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Abstract

In this thesis, we introduce a hybrid discrete-continuous approach suitable

for analysing a wide range of epidemiological models, and an approach

for improving parameter estimation from data describing the early stages

of an outbreak. We restrict our attention to epidemiological models with

continuous-time Markov chain (CTMC) dynamics, a ubiquitous framework

also commonly used for modelling telecommunication networks, chemical

reactions and evolutionary genetics. We introduce our methodology in the

framework of the well-known Susceptible–Infectious–Removed (SIR) model,

one of the simplest approaches for describing the spread of an infectious

disease. We later extend it to a variant of the Susceptible–Exposed–Infectious–

Removed (SEIR) model, a generalisation of the SIR CTMC that is more

realistic for modelling the initial stage of many outbreaks.

Compartmental CTMC models are attractive due to their stochastic

individual-to-individual representation of disease transmission. This feature is

particularly important when only a small number of infectious individuals are

present, during which stage the probability of epidemic fade out is considerable.

Unfortunately, the simple SIR CTMC has a state space of order N2, where

N is the size of the population being modelled, and hence computational

limits are quickly reached as N increases. There are a number of approaches

towards dealing with this issue, most of which are founded on the principal

xxi



of restricting one’s attention to the dynamics of the CTMC on a subset of its

state space. However, two highly-e�cient approaches published in 1970 and

1971 provide a promising alternative to these approaches.

The fluid limit [Kurtz, 1970] and di↵usion limit [Kurtz, 1971] are large-

population approximations of a particular class of CTMC models which

approximate the evolution of the underlying CTMC by a deterministic trajec-

tory and a Gaussian di↵usion process, respectively. These large-population

approximations are governed by a compact system of ordinary di↵erential

equations and are suitably accurate so long as the underlying population is

su�ciently large. Unfortunately, they become inaccurate if the population of

at least one compartment of the underlying CTMC is close to an absorbing

boundary, such as during the initial stages of an outbreak. It follows that a

natural approach to approximating a CTMC model of a large population is to

adopt a hybrid framework, whereby CTMC dynamics are utilised during the

initial stages of the outbreak and a suitable large-population approximation

is utilised otherwise.

In the framework of the SIR CTMC, we present a hybrid fluid model and

a hybrid di↵usion model which utilise CTMC dynamics while the number of

infectious individuals is low and otherwise utilises the fluid limit and the di↵u-

sion limit, respectively. We illustrate the utility of our hybrid methodology in

computing two key quantities, the distribution of the duration of the outbreak

and the distribution of the final size of the outbreak. We demonstrate that

the hybrid fluid model provides a suitable approximation of the distribution

of the duration of the outbreak and the hybrid di↵usion model provides a

suitable approximation of the distribution of the final size of the outbreak. In

addition, we demonstrate that our hybrid methodology provides a substantial

advantage in computational-e�ciency over the original SIR CTMC and is

xxii



superior in accuracy to similar hybrid large-population approaches when

considering mid-sized populations.

During the initial stages of an outbreak, calibrating a model describing the

spread of the disease to the observed data is fundamental to understanding and

potentially controlling the disease. A key factor considered by public health

o�cials in planning their response to an outbreak is the transmission potential

of the disease, a factor which is informed by estimates of the basic reproductive

number, R0, defined as the average number of secondary cases resulting from

a single infectious case in a naive population. However, it is often the case

that estimates of R0 based on data from the initial stages of an outbreak

are positively biased. This bias may be the result of various features such as

the geography and demography of the outbreak. However, a consideration

which is often overlooked is that the outbreak was not detected until such

a time as it had established a considerable chain of transmissions, therefore

e↵ectively overcoming initial fade out. This is an important feature because

the probability of initial fade out is often considerable, making the event that

the outbreak becomes established somewhat unlikely. A straightforward way

of accounting for this is to condition the model on a particular event, which

models the disease overcoming initial fade out.

In the framework of both the SIR CTMC and the SEIR CTMC we present

a conditioned approach to estimating R0 from data on the initial stages of an

outbreak. For the SIR CTMC, we demonstrate that in certain circumstances,

conditioning the model on e↵ectively overcoming initial fade out reduces bias

in estimates of R0 by 0.3 on average, compared to the original CTMC model.

Noting that the conditioned model utilises CTMC dynamics throughout,

we demonstrate the flexibility of our hybrid methodology by presenting a

conditioned hybrid di↵usion approach for estimating R0. We demonstrate

xxiii



that our conditioned hybrid di↵usion approach still provides estimates of R0

which exhibit less bias than under an unconditioned hybrid di↵usion model,

and that the di↵usion methodology enables us to consider larger outbreaks

then would have been computationally-feasible in the original conditioned

CTMC framework. We demonstrate the flexibility of our conditioned hybrid

approach by applying it to a variant of the SEIR CTMC and using it to

estimate R0 from a range of real outbreaks. In so doing, we utilise a truncation

rule to ensure the initial CTMC dynamics are computationally-feasible.
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Chapter 1

Introduction

We live in a time of relative comfort and stability where modern science has

a↵orded us a means of defending ourselves against most infectious diseases, in

some regions even going so far as eradicating some diseases. However, despite

our many strides forward, life-threatening diseases are endemic in many

regions, antimicrobial resistant superbugs are a pandemic of increasing threat

to our ability to e↵ectively treat a wide range of diseases, and numerous novel

outbreaks of international concern have occurred over just the last decade,

such as the Ebola virus epidemic in West Africa, the Zika virus epidemic

in the Americas and the A(H1N1) influenza virus which reached pandemic

proportions. It follows that infectious diseases are an ongoing threat to

humans which require continued attention.

Mathematical epidemiology is the field that applies mathematical and

statistical analyses of infectious diseases to further our understanding of the

dynamics of disease spread, typically with the aim of controlling or preventing

their advance. A particularly important branch of mathematical epidemi-

ology is concerned with modelling the spread of a disease in a population

of individuals using models that describe the transformations of individuals

1



between di↵erent epidemiological states (so called compartmental model-

s). In this thesis we are concerned with a particularly common framework

where the dynamics of the disease are described by a continuous-time Markov

chain (CTMC). This framework suitably describes the stochastic individual-

to-individual nature of disease transmission, which is crucial for accurately

representing the early stages of a novel outbreak. The main problem with the

CTMC framework is that once an outbreak has become established, CTMC

dynamics are typically computationally-intractable for analysis if the under-

lying population is large. To avoid this problem, it is common to consider

approximating the CTMC by a suitable large-population approximation such

as the fluid limit [Kurtz, 1970] or the di↵usion limit [Kurtz, 1971]. Thus,

a natural approach would be to model the early spread of the disease with

CTMC dynamics and the dynamics thereafter by a large-population approx-

imation. This so-called hybrid framework is the basis of much of the work

presented in this thesis.

During a novel outbreak, calibrating a model describing the spread of the

disease to observed data is fundamental to understanding and potentially

controlling the disease. A key quantity which is of interest to public health

authorities is the basic reproductive number, R0, which is defined as the average

number of secondary cases of the disease as the result of an introduction

of a single infectious individual in an otherwise susceptible population. An

accurate and reliable estimate of R0 characterises the transmission potential

of the disease, an important factor for public health authorities in planning

their response to the outbreak. However, estimates of R0 which are based on

data from the initial stages of an outbreak are commonly positively-biased

[Mercer et al., 2011, Rida, 1991]. A commonly over-looked cause of this bias is

the probability of initial fade out, defined as the probability that the outbreak

2



ends before becoming established. During the initial stages of an outbreak,

the probability of initial fade out decreases considerably each time the number

of infectious individuals increases. Thus, from a modelling perspective, the

event that an outbreak e↵ectively overcomes initial fade out can often be

considered unlikely. At the same time, an outbreak will often not be detected

by public health authorities until such a time that it has established an

appreciable chain of transmission, thereby e↵ectively overcoming initial fade

out. It follows that the event that an outbreak becomes established, and is

consequently detected by public health authorities, is one which needs to be

accounted for in estimating the basic reproductive number during the early

stages of an outbreak to reduce bias. Our so-called conditioning framework is

also the basis of much of the work presented in this thesis.

In Chapter 3, we consider the well-known Susceptible-Infectious-Removed

(SIR) epidemic model. We illustrate our hybrid methodology by presenting a

hybrid fluid model and a hybrid di↵usion model of the SIR CTMC, so called

after the large population approximation they utilise. Our hybrid models

utilise CTMC dynamics if the number of infectious individuals is low and the

dynamics of the fluid approximation or the di↵usion approximation otherwise.

We demonstrate the utility of our hybrid models by using them to compute

two key quantities of an outbreak, the distribution of the duration of the

outbreak and the distribution of the final size of the outbreak. The duration of

the outbreak is defined as the duration from when the first individual becomes

infectious to the time at which the final infectious individual is removed.

Similarly, the final size of the outbreak is defined as the total number of

individuals who experience infection from the initial infectious individual to

the final infectious individual to be removed. We compare our approximations

of these distributions to the original SIR CTMC and to two other models

3



which utilise a di↵erent hybrid approach [Barbour, 1975, Scalia-Tomba, 1985].

In Chapter 4, we consider using the SIR CTMC to infer the basic repro-

ductive number, R0, of a novel outbreak based on observed daily incidence

counts. We illustrate our conditioning framework by presenting a conditioned

version of the SIR CTMC in which the number of infectious individuals is

required to reach a pre-defined level. Through a simulation study of outbreaks

with influenza-like dynamics, we demonstrate that our approach generally

reduces the bias in estimates of R0. Furthermore, we demonstrate the util-

ity of our hybrid di↵usion approach by applying it to our conditioned SIR

CTMC, referring to the resulting approach as the conditioned hybrid di↵usion

approach. In considering an outbreak of A(H1N1)pdm09, we demonstrate

that our hybrid methodology enables us to consider larger populations than

would have been possible in the framework of the SIR CTMC, while still

providing the advantages of conditioning.

In Chapter 5, we apply our conditioned hybrid di↵usion approach to a

CTMC model which is more appropriate for representing the early stages of

an outbreak. We consider the so-called partially-observed SEIR CTMC, which

di↵ers from the SIR CTMC in its inclusion of an Exposed (E) compartment

and the condition that infectious individuals are observed with probability

p. In a simulation study of outbreaks with influenza-like dynamics, we

demonstrate that our hybrid approach provides accurate estimates of the basic

reproductive number, the average latent period and the average infectious

period. Furthermore, we demonstrate that conditioning consistently reduces

bias in the estimates of R0 and our hybrid approach enables us to consider

larger populations than would have been possible in the CTMC framework.

Finally, we demonstrate the utility of our approach by using it to estimate

R0 from a range of real outbreaks.
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A paper concerning the hybrid approximations detailed in Chapter 3 has

been published in the Journal of Mathematical Biology [Rebuli et al., 2016]

and a paper concerning the conditioned hybrid approach detailed in Chapter 4

has been published in Theoretical Population Biology [Rebuli et al., 2018]. A

paper concerning the application of our methodology to the partially-observed

SEIR CTMC detailed in Chapter 5 has been submitted for publication.
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Chapter 2

Background

This thesis focuses mainly on the development of computationally-e�cient

routines for inferring certain properties of the basic reproductive number,

R0, from real-world outbreaks, using Markovian epidemic models. In this

chapter, we start by defining a continuous-time Markov chain (CTMC), and

then discuss the fluid and di↵usion large-population approximations, which

apply to a certain class of CTMCs. We then define the Susceptible-infectious-

Removed (SIR) CTMC and discuss computing the distribution of the duration

of the outbreak, and the distribution of the final size of the outbreak. Finally,

we present methods for inferring properties of R0 from daily incidence data,

observed during the early stages of an outbreak. We do this initally in the

framework of the SIR CTMC and then in the framework of a more realistic

partially-observed SEIR CTMC.

2.1 Markov processes

A stochastic process is a mathematical model for describing the evolution of a

random phenomenon through time. Every stochastic process is characterised

7



by a state space, an initial distribution and a probability law describing how

the process evolves, as well as a set of observed outcomes. Continuous-time

Markov chains (CTMC)s are a class of continuous-time stochastic processes

whose state space is finite or countably infinite (although we assume the

former herein), and satisfy the Markov property.

Definition 1 (The Markov Property) Let (X(t), t � 0), be a continuous-

time stochastic process taking values x in the state space X . Then the CTMC

satisfies the Markov property if

Pr (X(t) = y |X(s) = x,X(u), u  s) = Pr (X(t) = y |X(s) = x) ,

for all non-negative real numbers t > s and all x and y in X .

The Markov property means that the future evolution of the process is

conditionally independent of the history of the process, given the most recent

observation of the state. For this reason, the Markov property is sometimes

referred to as the memoryless property.

A common assumption in population modelling is that a CTMC is time-

homogeneous.

Definition 2 (Time-homogeneous) A CTMC, (X(t), t � 0), is time-

homogeneous if, for all x and y in X and s, t 2 [0,1), the probability

Pr (X(t+ s) = y |X(s) = x) ,

is independent of s, in which case we have that

Pr (X(t+ s) = y |X(s) = x) = Pr (X(t) = y |X(0) = x) .

Time-homogeneity means that the probability of the CTMC transitioning

from the state x to the state y depends only on t, the duration of time that

8



has elapsed, and not the absolute time t+ s. In this case, for all x and y in

X and t � 0, we define the transition probabilities as

pXxy(t) = Pr (X(t) = y |X(0) = x) .

Note that we herein adopt the convention that the superscript notation fX ,

indicates that the quantity f depends on the process (X(t), t � 0). The

vector of transition probabilities pX
x (t) = (pXxy(t) : y 2 X ) is a probability

mass function describing the probability that the CTMC is in each state y of

X at time t, given that the CTMC was initially in the state x at time 0.

As a result of the Markov property (Definition 1) and time-homogeneity

(Definition 2), a CTMC satisfies the Chapman–Kolmogorov equations.

Theorem 1 (Chapman–Kolmogorov Equations) For all x and z in X

and t � 0, a time-homogeneous CTMC, (X(t), t � 0), satisfies the Chapman–

Kolmogorov equations

pXxz(t) =
X

y2X

pXxy(s) p
X
y z(t� s),

for any 0 < s < t.

The Chapman–Kolmogorov equations state that the probability of the

CTMC being in the state z at time t can be computed by considering

the probability moving from state x to state y in s time units and then

independently moving from y to z in the remaining t � s time units, and

summing over all possible states y.

A CTMC is usually characterised by its transition rates, which describe the

behaviour of the process over an infinitesimal time interval, h. The generator

matrix is the matrix which contains all the transition rates of the CTMC.
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Definition 3 (Generator Matrix) The transition rates of the CTMC, (X(t), t �

0), for all x and y in X with y 6= x, are defined as

qXxy = lim
h!0+

pXxy(h)

h
,

qXxx = lim
h!0+

pXxx(h)� 1

h
.

The generator matrix is then QX =
⇥
qXxy

⇤
.

For all x and y in X with y 6= x, the transition rates have the properties:

qXxy � 0,

qXxx = �

X

y2X
y 6=x

qXxy.

We impose the additional constraint that
��qXxx

�� < 1. By convention, one

typically denotes qXx = |qXxx|.

Loosely speaking, the transition rates are the right-derivatives of the

transition probabilities at the point h = 0. A relationship between the two is

encapsulated by the Kolmogorov Equations.

Definition 4 (Kolmogorov Equations) It follows from the Chapman–Kolmogorov

equations (Theorem (1)) that, for all x and y in X with y 6= x, the transition

probabilities of (X(t), t � 0) satisfy the Kolmogorov Backward Di↵erential

Equations (KBDE)s

d

dt

⇥
pXxz(t)

⇤
=
X

y2X

qXxy p
X
y z(t),

and the Kolmogorov Forward Di↵erential Equations (KFDE)s

d

dt

⇥
pXxz(t)

⇤
=
X

y2X

pXxy(t) q
X
y z.
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The Kolmogorov equations provide a system of linear di↵erential equations

describing the evolution of the transition probabilities of the CTMC. This in-

formation is encapsulated in the transition probability matrix, which is defined

as PX (t) =
⇥
pXxy(t)

⇤
. It can be seen that the KBDEs and KFDEs may be

written in matrix form as d
dtP

X (t) = QXPX (t) and d
dtP

X (t) = PX (t)QX ,

respectively. Provided QX is conservative and regular, the Kolmogorov e-

quations have the unique solution, PX (t) = PX (0) etQ
X
, where the matrix

exponential eM is defined as
P1

k=0 M
k/(k!). The requirement that the tran-

sition rate matrix is regular and conservative are satisfied trivially since X

is finite, and all the transition rates are finite [Feller, 1940, Kato, 1954].

Although the KBDEs and KFDEs both provide the same solution in this

situation, the KFDEs are generally more amenable to analysis. Thus, we

herein refer to the KFDEs as the Kolmogorov equations.

An important concept for time-homogeneous CTMCs (Definition 2) is the

embedded jump process.

Definition 5 (Embedded Jump Process) The embedded jump process of

(X(t), t � 0) is the discrete-time Markov chain (DTMC) (Xn, n � 0), which

takes values in X and, for all x and y in X with y 6= x, has the jump

probabilities

pXxy =
qXxy

qXx
, (2.1)

where pXxx = 0.

The embedded jump process may be thought of as a time-independent

representation of the CTMC, in which the probability of transition to each

di↵erent state is given by the relative frequency of that transition. The

embedded jump process is useful for computing time-independent quantities,

such as hitting probabilities.
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Definition 6 (Hitting Probabilities) Let hX
xz denote the probability that

(X(t), t � 0) ever hits the state z in X , given the initial state x in X . Then,

for all x and z in X with z 6= x, the hitting probabilities are the minimal

non-negative solution to the system of equations

hX
xz =

X

y2X

pXxy h
X
y z, (2.2)

where hX
z z = 1.

The hitting probabilities may be generalised to provide the probability

that the CTMC ever hits the set A, by modifying the boundary condition

of equation (2.2) to hX
yy = 1, for all y in A. As we shall see in Chapter 3,

the hitting probabilities are particularly useful for modelling epidemics. Fur-

thermore, the hitting probabilities may be used to condition the CTMC on

hitting a particular state z, or set of states [Waugh, 1958].

Theorem 2 (Conditioned Markov Processes) Let A be the subset of X

from which every state x in X has a non-zero hitting probability of the state

z. Then the CTMC (X(t), t � 0) taking values in A is conditioned on hitting

the state z by modifying its transition rates such that, for all x 2 A and y in

X ,

q̃Xxy =

 
hX
y z

hX
xz

!
qXxy.

Conditional Markov processes utilise the law of conditional probability

to ensure a particular event occurs for the CTMC with probability 1. This

may be thought of as a way of removing all the sample paths of the CTMC

for which this event does not occur. We utilise this result in Chapter 4 and

Chapter 5 to condition the CTMC on the event that the outbreak becomes

established.
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As we have now seen, the Kolmogorov equations are fundamental for

analysing the behaviour of a CTMC because they describe the evolution

of the process. However, in most applications numerically solving the Kol-

mogorov equations directly is computationally-intractable because the number

of equations arising in Definition 4 generally depends on Nd, where N is a

population ceiling and d is the number of dimensions in the CTMC. Although

much attention has been given to this problem [Moler and Charles, 2003,

Jenkinson and Goutsias, 2012], most alternatives are still computationally-

intractable for the kinds of population ceilings required in epidemiology. Thus,

in the following section we discuss two large-population approximations which

avoid the need to deal directly with the Kolmogorov equations.

2.2 Large-population approximations

In this section we define the fluid limit [Kurtz, 1970] and di↵usion limit [Kurtz,

1971]. We begin by restricting our attention to the class of CTMCs referred

to as population processes [Barbour, 1972, 1974, Kurtz, 1976, Barbour, 1976,

Pollett and Vassallo, 1992, Pollett, 1990].

Definition 7 (Population Process) (X(t), t � 0) is a population process

if:

1. Each state x in X partitions a finite population of N individuals into a

finite number of compartments.

2. The only positive transition rates, qXxx+`, are ones for which ` is either

±ei, or ei � ej,

where ei is the unit vector, with a 1 as its ith element.
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A population process may be thought of as a CTMC model in which every

individual in the population falls into one distinct compartment. Thus, the

elements of the state space of the CTMC denote the number of individuals

who are in each compartment, and the possible transitions of the CTMC

reflect the event that an individual arrives/departs from compartment i (±ei),

or an individual transitions from compartment j to compartment i (ei � ej).

Most CTMC models used in epidemiology are population processes in which

the compartments reflect an individual’s stages of infection and the transitions

of the model represent events such as an individual becoming infectious or an

individual recovering.

The original fluid limit and di↵usion limit [Kurtz, 1970, 1971] applied to

the class of CTMCs referred to as “density dependent”. However, they were

subsequently extended by Pollett [1990] to a broader class of CTMCs which

he referred to as “asymptotically density dependent”. We refer to a CTMC

which satisfies either definition as being “density dependent”.

The definition of density dependence refers to the family of CTMCs

(X(⌫)(t), t � 0), ⌫ � 0, which take values in X
(⌫). This is simply a way of

making the relationship between the CTMC (X(t), t � 0) and a particular

scaling parameter ⌫ > 0 explicit and the scaling parameter is usually taken

as the population ceiling N .

Definition 8 (Density Dependence) Suppose (X(⌫)(t), t � 0), ⌫ � 0,

has a corresponding family of continuous functions f (⌫) (x, `), for x in E with

E ✓ RK and K 2 Z+, such that

qX
(⌫)

y y+` = ⌫ f (⌫) (y/⌫, `) ,

for all y in X
(⌫) and ` 6= 0. In which case, define

F (⌫) (x) =
X

`

`f (⌫) (x, `) .
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Then the family of CTMCs is said to be (asymptotically) density dependent if

there exists a continuous function F (x), such that

lim
⌫!1

F (⌫) (x) = F (x) .

Loosely speaking, a density dependent CTMC is one whose transition

rates depend on the current state y only through the density y/⌫. We refer

to the class of CTMCs which are both population processes (Definition 7)

and density dependent (Definition 8) as density dependent Markov population

processes (DDMPP)s.

Based on the observation that the behaviour of the DDMPP, scaled by ⌫,

is increasingly like that of a deterministic process as ⌫ ! 1, Kurtz [1970]

showed that X(⌫)(t)/⌫, for 0  t < 1, converges uniformly in probability

(over finite time intervals) to a unique deterministic trajectory x (t,x0) with

time derivative F (x), for x0 in E. The following theorem is due to Pollett

[1990].

Theorem 3 (Fluid Limit) Suppose F (x) is Lipschitz continuous on E

and that for all ⌫ > 0

sup
x2E

X

`

|`| f (⌫) (x, `) < 1, (2.3)

lim
�!1

sup
x2E

X

`:|`|>�

|`| f (⌫) (x, `) = 0, (2.4)

and

lim
⌫!1

sup
x2E

��F (⌫) (x)� F (x)
�� = 0. (2.5)

Then, if

lim
⌫!1

X(⌫)(0)

⌫
= x0, (2.6)

for finite t, we have that

lim
⌫!1

Pr

 
sup
st

�����
X(⌫)(s)

⌫
� x (s,x0)

����� > ✏

!
= 0, 0  s  t,
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for all ✏ > 0, and for every trajectory x (·,x0) satisfying

x (0,x0) = x0,

x (s,x0) 2 E, 0  s  t,

@

@s
x (s,x0) = F (x (s,x0)) .

For a DDMPP, condition (2.3) is satisfied because ` is a linear combination

of unit vectors and |qXxy| < 1, for all x and y in X . Similarly, condition (2.4)

is satisfied because ` is a linear combination of unit vectors. Condition (2.5)

requires that F (N) (x) converges to F (x) as N ! 1 (Definition 8). Condi-

tion (2.6) requires that the initial value x0 in E, is “close” to X(N)(0)/N .

The theorem then stipulates that X(N)(t)/N , converges in probability over

finite time intervals to the unique deterministic trajectory x (t,x0), for x0 in

E. Herein, we refer to the fluid approximation of a DDMPP as the unique

deterministic trajectory N x (t,x0), where x0 is given by X(N)(0)/N .

The fluid approximation is useful for describing the average behaviour of

a DDMPP but it provides no indication of its variability, for this we appeal

to the di↵usion limit [Kurtz, 1971].

