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Abstract – Membrane transport proteins are fundamental to life; their co-ordinated action controls the 

movement and distribution of solutes into, around and out of cells for signalling, metabolism, nutrition, 

stress tolerance and development. Here we outline two transport system case studies that plants use to 

tolerate soil elemental toxicity, demonstrating how iterative studies of protein structure and function 

result in unparalleled insights into transport mechanics. Further, we propose that integrative platforms of 

biological, biochemical and biophysical tools can provide quantitative data on substrate specificity and 

transport rates, which are important in understanding transporter evolution and their roles in cell biology 

and whole plant physiology. Such knowledge equips biotechnologists and breeders with the power to 

deliver improvements in crop yields in sub-optimal soils.  

 

Introduction – A major global limitation on crop yield is the presence of sub-soil constraints, including 

low water availability, extreme pH or elements that are toxic to plants if they accumulate to high 

concentrations within cells. Crop traits that result in tolerance to common elemental sub-soil constraints 

such as aluminium, arsenic, boron, chloride and sodium, are often multiple, but can rely upon the 
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presence or absence of specific transport processes. These processes are predominantly mediated in cells 

by membrane-embedded transport proteins that control the exclusion, exudation or compartmentation of 

elements across cellular membranes to guard against elemental toxicity [1]. In this article, we explore 

how a quantitative understanding of protein structure is important for understanding transport function 

and hence the cell biological processes underpinning stress tolerance. 

 

Transport proteins form channels or transporters that facilitate movement of solutes (e.g. water, ion, 

sugar or gas) in charged and uncharged forms, either down or against (electro-)chemical gradients to 

fulfil a role in nutrition, signalling, metabolism or stress tolerance. Transport proteins also function as 

transceptors – a composite of ‘transporter’ and ‘receptor’ [2] – e.g. CHL1/NRT1.1/NPF6.3 fulfils 

transport and signalling functions in response to external nitrate concentrations via different protein 

parts. Furthermore, recent work on the ferrous iron IRT1 transceptor described how intracellular excess 

of non-iron metals triggers IRT1 degradation via a signalling cascade to avoid root intoxication [**3]. 

 

The activity of transporters can be regulated transcriptionally through positive or negative transcriptional 

regulators [4], post-transcriptionally through oligomerisation, protein-protein and protein-lipid 

interactions [5], and post-translationally (e.g. phosphorylation, N- and O-glycosylation, S-nitrosylation) 

[6]. The co-ordinated action of multiple transporters in a membrane, and sometimes throughout the 

plant, is important for combating elemental soil toxicity, which is the molecular basis for numerous 

classical observations of differential transport processes being evident in different tissue types as gained 

through isotope flux analysis [7]. Therefore, the location of transporters within the cell or in the plant is 

essential for dictating their influence on cellular and whole plant function. It has increasingly been 

demonstrated that specific transport processes occur within certain key cell-types, e.g. root exclusion of 

aluminium (Al3+) [1], shoot sodium (Na+) [8] or borate ([B(OH)4]-) [*9]. Specific cell-types that confer 

elemental toxicity tolerance have consequently been coined as ‘gatekeeper’ cells and rely upon the 

activity of specific transport proteins [10].  

 

Quantitative data on transport mechanics of plant transporters – Multiple techniques can address 

the permeation function of transporters at quantitative levels. Commonly, quantitative data acquired via 

flux or electrophysiological investigations of transporters expressed in heterologous systems such as 

Xenopus laevis oocytes, yeast, or HEK cells are compared with transport activity in vivo, or with the 

lack of activity following misexpression in planta [8]. Purified proteins can also be reconstituted in 
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membrane-mimicking environments of artificial liposomal vesicles, tethered bilayers and nanodiscs 

[*9,11,12]. These defined environments lead to transporter reconstitution in fluid trans-bilayers and if 

oligomerisation is required for function, transporters may adopt quaternary structures, where lipid-

protein interactions and bilayer forces contribute to stability and ultimately function. Precisely because 

transporters are present in bilayers in highly purified states, this approach allows the definition of their 

transport mechanics, although at a somewhat reductionist level, and may introduce artefacts due to the 

lack of co-factors. Similarly, in heterologous systems of native membranes there are complexities in 

analysis due to the presence of other native transport proteins or in ‘knockout’ plants the pleiotropic 

upregulation of other transporters to compensate for the lack of the target protein [13]. Furthermore, 

quantitative data per se can be difficult to compare across studies due to the influence of environmental 

regulation specific to those experiments. The exception perhaps comes from fully reductionist systems, 

which leads us to the role that structural studies can play in better understanding transport phenomena – 

as an ultimate distillation of reductionism.  

