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Summary

This thesis presents a critical review of the
second order theory proposed by Sugo for supersonic
flow over three-dimensional wings It has been
found that Sugo's theory is not exact, but is based
on an approximation to a particular integral of the
governing differential equation. Also, a number of
important errors have been discovered. By eliminat-
ing these errors and using a more general approxim-
ate particular integral a modified theory is evolved.
This is then used to find the pressure distribution
.. over arbitrary wings in a supersonic flow.

The problem of flow over supersonic-edged delta
wings is treated in detail and numerical results are
obtained for one particular case of a flat plate
delta wing at incidence. The results approach those
of an exact theory and are clearly superior to those.
of Sugo for the same wing. It is thought that the
modified theory will be equally satisfactory for
other supersonic-edged wings and probably also for
subsonic-edged wings, although the latter have not
been investigated here.
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I : Introduction

The problem of supersonic flow over three-dimen-~-
sional wings is of fundamental importénée in aero-
dynamics. Yet in the present state of development,
the‘only direct theoretical method applicable to
problems involving arbitrary wing shapes is the lin-
earised small pertubation theory. Since linearised
theory is useful mainly for thin wihgs at moderate
lach numbers, an improved general theory is obvious-
ly desirable and would be especially valuable at
somewhat higher Mach numbers.

The major defects of linearised theory arise from
over-simplifying the flow near influence zone bound-

"aries and ignoring the non-linearity of the flow.

The second order theory proposed by Sugol can be

used to improve linearised theory in both these aspects
simultaneously. By considering second order contri-
butions to the flow, some degree of non-linearity. is
included in both the governing differential equation
and the boundary conditions; incorporation of the

. 'Poincare-Lighthill-Kue' technigue in the solution

process enables the derivation of first order correct-
ions to the flow field near influence zone boundaries
and other shock or expansion waves, thus rendering the
linearised theory uniformly wvalid. .

. The method employed is based on pertubation theory.
A velocity potential is expandeé in an infinite series
in a small parameter of the .flow, such as wing thick~
ness or wing incidence. Curtailing the series after
the second order term, the problem reduces to the
solution of two linear iteration equations together
with boundary conditions. As the second iteration
equation is non-hgmogeneous, discovery of a particular
integral would represent an important simplification



in the theory.

In 1951, Van Dykez used the pertubation method,
except for ‘'P.L.K, considerations, to obtain a second
order theory for axially symmetric flows by the sim-
phte particular integral method. However, he could not
find a particular integral suitable for the three-~
dimensional wing problem. Alternati#e methods ‘have
been used on special cases of this last problem by
Clarkson>, and Fell and Leslie ', with some success.

In 1958, Sugo’claimed to have found a particular inte-
gral for the problem in gquestion. Since the direct
particular integral method seemed to have practical
advantages over the alternatives, Sugo's work merited
investigation. )

A close examination of Sugo's paper haslrevealed
that his partiéular integral is only an approximation.
The fbrm of the particular integral is determined
from two basic assumptions; firstly, it is assumed
that the asymptotic behaviour of the flow at large
distances from the wing approaches an axially sym-
metric form and secondly, that the particular inte-
gral satisfies the differential eguation of the second
order theory only in a region near the wing surface.
In sections 3 and L4 several importent modifications
and corrections are made to Sugo's method, both in
" the formulation of the problem and in the derivation
of an approximate particular integral. The modified
theory, so. derived, is used to develop. a solution
for the pressure distribution over a supersonic-edged
delta wing in section 5. Detailed calculations are
performed for a specific wing, chosen because there
exists an exact theoretical result for comnarlson,
from this comparison an empirical assessment is made.
Conclusions are given in section 6.
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2 : SYMBOLS,

‘a : Velocity of sound
N
A : A= T — ZS‘m-. \(l—— :}:—"'
B . B= {ma —1
c s = {1—n¥ (l-—klv"") ,ShL—-kL'-Q?
Cp : Pressure coefficient '
& - k Wit
D ¢ D=T — 'Z"M\-' _P_‘.:__.’f.:
,kv‘ll-——n"
h{u,y) : Wing Surface ordinate
k : k= |tanw)|
M : Mach number
n : n= k/B
+1)MY
N ) N=(€3%F'e (§2M in Sugo's notation)
q : Velocity at a point
S U,¥s2 : P,L,K, coordinates
U ¢+ Free stream velocity
X,Ys2 : Cartesian Coordinates
X,r,0 ¢+ Cylindrical Polar Coordinates

xs (u,¥,2) : Quantity in P.L.K. transformation

Ratio of specific heats of a gas
: Thickness parameter (small positive number)
Streamwise slope

~Maeh angle

Local density

o= y/u

: Normalised pertubation velocity potential

S 9 13‘1 > M =
<9

1" 1" 1" 1" 1 1 11

S
o

:First order
11 it 1t 11 1 17® 134

[Ty

:Second order
: X = cp'(P) — % Pon

: Approximation to ¥

: Sugo's approximation to %
Sweepback angle

Total velocity potential
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Subscripts

Axially symmetric

Quantity of linear theory
Quantity of:isecond order theory
: Free stream quantity

8 =~ O m
e

Subscript notation is also used for partial
differentiation: e.g. fl;y denotes ¥
x ag

Superscripts

(¢) : Complementary term
(p) : Particular integral term
% Quantity in physical space

.
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3 : FORMULATION OF PROBLEM

Basic Flow

Consider the steady, supersoniec flow of an
ideal gas over an arbitrary three-dimensional
thin wing. The undisturbed flow is a uniform’
étream of velocity U and Mach number M. . |

The flow is assumed to be adiabatic.

