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ERRATA

To qualify the comments made in Section [6.5.2] of the thesis, the following
derivation is given for the solution of the [A] and [B] matrices for an AR(1)
multisite model.

Chapter [3] sets out the development of the multisite generation equation,
for both the annual case, and further, for the multiperiod, multisite case. The
following derivation for the solution of the [A] and [B] matrices used in an
AR(1) model is shown for the exact case to highlight the difference between

the exact solution and the solution given in the thesis.

The general multisite model is given as —

[Z¢] = [A][Z¢-1] + [B] €] (1)

To derive the solution for the [A] matrix, both sides of Equation [1] are post-
multiplied by [Z¢-1]T and expectations taken.

Thereby giving (using the notation given in Chapter 3) —
E{(Z¢][Zt-1]7} = [A]E{(Z¢-1](Ze-1] T} + E{B][et][Ze-1]T}  (2)

= [A] = E{(Z¢][Z¢-1] " YE{[Z¢-1][Ze-1] T} 3)
[A] = [My][Mg]™
where  [Mp] = E{[Z¢-1][Ze-1]"}

Similarly, for the solution of the [B] matrix, both sides of Equation [1] are
postmultiplied by [Z¢]T and expectations taken, giving —

E{[Z)[Ze]"} = [AJE{[Z¢e-1])(Z] "} + E{[B][et][Z¢] T} (4)
= [AJE{[Z¢-1)[Ze] T} + [BIE{[et][Ze-1]T[A]T + [ec[ee] T[B]T}  (5)



i1

By substituting Equation [3] for [A], and rearranging,

= [B[B]T = E{[Z¢][Z4]"} — B{[Ze][Zs-1]"}E{(Ze-1][Ze-1] T} T E{(Ze-a]Ze] T}
[B][B]T = [Mo] — [Mi][Mj]~*[Ma]”

The general matrix solution given by Equations [3.19] & [3.22], and further

developed for the multiperiod model given by Equations [3.43] & [3.44] have

assumed that the underlying process describing the distribution is stationary.

This implies that the covariance matrix calculated using [Z¢][Z¢]T is equal to
the covariance matrix calculated using [Z¢_1][Z¢-1]7T.

There is a subtle difference in using the latter form, and it has been noted by

Kuzera [31] that for problems with a limited length of data, the above asymp-
totic solution may not hold true, and may lead to significantly different results.

By replacing [Mj] = E{[Z¢-1])[Z¢-1]T}
in lieu of [Mog] = E{[Z][Z+])"}

in Equations [3.19], [3.22],[3.43] & [3.44] the result will overcome matrix in-
consistency for the solution of the [A] and [B] matrices.

The revised equations are thus —

For the general case,

[A] = [M1][Mg] ™ (6)
[B][B]” = [Mo] — [M1][Mg)~}[Ma]* (7
and for the multiperiod case,
[Ar] = [My,][M5 4] : (8)
[BT][BT]T . [MO.T] - [MI,T][MB,T-I]—I[MI,T]T (9)

Kuczera [31] outlines a method to obtain consistent estimates of the [A] and
[B] matrices when there is missing data in any of the records. This approach
may have made better use of the streamflow records available in this study.

Furthermore, Crosby & Maddock [13] offer a solution technique to produce
a consistent [A] and [B] matrix given a monotone sample (i.e. when continu-
ous records have different sarting times).



REVISED TEXT

Page 3, Section 1.3, Paragraph 1: delete "at any point in time”
Page 40, Section 4.1, Paragraph 3: Replace "rain” with "precipitation”.

Page 41, Replace ”1700’s (or 1800’s)” with "1700s (or 1800s”) respectively &,
Replace "world war one” (or two) with "World War One” (or Two).
(Also occurs on page 46)

Page 42, Figure [4.1]: Reference, South Australian Engineering &
Water Supply Department, publicity material ( Water Supply System).

Page 44, Figure [4.2]: Reference [12]
Crawley P.D. & Dandy G.C. (1989)
Optimal Operating Policies for Multiple Reservoir Systems
(University of Adelaide — Civil Engineering Department Report)

Page 58, Section 5.6.1.1, Paragraph 5:
Replace, ” Although will not occur...”,

”

with ”This will not occur ...”.
Page 82, Figure [5.8], ”Yields” measured in (MI).

Page 106, Section 7.2.1, Paragraph 1: Remove "in toto”.

12 1gures [5.3) to [5.5], The horizontal axis has the non dimensional units of
"Number of Standard Deviations from the Mean”.

Tables (5.9] to [5.13], ” Absolute Error” units are (M1) for use in Tables.

Table [5.14], "Units of Yield” are in (MIl).

Chapter (2], The reference for the Air Passenger Data is —
Hyndman R.J. (1990) PEST - User Manual
(University of Melbourne)

Chapter [5], When referring to the ”Warren” station, it has been incorrectly referred
to as the "Warren River” station. The Warren station gauges the
South Para River at the Warren Reservoir. (Occurs on pages 60 & 62).

Appendix [D], Units for all plots —
Horizontal axis - Number of Standard Deviations from the Mean
Vertical axis - Observed Yields, (M1).
~ Transformed Yields, (Non dimensional).
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Chapter 1

Introduction

1.1 Introduction

Throughout history many advances have been made in what at the time was
considered purely theoretical mathematics. This is true to an extent with
stochastic data generation. Much of the theoretical groundwork had been laid
many years before fruitful applications were realized.

This has been mainly due to the fact that the methods require large com-
putational effort, and that the techniques simply were not required until the
late 20%* century when our engineering systems have become large, complex
and expensive. In today’s economic climate, the operations of such systems
may affect millions of lives and impact harshly upon the environment.

Now that it has been recognised that human society can no longer exploit
what were regarded historically as being infinite resources, such engineering
systems have come under scrutiny and inevitably have to be operated more
efficiently.

Stochastic data generation is one method which may be utilized to aid in
system operation. The method may be used for any system or process that

can be measured through time. In fact it may be defined as —

“The analysis of a time series that behaves in a probabilistic manner”
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The areas of application include:

e economics —

— for stock control

— production; for determining how much of a commodity should be
produced,

— for forecasting stock market prices.
e traffic engineering

— for forecasting future trafic demands on roads and highways.

— in analysing traffic behaviour at intersections.

and, of course, hydrology on which this study centres.

Over the last century most water supply systems in Australia have been mon-
itored, with special attention to the measurement of rainfall and gauging of
flow volumes in streams.

In the operation of any reservoir system for urban supply or irrigation, de-
cisions must be made regarding releases, pumpages, the imposition of restric-
tions and the declared allocations (in the case of irrigation). Such decisions
are usually based on the current storage levels in the system, the likely future
inflows and the demands placed on the system.

If more reliable forecasts of inflows and demands are available, less conser-
vative operating decisions can be implemented. For example, there will be less
chance of imposing unnecessary (and politically unpopular) water restrictions,
or the undertaking of expensive pumping programs.

To illustrate the above, research reported by Dandy [12] indicated that up
to a 20% saving in pumping costs could be achieved for the Adelaide Head-
works system if perfect forecasts of future inflows were available. Obviously
perfect forecasts cannot be achieved due to the natural variability and unpre-
dictability of rainfall and catchment conditions. However, this figure does give
an indication of the potential savings which could be achieved by improved
forecasting techniques. Most other metropolitan supplies in Australian cities
do not involve as much pumping as Adelaide. However, a crucial operating de-
cision in all systems is the balance of storage maintained between reservoirs to
maximize system reliability. Improved inflow forecasting can aid in decisions
of this kind and hence result in increased reliability of supply.

In irrigation areas an allocation of water for irrigation is announced at the
start of the growing season. The allocation is based on the current state of
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storage in the reservoirs and estimates of the probability of receiving various
levels of inflow over the growing season. If the uncertainty in inflow forecasts
can be reduced, irrigators will receive a better indication of the likely avail-
ability of water, thus having a better chance to optimize crop patterns.

It can be seen, therefore, that improvement of inflow forecasting is likely to
result in benefits to the users of all major urban and rural supply systems in
Australia.

1.2 Study Objectives

The objectives of this study are —

e To evaluate the use of unisite and multisite time series models as a tech-
nique for forecasting the runoff from water supply catchments.

e To apply the technique to a set of data for the Adelaide Hills catchments
and identify any problems in the technique.

e To illustrate the use of the forecasting models developed, as input for a
model used for determining optimum operating policies for the Adelaide
Headworks system.

1.3 Methodology

When attempting at_any p(;nt)in time to forecast runoff from a catchment on
a monthly basis there is certain background information which may be used.
This includes the runoff from that and adjacent catchments in previous time
periods, previous rainfall and the state of the catchment e.g. the soil moisture
index and water table levels.

In this study use will be made of multisite time series models of inflows. These
utilize the serial correlation of flows at a single site as well as the spatial cor-
relation between sites to forecast future inflows. Other readily available data
such as rainfall is also considered if it increases the forecasting ability of the
model.

Forecasts of inflows for operational purposes are usually required for (1) to
(24) months ahead. This being the case, a monthly multisite model such as
that of Young & Pisano [54] is appropriate. Such models have beeu used by
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Burton [8] to model the major tributary inflows of the Murray River. For the
unisite case, a periodic Thomas & Fiering [51] model will be used. Although
the approach has general application, this study will demonstrate its use by
using data from a set of catchments in the Adelaide metropolitan water supply
district.

It is envisaged that the model(s) developed will be used to assist in mak-
ing operational decisions in the following manner:

At the start of any particular month, historical streamflow data for the pre-
vious months can be used to initialize the model. A large number of possible
future inflow sequences will be generated by the time series model using Monte
Carlo simulation. The generated flow data can then be used to estimate the
flow at each river which will be exceeded with a specified probability over the
next one to twelve months as needed. These forecast flows can then be used
to make rational operating decisions.



Chapter 2

Data Analysis

2.1 Introduction

The practice of stochastic data generation has, at its core, the development
of a data generation model which will produce replicates of time series data
which are equally as likely to occur in the future as the historical series.

It is not the purpose of a model to exactly replicate the historical data values,
since this would defeat the purpose of producing many sets of “feasible”, al-
though distinct data sets. The use of synthetic data allows the hydrologist to
“test” proposed works over many feasible data sets, thus providing an insight
to the risk behaviour of the works.

The purpose of this chapter, is to outline the broad type of data analysis re-
quired to undertake stochastic data generation, and some of the further model
testing used to ensure that the models are adequate.

When considering the use of stochastic data generation, the overall method
of analysis must be borne in mind. Any analysis will follow the same step by
step procedure as a whole but may diverge at some point to overcome some
difficulty and then return later to the main procedure of analysis.

The approach to stochastic data generation is, in general, well laid out in
terms of overall requirements, although many methods may be used at each
step to perform certain tasks.

The generalized procedure is shown in Figure [2.1]. As with any engineer-

ing project, the same three basic steps are followed to achieve an eflicient and
comprehensive solution. These are —

o Definition of the underlying problem.

5
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ldentify purpose of data generation

¢

Identify the type of model required
to fulfill the above

e.g. Monthly or Annual Model

Y

Analyse Historical Data for basic Statistical Parameters
and identify which Probability Distribution
the data belongs to.

g

Transform Data to Normality by calculating the
Distribution Parameters required for use
in the chosen model.

!

Generate synthetic data using the chosen model

;

Backtransform Generated Data to the Historic
distribution using the computed parameters.

i

Comparitively Test the Generated Data Statistics
against the Historical values.

' i

Pass Test Fails Test

i

Use for
Operations

Figure 2.1: Stochastic Data Generation — Step Procedure
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e Theoretical/Practical solution to the above.

e Implementation of the solution(s).

The following procedure outlines the broad analysis for stochastic data gener-
ation, but will be based around streamflow generation in particular.

For streamflow generation, the problem definition will be based, on the pro-
posed use of the generated data e.g. for a proposed reservoir, theoretical testing
of various sizes can be carried out to determine the cost/reliability /yield char-
acteristics of each size. Or alternatively a periodic modelling process may be
used to interface with given operating rules to analyse an existing system.

Given the statistical nature of the analysis, the relevant data is collated and
analyzed on a preliminary basis. One of the most important steps in data
generation is to identify the underlying probability distribution that the time
series data belongs to. The reason for this being that the parameters used
during data generation are usually based on a normal distribution. If the data
is not “normal” then it will be transformed to normality by one of the methods
outlined below.

Why the need for normality ? Statistical modelling involves the summation of
terms in generation equations, and hence the summation of distributions. The
normal distribution has the property that when a normal distribution is added
to another normal distribution, then the result is also a normal distribution.
This is not the case for most other distributions, although a special case of the
gamma distribution also satisfies the property.

At the preliminary stage of the historical data analysis the same typical pro-
cedure is always followed. These steps are relatively straightforward and are
not too time consuming.

Subsequent analysis will be dependent upon the outcome of results of the
preliminary analysis and what is indicated with respect to the type of statis-
tical distribution which best fits the data.

The steps of the data analysis phase of the research may be broadly out-
lined as follows —

e Determine the basic statistics and distribution of the raw data.

¢ On the basis of the above results, choose a theoretical distribution to fit
the data.

e Calculate any parameters required, to transform the raw data to the
chosen distribution.
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e Calculate the statistics of the transformed data.

e Standardize the data if necessary given a chosen generation model.

2.2 General Analysis

In general a time series may be regarded as the combination of a set of distinct
components.

For hydrologic data the components are usually identified as —

e a trend (1)
e a periodic or seasonal component (s)
e a deterministic or correlative component (d)

e a random component (€)

Thus any value z in a data set will be the combination of the above —

r=t+s+d+e (2.1)

To generate stochastic data it is necessary to identify each component and
determine its relative significance.

The graph shown in Figure [2.2] represents a set of data known as the “Air-
craft Passenger Numbers” for an airline. This data illustrates all of the above
components, with a positive trend, a strong seasonal component, a regular
deterministic value, and high frequency irregularities described by a random
component.

Obviously if the observed values were used for analysis then the larger val-
ues due to trend or seasonality would bias the true shape of the underlying
distribution and parameters, such as the mean. By identifying each compo-
nent and its associated parameters, normally distributed generated valucs can
be “moulded” to resemble the historical data set statistically.

With any stochastic data generation problem the first process after obtain-
ing all useful data associated with the field of study under consideration, is to
simply “eyeball” the data. This is best done graphically, by use of a commer-
cially available package to show, for example, histograms or time series plots
(such as Figure [2.2}).

Month to month serial scatter diagrams are also useful for the following pur-
poses:
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Figure 2.2: Aircraft Passenger Numbers — Raw Data
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Figure 2.3: Aircraft Passenger Numbers — Transformed Data
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To give a general idea of the lag one serial correlation of the series, and to
indicate the presence of outliers.

From a computational standpoint it is useful to calculate the first three mo-
ments of a data set, namely —

n
i . Iy
e the mean z = E——l—'z :

e the variance V = 5% =

Z?:l (12,'—2_:)2
VI

n-1

?:1 ('1"‘ _5-)3

e the coefficient of skewness ¥y = 2 L

= sample value.

= number of samples.

= mean value of the sample.

= unbiased sample, standard deviation.
= unbiased sample variance.

= sample skewness.

where,

2l <|(Qi‘3|:§

The mean indicates the order of magnitude of the data, the standard deviation
indicates the amount of relative spread about the mean, and the coefficient of
skewness indicates the shape of the distribution. A positive skewness shows
a longer tail of the distribution in the positive direction, and vice versa for a
negative skewness. Zero skewness indicates a symmetrical distribution. The
above graphical and computational results give the analyst a feel for the data
as well as a preliminary insight to the type of distribution which will fit the
data.

From the preliminary analysis it may be identified that the data is not de-
scribed by a normal distribution. If this is the case, the data set is transformed
from the distribution describing the raw process to the normal distribution by
some technique, and is known as normalizing the data. Figure [2.3] shows the
resultant data set based on Figure [2.2] after operating on the observed data by
the In function. This is one technique to transform log-normally distributed
data to normally distributed data.

2.2.1 Trend

The analysis of any continuous random variate can only be attempted by using
sampled data over a constant or variable time step. Either the instantaneous
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value of the variate at each time step is taken or the value is integrated over
the time step. The latter is the case for hydrological data where the streamflow
yield is the total volume of water yielded in the time step.

The process describing the variate may be changing with time, and as such,
the distribution of the variate is said to be non-stationary. A time series is
said to be stationary if its probabilistic behaviour is constant over time. i.e.
the probability distribution of the series and its time structure does not vary
through time. This is a very important point, since most of the analysis un-
dertaken and derivation of models is based on the assumption of stationarity.

For some time series it may be apparent that some of the parameters of the
distribution are changing through time. It is clear that the mean of the data
shown in Figure [2.2] is increasing through time. For a hydrologic time series,
this non stationarity may be due to changing land use functions, land manage-
ment or global variations in the climate. One example is the widely publicized
greenhouse effect, which refers to the global warming of the earth due to a
build up of CO; and other gasses in the atmosphere.

Trend in a statistical parameter may be modelled in a number of ways, in-
cluding a linear, exponential or power function of time.

2.2.2 Periodicity

Hydrologic or meteorologic data will usually possess a distinct cycle due to
seasonal fluctuations in the climate.

This periodicity may be modelled in one of the following two ways —

¢ developing a periodic model in which the value of a variable is correlated
with the corresponding value (p) time steps previously, where (p) is the
period of the seasonal cycle.

e by removing the seasonal cycle using the following transformation.

yij = A2 (2:2)
Sl
where, z;; = detrended data for season (i) and year (j).
¥ij = detrended & deseasonalized data
for season (i) and year (j).
Z; = mean value for season (i).

s; = standard deviation for season (i).
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Figure 2.4: Air. Pass. — De-Seasonalized, Normalized Data

i.e.

z; = L Dz (2.3)
n i

. Zi:(zf.,- — ;) (2.4)

st =
n—1:

where n = the number of years in the sample.

Trend and periodicity is shown by example in Figure [2.3] which shows a clear
seasonal component and trend embodied in the data, which will be removed
once the process describing the trend and periodicity has been identified. Fig-
ures [2.4] and [2.5] show the deseasonalized and detrended data for the trans-
formed aircraft passenger data shown in Figure [2.3].

2.3 Transformations

The process of transforming observed data from any given distribution to nor-
mality is an iterative one. Generally a distribution type (e.g. the gamma dis-



CHAPTER 2. DATA ANALYSIS 13

0.05 0.10 0.15
1

-0.05 0.0

-0.10

-0.15

1 | | | | | 1
{1 2 3 4 5 6 7 8 9 10 11 12 13
Year

-0.20

Figure 2.5: Air. Pass. — De-Trended, De-Seasonalized, Normalized Data

tribution), is selected and the assumption is checked subsequently. Therefore
it is necessary to understand which distributions are most frequently encoun-
tered and the corresponding form of the transformations.

McMahon and Mein [36] list the following eight distributions that are fre-
quently used with hydrologic data.

e Normal

e Log-Normal (3-parameter Log-Normal)
¢ Gamma

e Pearson type III

e Log-Pearson type III

o Kritzsky-Menkel

e Gumbel

o Weibull
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The form of each distribution may be found in McMahon & Mein [36].

Each distribution has properties that describe a general shape. e.g. A log-
normal distribution is defined only for positive values and the observed data
is positively skewed.

By identifying the underlying distribution, not only is the form of transfor-
mation to normality known, but the probability of exceedance for a given
value may also be calculated.

Studies of low flow hydrology frequently use a two-parameter gamma distribu-
tion, whereas for studies relating to continuous distributions of streamflow, a
log-normal distribution is commonly found to be suitable.

The Pearson distributions follow from the gamma distribution and are in fact
specialized cases of the gamma distribution. The gamma distribution involves
both a shape and a scale parameter and by the addition of a location param-
eter the Pearson curves are derived.

Three commonly used methods for deriving the parameters of an assumed dis-
tribution to transform the data to normality, are outlined below.

These are —

e Parametric Transformations
e Moment Transformation Equations

e Maximum Likelihood

These are described in more detail below.

2.3.1 Parametric Transformations

This method applies when the parameters in the transformed domain are ei-
ther known or assumed, and as such the observed data is transformed via these
parameters and the resultant data set analysed by first principles.

e.g. If a variate is considered to be log normally distributed then all the
data is transformed by taking the natural logarithm. Alternatively, the shape
parameters of a gamma distribution may be known, and the observed data
transformed to a new series given these parameters. The statistical properties
of the new data set, such as mean and variance etc are derived in the usual
manner using the equations given in section [2.2].
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The following transformations are commonly used to produce normally dis-
tributed data. It is common to try several transformations, and use the one
that produces the closest approximation to normality after transformation.

2.3.1.1 Log Transformation

The simplest transformation, and most frequently used for hydrologic data,
is the log transformation. For this case it is hypothesised that by taking the
natural logarithm of the observed data the resulting series will conform to a
normal distribution.

i.e yi = In(z;) (2.5)
where, z; = " observed value
y; = i*® value after transformation

The series of y; is then analysed as for the observed series z; to determine if
has been transformed to normality.

2.3.1.2 Shifted—-Log Transformation

The natural extension of the above transformation, is to assume the data
belongs to a three parameter log—normal distribution, and thus be transformed
to normality using the shifted log transformation.

i.e yi = In(z; — 1) (2.6)
where, z; = 1*" observed value
y; = t** value after transformation
T = the location or shift parameter.

Clearly, 7 must be less than the minimum value of z;.

The value of 7 may be determined so as to ensure zero skewness after trans-
formation or using the method of maximum likelihood (refer Section 2.3.3).
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2.3.1.3 Box—Cox Transformation

The Box—Cox transformation is of a power type defined as —

) —1

yi = — A_ for X#0 (2.7)

yi=In(z;) for A=0 (2.8)

The log-normal distribution is the result of a special case of the above, and it
can be shown that —

-1

A
If y; has a normal distribution, z; is said to have a “power normal” distribution
for A # 0. McMahon and Mein [36] calculated ()) for seventeen Australian

streams using annual streamflow data, and found the value of ()) to range
from (-0.26) to (0.70).

— In(z) (2.9)

as A—0

The value of (A) has been determined explicitly by Chandler et al [10], but is
most commonly found by choosing a value and iterating until the coefficient
of skewness of the transformed data is as close as possible to zero.

Previous work by Burton [8] using data for the River Murray tributaries found

that the Box-Cox transformation did not give superior results to using a shifted
log transformation.

2.3.1.4 Wilson—Hilferty Transformation

The Wilson-Hilferty transformation is based on a “like-gamma” variate, and
transforms skewed data to normality using Equation [2.10]

Tty 1 7%.6
L=[{(=—+1D}5 -1+ —=]- 2.10
R+ Dy -1+ TS (2.10)
where, v = coeflicient of skewness of the raw data.
t; = normal variate N(0,1)
i, = gamma-like variate with zero mean

and unit variance.

The method is therefore —

o Standardize the observed values to produce (i)

o Apply Equation [2.10] to produce normalized (%)
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2.3.2 Moment Transformation Equations

Moment transformation equations relate the parameters used to describe a the-
oretical distribution to the parameters of the distribution in the transformed
domain. Here the first (m) moments of a distribution are found and equated
with the parameters in the transformed domain. Thus the parameters after
transformation may be derived empirically from an analysis of the observed
data rather than re-analysing a transformed data set.

In a paper by Matalas [37], the moment transformation equations for a three
parameter log—normally distributed variate are reproduced from Aitchison &
Brown [2] and are shown below.

I, = Ar + exp(0.552 + X,) (2.11)
s2 = exp(2[S? + X,]) — exp(S? + 2X,) (2.12)
2y _ 2 2
. ezp(352) Bea:p(S;) + (2.13)
[eop(57) — 1]}
_ exp(ST_lS'TRT) -1 (214)
\/exp(Sf_l) - 1\/e:vp(5'$) -1
where, Z, = sample mean in the raw domain.
s, = sample standard deviation in the raw domain.
v = sample coeflicient of skewness in the raw domain.
rr = sample lag one serial correlation in the raw domain.
X, = mean in the log domain.
S, = standard deviation in the log domain.
A, = location parameter for the 3-parameter
log transformation.
R, = lag one serial correlation in the log domain.
T = period under consideration.

Use of these equations ensures preservation of the first three moments of the
data in the raw domain.

Further equations are used for multi-variate models to transform the lag zero
and lag one cross correlations to the transformed domain.

These are given, for a time period T as —

PPY exp(SpSe ) — 1
° \/e:cp(S'g — 1)\/e:cp(5'3 —1) (2.15)
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exp(Sp S RPY) — 1

il = (2.16)
: \/ea:p(Sg - 1)\/ea:p(5q2 —1) '
where, r5? = the lag zero cross correlation between
sites p & q, in the raw domain.
ri = the lag one cross correlation between
sites p & q, in the raw domain.
RJY = the lag zero cross correlation between
sites p & q, in the transformed domain.
RY® = the lag one cross correlation between
sites p & q, in the transformed domain.
Sy = the standard deviation in the

transformed domain at site p.

By inspection of the above equations it can be seen that S, may be found by
solving Equation [2.13]. A, & X, may only be found by solving Equations
[2.11] and [2.12] iteratively.

Kite [26] rigorously analyzes the three parameter log-normal distribution and
derives a set of independent equations which explicitly solve for the parame-
ters in the log domain. Kite also produces equations to find the parameters
by using the Method of Maximum Likelihood.

The “Kite”equations are given below for any time period 7.

Let (21&22) represent the coefficient of variation of the distributions [X] and
[X — A] (respectively), then

s
=— 2.17
s1=72 ( )
s
= 2.18
22 F_ A ( )
(A) is then given explicitly as —
N 21 - S
A= -_—)=z— — 2.
#(1 e Rkt » (2.19)
(21) can be computed from the raw data.
(22) is found by solving the following equation —
S (2.20)

el

w
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where o )
P (; +4)% (2.21)
It may also be shown that -
S =[In(2 + 1)z (2.22)
- s 1 2
X =In(—) - zln(25 +1) (2.23)
29 2

where, = the standard deviation of observed values.

= the mean of observed values.

= the coeflicient of skewness of the observed values.
= the standard deviation in the transformed domain.
= the mean in the transformed domain.

= the location parameter.

I

The solution technique, for any month (7), is to first estimate z, s and v from
the raw sample, then find w and z; using Equations {2.20] and [2.21]. Finally,
solve for A, S & X using Equations [2.19], [2.22] & [2.23].

2.3.3 Maximum Likelihood

The method of Maximum Likelihood can be used to estimate the parame-
ters of a distribution so as to give the best fit of that distribution to a set
of observed data. The method produces asymptotically unbiased parameter
estimates which have the smallest possible variance of any asymptotically un-
biased estimator (Loucks et al [35]).

The drawback with the maximum likelihood approach is that it will not nec-
essarily produce parameter estimates for all sets of data. The method may be
described as follows —

Assume that a set of independent observations (z1,---,,) have been made
of a continuous random variable (X). The likelihood of making these observa-
tions given an assumed probability density function (pdf) for (X) is defined as
follows —

L(z1,- - 20|@) = fo(21|Q) @ fo(22|0) - - - @ fu(20|©) (2.24)

where L(zq,- -+, z,|Q) is the likelihood of making the observations (z1,- - -, ;)
given the (pdf) of (X) has the parameter set © and f,(z|®) is the (pdf) of (X)

for a given parameter set O.
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As the observations are assumed to be independent, the probability of observ-
ing all of them is proportional to the product of the individual (pdf)’s. The
maximum likelihood estimate of @ is the value that maximizes L(z1,- -+, z,|9).

For example, consider a random variable (X) which is considered to have a
three parameter log-normal distribution. Its (pdf) is given by —

1 -1 .
fo(z) = — \/%—ozewpl%g(ln(w ~7) — py)’] (2.25)

where (p,) and (o2) are the mean and variance of In(z) and (7) is the location
parameter. The likelihood function is given by —

L(:L‘l, . awnlﬂy) Ty, T) = H?:l z‘(xill‘ya Ty, T) (226)

In this case it is easier to maximize the logarithm of the likelihood function.

t.e. In(L) = In{lI%, fo(zi|py, 0y, 7)} (2.27)

In(L) = 3 In{ fulailitg, 73,7} (2.28)

i=1

= — 3 In@iv3R) - nlin(e))} - 5o Ylin(ei =) — ' (229)

i=1 y o)

to find the maximum of In(L), the partial derivatives of in(L) with respect to
[y,0y and T are found and set equal to zero. i.e

olnL 1 &

Gy = o7 )l = (30
alnL n 2 2
o ==t 23l =) =0 (231)

6lnL 1 Z":[ln ) ,uy] _0 (2.32)

vi=1

From which

e zﬂ: In(z; — 1) (2.33)

“_

= LS linei - ) — 2 (2.34)

t"l

7 may be found by substituting Equation [2.33] in Equation [2.32]. g, & oy
are then given by Equations [2.33] & [2.34].
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2.4 Tests for Normality

In Section [2.1] it was noted that it is usually convenient for modelling pur-
poses for the generated data to be normally distributed with zero mean and
unit variance (i.e. N(0,1)). This can be achieved by applying a suitable
transformation to the raw data. Before transforming the data, the underlying
distribution of the data needs to be determined.

No one method or test is available to determine the distribution of the sample
data explicitly. One common process is that a distribution is assumed, the
data is transformed and the assumption checked by a relevant test of normal-
ity on the transformed data. This raises two further questions; firstly, which
distribution to try, and secondly, which test to use.

The question of distribution type can be found in previous literature or experi-
ence. For hydrologic data, the log—normal, gamma or log Pearson distributions
have frequently been found to provide reasonable results.

The question of testing is more complex. One of the simplest and most widely
used testing method is to determine if the coefficient of skewness of the trans-
formed data is significantly different from zero. This is based on the symmetry
property of the normal distribution.

Many authors in this field when publishing work based on actual data, present
the work with the transformation type assumed or give details of already well
known transformations applied to their data, with little or no rigorous testing.
In fact little work has been compiled into the testing of distribution type.

Three methods were used in this study —

o Testing that the skewness is not significantly different from zero.
e The Shapiro-Wilk test for normality.
e Use of Quantile-Quantile plots for each data set.
Initially most emphasis was placed on the first method, with the remaining

tests used to support the assumption of distribution type and subsequent trans-
formation.

2.4.1 Skewness Test for Normality

In this method, the coefficient of skewness is calculated for the transformed
data and then tested using the standard error of estimate (S.E.E.).
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The equation given in Matalas [37] for the (S.E.E.) on the coefficient of skew-
ness is given as —

6N(N — 1)
(N =2)(N + 1)(N +3)

S.E.E.= \J (2.35)

where (NV) is the number of observations.

The significance level chosen in this study was 5%. Assuming the sampled
coefficient of skewness is approximately normally distributed, it is not consid-
ered to be significantly different from zero if it lies within 1.96 standard errors
from zero . The null hypothesis of normality can therefore not be rejected.

2.4.2 Shapiro—Wilk Test for Normality

The Shapiro-Wilk Test is shown by Pearson [41] to provide the best test for
departure from normality.

This quantitative test attempts to weight the observed order statistics against
the corresponding normal order statistics. Shapiro and Wilk [47] give the
weighting factors on the basis of the best linear unbiased estimate of standard
deviation, given as —

h
o= Z bin(Tn—it1 — ;) (2.36)

=1

where, o = population standard deviation.
o = best estimate of the sample standard
deviation.
h = 1(n)or}(n —1) according to whether (n)
is even or odd.
z; = 1" sample value.
b;n, = weighting factor for the i;, normal order

statistic given a sample of size (n).

The following description of the test is based on Pearson [41].

If the observed order statistics, =; are plotted against the corresponding ex-
pected normal order statistics, ( (i) then the best linear unbiased estimate
of the slope of this regression line is, apart from a normalizing constant, the
estimate (&) of the population (o) given in equation [2.36].

The test statistic (W) is proportional to the ratio of the square of an esti-
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mate based on this slope to the usual mean square estimate, given as —

n . )2
W= S 230

the coefficients a; , are given in Table [15] of Pearson [41] and are the normal-
ized coefficients b; ,, of equation [2.36].

i.e > a?'n =1
Note that (@p—it1,» = —ain), so that the numerator of the W-ratio can be
written as — .
A’ = {3 ain(Tn-iy1 — 20)}? (2.38)
i=1

Once the W-statistic has been computed for a data set then Table [16] of
Pearson may be used to test the significance.

The drawback of this method is that exact values for a;,, are only available for
n = 20, and approximate values for up to n = 50.

2.4.3 Quantile-Quantile Plots

The third test, is the use of quantile-quantile plots. This method is graphical
by nature and thereby involves a physical judgement rather than an empirical
test. Here, the order statistics are plotted against the corresponding normal
order statistics on normal probability paper. The resulting line of best fit
through the points should be straight if the assumption of normality for the
transformed data proves correct. Sample plots are shown in Appendix [D].

2.5 Robust Methods

One approach that, in principle, lends itself to the estimation of statistical pa-
rameters in a more complete manner, is by the use of a field of statistics known
as robust statistics. The field has been largely unrecognized by hydrologists
with most literature being found ‘in statistical texts with the case studies and
data used being derived from the fields of economics or medicine.

Robust statistics tries to overcome contamination problems within data sets
being due either to gross errors (outliers) or discontinuities. z.e. if 19 out of
20 points lie on a straight line and the 20th point is far from that line, then a
linear regression will weight the outlier with as much importance as all other
19 values. A robust analysis will more heavily weight the correlative values.
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Hampel et al [20] states that robust statistics is concerned with the fact that
many assumptions commonly made in statistics (such as normality, linearity
or independence) are, at best approximations to reality. Any method of deal-
ing with the above form of problem such as subjective rejection (of outliers)
or any other formal rejection rule belongs to the field of robust statistics in a
broad sense.

Hampel et al [20] defines robust statistics as —

A body of knowledge partly formalised into “theories of robustness”
relating to deviations from idealised assumptions in statistics

and outlines the following areas that Robust Statistics may try to answer.

o Is the data unanimous in its message, or do different parts of the data

give different impressions.?
In this case, what does the bulk of the data infer ?

e Which minorities behave differently and how ?

What is the influence of different parts of the data on the final result ?

Which data are of crucial importance, either for model choice or for the
final results, and which should be examined with special care ?

e How many gross errors can be tolerated by the design ?

Huber [23] is accredited with developing some of the modern techniques for
robust analysis. Three of which are as follows, but not expounded upon here.

e Minimax approach
e Capacities approach

e Influence functions approach

The reader may further investigate such methods by reading Huber’s text.
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Model Analysis

3.1 Introduction

The use of stochastic data generation models has evolved from the early years
of this century when Hazen in (1914) attempted to produce a synthesized series
of streamflow data by concatenating the annual yields for fourteen streams in
the U.S.A.. Sudler in (1927) extended this theory by not only concatenating
a series of a given length but choosing at random, (via the shuffling of cards)
each sample within the series and repeating the exercise a number of times
until a desired length of record had been formed. The purpose of such models
was to produce a longer data sequence than the original one. This was required
for use as an operational tool to test proposed works.