 

Relatively few crop transporters have been characterised to date at physiological, biochemical and 

structural levels, and in fact many transporters await to be discovered. It has become apparent from work 

in plant model organisms such as Arabidopsis that transporter selectivity and regulation are difficult to 

predict based either on sequence alone, or through homology to transporters characterised in other 

systems. Therefore, despite efforts to sequence multiple crop genomes, reliable functional annotation at 

present is impossible without the actual transporters first being characterised at multiple levels. 

Furthermore, the imputation of evolutionary relationships and functional similarities between 

transporters on sequence alone can be fraught with error.  

 

Natural variation in transporter sequences is a useful tool to examine functional relationships; single 

amino acid residue variation within a protein can lead to loss of function or change in transport 

selectivity [14,**15-17]. However, it is impossible to ascertain the mechanism underpinning such 

functional changes by examining the sequence alone. Furthermore, the same variation in a homologous 

protein may lead to a different outcome. An example includes the recently solved structure of the 

Arabidopsis two-pore channel [18] that has different gating and selectivity properties compared to its 

mammalian counterparts. Only by taking into consideration how sequence motifs and residues interact 

mutually with permeating and non-permeating solutes, and how they are controlled by regulatory 

factors, the effect on variations could be understood. For this to occur, the atomic structure must be 
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resolved, and if possible put in the context with its dynamics and conformational states [19]. The power 

of such approaches is only beginning to emerge; for instance, the molecular basis of several transporters 

that improve crop tolerance to elemental sub-soil constraints was recently revealed [8] and is being fed 

into breeding programs [20]. 

 

3D structures of plant transporters – Eight hundred and one unique membrane protein structures have 

been elucidated as of July 2018 (http://blanco.biomol.uci.edu/mpstruc), mostly by X-ray crystallography 

[21]. Only eight of those are plant transporters: Spinacia plasma membrane intrinsic protein (PIP) 

aquaporin (Protein Data Bank accessions 1Z98) and Arabidopsis tonoplast intrinsic protein aquaporin 

(5I32), Arabidopsis nitrate transporter (4OH3), Oryza (5CTH) and Arabidopsis sweet transporters 

(5XPD), Arabidopsis boron transporter Bor1 (5L25), Arabidopsis two-pore channel (5DQQ) and 

Arabidopsis MATE transporter (5Y50). No plant transporter structure has yet been elucidated by other 

biophysical approaches such as NMR spectroscopy, which is applicable for smaller proteins [22], cryo-

electron microscopy [23] or serial crystallography [24]. We expect that these multiple approaches 

combined with computational techniques, referred to as integrative structural biology with hybrid 

methods, will have enormous potential to break the structural conundrum of plant transporters.  

 

Technical challenges associated with applying mainstream biophysical approaches to plant transporter 

structure elucidations are being overcome by rapid advances in cell-based and cell-free synthesis 

methods (Figure 1) [*9,11] coupled with nanotechnology [12]. For X-ray crystallography and cryo-

electron microscopy, purified membrane proteins are typically stabilised in controlled settings of 

micelles, bicelles, swollen lipidic mesophases, lipodiscs, supported lipid bilayer stacks and amphipol 

belts [25]. These preparations are subjected to crystallisation trials and data collection by in situ X-ray 

screening [26] or cryo-electron microscopy imaging [27]. We have recently seen a revolution in the 

latter field facilitated by the 2017 Nobel Prize winners in chemistry (Dubochet, Frank, Henderson) [27]. 

 

3D protein homology modelling and structural bio-informatics – In the absence of experimental 

structures, the second-best approach is the generation of 3D models, based on the spatial information of 

related homologous proteins, using programs such as e.g. Modeller [28]. Homology models based on a 

high or even ‘twilight’ sequence identity between template and target proteins are enhanced with all-

atom molecular dynamics (MD) simulations in lipid environments and in complex with ligands [19]. 

Importantly, homology models with structural bio-informatics mining allow to satisfy proteomics gaps, 
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such as the state of post-translational modifications [29], and evolutionary and conservation 

relationships [30,31]. 

