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Abstract Deterministic epidemic models are attractive due to their compact
nature, allowing substantial complexity with computational efficiency. This
partly explains their dominance in epidemic modelling. However, the small
numbers of infectious individuals at early and late stages of an epidemic, in
combination with the stochastic nature of transmission and recovery events,
are critically important to understanding disease dynamics. This motivates
the use of a stochastic model, with continuous-time Markov chains being a
popular choice. Unfortunately, even the simplest Markovian S-I-R model – the
so-called general stochastic epidemic – has a state space of order N2, where
N is the number of individuals in the population, and hence computational
limits are quickly reached. Here we introduce a hybrid Markov chain epidemic
model, which maintains the stochastic and discrete dynamics of the Markov
chain in regions of the state space where they are of most importance, and
uses an approximate model – namely a deterministic or a diffusion model –
in the remainder of the state space. We discuss the evaluation, efficiency and
accuracy of this hybrid model when approximating the distribution of the
duration of the epidemic and the distribution of the final size of the epidemic.
We demonstrate that the computational complexity is O(N) and that under
suitable conditions our approximations are highly accurate.
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1 Introduction

Compartmental continuous-time Markov chain models (CTMC)s are of sub-
stantial importance to mathematical epidemiology (Bartlett, 1956; Rand and
Wilson, 1991; Fox, 1993; Grenfell et al, 1998; Keeling et al, 2000; Spagnolo
et al, 2003; Coulson et al, 2004). They capture the stochastic individual–to–
individual nature of disease transmission which is particularly important when
there are small numbers of infectious individuals, such as during the early or
late stages of an epidemic. However, the state space of these models is typically
O(Nd), where d is the number of compartments in the model and N is the
population size. Hence when N is large, it is often more efficient to analyse an
approximation of the CTMC.

Kurtz (1970, 1971) and Barbour (1974, 1976, 1980b,a) established a de-
terministic and a diffusion approximation of suitably-scaled density dependent
Markov population processes which are asymptotic in N . In practice, these
approximations are highly accurate for finite N but are known to be inaccu-
rate if the population of at least one compartment of the underlying CTMC
is close to zero. The hybrid models presented in this paper combine a CTMC
with its associated deterministic or diffusion approximation in such a way as to
appeal to the strengths of both models while also addressing their respective
weaknesses.

We consider the so-called general stochastic epidemic model (Bartlett,
1949, 1956; Bailey, 1950, 1957; Kendall, 1965; Kermack and McKendrick,
1927), otherwise known as the Susceptible–Infectious–Removed (SIR) CTMC,
which is a common representation of the population level dynamics of many
viral infections, where following recovery from the disease, an infectious indi-
vidual is henceforth permanently immune. Our focus will be on approximating
the distribution of the duration of the epidemic and the distribution of the fi-
nal size of the epidemic. The duration of the epidemic is defined as the length
of time before the final infectious individual is removed from the population,
and the final size of the epidemic is defined as the total number of individu-
als who experience an infection (including those who were infected initially)
before the final infectious individual is removed from the population. Jenkin-
son and Goutsias (2012) and Black and Ross (2015) presented highly efficient
approaches for calculating the distribution of the duration of the epidemic
and the final size of the epidemic, respectively, directly from the SIR CTMC.
As the SIR CTMC is a density dependent Markov population process, these
distributions have been studied in detail via the deterministic and diffusion
approximations (Kermack and McKendrick, 1927; Ethier and Kurtz, 2008).

Hybrid models of the SIR CTMC have also generated substantial interest.
In particular, Barbour (1975) presented an asymptotic approximation for the
distribution of the duration of the epidemic similar to our own hybrid fluid
model. The key difference being that Barbour used the dynamics of a branching
process during the early and final stages of the epidemic, whereas our model
uses the dynamics of the CTMC. In addition, an asymptotic approximation
of the distribution of the final size of the epidemic similar to our own hybrid
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diffusion model has been investigated by a number of authors (Andersson and
Britton, 2000; Ball and Neal, 2010; Nagaev and Startsev, 1970; Scalia-Tomba,
1985; Watson, 1980, 1981; Lefèvre, 1990). According to Lefèvre (1990), all
of these previous models use the dynamics of a branching process to model
the sub-critical component of the final size and a Gaussian approximation to
model the super-critical component of the final size. These approaches differ
from our hybrid models because we use CTMC dynamics whenever the number
of infectious individuals is low. For comparison, we compare the accuracy
of our hybrid fluid model and hybrid diffusion model to these asymptotic
approximations in calculating the distribution of the duration of the epidemic
and the distribution of the final size of the epidemic.

Hybrid discrete–continuous approximations of CTMC dynamics have also
been presented by Sazonov et al (2011) and Safta et al (2015). Sazonov et al
(2011) presented a two-stage model for approximating the dynamics of the
SIR CTMC. Their model has the dynamics of a branching process during the
early stages of the epidemic and deterministic dynamics thereafter. Sazonov
et al (2011) used their model to approximate the distribution of the time of the
peak of the outbreak. Safta et al (2015) presented a numerical scheme for ap-
proximating the distribution of CTMC models of chemical reaction networks.
Their approach uses CTMC dynamics for the compartments of the process
which are less than a particular threshold and diffusion dynamics otherwise.
In the context of the SIR CTMC, this means that during the early stages of
the epidemic, the susceptible class has diffusion dynamics while the infectious
class has CTMC dynamics.

As we shall see, the hybrid models we introduce here reduce the complex-
ity of algorithms required to compute distributions of interest from O(N2) to
O(N) in exchange for a minor reduction in accuracy. This enables us to com-
pute an accurate approximation of these distributions in a reasonable amount
of time even for population sizes of order 107.