Whenever contemplating the use of data generation techniques, the end re-
sult must always be borne in mind. The statistical properties required to be
reproduced by a particular model will greatly influence the type of model cho-
sen and the degree of complexity required.

In the last quarter century the techniques of stochastic data generation have
come to the fore in hydrologic analyses, with much documentation on the data
analysis involved, and types of models that may be applied. In the nineteen
fifties Hurst extensively studied the Nile river and postulated the now well
known Hurst phenomenon of increasing ranges within data sets as the length
of records increase. In the sixties Matalas was credited with progressing data
generation into a new era with work involving regionalizing of parameters and
multivariate techniques. In the seventies and eighties the advent of progres-
sively superior digital computers has allowed these techniques to flourish and
be used as a matter of course.

This chapter will outline the common types of models used for data gener-
ation. These models may be used for any form of continuous variable, but

25
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subsequent discussion will be illustrated using streamflow data.

Note also, that the models assume, except where noted, that the data is nor-
mally distributed.

Since, not all synthetic generation requirements are identical, a number of
models have been developed, or more generally extended from the earliest
mathematical models. These requirements may be based on the time period
used or the number and type of parameters that the hydrologist wishes to
preserve in the generation process.

3.2 Univariate Models

Univariate models are concerned with the temporal characteristics of a single
time series. The models try and describe such characteristics based on some
serial correlation with an event that has occurred previously. These models
form the foundation of stochastic data generation and embody all the principles
necessary to further develop the theory to higher order cases.

3.2.1 Autoregressive Models

The simplest and most commonly used model is a first order autoregressive
model known as a Markov model. Markov (1856-1922) was a Russian math-
ematician who postulated that the outcome of a trial is somehow related (or
dependent) upon the previous trial(s).

Hydrologically this seems intuitive as a high monthly streamflow is more likely
to be followed by another month of high streamflow, or a dry month followed
by another dry month rather than a very wet month. This process describes
the persistence in hydrologic data, and it is this persistence that forms the
basis of stochastic data generation. In fact it is the prime characteristic to be
preserved in the generated data.

The Markov model in its simplest form is given as —

yr = Pye1 + & (3.1)
where, 1y, = generated value for time period (t).
¢ = autoregressive parameter, estimated
from the sampled data.
y¢—1 = known value in time period (t-1).

€ = random normal variate.
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In order to preserve the mean and standard deviation , as well as the time
structure of the series, the above equation takes the following form —

Ve=0+p1(ye-1 —9) + o1 — pi (&) (3.2)

where, ¥ = Mean of normalized values.

o, = standard deviation of normalized
values.

p1 = lag one autocorrelation coefficient of
the normalized values.

€ = random normal variate.

Yt = value of generated series in time
period (t).

The above model is known as a lag one Markov model or a lag one autore-
gressive model. This type of model may be applied to a univariate case of, for
example, annual streamflow yields.

The intuitive approach developed above may further be extended to an au-
toregressive model of order (p), and is denoted as an AR(p) model.
The model is written in general as —

=9+ (g1 —9)+ -+ Pp(ye—p —9) + & (3.3)

Or alternatively as —

p
ye=7+ ®i(y;—9) +e (3.4)
1=1

where, ®; = the j** autoregressive coefficient.
with other parameters defined as per equation [3.2]

The coefficients (®;) may be found either by the method of moments or by
maximum likelihood. Salas et al [43] gives a more complete description of solv-
ing for the autoregressive coeflicients (®,) as well as step by step procedures
for AR(p) models, both annual and multi-period.

Thomas and Fiering [51] further extend the above approach to introduce a
seasonal component. For this case, the model parameters are updated on a
periodic basis and the persistence is described by the serial correlation coeffi-
cient between periods in lieu of a constant autocorrelation.

A periodic AR(1) model is given as —

Ye = Ut + be(Yeo1 — eo1) + o1 — pie) (3.5)
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where,
Ot
by = pt . (3.6)
where, y;. = generated value in time period (t).

7y = mean of normalized values in

time period (t).
o, = standard deviation of the normalised

values in time period (t).
p: = lag one serial correlation coefficient

between time periods (t) and (t-1).
¢, = normal random variate in time period (t).
b, = regression coeflicient between time

periods (t) & (t-1).

In the above type models it is possible to replace (¢;) with a value that will
introduce a skewness into the generated data similar to that of the historical
data i.e. transform (¢) instead of (z;).

For example, using the Wilson & Hilferty transformation, the procedure is
as follows —

¢ Generate all (¢;) values

e Apply the following equation to the above values to produce like-gamma

values — . , 0
V€& 7 \3
=(14+—=-=)—= 3.7
6’th 7( + 6 36) v ( )
where, ¢ = normal random variate N (0,1)
eyt = like-gamma variate G(0, 1, v)
~ — the coeflicient of skewness of €,

e Use the (e,;) random variates in the model.

This can be used to produce a series y(t = 1,---,n) with a specified coefficient
of skewness. McMahon & Mein [36] cite that the procedure breaks down for
large values of skewness and autocorrelation.

McMahon & Mein [36] also suggests two methods of generating periodic data
such that both the annual and monthly streamflow characteristics are pre-
served. These are —
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e the two tier model — where monthly and annual data is generated with
the monthly data proportioned to sum to the generated annual value.

e method of fragments — where only annual data is generated and then
distributed to each month by choosing at random a “fragment” which
is the fraction of monthly to annual yield for one of the observed yearly
data sets.

Salas et al [43] and Box & Jenkins [6] extensively discuss properties and solu-
tions of autoregressive models.

3.2.2 Autoregressive Moving Average Models — ARMA

The autoregressive models outlined above may be generalized to represent a
wider range of time series by the inclusion of moving average terms.

A moving average model considers the magnitude of the stochastic compo-
nent in the previous time step(s) in generating the next value.
If [Y] describes a normal variate and [Z] is defined as

=Ly (3.8)
Oy
where, 2; = normalized and standardized sample values.
Yi = normalized sample values.
My = mean of y;.
o, = standard deviation of y;

then [Z] may also be described as a series of weighted random variables —

2zt =6+ 0161+ O24_2+ - - (3.9)
where, ©; = the j; moving average parameter.

A moving average process of order (q) limits the above series to (q) weighted
terms —

Zt = € — Olet—l e @2@_2 — qut_q (310)
q
2t = Et—zejﬁt_j (311)
1=1

Combining equations [3.4] and [3.11] and using the standardized variate [Z] an
ARMA model is fully described as —

P g
2= Pz ;—> Oje_;+e (3.12)
1=1

i=1
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for which p + ¢q + 2 parameters must be evaluated from the observed data.

The reader is referred to Salas et al [43] and Box & Jenkins [6] for an ex-
tensive discussion of the estimation of parameters for ARMA(p,q) models as
well as “goodness of fit” tests associated with these models.

3.2.3 ARIMA modelling

A model which is commonly referred to in the literature, and extensively noted
by Box & Jenkins [6] is the autoregressive integrated moving average model.
The ARIMA model is a more general case of the ARMA models outlined
above. An ARIMA model is used when the observed data is found to be non—

stationary.

A method of transforming a non-stationary series to a stationary series is
by the use of differencing. This, simply stated is the transformation of the ob-
served series by calculating the “difference” between adjacent observed values
(d) times. Usually (d) only needs to be (1) or (2). Thus the series is said to
be “integrated” and the transformed series is used for analysis in an ARMA
model in the same way shown above.

3.3 Multivariate Models

The models outlined in section [3.2] are based on a single variable, and are
applicable to systems that may adequately be described by a single process.
In reality though, the design or ongoing operation of many real systems will be
dependent on many components and will require a concurrent view of all com-
ponents for decision making. For example, the Adelaide Metropolitan water
supply system has ten reservoirs and associated catchments divided into two
distinct distribution systems and augmented by three major pipelines from the
Murray river. Such systems are geographically large and may involve several
hydrologic and water use series.

For multivariate modelling, not only is the time dependent nature of a se-
ries preserved but also the spatial dependency between variates.

The principles and theory outlined for univariate analysis is directly appli-
cable to multivariate analysis although an increased order of magnitude in
effort is required to solve for the model parameters.
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3.3.1 Multivariate Autoregressive Models

Two papers stand out in the literature as pioneering work in the field of mul-
tivariate stochastic data generation. Both papers were authored/co-authored
by N.C. Matalas. In Matalas [5] a method is proposed where the statistical
properties of a gauged streamflow site are used in conjunction with the gen-
eralised relationships of hydrological characteristics at an ungauged site. The
theory for this multiple regression technique is not shown here as all sites for
this study were gauged.

What is regarded as being the founding work for multivariate data genera-
tion is embodied in the second of the two papers by Matalas [37].

The technique outlined in this paper ensures that the means, standard devia-
tions, lag one serial correlations and lag zero cross correlations of the historical
series are reproduced in the synthetic series.

From section [3.2.1] it is recalled that the Markov process or lag one autore-
gressive model is defined as —

Ye =G+ p1(ye-1 — §) + o/ 1 — ple; (3.13)
where the parameters are defined as for equation [3.2].

For a multivariate case the cross correlations between historic events needs
to be considered with the estimates (7), (o) and (p1).

The simplest method of generating multivariate data is based on a weakly
stationary generating process defined as —

[Z4] = [A][Z¢-1] + [B][ec] (3-14)
where, [Z¢] = an (n*1) vector of generated values
in time period (t).
[A] = (n=*n) matrix to preserve time &
spatial characteristics of the data.
[B] = (n*n) matrix similar to [A].
[ee) = (n=*1) vector of random N(0,1) values.
n = the number of stations considered in

the model.
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Note that a typical element of the vector [Z] is generated from an equation
of the form

Z,'(t) eSS i a,"ij(t — 1) + zn: b,"jej(t) (315)

which is similar to a regression equation with correlated residuals, where the
elements of the [A;] matrix, a;; are the generalised least-square regression
coefficients.

For the case of two stations, expansion of equation [3.14] shows the depen-
dence of each component in the generated [Z] matrix on the elements of the
correlative matrices, [A] & [B].

Ztl = a1,12t1_1 -+ al'zzf_l + b1,1€} + b1,26t2 (316)
Zt2 = (12,12}_1 + a2,22t2_1 + b2'16} + b2,2€? (317)
where, 2! = the normal, standardized generated value

in time period (t) at site (i).
= the p* row and ¢** column, element of the

Opq =
[A] matrix.

b,, = the p** row and ¢** column, element of the
[B] matrix.

€ = the random generated value

in time period (t)

The [A] and [B] matrices are estimated in a manner similar to the () or (®)
coefficients in a univariate model, such that the temporal and spatial charac-
teristics of the historical records are preserved in the generated data.

Given that [Z] is in standardized and normalized format, by postmultiply-
ing both sides of equation [3.14] by [Z¢_1]T and taking the expected value, a
solution for the [A] matrix is given as —

[Ma] = [A][Mo] (3.18)
Rearranging gives
[A] = [M1][Mo] ™ (3.19)
where
[Mo] = E{[Z¢][Z¢] "} (3.20)

[Mp] is an (n *n) matrix whose elements are the lag zero cross correlations for
a site (p) with site (q).
and

Mi = E{[Z4](Z¢-1]"} (3.21)
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[Mi] is an (n * n) matrix whose elements are the lag one cross correlations for
site (p) with site (q).

The [Mp] matrix is symmetrical about the leading diagonal, with leading di-
agonal elements equal to (1).

The [M1] matrix is not necessarily symmetrical and has leading diagonal el-
ments equal to the lag one serial correlation at site (p), (p = 1,..,n).

By post multiplying equation [3.14] by [Z¢]T and taking expected values the
solution for the [B] matrix is obtained.

[B][B]™ = [Mo] — [M1][Mo]*[M1]* (3.22)

3.3.2 Solution for the B Matrix

The solution of [B] given that [B][B]T = [C] is a symmetrical matrix, does not
possess a unique solution. Two methods are available to provide a satisfactory
solution for [B].

The first method uses a technique of upper triangulation and subsequently
solves for the lower triangular components by use of algebraic equations, and
is suggested by Matalas [37], based on a method by Harman [21]. The second
method is based on a principal components approach, deriving an explicit ma-
trix solution. Both methods are outlined below —

3.3.2.1 Solution of the B-Matrix by Upper Triangulation

The method adopted by this study, which is outlined below is taken from Kot-
tegoda [29].

The method assumes that the {B] matrix is lower triangular.

If [B][B]T and [C] are written in full —

bijp O o --- 0 bip byg oo cer bpg
by b2 0 --- 0 0 b o By
bs1 bsz bzz -+ 0 0 0 bsg - bpa

[B][B]* =

bun buz ot oo bl 00 e eee ba,
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€11 Ci2 -ttt Cigp

C1 €2 - " Can
[C] =

Cnt Cp2 =t Cpp

The diagonal elements are derived by —

biy = (c14)7 (3.23)
byz = (20 — b2,)% (3.24)
In general, for the leading diagonal
bik = (Ch — By — Bhpa — -+ — B},1)? (3.25)
Also, for the lower diagonal elements
b = (3.26)
b1
bia = (ck,2 — b2,105,1) (3.27)
ba,2
and, in general for all remaining elements
b, = (ck,i — bjabrg — bj2bga — -+ — by 1bg 1) (3.28)

bj;

Kottegoda [29] also derives the general solution to the (p**) order autoregressive
multivariate model.
In general

Ze] = 3" [Ajl{Ze_g) + [Blled] (3.29)

j=1
Note the similarity between the univariate and multivariate cases in the overall
form of the equation.

In general [Mj] represents the covariance matrix with elements correspond-
ing to the lag (j) cross correlation between two sites (p) and (q).

By post multiplying equation [3.29] by [Z¢_;]T and taking expectations.

P
M; = ZAJ'M;_]' (fOT‘ 7 = 1’2’3,...,1)) (330)

s=1

The general simultaneous solution being given as —
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M, M, - Mp—l

M My, - M,,
[AlyA'Za"'7Ap]:[M17M2a'°'1Mp] : ;

MPT_1 Mg‘_z e My

Similarly by post multiplying equation [3.29] by [Z;]T and taking expectations,
then —

[B][B]T = M, — i A;MT (3.31)

j=1
and [B] is found from the method shown for the AR(1) case above, for each
time period (t)

Salas et al [43] derive the [A] and [B] matrices for the multivariate AR(1)
and AR(2) cases, and extend the theory to an ARMA(p,q) model.

3.3.2.2 Solution of the B-Matrix by Principal Components

This second method has been utilized by Rodriguez & Bras [7] together with
associated adjustments to define the [B] matrix if a solution cannot be found
directly.

Rodriguez and Bras outline the method as follows —

We know that there are an infinite number of solutions for [B], since equation

[3.22] is satisfied by any matrix of the form [B] - [D] where [D] is orthogonal,
implying [D][D]T = [1], for any such [D].

i.e.  [C]=[B]D][D]*[B]T = [B][B]* (3.32)

Now define a further matrix [P] as follows —
[P] = [Py1---Py] (3.33)

where P; is the i** eigenvector of matrix [C]

The matrix [P] is also orthogonal i.e. [P][P]T = [I].

Define (e, ---e€,) as the eigenvalues of matrix [C], and using the properties
of eigenvalues and eigenvectors, it follows that —
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[C][Pi] = Pie; (3.34)

Define [E] as a diagonal matrix of eigenvalues, as follows —

€ - 0
[E] '

Therefore Equation [3.34] may be given in matrix form as

[Cl[P] = [P][E] (3.35)
thus
[C] = [P][E][P]~* = [B][B]" (3.36)
therefore
[B] = [P][E]*/? (3.37)
where
el/2 ... 0
[E]*/2 = .
0 .. el/?

Rodriguez & Bras state that the above procedure is limited by the algorithms
used in finding the eigenvalues and eigenvectors and that for large matrices
such procedures may result in errors or instabilities.

Even using the methods outlined above it is still possible in practice to produce
a non positive definite covariance matrix [B][B]T.

Rodriguez & Bras attribute this to data transformations or to numerical anoma-
lies, especially if the z(t)’s are highly correlated.

To overcome this problem a method outlined in Rodriguez & Bras [7] (and
attributed to Mejia & Millan, 1974) should produce positive definite matrices
as required. This method was not used in this study, but is shown for com-
pleteness.

A new [B][B]T matrix is defined as follows —
[B[BT* = [B][B]" + A (3.38)

where,
Al - 0
Aj=| : (3.39)
0 - |l
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and X is the most negative eigenvalue of the original [B][B]T matrix. The
above is repeated until [B][B']T become positive definite, but obtaining A;
from the last [B][B']T matrix.

Once a [B'] matrix has been found the model equation is modified as follows

1

\/1 + Z:T:l ’\J'

This new model preserves the mean and variance of the historical data, affect-
ing only the correlation coefficients by the following factor —

Z(t) = [AZ(t — 1) + B'e(t)] (3.40)

1
\/1 L Z}';l )‘j

The degree of change may be calculated from the above and determined to be
significant or not.

(3.41)

3.4 Multiperiod, Multivariate Models

In the analysis of a water resource system there is a need to consider the multi-
ple components and demands of the system, but there may also be operational
decisions made over relatively short time periods. These decisions are based on
the cyclic nature of the inputs superimposed on the demands. This frequently
means that within year decisions need to be made and multiperiod models are
required to aid in such decision making.

The AR(1) model with periodic parameters is defined as —

Z,=A.Zry + Bre, (3.42)

where, 7 = the period in question.

normalized and standardized generated

values in time period 7.

A, = the (n *n) matrix of coefficients to preserve
the temporal and spatial characteristics between time
periods 7 and 7 — 1. (Similarly for B,).

¢, = an (n*1) vector of N(0,1) random
variates.

>
It

The periodic matrix parameters were derived by Salas & Pegram [44]
as follows —

Ar = My MGL, (3.43)
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T -1 T
B,BT = My, — My .Mz} MT, (3.44)
1,1 1,2 1n
T Tk T The
21 ’ 1
Tk,‘r rk,r rk,‘r
Mk,‘r =
n,1 n,2 n,n
Ter Thr °°° Tkr

where (r;c"’r) is found by correlating the values (z} ) and (ZZ,T—k) for a period

(r),forv=1--- N —k.

Salas et al [43] also derive the parameters for a multiperiod, multivariate AR(2)
model.

3.5 Forecasting

The forecasting of data is a natural progression of data generation. For this
case the value(s) at some lead time (!) are required to be known within a cer-
tain probability or confidence of the actual value.

The model that best fits the data is still used and a forecast found by con-
ditional expectations. Box & Jenkins show that the forecast which has the
minimum mean square error is given by —

2(l) = E[z(t + D]2(t),2(t = 1),- -] (3.45)

i.e the expected value of z; given the preceding values through infinite history.
Such forecasts are of great interest operationally and for this research will be
utilized within an optimization program used to minimize pumping costs for
the Adelaide metropolitan water supply system.

Chatfield [11] outlines and compares different forecasting models, but all quan-
titative models are based to some degree on the Box-Jenkins ARIMA mod-
elling forecasts.

The three different approaches to forecasting are

e Subjective — Using judgement, intuition or practical knowledge.

e Univariate — Based on past observations; fitting a model and then ex-
trapolating (projection methods).

e Multivariate — Based on taking observations on other variables into ac-
count. Regression methods are of this type. Also known as causal or
projection methods.
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Before choosing a forecasting procedure, it is essential to consider how the
forecast is to be used, what accuracy is required, how many variables are to be
forecast, how much data is available and how much “lead” time is necessary.



Chapter 4

System Background

4.1 Background to the Adelaide Water Sup-
ply System

The climate of South Australia is unique not only to Australia, but also with
respect to land masses along similar latitudes in the Northern Hemisphere.
This is due to the extensive ocean areas and the absence of a broad land mass
connecting the Antarctic with the tropical regions. Australia, in general does
not receive the same weather extremes characteristic of the Northern Hemi-
sphere.

The South Australian climate is described as hot, dry summers with relatively
mild nights, and cool but not severe winters with most rainfall occurring dur-
ing the months of May to August.

South Australia is by far the driest of the Australian states and Territories
with just over 80% of the state receiving an average of less than 250 millimetres
of rain annually. Over the southern half of South Australia the main source of
rain is from showers associated with unstable moist westerly airstreams occur-
ring fairly regularly during the winter months of June to August. The wettest
part of the state is in the Mount Lofty Ranges, immediately east of the capi-
tal, Adelaide. The average annual rainfall for this area is approximately 1200
mm. The Mount Lofty Ranges encompasses almost all of the catchment area
available for metropolitan water supply. The topography of the area has a
low flat plain from the sea to the ranges of approximately 20 km, with the un-
dulating and hilly uplands of the ranges, generally running parallel to the coast.

40
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4.2 The Headworks System

Since Australian settlement in the lgﬁ}e/)lmé] and the steady growth of popu-
lation for South Australia in the 18 the general area has undergone many
land use changes and significant human impact. During early colonization the
populace had access to only rain water tanks or carting from rivers.

The increase in population in the late 1800’s saw the need to augment the prim-
itive water supply techniques, and in 1860 the state’s first reservoir (Thorndon
Park) was commissioned. Gradually through the years, and due to the climate
and topography, Adelaide has been required to develop a complex reservoir
and distribution network to maintain an acceptable supply of water to its con-
sumers, (approximately one million in 1990). With expanding technology and
industry in post world war two, and the need for a reliable water supply, the
catchment areas could not cope with the consumer demand, and the water
supply system required augmentation further by pumping from the Murray
River.

Today, the Murray River supplies on average approximately 40% of Adelaide
metropolitan supply, and in 1982-83 the value was as high as 80%, indicating
a high dependence on this source.

The system now consists of nine metropolitan reservoirs, two major pipelines
from the Murray River, and a further reservoir and pipeline to the north used
to supplement the system. Figure [4.1] shows the area under study.

Together with approximately 8000 km of mains, 120 storage tanks and 48
pumping stations, the system requires a combination of experience and tech-
nological input to safely continue use without restrictions to the consumers.
The Adelaide metropolitan system can be conveniently grouped into two main
systems composed of a total of four main catchment areas.

The systems are described as —

e the Northern system

e the Southern system
The four catchment areas are —

e South Para system — 228 km?
e Torrens system — 347 km?

e Onkaparinga system -— 451 km?
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e Myponga system — 124 km?

Figure [4.2] shows a schematic of the Adelaide Headworks System.

4.3 The Southern System

The Southern system consists of the Onkaparinga and Myponga catchment
areas with three of the nine reservoirs and one pipeline, namely the Murray
Bridge — Onkaparinga pipeline.

The reservoirs are —

e Mt. Bold Reservoir — This reservoir is an on-stream storage on the
Onkaparinga River and has a catchment area of 388 km? and a capacity
of 45.9 GI.

e Myponga Reservoir — Situated on the Myponga River, it is another on—
stream storage with a catchment size of 124 km? and a capacity of 26.8

Gl

o Happy Valley Reservoir — This is an off-stream storage with no practical
catchment associated with it and a capacity of 12.7 Gl.

Pipeline —

e Murray Bridge — Onkaparinga pipeline — The pipeline is 48 km in length
and a (66") MSCL pipe. The line transfers water from Murray Bridge
to the southern system and discharges into the Onkaparinga River im-
mediately south of the town of Verdun.

4.4 The Northern System

The Northern system consists of the South Para and Torrens catchment sys-
tems and contains the following reservoirs and pipelines. —

4.4.0.3 South Para system

e Warren Reservoir — The reservoir is constructed on the South Para
River, has an associated catchment area of 119 km? and a capacity of
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4.77 Gl. The reservoir is not strictly included in the metropolitan area
and can be used to supplement the Northern system, although its major
function is to supply the Barossa Valley region to the north of Adelaide
and the Yorke Peninsula region.

e South Para Reservoir — The second of the on—stream storages built on
the South Para River, it has an associated catchment of 109 km? and a
capacity of 51.3 Gl.

e Barossa Reservoir — This reservoir is an off-stream storage, supplied by
releases at the South Para reservoir. It to has no appreciable catchment
area, but has a capacity of 4.51 Gl.

Pipeline —

o Swan-Reach Stockwell Pipeline — This pipeline is 54 km in length and
transfers water from the Murray River at Swan Reach to the Warren
Trunk Main. This is subsequently discharged to either the north of the
state or to Warren reservoir.

4.4.1 Little Para Subsystem

o Little Para Reservoir — This reservoir is situated on the Little Para
River and is the most recently constructed dam (1979) with a catchment
area of 83 km? and a capacity of 20.8 Gl.

4.4.2 The Torrens System

¢ Millbrook Reservoir — This reservoir is an on-stream storage on the Tor-
rens River with an associated catchment area of 233 km? and a capacity
of 16.5 GI.

e Kangaroo Creek Reservoir — This reservoir is downstream of Millbrook
reservoir and is the second of the Torrens River on stream-storages. The
catchment area is 55 km? and this figure does not include the Millbrook
or upstream catchments. Capacity is surveyed as 19.0 Gl.

e Hope Valley Reservoir — Further downstream of Kangaroo Creek reser-
voir is the off-stream storage of Hope Valley reservoir. The catchment
area associated with this reservoir alone is 57 km? and it has a capacity
of 3.47 Gl. This reservoir is the site of Adelaide’s first water filtration
plant, commissioned in September 1977.

Pipeline —
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e Mannum - Adelaide Pipeline — The pipeline was commissioned in 1954
and extends 60 km in length from the river town of Mannum to a terminal
storage in the suburb of Modbury. The pipeline is not uniform in size
over its length.

In South Australia streamflow gaugings generally began in systems where
works were being constructed or feasibility studies made of proposed works.
Thus the extent of streamflow records follows the gradual colonization af South
Australia, starting with the Torrens catchment system in the late 18002, Onka-
paringa in the post world war one period, then the general South Para system
in the post world war two period, and in recent history the Little Para sub-
system in the late 196(Vs.



Chapter 5

Results

5.1 Introduction

In order to understand the difficulties associated with this form of stochastic
analysis as well as the subtleties that may arise during a practical approach
as opposed to a purely theoretical analysis, sets of hydrological data from
Adelaide Hills catchments were used to apply the stochastic data generation
models described previously.

This chapter outlines the methods adopted for data analysis and testing, as
well as the models used for data generation.

5.2 The Raw Data

As cited in Chapter [1] this research uses the Adelaide Metropolitan Water
Supply System as a case study. The study is based on hydrological data appli-
cable to the region, namely streamflows and rainfall. As noted in the previous
chapter, a monthly time step model has been adopted for operational consid-
erations.

The raw data was supplied in two separate stages. Initially, seven stream-
flow data sets were supplied by the South Australian Engineering and Water
Supply Department (E.&W.S.). These data sets consisted of the estimated
natural monthly inflows into each of the respective catchments, expressed as
a volume in (Ml).

Figure [5.1] shows the position of gauging stations.
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These gauging sites are referred to as follows —

e Warren

o South Para

(at the Barossa diversion weir)

e Little Para

Myponga

Onkaparinga (At the Clarendon Weir)

Torrens system (At the Gumeracha Weir)

Torrens system (At the Gorge Weir)

: G.S. 505 500

: G.S. 505 501
: G.S. 504 503
: G.S. 503 500
: G.S. 502 501
: G.S. 504 500
: G.S. 504 501
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Further to the above, seven rainfall data sets were supplied by the Bureau of
Meteorology, Melbourne Office. These stations were chosen because they en-
compass all the metropolitan water catchment areas, as well as their proximity
to the streamflow gauging stations.

In line with the above, these values represented the monthly total rainfall
for a given station, expressed in units of 1/10th mm.
Figure [5.1] shows the positions of the rainfall gauging stations.

These stations are —

e Thorndon Park
Clarendon P.O.

Millbrook Reservoir

o Meadows

Myponga Reservoir
Mt. Bold Reservoir

Paracombe

: R.F. 023 027
: R.F. 023 710
: R.F. 023 731
: R.F. 023 730
: R.F. 023 738
: R.F. 023 734
: R.F. 023 807

Table [5.1] gives the data set length, and period of record.

Fiering and Jackson [17] give some advice and quantitative guidance on the
desirable length of historical records. In any case the hydrologist will always
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Streamflow Stations

Station Period | Length yrs
Warren 1939-1984 46
South Para | 1939-1980 42
Myponga 1934-1984 51
Onkaparinga | 1898-1984 87
Gorge 1884-1983 100
Gumeracha | 1918-1983 66
Little Para | 1969-1983 15

Rainfall Stations

Thorndon 1879-1979 101

Clarendon PO | 1875-1988 114
Mt. Bold Res | 1939-1988 50
Millbrook Res | 1914-1988 75
Meadows 1887-1988 102
Myponga Res. | 1914-1983 70
Paracombe | 1969-1988 20

50

Table 5.1: Station, Length & Period of Records

use the entire period of record available, and will only be able to use that
period as a base. Thus the decision on length of record has, more generally
than not, been set.

The length of record does however give an indication as to the expected con-
fidence associated with the results.

5.3 Quality of Streamflow Data

It is commonly stated that stochastic data generation does not increase the
amount of information available, nor increase the quality of historical data.
This is not only a simple statement, but one that must always be remembered
when reviewing results.



CHAPTER 5. RESULTS 51

The streamflow yields supplied, although referred to as natural inflows to the
catchments, are in reality reconstructed figures based on gauged values at the
respective sites, and water balance equations composed of variables that ideally
remove the human induced effects on the system. The water balance equations
for some of the sites have up to twelve variables and include effects such as
reservoir evaporation, changes in storage, volumes pumped from the Murray
River etc.

As the individual components contain measurement and other errors, the yield
data also contains errors which influence the results to an unknown extent. In
many cases the water balance equations involve the difference of terms of sim-
ilar magnitude. In such cases the errors are magnified as a percentage of the
final estimated yield. The effect of the water balance equations is clear for
some data, such as the South Para and Warren data sets where numerous
problems resulted and these will be discussed below.

Two effects consistently lead to difficulties or infeasible solutions.—

e If, in the water balance equation the calculated inflow is negative, the
value is truncated to zero. The logic being such, that a natural inflow
cannot be negative. This has the effect of truncating the lower end of
the distribution without giving due weighting to the magnitude of the
calculated negative value.

e Secondly, it was apparent that potential outliers existed in the data sets.
These unduly biased the historical statistics, especially the higher order
moments of skewness and kurtosis.

Although a correlation of single, large events (suspected outliers) with
the rainfall data was attempted, no conclusive result could be drawn as
whether these values should be deleted from the data set. This effect is
more extensively discussed in Section [2.5] on robust statistics.

Almost all the streamflow data sets used contained some missing data, but
generally less than five percent of values for any particular month were miss-
ing. These values were replaced by the mean values for the particular month
determined from the remaining values.

To summarize the general quality of streamflow data, the Myponga data set
was the least affected by errors in the water balance equation and as such is of
good quality, the Onkaparinga and Torrens at Gorge and Gumeracha weirs are
acceptable, although since the Gorge gauging includes the Gumeracha value,
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the two data sets are at times inconsistent. The South Para set includes the
Warren values, which is to its detriment, as the Warren gauged data is clearly
most affected by the truncation effect. Inclusion of Warren data with South
Para data will only further contaminate the sample. These two data sets can
only be described as poor and often lead to analysis problems due to large
outliers and a grossly disproportionate number of zero yields throughout the
year due to truncation.

The Little Para gauging station has only been recording since 1968, and was
only compiled to 1984. This period of record is ideally too short for meaningful
stochastic analysis but is required as an input into the optimization program
developed for the Adelaide Metropolitan System for which the generated data
will be used.

5.4 Quality of Rainfall Data

The rainfall records were received and analysed after preliminary analysis of
the streamflow data. The analysis used was the same for both series. The
seven data sets used were of high quality, consistently producing good results.
No missing data existed in the files, nor did there seem to be any outliers.

Appendix [A] summarizes the statistical data only for the Clarendon P.O.
rainfall gauging station since similar patterns were found throughout the other
rainfall data sets.

5.5 Data Set Analysis

As cited in chapter [2] it is preferable to have normally distributed data for
synthetic data generation. The raw data may belong to any one of a number
of distributions. Using the raw data the parameters required to transform the
data to a de-trended, de-seasonalized, zero mean, unit variance, normal distri-
bution will be found.

Sections [2.3] & [2.4] described the types of distributions that may be en-
countered as well as the testing procedures considered. Figure [5.2] outlines
the method of analysis adopted in this study. Initially the data sets were
generally overviewed, missing data identified and basic statistics calculated.
Throughout the study all parameters calculated refer to an individual month
and site. Thus a total of 7(sites) * 12(months) = 84 streamflow distributions
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Calculate Statistical Moments
e.g. mean, standard deviation etc.

;

Perform regression Analysis for
Lag | serial Correlations

l

Produce Scatter Diagrams
between consecutive months

Y

Plot Annual Mean against Year and
Monthly Mean against Month

l

Perform Lag (0) and Lag (1)
Serial Correiations
between all sites.

!

|s Coefficient of skewness =0 |—=»| YES pF—pr

Calculate Location Parameter
Calculate Parameters by by accepted method
Moment Transformations (i) First Principles
(ii) Loucks equation
Re-Analyse for In(X-t)
v Standardize data and (- y

start Model Generation

Figure 5.2: Step Procedure for Data Analysis
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were considered rather than considering each gauged site as a single continuous
data set.

To gain an appreciation for the type of data being used, the first four moments
of the raw data series were computed, namely, the mean, standard deviation,
coefficient of skewness and the coefficient of kurtosis. Initial data values were
calculated on a personal computer with the use of the commercially packaged
program “Quattro”. For such analysis, as well as preliminary monthly serial
scatter diagrams, this program was adequate, although limited.

In addition to the four statistical moments computed, the lag one serial correla-
tion coefficients were calculated, giving an insight into the degree of persistence
of the monthly data. The mean and standard deviation are required for use in
a data generation model whereas the coefficient of skewness and coeflicient of
kurtosis were used to investigate if the data conforms to a normal distribution
for which these values are zero and three respectively.

From the above results it was apparent that, in general, the data did not
conform to a normal distribution for any monthly data set at a particular
site. All gauged streamflow sites with the exception of Little Para produced
highly skewed values and low monthly serial correlations. The Little Para site
produced the largest serial correlations as was reflected in the monthly serial
scatter diagrams, (an example of these are shown in Appendix [C] for the My-
ponga data set, together with the transformed values; see later). It is to be
noted that the Little Para record is only fifteen complete years and as such
has not been influenced by extreme events or cycles to the same extent as the
other stations.

The statistics for the historical data at all sites are tabulated in Appendix
[A].

In general the streams have high positive monthly skewness coefficients, in
the order of (2.5) or more, with correspondingly high values of coefficient of
variation, generally of the order of (1.0) to (1.5) but frequently these may rise
to values in excess of (2.0). They thus have similar characterstics to other

Australian streams. (McMahon & Mein [36])

Major streams in the Northern Hemisphere are characterised by low coefhi-
cients of variation, (generally less than 0.5) and very low coefficients of skew-
ness by Australian standards, (mostly less than 0.5) with negative skewness
common. The higher variability of streams under study (latitude ~ 35° §) is
also shown by McMahon to be reflected in world values where lower variation
occurs in colder or tropical regions than in temperate climates.