 

Combined structural and functional studies - The real power of knowing the structure along with 

quantitative transport data is in predicting and testing key residues that confer substrate specificity, 

selectivity mechanisms and protein-protein interactions at the molecular level. These predictions 

improve both the structural model and the understanding of transport function. The first iteration of the 

model may not be immediately informative for function, so validation experiments are required. We 

illustrate the power of combining structural modelling and functional assays to enhance the fundamental 

knowledge of transporters, using two case studies focused on understanding the transport function 

behind crop tolerance to high soil concentrations of sodium and boron.  

 

HKT transport proteins contribute to dryland salinity tolerance – Shoot salt exclusion is an 

important trait causing the salinity tolerance of many crops [32]. Plasma membrane-localised High 

Affinity K+ Transporters (HKT) [33], associated with the root/shoot vasculature play a key role in 

minimising the accumulation of Na+ in aerial tissues [7,32-35]; this interferes with photosynthesis and 

reproduction, resulting in lower yields (Figure 2). The impact of salinity on agriculture is predicted to 

double by 2050, with up to 40% of irrigated agriculture to be affected. Multiple strategies for improving 

salt tolerance have been explored, including the role of plant transport proteins [32]. Studies of the 

structure-function relationships of HKT proteins reveal how natural variation can confer more effective 

shoot Na+ exclusion [8,**15,36], which may lead to improved salt tolerance, as delineated below.  

 

Molecular structure and function of plant HKT1;5 transporters (Transporter Classification Data 

Base: 2.A.38-K+ transporters, also classified in the KtrB/TrK/TrG/KdpA/HKT superfamily) [*37] 

– Attempts to crystallise plant HKT proteins have been so far unsuccessful. Instead, high quality 

homology models using K+ conducting bacterial members of the Ktr/Trk subfamily [38,*39,40,**41] as 

structural templates, have been generated [**15,36,42]. This information has directed functional studies 

that probe the function of key residues through site-directed mutagenesis. For instance, it was shown 

that TmHKT1;5-A from Triticum monococcum and TaHKT1;5-D from Triticum aestivum selectively 

conduct Na+ ions at different affinities and rates [**15]. Through structural modeling, two of the 27 

residue differences between TmHKT1;5-A and TaHKT1;5-D were predicted to confer significant 

structural changes sufficient to impart functional differences; the predicted mutations were made and 
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were sufficient to swap the Na+ transport affinities of the two proteins [**15]. Further, such 3D 

homology models could be used to interrogate changes in molecular interactions that underpin changes 

in selectivity. For instance, the mechanism of Na+ versus K+ exclusion in plant HKT transporters via Gly 

to Ser variation in the ‘selectivity filter’ prevents K+ transport [43], but the interactions of these residues 

with other structural elements and the alterations in molecular interactions of ions within the transporter 

have yet to be shown.  

 

Boron toxicity tolerance is conferred via aquaporins and anion permeable efflux transporters – 

Boron (B) is a naturally occurring soil metalloid, essential for plant growth. Under adequate B supply, 

its uptake from the soil to plant root is largely passive. High soil B leads to toxicity that is widespread 

worldwide [44]. In Australia, a study involving 233 trials over 12 years estimated that B toxicity in 

tolerant genotypes generated a 14%-16% yield advantage [45]. 

 

B toxicity-tolerant crop genotypes accumulate lower concentrations of B than intolerant ones (Figure 3). 

In all plant species, the primary mechanism of B toxicity tolerance is linked to a limited entry of B in the 

form of boric acid (BA) (a weak Lewis acid with pKa of 9.24), into the roots, and the disposal of excess 

BA through leaves via hydathode guttation [46].  

 

B toxicity tolerance in barley is thought to be afforded by two genes: (i) NIP2;1 on chromosome 6H, 

encoding an aquaporin that carries neutral BA [47]; and (ii) Bot1 on chromosome 4H encoding an efflux 

transporter [46] that carries an anionic form of BA [*9]. Both genes encode α-helical membrane 

transporters (Figure 3), which reside in the same environment of gatekeeper epidermal root cells. 

 

(i) Cereal multifunctional aquaporins (Transporter Classification Data Base: 1.A.8-Major 

intrinsic protein superfamily) [*37] – Six major groups of aquaporins are recognised in plants, but 

only two groups are known to conduct BA, the nodulin-26-like intrinsic proteins (NIPs) [47] and the 

PIPs [48]. NIPs enable water transport, but also conduct glycerol, H2O2, CO2, BA, and silicic, arsenious 

and germanic acids [47]. Defined signatures of selectivity filter residues and the width of the pore are 

proposed to underpin the broad solute specificity of NIPs [**49]. The 3D computational model of barley 

NIP2;1 predicts an α-helical bundle fold; however, its atomic structure needs to be defined to understand 

its precise in planta roles.  
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(ii) Cereal anion permeable efflux transporters (Transporter Classification Data Base: 2.A.31-

Anion exchanger (AE) family), also classified in the Solute Carrier (SLC) superfamily) [*37] – 

Anion efflux transporters from barley and wheat are the distant orthologues of mammalian carriers. 