This paper is organised as follows. Section 2 introduces notation for the SIR
CTMC and presents its fluid limit and diffusion limit approximations. Section 3
introduces the hybrid fluid model and applies it to calculating the distribution
of the duration of the epidemic and the distribution of the final size of the
epidemic. Section 4 introduces the hybrid diffusion model and applies it to
calculating the distribution of the final size of the epidemic. Section 5 discusses
the details of calculating the solutions to the systems of equations which arise
in Sections 3 and 4. Finally Section 6 discusses possible improvements and
extensions.

2 The SIR epidemic model

Let {X (t)}t≥0 denote the SIR CTMC (Bailey (1950)) which takes values (S, I)
from the two-dimensional lattice

X =
{

(S, I) ∈ Z2
+ : S + I ≤ N

}
. (1)
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Let `1 = (−1, 1) and `2 = (0,−1) denote the stochiometries (jumps) of X (t)
and qX(x,x + `j) denote the transition rate from x to x + `j , for j = 1, 2.
Then for all x ∈ X , the positive transition rates of X (t) are:

qX(x,x + `1) =
β

N − 1
SI if x + `1 ∈ X , (2)

qX(x,x + `2) = γI if x + `2 ∈ X , (3)

where β is the effective transmission rate parameter and 1/γ is the average
infectious period of an individual.

2.1 The fluid approximation

Consider the scaled process X (t) /N which takes the scaled values (S/N, I/N),
with (S, I) in X . Under minor technical conditions, the fluid limit theorem
(Theorem 3.1 of Kurtz (1970)) implies that as N → ∞, the scaled process
X (t) /N converges uniformly in probability over finite time intervals to the
unique deterministic trajectory x (t), provided x (0) = X (0) /N . Given an
initial state, the deterministic trajectory x (t) takes values (s, i) from the con-
tinuum [0, 1]2, with s + i ≤ 1, and is the unique solution to the system of
ordinary differential equations (ODE)s

ds

dt
= −βsi, (4)

di

dt
= βsi− γi. (5)

For a finite population, the deterministic trajectory Nx (t) is a working ap-
proximation for the average dynamics of X (t) and is commonly referred to as
its fluid approximation.

2.2 The diffusion approximation

Under minor technical conditions, the diffusion limit theorem (Theorem 3.5
of Kurtz (1971)) implies that

√
N(X (t) /N−x (t)) converges weakly over finite

time intervals to a Gaussian diffusion process as N → ∞, provided x (0) =
X (0) /N . This Gaussian diffusion process has mean value 0 and variance-
covariance matrix Σ(t), where Σ(t) is the unique solution to the system of
ODEs

dΣ

dt
=
(
B + BT

)
Σ + G, (6)

with

B =

[
−βi −βs
βi βs− γ

]
, G =

[
βsi −βsi
−βsi βsi+ γi

]
,

and initial value Σ(0) = (Σi,j(0) = 0, i, j = 1, 2). For a finite population, the
Gaussian diffusion process with mean Nx (t) and variance-covariance matrix
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NΣ(t) is a working approximation for X (t), and we refer to it as the diffusion
approximation.

It is worth noting that the fluid and diffusion approximations of Kurtz
(1970, 1971) are uniform only over finite time intervals and can not be used
to directly approximate the distribution of the duration of the epidemic or
the distribution of the final size of the epidemic. However, see section 11.4 of
Ethier and Kurtz (2008), in particular remark 11.4.2.

3 The hybrid fluid model

In this section we introduce the hybrid fluid model whose joint dynamics in
S(t) and I(t) are determined by either the SIR CTMC or the fluid approxi-
mation, depending on the number of infectious individuals.

3.1 Model formulation

Let {Y (t)}t≥0 denote the hybrid fluid process, which takes values (SY , IY )
from the hybrid discrete-continuous state space Y, which is defined next. For
now, we fix the threshold Î as a constant in {0, 1, . . . , N} and define the state
space Y as the union of YMC and YDE , where

YMC =
{(
SY , IY

)
∈ Z2

+ : SY + IY ≤ N, IY ≤ Î
}

and
YDE =

{(
SY , IY

)
∈ R2

+ : SY + IY ≤ N, IY ≥ Î
}
.

The hybrid fluid process switches dynamics depending on which subset of Y it
is in. In particular, when Y (t) is in the subset YMC it has the dynamics of the
SIR CTMC X (t), and when Y (t) is in the subset YDE it has the dynamics
of the fluid approximation Nx (t). The dynamics of Y (t) at the intersection
of YMC and YDE , denoted T MC , require careful consideration.

According to the fluid dynamics of Y (t) (equation (5)) the rate of change
of IY with respect to time is positive if SY > N/R0, where R0 = β/γ is the

basic reproductive number. This means that if Y (t) hits the state y1 = (SY1 , Î)
in T MC , where SY1 > N/R0, then the fluid dynamics will immediately force
Y (t) out of T MC and into YDE . In contrast, if SY1 ≤ N/R0 then the fluid
dynamics will force Y (t) to remain in its current state until a discrete event
occurs. As such, we define

T MC
1 =

{
(SY , Î) ∈ YMC : SY ∈

{⌊
N

R0

⌋
+ 1, . . . , N − Î

}}
,

as the set of states which force Y (t) to switch from CTMC dynamics to ODE
dynamics and

T2 =

{
(SY , Î) ∈ YDE : SY ∈

[
0,
N

R0

]}
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as the set of states which force Y (t) to switch from ODE dynamics to CTMC
dynamics. We denote the integer components of T2 as T MC

2 which is defined
as the intersection of YMC and T2.