Jacobs [25] extensively analysed the available records for the Adelaide Hills
catchments, and obtained similar results to this study. The data sets used for
each study originated from the same gauging stations yet differences occurred
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in basic statistics at some stations which shows the high variability of this
regional data and the effect that specific values which have been included in
one study but not the other can have on statistical moments.

In the analysis it was found that the use of higher moments to identify nor-
mality is prone to inconsistencies.

As

n .3
the coeflicient of skewness v, = EL;(;;L)

and

nr )4
the coeflicient of kurtosis {, = iz (Ei-m)t

nSt

it can be seen that as |r; — u,| becomes larger, it has an increased effect on
the parameters. The parametric approach to statistics assumes that the data
is free of outliers i.e. values which are not from the true population. If large
outliers are a part of a series in question then they may have a disproportion-
ate effect on the estimated parameters.

This, in fact, was the case for the data used in this study. Due to the large
discontinuities and coefficients of variation (o,/u.;) apparent in the data, it
was suspected that some monthly data sets contained a small number of very
large, highly suspect values. This can be seen from the lag one serial plots
shown in Appendix [C] for the raw data, where, in some cases, the bulk of the
data is concentrated in one corner of the plot with one or two values far from
the centroid of the data.

An example of the effect on coefficients was found for the January monthly
data for Little Para, where the summation of (z — ¢)® was almost entirely due
to one of the fifteen values. Removal of the apparent outlier would result in a
significantly lower coefficient of skewness.

Given the sizable effect of the above values on the skewness, the coeflicient
of kurtosis was affected by another order of magnitude. Due to this dominat-
ing effect on the kurtosis, it was subsequently deleted from the analysis. As
this coefficient was not used beyond the initial stages it has not been tabulated
with the other parameters.

Given that no trend has been reported in previous works published by the
E.&W.S. Department of S.A. dealing with the data supplied, or in consul-
tants’ work undertaken using streamflow data from the Adelaide metropolitan
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area, no significant trend was expected within each monthly data set at any
of the stations.

The method of trend analysis used was to produce a time series plot of mean
annual values against time. Given the variability of the data and the length of
records it was considered necessary only to identify if any trend in the mean
was apparent and ignore potential changes in higher order moments.

The above plots were highly variable and did not indicate any definite trend.
A t-test was performed on the annual mean values to test for statistical signif-

icance. The null hypothesis was that there is no significant trend.

The parameter tested was the (m) coefficient in the regression equation —

Y=mT+¢c (5.1)
where, Y = annual yield.
i = time (years).
m,c = regression coefficients.

the t—value is defined as m/Standard error which has (N — 2) degrees of free-
dom. This t—value was tested at the 5 percent significance level for a two tailed
t—test.

No significant trend was apparent in any of the data sets used.

5.6 Transformations

It was stated in Chapter [2] that hydrological data frequently possesses char-
acteristics of a log-normal distribution. Physically this may be described
by streamflow yields only taking on positive values, and the non-linear rain-
fall/runoff characteristics of a catchment.

Therefore the above analysis was repeated for the natural logarithms of all the
data sets.

This transformation resulted in significantly lower skewness values, (in gen-
eral below 0.5 in absolute value), and the monthly serial scatter diagrams
(Appendix [C]) indicated a higher lag one serial correlation. Using the sim-
ple test for coefficient of skewness shown in section [2.4.1], a large number of
monthly coefficient of skewness values, remained significantly different from
zero.
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Given the tendency to normality shown by the above transformation the anal-
ysis was extended to a three parameter log—transform.
The transformed values being defined as —

Yi = ln(:c. — T) (52)
where, y; = transformed value.
xz; = observed value.
T = location parameter.

In the above equation, the location parameter () is generally negative, result-
ing in a positive shift.

Two methods outlined in Sections [2.3.1] and [2.3.2] were used to identify
the (7) value for a given series.

e Parametric Transformation

e Moment Transformation

5.6.1 Parametric Transformation

The calculation of an appropriate shifting parameter () by this method is an
iterative one of choosing the distribution parameter values and subsequently
testing the transformed sequence.

Two methods were used to choose an estimate of (1) -

e an equation given by Loucks et al [35)

e systematic search.

5.6.1.1 Approximate Method using a Parametric Equation

The following equation for (7) is given in Loucks et al [35]:

2
r = —21fn ” Tos (5.3)

Ty + Tn — 2205

where, 1 = the minimum observed value.
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Tos = the median value.
T = the maximum observed value.

This method is very simple, requiring only three values to be sought from the
observed series to define the shifting parameter.

Given the variability of the data used as mentioned above and the simplic-
ity of Equation [5.3], the results were quite surprising. The method frequently
produced transformed coefficient of skewness values less than (0.5) in absolute
value, with small values (0.2-0.3) in the low flow months where small absolute
changes in a shift can result in significant changes to the skewness.

This result is remarkable given the data used, since for some sites the value ei-
ther side of the median, especially in the low flow months, can be significantly
different.

The approach to the formulation of Equation [5.3] seems to be supported by
a similar result derived by Sangal & Biswas [45], using only the mean, median
and standard deviation of the observed data, given as —

2

o
T=Zo5— ————— 5.4
- 2(;% - xo.s) ( )
where, p, = mean of the sample
Oy = standard deviation of sample.
o5 = median of sample.
T = location parameter.

By inspection of equation [5.3], it is evident that as z; + z,, tends to (2 * zg5)
the () value tends to infinity. This will occur for data which has a symmetrical
distribution ¢.e. a small coefficient of skewness. Although will not occur for a
true log-normal distribution on which the derivation has been based, but was
apparent for some of the actual monthly series used.

5.6.1.2 Systematic Search

A computer program “TRANS’ was written to identify the (7) value which
produces zero skewness after transformation of a given series. The program
simply uses a trial value of shifting parameter, starting at the minimum ob-
served value of streamflow and transforms the data on the basis of this value
using Equation [5.2]. The coefficient of skewness is then calculated and tested
to determine whether it is within some predefined bounds of zero. In general
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the bounds used were (+/- 0.1), but where time allowed, bounds of (+/- 0.05)

were used.

Note that these bounds are well within 1.96 standard errors of the estimate,
which is generally around (0.6) for data sets of the size used. Of the seven
streamflow sets, five behaved well and produced reasonable values of (7) for
all twelve monthly series. The Warren and South Para sites were troublesome,
due to the high number of truncated values in many of the monthly series.

This individual method of parametric transformation is hereafter referred to
as the method of zero skew.

5.6.2 Moment Transformation

The Moment Transformation Equations shown by Matalas [37] are given in
Chapter [2] as Equations [2.11] to [2.14].

It is to be noted that these equations have no physical significance. The sole
purpose of these equations is to produce parameters in the log domain which
when used with generated normally distributed data preserve the statistics of
the original data upon backtransformation.

The values obtained by this method for the shifting parameter () were far
greater than that required to produce zero skewness in the transformed data.
Subsequently the resultant values of skewness after transformation are signif-
icantly different from zero and generally greater than the value calculated for
the raw data.

By inspection of Equations [2.11] to [2.14] the transformed standard devia-
tion is based only on the raw skewness of a series and is undefined for zero or
negative skewness values.

5.7 Significance Testing

Significance testing was undertaken on the transformed data to test the trans-
formed series for normality, when data sets were transformed by first principles.
The tests used were —

e The Shapiro-Wilk Test

e Normal Probability Paper Quantile/Quantile plots (Q-@Q plots)
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Figure 5.3: Q-Q plot, Transformed January values at Warren River

Although both of the above methods were used to test a transformed series, the
Shapiro-Wilk test was only used to validate the result of the Quantile/Quantile
plots, due to the restrictions of the Shapiro-Wilk test outlined in Section
[2.4.2]. With the aid of the “S” statistically based computation/graphics pack-
age [42], the following quantile/quantile plots for each monthly series at each
station were produced,

e Raw data

e Log Transformed data

o Shifted-log Transformed data
(Based on a (7) value found by systematic search)

e Shifted-log Transformed data
(Based on a () value derived from the moment transformation equa-

tions)
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Figure 5.4: Q-Q plot, Transformed January values at Myponga River

A typical example is shown for two sites for the month of January in Figures
[5.3] and [5.4].

For the plot based on the Warren station January series, it can be seen that
the truncated values from the water balance equation have a significant effect
on the tail of the distribution, since any undefined value for the transform
[(zi — 7) < 0] is set to zero. This result significantly affected the low flow
months (November to April) at the Warren and South Para. stations, and to a
lesser extent, the Torrens at Gorge and Gumeracha sites, and the Onkaparinga
at Clarendon site. These truncated values occurred too frequently to ignore
for subsequent analysis.

In order to overcome this problem, the original records for all streamflow sta-
tions were reviewed and the truncated values replaced with the actual negative
values calculated from the water balance equations. The reason for doing this
was to identify the underlying distribution for each series on the assumption
that the negative values were the result of consistent error in the data recon-
struction process. The following stations required replacement of truncated
values. ~

o Warren
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Figure 5.5: Q-Q plot, Revised, Transformed January values at Warren river

e South Para
e Torrens at Gorge

e Torrens at Gumeracha

¢ Onkaparinga at Clarendon

The summary statistics for the revised data sets are given in Appendix [B].

The shifting parameters () were re—evaluated using the systematic search
procedure and the quantile/quantile plots were recompiled. Figure [5.5] shows
the revised series for the Warren station in January. Comparing figures {5.3]
and [5.5] it can be seen that a vast improvement in the transformed series
occurred. Subsequently, all series produced reasonable Q-Q plots.

For the Warren station, the monthly Shapiro-Wilk Ivalues are compared in
Tables [5.2] & [5.3] for the two series for raw data and a shifted log transform.
Values above 0.988 are significant at the 5% level i.e. normality may be as-

sumed.

The above results indicate that the best fit to the underlying distribution
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Jan Feb Mar Apr May Jun

Raw data -
original record | 0.5347 | 0.4790 | 0.6924 | 0.8921 | 0.4460 | 0.6256
Raw data —

revised. 0.8776 | 0.7373 | 0.9142 | 1.0187 | 0.4564 | 0.6279

Trans. data —
original record | 0.8201 | 0.8805 | 0.8316 | 0.8789 | 0.9737 | 0.9698

Trans. data —
revised. 0.9353 | 0.8568 | 0.8711 | 1.0239 | 1.0188 | 0.9044

Table 5.2: Monthly Shapiro-Wilk Values for Warren Data — January to June

Jul Aug Sep Oct Nov Dec

Raw data -
original record | 0.7778 | 0.8956 | 0.8680 | 0.6354 | 0.6840 [ 0.7780
Raw data —

revised. 0.7776 | 0.8956 | 0.8689 | 0.6376 | 0.7222 | 0.9575

Trans. data —
original record | 0.9540 | 0.9534 | 0.9481 | 0.9942 | 0.9586 | 0.8307
Trans. data — .

revised. 0.9548 | 0.9526 | 0.9527 | 1.0192 | 1.0090 | 1.0168

Table 5.3: Monthly Shapiro-Wilk Values for Warren Data — July to December
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is obtained using a three parameter log normal distribution using the revised
data sets. This indicates that the compilation of data at least reflects the
pattern of temporal changes of streamflow, even if the absolute values are
questionable.

5.8 Investigation of Fitting Methods

Extensive work on fitting two and three parameter log-normal distributions
to hydrologic data has been carried out by Stedinger [49].

Stedinger writes — ”"the mean square error of estimation of selected quanti-
ties was used to evaluate the efficiency of alternative methods for fitting the
two parameter and three parameter log normal distributions. Monte Carlo re-
sults show that use of a maximum likelihood parameter estimation dominates
for fitting the 2-parameter log-normal distribution, for samples of 25 or more
log-normal variates. For the 3—parameter, standard moment method performs
best for log-normal distributions with low skew coefficients.”

Stedinger goes on to say, that a good fitting procedure may be obtained by
combining the moment or maximum likelihood methods already studied for the
2-parameter distribution with some technique which provides a reasonable es-
timate of (7). Cohen (1957) essentially does this by combining the maximum
likelihood estimates for the mean and standard deviation for a known (7).

Stedinger gives a method for determining the location parameter by explicit
solution, i.e. without the need to iterate.

It is also noted that the fitting technique may depend upon what the final
result is required for, e.g. fitting the top end of the data or the bottom end.

The results of the above work qualify the findings and method used in this
analysis, in that a known method was used to find the 3—parameter log-normal

location parameter (7), and then the other parameters found using Maximum
Likelihood.

5.9 Summary of Tests Adopted

On the basis of the revised records, the transformation using a systematic
search approach for each data set was based on the following —

e the computed 7 value was not more than 3o from p
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e The Coefficient of Skewness of the transformed series is within 1.96 stan-
dard errors of estimate.

e The straightness of the Q-Q plots.

o The shifting parameter 7 does not truncate the observed series upon
transformation.

Table [5.4] indicates the location parameters (7) adopted.

A zero value indicates that the two—parameter log transformation sufficed and
“normal’ indicates that no transformation was required.

A complete tabulation for each of the data sets after transformation is given
in Appendix [B].

5.10 Modelling

The above sections describe the methods and analysis required to extract all
useful information from the data and to shape the data into a usable form for
data generation.

The following stages of data generation are distinct from the data analysis
phase, yet use the parameters identified above as input for a chosen model.
The sections below outline the models chosen in this study, and use of the gen-
erated data with respect to the Adelaide Metropolitan Water Supply System.

In Chapter [3] it was shown that either a univariate or multivariate analysis
could be used for data generation and that a multivariate analysis attempts
to preserve the spatial correlation of the hydrological processes. Both univari-
ate and multivariate modelling procedures were undertaken in this study, with
each model analysis designed to produce the same performance parameters for
comparison. These models are outlined below.

5.10.1 Multivariate Model

The sample [Mg] & [M1] matrices are covariance matrices. Theoretically [Mo]
& [M;] should be positive semi-definite. Using practical streamflow data with
the associated and inherent sampling errors together with mathematical ma-
nipulations that may lead to round—off error, it is possible for either or both
of these matrices not to be positive semi—definite.



Final Shifting Parameters (7) used

January | February | March April | May | June | July August | September | October | November | December
Warren -425 -304 -10 normal | -67 -62 | -184 | -1094 -453 -7 -97 -140
South Para -400 -342 normal | -26 -33 | -53 | -429 | -T12 -647 -44 -234 -325
Myponga 64 18 265 | -95 | +166 | -34 | -323 | -2503 50 23 16 normal
Onkaparinga 0 -436 0 -84 -61 | -322 | -1367 | -4815 -1095 -140 -292 -762
Gorge -784 -956 0 -475 | -377 | +100 | -588 | -3068 -1570 -94 -242 -656
Gumeracha -211 -166 -215 -1 +29 | -102 | -155 -710 -102 +21 -83 -69
Little Para | -78 53 | 14 | -5 | +4 | +96 | 482 | -266 | 397 50 66| 258

[ Clarendon | -42 | 23 | -66 | -228 | -650 | -857 [-1274] -510 | 206 | -338 | -177 | SET

Table 5.4: Location Parameters (7) adopted

SLINSHY 'S HA.LdVHD
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It has been noted by Kuczera [31], Crosby & Maddock [13] and Fiering [16]
that if the records between variates are of differing lengths then problems may
arise with the consistency of either the [Mp] matrix or the [B])[B]T matrix,
thus not allowing a solution to either of the [A] or [B] matrices used in a
multivariate generation equation.

If records of unequal length are used to estimate the lag zero and lag one
covariance matrices [Mg] & [Mj], respectively, the covariance estimate [C]
may not be positive definite, thereby preventing decomposition of [C]. The
problem may be overcome by truncating the larger records to the length of
the shortest of the records at the expense of discarding useful information. If
the missing data is due to the different records having different starting times

then Crosby & Maddock [13] show how [C] can be made positive definite.

Crosby & Maddock [13] refer to the above entire sample as being monotone,
i.e if we have (N) sets of continuous data, but they have differing start times
then the sample is referred to as a monotone sample.

It may be that the existence of a monotone sample causes either (or both)
of the [Mg] or [B][B]T matrices not to be positive definite.

They further state that since the eigenvalues are variances in the principal
component system, some of the variances are negative. A covariance matrix
with negative eigenvalues is inconsistent. Even if [Mg] & [M;j] are consistent
and are used to define the [B][B]T matrix, the resultant may be inconsistent,
therefore making it impossible to solve for a [B] matrix with all real values.

Fiering [16] & Beard [3] have both developed techniques for producing consis-
tent estimates for the [Mg] matrix. In fact, both techniques can be used to
produce a consistent [Mg] matrix when the data sets are not only monotone
but have records missing in a non systematic way.

Crosby & Maddock show that neither Fiering’s nor Beard’s methods guarantee
[B][B]T to be consistent and go on to develop and apply their own method
which not only produces a consistent [Mg] matrix, but a [B][B]T matrix as
well. Their method is based upon a maximum likelihood estimate developed
by Anderson [1]. This method seems to be mathematically complex and diffi-
cult to apply.

The main thrust of this study was aimed at the production of a multivari-
ate model for use as an operation tool. The model chosen is described in
Chapter [3] as a multivariate, multiperiod autoregressive model of order (1),

i.e. an AR(1) model.

The matrices associated with such a model were developed for an annual model
by Matalas [37] and the derivation of matrices for the periodic case given by
Salas et al [43].
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This model is given by the equation [3.42]

[Z¢] = [At][Z¢-1] + [Be][et] (5.5)

where [A¢] and [B¢] are given by equations [3.43] and [3.44], and for lag one
are given by —

[Ad] = [M,][Moe—1] ™" (5.6)

and

[B[Bi]" = [Moy] — [M,4][Mos—1) ' [My4]" (5.7)

€; = a vector of N(0,1) random variates

The computer program developed for this model is known as “GENESIS”.

A typical analysis using this method involves taking the historical data sets of
a given length, and firstly computing the historical statistics and then trans-
forming the data to normality given a user—-defined command.

The generation equation is given as equation [5.5] above, based on standard-
ized, transformed values. These values must then be “shaped” to resemble the
historical form by “backtransforming” the generated data, which is simply the
reverse analysis of the data transformation sequence i.e. (for a three parame-
ter log transformation)

Ye = pe + 012y (5.8)
T, =¥+ 7, (5.9)
where y, = value in the log domain for time period (t).

z; = value in the raw domain.

zz = individual generated value.

1t = location parameter

¢ = mean of y, .

oy = standard deviation of y;.

5.10.1.1 Solution of the “A” matrix

This section describes the problems encountered with solution of the [A] ma-
trix when using data for six streamflow sites and one rainfall site. It was found
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that in this study a solution for either of the [A] or [B] matrices was not always
defined.

The following two problems were encountered —

e the [Mj] matrix is singular

o the [Mg] matrix is close to singularity.

For a multiperiod, multisite model as adopted, there needs to be an [A¢] and a
[B¢] matrix for each time period (t). This increases the probability of failure as
the model will only require one of these matrices to be undefined to fail. Also,
it can be shown mathematically, that as the number of stations increases, it
becomes more likely that the [Mg ¢_1] matrix will be singular. This results in
[Mo 1]~ being undefined, thus no [A¢] matrix can be found. This implies
that the model has an upper bound on the number of stations for effective use.

The second problem is where an [Mg ¢_1] matrix is close to singularity. Here,
the problem is of more concern as it can easily be overlooked during the model
identification stage, although the final result will still be in error. When the
[Mop ¢_1] matrix is close to singularity then one or more of its eigenvalues may
be very small. (In the order of 1/100th or 1/1000th of the remaining eigenval-
ues.) This has the effect that some elements of the inverted matrix are of the
order of 100 or 1000 times the remaining elements.

For the multisite model adopted, when these elements are used to define the
[At] matrix, the values in corresponding positions in the matrix are very large.
Therefore, the [A¢] matrix may well be defined, but when used to generate data
it produces values 100 or 1000 times the order expected in the log domain. Sub-
sequent backtransformation from the log domain to the raw domain requires
the exponentiation of these already very high values, resulting in a computer
overflow.

For the analysis undertaken in this study the above problem occurs with the
simultaneous use of the Warren and South Para data sets or the Gorge and
Gumeracha data sets within the same multivariate model, due to the high
cross correlation between pairs of stations.

Ideally the elements of the [A] matrix should be bounded by (+/-1), for mean-
ingful data generation. Thus the elements of the [A] matrix should be checked
upon computation for the above effect.
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5.10.1.2 Solution for the “B” matrix

Similarly to the previous section the description below pertains to an analysis
using all streamflow sites.

Once any problems of defining the [A¢] matrix have been overcome, then at-
tention can be turned to the inevitable problem of defining the [B] matrix.
The method used to solve for the [Bt] matrix as shown in section [3.4.1] fre-
quently leads to individual elements of the matrix being undefined. Again,
the use of a multiperiod model magnifies the problem because of the increased
number of matrices to define.

Lack of definition arises in this case since elements on the leading diagonal
involve the square root function applied to the manipulation of various lag
zero and lag one correlation components. This may lead to a negative value
which has no real root. Subsequent calculations to define off diagonal val-
ues require the ill-defined diagonal value to be used, further complicating the
problem.

For such cases offending elements were set to zero, so as to produce a so-
lution. The [Bt] matrix only affects the stochastic component of the model,
and this problem was not considered too significant for the end result. The
number of occurrences of the problem needs to be checked by inspection of the
[B¢] matrices to gain an idea as to the extent of the problem.

The above action seems reasonable, given that the [B¢] matrix is arbitrarily
defined as lower triangular (in lieu of upper triangular, or the use of principal
components to solve for the [B¢] matrix). In the generation of a new vector
of flow values, the first value in the vector has only one component in the
[B¢] matrix contributing to the solution, yet the (:**) value has the summation
of (2) stochastic components. Considering that some random component (¢;)
may occur in any position of the (€) vector, then whether one value or n values
are used should not be too significant as there is equal probability of a sum of
these terms equalling zero. As long as each row of the [B¢] matrix has at least
one non zero value, the desired result should be produced.

5.10.2 Comparison of Models in Generation & Fore-
casting

It has been shown that difficulties have occurred with using a large number of
stations as well as data with questionable reliability. Does the result affect the
viability of the particular model or not ? i.e. should more work be undertaken
in this direction or should some other method be used 7 To evaluate this we
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need to know how well the model can behave, and between what bounds and
under what circumstances.

Given the above results and conclusions formed during the study it was de-
cided to take the best of our data and models and to try to forecast better
streamflows than those obtained previously.

As discussed, a multiperiod, multivariate model becomes unstable as its size
increases. Also interdependence of data can result in mathematical inconsis-
tencies.

To avoid these problems a five station model was adopted using only one
streamflow site from each river system together with one rainfall station.

The following sites were chosen, for reasons of data quality and geographic
position -

e South Para

e Myponga

Torrens at the Gumeracha Weir

Onkaparinga River at Clarendon Weir

Millbrook Rainfall Station

The reason for choosing the Millbrook rainfall station rather than the previ-
ously used Clarendon P.O. station was that Millbrook is centrally located and
its record length encompasses the concurrent record length of the streamflow
sites. Also, all rainfall sites have good quality data and similar characteristics.

As noted previously, Crosby & Maddock [13] cite that the problem of ma-
trix inconsistency is less likely to occur by using a concurrent data set. As
such the records for the above stations were truncated to their concurrent data
period, of 1939 to 1980. This is still a reasonable length to use for our purposes.

Using the above data records the same procedure to determine model pa-
rameters was completed i.e.

e Find the location parameter for each site and month for a 3—parameter
log-normal distribution.

e Decide if the above parameters are reasonable and alter if required.

¢ Determine the coeflicients for the multisite model using the above and
then use the model to forecast data.



CHAPTER 5. RESULTS 72

Table [5.5] shows the location parameters computed for each site and month
given (i) the full length of record & (i7) the concurrent length of record (1939-
1980). The results support the premise that the streamflow data does in
fact conform to a stationary process, as the parameters are not too different
between the two data records.

The data and subsequent parameters computed were in fact found to generate
data well, with good correspondence between generated and historical statis-
tics. Tables [5.6] & [5.7] show how well the model preserves the moments of
each distribution during generation mode. The results are for the Onkaparinga
streamflow station and are the summation statistics based on a five site mul-
tiperiod model where eighty replicates of eighty years of data were generated.
Table [5.6] has the location parameter determined from a Zero Skew approach,
whereas table [5.7] has the location parameter determined from Matalas mo-
ment transformation equations .

Comparing the generated vs historical values shown in tables [5.6] and [5.7]
given two different procedures for transforming the historical data, it can be
seen that the first three moments have been fitted by the moment transforma-
tion equations better than by the zero skew method, although the zero skew
method still fits the data well. This is not surprising since the moment trans-
formation method is designed to specifically reproduce the values for the first
three moments of a distribution.

Comparison of both the median statistic and percentage zero value, indicates
that the zero skew method has fitted the historical distribution better as it
has replaced the lower end of the distribution more correctly than that of the
moment transformation method.

Given that our most critical operating stages are during, or a result of, the low
flow periods then fitting the lower end of the distribution is of more importance
here, than particular values of distribution moments.

For the data used the location parameters could not just be set to zero when
using moment transformation equations, as suggested by McMahon & Mein
[36] if high percentage zero values are encountered, as this would result in a
small or nil percentage zero value being generated. This simply is a result of
the data being used for this study.

The reason for showing these tables when comparing forecasting models is
to indicate that the ability of a model to reproduce sample statistics when
used for generation is not a good indication of its ability to perform when
forecasting. This places in perspective the difficulties that lie ahead for this
form of hydrologic analysis.



Comparison of Location Parameters, Full Length vs Truncated Data Records

Site Record | January | February | March | April | May | June | July | August | September | October | November | December
South Para Full 400 | -342 | normal | -261 | -33 | 53 | 420 | -712 647 44 234 7325
Truncated -400 -342 normal | -261 | -33 | -533 | -429 -712 -647 -44 -234 -325
Myponga. Full -64 18 265 | -95 | 166 | -34 | -323 | -2503 50 23 -16 normal
Truncated -59 -19 -284 -125 | 156 | 105 | -293 | -1937 98 14 -48 normal
Gumeracha | Full 211 | -166 | -215 | -1 | 20 |-102 | -165 | -710 | -102 21 83 69 |
Truncated | -241 -165 321 | -5 | 42 | 7 | 229 | -569 -243 3 -96 8T
Onkaparinga|  Full | 0 -436 0 [ -84 [ -61 [-322-1367 | -4815 | -1095 -140 -292 -762
Truncated | -3730 -461 3481 | -99 | 58 | -4 |-2089 | -3137 822 283 222 -1160
Millbrook | __ Full 55| 52 | -35 | -220 | -436 | -249 | 944 | -3051 | 403 | -536 219 -82
Truncated | -38 53 12 | -422 | -299 | -387 | -1570 | -883 225 | -358 330 | 229

Table 5.5: Comparison of Location Parameters, Full Length

Data Records

vs Concurrent
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Onkaparinga Generation Values (M) - Zero Skew Transformation

Statistic | Type | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | oCT | NOV | DEC
Minimum | Hist. || -1381 | -405 | 490 | 78 | 114 | 97 | 779 | 1741 | 953 | 840 | 50 | -443
Gen. || -955 | -339 | -389 | -50 | 149 | 186 | 81 | 96 | 495 | 594 | 19 | -361
Maximum | Hist. || 2859 | 5027 | 946 | 16984 | 26617 | 62725 | 69879 | 66025 | 39687 | 31054 | 14061 | 2844 |
Gen. || 2206 | 4511 | 1043 | 8969 | 33355 | ***** | 04448 | 95116 | 68228 | 76089 | 19636 | 3248 |
Mean | Hist. | 367 | 515 | 270 | 1080 | 3544 | 8665 | 15858 | 18079 | 11997 | 7606 | 2795 | 827
Gen. || 362 | 495 | 273 | 064 | 3433 | 9292 | 16118 | 18437 | 12320 | 8107 | 2830 | 828
Median | Hist. || 311 | 272 | 232 | 524 | 1830 | 3258 | 13393 | 15875 | 7965 | 460L | 1366 | 708
Gen. || 321 | 238 | 264 | 521 | 1768 | 3879 | 11406 | 14152 | 8704 | 4536 | 1782 | 711
Std. Dev. | Hist. || 664 | 1133 | 295 | 2595 | 5464 | 12919 | 14639 | 14338 | 10253 | 7979 | 3021 | 705
Gen. || 648 | 851 | 296 | 1418 | 5206 | 18577 | 16209 | 16688 | 12146 | 11554 | 3303 | 707
Skew | Hist. || 1.368 | 3.500 | 0.205 | 5.473 | 2.968 | 2.557 | 1.652 | 1.148 | 1.066 | 1.524 | 1.850 | 1.019
__[Gen. |[ 0,407 | 2.283 [ 0.207 | 3.281 | 3.309 | 3.996 | 2.355 | 2.072 | 2.204 | 3.400 | 2.661 | 0.97
% below | Hist, | 14 | 21 | 14 ) 0 0 | 0 0 01 01 2 [ 5
zero Gen. __31 30 18 5 0 0 1 1 0 0 _i 8

(¥**** _ Value inexcess of 100,000 MI)

Table 5.6: Onkaparinga — Generation Statistics, Zero Skew Transformation
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Onkaparinga Generation Values (Ml) - Moment Transformation

Statistic | Type | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NoV | DEC
Minimum | Hist. || -1381 | 405 | 400 | 78 | 114 | 97 | 770 | T4l | 953 | 800 | 50 3D
Gen. || -673 [ -639 | -545 | -905 | -2243 | -6275 | -4541 | -5007 -5139 | -3887 | -1247 | -520 |
Maximum | Hist. [ 2859 | 5927 | 946 | 16984 | 26617 | 62725 | 69879 | 66025 | 39687 | 31054 | 14061 | 2344 |
Gen. [ 2863 | 10977 | 1295 | 13360 | 27936 | 59663 | 69818 | 65338 45208 | 36186 | 15080 | 4400

[‘Wean Hist. | 367 | 515 | 270 | 1080 | 3544 | 8665 | 15858 | 18070 11997 | 7606 | 2795 | 827
Gen. || 383 | 799 | 283 | 1116 | 3578 | 8579 | 15534 | 17991 11915 | 7659 | 2833 | 893

Median | Hist. | 311 | 272 | 232 | 524 | 1830 | 3258 | 13393 | 15875 | 7965 | 4601 | 1366 | 708
Gen. || 245 [ 211 [ 270 | 319 | 2019 | 5246 | 12585 | 15551 10443 | 6076 | 2119 | 713

Std. Dev. | Hist. || 664 | 1133 | 205 | 2505 | 5464 | 12910 | 14630 | 14388 | 10253 | 7979 | 3021 | 703
Gen. || 704 | 1895 | 372 | 2453 | 5390 | 12416 | 14103 14242 | 10157 | 7825 | 3032 | 917
Skew | Hist. || 1.368 | 3.500 | 0.205 | 5.473 | 2.068 | 2.557 | 1.652 | L1438 | 1.066 | 1522 | 1550 1.019
Gen. [| 1.158 [ 2.885 | 0.247 | 2.686 | 2.082 | 1.695 | 1.362 | 0.963 0.906 | 1.189 | 1.563 | 1.274

Tobelow |Hist. | 14 | 21 | 14 | 2 | 0 | 0 | 0 0 0 | 0 | 2 [ 5
zero Gen. __33 4_1_ 23 L 39 ﬁ_ 25 T B 6 9 l?i 13__ 13

Table 5.7: Onkaparinga ~ Generation Statistics, Moment Transformation
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5.10.3 Key Station Approach

As noted in Sections [5.10.1.1] & [5.10.1.2] difficulties were encountered with
the solution of the [A¢] and [Bt] matrices given inconsistency or near incon-
sistency.

The reasons for this are embodied in the time structure of the data itself and
in particular for the data used for this study given the compilation procedure.

For the analysis undertaken in this study the above problem occurs with the
simultaneous use of the Warren and South Para data sets or the Gorge and
Gumeracha data sets within the same multivariate model, due to their inter-
dependence.

The above case highlights that a “key-station” approach may be appropri-
ate where correlations are high. i.e. remove one of the offending sites from the
multisite model and subsequently correlate the transformed flows at this site
to the transformed flows at another "key site”.

5.10.4 White Noise Analysis

One of the major assumptions made when using the approach adopted in this
study is that the processes describing the variants are stationary (or at least
weakly stationary) and that the model parameters are calibrated on data be-
longing to a normal distribution. If either of these two assumptions are broken
then data will not be generated in the raw domain to mirror that of the historic
data.

The question may then be asked, how do we determine if the above two as-
sumptions are held ? (and if not, what is the degree of difference in the answer

?)

In Section [5.5] it is described how the original data was tested for trends ev-
ident, and that no statistically significant trend was found in the lower order
moments. This is one way of indicating that the data is at least weakly station-
ary, yet gives no indication that both assumptions hold together throughout
the analysis.

One method at our disposal is to analyse the white noise component of the gen-

eration equation. Here, the calibrated model was taken, (z.e. given[A¢] &[B¢] V(t)

and the values for [X]&[X¢_1] over some period of the historic record are used
in the following rearranged equation to compute the white noise components
at each site for each time period.
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et = [Be] 7 {[Z¢] — [Ac][Ze-a]} (5.10)

The data used for this analysis was the period 1940 to 1980 for the sites below

South Para

Myponga
e Gumeracha

e Millbrook R.F. station

The epsilon values (¢;) were computed at each site, for each month and year
over the above period. These (¢;) values represent a set of random components
required to produce perfect forecasts. If the analysis of these values is such
that they may be able to be produced by randomly sampling an N(0,1) distri-
bution, then we can confidently predict that the model will produce reliably
generated data.

The following tests were used to analyse the ¢; values at each site —

¢ Quantile-Quantile Plots (Refer Figure [5.6])

o Q-Q Plots of ¢; values vs corresponding transformed data (Refer Figure

[5.7])

e Histograms
e Time Series Plots

e Lag 0 & Lag 1 Covariance Matrices

The lag zero and one covariance matrices indicated that the epsilon values
were in fact independent of serial and spatial correlation.

All other graphical plots were easily interpreted as the epsilon values being
derived from an N(0,1) distribution.

Thus it may be concluded that the type of model and data used does con-
form to its base assumptions and that the calibration of the model has been
achieved such that meaningful generation results will occur.
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Figure 5.6: Quantile-Quantile Plot for White Noise
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5.10.5 TUnivariate Model

During the development of the multivariate model, it became evident that a
multivariate model had definite shortcomings as well as being time consuming
and possessing a high chance of failure for the operational component of this
study.

