metabolites 

and volatile composition, and highlights traits of value to the wine industry.  
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Abstract
Background and Aims: The choice of yeast strain(s) to conduct the fermentation can greatly affect wine chemical and sen-
sory profile. Even though the use of non-Saccharomyces co-inocula to build complexity and diversify styles is increasingly in
vogue, a limited number of such products are available to date, and more research is required to guide their use in the wine
industry. This study evaluates the potential of commercial yeast inocula to modulate the quality of Shiraz wines at two
maturity levels.
Methods and Results: Vinification outcomes of eight yeast treatments were compared in earlier (24�Brix) and later
(29�Brix) harvested Shiraz fruit. Yeast treatments included five non-Saccharomyces products with sequentially inoculated Sac-
charomyces cerevisiae, a commercial blend of non-Saccharomyces and S. cerevisiae strains, and a S. cerevisiae inoculum. Fermenta-
tion monitoring, and comprehensive analytical profiling in terms of basic chemistry, volatile composition, phenolic
measurements and descriptive sensory analysis, allowed for the comparison of the resulting wines. Both harvest date and
yeast inoculation treatments had a significant impact on a range of compositional and, in turn, sensory parameters of the
wines.
Conclusions: Certain non-Saccharomyces sequential inoculation treatments led to increased appeal of earlier harvest wines
compared to the S. cerevisiae Control. These treatments, however, were related to an increased risk of arrested fermentation
in higher ripeness conditions.
Significance of the Study: This study contributes to a better understanding of yeast inoculum-derived modulation of Shi-
raz wine quality parameters at different maturity levels.

Keywords: mixed culture inoculation, non-Saccharomyces yeasts, sensory evaluation, Shiraz, volatile compounds, yeast inoculum

Introduction
Alcoholic fermentation is a step of critical importance in
oenology, involving the bioconversion of grape sugars, pri-
marily glucose and fructose, to ethanol and CO2 with a con-
comitant release of secondary by-products that affect the
chemical and sensory properties of the obtained wine. It is
generally conducted by Saccharomyces cerevisiae – the ‘con-
ventional’ wine yeast; however, other species, so-called
non-Saccharomyces yeasts, are also involved in the fermenta-
tion process. Originally regarded as wine spoilage organisms,
these yeasts are now being re-evaluated as positive contrib-
utors to wine quality (Jolly et al. 2014, Padilla et al. 2016).

Non-Saccharomyces yeasts play an important role in unin-
oculated fermentation, which is characterised by the co-
existence and succession of multiple yeast species and
strains. Such a complex metabolic matrix can lead to an
increased aroma and flavour diversity and superior wine
quality (Domizio et al. 2007, Varela et al. 2009, Jolly
et al. 2014, Padilla et al. 2016). Due to variable population
composition and dynamics, however, and an increased risk
of protracted and/or incomplete sugar catabolism and spoil-
age, this fermentation modality lacks predictability and
reproducibility, and has limited industrial applicability (Ciani

et al. 2016a). Consequently, the use of a selected S. cerevisiae
starter culture in the so-called inoculated fermentation has
become a common oenological practice. In inoculated fer-
mentations, a high density inoculum contributes to the sup-
pression of native microflora, enabling a reliable and timely
fermentation with a consistent outcome (Jolly et al. 2014,
Ciani et al. 2016a,). This is, however, often seen to result in
overall decreased complexity and sensory uniformity of inoc-
ulated wines compared to their spontaneously fermented
counterparts (Domizio et al. 2007, Varela et al. 2009, Jolly
et al. 2014, Padilla et al. 2016). In attempts to overcome the
shortcomings of inoculation while avoiding the risks of its
omission, an innovative alternative has been proposed,
referred to as the mixed culture fermentation (Ciani
et al. 2011, 2016a, Comitini et al. 2011, Jolly et al. 2014). It
involves an inoculation of a selected non-Saccharomyces
strain, with a simultaneously or sequentially added Saccharo-
myces culture. In this a way, non-Saccharomyces yeasts, charac-
terised by a limited sugar consumption and sensitivity to
various (a)biotic stressors (Renault et al. 2013, Jolly
et al. 2014, Kemsawasd et al. 2015, Albergaria and Arneborg
2016), contribute to the chemical and sensory properties of
the wine, while the more competitive Saccharomyces yeasts
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ensure fermentation completion (Ciani et al. 2011, 2016a,
Jolly et al. 2014, Albergaria and Arneborg 2016).

Observations that the inclusion of non-Saccharomyces
yeasts in the fermentative medium can positively affect
wine chemical and, in turn, sensory profile have led to char-
acterisation of a large inter- and intra-species diversity pool
in order to select phenotypes to be used in producing certain
wine styles. Indeed, a body of research elucidates the contri-
bution of numerous ‘wild’ non-Saccharomyces isolates to the
production of primary and secondary fermentation metabo-
lites, as well as their modulation of grape-derived aroma
and phenolic substances. Accordingly, major alterations in
wine analytical parameters obtained in fermentations (par-
tially) conducted by non-Saccharomyces yeasts were reported
for ethanol yield (Comitini et al. 2011, Contreras
et al. 2014, 2015, Ciani et al. 2016b), glycerol concentration
(Comitini et al. 2011, Contreras et al. 2014, 2015), major
grape/wine organic acids including acetic acid (Kapsopoulou
et al. 2007, Bely et al. 2008, Comitini et al. 2011, Su
et al. 2014), a wide range of wine volatiles (Comitini
et al. 2011, Sadoudi et al. 2012, Padilla et al. 2016, Varela
et al. 2016), yeast-derived polysaccharides (Comitini
et al. 2011, Giovani et al. 2012, Domizio et al. 2014), and
colour compounds (Benito et al. 2011, Morata et al. 2012).
It is therefore likely the industry will see an emergence of
novel non-Saccharomyces in the near future; however, only a
few non-Saccharomyces products are currently commercia-
lised and available for wine production, as opposed to hun-
dreds of Saccharomyces starters. Likewise, compared to
extensive research focusing on the evaluation of Saccharomy-
ces yeasts available for winemaking, information on the
effect of non-Saccharomyces on the composition of wines
from different grape cultivars or wine styles is still scarce.

Shiraz is one of the most widely planted red grape cultivars
globally (Anderson and Aryal 2013), and a choice of yeast
strain to conduct the fermentation markedly affects its vinifi-
cation outcome (Holt et al. 2013, Whitener et al. 2017). An
impact of Saccharomyces inocula on a range of Shiraz composi-
tional parameters, including tannins, other phenolic sub-
stances and fermentation (by)products, is well recorded (Holt
et al. 2013). Conversely, for non-Saccharomyces products,
information is thus far limited to the wine volatile profile
(Whitener et al. 2017). Our work therefore extends the
knowledge on the inoculum-derived modulation of Shiraz
volatile and non-volatile chemical composition, and resultant
sensory perception, using the non-Saccharomyces active dry
wine yeast products commercially available during the 2015
southern hemisphere vintage. One vinification was under-
taken using earlier harvested grapes, generally deemed as sub-
optimally ripe in terms of their flavour and phenolic profile,
yet with a sugar level that translates into a moderate alcohol
in wine, increasingly in demand among consumers (Ristic
et al. 2016). We hypothesise that the non-Saccharomyces co-
starters tested would boost aroma, flavour and mouthfeel of
wines produced from the earlier harvested fruit. The subse-
quent harvest was made at a maturity stage required for the
production of full-bodied, intensively flavoured wines better
fitting a conventional quality benchmark. High sugar and,
consequently, ethanol concentration occurring in such fer-
mentations impose stress on yeasts, thereby compromising
fermentation progress and final wine composition (Ribéreau-
Gayon et al. 2006, Ristic et al. 2016). Non-Saccharomyces inoc-
ula in such scenarios, again, potentially represent a way to
achieve improved composition, for example due to a decrease
in volatile acidity and increase in total acidity (Kapsopoulou

et al. 2007, Bely et al. 2008, Comitini et al. 2011, Jolly
et al. 2014, Su et al. 2014). This study therefore contributes to
the understanding of yeast inoculum-derived modulation of
Shiraz wine composition at different maturity levels, allowing
for informed strain choice to lead to product diversification,
stylistic distinctness and, in turn, positioning in an increasingly
competitive global wine market.

Materials and methods

Vinification methodology
Shiraz grapes were sourced from a vineyard in McLaren Vale,
South Australia (35�170S, 138�550E). The regional climate in
McLaren Vale is temperate-warm; the average mean January
temperature (MJT) for the site is 22.9�C, based on climate data
from 2000 to 2016, as obtained from the Australian Bureau of
Meteorology (2017). In 2015 the MJT was 22.1�C, and mean
maximum temperature exceeded 30�C on 8 days (data not
shown). Fruit was harvested at two time points: (i) earlier har-
vest (H1) when TSS reached 24�Brix, pH 3.4, yeast assimilable
nitrogen (YAN) 169 mg/L; and (ii) later harvest (H2); TSS
29�Brix, pH 3.7, YAN 178 mg/L. The two harvest dates (HDs)
were 6 days apart (5/02/2015 and 11/02/2015) suggesting
rapid sugar accumulation and a compressed vintage effect. Par-
cels of randomly distributed fruit containing 12 kg fruit were
separately destemmed, crushed and distributed into 20 L plas-
tic fermenters. Eight yeast inoculation treatments, three Toru-
laspora delbrueckii strains (AL, BI, PR), Lachancea thermotolerans
(CO), Metschnikowia pulcherrima (FL), an initially uninoculated
treatment (PI), a commercial blend of Saccharomyces cerevisiae,
T. delbrueckii and L. thermotolerans (ME) and a S. cerevisiae strain
(SC), were established in triplicate at H1 and H2 (Table 1). Fol-
lowing the addition of 100 mg/L of diammonium phosphate
(DAP), must was inoculated with 0.2 g/L active dry wine yeast
(ADWY) products rehydrated according to the suppliers’
instructions. During fermentation at 24�C, the cap was
plunged twice per day, and the ferment was sampled fre-
quently for sugar consumption kinetics. If applicable,
S. cerevisiae PDM (Table 1) was sequentially inoculated into the
fermentation after 60 h, with additional 100 mg/L DAP sup-
plementation. After 7 days, the must was pressed off from the
skins and transferred into 5 L demijohns. Upon fermentation
completion/arrest, 50 mg/L of SO2 (as potassium metabisul-
fite) was added to the wines. The wines were then racked from
gross lees and cold stabilised at 0�C for approximately
3 months. Prior to bottling, free SO2 was adjusted to 30 mg/L
and wines made at later harvest were acid-adjusted with the
addition of 1 g/L of tartaric acid. Bottles were stored at 10�C
until chemical and sensory analysis.

Chemical analysis
During the course of the fermentation, the rate of sugar con-
sumption was monitored spectrophotometrically using a com-
mercial enzymatic kit (Megazyme, Bray, Ireland) as described
in Walker et al. (2014). Glucose and fructose, ethanol, glyc-
erol, malic, tartaric and acetic acid were quantified by HPLC in
centrifuged and filtered (0.45 μm) samples, according to Li
et al. (2017). Calibration curves (R2 > 0.9999) relating the
concentration of analytes and refractive index or optical den-
sity measurements were fitted by least squares regression
using Chemstation software (Agilent Technologies, Santa
Clara, CA, USA). Titratable acidity (TA) and pH were mea-
sured with a Radiometer Titralab 90 model (Radiometer,
Brønshøj, Denmark). Wine colour and phenolic substances
were determined with the modified Somers method
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(Mercurio et al. 2007). A high-throughput version of the
methyl cellulose precipitable (MCP) tannin assay (Mercurio
et al. 2007) was applied to spectrally quantify wine tannin
concentration. The volatile composition of the wines was ana-
lysed by solid phase microextraction (SPME)-GC/MS. Samples
were diluted with water (1 in 2 and 1 in 100) to a final vol-
ume of 10 mL, with the addition of 3 g of sodium chloride to
each 20 mL vial. Samples were spiked with a mixture of five
standards: d13-hexanol (9.2 μg for 1:2 dilution, 0.92 μg for
1:100 dilution; C/D/N Isotopes, Pointe-Claire, QC, Canada);
d11-hexanoic acid (9.3 μg for 1:2 dilution, 0.93 μg for 1:100
dilution; C/D/N Isotopes); d16-octanal (0.821 μg for 1:2 dilu-
tion, 82.1 ng for 1:100 dilution; C/D/N Isotopes); d9-ethyl
nonanoate (0.92 μg for 1:2 dilution, 92 ng for 1:100 dilution);
d3-linalool (17.3 ng for 1:2 dilution and 1.7 ng for 1:100 dilu-
tion, C/D/N Isotopes). The extraction and chromatographic
conditions were identical to those reported in Boss
et al. (2015). The volatile compounds were identified by com-
paring mass spectra with the US National Institute of Stan-
dards and Technology-11 (NIST-11) and the Wiley Registry
9th edition mass spectral libraries. Volatiles were quantified
with ChemStation relative to internal standards belonging to
the same chemical group using the peak area of an extracted
ion. Calibration curves of respective analytes were used to
determine concentration of all volatiles except diethyl succi-
nate, which was quantified relative to d9-ethyl nonanoate.

Sensory analysis
Descriptive sensory analysis (Stone and Sidel 2004) of wines
was recorded in a purpose-built sensory laboratory approxi-
mately 3 months after bottling. The tasting panel consisted of
nine female and three male staff members and students from
The University of Adelaide with extensive wine sensory
descriptive analysis experience. Six training sessions were
conducted to generate applicable attributes, to gain familiar-
ity in recognising and scoring them, and to reach consensus
scale use. The panel was presented with standards for aroma
attributes, hotness, palate fullness, astringency and palate
coarseness. Wine appearance terms (colour and depth) were
removed when the panel reached a consensus that differ-
ences in these attributes were not perceived. A practice eval-
uation session was held to verify judge performance (using
PanelCheck software, Nofima, Tromsø, Norway), to provide
feedback and, based on the consensus, to remove non-

discriminating attributes. The wines were then formally eval-
uated over three sessions, in isolated booths at 22–23�C with
data acquisition with FIZZ software (Version 2.2, Biosys-
tèmes, Couternon, France). All wines were presented as
50 mL samples in covered ISO standard glasses with ran-
domly assigned three-digit codes. Panellists rated 28 attri-
butes (Table S1) on a 15 cm unstructured line scale from 0 to
10 marked with anchor points ‘low’ (10% of the scale),
‘medium’ (50% of the scale) and ‘high’ (90% of the scale).
To avoid sensory fatigue, panellists were instructed to rinse
thoroughly with pectin solution (1 g/L) and rest for at least
1 min between evaluating samples.

Statistical analysis
Basic data processing was undertaken with EXCEL 2010
(Microsoft, Richmond, WA, USA). Data are presented as
mean values with standard deviation (SD) from replicate
determinations. Two-way ANOVA was performed to assess
the effect of harvest date (HD), yeast treatment (YT) and their
interaction (IN) on basic chemistry parameters, volatiles and
wine colour and phenolics measurements with GraphPad
Prism (v6.03v, GraphPad Software, La Jolla, CA, USA). The
significance level between measurements was determined
separately for each HD using Fisher’s least significant differ-
ence post-hoc test with significance threshold set at 95%. The
concentration of volatiles was visualised in R (v3.3.2, R Devel-
opment Core Team, Vienna, Austria) with heatmap function,
upon data normalisation to set mean as 0 and SD as 1, with a
default Euclidean distance and Ward clustering. Panel perfor-
mance during DA was evaluated with PanelCheck (v1.4.2,
Nofima); principal component analysis (PCA) of sensory data
was performed using SENPAQ (v6.03, Qi Statistics, Reading,
England). Chemical data and sensory data were subjected to
PCA in XLSTAT (v2015.4.1, Addinsoft, Paris, France).

Results

Fermentation kinetics and basic wine chemistry parameters
Differences, due to the yeast inoculum, were observed in
the rate and the extent of sugar consumption in Shiraz fer-
mentations (Figure 1), and in the composition of final Shi-
raz wines produced form the two harvests (Table 2). To
better understand the effect of the respective inoculation
regime on wine composition, differences were separately

Table 1. Experimental details of the fermentations with eight yeast treatments and grapes from two harvest dates.

Treatment Full commercial
name/name

Supplier Species First†
inoculation

Second†
inoculation

AL ZYMAFLORE Alpha Laffort Oenologie, Bordeaux,
France

Torulaspora delbrueckii × ×

BI Biodiva Lallemand, Montréal, QC,
Canada

T. delbrueckii × ×

CO CONCERTO CHR Hansen, Horsholm,
Denmark

Lachancea thermotolerans × ×

FL Flavia Lallemand Metschnikowia pulcherrima × ×
PR PRELUDE CHR Hansen T. delbrueckii × ×
PI Postponed inoculation NA Indigenous microflora – ×
ME MELODY CHR Hansen T. delbrueckii,

L. thermotolerans,
Saccharomyces cerevisiae

× –

SC PDM Maurivin, Australia S. cerevisiae × –

Treatments were in triplicate. †Inoculation regimes, comprising the first inoculation of a respective yeast and/or a second inoculation of PDM after 60 h follow-
ing the supplier’s protocol, are indicated with an ×. AL, BI, PR, Torulaspora delbrueckii strains; CO, Lachancea thermotolerans; FL, Metschnikowia pulcherrima; PI, an
initially uninoculated treatment; ME, a commercial blend of Saccharomyces cerevisiae, T. delbrueckii and L. thermotolerans; SC, a S. cerevisiae strain; NA, not
applicable.
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considered for each HD, as the HD significantly affected all
measurements (Tables 2,S2).

In earlier harvested fruit (H1), all treatments led to com-
plete sugar depletion (Figure 1a), with the duration of fermen-
tation varying from 8 (ME, SC) to 12 days (AL, BI, PR). Even
though CO, FL and PI contained a significantly lower sugar
concentration at the time of the S. cerevisiae sequential inocula-
tion, fermentation was completed 1 day earlier compared to
that of AL, BI and PR. Similarly, the lowest extent of sugar
consumption preceding S. cerevisiae inoculation in H2 fermen-
tations was measured for CO and PI, followed by
FL. Nonetheless, PI and FL fermentations were completed on
day 11, whereas CO fermented to dryness (i.e. sugar concen-
tration < 4 g/L) on day 16 (Figure 1b). The AL, BI and PR fer-
mentations displayed protracted fermentation, and were
terminated on day 20 without reaching completion. The AL
and BI H2 wines therefore yielded the lowest ethanol concen-
tration with the highest residual sugar content (Table 2). In H1
wines, ME resulted in a significant ethanol decrease of 0.6%
(v/v) compared to that of SC, with no further difference seen
among the treatments. Glycerol concentration was signifi-
cantly affected by the yeast inoculation management
(P < 0.0001), with FL and PI resulting in the highest glycerol
concentration at both HDs (Table 2). In H1, the lowest glycerol
concentration was found in BI, AL and PR wines, followed by
the SC wine. The same Torulaspora delbrueckii inocula (AL, BI
and PR) led to lower glycerol concentration than that of other
YTs in H2 wines. Conversely, SC wines showed the highest
increase in glycerol concentration between the two consecu-
tive HDs; that of 40%. Acetic acid concentration in H1 wines
ranged from 0.28 to 0.47 g/L in the FL and CO treatments,
respectively (Table 2). Lachancea thermotolerans also resulted in
the highest acetic acid concentration in H2, statistically equiva-
lent to that of the SC treatment. In higher sugar fermentations,
the lowest acetic acid formation was observed in BI and PR
wines. The other two treatments involving T. delbrueckii inocu-
lation, that is AL and ME, had comparably low acetic acid con-
centration. The H1 wines showed a large variation in malic
acid concentration; CO inoculation regime resulted in 48%
lower malic acid concentration compared to that of SC. The
latter contained significantly higher malic acid concentration
than that of all the other treatments. In H2, the malic acid con-
centration of SC did not differ from that of AL, CO and PI, and
was higher than that of BI, ME and FL. Despite a lower con-
centration of malic acid, and a similar concentration of tartaric
acid, the pH of CO was 0.1 unit lower than that of SC H1 wine.

Volatile profile of sequentially inoculated wines
Thirty-nine volatile compounds were analysed in Shiraz wines
(Table 3). A PCA plot and heatmap (Figure 2) provide an
overview of the volatile profiles associated with the activity of
yeasts inoculated into each treatment at both HDs.

Total acetate esters were significantly affected by the HD,
showing an increase with advanced maturity (P < 0.0001;
Table S3). Conversely, HD did not significantly influence the
total ethyl esters; its interaction with YT was, however, sig-
nificant (P = 0.0063; Table S3). Increase in the concentration
of total higher alcohols and total terpenes was observed in
H2 wines compared to that of H1 wines (Tables 3,S3), except
for ME and SC H2, containing comparable total higher alco-
hols to that of H1 wines fermented with the same treatment
(t-test P values 0.2075 and 0.2362, respectively).

Irrespective of HD, YT showed substantial impact on
the production of ethyl esters and the acetates, explaining
76 and 57% of the observed variation, respectively

(P < 0.0001, Table S3). The main acetates found in the
wines were ethyl acetate and isoamyl acetate, accounting
for 96% or higher of the total acetate concentration
(Table 3). The PI wines had a significantly higher concen-
tration of ethyl acetate than all the treatments except CO
H2; SC wines had the lowest concentration. In contrast,
ME and PR treatments resulted in the highest concentra-
tion of isoamyl acetate, while AL and BI strains produced
the lowest concentration at both HDs. Harvest date
appeared to have a greater impact on PR, the remaining
T. delbrueckii treatment, that is, when applied to the H2
grapes, it significantly increased isoamyl acetate production.
Other acetates, albeit constituting a small proportion of the
total acetates, showed certain strain specific patterns. For
example, PR consistently produced the highest concentra-
tion of 2-phenylethyl acetate and hexyl acetate while CO
and ME produced a higher concentration of isobutyl ace-
tate than the other treatments.

The major ethyl esters found in the wines were ethyl iso-
butyrate, ethyl hexanoate, ethyl octanoate, ethyl decanoate
and diethyl succinate, differently represented among treat-
ments (Table 3). In AL, BI, PR and CO treatments ethyl iso-
butyrate was the most abundant ethyl ester; followed by
ethyl hexanote, ethyl octanoate and diethyl succinate. Ethyl
isobutyrate was the ethyl ester found in the highest concen-
tration in ME H1 wine, while in ME H2 its concentration was
exceeded by ethyl hexanoate and ethyl octanoate. The latter
was also the case for FL wines. The PI and SC treatments had
the most ethyl octanoate followed by ethyl hexanoate. Con-
versely, ethyl heptanoate, ethyl Z-3-hexenoate, ethyl 2-
methyl butanoate and ethyl laurate were consistently low in
concentration in all treatments. Again, yeast-specific patterns
were found in ethyl ester production. For example, ME treat-
ment was particularly linked to an increase in ethyl 2-methyl
butanoate, ethyl decanoate and ethyl isovalerate at both
HDs. Ethyl heptanoate, albeit present at low concentration,
was the only ester that was found to be higher in FL wines
than in all the remaining treatments. The AL wines were
characterised by the highest ethyl isobutyrate concentration,
with a dramatic difference of up to 89% compared to that of
the other treatments, and regardless of the maturity level.
The remaining wines produced with the sequential inocula-
tion of T. delbrueckii, BI and PR, also contained an increased
concentration of ethyl isobutyrate.

Yeast treatment was a variable explaining the most vari-
ance in total higher alcohols analysed, that is 67%
(P < 0.0001), significantly affecting 13 out of 15 analysed
higher alcohols (Tables 3,S3). In both harvests FL led to the
lowest total higher alcohol concentration, comparable to that
of PI and SC in H1 and H2, respectively. Furthermore, FL
wines contained a concentration of 1-hexanol lower than
that of all remaining treatments, with a decrease ranging up
to 22% in H1, and 29% in H2. Total higher alcohol concen-
tration in H1 was the highest in ME wine, consistently
related with high formation of 1-heptanol, 1-nonanol, 1-
octanol, 2-methyl-1-propanol, 3-methyl-1-butanol. In H2,
the highest value of total higher alcohols was observed in BI
and AL, equivalent to those found in PR, CO and ME. In all
treatments except ME and SC, an elevated concentration of
phenylethyl alcohol was largely responsible for the increased
total higher alcohol concentration in H2 wines. In fact, an
increase in phenylethyl alcohol was observed in wines pro-
duced from H2 grapes for all YTs except SC, ME and FL.

The T. delbrueckii treatments (AL, BI and PR) were associ-
ated with an elevated concentration of total terpenes in both
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harvests, while FL, SC and ME had a comparatively lower
concentration of total terpenes (Table 3). The concentration of
nerolidol, the most abundant terpene, was elevated in all
three treatments initially inoculated with T. delbrueckii. This
was not the case with linalool, which was present at a concen-
tration in AL and BI higher than that of all the other treat-
ments including PR. The AL wines showed the lowest
concentration of hexanoic acid, followed by the BI treatment.
The SC, ME and FL wines, in contrast, had a concentration of
hexanoic acid relatively higher than that of the other treat-
ments; this being the case with H1 and H2 grapes.

Certain YTs resulted in wines with a more consistent vol-
atile profile irrespective of the HD (Figure 2). For instance,
FL wines made at different maturity levels were more similar
to one another than to any other YT (Figure 2a). Conversely,
treatments PR and CO gave distinct profiles when comparing
H1 to H2 for the same treatment. Along PC1 (Figure 2b), a
co-localisation of T. delbrueckii co-inocula (AL, BI, PR) is
apparent, driven primarily by the increase in ethyl isobuty-
rate, linalool, nerolidol, phenylethyl alcohol and 2-heptanol.
The remaining treatments, except CO H2, are separated on
the opposite side of the plot, as are all the major ethyl esters
except ethyl isobutyrate, that is ethyl hexanoate, ethyl non-
ate, ethyl decanoate and diethyl succinate. Positioning of H2
treatments above H1 treatments indicates the variability
related to HD described by PC2.

Wine colour and phenolic substances
Harvest date had a significant effect on all phenolic sub-
stances and colour parameters, except for wine hue
(Table 4). Wines produced from H2 had a higher concentra-
tion of tannin, anthocyanin and phenolic substances and a
higher colour density.

Significant influence of the YT was observed for all the
tested parameters, including the wine tannin concentration
(P = 0.0008, Table 4). At H1, the SC Control resulted in a tan-
nin concentration higher than that of the other YTs, with the
increase ranging from 16 (AL) to 24% (BI). Tannin concentra-
tion in H2 SC wines was higher than that in PR, CO, PI and FL
wines, and comparable to that in BI, AL and ME wines.

Wine colour density was also significantly affected by
the yeast inoculation regime (P < 0.0001, Table 4). Interest-
ingly, all three T. delbrueckii strains (AL, BI, PR) resulted in
the lowest colour density of H1 wines. Only ME, a yeast
blend containing the same species, had a comparable low
colour density. The PR H2 wines had the lowest colour den-
sity as well, which was not the case with remaining two
T. delbrueckii treatments, whereas FL and PI treatments had
the highest colour density for both HDs. The PI wine consis-
tently had the lowest wine hue value, indicating a more
pronounced shift towards younger blue–purple hues. Phe-
nolic substances in H1 wines were between 8 and 9%

higher in the BI treatment compared to the PR, AL and FL
treatments, and no further significant differences were seen
among the remaining treatments (Table 4). More variation
was observed in the H2 wines, with the SC treatment result-
ing in a concentration of phenolic substances significantly
higher than that of CO, ME and PR. The PR wines were
characterised by the lowest concentration of phenolic sub-
stances, anthocyanin and non-bleachable pigment (Table 4).
Similar trends were observed for ME, and an opposite trend
for PI wines. Compared to the SC Control, anthocyanin con-
centration was 6% higher in CO wines and 7% higher in PI
wines in H1 and H2, respectively. Inoculation FL led to a
57% increase in stable colour formation measured as the
non-bleachable pigment compared to that of PR, BI and ME
wines at H1. The second HD resulted in AL and BI wines
with the highest non-bleachable pigment concentration,
which was, along with that of FL, significantly higher com-
pared to the SC Control treatment.

Descriptive sensory analysis
A significant difference was found in the intensity rating for
22 out of 28 attributes evaluated in Shiraz wines (Table S4).
The sensory data for the significantly different attributes
were subjected to PCA, with the first two PCs accounting for
61.8% of the total variation in the samples (Figure 3). Along
PC1, which explained 40.9% of the variance, wines show-
ing increased astringency, hotness, surface coarseness, bit-
terness, acidity, vegetal flavour, savoury and earthy aroma/
flavour were separated from those characterised by higher
sweetness, palate fullness and aroma and flavour intensity,
with floral, fruity, confectionery, jammy, spice and licorice
aroma/flavour. A clear separation of wines based on their
HD can be observed along PC2, accounting for 20.9% of
variance. Among H1 wines, the SC wines were perceived as
the most acidic and vegetal, whereas the AL, BI, ME and FL
wines were seen as more floral, confectionery, fruity and
spicy. A differentiation can also be noticed in H2 wines; FL,
PI, SC and ME being related to surface coarseness, hotness
and astringency, and AL, BI and PR, showing palate full-
ness, sweetness, and jammy and confectionery flavour. The
relationship between the sensory and chemical profile of
wines was visualised on a PCA biplot (Figure 4), incorporat-
ing sensory data (active variables) and chemical data (sup-
plementary variables), with a correlation matrix provided as
supporting data (Table S5). Although mixed classes of vola-
tiles were represented along PC1, certain patterns could,
again, be observed, for example co-grouping of the majority
of the ethyl esters on the left side of the plot, separately
from ethyl isobutyrate on the right. The PC2 appeared to be
highly related to the measurement of phenolic substances
and colour, and negatively correlated to Z-3-hexenol.

Figure 1. Effect of the (a) earlier and (b) later
harvest dates and yeast treatment on the sugar
(glucose + fructose) consumption kinetics in
Shiraz must fermented with Torulaspora
delbrueckii strains AL ( ), BI ( ), PR ( );
Lachancea thermotolerans CO ( );
Metschnikowia pulcherrima FL ( ); an initially
uninoculated treatment PI ( ); a commercial
blend of Saccharomyces cerevisiae, T. delbrueckii
and L. thermotolerans ME ( ); and a S. cerevisiae
strain SC ( ). Sequential inoculation of
S. cerevisiae to treatments AL, BI, CO, FL and PI
(day 3) is indicated with an arrow.

© 2017 Australian Society of Viticulture and Oenology Inc.
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Discussion
The use of selected non-Saccharomyces yeast to partially con-
duct the fermentation has become increasingly popular, as a
mean to build wine complexity and diversify styles (Jolly
et al. 2014). To date a limited number of non-Saccharomyces
products is available on the market, and more research is
required to guide their use by the wine industry. In this study,
we applied a sequential inoculation modality with three com-
mercial strains of T. delbrueckii, and one strain each of
M. pulcherrima and L. thermotolerans. In order to ascertain that
observed differences can be attributed to the respective yeast
inoculation, rather than to any other strain(s) found on the
grapes, we included a postponed inoculation with the fer-
mentation, initiated by the naturally present microflora. We
opted for a time-point as a criterion for a second inoculation,
as a critical factor in cellar management during, and post, fer-
mentation (Ribéreau-Gayon et al. 2006). Another tested
non-Saccharomyces treatment was the commercial blend of
T. delbrueckii, L. thermotolerans and S. cerevisiae. These were all
compared to a S. cerevisiae monoculture of PDM, a strain
widely used in the industry. The resultant wines differed in
their composition and sensory attributes, indicating the effec-
tiveness of the yeast inoculation treatment. We hereby pre-
sent a comprehensive dataset generated to determine the
effect of non-Saccharomyces inocula on the chemical and sen-
sory profile of Shiraz wines produced at two grape maturity
levels.

Yeast interactions and alteration of wine composition
Timely and reliable completion of fermentation is of critical
importance in winemaking. Novel inoculation regimes that
include the use of non-Saccharomyces yeasts generally dis-
play slower fermentation; alteration of wine composition
and an increase in quality are seen to compensate for the
delay. Lengthier fermentation observed for sequential inoc-
ulation treatments was therefore not surprising. Intriguing
was the fact that T. delbrueckii treatments (AL, BI and PI)
showed delayed completion of fermentation compared to
other non-Saccharomyces treatments in H1, and its arrest in
the H2 wines. As the nitrogen source was supplemented
concomitant to S. cerevisiae addition, it is unlikely that
nitrogen deficiency was the cause for the displayed kinet-
ics. The acclimation of sequentially inoculated S. cerevisiae
to physicochemical conditions in the commenced ferment,
for example the concentration of ethanol already formed
or anaerobiosis, might partially explain this discrepancy. It
can be assumed, however, that the effect of additional
interaction between the yeasts and/or produced metabo-
lites (other than ethanol) were the cause for the displayed
kinetics. This is also supported by the fact that H2
L. thermotolerans treatment (CO) finished fermentation
5 days later than two other treatments, that is FL and PI,
with comparable sugar content consumed prior to
S. cerevisiae addition. Indeed, rather than co-existing pas-
sively, yeasts in fermentation display various interactions
(Renault et al. 2013, Jolly et al. 2014, Kemsawasd
et al. 2015, Albergaria and Arneborg 2016, Ciani
et al. 2016a). Saccharomyces cerevisiae is known to negatively
affect cell proliferation and survival of non-Saccharomyces
species via mechanisms including cell–cell contact and
microbial peptide secretion, as described for T. delbrueckii
(Renault et al. 2013) and L. thermotolerans (Kemsawasd
et al. 2015). The potential effect of non-Saccharomyces on
S. cerevisiae also cannot be excluded. Renault et al. (2013),
however, observed a positive effect of T. delbrueckii onTa
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S. cerevisiae when separated, and no effect in their co-cul-
ture. Stuck and sluggish multi-starter fermentations were, in
contrast, previously reported (Ciani et al. 2006). It is there-
fore plausible that, in our study, observed fermentation
kinetics imply a negative effect of tested T. delbrueckii and
L. thermotolerans strains on S. cerevisiae, in particular for H2
wines. Such negative interactions were absent in the case of
M. pulcherrima (FL) and microflora present on grapes (PI).
Interaction mechanisms are undoubtedly extremely com-
plex, and strain- and condition-dependent, and potentially
exacerbated by higher sugar-related H2 conditions
(Blomberg and Adler 1989, Ribéreau-Gayon et al. 2006).
This phenomenon may offer an explanation for the increase
in glycerol concentration between the two consecutive har-
vests, in particular the glycerol excess in SC H2 treatment
(Table 2). High glycerol concentration in PI and FL treat-
ments agrees with reports that uninoculated fermentations
and co-fermentations with some non-Saccharomyces, includ-
ing M. pulcherrima, generally produce more glycerol than
S. cerevisiae monoculture (Comitini et al. 2011, Contreras
et al. 2014, 2015, Jolly et al. 2014, Varela et al. 2016). While
glycerol formation in S. cerevisiae is linked to acetic acid pro-
duction, this is not the case for some non-Saccharomyces
(Ribéreau-Gayon et al. 2006, Bely et al. 2008, Comitini
et al. 2011). Low volatile acidity production is, in particular,
considered a general trait of T. delbrueckii (Bely et al. 2008,
Comitini et al. 2011, Jolly et al. 2014). Accordingly, H2
S. cerevisiae wine had an acetic acid concentration higher
than that of all the other wines, except CO, whereas
T. delbrueckii treatments yielded the lowest acetic acid con-
centration. Acids other than acetic are affected by yeasts
during the fermentation, of which malic acid is in general
the most abundant in grape juice/must (Ribéreau-Gayon
et al. 2006, Su et al. 2014). Malic acid is related to ‘harsh’
wine sensory descriptors, and is known to decline during
grape ripening (Ribéreau-Gayon et al. 2006, Su
et al. 2014). Schizosaccharomyces pombe is the only yeast spe-
cies capable of fully metabolising malic acid during fermen-
tation, while other yeasts can be involved in either its
partial degradation or an increase in concentration,
depending on the strain and conditions (Kapsopoulou
et al. 2007, Jolly et al. 2014, Su et al. 2014, Benito
et al. 2015). The lowest malic acid concentration was mea-
sured in CO H1 wine, followed by FL and PI (Table 1). A
potential contribution of other microorganisms on grapes
cannot be excluded as the fermentation was non-sterile.
The fact, however, that CO contained a significantly lower
concentration of malic acid than that of the initially unino-
culated treatment PI (theoretically allowing for the most
prolific native microbial activity) suggests that differences
in malic acid concentration were attributable to the yeast
inoculation regime. Lachancea thermotolerans was, in fact,
previously reported to be capable of reducing the initial
malic acid concentration by up to 0.42 g/L (Kapsopoulou
et al. 2007), and the same strain as used in our study pre-
viously led to the lowest malic acid concentration com-
pared to other inocula in Sauvignon Blanc (Beckner
Whitener et al. 2016) and Shiraz wines (Whitener
et al. 2017). The lower pH value of the CO H1 wine could
have been influenced by the formation of other organic
acids that were not quantified in the study, primarily lactic
acid, production of which is a trait of L. thermotolerans
(Kapsopoulou et al. 2007, Jolly et al. 2014, Su et al. 2014,
Benito et al. 2015). The same effects, however, were not
observed in H2.

Our findings, related to fermentation performance and
basic chemical profile of the wines, highlight the necessity
for further fundamental studies focusing on performance
and interactions of oenological yeasts, along with a valida-
tion under commercial winemaking conditions, in order to
optimise inoculation regimes and select mutually compatible
strains to guarantee the target wine style.

Discernible volatile profiles of wines produced
Wine volatile flavour and aroma profile is shaped by several
viticultural and oenological inputs. Of these, both grape-
derived precursors, altered in composition and concentra-
tion throughout ripening, and the yeast strains used for fer-
mentation, significantly define final wine aromatic makeup
(Ribéreau-Gayon et al. 2006, Bindon et al. 2013, Holt
et al. 2013, Padilla et al. 2016, Whitener et al. 2017). As
seen elsewhere (Bindon et al. 2013), in the current study
greater ripeness generally favoured the production of yeast-
derived volatiles (Table 3). Depending on the YT, however,
volatile profiles of the wines were either similar or quite dif-
ferent between the two HDs (Figure 2a).

The majority of the 39 compounds analysed (Table 3)
were esters. Production mechanisms of these yeast-derived
metabolites imparting ‘fruity’ aromas are well documented
for S. cerevisiae (Sumby et al. 2010), but less so for the non-
Saccharomyces species and strains. Overall, wines co-
fermented with non-Saccharomyces showed altered composi-
tion and/or an increase in ester concentration, which was
particularly evident in T. delbrueckii treatments. Such findings
are in contrast with those of Whitener et al. (2017), who
observed that T. delbrueckii wine volatile composition lacked
a distinct pattern when compared to that of other treatments.
Of the T. delbrueckii treatments, AL and BI showed highly
similar volatile profiles within each HD, different from PR,
which appeared to be more affected by HD (Figure 2a).
Strain-dependent ester production has previously been
described for T. delbrueckii (Renault et al. 2009). Nonetheless,
ethyl isobutyrate was consistently overproduced in all three
T. delbrueckii sequential inoculations at both HDs. Ethyl iso-
butyrate has recently been identified as an activity/growth
marker for T. delbrueckii, and typically increases in concentra-
tion in pure and sequential cultures (Renault et al. 2015).
Furthermore, an increase of ethyl heptanoate in both FL fer-
mentations is suggestive of its role as a M. pulcherrima meta-
bolic marker. Whilst ethyl heptanoate has been omitted from
some studies featuring volatile profiling of M. pulcherrima co-
fermented wines (Padilla et al. 2016, Varela et al. 2016), an
overproduction of this ester has been observed in wines
sequentially fermented with two other Metschnikowia species,
that isM. chrysoperlae andM. fruticola (Liu et al. 2017).

The second most abundant group of volatile analytes in
the current study was the higher alcohols. These wine (off )
flavour compounds, primarily derived either from amino
acids (Ehrlich pathway) or grape hexoses (anabolic synthe-
sis), are complexing at low concentration, and at high con-
centration are a fault (Hazelwood et al. 2008). 3-Methyl-1-
butanol and 2-phenyl alcohol were the most important and
abundant wine aromatic alcohols, imparting fusel and rose
aroma, respectively (Table 3). Trends in 3-methyl-1-butanol
concentration comparing the different YTs were consistent:
FL, PI and SC resulted in comparatively lower, and CO and
ME in higher, concentration than that of most treatments at
both HDs. The consistent trend was not the case for pheny-
lethyl alcohol, which decreased with increasing ripeness in
SC, ME and FL wines, as opposed to an increase in the

© 2017 Australian Society of Viticulture and Oenology Inc.
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remaining wines. Moreover, phenylethyl alcohol was partic-
ularly high in wines with arrested fermentation, that is AL
and BI, followed by PR, H2 wines. Given the demonstrated
role of phenylethyl alcohol in yeast quorum sensing
(Hazelwood et al. 2008, Zupan et al. 2013, Avbelj
et al. 2016), a phenomenon through which individual micro-
bial cells regulate their phenotype and adapt to environmen-
tal changes (Avbelj et al. 2016), it is worth further exploring

whether the phenylethyl alcohol overproduction was related
to stressful conditions leading to fermentation arrest. Previ-
ously, an increase in phenylethyl alcohol was generally
attributed to mixed non-Saccharomyces and Saccharomyces fer-
mentations (Comitini et al. 2011, Sadoudi et al. 2012, Jolly
et al. 2014, Padilla et al. 2016) rather than their respective
monocultures (Sadoudi et al. 2012). Furthermore, major dif-
ferences were observed in the terpene concentration.

Figure 2. (a) Clustering of yeast treatments based on their volatile profile in wines produced at earlier (H1) and later (H2) harvest dates. (b) The
discrimination of yeast inoculation treatments based on the quantification of 34 out of 39 significantly differing volatiles accounted for 54% of variance for
first and second principal components. AL, BI, PR, Torulaspora delbrueckii strains; CO, Lachancea thermotolerans; FL, Metschnikowia pulcherrima; PI, an
initially uninoculated treatment; ME, a commercial blend of Saccharomyces cerevisiae, T. delbrueckii and L. thermotolerans; and SC, a S. cerevisiae strain.

© 2017 Australian Society of Viticulture and Oenology Inc.
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Terpenes, predominantly originating from grapes, are
released and modulated by microbial activity, although mod-
est de novo synthesis by yeasts has been reported (Carrau
et al. 2005). The AL, BI, PR treatments possessed an elevated
concentration of terpenes, potentially due to strong
β-glucosidase activity as a general trait of T. delbrueckii strains
(Renault et al. 2009, Comitini et al. 2011, Padilla et al. 2016).

Altogether, observed differences appear to be reflective
of different metabolic activities and regulation between the
evaluated yeast species and strains, of a S. cerevisiae strain
inoculated in a differently initiated fermentation, and of
resulting microbial interactions. Fundamental research, as
conducted to date for S. cerevisiae (Hazelwood et al. 2008,
Sumby et al. 2010), is required to characterise the known
and/or possibly novel pathways of aromatic compound syn-
thesis in non-Saccharomyces yeasts.

Phenolic substances and wine colour
Given their major role in red wine aesthetics, flavour, mouth-
feel and wine grade (Ribéreau-Gayon et al. 2006, Mercurio
et al. 2010), a range of measurements assessing the concentra-
tion of phenolic substances and colour was determined in Shi-
raz wines. An increase in the concentration of phenolic
substances and in wine colour was observed in H2 wines, con-
gruent with well-established patterns of their development and
accumulation in grape skins during berry ripening (Ribéreau-
Gayon et al. 2006, Bindon et al. 2013, Li et al. 2017). Less is
known about yeast-derived effects and underlying mechanisms
of mediation of the aforementioned wine chemical parameters.
Arguably, yeast effects are comparatively less pertinent than
grape-derived determinants, but as strongly suggested by our
results, these are considerable. Different yeast inoculation
regimes resulted in wines of significantly discernible phenolic
and chromatic profile when identical cap management and
duration of skin contact were applied.

Tannin concentration in wines was significantly affected
by YT at both HDs. The extraction and retention mecha-
nisms of these macromolecules under winemaking condi-
tions are still not fully understood. The ethanol-mediated
extraction is emphasised in the literature (Canals
et al. 2005), much as is the physical breakdown of grape
solids (Busse-Valverde et al. 2010). Fitting the yeast influ-
ence into these models is far from accomplished. As
mentioned, SC treatment resulted in higher tannin concen-
tration compared to that of the remaining treatments in H1
wines (Table 4). Given the fermentation kinetics and etha-
nol concentration formed by the time-point when the fer-
mentations were pressed off skins (Figure 1a), tannin
concentration in H1 wines was accordant with the ethanol-
assisted extraction model in all treatments, except
ME. Despite a similarity in the fermentation kinetics, the
ME treatment resulted in a lower final tannin concentration
than that of SC. A deviation from the ethanol-assisted tan-
nin extraction hypothesis was even more evident in H2
wines, where the tannin concentration of the SC wine was
similar to that of ME, AL and BI wines (Table 4). The SC
and ME wines had similar sugar consumption/ethanol for-
mation kinetics for H2, different to that of AL and BI
(Figure 1b) resulting in incomplete fermentation and
thereby lower final ethanol concentration (Table 2). This
indicates a more complex mechanism of tannin extraction
and retention during and post-fermentation on skins than
that explained by the ethanol-mediated extraction hypothe-
sis. Such findings agree with Carew et al. (2013), who
observed a discrepancy between final tannin concentration

in Pinot Noir wines and the respective yeast fermentation
kinetics. Among alternative explanations for the difference
in tannin concentration, Carew et al. (2013) discussed
breakdown of grape solids, differential fining of phenolic
compounds by yeasts, and expression levels of enzymatic
activity. With regards to the latter, potential differential
secretion of other enzymes contributing to tannin release
(e.g. β-glucosidase, proteolytic enzymes, pectinase) by differ-
ent yeast strains (Comitini et al. 2011, Jolly et al. 2014,
Padilla et al. 2016), and by the same strain under different
conditions, might have also contributed to the differences
observed in the current study.