Studies in Arabidopsis imply that anion effluxers respond to BA [50]; however, it is unknown if uniport, 

anion/anion and/or anion/cation symport account for transport. An in-silico 3D atomistic model of the 

barley efflux transporter Bot1 (Figure 3) has been constructed, and mono-, di- and trimeric forms were 

detected in vitro and in vivo [*9]. Electrophysiology revealed that Bot1, prepared through co-

translational cell-free reconstitution, mediated a Na+-dependent polyvalent anion transport in a Nernstian 

manner and had channel-like characteristics. The crystal structure of related Arabidopsis Bor1 in a 

dimeric form [*51] showed a good agreement with the barley Bot1 model [*9]. However, it remains to 

be established which oligomeric forms are functional in planta. Ground-breaking structural work from 

several laboratories [*51-54] revealed that SLC superfamily transporters operate through the so-called 

‘elevator’ mode of action (Figure 3). 

 

Conclusions and future perspectives  

Structural biology and transport mechanics data provide the essential quantitative information 

for understanding function – Through structural knowledge of transport mechanics useful deductions 

can be made to suggest preferred transporter substrates and their hydration/dehydration states. This 

knowledge also informs us how substrates interact with essential co-factors during transport, and how 

competing substrates affect transport. Furthermore, the effects of residue substitutions on permeation 

events can be predicted by examining variation sites mapped onto atomic structures or 3D models of 

transporters. These molecular models combined with MD simulations offer the useful structural 

information (Figure 4), as they provide the descriptions of structural elements and motifs that are 

fundamental to permeation. Based on this information, the accurate annotation of corresponding gene 

and protein families can be enhanced. Additionally, by untangling the structure-function horizon of plant 

transporters, we may better understand the significance of natural variation of homologous and divergent 

genes in an evolutionary context. 

 

Efforts to apply structural and functional information on plant transport proteins in a high-throughput 

manner should be encouraged, embraced and built upon. Examples of these endeavours include the 

‘Crop Cure’ project (http://ucsdnews.ucsd.edu/feature/crop_cure) to develop biological tools for 

growing hardier crops, and the allied ‘CROPS’ project (http://crops.ucsd.edu) focussed on a structural 
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pipeline of plant membrane transporters. Such efforts are augmented by databases ‘Gramene’ 

(http://www.gramene.org), ‘International Service for the Acquisition of Agri-biotech Applications’ 

(http://www.isaaa.org) and ‘CropTiPS’ (http://www.croptips.org), which aims to deliver a 

comprehensive knowledgebase of membrane transport and signalling systems for various plants. 

 

New frontiers emerge after the convergence of existing multidisciplinary knowledge – 

Undoubtedly, the prerequisite for further progress in this field is dependent on precise quantitative 

knowledge of transport permeation function and its regulation, that can be obtained via integrative 

multidisciplinary platforms [*9,20]. One such platform involving biophysical and biochemical tools, and 

plant and molecular biology, electrophysiology, and chemi- and bio-informatics has been suggested 

[*9]. Here, in silico descriptions of the first-principle MD calculations suggested that the Na+-dependent 

barley effluxer Bot1 permits an efficient exclusion of borate anions from plant cells back to soil, 

possibly through ‘quantum tunnelling’. This term refers to kick-starting BA disposal from a plant 

directly linked to the presence of hydrated Na+ in a specific location of Bot1; the need for Na+ may 

create an energy barrier to drive BA anions efflux [*9]. Notably, co-evolution of boron and Na+ 

(salinity) stresses is well-documented in an agricultural context [55], thus it is apparent that there is 

often a need to combine traits (pyramiding of traits [20]) before improvements in yield can be achieved. 

Nevertheless, via these integrative platforms and through genomics, genetics, metabolomics and 

transcriptomics associations, essential insights into the origin of permeation will deliver vital 

information that could pave the way to develop more resilient crops to sustain crop yields under sub-

optimal soil conditions. 
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Figure 1 Barley membrane efflux transporter Bot1 is produced in functional forms via cell-free 

synthesis. 