A far simpler approach was initiated for comparison with the multivariate
model to determine if the increased effort required was justified. Thus a uni-
variate model was concurrently developed. The model adopted by this study
was a periodic Thomas and Fiering model. See section [3.2]

The generation equation is reproduced here together with the necessary trans-
formation.

o
Ye =19+ P L (yeo1 — yis1) + on\1 — pi(er) (5.11)
t~1
where
ye = In(zy — ) (5.12)
where, % = Mean of normalized values for

time period ¢.
= standard deviation of normalized values.
= lag one autocorrelation coefficient of

the normalized values.
€ = random normal variate.
Yt value of generated series.
Tt flow value in the raw domain.
7, = location parameter for a

three parameter log transformation.

™ 9
~* @
I

A periodic model was chosen to be in line with operational requirements, with
forecasting of data a priority, rather than extensive lengths of continuously
generated data. The computer program developed for this purpose is known
as “SINGEN”. This model is straightforward in development using the same
principles, procedures and parameters from the data analysis phase as for the
multivariate case. No major problems occurred in the development of this type
of model and it has proven to be very successful in application.

5.10.6 Univariate Generation and Forecasting

Generation and forecasting was undertaken using both parametric and mo-
ment transformation approaches to parameter estimation.

It was generally found that the moment transformation equation approach,
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although physically irrelevant, produced superior results for the generation of
monthly data sets of a given number of years, although the parameters used
from the parametric transformation approach produced reasonable data.

Mejia [38] recommends that if the coeflicient of variation of the data is greater
than (0.75), then the third parameter () of the log normal distribution should
be set to zero and the remaining transformed parameters determined from the
moment transformation equations. This has the effect of reducing the number
of generated negative values. This was not attempted here.

During forecast mode, the Matalas moment transformations did not always
backtransform to reasonable results for individual cases, thus relying on a
parametric transformation approach to be used for forecasting.

The method of forecasting used is based upon running the generation equation
approximately (100) times using the previous months value as an initialization.
The forecast adopted was the mean or median (both were investigated) of the
(100) values generated.

The generation equation, given above is of the form -
Y41 = Coef ficient * (y;) + Stochastic Component

From this it can be seen that for (100) replicates (or ideally, an infinite se-
ries) that the expected value of the stochastic component will tend to zero for
N(0,1) randomly generated values. Thus the procedure for forecasting data is
based solely on the deterministic component of the equation.

The above was proven graphically by producing (100) stochastic forecasts for
each month of the year at the Myponga streamflow gauging station, and su-
perimposing the deterministic forecasts, for various values of the yield for the
previous month.

(Refer to figure [5.8] for comparison of forecasts)

The result indicated that the deterministic line coincided approximately with
the average of the stochastic line. The stochastic line had large variations in
forecasts for small variations in initializing values due to the random compo-
nent.

Various performance statistics were used to evaluate the quality of the genera-
tion model. These were based upon running the model over a known historical
record and comparing the percentage and absolute differences of the forecast
values with the historical value.

The model performance was evaluated using updated monthly forecast val-
ues and compared with the use of a constant historical mean as the forecast
value. The performance variables indicate a moderate increase in efficiency for
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Figure 5.8: Comparison of Stochastic & Deterministic Forecasts

forecasts of one to two months ahead in the low flow months and up to three to
four months in the higher flow months. The forecasting model gave no better
results than the unconditional monthly mean for longer forecasting horizons.

Figure [5.9] illustrates the above result. It shows the average percentage of
forecasting error for various lead times at the Myponga site for the month of
August.

The forecasting model is better than the historical mean for lead times of
up to 3 months but no better beyond that.

The operation of water supply systems often involves using a forecast inflow
that has p% probability of exceedance. This study was required to forecast
various values corresponding to many different exceedance probabilities.

In this case the usual testing of models for preservation of statistical moments,
such as the mean, is less important, than the preservation of the tails of the
generated distribution. This will be inherently more difficult as the variability
in magnitude of forecasting values in the tails increases.

The use of the model for making forecasts with a specified probability of ex-
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Figure 5.9: Ave % difference of forecast vs lag

ceedance is detailed in the following sections.

5.10.6.1 One Step Forecasts

For forecasting to assist in operations we need to estimate the value of a future
streamflow which will be exceeded with a specified probability given the most
recent streamflow information. The following univariate model was used in
this study and is expressed in a slightly different terminology.

yie = In(ziy — 1) (5.13)

and
o .
Yig = Ye + %—"(yi,t-l —Gt-1) + 0n\/1 — pleis (5.14)
t-1

where, z;; = streamflow in month (t) and year (i)
yit = transformed streamflow in month (t)
and year (i).
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p%| 50 [ 60 | 70 | s0o [ 90
[@(p) [ 0000 [ -0.253 | -0.524 | -0.842 | -1.282 |

Table 5.8: Normal Distribution Values given Exceedance Levels

€t = standard normal variate
for month (t) and year (i); N(0,1)
T = location parameter for month (t)
Jt = mean of y;; for month (t)
o = standard deviation of y;,
for month (t)
Pt = correlation coefficient between y;; and y; ;1

Now, let yf,|i:—1 be the value of y;; which is exceeded with probability p
given a known value §;;_;. Substituting ;.1 for yi;_1 in Equation [5.14], it
is apparent that the only random variable on the right hand side is €;¢. As €it
is normally distributed with zero mean and unit variance, therefore, y; ¢|9: : 1
will also be normally distributed.

From Equation [5.14]:

X L poy _
Elyslgie1] = T+ 22 (§igo1 — Gosa) (5.15)
t—1
and
Varly; ilfic1] = o7(1 — p?) (5.16)

where E[X] denotes the expected value of X
and Var[X] denotes the variance of X.

Hence yz ¢|¥i+—1 can be found using tables of the standard normal distribution.

. . _ Ot . =
ve. Yhilfiz-1 =T + it (Fi,t-1 — Fe—1) + P(p)ory/1 — p? (5.17)

Ot

Values of ®(p) are given in Table [5.8].

Equation [5.13] describes a deterministic, monotonic relationship between (y; ;)
and (z;.). It follows, therefore, that z}4|%it-1 can be found from y?,|9;—1 by
using the inverse of Equation [5.13].

ie. x|&iio1 = exp(yllPie-1) + T (5.18)
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Therefore to estimate a one-step forecast of a:‘f' ¢ given the previous value £;,; 1,
Equations [5.17] and [5.18] should be used. The value §;;_; can be determined
by substituting £;;_; in the right hand side of Equation [5.13].

5.10.6.2 Multiple Step Forecasts

Equations similar to [5.14] can be developed for multiple step forecasts of y; ;.
For the two step case we obtain —

a,
Yit+1 = Je41 +/ﬁ;pt¢(yi,t—1 —§e-1) tova{per1\/1 — pleic+\/1 — plis€iner }
-1

(5.19)
and for the (m) step case -

PtymPtym—1 + - + Pt0t+m(
Jt-1

+0ttm{PtamProm-1 + - - + prs1 V1-— pleis+ -+

+ptamPram-1\1 = pLm_2€ittm—aF+Ptem\/1 — Pl 1€itema1+\/1 — pHm€itim}

(5.20)

Yit+m = Jt41 + Yit—1 — Je—1)

From Equation [5.20]:

PrbmPrimed T POMR Gy~ Gir)  (521)

E[yi.t+m|gi,t—1] = Yt4+m +
Ot-1

Var[yi.t+m|3}i.t—l] . at2+m{pt2+mpt2+m-l s 'Pt2+1(1 - P?) R
+ p?+mp?+m—1(1 - p?+m—2) + p?—{-m(l - pt2+m—1) + (1 - p;z+m)} (522)
Therefore —

Yoeldie—1 = ElYitrm|fisa] + ‘I’(P)\/ Var(yi it m|Jie-1] (5.23)

where values of ®(p) are given in Table [5.8].
To find values of z¥,,,.|%i:_1, use of the following is made —

e Find (§i;—1) by substituting (£;,—:) into the RHS of Equation [5.13]

e Find (yf,,,[fi¢-1) using Equations [5.21] & [5.22] and a specified value
of (p)

e Find (zf,,,,|%i:1) using the inverse transformation of equation [5.18]

From examination of Equations [5.21] and [5.22] it can be seen that as pyy,, < 1
and (m) becomes large —

E[y£t+m|gi.t—1] = Feem = EYit4m) (5.24)
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and the conditional distribution of y; .. approaches the unconditional distri-
bution.

Values of the conditional forecasts a:f-’, t+m|&it—1 calculated using the above pro-
cedure compared well with those using Monte Carlo simulation of Equations
[6.13] and [5.14] with (100) replicates, as shown in Figure [5.8].

5.11 Forecasting

Four models were used for comparison, these being —

o Multisite model with Zero Skew Transformation
o Multisite model with Moment Transformation
e Single site model with Zero Skew Transformation

Single site model with Moment Transformation

The control used for model comparison was the unconditional median of an
historical series. That is, for each site and month the unconditional median
value of the series was used throughout as the forecast value and the perfor-
mance parameters calculated accordingly. The historical median was found to
perform better than the historical mean for this purpose.

A comparison of models used was undertaken to identify which model pro-
duces the highest performance and the differences between model performance.

A set of forecasts was made starting at some point in the historical record.
The historical value was used to initiate the model and forecast the next twelve
months of data. Two forecast values were chosen for comparison, namely the
mean and median forecast of some (V) replicates. The above procedure was
completed over a period of historical record, usually 1940 to 1979 (i.e. 40 yrs)
as this is the concurrent data record for all sites that the program used can
complete the forecasting procedure over.

It was found that the median forecast is superior to the mean forecast in
almost all cases. Tables [5.9] to [5.13] show for each site the overall monthly
performance parameters for a Lag 1 forecast. Only Lag 1 has been shown as
this will obviously show the best forecast. As shown in Figure [5.9] the differ-
ence between using a forecasting model as opposed to using an unconditional
value throughout rapidly converges at a lag of approximately three periods
after initialization.
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The two parameters chosen to best illustrate the general results of each fore-
casting model, are —

e Mean Percentage Difference between forecast & historical value for Lag
1.

e Mean Absolute Difference between forecast & historical value for Lag 1
in (Ml).

We can conclude from observation of Tables [5.9 to [5.13] that the multisite
zero skew model generally provides the best forecast, followed by the single
site, zero skew model. There is little to choose between the multisite and sin-
glesite Matalas models but both are inferior to the zero skew models.

The tables in fact show that even the best model does not do any better
than using the unconditional median for approximately 30% of the months,
with these months generally being January to March.

The multisite model using Matalas moment transformation equations may
be rejected as an operational tool as it is inferior to using the unconditional
median for more than 50% of the months.

5.12 Application to Operational Hydrology

On the basis of the performance parameters used in making a comparison
between the multivariate and univariate models developed, it was decided to
adopt a univariate model for streamflow yield generation. The performance of
the multivariate model was only slightly better than the univariate model and
required more time and effort to produce results.

On the above basis, a univariate monthly Thomas & Fiering model was chosen
to forecast streamflows at individual sites. The model is given as Equations
(6.13] and [5.14]. The procedure outlined in Section [5.11.1.1] was used to
forecast streamflows with specified probabilities of exceedance.

The resultant forecast streamflows were used as the streamflow input to an
optimization model used for minimizing operational costs to the Adelaide
metropolitan water supply system.

The optimization model (called HOMA) is described by Dandy & Crawley,
[15]

HOMA is an optimisation model of the Adelaide Headworks system. It uses
forecast streamflow yields for the metropolitan water supply catchments to aid



South Para Streamflow Station - Lag 1

— — — — — =_J
Statistic Model JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC
Unconditional
Median 97 96 161 | 475 | 360 | 297 | 362 | 302 | 454 | 517 | 388 | 163
Multisite
Average Zero Skew 160 | 234 | 310 | 512 | 587 | 210 | 113 | 71 | 114 | 200 | 201 | 183
% Difference Single Site
based on the Zero Skew 355 | 202 | 237 | 461 | 671 | 223 | 143 86 119 | 203 | 226 | 158
Median Forecast Multisite
Matalas 155 | 253 | 740 | 432 | 730 | *** | 156 | 194 | 255 | 357 | 501 | 229
Single Site
- _Matalas 416 | 237 | 264 | 435 887 | 692 | 257 | 221 | 246 | 418 | 386 182 |
Unconditional
Median 134 | 175 | 110 | 188 | 945 | 3239 | 4533 | 6166 | 4571 | 2495 | 631 | 162
Multisite
Average Zero Skew 143 | 185 155 194 987 | 2851 | 3025 | 3561 | 2964 | 2290 | 464 | 134
Absolute Error Single Site
based on the Zero Skew 134 | 167 98 189 | 985 | 2857 | 3610 | 3653 | 3314 | 2261 | 501 160
Median Forecast Multisite
Matalas 139 | 193 | 255 | 209 | 1047 | 3227 | 3076 | 3739 | 3104 | 2434 | 539 | 144
Single Site
Matalas 134 | 186 | 100 | 188 | 998 | 3293 | 3721 | 3935 | 3372 | 2366 | 538 | 160

Table 5.9: South Para - Forecasting Model Statistic Comparison

*** — Value is in excess of 1000%
Note: Minimum forecast error is shown in bold

SLTINSHAY 'S HALdVHD
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Myponga Streamflow Station - Lag 1

Statistic Model JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC
Unconditional T N ]
Median k% | 618 96 64 56 82 97 124 94 73 60 B
Multisite
Average Zero Skew Rk | 554 | 102 | 44 53 68 66 63 59 71 36 | *xx
% Difference Single Site
based on the Zero Skew *x 1190 62 50 54 69 65 72 67 70 35 A
Median Forecast Multisite
Matalas k*x 1 508 | 100 46 78 91 81 78 63 86 44 i
Single Site
Matalas 842 48 84 48 66 102 98 86 69 75 44 S
Unconditional
Median 147 | 155 | 116 | 162 | 587 | 1824 | 2598 | 2558 | 1984 | 882 | 250 | 134
Multisite
Average Zero Skew 159 | 157 | 128 | 129 | 560 | 1608 | 2132 | 1672 | 1420 | 899 | 206 | 92
Absolute Error Single Site
based on the Zero Skew 138 | 152 85 142 586 | 1515 | 2271 | 1983 | 1609 | 864 | 194 | 101
Median Forecast Multisite
Matalas 167 | 186 | 137 | 138 | 582 | 1665 | 2254 | 1784 | 1420 | 892 | 209 | 180
Single Site
Matalas 148 | 153 98 123 | 583 | 1611 | 2428 | 2065 | 1571 | 872 | 209 | 112

¥FF _ Value is In excess of 1000%

Note: Minimum forecast error is shown in bold

Table 5.10: Myponga — Forecasting Model Statistic Comparison

SLINSHY ¢ HHLdVHO

68



Gumeracha Streamflow Station - Lag 1

= — —T — == = =T == — —
Statistic Model JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC
Unconditional
Median 79 69 7 255 99 225 | 174 | 257 183 163 | 146 | 118
Multisite
Average Zero Skew 112 | 124 | 96 185 | 108 | 146 | 122 | T1 99 92 74 67
% Difference Single Site
based on the Zero Skew 111 | 138 106 266 113 178 141 101 120 98 79 67
Median Forecast Multisite
Matalas 91 73 129 | 149 | 216 | 446 185 196 148 169 | 102 78
Single Site
Matalas 85 | 110 | 104 | 243 | 190 | 541 290 180 | 208 142 | 129 71
Unconditional
Median 92 137 71 104 | 545 | 2134 | 3466 | 4415 | 3028 | 1723 | 447 | 173
Multisite
Average Zero Skew 100 | 150 71 99 | 532 | 1718 | 2705 | 2396 | 2386 | 1562 | 298 | 122
Absolute Error Single Site
based on the Zero Skew 98 156 73 96 544 | 1795 | 2843 | 3298 | 2897 | 1622 | 318 | 122
Median Forecast Multisite
Matalas 97 | 142 98 107 | 567 | 2072 | 2870 | 2675 | 2414 | 1790 | 299 | 120
Single Site
Matalas 92 | 161 68 102 | 565 | 2098 | 3003 | 3435 | 2846 | 1684 | 324 | 135

Note: Minimum forecast error is shown in bold

Table 5.11: Gumeracha ~ Forecasting Model Statistic Comparison

SLINSHY 'S HHLdVHO
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Onkaparinga Streamflow Station - Lag 1

Statistic Model JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT NOV | DEC
_- Unconditional || T . - o -
Median 269 | 156 | 389 | 203 130 172 174 126 106 106 155 | 205
Multisite
Average Zero Skew 248 | 146 | 442 | 151 | 104 87 87 54 62 76 98 154
% Difference Single Site
based on the Zero Skew 230 | 138 | 442 225 | 102 96 92 72 76 78 86 169
Median Forecast Multisite
Matalas 255 | 128 | 444 118 207 164 105 79 79 122 107 227
Single Site
N Matalas | 221 | 148 378 2£S 157 | 201 145 | 83 98_ 103 | 164 178__
Unconditional
Median 393 | 493 | 224 | 837 | 2658 | 6954 | 9825 | 10733 | 7755 | 5269 | 1886 520
Multisite
Average Zero Skew 413 | 502 199 811 | 2553 | 5901 | 7508 | 7445 | 5961 | 5054 | 1342 | 403
Absolute Error Single Site
based on the Zero Skew 393 | 487 | 199 | 841 | 2589 | 6078 | 8924 | 8325 | 7017 | 4907 | 1417 453 .
Median Forecast Multisite
Matalas 431 | 522 | 249 | 968 | 2742 | 6242 | 7849 | 7831 | 6189 | 5360 | 1407 | 598
Single Site
Matalas 401 | 689 | 195 | 937 | 2510 | 6002 | 9400 | 8489 | 7020 | 5110 | 1496 454

Note: Minimum forecast error is shown in bold

Table 5.12: Onkaparinga — Forecasting Model Statistic Comparison

SLINSHY S HdLdVHO
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Millbrook Rainfall Station - Lag 1

— — T_ — — — — —
Statistic Model JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT NOV | DEC
Median 128 | 202 | 226 | 193 72 81 | 47 51 57 | 149 | 136 | 127
Multisite
Average Zero Skew 159 | 190 | 275 | 159 | 85 69 | 44 | 36 | 50 | 148 | 144 | 125

% Difference Single Site
based on the Zero Skew 163 | 155 | 260 | 177 85 74 46 49 57 157 | 122 | 118

SLINSHY "¢ HALJdVHD

Median Forecast Multisite
Matalas 208 | 194 366 173 94 81 44 42 54 168 140 152

Single Site
I\/E,tala.s__ 195 | 179 344_ 190 82 80 49 50 67 155 131 134

Unconditional
Median ° 201 | 257 | 208 402 | 535 | 454 | 429 | 394 | 418 | 411 234 | 180
Multisite

Average Zero Skew 212 | 256 | 209 | 382 | 570 | 425 | 409 | 308 | 349 | 413 | 211 | 173

Absolute Error Single Site
based on the Zero Skew 212 | 250 | 214 414 569 | 445 | 441 | 358 | 415 | 411 208 183

Median Forecast Multisite
Matalas 218 | 256 242 409 595 453 | 411 | 319 | 357 | 415 | 206 | 222

Single Site
Matalas 215 | 263 212 407 | 558 | 441 | 446 | 361 | 443 | 413 221 187

Note: Minimum forecast error is shown in bold

Table 5.13: Millbrook — Forecasting Model Statistic Comparison

é6
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in identifying optimum pumping decisions, which minimize costs and increase
water quality to the city of Adelaide.

The forecast inflows currently used in the optimization model follow the method
employed by the Pumping Engineer (E.&W.S.). This method uses a fixed ex-
ceedance value for a particular month for any given year. This value is derived
from taking the 90% exceedance “year” and distributing this annual value to
each month in proportion to the monthly yield in an average year. The method
is only modified in very dry years, when the minimum recorded yield for the
particular month is used.

Previous experience with the optimization model has shown that potential
savings of up to 20% of total pumping costs can be achieved if perfect fore-
casts of monthly yields were available (Crawley & Dandy, [15]). The model
uses a fixed twelve month window and bases its pumping policy on the inputs
during that twelve month period (i.e. a water year), by stepping from one
month to the next in the year and using forecast inputs for future months and
actual values for past periods.

A more realistic approach is to continuously update the forecasts on a monthly
basis using the most recent data as the optimization model steps through each
period. In order to do this some of the source codes for the optimization pro-
gram was revised to continuously update the forecasts using values from the
univariate model developed in this study.

Chapter [4] outlines the two systems that metropolitan Adelaide is divided

into. A separate optimization model is used for each system. Each model was
run using the following cases for streamflow input forecasts.

e Monthly values based on a 90% exceedance year.

Perfect values (i.e. the actual streamflow yields)

¢ Use of constant monthly 90% exceedance value

e Use of constant monthly 70% exceedance value.

e Continuously updated monthly 90% exceedance values.

¢ Continuously updated monthly 70% exceedance values.

The inputs for the constant exceedance value forecasts for the above runs are
shown in Tables [5.15] to [5.17], and the results of the optimization runs are
shown in Tables [5.18] & [5.19].

In Tables [5.18] & [5.19] “historical” refers to the estimated costs actually
incurred by the E.&W.S. during the period. The results indicate that using
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Northern System
Annual 90% Exceedance Yields
Month | Warren | South Para | Little Para | Millbrook | Kang. Ck. | Hope V.

Jul 210 700 590 1734 413 453
Aug 300 1000 890 2274 542 594
Sep 190 690 590 1721 410 449
Oct 70 260 230 754 180 196
Nov 20 80 90 233 56 61
Dec 0 30 40 107 25 28
Jan 0 20 20 53 13 14
Feb 0 20 30 47 11 12
Mar 0 10 10 40 10 10
Apr 0 60 60 153 37 40
May 30 230 230 334 80 86
Jun 120 340 340 1154 275 301

Table 5.14: Northern System Annual 90% Exceedance Yields

70% monthly exceedance values is very similar to using 90% annual exceedance
values. Unfortunately the use of the updated forecasts does not show marked
improvements compared with the use of constant values. The reason for this
is difficult to determine. The forecasting model does give improved forecasts
for one or two months lead times in low flow months (except for January
to March) and three to four months in high flow months. The operational
decisions, particularly pumping from the River Murray, depend more on the
low flow periods than the high. Thus during the critical times (October to
March) the forecasting model gives a limited improvement over the use of
unconditional exceedance values.

This is undoubtedly due to the high variability and low monthly serial corre-
lation during these periods.

On the positive side, the models developed can be used for the following pur-
poses —

e to give monthly exceedance values at all sites for various probabilities of
exceedance.

o to synthetically generate long streamflow sequences which can be used
in the study of system reliability over a reasonable time horizon.
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Southern System % Exceedance Yields (Ml)
Myponga Mt. Bold
Month || Annual [ Monthly | Annual | Monthly
90% |[90% | 70% || 90% | 90% | 70%
Jul 1550 | 682 | 1848 3600 | 2224 | 5870
Aug 1600 | 872 | 1861 5290 | 3526 | 8695
Sep 1090 | 568 | 1187 6450 | 2379 | 5243
Oct 450 290 | 621 4930 | 1252 | 2919
Nov 200 182 | 317 2100 592 | 1026
Dec 130 87 | 238 720 75 | 246
Jan 120 94 | 188 260 10 71
Feb 130 92 | 171 130 0 30
Mar 100 79 | 158 120 19 31
Apr 150 147 | 264 80 21 96
May 370 295 | 409 250 170 | 935
Jun 970 401 | 752 1070 994 | 2398

Table 5.15: Southern System Yields
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Northern System
Monthly 90% Exceedance Yields (Ml)

Month | Warren | South Para | Little Para | Millbrook | Kang. Ck. [ Hope V.
Jul 42 306 122 244 305 333
Aug 107 407 158 728 431 471
Sep 72 275 117 469 242 265
Oct 5 139 142 276 142 155
Nov 0* 17 69 110 102 112
Dec 0* 0* 27 21 22 24
Jan 0* 0* 18 27 0 0
Feb 0* 0* 5 16 0 0
Mar 0* 0* 18 18 0 0
Apr 0* 9 43 23 0 0
May 0* 46 78 52 74 81
Jun 0* 76 103 66 185 202

(* indicates a negative value was truncated)
Table 5.16: Northern System Monthly 90% Exceedance Yields
Northern System
Monthly 70% Exceedance Yields (Ml)

Month | Warren | South Para | Little Para | Millbrook | Kang. Ck. | Hope V.
Jul 335 1099 389 1146 601 658
Aug 1241 638 631 1628 860 941
Sep 482 362 480 1035 1075 1177
Oct 145 213 193 555 470 514
Nov 24 127 112 209 203 222
Dec 0* 31 75 64 116 127
Jan 0* 8 37 48 34 37
Feb 0* 0* 30 33 13 15
Mar 0* 0* 40 39 0 0
Apr 0 45 59 38 59 64
May 30 184 100 112 139 152
Jun 67 319 187 309 309 339

(* indicates a negative value was truncated)

Table 5.17: Northern System Monthly 70% Exceedance Yields
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Southern System

Year Historical | Annual | Perfect Constant Monthly Update
90% 90% 0% 90% 70%
75/76 0.041 0.272 | 0.232 | 0.559 [ 0.268 | 0.558 | 0.316
76/ 4.104 2.991 2.844 | 3.061 | 3.005 | 3.062 | 3.006
77/78 4.442 3.896 | 3.863 | 3.827 | 3.879 | 3.850 | 3.900
78/79 1.024 0.914 | 0.881 | 0.955 | 0.863 | 0.936 | 0.819
79/80 0.557 0.975 | 0.322 | 1.047 | 0.936 | 1.063 | 0.976
80/81 1.775 1.914 1.929 | 1.958 | 1.931 | 1.950 1.951
81/82 0.247 0.456 | 0.483 | 0.606 | 0.496 | 0.508 | 0.656
82/83 5.340 3.871 3.780 | 3.848 | 3.904 | 3.822 [ 3.870
83/84 0.606 0.992 | 0.541 | 0.992 | 0.971 | 0.989 | 0.830
84/85 0.453 1.190 | 0.697 | 1.323 | 1.170 | 1.256 1.186
85/86 1.786 1.988 | 2.041 | 1.926 | 1.996 | 1.910 1.975
86/87 0.015 0.613 0.342 | 0.697 | 0.599 | 0.672 | 0.590

Sub
Total 20.390 20.072 | 17.928 | 20.799 | 20.018 | 20.576 | 20.075
End of period

Storage 47.48 56.35 | 62.78 | 57.32 | 56.44 | 57.31 58.35
Adj. 0.842 0.354 - 0.300 | 0.349 | 0.301 0.244
Total 21.77 20.43 17.93 | 21.10 | 20.37 | 20.88 | 20.32

Table 5.18: Southern System — Annual Pumping Costs for Optimization Re-

sults $m
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Northern System

Year Historical | Annual | Perfect Constant Monthly Update
90% 90% 70% 90% 70%
79/80 3.398 3.203 1.696 | 3.400 | 3.172 | 3.461 3.271
80/81 3.689 3.537 | 3.342 | 3.545 | 3.491 | 3.553 | 3.418
81/82 1.989 1.920 1.629 | 1.988 | 1.914 | 1.882 1.881
82/83 6.459 5.332 5.117 | 5.258 | 6.321 | 5.259 | 5.310
83/84 2.574 2.496 1.808 | 2.800 | 2.452 | 2.730 | 2.457
84/85 3.658 3.158 | 3.110 | 3.324 | 3.115 | 3.425 | 3.335
85/86 4.242 3.750 | 4.037 | 3.696 | 3.811 | 3.797 | 3.868
86/87 2.168 2.429 1.401 | 2.508 | 2.369 | 2.555 | 2.376
Sub
Total 28.177 25.825 | 22.140 | 26.519 | 25.645 | 26.662 | 25.846
End of period
Storage 70.32 69.10 | 64.36 | 71.74 [ 69.10 [ 69.65 | 67.71
Ad;. 0.082 0.162 | 0.425 — 0.162 | 0.128 | 0.247
Total 28.26 25.99 | 22.59 | 26.52 | 25.81 | 26.79 | 26.09

Table 5.19: Northern System — Annual Pumping Costs for Optimization results

$m




Chapter 6

Summary

6.1 Introduction

This study examined the use of single and multisite time series models for
short term forecasting of streamflows. Such forecasts are useful to assist in the
operations of water supply systems. Forecasting models were developed for
the Adelaide metropolitan water supply system using data from seven Ade-
laide Hills catchments.

These models were then used, in conjunction with an existing optimization
model of the Adelaide headworks system, to determine if improved opera-
tional efficiency could be achieved.

The conclusions reached in the report are summarized below —

6.2 Data

The quality of data to be used in such studies is most important, and cannot
be over emphasized. For this study it was found that the streamflow data suf-
fered from large errors as a result of the procedures used to compile the data
leading to inconsistent results, in terms of both mathematical and physical
properties.

The above problems are mainly the result of the natural streamflows having
been estimated using a water balance procedure which makes adjustments for
pumping and reservoir operations. The additive effect of errors in each com-
ponent in the respective water balance equation used becomes excessive for
two of the data sets (Warren and South Para) and the truncation of negative
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calculated values is too severe for the above two sites to provide meaningful
results.

In addition, the Little Para River data is of limited use due to its short length.
Data lengths should ideally be in excess of 30 years.

The streamflow data can only be described as generally poor, with only the
Myponga River streamflow data behaving reasonably. In general, the data
is highly variable between months and exhibits high skew throughout the
monthly data sets.

No trend in any of the data series was found based on analysis of the annual
moments of each series.

6.3 Transformations

In general, the data was found to conform to a 3-parameter log—-normal dis-
tribution.

Two methods were employed to estimate the location parameter of the three
parameter log-normal data. These were —

e Parametric Transformation —

For this case the location parameter of the distribution was estimated so
as to produce zero skewness in the transformed data. A test for normal-
ity was subsequently made. The technique used was a systematic search,
although the approximate equation given by Loucks et al [35] produced
comparable values for the location parameter.

¢ Moment Transformation Equations —

For this method the moment transformation equations derived by Mata-
las [37] were used to estimate all three parameters of a three parameter
log-normal distribution.

The parametric transformation provided a more realistic or physically relevant
solution to the problem of data transformation, as the method reproduces the
tails of the distribution more realistically than the moment transformation.
Since the low flow months are of most concern operationally, it is the lower
end of the distribution that requires to have the best fit.
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6.4 Tests for Normality

The following tests were all found to be useful in testing for normality. They
are listed in order of priority —

¢ Quantile-Quantile Plots
This test is used if time and resources are available.

e Shapiro-Wilk Test
This test can be used if the sample size is less than (100), or for more
precise results with a sample of less than (50).

o Test of Skewness
This test should be used as an adjunct to the above tests.

6.5 Modelling

Both univariate and multivariate models were evaluated for flow forecasting.
In both cases the models were based on a periodic autoregressive model of the
first order.

6.5.1 Univariate Model

For this study a monthly Thomas anf Fiering [51] model was developed. The
model was found to be straightforward in application and use. Such models
may be developed quickly and easily with considerably less effort than for the
multivariate case.

It was found that the efficiency with regard to forecasting of streamflows using
this model was at least directly comparable to that of the multivariate model.

6.5.2 Multivariate Model

The Autoregressive Multivariate, Multiperiod model is open to failure both by
the nature of the model and by use of the poor data used by this study. The
need to estimate a number of periodic matrices requires only one matrix to be
undefined for model failure.

‘T'wo problems are frequently cited as developing problems with such a model
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and were found to occur for the model adopted by this study. These are —

e The covariance matrix [Mg] used for the definition of the model [A]
matrix may be singular or close to singularity, and thus not allowing
the [A] matrix to be defined since the inverse of this covariance matrix is
used. This is generally the result of high spatial correlation values within
the [Mp] matrix. This was encountered in the study for two catchment
systems which each have two gauging stations used in the operational
model. Obviously the gauging stations sharing the same catchment will

be highly correlated.

If the above problem arises, the model size will need to be reduced until
matrix definition is attained. A key station approach may then be used
to produce data at the sites excluded from the multivariate model.

e The method used to define the elements of the model [B] matrix does
not always lead to real solutions. Since the [B] matrix is not unique, the
method of Cholesky decomposition as adopted by this study does not
guarantee a successful result for all cases. Another method, based on
principal components has been outlined by Rodriguez & Bras [7] which
may overcome difficulties with the definition of elements in the [B] ma-
trix, and is further extended to an approximate solution if all the above
fails using a method developed by Mejia & Millan and shown by Ro-
driguez & Bras [7].

It was found for the complete seven site model, (six streamflow & one
rainfall site), that matrix definition frequently did not occur, and was
further exaggerated if moment transformation equations were used for
parameter estimation. By using a five site model with concurrent data
sets so as to reduce the effect of high station correlation and the like-
lihood of matrix singularity, the model was found to behave well, with
all model matrices being defined, and subsequently producing generated
data comparable in distribution and type to the historical series.

6.6 Generation

Summary statistics for the generation of data derived by the adopted models
may be described as good. The univariate model statistics compare with the
historical statistics on a site by site basis very well and are within two standard
errors of estimate for each parameter evaluated.

The multivariate model produces good summary statistics, but benefits from
a large averaging effect of high numbers of years or replicates used.
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Moment transformation techniques used for model parameter estimation re-
sulted in slightly superior summary statistics for the moments of mean, stan-
dard deviation efc. It was found although, that the percentage zero value
produced was excessively high for the low flow periods of November to Febru-
ary and significantly higher in general than found in the historical data. By
using a parametric transformation, the generated moments still compared well
with the observed values, yet the occurrence of zero flows (or less, for the case
study) fitted the observed data as well as for any moment statistic.

6.7 Forecasting

The ability of a model to forecast data given a good generation model does not
always follow. A comparison of forecast data with historical values over some
forty year period resulted in an overall increase in forecasting quality for only
the first one to three months lead time during the high flow months reducing
to only one to two months for the low flow periods of November to March.

Such time series models have a large attraction toward the average value of a
series and thus find it difficult to follow historic sequences to any significant
accuracy.

The models were evaluated in terms of performance by compiling the average
percentage and average absolute differences between the forecast and associ-
ated historical value for a given site and month. The models may be ordered
from best to worst as follows —

e Multisite model based upon a Parametric Transformation.

Singlesite model based upon a Parametric Transformation

Multisite model based upon a Moment Transformation.

Singlesite model based upon a Moment Transformation

6.8 Application to Operational Hydrology

For the operational component of the study the periodic univariate model was
chosen to forecast data, with the random component of the model set to a
fixed exceedance value for an N(0,1) distribution. This results in explicitly
derived forecast values of a known exceedance level.
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Forecast data was used as input to an optimization model of the Adelaide
Headworks system. The use of a continuously updated forecast, based on the
adopted monthly model, provided no significant increase in system efficiency
compared to the results using a fixed forecast based on historical data. Simi-
lar results were gained for the Northern and Southern Headworks systems for
inflows with various exceedance levels, thus indicating that the optimization
model is relatively insensitive to streamflow forecasts.