Since the fluid dynamics of Y (t) are deterministic, we can determine which
state in T2 the fluid dynamics terminate in as well as the total duration of the
fluid dynamics, provided the initial state in T MC

1 of the fluid dynamics is
known. A phase-plane analysis of the fluid approximation reveals that if the
hybrid fluid process hits the state y1 in T MC

1 then the process will hit the
state y2 in T2 where the number of susceptible individuals is given by

SY2 (y1) = − N
R0
W
(
−
(
SY1 R0

N

)
exp

(
−S

Y
1 R0

N

))
, (7)

where W(x) denotes the principal branch of the Lambert-W function. In ad-
dition, as the number of susceptible individuals monotonically decreases with
time, the duration of the fluid dynamics is given by the integral

t (y1) =
N

β

∫ SY
2 (y1)

SY
1

{
u

[
1

R0
log

(
SY1
u

)
+

1

N

(
u− SY1 − Î

)]}−1
du. (8)

Similar equations to (7) and (8) are used by Barbour (1974).
When the hybrid fluid process switches from fluid dynamics to CTMC

dynamics a discretisation process must occur before the CTMC dynamics can
resume. As the fluid dynamics only approximate the expected value of the
system, we decided to round the number of susceptible individuals SY2 (y1) as
follows:

round down to bSY2 (y1)c with probability 1−
(
SY2 (y1)−

⌊
SY2 (y1)

⌋)
,

round up to bSY2 (y1)c+ 1 with probability
(
SY2 (y1)−

⌊
SY2 (y1)

⌋)
.

(9)
Once Y (t) enters a state in T MC

2 it resumes CTMC dynamics. However, the
only events which are possible from states in T MC

2 are recovery events.
Figure 1 is a representation of the state space of the hybrid fluid model for

a population of N = 15 individuals and a threshold of Î = 3. The green points
are states from the discrete set YMC , and the continuum YDE is the region
with IY ≥ Î, and SY ≤ N − IY . The state space Y is the union of these two
sets. The sets T MC

1 and T MC
2 are represented by the upward and downward

pointing triangles, respectively. The trajectories of Nx (t) are represented as
the black curves emanating from the set T MC

1 which intersect with T2 in integer
states where the number of susceptible individuals is given by equation (7).
The duration that the process spends on each of these trajectories is calculated
from equation (8) and the final state of the diffusion dynamics is either rounded
up or down. Finally, the arrows in YMC represent the transitions of the CTMC
dynamics.

For the remainder of this section we use the hybrid fluid process to approx-
imate the distribution of the duration of the epidemic and the distribution of
the final size of the epidemic.
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Fig. 1 The state transition diagram of the hybrid fluid process with N = 15 and Î = 3.
The green points are the discrete states from YMC , and the continuum YDE is the set of
states with IY ≥ Î, and SY ≤ N − IY . The upward (downward) pointing triangles are
states from which Y (t) switches from CTMC to fluid (fluid to CTMC) dynamics, which are
contained within the set TMC

1 (TMC
2 ). The black curves emanating from states in TMC

1
are the deterministic trajectories of Nx (t) through YDE .

3.2 Duration of the epidemic

A system of delayed differential equations (DDEs) describing the flow of prob-
ability through the discrete states in YMC is derived by separately considering
the probability flux on three disjoint subsets of YMC . Within each of these
subsets, the flux of probability between states in YMC must be treated differ-
ently due to the way in which probability flows between YMC and YDE . In
the first scenario we consider the set D = YMC \ (T MC

1 ∪ T MC
2 ), on which no

probability flows out of YMC . In the second and third scenarios we consider
the sets T MC

1 and T MC
2 on which probability flows from YMC to YDE and

from YDE to YMC , respectively. The system of DDEs allow us to calculate
the distribution of Y (t) on YMC for t ≥ 0, which we utilise for calculating the
distribution of the duration of the epidemic.

3.2.1 Scenario 1

We begin by defining the probability distribution of the hybrid fluid process
as the vector φY (y ; t) = Pr(Y (t) = y |Y (0) = y0) which denotes the prob-
ability mass that Y (t) is in the state y in YMC at the time t, for t ≥ 0, given
that the initial state of the process is y0 in D. For all y in the set D, the
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probability flux is governed by the forward equations

d

dt
φY (y ; t) =

∑
y′∈YMC

φY (y′ ; t) qX(y′,y). (10)

3.2.2 Scenario 2

Now consider the set of states through which probability flows out of YMC

and into YDE . Since the hybrid fluid process instantly switches from CTMC
dynamics to fluid dynamics when it hits a state in T MC

1 , the flux of probability
into any state in T MC

1 is always equal to the probability flux out. Consequently,
the net flux for any state y in T MC

1 is zero and consequently φY (y ; t) = 0
for all t > 0.