Different S. cerevisiae strains were reported to vary based on
their tannin binding affinity (Mazauric and Salmon 2006, Sidari
et al. 2007). Besides interacting with yeast cell walls, primarily
via mannoproteins, glucans and chitins (Salmon 2006), tannins
were reported to interact with the plasma membrane and cyto-
plasmic components upon diffusion through non-viable yeast
cell walls (Mekoue Nguela et al. 2015). Furthermore, the tannin
binding capacity of yeast can be strongly affected by the compo-
sition of the fermentation medium (Rinaldi et al. 2016). For
instance, medium supplements overrode differences attributable
to yeast strain, with the mean absorbed tannin concentration
almost doubled upon vitamin and peptone enrichment (Rinaldi
et al. 2016). Differences in yeast cell morphology, especially cell
wall and the plasma membrane composition/structure, and
response to differences in medium composition arising from HD
might have also played a role in yeast-derived mediation of
wine tannin concentration. Our findings highlighted the need
for further research on such factors among and within different
species of wine-related yeasts.

In addition to tannin concentration, YT significantly influ-
enced the colour profile and other phenolic substances mea-
sured in the wines. Yeasts are known to affect wine colour in
several ways, one of which, is the adhesion/adsorption of pig-
mented compounds to yeast cells (Mazauric and Salmon 2006,
Sidari et al. 2007). A differential binding affinity to the cells of
tested strains was likely to contribute to differences in wine col-
our and concentration of phenolic substances. Indeed, a varia-
tion in lees colour intensity was observed visually, albeit not
measured instrumentally. While some insight is available for
phenolic fining by S. cerevisiae wine strains (Mazauric and
Salmon 2006, Sidari et al. 2007), less is known about the extent
of that diversity among species and strains of non-Saccharomyces
yeasts. Furthermore, extracellular enzymatic activity, primarily
glycosidase and pectinase, differentially expressed in wine yeast
species and strains (Comitini et al. 2011, Jolly et al. 2014, Padilla
et al. 2016), might have impacted parameters defining phenolic
substances and chromatic wine profile. Finally, as phenolic sub-
stances bind to yeast metabolic by-products, primarily pyruvic
acid and acetaldehyde, certain non-Saccharomyces strains have
been proposed to be used for colour stabilisation due to
increased stable pigment formation (Benito et al. 2011, Morata
et al. 2012). Metabolic activity clearly varies between species,
strains and their co-existence, and is dependent on medium
composition. Different production rates and final concentration
of metabolites that were not measured (e.g. pyruvic acid and
acetaldehyde) might therefore account for some variation
between YT within the same HD, as well as differences when
the same YT was applied to another HD. Interestingly, PR treat-
ment was consistently related to lower concentration of pheno-
lic substances and to lower colour measurements at both HDs,
whereas the remaining two T. delbrueckii treatments, AL and BI,
showed more variability. Our results thus suggest an intra-
specific diversity among T. delbrueckii strains with regards to
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their effect on wine phenolic and colour profile, as observed for
the profile of wine volatiles. Such observations warrant further
investigation, with a controlled experimental and instrumental
set-up allowing for the quantification of phenolic substances
absorbed by yeasts after monitoring their population dynamics
and estimating cell surface, in conjunction with metabolite pro-
duction and enzymatic activity determination, and the assess-
ment of the interrelation of the variables in a given medium.

Effects of non-volatile and volatile compounds on wine
sensory perception
Substantial literature highlights compositional particularities
of wines obtained with non-Saccharomyces co-inocula under
different fermentative conditions (Ciani et al. 2006, Kapso-
poulou et al. 2007, Bely et al. 2008, Comitini et al. 2011,
Sadoudi et al. 2012, Contreras et al. 2014, 2015, Varela
et al. 2016). Sensory implications, however, are not always
clarified. In some studies the sensory aspect is lacking, whilst
in others the methodology employed does not allow for
detailed wine profiling and comparison. To broaden such
understanding, we hereby present an extensive descriptive
analysis dataset obtained by a well-trained panel.

A noticeable differentiation of wines from the two HDs
was congruent with overall compositional analysis. As
expected, taste attributes were relatively simple to define and
explain in relation to certain aspects of wine composition. For
example, residual sugar concentration was positively corre-
lated with ‘sweetness’ perception (R = 0.95; Table S5), and
negatively correlated with ‘acidity’ (R = −0.90) and ‘bitter-
ness’ (R = −0.74). Lack of clear relationship between ‘acidity’
and pH/TA is potentially linked to fluctuations due to acid
adjustment and alterations during stabilisation, whereas fur-
ther analysis of other aspects of wine composition, for exam-
ple polysaccharides, might give more insight into the
‘bitterness’ perception (Mercurio and Smith 2008). Regarding

palate sensation attributes, a clear relationship between ‘hot-
ness’ and ethanol concentration was observed (R = 0.84), as
documented in studies incorporating progressive grape ripen-
ing (Heymann et al. 2013, Bindon et al. 2014, Li et al. 2017).
Increasing residual sugar, ethanol and tannin concentration
were positively associated with ‘palate fullness’, whereas both
‘astringency’ and ‘palate coarseness’ were positively corre-
lated with tannin concentration. ‘Astringency’ also positively
correlated with colour density, phenolic substances, anthocy-
anin and polymeric pigment, as well as ethanol and glycerol
concentration, reflective of increased grape ripeness. Higher
perception of astringency with increasing tannin concentra-
tion is well established (Mercurio and Smith 2008), and its
link to measurement of some other phenolic substances such
as polymeric pigment has also been reported (Bindon
et al. 2013). Further quantification and characterisation of
wine macromolecules, primarily tannins and polysaccharides
(Mercurio and Smith 2008), could explain subtly perceived
differences, particularly within the same HD.

Interactions between volatile and non-volatile com-
pounds are complex and matrix-dependent, and the effect of
volatile profile on aroma/flavour perception was thus less
conclusive. Nonetheless, certain correlative, although not
necessarily causative, relationships between variables war-
rant highlighting. First, the AL H1 wine was scored the high-
est in the attributes aroma intensity, red fruit and
confectionery, while the SC H1 wine was perceived as the
most vegetal. A compound likely to contribute to such per-
ception is ethyl isobutyrate, most pronounced in the AL H1
wine. Ethyl isobutyrate was recently reported as a
T. delbrueckii activity marker, conferring strawberry and red
fruit sensory notes (Renault et al. 2015). Fruity esters are
known to mask vegetative, generally undesired, notes in
wines (Escudero et al. 2004), and variations in their compo-
sition elicit significant aroma alterations (Pineau et al. 2009).

Table 4. Effect of harvest date and yeast treatment on the tannin concentration and Somers measurements in Shiraz wines.

Harvest
Yeast

treatment

Tannin
concentration

(mg/L
epicatechin)

Wine colour
density (AU) Wine hue

Phenolic
substances

(AU)
Anthocyanin

(mg/L)

Non-
bleachable

pigment (AU)

AL 826 � 39 a 10.7 � 0.4 a 0.64 � 0.05 abc 36.2 � 0.8 a 474 � 11 abc 1.96 � 0.07 abc
BI 907 � 72 a 10.8 � 0.3 a 0.62 � 0.01 a 39.4 � 0.8 b 503 � 15 bcd 1.84 � 0.01 ab
CO 899 � 127 a 11.8 � 0.9 bc 0.62 � 0.04 a 38.6 � 4.0 ab 511 � 40 d 1.97 � 0.14 abc

H1
FL 906 � 15 a 12.0 � 0.2 c 0.67 � 0.05 bc 36.3 � 1.4 a 473 � 13 ab 2.20 � 0.07 c
PR 889 � 102 a 10.2 � 0.5 a 0.63 � 0 a 35.9 � 1.3 a 471 � 16 ab 1.77 � 0.08 a
PI 830 � 82 a 12.1 � 0.4 c 0.60 � 0.01 a 38.7 � 0.2 ab 506 � 4 cd 2.07 � 0.09 bc
ME 902 � 87 a 11.0 � 0.9 ab 0.68 � 0.03 c 38.0 � 0.8 ab 464 � 11 a 1.87 � 0.16 ab
SC 1083 � 62 b 11.7 � 0.5 bc 0.63 � 0 a 38.7 � 0.5 ab 479 � 2 abc 2.01 � 0.08 abc

AL 1378 � 40 cd 15.2 � 0.1 cd 0.63 � 0.02 abc 49.0 � 0.9 abc 592 � 4 ab 3.94 � 0.04 d
BI 1398 � 27 cd 15.6 � 0.8 d 0.63 � 0.01 abc 50.3 � 1.8 bc 589 � 17 ab 4.00 � 0.35 d
CO 1178 � 94 ab 14.1 � 0.3 ab 0.61 � 0.03 ab 46.5 � 2.3 a 629 � 22 cd 2.83 � 0.07 a

H2
FL 1299 � 130 bc 15.6 � 0.6 d 0.64 � 0.04 bc 49.9 � 3.7 bc 644 � 44 de 3.44 � 0.19 c
PR 1087 � 53 a 13.2 � 0.3 a 0.64 � 0 bc 46.5 � 1.0 a 598 � 9 abc 2.77 � 0.13 a
PI 1275 � 32 bc 16.1 � 0.6 d 0.59 � 0.01 a 51.4 � 1.1 c 664 � 6 e 3.24 � 0.02 bc
ME 1342 � 44 cd 14.7 � 0.7 bc 0.66 � 0.02 c 47.7 � 0.9 ab 575 � 19 a 2.98 � 0.38 ab
SC 1439 � 230 d 14.7 � 1.0 bc 0.62 � 0.01 ab 51.5 � 2.7 c 615 � 18 bcd 3.13 � 0.20 b

Percentage of
variance and
level of
significance

IN 5.41* 3.94** 4.14 ns 2.23 ns 3.28* 8.66****
HD 72.84**** 80.14**** 1.45 ns 86.88**** 83.59**** 78.01****
YT 11.18*** 10.70**** 48.87*** 4.77** 8.07**** 10.09****

Values are means of three replicates � SD; lower case letters denote a significant difference among yeast treatments at specified harvest date; significance levels
of percentage of variation explained by the harvest date, yeast treatments, and the interaction of these variables are the following: ns, P > 0.05; *, P ≤ 0.05; **,
P ≤ 0.01; ***, P ≤ 0.001; ****, P ≤ 0.0001 (Fisher’s least significant difference). AL, BI, PR, Torulaspora delbrueckii strains; CO, Lachancea thermotolerans; FL, Metsch-
nikowia pulcherrima; PI, an initially uninoculated treatment; ME, a commercial blend of Saccharomyces cerevisiae, T. delbrueckii and L. thermotolerans; and SC, a S.
cerevisiae strain. H1, first harvest on 11 February 2015; H2, second harvest on 11 February 2015.
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As hypothesised, modulation of volatile profile seen in cer-
tain non-Saccharomyces treatments thus potentially led to
aroma/flavour enhancement of earlier harvested wines. In
contrast, an impacting factor in the aroma perception of AL,
BI and PR H2 wines was, certainly, residual sugar, known to
cause an increased concentration of volatiles in the head-
space (Robinson et al. 2009). When comparing the grouping
of wines based on their volatile profile compared to grouping
based on sensory perception, a correspondence can be
observed if the wines from different YTs were produced

within the same HD. For example, AL and BI H1 wines were
characterised by both similar volatile and sensory profile,
and thus closely clustered on two PCA biplots (Figures 3–4),
separately from, for example, the SC H1 wine. Certain wines,
however, produced with the same YT, but from a different
HD were seen as different despite their close GC-MS volatile
profile. In this case, changes in ethanol concentration are
likely to have largely influenced the behaviour of volatiles in
the wine liquid phase and the headspace. Increasing ethanol
concentration generally leads to aroma/flavour dampening

Figure 3. Principal component (PC) analysis biplot of sensory data ( ) for Shiraz wines produced with eight yeast treatments ( ) using earlier (H1) and
later (H2) harvested fruit. AL, BI, PR Torulaspora delbrueckii strains; CO, Lachancea thermotolerans; FL, Metschnikowia pulcherrima; PI, an initially
uninoculated treatment; ME, a commercial blend of Saccharomyces cerevisiae, T. delbrueckii and L. thermotolerans; and SC, a S. cerevisiae strain.

Figure 4. Principal component (PC) analysis biplot of sensory data [active variables ( )] and chemical data [supplementary variables ( )] for Shiraz wines
produced with eight different yeast treatments ( ) (Table 1) using earlier (H1) and later (H2) harvested grapes. AL, BI, PR Torulaspora delbrueckii strains;
CO, Lachancea thermotolerans; FL, Metschnikowia pulcherrima; PI, an initially uninoculated treatment; ME, a commercial blend of Saccharomyces
cerevisiae, T. delbrueckii and L. thermotolerans; and SC, a S. cerevisiae strain. The concentration/measurement of respective analytes are coded as: 1, ethyl
acetate; 2, ethyl isobutyrate; 3, isobutyl acetate; 4, ethyl butyrate; 5, ethyl 2-methyl butanoate; 6, ethyl isovalerate; 7, 2-methyl-1-propanol; 8, isoamyl acetate;
9, 1-butanol; 10, 3-methyl-1-butanol; 11, ethyl hexanoate; 12, isoamyl butanoate; 13, hexyl acetate; 14, 2-heptanol; 15, ethyl heptanoate; 16, 1-hexanol; 17,
Z-3-hexen-1-ol; 18, octanoic acid methyl ester; 19, ethyl octanoate; 20, 1-octen-3-ol; 21, 1-heptanol; 22, linalool; 23, 1-octanol; 24, ethyl decanoate; 25, 1-
nonanol; 26, diethyl succinate; 27, 3-methylthio-1-propanol; 28, beta-citronellol; 29, ethyl phenyl acetate; 30, 2-phenylethyl acetate; 31, hexanoic acid; 32,
ethyl laurate; 33, phenylethyl alcohol; 34, nerolidol. A, anthocyanin; AA, acetic acid; E, ethanol; G, glycerol; H, hue; MA, malic acid; PP, non-bleachable
pigment; PS, phenolic substances; S, residual sugar; T, tannin; WCD, wine colour density.
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due to decreased volatility of compounds (Robinson
et al. 2009), potentially explaining the observed discrepan-
cies. For example, FL H1 and H2 wines showed the closest
volatile profile, yet were perceived differently, with signifi-
cantly lower scores in aroma intensity, red fruit, spice, floral,
and pepper for H2 compared to H1 wines.

Conclusion
Our results show marked matrix-based modulation of wine
sensory perception that is reflective of grape HD, but yeast
inoculum-derived differences observed in the chemical com-
position of wines are also apparent. Of particular interest is
the increase in intensity of descriptors generally regarded as
more appealing in earlier harvest wine profiles obtained by
certain non-Saccharomyces co-inocula compared to that of a
S. cerevisiae Control, and the chemical basis for such percep-
tion in terms of increased production of aromatic com-
pounds. Further validation across a range of conditions is
required to confirm such claims, but at the moment non-
Saccharomyces yeast appear to be a valuable tool to optimise
the quality of wines made from earlier harvests, as might
occur with efforts to modulate wine ethanol concentration.

References
Albergaria, H. and Arneborg, N. (2016) Dominance of Saccharomyces
cerevisiae in alcoholic fermentation processes: role of physiological
fitness and microbial interactions. Applied Microbiology and Bio-
technology 100, 2035–2046.

Anderson, K. and Aryal, N.R. (2013) Database of regional, national and
global winegrape bearing areas by variety, 2000 and 2010 (The Uni-
versity of Adelaide’s Wine Economics Research Centre). http://www.
adelaide.edu.au/wine-econ/databases [accessed 24/02/17].

Avbelj, M., Zupan, J. and Raspor, P. (2016) Quorum-sensing in
yeast and its potential in wine making. Applied Microbiology and
Biotechnology 100, 7841–7852.

Beckner Whitener, M.E., Stanstrup, J., Panzeri, V., Carlin, S.,
Divol, B., Du Toit, M. and Vrhovsek, U. (2016) Untangling the
wine metabolome by combining untargeted SPME–GCxGC-TOF-
MS and sensory analysis to profile Sauvignon blanc co-fermented
with seven different yeasts. Metabolomics 12, 53.

Bely, M., Stoeckle, P., Masneuf-Pomarède, I. and Dubourdieu, D.
(2008) Impact of mixed Torulaspora delbrueckii–Saccharomyces cerevi-
siae culture on high-sugar fermentation. International Journal of
Food Microbiology 122, 312–320.

Benito, S., Morata, A., Palomero, F., González, M.C. and Suárez-Lepe, J.
A. (2011) Formation of vinylphenolic pyranoanthocyanins by Saccha-
romyces cerevisiae and Pichia guillermondii in red wines produced follow-
ing different fermentation strategies. Food Chemistry 124, 15–23.

Benito, �A., Calderón, F., Palomero, F. and Benito, S. (2015) Combine
use of selected Schizosaccharomyces pombe and Lachancea thermotolerans
yeast strains as an alternative to the traditional malolactic fermentation
in red wine production. Molecules 20, 9510–9523.

Bindon, K., Varela, C., Kennedy, J., Holt, H. and Herderich, M.
(2013) Relationships between harvest time and wine composition
in Vitis vinifera L. cv. Cabernet Sauvignon 1. Grape and wine
chemistry. Food Chemistry 138, 1696–1705.

Bindon, K., Holt, H., Williamson, P.O., Varela, C., Herderich, M.
and Francis, I.L. (2014) Relationships between harvest time and
wine composition in Vitis vinifera L. cv. Cabernet sauvignon
2. Wine sensory properties and consumer preference. Food Chem-
istry 154, 90–101.

Blomberg, A. and Adler, L. (1989) Roles of glycerol and glycerol-3-
phosphate dehydrogenase (NAD+) in acquired osmotolerance of
Saccharomyces cerevisiae. Journal of Bacteriology 171, 1087–1092.

Boss, P.K., Pearce, A.D., Zhao, Y.J., Nicholson, E.L., Dennis, E.G.
and Jeffery, D.W. (2015) Potential grape-derived contributions to
volatile ester concentrations in wine. Molecules 20, 7845–7873.

Bureau of Meteorology (2017) Bureau of Meteorology website
(Australian Government: Canberra, ACT, Australia). http://www.
bom.gov.au [accessed 10/02/17].

Busse-Valverde, N., Gomez-Plaza, E., Lopez-Roca, J.M., Gil-
Munoz, R., Fernandez-Fernandez, J. and Bautista-Ortin, A.B.
(2010) Effect of different enological practices on skin and seed

proanthocyanidins in three varietal wines. Journal of Agricultural
and Food Chemistry 58, 11333–11339.

Canals, R., Llaudy, M.C., Valls, J., Canals, J.M. and Zamora, F.
(2005) Influence of ethanol concentration on the extraction of
color and phenolic compounds from the skin and seeds of Tem-
pranillo grapes at different stages of ripening. Journal of Agricul-
tural and Food Chemistry 53, 4019–4025.

Carew, A.L., Smith, P., Close, D.C., Curtin, C. and Dambergs, R.G.
(2013) Yeast effects on Pinot Noir wine phenolics, color and tan-
nin composition. Journal of Agricultural and Food Chemistry 61,
9892–9898.

Carrau, F.M., Medina, K., Boido, E., Farina, L., Gaggero, C.,
Dellacassa, E., Versini, G. and Henschke, P.A. (2005) De novo syn-
thesis of monoterpenes by Saccharomyces cerevisiae wine yeasts.
FEMS Microbiology Letters 243, 107–115.

Ciani, M., Beco, L. and Comitini, F. (2006) Fermentation behavior
and metabolic interactions of multistarter wine yeast fermenta-
tions. International Journal of Food Microbiology 108, 239–245.

Ciani, M., Comitini, F., Mannazzu, I. and Domizio, P. (2011) Controlled
mixed culture fermentation: a new perspective on the use of non-Sac-
charomyces yeasts in winemaking. FEMS Yeast Research 10, 123–133.

Ciani, M., Capece, A., Comitini, F., Canonico, L., Siesto, G. and
Romano, P. (2016a) Yeast interactions in inoculated wine fermen-
tation. Frontiers in Microbiology 7, 555.

Ciani, M., Morales, P., Comitini, F., Tronchoni, J., Canonico, L.,
Curiel, J.A., Oro, L., Rodrigues, A.J. and Gonzalez, R. (2016b)
Non-conventional yeast species for lowering ethanol content of
wines. Frontiers in Microbiology 7, 642.

Comitini, F., Gobbi, M., Domizio, P., Romani, C., Lencioni, L.,
Mannazzu, I. and Ciani, M. (2011) Selected non-Saccharomyces
wine yeast in controlled multistarter fermentations with Saccharo-
myces cerevisiae. Food Microbiology 28, 873–882.

Contreras, A., Hidalgo, C., Henschke, P.A., Chambers, P.J.,
Curtin, C. and Varela, C. (2014) Evaluation of non-Saccharomyces
yeasts for the reduction of alcohol content in wine. Applied and
Environmental Microbiology 80, 1670–1678.

Contreras, A., Curtin, C. and Varela, C. (2015) Yeast population
dynamics reveal a potential ‘collaboration’ between Metschnikowia
pulcherrima and Saccharomyces uvarum for the production of
reduced alcohol wines during Shiraz fermentation. Applied Micro-
biology and Biotechnology 99, 1885–1895.

Domizio, P., Lencioni, L., Ciani, M., Di Blasi, S., Pontremolesi, C.
and Sabatelli, M. (2007) Spontaneous and inoculated yeast popu-
lation dynamics and their effect on organoleptic characters of Vin-
santo wine under different process conditions. International
Journal of Food Microbiology 115, 281–289.

Domizio, P., Liu, Y., Bisson, L.F. and Barile, D. (2014) Use of non-
Saccharomyces wine yeasts as novel sources of mannoproteins in
wine. Food Microbiology 43, 5–15.

Escudero, A., Gogorza, B., Melus, M.A., Ortin, N., Cacho, J. and
Ferreira, V. (2004) Characterization of the aroma of a wine from
Maccabeo. Key role played by compounds with low odor activity
values. Journal of Agricultural and Food Chemistry 52,
3516–3524.

Giovani, G., Rosi, I. and Bertuccioli, M. (2012) Quantification and
characterization of cell wall polysaccharides released by non-Sac-
charomyces yeast strains during alcoholic fermentation. Interna-
tional Journal of Food Microbiology 160, 113–118.

Hazelwood, L.A., Daran, J.M., van, Maris, A.J., Pronk, J.T. and
Dickinson, J.R. (2008) The Ehrlich pathway for fusel alcohol pro-
duction: a century of research on Saccharomyces cerevisiae metabo-
lism. Applied and Environmental Microbiology 74, 2259–2266.

Heymann, H., Li Calzi, M., Cionversano, M.R., Bauer, A.,
Skogerson, K. and Matthews, M. (2013) Effects of extended grape
ripening with or without must and wine alcohol manipulations on
Cabernet Sauvignon wine sensory characteristics. South African
Journal of Enology and Viticulture 34, 86–99.

Holt, H., Cozzolino, D., McCarthy, J., Abrahamse, C., Holt, S.,
Solomon, M., Smith, P., Chambers, P.J. and Curtin, C. (2013)
Influence of yeast strain on Shiraz wine quality indicators. Inter-
national Journal of Food Microbiology 165, 302–311.

Jolly, N.P., Varela, C. and Pretorius, I.S. (2014) Not your ordinary
yeast: non-Saccharomyces yeasts in wine production uncovered.
FEMS Yeast Research 14, 215–237.

Kapsopoulou, K., Mourtzini, A., Anthoulas, M. and Nerantzis, E.
(2007) Biological acidification during grape must fermentation
using mixed cultures of Kluyveromyces thermotolerans and Saccharo-
myces cerevisiae. World Journal of Microbiology and Biotechnology
23, 735–739.

© 2017 Australian Society of Viticulture and Oenology Inc.

14 Chemical and sensory impact of mixed yeast inocula Australian Journal of Grape and Wine Research 2017

48

http://www.adelaide.edu.au/wine-econ/databases
http://www.adelaide.edu.au/wine-econ/databases
http://www.bom.gov.au
http://www.bom.gov.au


Kemsawasd, V., Branco, P., Almeida, M.G., Caldeira, J., Albergaria, H.
and Arneborg, N. (2015) Cell-to-cell contact and antimicrobial peptides
play a combined role in the death of Lachancea thermotolerans during
mixed-culture alcoholic fermentation with Saccharomyces cerevisiae.
FEMSMicrobiology Letters 362, 1–8.

Li, S., Bindon, K., Bastian, S.E.P., Jiranek, V. and Wilkinson, K.L.
(2017) Use of winemaking supplements to modify the composi-
tion and sensory properties of Shiraz wine. Journal of Agricultural
and Food Chemistry 65, 1353–1364.

Liu, J., Arneborg, N., Toldam-Andersen, T.B., Petersen, M.A. and
Bredie, W.L.P. (2017) Effect of sequential fermentations and grape cul-
tivars on volatile compounds and sensory profiles of Danish wines.
Journal of the Science of Food and Agriculture 97, 3594–3602.

Mazauric, J.P. and Salmon, J.M. (2006) Interactions between yeast
lees and wine polyphenols during simulation of wine aging:
II. Analysis of desorbed polyphenol compounds from yeast lees.
Journal of Agricultural and Food Chemistry 54, 3876–3881.

Mekoue Nguela, J., Vernhet, A., Sieczkowski, N. and Brillouet, J.M.
(2015) Interactions of condensed tannins with Saccharomyces cerevi-
siae yeast cells and cell walls: tannin location by microscopy. Jour-
nal of Agricultural and Food Chemistry 63, 7539–7545.

Mercurio, M.D. and Smith, P.A. (2008) Tannin quantification in red
grapes and wine: comparison of polysaccharide-and protein-based tan-
nin precipitation techniques and their ability to model wine astrin-
gency. Journal of Agricultural and Food Chemistry 56, 5528–5537.

Mercurio, M.D., Dambergs, R.G., Herderich, M.J. and Smith, P.A.
(2007) High throughput analysis of red wine and grape phenolics
− adaptation and validation of methyl cellulose precipitable tannin
assay and modified Somers color assay to a rapid 96 well plate for-
mat. Journal of Agricultural and Food Chemistry 55, 4651–4657.

Mercurio, M.D., Dambergs, R.G., Cozzolino, D., Herderich, M.J. and
Smith, P.A. (2010) Relationship between red wine grapes and
phenolics. 1. Tannin and total phenolics concentrations. Journal of
Agricultural and Food Chemistry 58, 12313–12319.

Morata, A., Benito, S., Loira, I., Palomero, F., González, M.C. and
Suarez-Lepe, J.A. (2012) Formation of pyranoanthocyanins by
Schizosaccharomyces pombe during the fermentation of red must.
International Journal of Food Microbiology 159, 47–53.

Padilla, B., Gil, J.V. and Manzanares, P. (2016) Past and future of
non-Saccharomyces yeasts: from spoilage microorganisms to bio-
technological tools for improving wine aroma complexity. Fron-
tiers in Microbiology 7, 411.

Pineau, B., Barbe, J.C., Van Leeuwen, C. and Dubourdieu, D.
(2009) Examples of perceptive interactions involved in specific
“red-” and “black-berry” aromas in red wines. Journal of Agricul-
tural and Food Chemistry 57, 3702–3708.

Renault, P., Miot-Sertier, C., Marullo, P., Hernández-Orte, P.,
Lagarrigue, L., Lonvaud-Funel, A. and Bely, M. (2009) Genetic
characterization and phenotypic variability in Torulaspora del-
brueckii species: potential applications in the wine industry. Inter-
national Journal of Food Microbiology 134, 201–210.

Renault, P.E., Albertin, W. and Bely, M. (2013) An innovative tool
reveals interaction mechanisms among yeast populations under
oenological conditions. Applied Microbiology and Biotechnology
97, 4105–4119.

Renault, P., Coulon, J., de, Revel, G., Barbe, J.C. and Bely, M.
(2015) Increase of fruity aroma during mixed T. delbrueckii/S. cere-
visiae wine fermentation is linked to specific esters enhancement.
International Journal of Food Microbiology 207, 40–48.

Ribéreau-Gayon, P., Dubourdieu, D., Donèche, B. and Lonvaud, A.
(2006) Handbook of enology. The microbiology of wine and vinifi-
cations Vol. 1 (John Wiley: Hoboken, NJ, USA).

Rinaldi, A., Blaiotta, G., Aponte, M. and Moio, L. (2016) Effect of
yeast strain and some nutritional factors on tannin composition
and potential astringency of model wines. Food Microbiology 53,
128–134.

Ristic, R., Hranilovic, A., Li, S., Longo, R., Pham, D.-T., Quesja, B.,
Schelezki, O.J. and Jiranek, V. (2016) Integrated strategies to
moderate the alcohol content of wines. Wine and Viticulture Jour-
nal 31(6), 33–38.

Robinson, A.L., Ebeler, S.E., Heymann, H., Boss, P.K., Solomon, P.
S. and Trengove, R.D. (2009) Interactions between wine volatile
compounds and grape and wine matrix components influence
aroma compound headspace partitioning. Journal of Agricultural
and Food Chemistry 57, 10313–10322.

Sadoudi, M., Tourdot-Marechal, R., Rousseaux, S., Steyer, D.,
Gallardo-Chacon, J.J., Ballester, J., Vichi, S., Guerin-Schneider, R.,
Caixach, J. and Alexandre, H. (2012) Yeast- yeast interactions

revealed by aromatic profile analysis of Sauvignon Blanc wine fer-
mented by single or co-culture of non-Saccharomyces and Saccharo-
myces yeasts. Food Microbiology 32, 243–253.

Salmon, J.M. (2006) Interactions between yeast, oxygen and poly-
phenols during alcoholic fermentations: practical implications.
LWT: Food Science and Technology 39, 959–965.

Sidari, R., Postorino, S., Caparello, A. and Caridi, A. (2007) An evo-
lution during wine aging of color and tannin differences induced
by wine starters. Annals of Microbiology 57, 197–201.

Stone, H. and Sidel, J.L. (2004) Descriptive analysis. Taylor S.L. ,
ed. Sensory evaluation practices (Elsevier Academic Press: San
Diego, CA, USA) pp. 201–245.

Su, J., Wang, T., Wang, Y., Li, Y.Y. and Li, H. (2014) The use of lac-
tic acid-producing, malic acid-producing, or malic acid-degrading
yeast strains for acidity adjustment in the wine industry. Applied
Microbiology and Biotechnology 98, 2395–2413.

Sumby, K.M., Grbin, P.R. and Jiranek, V. (2010) Microbial modula-
tion of aromatic esters in wine: current knowledge and future
prospects. Food Chemistry 121, 1–16.

Varela, C., Siebert, T., Cozzolino, D., Rose, L., McLean, H. and
Henschke, P.A. (2009) Discovering a chemical basis for differenti-
ating wines made by fermentation with ‘wild’ indigenous and
inoculated yeasts: role of yeast volatile compounds. Australian
Journal of Grape and Wine Research 15, 238–248.

Varela, C., Sengler, F., Solomon, M. and Curtin, C. (2016) Volatile
flavour profile of reduced alcohol wines fermented with the non-
conventional yeast species Metschnikowia pulcherrima and Saccharo-
myces uvarum. Food Chemistry 209, 57–64.

Walker, M.E., Nguyen, T.D., Liccioli, T., Schmid, F., Kalatzis, N.,
Sundstrom, J.F., Gardner, J.M. and Jiranek, V. (2014) Genome-
wide identification of the fermentome; genes required for success-
ful and timely completion of wine-like fermentation by Saccharo-
myces cerevisiae. BMC Genomics 15, 552.

Whitener, M.E.B., Stanstrup, J., Carlin, S., Divol, B., Du Toit, M.
and Vrhovsek, U. (2017) Effect of non-Saccharomyces yeasts on the
volatile chemical profile of shiraz wine. Australian Journal of
Grape and Wine Research 23, 179–192.

Zupan, J., Avbelj, M., Butinar, B., Kosel, J., Šergan, M. and
Raspor, P. (2013) Monitoring of quorum-sensing molecules during
minifermentation studies in wine yeast. Journal of Agricultural
and Food Chemistry 61, 2496–2505.

Manuscript received: 27 May 2017

Revised manuscript received: 9 July 2017

Accepted: 24 July 2017

Supporting information
Additional supporting information may be found in the
online version of this article at the publisher’s website:
http://onlinelibrary.wiley.com/doi/10.1111/ajgw.12320/abstract.

Table S1. Definitions and standards of taste, palate sensa-
tion, aroma and flavour attributes assessed in descriptive
analysis of Shiraz wines.

Table S2. Summary of two-way ANOVA of basic chemical
parameters, Somers measurements and tannin concentra-
tions in Shiraz wines.

Table S3. Qualitative and quantitative information and
two-way ANOVA summary of volatile compounds analysed
in Shiraz wines.

Table S4. Mean intensity ratings for significantly different
attributes in Shiraz wines made with different yeast treat-
ments at earlier (H1) and later (H2) harvest dates.

Table S5. Correlation matrix of significantly different chem-
ical and sensory parameters in Shiraz wines (correlation
efficiencies > 0.5 and <−0.5 are in bold).

© 2017 Australian Society of Viticulture and Oenology Inc.

Hranilovic et al. Chemical and sensory impact of mixed yeast inocula 15

49

http://onlinelibrary.wiley.com/doi/10.1111/ajgw.12320/abstract


Chemical and sensory profiling of Shiraz wines co-fermented with 

commercial non-Saccharomyces inocula 

 

Ana Hranilovic1,2, Sijing Li1,2, Paul Boss3, Keren Bindon4, Renata Ristic1, Paul Grbin1, Tertius van der 

Westhuizen5, Vladimir Jiranek1,2 

 

 

1 The Australian Research Council Training Centre for Innovative Wine Production  

2 The University of Adelaide, Department of Wine and Food Science, PMB 1, Glen Osmond, SA 5064, 

Australia 

3 CSIRO Agriculture and Food, PMB2, Glen Osmond, SA 5064, Australia 

4 The Australian Wine Research Institute, PO Box 197, Glen Osmond, SA 5064 

5 Laffort Australia, Woodville North SA 5012 

 

 

CORRESPONDING AUTHOR Prof Vladimir Jiranek, The University of Adelaide, Department of 

Wine and Food Science, PMB 1, Glen Osmond, SA 5064, Australia, telephone +61 (0)8 8313 7415, 

email vladimir.jiranek@adelaide.edu.au 

  

50

mailto:vladimir.jiranek@adelaide.edu.au


Table S1. Definitions and standards of taste, palate sensation, aroma and flavour attributes assessed in 

descriptive analysis of Shiraz wines. 

 

Attribute Type Definition Standard † 

Acidity Taste 
Intensity of acid taste perceived in 

the mouth or after expectorating 
 -  

    

Sweetness Taste 
Intensity of sweet taste perceived in 

the mouth or after expectorating 
 - 

    

Bitterness Taste 
 Intensity of bitter taste perceived in 

the mouth or after expectorating 
 - 

    

Palate fullness Palate sensation 

Overall impression of weight or 

substantiveness of the wine in the 

mouth  

 0.3 g/L Xanthan gum  

    

Astringency Palate sensation 
Overall level of astringency 

sensation  
 0.3 g/L Tarac seed tannin  

    

Surface coarseness Palate sensation  Texture felt on mouth surfaces 

 ‘Touch standards’ comprising 

of a range of fabrics and 

powders 

Hotness Palate sensation 
Intensity of warmth or heat perceived 

in the mouth or after expectorating 
 14% Ethanol in filtered water 

    

Flavour intensity Flavour 
Perception of overall flavour 

intensity  
 - 

    

F_Red fruit Flavour 

Perception of fresh raspberry, 

strawberry, sour cherry and red 

plum  

Half a strawberry, 2 canned 

cherries, 1 slice of plum and 2 

raspberries 

    

F_Dark fruit Flavour 

 Perception of fresh and strewed dark 

fruit blackberry, blueberry and plum 

aroma 

 Half a tea spoon of forest 

berry jam, 1 blackberry and 2 

blue berries  

    

F_Jammy Flavour  Perception of jam and prune 
 1 Tea spoon of prune jam and 

1 chopped prune 

    

F_Vegetal Flavour 
 Perception of cut grass, leaf and 

fresh herb 

 Half a eucalyptus leaf and two 

blades of grass 

    

F_Confectionery Flavour 
 Perception of strawberry cream and 

bubble gum 

 1 cm of Bubble gum, half of a 

raspberry cream lolly, quarter 

of a marshmallow and 2.5 cm 

of red snake lolly 

    

Spice Flavour 
Perception of mixed spice, e.g. 

cinnamon, clove and nutmeg  

Half a clove, a pinch of mixed 

spice powder and nut meg 

powder 

    

Pepper Flavour 
Perception of black and white 

pepper  

 Half a crack of black pepper 

and a pinch of white pepper 
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Aroma intensity Aroma 

 Perception of overall aroma 

intensity 

 

- 

Red fruit Aroma 

 Perception of fresh raspberry, 

strawberry, sour cherry and red 

plum  

Same as red fruit flavour 

    

Dark fruit Aroma 

Perception of fresh and strewed dark 

fruit blackberry, blueberry and plum 

aroma 

Same as dark fruit flavour  

    

Jammy Aroma Perception of jam and prune  Same as jammy flavour  

    

Vegetal Aroma 
 perception of cut grass, leaf and 

fresh herb 
Same vegetal flavour 

    

Confectionery Aroma 
 Perception of strawberry cream and 

bubble gum 
Same as confectionery flavour  

    

Spice Aroma 
Perception of mixed spice, e.g. 

cinnamon, clove and nutmeg   
Same as spice flavour  

    

Savoury Aroma 
 Perception of soy sauce, oyster 

sauce and bacon 

 2 Drops of soy sauce, 1 drop 

of oyster sauce, 3 g of bacon 

    

Earthy Aroma 
Perception of musty and damp soil 

and mushroom 

 2 cm x 1 cm Unwashed potato 

peel, a pinch of earth and 1 

slice of mushroom in water 

    

Floral Aroma 
 Perception of floral fragrance and 

perfume  
- 

    

Pepper Aroma 
 Perception of black and white 

pepper  
Same as pepper flavour 

    

Other Aroma/flavour 
Any aroma/flavour not encompassed 

in the attribute list 
- 

† Unless otherwise specified, standards were prepared in 30 mL 2014 Shiraz cask wine (Yalumba, South 

Australia). 
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Table S2: Summary of two-way ANOVA of basic chemical parameters, Somers measurements and tannin 

concentrations in Shiraz wines.  

Parameter 
Source of 

variation 

% of 

variatio

n 

P value 
Signifi

-cance  
SS DF MS F 

Residual 

sugar (g/L) 

IN 37.15 < 0.0001 **** 479.40 7 68.48 58.01 

HD 21.75 < 0.0001 **** 280.70 1 280.70 237.80 

YT 38.16 < 0.0001 **** 492.40 7 70.34 59.59 

R       37.77 32 1.18  

Residual 

sugar at 

sequential 

inoculation 

(g/L) 

IN 1.80 0.0084 ** 1009 5 201.80 4.04 

HD 77.54 < 0.0001 **** 43595 1 43595 873.10 

YT 18.53 < 0.0001 **** 10419 5 2084 41.73 

R       1198 24 49.93  

Ethanol 

(% v/v) 

IN 3.21 0.0003 *** 3.24 7 0.4627 5.55 

HD 88.65 < 0.0001 **** 89.43 1 89.43 1073 

YT 5.49 < 0.0001 **** 5.54 7 0.7918 9.50 

R       2.67 32 0.0833  

Glycerol 

(g/L) 

IN 8.35 < 0.0001 **** 8.67 7 1.24 30.36 

HD 42.17 < 0.0001 **** 43.78 1 43.78 1074 

YT 48.23 < 0.0001 **** 50.07 7 7.15 175.50 

R       1.30 32 0.04  

Acetic acid 

(g/L) 

IN 17.60 0.0197 * 0.13 7 0.0183 2.86 

HD 6.44 0.0109 * 0.05 1 0.0469 7.32 

YT 47.78 < 0.0001 **** 0.35 7 0.0497 7.75 

R       0.21 32 0.0064  

Malic acid 

(g/L) 

IN 54.18 < 0.0001 **** 5.84 7 0.8344 99.55 

HD 8.65 < 0.0001 **** 0.93 1 0.9324 111.30 

YT 34.69 < 0.0001 **** 3.74 7 0.5342 63.73 

R       0.27 32 0.0083  

Tartaric acid 

(g/L) 

IN 27.86 < 0.0001 **** 0.67 7 0.0960 12.32 

HD 0.25 0.3839 ns 0 1 0.0060 0.78 

YT 61.55 < 0.0001 **** 1.49 7 0.2122 27.23 

R       0.25 32 0.0078  

pH 

 

IN 5.05 0.0007 *** 0.01 7 0.0012 5.00 

HD 72.64 < 0.0001 **** 0.13 1 0.1292 504.10 

YT 17.7 < 0.0001 **** 0.03 7 0.0044 17.55 

R       0.01 32 0.0002  

TA 

(g/L as 

tartaric) 

IN 10.07 0.2982 ns 0.28 7 0.0399 1.27 

HD 45.73 < 0.0001 **** 1.27 1 1.2680 40.25 

YT 7.85 0.4583 ns 0.22 7 0.0311 0.99 

R       1.01 32 0.0315  

Tannin 

(mg/L 

epicatechin) 

IN 5.41 0.0475 * 138731 7 19819 2.34 

HD 72.84 < 0.0001 **** 1867000 1 1867000 220.60 

YT 11.18 0.0008 *** 286620 7 40946 4.84 

R       270751 32 8461  

Wine colour 

(AU) 

 

IN 3.94 0.0072 ** 7.72 7 1.10 3.46 

HD 80.14 < 0.0001 **** 156.90 1 156.90 492.10 

YT 10.70 < 0.0001 **** 20.95 7 2.99 9.39 
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R       10.20 32 0.32  

Hue 

IN 4.14 0.8853 ns 0.0018 7 0.0002 0.41 

HD 1.45 0.3206 ns 0.0006 1 0.0006 1.01 

YT 48.87 0.0008 *** 0.0219 7 0.0031 4.90 

R       0.0203 32 0.0006  

Phenolic 

substances 

(AU) 

IN 2.23 0.1546 ns 39.92 7 5.70 1.66 

HD 86.88 < 0.0001 **** 1559 1 1559 453.80 

YT 4.77 0.0061 ** 85.63 7 12.23 3.56 

R       109.90 32 3.47  

Anthocyanins 

(mg/L) 

IN 3.28 0.0166 * 7697 7 1100 2.96 

HD 83.59 < 0.0001 **** 196193 1 196193 527.50 

YT 8.07 < 0.0001 **** 18931 7 2704 7.27 

R       11901 32 371.90  

Non-

bleachable 

pigment  

(AU) 

IN 8.66 < 0.0001 **** 2.35 7 0.34 12.18 

HD 78.01 < 0.0001 **** 21.14 1 21.14 768.20 

YT 10.09 < 0.0001 **** 2.73 7 0.40 14.19 

       R    0.88 32      0.03  

        

Significance levels of percentage of variation explained by the harvest date (HD), yeast treatments (YT), 

and the interaction (IN) of these variables are the following: ns, P > 0.05; *, P ≤ 0.05; **, P ≤ 0.01; 

***, P ≤ 0.001; ****, P ≤ 0.0001. SS, sum of squares; DF, degrees of freedom; MS, mean of squares; 

R, residual. 

 

54



Table S3. Qualitative and quantitative information and two-way ANOVA summary of volatile compounds analysed in Shiraz wines. 