Use of the forecasting model does not significantly improve the performance
of the optimization model. This is most likely due to the high variability and
low monthly serial correlation embodied in the data.

By virtue of the type of general model used (i.e an ARMA type model) any
generated value will have a tendency to gravitate toward the mean of the series.
This means that during forecasting the values will only be slightly influenced
by the initialization value, and for lead periods of, at most, three periods.



Chapter 7

Recommendations for Further
Work

7.1 General Recommendations

7.1.1 Estimation of Parameters

It is believed that superior estimation of distribution parameters will be pro-
vided by the use of Robust statistical methods.

This field is relatively embryonic for useful analysis and has not been ex-
tensively researched with respect to the field of hydrology. A suggested course
of action is to review relevant literature and apply some of the methods to
the data used for this study. Such methods may also be used to overcome the
problems outlined above with respect to outliers evident within sampled data.

7.1.2 Modelling

Further investigation is required into the point at which a multi-site model,
as developed by this study, breaks down. Quantitative methods are required
to outline when a multisite model may effectively be used.

A further modelling procedure that may be investigated to overcome this prob-
lem is a two-tier type approach to analysis, where a full multisite model is used
if the [A] and [B] matrices are well defined, or a smaller multisite model to-
gether with key station approach used if it is found that the problem of ill
conditioning is present.
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7.1.3 Model Verification

More work needs to be carried out into the verification of stochastic time se-
ries models in hydrology. In many studies using synthetic data generation a
probability distribution and model form is assumed, with little or no model
verification. In cases where a transformation to normality is used, standard
tests of normality such as the Quantile-Quantile plots or the Shapiro-Wilk
test should be carried out.

7.2 Specific Recommendations

7.2.1 Data

There is definite need to reconsider the procedure for data compilation and
streamflow gauging. It is clear that severe errors/inconsistencies exist within
all data sets used in this study. These will only be remedied by an extensive
re—evaluation of all data in toto.

This work would involve estimating the errors associated with parameters in
the water balance equations used as well as physical checking of the gauging
stations.

7.2.2 Forecasting

Alternative univariate methods for flow forecasting could be applied to the
Adelaide Hills data. For example, a general ARMA model (Box & Jenkins [6])
could be used instead of the first order autoregressive model used in this study.



Bibliography

[1] Anderson T. W. (1957) Mazimum Likelthood Estimates for a Multivariate
Normal Distribution when Some Observations are Missing
(Journal of American Statistical Assessment Vol. 52 pp. 200-203)

[2] Aitchison & Brown (1973) The Log—Normal Distribution
(University of Cambridge — Department of Applied Economics, Mono-
graph 5)

[3] Beard L.R. (1967) Monthly Streamflow Simulation
(Engineering Center, U.S. Corps of Engineers, Washington, D.C.)

[4] Benjamin J.R & Cornell C.A (1970) Probability, Statistics and Decisions
for Civil Engineers
(McGraw-Hill Book Company, New York)

[5] Benson M.A. & Matalas N.C. (1967) Synthetic Hydrology Based on Re-
gional Statistical Parameters

(Water Resources Research Vol. 3 No.4 1967 pp. 931-935)

[6] Box G.E.P. & Jenkins G.M (1970) Time Series Analysis — Forecasting
and Control
(Holden-Day, San Francisco)

[7] Bras R.L. & Rodriguez-Iturbe 1. (1985) Random Functions & Hydrology
(Addison-Wesley Publishing Company)

[8] Burton C. (1988) Management of the River Murray During Periods of
Extended Drought
(Submitted for the Degree of M.Eng.Sc. — University of Adelaide)

[9] Burton C. & Dandy G.C. (1988) Low Flow Analysts of the River Murray

using Synthetic Hydrology.
(Hydrology & Water Resources Symposium 1988, — Canberra pp. 187-
191)

[10] Chandler S, Spoila S, Kumar A. (1978) Flood Frequency Analysis by Power
Transformation

(Journal of the Hydraulics Division ASCE, Vol 104, pp. 1495-1504)

107



BIBLIOGRAPHY 108

[11] Chatfield C. (1975) The Analysis of Time Series: Theory and Practice
(Chapman and Hall, London)

[12] Crawley P.D. & Dandy G.C. (1989) Optimal Operating Policies for Mul-
tiple Reservoir Systems
(University of Adelaide — Civil Engineering Department Report)

[13] Crosby D.S. & Maddock T. (1970) Estimating Coefficients of a Flow Gen-
erator for Monotone Samples of Data
(Water Resources Research, Vol 6, No. 4, pp. 1079-1086)

[14] Dandy G.C. (1988) Developing Reliability—Cost Trade—offs for a Multiple
Reservoir System
(Hydrology & Water Resources Symposium 1988, Canberra pp. 197-200)

[15] Dandy G.C. & Crawley P.D. (1991) Application of Linear Programming
to Planning and Operation of Reservoir Systems with Water Quality Con-
siderations.

(International Hydrlogy & Water Resources Symposium Workshop —
"Real World” Applications of Optimisation Techniques to Water Re-
sources Management.)

(16] Fiering M.B. (1968) Schemes for Handling Inconsistent Matrices
(Water Resources Research, Vol 4, No. 2, pp. 291-297)

[17] Fiering M.B. & Jackson B.B (1971) Synthetic Streamflows
(American Geophysical Union — Water Resources Monograph 1)

(18] Franke J., Hardle W. & Martin D, (Editors), (1984) Robust and Non

Linear Time Series Analysis
(Lecture Notes in Statistics No.26 Springer—Verlag, New York)

(19] Gaundry M. & Laferrierre R. (1989) The Boz—Coz Transformation —
Power Invariance & a New Interpretation
(Elsevier Scientific Publishing Company, Amsterdam)

[20) Hampel F.R, Ronchetti E.M, Rousseeuw P.J, Stahel W.A. (1986) Robust
Statistics — the approach based on influence functions

(John Wiley & Sons Inc, New York)

[21) Harman H.H. (1960) Modern Factor Analysis
(University of Chicago Press)

(22] Harter H.L. (1961) Ezpected Values of Normal Order Statistics
(Biometrica Vol 48, No. 1, pg. 151))

(23] Huber P.J. (1981) Robust Statistics
(Wiley & Sons, New York)

[24] International Mathematical and Statistical Library (IMSL)
Problem solving software for use with Fortran programs.



BIBLIOGRAPHY 109

[25] Jacobs T.A. (1983) Generation of Synthetic Streamflow and Rainfall in
the Adelaide Hulls
(E&W.S. report, No.77/76)

[26] Kite G.W. (1977) Frequency and Risk Analyses in Hydrology
(Water Resources Publications, Fort Collins Colorado U.S.A.)

[27) Johnson & Kotz (1969) Discrete Distributions
(Houghton Mifflin Company, Boston)

[28] Kottegoda N.T. (1983) Investigation of Outliers in Annual Mazimum
Flow Series
(Elsevier Scientific Publishing Company, Amsterdam)

[29] Kottegoda N.T. (1980) Stochastic Water Resources Technology
(The McMillian Press Lt, London.)

[30] Kreyzig E. (1979) Advanced Engineering Mathematics
(John Wiley & Sons, New York)

[31] Kuczera G. (1987) On Mazimum Likelthood Estimators for the Multisite
Lag One Streamflow Model: Complete & Incomplete Data Cases
(Water Resources Research, Vol 23, No. 4, pp. 641-645)

[32] Kuczera G. (1988) The Soil Dryness Index Streamflow Yield Model: An
Overview of its Development and Capabilities
(Hydrology & Water Resources Symposium 1988, Canberra, pp. 103-107)

[33] Lazaro R.C, Labadie J.W & Salas J.D. (1982) Optimal Management of

Multi-reservoir Systems using Streamflow Forecasts
(taken from Time Series Methods in Hydrosciences 17, Elsevier Scientific
Publishing Company, Amsterdam)

[34] Lindner M.A., Samad F.A. & Howell D.T. (1980) The Use of Synthetic
Hydrology in Decision Making in a Complex River Valley
(Hydrology & Water Resources Symposium, Adelaide 1980, pp. 119-127)

[35] Loucks D.P, Stedinger J.R & Haith D.A (1981) Water Resources Systems,
Planning and Analysis
(Prentice Hall, Englewood Cliffs, N.J.)

[36] McMahon T.A. & Mein R.G. (1986) River and Reservoir Yield

(Water Resources Publications, Colorado)

[37) Matalas N.C. (1967) Mathematical Assessment of Synthetic Hydrology
(Water Resources Research Vol 3, No 4, pp. 937-945)

[38] Mejia J.M. (1974) Multivariate Generation of Miztures of Normal & Log-
normal Variables

(Water Resources Research, Vol 10, pp. 691-693)



BIBLIOGRAPHY 110

[39] Nazem S.M. (1988) Applied Time Series Analysis for Business and Eco-
nomzic Forecasting

(Marcel Dekker Inc, New York)

[40] Pankratz A. (1983) Forecasting with Univariate Box—Jenkins Models
(Wiley series in Probability & Mathematical Statistics, New York)

[41] Pearson E.S. & Hartley H.O. (1976) Biometrike Tables for Statisticians
Vol I1
(Cambridge University Press, London)

[42] Becker R.A & Chambers J.M (Editors)
S ~ An Interactive Environment for Data Analysis and Graphics
(Wadsworth Statistics/Probability Series, California)

[43] Salas J.D, Delleur J.W, Yevjevich V, Lane W. (1980) Applied Modelling
of Hydrologic Series
(Water Resources Publications, Colorado)

[44] Salas J.D, & Pegram G.G.S. (1978) A Seasonal Multivariate Multilag Au-
toregressive Model in Hydrology
(Third Int. Hydrology Symposium, Colorado)

[45] Sangal B.P, & Biswas A.K. (1970) The Three Parameter Log-Normal
Distribution & its Applications in Hydrology
(Water Resources Research, Vol 6, No. 2, pp 505-515)

[46] Shapiro S.S, & Francia R.S. (1972) An Approzimate Analysis of Variance
Test for Normality
(Journal of the American Statistical Association, Vol 67, No. 337)

[47]) Shapiro S.S, Wilk M.B. (1965) An Analysis of Variance Test for Normality
(Biometrika, Vol 52, pp. 591-611)

[48] Srikanthan R, McMahon T.A, Codner G.P, Mein R.G. (1983) Theory and
Application of some Multisite Streamflow Generation Models
(Civil Engineering Transactions — Institution of Engineers Aust. Vol 26,
pp- 272-279)

[49] Stedinger J.R. (1980) Fitting Log~Normal Distributions to Hydrologic
Data
(Water Resources Research, Vol 16, No. 3, pp. 481-490)

[50] Stedinger J, & Pei D. (1982) An Annual Monthly Streamflow Model for
Incorporating Parameter Uncertainty into Reservoir Simulation
(In Time Series Methods in Hydrosciences, Elsevier Scientific Publishing
Company, Amsterdam)

[51] Thomas H.A. & Fiering M.B. (1962) Mathematical Synthesis of Stream-
flow Sequences of the Analysis of River Basins by Simulations.
(In, Design of Water Resource Systems — A. Mass et al, Eds. Harvard
University)



BIBLIOGRAPHY 111

[62] Wilkinson J.H (1978) Singular Value Decomposition — Basic Aspects
(In Numerical Software — Needs and Availability, Academic Press, Lon-
don)

[63] Yevjevich V. (1972) Stochastic Processes in Hydrology
(Water Resources Publications, Fort Collins Colorado, U.S.A.)

[54] Young G.Y & Pisano W.C (1968) Operational Hydrology Using Residuals
roceedings of the , Journal of the Hydraulics Division, Vol 94,
P dings of the ASCE, J | of the Hydraulics Division, Vol
pp. 909-923)



Appendix A

Historical Statistics

This appendix contains the historical statistics of the original streamflow yield
data files, as supplied by the E.&W.S. Dept.

The statistics for the Clarendon rainfall gauging station are also given here for
a typical comparison with streamflow characteristics. The stations are —

o Warren River

e South Para River

Myponga River

Onkaparinga River at Clarendon Weir

Torrens River at Gorge Weir

e Torrens River at Gumeracha Weir
e Little Para River

Clarendon P.Q. rainfall station.

Streamflow data is expressed in (Ml) and rainfall in (1/10th mm).
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Catchment : Warren

Start Year : 1939

Period : 46yrs

January | February March | April | May June July August | September | October | November | December

Min 0 0 0 0 0 0 0 0 0 0 0 0
Max 387 504 273 218 | 5544 | 10872 | 15901 | 20708 11432 12916 1966 237
Mean 30.5 39.4 34.6 | 55.7 | 362.2 | 1597.7 | 3321.9 | 4759.9 3169.2 1467.6 254.3 48.0
Median 1.0 7.0 7.0 47.0 | 97.0 183.0 | 1963.5 | 3753.5 1983.0 478.0 70.0 13.5
St. Dev. 67.9 91.4 57.9 58.1 | 887.1 | 2943.5 | 4311.2 | 48484 3346.0 2516.6 418.5 66.4
Coef. Skew | 3.573 3.784 2.240 | 0.799 | 4.535 | 1.948 1.635 1.129 0.949 2.752 2.190 1.308
Lag1 S.C. | 0.168 0.063 0.099 | 0.600 | 0.194 | 0.202 0.712 0.729 0.448 0.333 0.420 0.409
10% exc. 83.0 69.0 98.0 | 122.0 | 752.0 | 4983.0 | 9876.0 | 10656.0 8591.0 3617.0 911.0 147.0
90% exc. 0.0 0.0 0.0 0.0 0.0 0.0 42.0 107.0 72.0 5.0 0.0 0.0

Catchment : South Para Start Year : 1939 Period : 42yrs
January | February | March | April | May June July [ August | September | October | November | December

Min 0 0 0 0 0 0 0 0 0 0 0 0
Max 979 999 462 | 1244 | 11111 | 20407 | 29532 | 29312 27248 18694 5991 901
Mean 106.6 151.1 79.5 | 223.7 | 1078.2 | 3469.6 | 5883.9 | 7753.0 5504 .4 2842.5 707.5 159.3
Median 22.0 21.0 26.5 | 132.0 | 348.5 | 649.0 | 3719.5 | 4578.0 2457.0 1211.0 250.0 61.0
St. Dev. 213.7 266.6 113.7 | 262.2 | 2020.4 | 5865.0 | 7190.4 | 8324.4 5939.3 3932.1 1135.4 218.7
Coef. Skew | 2.531 1.185 1.809 | 1.775 | 3.312 | 1.759 1.889 1.145 1.386 2.085 2.800 1.771
Lag 1 S.C. 0.467 0.341 0.280 | 0.421 | 0.305 0.359 0.728 0.621 0.625 0.267 0.329 0.337
10% exc. 459.0 535.0 212.0 | 605.0 | 3437.0 | 13512.0 | 13299.0 | 18881.0 | 12574.0 8838.0 1715.0 494.0
[ 90% exc. 0.0 0.0 0.0 0.0 30.0 71.0 310.0 402.0 302.0 137.0 10.0 0.0

Table A.1: Warren River & South Para River — Historical Statistics
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Catchment : Myponga

S‘tart Year : 1934

Period : 51yrs

January | February | March | April | May June July | August | September | October | November | December
Min 0 1 27 59 195 85 360 462 290 119 119 0
Max 2138 3419 607 1425 | 4527 | 12169 | 14638 | 15509 14122 6032 1702 594
Mean 288.3 282.3 252.3 | 398.6 | 908.0 | 2387.3 | 4100.9 | 4421.7 2906.1 1361.8 541.4 308.7
Median 264.0 211.0 252.0 | 356.0 | 560.0 | 1191.0 | 2960.0 | 3920.0 2059.0 898.0 448.0 286.0
St. Dev. 303.2 461.7 140.4 | 242.8 | 968.7 | 2619.9 | 3470.8 | 3079.6 2868.4 1312.1 343.0 156.3
Coef. Skew | 4.583 6.145 0.523 | 1.680 | 2.590 | 2.088 1.359 0.938 1.981 1.988 1.434 0.061
Lag 1 S.C. | 0.124 0.417 0.466 | 0.402 | 0.290 | 0.436 0.442 0.567 0.555 0.499 0.496 0.563
10% exc. 384.0 330.0 409.0 | 700.0 | 1808.0 | 5346.0 | 10071.0 | 7556.0 7021.0 2844.0 844.0 528.0
90% exc. 54.0 92.0 79.0 | 147.0 | 295.0 | 401.0 682.0 872.0 568.0 290.0 182.0 87.0
Catchment : Onkaparinga at Clarendon Start Year : 1898 Period : 87yrs
January | February | March | April | May June July | August | September | October November | December
Min 0 0 0 0 34 97 779 962 564 201 0 0
Max 2859 5927 2862 | 16984 | 26617 | 64207 | 81059 | 80446 66429 31054 14061 2844
Mean 338.7 351.3 240.3 | 804.9 | 3273.0 | 10950.2 | 16771.1 | 20181.7 | 15278.2 7029.1 22474 721.8
Median 205.0 74.0 118.0 | 392.0 | 1570.0 | 5289.0 | 11463.0 | 17035.5 | 9798.0 4198.0 1283.0 597.0
St. Dev. 469.0 830.4 366.3 | 1987.0 [ 5109.8 | 13503.2 | 16162.2 | 15793.0 | 14279.0 7212.6 2471.1 655.8
Coef. Skew | 3.185 4.903 3.817 | 6.597 | 3.045 | 2.004 1.591 1.201 1.469 1.734 2.389 1.181
Lag1S.C. | 0.273 0.025 0.293 | 0.181 | 0.505 | 0.436 0.587 0.531 0.267 0.248 0.373 0.480
10% exc. 695.0 554.0 590.0 | 1465.0 | 8506.0 | 27724.0 | 37256.0 | 38824.0 | 36122.0 | 18610.0 5523.0 1810.0
90% exc. 10.0 0.0 19.0 21.0 170.0 994.0 2224.0 | 3526.0 2379.0 1252.0 592.0 75.0

Table A.2: Myponga River & Onkaparinga River — Historical Statistics
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Catchment : Torrens at Gorge Weir

January | February

Start Year : 1884

Period : 100yrs

March | April | May June July | August | September | October | November | December

Min 0 0 0 0 0 151 0 0 203 119 0 0
Max 1895 3735 1179 | 33031 | 18740 | 47532 | 51015 | 47181 35571 32588 8148 3842
Mean 342.7 263.3 188.1 | 848.4 | 1818.4 | 6237.3 | 9271.9 | 12385.8 9617.5 4578.3 1454.0 626.5
Median 248.5 128.0 128.5 | 307.0 | 719.0 | 2784.5 | 5750.0 | 10161.5 7099.5 2928.0 915.0 425.5
St. Dev. 382.3 540.7 235.9 | 3384.0 | 3079.9 | 8714.8 | 10074.3 | 10600.3 8754.6 5624.5 1462.7 601.6
Coef. Skew | 1.978 4.799 1.942 | 8.702 | 3.242 2.162 1.782 0.904 1.126 2.590 2.279 2.264
Lag1 S.C. | 0.263 0.065 0.361 | 0.009 | 0.248 | 0.495 0.637 0.508 0.281 0.313 0.424 0.590
10% exc. 782.0 484.0 482.0 | 1104.0 | 4855.0 | 19056.0 | 20456.0 | 28692.0 | 22200.0 | 10621.0 [ 3119.0 1432.0
90% exc. 0.0 0.0 0.0 0.0 208.0 | 454.0 882.0 | 1631.0 975.0 574.0 323.0 68.0

Catchment : Torrens at Gumeracha Start Year : 1918 Period : 66yrs
January | February | March | April [ May | June July | August | September | October | November | December

Min 0 0 0 0 32 0 39 128 110 69 0 0
Max 1007 1921 812 2898 | 10733 | 40896 | 24092 | 25203 29900 13739 3521 2128
Mean 150.4 150.8 115.0 | 176.2 | 870.7 | 2712.3 | 42324 | 6065.9 4326.8 2122.9 567.2 244.0
Median 71.5 48.0 52.0 65.0 | 193.5 | 651.5 | 1769.0 | 4658.5 2356.0 1090.0 354.5 137.0
St. Dev. 205.3 285.4 156.9 | 385.6 | 1959.5 | 5859.7 | 5132.5 | 5824.7 4908.7 2914.7 627.3 375.1
Coef. Skew | 2.685 4.295 2437 | 5.532 | 3.864 4.538 1.791 1.339 2.432 2.389 2.371 3.177
Lag1 S.C. | 0.272 0.070 0.300 | 0.146 | 0.202 | 0.569 0.706 0.542 0.220 0.369 0.402 0.602
10% exc. 355.0 380.0 288.0 | 346.0 | 1247.0 | 5417.0 | 11517.0 | 13055.0 10404.0 4899.0 1470.0 514.0
90% exc. 27.0 16.0 18.0 23.0 52.0 66.0 244.0 728.0 469.0 276.0 110.0 21.0

Table A.3: Gorge & Gumeracha Weirs — Historical Statistics
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Catchment : Little Para

April

Start Year : 1969

Period : 15yrs

January | February | March May | June | July [ August [ September | October | November | December

Min 0 1 2 6 9 100 Pl 98 8 7 6 2
Max 300 310 232 748 3642 | 4863 | 5126 5995 4230 3434 863 367
Mean 131.2 108.6 84.7 | 146.0 | 378.5 | 903.1 | 1528.1 | 1650.1 1629.5 856.2 293.3 165.1
Median 148.0 100.0 59.0 83.0 | 140.0 | 288.0 | 1475.0 | 1134.0 1200.0 462.0 209.0 188.0
St. Dev. 106.1 93.0 74.4 | 180.6 | 905.9 | 1543.9 | 1412.1 | 1526.9 1511.7 100.5 243.1 116.2
Coef. Skew | 0.183 0.631 0.814 | 2.417 | 3.097 | 1.877 | 0.957 | 1.403 0.610 1.495 0.744 0.135
Lag1S.C. | 0.628 0.645 0.656 | 0.053 | 0.935 | 0.634 | 0.541 | 0.768 0.382 0.400 0.619 0.846
10% exc. 272.0 255.0 216.0 | 258.0 | 324.0 | 4462.0 | 3153.0 | 3144.0 4195.0 2800.0 515.0 318.0
90% exc. 18.0 5.0 18.0 43.0 78.0 | 103.0 | 122.0 | 158.0 117.0 142.0 69.0 27.0

Rainfall G.S. : Clarendon P.O. Start Year : 1875 Period : 114yrs
January | February [ March | April | May | June | July August | September | October | November | December

Min 0 0 0 15 69 147 199 64 160 38 11 0
Max 1586 1380 1750 | 2905 | 2652 | 2927 | 2900 3109 1899 1952 1382 1834
Mean 258.8 256.4 354.7 | 723.3 | 1024.8 | 1168.2 | 1125.3 | 1054.6 833.3 661.6 420.1 362.0
Median 198.5 147.0 262.5 | 624.5 | 947.0 | 1072.5 | 1074.0 | 980.5 755.5 622.0 377.5 314.5
St. Dev. 248.1 282.3 330.8 | 528.4 | 536.7 | 620.0 | 465.8 | 461.4 3974 361.8 2774 282.7
Coef. Skew | 2.192 1.428 1.464 | 1.514 | 0.634 | 0.502 | 0.503 1.351 0.645 0.832 0.883 1.703
Lag1 S.C. | 0.020 -0.035 0.005 | -0.070 | 0.019 | 0.169 | 0.114 | 0.230 0.035 -0.074 0.103 0.026
10% exc. 586.0 683.0 730.0 | 1427.0 | 1744.0 | 2161.0 | 1708.0 | 1559.0 1391.0 1160.0 780.0 676.0
90% exc. 28.0 5.0 33.0 150.0 | 376.0 | 398.0 | 506.0 | 550.0 366.0 223.0 99.0 49.0

Table A.4: Little Para & Clarendon rainfall - Historical Statistics
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Appendix B

Revised & Transformed
Statistics

This appendix tabulates the historical and transformed statistics of the final
streamflow data sets adopted for analysis. The Clarendon rainfall station
values are also given for comparison with streamflow data.

Streamflow data is expressed in (Ml), and rainfall in (1/10th mm). The stations
are —

e Warren River

e South Para River

e Myponga River

e Onkaparinga River at the Clarendon Weir
e Torrens River at the Gorge Weir

¢ Torrens River at the Gumeracha Weir

e Little Para River

e Clarendon P.O. rainfall station.

117



Catchment : Warren

Start Year : 1939

HISTORICAL STATISTICS

Period : 46yrs

January | February | March | April | May | June July [ August | September | October | November | December
Min -210 -198 -327 -101 -67 -62 0 -2 -30 -63 -89 -87
Max 387 504 273 218 5544 | 10872 | 15901 | 20708 11432 12916 1966 237
Mean 8.2 21.9 14.0 46.6 | 357.7 | 1594.0 | 3320.4 | 4760.0 3168.0 1465.8 246.0 33.5
Median 1.0 7.0 7.0 42.5 97.0 | 183.0 | 1963.5 | 3753.0 1983.0 478.0 70.0 13.5
St. Dev. 87.0 104.8 86.7 69.3 | 889.0 | 2941.5 | 4311.2 | 4848.5 3347.2 2517.7 424.1 79.7
Skew 1.653 2.597 -0.483 | 0.262 | 4.519 | 1.948 | 1.636 | 1.129 0.948 2.749 2.138 0.804
Lag 1 0.338 0.206 0.265 | 0.307 | 0.212 | 0.205 | 0.713 | 0.729 0.448 0.334 0.420 0.439
10% exc. 83.0 69.0 98.0 122.0 | 752.0 | 4983.0 | 9876.0 | 10656.0 8591.0 3617.0 911.0 147.0
90% exc. | -59.0 -57.0 | -50.0 | -36.0 | -14.0 | -5.0 42.0 107.0 72.0 5.0 -44.0 _-54.0
TRANSFORMED STATISTICS
Mean 6.05 | 5.75 231 [ 4661 [ 515 [ 586 | 7.35 | 8.31 770 6.35 '5.26 506 |
St. Dev. 0.19 0.28 1.97 69.25 | 1.37 1.91 1.40 0.90 1.06 1.49 1.09 0.46
Loc. Par | -425 -304 -10 | normal | -67 -62 -184 -1094 -453 =17 -97 -140
Skew -0.046 -0.038 | -0.025 | 0.262 | -0.583 | -0.072 | -0.049 | -0.050 -0.050 -0.036 -0.047 -0.050
Lag 1 0.488 0.296 0.397 | 0.434 | 0.464 | 0.753 | 0.752 | 0.760 0.726 0.516 0.534 0.559

Table B.1: Warren River statistics
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Catchment : South Para

]

March

Start Year : 1939

Period : 42yrs

HISTORICAL STATISTICS

January | February [ April | May June July | August | September | October | November | December
Min -278 -266 -447 -160 -19 -44 75 136 -37 15 -202 -216
Max 979 999 462 1244 | 11111 | 20407 | 29532 | 29312 27248 18694 5991 901
Mean 67.7 118.6 40.8 | 216.8 | 1110.4 | 3548.7 | 6024.0 | 7937.6 5633.9 2912.2 716.2 142.9
Median 2.5 10.5 23.5 159.5 | 365.5 | 678.0 | 4096.5 | 4987.5 3476.5 1621.5 258.5 70.0
St. Dev. | 239.4 288.6 158.3 | 271.3 | 2012.6 | 5841.4 | 7130.0 | 8233.8 5876.8 3905.0 1136.6 238.9
Skew 1.946 1.538 0.014 | 1.563 | 3.307 | 1.745 1.893 1.137 1.386 2.086 2.761 1.339
Lag 1 0.446 0.398 0.393 | 0.209 | 0.299 | 0.352 0.722 0.613 0.617 0.254 0.322 0.349
10% exc. | 451.0 535.0 212.0 | 605.0 | 3437.0 | 13512.0 | 13299.0 | 18881.0 | 12574.0 8838.0 1715.0 494.0
90% exc. | -116.0 | -75.0 -119.0 | -25.0 | 32.0 71.0 348.0 514.0 347.0 144.0 -27.0 -83.0
TRANSFORMED STATISTICS
Mean 6.05 5.97 40.81 | 4.62 6.08 6.90 8.24 8.57 8.27 7.13 6.38 6.03
St. Dev. 0.45 0.57 158.34 | 1.87 1.44 1.74 1.08 1.06 1.04 1.44 0.98 0.48
Loc. Par | -400 -342 normal | -26 -33 -53 -429 -712 -647 -44 -234 -325
Skew -0.047 -0.042 -1.294 | -0.029 | -0.045 | -0.050 | -0.050 | -0.050 -0.049 -0.040 -0.049 -0.049
Lag 1 0.470 0.452 0.487 | 0.057 | 0.183 | 0.710 0.681 0.775 0.764 0.531 0.597 0.505

Table B.2: South Para River statistics
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Catchment : Myponga Start Year : 1934

Period : 51yrs

HISTORICAL STATISTICS

January | February | March | April May | June July [ August [ September | October | November | December
Min 0 1 27 59 195 85 360 462 290 119 119 0
Max 2138 3419 607 1425 | 4527 | 12169 | 14638 | 15509 14122 6032 1702 594
Mean 208.3 282.3 252.3 | 398.6 | 908.0 | 2387.3 | 4100.9 | 4421.7 2906.1 1361.8 541.4 308.7
Median 264.0 211.0 252.0 | 356.0 | 560.0 | 1191.0 | 2960.0 | 3920.0 2059.0 898.0 448.0 286.0
St. Dev. 303.2 461.7 140.4 | 242.8 | 968.7 | 2619.9 | 3470.8 | 3079.6 2868.4 1312.1 343.0 156.3
Skew 4.583 6.145 0.523 | 1.680 | 2.590 | 2.088 | 1.359 0.938 1.981 1.988 1.434 0.061
Lag 1 0.124 0.417 0.466 | 0.402 | 0.290 | 0.436 | 0.442 0.567 0.555 0.499 0.496 0.563
10% conf. | 384.0 330.0 409.0 | 700.0 | 1808.0 | 5346.0 | 10071.0 | 7556.0 7021.0 2844.0 844.0 528.0
90% conf. | 54.0 92.0 79.0 | 147.0 | 295.0 | 401.0 | 682.0 872.0 568.0 290.0 182.0 87.0
TRANSFORMED STATISTICS
Mean 568 | 5.40 6.21 [ 6.0 | 6.07 [ 7.32 | 812 | 8.75 7.61 6.83 6.15 | 308.7
St. Dev. 0.59 0.70 0.27 0.46 1.04 0.99 0.76 0.44 0.88 0.88 0.59 156.3
Loc. Par -64 -18 -265 -95 166 -34 -323 -2503 -50 23 -16 normal
Skew -0.006 0.029 | -0.005 | -0.003 | -0.011 | -0.006 | -0.004 | -0.005 0.115 -0.006 -0.004 0.061
Lag 1 0.458 0.743 0.619 | 0.413 | 0.333 | 0.521 | 0.601 0.641 0.601 0.506 0.700 0.638

Table B.3: Myponga River statistics
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Catchment : Onkaparinga Start Year : 1898 Period : 87yrs
HISTORICAL STATISTICS

January | February | March | April | May June July | August | September | October | November | December
Min -1381 -405 -490 | -78 34 97 779 962 564 201 -180 -443
Max 2859 5927 2682 | 16984 | 26617 | 64207 | 81059 | 80446 66429 31054 14061 2844
Mean 300.4 333.0 | 230.1 | 804.0 | 3273.0 [ 10950.2 | 16771.1 | 20181.7 | 152782 | 7029.1 2244.8 712.9
Median | 205.0 74.0 118.0 | 392.0 | 1570.0 | 5289.0 | 11463.0 [ 17035.0 | 9798.0 4198.0 1283.0 597.0
St. Dev. | 526.7 840.5 | 377.3 | 1987.4 | 5109.8 | 13503.2 [ 16162.2 | 15793.0 | 14279.0 | 7212.6 | 2473.6 667.7
Skew 1.897 4771 | 3.472 | 6.594 | 3.045 | 2.004 | 1.591 | 1.201 1.469 1.734 2.383 1.088
Lag 1 0.248 -0.091 [ 0.300 [ 0.182 | 0.505 | 0.436 | 0.587 | 0.531 0.267 0.248 0.374 0.480
10% exc. | 695.0 554.0 590.0 | 1465.0 | 8506.0 | 27724.0 | 37256.0 | 38824.0 | 36122.0 18610.0 5523.0 1810.0
90% exc. | 10.0 -45.0 19.0 | 21.0 | 170.0 [ 994.0 | 2224.0 | 3526.0 | 2379.0 1252.0 592.0 75.0

TRANSFORMED STATISTICS

[ Mean 4.78 6.40 441 | 6.03 | 7.38 | 8.68 9.43 9.93 9.34 8.46 7.51 720 |
St. Dev. | 1.94 0.64 1.80 | 1.17 | 1.22 1.21 0.90 0.64 0.88 0.94 0.80 0.44
Loc. Par 0 -436 0 -84 -61 -322 | -1367 | -4815 -1095 -140 -292 -762
Skew -1.160 | -0.019 [ -0.774 | -0.004 | -0.048 | -0.050 | -0.050 | -0.050 -0.050 -0.050 -0.047 -0.049
Lag 1 0.375 0.244 | 0.458 | 0.411 | 0.401 | 0.516 | 0.645 | 0.652 0.478 0.489 0.616 0.507

Table B.4: Onkaparinga River statistics
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Catchment : Torrens at Gorge Weir

Start Year : 1884

HISTORICAL STATISTICS

Period : 100yrs

January | February | Marc April | May June July [ August [ September | October | November | December
Min -461 -727 -856 -460 | -357 151 0 0 203 119 -153 -378
Max 1895 3735 1179 | 33031 | 13782 | 47532 51015 47181 35571 32508 8148 3842
Mean 316.9 214.0 113.2 | 825.2 | 1745.0 | 6304.4 | 9271.9 | 12385.8| 9617.5 4578.3 1452.5 615.3
Median | 248.5 128.0 128.5 | 307.0 | 719.0 | 2784.5 | 5750.0 | 10161.5 | 7099.5 2928.0 915.0 425.5
St. Dev. | 412.9 581.8 327.7 | 3390.7 | 2758.4 | 8721.2 | 10074.3 | 10600.3 | 8754.6 5624.5 1464.3 615.8
Skew 1.490 3.095 0.331 | 8.669 | 2.753 | 2.136 1.782 0.904 1.126 2.590 2.271 2.079
Lag1 0.290 0.153 0.431 | 0.052 | 0.282 | 0.589 0.636 0.508 0.281 0.313 0.425 0.590
10% exc. | 782.0 484.0 482.0 | 1104.0 | 4855.0 | 19056.0 | 20456.0 | 28692.0 | 22200.0 | 10621.0 | 3119.0 1432.0

90% exc. | -79.0 -181.0 | -328.0 | -91.0 | 208.0 | 454.0 882.0 | 1631.0 975.0 574.0 | 3230 | 68.0 |