3.2.3 Scenario 3

Now consider the set of states through which probability flows into YMC

from YDE . According to equations (8) and (9) the flux of probability into
the state y1 in T1 at time t is distributed amongst two corresponding states
in T MC

2 at time t + t (y1). Suppose y1 is a state in T MC
1 and y is a state

in T MC
2 . In addition, define Pr(y|y1) as the probability that the hybrid fluid

process switches from fluid dynamics to CTMC dynamics through the state
y, conditioned on switching from CTMC dynamics to fluid dynamics through
the state y1, given by equation (9). Then the flux of probability into the state
y at time t is given by∑

y′∈D
φY (y′ ; t− t(y1)) qX(y′,y1)

∑
y1∈TMC

1

Pr(y |y1),

with the condition that φY (y ; u) = 0 if u < 0.
Since the hybrid fluid process has CTMC dynamics when it is in the state

y, the probability flux when in state y is also influenced by other states in
YMC . Therefore, for all y in T MC

2 , the probability flux is governed by the
system of DDEs

d

dt
φY (y ; t) =

∑
y′′∈YMC

φY (y′′ ; t) qX(y′′,y)

+
∑
y′∈D

φY (y′ ; t− t(y1)) qX(y′,y1)
∑

y1∈TMC
1

Pr (y |y1) . (11)

We solve the system of DDEs (10)—(11) on the discrete set YMC using
a modified version of the Implicit Euler scheme of Jenkinson and Goutsias
(2012). In order to deal with the delayed terms in equation (11) we store the
flux of probability into each state in T MC

1 in a secondary array and after t(y1)
time units have elapsed the probability returns to the system through the
corresponding states in T MC

2 . Under the assumption that t(y1) is the same
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Fig. 2 The distribution of the duration of the epidemic calculated from the CTMC model,
hybrid fluid model, and Barbour’s model for R0 = 1.3 and N = 1000 with one initially
infectious individual.

for all y1 in T MC
1 the exact solution to the system of DDEs (10)—(11) is

available (Yi and Ulsoy, 2006). However, the solution involves computing a
large number of matrix exponentials and is less computationally efficient than
the numerical scheme outlined above.

The probability that the duration of the epidemic is at most t is the sum
over φY (y ; t) for y in A, where A = {(SY , IY ) ∈ YMC : IY = 0} denotes the
set of absorbing states of YMC . For future reference, we define B = YMC \ A
as the set of transient states of YMC . The system of DDEs (10)—(11) is
calculated using Algorithm 1 of Section 5.

3.2.4 Numerical results.

Throughout this section we use a time grid which ranges from 0 to 80 with
a time step of 0.01 because this ensures that the epidemic will be extinct
with high probability before the terminal time (for N ≤ 10000), and that the
implicit Euler scheme of Jenkinson and Goutsias achieves a global L1-error
of O(10−2). We set R0 = 1.3, for which our procedure for determining an

appropriate threshold (inequality (17) in Section 5.2) gives Î = 17.
Figure 2 shows the distribution of the duration of the epidemic calculated

from the CTMC model (green with circles), hybrid fluid model (blue with
squares), and Barbour’s model (Barbour, 1975) (purple with diamonds) for
N = 1000 with one initially infectious individual. The hybrid fluid model
provides an accurate approximation of the distribution of the duration of the
epidemic. Barbour’s model approximates the sub-critical component of the
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Fig. 3 The L1-error and runtime of the distribution of the duration of the epidemic for
the SIR CTMC, hybrid fluid model and Barbour’s asymptotic approximation. The L1-error
of the hybrid fluid model is much better than Barbour’s L1-error for moderate N , and its
runtime is O(N). Here we used R0 = 1.3 for which Î = 17 (inequality (17)), and the initial
state (N − 1, 1).

duration of the epidemic accurately but the hybrid fluid model captures the
super-critical component of the duration of the epidemic more accurately.

Figure 3 shows the runtime of the CTMC model (dotted green with circles)
and the runtime of the hybrid fluid model (dotted blue with squares) across
a range of N with R0 = 1.3. The slope of the line from the hybrid fluid
model is approximately one, which indicates that the asymptotic runtime for
using Algorithm 1 on the hybrid fluid model to calculate the distribution of
the duration of the epidemic is of O(N), corresponding to the number of
states in the state space of the hybrid fluid model which is approximately
ÎN . Irrespective of the population size, Barbour’s asymptotic approximation
is effectively instantaneous to compute so its runtime has not been included
in Figure 3.

Figure 3 also shows the L1-error of the hybrid fluid model (solid blue with
squares) and the L1-error of Barbour’s model (solid purple with diamonds).
The L1-error of the hybrid fluid model shows a significant improvement over
Barbour’s model for N less than 103 but appears to be consistent with Bar-
bour’s model for larger N . The L1-error of the hybrid fluid model appears
to increase with N which suggests that the main source of disagreement be-
tween the CTMC model and the hybrid fluid model is the length of time over
which the CTMC is approximated by the fluid model. Although the L1-error
of the hybrid fluid approximation can generally be improved by increasing the
threshold Î, the hybrid fluid approximation does not show a significant im-



Hybrid Markov chain models of S-I-R disease dynamics 11

provement over Barbour’s asymptotic approximation unless Î is large enough
that the probability of Y (t) hitting the subset YDE is insignificant.

3.3 Final size of the epidemic

The distribution of the final size of the epidemic can be deduced from the
system of DDEs (10)—(11) by numerically integrating the system until such
a time that the epidemic is almost surely over. This approach, however, is not
the most computationally efficient. The distribution of the final size of the
epidemic is deduced from the hitting distribution of the embedded jump chain
of the hybrid fluid process on the absorbing set A.

Let {Yn}n≥0 denote the embedded jump process of Y (t) which takes val-
ues in YMC and denote by pY (y,y+`j) the probability that the jump process
transitions from the state y to y + `j , for j = 1, 2. For all y in YMC \ T MC

1 ,
the positive jump probabilities are:

pY (y,y + `1) =
βS

βS + γ(N − 1)
if y + `1,y + `2 ∈ YMC ,

pY (y,y + `2) =
γ(N − 1)

βS + γ(N − 1)
if y + `1,y + `2 ∈ YMC ,

pY (y,y + `2) = 1 if y + `1 /∈ YMC and y + `2 ∈ YMC ;

and for all y in T MC
1 the positive jump probabilities are given by equation (9).