Compound 
CAS 

No. 
RT Ion Aroma quality† 

Aroma 

detection 

threshold 

(µg/L) ‡ 

Determined range  

(µg/L) 

Source 

of 

variation 

% of 

variation 
P value Significance 

Ethyl acetate  141-78-6 3.413 61 Fruity (low levels);  
solventy , balsamic 

(high levels) 

  

15000 § H1 18797.18 - 44833.27 IN 7.77 0.0427 * 

          H2 24519.09 - 42366.85 HD 18.47 < 0.0001 **** 

              YT 58.98 < 0.0001 **** 

2-Phenylethyl 

acetate 
103-45-7 18.846 104 Rose, floral  250 ¶ H1 29.56 - 59.21 IN 17.83 < 0.0001 **** 

            H2 29.68 - 83.90 HD 5.20 < 0.0001 **** 

                YT 69.84 < 0.0001 **** 

Ethyl phenyl acetate  101-97-3 18.388 91 Rose, floral  650 †† H1 0.26 - 0.60 IN 48.22 < 0.0001 **** 

            H2 0.30 - 0.47 HD 0.58 0.2232 ns 

                YT 39.13 < 0.0001 **** 

Hexyl acetate 142-92-7 9.444 84 Fruity, herbal  670 ‡‡ H1 19.00 - 45.40 IN 13.34 < 0.0001 **** 

            H2 14.98 - 68.05 HD 4.03 < 0.0001 **** 

                YT 77.36 < 0.0001 **** 

Isoamyl acetate 123-92-2 6.561 87 Banana 30 ¶ H1 637.23 - 1529.85 IN 16.43 < 0.0001 **** 

            H2 544.62 - 2283.38 HD 9.34 < 0.0001 **** 

                YT 68.47 < 0.0001 **** 

Isobutyl acetate 110-19-0 4.852 73 Solvent, fruity, apple 1600 §§ H1 24.38 - 64.32 IN 11.64 0.0004 *** 

            H2 31.38 - 81.35 HD 6.66 < 0.0001 **** 

                YT 71.63 < 0.0001 **** 

Total acetate esters  na na na  na na  H1 20334.28 - 46320.79 IN 7.31 0.0641 ns 

            H2 26425.86 - 44809.83 HD 19.47 <0.0001 **** 

                YT 57.83 <0.0001 **** 

Diethyl succinate 123-25-1 16.63 129 
Fruity, fermented, 

floral 
1250000  § H1 55.31 - 205.15 IN 17.87 < 0.0001 **** 

            H2 105.64 - 228.86 HD 13.01 < 0.0001 **** 

                YT 61.84 < 0.0001 **** 
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Ethyl 2-methyl 

butanoate 
7452-79-1 5.414 102 

Fruity, strawberry, 

anise 
1 ¶ H1 1.56 - 4.57 IN 4.72 0.0056 ** 

            H2 2.12 - 5.26 HD 1.70 0.0049 ** 

                YT 87.62 < 0.0001 **** 

Ethyl butyrate 105-54-4 5.189 88 
Floral, fruity, 

strawberry 
20 ¶ H1 45.06 - 80.94 IN 15.12 < 0.0001 **** 

            H2 42.88 - 107.14 HD 7.78 < 0.0001 **** 

                YT 68.17 < 0.0001 **** 

Ethyl decanoate 110-38-3 16.053 101 Soapy, waxy, floral   200 ¶¶ H1 98.93 - 86.76 IN 4.15 0.0036 ** 

            H2 135.98 - 72.11 HD 0.45 0.0964 ns 

                YT 90.52 < 0.0001 **** 

Ethyl heptanoate 106-30-9 10.559 113 Fruity, grape  2 a H1 0.53 - 1.08 IN 35.23 < 0.0001 **** 

            H2 0.06 - 1.16 HD 5.57 < 0.0001 **** 

                YT 52.40 < 0.0001 **** 

Ethyl hexanoate 123-66-0 8.556 88 
Green apple peel, 

fruity 
14 ¶¶ H1 404.07 - 623.99 IN 28.76 < 0.0001 **** 

            H2 302.55 - 699.38 HD 3.15 0.0016 ** 

                YT 59.65 < 0.0001 **** 

Ethyl isobutyrate 97-62-1 4.264 71 Strawberry, fruity  15 §§ H1 186.74 - 1675.75 IN 2.29 0.0043 ** 

            H2 172.78 - 1544.93 HD 0.80 0.0046 ** 

                YT 94.14 < 0.0001 **** 

Ethyl isovalerate 108-64-5 5.654 88 
Pineapple, apple, 

fruity 
3 ¶ H1 7.36 - 22.02 IN 7.68 < 0.0001 **** 

            H2 10.95 - 27.76 HD 8.04 < 0.0001 **** 

                YT 79.35 < 0.0001 **** 

Ethyl laurate 106-33-2 19.311 101 Fruity, floral 500 § H1 3.01 - 17.57 IN 19.76 < 0.0001 **** 

            H2 5.42 - 21.15 HD 0.09 0.546 ns 

                YT 72.10 < 0.0001 **** 

Ethyl octanoate 106-32-1 12.484 127 Sour apple, soap 2 ¶ H1 135.78 - 692.83 IN 3.54 0.0017 ** 

            H2 138.74 - 609.15 HD 0.58 0.0317 * 

                YT 92.18 < 0.0001 **** 

Ethyl Z-3-hexenoate 
64187-83-

3 
10.797 97 Tropical nf H1 1.23 - 4.85 IN 4.66 < 0.0001 **** 

            H2 0.73 - 3.95 HD 14.23 < 0.0001 **** 
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                YT 78.94 < 0.0001 **** 

Total ethyl esters  na na na na   na H1 1446.95 - 2440.49 IN 7.61 0.0708 ns 

            H2 1510.67 - 2974.53 HD 19.74 <0.0001 **** 

                YT 56.18 <0.0001 **** 

Isoamyl butanoate 106-27-4 9.32 71 Fruity  nf H1 0.48 - 1.56 IN 14.84 <0.0001 **** 

            H2 0.54 - 3.03 HD 7.78 <0.0001 **** 

                YT 67.51 <0.0001 **** 

Octanoic acid 

methyl ester 
111-11-5 11.63 127 Orange 200 a H1 0.62 - 4.82 IN 3.52 <0.0001 **** 

            H2 0.54 - 3.92 HD 2.10 <0.0001 **** 

                YT 92.59 <0.0001 **** 

1-Butanol 71-36-3 7.202 56 Medicinal 150000 a H1 18.06 - 40.60 IN 12.59 < 0.0001 **** 

            H2 25.70 - 64.48 HD 27.7 < 0.0001 **** 

                YT 54.87 < 0.0001 **** 

1-Heptanol 111-70-6 12.765 83 Grape, sweet 1000 b  H1 61.52 - 108.23 IN 6.80 < 0.0001 **** 

            H2 64.31 - 117.66 HD 0.00 0.9016 ns 

                YT 88.86 < 0.0001 **** 

1-Hexanol 111-27-3 10.891 69 Green, grassy  8000 ¶ H1 3928.64 - 5047.63 IN 17.00 < 0.0001 **** 

            H2 3778.83 - 5351.42 HD 12.97 < 0.0001 **** 

                YT 59.85 < 0.0001 **** 

1-Nonanol 143-08-8 16.312 70 Fatty, green 1000 c H1 7.04 - 13.64 IN 7.05 0.0109 * 

            H2 8.03 - 8.85 HD 1.55 0.0334 * 

                YT 81.34 < 0.0001 **** 

1-Octanol 111-87-5 14.58 84 Moss, nut, mushroom 1 d H1 28.84 - 31.26 IN 3.90 0.0003 *** 

            H2 22.31 -  20.98 HD 7.85 < 0.0001 **** 

                YT 84.99 < 0.0001 **** 

1-Octen-3-ol 3391-86-4 12.705 72 
Earthy, mushroomy, 

mouldy  
40 e H1 0.75 - 0.94 IN 4.04 0.3027 ns 

            H2 0.98 - 1.27 HD 62.07 < 0.0001 **** 

                YT 19.20 0.0002 *** 

2-Ethyl-1-hexanol 104-76-7 13.384 83 Citrus, green 8000 f H1 4.11 - 5.40 IN 10.78 0.6117 ns 

            H2 4.05 - 5.52 HD 0.54 0.6062 ns 
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                YT 25.21 0.1185 ns 

2-Heptanol 543-49-7 10.37 83 
Fruity, mouldy, 

musty 
70 c H1 11.43 - 16.95 IN 7.44 0.0032 ** 

            H2 15.03 - 17.32 HD 50.72 < 0.0001 **** 

                YT 33.27 < 0.0001 **** 

2-Methyl-1-propanol 78-83-1 6.235 74 Wine, solvent 40000 ¶¶ H1 114219.41 - 148807.33 IN 8.25 0.0004 *** 

            H2 73038.81 - 158553.88 HD 5.11 < 0.0001 **** 

                YT 79.53 < 0.0001 **** 

3-Methyl-1-butanol 123-51-3 8.322 55 Whiskey, malt, burnt 30000 ¶ H1 306593.86 - 539681.65 IN 9.52 0.008 ** 

            H2 383069.31 - 525036.71 HD 10.49 < 0.0001 **** 

                YT 67.16 < 0.0001 **** 

3-Methylthio-1-

propanol 
505-10-2 17.249 106 Boiled potato, rubber  500 ¶ H1 1308.80 - 3134.59 IN 32.73 < 0.0001 **** 

            H2 1327.47 - 3531.50 HD 0.99 0.1026 ns 

                YT 55.08 < 0.0001 **** 

Benzyl alcohol 100-51-6 19.749 107 Flower 200000 g H1 559.61 - 617.89 IN 2.30 0.4674 ns 

            H2 745.33 - 872.10 HD 82.67 < 0.0001 **** 

                YT 4.22 0.1249 ns 

Phenylethyl alcohol 60-12-8 20.177 91 
Honey, spice, rose, 

lilac 
14000 ¶¶ H1 202456.82 - 281356.72 IN 28.81 < 0.0001 **** 

            H2 155807.15 - 322693.83 HD 0.19 0.5495 ns 

                YT 54.49 < 0.0001 **** 

E-3-Hexen-1-ol 928-97-2 11.079 82 Moss, fresh 400 ¶ H1 46.78 - 55.20 IN 28.47 0.0237 * 

            H2 48.80 - 57.99 HD 10.67 0.0114 * 

                YT 13.45 0.2835 ns 

Z-3-Hexen-1-ol 928-96-1 11.461 82 Grass 400 ¶ H1 852.22 - 1218.17 IN 2.82 0.0352 * 

            H2 578.50 - 867.03 HD 61.23 < 0.0001 **** 

                YT 30.81 < 0.0001 **** 

Total higher alcohols na na na  na  na H1 578885.65 - 1000523.79 IN 13.31 0.0014 ** 

            H2 639169.23 - 957882.61  HD 6.03 0.0007 *** 

                YT 67.15 <0.0001 **** 

ß-Citronellol 106-22-9 18.029 123 Rose 100 ¶ H1 1.24 - 2.18 IN 31.76 < 0.0001 **** 

            H2 1.38 - 2.31 HD 22.16 < 0.0001 **** 
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                YT 28.83 < 0.0001 **** 

Linalool 78-70-6 14.426 121 Flower, lavender 15 ¶ H1 2.31 - 2.60 IN 9.67 0.0017 ** 

            H2 2.45 - 2.91 HD 0.95 0.0927 ns 

                YT 79.21 < 0.0001 **** 

Nerolidol 7212-44-4 22.092 93 Wood, flower, wax 1000 a H1 3.01 - 12.90 IN 13.21 0.001 *** 

            H2 8.31 - 32.59 HD 33.37 < 0.0001 **** 

                YT 40.71 < 0.0001 **** 

Total terpenes na na na na   na H1 7.37 - 17.65 IN 13.70 0.001 *** 

            H2 13.31 - 30.16 HD 33.92 <0.0001 **** 

                YT 39.10 <0.0001 **** 

ß-Damascenone 
23726-93-

4 
18.917 121 Apple, rose, honey 0.05 ¶ H1 9.45 - 12.78 IN 9.87 0.5771 ns 

            H2 11.46 - 12.68 HD 11.43 0.0147 * 

                YT 23.76 0.0895 ns 

Hexanoic acid 142-62-1 10.989 99 Leafy, wood, varnish  420 ¶¶ H1 2950.35 - 5693.61 IN 7.74 0.0006 *** 

            H2 2020.84 - 6045.27 HD 5.68 < 0.0001 **** 

                YT 79.65 < 0.0001 **** 

Significance levels of percentage of variation explained by the harvest date (HD), yeast treatments (YT), and the interaction (IN) of these variables are 

the following: ns, P > 0.05; *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001; ****, P ≤ 0.0001. RT, retention time; na, not applicable; nf, not found. † Obtained 

from flavornet (http://www.flavornet.org) by Terry Acree and Heinrich Arn; ‡ thresholds are reported for matrices with > 10% (ABV) ethanol, except 

Du et al. (2010), which was in water; § Moyano et al. (2002); ¶ Guth (1997); †† Burdock (2009); ‡‡ Peinado et al. (2004); §§ Sumby et al. (2010); ¶¶ 

Ferreira et al. (2000); a Welke et al. (2014); b Jiang and Zhang (2010); c Du et al. (2010); d Clarke and Bakker (2011); e Callejón et al. (2016); f Buttery 

et al. (1988); g Gómez-Míguez et al. (2007). 
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Table S4. Mean intensity ratings for significantly different attributes in Shiraz wines made with different yeast treatments at earlier (H1) and later (H2) harvest date.  

Attribute/ 

Treatment 
AL_H1 AL_H2 BI_H1 BI_H2 CO_H1 CO_H2 FL_H1 FL_H2 PR_H1 PR_H2 PI_H1 PI_H2 ME_H1 ME_H2 SC_H1 SC_H2 P value 

Aroma intensity 10.1 d 9.8 d 9.8 d 9.0 abc 9.4 bcd 9.5 bcd 9.7 cd 8.9 ab 9.4 bcd 9.6 bcd 9.6 bcd 9.4 bcd 9.8 d 9.3 bcd 8.4 a 9.7 cd 0.0081 

Red fruit 6.8 e 6.1 bcde 
5.9 

abcde 

5.9 

abcde 

5.9 

abcde 

5.8 

abcde 
6.3 cde 4.7 a 5.3 abcd 6.3 cde 

6.0 

abcde 
5.0 abc 6.6 de 5 abc 4.8 ab 5 abc 0.0414 

Confectionery 5.0 c 4 abc 4.9 c 4.1 abc 4.1 abc 3.8 abc 4.0 abc 3.0 a 4.0 abc 3.9 abc 4.0 abc 3.1 abc 4.6 bc 3.6 ab 3.2 a 3.3 a 0.0161 

Spice 4.5 cd 4 abcd 4.6 d 4 abcd 3.9 abc 3.8 abc 4.2 bcd 3.6 ab 4.0 dcba 4.1 abcd 
4.0 
abcd 

3.4 abc 3.9 abc 3.9 abc 3.6 ab 4.2 bcd 0.0931 

Earthy 4.2 abcd 4.1 abc 4.0 ab 3.6 ab 3.9 ab 3.9 ab 3.2 a 5.2 d 3.6 ab 4.1 abc 3.9 ab 5.1 cd 3.9 ab 4.4 bcd 3.9 ab 5.2 d 0.0064 

Floral 3.4 cd 2.6 abc 4.0 d 2.7 abc 2.7 abc 2.5 abc 3.3 bcd 2.1 a 2.3 ab 2.8 abc 3.4 cd 2.3 ab 3.2 bcd 2.4 ab 2.2 a 2.6 abc 0.0032 

Pepper 3.6 abc 4.4 de 4.1 cde 
3.7 

abcd 

3.9 

abcde 
4.1 bcde 3.3 ab 4.5 e 4.1 bcde 4.2 cde 3.1 a 4.2 cde 4.0 bcde 3.8 abcde 3.7 abcd 

3.8 

abcde 
0.0508 

Flavour intensity 10.4 cde 10.5 e 10.4 de 
10.1 
abcde 

9.7 abcd 
10.1 
abcde 

10.2 
bcde 

9.7 abcd 9.4 a 10.4 cde 
9.8 
abcde 

10.1 
abcde 

10.3 bcde 9.6 ab 9.4 a 9.7 abc 0.0213 

F_Dark fruit 9.5 bc 8.6 abc 9.1 abc 8.3 ab 8.5 abc 9.1 abc 8.9 abc 8.7 abc 8.4 ab 9.6 c 8.2 a 8.2 a 8.4 abc 8.9 abc 8.1 a 8.8 abc 0.3267 

F_Jammy 6.4 bcd 6.8 cd 6.5 bcd 6.6 cd 5.7 abc 6.4 bcd 5.9 abc 6.1 bcd 5.7 abc 7.2 d 6 abc 4.9 a 5.6 abc 6 abc 5.4 ab 5.7 abc 0.0254 

F_Vegetal 3.2 bc 2.8 ab 4.0 cd 2.3 a 3.4 bc 3.5 bcd 3.9 cd 3.7 bcd 3.9 cd 3.3 bc 3.7 cd 4.0 cd 3.5 bcd 3.9 cd 4.4 d 3.5 bcd 0.0025 

F_Confectionery 4.5 abc 6.4 d 4.5 abc 6.5 d 4.2 ab 4.7 bc 4.3 abc 3.9 ab 4.0 ab 5.5 cd 4.1 ab 3.9 ab 4.6 abc 3.7 ab 3.4 a 3.9 ab < 0.0001 

F_Spice 4.0 abc 4.2 abcd 4.6 bcd 4.7 cd 4.4 abcd 4.6 bcd 4.3 abcd 4.4 abcd 3.9 ab 4.8 d 3.7 a 3.9 abc 4.5 bcd 4.4 abcd 3.7 a 4.5 bcd 0.0456 

F_Licorice 3.7 cd 3.4 abcd 
3.3 

abcd 

3.6 

abcd 
3.3 abcd 3.7 d 3.1 abcd 2.9 ab 3.7 cd 3.6 bcd 2.8 a 

3.1 

abcd 
3.3 abcd 3.3 abcd 2.9 abc 3.3 abcd 0.3745 

Savoury 3.4 cde 2.6 ab 3.6 e 2.2 a 
2.9 

abcde 
2.8 abcd 

2.9 

abcde 
3.5 cde 3.5 cde 

3.0 

abcde 
2.7 abc 3.5 de 3.1 bcde 3.1 bcde 3.3 bcde 3.4 cde 0.022 

Acidity 7 cde 4.6 a 7.2 ef 5.1 ab 7.2 ef 6.0 bc 6.5 cde 6.6 cde 7.2 cdef 6.0 bcd 7.2 def 7 cde 7.4 ef 6.8 cde 8.2 f 6.8 cde < 0.0001 

Sweetness 5.5 cd 9.2 e 5.0 abc 8.8 e 4.4 ab 5.5 cd 4.7 abc 4.5 abc 5.3 bc 6.5 d 4.9 abc 4.4 ab 4.7 abc 5.2 bc 4.1 a 4.4 ab < 0.0001 

Bitterness 6.1 abcd 5.0 a 
5.8 
abcd 

5.0 a 5.8 abcd 6.5 bcd 6.7 cd 6.7 cd 5.8 abcd 5.7 abc 6.3 bcd 6.9 d 5.4 ab 5.8 abcd 6.5 bcd 6.4 bcd 0.0227 

Palate fullness 8.8 ab 9.9 d 8.9 abc 9.4 bcd 8.7 ab 9.8 cd 8.7 ab 9 abcd 9.0 abc 9.4 bcd 8.5 ab 9 abc 8.8 ab 8.9 abc 8.3 a 9.3 bcd 0.0485 

Astringency 7.8 abc 7.8 abc 8.2 abc 8.3 abc 8.4 abc 8.9 cde 8.2 abc 9.9 de 7.7 a 8.7 abcd 7.7 ab 9.8 de 8.6 abc 8.9 bcde 8.3 abc 10.1 e 0 

Surface coarseness 6.1 a 6.2 a 7.0 abc 6.7 abc 7.1 abc 7.1 abc 6.4 ab 7.6 bc 7.3 abc 6.4 ab 6.3 ab 7.6 bc 7.6 bc 7.8 c 6.9 abc 7.7 c 0.0889 

Hotness 8.3 a 8.2 a 
9.0 

abcd 
8.3 a 9.4 bcde 10.0 def 8.5 ab 10.5 ef 8.9 abcd 9.8 cdef 8.8 abc 10.6 f 8.7 ab 10.1 ef 8.5 ab 10.7 f <0.0001 

Values are means of three replicates; lower case letters denote significant differences (Fisher’s LSD).    
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 Table S5. Correlation matrix of significantly different chemical and sensory parameters in Shiraz wines (correlation efficiencies > 0.5 and < -0.5 are in bold)  

   

 

A I R F C O N S P E A F L P E F I F_ D F F_ JA F_ V E F_ C O N F_ S P F_ L I S A A C S W B I P F A S S C H O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 0 3 1 3 2 3 3 3 4 T W C D H T P A P P S E G A A M A p H

A I 1.0 0

R F 0 .6 8 1.0 0

C O N 0 .6 4 0 .8 8 1.0 0

S P 0 .6 5 0 .5 9 0 .7 8 1.0 0

E A 0.01 - 0 .5 3 - 0 .5 9 -0.27 1.0 0

F L 0 .6 3 0 .7 0 0 .8 5 0 .7 8 -0.31 1.0 0

P E -0.02 -0.19 -0.23 -0.18 0.33 -0.34 1.0 0

F I 0 .6 3 0 .7 6 0 .6 1 0.46 -0.11 0 .5 8 0.24 1.0 0

F_ D F 0.51 0.42 0.37 0 .6 1 0.08 0.31 0.20 0.50 1.0 0

F_ JA 0.30 0 .5 3 0.41 0 .5 5 -0.30 0.31 0.14 0 .5 6 0 .6 8 1.0 0

F_ V E -0.27 - 0 .5 5 -0.33 -0.26 0.24 -0.11 -0.03 -0.49 -0.15 - 0 .5 8 1.0 0

F_ C O N 0.25 0 .5 7 0.37 0.28 -0.36 0.18 0.21 0 .6 8 0.20 0 .7 2 - 0 .8 8 1.0 0

F_ S P 0.17 0.24 0.17 0.31 0.04 0.11 0.38 0.38 0 .5 4 0 .5 3 -0.43 0.44 1.0 0

F_ L I 0.42 0.49 0.46 0.47 -0.41 0.08 0.14 0.36 0 .5 6 0.49 -0.49 0.49 0.48 1.0 0

S A 0.03 -0.39 -0.13 0.07 0.48 0.02 0.26 -0.22 0.17 -0.44 0 .7 4 - 0 .7 2 -0.21 -0.21 1.0 0

A C -0.19 -0.25 -0.02 -0.10 0.04 0.13 -0.35 -0.48 -0.23 - 0 .6 7 0 .8 0 - 0 .8 7 -0.44 -0.44 0 .6 6 1.0 0

S W 0.13 0.38 0.22 0.21 -0.35 0.01 0.18 0.49 0.11 0 .6 7 - 0 .8 2 0 .9 4 0.26 0.46 - 0 .7 1 - 0 .9 0 1.0 0

B I -0.25 - 0 .5 8 - 0 .5 6 -0.40 0 .6 0 -0.28 -0.06 -0.42 -0.07 -0.51 0 .7 0 - 0 .7 6 -0.36 -0.47 0 .6 1 0 .5 4 - 0 .7 4 1.0 0

P F 0.29 0.19 -0.03 0.09 0.06 -0.19 0 .5 3 0.48 0.36 0 .5 6 - 0 .6 2 0 .7 2 0 .5 5 0 .5 8 -0.43 - 0 .9 0 0 .7 1 -0.36 1.0 0

A S -0.21 - 0 .5 7 - 0 .6 7 -0.43 0 .8 5 -0.45 0.37 -0.18 0.03 -0.33 0.21 -0.32 0.35 -0.26 0.33 0.03 -0.37 0 .5 5 0.15 1.0 0

S C -0.28 - 0 .6 4 -0.49 -0.41 0.48 -0.41 0.28 -0.48 -0.27 - 0 .6 1 0.45 - 0 .5 5 0.21 -0.23 0.42 0.33 - 0 .5 4 0.34 -0.13 0 .7 1 1.0 0

H O -0.09 - 0 .5 8 - 0 .6 5 -0.36 0 .7 8 -0.43 0.30 -0.29 0.15 -0.27 0.35 -0.44 0.30 -0.18 0.38 0.08 -0.47 0 .6 2 0.13 0 .8 9 0 .6 8 1.0 0

1 0.13 0.04 -0.24 -0.30 0.23 -0.07 -0.12 0.22 -0.01 0.15 -0.15 0.19 -0.11 -0.15 -0.36 -0.37 0.18 0.29 0.30 0.17 -0.24 0.31 1.0 0

2 0.45 0 .6 7 0 .6 0 0 .5 4 -0.47 0.24 0.19 0 .5 9 0 .5 7 0 .7 1 - 0 .5 9 0 .6 9 0.24 0 .7 9 -0.28 - 0 .5 5 0 .6 9 - 0 .6 3 0.50 - 0 .5 6 - 0 .6 5 - 0 .5 2 -0.08 1.0 0

3 0.30 0.30 0.06 -0.19 -0.07 -0.22 0.35 0.27 0.35 0.17 -0.14 0.18 0.34 0.47 -0.14 -0.24 0.10 -0.18 0.37 0.09 0.08 0.25 0.25 0.36 1.0 0

4 0.01 -0.06 -0.17 0.02 0.02 -0.23 0.13 -0.10 0.31 0.31 -0.03 0.10 0.26 0.26 0.01 -0.16 0.13 -0.13 0.12 0.06 0.00 0.28 0.14 0.25 0.48 1.0 0

5 0.19 0.36 0.29 0.21 -0.42 -0.12 0.15 0.13 0.50 0.32 -0.17 0.21 0.38 0 .7 6 -0.10 -0.14 0.20 -0.44 0.26 -0.23 -0.05 -0.14 -0.37 0 .6 1 0 .6 6 0.42 1.0 0

6 0.02 0.17 0.03 0.01 -0.22 -0.28 0.17 0.02 0.39 0.25 -0.14 0.16 0.48 0 .5 2 -0.17 -0.15 0.15 -0.41 0.23 0.02 0.13 0.06 -0.33 0.35 0 .6 5 0 .5 2 0 .9 0 1.0 0

7 0.25 0.48 0.38 0.10 -0.30 0.02 0.41 0.48 0.38 0.39 -0.43 0.49 0 .5 9 0 .5 8 -0.33 -0.43 0.40 - 0 .6 2 0.46 -0.11 0.03 -0.11 -0.13 0 .5 5 0 .7 4 0.16 0 .7 0 0 .6 6 1.0 0

8 0.05 -0.18 -0.32 -0.31 0.26 -0.33 0.12 -0.15 0.18 -0.19 0.32 -0.30 0.24 0.07 0.19 0.17 -0.33 0.18 -0.02 0.44 0.47 0 .6 1 0.16 -0.18 0 .7 0 0 .6 6 0.43 0 .6 2 0.28 1.0 0

9 0.21 -0.30 -0.48 -0.27 0 .6 5 -0.33 0.24 0.08 0.03 -0.14 0.04 -0.04 -0.27 -0.08 0.19 -0.27 0.05 0.49 0.37 0.42 0.00 0.48 0 .6 3 -0.06 0.11 0.09 -0.33 -0.34 -0.32 0.14 1.0 0

10 0.19 0.34 0.25 0.02 -0.28 -0.12 0.39 0.35 0.28 0.20 -0.35 0.40 0 .5 7 0 .6 5 -0.26 -0.36 0.33 - 0 .5 6 0.47 -0.01 0.17 -0.02 -0.22 0.48 0 .7 4 0.18 0 .7 8 0 .7 5 0 .9 3 0.40 -0.26 1.0 0

11 -0.29 -0.34 -0.27 -0.17 0.02 -0.28 -0.04 - 0 .5 4 0.10 -0.19 0 .5 8 - 0 .5 7 -0.03 -0.15 0.38 0 .5 4 - 0 .5 2 0.20 -0.50 0.10 0.32 0.30 -0.29 -0.23 0.28 0 .6 0 0.38 0 .5 3 0.00 0 .6 8 -0.28 0.06 1.0 0

12 0.22 0.29 0.14 0.27 -0.19 -0.07 0.16 0.21 0 .5 8 0 .5 3 -0.24 0.34 0.44 0 .5 9 -0.11 -0.29 0.32 -0.40 0.31 -0.11 -0.21 0.03 -0.07 0 .5 8 0 .5 8 0 .8 5 0 .7 5 0 .7 8 0.44 0 .5 6 -0.08 0.48 0.46 1.0 0

13 -0.04 -0.38 -0.48 -0.36 0.39 -0.32 -0.11 -0.33 -0.08 -0.43 0.49 -0.48 -0.12 -0.22 0.31 0.34 -0.44 0.39 -0.24 0.44 0.44 0 .5 8 0.22 -0.42 0.33 0 .5 7 0.09 0.30 -0.19 0 .8 7 0.33 -0.02 0 .6 2 0.34 1.0 0

14 0.17 -0.07 -0.12 0.20 0.35 -0.02 0.40 0.43 0.35 0.46 -0.39 0.51 0.42 0.27 -0.12 - 0 .7 0 0 .5 4 -0.07 0 .7 0 0.31 -0.09 0.29 0.41 0.30 0.00 0.18 -0.16 -0.16 0.09 -0.09 0 .5 3 0.08 -0.46 0.16 -0.12 1.0 0

15 -0.18 -0.32 -0.04 -0.03 0.08 -0.16 0.20 -0.39 -0.14 -0.19 0.13 -0.31 -0.13 -0.10 0.24 0.12 -0.20 0.12 -0.11 0.00 0.33 0.04 -0.33 -0.13 -0.24 -0.42 -0.15 -0.27 0.02 -0.40 -0.14 -0.08 -0.07 - 0 .5 3 -0.48 -0.12 1.0 0

16 0.34 0.18 0.09 0.26 -0.26 0.11 -0.22 0.22 0.14 0.32 -0.28 0.41 0.07 0.42 -0.47 -0.50 0.50 -0.27 0.50 -0.25 -0.34 -0.08 0.39 0.33 0.12 0.13 0.14 0.09 0.05 0.03 0.29 0.17 -0.26 0.24 0.06 0.46 -0.36 1.0 0

17 0.25 0.42 0 .6 9 0 .5 6 - 0 .6 6 0.48 -0.25 -0.01 0.08 0.03 0.11 -0.08 -0.20 0.31 0.19 0.39 -0.08 -0.40 -0.41 - 0 .7 4 -0.25 - 0 .6 6 - 0 .6 8 0.39 -0.10 -0.02 0.41 0.17 0.11 -0.21 - 0 .6 0 0.10 0.23 0.17 -0.24 - 0 .5 2 0.14 -0.09 1.0 0

18 -0.47 - 0 .6 4 - 0 .6 5 - 0 .5 5 0.41 -0.36 -0.26 - 0 .6 6 - 0 .5 2 - 0 .7 2 0 .6 4 - 0 .7 3 -0.45 - 0 .7 4 0.35 0 .6 4 - 0 .6 7 0 .6 0 - 0 .6 1 0.41 0.44 0.36 -0.06 - 0 .8 4 -0.33 -0.05 -0.39 -0.13 - 0 .6 5 0.27 0.10 -0.51 0.46 -0.30 0.59 -0.47 -0.10 -0.32 -0.21 1.0 0

19 -0.40 - 0 .5 9 - 0 .5 9 - 0 .5 5 0.37 -0.38 -0.23 - 0 .6 4 -0.46 - 0 .7 2 0 .6 5 - 0 .7 3 -0.34 - 0 .6 3 0.33 0 .6 3 - 0 .6 7 0.48 - 0 .5 9 0.42 0 .5 9 0.40 -0.12 - 0 .8 0 -0.11 0.06 -0.17 0.11 -0.40 0.50 0.00 -0.25 0 .5 9 -0.16 0 .7 2 - 0 .5 3 -0.10 -0.32 -0.15 0 .9 4 1.0 0

2 0 -0.07 -0.15 -0.34 0.01 0.30 -0.28 0.22 0.20 0.27 0.41 -0.39 0.48 0 .5 5 0.23 -0.32 - 0 .6 4 0 .5 2 -0.22 0 .6 2 0.42 0.06 0.31 0.19 0.14 0.08 0.41 0.15 0.37 0.15 0.26 0.25 0.24 -0.09 0.47 0.23 0 .6 8 -0.44 0.41 - 0 .5 3 -0.10 -0.06 1.0 0

2 1 -0.22 -0.31 -0.31 -0.30 0.09 -0.13 - 0 .5 2 -0.45 -0.38 - 0 .5 2 0.42 -0.50 -0.21 -0.44 -0.04 0.44 -0.43 0.21 -0.43 0.20 0.42 0.18 -0.08 - 0 .6 6 -0.16 -0.19 -0.07 0.16 -0.24 0.32 -0.19 -0.10 0.32 -0.23 0.49 -0.48 -0.12 0.04 -0.07 0 .7 0 0 .8 1 0.03 1.0 0

2 2 -0.03 0.28 0.31 0.25 -0.15 0.25 0.28 0 .5 4 0.10 0.46 - 0 .5 4 0 .6 3 0.22 0.16 -0.28 - 0 .5 1 0 .5 8 -0.33 0.40 -0.19 -0.41 -0.42 -0.01 0.41 -0.32 -0.45 -0.22 -0.36 0.18 - 0 .7 6 -0.07 0.04 - 0 .7 3 -0.27 - 0 .8 5 0.50 0.21 0.00 -0.08 - 0 .6 0 - 0 .7 4 0.12 - 0 .5 9 1.0 0

2 3 -0.17 -0.28 -0.15 -0.14 0.11 0.05 -0.34 -0.39 -0.39 - 0 .6 6 0 .5 6 - 0 .6 0 -0.20 -0.46 0.33 0 .6 9 - 0 .6 1 0.21 - 0 .6 1 0.20 0.51 0.09 -0.45 - 0 .6 7 -0.31 -0.22 -0.11 0.08 -0.32 0.24 -0.32 -0.16 0.37 -0.24 0.45 - 0 .5 8 -0.11 -0.26 0.21 0 .7 5 0 .8 2 -0.14 0 .8 2 - 0 .5 3 1.0 0

2 4 -0.38 -0.45 - 0 .5 2 - 0 .5 2 0.24 -0.39 -0.18 -0.50 -0.32 - 0 .5 3 0 .5 3 - 0 .5 4 -0.12 -0.45 0.19 0.49 -0.51 0.30 -0.43 0.40 0 .5 5 0.39 -0.09 - 0 .6 4 0.11 0.28 0.07 0.37 -0.17 0 .6 8 -0.10 -0.03 0 .6 5 0.12 0 .8 0 -0.46 -0.32 -0.24 -0.15 0 .7 9 0 .9 3 0.14 0 .7 7 - 0 .7 6 0 .7 5 1.0 0

2 5 -0.18 -0.29 -0.35 -0.40 0.36 -0.05 -0.38 -0.19 - 0 .5 6 - 0 .6 1 0.24 -0.32 -0.27 - 0 .6 6 -0.02 0.31 -0.32 0.27 -0.36 0.38 0.37 0.19 0.13 - 0 .7 4 -0.32 -0.34 -0.49 -0.22 -0.38 0.13 0.09 -0.28 -0.05 -0.46 0.42 -0.23 -0.24 -0.10 -0.35 0 .7 1 0 .7 2 0.09 0 .7 9 -0.30 0 .7 3 0 .6 4 1.0 0

2 6 -0.02 -0.10 -0.41 -0.46 0.28 -0.34 -0.06 -0.05 -0.07 -0.04 0.07 -0.04 -0.20 -0.31 -0.17 -0.09 0.02 0.09 -0.03 0.18 -0.03 0.26 0.50 -0.14 0.44 0 .5 4 0.06 0.30 0.00 0 .6 4 0.36 -0.01 0.39 0.37 0.70 -0.08 - 0 .5 2 0.06 -0.38 0.37 0.47 0.28 0.31 - 0 .5 5 0.07 0 .5 9 0.34 1.0 0

2 7 -0.40 -0.38 -0.43 - 0 .7 0 0.17 -0.31 -0.20 -0.33 - 0 .6 9 - 0 .8 0 0.44 -0.45 - 0 .5 7 - 0 .6 0 0.10 0.47 -0.41 0.38 -0.51 0.18 0.26 0.10 0.14 - 0 .5 9 -0.05 -0.25 -0.34 -0.19 -0.28 0.21 0.16 -0.15 0.17 -0.41 0.43 -0.38 -0.15 -0.14 -0.21 0 .6 8 0 .6 6 -0.26 0 .5 2 -0.33 0.51 0 .5 4 0 .6 8 0.35 1.0 0

2 8 -0.26 -0.23 - 0 .5 3 - 0 .5 3 0.34 - 0 .5 6 0.43 0.13 -0.13 -0.06 -0.14 0.23 -0.11 -0.08 -0.09 -0.35 0.27 0.18 0.42 0.34 -0.10 0.10 0.21 0.01 0.05 -0.13 -0.08 0.01 -0.08 -0.05 0 .5 3 0.02 -0.29 -0.03 0.03 0.25 -0.26 0.01 - 0 .5 4 0.18 0.06 0.37 -0.10 0.23 -0.15 0.06 0.16 0.27 0.29 1.0 0

2 9 - 0 .5 4 -0.06 -0.26 - 0 .5 3 -0.25 -0.50 0.18 -0.20 -0.14 -0.01 0.05 0.00 -0.03 -0.08 -0.22 0.06 0.00 -0.06 -0.06 -0.06 -0.03 -0.17 -0.23 -0.01 0.25 -0.04 0.37 0.47 0.27 0.09 -0.35 0.26 0.32 0.11 -0.08 -0.51 0.01 -0.36 -0.01 0.22 0.24 -0.08 0.15 -0.04 0.08 0.32 -0.04 0.21 0.24 0.44 1.0 0

3 0 0.26 0.22 0.05 -0.03 -0.01 -0.01 0.29 0.41 0.21 0.21 -0.11 0.32 0.05 0.28 0.02 -0.25 0.27 -0.11 0.27 -0.05 -0.25 0.06 0.41 0.42 0 .5 6 0 .6 7 0.22 0.17 0.21 0.46 0.41 0.23 0.10 0 .6 0 0.41 0.35 - 0 .6 1 0.23 -0.09 -0.27 -0.22 0.22 -0.46 -0.12 -0.40 -0.02 -0.28 0.47 0.00 0.18 -0.17 1.0 0

3 1 -0.40 -0.50 -0.38 -0.31 0.12 -0.33 -0.22 - 0 .7 4 -0.25 - 0 .5 3 0 .6 1 - 0 .7 3 -0.15 -0.35 0.36 0 .6 7 - 0 .6 5 0.28 - 0 .6 2 0.24 0 .6 1 0.30 -0.42 - 0 .5 8 -0.02 0.24 0.16 0.36 -0.19 0 .5 2 -0.34 -0.08 0 .8 1 0.07 0 .5 9 - 0 .6 4 0.10 -0.41 0.18 0 .7 2 0 .8 5 -0.14 0 .6 8 - 0 .7 7 0 .7 4 0 .8 4 0.37 0.27 0.33 -0.26 0.29 -0.30 1.0 0

3 2 -0.42 -0.49 - 0 .5 4 -0.47 0.17 -0.45 -0.25 - 0 .6 1 -0.24 -0.37 0.50 - 0 .5 3 -0.20 -0.45 0.09 0.40 -0.41 0.24 -0.44 0.25 0.41 0.32 -0.07 - 0 .5 4 0.09 0.34 0.12 0.42 -0.17 0 .6 1 -0.13 -0.08 0 .7 5 0.17 0 .7 1 -0.46 -0.17 -0.15 -0.11 0 .7 4 0 .8 7 0.13 0 .7 7 - 0 .7 6 0 .6 1 0 .9 1 0.49 0 .6 4 0.44 -0.02 0.38 -0.13 0 .8 6 1.0 0

3 3 0.04 0 .5 3 0.49 0.17 - 0 .6 2 0.21 0.22 0 .6 1 0.06 0.44 -0.50 0 .7 5 0.21 0.44 -0.45 -0.47 0 .7 1 - 0 .7 3 0.35 - 0 .5 2 -0.45 - 0 .6 6 -0.11 0 .6 7 0.21 0.00 0.36 0.22 0 .6 0 -0.24 -0.32 0 .5 4 -0.34 0.28 -0.44 0.21 -0.23 0.18 0.27 - 0 .6 6 - 0 .5 9 0.14 -0.42 0 .5 8 -0.38 -0.39 -0.34 -0.15 -0.16 0.12 0.19 0.37 - 0 .5 2 -0.43 1.0 0

3 4 0.22 0.31 0.04 0.17 -0.05 -0.11 0.41 0 .5 6 0 .5 6 0 .7 1 -0.48 0 .7 0 0.45 0 .5 5 -0.31 - 0 .7 2 0 .6 9 -0.39 0 .7 3 -0.02 -0.42 -0.02 0.25 0 .6 8 0.46 0 .5 4 0.47 0.47 0.43 0.22 0.27 0.43 -0.09 0 .7 5 0.04 0 .5 9 - 0 .5 5 0.43 -0.22 -0.51 -0.47 0 .6 9 -0.46 0.23 - 0 .5 6 -0.21 -0.43 0.30 -0.43 0.42 0.09 0 .6 4 -0.47 -0.19 0.50 1.0 0
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H 0.06 0.23 0.27 0.19 -0.12 0.05 0.16 0.13 0.26 0.18 -0.11 0.10 0.30 0.16 0.03 0.00 0.10 -0.48 -0.04 -0.09 0.16 -0.23 - 0 .6 0 0.24 0.20 0.08 0 .5 6 0 .6 2 0 .5 6 0.16 - 0 .5 5 0.49 0.27 0.33 -0.06 -0.29 0.12 -0.39 0.37 -0.13 0.10 0.12 0.17 -0.03 0.25 0.24 -0.02 0.08 -0.25 -0.14 0.35 -0.20 0.36 0.28 0.28 0.10 0.01 -0.19 1.0 0

T P -0.17 -0.41 - 0 .6 2 -0.34 0 .6 2 -0.49 0.39 0.08 0.04 0.11 -0.29 0.29 0.40 -0.04 -0.22 - 0 .6 1 0.34 0.10 0 .6 2 0 .7 1 0.30 0 .5 9 0.43 -0.15 0.09 0.17 -0.19 0.05 0.06 0.22 0 .5 4 0.12 -0.24 0.07 0.21 0 .7 3 -0.15 0.25 - 0 .8 7 0.02 0.02 0 .8 2 0.00 0.16 -0.22 0.09 0.23 0.29 -0.01 0 .5 2 -0.12 0.14 -0.20 0.06 -0.09 0.44 0 .9 4 0 .9 7 -0.14 1.0 0

A -0.14 -0.41 - 0 .6 4 -0.40 0 .6 5 -0.51 0.44 0.08 0.11 0.11 -0.18 0.19 0.37 -0.03 -0.13 - 0 .5 5 0.21 0.28 0 .6 2 0 .7 4 0.28 0 .7 1 0 .5 8 -0.16 0.22 0.19 -0.21 -0.02 0.04 0.28 0 .6 6 0.08 -0.21 0.04 0.23 0 .7 3 -0.11 0.22 - 0 .9 3 -0.01 -0.03 0 .6 7 -0.12 0.12 -0.36 0.02 0.10 0.29 -0.01 0.51 -0.10 0.23 -0.26 -0.01 -0.17 0.42 0 .8 1 0 .9 2 -0.32 0 .9 4 1.0 0
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S 0.01 0.27 0.07 0.06 -0.27 -0.09 0.22 0.43 -0.03 0 .5 6 - 0 .8 0 0 .9 2 0.24 0.32 - 0 .7 4 - 0 .8 9 0 .9 7 - 0 .6 9 0 .6 9 -0.26 -0.47 -0.41 0.18 0 .5 5 0.03 0.05 0.08 0.10 0.32 -0.35 0.08 0.29 - 0 .5 4 0.22 - 0 .4 3 0 .5 3 -0.21 0.45 -0.20 - 0 .5 3 - 0 .5 6 0 .5 6 -0.36 0 .6 0 - 0 .5 3 -0.43 -0.19 0.04 -0.26 0.40 0.08 0.21 - 0 .6 3 -0.36 0 .6 7 0 .6 4 0.49 0.47 0.04 0.43 0.29 0 .7 1 1.0 0

E -0.16 -0.48 - 0 .6 9 -0.38 0 .6 4 - 0 .5 9 0.37 -0.06 0.20 0.09 -0.07 0.06 0.38 0.04 -0.06 -0.46 0.13 0.31 0 .5 7 0 .7 6 0.38 0 .7 6 0.45 -0.18 0.26 0.28 -0.01 0.19 0.06 0.43 0 .5 9 0.15 -0.02 0.18 0.38 0 .6 2 -0.12 0.23 - 0 .8 4 0.09 0.12 0 .7 5 0.07 -0.08 -0.21 0.21 0.12 0.36 -0.05 0.47 -0.03 0.15 -0.03 0.21 -0.26 0.43 0 .8 4 0 .8 7 -0.13 0 .9 2 0 .9 4 0 .7 6 0.18 1.0 0

G -0.09 - 0 .5 6 - 0 .7 3 - 0 .5 2 0 .8 2 - 0 .5 2 0.24 -0.22 -0.04 -0.27 0.18 -0.29 0.09 -0.32 0.12 -0.13 -0.25 0 .5 8 0.25 0 .8 3 0 .5 4 0 .8 7 0 .5 2 - 0 .5 3 0.18 0.04 -0.32 -0.10 -0.15 0.41 0 .6 5 -0.11 0.00 -0.20 0.45 0.32 0.09 0.01 - 0 .8 5 0.36 0.38 0.34 0.27 -0.28 0.01 0.32 0.38 0.41 0.21 0.34 -0.10 -0.04 0.13 0.30 - 0 .6 1 -0.03 0 .6 1 0 .7 4 -0.25 0 .7 3 0 .8 1 0 .5 2 -0.17 0 .8 3 1.0 0

A A 0.11 -0.16 -0.30 -0.27 0.37 -0.20 0.03 -0.13 -0.02 -0.24 0.09 -0.24 0.10 -0.08 -0.03 -0.01 -0.31 0.45 0.25 0.48 0.33 0.49 0.27 -0.41 0.07 -0.48 -0.19 -0.14 -0.09 0.02 0.31 -0.04 -0.26 -0.45 -0.01 -0.03 0.24 0.09 -0.47 0.21 0.16 -0.06 0.31 -0.12 0.10 0.04 0.26 -0.10 0.09 0.23 0.07 -0.46 -0.01 -0.01 - 0 .5 4 -0.26 0.21 0.28 -0.29 0.27 0.39 0.12 -0.23 0.39 0 .6 3 1.0 0

M A -0.13 -0.25 -0.16 -0.02 0.24 -0.17 0.37 0.14 0.06 -0.14 0.18 -0.02 -0.06 0.13 0.42 -0.01 0.05 0.23 0.21 0.24 0.14 0.00 -0.26 0.06 -0.27 -0.28 0.00 -0.11 -0.15 -0.21 0.28 0.00 -0.30 -0.13 -0.08 0.30 0.00 -0.08 -0.06 0.01 -0.05 0.23 -0.13 0.32 0.08 -0.06 0.03 -0.31 -0.02 0 .5 3 -0.01 0.01 -0.16 -0.23 0.17 0.18 0.33 0.14 0.06 0.22 0.17 0.19 0.06 0.22 0.04 0.01 1.0 0

p H -0.29 -0.42 - 0 .6 2 -0.38 0.44 - 0 .6 2 0.42 -0.03 0.18 0.12 -0.02 0.13 0.39 0.09 -0.06 -0.40 0.22 0.07 0.48 0 .6 1 0.37 0 .5 3 0.17 -0.06 0.32 0.42 0.26 0.49 0.23 0 .5 3 0.32 0.33 0.19 0.41 0.45 0.45 -0.26 0.12 - 0 .6 1 0.11 0.23 0 .8 2 0.15 -0.13 -0.04 0.42 0.13 0.46 -0.03 0.49 0.21 0.24 0.16 0.41 0.01 0 .5 6 0 .8 0 0 .7 2 0.24 0 .7 9 0 .7 2 0 .6 8 0.26 0 .8 6 0 .5 7 0.06 0.34 1.0 0
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Measurements are coded as follows: AI, aroma intensity; RF, red fruit; CON, confectionery; SP, spice; EA, earthy; 

FL, floral; PE, pepper; FI, flavour intensity; F_DF, dark fruit flavour; F_JA, jammy flavour; F_CON, confectionery 

flavour; F_SP, spice flavour; F_LI, licorice flavour; SA, savoury; AC, acidity; SW, sweetness; BI, bitterness; PF, 

palate fullness; AS, astringency; SC, surface coarseness; HO, hotness; 1, ethyl acetate;  2, ethyl isobutyrate; 3,isobutyl 

acetate; 4, ethyl butyrate; 5, ethyl 2-methyl butanoate; 6, ethyl isovalerate;7, 2-methyl-1-propanol; 8, isoamyl acetate; 

9, 1-butanol; 10, 3-methyl-1-butanol; 11, ethyl hexanoate; 12, isoamyl butanoate; 13, hexyl acetate; 14, 2-heptanol; 

15, ethyl heptanoate; 16, 1-hexanol; 17, Z-3-hexen-1-ol; 18, octanoic acid methyl ester; 19, ethyl octanoate; 20, 1-

octen-3-ol;  21, 1-heptanol; 22, linalool; 23, 1-octanol; 24, ethyl decanoate; 25, 1-nonanol; 26, diethyl succinate; 27, 3-

methylthio-1-propanol; 28, beta-citronellol; 29, ethyl phenyl acetate; 30, 2-phenylethyl acetate; 31, hexanoic acid; 32, 

ethyl laurate; 33, phenylethyl alcohol; 34, nerolidol; T, tannins; WCD, wine colour density; H, hue; TP, phenolic 

substances; A, anthocyanins; PP, non-bleachable pigment; S, residual sugar; E, ethanol; G, glycerol; AA, acetic acid; 

MA, malic acid.
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CHAPTER 3 

Lower-alcohol wines produced by Metschnikowia pulcherrima 
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Abstract 

In Latin, ‘pulcherrima’ is a superlative form of an adjective that translates as beautiful. Apart 

from being ‘the most beautiful’ yeast, Metshnikowia pulcherrima has a great potential in 

production of lower-alcohol wines. In this work, we evaluated the oenological performance of 

six M. pulcherrima strains used in sequential cultures with Saccharomyces cerevisiae. The M. 

pulcherrima MP2 strain was further characterised in six sequential fermentations with different 

S. cerevisiae inoculation delays. The analysis of main metabolites, undertaken prior to

sequential inoculations and upon fermentation completion in both Chemically Defined Grape 

Juice Medium (CDGJM) and white grape juice, highlighted metabolic interactions and carbon 

sinks other than ethanol in mixed culture fermentations. Depending on the inoculation delay, 

MP2 white wines contained between 0.6% and 1.2% (v/v) less ethanol than the S. cerevisiae 

control, with even larger decreases achieved in the CDGJM. The lower-alcohol wines also had 

higher concentrations of glycerol and the TCA cycle by-products (i.e. succinate and fumarate), 

and lower concentrations of acetic acid. The analysis of volatile compounds revealed 

compositional alterations arising from the S. cerevisiae inoculation delay, with increased 

acetate esters and higher alcohols detected in all analysed MP2 treatments.   