Theorem 4 (Di↵usion Limit) Suppose that F (x) is bounded and Lips-

chitz continuous on E. Suppose also that the family of continuous func-

tions G(⌫) (x), where ⌫ > 0 and x is in E, is a K ⇥ K matrix, where

dim(X(⌫)(t)) = K, with elements

g(⌫)i,j (x) =
X

`

`i`jf
(⌫) (x, `) ,

where `i denotes the ith entry of the vector `, which converges uniformly to

G (x), where G (x) is bounded and uniformly continuous on E.
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If, in addition,

sup
x2E

X

`

|`|2f (⌫) (x, `) < 1, (2.7)

lim
�!1

sup
x2E

X

`:|`|>�

|`|2f (⌫) (x, `) = 0, (2.8)

for all ⌫ > 0, and

lim
⌫!1

sup
x2E

⌫
1
2

��F (⌫) (x)� F (x)
�� = 0, (2.9)

where now F (x) is assumed to have uniformly continuous first partial deriva-

tives, then, provided

lim
⌫!1

⌫
1
2

 
X(⌫)(0)

⌫
� x0

!
= z, (2.10)

for x0 in E, the family of Markov processes Z(⌫)(t), for t � 0, defined by

Z(⌫)(s) = ⌫
1
2

 
X(⌫)(s)

⌫
� x (s,x0)

!
, 0  s  t,

converges weakly in D[0, t] (the space of right-continuous, left-hand limits

functions on [0, t]) to a di↵usion process, Z(t), with initial value Z(0) = z

and with characteristic function,  =  (s,✓) which satisfies

@

@s
[ (s,✓)] = �

1

2

X

j,k

✓jgjk (x (s,x0)) ✓k (s,✓)

+
X

j,k

✓j
@

@xk
[Fj (x (s,x0))]

@

@✓k
[ (s,✓)] . (2.11)

For a DDMPP, condition (2.7) is satisfied because ` is a linear combination

of unit vectors and |qXxy| < 1, for all x and y in X . Similarly, condition (2.8)

is satisfied because ` is a linear combination of unit vectors. Condition (2.9)

strengthens condition (2.5) to ensure that F (⌫) (x) converges to F (x) at the

correct rate. Condition (2.10) provides the initial state of the di↵usion. The
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theorem then stipulates that a
p
⌫ scaling of the di↵erenceX(⌫)(t)/⌫�x (t,x0)

converges weakly (in the space of right-continuous, left-hand limit functions

on [0, t]) to the di↵usion Z(t), as ⌫ ! 1.

Although the partial di↵erential equation (2.11) specifies the distribution

of the di↵usion (Z(t), t � 0), only in special cases can one obtain an explicit

expression for its characteristic function. However, one is always able to

obtain its expected value and covariance. In particular, if one denotes by

rF (x) the matrix of first partial derivatives of F (x), that is [@Fi/@xj ], and

puts B(t) = rF (x (t,x0)), then E [Z(t)] = M(t) z, where M(t) is the unique

solution to dM(t)/dt = B(t)M(t), with initial value M(0) = I. Similarly, the

covariance matrix cov (Z(t)) = ⌃(t) is the unique solution to

d⌃(t)

dt
= B(t)⌃(t) + ⌃(t)B(t)T +G (x (t,x0)) , (2.12)

with ⌃0 = 0.

Barbour [1974] showed that if (X(t), t � 0) is a DDMPP whose transition

rates are multinomial in terms of the elements of x then an O (⌫�1) approxi-

mation of (Z(t), 0  t < 1) is a Gaussian di↵usion process with the same

mean and covariance. Thus, we refer to the di↵usion approximation of the

DDMPP (X(t), t � 0), for finite t, as the Gaussian di↵usion process with

mean function ⌫ x (t,x0) and covariance-matrix ⌫ ⌃(t).

It is worth noting that another large-population approximation is the van

Kampen approximation. The van Kampen approximation and the di↵usion

approximation are similar because they are both based on a first order ap-

proximation of the Kolmogorov equations of the underlying CTMC. However,

the two di↵er in their treatment of the limiting di↵usion. The conventional

van Kampen approximation, also referred to as the linear noise approxima-

tion, provides a partial di↵erential equation describing the time-evolution

of the probability distribution of Z(t). While, the conventional di↵usion
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approximation utilises a Gaussian approximation [Barbour, 1974] to provide

a closed-form approximation to the probability distribution of Z(t).

An important concept for the di↵usion approximation of a DDMPP utilised

in Chapter 3 is its hitting distribution [Ethier and Kurtz, 2008].

Theorem 5 (Hitting Distribution) Let ⇠(x), for x in E, be continuously

di↵erentiable on RK, with ⇠(x (0,x0)) > 0, where X(⌫)(0)/⌫ = x0. Let

⌧ (⌫) = inf
t>0

(
⇠

 
X(⌫)(t)

⌫

!
 0

)
, (2.13)

and

⌧ = inf
t>0

{⇠(x (t,x0))  0} . (2.14)

Suppose ⌧ < 1, and

r⇠ (x (⌧,x0)) · F (x (⌧,x0)) < 0. (2.15)

Then
p
⌫
�
⌧ (⌫) � ⌧

�
! �

r⇠ (x (⌧,x0)) ·Z(⌧)

r⇠ (x (⌧,x0)) · F (x (⌧,x0))
, (2.16)

and

p
⌫

 
X(⌫)

�
⌧ (⌫)

�

⌫
� x (⌧,x0)

!
!

Z(⌧)�

✓
r⇠ (x (⌧,x0)) ·Z(⌧)

r⇠ (x (⌧,x0)) · F (x (⌧,x0))

◆
F (x (⌧,x0)) , (2.17)

where “!” denotes weak convergence.

The continuous function  (x), for x in E, specifies a boundary in E, such

that the scaled DDMPP stops the instant that  (x) becomes non-positive.

The random time at which the scaled DDMPP hits this boundary is specified

by equation (2.13), and the deterministic time at which the fluid limit of the

DDMPP hits this boundary is specified by equation (2.14). Then, provided
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the deterministic time ⌧ is finite and the dot product (2.15) is non-zero on

the boundary, equation (2.16) provides an approximation for the distribution

of the time at which the DDMPP hits the boundary, and equation (2.17)

provides an approximation for the distribution of the state in which the

DDMPP hits the boundary.

An important property of the multivariate normal distribution concerns

its conditional distribution.

Theorem 6 Let X be a multivariate normal random variable with expected

value µ and covariance ⌃. Further, partition X such that

X =

0

@ X1

X2

1

A , µ =

0

@ µ1

µ2

1

A , and ⌃ =

2

4 ⌃1 1 ⌃1 2

⌃2 1 ⌃2 2

3

5 .

Then X1 conditioned on the event that X2 = a, is a multivariate normal

random variable with expected value µ0 and covariance ⌃0, given by

µ0 = µ1 +⌃1 2⌃
�1
2 2 (a� µ2) ,

⌃0 = ⌃1 1 �⌃1 2⌃
�1
2 2⌃2 1.

This is an important result utilised in Chapter 4 and Chapter 5 in con-

ducting parameter inference.

2.3 The SIR CTMC

In the remainder of this chapter we consider modelling the spread of infectious

diseases through large populations in a CTMC framework. We begin by defin-

ing the SIR CTMC, and we then use this model to calculate the distribution

of the duration of the outbreak, and the distribution of the final size of

the outbreak. We also discuss related large-population approximations of

20



these distributions. We then consider utilising the SIR CTMC for parameter

inference using observed daily incidence data. Since the SIR CTMC assumes

all infection events are observed, and that the disease does not have a latent

period, we later consider using a partially-observed SEIR CTMC model for

conducting parameter inference on real-world outbreaks.

We begin by defining the SIR CTMC model, otherwise known as the

general stochastic epidemic model [Kermack and McKendrick, 1927, Bartlett,

1949, Dietz, 1967, Bailey, 1950, 1957, Keeling et al., 2000]. The SIR CTMC is

a compartmental model which tracks the number of individuals who are: sus-

ceptible (S), infectious (I), or removed (R), where the removed compartment

may refer to individuals who have either recovered from the disease or passed

away. Under the common assumption that the population is closed, we have

that S + I +R = N so we need to keep track of only two compartments of

the model because the third can then easily be determined. There are only

two possible events in the SIR CTMC: infection events, and removal events.

The rate at which infection events occur is typically specified as �SI/(N � 1),

where � describes the rate at which each individual has transmissible contacts,

and I/(N � 1) is the probability that such a contact is with an infectious

individual. The rate at which removal events occur is �I , where � is the rate

at which an infectious individual is removed from the infectious compartment

due to e.g. death or some other process such as recovery with immunity.

These dynamics are summarised in Figure 2.1. The basic reproductive number

is defined as the average number of secondary infection events, caused by a

single infectious individual, in an otherwise susceptible population. For all

but very small populations, the basic reproductive number of the SIR CTMC

is R0 = �/�.
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Figure 2.1: State transitions of the SIR CTMC model. � is the e↵ective force of infection

and � is the removal rate.

Let (X(t), t � 0) denote the SIR CTMC, which takes values (S, I) in

X =
�
(S, I) 2 Z2

+ : S + I  N
 
. (2.18)

The only possible events of the SIR CTMC are infection events and removal

events, which change the state of the process by `1 = (�1, 1) and `2 = (0,�1),

respectively. Thus, the positive transition rates, for all x in X , of the SIR

CTMC are

qXxx+`1 =
�

N � 1
SI if x+ `1 2 X , and (2.19)

qXxx+`2 = �I if x+ `2 2 X ,

with the additional requirement that qXxx = �
P

y 6=x q
X
xy.

We now utilise the SIR CTMC for computing the distribution of the

duration of the outbreak, and the distribution of the final size of the outbreak.

As we shall see, the algorithms for computing these distributions are generally

computationally-expensive. Thus, we also consider computing approximations

to these distributions using the hybrid models of Scalia-Tomba [1985] and

Barbour [1975], respectively. We then consider inferring R0 from observed

case incidence data.
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2.3.1 Outbreak duration

The duration of the outbreak is defined as the length of time from the first

individual becoming infectious to the event that the final infectious individual

is removed. More precisely, let A = {x 2 X | I = 0} denote the set of all

states in X for which the number of infectious individuals is zero, then the

random variable T = inf{t � 0 |X(t) 2 A} describes the duration of the

outbreak. An assumption made herein, and throughout, is that the outbreak

starts with one infectious individual.

Direct computation from the CTMC

The distribution of T may be computed via the path integral approach

[Pollett and Stefanov, 2002]. This involves computing the Laplace–Stieltjes

transformation of T , which is then inverted to provide Pr(T  t), for t �

0. This process is computationally intensive because the Laplace–Stieltjes

transformation is computed by solving a system of |X | linear equations, and

the inversion involves computing an integral on the Laplace–Stieltjes domain,

which is generally achieved numerically. However, the main drawback of this

approach is its ine�ciency for computing Pr(T  t) over a range of values of

t. This is because the algorithm for computing Pr(T  t) cannot be extended

to computing Pr(T  t+ ⌧), for small ⌧ , e�ciently.

Jenkinson and Goutsias [2012] presented an approach for integrating the

Kolmogorov equations (Definition 4) using an equivalent degree-of-advancement

(DA) representation of the CTMC. Jenkinson and Goutsias [2012] showed

that using the Implicit Euler scheme to integrate the Kolmogorov equations

of the so called DA process, is globally stable and achieves an L1-error of

order O (⌧), where ⌧ is the time-step of the numerical integration. Further-

more, when appropriately ordered, the generator matrix of the DA process
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is triangular, which enables the use of more e�cient algorithms for solving

systems of equations involving the generator matrix. In this framework, the

probability Pr(T  t) may be used to compute the probability Pr(T  t+ ⌧ )

by solving one system of |X | equations, compared to the multiple systems of

|X | equations required by the Laplace–Stieltjes framework.

Intuitively, the SIR CTMC is referred to as a population process because

it tracks the population of the S and I compartments. On the other hand, the

DA process, (N (t) , t � 0), is a counting process which tracks the number of

infection events (NI) and the number of removal events (NR), taking values

in N = {(NI , NR) : NI , NR = 0, 1, . . . , N, NI � NR, }. These processes have

a one-to-one correspondence because

NI = S(0)� S, S = S(0)�NI , (2.20)

NR = N � S � I �R(0), I = I(0) +NI �NR.

For example, the DA representation of the initial state of the SIR CTMC

(N � 1, 1) is (1, 0). For all n in N , the transition rates of the DA process are

qNnn+e1 =
�

N � 1
(S(0)�NI) (I(0) +NI �NR) if n+ e1 2 N , (2.21)

qNnn+e2 = � (I(0) +NI �NR) if n+ e2 2 N ,

with the additional requirement that qNnn = �
P

m 6=n qNnm. To ensure that

the generator matrix QN is triangular, we order the states in the state space

of the DA process such that the state (NI , NR) precedes the state (N 0
I , N

0
R) if

and only if

NI �NR < N 0
I �N 0

R or NI �NR = N 0
I �N 0

R and NI > N 0
I . (2.22)

For brevity, we let qNi j and pNi j denote the transition rate and jump probability

from the ith ordered state to the jth ordered state, respectively. Similarly,
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we let pN (t) = (pNe1 m(t) : m 2 N ), for t � 0, denote the probability

distribution of the DA process at time t, given the initial state e1.

Recall that the Kolmogorov equations (Definition 4) specify that

dpN (t)

dt
= pN (t)QN . (2.23)

For a set of equally-spaced time points t0 < t1 < · · · < tn, with spacing ⌧ , let

pN
k denote the numerical approximation of pN (tk). Then following Jenkinson

and Goutsias [2012], the Implicit Euler method yields the iterative scheme

pN
k+1

�
I� ⌧QN

�
= pN

k , (2.24)

with initial value pN
0 = e1. It follows that an O (⌧) approximation of the

distribution of T is

Pr (T  tk) =
X

n2NA

pN
k , (2.25)

where N
A is the DA equivalent of the set A (Transformation 2.20), and the

subscript n refers to the element of pN
k corresponding to the state n.

The fact that the matrix
�
I� ⌧QN

�T
is lower-triangular enables us to

solve the system of equations (2.24) via backward-substitution. This provides

significant improvements in computational-e�ciency when solved with o↵-

the-shelf algorithms such as MATLAB’s mldivide [Jenkinson and Goutsias,

2012]. However, by taking advantage of the structure of QN , we are able

to devise a specialised algorithm for computing the solution to systems of

equations of this form. This algorithm is essentially the same as the algorithm

presented in Black and Ross [2015] in which one iterates through all states in

the state space lexicographically, at each iteration updating the solution via

an infection event and a recovery event from the current state. An additional

normalising step is required before calculating these interactions to assure

that the final solution is a valid probability mass function.
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Let �k1 = N �NI +NR and �k2 = N + 2�NI +NR, and 'k denote the

kth element of the |N |⇥ 1 vector '. Then we use Algorithm 1 to compute

the solution to the system of linear equations (2.24).

Algorithm 1: Algorithm for computing the solution to the system of linear

equations (2.24).

Data: Set ' = pN
j , for any j = 0, 1, . . . , n� 1.

Result: Compute pN
j+1.

1 Initialise the state-index as k = 2N + 1 ;

2 for NR = 0, 1, . . . , N do

3 Store the initial index k0 = k and normalise the current entry

'k = 'k/(1 + ⌧qNnk
) ;

4 for NI = 0, 1, . . . , NR do

5 Update the distribution via:

6 'k+�k1 = 'k+�k1 + ⌧'k qNk k+�k1 (Infection event) ;

7 'k��k2 = 'k��k2 + ⌧'k qNk k��k2 (removal event) ;

8 Update the state-index k = k + �k1 ;

9 end

10 Reset the state-index k = k0 � 1 ;

11 end

12 Return pN
j+1 = ' ;

Directly integrating the Kolmogorov equations under the DA representa-

tion is the most e↵ective way of calculating the distribution of the duration of

the outbreak directly from the SIR CTMC. However, Barbour [1975] showed

that a closed form approximation to this distribution may be obtained via an

appropriate hybrid approximation of the SIR CTMC.
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Hybrid approximation due to Barbour

Based on the assessment that the behavior of X(t)/N , for all t � 0, is

similar to a deterministic process when the population of S and I are large,

Barbour [1975] constructed a hybrid approximation of the SIR CTMC which

models the initial stages and final stages of the outbreak with an appropriate

branching process and utilises the fluid approximation otherwise. Barbour

used this hybrid model to derive a closed-form expression for the distribution

of the duration of the outbreak. Although his model was designed with

large populations in mind, it is surprisingly accurate even for “moderate”

population sizes [Andersson and Britton, 2000].

The branching process approximation of the initial stages of the outbreak

assumes that the susceptible pool is very large, so as to justify approximating

S with a fixed value S(0) = N � 1. The result is a birth-death approximation

of I(t), with birth rates �I and death rates �I, for all I = 0, 1, . . . . This

approximation breaks down when I gets close to
p
N , at which stage the

susceptible pool is too depleted to justify approximating it by S(0) [Ball and

Donnelly, 1995]. Given R0 > 1, there is a 1� ⌘ (⌘ = 1/R0) probability of a

major outbreak. In which case, the distribution of time until the branching

process approximation reaches
p
N infectious individuals is a type-I extremal

random variable [Coles, 2000].

The branching process approximation of the final stages of the outbreak

assumes that the underlying proportion of susceptible individuals is close to

its limiting value (as t approaches 1) under the fluid approximation, s1,

and that it remains constant for the remainder of the outbreak. According to

Barbour, this occurs when I decreases to N3/4, following which, a suitable

approximation for I(t) is a birth-death process with birth rates �s1I, and

death rates �I, for all I = 0, 1, . . . . It can be shown that this process is
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conditioned on extinction (since s1R0/� < 1), and the distribution of time

until this occurs is a type-I extremal random variable.

During the intermediate stages, the behavior of the SIR CTMC, scaled by

N , is similar to that of the fluid approximation. Thus, Barbour computes the

time which elapses between branching process approximations as the amount

of time it takes the fluid approximation to go from a state with I =
p
N ,

during the initial stages of the outbreak, to a state with I = N3/4, during the

final stages of the outbreak. In order to compute this, we now construct the

fluid approximation of the SIR CTMC.

Let (X(N)(t), t � 0), N > 0, denote the SIR CTMC indexed by N which

takes values in X
(N). In addition, recall that `1 = (�1, 1) and `2 = (0,�1).

Then, for all x in X
(N), it follows that

N f (N) (x/N, `1) = N

✓
�N

N � 1

✓
S

N

◆✓
I

N

◆◆
if x+ `1 2 X

(N), (2.26)

N f (N) (x/N, `2) = N

✓
�

✓
I

N

◆◆
if x+ `2 2 X

(N).

Now, let s and i denote the proportions S/N and I/N , respectively, which

take values in E = {(s, i) 2 [0, 1]2 : s + i  1}. Then the population SIR

CTMC is a DDMPP because as N ! 1, the function F (N) (y), for all x in

E, converges to

F (x) =

0

@ ��si

�si� �i

1

A , (2.27)

as N ! 1. Thus, the SIR CTMC satisfies the conditions of the fluid limit,

provided x0 = (N�1, 1)/N . It follows that the fluid approximation of the SIR

CTMC is the deterministic process N x (t,x0), for finite t, whose elements

are the unique solutions to the system of ordinary di↵erential equations

ds

dt
= ��si,

di

dt
= �si� �i. (2.28)
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By considering the trajectory of the fluid process x (t,x0), for t � 0, through

the (s, i) plane, it can be found that

i = ⌘ log

✓
s

s0

◆
� s+ s0 + i0, (2.29)

where x0 = (s0, i0). This expression is particularly useful because it allows us

to deduce two important results. The first is that in the limit as t ! 1, the

limiting proportion of susceptible individuals s1 satisfies the equation

⌘ log

✓
s1
s0

◆
� s1 + s0 + i0 = 0. (2.30)

This equation has a trivial solution of s1 = 1, which corresponds to the

event that there is no outbreak. The desired solution is on the interval (0, 1),

because this corresponds to the event that an outbreak actually occurs. Recall

that the fluid approximation is only valid over finite time intervals, however,

see Section 11.4 of Ethier and Kurtz [2008] for justification of the limiting

value of the fluid approximation.

The second result of equation (2.29) is that it may be substituted into the

derivative ds/dt (equation (2.28)) to obtain an expression for the amount of

time which elapses while a  s(t)  b, for a, b in (0, 1), given by

J (a, b) =
1

�

Z b

a


s

✓
s� s0 � i0 � ⌘ log

✓
s

s0

◆◆��1

ds. (2.31)

We are now able to state the following theorem due to Barbour [1975].

Theorem 7 Recall that the random variable T is the duration of the outbreak.

Then, provided i0 = 1/N and R0 � 0, then, as N ! 1,

Pr (T  t | E) !
⌘
�
1� e�(1�⌘)t

�

1� ⌘e�(1�⌘)t
, (2.32)

and

Pr

✓
T �

✓✓
1

⌘ � s1

◆
+

✓
1

1� ⌘

◆◆
log(N)� c � x | E

◆
! (1� ⌘) Pr (W 0

� x) ,

(2.33)
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where

1. E denotes the event that a major outbreak occurs;

2. we have that

c = lim
m!1


�

✓✓
1

⌘ � s1

◆
+

✓
1

1� ⌘

◆◆
log(m) +

✓
1

1� ⌘

◆
log(1� ⌘)

✓
1

⌘ � s1

◆
log(⌘ � s1) + J

✓
s1

✓
1 +

1

m(⌘ � s1)

◆
, 1�

1

m(1� ⌘)

◆�
;

3. s1 and J (., .) are evaluated setting i0 = 0;

4. W 0 has the distribution of
✓

1

⌘ � s1

◆
W1 +

✓
1

1� ⌘

◆
W2,

where W1 and W2 are independent type-I extremal random variables.

Equation (2.32) provides the distribution of T conditioned on a major

outbreak, and equation (2.33) provides the distribution of T conditioned

on the event that the outbreak fades out, via the convolution of two type-

I extremal random variables. To compute the convolution, we utilise the

approach of Nadarajah [2007], who analysed the more general case of a linear

combination of two Gumbel random variables.

Theorem 8 Let X ⇠ Gumbel(µ, �) and Y ⇠ Gumbel(✓,�), for µ, ✓ 2 R and

�,� > 0, be independent Gumbel random variables. Define Z = ↵X+�Y , such

that ↵, � > 0. Then, provided ↵�/|��| is rational, the probability distribution

function of Z is

Pr (Z  z) =
↵�A(z)

��
K

✓
�
↵�

��
, A(z),

↵�

��
, 1

◆
,

where

A(z) = exp

✓
↵µ+ �✓ � z

��

◆
,
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and

K(�, a, r, s) =

Z 1

0

x��1 exp
�
�ax�r

� sx
�
dx.

Since a type-I extremal random variable is Gumbel(0, 1) distributed, and

following from condition 4 of Theorem 7, the only requirement of Theorem 8

is that (1� ⌘)/(⌘ � s1) is rational. Although it is unreasonable to assume

the exact value of s1 is always rational, in practice its value is computed

to finite precision as the solution to equation (2.30). Similarly, ⌘ is either

specified or calculated to finite precision. Thus, it is reasonable to assume

that this condition holds in practice, thereby fulfilling the only condition of

Theorem 8.

In Chapter 3 we construct a hybrid fluid model which di↵ers from Barbour’s

hybrid model only in its use of the SIR CTMC in place of Barbour’s branching

process approximations. We use our hybrid fluid model to calculate the

distribution of the duration of the outbreak, which we compare to the exact

distribution (Equation (2.25)) and Barbour’s approximation (Theorem 7). As

we shall see, our hybrid model is more accurate than Barbour’s for moderately

sized N , but the two are similar when N is large. We now consider calculating

the distribution of the final size of the outbreak.

2.3.2 Final outbreak size

The final size of the outbreak is defined as the total number of individuals

who experience infection from the time at which the first individual becomes

infectious until the time when the final infectious individual is removed from

the population. More precisely, recall that A is the set of all states with I = 0,

and T is the hitting time of the CTMC on A. Then the random variable

R(T ) = N � S(T ) describes the final size of the outbreak.
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Direct computation from the CTMC

Since the SIR CTMC is time-homogeneous (Definition 2), its hitting distri-

bution on N
A is time-independent and may therefore be deduced from its

embedded jump process (Definition 5). The embedded jump process of the

DA process is the DTMC (Nn, n � 0), which takes values in N and, for all

n in N , has the transition probabilities

pNnn+e1 =
� (S(0)�NI)

� (S(0)�NI) + �(N � 1)
if n+ e1,n+ e2 2 N , (2.34)

pNnn+e2 =
�(N � 1)

� (S(0)�NI) + �(N � 1)
if n+ e1,n+ e2 2 N , (2.35)

with pNnn+e2 = 1 if n+ e1 /2 N and n+ e2 2 N .

Recall that the hitting probabilities on the set NA are the minimal non-

negative solution to the system of equations (2.2). It follows that, given the

initial state e1, the distribution of the final size of the outbreak is given by

Pr(R(T ) = r) = hN
e1 (N�r,0), (2.36)

for all r = 0, 1, . . . , N . Black and Ross [2015] presented a highly e�cient

algorithm for computing the solution to these hitting probabilities, similar to

Algorithm 1. Recall that �k1 = N�NI +NR and �k2 = N +2�NI +NR, and

that 'k denotes the kth element of the |N |⇥ 1 vector '. Then Algorithm 2

is equivalent to the algorithm of Black and Ross [2015], which we use to

compute the solution to the system of linear equations (2.2).