Fix y0 in B and let hY (y) denote the probability that Yn ever hits the
state y in YMC , given the initial state y0. Then the hitting probabilities hY (y)
for all y in YMC are the minimal non-negative solution to the system of linear
equations

hY (y) =
∑

y′∈YMC

hY (y′) pY (y′,y), (12)

with hY (y0) = 1. The distribution of the final size of the epidemic, given the
initial state y0, is the (N +1)×1 vector with entries hY (y) for all y in A. The
solution to the system of linear equations (12) is calculated using Algorithm 1.

3.3.1 Numerical results.

Figure 4 shows the distribution of the final size of the epidemic calculated from
the CTMC model (green with circles) and the hybrid fluid model (blue with
squares) for R0 = 1.3 and N = 1000 with one initially infectious individual.
The hybrid fluid model approximates the sub-critical component of the final
size accurately but fails to approximate the super-critical component of the
final size distribution.

Figure 5 shows the runtime of the CTMC model (dotted green with circles)
and the runtime of the hybrid fluid model (dotted blue with squares) across a
range of N for R0 = 3. The asymptotic slope of the curve of the runtime for the
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hybrid fluid model is approximately one, which indicates that the asymptotic
runtime of Algorithm 1 on the hybrid fluid model is O(N).

Figure 5 also shows the L1-error of the hybrid fluid model (solid blue with
squares). The L1-error of the hybrid fluid model appears to converge to a
value around 66% of the largest possible L1-error, suggesting that Y (t) ap-
proximates well the 1/R0 proportion of sample paths which become extinct
close to SY = N , but fails to approximate the 1− 1/R0 proportion of sample
paths which become extinct near SY = 0. This confirms our intuition that the
source of disagreement between Y (t) and X (t) propagates from the time inter-
val over which the fluid approximation is used to approximate the underlying
CTMC. Although Î = 17 has been identified as a reasonable threshold (in-
equality (17) in Section 5.2), the asymptotic error may generally be decreased
by selecting a larger threshold. However, the L1-error is fairly insensitive to
changing the threshold.

The hybrid fluid model approximates the time that the SIR CTMC spends
above the threshold quite well, but the variability in the S component of the
model when switching from fluid dynamics to CTMC dynamics, not captured
by the fluid approximation, is important in determining the final size distri-
bution.

4 The hybrid diffusion model

We now introduce the hybrid diffusion model which uses the diffusion ap-
proximation to capture the fluctuations of the underlying CTMC about the
deterministic trajectory of the fluid approximation. The hybrid diffusion model
is constructed in a similar way to the hybrid fluid model except that it uses
the diffusion approximation in place of the fluid approximation. The hybrid
diffusion model is used to calculate the distribution of the final size of the
epidemic.

4.1 Model formulation

Let {Z (t)}t≥0 denote the hybrid diffusion process, which takes values (SZ , IZ)
in the set Y. As with the hybrid fluid process, the hybrid diffusion process
switches dynamics depending on which subset of Y it is in. In particular,
when Z (t) is in the subset YMC it has the dynamics of the SIR CTMC X (t),
and when Z (t) is in the subset YDE it has the dynamics of the diffusion
approximation. The dynamics of the hybrid diffusion process at the interface
T are considered in more detail.

Since the fluid approximation provides the mean drift of the diffusion ap-
proximation, if Z (t) hits a state in T MC

1 there is a high probability that the
diffusion dynamics will immediately force Z (t) out of T MC

1 and into YDE .
Due to the stochastic nature of the diffusion dynamics, if Z (t) is in YDE , then

there is a non-zero probability that Z (t) will hit any state (SZ , Î) such that
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SZ is in R. In which case (i) if SZ > N/R0 then there is a high probability
that Z (t) will be forced back into YDE , and (ii) if SZ ≤ N/R0 then there is
a high probability that Z (t) will become trapped close to the boundary T2. It
follows that we allow the hybrid diffusion process to switch between CTMC
dynamics and diffusion dynamics upon hitting a state in T MC

1 and force Z (t)
to switch from diffusion dynamics to CTMC dynamics upon hitting a state in
T2.

As we are only using the hybrid diffusion process to approximate the dis-
tribution of the final size of the epidemic, we only need to use the diffusion
dynamics of Z (t) to calculate the jump probabilities of the states in T MC

1 .

Let z1 = (SZ1 , Î) be a state in T MC
1 , then it follows from Ethier and Kurtz

(2008) that the next hitting distribution of Z (t) on the set of states with Î
infectious individuals is normally distributed with mean SY2 (z1) (equation (7))
and variance

Σ1,1 (t(z1)) +
Σ2,2 (t(z1))(

1− 1/
(
R0 SY2 (z1)

))2 +
2Σ1,2 (t(z1))

1− 1/
(
R0 SY2 (z1)

) , (13)

where Σ is governed by equation (6) and t (z2) is given by equation (8). Let
F (u ; z1) denote the cumulative density function of this hitting distribution,
given that Z (t) switched from CTMC dynamics to diffusion dynamics through

the state z1 in T MC
1 . Then for all z1 = (SZ1 , Î) in T MC

1 and z = (SZ , Î) in
T MC , the positive jump probabilities are

pZ(z1, z) =


F
(
1
2 ; z1

)
if SZ = 0,

F
(
SZ + 1

2 ; z1
)
− F

(
SZ − 1

2 ; z1
)

if 1 ≤ SZ ≤ SZ1 − 2,

1− F
(
SZ1 − 1

2 ; z1
)

if SZ = SZ1 − 1.