Highlights 

 Metschnikowia pulcherrima MP2 was selected for production of lower-alcohol wines

 Alcohol decrease in white wines ranged between 0.6 and 1.2% (v/v)

 Volatile profiles of lower-alcohol wines depended on sequential inoculation timing

Keywords 

Metschnikowia pulcherrima, non-Saccharomyces yeasts, mixed culture fermentations, lower-

alcohol wines, volatile compounds 
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1. Introduction

Recent trends in seeking riper fruit (Godden et al., 2015), exacerbated by climate 

warming (Schultz and Jones, 2010) and the phenomenon of compressed vintages (Schelezki et 

al., 2018), drive excessive sugar accumulation in grapes translating to undesirably high ethanol 

levels in wines. The implied oenological repercussions are severe; high sugars/alcohol exert 

difficulties on each of the alcoholic and malolactic fermentations, jeopardising their timely 

completion and likelihood of success (Bisson, 1999; Malacrino et al., 2005; Sumby et al., 

2014). Chemical and sensory profiles of resultant wines also are compromised through 

increased perceptions of ‘hotness’ and decreased aroma ‘complexity’ (Heymann et al., 2013; 

King et al., 2013), and, given the rising demand for wines with moderate alcohol levels and the 

presence of higher taxation rates above certain alcohol % (v/v), so is their consumer acceptance 

and marketability (Saliba et al., 2013).  

Winemakers seek to mitigate the adverse concentrations of ethanol via external inputs 

and/or interventions, implemented across the whole grape and wine production chain (Longo 

et al., 2017; Varela et al., 2015). Among these, microbiological methods are of great interest, 

as the use of a yeast that yields less moles of ethanol per mole of fermented sugar, i.e., one that 

partially diverts carbon to other end-products, represents an inexpensive and readily-

implementable strategy. However, ethanol yield is a rather invariant trait in wine strains of 

Saccharomyces cerevisiae, the main fermentative species used in wineries (Palacios et al., 

2007). Novel S. cerevisiae strains have therefore been generated to produce less ethanol using 

recombinant DNA techniques (Kutyna et al., 2010; Varela et al., 2012) and more recently, 

evolutionary engineering (Tilloy et al., 2014; 2015). Moreover, the selection has expanded to 

species other than S. cerevisiae, as these so-called non-Saccharomyces yeasts offer largely 

untapped diversity for oenologically-relevant traits, ethanol yield included (Jolly et al. 2014). 

Indeed, even though metabolic pathways involved in central carbon metabolism are largely 
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conserved among different species (Fig. 1), their regulation, and thus ethanol production 

efficiency, vary greatly. A number of non-Saccharomyces strains have been selected based on 

their ability to divert carbon away from ethanol production and trialled in co-culture with S. 

cerevisiae, which is required to complete the fermentation (Ciani et al., 2016; Contreras et al., 

2014; Jolly et al., 2014; Rossouw and Bauer, 2016). Among these, strains of Metschnikowia 

pulcherrima were the best performers in several studies.  

One such study focused on selection of non-Saccharomyces yeasts capable of lowering 

ethanol levels via respiration in aerated conditions (Quiros et al., 2014). The selected M. 

pulcherrima CECT12841 was subsequently tested in co-culture with S. cerevisiae with 

controlled oxygenation at fermentation onset, conferring an ethanol decrease of 2.2% (v/v) with 

acceptable acetic acid content (Morales et al., 2015). Significant ethanol decrease was also 

achieved in aerated M. pulcherrima co-cultures by Tronchoni et al. (2018), however, these 

were linked to inferior wine quality (oxidised/solventy character, lacking in fruitiness) 

compared to anaerobically fermented S. cerevisiae. To avoid quality loss and comply with 

standard reductive winemaking practices, the screening for lower-alcohol non-Saccahromyces 

has also been conducted under anaerobic conditions. Under such conditions, Contreras et al. 

(2014) have selected another M. pulcherrima strain, AWRI1149. When sequentially inoculated 

with S. cerevisiae upon 50% sugar depletion, strain AWRI1149 resulted in an ethanol decrease 

of 0.9 and 1.6% (v/v) in Chardonnay and Shiraz, respectively (Contreras et al., 2014), with a 

further decrease achieved in S. uvarum co-culture (Contreras et al., 2015). However, several 

M. pulcherrima fermentations were relatively lengthy and/or resulted in concentrations of ethyl

acetate that are potentially detrimental for wine quality (Contreras et al. 2014, Varela et al. 

2016). Cell immobilisation was used in another study to increase non-Saccharomyces 

inoculation rates and accelerate sugar consumption prior to S. cerevisiae inoculation (Canonico 

et al., 2016). The M. pulcherrima strain DiSVA269, tested alongside three other non-
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Saccharomyces species, resulted in up to 1.4% (v/v) less ethanol production than the S. 

cerevisiae monoculture. Nonetheless, yeast immobilisation is still an experimental practice in 

winemaking rather than an industrial one (Genisheva et al., 2014).  

Despite their potential, fit-for-purpose M. pulcherrima strains are still lacking and their 

use in the wine industry requires further guidance. This study addressed the selection and 

characterisation of a lower-ethanol producing M. pulcherrima strain for use in sequential 

culture with S. cerevisiae in a defined medium and grape juice, focusing not only on the 

production of ethanol but also assessing compositional alterations, i.e., main metabolites and 

volatile compounds, arising from the delays in sequential inoculation. 

Fig. 1. Overview of central carbon metabolism in yeasts. Grape hexoses (glucose and 

fructose) are metabolised to pyruvate during glycolysis via multiple enzymatic steps. In 

alcoholic fermentation, via acetaldehyde (pyruvate decarboxylase, PDC) pyruvate is converted 

to ethanol (alcohol dehydrogenase, ADH). Glycerol-phosphatase-decarboxylase (GPD) and 
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aldehyde dehydrogenase (ALD) are involved in the formation of glycerol and acetate, 

respectively. Acetate can be converted to acetyl-CoA (acetyl-CoA synthase, ACS), 

contributing to the acetate esters and fatty acids synthesis. In the FAS (fatty acids synthase) 

complex, malonyl-CoA undergoes sequential 2-carbon elongation to palmitate (C16:0), that 

can be further elongated to saturated fatty acids (SFA) and desaturated to unsaturated fatty 

acids (UFA). Medium chain fatty acids (MCFA) can be released from the FAS complex and 

partake in ethyl ester formation. Pyruvate originating from glycolysis is partially shuttled to 

the mitochondrion and incorporated into the tricarboxylic acid (TCA) cycle. The normal TCA 

cycle is indicated with arrows in a clockwise direction. Under anaerobic conditions, some TCA 

reactions are inhibited (indicated with a symbol ‘x’), resulting in branching of the cycle. 

Fumarase (FUM) catalyses interconversion of malate and fumarate, and fumarate reductase 

(FRD) causes reduction of fumarate to succinate. 

2. Materials and methods

2.1. Strains and culture conditions. S. cerevisiae and M. pulcherrima strains were isolated 

from a commercial starter preparation (EC-1118, Lalvin, Montreal, Canada) and an un-

inoculated Shiraz fermentation (Yalumba, Angaston, South Australia), respectively. The latter 

was previously identified via sequencing and blasting of ITS1/ITS4 PCR products, as described 

elsewhere (Contreras et al., 2015). Cryogenically stored cultures (−80 °C in 25% glycerol) 

were grown for 2 days at 28 °C on YPD plates (1% yeast extract, 2% peptone, 2% glucose, 2% 

agar). Yeast starter cultures were established by inoculating approximately 107 cells into 100 

mL of a 1:1 mixture of YPD broth and the medium to be used for fermentations in 250 mL 

Erlenmeyer flasks. After 24 h incubation at 28 °C with agitation (120 rpm), cell density and 

viability were determined by flow cytometry coupled with propidium iodide (PI) DNA staining 
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(Accuri C6, BD, New Jersey, USA). Cultures (45 mL) were transferred into 50 mL tubes, 

centrifuged (10 minutes; 3214 rcf) and re-suspended in buffered phosphate saline to 109 viable 

cells/mL. Standardised volumes (0.5 mL) of the obtained cultures were then inoculated into 

100 mL fermentations at a rate of 5 × 106 viable cells/mL.  

2.2. Fermentation media. Three filter-sterilised (0.2 µm) media were used for fermentation 

trials: (1) Chemically Defined Grape Juice Medium (CDGJM; McBryde et al., 2006) with 230 

g/L sugar (equimolar glucose and fructose) and 350 mg/L yeast assimilable nitrogen (YAN) as 

a mixture of amino acids and ammonium chloride (McBryde et al., 2006); (2) CDGJM with 

257 g/L sugar and 350 mg/L YAN, and (3) grape juice (GJ; a Chardonnay and Semillon blend 

sourced from Treasury Wine Estates, South Australia) with 253 g/L sugar and 350 mg/L YAN. 

The initial GJ sugar (190 g/L) and YAN (160 mg/L) concentrations were adjusted by addition 

of glucose and fructose, and an amino acid and ammonium chloride mixture (McBryde et al., 

2006), respectively.  

2.3. Fermentation set up. All fermentations were conducted in a custom-made ‘Tee-bot’ 

fermentation platform. Built on an EVO Freedom workdeck (Tecan, Männedorf, Switzerland), 

‘Tee-bot’ allowed for the automatic sampling of up to 96 simultaneously conducted 

fermentations in 150 mL fermentation vessels. The fermentations were mixed with a magnetic 

stirrer and sealed with an airlock. Upon inoculation, the fermenters were incubated with 

agitation (300 rpm) at controlled temperature under self-induced anaerobic conditions.  

2.4. Fermentation modalities and monitoring. Six pre-selected M. pulcherrima (MP1-MP6) 

strains were tested in CDGJM containing 230 g/L sugar with S. cerevisiae inoculated after 7 
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days (Table 1) at 24 °C. The MP2 strain was subsequently trialled in higher sugar CDGJM and 

GJ with consecutive sequential inoculations with S. cerevisiae (Table 1) at 22.5 °C. All 

treatments consisted of 100 mL triplicates with S. cerevisiae (SC) EC-1118 as a control. During 

fermentation, aliquots (200 µL) were automatically sampled into 96-well plates and used to 

spectrophotometrically monitor (Infinite 200 PRO, Tecan, Männedorf, Switzerland) 

fermentation progress via total sugar consumption (K-FRUGL enzymatic kit, Megazyme, 

Ireland) and microbial growth. In fermentations with multiple MP strains, growth was 

measured by absorbance at 600 nm (OD600). In the follow-up fermentations, growth of the SC 

monoculture and MP2 treatments prior to the secondary inoculation was monitored via PI-flow 

cytometry. After S. cerevisiae inoculations, the two yeasts were quantified at four time-points 

(24 h, 48 h and 72 h after secondary inoculation, and at fermentation completion) via YPD and 

lysine medium (CM0191, Thermo Fisher Scientific, Waltham, MA, USA) plate counts after a 

2-day incubation at 28 °C. Being selective against SC growth, lysine medium allowed for MP

quantification. Prior to S. cerevisiae inoculation, 1 mL samples were collected for high 

performance liquid chromatography (HPLC) analysis. The sequential inoculation and sampling 

were both carried out via a septum-sealed port thereby maintaining anaerobiosis. The final 

sample was centrifuged (10 min, 3214 rcf) in 50 mL tubes to separate the yeast from the 

supernatant used for downstream analysis. 
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Table 1. Yeast inoculation treatments involving six M. pulcherrima strains (MP1–MP6) tested 

in sequentially inoculated fermentations with S. cerevisiae, and an S. cerevisiae (SC) control. 

The inoculation timing (with 5 × 106 viable cells/mL) is indicated with an ‘x’.

Yeast 

treatment 

Day of M. 

pulcherrima 

inoculation 

Day of S. cerevisiae inoculation 

0 0 3 4 5 6 7 
~50% 

sugar 

MP1 x x 

MP2 x x 

MP3 x x 

MP4 x x 

MP5 x x 

MP6 x x 

MP2 + SC3 x x 

MP2 + SC4 x x 

MP2 + SC5 x x 

MP2 + SC6 x x 

MP2 + SC7 x x 

MP2 + SC50% x x 

SC x 

2.5. Chemical analyses. HPLC was used to quantify glucose, fructose, ethanol, glycerol and 

organic acids (acetic, malic and succinic) as described by Li et al. (2017). Briefly, upon 

centrifugation and filtration (0.45 µm), samples were transferred into crimp-cap vials 

containing 300 µL inserts and capped. An Agilent 1100 (Santa Clara, CA, USA) instrument 

was fitted with an HPX-87H column (300 mm × 7.8 mm, BioRad, Hercules, CA, USA). The 

eluent was 2.5 mM H2SO4 with a flow rate of 0.5 mL/min and the column was maintained at 

60 °C for a 35-minute run time. The injection volume was 20 µL and signals were detected 

using an Agilent G1315B diode array detector (DAD, organic acids; 210 nm) and G1362A 

refractive index detector (RID, hexoses and alcohols) from injections. ChemStation software 

(version B.01.03) was used for instrument control and data analysis, and analytes were 
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quantified using external calibration curves (R2 > 0.99). The final ethanol concentrations in 

MP2 follow-up fermentations were determined with an alcolyser (Anton Paar, Graz, Austria).  

Fumarate identification was undertaken with a ThermoFinnigan Surveyor HPLC 

connected to a ThermoFinnigan LCQ Deca XP Plus mass spectrometer using electrospray 

ionisation in negative ion mode. Separation was performed with a 250 × 2.1 mm i.d., 5 µm, 

100 Å Alltima C18 column operated at 25 ºC and protected by a 7.5 × 2.1 mm i.d. guard 

cartridge of the same material. The solvents were 0.5% aqueous formic acid (solvent A) and 

0.5% formic acid in acetonitrile (solvent B), with a flow rate of 0.200 mL/min. The linear 

gradient for solvent B was: 0 min, 1%; 10 min, 10%; 20 min, 35%; 30min, 90%; 35 min, 90%; 

36 min, 1%; 46 min, 1%. An injection volume of 10 µL was used. The mass spectrometer had 

the following conditions: nitrogen was used for sheath gas, 30 arbitrary units and auxiliary gas, 

20 arbitrary units; the ion spray voltage, capillary voltage, tube lens offset voltage and capillary 

temperature were set at -3500 V, 20 V, 35 V and 250 ºC, respectively; helium was used as the 

collision gas, and normalised collision energy, activation Q, activation time and isolation width 

were 35%, 0.250, 30 ms and m/z 2, respectively. Data acquisition and processing were 

performed using Xcalibur software (version 1.3). The identification of fumarate by mass 

spectrometry was verified via the HPLC method described above (which was also used to 

collect the fraction of unknown metabolite), via matching retention times with the pure 

compound, spiking of fumarate into samples to confirm its increase in peak height and area 

(i.e., concentration) and separation of fumaric acid from its isomer maleic acid.  

Headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-

SPME-GC-MS) was carried out in duplicate to determine the volatile composition of three 

mixed culture wines and the SC control. The samples (0.5 mL) were diluted with deionised 

water (4.5 mL) in 20 mL vials supplemented with 2 g NaCl and 10 μL of ethanolic internal 

standard mixture (Gambetta et al., 2016; d4-3-methyl-1-butanol, 2.4 μg/L; d3-hexyl 
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acetate,0.025 μg/L; d13-1-hexanol, 0.05 μg/L; d5-2-phenylethanol, 0.5 μg/L; d19-ecanoic acid, 

0.05 μg/L and d5-ethyl dodecanoate, 0.001 μg/L). The instrument settings and extraction 

conditions were identical to those reported in Gambetta et al. (2016).  

2.6. Data analysis. Basic data processing was undertaken with EXCEL 2010 (Microsoft, 

Richmond, WA, USA). Data are presented as mean values with standard deviation (SD) from 

replicate fermentations. Sugar consumption and yeast population dynamics were plotted in 

GraphPad Prism (v6.03v, GraphPad Software). Metabolite yields were derived from the HPLC 

data for two fermentation stages. Partial fermentation (PF) yields were calculated as a ratio of 

measured metabolite and sugar (glucose + fructose) consumed prior to the S. cerevisiae 

inoculation, while final fermentation (FF) yields represent a ratio of final metabolites and 

consumed sugar. Measured and derived parameters were submitted to one-way analysis of 

variance (ANOVA) and Tukey's Honestly Significantly Different (HSD) post-hoc test in 

XLSTAT (version 2015.4.1, Addinsoft, Paris, France) with significance threshold set at 0.05. 

Significantly different volatile compounds were normalised and subjected to Principal 

Component Analysis (PCA) analysis in XLSTAT.  

3. Results

3.1. Metschnikowia pulcherrima candidate strain selection. Six MP strains were pre-selected 

from an in-house collection of non-Saccharomyces isolates based on their lower ethanol yield 

per consumed sugar (data not shown) and trialled in sequential inoculations with S. cerevisiae 

added after 7 days. The SC control displayed the highest rate and extent of growth and sugar 

consumption (Fig. A.1). An increase in OD600 and sugar consumption rate upon S. cerevisiae 

inoculation was apparent in all MP treatments, and suggestive of successful S. cerevisiae 

78



implementation (Fig. A.1). Some variation was observed in MP1-MP5 fermentation duration 

but each went to completion, whereas MP6 still contained 12 g/L of residual sugar after 15 

days of fermentation (Fig. A.1; Table 2). Prior to S. cerevisiae inoculation, MP1 and MP2 

consumed more sugar than other MP treatments (Table A.1). The SC control achieved the 

highest ethanol concentration (12.8%; Table 2), whereas the final sequential fermentations 

ranged between 10.3% and 11.5% ethanol (Table 2). Notably, MP2 yielded the largest ethanol 

decrease, in the order of 20% (or 2.5% v/v), compared to the SC control (Table 2). All MP 

fermentations had significantly higher (P < 0.0001) glycerol and succinic acid concentrations 

than the SC control but were up to 80% lower in acetic acid (Table 2).  

Table 2. Analytical profiles of final wines produced using six M. pulcherrima strains that were 

sequentially inoculated with S. cerevisiae strain on day 7 (MP1-6), and an S. cerevisiae control 

(SC).  

Parameter MP1 MP2 MP3 MP4 MP5 MP6 SC P values 

Residual sugar1 

(g/L) 
0 ± 0B 0 ± 0B 0 ± 0B 0 ± 0B 0 ± 0B 12 ± 0A 0 ± 0B < 0.0001 

Ethanol (% v/v) 11.5 ± 0.1AB 10.3 ± 0.6B 11.5 ± 1.1AB 11.1 ± 0.5B 11.5 ± 0.6AB 11.1 ± 0.2B 12.8 ± 0.1A 0.0054 

Ethanol yield 

(g/g) 
0.39 ± 0AB 0.35 ± 0.02B 0.40 ± 0.04AB 0.38 ± 0.02B 0.39 ± 0.02AB 0.40 ± 0.01AB 0.44 ± 0A 0.0050 

Glycerol (g/L) 8.9 ± 0.2AB 9.7 ± 0.4A 8.9 ± 0.4AB 8.8 ± 0.5AB 8.4 ± 0.4B 9.0 ± 0AB 5.5 ± 0C < 0.0001 

Acetic acid (g/L) 0.20 ±  0.02B 0.16 ±  0.03B 0.18 ±  0.02B 0.17 ±  0.02B 0.21 ±  0.02B 0.13 ±  0.02B 0.66 ±  0.08A < 0.0001 

Succinic acid 

(g/L) 
1.7 ± 0.1BC 1.9 ± 0.2B 1.6 ± 0.1BC 1.5 ± 0.2C 1.6 ± 0BC 2.9 ± 0.1A 0.9 ± 0.1D < 0.0001 

1 Glucose + fructose; letters denote significant differences within a row (ANOVA; P < 0.05). 

3.2. MP2 consecutive sequential inoculations in a higher sugar environment 

3.2.1. Fermentation kinetics. The MP2 strain led to the lowest ethanol concentration/yield 

and was further tested in a suite of sequential fermentations with different S. cerevisiae 
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inoculation timings. The tested strains were able to grow (Fig. A.2) and catabolise sugars (Fig. 

2a and b) despite the higher initial sugar content (~255 g/L) in the CDGJM and GJ. Irrespective 

of the sequential inoculation timing, the presence of MP2 at fermentation onset did not inhibit 

the growth of sequentially added S. cerevisiae. Conversely, rapid MP2 population decline upon 

S. cerevisiae inoculation was seen in all fermentation modalities, as indicated by the absence

of growth on all lysine plates from three days after secondary inoculation (Fig. A.2.). Despite 

comparable initial sugar levels and incubation conditions, all treatments completed 

fermentation on average three days faster in GJ than in CDGJM. The sugar consumption 

kinetics were faster in the SC controls than in the co-cultures. In the latter, the delay of S. 

cerevisiae inoculation prolonged the fermentation accordingly. The MP2 treatment 

sequentially inoculated after consuming approximately 50% sugar was the slowest, reaching 

completion after 15 and 18 days in GJ and CDGJM, respectively.  
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Fig. 2. Sugar (glucose + fructose) consumption kinetics in (a) CDGJM and (b) GJ for six MP2 

sequential inoculation treatments and S. cerevisiae (SC) control, and the final ethanol 

concentration decrease in (c) CDGJM and (d) GJ. Error bars represent standard deviations (SD) 

of analysed triplicates. Different letters denote significant differences among treatments 

(ANOVA; P < 0.05).  

3.2.2. Concentrations and yields of produced metabolites. Even though a matrix-derived 

effect on metabolite production was seen between CDGJM (Table 3) and GJ (Table 4), some 

trends were consistent. MP2 showed glucophilic character, with residual glucose/fructose 

ratios decreasing from day three onwards. Final ethanol concentrations in SC controls were 

higher than in any of the final MP2 wines (Fig. 2c and d). In fact, the extent of sugar consumed 

by MP2 alone prior to co-inoculation showed a significant (P < 0.0001) negative correlation 

with final ethanol content (r = -0.94 and -0.98 in CDGJM and GJ, respectively; Table A.3). In 

CDGJM, SC reached 15.5% ethanol, whereas MP2 final wines contained from 1% (v/v) (MP2 

+ SC3) to 1.5% (v/v) (MP2 + SC50%) less ethanol (P < 0.0001; Fig. 2c). Similarly in GJ, MP2

+ SC3 treatment had 0.6% (v/v) less ethanol and MP2 + SC50% was 1.2% (v/v) less than SC

(P < 0.0001; Fig. 2d). In sequential fermentations, final glycerol concentrations were up to 45% 

and 32% higher in CDGJM (MP2 + SC3) and GJ (MP2 + SC6), respectively, than in SC, with 

the MP2 strain alone contributing up to ~50% of final glycerol concentrations (Tables 3 and 

4). Irrespective of the media composition, SC had higher acetic acid concentrations than all 

sequential fermentations except MP2 + SC3 in GJ (Tables 3 and 4). As seen in the screening 

fermentations with six MP strains (Table A.1), acetic acid concentrations in CDGJM were 

higher in PFs than in FFs (Table 3), whereas the opposite was true for GJ (Table 4). Succinic 

and malic acid concentrations were seemingly more dependent on the medium; SC values were 

the lowest in CDGJM (Table 3), and intermediary in GJ (Table 4). In sequential treatments in 
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both media, further progression of fermentation with MP2 alone resulted in accumulation of 

succinic acid (Tables 3 and 4). Malic acid concentrations in all MP2 partial fermentations (PF) 

were higher than those of SC wines (Tables 3 and 4) and decreased from PF to FF.  

Similarly to concentrations, yields of metabolites were affected to a degree by the 

fermentation matrix (Tables 3 and 4). The SC ethanol yields (0.48 g in CDGJM, 0.47 g in GJ) 

were significantly higher than any MP2 ethanol yields (P < 0.0001). In CDGJM, MP2 PF 

ethanol yields peaked on day 3, and remained either stable or dropped thereafter; in GJ, they 

increased with fermentation progression. Irrespective of the medium, ethanol yields increased 

after S. cerevisiae inoculations. Glycerol yields for the SC control were lower than for any MP2 

treatment (P < 0.0001), regardless of the fermentation stage and the medium (Tables 3 and 4). 

In MP2 alone, glycerol yields were halved between day 3 (83 mg/g sugar) and day 13 (42 mg/g 

sugar) in CDGJM. Even though this drop was less apparent in GJ, glycerol yield of MP2 + 

SC50% PF was lower than the remaining ones. The timing of S. cerevisiae inoculation did not 

appear to greatly affect glycerol production in mixed cultures. In CDGJM, the steady drop in 

MP2 PF acetic acid yields with fermentation progression followed the trend in glycerol 

production (Table 3). A decrease in acetic acid yields from PFs to FFs corresponded to the 

decline in concentration of this metabolite upon S. cerevisiae inoculation (Table 3), although 

such a trend was not seen in GJ (Table 4). Nonetheless, the decline in acetic acid yield with 

postponed S. cerevisiae inoculation in FFs, and overall higher acetic acid yield in SC, were 

consistent between the two media. MP2 alone produced more succinic acid per gram of sugar 

early on during the fermentation in either medium, with higher yields in GJ than in CDGJM. 

In final MP2 fermentations, succinic acid yields increased with the S. cerevisiae delay, reaching 

higher values than SC in CDGJM (Table 3), and intermediary in GJ (Table 4). 
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3.2.3. Fumarate accumulation. HPLC analysis revealed that sugar consumption in MP2 was 

related to an increase of an unknown UV-detectable metabolite that was fractionally collected 

from the instrument and subjected to HPLC-MS analysis. The unknown analyte was identified 

as fumaric acid based on the matching mass spectra and retention times when compared to the 

pure compound (Fig. A.3). After confirming the separation of fumaric and maleic acids 

(isomers), the identity was further validated via spiking experiments with authentic fumaric 

acid and HPLC analysis. Fumaric acid standards were then prepared and analysed by HPLC, 

allowing for its quantification in samples via UV detection at 210 nm (Fig. 3; Table A.2). All 

MP2 treatments displayed a consistent trend of fumarate accumulation prior to S. cerevisiae 

inoculation, followed by a dramatic decrease in the final samples. Despite this decrease, the 

final MP2 wines contained more fumarate than the SC controls (Fig. 3; Table A.2). Highly 

significant (P < 0.0001) positive correlations were established between extent of sugar 

consumption by MP2 and fumarate production (r > 0.93 depending on the fermentation stage 

and the medium; Table A.3). Moreover, negative correlations (P < 0.0001) between final 

ethanol concentrations and fumarate production in partial (r = -0.75 (CDGJM), r = -0.85 (GJ); 

Table A.3) and final fermentations (r = -0.94 (CDGJM), r = -0.93 (GJ); Table A.3) were also 

detected. 
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Fig. 3. Fumaric acid concentrations (mg/L) with six MP2 sequential inoculation modalities 

(Table 1) and SC controls in (a) CDGJM and (b) GJ. Error bars represent standard deviations 

(SD) of triplicate fermentations. Letters denote significant differences (ANOVA; P < 0.05) 

between treatments at the partial fermentation (PF) and final fermentation (FF) stage. 
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Table 3. Concentrations of metabolites at different fermentation stages (partial fermentation, PF; final fermentation, FF) produced with six MP2 

sequential inoculation treatments and an S. cerevisiae control (SC) in Chemically Defined Grape Juice Medium (CDGJM). 

Parameter Stage 
Yeast treatment 

P values 
MP2 + SC3 MP2 + SC4 MP2 + SC5 MP2 + SC6 MP2 + SC7 MP2 + SC50% SC 

Sugars 

Glucose 

(g/L) 

PF 97 ± 0A 89 ± 1B 84 ± 1C 78 ± 2D 74 ± 1E 49 ± 0F < 0.0001 

FF 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 ns 

Fructose 

(g/L) 

PF 110 ± 0A 105 ± 1B 103 ± 3B 96 ± 2C 95 ± 1C 77 ± 0D < 0.0001 

FF 0.3 ± 0.2 0.2 ± 0 0.2 ± 0.1 0.1 ± 0 0 ± 0.2 0 ± 0 0.4 ± 0.3 ns 

Alcohols 

Ethanol (% 

v/v) 

PF 2.4 ± 0.1D 2.9 ± 0.2CD 3.1 ± 0.1BC 3.3 ± 0.1BC 3.5 ± 0.4B 5.7 ± 0.1A < 0.0001 

FF 14.5 ± 0B 14.4 ± 0BC 14.4 ± 0.1C 14.3 ± 0C 14.2 ± 0.1D 14.0 ± 0.1E 15.5 ± 0A < 0.0001 

Glycerol 

(g/L) 

PF 4.1 ± 0.2B 4.9 ± 0.8AB 4.9 ± 0.1AB 5.1 ± 0.3A 5.3 ± 0.1A 5.4 ± 0.1A 0.0057 

FF 11.0 ± 0.1A 10.9 ± 0.1AB 10.9 ± 0.1AB 10.6 ± 0.1B 10.7 ± 0.1B 10.7 ± 0.1B 6.0 ± 0C < 0.0001 

Acids 

Acetic (g/L) 
PF 0.31 ± 0.05A 0.27 ± 0.02AB 0.28 ± 0.02A 0.29 ± 0.02A 0.29 ± 0.01A 0.21 ± 0.03B 0.0072 

FF 0.17 ± 0.02BC 0.22 ± 0.05B 0.14 ± 0.01C 0.16 ± 0.01C 0.13 ± 0.01C 0.14 ± 0.01C 0.67 ± 0.01A < 0.0001 

Succinic 

(g/L) 

PF 0.5 ± 0C 0.6 ± 0BC 0.6 ± 0BC 0.7 ± 0.1AB 0.7 ± 0.1AB 0.9 ± 0.1A 0.0002 

FF 1.7 ± 0BC 1.6 ± 0C 1.8 ± 0B 1.7 ± 0.1BC 1.7 ± 0BC 1.9 ± 0.1A 0.9 ± 0D < 0.0001 

Malic (g/L) 
PF 3.1 ± 0.1A 3.0 ± 0.1A 3.0 ± 0.1A 2.9 ± 0A 3.0 ± 0A 2.6 ± 0.1B < 0.0001 

FF 2.89 ± 0.01AB 2.85 ± 0.02BC 2.90 ± 0.02AB 2.90 ± 0.04AB 2.93 ± 0.02A 2.80 ± 0.03C 2.55 ± 0.02D < 0.0001 

Metabolite 

yields 

Ethanol 

(g/g) 

PF 0.39 ± 0.02A 0.37 ± 0.03AB 0.35 ± 0.02AB 0.32 ± 0.02B 0.32 ± 0.04B 0.34 ± 0.01AB 0.0252 

FF 0.45 ± 0B 0.44 ± 0C 0.44 ± 0C 0.44 ± 0C 0.44 ± 0.01C 0.43 ± 0D 0.48 ± 0A < 0.0001 

Glycerol 

(mg/g) 

PF 83 ± 4A 77 ± 10A 69 ± 5AB 62 ± 2B 61 ± 0B 42 ± 1C < 0.0001 

FF 43 ± 0A 42 ± 0A 42 ± 0A 41 ± 0A 42 ± 1A 42 ± 0A 23 ± 0B < 0.0001 

Acetic acid 

(mg/g) 

PF 6.34 ± 0.97A 4.22 ± 0.22B 4 ± 0.06B 3.49 ± 0.33B 3.3 ± 0.12B 1.59 ± 0.26C < 0.0001 

FF 0.67 ± 0.08BC 0.85 ± 0.19B 0.56 ± 0.05C 0.61 ± 0.05C 0.49 ± 0.03C 0.55 ± 0.04C 2.59 ± 0.02A < 0.0001 

Succinic 

acid (mg/g) 

PF 9.08 ± 0.34A 9.47 ± 0.67A 9.04 ± 0.06A 8.81 ± 1.35A 7.95 ± 0.7AB 6.69 ± 0.44B 0.0048 

FF 6.7 ± 0.2BC 6.4 ± 0.2C 6.9 ± 0.1B 6.8 ± 0.3BC 6.8 ± 0.1BC 7.4 ± 0.2A 3.4 ± 0D < 0.0001 

Letters denote significant differences within a row (ANOVA; P < 0.05). 
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Table 4. Concentrations of metabolites at different fermentation stages (partial fermentation, PF; final fermentation, FF) produced with six MP2 

sequential inoculation treatments and an S. cerevisiae control (SC) in Chardonnay grape juice (GJ). 

Parameter Stage 

Yeast treatment 

P values 

MP2 + SC3 MP2 + SC4 MP2 + SC5 MP2 + SC6 MP2 + SC7 
MP2 + 

SC50% 
SC 

Sugars 

Glucose 

(g/L) 

PF 86 ± 1A 81 ± 2B 77 ± 2C 71 ± 0D 69 ± 2D 57 ± 1E < 0.0001 

FF 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 ns 

Fructose 

(g/L) 

PF 98 ± 1A 95 ± 2B 92 ± 1BC 89 ± 1C 88 ± 2C 82 ± 2D < 0.0001 

FF 0.3 ± 0.1 0.2 ± 0 0.2 ± 0 0.3 ± 0.1 0.2 ± 0 0.3 ± 0.2 0.4 ± 0.1 ns 

Alcohols 

Ethanol 

(% v/v) 

PF 1.8 ± 0.1D 2.2 ± 0.1C 2.4 ± 0.2C 3.1 ± 0.2B 3.3 ± 0.1B 4.1 ± 0.2A < 0.0001 

FF 14.5 ± 0B 14.4 ± 0C 14.4 ± 0C 14.2 ± 0D 14.2 ± 0D 13.9 ± 0E 15.1 ± 0A < 0.0001 

Glycerol 

(g/L) 

PF 3.9 ± 0.1D 4.6 ± 0.2C 4.7 ± 0.2C 5.3 ± 0.1B 5.4 ± 0B 6 ± 0.2A < 0.0001 

FF 10.9 ± 0.1B 11 ± 0AB 11.1 ± 0AB 11.4 ± 0.3A 11.2 ± 0.2AB 11.3 ± 0.1AB 7.8 ± 0.2C < 0.0001 

Acids 

Acetic 

(g/L) 

PF 0.17 ± 0.01B 0.21 ± 0.01A 0.22 ± 0.01A 0.21 ± 0.01A 0.22 ± 0.01A 0.15 ± 0.03B 0.0003 

FF 0.46 ± 0.01A 0.38 ± 0.02B 0.35 ± 0.01BC 0.33 ± 0.03C 0.32 ± 0.01C 0.26 ± 0.02D 0.45 ± 0A < 0.0001 

Succinic 

(g/L) 

PF 1.6 ± 0B 1.6 ± 0.1B 1.7 ± 0B 1.8 ± 0.1A 1.9 ± 0.1A 1.9 ± 0.1A < 0.0001 

FF 2.30 ± 0C 2.37 ± 0.06BC 2.4 ± 0ABC 2.43 ± 0.06AB 2.47 ± 0.06AB 2.5 ± 0A 2.43 ± 0.06AB 0.0003 

Malic (g/L) 
PF 2.3 ± 0.1 2.3 ± 0 2.3 ± 0 2.3 ± 0 2.3 ± 0.1 2.3 ± 0 ns 

FF 1.89 ± 0.06BC 1.92 ± 0.09ABC 1.98 ± 0.05ABC 2.05 ± 0.06A 2.02 ± 0.03AB 1.85 ± 0.01C 1.98 ± 0.03ABC 0.0049 

Metabolite 

yields 

Ethanol 

(g/g) 

PF 0.20 ± 0.01C 0.22 ± 0.01C 0.23 ± 0.02BC 0.26 ± 0.02AB 0.27 ± 0.01A 0.28 ± 0.01A < 0.0001 

FF 0.453 ± 0B 0.449 ± 0C 0.450 ± 0C 0.443 ± 0D 0.443 ± 0D 0.434 ± 0E 0.470 ± 0A < 0.0001 

Glycerol 

(mg/g) 

PF 57 ± 2AB 59 ± 4A 56 ± 2AB 57 ± 1AB 57 ± 2AB 52 ± 0B 0.0388 

FF 43 ± 0B 44 ± 0AB 44 ± 0AB 45 ± 1A 44 ± 1AB 45 ± 0AB 31 ± 1C < 0.0001 

Acetic acid 

(mg/g) 

PF 0.9 ± 0C 1.2 ± 0.1AB 1.3 ± 0AB 1.4 ± 0.1AB 1.4 ± 0AB 1.1 ± 0.2BC 0.0005 

FF 1.8 ± 0A 1.5 ± 0.1B 1.4 ± 0BC 1.3 ± 0.1C 1.3 ± 0C 1.0 ± 0.1D 1.8 ± 0A < 0.0001 

Succinic 

acid (mg/g) 

PF 23 ± 1A 21 ± 2AB 20 ± 1B 20 ± 1B 20 ± 0B 16 ± 0C < 0.0001 

FF 9.1 ± 0C 9.4 ± 0.2BC 9.5 ± 0ABC 9.6 ± 0.2AB 9.8 ± 0.2AB 9.9 ± 0A 9.6 ± 0.2AB 0.0003 

Letters denote significant differences within a row (ANOVA; P < 0.05). 
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3.2.4. Analysis of volatile compounds in the wines. Alongside the SC control, three 

sequentially inoculated MP2 wines (MP2 + SC3, MP2 + SC6 and MP2 + SC50%) with large 

differences in their gross metabolite composition in grape juice were subjected to analysis of 

volatile compounds by HS-SPME-GC-MS (Table 5). From 31 quantified compounds, 20 

volatiles were significantly different between the treatments (ANOVA; P < 0.05; Table 5). In 

MP2 treatments, a delay in sequential inoculation caused an increase in total acetate esters, 

mainly driven by ethyl acetate. In fact, ethyl acetate was 2.5-fold and 5-fold higher in MP2 × 

SC3 and MP2 × SC50%, respectively, than in SC. Isoamyl acetate and phenylethyl acetate 

were also dramatically increased in sequential wines, whereas hexyl acetate was the only 

measured acetate found to be higher in SC than in any MP2 treatments. The concentrations of 

total ethyl esters did not significantly differ among the treatments. However, MP2 + SC50% 

had the lowest concentrations of several ethyl esters, including ethyl esters of medium chain 

fatty acids (MCFA), i.e., hexanoate, octanoate, decanoate, and diethyl succinate. Conversely, 

ethyl propanoate was higher in MPS2 + SC50% and MP2 + SC6 than in the remaining two 

treatments. The concentrations of major higher alcohols (3-methyl-1-butanol, 2-methyl-1-

propanol and 2-phenylethanol) were higher in mixed culture fermentations than in the SC 

control, which was between 66 and 71% lower in total higher alcohols than MP2 wines. In 

contrast, 1-hexanol was higher in SC wine. The prolonged persistence of MP2 promoted the 

increase in monoterpenoids, in particular linalool, and α-terpineol was also found to be higher 

in MP2 wines than in the SC one. The wines differed significantly in concentrations of 

hexanoic and 3-methyl butanoic acids. In sequential fermentations, the measured acids were 

generally lower than in the SC control, showing a decreasing trend with S. cerevisiae 

inoculation delay. Accordingly, total measured acids were 18% lower in MP2 + SC3 than in 

SC, and 30% and 52% lower in MP2 + SC4 and MP2 + SC50%, respectively (Table 5).  
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Table 5. Concentrations (µg/L) of volatiles in final wines produced with three MP2 sequential 

inoculation treatments and an S. cerevisiae control (SC). 