A number of authors [Von Bahr and Martin-Lof, 1980, Ball, 1983, Watson,

1980a,b, 1981, Martin-Lof, 1990] derived closed form approximations to the

distribution of the final size of the outbreak via a similar hybrid model to

Barbour [1975]. However, these approaches were subsequently summarised by

Lefèvre [1990] as being essentially the same. In the following discussion we

present one of the most widely-used approaches, due to Scalia-Tomba [1985].
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Algorithm 2: Algorithm for computing the distribution of the final size of the

outbreak, via the hitting probabilities (2.2).

Data: Set ' = e1.

Result: Compute Pr(R(T ) = r), for all r = 0, 1, . . . , N .

1 Initialise the state-index k = 2N + 1 ;

2 for NR = 0, 1, . . . , N do

3 Store the initial index k0 = k ;

4 for NI = 0, 1, . . . , NR do

5 Update distribution via:

6 'k+�k1 = 'k+�k1 + 'k pNk k+�k1 (Infection event) ;

7 'k��k2 = 'k��k2 + 'k pNk k��k2 (Removal event) ;

8 Update the state-index k = k + �k1 ;

9 end

10 Reset the state-index k = k0 � 1 ;

11 end

12 Return Pr(R(T ) = k) = 'k, for all k = 1, 2, . . . , N + 1 ;
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Hybrid approximation due to Scalia-Tomba

Based on the observation that a Gaussian di↵usion process provides a suitable

approximation of the SIR CTMC once the outbreak has become established,

Scalia-Tomba [1985] constructed a hybrid model for computing the distribution

of the final size of the outbreak by separately considering the event that the

outbreak fades out and the event that a major outbreak occurs. In the former

case, the SIR CTMC is approximated by an appropriate branching process,

and in the latter case, the SIR CTMC is approximated by an appropriate

normal distribution.

First, we state a well known result of the branching process approximation

of the initial stages of the SIR CTMC [Ball and Donnelly, 1995, Ball and

Neal, 2010].

Theorem 9 Let R1 denote the total progeny in a birth-death process with

birth rate �I and death rate �I, for I = 0, 1, . . . . Then the following is true

Pr(R1 = r) =

0

@2r + I(0)

r

1

A
✓

I(0)

2r + I(0)

◆✓
�r�r+I(0)

(� + �)2r+I(0)

◆
, (2.37)

for all r � 0.

This theorem provides the distribution of the total number of individuals

who experience infection under the branching process approximation of the

initial stages of the SIR CTMC. In the case where R0 > 1, this distribution

is defective because there is a 1� ⌘ probability of a major outbreak occuring.

Thus, in the branching process framework, there is a probability mass of 1� ⌘

associated with the event that R1 is infinite. Scalia-Tomba [1985] accounted

for this by utilising a normal approximation of the distribution of the final size

of the outbreak, conditioned on a major outbreak. The result is as follows.
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Theorem 10 Recall that (X(N)(t), t � 0), N > 0, denotes the sequence of

SIR CTMCs indexed by N , and assume that R0 > 1. Then as N ! 1, R(T )

converges to R1 with probability ⌘, and with probability 1� ⌘ the sequence

p

N

✓
R(N)(T )� I(N)(0)

N
� r1

◆
,

where r1 = 1�s1, converges weakly to a normally distributed random variable

with mean 0 and variance

s1r1

✓
1 + r1R2

0

(1� r1R0)
2

◆
.

In Chapter 3 we construct a similar hybrid model which has the dynamics

of the SIR CTMC whenever the number of infectious individuals is low and

the dynamics of the di↵usion approximation otherwise. We compute the

distribution of the final size of the outbreak from our hybrid di↵usion model

and compare it to the exact distribution (Equation (2.2)) and Scalia-Tomba’s

approximation (Theorem 10). As we shall see, Scalia-Tomba’s approximation

is highly accurate, but fails to capture a degree of skewness that arises during

the initial and final stages of the outbreak that is successfully captured by

our hybrid di↵usion model.

2.3.3 Inferring the basic reproductive number

Until now we have discussed computing the distribution of the duration of the

outbreak, and the distribution of the final size of the outbreak from the SIR

CTMC. However, an important aim of this thesis is to develop computationally-

e�cient routines for inferring properties of the basic reproductive number

from observed data. In this section we define the basic methodology for

performing likelihood-based inference in the framework of the SIR CTMC,

using daily incidence data from the initial stages of an outbreak. In the next
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section, we apply the same methodology to a more realistic partially-observed

SEIR CTMC.

The exact likelihood

The likelihood may be thought of as the probability that an observed set

of daily incidence counts xk, for all k = 0, 1, . . . , n, came from the proposed

model with a particular set of parameters ✓ chosen from the set ⇥ [Sprott,

2000]. The DA framework is amenable to parameter inference based on case

incidence counts because the cumulative incidence counts yk =
Pk

j=1 xj , for all

k = 1, 2, . . . , n, may be thought of as direct observations of the NI component

of the process. However, this construction requires the assumption that every

infectious case within the population is observed. Although this assumption

may be justified in small populations if the disease has distinct symptoms, it

is generally unrealistic (see Chapter 5). Nevertheless, assuming N (0) = e1,

the exact likelihood is

L(y|✓) =
nY

k=1

Pr (NI(tk) = yk | Yk-1) , (2.38)

where Yk-1 = {NI(tk-1) = yk-1, NI(tk-2) = yk-2, . . . , NI(t0) = y0}, is the history

of the outbreak. For brevity, herein Lk
E(✓), for k = 1, 2, . . . , n denotes

the probability of the observed data Pr (NI(tk) = yk | Yk-1), which can be
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computed from the data as follows.

Lk
E(✓) = Pr (NI(tk) = yk | Yk-1)

=
yk�1X

i=0

Pr (N (tk) = (yk, i) | Yk-1)

=
yk-1X

j=0

yk�1X

i=0

Pr (N (tk) = (yk, i) |N (tk-1) = (yk-1, j),Yk-1)

⇥ Pr (N (tk-1) = (yk-1, j) | Yk-1)

=
yk-1X

j=0

yk�1X

i=0

pN(yk-1,j) (yk,i)(tk � tk-1) Pr (N (tk-1) = (yk-1, j) | Yk-1)

=
yk-1X

j=0

yk�1X

i=0

pN(yk-1,j) (yk,i)(tk � tk-1)

✓
Pr (N (tk-1) = (yk-1, j) | Yk-2)

Pr (NI(tk-1) = yk-1 | Yk-2)

◆

=
yk-1X

j=0

yk�1X

i=0

pN(yk-1,j) (yk,i)(tk � tk-1)

✓
Pr (N (tk-1) = (yk-1, j) | Yk-2)

Lk-1
E (✓)

◆
.

(2.39)

Noting that the event that N (tk-1) = (yk-1, j), for any j = 1, 2, . . . , yk-1,

intersects with the event that NI(tk-1) = yk-1, the fourth step uses condi-

tional probability to rewrite the previous equation, to provide Lk-1
E (✓) in the

denominator. This expression lends itself to a straightforward approach to

computing the likelihood (2.38), which we now illustrate using a simplistic

data set.

Illustrative example Suppose an outbreak infects two individuals on the

first day, and three on the second. Utilising the assumption that on day zero,

there was a single unobserved infectious individual, the basic reproductive

number is inferred from the cumulative incidence counts y0 = 1, y1 = 3 and

y2 = 6 via the exact likelihood L(y|✓) = L1
E(✓)L

2
E(✓), by calculating L1

E(✓)

and then L2
E(✓).
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(a) State transition diagram for

calculating the probability that

NI(1) = 3, assuming the initial

state NI(0) = 1.

NI

NR

3 4 5 6 7

0

1

2

3

4

5

6

(b) State transition diagram for calcu-

lating the probability that NI(2) = 6,

given NI(1) = 3 and NI(0) = 1.

Figure 2.2: Example of how the exact likelihood is computed, using the observed incidence

counts x1 = 2 and x2 = 3. The state transition diagrams display the truncated state spaces

which contain: initial states (green), absorption states (red), states used to compute L1
E(✓)

and L2
E(✓) (yellow), and ordinary transient states (blue).

The probability L1
E(✓) is defined as the probability of observing three

infection events in the DA process by day 1, given that N (0) = (1, 0).

Since NI is monotonically non-decreasing, the computational e↵ort of this

calculation can be reduced by truncating the state space to contain only

states with 1  NI  4. The resulting state space is shown in Figure 2.2a,

in which the green state is the initial state, the yellow states are states with

NI = 3, the blue states are ordinary transient states, and the red states

are absorbing states. It follows that the probability L1
E(✓) is obtained by
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integrating the transition probabilities of the DA process from day 0 to day 1

using the Kolmogorov equations (Equation (2.23)), and then adding up the

probability that N (1) is in any of the yellow states.

It is worth noting that the absorbing states with NI = NR are extinc-

tion states which we will later condition the DA process on never reaching

(Chapter 4), hence transition into these states is denoted by a dashed arrow.

We now seek the probability L2
E(✓), which is defined as the probability

that NI(2) = 6, given the history Y1 = {NI(0) = 1, NI(1) = 3}. In order to

consider the DA process conditioned on the event Y1 for t � 1, the distribution

of N (1) is conditioned on being in the set of the yellow states in Figure 2.2a.

This is given by

Pr (N (1) = (3, i) | Y1) =
pN(1,0) (3,i)(1)

L1
E(✓)

,

for all i = 0, 1, 2. To calculate L2
E(✓) we truncate the state space to contain

only states in N , such that 3  NI  7. This is shown in Figure 2.2b, for

which the initial distribution across the green states is provided by the above

distribution, and the yellow states denote states with NI = 6. It follows that

the transition probability L2
E(✓) is obtained by evolving the distribution of

the DA process, conditioned on Y1, from day 1 to day 2, using the Kolmogorov

equations (Equation (2.23)), and then summing the probabilities that N (2)

is in each of the yellow states.

The exact likelihood may now be computed as the product of the probabili-

ties L1
E(✓) and L2

E(✓). It is worth noting that this algorithm may be extended

to include more observations by generalising the procedure for calculating

L2
E(✓). This is made precise in Algorithm 3.

The computational-e↵ort of computing the exact likelihood is influenced

by the total number of observed infection events yn. This can be a concern

if yn is large because likelihood-based inference is generally computationally
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Algorithm 3: Algorithm for computing the likelihood L(y|✓), given a set of

observed incidence counts x1, x2, . . . , xn.

Data: Daily incidence counts x0, x1, . . . , xn

Result: Compute the likelihood L(y|✓).

1 Set yk =
Pk

j=0 xj, for all k = 1, 2, . . . , n, and pN (0) = e1 ;

2 for k = 0, 1, . . . , n� 1 do

3 Truncate the state space, N k = {m 2 N | yk  NI  yk+1 + 1} ;

4 Given pN (tk), compute pN (tk+1) ;

5 Compute the probability Lk+1
E (✓) ;

6 Condition N (tk+1) on the event that NI(tk+1) = yk+1 ;

7 end

8 Compute L(y|✓) =
Qn

k=1 L
k
E(✓).

intensive and requires evaluating the likelihood a large number of times. Thus,

in the next section we consider utilising the di↵usion approximation instead

of the DA process.

The large-population approximation

When conducting inference on large populations, the exact likelihood is often

computationally prohibitive because the total number of observed infection

events is too large. However, under these circumstances it is generally safe to

assume that the di↵usion approximation will provide a su�ciently accurate

approximation of the underlying CTMC. Thereby providing a computationally-

e�cient alternative to the SIR CTMC [Ross et al., 2006, 2009, Ross, 2012].

In this section we describe how the di↵usion approximation can be utilised

for parameter inference.

We begin by constructing the di↵usion approximation of the DA process.
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Let (N (N)(t), t � 0), N > 0, denote the DA process indexed by N , which

takes values in N
(N). Then, for all n in N

(N), N (N)(t) provides

f (N) (n/N, e1) =

✓
�N

N � 1

✓
S(0)

N
�

NI

N

◆✓
I(0)

N
+

NI

N
�

NR

N

◆◆
,

if n+ e1 2 N
(N), and

f (N) (n/N, e2) =

✓
�

✓
I(0)

N
+

NI

N
�

NR

N

◆◆
, (2.40)

if n+ e2 2 N
(N).

Now, let s0, i0, nI and nR denote the proportions S(0)/N , I(0)/N , NI/N

and NR/N , respectively, where (nI , nR) takes values in E = {(nI , nR) 2

[0, 1]2 : 0  nR  nI  1}. Then the DA process is density dependent

because as N ! 1 the function F (N) (m), for all m in E, converges to

F (m) =

0

@� (s0 � nI) (i0 + nI � nR)

� (i0 + nI � nR)

1

A , (2.41)

where limN!1 X(0) = (s0, i0). Thus, the DA process satisfies the conditions

of the fluid limit (Theorem 3), provided n0 = (1, 0)/N . It follows that the fluid

approximation of (N (t) , t � 0) is the deterministic process (N n (t,n0) , 0 

t < 1) whose elements are the unique solution to the system of ordinary

di↵erential equations

dnI

dt
= � (s0 � nI) (i0 + nI � nR) , (2.42)

dnR

dt
= � (i0 + nI � nR) . (2.43)

From the di↵usion limit (Theorem 4), the fluctuations of the DA process about

the deterministic trajectory (n (t,n0) , t � 0) are captured by the Gaussian

di↵usion (Z(t), t � 0) with mean 0 and covariance matrix ⌃N(t) = (�N
i,j(t) :

i, j = 1, 2), whose elements are the unique solutions to the system of ordinary
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di↵erential equations

d�N
1

dt
= 2��N

1 (s0 � i0 + nR � 2nI)

� 2��N
1,2 (s0 � nI) + � (s0 � nI) (i0 + nI � nR) ,

d�N
1,2

dt
= �

�
�N
1 � �N

1,2

�
+ ��N

1,2 (s0 � i0 + nR � 2nI)� ��N
2 (s0 � nI) ,

d�N
2

dt
= �

�
i0 + nI � nR + 2�N

1,2 � 2�N
2

�
, (2.44)

with �N
2,1 = �N

1,2. It follows that, for 0  t < 1, the di↵usion approximation

of the DA process is a Gaussian di↵usion process with mean N n (t,n0), and

covariance matrix N ⌃N(t). It is worth noting that the fluid approximation

and the di↵usion approximation of the SIR CTMC can be obtained from

the fluid approximation and di↵usion approximation of the DA process via a

change of variables (2.20).

Given a suitable initial state, the di↵usion approximation provides an

approximation of the transition probabilities of the underlying DA process,

which is often referred to as the transition density. More precisely, suppose

N (0) = n, then the transition density is

fN(n,m, t) =
1

2⇡N
p

|⌃(t)|
⇥

exp

✓
�
1

2

⇣
m� n

⇣
t,
n

N

⌘⌘T

⌃�1(t)
⇣
m� n

⇣
t,
n

N

⌘⌘◆
, (2.45)

for all m in N and 0  t < 1.

In the framework of the di↵usion approximation, the likelihood is usually

constructed in terms of the transition density. However, it will be instructive

for Chapter 4 if we think of the transition density as a means of approximating

the transition probabilities of the DA process. In particular, suppose n and

m are in N , with m = (NI , NR), then the transition density provides the
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approximation

pNnm(t) ⇡

Z NI+
1
2

NI� 1
2

Z NR+ 1
2

NR� 1
2

fN(n, (v, u), t) du dv.

Since the transition density follows a bivariate normal distribution, it may be

computationally-expensive to compute so we utilise the midpoint approxima-

tion

pNnm(t) ⇡ fN(n,m, t). (2.46)

We are now able to specify the di↵usion likelihood as

L(y|✓) =
nY

k=1

Lk
D(✓). (2.47)

Following from equation (2.39), the probabilities of the observed data, Lk
D(✓),

for k = 1, 2, . . . , n, are given by

Lk
D(✓) =

yk-1X

j=0

ykX

i=0

fN ((yk-1, j), (yk, i), tk � tk-1)⇥

✓
Pr (N (tk-1) = (yk-1, j) | Yk-2)

Lk-1
D (✓)

◆
. (2.48)

The di↵usion likelihood is computed via Algorithm 3, with the modifi-

cation that the transition probabilities are approximated by the transition

densities via equation (2.46). In the context of Figure 2.2a, this means that

the transition probability L1
E(✓) is approximated by L1

D(✓) using the tran-

sition densities fN((1, 0), (3, i), 1), for i = 0, 1, 2. It follows that the initial

distribution over the green states in Figure 2.2b can be approximated by

normalising their probability densities,

Pr (N (1) = (3, i) | Y1) =
fN((1, 0), (3, i), 1)

L1
D(✓)

,

for all i = 0, 1, 2.

We now discuss likelihood-based methodology for inferring the parameters

✓ from a set of observed daily incidence counts.
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Likelihood-based Inference Methodology

There are two distinct frameworks in which one can conduct parameter

inference. The first is the frequentist framework, in which the parameters

are assumed to have a fixed, but unknown, underlying value, and the second

is the Bayesian framework, in which the parameters are treated as random

variables. We now discuss the methodology of both frameworks.

In the frequentist framework, one commonly uses the Maximum Likelihood

Estimate (MLE) to infer the true value of the parameters.

Definition 9 (Maximum Likelihood Estimate) The MLE, ✓MLE, is the

value of ✓ in ⇥ which maximises the likelihood. That is,

✓MLE = argmax
✓2⇥

L(y|✓). (2.49)

The MLE may be thought of as the set of model parameters ✓ in ⇥ which

maximises the probability that the observed data came from the specified

model, with the parameters ✓. A useful property of the MLE is that, under

certain regularity conditions, the asymptotic di↵erence (as n ! 1) between

the MLE and the true parameters is approximately normal with mean 0, and

known covariance [Casella and Berger, 2002].

The MLE may be computed by simply maximising the likelihood with

respect to ✓ in ⇥ [Casella and Berger, 2002]. However, numerical accuracy is

a common concern because the likelihood is computed as the product of the

probabilities Lk(✓), for all k = 1, 2, . . . , n, which are generally small. Thus,

one usually works with the log-likelihood. The log-likelihood is defined as the

log of the likelihood and is beneficial because it avoids computing the product

(equation (2.38)) in favour of the sum

log(L(y|✓)) =
nX

k=0

log(Lk(✓)). (2.50)
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Since log(x), for x in R, is continuous and monotonically-increasing, the set

of parameters ✓ in ⇥ which maximises the log-likelihood is identical to the set

of parameters which maximises the likelihood. Thus, we later compute the

MLE by maximising the log-likelihood using MATLAB’s built-in fmincon

constrained optimisation routine.

In the frequentist framework, the parameters are assumed to have a fixed,

but unknown, underlying value, which we deduce using an estimator which

is a random variable. In a Bayesian framework one treats the parameters

as fixed and aims to model the uncertanty surrounding the parameters.

Bayesian inference may be thought of as a process where one iteratively

updates one’s understanding of the distribution of the parameters as new

information becomes available. This process starts with a prior distribution

f(✓), for ✓ in ⇥, describing one’s initial understanding of the distribution of

the parameters. As new data (here denoted y) becomes available, one updates

one’s prior distribution via Bayes’ rule to obtain the posterior distribution

f(✓|y), describing one’s updated understanding of the distribution of the

parameters.

According to Bayes’ rule, the posterior distribution may be written as

f(✓|y) =
L(y|✓) f(✓)R
⇥ L(y|✓) f(✓)

. (2.51)

Although this provides the exact expression for the posterior in terms of the

likelihood and the prior, the denominator is generally impractical to compute,

especially when the dimension of ✓ is high. Thus, one usually aims to estimate

the posterior distribution. A common approach for doing so is the Metropolis-

Hastings algorithm. The Metropolis-Hastings algorithm is a Markov chain

Monte Carlo approach which generates samples from the posterior distribution

by sampling from a similar distribution. More specifically, based on the fact
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that Bayes’ rule implies that

f(✓|y) / L(y|✓)f(✓), (2.52)

the Metropolis-Hastings algorithm generates samples from f(✓|y) by sampling

instead from L(y|✓)f(✓).

The Metropolis-Hastings algorithm is initiated by randomly generating a

set of parameters ✓0 from the prior distribution. The algorithm then generates

samples ✓1,✓2, . . . ,✓n which, after an initial convergence period, are random

samples from the density L(y|✓)f(✓). Each iteration of the algorithm starts

by randomly selecting a set of candidate parameters, ✓0, from a pre-defined

proposal distribution, q(✓0
|✓k). The candidate parameters are then retained

with probability

↵(✓k,✓
0) = min

⇢
L(y|✓0) f(✓0) q(✓k|✓

0)

L(y|✓k) f(✓k) q(✓
0
|✓k)

, 1

�
, (2.53)

and rejected otherwise. In the event that the candidate parameters are

retained, we set ✓k+1 = ✓0, otherwise we set ✓k+1 = ✓k. This process is made

precise by Algorithm 4.

Provided the proposal distribution satisfies certain regularity conditions,

the underlying distribution of the samples ✓1,✓2, . . . ,✓n is guaranteed to

converge to f(✓|y) [Gilks et al., 1996]. A common choice for the propos-

al distribution (which satisfies these conditions) is a multivariate normal

distribution, with mean ✓k and pre-determined covariance. The stationary

distribution of the generated samples is the posterior distribution. In practice,

convergence of the generated samples to the stationary distribution manifests

as an initial transient period, referred to as burn-in. The burn-in phase is

generally accounted for by allowing the algorithm to run for a large number

of iterations and then discarding the samples which were obtained before the

chain reached equilibrium. It is important to note that the choice of proposal
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Algorithm 4: The Metropolis-Hastings algorithm.

Data: Observed data y, L(y|✓), f(✓), and q(✓|x).

Result: Samples ✓0,✓1, . . . ,✓n from the posterior distribution.

1 Randomly sample ✓0 from f(✓) ;

2 for k = 1, . . . , n� 1 do

3 Sample ✓0 from q(✓|✓k�1) ;

4 Calculate ↵(✓k,✓
0) ;

5 Sample a uniform number, u, on [0, 1] ;

6 if u < ↵(✓k,✓
0) then

7 Set ✓k+1 = ✓0 ;

8 else

9 Set ✓k+1 = ✓k ;

10 end

11 end
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distribution influences the speed at which the algorithm converges to the

posterior distribution, but the resulting estimate of the posterior distribution

is independent of the choice of proposal distribution [Chibb and Greenberg,

1995].

2.4 The partially-observed SEIR CTMC

Most compartmental Markovian models make a number of unrealistic assump-

tions about the population which it is modelling. However, there are some

disease systems where an SIR CTMC model may be su�cient, especially given

the additional complexity of adding an extra compartment. In this section,

we introduce a partially-observed SEIR CTMC which relaxes the assumptions

that all individuals become infectious immediately after an infectious contact,

and that all infectious cases are observed. We do so by including an additional

exposed compartment in the model, and assuming the individuals who become

infectious are observed with probability p, and are otherwise unobserved.

In particular, the partially-observed SEIR CTMC is a compartmental

model in which individuals are classified as susceptible (S), exposed but

not infectious (E), infectious and observed (Io), infectious but unobserved

(Iu), removed from the observed infectious class (Ro), and removed from the

unobserved infectious class (Ru). Although it is not necessary to partition the

removed compartment into observed and unobserved, doing so allows us to

transform between the DA representation and the population representation.

Furthermore, the inclusion of two distinct removed classes has no impact on

the e�ciency of the model.

Under the assumption that the population is closed, we have that S +E +

Io + Iu +Ro +Ru = N . Thus, we need only model five compartments as the
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sixth can be determined from the rest. There are only three kinds of possible

transitions in the partially-observed SEIR CTMC: exposure events, infection

events, and removal events. The rate at which susceptible individuals are

exposed to infection is typically specified as

� =
1

N � 1
(�oIo + �uIu) ,

where �oIo and �uIu are the rates at which individuals have transmissible

contacts with individuals of the observed and unobserved infectious classes,

respectively. The rate at which an exposed individual transitions to an

infectious class is ↵, making 1/↵ the average latent period. The instant

that an exposed individual becomes infectious, the event is observed with

probability p, and unobserved otherwise. Thus, the rate at which an exposed

individual transitions to the observed infectious class is p↵, and the rate at

which an exposed individual transitions to the unobserved infectious class is

(1� p)↵. The rate at which an observed and unobserved infectious individual

is removed is �o and �u, respectively. These dynamics are summarised in

Figure 2.3.

S E

Io

Iu

Ro

Ru

�S

p↵E

(1� p)↵E

�oIo

�uIu

Figure 2.3: State transitions of the partially-observed SEIR CTMC.

Recall that the basic reproductive number, R0, is the average number

of new infections caused by a single infectious individual in an otherwise
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susceptible population. For the SEIR CTMC, we have that

R0 = p
�o
�o

+ (1� p)
�u
�u

.