(14)

To account for the event that Z (t) hits a state z = (SZ , Î) in T MC
1 from

a state in YDE , we define the following switching rule: (i) with probability
γ(N−1)/(γ(N−1)+βSZ), Z (t) switches back to CTMC dynamics and has an
instantaneous recovery event, and (ii) with probability βSZ/(γ(N−1)+βSZ),
Z (t) restarts diffusion dynamics from the state z.

4.2 Final size of the epidemic

Let {Zn}n≥0 denote the embedded jump process of Z (t) which takes values in
YMC . Then, for all z ∈ YMC \ T MC

1 the positive jump probabilities of Zn are
identical to those of Yn, and for all z ∈ T MC

1 the positive jump probabilities
are given by equation (14), in conjunction with the switching rule.

Fix z0 in B, and let hZ(z) denote the probability that Zn ever reaches the
state z in YMC , given the initial state z0. Then the hitting probabilities hZ(z)
for all z in YMC are the minimal non-negative solution to the system of linear
equations

hZ(z) =
∑

z′∈YMC

hZ(z′) pZ(z′, z), (15)
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Fig. 4 The distribution of the final size of the epidemic calculated from the CTMC, hybrid
fluid model, hybrid deterministic model, and Scalia–Tomba for R0 = 1.3 and N = 1000 with
one initially infectious individual.

with hZ(z0) = 1. The distribution of the final size of the epidemic, given the
initial state z0, is the (N + 1)× 1 vector with entries hZ(z), for all z in A.

4.2.1 Numerical results.

Figure 4 shows the distribution of the final size of the epidemic calculated from
the hybrid diffusion model (red with triangles) and Scalia-Tomba (1985) (pur-
ple with diamonds). The hybrid diffusion model and Scalia–Tomba’s model
approximate the sub-critical component of the final size accurately but nei-
ther model succeeds in fully describing the non-normality exhibited by the
super-critical component of the epidemic.

Figure 5 shows the runtime of the hybrid diffusion model (dotted ochre
with triangles). The asymptotic slope of the runtime line is approximately
one, which indicates that the asymptotic runtime of Algorithm 1 for the hybrid
diffusion model isO(N). The time difference between the runtime of the hybrid
fluid model and the hybrid diffusion model corresponds to the time difference
in calculating the hitting distributions of equations (9) and (14). Irrespective
of N , Scalia–Tomba’s approximation is effectively instantaneous to compute
so its runtime has not been included in Figure 5.

Figure 5 also shows the L1-error of the hybrid diffusion model (solid ochre
with triangles) and Scalia–Tomba’s model (solid purple with triangles). As N
increases, the L1-error of the hybrid diffusion approximation decreases achiev-
ing a minimum of a constant of order 10−2, thereby showing a significant
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Fig. 5 The L1-error and runtime of the distribution of the final size of the epidemic for
both hybrid models and Scalia’s asymptotic approximation, compared to the SIR CTMC.
The error in the hybrid fluid model and the hybrid diffusion model is at-best constant of
O(100) and O(10−3), respectively. The asymptotic slope of the runtime of Algorithm 1 on
the hybrid models suggest that they are of computational complexity O(N) compared to

the O(N2) complexity of the Black and Ross algorithm. Here we used R0 = 1.3 and Î = 17
with the initial state (N − 1, 1).

improvement over the accuracy of the hybrid fluid model. Although the L1-
error can generally be decreased by increasing the threshold, the hybrid dif-
fusion model does not achieve a significant improvement over Scalia–Tomba’s
approximation unless the probability that Z (t) hits a state in YDE is very
small.

5 Numerical implementation

This section presents the algorithm we use to calculate the distribution of the
duration of the epidemic and the distribution of the final size of the epidemic
from the systems of equations presented in Sections 3 and 4, and describes our
approach to calculating a suitable value for the threshold Î.

5.1 Degree of advancement representation

The SIR CTMC is known as a population process because its state space is
defined using the population numbers S and I. Alternatively, the degree-of-
advancement (DA) representation (Jenkinson and Goutsias, 2012; Black and
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Ross, 2015) is a counting process which tracks the number of infection and
recovery events.

Let {N (t)}t≥0 denote the DA representation of either the hybrid fluid
process or the hybrid diffusion process which takes values (NI , NR) from the
state space N . The DA numbers NI and NR are uniquely identified from the
population numbers S and I since

NI = N − S, NR = N − S − I.

We define the DA sets N , NMC and N T
1 as the DA representations of the

population sets Y, YMC and T MC
1 , respectively.

The DA representation is more amenable to numerical analysis than the
population representation because the DA numbers NI and NR are monotoni-
cally increasing in time. Thus, in order to calculate a quantity for a particular
state, one only needs to calculate the same quantity for all states leading up-
to that state. For example, in order to calculate the hitting probability of the
state (NI , NR) in NMC , one only needs to calculate the hitting probability of
every state (N ′I , N

′
R) in NMC such that (N ′I , N

′
R) 6= (NI , NR) with N ′I ≤ NI

and N ′R ≤ NR.
We order the states in NMC such that the state (NI , NR) precedes the

state (N ′I , N
′
R), denoted (NI , NR) � (N ′I , N

′
R), if and only if

NI −NR < N ′I −N ′R or NI −NR = N ′I −N ′R and NI > N ′I . (16)

We index each state nk in NMC by k = 1, 2, . . . , |NMC | such that n1 � n2 �
· · · � n|NMC |. Define δk1 = N − NI + NR and δk2 = N + 2 − NI + NR
as the change in the index k due to an infection event or a recovery event,
respectively. We now describe how we use the DA representation to calculate
the distribution of the duration of the epidemic and the distribution of the
final size of the epidemic.