Compound SC MP2 × SC3 MP2 × SC6 MP2 × SC50% P values 

ethyl acetate 27599 ± 434D 69580 ± 739C 110139 ± 5987B 140359 ± 12888A < 0.0001 

isoamyl acetate 2269 ± 358B 10655 ± 1173A 13756 ± 2577A 11938 ± 543A < 0.0001 

phenylethyl acetate 446 ± 57B 3372 ± 642A 3843 ± 746A 3066 ± 7481A 0.0006 

hexyl acetate 66 ± 1A 39 ± 3B 46 ± 3B 45 ± 7B 0.0003 

ethyl phenylacetate 4.5 ± 0.3C 5.4 ± 0.2B 5.7 ± 0.3AB 6.1 ± 0.2A 0.0006 

total acetates 30384 ± 3782D 83651 ± 6389C 127791 ± 6908B 155414 ± 10418A < 0.0001 

ethyl hexanoate 308 ± 14A 306 ± 25A 294 ± 38A 216 ± 31B 0.0124 

ethyl butanoate 185 ± 25  218 ± 33  218 ± 33  174 ± 15  ns 

2-ethyl-1-hexanol 82 ± 45 67 ± 38 79 ± 44 82 ± 45 ns 

ethyl decanoate 47 ± 11AB 58 ± 1A 64 ± 14A 30 ± 9B 0.0160 

ethyl octanoate 32 ± 5A 34 ± 1A 31 ± 7A 17 ± 3B 0.0081 

ethyl propanoate 22 ± 3B 23 ± 2B 32 ± 1A 36 ± 4A 0.0005 

diethyl succinate 10.4 ± 0.5B 13.9 ± 1.5A 11.5 ± 1.8AB 6.1 ± 0.8C 0.0004 

ethyl 3-methyl butanoate 1.4 ± 1.3 nd nd nd ns 

ethyl lactate 0.02 ± 0 0.01 ± 0 0.02 ± 0 0.02 ± 0 ns 

total ethyl esters 687 ± 88  719 ± 96  729 ± 129  560 ± 37  ns 

3-methyl-1-butanol 111731 ± 5709B 189216 ± 10820A 198329 ± 16193A 182921 ± 7594A < 0.0001 

2-phenylethanol 23950 ± 3740B 91727 ± 17735A 100415 ± 21106A 92659 ± 14214A 0.0010 

2-methyl-1-propanol 16858 ± 3272B 169369 ± 28206A 223093 ± 33727A 189178 ± 32663A < 0.0001 

1-butanol 485 ± 66B 782 ± 36A 812 ± 85A 623 ± 33B 0.0005 

1-hexanol 233 ± 23A 92 ± 8B 91 ± 14B 91 ± 6B < 0.0001 

benzyl alcohol 29.7 ± 2.9 31.2 ± 2.9 33.0 ± 1.0 30.9 ± 3.8 ns 

1-octanol 3.2 ± 0 2.2 ± 0 2.6 ± 0.3 2.6 ± 0.5 ns 

total higher alcohols 153288 ± 12813B 451218 ± 56808A 522776 ± 42335A 465504 ± 35084A < 0.0001 

linalool 2.0 ± 0.1C 2.3 ± 0.1C 2.9 ± 0.2B 3.3 ± 0.1A < 0.0001 

limonene 2.0 ± 0.5 1.6 ± 0.5 1.7 ± 0.6 2.1 ± 0.7 ns 

α-terpineol 1.6 ± 0.3B 2.0 ± 0.2A 2.3 ± 0.1A 2.2 ± 0.1A 0.0031 

total  monoterpenoids 5.5 ± 0.6B 5.9 ± 0.6B 6.9 ± 0.3AB 7.6 ± 0.6A 0.0053 

octanoic acid 10250 ± 3412 8534 ± 2373 6997 ± 1010 4845 ± 1375  ns 

decanoic acid 2550 ± 763 1850 ± 395 1839 ± 347 1192 ± 328 ns 

hexanoic acid 1697 ± 188A 1543 ± 164A 1407 ± 166A 912 ± 127B 0.0019 

3-methyl butanoic acid 223 ± 57A 101 ± 32B 89 ± 11B 89 ± 13B 0.0031 

total acids 14720 ± 4411 12026 ± 2958 10331 ± 1528 7039 ± 1815 ns 

nonanal 14 ± 1 10 ± 2 10 ± 2 14 ± 7  ns 

benzaldehyde 0.01 ± 0B 0.02 ± 0B 0.02 ± 0B 0.03 ± 0.01A 0.0092 

total aldehydes 14.01 ± 0.1 10.02 ± 2.0 10.02 ± 2.0 14.03 ± 7.01 ns 

Letters denote significant differences within a column (ANOVA; P < 0.05).  
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The 20 volatile compounds that were significantly different in wines (ANOVA, P < 

0.05) were normalised and subjected to PCA (Fig. 4). A separation of the SC monoculture from 

mixed inoculation treatments was seen along PC1, accounting for 69% of the total explained 

variance. The SC treatment was characterised by higher amounts of 1-hexanol, hexanoic acid, 

and their respective esters, alongside other major ethyl esters and 3-methyl-butanoic acid. The 

MP2 treatments were associated with production of acetate esters, higher alcohols (other than 

1-hexanol), monoterpenoids, ethyl propanoate and benzaldehyde. The MS2 × SC50% was

separated along PC2 (lower right quadrant, Fig. 4) from the remaining two MP2 wines, which 

showed more resembling volatile profiles.  

Fig. 4. PCA bi-plot of significantly different volatile compounds for wines produced with 

three MP2 sequential inoculation treatments and an S. cerevisiae control (SC).  
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4. Discussion

Wine microbiologists are on a quest for a yeast capable of lowering wine ethanol 

content while enhancing overall quality. Besides techniques employed to expand intrinsically 

low diversity in ethanol yields among S. cerevisiae wine strains (Tilloy et al., 2015), efforts 

have been extended to encompass the diversity of non-Saccharomyces yeasts (Jolly et al. 2014). 

Sequential inoculations are the most explored modalities, as the initial absence of S. cerevisiae 

allows for the maximised proliferation and metabolic contribution of the non-Saccharomyces 

strains (Ciani et al. 2016). In this study we initially selected and characterised a lower-ethanol 

M. pulcherrima strain to then focus on evaluation of timing of S. cerevisiae sequential

inoculation. As seen previously (Contreras et al., 2014; Tronchoni et al., 2018), differences in 

sugar catabolism and metabolite production were seen among multiple tested M. pulcherrima 

strains. Nonetheless, the S. cerevisiae control consistently produced more ethanol than any MP 

sequential treatment, which is in accord with some studies (Contreras et al., 2015; Contreras et 

al., 2014; Varela et al., 2016) but disagrees with others (Sadoudi et al., 2017), and further 

emphasises the  intra-specific diversity among yeasts. Besides lower ethanol, MP treatments 

generally showed an increase in glycerol and a decrease in acetate. This was also the case for 

the strain MP2, selected for further trials due to timely fermentation completion and the lowest 

final ethanol concentrations and yields (Table 2). 

The lower ethanol phenotype of MP2 was then validated in a series of sequential 

inoculations in two media with higher initial sugar concentrations, where ethanol modulation 

becomes further relevant (Table 1). Fermentations inoculated with S. cerevisiae alone finished 

first, whereas fermentation completion was delayed in co-cultures to an extent depending on 

the timing of S. cerevisiae inoculation (Fig. A.1). In agreement with previous studies (Contreras 

et al., 2014; Sadoudi et al., 2017; Sadoudi et al., 2012; Varela et al., 2016), S. cerevisiae 

addition induced rapid population decline in M. pulcherrima (Fig. A.2). The maintained 
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viability of MP2 in treatments with postponed sequential inoculation indicated that an 

antagonistic activity of S. cerevisiae, rather than alcohol stress, anoxia and/or other abiotic 

stressors, caused the observed cell death. Mechanisms like cell-cell contact and quorum-

sensing were reported to elicit non-Saccharomyces cell death in S. cerevisiae co-cultures with 

Torulaspora delbrueckii (Renault et al., 2013) and Lachancea thermotolerans (Kemsawasd, 

Branco, et al., 2015), but information about M. pulcherrima is lacking. Nonetheless, 

consecutive sequential inoculations allowed for differential MP2 proliferation and sugar 

consumption among the treatments, in turn affecting the extent of carbon diverted away from 

ethanol.  

The fate of carbon diverted during fermentations by lower-ethanol (M. pulcherrima) 

yeast strains remains largely elusive. The role of respiratory metabolism in M. pulcherrima has 

been highlighted in aerobic cultures (Quiros et al., 2014). In anaerobiosis, a decrease in ethanol 

was either partially explained by an increase in the production of some organic acids and 

glycerol (Contreras et al., 2015), or sinks that remained undetected (Varela et al., 2016). In the 

current study, we observed an accumulation of a metabolite that was positively correlated to 

MP2 sugar consumption (Table A.3). It was identified as fumarate; a transient metabolite that 

does not qualify as a major acid in wine (Ribereau-Gayon et al., 2006). Besides several early 

reports on the inhibitory effects of fumaric acid on malolactic fermentation (Cofran and Meyer, 

1970; Pilone et al., 1973), fumarate has not received much attention in a winemaking context. 

In a study by Magyar et al. (2014) fumarate concentrations released by S. cerevisiae (i.e. 17-

21 mg/L) were higher than those in S. uvarum, S. bacillaris and C. stellata treatments, and 

comparable to the ones in our SC controls (Fig. 3; Table A.2). The fumarate increases detected 

in MP2 treatments were dramatic, and potentially suggest an important role of the tricarboxylic 

acid (TCA) cycle in M. pulcherrima during fermentation. Maintained activity of the TCA cycle 

during fermentation is well documented, as is its importance in winemaking due to the 
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excretion of acids affecting wine sensory balance (Camarasa et al., 2003). In a branched TCA 

cycle, fumarate is produced on the reductive TCA branch from malate via fumarase activity 

(Fig. 1). Fumarate reductase then converts fumarate to succinate. This reductive branch ‘dead-

end’ is, in fact, the main succinate production pathway in fermenting S. cerevisiae (Camarasa 

et al., 2003). One possible explanation for increased fumarate accumulation in MP2 is therefore 

a comparable TCA cycle activity in both yeasts, with different MP2 regulation at the point of 

fumarate production/consumption. However, in MP2 partial fermentations, succinate yields 

were, depending on the medium and time-point, at least 1.7 times higher than in the SC 

controls, and malate concentrations were also higher (Tables 3 and 4). In M. pulcherrima, the 

contribution of the oxidative and reductive branch in succinate formation remains to be studied, 

as well as the response to different nitrogen sources. Nonetheless, given the increase in 

concentrations/yields of both fumarate and succinate, we hypothesise that the proportion of 

carbon shuttled towards the TCA cycle, and thus rerouted away from ethanol production, is 

higher in MP2 than in S. cerevisiae fermentations. Different compositions of the media used 

may explain the altered concentrations of TCA cycle by-products and other metabolites 

observed in GJ and CDGJM, and this warrants further investigation.  

Another interesting observation was the depletion of fumarate in the final stages of 

sequential fermentations (Fig. 3), implying metabolite exchange between the two species. More 

specifically, given the analytical data prior to and following sequential inoculation (Tables 3 

and 4), and branching of the TCA cycle in S. cerevisiae (Fig. 1), it is likely that fumarate 

released by MP2 was assimilated by S. cerevisiae to be converted to succinate. Similar 

interactions have previously been reported for acetaldehyde in S. cerevisiae co-cultures with 

Starmella bombicola (Ciani and Ferraro, 1988), T. delbrueckii (Ciani et al 2006, Bely et al. 

2008) and L. thermotolerans (Ciani et al. 2006), and acetoin with St. bombicola (Ciani and 

Ferraro, 1988). The underlying molecular mechanisms of this phenomenon remain to be 
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elucidated. Until recently, interactions between M. pulcherrima and S. cerevisiae have only 

been inferred from modulated production of metabolites (Sadoudi et al., 2012). The first 

attempt to study interactions on a molecular level has revealed changed expression levels of 

genes involved in glyceropyruvic fermentation and the pyruvate dehydrogenase bypass in S. 

cerevisiae sequentially inoculated into an M. pulcherrima fermentation (Sadoudi et al., 2017). 

Our study implies that other constituents of central carbon metabolism, i.e. the TCA cycle, are 

also affected.  

Significant increases in glycerol and decreases in acetic acid in sequential M. 

pulcherrima fermentations agree with a number of previous studies (Contreras et al., 2015; 

Contreras et al., 2014; Sadoudi et al., 2017). In general, glycerol is formed at the beginning of 

fermentation as a response to hyperosmotic stress. Decreasing glycerol yields with the 

progression of sugar consumption in MP2 alone, especially in CDGJM, agree with this model 

(Table 3). In addition to osmo-adaptation, glycerol formation in S. cerevisiae by glycerol 3-

phosphate dehydrogenases (GPD) serves as a redox valve to eliminate excess cytosolic NADH 

in anaerobic conditions (Ansell et al., 1997). Expression of homologous genes GPD1 and 

GPD2 is induced by osmotic stress and anoxia, respectively (Ansell et al. 1997). The levels of 

GPD1 transcript showed an initial overexpression followed by a drop in S. cerevisiae 

sequentially inoculated into M. pulcherrima fermentation in a study by Sadoudi et al. (2017), 

from which GDP2 was omitted. We observed that about 50% of glycerol in all final sequential 

fermentations was formed after S. cerevisiae inoculation with maintained anaerobiosis, 

regardless of the residual sugar level, highlighting the need for further research on GPD2 

expression by S. cerevisiae in co-cultures. Irrespective of the mechanism, glycerol yields in 

both pure and finalised MP2 fermentations were higher than those of S. cerevisiae, offering a 

partial explanation for ethanol decrease. In fact, glycerol remains the key carbon sink in a range 
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of lower-ethanol yeasts, and has either negligible or positive sensory contributions (Goold et 

al., 2017).  

Initial glycerol formation by S. cerevisiae is coupled with acetic acid production to 

restore the reduced NADH form (Fig. 1) (Ansell et al., 1997; Kutyna et al., 2010). This is not 

necessarily the case for some non-Saccharomyces yeasts, for example T. delbrueckii (Bely et 

al. 2008). Given our analytical data did not show a link between glycerol and acetic acid 

production (Table A.3), M. pulcherrima may also differ in this way. In agreement with other 

reports (Comitini et al., 2011; Sadoudi et al., 2017), sequential fermentations consistently 

contained less acetic acid than S. cerevisiae controls. Apart from the drop in acetate production 

upon S. cerevisiae inoculation in CDGJM, partial consumption of acetate also occurred in pure 

MP2 cultures. This was evident from the lower acetate concentrations in such cultures upon 

50% sugar consumption in both media (Table 3 and 4). A plausible explanation is that 

consumed acetate was converted to acetyl-coenzyme A (Fig. 1), a proportion of which was 

used for other biochemical processes, for example esterification. An increase in acetate esters 

in MP2 fermentations (Table 5) supports this hypothesis, and is in line with previous studies 

(Contreras et al., 2014; Sadoudi et al., 2012; Varela et al., 2016). However, unlike some other 

studies (Contreras et al., 2014; Varela et al., 2016), ethyl acetate concentrations did not exceed 

150 mg/L, i.e., the point where it is generally perceived as a fault rather than fruity/complexing 

(Sumby et al., 2010). As for ethyl esters, even though their total concentrations remained 

comparable, different patterns were seen among the treatments. The MP2 treatment inoculated 

after 50% sugar consumption contained the lowest amounts of ethyl esters of MCFA, including 

ethyl hexanoate, ethyl octanoate and ethyl decanoate (Table 5). In agreement with the literature 

(Dennis et al., 2012; Saerens et al., 2010), their respective precursors were either significantly 

lower (hexanoic acid) or decreased (octanoic and decanoic acid) in the same MP2 treatment. 

Lower concentrations of MCFA in sequential fermentations, also seen elsewhere (Contreras et 
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al., 2014; Shekhawat et al., 2017), alongside the progressive drop with a delay in S. cerevisiae 

inoculation (Table 5), suggest that MP2 and S. cerevisiae differ in their MCFA production 

capacity under given fermentative conditions. It remains to be elucidated whether lower MCFA 

levels perhaps reflect decreased fatty acid biosynthesis in MP2 compared to S. cerevisiae. 

Another possibility is that promoted elongation in MP2 leads to less MCFA intermediates 

released from the fatty acid synthase complex in comparison to S. cerevisiae. Although it 

remains to be validated, this scenario is plausible because M. pulcherrima has recently been 

characterised as an oleaginous yeast (Maina et al., 2017; Santamauro et al., 2014) and it aligns 

with the previously discussed availability of acetyl-CoA derived from acetic acid. 

A dramatic increase in concentrations of higher alcohols was seen in sequential 

fermentations (Table 5), in accord with several reports on M. pulcherrima co-fermentations 

(Shekhawat et al., 2017; Tronchoni et al., 2018). The effect of higher alcohols on wine quality 

is somewhat elusive; the commonly quoted positive contribution below 300 mg/L, and 

detrimental one above 400 mg/L, is seemingly lacking experimental support, and the research 

has highlighted their matrix-dependent effects in wine aroma modulation (de-la-Fuente-Blanco 

et al., 2016). Implications for wine quality of higher alcohol overproduction observed in 

sequential fermentations (Table 5) therefore need to be evaluated, as do the underlying 

mechanisms driving their increase. The link between higher alcohols and their respective amino 

acid precursors has been long recognised, as well as the biotic and abiotic factors affecting their 

release (Hazelwood et al., 2008). One of these is the well-characterised preferential 

consumption of different amino acids in S. cerevisiae (Jiranek et al., 1995; Kemsawasd, Viana, 

et al., 2015), with the information recently extended to some non-Saccharomyces species 

(Gobert et al., 2017; Kemsawasd, Viana, et al., 2015). Even though the relationship between 

amino acid composition and final volatiles is not necessarily straightforward in mixed cultures 

(Gobert et al., 2017), we can hypothesise that differences in amino acid metabolism between 
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S. cerevisiae and co-cultures are reflected in the volatile profiles of the wines. Apart from 

nitrogenous sources, higher alcohols can also be synthesised from glucose via pyruvate 

(Cordente et al., 2012). Partial sugar diversion towards higher alcohols instead of ethanol 

remains a possibility in mixed cultures. Another modulating factor is yeast interactions. 2-

Phenylethanol has a role in yeast quorum sensing, a phenomenon through which individual 

microbial cells regulate their phenotype and adapt to environmental changes (Avbelj et al., 

2016; Hazelwood et al., 2008). As an increase in 2-phenylethanol is generally attributed to 

mixed fermentations with non-Saccharomyces (Comitini et al., 2011; Padilla et al., 2016; 

Sadoudi et al., 2012), and not necessarily their respective monocultures (Sadoudi et al., 2012), 

it is worth further exploring whether its overproduction is related to a sequential culture 

response. 

Terpenes, predominantly originating from grapes (Marais, 1983) are released and 

modulated by microbial activity, although de novo synthesis has been reported for both S. 

cerevisiae and non-Saccharomyces yeasts (Carrau et al., 2005; Padilla et al., 2016; Rossouw 

and Bauer, 2016). Strong β-glucosidase activity associated with M. pulcherrima strains 

(Comitini et al., 2011) could account for the increase in monoterpenoids seen in the 

sequentially inoculated wines. Altogether, it is likely that yeast treatments affected sensory 

properties of the wines, however, this effect remains to be investigated in the future studies. 

Other aspects to be explored include the performance of the MP2 strain in non-sterile grape 

juice/must at a larger scale, as well as the suitability for production of wines destined for 

malolactic fermentation.  

In conclusion, this study describes the selection and thorough characterisation of an M. 

pulcherrima strain for production of lower-ethanol dry wines in sequential fermentations with 

S. cerevisiae. Depending on the inoculation delay, MP2 white wines contained between 0.6%

and 1.2% (v/v) less ethanol than the S. cerevisiae monoculture, with even larger decreases 
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achieved in CDGJM. The experimental set-up with increasing delays in S. cerevisiae 

inoculation allowed for the evaluation of metabolite production dynamics in MP2 alone, and 

their subsequent modulation in co-cultures, and highlighted several potential carbon sinks 

accounting for the ethanol loss. Besides increases in glycerol and decreases in acetate, of 

particular interest are the higher concentrations and yields of the TCA cycle by-products (i.e. 

fumarate and succinate) in MP2 fermentations, as well as the altered volatile profiles, without 

detection of any apparent aroma off-flavours. Accordingly, the selected and characterised MP2 

strain shows promise when used in conjunction with S. cerevisiae as a means of modulating 

ethanol level and balancing flavour profile upon fermenting grapes with a high sugar content. 

Appendix A 

Fig. A.1. Microbial growth (a) and sugar (glucose + fructose) consumption kinetics (b) in 

fermentations conducted with six M. pulcherrima strains (MP1–MP6), sequentially inoculated 

with S. cerevisiae on day seven (indicated with an arrow) and an S. cerevisiae control (SC) in 

CDGJM. Error bars are standard deviations (SD) of fermentation triplicates. 

Table A.1. Concentrations and yields of metabolites produced with S. cerevisiae (SC) and six 

M. pulcherrima (MP) strains, prior to S. cerevisiae sequential inoculation (PF) on day 7, and

in final samples (FF) in Chemically Defined Grape Juice Medium (CDGJM). 

Fig. A.2. Population dynamics in six MP2 sequential inoculation regimes (Table 1) and a S. 

cerevisiae (SC) control  in CDGJM (top panel) and GJ (bottom panel): (a) MP2 + SC3; (b) 

MP2 + SC4; (c) MP2 + SC5; (d) MP2 + SC6; (e) MP2 + SC7; (f) MP2 + SC50%. The growth 

of SC monoculture (•) and MP2 prior to sequential inoculation (--) was monitored via flow 

- -) after sequential inoculation was
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quantified via lysine and YPD plate counts at four time-points: 24 h, 48 h and 72 h after 

secondary inoculation, and at fermentation completion. 

Fig. A.3. Results for identification of an unknown peak isolated by HPLC and analysed by 

HPLC-MS with electrospray ionisation in negative mode, showing (a) HPLC-MS 

chromatogram and (b) full scan MS of fumaric acid standard (m/z 115 = [M−H]−, m/z 161 = 

fumaric/formic adduct ion, m/z 231 = fumaric/fumaric cluster ion), and (c) HPLC-MS 

chromatogram with extracted ion chromatogram (XIC) of m/z 115 (inset) and (d) full scan MS 

of the unknown compound with retention time and full scan MS consistent with fumaric acid. 

Table A.2. Fumaric acid concentrations and yields in partial fermentations (PF) and final 

fermentations (FF) conducted with six MP2 sequential inoculation regimes (Table 1) and an S. 

cerevisiae control (SC) in CDGJM and GJ. 
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Appendix A 

 Fig. A.1. Microbial growth (a) and sugar (glucose + fructose) consumption kinetics (b) in 

fermentations conducted with six M. pulcherrima strains (MP1–MP6), sequentially inoculated 

with S. cerevisiae on day seven (indicated with an arrow) and an S. cerevisiae control (SC) in 

CDGJM. Error bars are standard deviations (SD) of fermentation triplicates. 
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Table A.1. Concentrations and yields of metabolites produced with S. cerevisiae (SC) and six M. pulcherrima (MP) strains, prior to S. cerevisiae 

sequential inoculation (PF) on day 7, and in final samples (FF) in Chemically Defined Grape Juice Medium (CDGJM). 

Parameter Stage 
Yeast treatments 

P values 
MP1 MP2 MP3 MP4 MP5 MP6 SC 

Sugars 

Glucose 

(g/L) 

PF 55 ± 2B 54 ± 0B 69 ± 3A 71 ± 2A 71 ± 2A 72 ± 0A < 0.0001 

FF 0 ± 0B 0 ± 0B 0 ± 0B 0 ± 0B 0 ± 0B 1 ± 0A 0 ± 0B < 0.0001 

Fructose 

(g/L) 

PF 74 ± 2B 74 ± 0B 86 ± 4A 87 ± 1A 88 ± 1A 88 ± 0A < 0.0001 

FF 0 ± 0B 0 ± 0B 0 ± 0B 0 ± 0B 0 ± 0B 11 ± 0A 0 ± 0B < 0.0001 

Alcohols 

Ethanol 

(% v/v) 

PF 4.3 ± 0.2A 4.5 ± 0.1A 2.8 ± 0.2B 3.0 ± 0.2B 3.0 ± 0.1B 2.9 ± 0.1B < 0.0001 

FF 11.5 ± 0.1AB 10.3 ± 0.6B 11.5 ± 1.1AB 11.1 ± 0.5B 11.5 ± 0.6AB 11.1 ± 0.2B 12.8 ± 0.1A 0.0054 

Glycerol 

(g/L) 

PF 4.8 ± 0.2AB 5.1 ± 0.1A 2.9 ± 0.1BC 2.9 ± 0.1BC 2.8 ± 0.1C 2.9 ± 0BC < 0.0001 

FF 8.9 ± 0.2AB 9.7 ± 0.4A 8.9 ± 0.4AB 8.8 ± 0.5AB 8.4 ± 0.4B 9.0 ± 0AB 5.5 ± 0C < 0.0001 

Acids 

Acetic 

(g/L) 

PF 0.24 ± 0.01A 0.22 ± 0.01AB 0.19 ± 0.01C 0.20 ± 0.02BC 0.19 ± 0C 0.22 ± 0.01AB 0.0002 

FF 0.20 ±  0.02B 0.16 ±  0.03B 0.18 ±  0.02B 0.17 ±  0.02B 0.21 ±  0.02B 0.13 ±  0.02B 0.66 ±  0.08A < 0.0001 

Succinic 

(g/L) 

PF 0.9 ± 0A 0.9 ± 0.1A 0.5 ± 0B 0.5 ± 0B 0.5 ± 0B 0.5 ± 0B < 0.0001 

FF 1.7 ± 0.1BC 1.9 ± 0.2B 1.6 ± 0.1BC 1.5 ± 0.2C 1.6 ± 0BC 2.9 ± 0.1A 0.9 ± 0.1D < 0.0001 

Malic  

(g/L) 

PF 2.8 ± 0.1 3.0 ± 0 2.9 ± 0.1 2.9 ± 0 2.9 ± 0 3.0 ± 0 ns 

FF 2.9 ± 0.1AB 3.1 ± 0.2A 2.8 ± 0.1AB 2.8 ± 0.2AB 2.8 ± 0.1AB 2.9 ± 0.1AB 2.6 ± 0B 0.0055 

Metabolite 

yields 

Ethanol 

(g/g) 

PF 0.34 ± 0.03 0.35 ± 0.01 0.30 ± 0.05 0.34 ± 0 0.33± 0.01 0.33 ± 0.01 0.3283 

FF 0.39 ± 0AB 0.35 ± 0.02 B 0.40 ± 0.04 AB 0.38 ± 0.02 B 0.39 ± 0.02 AB 0.40 ± 0.01 AB 0.44 ± 0 A 0.0050 

Glycerol 

(mg/g) 

PF 47 ± 4A 50 ± 1 AB 39 ± 4 C 41 ± 3 BC 40 ± 1 C 41 ± 1 BC 0.0011 

FF 39 ± 1AB 42 ± 2 A 39 ± 2 AB 38 ± 2 AB 37 ± 2 B 41 ± 0 A 24 ± 0 C < 0.0001 

Acetic acid 

(mg/g) 

PF 2.4 ± 0.1B 2.2 ± 0.1 B 2.5 ± 0.4 B 2.8 ± 0.3 AB 2.7 ± 0.1 AB 3.1 ± 0.1 A 0.0030 

FF 0.9 ± 0.1B 0.7 ± 0.1 B 0.8 ± 0.1 B 0.7 ± 0.1 B 0.9 ± 0.1 B 0.6 ± 0.1 B 2.9 ± 0.3 A < 0.0001 

Succinic 

acid (mg/g) 

PF 8 ± 0A 9 ± 1 A 7 ± 1 B 7 ± 0 B 7 ± 0 B 7 ± 0 B < 0.0001 

FF 7 ± 0BC 8 ± 1 B 7 ± 0 BC 7 ± 1 BC 7 ± 0 BC 13 ± 0 A 4 ± 0 D < 0.0001 

Letters denote significant differences within a row (ANOVA; P < 0.05). 
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Fig. A.2. Population dynamics in six MP2 sequential inoculation regimes (Table 1) and a S. cerevisiae (SC) control  in CDGJM (top panel) and 

GJ (bottom panel): (a) MP2 + SC3; (b) MP2 + SC4; (c) MP2 + SC5; (d) MP2 + SC6; (e) MP2 + SC7; (f) MP2 + SC50%. The growth of SC 

monoculture (•) and MP2 prior to sequential inoculation (--) was monitored via flow cytometry. The growth of MP2 () and S. cerevisiae (--) 

after sequential inoculation was quantified via lysine and YPD plate counts at four time-points: 24 h, 48 h and 72 h after secondary inoculation, 

and at fermentation completion.
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Fig. A.3. Results for identification of an unknown peak isolated by HPLC and analysed by 

HPLC-MS with electrospray ionisation in negative mode, showing (a) HPLC-MS 

chromatogram and (b) full scan MS of fumaric acid standard (m/z 115 = [M−H]−, m/z 161 = 

fumaric/formic adduct ion, m/z 231 = fumaric/fumaric cluster ion), and (c) HPLC-MS 

chromatogram with extracted ion chromatogram (XIC) of m/z 115 (inset) and (d) full scan MS 

of the unknown compound with retention time and full scan MS consistent with fumaric acid. 
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Table A.2. Fumaric acid concentrations and yields in partial fermentations (PF) and final 

fermentations (FF) conducted with six MP2 sequential inoculation regimes (Table 1) and an S. 

cerevisiae control (SC) in CDGJM and GJ. 

Medium Yeast treatment 
Fumaric acid (mg/L) Fumaric acid yield (mg/g) 

PF FF PF FF 

CDGJM 

MP2 + SC3 66 ± 3E 9 ± 0D 1.34 ± 0.07A 0.036 ± 0D 

MP2 + SC4 73 ± 4DE 9 ± 0D 1.15 ± 0.06B 0.037 ± 0D 

MP2 + SC5 78 ± 2CD 12 ± 1C 1.10 ± 0.05BC 0.047 ± 0.002C 

MP2 + SC6 81 ± 2BC 13 ± 1C 1.01 ± 0.03C 0.050 ± 0.004C 

MP2 + SC7 90 ± 2AB 16 ± 0B 1.03 ± 0.01C 0.062 ± 0.001B 

MP2 + SC50% 97 ± 2A 21 ± 1A 0.74 ± 0.01D 0.083 ± 0.004A 

SC 7 ± 1E 0.027 ± 0.002E 

GJ 

MP2 + SC3 340 ± 10D 23 ± 1 D 4.97 ± 0.21 0.09 ± 0D 

MP2 + SC4 387 ± 6CD 26 ± 1 CD 4.99 ± 0.26 0.10 ± 0CD 

MP2 + SC5 430 ± 10BC 30 ± 2 C 5.11 ± 0.31 0.12 ± 0.01C 

MP2 + SC6 473 ± 6B 42 ± 2 B 5.09 ± 0.12 0.16 ± 0.01B 

MP2 + SC7 497 ± 15B 42 ± 3 B 5.21 ± 0.04 0.17 ± 0.01B 

MP2 + SC50% 570 ± 56A 74 ± 2 A 4.97 ± 0.41 0.29 ± 0.01A 

SC 15 ± 1 E 0.06 ± 0E 
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Table A.3. Pearson’s correlation coefficients between metabolites in partial fermentations (PF) and final fermentations (FF) in CDGJM (lower 

matrix, i.e. below the empty diagonal) and GJ (upper matrix, i.e. above the empty diagonal). Significant correlations (P < 0.05) are in bold.  

Variables Sugar_PF Ethanol_PF Ethanol_FF Glycerol_PF Glycerol_FF 

Acetic 

acid_PF 

Acetic 

acid_FF 

Succininc 

acid_PF 

Succinic 

acid_FF 

Fumaric 

acid_PF 

Fumaric 

acid_FF 

Malic 

acid PF 

Malic 

acid FF 

Sugar_PF 0.98 -0.98 0.96 0.62 -0.27 -0.94 0.84 0.87 0.96 0.95 -0.21 -0.05

Ethanol PF 0.97 -0.97 0.96 0.63 -0.26 -0.92 0.88 0.87 0.96 0.94 -0.20 -0.03

Ethanol FF -0.94 -0.91 -0.96 -0.89 0.30 0.85 -0.82 -0.35 -0.93 -0.85 0.20 0.17

Glycerol PF 0.72 0.59 -0.73 0.72 -0.11 -0.94 0.91 0.88 0.95 0.89 -0.08 0.09

Glycerol FF -0.60 -0.39 -0.93 -0.72 0.15 -0.61 0.61 0.04 0.64 0.54 -0.21 -0.04

Acetic acid 

PF -0.70 -0.74 0.59 -0.42 0.31 0.02 -0.02 -0.09 -0.24 -0.44 0.51 0.63

Acetic acid 

FF -0.44 -0.37 0.96 -0.23 -0.97 -0.08 -0.80 -0.74 -0.90 -0.90 0.12 0.01

Succininc 

acid PF 0.89 0.79 -0.84 0.83 -0.74 -0.59 -0.38 0.76 0.88 0.75 0.00 0.26

Succinic 

acid FF 0.78 0.79 -0.97 0.32 0.96 -0.51 -0.98 0.64 0.88 0.65 -0.18 0.11

Fumaric 

acid PF 0.93 0.84 -0.94 0.83 -0.71 -0.50 -0.50 0.87 0.65 0.89 -0.13 0.01

Fumaric 

acid FF 0.97 0.94 -0.75 0.65 0.46 -0.65 -0.58 0.80 0.67 0.92 -0.31 -0.26

Malic acid 

PF -0.91 -0.93 0.79 -0.48 0.40 0.80 0.22 -0.73 -0.71 -0.72 -0.85 0.23

Malic acid 

FF -0.51 -0.59 -0.84 -0.25 0.93 0.66 -0.93 -0.42 0.86 -0.24 0.35 0.71 
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CHAPTER 4 

The evolution of Lachancea thermotolerans is driven by 

geographic origin, anthropisation and flux between different 

ecosystems 
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Abstract

The yeast Lachancea thermotolerans (formerly Kluyveromyces thermotolerans) is a species

with remarkable, yet underexplored, biotechnological potential. This ubiquist occupies a

range of natural and anthropic habitats covering a wide geographic span. To gain an insight

into L. thermotolerans population diversity and structure, 172 isolates sourced from diverse

habitats worldwide were analysed using a set of 14 microsatellite markers. The resultant

clustering revealed that the evolution of L. thermotolerans has been driven by the geography

and ecological niche of the isolation sources. Isolates originating from anthropic environ-

ments, in particular grapes and wine, were genetically close, thus suggesting domestication

events within the species. The observed clustering was further validated by several means

including, population structure analysis, F-statistics, Mantel’s test and the analysis of molec-

ular variance (AMOVA). Phenotypic performance of isolates was tested using several

growth substrates and physicochemical conditions, providing added support for the cluster-

ing. Altogether, this study sheds light on the genotypic and phenotypic diversity of L. thermo-

tolerans, contributing to a better understanding of the population structure, ecology and

evolution of this non-Saccharomyces yeast.

Introduction

The terms ‘yeast’ and ‘Saccharomyces cerevisiae’ are often used interchangeably. Not surpris-

ingly so; this microorganism, accompanying humans’ progress since Neolithic times [1], is

widely used for the production of food, beverages, biofuel and a variety of biochemicals. It is

also the best studied eukaryotic model organism, with genome sequences available for hun-

dreds of strains [2–4], and ongoing projects aimed at determining biological functions and

genetic interactions of each and every component of its genome [5, 6]. Less is known about
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other species, commonly referred to as ‘non-conventional’ or ‘non-Saccharomyces’ yeasts. Sci-

entific interest in them is, however, gaining momentum, as their uncommon physiological,

metabolic and cellular functions warrant their further exploration and, ultimately, biotechno-

logical application. One species of remarkable, yet underexplored, biotechnological potential is

Lachancea thermotolerans.
Formerly known as Kluyveromyces thermotolerans, L. thermotolerans is the type species of

the genus Lachancea [7]. This genus was proposed by Kurtzman in 2003 to accommodate a

group from several different genera showing similarities at the rRNA level. To date, the genus

harbours 11 other species: L. cidri, L. dasiensis, L. fantastica, L. fermentati, L. kluyveri, L. lanzar-
otensis, L. meyersi, L. mirantina, L. nothofagi, L. quebecensis and L. walti. From the ecological

viewpoint, most Lachancea species are ubiquitous [8]. Accordingly, L. thermotolerans com-

monly occupies a range of natural and anthropic habitats, including insects, plants, soil and

horticultural crops, in particular grapes and wine [9–12]. As so-called protoploid Saccharomy-
cetaceae, the Lachancea species have diverged from the S. cerevisiae lineage prior to the ances-

tral whole genome duplication, and as such offer a complementary model to study evolution

and speciation in yeast [13].

Apart from the taxonomic re-classification of L. thermotolerans, the DNA sequencing era

also resulted in extensive genomic information. The nuclear genome of the type strain CBS

6430 is 10.6 Mb and contains 5,350 annotated genes organised in eight chromosomes [13, 14].

Mitochondrial genome sequences are available for 50 strains, and are highly conserved within

the species [9]. Despite the ample genomic information, the ploidy of L. thermotolerans
remains controversial; diploid according to some authors [13, 14], haploid according to the

others [9, 15].

Another underexplored trait is the peculiar ability of L. thermotolerans to produce lactic

acid during alcoholic fermentation [16]. Lactic acid production is an uncommon metabolic

activity among yeasts [17] but it is, however, of great biotechnological interest [18, 19]. The

maximum reported lactic acid concentration obtained during L. thermotolerans alcoholic

fermentation is 16.6 g/L [15]. In comparison, wildtype S. cerevisiae strains in such condi-

tions normally produce only about 0.2–0.4 g/L [18, 19]. While yields obtained by L. thermo-
tolerans remain insufficient for industrial bulk chemical production, they are of interest for

processes in which alcoholic fermentation with concomitant acidification is a benefit; nota-

bly winemaking.

Indeed, the use of L. thermotolerans inocula to partially conduct fermentation is being

increasingly explored in winemaking [20–23]. The resultant biological acidification is consid-

ered to positively affect the organoleptic quality and microbial stability of the resulting wines

[16]. Other positive chemical and sensorial modulations include lower final ethanol content

[21], increasingly in demand on the market [24], and improved wine aroma, flavour and

mouthfeel [16, 20, 21]. Accordingly, several L. thermotolerans co-starters are now commer-

cially available to be used in wine fermentations with either simultaneously or sequentially

inoculated S. cerevisiae [16].

Population genetics studies in several yeast species, including L. thermotolerans, have

revealed differentiation of subpopulations according to their geographical and/or ecological

origin [25]. In L. thermotolerans, grouping based on the geographical origin has been deter-

mined by the mitochondrial and nucleic DNA analysis of 50 isolates [9]. Nonetheless, informa-

tion on population diversity, evolution and structure is lacking. In the current study, we

explore the relationships of 172 isolates from diverse ecological niches worldwide. Using a

14-loci microsatellite genotyping method, coupled with phenotyping assays, we demonstrate

that both geographic localisation and anthropisation have significantly contributed to the

diversity and evolution of L. thermotolerans.
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Materials and methods

Yeast isolates, culture conditions and DNA preparation

Yeast isolates catalogued as L. thermotolerans were obtained from multiple yeast culture collec-

tions and generous laboratories worldwide. Excluding any obvious issues of selective enrichment

inherent to any culture-based study, the sample set represented diverse ecological niches (e.g.

oenological environments, plant material, insects) covering a wide geographic span (S1 Table).

The isolates were mapped in Fig 1 using R package maps [26]. In addition, the type strains of 11

other Lachancea species (S1 Table), were included in the study. Cryogenically stored isolates

(-80˚C in 25% glycerol) were cultured on YPD plates (1% yeast extract, 2% peptone, 2% glucose

and 2% agar) for 3 days at 24˚C. DNA template for genotyping was prepared by heating a suspen-

sion of approximately 107 cells in 100 μL of 20 mM NaOH at 94˚C for 10 minutes, followed by

storage at -20˚C. For phenotyping purposes, approximately 107 cells were grown for 24 hours at

24˚C in 500 μL YPD agitated on a rotary shaker in deep 96-well plate format.

Fig 1. Geographic origin of the genotyped L. thermotolerans isolates obtained from different substrates. Isolates with unknown origin (see S1 Table)

are not represented on the map.

https://doi.org/10.1371/journal.pone.0184652.g001
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Microsatellite loci

Microsatellite markers were detected within the genomic sequence of L. thermotolerans CBS

6340 type strain as described previously [27]. Primers were designed using the ‘Design prim-

ers’ tool on the SGD website (http://www.yeastgenome.org/cgi-bin/web-primer). In addition,

five microsatellite loci developed by Banilas et al. [15] were included in the study. In order to

reduce the cost associated with primer fluorescent labelling, forward primers were tailed on

the 5’-end with the M13 sequence as described by Schuelke [28]. Amplification specificity and

optimal PCR conditions were assessed for all the loci (Table 1).

Microsatellite amplification

PCRs were carried out in a final volume of 15 μL containing 1 μL of DNA template solution,

1X Taq-&GO (MP Biomedicals, Illkirch, France), 0.05 μM of forward primer, and 0.5 μM of

reverse and labelled primer. Universal M13 primers were labelled either with FAM-, HEX-,

PET- or NED- fluorescent dyes (Eurofins MWG Operon, Les Ulis, France). Amplifications

were performed in an iCycler (Biorad, Hercules, CA, USA) thermal cycler. The program com-

prised an initial denaturation of 1 minute at 94˚C; 30 annealing cycles with 30 seconds at

94˚C, 35 seconds at Tm, or Tm +10˚C with a 1˚C decrease per cycle until Tm was achieved, 30

seconds at 72˚C; and a final elongation at 72˚C for 10 minutes (Table 1). Upon initial amplifi-

cation verification by a microchip electrophoresis system (MultiNA, Shimazdu), amplicons

were diluted in deionised water (1,200-fold for HEX, 2,400-fold for PET, 3,600-fold for FAM

and NED). Amplified fragment sizes varied from 86 to 566 base pairs, allowing for the multi-

plexing of all the amplicons in formamide. LIZ 600 molecular marker (100-fold dilution) was

added to each multiplex, heated for 4 minutes at 94˚C. The sizes were of amplicons were then

measured on an ABI3730 DNA analyser (Applied Biosystems), and recorded using GeneMar-

ker Demo software v2.4.0 (SoftGenetics).

Microsatellite data analysis

Microsatellite data, i.e. recorded alleles sizes, were analysed using R software [26]. To examine

the genetic relationships between genotyped L. thermotolerans isolates, a dendrogram was con-

structed using Bruvo’s distance, particularly well adapted for cases of unknown/multiple

ploidy levels [29], and Neighbour Joining (NJ) clustering [30] using poppr [31], ape [32], plo-

trix [33] and geiger [34] packages. The robustness of the identified clusters was further tested

by several means, including node reliability assessment based on the algorithm by Prosperi

et al. [35], a dendrogram construction with Bruvo’s distance and UPGMA clustering, and

principal component analysis (PCA) of the allelic data using ade4 package [36]. Population dif-

ferentiation among obtained genetic groups was tested with the fixation index (FST), computed

with polysat [37] package. Bootstrapping (n = 100) of the FST indexes was performed, and con-

fidence intervals were calculated for the obtained values.

Population structure analysis based on the Bayesian approach was performed in R package

LEA [38], using non-negative matrix factorization (sNMF) algorithm [39] for estimating indi-

vidual ancestry coefficients. Models with number of populations (K) ranging from 1 to 40

were tested in 100 repetitions. Two models were selected for graphical representation: (i)

K = 12 resulting in the lowest cross-entropy value, and (ii) K = 8 featuring the minimal ances-

tral population number and statistically equivalent cross-entropy to K = 12 (Kruskal–Wallis

(KW) test; alpha = 0.05; package agricolae).

Analysis of molecular variance (AMOVA) was performed to assess whether the genetic dis-

tance was significantly explained by the substrate and geographical origin of isolation using

the pegas package 0.6 [40] with 1,000 permutations. The relationship between genetic distance
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and geographic localisation was further verified by Mantel’s test, allowing for the correlation

of two distance matrices [41]. A genetic distance matrix obtained from microsatellite data was

Table 1. Microsatellite loci for L. thermotolerans genotyping.

Locus Chr. Coordinates Motif Primersb Dye Tm Number of

alleles

Size

range

Coding

sequence

Function

LT2A 2 610672–

610712

ACA F:TGACAAAAGTTTATCCCCCC NED 62 24 385–

438

XP_002552115 RNA-binding protein

R:AGCACTGGCGATATCTTGGTT

LT3A 3 129153–

129184

AGC F:CAGTACCAGCGCCAGTTCTA PET 60c 25 293–

352

XP_002552291 peroxin family member

R:TTCTGTAGCTTGGGGTTGTGT

LT3B 3 621739–

621768

AGC F:ACAGCAGCAGCAACAGCAA NED 60c 9 86–111 no similarity

found

na

R:TTCGCCAAGCTGCTGATACTA

LT4A 4 897528–

897557

AGA F:AGAAGGAGGACTCAGCGGATT NED 60c 12 222–

260

no similarity

found

na

R:ATGCCTAAGCGAATCAGATGC

LT5B 5 317191–

317225

ATA F:AACGCTGACGTGCTGAAAGA FAM 56 10 275–

314

no similarity

found

na

R:GAAAGAGGCAGTAACGGATTT

LT6B 6 134618–

134640

ACA F:TTCCTAGGTCTGGACCTCCAA PET 60c 24 106–

161

no similarity

found

na

R:TATTGCTGCTGCTTTTGCTG

LT7A 7 1417616–

1417644

TGT F:TTTTTTCTTGATGCCCCGGT FAM 60 10 131–

150

XP_002555739 unknown; kinase

suppression effect

R: CGAACTGTGGTTCCTTCACAT

LT8A 8 638186–

638223

TCC F:TGAAATAGAGTCCCGTGTGAA PET 62 28 182–

240

XP_002556192 vacuolar protein sorting

R: AAATAACGCAGAAAGCGAGG

LT8B 8 239222–

239256

ATG F:CAGCATCCGCACAGTAGCTAA HEX 60c 9 261–

286

XP_002555998 nuclear DNA helicase

R:TTATCTCCTTATGCGGGCGTA

MA2a 1 358081–

358339

CA F:AATTTTACGAAGGGAGAGAGGG NED 60c 44 298–

358

XP_002551596 bud-site selection nutrient

signaling

R:CTGCTGATGGTTTCTTCTGTGA

MD3a 4 259537–

259789

CAA F:ACAAGAAAGCGAAGGAAAACAG FAM 62 41 353–

485

XP_002552792 unknown; hypothetical

ORF

R:CCCAGTAGAACGTGATTAAGCC

ME11a 5 1381401–

1381503

TG F:CGGTTCTTAGCTTACCAACAGC HEX 52 30 148–

209

XP_002554109 mitotic spindle-

associated protein

R:ACTCGAACAGCCAGAGCTTAAC

ME4a 5 576050–

576253

GA F:TGGCCTCTTCTGTCTTTCCTAA HEX 60c 34 346–

421

no similarity

found

na

R:CTCATCAACCAACACACTCCAT

MH6a 8 372940–

373089

TGT F:CTTGCTGTTGTCGTAACCTCTG PET 62 49 374–

566

XP_002556014 ER-associated protein

degradation; hypothetical

ORFR:AATCCCAATAATCTCACACCC

Chr.—chromosome; Tm—melting temperature.
a Banilas et al. (2016)
b M13 sequence was attached at the 5’ end of the forward primer

c touch-down PCR commenced at Tm + 10˚C with a 1˚C decrease per cycle (see Materials and Methods).

https://doi.org/10.1371/journal.pone.0184652.t001
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correlated to a kilometric distance matrix obtained from coordinates of isolation using ade4

and sp packages [42], with the number of permutations set at 1,000.