Let (X(t), t � 0) denote the partially-observed SEIR CTMC, which takes

values x in

X =
�
(S,E, Io, Iu, Ro) 2 Z

5
+ : S + E + Io + Iu +Ro  N

 
.

The only possible transitions change the state of the process by

`1 = (�1,+1, 0, 0, 0) (an exposure event),

`2 = (0,�1,+1, 0, 0) (an observed infection event),

`3 = (0,�1, 0,+1, 0) (an unobserved infection event),

`4 = (0, 0,�1, 0,+1) (an unobserved removal event),

`5 = (0, 0, 0,�1, 0) (an unobserved removal event). (2.54)

Thus, for all x in X , the transition rates of the SEIR CTMC are

qXxx+`1 =
S

N � 1
(�oIo + �uIu) if x+ `1 2 X ,

qXxx+`2 = p↵E if x+ `2 2 X ,

qXxx+`3 = (1� p)↵E if x+ `3 2 X ,

qXxx+`4 = �oIo if x+ `4 2 X ,

qXxx+`5 = �uIu if x+ `5 2 X , (2.55)

with the additional requirement that qXxx = �
P

y 6=x q
X
xy. We now discuss

inference in the framework of the partially-observed SEIR CTMC.

2.4.1 Inferring the basic reproductive number

The SEIR CTMC may be thought of as a direct generalisation of the SIR

CTMC to include an additional state of exposure, and in which infection
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events are only partially-observed. Thus, the methodology described in

Section 2.3.3 carries over to the SEIR CTMC with few modifications.

Let (N (t) , t � 0) denote the DA representation of the SEIR CTMC. The

DA process tracks the number of exposure events (Ne), the number of observed

infection events (Nio), the number of unobserved infection events (Niu), the

number of observed removal events (Nro), and the number of unobserved

removal events (Nru), on the state space

N =
�
n 2 Z5

+ : Ne, Nio, Niu, Nro, Nru  N,

Ne � Nio +Niu, Nio � Nro, Niu � Nru} . (2.56)

The DA process is equivalent to the SEIR CTMC, and we can map between

the two using the transformation

Ne = N � S, S = N �Ne,

Nio = Io +Ro, E = Ne �Nio �Niu,

Niu = Iu +Ru, Io = Nio �Nro,

Nro = Ro, Iu = Niu �Nru,

Nru = Ru, (2.57)

It follows that, for all n in N , the transition rates of the DA process are
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qNnn+e1 =
N �Ne

N � 1
(�o (Nio �Nro) + �u (Niu �Nru)) if n+ e1 2 N ,

(2.58)

qNnn+e2 = p↵ (Ne �Nio �Niu) if n+ e2 2 N ,

(2.59)

qNnn+e3 = (1� p)↵ (Ne �Nio �Niu) if n+ e3 2 N ,

(2.60)

qNnn+e4 = �o (Nio �Nro) if n+ e4 2 N ,

(2.61)

qNnn+e5 = �u (Niu �Nru) if n+ e5 2 N ,

(2.62)

with the additional requirement that qNnn = �
P

m 6=n qNnm. To ensure

that the generator matrix is triangular, the states in the state space of the

DA process are ordered lexicographically, meaning that the state n proceeds

the state n0 if and only if

n1 > n0
1 or ni = n0

i, for i = 1, . . . , j, and nj > n0
j, (2.63)

where ni denotes the ith element of n. Since the generator matrix QN is

triangular under this state-ordering, the results of Jenkinson and Goutsias

[2012] (Section 2.3.1) carry over to the SEIR CTMC.

Recall that in Section 2.3.3 we assumed that the cumulative incidence

counts yk, for k = 1, 2, . . . , n, corresponded to observations of the NI com-

partment. In the framework of the SEIR model we now attribute these

observations to the Nio compartment. In particular, the likelihood under the
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SEIR model is

L(y|✓) =
nY

k=1

Pr (Nio(tk) = yk | Yk-1) , (2.64)

where Yk = {Nio(tk-1) = yk-1, Nio(tk-2) = yk-2, . . . , Nio(t0) = y0} is the

history of the process. For brevity, we again let Lk
E(✓), for k = 1, 2, . . . , n,

the probability of the observed data Pr (Nio(tk) | Yk-1), which is calculated via

an analogous argument to equation (2.39).

Lk
E(✓) =

X

nk-12N

X

nk2N

pNnk-1 nk
(tk � tk-1)

✓
Pr (N (tk-1) = nk-1 | Yk-2)

Lk-1
E (✓)

◆
, (2.65)

where nk is any state in N for which Nio = yk. The likelihood is therefore

computed via a direct generalisation of Algorithm 3, and its parameters may

be inferred via either maximum likelihood estimation (Definition 9) or the

Metropolis-Hastings algorithm (Algorithm 4).

In the framework of the SIR CTMC, truncating the state space was an

e↵ective way of managing the computational-cost of computing the likeli-

hood (2.38). However, in the framework of the partially-observed SEIR

CTMC this approach is not as e↵ective. The main reason for this is that

the number of states in its state space is O (N5), compared to O (N2) for

the SIR CTMC. Furthermore, an observed cumulative incidence count yk

does not influence the size of the Ne, Niu and Nru compartments, allowing

these compartments to grow unchecked. Thus, in Chapter 5, we present a

hybrid di↵usion model of the SEIR CTMC which we utilise for computing

the likelihood (5.3). This approach enables us to conduct parameter inference

on a range of large real-world outbreaks which would have been intractable

under the SEIR CTMC.
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Chapter 3

Hybrid approximation of final

size and duration distributions

for the SIR CTMC

Compartmental continuous-time Markov chain (CTMC) models are of sub-

stantial importance to mathematical epidemiology because they account for

the stochastic individual-to-individual nature of disease transmission [Bailey,

1957, Keeling et al., 2000, Ball and Donnelly, 1995, Bartlett, 1956, Rand and

Wilson, 1991, Fox, 1993, Grenfell et al., 1998, Spagnolo et al., 2003, Coulson

et al., 2004]. This is a particularly important feature during the initial stages

of an outbreak, when there is a considerable probability that the outbreak

will fade out. On the other hand, when working within a CTMC framework,

most analyses require computing the solution to systems of equations which

generally contain O
�
Nd

�
equations, where d is the number of compartments

and N is the size of the population. Thus, modelling large populations di-

rectly with a CTMC is generally considered computationally-infeasible. The

aim of this chapter is to investigate accurate and computationally-e�cient
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approaches to analysing features of the SIR CTMC, in the situation where

the population size is large.

Recall that in Section 2.2 we introduced the notion that a certain class of

CTMCs may be approximated by a large-population approximation [Kurtz,

1970, 1971, Van Kampen, 1961, 2007a, McNeil and Walls, 1974, Kubo et al.,

1973, Sjöberg et al., 2009, Van Kampen, 2007b], and that two important

large-population approximations are the so-called fluid limit (Theorem 3) and

di↵usion limit (Theorem 4). The fluid limit provides an approximation of

the expected state of the CTMC, while the di↵usion limit approximates its

probability distribution. Both of these approximations are computationally-

e�cient and generally accurate, but they break down if the population of at

least one compartment of the model is close to zero. It follows that a discrete-

state model, such as a CTMC, is indispensable for accurately modelling the

initial and final stages stages of an outbreak.

A natural way to approximate the dynamics of a large-population CTMC

is to construct a model which utilises discrete dynamics when the population of

its compartments are low, and a large-population approximation otherwise. So-

called hybrid models have been constructed for a variety of applications, such

as improving the e�ciency of Monte Carlo methods [Guerrier and Holcman,

2016, Ganguly et al., 2015, Duncan et al., 2016, Angius et al., 2015, Vasudeva

and Bhalla, 2003, Takahashi et al., 2004, Hellander and Lötstedt, 2007,

Hepp et al., 2015] and computing the solution to the Kolmogorov equations

(Definition 4) Safta et al. [2015]. There has been particular interest in using

hybrid models to compute quantities from the SIR CTMC [Kermack and

McKendrick, 1927, Bartlett, 1949, Bailey, 1950, 1957, Bartlett, 1956, Kendall,

1965, Sazonov et al., 2011, 2017]; also see Section 2.3.1 and Section 2.3.2. These

hybrid models generally use an appropriate branching process approximation
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during the initial stages of the outbreak [Ball and Neal, 2010] and either the

di↵usion approximation [Scalia-Tomba, 1985, Watson, 1980a, 1981, Nagaev

and Startsev, 1970] or fluid approximation [Barbour, 1975, Sazonov et al.,

2011] thereafter.

In this chapter we construct two hybrid approximations of the SIR CTMC

suitable for modelling large populations, referred to as the hybrid fluid model

and the hybrid di↵usion model. These models utilise CTMC dynamics while

the number of infectious individuals is below a particular threshold and either

fluid or di↵usion dynamics otherwise. To assess the accuracy of our models,

we use them to calculate the distribution of the duration of the outbreak, and

the distribution of the final size of the outbreak, which are compared to the

approximations of Barbour [Barbour, 1975] and Scalia-Tomba [Scalia-Tomba,

1985], respectively. We also demonstrate the computational advantage of our

approach over those based on the SIR CTMC (Section 2.3.1 and Section 2.3.2).

As we shall see, the hybrid fluid model provides an accurate representation

of the distribution of the duration of the outbreak but fails to accurately

capture the distribution of the final size of the outbreak. However, the hybrid

di↵usion makes up for this shortcoming. The computational runtimes of our

hybrid models are O (N), which is a significant improvement over the O (N2)

runtime of the SIR CTMC. These results encourage extending the hybrid

di↵usion model to inference in the following chapters.

It is worth noting that in this chapter we discuss the hybrid models in

their population representation (Section 2.3) because it is more instructive

than their DA representation (Equation (2.20)). However, the numerical

implementation of these algorithms is performed in the DA representation

in order to preserve the numerical advantages a↵orded by Algorithm 1 and

Algorithm 2. The remainder of this chapter is structured as follows: in
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Section 3.1 we introduce the hybrid fluid model and use it to compute the

distribution of the duration of the outbreak and the distribution of the final

size of the outbreak. In Section 3.2 we introduce the hybrid di↵usion model

and use it to compute the distribution of the final size of the outbreak. Finally,

in Section 3.3 we discuss the numerical implementation of these algorithms

in the DA representation.

3.1 Hybrid fluid model

We begin by introducing the hybrid fluid model, which is similar to the

hybrid model of Barbour [1975]. Where Barbour’s model utilises branching

process dynamics until the number of infectious individuals exceeds
p
N ,

and after the number of infectious individuals drops below N1/4, our hybrid

fluid model utilises CTMC dynamics whenever the number of infectious

individuals is below some pre-determined threshold bI 2 {1, 2, . . . , N}. During

the intermediate stages, both Barbour’s model and our hybrid fluid model

utilise the fluid approximation.

3.1.1 Model formulation

Before we define the hybrid fluid model, it is instructive to recall that the

SIR CTMC, (X(t), t � 0), takes values in X and, for all x in X , has the

positive transition rates qXxx+`, if x+ ` is in X , and ` is either `1 = (�1, 1)

or `2 = (0,�1) (Section 2.3). The hybrid fluid model may simply be thought

of as a version of the SIR CTMC whose dynamics over the set of states with

I � bI are approximated by the fluid limit (Theorem 3). More precisely, let

Y (t), for t � 0, denote the hybrid fluid, which takes values in the hybrid
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discrete-continuous state space Y , defined as the union of the discrete lattice

Y
MC =

n
(S, I) 2 X : I  bI

o

and the continuum

Y
DE =

n
(S, I) 2 R2

+ : S + I  N, I � bI
o
.

When Y (t) is in the subset YMC , it has the dynamics of X(t), and when

Y (t) is in the subset YDE it has the dynamics of the fluid approximation

N x (t,x0/N) (Equation (2.28)), given an appropriate initial state x0 in Y.

The dynamics of Y (t) at the intersection of YMC and Y
DE, denoted T

MC ,

require careful consideration.

Recall that the fluid approximation is governed by the system of di↵erential

equations (2.28). According to these equations, the rate of change of I with

respect to time is positive if S > ⌘N , where ⌘ = �/�. This means that if Y (t)

hits the state (S, bI) in T
MC , where S > ⌘N , then the fluid dynamics will

immediately force Y (t) out of T MC and into Y
DE. In contrast, if S  ⌘N

then the fluid dynamics will force Y (t) to remain in its current state until a

removal event occurs. Thus, we define

T
MC
1 =

n
(S, bI) 2 Y

MC : S = b⌘Nc+ 1, . . . , N � bI
o
,

as the set of states which force Y (t) to switch from CTMC dynamics to fluid

dynamics and

T2 =
n
(S, bI) 2 Y

DE : S 2 [0, ⌘N ]
o

as the set of states which force Y (t) to switch from fluid dynamics to CTMC

dynamics. We denote the integer components of T2 as T MC
2 which is defined

as the intersection of YMC and T2.

Given that the fluid approximation is a deterministic process, we are

able to deduce some important features of the behaviour of Y (t) on Y
DE.
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Recall that by considering the trajectory of the fluid approximation through

the (s, i) plane, one can deduce a relationship between s(t) and i(t), given

an initial value s(0) and i(0) (equation (2.29)). Furthermore, since s(t) is

monotonically decreasing, one can deduce the amount of time which elapses

while a  s(t)  b, for a, b in [0, 1], see equation (2.31). It follows that if

Y (t) hits the state x = (S, bI) in T
MC
1 , then the state in T2 where the fluid

dynamics terminate is (S(x), bI), where S(x)/N is the non-trivial solution to

equation (2.30) with s0 = S/N and i0 = bI/N . Furthermore, the duration of

the fluid dynamics is given by J (S/N, S(x)/N) from equation (2.31), which

we denote t (x).

Since the fluid approximation is a continuous-state process and the SIR

CTMC is a discrete-state process, a discretisation mapping must occur when

Y (t) switches from fluid dynamics to CTMC dynamics. As the fluid dynamics

provide no measure of the variability of the underlying CTMC, we decided to

discretise the number of susceptible individuals S2 (x) as follows:

round down to bS2 (x)c with probability 1� (S2 (x)� bS2 (x)c),

round up to bS2 (x)c+ 1 with probability (S2 (x)� bS2 (x)c).

(3.1)

Under the assumption that the population is large, the di↵erence between

rounding up or down is negligible. Finally, it is important to note that the

only CTMC events possible from states in T
MC
2 are removal events.

Figure 3.1 is a state-transition diagram of the hybrid fluid model for a

population of N = 15 individuals with a threshold of bI = 3. The green points

are states from the discrete set YMC , and the continuum Y
DE is the region

with I � bI, and S  N�I, with the threshold sets T MC
1 and T

MC
2 represented

by the green upward and downward pointing triangles, respectively. The

state space Y is the union of YMC and Y
DE. The black arrows represent the
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Figure 3.1: The state-transition diagram of the hybrid fluid model with N = 15 and

bI = 3. The green points are the discrete states in Y
MC , and the continuum Y

DE is the

set of states with I � bI, and S  N � I. The upward (downward) pointing triangles are

states from which Y (t) switches from CTMC to fluid (fluid to CTMC) dynamics, which

are contained in the set T MC
1 (T MC

2 ). The black curves emanating from states in T
MC
1

are the deterministic trajectories of Nx (t,x0/N), for x0 in T
MC
1 , through Y

DE .
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possible transitions of the model. Of particular interest are the trajectories of

Nx (t,x0/N), for x0 in T
MC
1 . These trajectories are shown by the black curves

emanating from states in T
MC
1 , which amount to a deterministic transition

from states in T
MC
1 to states in T

MC
2 (equation (2.30)). The duration of each

of these trajectories is calculated from equation (2.31).

We now consider using the hybrid fluid model to compute the duration of

the outbreak, and the distribution of the final size of the outbreak.

3.1.2 Outbreak duration

A system of delayed di↵erential equations (DDE)s describing the transition

probabilities of Y (t) for states in Y
MC is derived by separately considering

the flux of probability on three disjoint subsets of YMC . Within each of

these subsets, the flux of probability between states in Y
MC must be treated

di↵erently due to the way in which probability flows between Y
MC and Y

DE.

In the first scenario we consider the set D = Y
MC

\ (T MC
1 [ T

MC
2 ), on which

the fluid dynamics have no e↵ect. In the second and third scenarios we

consider the sets T
MC
1 and T

MC
2 on which probability flows from Y

MC to

Y
DE, and from Y

DE to Y
MC , respectively. The resulting system of DDEs

allow us to calculate the transition probabilities of Y (t) on Y
MC , for t � 0,

which may be used for computing the distribution of the duration of the

outbreak in a similar way to the Kolmogorov equations (Section 2.3.1).

Scenario 1

The flux of probability on states in D is not a↵ected by the fluid dynamics of

Y (t), so it is governed by the Kolmogorov equations (Definition (4)). Thus,
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for all x in D, the transition probabilities satisfy

d

dt
pYxz(t) =

X

y2YMC

pYxy(t) q
X
y z, (3.2)

if z is in Y
MC .

Scenario 2

We now consider the flux of probability for states in T
MC
1 . On this subset,

probability flows from states in Y
MC into states in Y

DE . Since the transition

from CTMC dynamics to fluid dynamics is instantaneous, the flux of proba-

bility into states in T
MC
1 is always equal to the flux of probability out. Thus,

for all x in D, we have that pYxy(t) = 0, if y is in T
MC
1 and t > 0.

Scenario 3

We now consider the flux of probability for states in T
MC
2 . Probability flows

into states in T
MC
2 both from states in Y

MC , and from trajectories through

Y
DE. In the former case, the probability flux is not a↵ected by the fluid

dynamics so it is governed by the Kolmogorov equations; however, the latter

case requires careful consideration.

Due to the deterministic nature of the fluid process, we know that the flux

of probability into the state x in T
MC
1 , at time t, is distributed amongst two

corresponding states in T
MC
2 (equation (3.1)) after a fixed delay of t (x) time

units (equation (2.31)). For all x in T
MC
1 , let pFxy denote the probability that

the hybrid fluid process switches from fluid dynamics to CTMC dynamics

through the state y, in T
MC
2 , given that it switched from CTMC dynamics

to fluid dynamics through the state x (equation (3.1)). Then, for all x in D,
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conditioned on the event that Y (t) hits a state in T
MC
1 we have that

d

dt
pYxz(t) =

X

y2T MC
1

1{t � t(y)} pYxy�`1(t� t(y)) qXy�`1 y p
F
y z,

if z is in T
MC
2 , where 1{.} is the indicator function. Thus, for all x in D, the

transition probabilities satisfy

d

dt
pYxz(t) =

X

y2D

pYxy(t) q
X
y z

+
X

y2T MC
1

1{t � t(y)} pYxy�`1(t� t(y)) qXy�`1 y p
F
y z, (3.3)

if z is in T
MC
2 . It is natural to think that qXy z = 0 for all z in T

MC
2 . However,

it is worth noting that this quantity is positive for the states z � `1 in D.

For all x in D, the system of DDEs (3.2)—(3.3) are integrated numerically

on the set of equally-spaced time points t0, t1, . . . , tn, with spacing ⌧ , using an

adapted version of the Implicit Euler scheme (Section 2.3.1). The adaption is

that if z in is T MC
2 , then the transition probabilities are incremented at each

time step by

pYxz(tk+1) = pYxz(tk)+

⌧

0

@
X

y2D

pYxy(t) q
X
y z +

X

y2T MC
1

1{tk+1 � t(y)} pYxy�`1(tk+1 � t(y)) qXy�`1 y p
F
y z

1

A .

Recall from Section 2.3 that A is the subset of X in which I = 0 and the

random variable T describes the duration of the outbreak. Then, it follows

that

Pr(T  tk) =
X

z2A

pY(N�1,1)z(tk).

In Section 3.3 we adapt Algorithm 1 to the hybrid fluid model.
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Figure 3.2: The distribution of the duration of the epidemic calculated from the CTMC

model, hybrid fluid model, and Barbour’s model for R0 = 1.3 and N = 1, 000 with one

initially infectious individual.

3.1.3 Numerical results

We now compare the distribution of the duration of the outbreak from the

SIR CTMC to the distribution of the duration of the outbreak from the

hybrid fluid model and Barbour’s hybrid model (Theorem 7). We fix the basic

reproductive number R0 = 1.3 and the initial state (N � 1, 1), and compute

the distribution of the duration of the outbreak on a temporal grid ranging

from 0 to 80 in steps of ⌧ = 0.01. Under this construction, Pr(T  80) ⇡ 1

provided N  10, 000, and the global L1-error of the Implicit Euler scheme is

O (10�2). We fix the threshold as bI = 17 because our procedure for selecting

an appropriate threshold, to be outlined in Section 3.3.2, guarantees a certain

level of accuracy, when compared to the distribution of the duration of the

outbreak from the SIR CTMC.

Figure 3.2 shows the distribution of the duration of the epidemic calculated

from the SIR CTMC (green with circles), hybrid fluid model (blue with
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Figure 3.3: Required runtime of the distribution of the duration of the outbreak from the

SIR CTMC and the hybrid fluid model alongside the L1-error of the hybrid fluid model and

Barbour’s hybrid model. The L1-error of the hybrid fluid model is less than the L1-error

of Barbour’s hybrid model for N  2000, but the two are virtually the same for N � 103.

The required runtime of the hybrid fluid model if O (N). Again, we have that R0 = 1.3,

bI = 17 (inequality (3.8)), and the initial state (N � 1, 1).

squares), and Barbour’s hybrid model (purple with diamonds) for N = 1000.

Both models provide a reasonable approximation to the distribution of the

duration of the epidemic from the SIR CTMC over the whole domain of t.

However, it can be seen that the hybrid fluid model provides a more accurate

representation of the duration of outbreaks which become established.

Figure 3.3 shows a log-log plot of the required runtime of the SIR CTMC

model (dotted green with circles) and the required runtime of the hybrid

fluid model (dotted blue with squares) for a range of values of N from 102

to 106. The slope of the line from the hybrid fluid model is approximately

one, which indicates that the asymptotic runtime for using Algorithm 5 on

the hybrid fluid model to calculate the distribution of the duration of the
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epidemic is O(N). This is because the runtime of Algorithm 5 is dependent on

the total number of states, which for the hybrid fluid model is approximately

bIN . Irrespective of the population size, Barbour’s asymptotic approximation

is e↵ectively instantaneous to compute so its runtime has not been included

in Figure 3.3.

Figure 3.3 also shows a log-log plot of the L1-error of the hybrid fluid

model (solid blue with squares) and the L1-error of Barbour’s model (solid

purple with diamonds). The L1-error of the hybrid fluid model is favourable to

Barbour’s for N of O (102). However, the two approximations are e↵ectively

indistinguishable for N � 103, despite the important di↵erence that the

hybrid model utilises a fixed threshold and Barbour’s utilises a variable
p
N . The L1-error of the hybrid fluid model appears to increase with N

which suggests that the main source of disagreement between the SIR CTMC

and the hybrid fluid model is the length of time over which the CTMC

is approximated by the fluid model. Although the L1-error of the hybrid

fluid approximation can generally be improved by increasing the threshold

bI, the hybrid fluid approximation does not show a significant improvement

over Barbour’s asymptotic approximation unless bI is large enough that the

probability of Y (t) hitting the subset YDE is insignificant (results not shown).

3.1.4 Final outbreak size

Recall that the time-homogeneity property (Definition 2) of the SIR CTMC

enabled us to deduce the distribution of the final size of the outbreak from its

embedded jump chain process (Definition 5). Since the dynamics of the hybrid

fluid model are time-homogeneous, we are able to deduce the distribution of

the final size of the outbreak from the hybrid fluid model from its embedded

jump process.
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Recall that the embedded jump process of the SIR CTMC is the DTMC

which takes values in X and, for all x in X , has the transition probabilities

pYxx+` = qXxx+`/|q
X
xx|, for ` equal to `1 or `2 and if x + ` is in X . The

embedded jump process of the hybrid fluid process is the DTMC process,

(Yn, n � 0), which takes values in Y
MC , with the transition probabilities

pYxx+` = pXxx+` for all x 2 D if x 2 Y
MC ,

pYxy = pFxy for all x 2 T
MC
1 if y 2 T

MC
2 ,

pYxx+`2 = 1 for all x 2 T
MC
2 .

The distribution of the final size of the outbreak may be computed from

the hybrid fluid model via the hitting probabilities of the embedded jump

process on the set A (Definition 6). Fix x in B, and let hY
xy denote the hitting

probability of any state y in X , from the state x. Then, for all y in Y
MC ,

the hitting probabilities are the minimal non-negative solution to,

hY
xy =

X

z2YMC

pYxz h
Y
z y, (3.4)

where hY
z z = 1, for all z 2 A. It follows that the distribution of the final size

of the outbreak, given the initial state x = (N�1, 1), is the (N+1)⇥1 vector

(hY
xy : y 2 A). We compute the distribution of the final size of the outbreak

using a modified version of Algorithm 2 which is discussed in Section 3.3.