TRANSFORMED STATISTICS

Mean 6.94 | 6.99 362 | 669 | 7.18 | 7.78 | 870 | 940 | 9.01 7.91 7.15 7.05
St. Dev. 0.35 0.39 2.56 0.80 0.94 1.49 1.05 0.72 0.82 1.06 0.75 0.44
Loc. Par | -784 -956 0 -475 | -377 100 -588 -3068 -1570 -94 -242 -656
Skew -0.049 0.048 | -0.558 | -0.013 | -0.047 | -0.048 | -0.050 | -0.050 -0.050 -0.050 -0.047 -0.049
Lag 1 0.415 0.430 0.521 | 0.420 | 0.389 [ 0.611 0.618 0.617 0.508 0.575 0.734 0.674

Table B.5: Gorge Weir statistics
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Catchment : Torrens at Gumeracha Weir

Start Year : 1918

Period : 66yrs

HISTORICAL STATISTICS

January | February April | May | June July [ August [ September | October | November | December |
Min -167 -145 -160 -1 32 -95 39 128 110 69 -42 -57
Max 1007 1921 812 2898 | 10733 | 40896 | 24092 | 25023 29900 13739 3521 2128
Mean 147.9 146.4 110.9 | 176.2 | 870.7 | 2710.8 | 4234.2 | 6065.9 4326.8 2122.9 566.3 242.0
Median 71.5 48.0 52.0 | 65.0 | 193.5 | 651.5 | 1769.0 | 4658.5 2356.5 1090.0 354.5 137.0
St. Dev. | 208.2 288.7 161.6 | 385.6 | 1959.5 | 5860.4 | 5132.5 | 5824.7 4908.7 2914.7 628.2 376.6
Skew 2.562 4,172 2.203 | 5.532 | 3.864 | 4.536 | 1.791 1.339 2.432 2.389 2.361 3.148
Lag1 0.280 0.086 0.294 | 0.152 | 0.202 | 0.569 | 0.706 0.542 0.220 0.369 0.402 0.604
10% exc. | 355.0 380.0 288.0 | 346.0 | 1247.0 | 5417.0 | 11517.0 | 13055.0 | 10404.0 4899.0 1470.0 514.0
90% exc. | 27.0 16.0 18.0 | 23.0 | 52.0 66.0 244.0 728.0 469.0 276.0 110.0 21.0
TRANSFORMED STATISTICS
Mean 5.77 5.54 5.69 [ 436 | 529 | 6.86 | 7.14 | 8.45 7.84 693 | 613 | 532
St. Dev. 0.46 0.61 0.42 1.21 1.77 1.47 1.20 0.90 111 1.24 0.85 0.89
Loc. Par -211 -166 -215 -1 29 -102 -155 -710 -102 21 -83 -69
Skew -0.037 -0.021 | -0.045 | -0.027 | -0.002 | -0.008 | -0.049 | -0.050 -0.050 -0.045 -0.050 -0.023
Lag 1 0.446 0.311 0.376 | 0.457 | 0.419 | 0.526 | 0.631 0.679 0.483 0.458 0.655 0.633

Table B.6: Gumeracha Weir statistics
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Catchment : Little Para Start Year : 1969

Period : 15yrs

HISTORICAL STATISTICS

|

|

[ |

anuary | February | March April | May | June July | August | September | October | November | December |
Min 0 1 2 6 9 100 27 98 8 7 6 2
Max 300 310 232 748 | 3642 | 4863 | 5126 5995 4230 3434 863 367
Mean 131.2 108.6 84.7 | 146.0 | 378.5 [ 903.1 | 1528.1 | 1650.1 1629.5 856.2 293.3 165.1
Median 148.0 100.0 59.0 83.0 | 140.0 | 288.0 | 1475.0 | 1134.0 1200.0 462.0 209.0 188.0
St. Dev. | 106.1 93.0 74.4 | 180.6 | 905.9 [ 1543.9 | 1412.1 | 1526.9 1511.7 100.5 243.1 116.2
Skew 0.183 0.631 0.814 | 2.417 | 3.097 | 1.877 | 0.957 | 1.403 0.610 1.495 0.744 0.135
Lag 1 0.628 0.645 0.656 | 0.053 | 0.935 | 0.634 | 0.541 | 0.768 0.382 0.400 0.619 0.846
10% exc. | 272.0 255.0 216.0 | 258.0 | 324.0 | 4462.0 | 3153.0 | 3144.0 4195.0 2800.0 515.0 318.0
90% exc. 18.0 | 5.0 18.0 430 | 78.0 | 103.0 _122.0 | 158.0 117.0. 142.0 69.0 21.0
TRANSFORMED STATISTICS
[ Mean 5.21 492 [ 432 [ 459 | 493 | 511 | 7.36 | 7.28 726 | 6.29 566 | 6.01
St. Dev. 0.55 0.61 0.79 094 | 1.31 2.04 0.74 0.80 0.87 1.09 0.72 0.28
Loc. Par -78 -53 -14 -5 4 96 -482 -266 -327 -50 -66 -258
Skew -0.100 -0.098 | -0.091 | -0.093 | -0.044 | -0.098 | -0.100 | -0.100 -0.101 -0.101 -0.100 -0.100
Lag 1 0.688 0.768 0.835 | 0.487 | 0.890 | 0.291 | 0.695 | 0.671 0.754 0.624 0.897 0.896

Table B.7: Little Para River statistics
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Rainfall G.S. : Clarendon P.O.

Start Year : 1875

Period : 114yrs

HISTORICAL STATISTICS

January | February | March April | May | June | J uly | August | September | October | November | December |
Min 0 0 0 15 69 147 199 64 160 38 11 0
Max 1586 1380 1750 | 2905 | 2652 | 2927 | 2900 3109 1899 1952 1382 1834
Mean 258.8 256.4 354.7 | 723.3 | 1024.8 | 1168.2 | 1125.3 | 1054.6 833.3 661.6 420.1 362.0
Median 198.5 147.0 262.5 | 624.5 | 947.0 | 1072.5 | 1074.0 | 980.5 755.5 622.0 377.5 314.5
St. Dev. | 248.1 282.3 330.8 | 528.4 | 536.7 | 620.0 | 465.8 | 461.4 3974 361.8 277.4 282.7
Skew 2.192 1.428 1.464 | 1.514 | 0.634 | 0.502 | 0.503 | 1.351 0.645 0.832 0.883 1.703
Lag 1 0.020 -0.035 0.005 | -0.070 | 0.019 | 0.169 | 0.114 | 0.230 0.035 -0.074 0.103 0.026
10% exc. | 586.0 683.0 730.0 | 1427.0 | 1744.0 | 2161.0 | 1708.0 | 1559.0 1391.0 1160.0 780.0 676.0
90% exc. 28.0 5.0 33.0 | 150.0 | 376.0 | 398.0 | 506.0 | 550.0 366.0 223.0 99.0 49.0
TRANSFORMED STATISTICS
Mean 5.42 5.07 57 | 672 | 737 [ 757 [ 776 [ 732 | 6.87 | 6.84 | 629 | 6.05 |
St. Dev. 0.78 1.14 0.81 0.54 0.32 0.31 0.19 0.28 0.39 0.36 0.47 0.55
Loc. Par -42 -23 -66 -228 -650 -857 | -1274 -510 -206 -338 -177 -131
Skew -0.091 -0.099 | -0.096 | -0.099 | -0.100 | -0.100 | -0.100 | -0.099 -0.099 -0.099 -0.099 -0.097
Lag 1 0.131 -0.012 | -0.075 | -0.031 | -0.041 | 0.224 | 0.106 | 0.241 0.132 -0.015 0.073 0.101

Table B.8: Clarendon P.O. rainfall statistics
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Appendix C

Myponga River, Serial
Correlation Plots

This Appendix contains the Monthly Lag One serial correlation plots for —

e Raw Data

o Transformed Data (transformation of each month based on Table [5.4])
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APPENDIX C. MYPONGA RIVER, SERIAL CORRELATION PLOTS127
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March Yields
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Figure C.21: Raw Data — November/December

TRANSFORMED DATA FOR ONE MONTH IN THE RAW DOMAIN AND,
TRANSFORMED DATA FOR THE OTHER MONTH IN THE LOG DOMAIN

Figure C.22: Transformed Data - November/December
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Appendix D
Myponga River, Q—Q plots

This Appendix comprises a typical set of Q-Q plots, using the Myponga
streamflow data as an example. For each monthly data set the following plots
are produced.

e Raw Data

¢ Transformed Data (transformations based on data given in Table [5.4])
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Figure D.1: Q-Q plot, January Raw data
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Figure D.2: Q-Q plot, January Transformed data
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Figure D.3: Q-Q plot, February Raw data
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Figure D.4: Q-Q plot, February Transformed data
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Figure D.5: Q-Q plot, March Raw data
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Figure D.6: Q-Q plot, March Transformed data
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Figure D.7: Q-Q plot, April Raw data

0.005 0.100 0.500 0.900 0.995
T T T I —
B i
£ |* | | I I
-3 -2 -1 0 1 2

Figure D.8: Q-Q plot, April Transformed data
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Figure D.9: Q-Q plot, May Raw data
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Figure D.10: Q-Q plot, May Transformed data



APPENDIX D. MYPONGA RIVER, Q-Q PLOTS 145

0.005 0.100 0.500 0.900 0.995

2000 4000 6000 8000 10000 12000 14000
T

o
Q@ N
>-
go
()] *
c
o)) = -
»
0 .
O 5
*w“
- *¢*
o bk | n 1 I 1 L
-3 -2 -1 0 1 2 3
Figure D.11: Q-Q plot, June Raw data
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Figure D.12: Q-Q plot, June Transformed data
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Figure D.13: Q-Q plot, July Raw data
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Figure D.14: Q-Q plot, July Transformed data
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Figure D.15: Q-Q plot, August Raw data
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Figure D.16: Q-Q plot, August Transformed data
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Figure D.17: Q-Q plot, September Raw data
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Figure D.18: Q-Q plot, September Transformed data
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Figure D.19: Q-Q plot, October Raw data
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Figure D.20: Q-Q plot, October Transformed data
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Figure D.21: Q-Q plot, November Raw data
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Figure D.22: Q-Q plot, November Transformed data,
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Figure D.23: Q-Q plot, December Raw data
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Figure D.24: Q-Q plot, December Transformed data




Appendix E

Streamflow Data Sets

This appendix contains the streamflow data used for parameter estimation for
the data generation models. The values represent reconstructed data for each
station, where truncated values have been replaced with the negative yields
calculated from the water balance equations.

Thus, the data sets as supplied from the E.&W.S. department are as shown,
except that the negative values were zero.

Values are given in (MI’s).
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APPENDIX E. STREAMFLOW DATA SETS 153
Warren River

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0 69 20 62 83 1652 3643 13319 2021 279 1017 23

14 -56 137 105 113 22 360 276 187 93 -—-44 -2
387 3 14 3 -8 70 934 1241 5306 1203 33 —28
—41 -3 —40 94 593 4983 9876 10212 10257 385 71 36
—28 69 32 11 2 82 122 2414 15859 352 12 —69
—13 15 -29 -2 46  —38 33 -2 =30 5 24 —47
—43 ) -8 -—16 30 47 22 107 242 145 205 -—-34
5 504 37 0 65 416 3907 1749 259 58 10 81
—38 46 49 55 0 229 4069 5401 1945 1050 430 43
—46 2 8 143 137 394 1427 5632 1026 753 1966 119
0 9 6 —36 49 17 63 82 95 1886 548 —29

9 57 10 —47 410 770 1018 1840 370 165 39 20
-2 —41 =50 22 450 4095 14159 9898 940 1507 62 36
19 -22 -36 16 1080 4539 3602 4380 3934 1413 1146 183
-9 2 14 14 49 1516 7027 4838 4923 423 105 42
11 -5 —41 82 24 99 365 211 165 61 0 7
-2 33 -12 30 793 10265 2888 15025 2264 713 120 7
71 14 49 82 752 7548 13304 12612 8468 1313 105 33
-35 -4 -50 -—-15 -26 -5 3250 4659 3101 1434 241 33
8 21 14 46 350 1560 2440 8070 5185 5231 21 -15
-59 34 11 -35 —-67 —62 20 8 -—-26 -10 -56 -10
—38 96 3 93 5544 398 4426 6596 9081 508 92 —52
-35 -25 -15 99 15 90 643 846 1401 24 25 —48
3 -14 -8 26 230 466 999 135 410 3412 -89 -55
-99 72 327 187 172 10872 15901 11020 4602 -7 —53 —87
—210 31 -105 -21 7 67 4615 2970 4557 5820 186 —29
-115 —-198 -—-103 —-61 —-34 4 159 1585 564 —63 —61 —63
-89 -32 -6 —46 -—14 56 2177 1832 3854 955 -7 237
—47 -81 —-12 -101 —46 20 74 171 125 30 -25 -54

continued over
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98
41
=31
109
20
200

-23
18

38
52
83
131
20
34

APPENDIX E. STREAMFLOW DATA SETS

Warren River (cont.)

Feb Mar Apr May

2
357
—26
—58
55
154
78
—-52
28
12
0
37
3
25
13
0
51

31
89
33
=31
22
53
29
0
16
73
1
46
153
120
98
273
188

85
113
13
122
0
108
80
0
39
)
78
99
157
64
73
218
152

1655
205
126

2053

0
120
412

0

67
72
111
65
123
121
91
254
222

Jun Jul
6855 5194
98 2388
168 1236
4188 1758
0 191
391 2169
217 10262
0 0
-11 42
124 209
136 4645
40 82
982 5069
9472 15224
100 58
228 2353
198 335

Aug

10379
639
6499
10656
3161
4345
10239
4758
108
167
6033
1320
1664
20708
44
5520
8517

Sep

1251
1234
4668
11432
482
8219
8591
3168
72
93
5115
8805
579
3081

9975
2218

Oct

6175
12
585
1196
111
1289
12916
1467
154
132
312
8281
3617
1238

448
357

Nov

911
-39
39
345
27
69
1118
254
78
78
36
576
1082
273
28
319
0

Dec

124
—28
12
62
15
147
63

54
187
147
136
129

209
0

154



APPENDIX E. STREAMFLOW DATA SETS 155

South Para River

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

30 119 103 166 303 2727 3902 29208 6956 1196 1658 52

34 75 137 218 256 211 1148 901 514 208 16 77
702 47 161 43 94 244 2009 2150 11779 5364 183 —4
-30 3 =32 172 1399 14952 20501 29312 27248 2831 253 84
-5 81 -39 45 45 275 1120 5523 2269 567 12 -83
-35 15 —40 2 184 19 348 136 37 15 24 —52
—46 5 -—11 -18 30 223 15 402 663 403 330 —42
2 901 B =25 214 982 6505 4360 830 182 4 104
—66 31 72 305 40 690 8394 13080 12055 5300 1715 42
-7 -16 -9 349 402 1150 3488 15000 4432 2049 5991 213
—18 747 -8 109 167 125 310 382 347 4077 85 —51
-19 —-48 -11 -43 900 2039 2028 2015 535 310 o4 16
-23 -5 —69 63 3437 10795 27414 15452 1595 2017 244 47
21 —42 —64 86 3609 11456 4843 4796 7282 3113 3384 901

75 9 76 45 166 3254 12345 8463 9898 2071 237 225

3 27 -53 143 243 615 1322 683 541 288 108 59

1 44 -2 23 1466 20407 8167 26168 5998 1226 357 56

58 -29 39 230 1505 17693 22720 16044 13227 2088 492 96
—60 —266 —28 8 —19 —44 5883 7753 5502 2844 698 139
64 116 40 210 1085 3466 4291 12671 8764 8838 107 17
-13 160 106 33 36 27 354 850 359 198 —-65 310
18 424 99 442 11111 3408 6651 10952 15391 1061 505 —136
—48 -30 -28 769 —6 848 2018 1732 2521 132 151 —56
37 48 6 —117 1046 1405 2051 635 819 4991 —-69 -18
—-71 —-209 —447 594 740 19770 29532 22301 11013 130 —27 —145
—-278 -31 -211 368 124 666 8039 5287 6865 9806 654 —26
-263 —207 —226 159 832 106 1237 3446 1289 263 433 333
-7 31 229 -160 325 523 5179 3482 6564 2252 156 690
—220 0 -119 -13 32 71 363 690 285 162 —202 -216

continued over
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54
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224
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Feb
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999
—49
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498
535
0
260
12
8
37
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APPENDIX E. STREAMFLOW DATA SETS

South Para River (cont.)

Mar

-8
149
108
361
371

58

138

462
16
202
31
64
212

Apr

202
319
322
1244
605
408
605
160
96
)
121
171
640

May

4440
647
407

5512
373
371

1009

2367
245
490
324
358
323

Jun

13512
484
752

9567
386
1328
618
476
134
533
632
179
2343

Jul

8906
5770
3205
3537
1434
4811
13299
4900
361
717
6625
277
6927

Aug

17795
1523
12014
18881
6638
5179
10573
3490
550
514
7881
2587
1879

Sep

2210
2356
6773
16562
1204
10295
8324
2393
302
459
6801
12574
845

Oct

9065
144
416

2866
358

2028

18694

6777
579
272
656

12060

4415

Nov Dec

1487
196
559

1255

27
159

1873

2518
263
328
213

1482

1464

592
211
494
682

15
402

63
153
103

54
187
271
136

156



Jan

225
238
290
304
277
304
317
2138
106
356
238
198
963
409
383
383
132
277
264
264
290
250
462
264
171
331
52
27
1
268

Feb

133
211
225
209
277
277
211
409
92
356
238
211
3419
304
330
448
171
290
264
238
264
264
264
225
171
171
198
1
92
136

APPENDIX E. STREAMFLOW DATA SETS

Mar

158
132
250
225
290
396
250
462

92
356
263
238
607
594
396
409
277
356
290
264
317
264
409
396
343
158
105

40

79

27

Apr

330
250
330
330
725
369
423
475
146
419
343
264
646
687
1425
290
356
488
423
383
779
369
700
554
383
331
475
369
66
223

May

330
792
410
647
489
554
489
489
1043
554
937
396
1135
752
1056
608
964
1808
1109
488
198
2323
1267
646
2152
343
4527
409
409
905

Jun

369
2877
752
1821
1373
3128
396
673
6863
1003
567
435
3537
3498
3167
554
2217
5346
2442
2811
2771
12169
8328
739
1940
448
2613
567
1141
11343

Jul

568
3656
2296
1821
2996
3379
2864
4105
5346
3960
1056

646
8658

13819
4686

964

1848
14638
4052
10229
1400
2838
10453
1756
10071

594
2548
1756
1705
9601

Aug

1425
5913
2177
3485
3075
6731
1017
1479
7167
8288
462
3920
4329
4421
5240
831
3696
9688
6507
8381
739
6916
15509
2098
10123
752
3511
1861
2782
5744

Sep

2165
3629
739
3431
871
1504
290
8209
8169
2996
396
2059
5508
7021
2257
462
2085
727
3642
3524
725
1504
11680
1386
14122
568
7075
937
773
1321

Oct

2204
1214
502
567
369
621
119
2217
1188
898
673
898
871
3788
1571
1386
819
1201
1043
805
515
1940
2429
739
6032
290
898
238
1746
1106

Nov

911
410
317
317
304
819
119
515
554
423
290
727
554
844
1202
686
448
250
1702
941
330
844
727
435
806
211
541
146
386
400

157

Dec

356
277
317
369
264
330

92
435
290
304
225
594
594
594
423
238
317
343
528
502
317
554
475
277
448
238
225

13
159
255

continued over
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Myponga River (cont.)

Jan Feb Mar Apr May

204
177
82
241
286
409
384
196
334
176
266
312
268
153
70
0
221
188
338
54
160

117
118
150
204
250
700
206
254
237
158
290
227
286
195

74

17
279
175

94
124
142

141
168
150
164

55
291
260
469

92
290
117
341
191
158

82
111
252
515
293

78
205

313
196

59
268
496
245
249
843
197
479
584
267
278
173

92
424
449
147
190
867
161

491
682
391
195
4087
427
642
4297
340
584
1140
1076
277
389
297
738
295
347
289
560
533

Jun

1059
850
1191
205
4896
1132
1682
5867
401
2828
1155
988
566
1126
4000
978
1333
3592
1187
742
85

Jul

8360
2573
3928
682
3464
3726
3377
2439
2960
4269
10130
2703
360
1364
6536
1947
2649
6037
756
4597
1980

Aug

3491
2737
3528
1437
7319
1289
5647
6424
5275
5581
1312
5641

989

909
7060
5816
1543
7556

872
5536
7276

Sep

2409
1619
3450
1187
1082
2168
2993
3306
1378
3201
1961
1881

897
1188
3769
6160

701
1262

433
4280
3113

Oct

3969
368
827
286

2844
624
416
738
685

1033

5844

2429

1789
492
613

3811

1304
531
192

1029
740

Nov Dec

1595
359
541
182
570
555
405
819
221
703
644

1205
400
261
221
804
378
459
167
171
190

532
268
473
286
427
408
526
423
114
79
286
226
167
87
0
280
102
244
75
144
242

158



Jan

74
74
163
74
74
131
1740
254
136
319
245
74
358
335
417
192
120
31
37
205
332
35
19
1364
471
529
845
56
19
158
22

APPENDIX E. STREAMFLOW DATA SETS

Onkaparinga River at Clarendon Weir

Feb Mar
67 74
67 74
67 74
67 74
58 45

318 31
30 31
28 31
28 31

128 31
30 31

154 74
19 2682
67 4
69 74

1937 551
17 19
28 21
27 24
35 598
90 73
67 120
18 19
22 19

154 19
25 19

1197 1204

734 135
17 19

107 38

352 160

Apr

72
72
750
72
55
1650
30
1363
30
30
30
2035
729
301
72
799
240
21
18
1340
350
21
18
209
493
18
1252
204
111
55
205

May

8506
1007
2602
74
123
1926
1212
2158
813
935
4257
15422
4144
2984
108
505
1124
1854
105
25767
1371
167
1570
1345
1703
9678
3840
2344
9070
2580
2012

Jun

43946
9278
19435
16056
5663
10274
5301
20624
12503
3766
24708
31289
10974
14660
1167
363
782
28744
24777
41209
5345
1499
19475
4249
7764
64207
15946
4240
6936
5732
7966

Jul

30967
1783
5468
6397
2224

21832

32032

31413

30695
8590
8110

42108

36578
8789
6245

997
1763

19404

27705

81059

16873
3183

24862
3719

32516

54987
2579
4520
9713

14802

14062

Aug

27840
8336
60691
6269
4374
11719
14519
14015
38687
27678
20150
80446
21384
9742
4470
4972
962
35211
33011
43448
18195
7502
33097
9953
26895
30012
14480
2869
39672
31367
10876

Sep

3053
2016
10690
7965
4107
36274
8411
22103
41593
4156
29690
20280
20600
9798
29571
4959
564
41911
6868
64386
6505
16591
17713
24475
6048
50522
21305
30259
14409
5826
1973

Oct

3330
1252
3388
5237
2338
2972
3376
20793
12893
1822
13831
29286
9574
4194
3386
4603
201
3828
6501
8206
4198
5177
4432
7950
6859
17889
10229
3878
23356
2922
19925

Nov

1407
1123

682
1664

757
1012
1133
3832
4051
1265
1026
4687
2253

643
2320
1169

132

999
6478
2819
1396

592
1369
2039
1353
2209
2621
1055
1218
2850

945

Dec

533
185
144
154
933
1035
31
400
984
149
246
768
1813
282
1828
236
89
174
1926
1381
196
92
1081
1256
769
1935
513
201

421

1025
24

159

continued over



APPENDIX E. STREAMFLOW DATA SETS 160
Onkaparinga River (cont.)

Jan ~Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

19 17 19 18 34 5002 8296 6304 8244 2777 605 2318
429 20 22 21 53 183 4910 20346 11863 5879 1239 125
31 20 22 21 492 16106 37256 22044 45763 3252 1437 668
40 34 36 1465 716 34809 33662 37587 11661 5658 1431 186
73 58 37 483 12209 8744 5332 17933 66429 5356 708 263
101 28 31 146 170 140 983 3794 4776 3761 9358 662
429 33 20 285 1368 8182 19088 37050 37279 2841 1086 75
53 49 201 66 106 1283 5500 7057 2609 2092 1143 749
420 118 58 36 1353 2470 2940 17035 23647 2666 301 911
191 526 143 7220 1917 4897 11237 19309 4737 1173 564 —54
272 351 577 1123 2624 11570 13711 38812 11237 2059 6321 792
789 263 636 1775 2676 1230 11463 5525 2786 1064 1063 112
2421 430 154 392 304 931 7805 3441 23668 8829 650 365
270 283 —94 T8 4527 27724 39865 42731 36122 3533 1283 457
—-233 14 391 559 959 3135 10432 26378 12801 4400 1435 392
10 128 255 193 2281 994 7974 1741 953 1058 1126 280
107 356 4 211 776 669 779 8938 9740 4898 2970 626
—43 5927 911 489 2436 9033 27189 16145 8323 2279 909 2710
246 164 598 700 862 2992 25492 31064 17799 18610 4186 1119
506 165 125 1416 1967 3380 8499 23909 5092 7292 14061 1920
456 530 509 605 946 1385 2391 2834 2254 11267 7703 970
308 318 135 206 1920 4595 4512 13296 4287 3506 1170 475
313 550 118 107 6364 10710 69879 38824 4998 8845 1906 1057
355 -39 92 236 2480 9175 13690 12507 9664 3527 8975 2844
564 127 236 165 1073 19824 42947 21753 18294 5193 1395 988
468 429 793 2307 2254 4452 6790 5060 3907 2176 1337 779
292 56 232 622 5762 48939 14273 66025 5274 4592 4192 1334
648 257 283 2966 4985 62725 32342 17280 16943 6914 2254 1155
464 —45 4 800 1490 1632 5167 5117 5270 2050 1040 17

continued over



Jan

172
465
238
—282
17
582
628
722
—793
71
—65
—1381
940
380
2859
365
703
695
52
646
65
17
101
—259
205
—273
376

Feb

240
252
554
—405
—198
460
871
309
—223
133
—248
4315
47
395
893
760
2079
520
552
280
—85
=31
-171
—-68
48
—82
524

APPENDIX E. STREAMFLOW DATA SETS

Onkaparinga River (cont.)

Mar  Apr
41 466
251 476
-39 823
-35 673
—-135 96
178 143
43 64
620 191
474 16
136 72
192 790
455 1503
231 1122
590 16984
516 800
230 1090
513 1785
946 1204
171 418
336 438
—-100 397
250 604
—490 408
385 36
228 608
583 1013
428 531

May

5394
565
22958
805
2641
1687
305
961
925
114
13424
3925
1740
26617
1241
2248
3652
9090
634
1386
652
557
619
570
1285
2450
1293

Jun

1521
417
18104
2957
6416
22999
1852
1808
2389
97
22093
3437
4753
20748
1420
8343
2310
3013
1623
3676
2265
1295
5289
30216
4184
2398
1257

Jul

16353
991
13305
9212
4375
45540
42812
3243
16038
1544
18874
13764
15494
5870
10461
20154
26431
13481
1590
4244
15325
6044
15678
55622
2669
13035
6498

Aug

27474
2683
13191
8053
13918
35304
16571
8695
12277
3403
46033
4726
26329
37133
20924
20425
18082
17933
3526
4110
15824
15925
5412
51089
2436
20993
40659

Sep

27964
961
28863
5243
3414
15544
20004
4389
11660
2072
6817
7606
12996
29311
7409
31419
20159
6974
2379
3715
12587
39687
3282
8589
906
22042
12171

Oct

22354
857
4873
1281
9359
3965
27817
866
4610
840
25612
1714
2999
7487
2747
7429
31054
16416
9336
1516
2039
23263
8914
2919
321
3022
2546

Nov

2557
408
2094
682
1285
968
9938
79
1126
—50
6052
1035
914
3347
895
1936
3077
6596
1208
1066
891
1784
5523
1242
—180
1334
943

161

Dec

1013
967
114
597

—443
478

2249
561

1810

—95

1073
647

1206

1506
247

1144
914
730
259
686
194
229
252
140

—181
609
-2
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Torrens at Gorge Weir

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

345 241 314 268 273 12047 882 13747 14052 3587 464 350
186 73 96 159 268 290 6533 29146 2491 873 518 496
295 150 178 218 259 291 1030 8696 18425 2668 987 1209
250 35 77 455 532 20257 20212 9001 12743 4473 1373 777
809 173 237 282 350 836 20135 13197 3550 672 323 147
1229 68 123 33031 8072 29493 1520 22258 7188 2705 542 349
208 64 128 172 240 5754 22804 34329 7931 8813 3599 731
402 229 221 303 292 368 2457 2179 1081 1137 634 326
146 91 100 161 251 816 1299 13146 7087 11428 1130 634
206 70 61 253 3978 26278 13688 648 23548 3243 1222 416
286 130 231 311 345 5799 11751 14391 9233 7726 675 413
303 107 138 588 415 2588 12529 14051 10002 710 380 254
171 95 104 1605 431 2273 3621 900 739 324 100 72
97 94 94 97 479 708 2132 10463 8769 1495 197 53
0 70 150 1156 6230 25098 12893 13307 2243 478 434 222
65 70 129 352 526 2985 659 1305 561 365 270 84
29 0 61 451 481 3849 1447 27494 6028 1659 427 175
150 51 42 259 203 7373 3164 1750 3631 3346 875 176
123 38 246 117 192 3740 877 1937 975 601 232 434
8 80 239 588 496 3169 8469 8590 13378 1411 706 352
1068 109 151 158 330 4472 20060 7355 4019 1234 441 92
18 4 10 585 1506 19056 31228 5932 15151 11421 3734 362
169 0 190 147 103 4330 14633 29368 22897 7379 2873 1511
238 163 213 954 363 1060 4414 12302 2055 1634 1244 390
106 0 182 225 5460 19959 13859 13265 25333 10125 1621 287
276 185 333 2116 13078 16913 25280 47181 12783 13174 2673 751
287 334 1023 60 1045 3991 20372 17125 13700 8299 3027 1615
29 0 0 0 0 4636 4333 3258 3287 1876 338 324
70 0 0 170 341 454 2263 4996 28498 1831 1441 1865
185 3318 465 313 213 362 551 1721 2585 4215 478 (6]

continued over
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Torrens at Gorge Weir (cont.)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

88 22 0 14 314 256 468 302 203 119 138 84
55 15 64 216 1828 13444 9600 20274 28336 4059 517 170
119 64 143 10 208 16464 13024 26625 5074 3865 5568 1244
336 256 184 832 1783 6115 9090 12263 9522 4533 1440 620
336 256 184 832 1783 6115 9090 13446 5563 3293 1316 193
339 706 252 211 1087 957 1119 3736 9511 2273 417 238
—-292 —438 -—-263 210 1116 9085 9995 27130 17192 3636 1729 1375
593 -504 -359 -163 8 498 1301 4751 16001 3778 1893 802
1297 234 —-34 -246 219 893 10461 13407 2884 1539 1102 718
711 327 —-93 -—191 13782 47532 51015 23225 35571 22116 2604 1765
775 648 536 531 2749 8415 1900 5395 15221 8425 1846 434
180 61 —-152 -—-12 219 732 1431 2551 16365 3112 712 58
—192 135 -—-327 150 8317 3265 5798 26689 7787 32588 1791 428
140 41 —433 -—-291 1460 1397 5886 28692 3108 1206 1034 636
37 484 24 126 1508 5249 5086 1445 1617 10621 675 —378
55 —127 -212 105 335 2967 2653 2344 3451 914 709 2782
336 239 -210 -276 -—357 151 1710 12400 5622 1804 780 298
7 160 219 72 528 6012 19737 15156 35470 2253 1165 677
=27 109 219 1487 646 16515 18020 21832 11284 3084 1587 543
1827 273 357 718 7980 3612 1892 8235 35562 2856 1019 508
349 254 165 566 496 670 935 2556 2758 2056 3778 487
513 212 482 414 817 3396 8000 20671 11563 2215 950 349
264 252 102 414 474 937 2800 3132 1351 1035 448 397
B4 250 -—-344 393 1063 1415 1483 10786 14856 1836 819 1078
378 264 160 8025 1357 2591 5702 8160 3924 1115 647 422
367 250 225 421 1345 5783 8155 33463 5737 1672 2403 725
521 272 46 1338 1288 535 4600 2578 1453 714 514 68
1895 126 375 239 364 754 4238 2501 15201 5317 856 302
173 170 —242 828 2127 15416 23018 30403 27915 3040 659 320
267 221 701 724 532 1368 4325 10165 4412 2509 679 369

continued over



Jan

248
—54
174
319
552
782
97
231
295
249
346
417
235
751
369
344
—216
—241
—266
-19
—-327
-79
—461
—-267
-29
267
1421
165
1346
226

Feb

82
40
3735
226
241
239
142
125
113
144
117
279
484
217
225
438
98
—181
—589
—541
—151
—429
—727
-153
—327
1905
—326
266
492
917

APPENDIX E. STREAMFLOW DATA SETS

Torrens at Gorge Weir (cont.)

Mar

—163
97
525
—549
—312
125
89
78
129
6
182
831
159
410
—119
432
—328
—215
—69
—856
—110
—440
—429
—159
—256
382
-95
259
376
171

Apr

185
—124
673
886
905
179
105
432
248
312
398
406
1855
740
—263
327
73
591
29
413
146
—183
—460
-91
-23
542
212
4201
590
311

May

858
285
1270
1015
1053
752
1896
2772
2288
642
969
3174
3125
769
2162
357
11793
172
2300
1555
594
744
54
—40
7658
1358
563
10953
409
1003

“Jun

601
329
3303
1935
2602
588
3502
8057
9358
8908
2045
28343
33107
835
920
299
10449
1089
4179
22183
1535
734
849
345
16439
1242
1401
13834
694
3112

Jul

2405
561
18606
16578
4329
1615
3832
43923
8268
24987
3641
9631
39396
3150
9205
356
8976
4286
3295
34240
20456
2004
11272
371
13653
8031
5875
4107
4205
8174

Aug

1004
2849
4221
18241
17871
1930
7421
26138
8177
14990
2354
36522
26179
2670
21033
1542
9906
3429
16454
25536
8488
5875
7053
1687
32882
3425
18327
29087
12709
10789

Sep

532
4043
1491
9894
2924
1266
3795
5808
7997
14199
2233
7112
21245
2862
20009
417
22327
3355
1863
15555
10943
3499
8450
579
4457
5048
11572
21461
3096

19167

Oct

626
1822
1260
7122
5529
7364
1754
4676
3150
3332
1370
3728
5066
1511

16935

496
3359

287
6944
2009

16595

460
3907

156

14019
1735
3000
6025
1391
4366

Nov

996
1052
751
2259
7712
8148
821
1581
4273
1437
763
1791
2218
756
2226
57
1636
175
491
566
3080
142
780
—153
3843
1525
1084
2350
880
1550

Dec

223
347
965
1535
3842
639
280
501
1603
940
298
1105
1017
435
605
307
401
—334
—58
—111
806
51
1616
-219
1432
1201
991
1440
457
974

164
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Jan

896

839

302

; 462
—111

496

225

695

552

357

Feb

1326
522
509

47
—-304
162
337
406
10
256

APPENDIX E. STREAMFLOW DATA SETS

Torrens at Gorge Weir (cont.)