In order to calculate the distribution of the final size of the epidemic we
must calculate the solution to the systems of linear equations (12) and (15).
Let ϕ be the |NMC | × 1 vector whose kth element is the probability of ever
hitting the state nk in NMC , for k = 1, 2, . . . , |NMC |. In addition, let f(k, k′)
be the jump probability from the state nk to nk′ (with f(k, k) = 0), for
k, k′ = 1, 2, . . . , |NMC |. Then, if ϕ is initialised as the distribution of N (0)
on NMC , the distribution of the final size of the epidemic is calculated by
iteratively updating the entries of ϕ via Algorithm 1, until the algorithm
terminates.

In order to calculate the distribution of the duration of the epidemic we
must iteratively solve the system of linear equations (10)—(11) over a grid of
time points (Jenkinson and Goutsias, 2012). This can be achieved using Algo-
rithm 1 by simply re-defining ϕ and f(k, k′). Let ϕ be the |NMC | × 1 vector
whose kth element is the probability mass of the state nk in NMC at time
t+∆t, for k = 1, 2, . . . , |NMC |. In addition, let f(k, k′) be the transition rate
from the state nk to nk′ , multiplied by ∆t, (with f(k, k) =

∑
k′ 6=k f(k, k′)), for

k, k′,= 1, 2, . . . , |NMC |. Then, if ϕ is initialised as the distribution of N (t),
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the distribution of N (t+∆t) is calculated by iteratively updating the entries
of ϕ via Algorithm 1, until the algorithm terminates.

When calculating the distribution of the final size of the epidemic from
the hybrid diffusion model, we reduce the computational over-head of Al-
gorithm 1 by only calculating the mean and variance of the hitting distri-
bution (14) for a subset of states in T MC

1 , and then extrapolating to the
rest of the states in T MC

1 using a linear interpolant. More specifically, let
θ(y1) =

(
SY2 (y1),Σ1,1(t(y1)),Σ1,2(t(y1)),Σ1,1(t(y1))

)
for y1 in T MC

1 , and

T ∗ = {(SY , Î) ∈ T MC
1 : SY = SY0 , S

Y
0 + k, SY0 + 2k, . . . , N − Î} where

SY0 = bN/R0c and k is a positive integer. Then we evaluate θ(y1) for every
y1 in T ∗ and use the output to approximate θ(y1) for every y1 in T MC

1 \ T ∗
using a linear interpolant. We found 30 to be a robust choice for k which
provides a substantial computational advantage over the k = 1 case without
accumulating too much error.

5.2 Choice of threshold

Our approach to determining a suitable threshold is based on using the branch-
ing process approximation of the SIR CTMC to estimate how large the sub-
critical epidemic will grow before it becomes extinct. Our reasoning for this ap-
proach is that we want an expression for the threshold which can be computed
effectively instantaneously which will provide a threshold that is large enough
to minimise the effect of switching dynamics on the subcritical component of
the epidemic, without accruing unnecessary computational over-head. In or-
der to achieve this, we condition our underlying CTMC on extinction (Waugh,
1958) and then investigate the distribution of the maximum of the correspond-
ing branching process approximation (Ball and Donnelly, 1995).

Let {U(t)}t≥0 denote the branching process approximation of the popu-
lation of infectious individuals (conditioned on extinction) at time t, which

takes values 0, 1, 2, . . . , and define M = sup0≤t≤∞ U(t). Then Î is defined as
the minimum m, for m = 0, 1, 2, . . . , which satisfies Pr(M ≥ m) ≤ ε. In par-

ticular, using Section 5 of Ball and Donnelly (1995), the threshold Î is the
minimum m which satisfies the inequality

m ≥ U(0) +
log
(
R
U(0)
0 + ε− 1

)
− log(ε)

log(R0)
. (17)

In the event that R0 < 1, R0 is replaced by 1/R0 in inequality (17) as the
process U(t) will almost surely become extinct. However, inequality (17) can
not be used if R0 = 1. We determined that 5×10−3 is a suitable value for ε, in
[0, 1), due to the following observation. Note that, choosing a smaller ε leads

to a larger choice of Î and hence, generally, more accurate results but larger
computational runtimes.

For the distribution of the final size (duration) of the epidemic, the ochre
(green) curve with triangles (circles) in Figure 6 shows the minimum threshold
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Algorithm 1: Algorithm for calculating the distribution of the du-
ration of the epidemic and the distribution of the final size of the
epidemic.

Initialise the index k as 2N + 1 and initialise ϕ.
for NR = 0, . . . , N do

Store the initial index k0 = k, and update the current entry of ϕ
ϕk = ϕk/(1 + f(k, k)),

for NI = NR + 1, . . . ,min{NR + Î − 1, N − 1} do
Update the elements of ϕ which correspond to states in NMC

through their relationship with states in NMC \ N T
1 .

ϕk+δk1 = ϕk+δk1 + ϕk f(k, k + δk1),
ϕk−δk2 = ϕk−δk2 + ϕk f(k, k − δk2).
Update the state index k = k + δk1.

if NR < N − Î − bN/R0c then
for j = 1, . . . , N −NI do

Provided the probability of ever hitting the state nk is
greater than 10−7, update the elements of ϕ which
correspond to states in N T

2 through their relationship with
states in N T

1 .
– For the final size of the epidemic
ϕk−j = ϕk−j + ϕk f(k, k − j).