3.1.5 Numerical results

We now compare the distribution of the final size of the outbreak from the SIR

CTMC to the distribution of the final size of the outbreak from the hybrid fluid

model, using the same parameters as before (R0 = 1.3, X(0) = (N � 1, 1)),

with N = 1, 000.
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Figure 3.4 shows the distribution of the final size of the outbreak from

the SIR CTMC (green with circles) and the hybrid fluid model (blue with

squares). The hybrid fluid model provides an accurate representation of

the distribution of the final size of the outbreak, if the outbreak fades out.

However, it provides a poor approximation of the distribution of the final size

of the outbreak if the outbreak becomes established.

Figure 3.5 shows the required runtime of the SIR CTMC (dotted green

with circles) and the runtime of the hybrid fluid model (dotted blue with

squares) across a range of values of N (from 103 to 108). The asymptotic

slope of the curve of the required runtime for the hybrid fluid model is

approximately one, which indicates that the asymptotic runtime of computing

the distribution of the final size of the outbreak is O (N).

Figure 3.5 also shows the L1-error of the hybrid fluid model (solid blue

with squares). The L1-error of the hybrid fluid model appears to converge as

N ! 1, to a value around 66% of the largest possible L1-error, suggesting

that Y (t) approximates well the ⌘ = 0.34 proportion of sample paths which

become extinct close to S = N , but fails to approximate the 1� ⌘ proportion

of sample paths which become extinct near S = 0. This confirms our intuition

that the source of disagreement between Y (t) and X(t) propagates from

the time interval over which the fluid approximation is used to approximate

the underlying CTMC. Although bI = 17 has been identified as a reasonable

threshold (inequality (3.8) in Section 3.3.2), the asymptotic error may gen-

erally be decreased by selecting a larger threshold. However, the L1-error is

fairly insensitive to changing the threshold.

So far, we have used the hybrid fluid model to calculate the distribution

of the duration of the outbreak and the distribution of the final size of the

outbreak. We have found that the hybrid fluid model provides an accurate
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representation of the distribution of the duration of the outbreak but provides

a poor approximation of the distribution of the final size of the outbreak.

This is because the fluid limit provides an approximation of the expected

state of the underlying CTMC but provides no measure of its state-variability.

Thus, we now consider utilising the di↵usion limit in place of the fluid limit

in order to accurately represent the state-variation of the underlying CTMC.

3.2 Hybrid di↵usion model

The hybrid di↵usion model may be thought of as a variant of the hybrid fluid

model which accounts for the state-variability of the underlying CTMC on

the domain Y
DE. This is because the hybrid di↵usion model is constructed

in a similar way to the hybrid fluid model, with the only di↵erence being that

the hybrid di↵usion model utilises the di↵usion limit (Theorem 4) in place of

the fluid limit. In this section, we compute the distribution of the final size

of the outbreak using the hybrid di↵usion model.

3.2.1 Model formulation

Let Z (t), for t � 0, denote the hybrid di↵usion process, which takes values

in Y . As with the hybrid fluid process, the dynamics of the hybrid di↵usion

process are determined by which subset of Y it is in. In particular, when

Z (t) is in the subset YMC it has the dynamics of the SIR CTMC, and when

Z (t) is in the subset YDE it has the dynamics of the di↵usion approximation

(equation (2.44)). We now discuss the dynamics of the hybrid di↵usion process

at the interface T .

Recall, for finite t � 0, that the di↵usion approximation of the SIR CTMC

is the Gaussian di↵usion process with expected value N x (t,x0/N), for x0
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in E, and covariance matrix N ⌃(t). Since the fluid approximation provides

the expected value of the di↵usion approximation, there is a high probability

that if Z (t) hits a state in T
MC
1 , then the process will progress into Y

DE and

subsequently hit a state in Y
DE , with I = bI, in finite time. When this occurs,

there are two possibilities:

1. S  ⌘N , in which case there is a high probability that the process is

forced straight back into Y
DE.

2. S > ⌘N , in which case the process hits the set T2 and CTMC dynamics

resume.

Thus, we allow the hybrid di↵usion process to switch from CTMC dynamics

to di↵usion dynamics upon hitting any state in T
MC
1 , and to switch from

di↵usion dynamics to CTMC dynamics upon hitting a state in T2.

We now discuss the hybrid di↵usion in more detail, in the interest of

computing the distribution of the final size of the outbreak.

3.2.2 Final outbreak size

Since the di↵usion dynamics of the hybrid di↵usion model are time-homogeneous

(Definition 2), we again appeal to its embedded jump process (Definition 5).

Let (Zn, n � 0), denote the embedded jump process of the hybrid di↵usion

process, which takes values in Y
MC . For all x in D and T

MC
2 , the only

non-zero transition probabilities of the jump process, denoted pZxy, are pYxy,

if y is in Y
MC . To compute the transition probabilities from each state in

T
MC
1 to all states in T

MC , we consider the hitting distribution of the di↵usion

approximation on the set of states with bI infectious individuals (Theorem 5),

given an initial state in T
MC
1 .
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It follows from Theorem 5, that for all x in T
MC
1 , the next hitting

distribution of Z (t) on the set of states with bI infectious individuals follows

a normal distribution, with respect to S, with mean S(x) and variance

�1,1(t(x))N +
S(x)N

S(x)� ⌘

✓
2 �1,2(t(x)) +

�2,2(t(x))

S(x)� ⌘

◆
, (3.5)

where ⌃(t) = [�i,j(t)] is governed by the system of ordinary di↵erential equa-

tions (2.12), under transformation (2.20), and t(y) is given by equation (2.31).

Let  (s|x) denote the cumulative density function of this hitting distribution,

given that Z (t) switched from CTMC dynamics to di↵usion dynamics through

the state x in T
MC
1 . Then, for all x = (S, bI) in T

MC
1 and y = (S 0, bI) in T

MC ,

the only non-zero jump probabilities are

pZxy =

8
><

>:

 
�
S 0 + 1

2 |x
�
� 

�
S 0

�
1
2 |x

�
if 0  S 0

 S � 2,

1� 
�
S �

1
2 |x

�
if S 0 = S � 1.

(3.6)

Note that the di↵usion dynamics can hit any state y with bI infectious

individuals, but if this state is in T
MC
1 then this may be considered a rare

event. Thus, if the hybrid di↵usion process returns to CTMC dynamics via

the state y in T
MC
1 , the process switches back to CTMC dynamics (and has

an instantaneous removal event) with probability pZy y+`2 , or re-starts di↵usion

dynamics, with the initial state y, with probability 1� pZy y+`2 .

We are now able to write down the hitting probabilities of the hybrid

di↵usion process. Fix x in B, and let hZ
xy denote the hitting probability

for any state y in Y
MC , given the initial state x. Then it follows from

Definition 6 that, for all y in Y
MC , the hitting probabilities hZ

xy are the

minimal non-negative solution to the system of linear equations

hZ
xy =

X

z2YMC

pZxz h
Z
z y, (3.7)
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Figure 3.4: The distribution of the final size of the epidemic calculated from the SIR

CTMC, hybrid fluid model, hybrid di↵usion model, and Scalia–Tomba for R0 = 1.3 and

N = 1, 000 with one initially infectious individual.

with hZ
z z = 1. The distribution of the final size of the outbreak, given the

initial state x = (N � 1, 1), is the (N + 1)⇥ 1 vector with entries hZ
xy, for all

y in A, which is computed using Algorithm 5.

We now compare the distribution of the final size of the outbreak from

the hybrid di↵usion model to the hybrid fluid model and the hybrid model of

Scalia-Tomba (Section 2.3.2)

3.2.3 Numerical results

Figure 3.4 shows the distribution of the final size of the outbreak from the

hybrid di↵usion model (red with triangles) and Scalia-Tomba’s hybrid model

(Theorem 10) (purple with diamonds). The hybrid di↵usion model and

Scalia-Tomba’s model approximate the sub-critical component of the final size

accurately but neither model succeeds in fully describing the non-normality

exhibited by the distribution of the final size of the established outbreak.
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Figure 3.5: The required runtime of the SIR CTMC, hybrid fluid model and hybrid

di↵usion model alongside the L1-error of the hybrid fluid model, hybrid di↵usion model,

and Scalia-Tomba’s model. The error in the hybrid fluid model and the hybrid di↵usion

model is at-best a constant of O
�
100

�
and O

�
10�3

�
, respectively. The asymptotic slope

of the runtime of the hybrid models (Algorithm 5) suggests that they are of computational

complexity O(N) compared to the O(N2) of the SIR CTMC (Algorithm 2). Here we used

R0 = 1.3 and bI = 17 with the initial state (N � 1, 1).
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Figure 3.5 shows the runtime of the hybrid di↵usion model (dotted ochre

with triangles). The asymptotic slope of the runtime line is approximately

one, which indicates that the asymptotic runtime of Algorithm 5 for the

hybrid di↵usion model is O(N). The time di↵erence between the runtime of

the hybrid fluid model and the hybrid di↵usion model corresponds to the time

di↵erence in calculating the hitting distributions of equations (3.1) and (3.6).

Irrespective of N , Scalia-Tomba’s approximation is e↵ectively instantaneous

to compute so its runtime has not been included in Figure 3.5.

Figure 3.5 also shows the L1-error of the hybrid di↵usion model (solid

ochre with triangles) and Scalia-Tomba’s model (solid purple with trian-

gles). As N increases, the L1-error of the hybrid di↵usion approximation

decreases achieving a minimum of a constant of O (10�2), thereby showing

a significant improvement over the accuracy of the hybrid fluid model. Al-

though the L1-error can generally be decreased by increasing the threshold,

the hybrid di↵usion model does not achieve a significant improvement over

Scalia-Tomba’s approximation unless the probability that Z (t) hits a state in

Y
DE is negligible.

3.3 Implementation

We now consider numerical implementation for computing the distribution

of the duration of the outbreak and the distribution of the final size of the

outbreak from both of the hybrid models (sections 3.1 and 3.2). In addition,

we present our approach to computing a suitable value for the threshold bI.
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3.3.1 Computing distributions

Consider computing the distribution of the final size of the outbreak using

the hybrid fluid model (equation (3.4)) and the hybrid di↵usion model (e-

quation (3.7)). These systems of equations di↵er only in their treatment of

the jump probabilities from states in T
MC
1 to states in T

MC
2 . Thus, both

systems of equations may be solved via an algorithm which is the same for

all states in D, but deals with the jump probabilities for states in T
MC

di↵erently. Computing the distribution of the duration of the outbreak via

Implicit Euler integration may be achieved via a similar algorithm, because

the structure of the resulting system of equations is similar to the structure

of the system of equations (3.4). In this section, we present an algorithm

suitable for computing the distribution of the size of the outbreak, and the

distribution of the duration of the outbreak from both the hybrid fluid model

and the hybrid di↵usion model.

Recall that Jenkinson and Goutsias [2012] and Black and Ross [2015]

presented highly-e�cient routines for computing the distribution of the du-

ration of the outbreak and the distribution of the final size of the outbreak

(Sections 2.3.1 and 2.3.2). These approaches rely on transforming the SIR

CTMC to its DA representation (equation (2.20)), which is more amenable

to numerical analysis. So far we have discussed the hybrid models in the

population framework because it is a more intuitive format. However, we now

convert them to their DA representation.

Let the sets N , NMC , N T
1 and N

T
2 denote the DA representations of the

population sets Y , YMC , T MC
1 and T

MC
2 , respectively (Transformation (2.20)).

The states in N
MC are ordered by equation (2.22), and indexed by k, for all

k = 1, 2, . . . , |NMC
|, such that n1,n2, . . . ,n|NMC | are ordered appropriately.

In addition, recall that �k1 = N � NI + NR and �k2 = N + 2 � NI + NR,
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and 'k denotes the kth element of the |N
MC

|⇥ 1 vector '. The following

algorithm exploits the structure of the SIR CTMC in a similar way to Black

and Ross [2015] (Algorithm 2), and accounts for transitions between N
T
1 and

N
T
2 using the fact that the change in index is given by the change in the

number of susceptible individuals.

We found that a suitable approach to reducing the computational over-

head of Algorithm 5 is to only consider states in N
T with a significant

probability. This is performed on line 12 of the algorithm where we require

that the probability associated with the state is above a tolerance ✏. We found

a suitable tolerance to be ✏ = 1⇥ 10�7, which results in a small accumulation

of error and generally results in a significant decrease in computational over-

head. This choice is robust to most reasonable values of R0 but may result in

very little reduction of computational over-head if R0 is close to one.

For computing the distribution of the final size of the outbreak from

the hybrid fluid model and the hybrid di↵usion model, one must consider

computing the solution to (3.4) and (3.7), respectively. With reference to

Algorithm 5, let ' denote the |N
MC

| ⇥ 1 vector whose kth element is the

hitting probability of the kth state, for k = 1, 2, . . . , |NMC
|, given the initial

state n1 = (1, 0). In addition, let f(k, k0) denote the transition probability

from the kth state to the k0th state, for k, k0 = 1, 2, . . . , |NMC
| and f(k, k) = 0.

Then, if ' is initialised as e1, the distribution of the final size of the outbreak

is calculated by iteratively updating the entries of ' via Algorithm 5, until

the algorithm terminates.

For computing the distribution of the duration of the outbreak from the

hybrid fluid model, one must consider computing the solution to (3.2)—(3.3)

over a grid of time points [Jenkinson and Goutsias, 2012]. With reference to

Algorithm 5, let ' denote the |N
MC

| ⇥ 1 vector whose kth element is the
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Algorithm 5: Algorithm for calculating the distribution of the duration of the

outbreak, and the distribution of the final size of the outbreak from the hybrid fluid

model and the hybrid di↵usion model.

Data: Set ', and tolerance ✏.

1 Initialise the state-index k = 2N + 1 ;

2 for NR = 0, . . . , N do

3 Store the initial index k0 = k and normalise the current entry

'k = 'k/(1 + f(k, k)) ;

4 for NI = NR + 1, . . . ,min{NR + bI � 1, N � 1} do

5 Update the distribution via:

6 'k+�k1 = 'k+�k1 + 'k f(k, k + �k1) (Infection event) ;

7 'k��k2 = 'k��k2 + 'k f(k, k � �k2) (Removal event) ;

8 Update the state-index k = k + �k1 ;

9 end

10 if NR < N � bI � b⌘Nc then

11 for j = 1, . . . , N �NI do

12 if 'k > ✏ then

13 If computing the final size distribution:

14 'k�j = 'k�j + 'k f(k, k � j) ;

15 If computing the distribution of duration:

16 Store 'k, return delayed flux 'delayed
k to system ;

17 'k�j = 'k�j + 'delayed
k f(k, k � j) ;

18 end

19 end

20 else if NR < N then

21 'k��k2 = 'k��k2 + 'k f(k, k � �k2). ;

22 Reset the state index k = k0 � 1 ;

23 end
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Implicit Euler approximation of the transition probability from the state n1

to the kth state, for k = 1, 2, . . . , |NMC
|. In addition, let f(k, k0), for k 6= k0,

denote the transition rate from the kth state to the k0th state, multiplied

by the time step of the numerical integration, ⌧ , for k, k0,= 1, 2, . . . , |NMC
|,

with f(k, k) =
P

k0 6=k f(k, k
0). Then, if ' is initialised as the distribution of

N (t), the distribution of N (t+ ⌧) is calculated by iteratively updating the

entries of ' via Algorithm 5, until the algorithm terminates.

In calculating the distribution of the final size of the outbreak from

the hybrid di↵usion model, we reduce the computational over-head of Al-

gorithm 5 by only calculating the mean and variance of the hitting dis-

tribution (3.6) for a subset of states in T
MC
1 , and then extrapolating to

all the other states in T
MC
1 using linear interpolation. More specifical-

ly, let ✓(x) = (S(x), �1,1(t(x)), �1,2(t(x)), �2,2(t(x))) for x in T
MC
1 , and

T
⇤ = {(S, bI) 2 T

MC
1 : S = S0, S0 + k, S0 + 2k, . . . , N � bI} where S0 = b⌘Nc

and k is a positive integer. Then we evaluate ✓(x) for every x in T
⇤ and use

the output to approximate ✓(x) for every x in T
MC
1 \ T

⇤ using linear inter-

polation. We found a robust choice for k to be 30. We found the relationship

between ✓(x) and x, in T
MC
1 , to be close to linear, thus this choice of k is

believed to be robust for most reasonable values of R0.

3.3.2 Computing a threshold

Our approach for computing a suitable threshold is based on the distribution

of the maximum of the branching process approximation of the SIR CTMC,

conditioned on extinction. We utilise the branching process approximation

because it is su�ciently accurate and provides an expression which can be

computed e↵ectively instantaneously [Ball and Donnelly, 1995]. Based on the

notion that the only sample paths of the SIR CTMC which do not hit the
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threshold, should be the sample paths in which the outbreak fades out. We

compute the threshold by finding a value of I, for which the probability that

the branching process, conditioned on fading out, exceeds I is su�ciently

small.

Let U(t), for t � 0, denote the branching process approximation of the

population of infectious individuals from the SIR CTMC (conditioned on

fading out), which takes values 0, 1, . . . . In addition, let the random variable

M = sup0t1 U(t) denote the largest value obtained by U(t), for all t � 0.

Then bI is defined as the minimum m, for m = 0, 1, 2, . . . , which satisfies

Pr(M � m)  ✏. More precisely, the threshold bI is the minimum m which

satisfies the inequality (Section 5 of [Ball and Donnelly, 1995])

m � U(0) +
log

⇣
RU(0)

0 + ✏� 1
⌘
� log(✏)

log(R0)
. (3.8)

Inequality (3.8) is based on the assumption that R0 > 1; in the event that

R0 < 1, R0 is replaced by 1/R0 = ⌘ in inequality (3.8) in order to consider the

branching process conditioned on fading out. However, inequality (3.8) can

not be used if R0 = 1. Note that, choosing a smaller ✏ leads to a larger choice

of bI and hence, generally, more accurate results but larger computational

runtimes. We determined that 5⇥ 10�3 is a suitable value for ✏ due to the

following observation.

For the distribution of the final size (duration) of the outbreak, the

ochre (green) curve with triangles (circles) in Figure 3.6 shows the empirical

minimum threshold required to achieve at most 0.1 (0.25) L1-error from the

hybrid di↵usion (fluid) model, with a fixed N = 10, 000. We chose these

values because they correspond to the worst-case scenarios of Scalia-Tomba

[1985] and Barbour [1975]. Taking ✏ to be 5⇥ 10�3 in equation (3.8) produces

the blue curve with squares which ensures a higher threshold than the ochre
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Figure 3.6: For the distribution of the final size (duration) of the outbreak, the ochre

(green) curve with triangles (circles) shows the minimum threshold bI which achieves an

L1-error of 0.1 (0.25). The blue curve with squares shows the threshold determined

by inequality (3.8) using ✏ = 5 ⇥ 10�3 which achieves at most 0.1 (0.25) L1-error in

the distribution of the final size (duration) of the outbreak, provided R0 is less than

approximately 7.5. Here we used N = 10, 000 and the initial state (N � 1, 1).
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Figure 3.7: The L1-error of the distribution of the final size of the epidemic using

inequality (3.8) to calculate the threshold. The error exceeds 0.1 on an interval of R0 from

approximately 7.5 to 11 and is at most 0.24. This issue arises when the fluid approximation

of S falls below approximately eight susceptible individuals. Here we used N = 10, 000

and the initial state (N � 1, 1).

and green curves and hence ensures that the L1-error in the distribution

of the final size (duration) of the outbreak is at most 0.1 (0.25). However,

this guarantee does not hold for R0 > 7.5, which we discuss in the next

paragraph. As N increases, the minimum threshold required to achieve at

most 0.1 (0.25) L1-error in the distribution of the final size (duration) of the

epidemic decreases and the threshold determined by inequality (3.8) stays

the same. In addition, the point at which inequality (3.8) fails to produce a

reliable threshold for the distribution of the final size of the epidemic increases.

Figure 3.7 shows that the threshold determined by inequality (3.8) provides

an L1-error for the distribution of the final size of the outbreak which is at

most 0.24. The divergence of the approximate distribution from the exact

distribution manifests as an inaccurate approximation of the probability that
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the final size of the outbreak is N , N � 1 or N � 2. This divergence occurs

when the di↵usion approximation comes close to the absorbing boundary

with S = 0 because the SIR CTMC is able to be absorbed by this set but the

di↵usion approximation is not. Figure 3.7 shows that the L1-error decreases

for R0 � 13 because the probability that the final size of the outbreak is equal

to N � 1 or N � 2 becomes negligible as R0 becomes very large. The loss of

the ability of inequality (3.8) to provide a reliable threshold is characterised

as the region of R0 for which the mean number of susceptible individuals at

the end of the fluid dynamics of Z (t) is less than approximately eight, but

more than one.

3.4 Discussion

In this chapter we introduced two hybrid Markov chain models for approxi-

mating the distribution of the duration of the outbreak and the distribution of

the final size of the outbreak for the SIR CTMC. These models are novel in the

sense that no other hybrid models of the SIR CTMC have CTMC dynamics

during their initial and final stages. As a result, these models preserve the

important stochastic features of the SIR CTMC which occur during these

phases of the outbreak. Namely, the probability that the outbreak fades

out, and the variability in the amount of time before the outbreak becomes

established. In the case of the SIR CTMC, we used these hybrid models to

derive expressions for the distribution of the duration of the outbreak, and the

distribution of the final size of the outbreak. Both of these distributions can

be computed numerically in O (N) time, as opposed to the O (N2) time of the

SIR CTMC. This has enabled us to calculate the distribution of the duration

of the outbreak, and the final size of the outbreak for populations of at least
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106, within a matter of hours. Our approximations of the distribution of the

duration of the outbreak, and the distribution of the final size of the outbreak

achieve a similar level of accuracy to the existing hybrid approximations,

and as we shall see in Chapter 4 and Chapter 5, our methodology has the

additional advantage that it may be easily generalised to other situations or

more complex models.

The hybrid models presented here were observed to provide inaccurate

approximations of the distribution of the final size of the outbreak for a

particular region of R0. This is because the susceptible component of the mean

trajectory of the di↵usion approximation comes close to the S = 0 absorbing

boundary of the Markov chain, thereby causing the di↵usion approximation

to break down. This motivates future research that might utilise a similar

hybrid model to Safta et al. [2015], which includes an additional threshold on

the number of susceptible individuals.

The methodology presented here demonstrates that the hybrid di↵usion

model provides an accurate representation of the initial stages of the SIR

CTMC, and its state-variability once the outbreak has become established.

Thus, in the next chapter we investigate utilising the hybrid di↵usion model

for conducting inference during the initial stages of an outbreak.
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Chapter 4

Early estimation of the basic

reproductive number for SIR

disease dynamics

Accurately modelling the early stages of an emerging outbreak is of vital

importance for inferring the basic reproductive number R0 [Viboud et al.,

2016, Bettencourt and Ribeiro, 2008, Glass et al., 2011, Nishiura et al., 2010,

Vega et al., 2013, White and Pagano, 2007]. An accurate and reliable estimate

of R0 is crucial because it characterises the transmission potential of the

disease, an important factor for public health authorities in planning their

response to the outbreak [Simonsen et al., 1997, Meltzer et al., 1999, Lemon

et al., 2007, Chowell et al., 2009, Wu et al., 2006]. However, early estimates

of R0 are generally positively-biased, due to incomplete or inaccurate case

reporting [Cauchemez et al., 2006, Glass et al., 2007, Woolhouse et al., 2015],

population heterogeneity (such as spatial variation, age-specific or household

clustering of contacts) [Galvani, 2016, Lipsitch et al., 2015, Favier et al.,

2005, Keeling et al., 2001], and incorrectly accounting for imported infectious
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cases [Roberts and Nishiura, 2011]. Another source of bias which is often

over-looked is the probability of initial fade out. During the initial stages of

an outbreak, the probability of initial fade out decreases considerably each

time the number of infectious individuals increases. Thus, from a modelling

perspective, the event that an individual outbreak becomes established could

be considered unlikely. At the same time, an outbreak will often not be

detected by public health authorities until such a time that it has established

an appreciable chain of transmission, thereby e↵ectively avoiding initial fade

out [Hartfield and Alizon, 2013]. It follows that the event that an outbreak

becomes established, and is consequently detected by public health authorities,

is one which needs to be accounted for in estimating the basic reproductive

number during the early stages of an outbreak.