(a) Schematics of the cell-free synthesis workflow for membrane proteins, based on the wheat-germ 

extract. Membrane proteins are embedded in defined bilayers of liposomal vesicles through co-

translational insertion. Cell-free synthesis systems bypasses the energy constraints required for cell 

survival and channel resources towards synthesis of a single transcript. 

(b) Left image (modified from [*9]): Bot1 is synthesised and incorporated in 1,2-dimyristoyl-sn-

glycero-3-phosphocholine (DMPC) (lanes 1) or asolectin (lanes 2) liposomes. The -mRNA lane contains 

the reaction lacking mRNA of Bot1. Right image: Yields of 1- to 3-mers. Yields of Bot1 obtained in 

liposomes show low to medium mg quantities per ml of the cell-free reaction mixture.  

 

Figure 2 Na+ tolerance is mediated by wheat HKT1,5 transporters.  

(a)  Wheat plants growing in a green-house. The plants on the right are smaller with fewer ‘heads’ of 

grain compared to those grown in salinity-affected soil. Image courtesy of South Australian Research 

and Development Institute.  

(b) 3D model of the TaHKT1;5 transport protein in two orthogonal orientations with Na+ 

translocating the permeation trajectory. TaHKT1;5 is embedded in a cell membrane and transports Na+ 

through tube-like channels (black mesh), by-passing the selectivity filter (SGGG motif shown in atomic 

sticks) with Na+ (purple sphere). Na+ is likely to enter and exit the translocating permeation trajectory 

from several locations on both sides of TaHKT1;5, but always by-passes the selectivity filter 

constriction (modified from [**15]). 

 

Figure 3 Mechanistic model of BA toxicity tolerance in barley, involving NIP2;1 and Bot1. 

(a) BA toxicity symptoms in the leaf of the BA-intolerant Clipper barley cultivar. Image courtesy of 

Dr Mahmood Hassan, CSIRO, Australia. 

(b) The magnitude and direction of fluxes of BA into and out of the roots of Sahara (BA-tolerant) 

and Clipper (BA-intolerant) cultivars when excessive BA is present outside of the root (modified from 

[44]). 

(c) Left panel: The barley NIP2;1 computational model with glycerol, water and BA in the pore 

(cylindrical cyan α-helices and loops in magenta; glycerol in sticks in atomic colours, water molecules 

in red spheres, BA in black atomic sticks. Right panel: The barley Bot1 computational model with cyan 

membrane-embedded and grey intracellular α-helices, and loops in magenta (modified from [47,*9]). 
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(d) A scheme of the elevator transport mechanism that is believed to be common to SLC 

superfamily transporters and is likely to occur in barley Bot1. The three stages of the mechanism include 

inward facing (binding the substrate), occluded state (movement of the substrate through the pore) and 

outward facing (releasing the substrate) (modified from [*51,53,54]). 

 

Figure 4 3D protein homology modelling and structural bio-informatics combined with definition 

of transport mechanics lead to the definition of transport function. We suggest that the following 

iterative structure-function testing loop is used to construct the 3D homology model from the protein 

sequence; the best-scoring model is enhanced by all-atom MD simulations. The significance of the loop 

to deconvolute the transporter structure-function relationship is highlighted in black thick arrows. In 

each step, a single or a variety of computational tools are implied, accessible from web site portals or 

useable via standalone packages. The list of these tools is by no means exhaustive.  
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Highlights: 
 

• The fundamental complexity underpinning plant transport function needs to be 
comprehensively understood at quantitative levels.  

• Structures of plant transporters must be put to context with molecular dynamics and 
conformational states. 

• Combining protein structural modelling and transport data of plant transporters contributes to 
the understanding of their mechanics at molecular levels. 

• New frontiers emerge after the convergence of existing and the novel multidisciplinary 
knowledge of plant transporters. 

• Comprehensive characterisation of plant transporters will deliver vital information paving the 
way to develop more resilient crops for precision agriculture and to sustain crop yields under 
sub-optimal soil conditions. 

 



Cell-free synthesis of the barley Bot1 efflux transporter in functional forms
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Figure 2

(a)   Control and salt-affected wheat plants     (b)   3D model of wheat HKT1;5 transporter 

Na+ tolerance is mediated by wheat HKT1,5 transport proteins



(c) 3D Protein molecular models
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of the roots of tolerant and intolerant barley

Figure 3

Mechanistic model of BA toxicity tolerance in barley, involving NIP2;1 and Bot1



Figure 4

The iterative structure-function testing loop: from sequence to 3D model
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