Mar

692
762
148
405
—348
226
333
1179
538
986

Apr

1134
735
282
294
265
364
608
534
734

1104

May

2327
4855
524
696
403
742
598
655
951
1114

Jun

1183
1617
702
1530
1164
462
2987
23469
1561
1140

Jul

19017
0

484
1129
9309
1341
9989
30517
1203
7146

Aug
14012

668
1631
10158
4971
2772
35222
1685
11325

Sep

15075
4074
293
581
12852
22200
1219
8587
736
20458

Oct

26168
9794
1661

170
1257

20578
4323
3684

574
3141

Nov

3557
5017
627
408
665
1957
3119
1719
341
696

Dec

1107
979
381
—20
383
523
910
904
394
423

165



Jan

150
39
150
150
150
731
589
35
10
86
39
39
51
40
25
1007
73
75
207
172
173
108
18
991
63
52
52
52
52
66
83
160

APPENDIX E. STREAMFLOW DATA SETS

Torrens at Gumeracha Weir

Feb Mar
150 115
35 39
150 115
150 115
150 115
426 472
541 639
54 21
9 10
35 39
380 40
35 39
35 39
35 39
30 39
70 21
16 18
47 52
56 52
74 39
61 63
64 73
16 18
47 123
57 55
47 52
49 52
47 52
1921 88
113 75
49 52
94 66

Apr

177
38
177
177
177
456
573
55
23
38
38
38
38
38
38
198
17
73
51
34
2898
71
110
51
553
51
51
46
71
56
162
63

May

868
39
868
868
868
10008
10733
192
1373
174
189
44
39
112
132
2225
32
213
52
95
527
476
122
73
1143
52
52
52
287
333
100
70

Jun

2698
38
2698
2698
2698
40896
1739
488
944
556
753
559
62
1630
4323
1176
71
782
218
312
904
3114
17
199
12771
928
230
54
1058
620
677
66

Jul

4218
39
4218
4218
4139
24092
1027
712
2450
1331
1224
891
482
6454
6399
314
170
3805
1305
379
2629
3178
1481
1406
13354
1066
810
137
9893
10215
1758
782

Aug

11864
387
6061
6061
12857
9227
3061
1757
8361
13055
430
1175
3523
5427
7796
4403
728
9580
1451
4626
2026
17329
801
1037
15661
9247
426
758
2298
8361
9583
(s

Sep

1307
2564
4323
4323
2082
29900
7703
6408
1035
469
756
1311
2083
12109
5587
10140
678
2969
692
4804
1028
2404
452
6800
12950
2641
110
1502
364
4343
808
409

Oct

727
680
2121
2121
1742
10205
3033
733
13739
454
1780
276
1313
539
1180
793
619
581
348
69
360
213
157
1538
904
1143
109
466
280
4135
1618
2857

Nov

a0
46
567
967
757
1882
320
131
438
269
366
133
336
366
428
157
1506
356
170
158
152
778
%)
110
278
213
130
273
116
687
3521
1615

166

Dec

39
39
244
244
1725
747
106
15
21
106
39
905
72
69
21
73
94
183
66
165
152
208
64
70
35
52
52
78
145
210
2128
253

continued over



Jan

54
35
35
85
114
39
218
450
27
33
35
28
74
50
137
70
—167
12
179
56
130
11
209
279
34
51
70
129
466
93
355
2717
48
357

Feb

24
32
33
32
32
24
118
45
27
229
40
250
—145
25
129
29
-102
24
39
1127
—47
14
32
508
442
19
35
59
272
260
117
213
384
301

APPENDIX E. STREAMFLOW DATA SETS

Torrens at Gumeracha Weir (cont.)

Mar Apr May

17
35
35
35
36
36
246
45
27
288
222
115
64
62
—160
54
-7
36
40
103
75
17
24
111
410
48
49
252
432
268
327
—103
441
812

8
34
34
34
45

134
532
346
27
114
14
121
64
106
12
66
-1
32
270
94
86
953
52
20
266
116
54
85
769
113
115
31
110
136

245
583
1159
49
780
1130
823
423
652
96
6571
132
1022
679
79
158
188
104
2451
195
61
3691
185
122
983
1247
134
135
79
242
219
33
216
172

Jun

1089
2770
4538
3193
855
13587
13416
391
464
96
5417
287
1802
10547
340
278
309
53
9288
300
259
4416
171
626
415
491
216
522
2698
219
1598
11990
392
-95

Jul

1506
17441
1780
12896
1146
3495
14796
1378
5093
302
6312
1686
1350
11517
12124
531
9471
244
9037
3161
1546
1684
1292
2928
10987
3332
140
514
4218
117
5235
18510
229
2763

Aug

4815
14873
7015
7013
773
22871
12715
1887
5815
716
4546
1424
7090
12678
4418
2709
3056
786
20940
1407
6909
16294
6374
5059
7864
3381
128
676
6029
1628
1474
25203
960
4691

Sep

865
2308
3724
8759

827
3038
8062
1269
6405

319

10371
1827
871
10404
6142
1369
5016

250
1762
1861
5311

12881
919
10768
8540
2210
1277

604
5636

11097

556
3630

648

10990

Oct

608
2066
3502
1204

486
1136
1738

450
4922

195
1196

284
4213

697
7640

555
1565

85
6991

312

815
2949

416
2939

12477
4899
1044

488

749

10100
3136
1260

891
1268

Nov

337
392
1658
422
245
955
782
277
784
100
545
127
334
209
959
—42
331
—20
1470
353
172
699
228
995
1049
2527
121
143
404
739
1568
981
833
567

167

Dec

96
35
273
205
28
150
205
59
196
142
132
=31
—47
43
260
—57
992

355
172
70
253
182
131
129
514
45
371
264
417
590
147
1027
244

continued over
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Little Para River

Jan Feb Mar Apr May

43
55
34
190
21
300
148
37
18
0
184
261
231
272
174

189
18
19

100
60

145

120
30

)
1
84

255

131

162

310

68
21
24
81
40
40
114
44
18
2
59
188
232
216
123

83
53
748
112
59
114
128
54
43
6
136
246
78
258
72

179
100
3642
151
124
324
130
78
90
9
89
221
140
182
219

Jun

288
293
4462
124
761
196
130
100
187
637
103
645
4863
556
201

Jul

2895
1650
1337
659
1475
3153
130
122
232
1856
27
2099
5126
389
1771

Aug

897
3144
1699
1000
1586
2296
1134

158

98
2503

981

631
5995

371
2558

Sep

767
1835
4195

480
2508
1200

544

117

8
2258
3948

332
1807

214
4230

Oct

193
412
1079
183
462
2800
1383
159
[
398
3434
837
788
142
566

Nov Dec

99
130
455

89
151
510
514

69

6
209
515
863
458
112
219

75
7
225
34
72
212
250
27
2
102
367
318
282
188
245

168



Appendix F

Monthly Cross Correlation
Matrices

This appendix documents the monthly, lag zero and one, cross correlation
matrices for the Revised data sets, followed by the multisite [A] , [B] & [C]

matrices for each month.
Each data set has the following computations for cross correlations undertaken

e The raw data

o The transformed data, computed using the 3-parameter shifting param-
eters given in Table [5.4].

The values are represented by matrices, where each column (i) and row (j) of
the matrix represents the correlation between stations (i) & (j).
The order of stations is as follows —

¢ Warren

e South Para
e Myponga

e Onkaparinga
e Gorge

e Gumeracha

Little Para

169
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Revised Data

Raw Data Lag 0 cross correlations.
January

1.000 0.745 0.629 0.382 0.721 0.586 0.695
0.745 1.000 0.401 0.613 0.744 0.353 0.405
0.629 0.401 1.000 0.477 0.583 0.615 0.064
0.382 0.613 0.477 1.000 0.590 0.339 0.144
0.721 0.744 0.583 0.590 1.000 0.603 0.349
0.586 0.353 0.615 0.339 0.603 1.000 -0.044
0.695 0.405 0.064 0.144 0.349 -0.044 1.000

February

1.000 0.763 0.763 0.849 0.863 0.877 0.211
0.763 1.000 0.535 0.747 0.736 0.677 0.324
0.763 0.535 1.000 0.832 0.832 0.826 0.207
0.849 0.747 0.832 1.000 0.824 0.869 0.158
0.863 0.736 0.832 0.824 1.000 0.849 0.339
0.877 0.677 0.826 0.869 0.849 1.000 0.371
0.211 0.324 0.207 0.158 0.339 0.371 1.000

March

1.000 0.661 0.142 0.136 0.565 0.512 0.565
0.661 1.000 0.233 0.320 0.546 0.229 0.402
0.142 0.233 1.000 0.385 0.283 -0.261 0.402
0.136 0.320 0.385 1.000 0.445 0.175 -0.101
0.565 0.546 0.283 0.445 1.000 0.302 0.666
0.512 0.229 -0.261 0.175 0.302 1.000 0.068
0.565 0.402 0.402 -0.101 0.666 0.068 1.000

April
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1.000 0.636 0.396 0.252 0.445 0.318 0.259
0.636 1.000 0.320 0.641 0.646 0.415 0.858
0.396 0.320 1.000 0.428 0.419 0.256 0.539
0.252 0.641 0.428 1.000 0.725 0.575 0.914
0.445 0.646 0.419 0.725 1.000 0.880 0.926
0.318 0.415 0.256 0.575 0.880 1.000 0.622
0.259 0.858 0.539 0.914 0.926 0.622 1.000

May

1.000 0.957 0.827 0.829 0.873 0.960 0.987
0.957 1.000 0.863 0.881 0.922 0.956 0.928
0.827 0.863 1.000 0.919 0.933 0.864 0.968
0.829 0.881 0.919 1.000 0.785 0.561 0.948
0.873 0.922 0.933 0.785 1.000 0.733 0.919
0.960 0.956 0.864 0.561 0.733 1.000 0.940
0.987 0.928 0.968 0.948 0.919 0.940 1.000

June

1.000 0.983 0.863 0.833 0.934 0.921 0.933
0.983 1.000 0.909 0.855 0.940 0.940 0.989
0.863 0.909 1.000 0.827 0.862 0.846 0.799
0.833 0.855 0.827 1.000 0.927 0.857 0.974
0.934 0.940 0.862 0.927 1.000 0.926 0.967
0.921 0.940 0.846 0.857 0.926 1.000 0.893
0.933 0.989 0.799 0.974 0.967 0.893 1.000

July

1.000 0.976 0.712 0.879 0.941 0.905 0.914
0.976 1.000 0.734 0.879 0.941 0.881 0.832
0.712 0.734 1.000 0.811 0.831 0.811 0.711
0.879 0.879 0.811 1.000 0.829 0.911 0.884
0.941 0.941 0.831 0.829 1.000 0.955 0.951
0.905 0.881 0.811 0.911 0.955 1.000 0.888
0.914 0.832 0.711 0.884 0.951 0.888 1.000
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August

1.000 0.932 0.672 0.844 0.902 0.922 0.916
0.932 1.000 0.609 0.878 0.927 0.906 0.733
0.672 0.609 1.000 0.669 0.710 0.655 0.656
0.844 0.878 0.669 1.000 0.918 0.887 0.859
0.902 0.927 0.710 0.918 1.000 0.915 0.827
0.922 0.906 0.655 0.887 0.915 1.000 0.848
0.916 0.733 0.656 0.859 0.827 0.848 1.000

September

1.000 0.891 0.581 0.887 0.950 0.956 0.903
0.891 1.000 0.652 0.867 0.926 0.906 0.961
0.581 0.652 1.000 0.664 0.720 0.566 0.864
0.887 0.867 0.664 1.000 0.862 0.798 0.862
0.950 0.926 0.720 0.862 1.000 0.886 0.944
0.956 0.906 0.566 0.798 0.886 1.000 0.923
0.903 0.961 0.864 0.862 0.944 0.923 1.000

October

1.000 0.959 0.816 0.875 0.948 0.951 0.894
0.959 1.000 0.877 0.928 0.969 0.965 0.922
0.816 0.877 1.000 0.906 0.895 0.824 0.868
0.875 0.928 0.906 1.000 0.890 0.878 0.904
0.948 0.969 0.895 0.890 1.000 0.966 0.958
0.951 0.965 0.824 0.878 0.966 1.000 0.952
0.894 0.922 0.868 0.904 0.958 0.952 1.000

November

1.000 0.899 0.522 0.793 0.752 0.792 0.841
0.899 1.000 0.653 0.830 0.773 0.880 0.806
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0.522 0.653 1.000 0.799 0.673 0.660 0.459
0.793 0.830 0.799 1.000 0.864 0.827 0.772
0.752 0.773 0.673 0.864 1.000 0.879 0.762
0.792 0.880 0.660 0.827 0.879 1.000 0.678
0.841 0.806 0.459 0.772 0.762 0.678 1.000

December

1.000 0.683 0.006 0.359 0.502 0.425 0.426
0.683 1.000 0.252 0.528 0.485 0.288 0.174
0.006 0.252 1.000 0.646 0.468 0.053 0.119
0.359 0.528 0.646 1.000 0.724 0.352 -0.160
0.502 0.485 0.468 0.724 1.000 0.672 0.358
0.425 0.288 0.053 0.352 0.672 1.000 0.381
0.426 0.174 0.119 -0.160 0.358 0.381 1.000
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Raw Data Lag 1 cross correlations.

January

0.338 0.229 -0.285 -0.132 0.102 0.029 0.196
0.197 0.446 -0.153 -0.009 0.121 -0.086 0.033
-0.044 -0.021 0.124 -0.005 0.042 -0.048 0.318
-0.031 0.103 0.079 0.248 0.193 0.030 -0.073
0.253 0.185 0.001 0.120 0.290 0.158 0.122
0.058 -0.082 -0.262 -0.082 0.022 0.280 0.049
0.779 0.456 -0.177 -0.085 0.347 0.167 0.628

February

0.206 0.135 0.259 -0.262 0.034 -0.016 -0.150
0.291 0.398 0.172 -0.072 0.172 -0.070 0.019
0.077 0.012 0.417 -0.087 0.029 -0.030 -0.166
0.156 0.149 0.322 -0.091 0.057 -0.065 -0.111
0.265 0.191 0.320 -0.085 0.153 0.032 0.096

0.171 0.032 0.252 -0.216 0.015 0.086 -0.010
0.381 0.041 0.021 -0.304 -0.044 0.212 0.645

March

0.265 0.332 0.059 0.052 0.288 0.238 0.816
0.198 0.393 0.084 0.122 0.274 0.085 0.219
0.299 0.228 0.466 0.302 0.448 0.284 -0.068
0.235 0.353 0.377 0.300 0.313 0.357 -0.001
0.292 0.383 0.188 0.225 0.431 0.291 0.624
0.068 0.143 -0.056 0.036 0.114 0.294 0.517
-0.095 -0.041 -0.086 -0.222 -0.018 0.040 0.656

April
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0.307 0.022 -0.119 -0.043 0.038 0.455 0.219
-0.049 0.209 -0.073 -0.008 -0.065 0.129 0.142
0.129 0.045 0.402 0.176 0.071 0.166 -0.106
-0.008 0.379 0.262 0.182 0.128 -0.009 -0.263
0.151 0.368 0.202 0.065 0.052 0.031 -0.102
-0.037 0.199 0.040 0.016 0.032 0.152 -0.391
-0.237 0.488 0.500 0.123 0.009 -0.154 0.053

May

0.212 0.298 0.166 0.297 0.174 0.190 0.893
0.222 0.299 0.153 0.342 0.218 0.203 0.899
0.197 0.364 0.290 0.450 0.124 0.100 0.886
0.236 0.479 0.264 0.505 0.260 0.183 0.874
0.246 0.418 0.243 0.354 0.282 0.181 0.863
0.220 0.365 0.178 0.175 0.023 0.202 0.889
0.229 0.816 0.587 0.995 0.974 0.736 0.935

June

0.205 0.278 0.380 0.245 0.294 0.216 0.338
0.305 0.352 0.480 0.346 0.395 0.324 0.977
0.242 0.250 0.436 0.322 0.346 0.284 0.696
0.337 0.329 0.423 0.436 0.513 0.470 0.486
0.347 0.379 0.448 0.332 0.589 0.513 0.438
0.342 0.367 0.419 0.306 0.599 0.569 0.240
0.623 0.883 0.562 0.540 0.528 0.520 0.634

July

0.713 0.679 0.633 0.614 0.687 0.688 0.554
0.690 0.722 0.714 0.598 0.662 0.664 0.002
0.323 0.331 0.442 0.318 0.323 0.283 0.135
0.549 0.498 0.516 0.587 0.514 0.544 0.545
0.636 0.624 0.624 0.641 0.636 0.709 0.549
0.567 0.524 0.524 0.661 0.703 0.706 0.560
0.676 0.101 0.351 0.609 0.632 0.692 0.541
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August

0.729 0.662 0.472 0.608 0.638 0.657 0.758
0.594 0.613 0.420 0.488 0.523 0.515 0.310
0.518 0.550 0.567 0.536 0.622 0.558 0.198
0.487 0.499 0.399 0.531 0.444 0.490 0.555
0.626 0.579 0.466 0.518 0.508 0.538 0.649
0.632 0.565 0.396 0.553 0.527 0.542 0.689
0.777 0.455 0.606 0.868 0.816 0.791 0.768

September

0.448 0.448 0.436 0.290 0.356 0.284 0.337
0.560 0.617 0.449 0.437 0.506 0.437 0.520
0.237 0.281 0.555 0.164 0.247 0.112 0.165
0.307 0.375 0.413 0.267 0.239 0.114 0.169
0.472 0.505 0.545 0.261 0.281 0.217 0.371
0.429 0.475 0.455 0.278 0.312 0.220 0.294
0.350 0.599 0.666 0.531 0.488 0.362 0.382

October

0.334 0.153 0.154 0.357 0.279 0.270 0.163
0.410 0.254 0.244 0.431 0.349 0.340 0.219
0.332 0.275 0.499 0.389 0.363 0.307 0.090
0.286 0.189 0.275 0.248 0.247 0.260 0.135
0.407 0.255 0.312 0.295 0.313 0.369 0.268
0.375 0.214 0.186 0.278 0.267 0.369 0.240
0.553 0.526 0.519 0.630 0.531 0.517 0.400

November

0.420 0.418 0.297 0.368 0.383 0.425 0.684
0.250 0.322 0.247 0.298 0.306 0.349 0.712
0.322 0.420 0.496 0.494 0.461 0.472 0.570
0.270 0.323 0.356 0.374 0.260 0.257 0.374
0.352 0.418 0.397 0.468 0.425 0.392 0.575
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0.297 0.382 0.347 0.397 0.357 0.402 0.376
0.559 0.601 0.461 0.554 0.536 0.570 0.619

December

0.439 0.409 0.186 0.215 0.211 0.338 0.330
0.286 0.349 0.336 0.199 0.186 0.253 0.067
0.161 0.208 0.563 0.316 0.230 0.105 0.106
0.353 0.416 0.660 0.480 0.442 0.379 0.000
0.718 0.802 0.591 0.545 0.590 0.634 0.516
0.602 0.763 0.303 0.392 0.406 0.604 0.220
0.663 0.814 0.377 0.493 0.546 0.571 0.846
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Transformed Data Lag 0 cross correlations.

January

1.000 0.800 0.341 0.052 0.672 0.415 0.645
0.800 1.000 0.202 0.177 0.652 0.193 0.456
0.341 0.202 1.000 0.288 0.545 0.273 0.041
0.052 0.177 0.288 1.000 0.431 0.257 -0.085
0.672 0.652 0.545 0.431 1.000 0.561 0.492
0.415 0.193 0.273 0.257 0.561 1.000 -0.063
0.645 0.456 0.041 -0.085 0.492 -0.063 1.000

February

1.000 0.706 0.466 0.448 0.646 0.574 0.284
0.706 1.000 0.414 0.516 0.594 0.467 0.361
0.466 0.414 1.000 0.694 0.549 0.260 0.153
0.448 0.516 0.694 1.000 0.612 0.430 0.055
0.646 0.594 0.549 0.612 1.000 0.655 0.509
0.574 0.467 0.260 0.430 0.655 1.000 0.469
0.284 0.361 0.153 0.055 0.509 0.469 1.000

March

1.000 0.485 0.147 0.251 0.329 0.383 0.527
0.485 1.000 0.248 0.180 0.463 0.269 0.431
0.147 0.248 1.000 0.399 0.358 -0.205 0.334
0.251 0.180 0.399 1.000 0.380 -0.029 0.170
0.329 0.463 0.358 0.380 1.000 0.217 0.686
0.383 0.269 -0.205 -0.029 0.217 1.000 -0.112
0.527 0.431 0.334 0.170 0.686 -0.112 1.000

April
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1.000 0.651 0.348 0.326 0.479 0.435 0.229
0.651 1.000 0.353 0.402 0.502 0.440 0.634
0.348 0.353 1.000 0.585 0.540 0.309 0.560
0.326 0.402 0.585 1.000 0.512 0.394 0.530
0.479 0.502 0.540 0.512 1.000 0.605 0.736
0.435 0.440 0.309 0.394 0.605 1.000 0.133
0.229 0.634 0.560 0.530 0.736 0.133 1.000

May

1.000 0.766 0.645 0.721 0.761 0.570 0.629
0.766 1.000 0.640 0.776 0.823 0.710 0.695
0.645 0.640 1.000 0.743 0.796 0.549 0.650
0.721 0.776 0.743 1.000 0.788 0.776 0.673
0.761 0.823 0.796 0.788 1.000 0.684 0.708
0.570 0.710 0.549 0.776 0.684 1.000 0.565
0.629 0.695 0.650 0.673 0.708 0.565 1.000

June

1.000 0.911 0.775 0.850 0.897 0.766 0.862
0.911 1.000 0.830 0.855 0.889 0.849 0.909
0.775 0.830 1.000 0.859 0.884 0.827 0.830
0.850 0.855 0.859 1.000 0.937 0.849 0.867
0.897 0.889 0.884 0.937 1.000 0.829 0.869
0.766 0.849 0.827 0.849 0.829 1.000 0.583
0.862 0.909 0.830 0.867 0.869 0.583 1.000

July

1.000 0.937 0.802 0.837 0.928 0.897 0.954
0.937 1.000 0.830 0.884 0.866 0.939 0.834
0.802 0.830 1.000 0.900 0.867 0.871 0.765
0.837 0.884 0.900 1.000 0.912 0.901 0.795
0.928 0.866 0.867 0.912 1.000 0.896 0.946
0.897 0.939 0.871 0.901 0.896 1.000 0.850
0.954 0.834 0.765 0.795 0.946 0.850 1.000
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August

1.000 0.973 0.789 0.867 0.847 0.910 0.932
0.973 1.000 0.768 0.879 0.869 0.904 0.912
0.789 0.768 1.000 0.843 0.779 0.815 0.759
0.867 0.879 0.843 1.000 0.916 0.895 0.883
0.847 0.869 0.779 0.916 1.000 0.925 0.820
0.910 0.904 0.815 0.895 0.925 1.000 0.898
0.932 0.912 0.759 0.883 0.820 0.898 1.000

September

1.000 0.957 0.739 0.900 0.948 0.944 0.929
0.957 1.000 0.761 0.893 0.933 0.924 0.969
0.739 0.761 1.000 0.840 0.781 0.724 0.840
0.900 0.893 0.840 1.000 0.933 0.887 0.895
0.948 0.933 0.781 0.933 1.000 0.942 0.965
0.944 0.924 0.724 0.887 0.942 1.000 0.931
0.929 0.969 0.840 0.895 0.965 0.931 1.000

October

1.000 0.924 0.755 0.849 0.879 0.844 0.879
0.924 1.000 0.786 0.864 0.879 0.895 0.902
0.755 0.786 1.000 0.900 0.843 0.754 0.702
0.849 0.864 0.900 1.000 0.914 0.845 0.769
0.879 0.879 0.843 0.914 1.000 0.864 0.965
0.844 0.895 0.754 0.845 0.864 1.000 0.871
0.879 0.902 0.702 0.769 0.965 0.871 1.000

November

1.000 0.829 0.526 0.680 0.724 0.714 0.803
0.829 1.000 0.673 0.792 0.830 0.751 0.813
0.526 0.673 1.000 0.754 0.760 0.645 0.508
0.680 0.792 0.754 1.000 0.850 0.726 0.586
0.724 0.830 0.760 0.850 1.000 0.846 0.811
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0.714 0.751 0.645 0.726 0.846 1.000 0.783
0.803 0.813 0.508 0.586 0.811 0.783 1.000

December

1.000 0.708 0.049 0.358 0.607 0.603 0.422
0.708 1.000 0.213 0.491 0.594 0.362 0.252
0.049 0.213 1.000 0.619 0.532 0.139 0.136
0.358 0.491 0.619 1.000 0.696 0.446 -0.155
0.607 0.594 0.532 0.696 1.000 0.681 0.458
0.603 0.362 0.139 0.446 0.681 1.000 0.464
0.422 0.252 0.136 -0.155 0.458 0.464 1.000
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Transformed Data Lag 1 cross correlations.

January

0.488 0.320 -0.251 -0.058 0.212 0.221 0.218
0.325 0.470 -0.196 -0.027 0.174 0.010 0.044
0.100 0.089 0.458 0.158 0.327 0.069 0.317
0.146 0.232 0.207 0.375 0.344 0.182 -0.318
0.446 0.255 0.067 0.168 0.415 0.364 0.252
0.205 -0.120 -0.179 -0.062 0.110 0.446 0.014
0.719 0.515 -0.127 -0.152 0.458 0.245 0.688

February

0.296 0.330 0.224 -0.345 0.146 0.077 -0.106
0.346 0.452 0.167 -0.180 0.159 -0.091 0.041
0.204 0.152 0.743 0.023 0.298 0.059 -0.123
0.124 0.177 0.495 0.244 0.245 0.047 -0.165
0.390 0.316 0.438 0.035 0.430 0.261 0.204

0.217 0.050 0.275 -0.142 0.224 0.311 0.102
0.512 0.159 0.076 -0.446 0.164 0.084 0.768

March

0.397 0.406 0.158 0.187 0.371 0.384 0.593
0.265 0.487 0.183 0.106 0.324 0.038 0.255
0.223 0.182 0.619 0.353 0.479 0.201 0.018
0.071 0.240 0.412 0.458 0.326 0.219 0.112
0.324 0.345 0.324 0.274 0.521 0.281 0.640
0.112 0.182 -0.099 -0.013 0.155 0.376 0.236
0.039 0.157 0.061 -0.170 0.309 0.178 0.835

April
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0.434 0.022 -0.155 -0.060 0.088 0.394 0.239
0.169 0.057 -0.093 0.023 -0.010 0.111 0.330
0.076 0.020 0.413 0.232 0.222 0.145 0.090

0.313 0.432 0.296 0.411 0.330 0.250 -0.334
0.175 0.127 0.239 0.140 0.420 0.138 0.117

0.064 0.101 0.002 -0.071 0.131 0.457 -0.447
-0.220 0.585 0.478 0.320 0.556 -0.146 0.487

May

0.464 0.207 0.200 0.156 0.206 0.171 0.396
0.293 0.183 0.021 0.102 0.058 0.083 0.630
0.194 0.181 0.333 0.172 0.121 0.172 0.497
0.331 0.207 0.279 0.401 0.236 0.318 0.494
0.334 0.241 0.327 0.271 0.389 0.289 0.619
0.256 0.167 0.232 0.265 0.091 0.419 0.592
0.283 0.618 0.702 0.666 0.826 0.120 0.890

June

0.753 0.599 0.487 0.469 0.537 0.402 0.443
0.725 0.710 0.534 0.570 0.612 0.575 0.616
0.534 0.565 0.521 0.524 0.581 0.490 0.094
0.659 0.616 0.520 0.516 0.529 0.551 0.458
0.688 0.643 0.525 0.462 0.611 0.506 0.456
0.534 0.612 0.435 0.439 0.479 0.526 0.015
0.534 0.417 0.170 0.251 0.265 -0.163 0.291

July

0.752 0.676 0.719 0.695 0.733 0.620 0.668
0.713 0.681 0.764 0.719 0.755 0.724 0.649
0.568 0.537 0.601 0.508 0.514 0.414 0.425
0.638 0.616 0.632 0.645 0.623 0.563 0.485
0.712 0.663 0.703 0.652 0.618 0.609 0.616
0.647 0.643 0.674 0.653 0.641 0.631 0.587
0.665 0.496 0.480 0.518 0.544 0.276 0.695
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August

0.760 0.802 0.702 0.712 0.693 0.737 0.631
0.738 0.775 0.703 0.677 0.678 0.683 0.475
0.520 0.568 0.641 0.590 0.567 0.557 0.175
0.578 0.635 0.627 0.652 0.619 0.606 0.425
0.723 0.655 0.648 0.643 0.617 0.610 0.671
0.726 0.735 0.674 0.646 0.662 0.679 0.633
0.671 0.594 0.798 0.802 0.675 0.697 0.671

September

0.726 0.691 0.611 0.563 0.550 0.577 0.756
0.753 0.764 0.603 0.602 0.623 0.629 0.794
0.487 0.513 0.606 0.424 0.401 0.389 0.510
0.606 0.611 0.615 0.478 0.481 0.430 0.606
0.704 0.685 0.663 0.498 0.508 0.514 0.760
0.672 0.655 0.627 0.493 0.487 0.483 0.682
0.664 0.721 0.761 0.743 0.694 0.651 0.754

October

0.516 0.435 0.320 0.463 0.444 0.438 0.447
0.560 0.531 0.393 0.511 0.490 0.512 0.379
0.449 0.425 0.510 0.472 0.433 0.430 0.189
0.449 0.402 0.394 0.489 0.466 0.421 0.280
0.581 0.527 0.438 0.549 0.575 0.508 0.563
0.524 0.481 0.328 0.369 0.397 0.458 0.373
0.737 0.660 0.472 0.632 0.655 0.642 0.624

November

0.534 0.530 0.417 0.455 0.461 0.445 0.745
0.519 0.597 0.461 0.514 0.557 0.597 0.771
0.546 0.633 0.700 0.652 0.681 0.586 0.623
0.634 0.607 0.635 0.616 0.567 0.498 0.557
0.684 0.665 0.647 0.677 0.734 0.640 0.789
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0.691 0.692 0.581 0.557 0.625 0.655 0.669
0.803 0.851 0.525 0.621 0.809 0.767 0.897

December

0.559 0.491 0.187 0.300 0.381 0.478 0.408
0.275 0.505 0.311 0.245 0.349 0.303 0.234
0.222 0.238 0.638 0.361 0.342 0.143 0.183
0.436 0.444 0.564 0.507 0.486 0.346 0.049
0.628 0.687 0.658 0.524 0.674 0.577 0.655
0.614 0.554 0.334 0.323 0.479 0.633 0.246
0.747 0.854 0.322 0.303 0.584 0.754 0.896
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Matrices for January.

[A] Matrix

=1 O O = W BN =

[C] Matrix

1

0.6361
0.4953
0.3800
—0.0312
0.4244
0.2438
0.1340

DU W N =

[B] Matrix

OGN

0.469
0.025
0.120
0.015
0.408
0.298
0.636

0.7976
0.6210
0.4764
—0.0391
0.5321
0.3056
0.1680

2

0.053
0.590
—0.157
0.212
—0.154
—0.242
0.042

2

0.4953
0.5583
0.2633
—0.0243
0.4967
0.1732
0.0297

0.0000
0.4155
—0.0784
—0.0002
0.4000
—0.0398
—0.1796

3
—0.225
—0.168

0.415
0.381
0.043
0.269
—0.201

3

0.3800
0.2633
0.6890
0.2861
0.4439
0.3719
—0.1425

3

0.0000
0.0000
0.6752
0.4513
0.3285
0.3305
—0.3505

—0.436
—0.733
—0.102
—1.115
—0.408
—1.108
—0.567

4

4
—0.0312
—0.0243

0.2861
0.4261
0.2561
0.0045
—0.0434

4

0.0000
0.0000
0.0000
0.4700
0.2738
—0.2824
0.2582

0.467
0.720
0.257
1.116
0.592
0.518
0.804

5

)
0.4244
0.4967
0.4439
0.2561
0.7176
0.3512
0.1075

5
0.0000
0.0000
0.0000
0.0000
0.3027
0.5723
0.4439

—0.076
—0.140
—0.238
0.379
0.064
0.876
—0.524

6

6

0.2438
0.1732
0.3719
0.0045
0.3512
0.4543
—0.1174

6
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

—0.209
—0.470

0.226
—1.289
—0.252
—0.903

0.223

7

't

0.1340
0.0297
—0.1425
—0.0434
0.1075
—0.1174
0.0153

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
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Matrices for February.

[A] Matrix
1 2
1| 1.857 —-0.757
2| 1.367 —0.454
3| 1.085 —0.749
4 0.891 -0.515
5(—-0.094 0.218
6—0.331 0.176
7—1.256 1.016
[C] Matrix
1 2
1{0.3313 0.1777
2[0.1777 0.4915
3 (0.0015 0.0505
410.1742 0.2615
5| 0.4460 0.4329
6 | 0.4578 0.4564
7(0.4278 0.4824
[B] Matrix
1 2
1]0.576 0.000
2(0.309 0.629
3(0.003 0.079
410.303 0.267
5(0.775 0.308
60.795 0.335
710.743 0.402

3
—0.433
-0.377

0.318
0.079
0.392
0.401
0.900

3
0.0015
0.0505
0.2506
0.2014
0.2342
0.0896
0.3105

0.000
0.000
0.494
0.363
0.420
0.123
0.560

4
—0.692
—0.392
—0.322

0.017
—0.171
—-0.277
—0.207

4
0.1742
0.2615
0.2014
0.6036
0.4291
0.3979
0.3586

0.000
0.000
0.000
0.556
—0.073
0.041
—0.318

5 6 7
1.552 —1.101 —1.638
1.167 —1.104 —1.294
1.105 —0.942 —1.125
0.857 —0.792 —0.978
0.060 0.169 0.115
—0.233 0529  0.343
~1.835 1.376  2.050

5 6 7
0.4460 0.4578  0.4278
0.4329 0.4564  0.4824
0.2342 0.0896  0.3105
0.4291 0.3979  0.3586
0.7083 0.4545  0.3038
0.4545 0.7657  0.1865
0.3038 0.1865 —0.0678

5 6 7
0.000  0.000 0.000
0.000  0.000 0.000
0.000  0.000 0.000
0.000  0.000 0.000
0.000  0.000 0.000
0.000  0.063 0.000
0.000 —9.498 0.000
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Matrices for March.