Cases of the disease which occurred before the outbreak was detected

are generally ascertained by a case follow-up program led by public health

authorities [Smith, 2006]. The general approach to using this data to estimate

the basic reproductive number involves computing the probability of each

of the observed incidence counts, conditioned on all the observed incidence

counts which came beforehand [Bettencourt and Ribeiro, 2008, White and

Pagano, 2007, Black and Ross, 2013, Boys and Giles, 2007, Chowell et al.,

2007]. The problem with this approach is that the probability of each of

the observed incidence counts should be conditioned on the event that the

outbreak will become established. Mercer et al. [2011] demonstrated that

not accounting appropriately for the probability of initial fade out biases

estimates of R0 and that this bias decreases as the time since the first

observation increases, thereby exhibiting correlation between the two. An

appropriate way of accounting for the event that the outbreak is detected by

public health authorities is to condition the underlying model on the event
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that the outbreak becomes established [Mercer et al., 2011, Rida, 1991].

In this chapter, we present a conditioned susceptible-infectious-removed

(SIR) continuous-time Markov chain (CTMC) which partially accounts for the

probability of initial fade out. This is achieved by conditioning the SIR CTMC

on the event that the outbreak eventually becomes established by modifying

its transition rates according to Theorem 2. We argue that it is reasonable to

consider an established outbreak to be one where the cumulative number of

cases eventually exceeds a predetermined threshold. Under this construction,

we demonstrate that conditioning the SIR CTMC on the event that the

outbreak eventually exceeds 50 cases reduces the resulting over-estimate of

R0 by around 0.3, on average.

Fundamental to inferring the value of R0 is calculating the likelihood of

the data [Sprott, 2000] (Equation (2.38)). Exact methods for computing

the likelihood are typically computationally infeasible, even for moderate

population sizes. Thus, it is common to consider approximating the likelihood

[Cooper and Lipsitch, 2004]. The di↵usion approximation (Theorem 4) is

e↵ective [Ross et al., 2006, 2009, Ross, 2012], but it fails to accurately represent

the initial stages of the outbreak. It follows that a natural approach is to

approximate the likelihood using a hybrid di↵usion model similar to the one

presented in the previous chapter. The di↵usion hybrid considered here di↵ers

from the di↵usion hybrid of the previous chapter only in the mechanism by

which it switches from CTMC to di↵usion dynamics. Based on the results

of the previous chapter, we expect the di↵usion hybrid to be appropriately

accurate and to provide an advantage in computational e�ciency.

We demonstrate the utility of our methodology by applying it to an

outbreak of pandemic influenza from 2009, which occurred in Western Aus-

tralia (A(H1N1)pdm09) [Kelly et al., 2010, Pedroni et al., 2010]. During
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this outbreak, a thorough case ascertainment and follow-up program was

conducted during the first three weeks of the outbreak until such a time that

the outbreak was deemed widespread, by which stage 102 cases had been

confirmed. Using the simple SIR CTMC, we demonstrate that estimates of

R0 which account for this fact are more accurate during the early stages of

the outbreak.

The present chapter has two objectives. The first is to present an approach

for reducing bias in early estimates of R0 from daily incidence data. The

second is to present a hybrid di↵usion model, similar to the hybrid di↵usion

model from the previous chapter, for accurately and e�ciently estimating the

likelihood of the data. These concepts are straightforward to implement and

can be generalised to more complex epidemiological models, as we shall see

in the following chapter.

4.1 Conditioned model

Recall that in Section 2.3.3 we presented the likelihood of the SIR CTM-

C (2.38). The key problem with an approach of this nature is that in

computing the probability of observing yk infection events at time tk, the

probability is only conditioned on the event Yk-1, when it should also be

conditioned on the event that the outbreak becomes established. In this

section we condition the outbreak on becoming established, meaning that

we impose the constraint that the outbreak has not faded out prior to the

current time and does not fade out before becoming established. The process

by which this is achieved may be thought of as a way of restricting all the

possible trajectories of the process to those in which initial fade out does not

occur and is made precise by Theorem 2 due to Waugh [1958].
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Recall that (N (t) , t � 0) is the DA representation of the SIR CTMC. The

DA process takes values in N and, for all n in N , has the positive transition

rates qNnn+ei , if n + ei is in N and i = 1, 2 (see Section 2.3). We wish to

condition the DA process on the event that it hits a state in N
T , a subset of

N , such that once it hits a state in N
T it may be considered an established

outbreak. For the remainder of this section, we make the important distinction

that the DA process discussed until now is the unconditioned DA process.

Following Theorem 2, the conditioned DA process is a CTMC taking values

in N . For all n in N , let un denote the probability that the unconditioned

DA process ever hits a state in N
T , starting from the state n (Definition 6).

Then for all n and m in N , with m 6= n, the conditioned DA process has

the transition rates

q̃Nnm =

8
><

>:

(um/un) qNnm if n /2 N
T ,

qNnm otherwise,
(4.1)

with the condition that q̃Nnn = �
P

m 6=n q̃Nnm.

Following Theorem 2, the set N T must be a subset of N for which there

is a non-zero probability of reaching N
T from any non-absorbing state of N .

A logical choice is to set N T as the set of all states in N , for which NI > nT ,

for some nT 2 {0, 1, . . . , N}, where nT is referred to as the threshold number

of infection events. We have great freedom in specifying the threshold nT a

priori. A sensible choice is to set nT to be large enough that once the outbreak

reaches N T there is a high probability that it is established. In modelling data

from a real outbreak, a sensible choice is to set nT to the number of infection

events which had occurred by the time at which a particular outbreak was

detected.

The conditioned DA process and the unconditioned DA process di↵er only

in their transition rates. Thus, the methodology for utilising the conditioned
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DA process for inference is identical to the methodology for the unconditioned

DA process (Section 2.3.3). In particular, recall that y1, y2, . . . , yn denotes a

sequence of observed cumulative incidence counts made at times t1, t2, . . . , tn

and that Pr(NI(tk) = yk|Yk-1) = Lk
E(✓) is the probability of the observed data

under the unconditioned DA process. Then, if Lk
C(✓), for all k = 1, 2, . . . , n,

denotes the probability of the observed data yk under the conditioned model,

the conditioned likelihood is

L(y|✓) =
kT^nY

k=1

Lk
C(✓)

nY

k=kT+1

Lk
E(✓), (4.2)

where kT = min{k|yk > nT} and kT ^ n = min{kT , n}. The conditioned

likelihood is computed via Algorithm 3. In terms of the illustrative example

from Section 2.3.3, conditioning removes the dashed transitions in Figures 2.2a

and 2.2b from the model and the remaining transition rates are adjusted such

that the process eventually reaches the set N T with probability one.

Using the DA process for inference is computationally-forbidding if the

total number of observed incidences yn is large. However, the previous

chapter demonstrated that the hybrid di↵usion model is an e↵ective means of

approximating the SIR CTMC which mitigates the computational cost of the

SIR CTMC. Thus, we now present a hybrid di↵usion model for approximating

the likelihood of the conditioned DA process (4.2).

4.2 Hybrid di↵usion model

The conditioned likelihood (4.2) is computed via the forward equations (Equa-

tion (2.23)) which are computationally prohibitive if the size of the underlying

state space is large. Assuming that the population of infectious individuals

is su�ciently large by the time tkT , it is reasonable to expect the di↵usion
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approximation to provide an accurate approximation of the conditioned DA

process thereafter. It follows that the hybrid di↵usion model presented here

has the dynamics of the conditioned DA process for all t in [0, tkT ], and the

dynamics of the di↵usion approximation thereafter. Recall that Lk
D(✓), for

k = 1, 2, . . . , n denotes the probability of the observed data under the di↵usion

approximation. Then it follows that the conditioned hybrid likelihood is

L(y|✓) =
kT^nY

k=1

Lk
C(✓)

nY

k=kT+1

Lk
D(✓), (4.3)

which is computed via Algorithm 3 with the appropriate modifications made

for k > kT . At the time at which the model switches from CTMC dynamics

to di↵usion dynamics, the initial distribution of the di↵usion approximation

is computed from the final distribution of the conditioned DA process.

4.3 Implementation

In this section we demonstrate the accuracy and utility of our methodology

by using it to estimate R0 from daily incidence data from the first two weeks

of an outbreak. Our analysis is comprised of two parts. First we demonstrate

that conditioning reduces bias in estimates of R0. Second, we demonstrate

that the hybrid approximation provides an accurate and computationally-

e�cient means for estimating R0 during the initial stages of an outbreak. To

achieve this, we consider the four di↵erent parameter regimes displayed in

Table 4.1. The values of R0, � and N have been selected to be representative

of an influenza-like outbreak in a realistic population. The value of N also

guarantees that the susceptible pool will not be depleted during the first two

weeks of the outbreak. We vary R0 between Regimes 1 and 2 to investigate

the e↵ect of the underlying value of R0 on the estimated R0. We vary the
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threshold between Regimes 1 and 3, and Regimes 2 and 4 to investigate

the sensitivity of the conditioned likelihood to the threshold. To ensure

our analysis is statistically robust, we consider 1, 000 independent simulated

realisations of the SIR CTMC, each starting with a single infectious case,

running for a duration of two weeks, and exceeding 50 infection events by the

final day of the outbreak. We then illustrate the utility of our methodology

by using our conditioned hybrid model to estimate R0 from an outbreak of

pandemic influenza.

Parameter Regime 1 Regime 2 Regime 3 Regime 4

R0 1.2 1.4 1.2 1.4

nT 50 50 20 20

� 1/3 1/3 1/3 1/3

N 107 107 107 107

I(0) 1 1 1 1

Table 4.1: Parameters used for investigating our methodology. The removal rate (�) and

basic reproductive number (R0) are representative of influenza and the population size (N)

ensures that the susceptible pool is not depleted during the first two weeks of the epidemic.

In each regime we obtain an estimate of the parameters via a frequentist

framework and a Bayesian framework (Section 2.3.3). In the Bayesian frame-

work, we obtain a point-estimate of the parameters via the commonly used

median a posteriori estimate (MPE), which is defined as the median of the

samples from the posterior. We estimate the parameters ✓ = (1/�, R0), for

✓ 2 ⇥, where ⇥ contains all 1/�, R0 � 1/10. We use this parameterisation

because R0 is linearly related to 1/�, while it has been shown that � and �

have a more complicated inverse relationship. This means that the posterior

distribution of (1/�, R0) should be roughly more symmetric, than the pos-
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Figure 4.1: Marginal densities of the prior distribution of 1/� and R0.

terior distribution of (�, �). To calculate the MPEs we use the exponential

prior

f(1/�, R0) =
1

c1c2
e�(1/c1�)�R0/c2 ,

which favours small values of 1/� and R0, but provides support to all 1/�, R0 >

0. We selected c1 = 5 and c2 = 1.3 to provide a reasonable amount of weight

to values of 1/� and R0 which are realistic for an influenza-like outbreak,

see Figure 4.1. Our proposal density is a truncated bivariate Gaussian with

support ⇥ and fixed covariance structure var(1/�) = 1, var(R0) = 1/2 and

cov(1/�, R0) = 0. For each simulated data set, we run four independent

Markov chain Monte Carlo chains on ⇥ consisting of 200, 000 iterations, and

discard the initial 20, 000 iterations as burn-in.

To calculate the MLEs we maximise the log-likelihood function `(y|✓) =

log(L(y|✓)) on ⇥ using MATLAB’s fmincon function. We found that in some

cases a MLE could not be identified because the optimisation routine failed to

converge. These cases were characterised by realisations where the number of

infection events remained low for the first week before growing rapidly in the

second week. These realisations were dropped from the analysis on the basis

that they did not contain enough information to provide a reliable estimate
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of the parameters.

4.3.1 Validation of the conditioned model

We begin by presenting the MLEs and MPEs of R0, across all regimes. Fig-

ure 4.2 contains density estimates of the MLEs and MPEs under Regimes

1 and 2, plotted on the (1/�, R0) axes. Each row contains parameter esti-

mates according to a di↵erent model: unconditioned/conditioned DA process,

unconditioned/conditioned hybrid process, and di↵usion process. Figure 4.3

contains density estimates of the MLEs and MPEs under Regimes 3 and 4 for

the conditioned DA process and conditioned hybrid process. Note that the

density estimates of the MPEs are clearly di↵erent to the prior distribution,

suggesting that our MPEs are not overly sensitive to the choice of prior

distribution, in this case.

The density estimates of 1/� and R0 appear unimodal with a strong corre-

lation between 1/� and R0(= �/�). The distributions appear non-symmetric,

with a higher density associated with estimates which have smaller values

of 1/� and R0. Under all regimes, the distributions obtained via maximum

likelihood and Bayesian inference appear similar. The unconditioned esti-

mates appear to favour higher values of R0 and 1/� than their conditioned

counterparts, which we now investigate in more detail.

In the following analysis we use bean plots to compare independent data

sets. The bean plot is comprised of horizontal side-by-side box plots for

which the whiskers represent the 2nd and 98th percentiles. The outliers are

shaded according to their distance away from the median. The box plots are

accompanied by the corresponding density estimates which provide a more

informative view of the distribution of the data.

Figure 4.4 contains bean plots of the MLEs and MPEs of R0 from the un-
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Figure 4.2: Density estimates of the MLEs and MPEs of (1/�, R0) obtained under

Regimes 1 and 2. The rows contain estimates from the: unconditioned/conditioned DA

process, unconditioned/conditioned hybrid process, and di↵usion process. The density

estimates demonstrate broad agreement between estimates of R0
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Figure 4.3: Density estimates of the MLEs and MPEs of (1/�, R0) obtained under

Regimes 3 and 4 from the conditioned DA process and conditioned hybrid process.
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Figure 4.4: Bean plots of the estimated R0 under Regimes 1 and 2. Bean plots are

comprised of side-by-side box plots (where the whiskers represent the 2nd and 98th

percentiles) plotted on top of a kernel density estimate. The conditioned estimate is smaller

than the unconditioned estimate in every case. The unconditioned estimates in Regime 1

appear more biased than the unconditioned estimates in Regime 2.

conditioned DA process against the conditioned DA process, with the vertical

dashed black line representing its true value. The unconditioned estimates

are biased towards higher values of R0 than the conditioned estimates and

have a larger inter-quartile range (IQR). The unconditioned estimates show

more bias in Regime 1 than Regime 2, presumably because the lower value of

R0 leads to a higher chance of extinction and hence conditioning has a more

significant impact on the transition rates. The conditioned MPEs show less

bias than the MLEs though both MLEs and MPEs have a similar IQR in each

regime. The MLEs appear more susceptible to outliers. We determined the
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cause of these outliers to be relatively uninformative realisations which do not

provide enough information to obtain a reliable estimate of the underlying

values of 1/� and R0.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

MPE

MLE
Regime 1

Regime 2

Paired di↵erences between conditioned and unconditioned estimates

(a) Di↵erence in estimate of R0.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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MLE
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(b) Di↵erence in estimate of the expected proportion of individuals who experience

infection.

Figure 4.5: Bean plots of the paired di↵erence between estimates from the unconditioned

DA process and the conditioned DA process in Regime 1 plotted against Regime 2, where

the di↵erence is defined as the unconditioned estimate minus the conditioned estimate. In

all cases the conditioned estimates are smaller than the unconditioned estimates.

Figure 4.5 contains bean plots of the paired di↵erence between estimates

from the unconditioned DA process and the conditioned DA process from

Regime 1, plotted against Regime 2, where Figure 4.5a shows the di↵erence in

estimates of R0, and Figure 4.5b shows the di↵erence between estimates of the

expected proportion of individuals who experience infection. Here, we have
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defined the di↵erence to be the value of the unconditioned estimate minus the

conditioned estimate. Figure 4.5a shows that the unconditioned estimates

of R0 are always larger than the conditioned estimates. On average, the

unconditioned estimates are approximately 0.3 higher than the corresponding

conditioned estimates. In addition, the MLEs appear more variable than the

MPEs, although both distributions have a similar median.

Figure 4.5b translates the di↵erences in estimates of R0 into di↵erences

in the expected proportion of individuals who experience infection, which

provides an indication of the extent to which the unconditioned DA process

overestimates the size of the outbreak. The median di↵erences in the MLE

(MPE) of the expected final epidemic proportions are 26% (20%) and 20%

(13%) in Regime 1 and Regime 2. This means that even the most conservative

estimate (MPE in Regime 2) over-estimates the size of the outbreak by 13%

of the total population, in 50% of realisations. This may have a significant

impact on how public heath authorities perceive an emerging epidemic.

Figure 4.6 contains bean plots of the paired di↵erence between the con-

ditioned DA process estimate of R0 in Regimes 1 and 3 and also between

Regimes 2 and 4. In all cases, the estimates in Regimes 3 and 4 are higher

than those of Regimes 1 and 2, suggesting that the probability of extinction is

considerable even after NI has exceeded 20. However, the paired di↵erences

exhibited here are smaller than the paired di↵erences exhibited in Figure 4.5a,

demonstrating that conditioning on a threshold of 20 is preferable to not

conditioning at all. It is also clear that the change in the estimated R0 is

lower if the underlying value of R0 is higher.
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Figure 4.6: Bean plots of the paired di↵erence in the conditioned DA process estimate

of R0 when the threshold is decreased from 50 to 20, where the di↵erence is defined as

the estimate from a threshold of 20 minus the estimate from a threshold of 50. The

smaller conditioning level in Regimes 3 and 4 do less to reduce the positive-bias of the

unconditioned estimate of R0.

4.3.2 Validation of the hybrid di↵usion model

We now define the paired unconditioned hybrid (di↵usion) di↵erence as

the estimate of R0 from the unconditioned hybrid (di↵usion) process minus

the corresponding estimate from the unconditioned DA process. Figure 4.7

contains bean plots of the paired unconditioned hybrid di↵erences against

the paired di↵usion di↵erences, under Regimes 1 and 2. The paired di↵usion

di↵erences demonstrate more bias and variation than the paired unconditioned

hybrid di↵erences, suggesting that the hybrid approximation is more reliable
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Figure 4.7: Bean plots of the paired di↵erences in the estimated R0 from the uncon-

ditioned hybrid against the di↵usion. The di↵erence is defined as the estimate from

the approximation minus the estimate from the unconditioned DA process. The hybrid

approximation is more accurate than the di↵usion approximation.

than the di↵usion approximation in this context. This is unsurprising because

the di↵usion approximation is not suitable during the initial stages of an

outbreak. However, since the hybrid approximation utilises the di↵usion

approximation only once the outbreak has become established, the di↵erence

exhibited here may be thought of as the amount of error accumulated by the

di↵usion approximation in modelling the initial stages of the outbreak.

Figure 4.8 shows bean plots of the paired di↵erences between the estimate

of R0 from the conditioned DA and the conditioned hybrid, where the di↵er-

ence is defined as the conditioned hybrid estimate minus the conditioned DA
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Figure 4.8: Bean plots of the paired di↵erences between the conditioned DA estimate

of R0 and the conditioned hybrid estimate of R0, where the di↵erence is defined as the

conditioned hybrid estimate minus the conditioned DA estimate. The hybrid approximation

exhibits a small amount of bias.

estimate. The median bias in the MLE of R0 is approximately �0.05, and the

median bias for the MPE of R0 is approximately �0.03. This indicates that

the conditioned hybrid approximation adds a slight (0.03 to 0.05) downwards

bias on top of the 0.3 downwards correction of the conditioned DA process,

when compared to the unconditioned DA process.

All computations have been carried out with the supercomputing resources

provided by the Phoenix HPC service at the University of Adelaide, which is

comprised of a Lenovo NeXtScale system consisting of 120 nodes, comprised

of 2.3 GHz Intel Xeon E5-2698 v3 CPUs. The Bayesian analysis utilised 3GB
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of memory and was parallelised over 4 cores. To assess the computational-

e�ciency of the hybrid approximation we calculated the median runtime

(in hours) to compute the MPE, averaged over all 1, 000 realisations. In

Regimes 1 and 2 the median computational runtime of the conditioned

DA process was 1.27h and 1.55h, compared to 1.17h and 1.17h from the

conditioned hybrid likelihood. This small di↵erence in runtime demonstrates

that the hybrid model did not have the opportunity to take full advantage

of the computational-e�ciency of its di↵usion dynamics. This is because

the simulated data only ran for two weeks, meaning that the total number

of infectious cases did not grow much larger than 100. If the simulated

realisations were allowed to run for longer then the di↵usion approximation

would prove to be more beneficial due to a higher number of observed infection

events. In Regime 3 the median computational runtime of the conditioned DA

process was 0.72h compared to 0.5h from the conditioned hybrid likelihood.

In this case the threshold is lower so the hybrid approximation utilised

its di↵usion dynamics more than in Regimes 1 and 2, hence the hybrid

approximation was noticeably faster than the DA process. It is worth noting

that the hybrid approximation scales better than the DA process with respect

to the total number of observed infection events because its di↵usion dynamics

are relatively inexpensive, compared to CTMC dynamics.

4.3.3 Application to A(H1N1)pdm09 data

The first human infected with A(H1N1)pdm09 was recorded in the United

States on the 15th of April 2009 [Gibbs et al., 2009, Dawood et al., 2009].

Australia’s initial response was to delay the entry and spread of the disease by

enhanced case-finding, isolation, testing and treatment of incoming travellers

with influenza-like illnesses; and prophylactic treatment and home quarantine
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of the close contacts of suspected/confirmed cases [Glass et al., 2012]. The first

confirmed case in Australia was detected in a traveller returning home from

the United States on the 9th of May. Subsequently, the first confirmed case in

WA was detected in a traveller returning home from Canada via the United

States on the 24th of May. On the 13th of June the WA government deemed

the outbreak to be widespread and asked doctors to cease active case-finding,

and prioritise influenza testing only to persons with severe influenza-like illness

or established medical risk conditions [Weeramanthri et al., 2010]. Prior to

the 13th of June, all suspected or confirmed cases were actively followed-up

and travel histories were recorded. This resulted in 102 confirmed cases and

follow-up of 232 household contacts, plus a large number of aeroplane and

school contacts. Of these 102 cases, 53% either originated in Victoria or were

directly related to cases originating in Victoria. By the 30th of June, a total

of 247 cases had been reported.

We are now considering a single outbreak so instead of reporting the

distribution of the MLEs and MPEs, we now report the marginal distribution

of R0. We do so by sampling from the posterior distribution of R0, as before,

except this time we report the (2,25,50,75,98)-percentiles of the samples from

this distribution, rather than just the median. To achieve this, we use the

same parameters as the previous analysis (4 chains of 200, 000 iterations with

20, 000 iterations as burn-in) with the exception that the population size is

now assumed to be 2, 040, 000, the population of Perth, and the mean of

the marginal prior distribution of 1/� is set to 3. We changed the mean

of 1/� to be consistent with other estimates of the mean serial interval of

A(H1N1)pdm09 of 2.8 days [Nishiura et al., 2009a,b, Munayco et al., 2009].

To assess the consistency of our methodology, we estimate the distribution

of R0 at a weekly resolution from the 24th of May to the 1st of August.
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Since the total number of cases by the 1st of August is prohibitively large

for the DA process, we use the hybrid process instead. To demonstrate the

impact of conditioning, we estimate the distribution of R0 with and without

conditioning, at the weekly intervals.
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Figure 4.9: Number of notified cases of A(H1N1)pdm09 from WA with box plots of the

estimated distribution of R0 from the conditioned and unconditioned hybrid process. The

conditioned hybrid process estimates a lower R0 than the unconditioned.

Figure 4.9 shows the number of notified cases of A(H1N1)pdm09, and
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box plots of the estimated distribution of R0 from the conditioned hybrid

in yellow and the unconditioned hybrid in ochre. The statistics of the

conditioned distribution are always lower than the corresponding metrics of

the unconditioned distribution. This di↵erence is most prominent during

the first few weeks of the outbreak and gradually subsides as the outbreak

progresses because the impact of accounting for establishment decreases. The

variability in the estimated distribution of R0 can also be observed to decrease

as the outbreak progresses. The MPE of R0 from the conditioned model

appears more stable than the MPE of the unconditioned model, which is

influenced more heavily by a spike in cases which occurred during the third

week of the outbreak. Our MPEs of R0 from the conditioned hybrid process

vary between 1 and 1.1, which are consistent with those in the literature

for this outbreak [Kelly et al., 2010]. The computational runtime of this

analysis was under 1.5h for the first three weeks of the outbreak, and around

2h thereafter.

4.4 Discussion

We have presented an approach to estimating R0 from an emerging outbreak

by modelling case incidence data with the SIR CTMC. Our approach involves

conditioning on the event that the observed number of infection events exceeds

a predetermined threshold, at which point the outbreak is considered to be

established and simultaneously detected by public health o�cials. We also

presented an accurate and computationally-e�cient approximation scheme,

suitable for when the total number of observed infectious cases is computation-

ally forbidding. We illustrated the utility of these approaches by estimating R0

from multiple simulated outbreaks with influenza-like parameters and found
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our conditioned estimates of R0 to be 0.3 smaller than the unconditioned

estimates, on average. In addition, we demonstrated that the hybrid approach

is more computationally-e�cient than the standard CTMC approach and

more accurate than the usual di↵usion approximation.