Phenotypic analysis

Plate-based assays were performed to assess the growth rate and extent of 132 L. thermotoler-
ans alongside 11 non-thermotolerans strains using different carbon sources and physicochemi-

cal conditions. Cell density and viability of pre-established yeast cultures was determined by

flow cytometry coupled with propidium iodide DNA staining (Quanta SC MPL, Beckman

Coulter, France). Cultures were diluted to 105 viable cells/mL and 2 μL of the obtained dilution

was plated onto the appropriate media. All tests were performed in triplicate and, unless other-

wise specified, incubated at 24˚C. Growth on standard YPD was evaluated at 3 temperatures:

24˚C (control), 8˚C (lower temperature) and 30˚C (higher temperature). In media for testing

carbon utilisation, 2% glucose in YPD was substituted with 2% of one of the following carbon

sources: fructose, xylose, mannose, galactose and glycerol. Osmotolerance was tested on plates

containing 25% and 50% (w/v) of equimolar concentrations of glucose and fructose. Plates

were imaged after 3, 6 and, for 8˚C condition, 10 days of incubation, and analysed using Ima-

geJ2 software [43]. Upon converting uploaded images into a binary mode (black background,

white foreground), colony sizes were determined via pixel density measurements using the

ROI (region of interest) function. The colony size from each condition was compared to that

on the standard YPD plate incubated at 24˚C for 3 or 6 days. Phenotyping data was analysed

using R packages gplots, RColorBrewer, plot3D and agricolae [26]. A heatplot and a dendro-

gram (Euclidean distance and Ward clustering) were constructed to visualise the performance

of individual phenotyped isolates. The differences among the determined L. thermotolerans
genetic groups were tested with KW tests and post-hoc multiple comparison of modalities to

assess levels of significance (alpha = 0.05).

Results

Polymorphic microsatellite markers for L. thermotolerans

The genomic sequence of L. thermotolerans type strain CBS 6340 was mined to identify tan-

dem iterations of two or more nucleotides, located on positions other than the 5’-end and 3’-

end of the chromosomes to exclude possible (sub)telomeric positions. Primer pairs were

designed to amplify microsatellites, and their amplification specificity was ascertained using a

sub-panel of 15 L. thermotolerans isolates using a microchip electrophoresis system MultiNA.

Nine loci covering seven of the eight CBS 6340 chromosomes were retained for further analy-

sis, five of these situated within putative coding sequences (Table 1). This set of microsatellites

was extended with five markers previously used for L. thermotolerans genotyping [15]. All 14

markers were tested on 11 non-thermotolerans type strains, resulting in a good amplification

of several markers (S2 Table). Some of the microsatellites developed for L. thermotolerans were

therefore deemed as potentially suitable for diversity studies of other species belonging to the

genus Lachancea. Eight loci were amplified in L. quebecensis, a species very closely related to L.

thermotolerans. Amplification on all loci was, however, exclusive for L. thermotolerans strains,

allowing for taxonomic confirmation at a species level, and thus confirming the identity of the

172 L. thermotolerans isolates. A comparable number of genotyped isolates originated from

anthropic environments and nature: 75 and 88, respectively. Given the importance of the spe-

cies to oenology, most of the samples from the anthropic milieu were reported as isolated from

wine-related environments. Moreover, both anthropic and natural sub-groups comprised rep-

resentatives from each continent/region of isolation.
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All markers were polymorphic, with the number of alleles varying between 9 for loci LT3B

and LT8B, and 49 for locus MH6 (Table 1). Interestingly, a single allele per locus was obtained

for all tested isolates. Of the 172 isolates, 136 distinct genotypes were observed, confirming the

discriminatory power of the microsatellite analysis.

Genetic proximity and divergence between L. thermotolerans isolates

Genetic relationships between L. thermotolerans isolates were further examined using Bruvo’s

distance and the NJ clustering method. The resulting dendrogram (Fig 2) enabled the visuali-

sation and delineation of genetic groups. Some groups mainly comprised isolates originating

from natural environments, grouped together based on their origin. One such group, ‘Ameri-

cas’, consisted of 17 isolates mainly from natural habitats in the Americas (15/17), i.e. southern

USA (9/17), Caribbean (4/17) and Brazil (2/17). A second ‘wild’ group, ‘Canada trees’, con-

tained 20 North American isolates of which 18 were found to originate from plant material

(Quercus sp. and Prunus sp.) across Canada. The third wild group (‘Hawaii/California’) har-

boured 21 isolates from Hawaii (12/21) and California (7/21), sourced from cacti and insects,

respectively. Interestingly, identical genotypes could be observed among Hawaiian samples

collected from the same habitat with a two-decade temporal span. Isolates 72_148 and 72_175

were collected approximately 20 years prior to the UWOPS 91–902.1, thus indicating the per-

sistence of certain clonal variants. Finally, two separate, albeit small, clusters with tree exudate

isolates from Eurasia were differentiated (‘Other’). In addition to ‘wild’ groups, genetic prox-

imity of isolates originating predominantly from anthropic habitats could also be observed.

These ‘domesticated’ isolates were, in fact, grouped in two separate clusters. The larger group

(‘Domestic 1’) consisted of 36 isolates, the majority from grapes and wine. The 23 oenological

samples showed diverse geographic origin; two isolates from New Zealand (NZ156, 3435) and

one from Australia (AWRI 2009) clustered closely to 20 European isolates, mostly from the

Mediterranean region. It also included six isolates from agriculture and food-related environ-

ments from more distant geographical origins, i.e. Russia (CBS 6340T), Europe (CBS 137,

DBVPG 3418, ZIM 2492) and North America (68_118, UWOPS 94–426.2). The second

‘domesticated’ group, ‘Domestic 2’ contained 21 grape/wine representatives from different

continents, including Europe (Italy, Spain, Austria), Africa (South Africa) and Americas

(USA, Uruguay). The remaining two South African isolates from soil (CBS 2907, DBVPG

10092) also clustered in this group, as well as the two isolates of unknown origin (IMAT 2508,

IMAT 2510). The remaining genetic clusters were mixed with regards to the location and/or

substrate of isolation of their constituents. Seven isolates from ‘Mix Eastern Europe’ formed

one such branch. Four of these were isolated from grapes, and three from other plant material

(Quercus sp. and Betula sp.). These clustered close to a group with a total of 24 isolates from

Europe (16/24) and North America (8/24), with the representatives of oenological (13/24) and

natural habitats (9/24) from both continents, i.e. ‘Mix Europe/North America’. In addition to

12 European oak isolates, the last mixed group (‘Europe oak/France grapes’) encompassed

four isolates associated with grapes originating from two French wine regions (i.e. Burgundy

and Bordeaux), an Australian and an isolate of unknown origin.

Validation of observed clustering

Several approaches were used to validate the proposed clustering identified on the Bruvo’s NJ

dendrogram (Fig 3). As classical bootstrapping is poorly reliable with microsatellite data, the

Prosperi et al. [35] algorithm-based reliability assessment was used to test the robustness of

the tree nodes. The reliability values of all major tree nodes exceeded 70% (i.e. bootstrap

support > 70; Fig 3B), thus strongly supporting the observed clustering. Next, an UPGMA
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algorithm was used as an alternative to NJ clustering to plot Bruvo’s distance matrix. Both clus-

tering methods resulted in largely consistent genetic grouping (Fig 3C), albeit ‘Mix Eastern

Europe’ clustered among the ‘Mix Europe/North America’ group on the UPGMA dendro-

gram. A congruent separation of genetic groups could also be observed on the PCA plot of the

genetic polymorphism data (Fig 3D), showing a co-localisation of the ‘Mix Eastern Europe’

and ‘Mix Europe/North America’ group, and a suitably resolved partitioning of other groups.

Fig 2. Genetic relationships between 172 L. thermotolerans isolates determined using 14

microsatellite makers. Colour-coding of isolates corresponds to isolation substrate, as per Fig 1. (A)

Dendrogram constructed using Bruvo’s distance and NJ clustering. (B) Barplot representing population

structure (K = 8 and K = 12). The posterior probability (y-axis) of assignment of each isolate (vertical bar) to

inferred ancestral populations is shown with different colours.

https://doi.org/10.1371/journal.pone.0184652.g002
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In order to evaluate the differentiation of these populations, a pairwise fixation index FST

was calculated for eight genetic groups (Table 2), as two minor groups (‘Other’) were excluded

due to insufficient population size. Overall, a significant differentiation between populations

was suggested, with the lowest pairwise FST value between the ‘Mix Eastern Europe’ and ‘Mix

Europe/North America’ clusters, in accord with previous observations. Conversely, ‘Hawaii/

California’ was the most differentiated population, followed by the ‘Canada trees’. Interest-

ingly, a comparably low degree of differentiation was obtained between ‘Domestic 2’ and ‘Mix

Eastern Europe’ and ‘Americas’ groups, while ‘Domestic 1’ had the lowest pairwise FST with

‘Europe oak/France grapes’ group.

Population structure analysis was further conducted to infer ancestral populations (Fig 2B).

The number of populations (K) ranged from 1 to 40. The absolute lowest cross-entropy values

were found for K = 12, but the cross-entropy values were statistically equivalent (KW test) for

K = 8 and up to K = 20 (S1 Fig). Among the ‘wild’ groups, the ‘Hawaii/California’ isolates were

assigned to a distinct single ancestry, regardless of the total number of populations. The group

of ‘Americas’ isolates, conversely, showed less homogeneity with multiple ancestries. A single

Fig 3. Genetic clustering of 172 L. thermotolerans isolates determined using 14 microsatellite makers. Each dot represents a genotype, with colours

corresponding to determined genetic groups as per Fig 2. (A) Dendrogram constructed Bruvo’s distance and NJ clustering. (B) Reliability assessment of the

nodes of the dendrogram constructed using Bruvo’s distance and NJ clustering. (C) Dendrogram constructed Bruvo’s distance and UPGMA clustering. (D)

PCA of the allelic data.

https://doi.org/10.1371/journal.pone.0184652.g003
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and a dual ancestry was indicated for the ‘Canada trees’ group under the K = 8 and K = 12 sce-

nario, respectively. This also seemed to be the case for the ‘Domestic’ groups of isolates. The

two closely related mixed groups (‘Mix Eastern Europe’, ‘Mix Europe/North America’) showed

similar population structure and a common ancestry, separate to that of ‘Europe oak/France

grapes’ group. All these groups had a proportion of mixed origin isolates, especially in K = 12

simulation model. Overall, such results were in strong accord with the previous analysis (den-

drograms, PCA, etc.).

To determine whether, and to what extent, the isolation substrate and geographic ori-

gin have significantly shaped L. thermotolerans genetic variation, an AMOVA was per-

formed. The genetic distance was tested in relation to the continent/region of provenance

(S1 Table), and habitat types grouped either as ‘domestic’ or ‘wild’. Both geographic loca-

tion and habitat were found to be significant, explaining 20.85% and 13.58% of variation,

respectively (P < 0.0001). The relationship between genetic distance and geography was

further confirmed by Mantel’s test, indicating a significant link between the genetic and

kilometric distance matrices of the whole sample set (P = 0.00009), samples from Europe

(P = 0.00009) and Americas (P = 0.00019).

Phenotypic variability of the tested sample set

Phenotyping assays testing growth performance of 132 L. thermotolerans and 11 non-thermo-
tolerans strains showed substantial variability at the species/strain level (Fig 4). Using the phe-

notypic dataset, a dendrogram was built using Euclidean distance and Ward’s clustering. In

general, one cluster of isolates (A) displayed a lower degree of growth on all substrates and

conditions except glucose, with a subset of isolates growing well at 8˚C. Conversely, the second

group (B) showed better growth on all tested substrates. Group C was less prolific at lower and

higher temperatures, under osmotic stress and on xylose, compared to fructose, galactose,

mannose and glycerol. The largest and the most variable group, D, contained isolates generally

exhibiting osmotolerance. It featured a subset with lesser growth at 30˚C and on glycerol, and

another with an extensive growth on xylose.

Table 2. Pairwise FST distance matrix. FST values are given in the upper matrix, whereas the lower matrix indicates bootstrap values and, in brackets, asso-

ciated confidence intervals.

Hawaii

/California

Domestic 2 Canada trees Americas Mix Europe/

North America

Domestic 1 Europe oak/

France grapes

Mix Eastern

Europe

Hawaii

/California

na 0.404 0.495 0.413 0.322 0.466 0.425 0.348

Domestic 2 0.404 (0.280–

0.440)

na 0.28 0.205 0.271 0.28 0.227 0.204

Canada trees 0.495 (0.318–

0.495)

0.28 (0.084–

0.280)

na 0.26 0.31 0.342 0.218 0.319

Americas 0.413 (0.413–

0.579)

0.205 (0.205–

0.400)

0.260 (0.212–

0.478)

na 0.272 0.273 0.216 0.258

Mix Europe/

North America

0.322 (0.322–

0.522)

0.271 (0.248–

0.371)

0.310 (0.204–

0.420)

0.272 (0.241–

0.349)

na 0.291 0.238 0.116

Domestic 1 0.466 (0.429–

0.531)

0.280 (0.261–

0.37)

0.342 (0.177–

0.392)

0.273 (0.273–

0.420)

0.291 (0.256–

0.347)

na 0.225 0.256

Europe oak/

France grapes

0.425 (0.339–

0.482)

0.227 (0.227–

0.354)

0.218 (0.127–

0.330)

0.216 (0.216–

0.346)

0.238 (0.172–

0.269)

0.225 (0.225–

0.331)

na 0.263

Mix Eastern

Europe

0.348 (0.348–

0.500)

0.204 (0.204–

0.326)

0.3188

(0.185–

0.407)

0.258 (0.205–

0.315)

0.116 (0.116–

0.314)

0.256 (0.203–

0.288)

0.263 (0.189–

0.294)

na

https://doi.org/10.1371/journal.pone.0184652.t002
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Several findings regarding the comparison of phenotypic performance at the genetic group

level warrant highlighting. Firstly, the two ‘domestic’ groups (‘Domestic 1’ and ‘Domestic 2’)

were among groups displaying superior growth aptitude in the majority of tested conditions.

Next, the ‘Europe oak/France grapes’ group, followed by the ‘Mix Eastern Europe’ group, grew

Fig 4. Phenotypic performance tested on plates using different carbon sources and physicochemical conditions. Dendrogram

constructed with Euclidean distance and Ward clustering using normalised values of obtained growth of 132 L. thermotolerans

and 11 non-thermotolerans strains in tested conditions, and/or a corresponding heatplot (left). Comparison of phenotypic

performance at a genetic group level (right). Glu–glucose, GF–equimolar mixture of glucose and fructose, Xyl–xylose, Fru–fructose,

Gal–galactose, Man–mannose, Gly–glycerol; unless otherwise specified, carbon sources were supplemented in concentration of 2%, and

incubation temperature was 24˚C; numbers 3, 6 and 10 refer to the incubation duration. No quantifiable growth was observed for ‘GF-3-

50%’, ‘G-3-8˚’ and ‘G-6-8˚’ modalities, thus not included graphical representation. Colours of the represented individuals/genetic groups

correspond to Figs 2 and 3. Dots and bars represent normalised growth means and ranges, respectively, and letters denote significance

levels between genetic groups (KW tests; alpha = 0.05).

https://doi.org/10.1371/journal.pone.0184652.g004
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best on plates testing osmotolerance. Interestingly, among natural isolates, these groups con-

tained representatives sourced from grape musts in Sauternes and mummified grapes in

Tokay, i.e. high sugar concentration substrates. Finally, a superior growth of ‘Canada trees’ iso-

lates was observed at 8˚C compared to all other groups, without being impaired at 30˚C.

Discussion

Despite the rapid progress in DNA sequence analysis, microsatellites, rather than being obso-

lete, represent an informative, cost-effective tool for genotyping purposes, well adapted to

large sample sizes. In fact, few genetic markers, if any, have found such widespread application

for population diversity, ecology and evolution studies [44]. In yeasts, they were successfully

applied to elucidate population structure of several species, including S. cerevisiae [45, 46], S.

uvarum [47], Torulaspora delbrueckii [27], Starmerella bacillaris [48], Hanseniaspora uvarum
[49] and Brettanomyces bruxellensis [50]. A set of five microsatellites has thus far been devel-

oped for L. thermotolerans [15], hereby extended with nine novel loci. This improved multilo-

cus genotyping method was used on 172 isolates of diverse geographic and ecological origin,

shedding light on L. thermotolerans diversity and population structure.

The resultant clustering revealed that the evolution of L. thermotolerans has been driven by

the geography and the ecological niche of the isolation sources. This observation was subse-

quently confirmed with F-statistic, Mantel’s test and AMOVA results. A link between phylog-

eny and geography has previously been reported for this species; a differentiation in relation to

habitat has, conversely, not been established [9]. While the overall clustering remains congru-

ent between both studies, the enlarged sample size with a balanced number of natural and

anthropic isolates might account for such disparity. Indeed, the current study provides a com-

pelling case for domestication occurrence within L. thermotolerans population, implying selec-

tion, intended or not, of variants related to anthropic environments. Scientific interest in

microbial domestication is on the rise, and has been confirmed for S. cerevisiae [46, 51] and,

more recently, for T. delbrueckii [27]. In each of these species, a separate wine-related lineage

was detected, along with groups of individuals associated with other bioprocesses (e.g. baking,

dairy, bioethanol etc.). Strikingly, two separate structured (FST = 0.280) L. thermotolerans
domestic sub-populations with distant ancestries were hereby resolved, indicating multiple

domestication events. Both clades were comprised largely of wine-related samples, with iso-

lates from other anthropic environments (i.e. milk, distilling, fruits) clustering among the

oenological ones. This suggests that, while some strains occupy diverse anthropic niches, fur-

ther differentiation has not been achieved, although a larger sample subset (i.e. more isolates

from anthropic environments other than grapes and wine) is required to confirm this hypoth-

esis. Persistence in the grape and wine-related ecosystems involves survival in rather extreme

conditions, ranging from the frequent exposure to agrochemicals, especially sulphur and cop-

per, in vineyards, to the particularly harsh conditions during winemaking. Accumulated sugars

exert the initial hyperosmotic stress, while fermentation leads to the accumulation of ethanol

concentrations toxic for the yeast cells [52]. Several other (a)biotic stressors are also imposed,

including oxygen and nutrient depletion, unfavourable physicochemical conditions (low pH,

temperature shocks, SO2 addition, etc.) and inhibitory microbial interactions [16, 52]. It is

therefore plausible that such selective environments have led to differentiation of the two

domestic clusters. Interestingly, both domestic clusters encompassed representatives from

Europe and so-called ‘New World’ winegrowing countries (Australia and New Zealand for

‘Domestic 1’; Americas and South Africa for ‘Domestic 2’), hinting at a contributing role of

viti-vinicultural expansion towards a wider dispersal of some genotypes. This is in line with
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well-established expansion of grape-growing and winemaking practices from the Mediterra-

nean basin to, ultimately, all wine regions across the globe [53].

Groups harbouring isolates from both cultivated and natural ecosystems, on the other

hand, suggest the inter-connectivity of different ecological niches. A free flow of individuals

can lead to absence of differentiation between cultivated and wild environments within a lim-

ited geographic span, as previously reported for S. cerevisiae communities in New Zealand [54]

and USA [55]. The isolation proximity of certain samples within ‘mixed’ groups supports this

observation, in particular within the ‘Mix Eastern Europe’ cluster, and among ‘Mix Eastern

Europe’ and some ‘Mix Europe/North America’ genotypes. Common vectors for the inferred

yeast dissemination between different ecological reservoirs are insects like bees, wasps and

fruit flies [56, 57], while dispersal over a larger geographical span, also seen among mixed

groups, requires other carriers—likely birds [58] and humans. The carryover between ecosys-

tems is also indicated within L. thermotolerans ‘natural’ groups, in particular within the

‘Hawaii/California’ group. Given the spatial isolation of the Hawaiian islands, and their volca-

nic origin, migration events are to be presumed. This may also be the case with the seemingly

most heterogeneous cluster of American isolates. Altogether, this dataset paints a comprehen-

sive picture of L. thermotolerans evolution being shaped by anthropisation and geographic ori-

gin, as well as the macroorganism-mediated flux between different ecosystems.

Colonisation of a given niche is known to lead to evolutionary differentiation, harnessing

adaptation to specific environmental conditions [25]. A set of plate-based growth assays was

therefore carried out to examine whether the genotypic diversity is echoed on a phenotypic level.

Interestingly, the overall prolific growth of ‘domestic’ groups could be observed, that might have

contributed to their inter-continental dispersal and persistence in a large range of anthropic-

related environments. Evidence for a narrower ecological adaptation was also suggested; e.g. a

superior growth of Canadian isolates at 8˚C, possibly reflecting their adaptation to (sub)boreal

climate conditions. Overall, a marked intra-specific diversity at a phenotypic level could be

observed, to a degree supporting genetic differentiation. Further experimental verification of

genotype-phenotype inter-groups relationships, however, is required to support such claims.

Apart from population structure, microsatellites can be used to elucidate life cycle of stud-

ied organisms [27, 59]. The ploidy of L. thermotolerans is controversial. Due to its sporulation

ability, it was originally deemed to be a diploid species [14]. Conversely, Freel et al. [9] have

reported most natural isolates to be haploid, in line with the single-allele microsatellite patterns

observed in Banilas et al. [15]. As only one allele per locus was recorded on all 14 microsatellite

loci for all 172 isolates used in this study, additional support for the haploid status of L. thermo-
tolerans is provided. Nonetheless, absence of heterozygosity and/or diploidisation of haploids

cannot be excluded. Further elucidation of the species’ life cycle particularities is thus still

required, as well as establishing sporulation conditions, mating patterns, occurrence and dis-

tribution of heterothallic and/or homothallic variants, and their potential implications for the

diversity and evolution of the species.

In conclusion, this study provides a valuable insight into the genotypic and phenotypic

diversity of L. thermotolerans, contributing to a better understanding of population structure,

ecology and the evolution of this remarkable yeast species.
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S1 Fig. Kruskal–Wallis test of cross-entropy values for numbers simulated ancestral populations. 
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S1 Table. List of microorganisms used in the current study. Genotyping was undertaken on all the listed L. thermotolerans isolates, and phenotyping on isolates/strains in bold. 

Italicised isolates were obtained in the isolated DNA format. 

Species Strain Source Isolation origin  Continent/region  Isolation habitat  Habitat type Genetic group Reference 

L. thermotolerans 3435 Auckland University New Zealand Australia/Oceania grapes grape/wine Domestic 1 na  

L. thermotolerans 11/2-112 University of Debrecen Slovakia, Mala Trna Europe grapes, mummified grape/wine Mix Europe/N. America Sipiczki 2016 a 

L. thermotolerans 11/Z-1 University of Debrecen Slovakia, Mala Trna Europe grapes, mummified grape/wine Mix Europe/N. America Sipiczki 2016 a 

L. thermotolerans 11-27 University of Debrecen Slovakia, Mala Trna Europe grapes, mummified grape/wine Mix Europe/N. America Sipiczki 2016 a 

L. thermotolerans 14/1/Z-2 University of Debrecen Hungary, Erdöbénye Europe grapes, mummified grape/wine Mix E. Europe Sipiczki 2016 a 

L. thermotolerans 2/2/Z-8 University of Debrecen Hungary, Sárazsadány Europe grapes, mummified grape/wine Mix Europe/N. America Sipiczki 2016 a 

L. thermotolerans 5/1/Z-7 University of Debrecen Hungary, Vinicky Europe grapes, mummified grape/wine Mix Europe/N. America Sipiczki 2016 a 

L. thermotolerans 8/2/Z-3 University of Debrecen Slovakia, Černochov Europe grapes, mummified grape/wine Mix Europe/N. America Sipiczki 2016 a 

L. thermotolerans 8/Z-1 University of Debrecen Slovakia, Černochov Europe grapes, mummified grape/wine Mix E. Europe Sipiczki 2016 a 

L. thermotolerans 9/1/Z-4 University of Debrecen Slovakia, Mala Trna Europe grapes, mummified grape/wine Mix E. Europe Sipiczki 2016 a 

L. thermotolerans 40-193 Phaff YCC USA, California North America grapes, cv. Alicante Bouchet grape/wine Mix Europe/N. America  na 

L. thermotolerans 50-15 Phaff YCC 
USA, Southern California, Pinon Flats, San 

Jacinto Mnts.  
North America Drosophila pseudoobscura insect Americas na  

L. thermotolerans 51-160 Phaff YCC 
USA, California, Aspen Valley,  Yosemite 

area 
North America Drosophila azteca insect Americas na  

L. thermotolerans 51-171 Phaff YCC USA,  California, Mather,  Yosemite area North America Drosophila pseudoobscura insect Hawaii/California na  

L. thermotolerans 51-176 Phaff YCC USA, California, Mather,  Yosemite area North America Aulacigaster sp. insect Hawaii/California  na 

L. thermotolerans 60-260 Phaff YCC USA, UCD campus North America 
Aulacigaster sp.on Ulmus 

carpinifolia exudate 
insect Americas na  

L. thermotolerans 60-373 Phaff YCC USA, Lake Beryessa area North America  Drosophila pseudoobscura insect Hawaii/California  na 

L. thermotolerans 61-245 Phaff YCC 
USA, North California Pacific Coast,  Gualala 

River area 
North America Aulacigaster sp. insect Americas  na 

L. thermotolerans 61-510 Phaff YCC USA, Lake Beryessa area North America Drosophila pseudoobscura insect Hawaii/California  na 

L. thermotolerans 61-518 Phaff YCC USA, Lake Beryessa area North America Drosophila melanogaster insect Americas  na 
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L. thermotolerans 68-118 Phaff YCC USA, Yuba City North America 
conveyer belt scrapings (Sunsweet 

Prune) 
agriculture/food Domestic 1  na 

L. thermotolerans 68-140 Phaff YCC USA, California Australia/Oceania bees insect Hawaii/California  na 

L. thermotolerans 72-132 Phaff YCC Hawaii, Ahumoa, Saddle Rd area Australia/Oceania Myoporum sandwicensexudate plant Hawaii/California  na 

L. thermotolerans 72-137 Phaff YCC Hawaii, Ahumoa, Saddle Rd area Australia/Oceania Myoporum sandwicensexudate plant Hawaii/California  na 

L. thermotolerans 72-141 Phaff YCC Hawaii, Ahumoa, Saddle Rd area Australia/Oceania Myoporum sandwicensexudate plant Hawaii/California  na 

L. thermotolerans 72-144 Phaff YCC Hawaii, Ahumoa, Saddle Rd area Australia/Oceania Myoporum sandwicensexudate plant Hawaii/California  na 

L. thermotolerans 72-148 Phaff YCC Hawaii, Ahumoa, Saddle Rd area Australia/Oceania Myoporum sandwicensexudate plant Hawaii/California  na 

L. thermotolerans 72-150 Phaff YCC Hawaii, Ahumoa, Saddle Rd area Australia/Oceania Myoporum flux clear drip plant Hawaii/California  na 

L. thermotolerans 72-153 Phaff YCC Hawaii, Ahumoa, Saddle Rd area Australia/Oceania Myoporum flux tacky gum  plant Hawaii/California  na 

L. thermotolerans 72-154 Phaff YCC Hawaii, Ahumoa, Saddle Rd area Australia/Oceania Myoporum sandwicensexudate plant Hawaii/California  na 

L. thermotolerans 72-175 Phaff YCC Hawaii, Ahumoa, Saddle Rd area Australia/Oceania Myoporum sandwicensexudate plant Hawaii/California  na 

L. thermotolerans AWRI 1018 AWMCC na na na na Domestic 1  na 

L. thermotolerans AWRI 1019 AWMCC na na na na Europe oak/France grapes  na 

L. thermotolerans AWRI 1668 AWMCC na na na na Domestic 1  na 

L. thermotolerans AWRI 1669 AWMCC na na na na Domestic 1  na 

L. thermotolerans AWRI 2009 AWMCC Australia, South Australia Australia/Oceania grapes grape/wine Domestic 1  na 

L. thermotolerans AWRI 927 AWMCC Italy Europe grapes grape/wine Domestic 1  na 

L. thermotolerans CBS 10516 CBS-KNAW  Ukraine Europe Quercus sp. exudate plant Europe oak/France grapes na  

L. thermotolerans CBS 10517 CBS-KNAW  Ukraine Europe Quercus sp. exudate plant Other na  

L. thermotolerans CBS 10518 CBS-KNAW  Ukraine Europe Quercus sp. exudate plant Mix E. Europe  na 

L. thermotolerans CBS 10519 CBS-KNAW  Ukraine Europe Quercus sp. exudate plant Mix Europe/N. America Freel et al. 2014 b 

L. thermotolerans CBS 10520 CBS-KNAW  Russia Russia/Asia Quercus sp. exudate plant Other Freel et al. 2014 b 

L. thermotolerans CBS 10521 CBS-KNAW  Finland Europe Quercus sp. exudate plant Europe oak/France grapes Freel et al. 2014 b 

L. thermotolerans CBS 137 CBS-KNAW  Netherlands Europe date agriculture/food Domestic 1 Freel et al. 2014 b 

L. thermotolerans CBS 1877 CBS-KNAW  Italy Europe grapes grape/wine Domestic 1 na  

L. thermotolerans CBS 2803 CBS-KNAW  Italy Europe grapes grape/wine Domestic 1  na 

L. thermotolerans CBS 2860 CBS-KNAW  Italy, Sardinia Europe grape must grape/wine Domestic 1 Freel et al. 2014 b 

L. thermotolerans CBS 2907 CBS-KNAW  South Africa Africa soil soil Domestic 2 Freel et al. 2014 b 
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L. thermotolerans CBS 2917 CBS-KNAW  na na Drosophila sp.  insect Hawaii/California  na 

L. thermotolerans CBS 4728 CBS-KNAW  former Czechoslovakia Europe grapes grape/wine Mix E. Europe Freel et al. 2014 b 

L. thermotolerans CBS 5464 CBS-KNAW  Australia Australia/Oceania cotton seed agriculture/food Hawaii/California na  

L. thermotolerans CBS 6052 CBS-KNAW  na na na na Domestic 1  na 

L. thermotolerans CBS 6292 CBS-KNAW  Australia Australia/Oceania na na Europe oak/France grapes  na 

L. thermotolerans CBS 6340T CBS-KNAW  Russia Russia/Asia mirabelle plum conserve agriculture/food Domestic 1 
Freel et al. 2014 b, Naumova et 

al. 2007 c 

L. thermotolerans CBS 6467 CBS-KNAW  Japan Russia/Asia tree exudate plant Other  na 

L. thermotolerans CBS 7772 CBS-KNAW  Brazil South/Central America Uca sp.  insect Americas Freel et al. 2014 b 

L. thermotolerans CL 41 University of Leon Spain Europe grapes grape/wine Domestic 2 na  

L. thermotolerans CL 43 University of Leon Spain Europe grapes grape/wine Hawaii/California  na 

L. thermotolerans CONCERTO™ CHR Hansen 'Mediterranean country'' na na na Domestic 1  na 

L. thermotolerans CRBO L0672 CRBOeno France Europe grapes, fermentation grape/wine Mix Europe/N. America  na 

L. thermotolerans DBVPG 10092 DBVPG Algeria Africa soil, apple orchard soil Domestic 2  na 

L. thermotolerans DBVPG 2551 DBVPG Italy, Piemonte Europe wine cv. Barbera grape/wine Domestic 2 Freel et al. 2014 b 

L. thermotolerans DBVPG 2700 DBVPG Spain, La Mancha, Campo de Santiago  Europe grapes cv. Airen  grape/wine Mix Europe/N. America Freel et al. 2014 b 

L. thermotolerans DBVPG 3418 DBVPG Italy Europe milk agriculture/food Domestic 1 Freel et al. 2014 b 

L. thermotolerans DBVPG 3464 DBVPG Spain, La Mancha, Valdepenas Europe grapes grape/wine Domestic 1 Freel et al. 2014 b 

L. thermotolerans DBVPG 3466 DBVPG Spain, La Mancha, La Encomienda Europe grapes grape/wine Domestic 1 Freel et al. 2014 b 

L. thermotolerans DBVPG 3469 DBVPG Spain, La Mancha, Manzanares Europe grapes grape/wine Mix Europe/N. America Freel et al. 2014 b 

L. thermotolerans DBVPG 4014 DBVPG Italy Europe caverns soil Domestic 1 Freel et al. 2014 b 

L. thermotolerans DBVPG 4035 DBVPG ex Yugoslavia Europe grapes, must grape/wine Domestic 1 Freel et al. 2014 b 

L. thermotolerans DBVPG 6322 DBVPG Italy Europe grapes grape/wine Domestic 2  na 

L. thermotolerans DBVPG 6326 DBVPG Italy Europe grapes, raisins grape/wine Domestic 2  na 

L. thermotolerans DBVPG 6867 DBVPG Brazil South/Central America Pilosocereus arrabida plant Americas Freel et al. 2014 b 

L. thermotolerans DV 87-18 na "Far East" Russia/Asia Quercus sp.exudate plant Other Naumova et al. 2007 c 

L. thermotolerans Fin. 89-11 na Finland Europe Quercus sp.exudate plant Europe oak/France grapes Naumova et al. 2007 c 

L. thermotolerans Fin. 89-2 na Finland Europe Quercus sp.exudate plant Europe oak/France grapes 
Freel et al. 2014 b, Naumova et 

al. 2007 c 
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L. thermotolerans FRI10C.1 NCYC  UK, Fritham, New Forest Europe Quercus sp. plant Europe oak/France grapes Robinson et al. 2016 d 

L. thermotolerans HU 2511 BOKU Austria Europe grapes grape/wine Domestic 2 na  

L. thermotolerans IMAT 2508 IMAT  na na na na Domestic 2  na 

L. thermotolerans IMAT 2510 IMAT  na na na na Domestic 2  na 

L. thermotolerans ISVV Ltyq25 ISVV France, Sauternes Europe grapes, high sugar must grape/wine Europe oak/France grapes  na 

L. thermotolerans ISVV Ltyq3 ISVV France, Sauternes Europe grapes, high sugar must grape/wine Europe oak/France grapes  na 

L. thermotolerans ISVV Ltyq36 ISVV France, Sauternes Europe grapes, high sugar must grape/wine Europe oak/France grapes  na 

L. thermotolerans JCB1 ISVV France, Sauternes Europe grapes, high sugar must grape/wine Domestic 1  na 

L. thermotolerans KEH.34.B.3 na USA, Missouri, Ste. Genevieve North America grapes, fermentation grape/wine Canada trees Freel et al. 2014 b 

L. thermotolerans LEVULIA® ALCOMENO AEB France, Burgundy  Europe grapes, fermentation grape/wine Europe oak/France grapes na  

L. thermotolerans LL12_031 LL Canada North America Quercus sp.tree bark plant Canada trees  na 

L. thermotolerans LL12_036 LL Canada North America Acer sp. bark plant Canada trees  na 

L. thermotolerans LL12_040 LL Canada North America Acer sp. bark plant Mix Europe/N. America  na 

L. thermotolerans LL12_041 LL Canada North America Quercus sp.bark plant Mix Europe/N. America  na 

L. thermotolerans LL12_056 LL Canada North America planted Quercus sp.bark plant Canada trees  na 

L. thermotolerans LL13-038 LL USA, Massachusetts, Woburn North America Quercus sp.bark plant Mix Europe/N. America  na 

L. thermotolerans LL13-171 LL 
Canada,  New-Brunswick, Oak Point 

Provincial Park 
North America Quercus sp.bark plant Canada trees  na 

L. thermotolerans LL13-175 LL 
Canada,  New-Brunswick, Oak Point 

Provincial Park 
North America Quercus sp.bark plant Canada trees  na 

L. thermotolerans LL13-178 LL 
Canada,  New-Brunswick, Oak Point 

Provincial Park 
North America Quercus sp.bark plant Canada trees  na 

L. thermotolerans LL13-179 LL 
Canada,  New-Brunswick, Oak Point 

Provincial Park 
North America Quercus sp.bark plant Canada trees  na 

L. thermotolerans LL13-189 LL 
Canada,  New-Brunswick, Oak Point 

Provincial Park 
North America Quercus sp.bark plant Canada trees  na 

L. thermotolerans LL13-192 LL 
Canada,  New-Brunswick, Oak Point 

Provincial Park 
North America Quercus sp.bark plant Canada trees  na 
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L. thermotolerans LL13-194 LL 
Canada,  New-Brunswick, Oak Point 

Provincial Park 
North America Quercus sp.bark plant Canada trees na  

L. thermotolerans LL13-198 LL 
Canada,  New-Brunswick, Oak Point 

Provincial Park 
North America Quercus sp.bark plant Canada trees  na 

L. thermotolerans LL13-199 LL 
Canada,  New-Brunswick, Oak Point 

Provincial Park 
North America Quercus sp.bark plant Canada trees  na 

L. thermotolerans MB10D.1 NCYC  France, Montbarri Europe Quercus sp. plant Europe oak/France grapes Robinson et al. 2016 d 

L. thermotolerans MB15D.1 NCYC  France, Montbarri Europe Quercus sp. plant Europe oak/France grapes Robinson et al. 2016 d 

L. thermotolerans MELODY™ CHR Hansen Mediterranean country'' na na na Domestic 1  na 

L. thermotolerans MUCL 31341 MUCL Italy Europe wine grape/wine Domestic 1 Freel et al. 2014 b 

L. thermotolerans MUCL 31342 MUCL Italy Europe wine grape/wine Domestic 1  na 

L. thermotolerans MUCL 31343 MUCL Italy Europe grapes, fermentation grape/wine Domestic 1  na 

L. thermotolerans MUCL 31349 MUCL Italy Europe wine grape/wine Domestic 1  na 

L. thermotolerans MUCL 47720 MUCL Italy Europe wine grape/wine Domestic 1  na 

L. thermotolerans NCAIM Y.00775 NCAIM Hungary, Babat Europe Carpinus betulu exudate plant Mix Europe/N. America  na 

L. thermotolerans NCAIM Y.00798  NCAIM Hungary, Csikóváralja Europe brown rotten Quercus sp. plant Mix Europe/N. America  na 

L. thermotolerans NCAIM Y.00873 NCAIM Hungary, Budapest Europe 
rotten material of a cavity of Betula 

pendula 
plant Mix E. Europe  na 

L. thermotolerans NCAIM Y.01703  NCAIM Hungary, Nagyeged Europe grapes grape/wine Mix Europe/N. America  na 

L. thermotolerans NEM 1   ITAP-DEMETER Greece Europe grapes grape/wine Domestic 1  na 

L. thermotolerans NEM 12  ITAP-DEMETER Greece Europe grapes grape/wine Mix Europe/N. America  na 

L. thermotolerans NEM 3  ITAP-DEMETER Greece Europe grapes grape/wine Domestic 1  na 

L. thermotolerans NEM 5  ITAP-DEMETER Greece Europe grapes grape/wine Domestic 1  na 

L. thermotolerans NEM 6  ITAP-DEMETER Greece Europe grapes grape/wine Domestic 1  na 

L. thermotolerans NEM 7  ITAP-DEMETER Greece Europe grapes grape/wine Domestic 1  na 

L. thermotolerans NRLL Y-2193 NRRL/ARS  USA, San Jacinto, California North America Drosophila pseudoobscura insect Americas  na 

L. thermotolerans NRLL Y-2196 NRRL/ARS  USA, San Jacinto, California North America  Drosophila pseudoobscura insect Hawaii/California  na 

L. thermotolerans NRLL Y-2197 NRRL/ARS  USA, San Jacinto, California North America  Drosophila pseudoobscura insect Americas  na 

L. thermotolerans NRLL Y-27329 NRRL/ARS  USA, West Virginia North America grapes grape/wine Domestic 2 na  
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L. thermotolerans NRLL Y-27911 NRRL/ARS  USA, Louisiana North America gut of a fishfly insect Americas Freel et al. 2014 b 

L. thermotolerans NRLL Y-27937 NRRL/ARS  USA, Louisiana North America surface of fishfly insect Canada trees Freel et al. 2014 b 

L. thermotolerans NRLL YB-3379 NRRL/ARS  USA, Marion, Illinois North America rotten log plant Domestic 2  na 

L. thermotolerans NZ156 CRPR New Zealand Australia/Oceania grapes cv. Chardonnay  grape/wine Domestic 1  na 

L. thermotolerans OCK6C.1 NCYC  UK, Ocknell, New Forest Europe Quercus sp. plant Europe oak/France grapes Robinson et al. 2016 d 

L. thermotolerans OSU A OSU USA, Oregon North America grapes grape/wine Mix Europe/N. America  na 

L. thermotolerans PLU5B.1 NCYC  UK, Plumpton vineyard Europe Quercus sp. plant Europe oak/France grapes Robinson et al. 2016 d 

L. thermotolerans PYR14B.1 NCYC  Greece, Pyradikia  Europe Quercus sp. plant Domestic 1 Robinson et al. 2016 d 

L. thermotolerans T 13/17 F University of the Republic Uruguay South/Central America grapes cv. Tannat  grape/wine Domestic 2  na 

L. thermotolerans TAX9D.1 NCYC  Greece, Taxiarchis Europe Quercus sp. plant Mix Europe/N. America Robinson et al. 2016 d 

L. thermotolerans UNIFG 26 UNIFG Italy Europe wine grape/wine Domestic 1  na 

L. thermotolerans UNIFG 28 UNIFG Italy Europe wine grape/wine Domestic 2  na 

L. thermotolerans UNIFG 16 UNIFG Italy Europe wine grape/wine Domestic 2  na 

L. thermotolerans UNIFG 17 UNIFG Italy Europe wine grape/wine Domestic 2 na  

L. thermotolerans UNIFG 18 UNIFG Italy Europe wine grape/wine Domestic 2 na  

L. thermotolerans UNIFG 22 UNIFG Italy Europe wine grape/wine Domestic 2 na  

L. thermotolerans UNIFG 32 UNIFG Italy Europe wine grape/wine Domestic 2  na 

L. thermotolerans UNIFG 33 UNIFG Italy Europe wine grape/wine Domestic 2  na 

L. thermotolerans UWOPS 79-110 UWOPS Canada, Ontario North America black knot, Prunus virginiana plant Canada trees Freel et al. 2014 b 

L. thermotolerans UWOPS 79-116 UWOPS Canada, Pinery North America black knot, Prunus virginiana plant Canada trees Freel et al. 2014 b 

L. thermotolerans UWOPS 79-117 UWOPS Canada, Pinery North America black knot, Prunus virginiana plant Mix Europe/N. America Freel et al. 2014 b 

L. thermotolerans UWOPS 79-162 UWOPS Canada, Ontario, Melbourne North America black knot, Quercus rubra plant Mix Europe/N. America Freel et al. 2014 b 

L. thermotolerans UWOPS 79-164 UWOPS Canada, Ontario, Melbourne North America black knot, Prunus virginiana plant Canada trees Freel et al. 2014 b 

L. thermotolerans UWOPS 79-195 UWOPS Canada, Ontario, Melbourne North America black knot, Prunus virginiana plant Canada trees Freel et al. 2014 b 

L. thermotolerans UWOPS 79-248 UWOPS Canada, Ontario North America frass, Birch plant Mix Europe/N. America Freel et al. 2014 b 

L. thermotolerans UWOPS 79-255 UWOPS Canada, Ontario North America black knot, Prunus pumila plant Canada trees Freel et al. 2014 b 

L. thermotolerans UWOPS 80-19 UWOPS Canada, Ontario North America black knot, Prunus virginiana plant Canada trees Freel et al. 2014 b 

L. thermotolerans UWOPS 83-1097.1 UWOPS Cayman Islands, Cayman Brac South/Central America Gitona americana, Opuntia stricta plant Americas 
Freel et al. 2014 b, Naumova et 

al. 2007 c 
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L. thermotolerans UWOPS 83-1101.1 UWOPS Cayman Islands, Cayman Brac South/Central America Gitona americana, Opuntia stricta insect Americas Freel et al. 2014 b 

L. thermotolerans UWOPS 85-312.1 UWOPS USA, Arizona, Tuscon North America 
Drosophila carbonaria, Prosopis 

juliflora 
insect Americas Freel et al. 2014 b 

L. thermotolerans UWOPS 85-51.1 UWOPS USA, Florida, Big Pine Key North America Opuntia cubensis plant Americas Freel et al. 2014 b 

L. thermotolerans UWOPS 90-10.1 UWOPS Bahamas,  Exumas Cays, Shroud Cay South/Central America Columnar cactus plant Americas Freel et al. 2014 b 

L. thermotolerans UWOPS 90-1020.1 UWOPS Bahamas,  Exumas Cays, Shroud Cay South/Central America coco plum plant Americas Freel et al. 2014 b 

L. thermotolerans UWOPS 91-902.1 UWOPS Hawaii, Saddle Rd Park Australia/Oceania flux (white), Myoporum plant Hawaii/California Freel et al. 2014 b 

L. thermotolerans UWOPS 91-910.1 UWOPS Hawaii, Saddle Rd Park Australia/Oceania flux (pink), Myoporum plant Hawaii/California Freel et al. 2014 b 

L. thermotolerans UWOPS 91-912.1 UWOPS Hawaii, Saddle Rd Park Australia/Oceania flux (white), Myoporum plant Hawaii/California Freel et al. 2014 b 

L. thermotolerans UWOPS 94-426.2 UWOPS Mexico, Jalisco South/Central America distillery, agave must agriculture/food Domestic 1 Freel et al. 2014 b 

L. thermotolerans  YJS4269 na Ukraine Europe Drosophila sp.  insect Americas  na 

L. thermotolerans Y1017 IWBT South Africa Africa grapes cv. Chardonnay grape/wine Domestic 2  na 

L. thermotolerans Y1038 IWBT South Africa Africa grapes cv. Chardonnay grape/wine Domestic 2  na 

L. thermotolerans Y1109 IWBT South Africa Africa grapes cv. Sauvignon blanc grape/wine Domestic 2  na 

L. thermotolerans Y1202 IWBT South Africa Africa grapes cv. Sauvignon blanc grape/wine Domestic 2  na 

L. thermotolerans Y1206 IWBT South Africa Africa grapes cv. Sauvignon blanc grape/wine Domestic 2  na 

L. thermotolerans Y1295 IWBT South Africa Africa 
grapes, fermentation (Sauvignon 

blanc – Chardonnay blend) 
grape/wine Domestic 2  na 

L. thermotolerans Y905 IWBT South Africa Africa grapes cv. Chenin blanc grape/wine Domestic 2  na 

L. thermotolerans Yal. 87-1 na Russia, Crimea Russia/Asia  Quercus sp. exudate plant Europe oak/France grapes Naumova et al. 2007 c 

L. thermotolerans Yal. 87-2 na Finland Europe  Quercus sp. exudate plant Other Naumova et al. 2007 c 

L. thermotolerans Yal. 87-5 na Russia, Crimea Russia/Asia  Quercus sp. exudate plant Mix E. Europe Naumova et al. 2007 c 

L. thermotolerans ZIM 2492 ZIM Serbia Europe rasberries agriculture/food Domestic 1  na 

L. thermotolerans ZIM 2505 ZIM Serbia Europe rasberries agriculture/food Mix Europe/N. America  na 

L. cidri CBS 4575T CBS-KNAW  na  na  na  na  na   na 

L. dasiensis CBS 10888T CBS-KNAW  na   na  na   na    na  Lee et al. 2009 e 

L. fantastica CBS 6924T CBS-KNAW  na  na  na  na  na  na  

L. fermentati CBS 707T CBS-KNAW  na  na  na  na  na  na  
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L. kluyverii CBS 3082T CBS-KNAW  na  na  na  na  na  na  

L. lanzarotensis CBS 12615T CBS-KNAW  na  na  na  na  na  Gonzalez et al. 2013 f 

L. meyersii CBS 8951T CBS-KNAW  na  na  na  na  na  Fell et al. 2004 g 

L. mirantina CBS 11717T CBS-KNAW  na  na  na  na  na  Pereira et al. 2011 h 

L. nothofagi CBS 11611T CBS-KNAW  na  na  na  na  na  Mestre et al. 2010 i 

L. quebecensis CBS 14138T CBS-KNAW  na  na  na  na  na  Freel et al. 2016 j 

L. waltii CBS 6430T CBS-KNAW  na  na  na  na  na  na  

Phaff YCC – Phaff Yeast Culture Collection, University of Davis, California, USA;   AWMCC -  AWRI Wine Microorganism Culture Collection, Australia; CBS-KNAW - Centraalbureau voor Schimmelcultures – Koninklijke Nederlandse Akademie van Wetenschappen , Netherlands; 

CRBOeno - Centre de Ressources Biologiques OEnologie,  France;  DBVPG -  The Industrial Yeasts Collection DBVPG, Italy;  NCYC -  National Collection of Yeast Cultures, UK;, Italy; BOKU - Universität für Bodenkultur Wien, Austria; ISVV - Institut des Sciences de la Vigne et du Vin, 

France;  LL – Landry Lab, Canada; MUCL  - Mycothèque de l’Université catholique de Louvain, Belgium; NCAIM - National Collection of Agricultural and Industrial Microorganisms, Hungary; ITAP-DEMETER - Institute of Technology of Agricultural Products, Hellenic Agricultural 

Organisation, Greece;   NRRL/ARS - NRRL Agriculture Research Service culture collection, USA; CRPR -  Centre de Recherche Pernod-Ricard, France; OSU – Oregon State University, USA; UNIFG - University of Foggia; UWOPS -  Culture collection of the University of Western Ontario; 

IWBT – Institute for Wine Biotechnology, University of Stellenbosch, South Africa;  ZIM -  Zbirka industrijskih mikroorganizmov, Slovenia. a Sipiczki M. Overwintering of vineyard yeasts: Survival of interacting yeast communities in grapes mummified on vines. Frontiers in microbiology. 