[A]

~IT DOV W

Matrix

1

0.3008
—0.1476
—0.3367
—0.4596
0.1281
—0.1982
—0.2024

[C] Matrix

SO U R WD

1

0.5620
0.2954
0.1698
0.1743
—0.0809
0.2266

0.1090

[B] Matrix

=~ O O W N

1

0.7496
0.3941
0.2265
0.2325
—0.1079
0.3023
0.1454

P 3
0.0477 —0.1269
0.6263  0.0602
0.0396  0.7547
0.1914  0.2817

—0.0832  0.0120
0.2320 -0.1016
0.0522  0.1585

2 3
0.2954  0.1698
0.6302  0.1100
0.1100  0.4321
0.0895 0.1221
0.2216  0.2081
0.2296 —0.1679
0.1947  0.3103
2 3
0.0000  0.0000
0.6891  0.0000
0.0300 0.6164
—0.0031  0.1128
0.3833  0.3586
0.1602 —0.3913
0.1994  0.4403

4

0.2264
—0.2923
—0.4853
0.2318
0.2116
—-0.1714
—0.3045

4

)
—0.2227
0.3955
0.6672
0.1249
0.2104
—0.0213
0.1759

5

0.1743 —0.0809

0.0895
0.1221
0.6934
0.2109

—0.0525

0.1269

4

0.0000
0.0000
0.0000
0.7916
0.2485
—0.0988
0.0556

0.2216

6
—0.0205
—0.3348

0.1357
0.1451
—0.2895
0.4884
—0.1532

0.2266
0.2296

0.2081 -0.1679
0.2109 -0.0525

0.4823
0.1456

0.1456
0.7836

0.1750 —0.2562

5

0.0000
0.0000
0.0000
0.0000
0.3651
0.7716
—0.1574

6
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

7

0.6200
0.0335
—0.3931
—0.0139
0.6485
0.0150
0.8483

0.1090
0.1947
0.3103
0.1269
0.1750
—0.2562
0.2030

7
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
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Matrices for April.
[A] Matrix

| 2 3 4 3 6 7
0.201 —0.286 —0.090 0.015 —0.306 0.504  0.550
-0.565 -0.023 -0.112 0.389 -1.031 0.701 1.395
—0.107 —0.200 0.480 0.098 —0.001 0.352 0.095
1.260  0.348 0.153 —0.275 1.640 —0.924 -—-2.382
0.487 —-0.133 0.166 —0.265 0.963 —0.283 —0.786
0.761  0.023 0.159 —-0.521  1.247 —0.285 -—1.710
—1.227  0.695 0.198 0.394 -0.324 0.367 0.964

=~ O U > W N~

[C] Matrix

1 2 3 4 5 6 7
0.603 0.385 0.318 0.566 0.495 0.507 0.455
0.385 0.529 0.355 1.094 0.749 0.945 0.450
0.318 0.355 0.732 0.467 0.397 0.224  0.398
0.566 1.094 0.467 —0.584 —0.033 —-0.599 0.731
0.495 0.749 0.397 —-0.033 0.656 0.219 0.732
0.507 0.945 0.224 —-0.599 0.219 0.114 0.476
0.455 0.450 0.398 0.731 0.732 0.476 -0.133

=1 O TR WD

[B] Matrix

1 2 3 4 5 6 7
0.777 0.000 0.000 0.000 0.000 0.000 0.000
0.495 0.533  0.000 0.000 0.000 0.000 0.000
0.410 0.285 0.695 0.000 0.000 0.000 0.000
0.728 1.375 -0.321 0.000 0.000 0.000 0.000
0.637 0.814 —0.138 0.000 0.000 0.000 0.000
0.653 1.165 —0.541 0.000 0.000 0.000 0.000
0.586 0.299  0.105 0.000 0.000 0.000 0.000

I O UL W N~
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Matrices for May.

[A] Matrix

O UUBR W=

[C] Matrix

-1

N OO W N

[B] Matrix

1
8.28
14.35
8.90
9.20
8.59
15.62

—4.27

1

-5.30
—10.39
—6.39
—6.46
—6.00

1.70

3.62

2
—11.74
—20.99
—13.16
—13.51
—12.64
—23.22

6.39

2
—10.39
-19.11
—11.99
—12.07
—11.22
—21.41

6.28

O Ot W N

3

—2.36
—4.51
—2.39
—2.75
—2.50
—4.66

1.45

3

—6.39
—11.99
-7.07
—7.40
—6.85
—13.48
4.04

C O OO OCO O =

OO O OO OO N

4

—-2.34
—4.17
—2.74
—2.39
—2.53
—4.56
1.45

OO OO OO O W

4

—6.46
—12.07
—17.40
—7.35
—7.00
—13.48
4.09

C O OO OO Ok

OO OO OO o WL

5

—14.32
—26.08
—16.57
—16.69
—15.34
—29.09

8.16

3
—6.00

—11.22

—6.85
—~7.00
—6.36

—-12.63

Coococooco ™

3.76

C O O OO OO I

6
9.68
17.58
11.22
11.41
10.59
19.93

—5.58 —9.03

6
—11.70
—21.41
—13.48
—13.48
—12.63
—-23.59

6.82

7
17.76
32.25
20.30
20.53
19.29
35.53

i

3.62
6.28
4.04
4.09
3.76
6.82
—1.76
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Matrices for June.

[A] Matrix

N DO W=

1
0.807
0.497
0.207
0.532
0.542
0.334
0.586

[C] Matrix

NSO W=

1
0.3968
0.3376
0.3535
0.3164
0.3348
0.2967

0.4476

[B] Matrix

N TR W N

1
0.6299
0.5359
0.5612
0.5023
0.5316
0.4711
0.7106

2
0.255
0.367
0.415
0.326
0.339
0.837

3
0.193
0.138
0.344
0.339
0.261
0.470

0.638 —0.298

2
0.3376
0.3655
0.4501
0.2902
0.3134
0.4181
0.5924

2
0.0000
0.2799
0.5336
0.0749
0.1020
0.5917
0.7559

3
0.3535
0.4501
0.2976
0.4294
0.4181
0.0942
0.6790

3
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

4
—0.305
—0.310

0.030
—0.341
—0.570
—0.321

0.456

4
0.3164
0.2902
0.4294
0.4585
0.3976
0.3500
0.6451

4
0.0000
0.0000
0.0000
0.4479
0.2745
0.1542
0.5168

5
—0.205
—0.247

0.290
—0.368
0.028
—0.169
—0.139

)
0.3348
0.3134
0.4181
0.3976
0.4136
0.3069
0.6006

3

0.0000
0.0000
0.0000
0.0000
0.2126
—0.2174
0.0180

6

0.061
0.251
0.153
0.369
0.285
0.397
—1.091

6
0.2967
0.4181
0.0942
0.3500
0.3069
0.1331
0.4480

6
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

7
—0.051
0.201
—0.860
—0.042
—0.088
-0.971
0.079

0.4476
0.5924
0.6790
0.6451
0.6006
0.4480

0.1926

7
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
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Matrices for July.

[A] Matrix
1 2
110.759 —0.460
2(0.422 -0.040
30805 —1.709
410570 —1.338
9 (1.017 —0.614
6(0.439 —0.239
711.194 —-0.168
[C] Matrix
1 2
1]0.3682 0.3129
2(0.3129 0.3605
3(0.3194 0.2989
410.3189 0.3087
510.3320 0.2699
6 (0.3548 0.3744
710.4230 0.4174
[B] Matrix
| 2
1]0.6068  0.0000
205157  0.3075
3(0.5263  0.0893
405256  0.1224
5 10.5471 —0.0399
6 |0.5847  0.2370
710.6971  0.1881

3 4 )
0.445 —0.089 0.035
0.604 0.129 0.142
0.211 —-1.067 —0.335

—0.095 —0.499 -0.162
0.635 0.073 —1.039
0.388  0.100 —0.352
0.496  0.490 —0.400

3 4 d
0.3194 0.3190 0.3320
0.2989 0.3087 0.2699
0.8333 0.6926 0.4079
0.6926 0.6955 0.4307
0.4079 0.4307 0.3532
0.4612 0.4385 0.3483
0.2714 0.3369 0.4259
3 4 )
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.7405 0.0000 0.0000
0.5470 0.3241 0.0000
0.1667 0.1752 0.0000
0.1786 0.0139 0.0000
—0.1517 0.0938 0.0000

6

0.066
—0.076
1.364
1.232
0.408
0.296
—0.909

6
0.3548
0.3744
0.4612
0.4385
0.3483
0.4942
0.4442

6
0.0000
0.0000
0.0000
0.0000
0.0000
0.2532
0.0706

7

0.070
—0.371
1.530
1.144
0.370
0.150
—0.142

7
0.4230
0.4174
0.2714
0.3369
0.4259
0.4442
0.3634

7
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
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Matrices for August.

[A] Matrix

1
1.38
5.05
8.31
2.48
1.97
1.08
2.75

~1 O CU = N =

[C] Matrix

OOV AW

1

0.294
0.108
—-0.070
0.217
0.297
0.271
0.432

[B] Matrix

N O TR WN =

1

0.5419
0.1999
—0.1290
0.3995
0.5477
0.5009
0.7963

2

0.14
—1.52
-3.91
—0.72
—1.03
0.16
—3.06

2

0.108
—0.655
—1.483
—0.262
0.432
0.174
0.577

2
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

3

0.16
0.04
—0.18
—0.08
0.53
0.36
0.67

3
—0.070
—1.483
—2.560
—0.702

0.603
0.154
0.572

3
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

4
—0.14
—1.09
—1.73
—0.50

1.25 —2.25

—0.22

251 —-3.37

4

0.217
—0.262
—0.702
0.135
0.592
0.349
0.557

4
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

5

044 0.02 -1.24
3.26 0.48 —5.73
6.09 1.66 —10.15
258 033 -3.60
-0.31 0.65
0.17 —-0.12 —-0.69
0.67 0.71

3

0.297
0.432
0.603
0.592
0.252
0.380
—0.013

)
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

6 7

6 7
0.271  0.432
0.174  0.577
0.154  0.572
0.349  0.557
0.380 —0.013
0.404  0.400
0.400 —0.249

6 7
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.3912 0.0000
0.0023 0.0000
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Matrices for September.

[A] Matrix

N O W N~

[C] Matrix

N OO W N

[B] M

~N O Ot N

1
0.2179
0.1604
0.1228
0.1485
0.0202
0.1301
0.2566

atrix

0.4668
0.3437
0.2632
0.3182
0.0432
0.2788
0.5497

1
0.291

—0.571
—1.137
—0.337
—0.457
—0.048
—1.808

2
0.098
0.935
1.311
0.899
0.740
0.633
1.411

2

0.1604
0.1403
0.1092
0.1108

—0.0234
0.0912

0.2207

1

2

0.0000
0.1491
0.1256
0.0095
—0.2566
—0.0310
0.2131

3
0.567
0.504
1.159
1.025
1.135
0.948
0.822

3
0.1228
0.1092
0.3267
0.1165

—0.0513
—0.0037

0.1575

3

0.0000
0.0000
0.4916
0.0643
—0.0619
—0.1489
—0.0283

4

—1.093 0.736
—1.274 0.890
—-1.195 0.639
—1.399 1.148
—2.018 1.247
—1.487 0.980
—0.498 0.636

4

0.1485
0.1108
0.1165
0.1523
—0.0455
0.0225
0.1707

4

0.0000
0.0000
0.0000
0.2165
—0.2442
—0.2601
—0.0201

5

5

0.0202
—0.0234
—0.0513
—0.0455
—0.2052
—0.0915
0.1441

3
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

—1.202 1.405
—1.170 1.536
—1.294 1.188
—1.939 1.357
—1.949 2.161
—-1.747 1.509
—0.999 1.343

6 7

6 7
0.1301 0.2566
0.0912 0.2207

—0.0037 0.1575
0.0225 0.1707
—0.0915 0.1441
0.0939 0.2084
0.2084 0.1213

6 7
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
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Matrices for October.

[A] Matrix

N DO W

[C] Matrix

—-30.9
94.4
136.4
71.0
—19.6
27.6
—6.2

OO W

[B] Matrix

-~ O U N =

2.507
—3.478
—9.231
—4.667

1.644
—1.601

0.712

il 2
61.6
—-103.1
—262.0
—136.4
39.1
-50.4
14.5

1 2

6.3 —-8.7
-8.7 16.1
—23.1 39.8
—11.7 21.0
41 -5.4
—-4.0 8.1
1.8 —-1.8

1 2
0.000
2.004
3.817
2.371
0.181
1.280
0.362

3

25.1
—42.0
—105.9
—55.2
16.0
—20.4
5.9

3
—23.1
39.8
100.3
52.4
—14.4
19.7
-5.3

0.000
0.000
0.695
0.333
0.065
0.069
—0.089

4
—33.4
56.4
142.4
74.4
—21.3
27.1
—-7.9

—11.7
21.0
52.4
27.6

—-7.2
10.6
—-2.5

4

0.000
0.000
0.000
0.255
0.135
0.403
—0.013

)

62.7
—105.3
—266.0
—137.7
40.6
-52.1
14.8

4.1
—-5.4
—-14.4
—7.2
2.9
—-2.3
1.4

5
0.000
0.000
0.000
0.000
0.349
0.119
0.394

11.7
—19.8
—50.2
—26.3

7.0
-9.6
2.5

6
—4.0
8.1
19.7
10.6
-23
4.3
—0.6

6
0.000
0.000
0.000
0.000
0.000
0.000
0.000

—-93.2
154.5
392.2
203.7

—59.2

75.6

—22.2

7

1.8
—1.8
-5.3
—-2.5
14
—0.6
0.7

7
0.000
0.000
0.000
0.000
0.000
0.000
0.000
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Matrices for November.

[A] Matrix

1

N OO W N

[C] Matrix

1
1.967
1.367
0.160
0.601
0.732
0.289
0.087

N DO W N -

[B] Matrix

1
1.403
0.975
0.114
0.428
0.522
0.206
0.062

=~ O U W N

2

0.314 2.246 -
—0.346 1.759 -
-0.521 0.453
0.529 0.586
0.213 0.485
0.468 0.202
—0.006 0.514 —

2
1.367
1.149
0.238
0.662
0.665
0.309
0.093

2
0.000
0.446
0.284
0.547
0.351
0.241
0.072

3

4

0.414 —-3.725
0.368 —2.552
0.503 —0.060
0.361 —0.683
0.017 —1.193
0.449 —0.619
0.233 —0.009

3
0.160
0.238
0.438
0.316
0.244
0.205
0.001

3

0.000
0.000
0.587
0.190
0.144
0.192
—0.045

4
0.601
0.662
0.316
0.564
0.478
0.273
0.102

4
0.000
0.000
0.000
0.213
0.164
0.076
0.211

3

6.075
4.304
0.312
1.047
2.365
—0.150
—0.266

)
0.732
0.665
0.244
0.478
0.557
0.342
0.137

)
0.000
0.000
0.000
0.000
0.338
0.324
0.150

6 7
0.403 —4.617
0.664 —3.025

—0.140  0.187
—0.197 —-1.004
0.145 —1.341
0.259  0.155
—-0.121 0971

6 i
0.289 0.087
0.309 0.093
0.205 0.001
0.273 0.102
0.342 0.137
0.441 0.168
0.168 0.132

6 7
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.439 0.000
0.186 0.141
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Matrices for December.

[A] Matrix

[CI M

I OOV W N

[B] M

= O U W N

SO W~

—0.1110
—0.1738

1

0.617
—0.088
0.217
0.968
0.224
1.163
—0.062

atrix

1
0.5310
0.3829
0.1214

—0.0129

0.2858

atrix

1

0.7287
0.5255
0.1666
—0.0177
0.3922
—0.1523
—0.2385

—0.3037
—0.2760

2

0.567
1.504
—0.531
0.588
0.278
1.191
1.324

2

0.3829 0.1214

3
—0.314
—0.070

1.024
0.145
0.476
—0.341
-0.123

3

0.4518 0.1838
0.1838 0.4105

0.0142 0.3232

0.2550 0.1628

2

0.0000
0.4191
0.2298
0.0560
0.1167
—0.5337
—0.3595

0.2323
0.2279

3
0.0000
0.0000
0.5744
0.5453
0.1230
0.6620
0.6097

4
—0.576
—1.016

0.115
—0.915
—0.455
—1.816
—0.986

4

—0.0129

0.0142
0.3232

—0.0076

0.3200

—0.5240
—0.2551

4
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

)

0.375
0.797
0.000
1.620
0.327
1.622
—0.270

)

0.2858
0.2550
0.1628
0.3200
0.3753
0.2786
—0.1545

5

0.0000
0.0000
0.0000
0.0000
0.4390
0.7269
—0.2141

6

0.499
0.195
—0.624
0.063
—0.137
1.115
0.662

6
—0.1110
—0.3037

0.2323
—0.5240
0.2786
—0.5144
—0.2142

6
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

7
—0.746
—1.084

0.341
—2.105
0.117
—2.605
0.212

7
—0.1738
—0.2760

0.2279
—0.2551
—0.1545
—0.2142
—0.2769

7
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
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Appendix G

Five Station Model Matrices

This appendix documents the monthly, [Mg] & [M;] Covariance matrices, to-
gether with their associated [At] & [Bt] matrices for a five station multivariate
model with parameters evaluated using a Parametric Transformation.

The order of stations is as follows —

e South Para
e Myponga

e Torrens at the Gumeracha Weir

Onkaparinga River at the Clarendon Weir
Millbrook Rainfall Station
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APPENDIX G. FIVE STATION MODEL MATRICES

Matrices for January.

[Mo1] Matrix

1
1.000
0.199
0.206
0.324
0.476

QU W O DN

[M;1] Matrix

1

Ot W N =

[A;] Matrix

1

U W N =

[B1] Matrix

1

T W N -

2
0.199
1.000
0.345
0.355
0.253

2

0.4702 —0.1960
0.0905  0.4466
—0.1105 —-0.1325
0.0516  0.0215
0.0307 -0.3391

2

0.6493 —0.1853
0.0265  0.5850
—0.2258 —0.0994
—0.0041 -0.0625
0.1543 —-0.2332

2

0.8048 0.0000
0.3314 0.7956
0.3429 0.3006
0.4071 0.2893
0.3741 0.2816

3
0.206
0.345
1.000
0.492
0.161

3
—0.0006
0.1389
0.3526
0.1016
—0.1994

3
—0.1110
0.1511
0.5570
0.0539
—0.0773

3

0.0000
0.0000
0.7379
0.3324
—0.0599

4

0.324 0.476
0.355 0.253
0.492 0.161
1.000 0.333
0.333 1.000

4
—0.0446
0.1529
—0.0853
0.1087
—0.3410

4
—0.2019
—0.3397
—0.2017

0.1391
—0.3183

4
0.0000
0.0000
0.0000
0.7875
0.2077

)

)

0.1630
0.2100
—0.0835
—0.0185
0.1488

5

0.0099
0.1161
0.0498
—0.04388
0.2619

S
0.0000
0.0000
0.0000
0.0000
0.6981
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Matrices for February.

[Mo2] Matrix

1 2 3 4 d
1.000 0.416 0.466 0.539 0.672
0.416 1.000 0.317 0.693 0.325
0.466 0.317 1.000 0.527 0.379
0.539 0.693 0.527 1.000 0.369
0.672 0.325 0.379 0.369 1.000

TU W QO N =

[M1 ,2] Matrix

1 2 3 4 )
0.4516 0.1658 —0.0987 —0.1352 0.2291
0.1529 0.7678  0.0699  0.0099 0.1631
0.0498 0.3206 0.2175 —0.1825 0.0370
0.18308 0.5040 0.0506  0.0892 0.2531
0.0845 0.0687 —0.1684 —0.3400 0.0841

[ B R

[A2] Matrix

1 2 3 4 )
0.5143 0.2094 -0.1210 —0.3375 0.0629
0.0871 0.8883 —0.1190 —0.2781 0.0082
0.0577 0.3687  0.3190 —0.4995 0.0312
0.0676 0.5345 —0.1147 —0.1134 0.1416
0.1482 0.1929 —0.0534 —0.4739 0.1311

S WO N =

[B2] Matrix

1 2 3 4 3
0.8131  0.0000  0.0000 0.0000 0.0000
0.2191  0.5161  0.0000  0.0000 0.0000
0.4123 —-0.1700 0.7199  0.0000 0.0000
0.4437 03130 0.3072  0.5561 0.0000
0.5832  0.0266 —0.0081 —0.0144 0.6723

AU BN =
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Matrices for March.
[M0’3] Matrix

1 2 3 4 3
1.000 0.247 0.255 0.301 0.386
0.247 1.000 —0.144 0.393 0.321
0.255 —0.144 1.000 —0.160 0.155
0.301 0.393 —-0.160 1.000 0.349
0.386 0.321 0.155 0.349 1.000

O W DN =

[M13] Matrix

1 2 3 4 5
0.4868 0.1836 0.0377  0.1080 0.0641
0.1820 0.6600 0.2103  0.3675 0.0184
0.1914 -—0.0808 0.3156 —0.0408 0.0767
0.2867 0.4176 0.2202  0.4802 0.1323
0.0655  0.2136 0.0335 0.1246 0.0120

QU QO BN =

[Az] Matrix

1 2 3 4 )
0.9446  0.1844 —0.1299 —0.2848 —0.4768
0.0764 0.8224 0.1281 —0.2115 —0.2710
0.2873 —0.0668  0.4247 —0.3226 —0.1368
0.1208  0.1666 —0.0327  0.3627 —0.1244
0.0385 0.2505 —0.0178 —0.0323 —0.0768

OV = W N =

[B3] Matrix

1 2 3 4 )
0.7567  0.0000  0.0000 0.0000 0.0000
0.1247  0.6953  0.0000 0.0000 0.0000
0.2042 —-0.2106  0.8467 0.0000 0.0000
0.2407  0.1533 —0.1797 0.7947 0.0000
0.4359 0.1594 0.1446 0.2011 0.8202

QU W= LN =
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Matrices for April.

[Mo 4]

[My,4]

[A4]

[B4]

Matrix

1
1.000
0.412
0.408
0.517
0.711

O W N =

Matrix

St o O N =

Matrix

v WO DN

Matrix

1

2
0.412
1.000
0.211
0.598
0.567

2

0.1101 —-0.0887
0.0231 0.5738
0.1348 —0.0202
0.4595  0.3874
0.0575  0.0686

1

—0.1588
0.0234
0.2654
0.0403

1
0.9531
0.4696
0.3577
0.4839
0.6881

U > WO DN =

2
0.1724 —0.0505
0.6547
0.0421
0.2642
0.0914

2
0.0000
0.6375
0.0133
0.2460
0.2840

3
0.408
0.211
1.000
0.381
0.456

3
0.1362
0.0228
0.4259
0.2301
0.0781

3
0.1397
0.1769
0.4382
0.2657
0.1418

3
0.0000
0.0000
0.8285
0.0923
0.1928

4

0.517 0.711
0.598 0.567
0.381 0.456
1.000 0.542
0.542 1.000

4
—0.0150
0.1817
—0.0357
0.4279
0.1015

4
0.0723
0.0322
0.0281
0.3183
0.1566

4
0.0000
0.0000
0.0000
0.5439
0.0439

)

3
—0.1808
0.0974
0.0509
0.2489
—0.1086

—0.2779
—0.0898
—0.0493
—0.0904
—0.2300

b
0.0000
0.0000
0.0000
0.0000
0.5884
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Matrices for May.
[Mos] Matrix

1
1.000
0.649
0.690
0.758
0.832

U N =

[M;5] Matrix

1
0.2088
0.2456
0.2483
0.2646

U QDN —

[As] Matrix

1

R R R

[Bs] Matrix

1
0.9659
0.6429
0.6501
0.7024
0.8760

T b W N =

2
0.649
1.000
0.534
0.771
0.717

2
0.0243
0.3484
0.1805
0.2602

—-0.0352 —0.0215

2

0.1141 -0.1777
0.1170  0.3434
0.0597  0.0137
—0.0795 —0.0401
—0.0110  0.0423

2
0.0000
0.6616
0.0313
0.3177
0.2296

3
0.690
0.534
1.000
0.694
0.621

3
0.0969
0.2032
0.2474
0.2773
0.0571

3
—0.0332
0.1299
0.1348
0.0971
0.1124

3
0.0000
0.0000
0.6884
0.1406
0.0696

4

0.758 0.
0.771 0.
0.694 0.

1.000 0.

0.727 1.

4

0.1348
0.2057
0.2261
0.4013
—0.0478

5
832
717
621
27
000

5

0.2034
0.2626
0.2802
0.3605
—0.0423

4 )
0.0929  0.1878
—0.0979 -0.0215
0.0629  0.1344
0.3044  0.2304
—0.0719 —0.0708

4
0.0000
0.0000
0.0000
0.4305
0.1034

)
0.0000
0.0000
0.0000
0.0000
0.3899
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Matrices for June.

[Moes] Matrix

i 2 3 4 )
1.000 0.818 0.813 0.836 0.678
0.818 1.000 0.888 0.887 0.720
0.813 0.888 1.000 0.888 0.738
0.836 0.887 0.888 1.000 0.798
0.678 0.720 0.738 0.798 1.000

U W N =

[Mie] Matrix

1 2 3 4 )
0.7097 0.5411 0.5516 0.5626 0.6251
0.5693 0.5787 0.5214 0.5933 0.5648
0.5913 0.5221 0.5846 0.5502 0.5790
0.6158 0.5875 0.5482 0.6907 0.5817
0.1986 0.1813 0.2011 0.2320 0.1530

St O DN =

[As] Matrix

1 2 3 4 )
0.5716 0.1613 0.1232 —0.1057  0.0345
0.1273 0.2455 0.1522  0.1376  0.0883
0.1685 0.1570 0.3042 —-0.0204 0.1522
0.1564 0.1027 0.0790 0.4222  0.0218
0.1015 0.0380 0.0736  0.1654 —0.1247

U O DN

[Bg] Matrix

1 2 3 4 )
0.6906 0.0000 0.0000 0.0000 0.0000
0.5482 0.5235 0.0000 0.0000 0.0000
0.5162 0.3546 0.4140 0.0000 0.0000
0.5424 0.2624 0.1876 0.3122 0.0000
0.7674 0.2941 0.2323 0.3027 0.3434

U N =
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Matrices for July.
[Mo 7] Matrix

1 2 3 4 )
1.000 0.830 0.939 0.886 0.647
0.830 1.000 0.863 0.899 0.772
0.939 0.863 1.000 0.925 0.720
0.886 0.899 0.925 1.000 0.771
0.647 0.772 0.720 0.771 1.000

U W N =

[M;7] Matrix

1 2 3 4 )
0.6811 0.7640 0.7292 0.7199 0.6786
0.5377 0.6265 0.4786 0.4908 0.4542
0.6442 0.6851 0.6268 0.6486 0.6012
0.6171 0.6535 0.5645 0.6157 0.5870
0.1263 0.2307 0.1367 0.1431 0.2169

O QO DN =

[A7] Matrix

1 2 3 4 )
0.1024 0.4756  0.1304 —0.1085 0.2568
0.2554 0.9667 —0.3625 —0.3871 0.1611
0.2338 0.4579 —0.0833 —0.0504 0.2145
0.2633 0.5311 —0.2910 -0.0259 0.2613

—0.0866 0.6249 —0.2612 —0.3351 0.2858

G W N~

[B7] Matrix

l 2 3 4 )
0.6129 0.0000 0.0000 0.0000 0.0000
0.5736 0.4672 0.0000 0.0000 0.0000
0.6220 0.1300 0.2963 0.0000 0.0000
0.5778 0.2709 0.1329 0.3038 0.0000
0.7611 0.3221 0.1422 0.1838 0.3892

AU O D =
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Matrices for August.

[Mg,s] Matrix

1
1.000
0.770
0.904
0.878
0.735

U W N =

[Mys] Matrix

1
0.7753
0.5692
0.7369
0.6381
0.3317

[ R R

[Ag] Matrix

1

U W N

[Bs] Matrix

|
0.5650
0.3796
0.4310
0.5152
0.6386

U QN =

0.9680 0.
0.4717 0.
0.7487 0.
0.4098 0.
0.5153 0.

2 3
0.770 0.904
1.000 0.804
0.804 1.000
0.839 0.929
0.704 0.790

2 3
0.7039 0.6830
0.6252 0.5089
0.6610 0.6617
0.6339 0.5910
0.3466 0.2550

2 3
3312 —0.4961
8239 —0.6299
5831 —0.1966
5799 —0.3399
7618 —0.5159

2 3

0.0000 0.0000
0.5820 0.0000
0.1543 0.3545
0.2045 0.2390
0.1804 0.2751

4
0.878
0.839
0.929
1.000
0.848

4
0.6749
0.5630
0.6336
0.6234
0.2680

0.0153
0.3315
0.0155
0.4531
0.0112

0.0000
0.0000
0.0000
0.2828
0.2153

)
0.735
0.704
0.790
0.848
1.000

)
0.4103
0.2966
0.3025
0.2989
0.0304

—0.2808
—0.4466
—0.5026
—0.5184
—0.5283

0.0000
0.0000
0.0000
0.0000
0.3838
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Matrices for September.

[Moo] Matrix

1 2 3 4 )
1.000 0.761 0.927 0.893 0.733
0.761 1.000 0.721 0.834 0.686
0.927 0.721 1.000 0.921 0.821
0.893 0.834 0.921 1.000 0.809
0.733 0.686 0.821 0.809 1.000

St = W o~

[Mio] Matrix

1 2 3 4 3
0.7641 0.6073 0.6322 0.6083 0.4823
0.5165 0.6108 0.3952 0.4317 0.3359
0.6498 0.5991 0.5627 0.5852 0.4573
0.6149 0.6055 0.5076 0.5774 0.4565
0.2722 0.2940 0.1701 0.1794 0.1797

Ot > LN =

[Ag] Matrix

1 2 3 4 )
1.059 0.224 —-0.236 —0.225 —0.076
0.734 0.808 —0.663 —0.226 —0.057
0.681 0.314 —-0.357 0.146 —0.106
0.692 0.387 —0.727 0.389 —0.080
0.616 0.454 -—-0.458 —-0.432 0.134

Gt W N =

[Bg] Matrix

1 2 3 4 )
0.6148  0.0000 0.0000 0.0000 0.0000
0.4781  0.5269 0.0000 0.0000 0.0000
0.6573 —0.0442 0.3157 0.0000 0.0000
0.6362  0.1555 0.1485 0.2651 0.0000
0.7701  0.0831 0.3010 0.1057 0.3579

St W N
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Matrices for October.

[MO,IO] Matrix

1 2 3 4 )
1.000 0.788 0.897 0.859 0.688
0.788 1.000 0.827 0.906 0.738
0.897 0.827 1.000 0.922 0.700
0.859 0.906 0.922 1.000 0.757
0.688 0.738 0.700 0.757 1.000

U O DN —

[M1,10] Matrix

1 2 3 4 b}
0.5306  0.3933 0.5034 0.5119  0.4433
0.4244  0.4733 0.4483 0.4727  0.3392
0.4766  0.3771 0.5505 0.5195  0.4325
0.4202  0.3698 0.4961 0.5113  0.3734

—0.0063 —0.0197 0.0008 0.0276 —0.0626

T W N =

[A10] Matrix

1 2 3 4 5
0.5059 -0.1831 -0.2618 0.3470  0.1321
—0.2629  0.3604  0.4982 0.1414 -—0.2389
—0.2973 —0.0506  0.7206 0.2547 —0.1130
—0.4595 —-0.0612 0.5766 0.6263 —0.2283
—0.1381 -0.1215  0.0143 0.4347 —0.2417

CU W QO N =

[B 10] Matrix

1 2 3 4 )
0.8362 0.0000 0.0000 0.0000 0.0000
0.6797 0.5195 0.0000 0.0000 0.0000
0.7556 0.1120 0.3117 0.0000 0.0000
0.7386 0.2897 0.0963 0.2366 0.0000
0.8211 0.3189 0.0848 0.0575 0.4280

(852 BT U N
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Matrices for November.

[MO,II] Matrix

1 2 3 4 5
1.000 0.676 0.759 0.792 0.612
0.676 1.000 0.721 0.749 0.399
0.759 0.721 1.000 0.911 0.392
0.792 0.749 0911 1.000 0.613
0.612 0.399 0.392 0.613 1.000

U Lo~

[Mi11] Matrix

1 2 3 4 )
0.5966 0.4610 0.5931 0.5224 0.4657
0.6323 0.6897 0.6385 0.6418 0.5124
0.6955 0.6271 0.7072 0.7100 0.6775
0.6055 0.5704 0.6164 0.6592 0.6586
0.1593 0.0170 0.1202 0.0916 0.1851

Ok QO DN =

[A11] Matrix

1 2 3 4 3
0.3509 —0.1038  0.4923 —0.2482  0.1440
0.2109  0.6105  0.1998 —0.2525 —0.0318
0.2104 —0.1865 0.1878 0.2740  0.3315
0.1221 -0.2718 -0.0507 0.5471  0.3965
0.2753 —0.4688  0.0149 0.0361  0.3037

U W N =

[Bll] Matrix

1 2 3 4 3
0.7805 0.0000  0.0006 0.0000 0.0000
0.3807 0.5928  0.0000 0.0000 0.0000
0.3975 0.1678  0.4822 0.0000 0.0000
0.5177 0.2371  0.2680 0.3073 0.0000
0.6334 0.2010 —0.0680 0.4014 0.5436

T N~
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Matrices for December.

[MO,IZ] Matrix

1 2 3 4 5
1.000 0.213 0.387 0.501 0.440
0.213 1.000 0.227 0.627 0.300
0.387 0.227 1.000 0.495 0.110
0.501 0.627 0.495 1.000 0.323
0.440 0.300 0.110 0.323 1.000

[ I N

[M1,12] Matrix

1 2 3 4 5
0.5054 0.3114 0.3060 0.2534 0.3766
0.2379  0.6195 0.1853  0.3062 0.2097
0.5782  0.4981 0.7108 0.6355 0.3681
0.4388 0.5769  0.4008  0.4843 0.3471

—0.0840 —0.0920 —0.1266 —0.0969 0.1343

U W N =

[A12] Matrix

1 2 3 4 )
0555 0.171  0.717 —-1.242  0.449
—0.131 0.976 —-0.791 0.432 -0.055
0.031 -—-0.012 0.982 -0.408 0.219
0.059 0.510 —-0.335 0.342 0.029
—0.182  0.028 0.200 —0.402  0.403

QU W N

[B 12] Matrix

1 2 3 4 )
0.7697 0.0000 0.0000 0.0000 0.0000
0.1665 0.6514 0.0000 0.0000 0.0000
0.1244 0.1593 0.6544 0.0000 0.0000
0.4120 0.2761 0.1855 0.5982 0.0000
0.5363 0.3657 0.0635 0.0468 0.7014

U W N =