We applied our methodology to an outbreak of A(H1N1)pdm09 in WA. We

found that the conditioned hybrid process provides a more consistent estimate

of R0 during the initial stages of the outbreak, compared to the unconditioned

hybrid, and that our estimates agree with those in the literature. However,

our assumption that the outbreak is established by the time that the number

of infectious individuals exceeds 50 may not be suitable, considering that the

case incidence remains low for the first five weeks of the outbreak. Therefore,

it might have been more appropriate to condition the outbreak on reaching

102, considering that this is the number of notified cases at the time that the

relevant authorities deemed the outbreak to be established [Kelly et al., 2010].

Furthermore, a significant proportion of the notified cases during the initial

stages of the outbreak originated outside of WA, making our case incidence

data misleading and positively biasing our estimates of R0. To account for

this, future work might consider allowing infectious individuals to enter the

population rather than modelling the population as a closed system.

In general terms, the simple SIR CTMC used here is not a biologically

plausible model. It makes unrealistic assumptions about the dynamics of

the disease, such as the assumption that it has no latent period, and the as-

sumption that each individual’s infectious period is exponentially distributed.

Furthermore, it does not account for other sources of bias such as incomplete

reporting, reporting rates which change over time, population heterogeneity

(such as spatial variation, age-specific or household clustering of contacts), im-

ported infectious cases, and pre-existing immunity. Thus, suitable extensions

107



of the conditioned SIR CTMC presented here could be to attempt to further

account for bias from any of these sources. Therefore, in the following chapter

we utilise the partially-observed SEIR CTMC for inference (Section 2.4). The

inclusion of an exposed compartment makes this model more biologically

plausible and assuming that infectious individuals are observed randomly

makes it more suitable for modelling real outbreaks. Notwithstanding, the

salient point of the methodology presented here is that conditioning is a

simple mathematical tool which may be applied to a wide range of CTMC

models as a means of partially accounting for positive-bias in early estimates

of R0 from case incidence data.

The mechanism by which the hybrid di↵usion model switches from CTMC

dynamics to di↵usion dynamics does not guarantee that the di↵usion approx-

imation will provide an accurate representation of the underlying CTMC

dynamics. This is because the hybrid di↵usion model switches dynamics

depending on the number of infection events that have occurred, but the

di↵usion approximation actually requires the number of infectious individuals

to be su�ciently large in order to provide a reliable approximation. Thus,

in the following chapter we develop a similar hybrid di↵usion model which

switches from CTMC to di↵usion dynamics once the number of infectious

individuals is large enough for the di↵usion approximation to provide a reliable

approximation.
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Chapter 5

Early estimation of the basic

reproductive number from

partially-observed SEIR CTMC

disease dynamics

The approach to obtaining early estimates of the basic reproductive number

from case incidence data presented in the previous chapter made two important

assumptions: that the dynamics of the disease are suitably described by the

SIR model; and, that every infectious case within the population is observed.

In this chapter we extend the methodology presented in the previous chapter

to the more realistic partially-observed susceptible-exposed-infectious-removed

(SEIR) continuous-time Markov chain (CTMC) (Section 2.4).

For many infectious diseases there is a significant exposed/latent period

occurring after an individual has been infected but before they are able to

transmit the disease [Andersson and Britton, 2000]. The inclusion of an

exposed period can result in significantly di↵erent disease dynamics and is
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therefore crucial to the design of appropriate prevention and control policies

[Leclerc et al., 2014]. One example is the Ebola Hemorrhagic Fever for which

the mean of the exposed period is estimated to range from 9 to 21 days

[Lekone and Finkenstädt, 2006].

During the early stages of an outbreak it is highly likely that the recorded

number of infectious cases di↵ers from the true number of infectious cases

present within the population. The underlying cause of this discrepancy is

generally driven by inaccessibility to health care, incorrect/inaccurate case

reporting, the prevalence of asymptomatic cases, community attitudes and how

the disease is portrayed by the mass-media [Collinson et al., 2015, Mayrhuber

et al., 2017, Mitchell and Ross, 2016, Verelst et al., 2016]. A common way

of accounting for case under-reporting is to assume that each infectious case

is observed with a fixed probability p, and is otherwise unobserved [Fintzi

et al., 2017, Wallinga and Teunis, 2004, White and Pagano, 2010]. In so doing,

we are also able to specify di↵erent infectivities and infectious periods for

individuals who are observed and unobserved which provides great flexibility

in the model [Mathews et al., 2007].

In this chapter, we generalise the conditioned hybrid di↵usion approach

of the previous chapter to the partially-observed SEIR CTMC for estimating

R0 from the early stages on an outbreak. Although not presented, we also

consider an unconditioned hybrid di↵usion approach in the analysis section.

Due to the increased complexity of the partially-observed SEIR CTMC, we

utilise a dynamic state space truncation algorithm in considering the initial

CTMC dynamics of the process [Sunkara and Hegland, 2010, Munsky and

Khammash, 2006]. We assess the accuracy of our model by using it to recover

the parameters of simulated outbreaks with influenza-like dynamics. In so

doing, we investigate the e↵ect of various modelling assumptions on the
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estimated parameters. For instance, the impact of assuming that the observed

and unobserved compartments have di↵erent infectivities, compared to if they

had the same infectivity. We then demonstrate the utility of our model by

using it to infer R0 for a range of real outbreaks.

5.1 Partially-observed SEIR CTMC model

In this section we present a conditioned hybrid di↵usion model of the SEIR

CTMC. Like the hybrid di↵usion model presented in the previous chapter, the

hybrid di↵usion model presented here begins with CTMC dynamics and ends

with the dynamics of the di↵usion approximation. However, since the SEIR

CTMC has more compartments than the SIR CTMC, the computational

demands of the model increase more rapidly than for the SIR CTMC. As a

result, the switching mechanism utilised in the previous chapter is no longer

an e↵ective means of reducing the computational demands of the model.

Instead, we utilise a dynamic state space truncation rule which enables the

outbreak to become established before switching to di↵usion dynamics. It

follows that the hybrid di↵usion model of the SEIR CTMC may be thought

of as a three-stage process which begins with the dynamics of the DA process,

then progresses to a so-called truncated DA process and ends with the di↵usion

approximation. We now describe the dynamics of the model at each of its

three stages.

5.1.1 Stage one: DA process

The first stage of the hybrid di↵usion process utilises the familiar dynamics

of the DA process. Recall that the DA representation of the SEIR CTMC

(Section 2.4) is the CTMC (N (t) , t � 0), which takes values in N (Equa-
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tion (2.56)) and, for all n in N , has the positive transition rates qNnn+ei , if

n+ ei is in N , for i = 1, 2, . . . , 5 (Equations (2.58)).

Chapter 4 demonstrated that estimates of R0 from the early stages of

the outbreak are likely to be positively-biased if the model does not account

for the event that the outbreak becomes established. For this reason, we

condition the DA process on the event that the outbreak becomes established

(Section 4.1). This is achieved by invoking Theorem 2 to condition the DA

process on the event that it hits the set N T , a subset of N , from which the

outbreak is considered established. During the initial stages of an outbreak,

the probability of an established outbreak increases considerably each time

another individual becomes infectious. Thus, we define N
T as the subset

of N from which the number of observed infectious individuals, Io, exceeds

some state-threshold bI in 0, 1, . . . , N . Further, to assure that the di↵usion

process provides a su�cently accurate representation of the process, we also

require that the number of unobserved infectious individuals, Iu, exceeds bI.

Thus we define N
T as {n 2 N | Io � bI, Iu � bI}. In practice, the value of bI

can be low because it is the sum Io + Iu which drives the infection process,

not the individual values Io and Iu.

The number of states in the state space of the DA process is O (N5), where

N is the population size, meaning that the computational cost associated with

the dynamics of the DA process increases rapidly with N . In order to ensure

computational-feasibility, we must consider how to keep the state space of

the model to a practical size. During the initial stages of the outbreak, the

number of exposure events, Ne, grows the fastest. Therefore, we determine

when to switch from the DA process to the truncated DA process using the

marginal distribution of Ne. We achieve this by setting an absorbing upper

bound on Ne, n̂e in {0, 1, . . . , N}, by setting qNnm = 0 all n,m 2 N for which
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Ne = n̂e. Enforcing the condition that, for a pre-defined probability-threshold

pT in [0, 1], the hybrid di↵usion process has the dynamics of the DA process

until time tK1 , where K1 is defined as

K1 = min {k | Pr(Ne(tk+1) = n̂e | Yk+1) � pT} ,

which we refer to as the first switching time. In other words, the time tK1+1

is the first time at which the probability that the Ne compartment of the

DA process reaches the state-threshold n̂e, is greater than the threshold-

probability pT . Depending on the average latent period and the average

infectious period, the switching time K1 is likely to occur early in the process

while the population of Nio, Niu, Nro and Nru are still low and therefore the

di↵usion approximation will be unsuitable.

Recall that the hybrid di↵usion process is used to infer the parameters,

✓ 2 ⇥, of the model via the likelihood (Section 2.4). Given a set of observed

incidence counts xk for k = 0, 1, . . . , n, with corresponding cumulative inci-

dence counts yk =
Pk

j=1 xj, for k = 1, 2, . . . , K1 ^ n, the probability of the

observed data, Lk
C(✓), is computed via Algorithm 3 using the conditioned

transition rates.

5.1.2 Stage two: truncated DA process

The DA process is likely to become computationally-infeasible before the

outbreak is established. Thus, the second stage of the hybrid di↵usion process

is to maintain the dynamics of the DA process, while dynamically truncating

its state space informed by the di↵usion approximation. To assure a smooth

transition from the first stage to the second, at the first switching time

we condition the DA process on the event that the population of the Ne

compartment is strictly less than n̂e. Provided pT is suitably small, the error
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incurred by this assumption should be small.

Throughout the first stage, the direct correspondence between the Nio

component and the observed data allows us to enforce the condition that

yk  Nio  yk+1 + 1, for all t in [tk, tk+1] where k = 1, 2, . . . , K1. However,

since the other compartments are not observed, it is not possible to enforce a

similar boundary condition upon them. Thus, for each time interval [tk, tk+1],

for k = K1 + 1, K1 + 2, . . . , n, we bound each compartment from above and

below such that the probability that the process crosses either boundary is

less than the pre-determined probability-threshold pT . Obtaining a suitable

lower bound is straightforward because the lower bounds can be determined

directly from the distribution of the truncated DA process at the initial time

tk. For example, the lower bound of the Ne compartment on the time interval

[tk, tk+1] is lbe = min{n | Pr(Ne(tk)  n)  pT}. We determine the upper

bounds from the di↵usion approximation of the DA process, which we now

define.

Appealing to Definitions 7 and 8, it can be shown that the DA process

on N is a DDMPP, meaning that its fluid approximation and di↵usion ap-

proximation exist. Therefore, let (ne, nio, niu, nro, nru) denote the continuous

quantities taking values in E, which are analogous to the scaled quantities

(Ne, Nio, Niu, Nro, Nru)/N . Then following from Theorem 3, the fluid approx-

imation of the DA process is the deterministic process (n (t,n0) , 0  t < 1)

which is the unique solution to the system of ordinary di↵erential equations
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dn (t,n0) /dt = F (n (t,n0)), for a suitable initial value n0 in E, and where

F (n) =

2

6666666664

(�o (nio � nro) + �u (niu � nru)) (1� ne)

p↵ (ne � nio � niu)

(1� p)↵ (ne � nio � niu)

�o (nio � nro)

�u (niu � nru)

3

7777777775

.

Following from Theorem 4 the di↵usion approximation of the DA process

is the Gaussian di↵usion process with mean n (t,n0) and covariance matrix

⌃N (t), where ⌃N (t) is the unique solution to the system of ordinary di↵erential

equations (2.12), for a suitable initial value ⌃N (0) = ⌃0.

Although it has been noted that the di↵usion approximation provides

a poor representation of the dynamics of the DA process during the initial

stages of the outbreak, the main cause of this error is that the di↵usion

approximation does not accurately represent the dynamics of the DA process

around boundaries in its state space. Thus, the di↵usion approximation still

provides a suitable approximation of the distribution of the DA process away

from the boundary, and so is suitable for computing the upper bounds.

The upper bounds of the unobserved compartments are computed via the

di↵usion approximation as follows. Given the initial state n0 = E[N (tk)]/N

and covariance ⌃0 = cov (N (tk)) /N the distribution of the di↵usion ap-

proximation is computed at time tk+1 and conditioned on the event that

nio(tk+1) = yk+1/N (Theorem 6). The upper bounds are then computed di-

rectly from the marginals of the conditioned di↵usion approximation. For ex-

ample, the upper bound of the Ne compartment over the time interval [tk, tk+1],

for k = K1 + 1, K1 + 2, . . . , n, is ube = min{n | Pr(n0
e(tk+1) � n/N)  pT},

where n0
e(tk+1) is the ne(tk+1) compartment of the di↵usion approximation

after conditioning on the event that nio(tk+1) = yk+1/N .
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It follows that the truncated DA process has the same dynamics as the

DA process, with the exception that we only consider its dynamics on the

truncated state space Nk, defined as

Nk =

⇢
n 2 N | max{yk, lbe}  Ne  max{bI + yk+1 + 1, ube}+ 1,

yk  Nio  yk+1 + 1,

lbui  Niu  ubui + 1,

lbro  Nro  min{yk+1 + 1, ubro + 1},

lbru  Nru  ubru + 1

�
. (5.1)

When switching from one truncated state space Nk, for k = K1 + 1, K1 +

2, . . . , n, to the next, Nk+1 the DA process is conditioned on the event that

each of its unobserved compartments is less than its upper bound. This

ensures a smooth transition between truncated state spaces.

The truncated DA process switches to the di↵usion approximation once

the outbreak has becomes established. Given that we consider an outbreak

to be established once it has reached the subset N
T , we switch from the

truncated DA process to the di↵usion approximation once the probability

that the truncated DA process has reached the set N
T exceeds pI . More

precisely, for some pre-defined probability-threshold pI in [0, 1], the hybrid

di↵usion process has the dynamics of the truncated DA process until time

tK2 , where K2 is defined as

K2 = min
�
k | Pr

�
N (tk+1) 2 N

T
�
� pI

 
,

which we refer to as the second switching time. In other words, the time

tK2+1 is the first time at which the probability that the outbreak is in the set

N
T exceeds pI .
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It follows that for all k = K1 + 1, K1 + 2, . . . , K2, the probability of

the observed data from the truncated DA process, Lk
T (✓), is computed via

Algorithm 3 using the truncated state space (5.1).

5.1.3 Stage three: di↵usion approximation

The truncated DA process reduces the computational cost of the DA dynamics

by considering the dynamics of the process on only a subset of its state

space. This enables the population of infectious individuals to grow large

enough for the di↵usion approximation to provide an accurate representation

of the process while retaining the use of the DA process. To ensure a

smooth transition from the truncated DA process to the di↵usion process,

the di↵usion approximation is initialised by the mean and covariance of

the truncated DA process. In particular, nK2+1 = E[N (tK2+1)]/N and

⌃K2+1 = cov (N (tK2+1)) /N . Similar to the di↵usion dynamics in the previous

chapter, the di↵usion approximation is conditioned on the observed data

via Theorem 6. One the process has reached the third stage it is no longer

conditioned on reaching the set N T .

Recall that the di↵usion likelihood (2.47) of the SIR CTMC was com-

puted by using the transition density (2.45) to approximate the transition

probabilities of the CTMC (2.46). This procedure was e�cient because the

di↵usion approximation followed a bivariate normal distribution so we only

needed to evaluate the transition density along one dimension. In the case

of the SEIR CTMC, the di↵usion approximation follows a 5-dimensional

multivariate normal distribution, so a generalisation of the previous approach

would require evaluating the transition density across a 4-dimensional grid,

which is computationally demanding. Instead, we utilise a highly e�cient

quasi Monte Carlo approach due to Botev and L’Ecuyer [2015] in which
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the probability of the observed data is computed by a highly-e�cient ap-

proximation of the integral of the transition density. In particular, for all

k = K2 + 1, K2 + 2, . . . , n the di↵usion approximation of the probability of

the observed data is

Lk
D(✓) =

Z 1

� 1
2

Z yk+1+
1
2

yk+1� 1
2

Z ne�nio+
1
2

� 1
2

Z nio+
1
2

� 1
2

Z niu+
1
2

� 1
2

fN(n, tk|Yk-1)

dne dnio dniu dnro dnru, (5.2)

where fN(n, t|Yk-1) is the transition density of the di↵usion approximation

of the SEIR CTMC, conditioned on the history of the process Yk-1 (see

equation (2.45)).

For the set of cumulative incidence counts y1, y2, . . . , yn, observed at times

t1, t2, . . . , tn. The hybrid di↵usion likelihood is

L(y|✓) =
K1Y

k=1

Lk
C(✓)

K2Y

k=K1+1

Lk
T (✓)

nY

k=K2+1

Lk
D(✓), (5.3)

where K1 and K2 are the first and second switching times, respectively, and

Lk
C(✓), L

k
T (✓) and Lk

D(✓) are the probabilities of the observed data from the

DA process, truncated DA process and di↵usion approximation, respectively.

The conditioned hybrid di↵usion likelihood is computed via Algorithm 6.

The unconditioned hybrid di↵usion likelihood can be computed via a similar

approach which does not include conditioning.

5.2 Validation of the hybrid di↵usion model

In this section we demonstrate the accuracy and utility of our methodology by

using it to estimate R0 from daily incidence data from the first two, three, four

and five weeks of an outbreak. We assess the accuracy of our methodology

by using it to estimate the parameters of a set of simulated outbreaks from
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Algorithm 6: Likelihood of the partially-observed SEIR CTMC model.

Begin
Data: Daily incidence counts x1, x2, . . . , xn.

Result: Compute the likelihood L(y|✓).

1 Set n̂e, pT , pI , k = 0 and yk =
Pk

j=0 xj, for all k = 1, 2, . . . , n ;

2 Initialise the probability distribution of N (0) as pN (0) = e1 ;

3 while Pr(Ne(tk+1) � n̂e)  pT do

4 Truncate the state space, N k = {m 2 N | yk  NI  yk+1 + 1} ;

5 Condition the transition rates on reaching the set N T ;

6 Compute pNnm(tk+1), for all m 2 N
k ;

7 Compute the probability Lk+1
E (✓) ;

8 Condition N (tk+1) on the history Yk+1 ;

9 Increment k = k + 1 ;

10 end

11 Condition on the event that N (tk)  n̂e ;

12 while Pr(N (tk+1) 2 N
T )  pI do

13 Set nk = E[N (tk)]/N and ⌃k = cov (N (tk)) /N ;

14 Compute truncated state space N k via di↵usion approximation ;

15 Condition the transition rates on reaching the set N T ;

16 Calculate pNnm(tk+1), for all m 2 N
k ;

17 Compute the probability Lk+1
T (✓) ;

18 Condition N (tk+1) on the history Yk+1 and on being in a

transient state of Nk ;

19 Increment k = k + 1 ;

20 end
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Set nK2+1 = E[N (tK2+1)]/N and ⌃K2+1 = cov (N (tK2+1)) /N ;

while k < n do

Integrate mean and covariance from time tk to tk+1 ;

Compute the probability Lk+1
D ;

Condition on event nio(tk+1) = yk+1/N ;

Increment k = k + 1 ;

Compute L(y|✓) =
QK1

k=1 L
k
E(✓)

QK2

k=K1+1 L
k
T (✓)

Qn
k=K2+1 L

k
D(✓);

the SEIR CTMC. To ensure our analysis is statistically robust, we consider

100 independent simulated outbreaks, each of which adheres to the following

properties: it starts with a single observed infectious case, runs for a duration

of five weeks, and exceeds 30 observed infectious cases by the end of the fifth

week. This is reflected by setting n̂e = 30 and pT = 5⇥ 10�3. In addition we

set bI = 5 and pI = 0.5. This choice of bI and pI balance the accuracy of the

model with its associated computational-demands and were determiend by

trial-and-error. We also assess the impact of imposing a set of assumptions on

the parameters of the model. This includes considering a base model in which

�o = �u and �o = �u, a restricted model in which �o = �u, and a full model

in which �o, �u, �o and �u are unconstrained (see Figure 2.3). To further the

analysis of the previous chapter, we again consider the estimated parameters

under a conditioned model and an unconditioned model. In assessing each

model, the true parameter values have been selected to be representative

of an outbreak of influenza and the value of N guarantees that the pool of

susceptible individuals does not become depleted.

We estimate the probability distribution of the parameters in a Bayesian
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framework (Section 2.3.3), in which we again use the MAPE for a point

estimate for the parameters. The MAPE is the set of parameters which

attains the highest marginal posterior density (Section 2.3.3). We focus on

estimating the value of ✓ which is equal to (�o/�o, �u/�u, 1/�o, 1/�u, 1/↵, p),

for ✓ 2 ⇥, where all of �o/�o, �u/�u, 1/�o, 1/�u,1/↵ are greater than zero and

p 2 (0.1, 0.9). We use this parameterisation because the relationships between

�o/�o, �u/�u and 1/�o, 1/�u are more straightforward than the relationship

between �o, �u and �o, �u, respectively. Furthermore, we restrict the values of

p in this way because numerical issues arise when it is too close to either 0 or

1. We utilise an exponential prior

f(✓) = C e�✓c,

where c and C depend on the model, for all parameters except p which has a

uniform prior. Our proposal density is a truncated Bivariate Gaussian with

support ⇥ and fixed covariance structure where var(�o/�o) = var(�u/�u) =

var(1/�o) = var(1/�u) = var(1/↵) = 0.1, var(p) = 0.01, cov (�/�, 1/�) = 0.01

and cov (✓i, ✓j) = 0 otherwise. For each simulated data set, we run four

independent Markov chain Monte Carlo chains on ⇥ consisting of 200, 000

iterations, and discard the initial 20, 000 iterations as burn-in. We now discuss

the results from the base model, restricted model and full model.

5.2.1 Base model

For the base model we assume that �o = �u and �o = �u. As a result, the

model is parameterised by ✓ = (R0, 1/�, 1/↵, p). For the simulation study,

we set the true parameters to ✓ = (2, 3, 1, 0.3) which are representative of

an influenza-like outbreak. Figure 5.1 shows the statistical properties of the

100 simulated outbreaks used for estimation. For each day, the cyan curve
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Figure 5.1: Statistical properties of the simulated outbreaks used for estimation by the

base model. For each day, the cyan curve shows the median incidence count, the blue

shaded area shows the central 5%–95% percentiles of the incidence counts and the red

shaded area bounds biggest and smallest incidence counts. The simulated outbreak in

yellow is used to inform the posterior distribution in Figure 5.3.

shows the median incidence count, the blue shaded area shows the central

5%–95% percentiles of the incidence counts and the red shaded area bounds

the biggest and smallest incidence counts

For the prior distribution, we let c be a 1⇥4 vector with entries c1 = 1/1.3,

c2 = 1/5, c3 = 1/1.3 and c4 = 0, in addition C = c1c2c3 (Figure 5.2). These

values provide the same prior distribution for R0 and 1/� as the previous

chapter and were selected with the understanding that they provide su�cient

density to values of R0 and 1/� which are reasonable for an influenza-like

outbreak. The prior distribution of 1/↵ was selected with the understanding

that the duration of the exposed period for an influenza-like disease is often

close to one day [CDC, 2016].
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Figure 5.2: Prior distribution of R0, 1/� and 1/↵ for the base model. This choice is

similar to the prior distribution from the previous chapter and provides adequate support

to parameter values which are reasonable for an influenza-like outbreak.

Figure 5.3 shows the estimated joint posterior distribution of the param-

eters under the unconditioned hybrid di↵usion model, based on the first

two weeks of the simulated outbreak shown in Figure 5.1. The posterior

distribution demonstrates that in this case the parameters are reasonably

insensitive to the prior distribution as they do not follow an exponential

distribution, or a uniform distribution in the case of p. A strong correlation

between R0 and 1/� can be observed. The value of 1/↵ appears relatively

insensitive to R0 and p. The true parameters are shown in green and their

estimates are shown in ochre. It’s worth noting that although the estimated

value of R0 appears close to its true value, it is over-estimated in this case.
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Figure 5.3: Joint posterior distribution of the parameters under the unconditioned base model from the first two weeks of the simulated

outbreak shown in Figure 5.1. The true parameter values are displayed in green while the estimated parameters are displayed in red.
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Figure 5.4 shows bean plots of the point estimates of the parameters from

the unconditioned model in blue and the conditioned model in red. These

estimates are based on the first two, three, four and five weeks of the simulated

outbreaks from Figure 5.1. Recall that a bean plot contains side by side

boxplots of the data in which the 2nd, 25th, 50th, 75th and 98th percentiles

are indicated, alongside kernel density estimates of their distribution. The

true values of the parameters are indicated by the dashed black lines. As the

length of the observation period increases, the average bias of the estimates of

R0, pR0 and 1/� increases, p decreases and 1/↵ remains relatively consistent.