2016 Feb doi: 10.3389/fmicb.2016.00212; c Freel KC, Friedrich A, Hou J, Schacherer J. Population genomic analysis reveals highly conserved mitochondrial genomes in the yeast species Lachancea thermotolerans. Genome biology and evolution. 2014 Oct; 6(10):2586-94.; c Naumova 

ES, Serpova EV, Naumov GI. Molecular systematics of Lachancea yeasts. Biochemistry (Moscow). 2007 Dec; 72(12):1356-62.; d Robinson HA, Pinharanda A, Bensasson D. Summer temperature can predict the distribution of wild yeast populations. Ecology and evolution. 2016 Feb; 

6(4):1236-50.; e Lee CF, Yao CH, Liu YR, Hsieh CW, Young SS. Lachancea dasiensis sp. nov., an ascosporogenous yeast isolated from soil and leaves in Taiwan. International journal of systematic and evolutionary microbiology. 2009 Jul; 59(7):1818-22.; f González SS, Alcoba-Flórez J, 

Laich F. Lachancea lanzarotensis sp. nov., an ascomycetous yeast isolated from grapes and wine fermentation in Lanzarote, Canary Islands. International journal of systematic and evolutionary microbiology. 2013 Jan; 63(1):358-63., g Fell JW, Statzell-Tallman A, Kurtzman CP. 

Lachancea meyersii sp. nov., an ascosporogenous yeast from mangrove regions in the Bahama Islands. Studies in Mycology 2004 Dec; 50:359-63.; h Pereira LF, Costa Jr CR, Brasileiro BT, de Morais Jr MA. Lachancea mirantina sp. nov., an ascomycetous yeast isolated from the cachaca 

fermentation process. International journal of systematic and evolutionary microbiology. 2011 Apr; 61(4):989-92.; i Mestre MC, Ulloa JR, Rosa CA, Lachance MA, Fontenla S. Lachancea nothofagi sp. nov., a yeast associated with Nothofagus species in Patagonia, Argentina. 

International journal of systematic and evolutionary microbiology. 2010 Sep; 60(9):2247-50.; j Freel KC, Charron G, Leducq JB, Landry CR, Schacherer J. Lachancea quebecensis sp. nov., a yeast species consistently isolated from tree bark in the Canadian province of Québec. 

International journal of systematic and evolutionary microbiology. 2015 Oct 1;65(10):3392-9. 
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S2 Table. Amplification of L. thermotolerans microsatellite markers on Lachancea species. Numbers 

are coded as following: 0 - no amplification, 1 - faint band, 2 - medium intensity band, 3 - full intensity 

band as determined using a microchip electrophoresis system.
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CHAPTER 5 

Oenological phenomes of Lachancea thermotolerans show signs 

of domestication and allopatric differentiation 
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Abstract 

The yeast Lachancea thermotolerans (previously Kluyveromyces thermotolerans) is a species 

of large, yet underexplored, oenological potential. This study delivers comprehensive 

oenological phenomes of 94 L. thermotolerans strains obtained from diverse ecological niches 

worldwide, classified in nine genetic groups based on their pre-determined microsatellite 

genotypes. The strains and the genetic groups were compared for their alcoholic fermentation 

performance, production of primary and secondary metabolites and pH modulation in 

Chardonnay grape juice fermentations. The common oenological features of L. thermotolerans 

strains were their glucophilic character, relatively extensive fermentation ability, low 

production of acetic acid and the formation of lactic acid, which significantly affected the pH 

of the wines. An untargeted analysis of volatile compounds, used for the first time in a 

population-scale phenotyping of a non-Saccharomyces yeast, revealed that 58 out of 90 

volatiles were affected at an L. thermotolerans strain level. Besides the remarkable extent of 

intra-specific diversity, our results confirmed the distinct phenotypic performance of L. 

thermotolerans genetic groups. Together, these observations provide further support for the 

occurrence of domestication events and allopatric differentiation in L. thermotolerans 

population. 
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Introduction 

The largely untapped biotechnological potential of yeasts other than Saccharomyces 

cerevisiae is triggering rising scientific interest. One remarkable example is Lachancea 

thermotolerans, a ubiquitous species occupying a range of anthropic and wild habitats that 

cover a large geographic span 1-4. In particular, this yeast is a common constituent of grape/wine 

microbiota 5,6, and has thus been explored for its application in oenology. Indeed, multiple 

studies have evaluated the oenological performance of L. thermotolerans isolates 7-10 delivering 

conclusive results; L. thermotolerans does not impart any obvious faults to the wine, rather, it 

can positively affect its chemical and sensory profile. 

In oenological environments, L. thermotolerans is a relatively robust fermenter, 

depending on the strain and physiochemical conditions, capable of achieving up to 13.6% (v/v) 

ethanol 11. As typical for non-Saccharomyces yeasts, L. thermotolerans pure cultures cannot 

‘complete’ wine fermentation (i.e. deplete all sugars), and therefore require sequential or 

simultaneous addition of another co-starter, generally an S. cerevisiae strain 5. Due to the 

antagonistic activity of S. cerevisiae towards L. thermotolerans, mediated by mechanisms of 

cell-cell contact and secretion of antimicrobial peptides 12, the outcomes of such co-

fermentations are inoculation-dependant. The initial absence and/or lower inoculation densities 

of S. cerevisiae allows for the prolonged persistence and, in turn, greater metabolic 

contribution, of L. thermotolerans strains 9,13,14.  

The major metabolic contribution of L. thermotolerans is lactic acid production 

concomitant to alcoholic fermentation 5,7-9. The maximum reported lactic acid concentrations 

formed during L. thermotolerans fermentation exceed 16 g/L 15, thus representing orders of 

magnitude that are unique among any other non-genetically modified yeasts 16,17. S. cerevisiae 

wildtype strains, by comparison, in similar conditions normally produce only < 0.4 g/L lactate 

16,17. The resultant acidification is considered to positively affect wine microbial stability and 
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organoleptic balance, while alleviating the need for external inputs (e.g. tartaric acid) 

commonly used to acidify grapes from warmer climates/vintages 7,10,18. Another common 

characteristic of such grapes is excessive sugar accumulation, leading to undesirably high 

ethanol concentrations in wines 19. Several studies reported significantly lower ethanol contents 

in co-fermentations with L. thermotolerans and S. cerevisiae that ranged between 0.2% and 

0.9% (v/v) less than their respective S. cerevisiae monoculture controls 9,10,14,20, thus 

highlighting the potential of L. thermotolerans in production of lower-alcohol wines. Other 

beneficial/non-detrimental compositional alterations reported in L. thermotolerans treatments 

include increases in glycerol concentration 9,10,13,14, decreases in acetate content 8-10,13,14, partial 

degradation of malate 21-23 and modulations of both grape- and yeast-derived volatile 

compounds in wines 10,13,14,22-25. 

The extent of intra-specific variability in traits of oenological importance among L. 

thermotolerans strains, however, remains elusive as the previous studies examined only a 

limited number of strains and/or metabolites, and employed different culture conditions and 

analytical techniques. Conversely, more insight is available into the genetic diversity of the L. 

thermotolerans population 2,4. In our recent work we developed a 14-microsatellite genotyping 

method to study the relationship between 172 isolates from diverse habitats worldwide 4. The 

natural isolates were grouped based on their geographic origin, whereas the genetic proximity 

of isolates from anthropic, in particular oenological environments, suggested domestication 

events within the species. Plate-based growth assays using different carbon substrates and 

physicochemical conditions provided further support for the observed clustering 4. To 

determine whether, and to what extent, L. thermotolerans strains differ in oenologically-

relevant traits, and harbour signatures of domestication and/or local divergence, we hereby 

report a comprehensive phenotypic characterisation of 94 previously genotyped strains in Vitis 

vinifera cv. Chardonnay fermentations. 
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Results 

Fermentation performance of L. thermotolerans strains. The tested strains, obtained 

from diverse ecological niches worldwide, were classified into nine genetic groups 

(Supplementary Fig. S1; Supplementary Table S1) as determined by microsatellite profiling 4. 

Based on the isolation location and/or niche of their constituents, the genetic groups were 

considered as ‘wild’ (‘Americas’, ‘Canada trees’, ‘Hawaii/California’, ‘Other’), ‘domestic’ 

(‘Domestic 1’, ‘Domestic 2’) and ‘mixed’ (‘Mix Eastern Europe’, ‘Mix Europe/North 

America’, ‘Europe oak/France grapes’), with a balanced number of strains representing the 

three classes. The ‘wild’ groups were comprised predominantly of natural isolates, clustered 

together based on their geographic origin, while the ‘domestic’ groups harboured isolates from 

anthropic, mainly oenological, environments. The remaining groups were ‘mixed’ with regards 

the substrate of isolation and/or geographic location of the strains. The strains and the genetic 

groups were compared for the microbial growth and sugar consumption kinetics, final 

production of primary and secondary metabolites and pH modulation in 25 mL Chardonnay 

grape juice fermentations (Supplementary Fig. S2). 

 All strains were able to proliferate (Fig. 1a) and catabolise sugars (Fig. 1b) despite the 

extreme conditions inherent to winemaking (e.g. high sugar content, limited assimilable 

nitrogen, rapid oxygen depletion). Spectrophotometric growth monitoring was not possible for 

three strains (LL12-031, LL12-056 and UWOPS 79-110) due to the pronounced flocculation. 

The frequent monitoring of microbial growth (OD600) and sugar consumption allowed for the 

fermentation kinetics to be subjected to Self-Organizing Map (SOM) analysis. SOM of 

population growth that best explained the differentiation among genetic groups contained four 

clusters (Fig. 1a). However, the distribution of the different genetic groups amongst SOM 

clusters was not significant (Fig. 1c; chi2 test p-value = 0.19). Conversely, SOM of sugar 
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consumption kinetics resolved four clusters, which corresponded to low (group 1’), medium-

low (group 2’), medium-quick (group 3’) and quick (group 4’) sugar consumption kinetics (Fig. 

1b). The SOM with low fermentation kinetics (group 1’) contained 14 strains, i.e. nine 

‘Americas’ and five ‘Domestic 1’ genotypes. Comparable number of strains displayed 

medium-low (group 2’; 30) and medium-quick (group 3’; 33) sugar consumption kinetics. 

These belonged to different genetic groups (Fig. 1d). In contrast, none of the 15 strains 

displaying quick sugar consumption kinetics (group 4’) were ‘Americas’ and ‘Canada trees’ 

strains. Disproportionate distribution of SOM clusters within each genetic group was 

confirmed by chi2 test (p-value = 3.10e-5), with an over-representation of low and medium-

low fermenters in the ‘Americas’ and ‘Canada trees’ groups, and medium-quick and quick 

fermenters in ‘Mix Europe/North America’ (Fig. 1d). 
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Figure 1. Self-Organizing Maps of growth and sugar consumption kinetics in L. 

thermotolerans fermentations. SOM analysis identified four clusters that best discriminate 

different genetic groups based on strain growth (a) and sugar consumption kinetics (b). Lines 

represent mean values and standard errors of SOM clusters. Within each genetic group, the 

number of strains belonging to different growth- and sugar consumption-related SOM clusters 

is represented in (c) and (d) barplots, respectively. Distribution of genetic groups within each 

SOM was determined by chi2 tests with the corresponding p-values noted in (c) and (d). Colour-

coding represents different genetic groups, as per the legends in (c) and (d). 
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Phenotypic variation in main fermentation metabolites. The extent of final sugar 

consumption in Chardonnay grape juice fermentations ranged between 161.6 and 223.4 g/L 

(Table 1). All the strains displayed a glucophilic character, i.e. consumed more glucose than 

fructose, with variable residual glucose/fructose ratios (Table 1). The achieved ethanol 

concentrations varied between 7.3 and 10.6% (v/v), however, strains did not significantly differ 

in their ethanol production capacity (Table 1). Strain 72-132 exhibited extreme glycerol 

production levels (8.0 g/L), while for most other strains glycerol concentrations and yields were 

more closely distributed around the mean values (Table 1). Interestingly, the concentrations 

and yields of glycerol, generally the second most abundant wine fermentation metabolite after 

ethanol, were lower than those of lactate in 48 strains. The highest lactic acid concentration 

(12.0 g/L) was produced by 68-140 (Table 1). The same strain consumed the highest 

concentration of malate, i.e. 0.8 g/L (Table 1). While partial degradation of malate was 

observed in most treatments, some strains led to an increase in malate of up to 0.3 g/L 

(LL12_056). In a winemaking context, acetic acid concentrations and yields in all L. 

thermotolerans fermentations were relatively low, and pyruvic acid concentrations ranged 

between 13 and 78 mg/L (Table 1). A decrease in pH from the initial value of 3.5 was observed 

in the majority of fermentations (i.e. 68/94). The largest pH drop, that of 0.34 units, observed 

in strain 68-140 (Table 1). Conversely, a minority of strains elicited de-acidification, with 

DBVPG 3466 having the highest pH value of 3.81 (Table 1).  
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Table 1. Analytical properties of Chardonnay wines fermented by different L. 

thermotolerans strains. 

Parameter Minimum a Maximum a Mean b 

Consumed sugar 

(g/L) 

161.6 ± 1.4 (DBVPG 3464) 223.4 ± 2.9 (NZ156) 199.6 ± 11.4  

Glucose (g/L) 3.7 ± 0.5 (DBVPG 3466) 36.2 ± 0.7 (DBVPG 3464) 13.6 ± 6.2 

Fructose (g/L) 8.9 ± 1.3 (NZ156) 39.1 ± 1.6 (72-132) 23.2 ± 6.0 

G/F c 0.16  ± 0.02 DBVPG 3464 0.94 ± 0.01 UWOPS 94-426.2 0.57 ± 0.16 

Ethanol (% v/v) 7.3 ± 0.7 (72-132) 10.6 ± 0.7 (CBS 2907) 9.3 ± 0.9 

Ethanol yield d (g/g)  0.34 ± 0.04 (8/Z-1) 0.40 ± 0.03 (DBVPG 3464) 0.37 ± 0.03 

Glycerol (g/L) 3.9 ± 0.1 (DBVPG 3464) 8.0 ± 0.2 (72-132) 5.4 ± 0.6 

Glycerol yield d (g/g) 0.0205 ± 0.0004 (CBS 137) 0.0478 ± 0.0002 (72-132) 0.0274 ± 0.0039 

Lactic acid (g/L) 1.8 ± 0.2 (JCB1) 12.0 ± 0.2 (68-140) 5.8 ± 2.3 

Lactate yield d (g/g) 0.0086 ± 0.0011 (JCB1) 0.0658 ± 0.0018 (68-140) 0.0291 ± 0.0119 

Acetic acid (g/L) 0.06 ± 0.01 (72-137) 0.32 ± 0.01 (UWOPS 85-51.1) 0.20 ± 0.05 

Acetate yield d 

(mg/g) 0.30 ± 0.05 (72-137) 1.53 ± 0.03 (UWOPS 85-51.1) 0.98 ± 0.24 

FP e 0.0067 ± 0.0008 72-137 0.0327 ± 0.0040 LL13-189 0.0213 ±  0.0056 

Pyruvic acid (mg/L) 13 ± 1 (MUCL 31342) 78 ± 3 (9/1/Z-4) 44 ± 14 

Malic acid (g/L) 3.0 ± 0.1 (68-140) 4.1 ± 0.2 (LL12_056) 3.6 ± 0.3 

pH 3.16 ± 0.03 (68-140) 3.81 ± 0.13 (DBVPG 3466) 3.44 ± 0.03 

a Minimum and maximum values (means of triplicates ± standard errors) associated with the 

strains in the brackets; b Mean values of all observations (± standard errors); c G/F - measure 

of fructophilicity defined as residual glucose and fructose ratio; d Yields were calculated from 

concentrations of respective metabolites and consumed sugar; e FP - fermentation purity 

defined as a ratio of acetic acid and ethanol. Chardonnay grape juice contained 236.4 g/L sugar 

(1:1 mix of glucose and fructose), 3.8 g/L malic acid and pH 3.5. Differences for parameters 

in italics were not significant (KW test, p-values > 0.05). 
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The parameters showing a significant strain effect (Table 1) were further compared at 

a genetic group level (Fig. 2). ‘Canada trees’ strains were characterised by the lowest extent of 

sugar consumption as a result of the highest concentrations of glucose and fructose alike (Fig. 

2). The ‘Americas’ strains, i.e. another group comprised of natural isolates, were capable of 

extensive glucose consumption, however, their residual fructose content was higher than in any 

other group except ‘Canada trees’ (Fig. 2). Consequently, the fructophilicity (G/F) of 

‘Americas’ strains was low. The concentrations and yields of glycerol were generally higher 

for most wild and mixed groups, than for the domestic ones (Fig. 2). ‘Domestic 1’ strains had 

lower concentrations and yields of lactate and the higher pH values than all other groups except 

‘Other’ (Fig. 2). Lactate production was the highest in ‘Domestic 2’, ‘Mix Eastern Europe’ and 

‘Mix Europe/North America’ groups. Acetic acid was the lowest in strains belonging to 

‘Hawaii/California’ group, and their acetate yields and fermentation purity (FP) were also low 

(Fig. 2). The levels of malic acid in ‘Canada trees’ and ‘Americas’ wines were higher than in 

all other groups, and pyruvate concentrations were higher in ‘Domestic 2’ and ‘Mix Eastern 

Europe’ than in most other groups (Fig. 2). 
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Figure 2. Violin plots for the selected metabolic traits. For each genetic group, numeric 

values are represented as diamonds, the corresponding probability densities are represented as 

plain traits, mean and standard error are represented by black circles and segments, respectively 

(ggplot2 package, R). Top letters represent significance groups as defined by Kruskal-Wallis 

test (agricolae package, p-value < 0.05 after Benjamini & Hochberg adjustment for multiple 

comparisons). 
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Volatile metabolome of L. thermotolerans wines.  The obtained Chardonnay wines were also 

analysed for their volatile composition. Out of 90 analysed volatiles, 58 compounds were 

affected at a strain level (Fig. 3; Supplementary Table S2). The majority of these compounds 

(35/58) were successfully identified in the NIST database via corresponding mass spectra, 

Kovats’ RI indices and, when available, comparison with pure compounds (Supplementary 

Table S2). The remaining 23 compounds were unidentified (unknown; 23/58). The identified 

compounds included higher alcohols (12/58), with the representatives of C6 (n-hexanol), aryl 

(2-phenylethanol and 4-methyl-benzenemethanol), branched (isobutanol, isoamyl alcohol, 2-

methyl-1-butanol, 3-methyl-1-pentanol, 2-ethyl-hexanol) and non-branched compounds (n-

butanol, n-nonanol, n-octanol and n-decanol). A comparable number of ethyl esters was 

detected (10/58). These included ethyl esters (ethyl propanoate, ethyl octanoate, ethyl 

decanoate, ethyl 9-decenoate, diethyl succinate), acetates (ethyl acetate, isobutyl acetate, 

isoamyl acetate and 2-phenylethyl acetate), and a lactate (amyl lactate). Five acids also 

significantly differed between the strains (5/58; 4-hydroxy-butanoic, hexanoic, octanoic, 

decanoic and dodecanoic acid). The remaining compounds were classified as aromatic 

compounds (3/58; 1-ethyl-2,4-dimethyl benzene, 1,2,4-trimethylbenzene and 1,3-bis(1,1-

dimethylethyl) benzene), aldehydes (2/58; acetaldehyde and 4-methyl-benzaldehyde), a ketone 

(1/58; 4-methyl-2-heptanone), a norisoprenoid (1/58; ß-damascenone) and a terpenol (1/58; β-

citronellol). 

 n-Hexanol and n-octanol were the volatiles that displayed the largest strain effect and, 

after F22, genetic group effect (Fig. 3). These two higher alcohols followed the same trend; 

their content was lower in ‘Domestic 1’ wines than those from any of the remaining groups 

except ‘Other’, and high in ‘Mix Eastern Europe’, ‘Mix Europe/North America’ and ‘Domestic 

2’ groups (Supplementary Fig. S3). The ‘Domestic 1’ group also produced less n-butanol and 

several unidentified compounds (e.g. F43 and F50) compared to most other groups. 
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Conversely, F22 and ß-damascenone were relatively high in the ‘Domestic 1’ group, as were 

isobutanol, F10 and F56. The ‘Americas’ strains produced high levels of acetaldehyde, ethyl 

acetate, ethyl propanoate, isoamyl acetate, isoamyl alcohol and ethyl 9-decenoate 

(Supplementary Fig. S3). Ethyl 9-decenoate was similarly high in ‘Domestic 2’ and ‘Mix 

Eastern Europe’ wines, which were also characterised by an increase in ethyl decanoate and 

F86 (Supplementary Fig. S3). The ‘Canada trees’ group was related to a low production of F85, 

2-phenylethanol, isobutyl acetate, diethyl succinate, 4-methyl-benzaldehyde and 1,3-bis(1,1-

dimethylethyl) benzene, and overproduction of 1-ethyl-2,4-dimethylbenzene (Supplementary 

Fig. S3). The latter aromatic compound was, in addition to F8, F40 and F46, particularly low 

in the ‘Hawaii/California’ group (Supplementary Fig. S3). The ‘Mix Europe/North America’ 

strains produced high levels of 4-methylbenzene methanol and F43 (Supplementary Fig. S3). 

Hexanoic acid and F83 were also high in this group, as well as in ‘Mix Eastern Europe’, 

‘Americas’ and ‘Canada trees’, while 4-hydroxybutanoic acid was low in all these groups but 

‘Canada trees’ (Supplementary Fig. S3). The ‘Europe oak/France grapes’ strains yielded less 

n-decanol and amyl lactate than all groups but ‘Canada trees’ and/or ‘Other’ (Supplementary 

Fig. S3).  
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 Figure 3. Percentage of variation in volatile compounds explained by either strain or 

genetic group effect. Only 58 compounds with a significant (p-value < 0.05) strain effect are 

shown. For the genetic group effect, white squares represent no significant p-values (> 0.05) 

and coloured squares indicate significant p-values (< 0.05). 

 

Phenotypic differentiation of L. thermotolerans genetic groups. To determine whether the 

obtained metabolic dataset discriminated the L. thermotolerans genetic groups, 107 variables 

were subjected to linear discriminant analysis (LDA). These analysed variables included 

fermentation kinetics parameters, concentrations of main metabolites, volatile compounds and 

pH. LDA revealed a clear separation of the ‘Canada trees’ and ‘Domestic 1’ groups from all 

remaining groups (Fig. 4a). Albeit less resolved, a suitable partitioning of strains belonging to 
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the remaining genetic groups of strains was also obtained, and the co-localisation of ‘Mix 

Eastern Europe’ and ‘Mix Europe/North America’ groups was congruent with their genetic 

proximity 4.  

The ‘Canada trees’ group were differentiated from other groups based on the low 

production of the unknown volatile compounds F85, which represented the most important 

variable for discriminating genetic groups (Figure 4b; Supplementary Fig. S4), as well as the 

high concentrations of 1-ethyl-2,4-dimethyl-benzene and both grape hexoses (Fig. 2; 

Supplementary Fig. S3). Low lactate, n-hexanol and n-octanol, and high pH and F22 were 

amongst the most important variables driving the separation of ‘Domestic 1’ strains (Fig. 2; 

Supplementary Fig. S3). Glycerol, overall ranked as the second most relevant variable for 

LDA, was of main importance for ‘Domestic 2’ group, as well ‘Mix Europe/North America’ 

and ‘Europe oak/France grapes’ (Fig. 4b). A similarly important metabolite for ‘Domestic 2’ 

and ‘Mix Europe/North America’ was high lactate, followed by low maximum ODs for the 

former group, and high n-hexanol and n-octanol for both groups (Supplementary Fig. S3). 

‘Americas’ strains were discriminated based on the parameters related to their sugar 

consumption kinetics (i.e. high T50, T30 and max flux; Fig. 1b), and increased production of 

several volatile compounds (i.e. acetaldehyde, ethyl acetate and isoamyl acetate; 

Supplementary Fig. S3), and ‘Hawaii/California’ strain primarily due to their low acetic acid 

production (Fig. 2).   
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Figure 4. Linear discriminant analysis of nine genetic groups in L. thermotolerans based 

on 107 variables. LDA plot showing the first two axes, i.e. LD1 and LD2 (A). The importance 

of variables accounting for LDA was computed for each genetic group (B). Only the main 30 

variables are shown; all 107 variables are in Supplementary Fig. S4. 

 

Relationships between metabolites. Multiple linear regression analysis was conducted to 

examine the relationships between the variables of interest (i.e. main fermentation products) 

and other metabolites as well as pH values. The analysis revealed that the most explanatory 

variable for pH was lactic acid, accounting for 70% of variation (Fig. 5). Likewise, lactate 

concentrations explained 73% of variation in pH of the wines. Besides sugar consumption 

(24% of explained variation), significant contributions to variation in ethanol formation were 

pH, acetic acid and several volatiles, which all had positive coefficients, except dodecanoic 
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acid. The extent of sugar consumption was best explained by ethanol production (19% of 

explained variation), followed by pH, malate and lactate. After ethyl propanoate, pH was also 

the second most explanatory variable for obtained glycerol concentrations (8% of explained 

variation; negative coefficient). Several volatile compounds significantly accounted for both 

sugar consumption and glycerol production. Ethyl acetate and acetaldehyde together explained 

38% of acetic acid concentration, and lactate contributed with an additional 8%.  

The correlation between pH and lactate was further confirmed by Spearman’s 

correlation test (Fig. 6), which was also used to assess the inter-relationships between 

consumed sugar concentrations and main fermentation by-products in L. thermotolerans 

fermentations, (i.e. ethanol, lactate, glycerol and acetate) within each genetic group (except 

‘Other’) and the entire dataset (Supplementary Fig. S5-S14). Interestingly, negative 

correlations were observed between the extent of sugar consumption and lactate production for 

certain genetic groups, but not globally (Supplementary Fig. S6). Similarly, correlations 

between lactate and glycerol were detected only within certain groups; positive within four and 

negative within one (‘Hawaii/California’; Supplementary Fig. S12). Both lactate and ethanol, 

and glycerol and ethanol showed weak negative correlations within the whole dataset, and for 

several genetic groups individually (Supplementary Fig. S9, S10). No correlations whatsoever 

were detected for acetate and glycerol production, while acetate and lactate displayed weak 

positive correlations within the whole dataset and for two genetic groups (Supplementary Fig. 

S13, S14).
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Figure 5. Relationships between metabolites of interest revealed by multiple linear regression analysis.  Shown variables significantly (p-

value < 0.01) explaining more than 1% of variation.  
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Figure 6. Correlation between lactic acid production and pH values in Chardonnay grape 

juice (pH 3.5) fermentations. Colour-coding represents L. thermotolerans genetic groups (as 

per Fig. 1, 2, 4). 

 

Discussion 

There is a growing interest in the selection and characterisation of non-Saccharomyces 

yeasts to be used in winemaking to build ‘complexity’ and diversify styles. However, 

surprisingly few studies systematically explored the concepts of their intra-specific phenotypic 

variability 26-28. To our knowledge, the scale and range of this work represents the broadest 

oenological characterisation of phenotypic variability within a population of a non-

Saccharomyces yeast. It was designed to assess to what extent strains of L. thermotolerans vary 

161



in traits of key importance for fermentation outcome, i.e. microbial growth and sugar 

consumption kinetics, production of volatile and non-volatile metabolites and the resultant 

(de)acidification. The comprehensive phenotyping dataset was comprised of 114 

measured/derived parameters for triplicate fermentations of 94 recently genotyped L. 

thermotolerans strains, resulting in over 32,100 individual data points. The tested strains were 

obtained from both natural and anthropic habitats, and distributed across the entire L. 

thermotolerans phylogenetic tree 4 (Supplementary Fig. S1), so as to ascertain if the determined 

phenotypic variability is fully representative of the species.  

The observed phenotypic variability was large and ethanol production was the only 

primary metabolic trait that did not differ between the strains, possibly due to analytical 

limitations. Similarly, differences in ethanol content alone, quantified with an equivalent HPLC 

method, were not detected between 72 S. cerevisiae strains in a population-scale phenotyping 

conducted under winemaking conditions by Camarasa et al. 29, despite significant disparities 

in strain sugar consumption levels. Regardless, given that S. cerevisiae generally yields about 

0.47 g of ethanol per 1 g of sugar 30, the ethanol yields of L. thermotolerans strains determined 

here were altogether low (mean value 0.37 g/g; Table 1). Although the comparison of ethanol 

yields between different conditions and physiological stages is invalid, this attribute warrants 

further investigation for use of L. thermotolerans in the production of wines with lower-ethanol 

content, as observed elsewhere 9,10,14,20. 

In accord with previous reports 8,9,13,15, our results confirmed that the common 

oenological features of L. thermotolerans strains are their glucophilic character, relatively 

extensive fermentation ability, albeit without ‘completion’, low production of acetate and 

formation of lactate. In contrast to previous findings, acidification was found for most, but not 

all, strains (Table 1). An increase in wine pH has, to our knowledge, thus far not been associated 

with L. thermotolerans fermentations despite the reports of partial degradation of malate 21, as 
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also witnessed in most of our treatments. Lactate concentrations were, by large, the most 

explanatory variable for the resultant pH modulation, as shown by multiple linear regression 

analyses (73% of explained variation; Fig. 5). Although the maximum concentrations of lactate 

achieved under current conditions (12 g/L) were lower than those from the literature (16.6 g/L) 

15, a seven-fold variation was detected for this trait (Table 1).  

Lactic acid formation is, in fact, a metabolic hallmark of L. thermotolerans, but its 

physiological role and underlying molecular mechanisms remain poorly understood. From the 

literature, it is unclear whether in L. thermotolerans, as in lactic acid bacteria 16, lactate 

formation via NAD-dependant lactate dehydrogenase (LDH) serves to re-plenish oxidised 

NAD+ depleted through glycolysis (Fig. 7). In yeasts, this is primarily achieved through 

formation of ethanol via the decarboxylation of pyruvate and the subsequent reduction of 

acetaldehyde, i.e. alcoholic fermentation 31. In addition to osmoregulation, glycerol production 

in S. cerevisiae also serves as a redox valve to eliminate excess cytosolic NADH under 

anaerobic conditions and is coupled with acetic acid production 32,33. Information of carbon 

flux and redox balance in L. thermotolerans is surprisingly scarce. Our data, nonetheless, 

highlighted several inter-relationships between metabolites of interest and pH values via 

multiple linear regression analyses and correlations. Most notable were the significant (and 

second largest) proportions of variation in ethanol and glycerol production explained by pH 

values, displaying positive and negative coefficients, respectively (Fig. 5). Moreover, negative 

(albeit weak) correlations between ethanol (despite the previously discussed analytical 

constraints) and both lactate and glycerol were observed, while lactate and glycerol correlated 

differently depending on the L. thermotolerans genetic group (no overall correlations, negative 

within four and positive within one genetic groups; Supplementary Fig. S9, S10, S12). These 

observations potentially suggest that L. thermotolerans strains differ in their metabolic 

strategies to restore the NADH/NAD+ balance. Furthermore, the contribution of lactate, but not 
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glycerol, towards variation in acetate (Fig. 5), and the absence of correlations between glycerol 

and acetate production (Supplementary Fig. S14) indicates that L. thermotolerans, as reported 

for some other non-Saccharomyces species such as T. delbureckii 34, differ from S. cerevisiae 

in their metabolic link between glycerol and acetate production. Altogether, these findings 

invite further investigation of central carbon metabolism in L. thermotolerans, in particular the 

regulatory framework of redox balance, through studies purposely designed to quantify the 

microbial growth and evolution of metabolites in conjunction with transcriptomics.    

 

 

 

Figure 7. Production of the main fermentation (by)products in L. thermotolerans. Hexoses 

are metabolised via glycolysis to pyruvate through multiple enzymatic steps. Pyruvate is 

decarboxylated to acetaldehyde (pyruvate decarboxylase; PDC), which is further reduced to 

ethanol (alcohol dehydrogenase; ADH) or oxidised to acetate (aldehyde dehydrogenase; ALD). 

A proportion of pyruvate is converted to lactate (lactate dehydrogenase; LDH). Glycerol is 

produced via dihydroxyacetone phosphate (glycerol-3-phosphate dehydrogenase; GPD; 
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triosephosphate isomerase; TPI) (adapted from Kegg Pathway Database 52; 

http://www.genome.jp/kegg-bin/show_pathway?lth00010). 

 

In addition to the analysis of primary metabolites, this work, for the first time, 

implemented a metabolomics approach to study volatile footprints of a non-Saccharomyces 

yeast population. Recently, the volatile metabolome of a commercial L. thermotolerans strain 

was explored in the context of inter-specific comparison of several wine-associated non-

Saccharomyces yeasts and a S. cerevisiae control, using a targeted approach either at an early 

fermentation stage 35 or an untargeted approach in wines completed with sequentially 

inoculated S. cerevisiae 22,23. This extensive comparison revealed that, within each matrix (i.e. 

Syrah and Sauvignon Blanc) and fermentation modality (i.e. pure culture and co-culture), the 

modulation of wine volatile profiles was species-dependant 22,23,35. Our data show that a wide 

array of volatile compounds are also affected at a L. thermotolerans strain level (Fig. 3). The 

high-throughput nature of the applied methodology 36 and an untargeted approach allowed us 

to study the volatile compounds that might have otherwise been overlooked, yet they 

significantly differentiated the strains and genetic groups of L. thermotolerans. The best 

examples are the unidentified compounds F22 and F85, which displayed the largest genetic 

group-effect (Fig. 3) and an importance for genetic group discrimination in LDA (Fig. 4), 

respectively. Besides the unidentified compounds, the majority of strain-affected volatile 

compounds represented the main constituents of the so-called secondary, fermentation-derived 

volatile aroma, i.e. esters and higher alcohols 37,38. However, the effect on the primary aroma 

compounds was equally, if not more, pronounced, as some of the most strain-affected 

compounds were in fact grape-derived (i.e. n-hexanol, n-octanol, ß-damascenone) 39. The 

observed variation in volatile composition of wines partially arises from the differential sugar 

consumption levels (Fig. 5) and, potentially, the matrix effect on the headspace partitioning of 
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the aroma compounds 40. However, inter-strain differences in mechanisms involved in the 

biosynthesis of volatile compounds, including enzymatic activities (e.g. esterase, glucosidase, 

acetyltransferase), amino acid metabolism and fatty acid synthesis require further investigation.  

The genotyping information also enabled us to evaluate the phenotypic variation in the 

context of genetic structure in L. thermotolerans, shaped by domestication and allopatric 

differentiation 4. Colonisation of a given ecological niche is known to lead to evolutionary 

differentiation, harnessing adaptation to specific environmental constraints 41. If such a niche 

is anthropic, this process can be seen as domestication, either inadvertent or intentional. 

Signatures of domestication have been confirmed at a genetic level for several other yeast 

species, i.e. S. cerevisiae 42-44  ̧S. uvarum 45 and T. delbrueckii 46. In S. cerevisiae, the genetic 

differentiation of wild and industrial subpopulations (e.g. winemaking, brewing, baking) was 

found to be largely reflected at the phenotypic level, with industry-specific selection for stress 

tolerance, sugar consumption and flavour production 44. Research has, moreover, highlighted 

the ‘degrees’ of S. cerevisiae domestication; it is the strongest in beer strains, which showed 

niche specialisation, i.e. decreased ability to grow in nature-like environments as a result of 

continuous cultivation in mild conditions related to brewing 44. In contrast, wine strains 

displayed superior performance across a range of stressors, encountered both in winemaking 

(e.g. osmotic and ethanol stress) and in nature, likely reflective of the seasonality of 

winemaking practice 44. Our previous plate-based phenotyping of L. thermotolerans strains 

using different carbon sources and physicochemical conditions revealed an overall prolific 

growth of ‘domestic’ groups (harbouring mainly oenological isolates) that might have 

contributed to their intra-continental dispersal 4, and in the current study all strains were capable 

of proliferating in the oenological environment, altogether suggesting an absence of niche 

specialisation. Nevertheless, the distinct phenotypic performance of L. thermotolerans genetic 

groups, driven by strain fermentation performance and production of (non-)volatile 
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metabolites, was apparent. Notably, two major genetic groups mainly comprised of natural 

isolates, ‘Americas’ and ‘Canada trees’, showed an overall inferior fermentation performance 

compared to the ‘domestic’ and ‘mixed’ groups, in terms of lower rate/extent of sugar 

catabolism (Fig. 1, 2). Moreover, the genetic separation of two ‘domestic’ L. thermotolerans 

groups was also evident at a phenotypic level, as their behaviour for many traits was clearly 

contrasting. For instance, ‘Domestic 1’ group formed the lowest concentration of lactate, and 

thus resulted in the highest pH of wines, while ‘Domestic 2’ strains showed superior lactate 

production that induced a pronounced acidification (Fig. 2). This further emphasises the 

applicability of microsatellite genotyping in selection of fit-for-purpose L. thermotolerans 

starter cultures; a ‘Domestic 1’ genotype will likely represent a suboptimal choice if the target 

outcome is (wine) fermentation acidification. Similarly, an overproduction of acetaldehyde and 

ethyl acetate by ‘Americas’ strains (Supplementary Fig. S3) potentially excludes their use in 

wine industry, as the increased concentrations of these compounds are detrimental for wine 

quality 18. Together, these observations provide further support for the occurrence of 

domestication events and geographic differentiation in L. thermotolerans population.  

In conclusion, this study delivers extensive oenological phenomes of 94 previously 

genotyped L. thermotolerans strains, compared for their overall fermentation performance, 

production of primary and secondary metabolites and modulations in acidity. As such, it not 

only paints a comprehensive landscape of intra-specific diversity in L. thermotolerans, but also 

highlights the phenotypic manifestations of the genetic differentiation within this remarkable 

yeast species.  
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Materials and Methods 

Culture conditions and media. The cryo-cultures (-80 °C in 25% glycerol) of 94 L. 

thermotolerans strains (Supplementary Table S1) with pre-determined microsatellite 

genotypes 4 were grown on YPD plates (1% yeast extract, 2% peptone, 2% glucose and 2% 

agar) for 3 days at 24 °C. To establish the inoculation cultures, approximately 107 cells were 

incubated in 900 μL of YPD in each 2 mL well of a 96-well plate agitated on a rotary shaker. 

After 24 h incubation at 24 °C, cell densities were determined by flow cytometry (Guava 

easyCyte 12HT, Merck, NJ, USA) to achieve the final inoculation rates of 106 cell/mL. The 

filter-sterilised (0.2 uM) Chardonnay juice was sourced from the Coombe vineyard (Waite 

Campus, The University of Adelaide, SA). The concentrations of sugars (glucose and fructose; 

~180 g/L) and yeast assimilable nitrogen (~160 mg/L) in the juice were increased to 236.4 g/L 

(equimolar amounts of glucose and fructose) and 300 mg/L using glucose and fructose and 

diammonium phosphate, respectively. The juice had a pH of 3.5 and contained 3.8 g/L of malic 

acid.  

Fermentation trial set-up and monitoring. A custom-made fermentation platform ‘Tee-bot 

v.2.0’, built on EVO Freedom workdeck (Tecan, Männedorf, Switzerland), was used to 

conduct the fermentation trials. The platform allowed for up to 384 fermentations to be 

simultaneously conducted with automatic sampling at user-defined intervals. Each fermenter 

(50 mL) contained a magnetic flea and an airlock with a silicon (sampling) septum on top and 

was fitted into a custom-made sealed rack forming 96-fermenter blocks. The fermenters were 

aseptically supplemented with 25 mL of Chardonnay juice and inoculated with pre-established 

cultures so that each 96-fermenter block contained one biological replicate of L. thermotolerans 

strains, with a row-wise randomisation between the blocks (Supplementary Fig. S2). The 

approximate liquid to headspace ratio was 3:1. Upon inoculation, the triplicate fermentations 

were incubated at 24 °C under anaerobic conditions self-induced upon depletion of the initial 
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oxygen content. The otherwise static fermentations were magnetically stirred during sampling 

(300 rpm for 2.5 h) so as to ensure yeast cell resuspension. The aliquots (200 µL) were 

automatically taken at regular intervals (12 or 24 h) into 300 µL 96-well plates to monitor 

fermentation progress via microbial growth and total sugar consumption. Fermentations were 

deemed arrested when sugar concentrations did not decline for two consecutive sampling time-

points. The final sample was centrifuged (10 min; 3200 × g) in 50 mL tubes and the supernatant 

decanted into 10 mL tubes and stored at 4 °C until further analysis. 

Analytical techniques. Upon sampling, microbial growth was estimated at 600 nm (OD600) 

upon 30 s resuspension in a plate reader (Infinite 200 PRO, Tecan, Männedorf, Switzerland). 