– For the duration of the epidemic, ϕk is stored in an additional
array and the delayed flux ϕdelayedk is used instead

ϕk−j = ϕk−j + ϕdelayedk f(k, k − j).

else if NR < N then
Update the elements of ϕ which correspond to states in NMC

through their relationship with states in N T
2 .

ϕk−δk2 = ϕk−δk2 + ϕk f(k, k − δk2).
Reset the state index k = k0 − 1.

required to achieve at most 0.1 (0.25) L1-error when calculated with the hybrid
diffusion (fluid) model. We chose these values because they correspond to the
worst-case scenarios of Scalia-Tomba (1985) and Barbour (1974). Taking ε
to be 5 × 10−3 produces the blue curve with squares which ensures a higher
threshold than the ochre and green curves and hence ensures that the L1-
error in the distribution of the final size (duration) of the epidemic is at most
0.1 (0.25). However, this guarantee breaks down when R0 exceeds 7.5, which
we discuss next. As N increases, the minimum threshold required to achieve
at most 0.1 (0.25) L1-error in the distribution of the final size (duration) of
the epidemic decreases and the threshold determined by inequality (17) stays
the same. In addition, the point at which inequality (17) breaks down for the
distribution of the final size of the epidemic increases.
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Fig. 6 For the distribution of the final size (duration) of the epidemic, the ochre (green)

curve with triangles (circles) shows the minimum threshold Î which achieves an L1-error of
0.1 (0.25). The blue curve with squares shows the threshold determined by inequality (17)
using ε = 5×10−3 which achieves at most 0.1 (0.25) L1-error in the distribution of the final
size (duration) of the epidemic, provided R0 is less than approximately 7.5. Here we used
N = 10, 000 and the initial state (N − 1, 1).

Figure 7 shows the threshold determined by inequality (17) provides an L1-
error for the distribution of the final size of the epidemic which is at most 0.24.
The divergence of the approximate distribution from the exact distribution
manifests as an inaccurate approximation of the probability that the final
size of the epidemic is N , N − 1 or N − 2. This divergence occurs when the
diffusion approximation comes close to the absorbing boundary with S = 0
because the SIR CTMC is able to be absorbed by this set but the diffusion
approximation is not. Figure 7 shows that the L1-error decreases for R0 ≥ 13
which is because the probability that the final size of the epidemic is equal to
N − 1 or N − 2 becomes negligible as R0 becomes very large. The loss of the
ability of inequality (17) to provide a reliable threshold is characterised as the
region of R0 for which the mean number of susceptible individuals during the
fluid dynamics of Z (t) is less than eight.

6 Discussion

In this paper we have introduced two hybrid Markov chain models for approx-
imating the distribution of the duration/final size of the SIR CTMC. These
models are novel in the sense that no other hybrid models of the SIR CTMC
have had the dynamics of the SIR CTMC during the early and final stages
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Fig. 7 The L1-error of the distribution of the final size of the epidemic using inequality (17)
to calculate the threshold. The error exceeds 0.1 on an interval of R0 from approximately
7.5 to 11 and is at most 0.24. This issue arises when the fluid approximation of S falls below
approximately eight susceptible individuals. Here we used N = 10, 000 and the initial state
(N − 1, 1).

of the epidemic. As a result, these models preserve the important stochastic
features of the SIR CTMC which occur during these phases of the epidemic.
Namely, the probability that the epidemic becomes extinct close to S = N ,
and the variability in the amount of time before the number of infectious in-
dividuals assumes an exponential-like trajectory. For the case of the general
stochastic epidemic, we have been able to use these hybrid models to derive
expressions for the distribution of the duration of the epidemic and the dis-
tribution of the final size of the epidemic which can be solved numerically in
O(N) time, as opposed to the O(N2) of the original CTMC model. This has
enabled us to calculate the distribution of the duration of the epidemic and the
final size of the epidemic for populations up to order 107, within a matter of
hours. Our approximations of the distribution of the duration of the epidemic
and the distribution of the final size of the epidemic achieve a similar level of
accuracy to the existing asymptotic approximations and we believe that our
methodology has the additional advantage of being straightforward, intuitive
and generalisable.

6.1 Improvements

The hybrid models presented here were observed to provide inaccurate approx-
imations of the distribution of the final size of the epidemic for a particular
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region of R0. This is because the SZ component of the mean trajectory of
the diffusion approximation comes close to the S = 0 absorbing boundary of
the Markov chain, thereby causing the diffusion approximation to break down.
This motivates modifying the diffusion hybrid model to include an additional
threshold on the number of susceptible individuals which is conceptually sim-
ilar to the two-stage model of Safta et al (2015).

6.2 Extensions

The general stochastic epidemic is a simple model which is often embedded
within more complex models. The hybrid models presented here may be useful
in scenarios where the embedded SIR model has a large population size, as
would be the case when modelling disease dynamics within-hosts and between-
hosts. A notable deficiency of the general stochastic epidemic is that it is not
biologically plausible for an infectious period to be exponentially distributed.
As such, the hybrid models presented here may be extended to incorporate
phase-type infectious periods as would be the case with a SIIR model. Alter-
natively, the hybrid modelling methodology presented here could be extended
to a wide range of epidemic models. Epidemic models like the SEIR model
or the SIRS model would be natural extensions. Finally, the hybrid modelling
methodology could also be used for developing a computationally efficient
scheme for generating realisations from an underlying, potentially complex,
CTMC.
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