It can be seen that the rate in which the average bias of estimates of R0

increases is comparable to the rate at which the average bias of estimates

of p decreases. This suggests that the model has an identifiability problem

between R0 and p. It follows that the base model is unable to accurately

estimate R0 and p, but is able to infer their product. A potential cause for

this identifiability problem is that the observed infection process is driven at

rate pR0, suggesting that the model is able to detect this rate but can not

detect any further information about p or R0. It can be observed that the

conditioned estimates demonstrate less bias than the unconditioned estimates,

on average.

5.2.2 Restricted model

We now consider the restricted model, in which �o = �u. As a result, the

restricted model is parameterised by ✓ = (�o/�, �u/�, 1/�, 1/↵, p). We set

the true parameters to (0.8, 2.5, 3, 1, 0.3) which are similar to true parameters

of the base model, but with the assumption that observed infectious cases

cause fewer secondary cases than unobserved infectious cases. The rationale

behind this is the assumption that individuals who go to the doctor to report
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Figure 5.4: Bean plots of the point estimates of the parameters from the conditioned and

unconditioned base model with the true values indicated by the black dashed line. The

estimated values of 1/� and 1/↵ are reasonably accurate while the estimates of R0 and p

demonstrate an identifiability problem.

their symptoms are less likely to spread the disease than individuals who do

not go to the doctor. The value of R0 is now 1.99, which is similar to the

previous value of R0 = 2 under the base model. The statistical properties

of the simulated outbreaks used for estimation under the restricted model

are shown in Figure 5.5. It can be seen that the statistical properties of the

simulated outbreaks used for estimation by the restricted model have similar

statistical properties to the simulated outbreaks used for estimation by the

base model.

For the prior distribution, we let c be a 1 ⇥ 5 vector with elements

c1 = 1/1.3, c2 = 1/1.5, c3 = 1/5, c4 = 1/1.3 and c5 = 0, and C =
Q4

i=1 ci

(Figure 5.6). In this case, we use the same prior distribution for 1/�, 1/↵

and p as the analysis with the base model. The prior distribution for �o/� is

the same as the prior distribution for R0, and the prior distribution for �u/�

is similar to the prior distribution for R0 except it provides more weight to

slightly larger values.

Figure 5.7 shows the estimated joint posterior distribution of the pa-

rameters under the unconditioned restricted model, based on the first three
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Figure 5.5: Statistical properties of the simulated realisations used for estimation with

the full model. For each day, the cyan curve shows the median incidence count, the blue

shaded area shows the central 5%–95% percentiles of the incidence counts and the red

shaded area bounds biggest and smallest incidence counts. The simulated outbreak shown

in yellow is used to obtain the estimated posterior distribution in Figure 5.7.
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Figure 5.6: Prior distribution of �o/�, �u/�, 1/� and 1/↵ for the restricted model. The

prior distribution used here is the same as the prior distribution for the base model, with

addition of an extra dimension for �u/�, which is similar to the prior distribution of �/�

in the base model.
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weeks of the simulated outbreak shown in Figure 5.5. Again, the posterior

distribution demonstrates that the parameters are reasonably insensitive to

the prior distribution and that �o/� and �u/� are strongly correlated with

1/�. An interesting feature is that the correlation exhibited between �o/�

and �u/� is related by the equation

R0 = p
�o
�o

+ (1� p)
�u
�u

.

Substituting the estimated values of R0 and p into this equation produces the

purple line which has been plotted on the joint posterior distribution of �o/�

and �u/�. It can be seen that the true value of R0 lies on this line, suggesting

that although the estimated values of �o/� and �u/� are inaccurate, the

resulting estimate of R0 is accurate. This is supported by the observation that

the ridge in the joint posterior distribution of �o/� and �u/� coincides with

this line, suggesting that the model favours values of �o/� and �u/� which

provide the correct R0 but the model has trouble identifying the underlying

values of �o/� and �u/�.
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Density estimate of the joint posterior distribution from the restricted model
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Figure 5.7: Joint posterior distribution of the parameters based of the first two weeks of the simulated outbreak displayed in Figure 5.5.

The true values of the parameters are displayed in green while the estimated parameters are displayed in red. The equation of R0 provides

the purple line which explains the correlation between �o/� and �u/�.
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Figure 5.8 shows bean plots of the estimated parameters from the uncon-

ditioned model in blue and the conditioned model in red. The estimates are

based on the first two, three, four and five weeks of the simulated outbreaks.

As the length of the observation period increases, the average bias of estimates

of �o/�, �u/� and p decreases, while the average bias of estimates of 1/�

and 1/↵ is relatively consistent. As suggested by the posterior distribution,

it can be seen that the decrease in the average estimates of �o/� coincides

with an increase in the average estimates of �u/� and the resulting estimate

of R0 is reasonably accurate. It can be seen that the conditioned estimates

demonstrate less bias than the unconditioned estimates, on average.

5.2.3 Full model

We now consider the full model in which there are no constraints placed on

�o, �u, �o, �u. The model is therefore parameterised by ✓ = (�o/�o, �u/�u,

1/�o, 1/�u, 1/↵, p). We set the true parameters to ✓ = (0.8, 2.5, 3, 4, 1, 0.3)

which are similar to the true parameters in the previous two cases, but with the

assumption that observed infectious cases are removed faster than unobserved

infectious cases. The rationale behind this assumption is that individuals

who seek treatment are more likely to be removed sooner, compared to

those who do not seek treatment. The statistical properties of the simulated

outbreaks used for estimation are shown in Figure 5.9. It can be seen that

the simulated outbreaks used for estimation by the full model provide fewer

observed incidence counts than the previous two models. The reason for this

is that, compared to the restricted model, the full model has a larger value

of 1/�u which results in a smaller value of �u since the ratio �u/�u is held

constant. Therefore resulting in fewer infectious cases. Despite this, the value

of R0 is unchanged.
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Figure 5.8: Bean plots of the estimated parameters from the unconditioned (blue) and

conditioned (red) restricted model, with the true values indicated by the black dashed line.

The estimated values of p and 1/� are reasonably accurate. On average, the estimated

value of R0 is reasonably close to the true value.
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Figure 5.9: Statistical properties of the simulated realisations used for estimation with

the full model. For each day, the cyan curve shows the median incidence count, the blue

shaded area shows the central 5%–95% percentiles of the incidence counts and the red

shaded area bounds biggest and smallest incidence counts. The simulated realisation shown

in yellow is used to estimate the joint posterior distribution in Figure 5.11.
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Figure 5.10: Prior distribution of �o/�o, �u/�, 1/�o, 1/�u and 1/↵ for the full model. The

prior distribution used here is the same as the prior distribution for the restricted model,

with addition of an extra dimension for 1/�u which is similar to the prior distribution for

the restricted model.

For the prior distribution, we let c be a 1⇥6 vector with entries c1 = 1/1.3,

c2 = 1/1.5, c3 = 1/5, c4 = 1/6, c5 = 1/1.3 and c6 = 0, and C =
Q5

i=1 ci. The

prior distribution is shown in Figure 5.10. In this case, we use the same prior

distribution for 1/↵ and p as the restricted model. For �o/�o, �u/�u and

1/�o we use the same prior distribution as �o/�, �u/� and 1/�, respectively.

For 1/�u we utilise a similar prior distribution to the prior distribution of

1/�o, with the exception that the prior distribution for 1/�u has slightly more

weight for larger values.

Figure 5.11 shows the estimated joint posterior distribution of the parame-

ters under the full unconditioned model, based on the first three weeks of the

simulated outbreak shown in Figure 5.9. As with the restricted model, the

full model demonstrates a clear correlation between �o/�o and 1/�o, �u/�u
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and 1/�u, and �o/�o and �u/�u, with the latter being a result of the equation

for R0. An interesting feature which can be seen here, but not in the case of

the restricted model, is that the posterior distribution of p is correlated with

�o/�o and �u/�u. To see this, the estimated values of �u/�u (�o/�o) and R0

are substituted into the equation for R0 to produce the purple curve shown in

the joint posterior distribution of p and �o/�o (�u/�u). It can be seen that in

both cases the curve coincides with a ridge in the joint posterior distribution.
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Density estimate of the joint posterior distribution from the full model
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Figure 5.11: Joint posterior distribution of the parameters based of the first three weeks of the simulated outbreak displayed in

Figure 5.9. The true parameter values are displayed in green while the estimated parameters are displayed in red.
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Figure 5.12 shows bean plots of the estimated parameters from the uncon-

ditioned model in blue and the conditioned model in red. The estimates are

based on the first two, three, four and five weeks of the simulated outbreaks.

As the length of the observation period increases, the average bias of estimates

of �u/�u and p decreases, while the average bias of the other estimates is

relatively consistent. Similar to the restricted model, it can be observed that

the decrease in the average estimates of �u/�u coincides with a decrease in

the average estimates of p and results in a reasonably accurate estimate of

R0. It can be observed that the conditioned estimates demonstrate less bias

than the unconditioned estimates, on average.

Comparing the estimates of the restricted model from Figure 5.8 to the

estimates of the full model from Figure 5.12, it can be seen that on average

the full model provides a more accurate estimate of 1/�o, 1/�u and 1/↵ and

a comparable estimate of R0 and p.

5.3 Application to data

In this section we demonstrate the utility of our model by applying it to

real outbreaks of infectious diseases. Based on the results of the previous

section, we utilise the conditioned version of the full model, which provided

accurate estimates of the duration of the exposed period and the duration of

the infectious periods, while providing comparably accurate estimates of R0

and p to the restricted model. Throughout this section, we conduct estimation

via the same approach as the last section, unless otherwise stated.
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Figure 5.12: Bean plots of the point estimates of the parameters from the conditioned

and unconditioned base model with the true values indicated by the black dashed line. The

full model provides reasonably accurate estimates of all parameters aside from �o/�o and

�u/�u. Despite this, the average estimated value of R0 exhibits only a small amount of

bias.
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5.3.1 A(H1N1)pdm09 in Western Australia

We begin by reconsidering the outbreak of A(H1N1)pdm09 from Section 4.3.3.

In this case, we estimate R0 from the first seven weeks of the outbreak, prior

to the sudden increase in case reporting around week eight. Figure 5.13 shows

the daily incidence count of the disease in blue, alongside weekly box plots

describing the posterior distribution of R0. The median of the samples from

the posterior is indicated in black and the MAPE is indicated in yellow. It

can be seen that the 25th and 75th percentiles of our distribution of R0 are

generally contained within 1 to 1.5, with the exception of the second week of

the outbreak. The reason for the higher than average estimated distribution

of R0 in the second week is that incidence counts seem to suggest that the

outbreak is about to take o↵. However, by the end of the third week it

is apparent that this is more of a stochastic fluctuation. The estimates of

R0 produced here are slightly higher than the estimates of R0 produced in

Chapter 4, which is not suprising given that we now allow for non-reporting

of cases.

5.3.2 Ebola hemorrhagic fever in Zaire 1976

Ebola is a highly infectious and lethal disease which recently attained interna-

tional concern after an outbreak in Western Africa. The virus is transmitted

by physical contact with body fluids, secretions, tissues or semen from in-

fectious individuals. Individuals who contract the disease have an exposed

period ranging up to 21 days, with an average of 6.3 days. Its symptoms are

characterised by initial influenza-like symptoms which rapidly progress to

vomiting, diarrhoea, rashes, and internal and external bleeding [WHO, 2017a,

Breman et al., 1999].
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Figure 5.13: Daily incidence count and estimated basic reproductive number for an

outbreak of A(H1N1)pdm09 in Western Australia using the conditioned full SEIR model

with partial observations. The yellow line shown on the box plots indicates the MAPE of

R0
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In this section we consider an outbreak of the Ebola hemorrhagic fever

which occurred in Zaire in 1976. In Figure 5.14, we estimate R0 from the

first four weeks of the outbreak, before control measures began to take e↵ect

on the spread of the disease. A recent estimate of R0 from the early stages

of this outbreak is 1.34 [Camacho et al., 2014]. It can be seen that the

average estimate of R0 increases steadily during the first three weeks of the

outbreak before decreasing between weeks three and four due to the temporary

reduction in the growth of the observed incidence count. Our estimates of R0

are slightly larger than those of Camacho et al. [2014].

5.3.3 Ebola hemorrhagic fever in Congo 1995

We now analyse an outbreak of Ebola which occurred in Congo in 1995. We

restrict our attention to the first eight weeks of the outbreak, prior to any

significant impact of control measures. A recent estimate of R0 based on the

initial stages of this outbreak is 1.83 with a reported standard deviation of

0.06 [Chowell et al., 2004]. It can be seen that our average estimates of R0 are

consistent for the first few weeks of the outbreak before gradually increasing

after the outbreak has become established. In Figure 5.15, it can be seen

that our estimates of R0 appear to agree reasonably well with Chowell et al.

[2004].

5.3.4 Pneumonic Plague in Madagascar 2017

Pneumonic Plague is a very severe bacterial infection of the lungs which is

invariably fatal, if left untreated. Plague is transmitted between animals and

humans by the bite of an infected flea, and between humans by physical contact

with infectious bodily fluids or contaminated materials or the inhalation of

respiratory droplets/small particles from a patient with pneumonic plague.
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Figure 5.14: Daily incidence count and estimated basic reproductive number for an

outbreak of the Ebola virus from 1976 in Zaire using the conditioned full SEIR model with

partial observations. The yellow line shown on the box plots indicates the MAPE of R0
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Figure 5.15: Daily incidence count and estimated basic reproductive number for an

outbreak of the Ebola virus from 1995 in Congo using the conditioned full SEIR model

with partial observations. The yellow line shown on the box plots indicates the MAPE of

R0
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Individuals infected with the plague usually develop acute febrile disease

along side other non-specific symptoms such as head and body aches, and

weakness, vomiting and nausea. Antibiotic treatment is highly e↵ective if the

infection is caught within the first 24 hours [WHO, 2017b]

In this section we consider an outbreak of Pneumonic Plague which

occurred in Madagascar in 2017 [WHO, 2017c]. We estimate R0 from the

first eight weeks of the outbreak, prior to a the implementation of concerted

control measures. A recent estimate of R0 for this outbreak is 1.73 [Tsuzuki

et al., 2017]. Our estimates of the basic reproductive number are shown

in Figure 5.16. Based on the first three weeks of the outbreak, our model

suggests that R0 is only slightly higher than one. As the number of incidences

increases, our estimated value of R0 increases. Our estimates of R0 are

sensitive to the sudden spikes in incidences occurring in weeks four and seven.

5.4 Discussion

In this chapter, we have introduced an extension of the conditioned hybrid

di↵usion approach presented in Chapter 4. We have done so by considering

the partially-observed SEIR CTMC, which is more appropriate than the SIR

CTMC for modelling the early stages of an outbreak due to its inclusion of an

exposed period and imperfect observations. In extending the hybrid di↵usion

approach of Chapter 4, we constructed a dynamic state space truncation rule

which is utilised during the initial stages of the outbreak. In a simulation

study where we looked at the first five weeks of an outbreak with influenza-

like dynamics, we demonstrated that conditioning was an e↵ective means

of reducing bias in estimates of the basic reproductive number. A similar

outcome was observed for a number of other parameters. Furthermore, the
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Figure 5.16: Daily incidence count and estimated basic reproductive number for an

outbreak of Plague from 2017 in Madagascar using the conditioned full SEIR model with

partial observations. The yellow line shown on the box plots indicates the MAPE of R0
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hybrid di↵usion approach enabled us to consider outbreaks which were too

large for consideration under the standard partially-observed SEIR CTMC.

We demonstrated the utility of our approach by using it to estimate the basic

reproductive number from a number of real outbreaks and found that our

resulting estimates were similar to previous results.

Although the dynamic state space truncation rule utilised in this chapter

provided a simple means of ensuring the computational-feasibility of our

model, it did not take advantage of existing approaches which may have

been more e�cient [Sunkara and Hegland, 2010]. It follows that future work

could focus on improving the computational methodology for dealing with

the CTMC dynamics of the process by utilising a highly-e�cient state space

truncation algorithm for estimating the basic reproductive number.

There are a number of features which make the SEIR CTMC an implausible

model, such as the distribution of the exposed period and infectious period,

population heterogeneity (such as spatial variation or age-specific or household

clustering of contacts), time-inhomogenous infectivity and case-reporting

rates, imported infectious cases, pre-existing immunity and the population’s

response to the outbreak. Thus, the model presented here is by no means the

most accurate for modelling the early stages of an outbreak. However, the

important thing is that we have demonstrated that the hybrid methodology

presented in Chapter 5 is a flexible approach which may be adapted to a

range of scenarios to provide improvements in computational-tractability.

For instance, a typical extension of the SEIR CTMC to account for non-

exponential infectious periods would require including an additional infectious

compartment in the model. Since the resulting model is still in the CTMC

framework, the hybrid methodology presented in this thesis may be applied

to the resulting model without di�culty.
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Chapter 6

Conclusion

The aim of this thesis was to investigate the utility of hybrid methodology for

modelling the outbreak of an infectious disease: based on the notion that the

early stages of an outbreak are faithfully represented by CTMC dynamics, and

an e�cient and suitably accurate representation of an established outbreak

is provided by either the fluid or di↵usion large-population approximation.

We presented a hybrid approach towards modelling outbreaks of infectious

diseases whereby the outbreak is modelled by CTMC dynamics while the

number of infectious individuals is low and a large-population approximation

otherwise. We utilised this methodology for computing the distribution of

key quantities of an outbreak and calibrating models describing the spread of

a disease to case incidence data from the early stages of an outbreak. The

following discussion provides a brief summary of the research presented in

this thesis, the main results that have been established and their implications,

and some directions for future research in this field.
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6.1 Summary

In Chapter 3, we presented two hybrid models for computing the distribution

of the final size of the outbreak and the distribution of the duration of the

outbreak in the framework of the SIR CTMC. These hybrid models utilised

the dynamics of the SIR CTMC while the number of infectious individuals

was low and a large-population approximation of the SIR CTMC otherwise.

The so-called hybrid fluid model and hybrid di↵usion model were named after

the large population approximation which they utilised, namely the fluid

approximation [Kurtz, 1970] and the di↵usion approximation [Kurtz, 1971].

We found that the hybrid fluid model provided an accurate representation

of the distribution of the duration of the outbreak and the hybrid di↵usion

model provided an accurate representation of the distribution of the final

size of the outbreak. The computational cost associated with computing

these distributions from the hybrid models was significantly less than the

computational cost associated with computing them directly from the SIR

CTMC. Thus, it was established that our hybrid methodology provides an

appropriately accurate and computationally-e�cient means of computing

key quantities of an outbreak. The contents of this chapter were published

in Rebuli et al. [2016].

In Chapter 4, we considered estimating the basic reproductive number

of an outbreak, a key quantity often used by public health authorities in

planning their response to an outbreak. In the framework of the SIR CTMC,

we demonstrated that the estimated basic reproductive number is positively

biased if the model does not account for the event that the outbreak estab-

lishes an appreciable chain of transmissions. Under certain conditions, we

showed that the average bias in estimates of R0 may be decreased by 0.3

by conditioning the SIR CTMC on the event that the outbreak becomes
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established. Utilising the hybrid methodology from Chapter 3, we presented a

hybrid di↵usion approach for estimating the basic reproductive number using

case incidence data from the early stages of an outbreak, in the framework of

the conditioned SIR CTMC. This approach enabled us to consider an outbreak

of A(H1N1)pdm09 which would have been computationally-intractable in the

framework of the SIR CTMC. The significance of this work was to establish

a method for reducing bias in estimates of the basic reproductive number

which are based on case incidence data from the initial stages of an outbreak.

Furthermore, the hybrid di↵usion approach provided a means of applying this

methodology to large outbreaks. The contents of this chapter were published

in the paper Rebuli et al. [2018].

In Chapter 5, we presented a substantial extension to the methodology

presented in Chapter 4. We considered a partially-observed SEIR CTMC, a

generalisation of the SIR CTMC more appropriate for modelling the early

stages of an outbreak due to its inclusion of an exposed compartment and im-

perfect observations. We applied the methodology presented in Chapter 4 to

provide a unconditioned and conditioned hybrid di↵usion approach to estimat-

ing the basic reproductive number in the framework of the partially-observed

SEIR CTMC by utilising a dynamic state space truncation rule during the

initial SEIR CTMC dynamics. In a simulation study considering the first five

weeks of an outbreak with influenza-like dynamics, we demonstrated a similar

outcome to those observed in Chapter 4. Namely, conditioning the model on

establishing an appreciable chain of transmissions reduced bias in estimates of

the basic reproductive number and the hybrid di↵usion approach enabled us

to consider larger outbreaks than would have been feasible in the framework

of the partially-observed SEIR CTMC. We then demonstrated the utility

of our model by using it to estimate the basic reproductive number from
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a number of real outbreaks. The significance of this work was to establish

that the conditioned hybrid methodology of Chapter 4 can be generalised

to complex CTMC models of the spread of disease with little di�culty, to

provide real insights to the transmission dynamics of infectious diseases. The

methodology presented here has been submitted for publication.

6.2 Future research

Although the hybrid models presented in Chapter 3 provided su�ciently

accurate approximations of the distribution of the duration of the outbreak

and the distribution of the final size of the outbreak, we observed that

the approximation broke down when the dynamics of the large-population

approximations came close to the S = 0 absorbing boundary. It was noted

that this problem could be amended by placing a threshold on the number of

susceptible individuals such that the process switches from the dynamics of

the large-population approximation to the dynamics of the CTMC if either

the number of susceptible individuals or the number infectious individuals

drops below its appropriate threshold. A model of this nature would be

similar to the hybrid di↵usion model presented by Safta et al. [2015], whereby

each compartment utilises CTMC dynamics while its population is low and

di↵usion dynamics otherwise. This allows some states of the process to have

CTMC dynamics for some compartments and large-population dynamics for

the other compartments. Hybrid models of this nature have not received

much attention outside of modelling chemical reactions and may prove to

be a useful extension to the hybrid di↵usion methodology presented here in

computing the distribution of key quantities of an outbreak or in estimating

the basic reproductive number.
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The mechanism by which the hybrid di↵usion model presented in Chapter 4

switches from CTMC dynamics to di↵usion dynamics does not guarantee that

the di↵usion approximation will provide a suitably-accurate representation

of the underlying CTMC dynamics immediately after the model changes

dynamics. Our dynamic state space truncation rule presented in Chapter 5

was an e↵ective means of accounting for this, but our approach does not

take advantage of existing state space truncation algorithms which may be

more e�cient, for example Sunkara and Hegland [2010]. It follows that future

research could focus on developing highly-e�cient routines for estimating

the basic reproductive number by utilising an optimal state space truncation

algorithm. Further research in this direction could allow the methodology

presented in Chapter 5 to be applied to more complex CTMC models and

the development of a general-use software package for estimating the basic

reproductive number.

The SEIR CTMC is often considered one of the simplest CTMC models

acceptable for modelling real outbreaks. However, there are a number of

features which make it somewhat unreliable, such as the distribution of

the exposed period and infectious period, population heterogeneity (such as

spatial variation or age-specific or household clustering of contacts), time-

inhomogenous infectivity and case-reporting rates, imported infectious cases,

pre-existing immunity and the population’s response to the outbreak. However,

one of the most useful features of the hybrid methodology presented in this

thesis is its flexibility. For instance, a typical extension of the SEIR CTMC

to account for non-exponential infectious periods would require including

additional infectious compartments in the model. Since the resulting model

is still in a CTMC framework, the hybrid methodology presented in this

thesis may be applied to the resulting model and utilised for computing key
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quantities or estimating the basic reproductive number. It follows that the

hybrid methodology presented in this thesis is a useful tool for improving

computational-tractability of models which are based in a CTMC framework.

An interesting field where the hybrid methodology presented in this thesis

may prove beneficial is in modelling between-host disease transmission while

accounting for within-host pathogen dynamics. Within-host dynamics are

complex and typically involve interactions between large populations of biolog-

ical agents, making it computationally-infeasible to model the population of

the invasive pathogens using a CTMC framework. However, it is understood

that pathogen-colonisation begins when a small number of pathogens enter

a naive host, suggesting that an important feature of within-host pathogen

dynamics is the probability of initial fade out. This provides an ideal applica-

tion of the hybrid methodology presented in this thesis where an individual’s

within-host pathogen dynamics could be modelled by a hybrid approach. The

significance of this work would be to help improve our understand of how

within-host pathogen dynamics influence the transmissibility of a disease

which could provide important insights for disease prevention strategies.

The hybrid methodology presented in this thesis provides a straightforward

approach to reducing the computational demands of a CTMC model in

exchange for a minor decrease in accuracy. Furthermore, our conditioning

approach to estimating the basic reproductive is e↵ective at decreasing bias

and our hybrid approach is e↵ective at improving computational tractability.

This methodology is straightforward and may be applied to a wide range of

epidemiological models and even models outside of epidemiology.
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