The plates were then centrifuged (3 min; 3200 × g) and appropriately diluted for enzymatic 

determination of total sugar (glucose + fructose) consumption (K-FRUGL kit, Megazyme, 

Ireland). The pH of wines was measured with a CyberScan 1100 pH meter (Eutech instruments, 

Thermo Fischer Scientific, MA, USA) and glucose, fructose, ethanol, glycerol, lactic acid, 

malic acid and acetic acid were analysed by High Performance Liquid Chromatography 

(HPLC) using a modified method by Frayne 47. The Agilent 1100 instrument (Agilent 

Technologies, Santa Clara, CA, USA) was fitted with a HPX-87H column (300 mm × 7.8 mm; 

BioRad, Hercules, CA, USA) and a 96-well plate sampler (G1367A). Before injection (20 µL), 

samples (300 µL) were centrifuged (10 min; 1500 × g) using 0.2 µm 96-well plate filter plates 

(AcroprepTM Advance, Pall Corporation, NY, USA). The eluent was 2.5 mM H2SO4, with a 0.5 

mL/min flow rate at 60 °C for a 35 min run time. Signals were detected using Agilent G1315B 

diode array detector (organic acids) and G1362A refractive index detector (hexoses and 

alcohols). Analytes were quantified using the external calibration curves (R2 > 0.99) in 

ChemStation software (version B.01.03). The determined concentrations of metabolites were 

used to derive the following parameters: consumed sugar (g/L); yields (g/g or mg/g) of ethanol, 

glycerol, acetate and lactate, which were calculated from their respective concentrations (g/L 
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or mg/L) and sugar consumption extent (g/L); fermentation purity (FP) was expressed as a ratio 

of acetic acid (g/L) and ethanol (% v/v) and the extent of fructophilicity (G/F) as a ratio of 

residual glucose and fructose. Concentrations of pyruvic acid in final wines were measured 

enzymatically (K-PYRUV kit) using a ChemWell 2910 Autoanalyser (Megazyme, Ireland). 

Solid phase microextraction – gas chromatography - mass spectrometry (SPME-GC-MS) was 

used to analyse the volatile composition of the wines. Aliquots of the wines (5 mL) were 

analysed in a 1:2 dilution with deionised H2O, with 3 g NaCl added to each SPME vial (20 

mL) prior to sample addition. The samples were spiked with 10 µL of a methanolic mixture of 

five internal standards at the specified concentrations: d13-hexanol (920 mg/L; CDN Isotopes 

Inc., Pointe-Claire, Canada); d11-hexanoic acid (930 mg/L; CDN Isotopes Inc.); d16-octanal 

(82.1 mg/L; CDN Isotopes Inc.); d9-ethyl nonanoate 48 (9.2 mg/L); d3-linalool (1.73 mg/L; 

CDN Isotopes Inc.). SPME-GC-MS was carried out using an Agilent 7890A gas 

chromatograph equipped with a Gerstel (Mülheim an der Ruhr, Germany) MPS2 auto-sampler 

and using an Agilent 5975C mass spectrometer for peak detection and compound identification. 

The auto-sampler was operated in SPME mode utilizing a 2 cm, 23-Gauge, divinylbenzene-

carboxen-polydimethylsiloxane fiber (50/30 m DVB-CAR-PDMS; Supelco, Bellefonte, PA) 

for extraction. Volatile compounds were extracted using agitation (250 rpm) at 40 °C for 30 

mins. Chromatography was performed using a ZB-Wax column (Phenomenex, NSW, 

Australia) of length 30 m, internal diameter 0.25 mm and film thickness 0.25 m using helium 

(Ultrahigh Purity; Air Liquide, SA, Australia) as a carrier gas at 1.2 mL/min with constant 

flow. Volatiles were desorbed from the fibre in the GC-inlet (220 °C) for 1 min and separated 

using the following temperature program: 35 °C for 1.5 min, increasing at 7° C/min to 245 °C, 

held isothermally at 245 °C for 3.5 min. The temperature of the transfer line connecting the GC 

and MS was held at 250 °C. Positive-ion electron impact spectra (70 eV) were recorded in scan 

mode (range: m/z 35-350, scan rate: 4.45 scans/s). 
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GC-MS data processing. The GC-MS data was subjected to multivariate curve resolution 

alternating least squares (MCR-ALS) analysis according to Schmidtke et al. 36 in MATLAB 

R2017b (Mathworks, Natic, MA, USA). The total ion chromatograms were manually inspected 

prior to alignment, resulting in 50 time windows. The pre-processing of chromatograms 

included smoothing and elimination of contamination ions prior to deconvolution. The 90 

features (peaks) retained for further analysis were integrated, and their areas were normalised 

to the geometric mean of the internal standard peak areas. An offset of 1 was applied to each 

feature peak area prior to logarithmic transformation (base10), mean centring and Pareto 

scaling were then applied to the block-scaled peak area matrix to obtain the format used for the 

statistical analysis. The features’ mass spectra were exported in a format compatible with the 

National Institute of Standards and Technology (NIST) Mass Spectral Search Program (demo 

version). The identification was conducted by matching the mass spectra with the NIST-11 

Library, resulting in either confirmed identity (CI), tentative identity (TI) or no identity (NI) of 

the target compounds. The criteria for TI were the mass spectra match scores ≥ 750 and 

corresponding Kovats’ retention indices (RI), and for CI the same criteria as for TI alongside 

a comparison with pure compounds. Tentative and confirmed identification was obtained for 

15 and 31 compounds, respectively. The identification criteria were not met (NI) for the 

remaining 44 compounds, denoted as ‘unknown’. 

Data analysis. Data was analysed with custom-made scripts in R 49. The microbial growth data 

(OD600 readings) were fitted into a logistic model as per Albertin et al. 50, allowing for the 

extraction of four population dynamics parameters: lag phase duration (lag OD, h), the 

maximum growth rate (r OD, maximum number of division/h), the maximum growth (max 

OD), and the growth time without the lag phase (growth time, h). The sugar consumption data 

was fitted using a Local Polynomial Regression (loess function) to estimate the time required 

for consumption of 5% (lag AF, h), 30% without the lag AF (T30, h) and 50% without the lag 
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AF (T50, h) of initial sugars, and maximum sugar consumption rate (max flux; maximum g/L 

sugar consumed per h). Growth and sugar consumption parameters were used to identify 

outliers (outlier function; package psych). Outliers for growth encompassed triplicates of 51-

160 and YJS4206, two replicates of YJS4246, and one replicate of each MS91Z4 and YJS4295. 

For sugar consumption, outliers were triplicates of 51-160 and Y72_132, two replicates of 

YJS4206, and one replicate of YJS4219. The unsupervised learning analysis self-organising 

map (SOM) was used for dimensionality reduction of both sugar consumption and growth 

kinetics (som function, som package 51). SOM was performed on mean kinetics per strain upon 

excluding the outliers, as they may bias the mapping. Several combinations of x-dimension (1-

4) and y-dimension (1-4) of the maps were performed. For each combination, a chi² test was 

performed to determine whether the corresponding SOM allowed for the discrimination of 

strains’ genetic groups. For growth kinetics, the lowest p-value (0.19) was obtained for four 

clusters (x=2, y=2). For sugar consumption kinetics, the lowest p-value (3.10e-5) corresponded 

to a 4-cluster map (x=1, y=4).  

The variation in each measured and derived parameter (114 parameters) was tested 

following two factors: strain factor and genetic group factor as determined in Hranilovic et al. 

4. For each parameter, the factor effect was tested by either ANOVA (to estimate the percentage 

of variation explained by each factor) or Kruskal-Wallis (KW) to determine the significance 

groups (R package agricolae). For both factors and both analyses, the p-values were corrected 

for multiple tests (p.adjust function, Benjamini & Hochberg correction). LDA was performed 

using lda function (R package MASS). Since collinear variables may blur the analysis, 

combined variables (e.g. G/F, yields) were excluded and the data matrix for LDA thus 

contained 282 rows (experiments) and 107 variables. A classification algorithm was used 

(random forest implemented on cforest function, R package party) to identify which variables 

accounted the most for genetic group discrimination, and the importance of each variable was 
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computed using the varimp function (R package party). Multiple linear regression analysis was 

performed to examine the relationships between parameters of interest and the remaining 

variables. An initial model was performed (lm function) containing all explaining variables, 

followed by a stepwise algorithm (step function, mode in both direction), which was used to 

choose a model based on the Akaike Information Criterion (AIC). Correlations between 

metabolites of interest were assessed using Spearman’s test. 
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Supplementary Table 1. List of the studied L. thermotolernas strains. Strains of different geographic and isolation niches were divided into nine genetic 

groups according to Hranilovic et al. (2017).  

Strain Source Isolation location Isolation niche Genetic group References 

11/2-112 University of Debrecen Slovakia, Mala Trna grapes, mummified Mix Europe/N. America 2, 5 

11/Z-1 University of Debrecen Slovakia, Mala Trna grapes, mummified Mix Europe/N. America 2, 5 

14/1/Z-2 University of Debrecen Hungary, Erdöbénye grapes, mummified Mix E. Europe 2, 5 

2/2/Z-8 University of Debrecen Hungary, Sárazsadány grapes, mummified Mix Europe/N. America 2, 5 

5/1/Z-7 University of Debrecen Hungary, Vinicky grapes, mummified Mix Europe/N. America 2, 5 

50-15 Phaff YCC USA, California  Drosophila pseudoobscura Americas 2 

51-160 Phaff YCC USA, California Drosophila azteca Americas 2 

51-171 Phaff YCC USA,  California Drosophila pseudoobscura Hawaii/California 2 

60-260 Phaff YCC USA, California 
Aulacigaster sp.on Ulmus carpinifolia 

exudate 
Americas 2 

61-245 Phaff YCC USA, California Aulacigaster sp. Americas 2 

61-518 Phaff YCC USA, California Drosophila melanogaster Americas 2 

68-140 Phaff YCC USA, California bees Hawaii/California 2 

72-132 Phaff YCC Hawaii, Ahumoa Myoporum sandwicensexudate Hawaii/California 2 

72-137 Phaff YCC Hawaii, Ahumoa Myoporum sandwicensexudate Hawaii/California 2 

8/2/Z-3 University of Debrecen Slovakia, Černochov grapes, mummified Mix Europe/N. America 2, 5 

8/Z-1 University of Debrecen Slovakia, Černochov grapes, mummified Mix E. Europe 2, 5 

9/1/Z-4 University of Debrecen Slovakia, Mala Trna grapes, mummified Mix E. Europe 2, 5 

AWRI 2009 AWMCC 
Australia, South 

Australia 
grapes Domestic 1 2 

CBS 10516 CBS-KNAW  Ukraine Quercus sp. exudate Europe oak/France grapes 2 
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CBS 10517 CBS-KNAW  Ukraine Quercus sp. exudate Other 2 

CBS 10518 CBS-KNAW  Ukraine Quercus sp. exudate Mix E. Europe 2 

CBS 137 CBS-KNAW  Netherlands date Domestic 1 1, 2 

CBS 2860 CBS-KNAW  Italy, Sardinia grape must Domestic 1 1, 2 

CBS 2907 CBS-KNAW  South Africa soil Domestic 2 1, 2 

CBS 5464 CBS-KNAW  Australia cotton seed Hawaii/California 2 

CBS 6292 CBS-KNAW  Australia na Europe oak/France grapes 2 

CBS 6340T CBS-KNAW  Russia mirabelle plum conserve Domestic 1 1, 2, 3 

CBS 6467 CBS-KNAW  Japan tree exudate Other 2 

CBS 7772 CBS-KNAW  Brazil Uca sp.  Americas 1, 2 

CL 41 University of Leon Spain grapes Domestic 2 2 

CL 43 University of Leon Spain grapes Hawaii/California 2 

CONCERTO™ CHR Hansen 'Mediterranean country' na Domestic 1 2 

CRBO L0672 CRBOeno France, Bordeaux grapes, fermentation Mix Europe/N. America 2 

DBVPG 10092 DBVPG Algeria soil, apple orchard Domestic 2 2 

DBVPG 2551 DBVPG Italy, Piemonte wine cv. Barbera Domestic 2 1, 2 

DBVPG 2700 DBVPG Spain, La Mancha  grapes cv. Airen  Mix Europe/N. America 1, 2 

DBVPG 3464 DBVPG Spain, La Mancha grapes Domestic 1 1, 2 

DBVPG 3466 DBVPG Spain, La Mancha grapes Domestic 1 1, 2 

DBVPG 3469 DBVPG Spain, La Mancha grapes Mix Europe/N. America 1, 2 

DBVPG 4035 DBVPG ex Yugoslavia grapes, must Domestic 1 1, 2 

DBVPG 6322 DBVPG Italy grapes Domestic 2 2 

DBVPG 6326 DBVPG Italy grapes, raisins Domestic 2 2 

Fin. 89-2 na Finland Quercus sp.exudate Europe oak/France grapes 1, 2, 3 

FRI10C.1 NCYC  UK, Fritham Quercus sp. Europe oak/France grapes 2, 4 

HU 2511 BOKU Austria grapes Domestic 2 2 
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ISVV Ltyq25 ISVV France, Sauternes grapes, high sugar must Europe oak/France grapes 2 

ISVV Ltyq3 ISVV France, Sauternes grapes, high sugar must Europe oak/France grapes 2 

ISVV Ltyq36 ISVV France, Sauternes grapes, high sugar must Europe oak/France grapes 2 

JCB1 ISVV France, Sauternes grapes, high sugar must Domestic 1 2 

KEH.34.B.3 na USA, Missouri grapes, fermentation Canada trees 1, 2 

LEVULIA® ALCOMENO AEB France, Burgundy  grapes, fermentation Europe oak/France grapes 2 

LL12-031 LL Canada Quercus sp.tree bark Canada trees 2 

LL12-040 LL Canada Acer sp. bark Mix Europe/N. America 2 

LL12-041 LL Canada Quercus sp.bark Mix Europe/N. America 2 

LL12-056 LL Canada planted Quercus sp.bark Canada trees 2 

LL13-038 LL USA, Massachusetts Quercus sp.bark Mix Europe/N. America 2 

LL13-189 LL 
Canada, New-

Brunswick 
Quercus sp.bark Canada trees 2 

LL13-194 LL 
Canada, New-

Brunswick 
Quercus sp.bark Canada trees 2 

MB10D.1 NCYC  France, Montbarri Quercus sp. Europe oak/France grapes 2, 4 

MUCL 31341 MUCL Italy wine Domestic 1 1, 2 

MUCL 31342 MUCL Italy wine Domestic 1 2 

MUCL 47720 MUCL Italy wine Domestic 1 2 

NCAIM Y.00775 NCAIM Hungary, Babat Carpinus betulu exudate Mix Europe/N. America 2 

NCAIM Y.00798  NCAIM Hungary, Csikóváralja brown rotten Quercus sp. Mix Europe/N. America 2 

NCAIM Y.00873 NCAIM Hungary, Budapest 
rotten material of a cavity of Betula 

pendula 
Mix E. Europe 2 

NCAIM Y.01703  NCAIM Hungary, Nagyeged grapes Mix Europe/N. America 2 

NRLL Y-2193 NRRL/ARS  USA, California Drosophila pseudoobscura Americas 2 

NRLL Y-27329 NRRL/ARS  USA, West Virginia grapes Domestic 2 2 
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NZ156 CRPR New Zealand grapes cv. Chardonnay  Domestic 1 2 

OCK6C.1 NCYC  UK, Ocknell Quercus sp. Europe oak/France grapes 2, 4 

OSU A OSU USA, Oregon grapes Mix Europe/N. America 2 

PLU5B.1 NCYC  UK, East Sussex Quercus sp. Europe oak/France grapes 2, 4 

PYR14B.1 NCYC  Greece, Pyradikia  Quercus sp. Domestic 1 2, 4 

T 13/17 F 
University of the 

Republic 
Uruguay grapes cv. Tannat  Domestic 2 2 

TAX9D.1 NCYC  Greece, Taxiarchis Quercus sp. Mix Europe/N. America 2, 4 

UNIFG 16 UNIFG Italy wine Domestic 2 2 

UNIFG 17 UNIFG Italy wine Domestic 2 2 

UNIFG 18 UNIFG Italy wine Domestic 2 2 

UNIFG 22 UNIFG Italy wine Domestic 2 2 

UNIFG 26 UNIFG Italy wine Domestic 1 2 

UNIFG 28 UNIFG Italy wine Domestic 2 2 

UNIFG 32 UNIFG Italy wine Domestic 2 2 

UWOPS 79-110 UWOPS Canada, Ontario black knot, Prunus virginiana Canada trees 1, 2 

UWOPS 79-164 UWOPS Canada, Ontario black knot, Prunus virginiana Canada trees 1, 2 

UWOPS 79-195 UWOPS Canada, Ontario black knot, Prunus virginiana Canada trees 1, 2 

UWOPS 83-1097.1 UWOPS Cayman Islands black knot, Prunus virginiana Americas 1, 2, 3 

UWOPS 83-1101.1 UWOPS Cayman Islands Gitona americana, Opuntia stricta Americas 1, 2 

UWOPS 85-312.1 UWOPS USA, Arizona Drosophila carbonaria, Prosopis juliflora Americas 1, 2 

UWOPS 85-51.1 UWOPS USA, Florida Opuntia cubensis Americas 1, 2 

UWOPS 90-10.1 UWOPS Bahamas, Exumas Cays Columnar cactus Americas 1, 2 

UWOPS 91-910.1 UWOPS Hawaii, Ahumoa flux (pink), Myoporum Hawaii/California 1, 2 

UWOPS 91-912.1 UWOPS Hawaii, Ahumoa flux (white), Myoporum Hawaii/California 1, 2 

UWOPS 94-426.2 UWOPS Mexico, Jalisco distillery, agave must Domestic 1 1, 2 
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Yal. 87-1 na Russia, Crimea  Quercus sp. exudate Europe oak/France grapes 2, 3 

Phaff YCC – Phaff Yeast Culture Collection, University of California, Davis, USA;   AWMCC –  AWRI Wine Microorganism Culture Collection, Australia; CBS-KNAW – Centraalbureau 

voor Schimmelcultures – Koninklijke Nederlandse Akademie van Wetenschappen, Netherlands; CRBOeno - Centre de Ressources Biologiques OEnologie,  France;  DBVPG   The Industrial 

Yeasts Collection DBVPG, Italy;  NCYC –  National Collection of Yeast Cultures, UK;, Italy; BOKU – Universität für Bodenkultur Wien, Austria; ISVV – Institut des Sciences de la Vigne 

et du Vin, France;  LL – Landry Lab, Canada; MUCL – Mycothèque de l’Université catholique de Louvain, Belgium; NCAIM – National Collection of Agricultural and Industrial 

Microorganisms, Hungary; NRRL/ARS – NRRL Agriculture Research Service Culture collection, USA; CRPR –  Centre de Recherche Pernod-Ricard, France; OSU – Oregon State 

University, USA; UNIFG – University of Foggia; UWOPS –  Culture Collection of the University of Western Ontario; na – not available; [1] Freel, K. C., Friedrich, A., Hou, J. & Schacherer, 

J. Population genomic analysis reveals highly conserved mitochondrial genomes in the yeast species Lachancea thermotolerans. Genome Biol. Evol. 6, 2586-2594, doi:10.1093/gbe/evu203 

(2014); [2] Hranilovic, A., Bely, M., Masneuf-Pomarede, I., Jiranek, V. & Albertin, W. The evolution of Lachancea thermotolerans is driven by geographical determination, anthropisation 

and flux between different ecosystems. Plos One 12, e0184652, doi:10.1371/journal.pone.0184652 (2017); [3] Naumova, E. S., Serpova, E. V. & Naumov, G. I. Molecular systematics of 

Lachancea yeasts. Biochemistry (Moscow) 72, 1356-1362 (2007); [4] Robinson, H. A., Pinharanda, A. & Bensasson, D. Summer temperature can predict the distribution of wild yeast 

populations. Ecol. Evol. 6, 1236-1250 (2016); [5] Sipiczki, M. Overwintering of vineyard yeasts: Survival of interacting yeast communities in grapes mummified on vines. Front. Microbiol. 

7, 212, doi:10.3389/fmicb.2016.00212 (2016).
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Supplementary Table 2. Analysed volatile compounds in L. thermotolerans wines displaying 

significant (p-value < 0.05) and non-significant strain effect divided into chemical classes. The 

tentative identification (TI) was accomplished via corresponding Kovats' retention indices (RI) 

obtained with an equivalent stationary phase (in italics) and/or mass spectra match scores ≥ 

750, and confirmed (confirmed identification; CI) via comparison with pure compounds.  The 

unknown compounds (no identification, NI) are numbered based on the chromatographic 

elution profile.  

No. Compound Formula CAS Kovats' RI  Identification 

Significant strain effect 

  Alcohols         

1 butanol C4H10O 71-36-3 1143 CI 

2 isobutanol C4H10O 78-83-1 1089 CI 

3 isoamyl alcohol C5H12O 123-51-3 1222 CI 

4 2-methyl-1-butanol C5H12O 137-32-6 1219 CI 

5 hexanol C6H14O 111-27-3 1349 CI 

6 3-methyl-1-pentanol C6H14O 589-35-5 1334h TI 

7 2-ethyl-1-hexanol C8H18O 104-76-7 1483i TI 

8 octanol C8H18O 111-87-5 1560 CI 

9 2-phenylethanol C8H10O 60-12-8 1901 CI 

10 4-methyl-benzenemethanol C8H10O 589-18-4 1967a TI 

11 nonanol C9H20O 143-08-8 1647 CI 

12 decanol C10H22O 112-30-1 1755 CI 

           

  Esters         

13 ethyl acetate C4H8O2 141-78-6 882 CI 

14 ethyl propanoate C5H10O2 105-37-3 954 CI 

15 isobutyl acetate C6H12O2 110-19-0 1011 CI 

16 isoamyl acetate C7H14O2 123-92-2 1111 CI 

17 diethyl succinate C8H14O4 123-25-1 1670 CI 

18 amyl lactate C8H16O3 : 6382-06-5   TI 

19 2-phenylethyl acetate C10H12O2 103-45-7 1802 CI 

20 ethyl octanoate C10H20O2 106-32-1 1414 CI 

21 ethyl decanoate C12H24O2 110-38-3 1629 CI 

22 ethyl 9-decenoate C12H22O2 67233-91-4 1688b TI 
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  Acids         

23 4-hydroxy-butanoic acid C4H8O3 591-81-1   TI 

24 hexanoic acid C6H12O2 142-62-1 1860 CI 

25 octanoic acid C8H16O2 124-07-2 2076 CI 

26 decanoic acid C10H20O2 334-48-5 2295 CI 

27 dodecanoic acid C12H24O2 143-07-7 2488 CI 

            

  Aromatic hydrocarbons         

28  1,2,4-trimethyl-benzene C9H12 95-63-6 1277c TI 

29 1-ethyl-2,4-dimethyl benzene C10H14 874-41-9 1348d TI 

30 1,3-bis(1,1-dimethylethyl)-benzene C14H22 1014-60-4   TI 

            

  Aldehydes         

31 acetaldehyde C2H4O 75-07-0 744e TI 

32 4-methyl-benzaldehyde C8H8O 104-87-0 1656f TI 

            

  Norisoprenoid         

33 β-damascenone C13H18O 23726-93-4 1830 CI 

            

  Terpenols         

34 β-citronellol C10H20O 106-22-9 1779 CI 

            

  Ketone         

35 4-methyl-2-heptanone  C8H16O 6137-06-0 1206g TI 

            

  Unknowns         

36-58 

F8, F10, F19, F22, F24, F27, F30, F40, F43, 

F45, F46, F47, F48, F50, F53, F54, F56, F77, 

F80, F83, F85, F86, F90 

      NI 

Non-significant strain effect 

  Alcohols         
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59 propanol C3H8O 71-23-8 1030 CI 

60 3-ethoxy-1 propanol C5H12O2 111-35-3 1377 CI 

61 (Z)-3-hexen-1-ol C6H12O 928-96-1 1396 CI 

            

  Esters         

62 ethyl butanoate C6H12O2 105-54-4 1028 CI 

63 ethyl hexanoate C8H16O2 123-66-0 1592 CI 

            

  Aromatic hydrocarbons         

64 1-ethyl-3-methyl-benzene C9H12 620-14-4 1224c TI 

65 2-ethyl-1,4-dimethyl-benzene C10H14 1758-88-9 1343d TI 

            

  Aldehydes         

66 nonanal C9H18O 124-19-6 1375 CI 

67 2,5-benzaldehyde C9H10O 5779-94-2   TI 

            

  Ketone         

68 2-nonanone C9H18O 821-55-6 1375 CI 

            

  Terpenols         

69 terpineol C10H18O 8006-39-1 1690 CI 

            

  Unknowns         

70-90 

F5, F13, F17, F20, F26, F31, F32, F41, F42, 

F52, F55, F64, F65, F66, F72, F73, F74, F79, 

F81, F84, F87 

      NI 

a Umano, K., Nakahara, K., Shoji, A. & Shibamoto, T. Aroma chemicals isolated and identified from 

leaves of Aloe arborescens Mill. Var. natalensis Berger. J. Agric. Food Chem. 47, 3702-3705 (1999); 

b Zhao, Y., Xu, Y., Li, J., Fan, W. & Jiang, W. Profile of volatile compounds in 11 brandies by 

headspace solid-phase microextraction followed by gas chromatography-mass spectrometry. J. Food 

Sci. 74, 90-99, doi:10.1111/j.1750-3841.2008.01029.x (2009); c Toth, T. Use of capillary gas 

chromatography in collecting retention and chemical information for the analysis of complex 

petrochemical mixtures. J. Chromatogr. A 279, 157-165 (1983); d Umano, K., Hagi, Y., Nakahara, K., 

Shoji, A. & Shibamoto, T. Volatile chemicals identified in extracts from leaves of Japanese mugwort 
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(Artemisia princeps Pamp.). J. Agric. Food Chem. 48, 3463–3469 (2000); e Umano, K., Shoji, A., Hagi, 

Y. & Shibamoto, T. Volatile constituents of peel of quince fruit, Cydonia oblonga Miller. J. Agric. 

Food Chem. 34, 593–596 (1986); f Steullet, P. & Guerin, P. M. Identification of vertebrate volatiles 

stimulating olfactory receptors on tarsus I of the tick Amblyomma variegatum Fabricius (Ixodidae). J. 

Comp. Physiol. A 174, 27-38 (1994); g Canuti, V. et al. Headspace solid-phase microextraction - gas 

chromatography - mass spectrometry for profiling free volatile compounds in Cabernet Sauvignon 

grapes and vines. J. Chromatogr. A 1216, 3012-3022 (2009); h Gurbuz, O., Rouseff, J. M. & Rouseff, 

R. L. Comparison of aroma volatiles in commercial Merlot and Cabernet Sauvignon wines using gas 

chromatography - Olfactometry and gas chromatography - Mass spectrometry. Journal of Agricultural 

and Food Chemistry J. Agric. Food Chem. 54, 3990-3996 (2006); i Karlsson, M. F. et al. Plant odor 

analysis of potato: responce of guatemalan moth to above- and background potato volatiles. J. Agric. 

Food Chem. 57, 5903-5909 (2009).
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Supplementary Figure 1. Genetic relationships between 94 phenotyped 

Lachancea thermotolerans determined using 14 microsatellite markers.
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Supplementary Figure 2. Schematic representation of the L. thermotolerans phenotyping workflow: The cryo-cultures of 94 L. 

thermotolerans strains belonging to nine genetic groups (a) according to Hranilovic et al. (2017) were grown on YPD agar plates and in YPD broth 

to establish the inoculation cultures for Chardonnay grape juice fermentations (b). The triplicate fermentations were set up in ‘Tee-bot v.2.0’ using 

three 96-fermentor blocks (c). Each block contained one biological replicate, with row-wise randomisation between the blocks (indicated with 

orange, green and blue colour). Such randomisation was maintained for all downstream analysis. Fermentations were monitored regularly via 

OD600 and sugar consumption (d). The final wines were analysed for their pH values, and concentrations of organic acids, hexoses and alcohols 

via HPLC (e), and volatile composition via SPME-GC-MS (f). All the measured and derived parameters were subjected to appropriate univariate 

and multivariate statistical analysis (g).

191



 

Supplementary Figure 3. The analysed volatile compounds displaying a significant 

genetic group effect. Dots and bars represent means and standard errors, respectively. Top 

letters represent significance groups as defined by Kruskal-Wallis test (agricolae package, p-

value < 0.05 after Benjamini & Hochberg adjustment for multiple comparisons).   
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Supplementary Figure 4. The importance of all 107 variable subjected to LDA. 
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Supplementary Figure 5. Spearman’s correlation test between the selected metabolites: 

consumed sugar and ethanol.  
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Supplementary Figure 6. Spearman’s correlation test between the selected metabolites: 

consumed sugar and lactic acid. 
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Supplementary Figure 7. Spearman’s correlation test between the selected metabolites: 

consumed sugar and glycerol. 
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Supplementary Figure 8. Spearman’s correlation test between the selected metabolites: 

consumed sugar and acetic acid.  
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Supplementary Figure 9. Spearman’s correlation test between the selected metabolites: 

ethanol and lactic acid. 
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Supplementary Figure 10. Spearman’s correlation test between the selected metabolites: 

ethanol and glycerol.  
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Supplementary Figure 11. Spearman’s correlation test between the selected metabolites: 

ethanol and acetic acid.  
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Supplementary Figure 12. Spearman’s correlation test between the selected metabolites: 

lactic acid and glycerol.  
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Supplementary Figure 13. Spearman’s correlation test between the selected metabolites: 

lactic acid and acetic acid.  
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Supplementary Figure 14. Spearman’s correlation test between the selected metabolites: 

glycerol and acetic acid.  
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CHAPTER 6 

Concluding Remarks and Future Directions 
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6.1. Conclusions

As seen from the increasing number of reports over the last two decades (Figure 1), 

non-Saccharomyces yeasts have become a ‘hot’ topic in oenology. The aim of this work was 

to further understand the potential of different non-Saccharomyces yeasts in managing wine 

ethanol and flavour balance. Four individual studies were designed for this purpose, allowing 

a number of conclusions to be drawn.   

Figure 1. Google Scholar Search results for ‘non-Saccharomyces wine’ query within the last 

two decades (https://scholar.google.com.au/). 

6.1.1. Chemical and sensory profiling of Shiraz wines co-fermented with 

commercial non-Saccharomyces inocula 

The objective for this winemaking trial was to compare the existing non-

Saccharomyces starter cultures in sequential fermentations of Shiraz at two maturity levels. 

This approach was based on previous reports (and manufacturers’ claims) of the positive 
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metabolic contribution of non-Saccharomyces starters to wine chemical and sensory properties. 

In particular, this experiment sought to determine whether non-Saccharomyces starters could 

compensate for the sub-optimal flavour ripeness of earlier-harvested fruit (24 °Brix), but also 

how they would perform at technical ripeness (29 °Brix). Eight yeast treatments trialled in pilot 

scale fermentations included three Torulaspora delbrueckii strains, one strain each of 

Lachancea thermotolerans and Metschnikowia pulcherrima, and an initially un-inoculated 

treatment, which were all inoculated with Saccharomyces cerevisiae after 60 h, as well as a 

commercial blend of two non-Saccharomyces species and a S. cerevisiae, and a S. cerevisiae 

monoculture. The fermentations were regularly monitored for their sugar consumption kinetics, 

and the resultant wines were subjected to comprehensive chemical profiling in terms of basic 

chemistry, volatile profile and phenolic composition, and descriptive sensory analysis. The 

results showed a pronounced matrix-derived modulation of wine profiles, which was reflective 

of the maturity level of the grapes. However, within each harvest date, inoculum-derived 

differences were also apparent as the yeast treatments had a significant impact on a range of 

compositional and, in turn, sensory parameters of the wines. The latter were of particular 

interest. At earlier harvest stage, the wines produced with a S. cerevisiae monoculture were 

perceived as ‘vegetal, ‘acidic’ and ‘bitter’, while certain non-Saccharomyces, in particular T. 

delbrueckii, treatments were related to more favourable sensory attributes (i.e. ‘floral’, ‘red 

fruit’, ‘aroma intensity’, ‘spice’). However, these treatments were related to incomplete 

fermentations in higher ripeness conditions. The protracted or incomplete fermentation kinetics 

were in fact observed with the co-inocula recommended for the use in high sugar and/or low 

acidity grapes, including T. delbrueckii and L. thermotolerans due to their ability to decrease 

volatile acidity and increase total acidity, respectively. Inarguably, sugar levels in grapes at the 

second harvest (i.e. 29 °Brix) were rather extreme because of the unusually warm and 

compressed nature of the 2015 vintage in South Australia (Schelezki et al., 2018), a 
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phenomenon that is becoming increasingly common. Thus, as hypothesised, certain non-

Saccharomyces yeast showed promise in enhancing the quality of wines produced from earlier-

harvested grapes and as such represent a complementary approach in managing wine ethanol 

concentrations. The importance of a suitable yeast choice for high sugar/alcohol fermentation 

was also highlighted, much as the need to develop improved methods to control ethanol levels 

in wines. One approach that has been already explored, but has yet to deliver the strains for the 

industry, is the selection of low-ethanol producing non-Saccharomyces yeasts. The following 

study (Chapter 3) was therefore designed to deliver such strain(s).  

6.1.2. Lower-alcohol wines produced by Metschnikowia pulcherrima and 

Saccharomyces cerevisiae co-fermentations: The effect of sequential inoculation 

timing 

In accord with several previous selection programs targeting lower-ethanol non-

Saccharomyces starters (Contreras et al., 2014, Quiros et al., 2014), a pre-screening of an in-

house microbial culture collection highlighted this phenotype among M. pulcherrima isolates. 

Six M. pulcherrima strains were therefore trialled in fermentations of a synthetic grape juice 

with S. cerevisiae sequentially inoculated after seven days. The best-performing candidate, 

strain MP2, was chosen for further characterisation. This was carried out in both synthetic and 

white grape juice (~255 g/L total sugar), with a progressively delayed S. cerevisiae sequential 

inoculation timing (occurring between three days and the time required for MP2 to consume 

50% of initial sugar). The analysis of main metabolites was undertaken prior to sequential 

inoculations and upon fermentation completion, enabling us to study the evolution of 

metabolites in MP2 alone, and their subsequent modulation in co-cultures. Depending on the 

inoculation delay, MP2 white wines contained between 0.6% and 1.2% (v/v) less ethanol than 
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the S. cerevisiae monoculture, with even larger decreases achieved in a synthetic grape juice. 

The lower-ethanol production of the selected MP2 strain was therefore confirmed in multiple 

conditions. Surprisingly, sugar consumption in MP2 led to the accumulation of an unknown 

UV-detectable metabolite, which was depleted upon S. cerevisiae sequential inoculation. This 

metabolite was identified as fumaric acid via HPLC-MS analysis, suggesting that TCA cycle 

by-products are among the potential carbon sinks in MP2 wines. The MP2 treatments also had 

higher concentrations of glycerol and lower concentrations of acetic acid compared to the S. 

cerevisiae controls. Together, these observation highlighted how little we know, not only about 

the regulation of central carbon metabolism in non-Saccharomyces yeasts, but also about the 

interaction occurring between different yeasts under winemaking conditions. Moreover, the 

analysis of volatile compounds revealed distinct profiles of volatile in the lower-alcohol wines, 

with compositional alterations arising from the S. cerevisiae inoculation delay. No apparent 

aroma off-flavours were detected in the MP2 wines, which were generally characterised by 

increased concentrations of acetate esters, higher alcohols and monoterpenoids. Accordingly, 

the selected and characterised MP2 strain showed promise when used in conjunction with S. 

cerevisiae as a means of modulating ethanol level and balancing flavour profile upon 

fermenting grapes with a high sugar content. The selected strain was delivered to the industry 

partner for further oenological characterisation (UA170889 Material Transfer Agreement 

between BioLaffort and the University of Adelaide).   

6.1.3. The evolution of Lachancea thermotolerans is driven by geographic 

determination, anthropisation and flux between different ecosystems 

The final two studies were carried to better understand the concepts of intra-specific 

diversity among non-Saccharomyces yeasts. Such diversity was apparent in the previous two 
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studies; three tested T. delbrueckii co-inocula showed distinct performance in Shiraz 

vinifcations in the first study, and six M. pulcherrima characterised in the second study also 

differed in their fermentation kinetics and metabolite production. However, another species 

was chosen for the next set of experiments – L. thermotolerans. This yeast harbours several 

metabolic traits that are of value in oenology, especially in the context of climate change. It 

abundantly produces lactic acid (thereby acidifying the fermenting grape juice/must) and can 

also lead to decreased ethanol content and modulated flavour in wines (Jolly et al., 2014). The 

availability of a high quality genome sequence of L. thermotolerans type strain allowed us to 

mine the genome for microsatellites to be used for genotyping of a collection of strains 

catalogued as L. thermotolerans acquired from multiple generous labs and culture collections 

worldwide. The newly-developed 14-microsatellite genotyping method was used to examine 

the relationships between 172 L. thermotolerans strains sourced from both human-related and 

natural habitats. This exercise revealed that the natural isolates were mainly grouped together 

based on their geographic origin (‘wild’ groups: ‘Americas’, ‘Canada trees’, 

‘Hawaii/California’), and separately from those from the anthropic environments (‘domestic’ 

groups: ‘Domestic 1’, ‘Domestic 2’). This observation was strongly suggestive of 

domestication events within the species. Several genetic groups comprised of isolates with 

mixed origins in terms of geography and/or isolation habitat were also differentiated (‘mixed’ 

groups: ‘Mix Eastern Europe’, ‘Mix Europe/North America’, ‘Europe oak/France grapes’). 

Such clustering, validated by several statistical methods (e.g. population structure analysis, 

PCA, AMOVA, F-statistics), indicated that the evolution of L. thermotolerans subpopulations 

is driven by geographic origin (‘wild’ groups), anthropisation (‘domestic’ groups) and flux 

between different ecosystems, presumably mediated by macroorganisms such as insects, birds 

and humans. The genotyping study was complemented with a set of agar plate-based growth 

assays using different carbon sources and physicochemical conditions, so as to test whether the 
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genetic differentiation was mirrored at a phenotypic level. The phenotyping experiment 

revealed a high degree of intra-specific diversity, and an overall prolific growth of the 

‘domestic’ groups across different conditions. Evidence for a narrower ecological adaptation 

was also suggested; e.g. a superior growth of ‘Canada trees’ strains at 8 °C. Thus, the genetic 

differentiation was supported to a degree at a phenotypic level. However, we were intrigued to 

know whether/how this diversity translates into the oenological context. Therefore, the final 

experiment of this project was designed to test this.   

6.1.4. Oenological phenomes of Lachancea thermotolerans show signs of  

domestication and allopatric differentiation 

A subset of 94 previously genotyped L. thermotolerans strains was characterised in 

Chardonnay grape juice (236 g/L sugars, pH 3.5) fermentations. Strains were compared for 

their growth and sugar consumption kinetics, production of volatile and non-volatile 

metabolites and the resultant modulation of pH. The availability of genotyping data for the 

tested strains was valuable not only to ascertain that the phenotypic variability is fully 

representative of the species, but also to study the traits of interest in the context of the 

described genetic structure in L. thermotolerans. All tested strains were capable of proliferating 

and catabolising sugars despite the harsh conditions inherent of winemaking. However, the rate 

and/or extent of sugar consumption was lower for strains belonging to two major ‘wild’ genetic 

groups, i.e. ‘Americas’ and ‘Canada trees’. Significant differences were detected in all 

measured and derived parameters related to production of primary metabolites except ethanol 
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concentrations and yields. Despite the detected variability, the common oenological features 

of L. thermotolerans strains were their glucophilic character, relatively extensive fermentation 

capacity (albeit without completion), low production of acetic acid and formation of lactic acid. 

A seven-fold variation was observed in concentration of lactate, significantly affecting the pH 

of the wines, which ranged between 3.16 - 3.81. Volatile profiles of the wines also differed 

greatly; the strain and group-affected compounds included the common yeast-derived volatiles 

(e.g. esters and higher alcohols), but also a range of grape-derived (e.g. hexanol, ß-

damascenone) and unidentified compounds. Linear discriminant analysis was performed to 

assess whether the obtained metabolic dataset discriminated the genetic groups in L. 

thermotolerans, revealing suitable partitioning of the groups. The separation of groups was 

driven by distinct growth and fermentation kinetics parameters, and production of (non)-

volatile metabolites by the strains. For example, the ‘Americas’ strains showed slower 

fermentation kinetics and overproduction of several potential wine off-flavours (e.g. ethyl 

acetate, acetaldehyde), while the ‘Domestic 1’ and ‘Domestic 2’ groups elicited increases and 

decreases in pH, respectively. Thus, the applicability of microsatellites in marker-assisted 

selection of L. thermotolerans starters suitable for different wine styles was also highlighted. 

Together, these results provided a population-wide insight into the extent of phenotypic 

variability in oenologically-relevant traits in L. thermotolerans, whilst adding support for the 

occurrence of domestication events and allopatric differentiation within this remarkable yeast 

species.  
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6.2. Future directions 

Based on the studies above, further research should cover the following oenological 

and fundamental aspects. 

6.2.1. Oenological aspects 

The findings on the potential of certain non-Saccharomyces yeast treatments to enhance 

the quality of earlier-harvested grapes requires further validation across a range of conditions. 

In particular, it remains to be evaluated if such behaviour will also occur in more pronouncedly 

under-ripe grapes, with potential ethanol concentrations around 10 % (v/v). As several non-

Saccharomyces species (e.g. T. delbrueckii) are generally capable of achieving similar ethanol 

yields without the addition of S. cerevisiae starters, another research avenue could explore the 

use of non-Saccharomyces pure cultures in the production of lower-alcohol wines. Likewise, 

further characterisation of the M. pulcherrima MP2 strain, selected for its ability to decrease 

wine ethanol content in co-cultures with S. cerevisiae, is required to assess its performance in 

non-sterile large-scale fermentations. Sugar consumption in MP2 fermentations led to an 

accumulation of fumaric acid. Given the potentially negative impact of fumarate on lactic acid 

bacteria (Cofran and Meyer, 1970), it remains to be evaluated whether this strain is suitable for 

production of wines destined for malolactic fermentation. In general, the effect of non-

Saccharomyces yeasts on lactic acid bacteria represents another relevant yet poorly studied 

aspect of oenology. Presumably, the lower initial fermentation rates displayed in sequential 

fermentations of non-Saccharomyces and S. cerevisiae could benefit the proliferation of 

simultaneously-inoculated lactic acid bacteria, but this hypothesis remains to be validated. The 

lower-alcohol wines produced with co-cultured MP2 and S. cerevisiae differed greatly from 

the S. cerevisiae control not only in ethanol level, but also in their volatile composition. It 

remains to be investigated how this chemical modulation impacts the sensory properties of the 
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lower-alcohol MP2 wines. Sensory effects of the L. thermotolerans strains also remain to be 

evaluated, especially in the context of abundant lactic acid formation exceeding concentrations 

of 10 g/L. Prior to this, the compatible S. cerevisiae strains and inoculation regimes for 

production of ‘dry’ L. thermotolerans mixed-fermented wines needs to be established and 

tested at an industrial scale.  

6.2.2. Fundamental aspects 

The lack of fundamental understanding of primary and secondary metabolism in 

different non-Saccharomyces species is striking. The knowledge and techniques developed for 

characterising S. cerevisiae are yet to be fully translated into the non-Saccharomyces research 

arena. In this context, further work is required to elucidate a number of phenomena observed 

in our studies and in the literature, including lactic acid formation by L. thermotolerans and 

lower-ethanol production by M. pulcherrima. Labelled isotope flux studies are needed to fully 

evaluate the carbon sinks in yeasts that partially divert carbon from ethanol to other end-

products. The development of transformation systems, that are available for some but not all 

wine-associated non-Saccharomyces (Varela and Borneman, 2017), will not only provide 

greater understanding of metabolic peculiarities of different species, but also aid the 

development of improved starters. In the era of ‘omics’, transcriptomics is to be pursued to 

evaluate the response of different species and strains to (a)biotic stressors, including the effect 

of yeast co-cultures. Implementation of these methods has already begun, delivering 

fascinating results on the mutual metabolic stimulation of non-Saccharomyces and S. 

cerevisiae species (Tronchoni et al., 2017, Curiel et al., 2017), but it is still at its infancy. Yeast 

interactions, indeed, require thorough research. It still remains elusive why some fermentations 

succeed, while others under same conditions fail. For example, in our sequential fermentation 
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trial with six different M. pulcherrima strains, five treatments went to completion. Conversely, 

fermentation with one M. pulcherrima strain arrested, as did the T. delbrueckii treatments in 

higher ripeness Shiraz fermentations. A metabolomics approach should complement such 

studies. Transcriptomics and metabolomics are also to be pursued to understand the 

development of aroma compounds in non-Saccharomyces pure cultures, which can be 

significantly affected at a strain level as seen from the oenological characterisation of L. 

thermotolerans. Finally, full genome sequences are available for hundreds of S. cerevisiae 

strains, but a limited number of non-Saccharomyces representatives have thus far been fully 

sequenced, and for some species reference genomes are still lacking. Whole-genome 

sequencing of the genotyped L. thermotolerans population would offer a powerful dataset to 

study the evolution and ecology of this species. The oenological phenomes of 94 L. 

thermotolerans strains, covering 114 phenotypic traits for each strain tested in triplicate, 

represent an immensely valuable asset for such future studies.    

In the light of Pasteur’s quote ‘There are no such things as applied sciences, only 

applications of science’, the oenological and fundamental approach are in fact inseparable, and 

further research in the non-Saccharomyces field will thus benefit the research community and 

wine industry alike. 
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