Wing Definition

A wing may be deseribed as a nearly planar
body whose thickness in oneé cross-stream dir-
ection is small compareq~with3ité chord and
span in the other two dir;cticns. The ad-
Jgetive 'thin' in this context is defined more
precisely as referring to the ratio of maximum
thickness of the wing to chord length; fhe
parameter € will be used throughout as a meas-
ure of this smallness e.g. the ordinates of a
wing will be written as € times a function of
order unity. This notation will be used vhere-
ever it is necessary to distinguish between

orders of magnitude of flow quantities.

Viscosity Effects

The only flow problems considered here are



such that viscosity and heat conduction effects g i
are small enough to be neglected except at

bounding surfaces and shock waves; at bounding .::“::..
surfaces viscosity and heat conduction effects T
may be adequately approximated by classical vy
boundary layer theorys shock waves arising in o
the flow may be considered as mathematical sur- LTazme
'fhac'es of discontinuity of the flow variables and  _=-—
are such that discontinuous entfopy changes e
-t';hrough‘them are O(®), which may therefore be v

neglected in second order theory. -

Co-ordinate System

Introduce Cartesian co-ordinates (x,y4,3)
vith the origin at the foremost point of the P
wing and with axes orientated so that the undis- I
turbed stream is parallel to the x-axis, the i
}-axis is perpendicular to the plane of the IEE

wing and the mean plane of the wing lies at 3°. e
)2 :




3.5. Flow Equations -

The equation of motion for the total velocity
potential 0. for the 3-D‘system described is
given by (e.g. ref.5, pI98)

(- 23) Qe + (a*- 2} Dyy + (ar-0g) Dy

—-?_D_xngn»’ — 2.0.“ .O_S-Q.“ —annz Q;_S = O (3 I )

where a is the local speed of sound and is rel-

ated to its value a, in the free stream by

B S N B—{ > t 3> > v
at= agn — E(.(l,_+.(2,d +.D-3) — tJ J (3.2..;):
where ¥ is the ratio of specific heats of the gas..

-Introducing“a normalised pertubation veloecity
potential @ by T L
O = Ul=x+@)
equation (3.I.) is reduced to
Euy —Pyy — P33 =" m[ "—":"E%' P+ PP )

‘ + P + Dgy + Pz + 2P P
+OE Py + Py Py + Pr P33
+z<p,1<p.s P, + zqaz( 14 @) Py

) +2(1+ @) Py Py ] (3elte )
The small pertubation hypothesis assumes that

(3.30')

distufbance velocities and their_rates of change
are of the same order as the thickness of the
wing (0() . This implies that the pertubation
potential introduced in equation (3.3.) is in
fact O(€), which is exhibited explicitly in the

extended definition given in the next section,

'Q}.‘



3.6. Iteration :
Following the work of Lighthi11(6,7) a sol- -

ution of equation (3.4.) is assumed to exist in ST

the form
{ct?(r-,m) = €Qlup3) + € Qlum + P, oo

x = “ + exy (“)'11'{) +6"t,_(u.|1’37+ ca o o = (3.5.)

vhere each serfies is assumed to have a

non-zero radius of convergence in regions of o
interest and fhe x; (i=1,2,----) are assumed to 1T
have derivatives of all orders fér w30, The

second series of (3.5.) is introduced by the = s
'P.L.K.*! technique? This is a technique,

first used in this type of problem by Lighthillf i
designed to avoi;h;scending order of singular- s
ities which arises in these problems if a dir- R
ect iteration procedure is employed. The

functions x;(«.4,3) (é=1,2,.-*) introduced by this e

process are determined.as part of the solution. it

Substituting equation (3.5.) into equation =
(3.4.) and equating coefficients of like powers
of e, reduces the non-linear equation to an
infinite sequence of linear iteration equations. =i
Only the first two equations are retained here
on the assumption that the first two terms of =
the series represents a good approximation to

the pertubation potential.



0@ i B'Poun = Py = Pz = O
(@=mi-) (3.6.)

0(6‘) : 31‘?:“. - q’:ﬂql "‘ 4’4%*5 = [‘ m;;i("") MSJ-ZE (POu—

| + 3.817‘"“- j Pouc

- {"m‘:qjca +7—'141‘) ¢au.xa

- ( 2my Q’a1+ 2"'_3‘) (Eu;.

+ (pofk(gle“;-x'“’l’ "’13‘5‘)
(3.7.)

Equation (3.6.) is just the linear theory
equation (with x=« to the same order of ace- '
uracy). Equation (3.7.) is the second order
equation. The nonahomogeneous”term involves
%, , 9, and their derivatives. P, is the sol-
ution of equation (3.6.) which satisfies the

relevant first order boundary conditions.

3.7 Boundary Conditions

3.7.1. Physical Conditions
s Physical considerations suggest that
the flow should satiéfy the following con-
ditions.
(1) The flow is to be tangent to the
surface of the wing.

"y
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(11) Disturbances are not propagated
upstreams flow above ane below
wings 1s independent with a few
exceptions (see { 3.7.3.)

(111) Velocity boundary conditions at
apex Bach cone (or envelope of
flach cones) are determined from
Lighthill's analysis of conditions

near a shock wave.

3¢7+2+ Tangency condition- -
Let the wings considered have upper and

lower surfaces given by
e = 5""‘:‘.(::,.-1) '7f=l-)

FL =€ L':(, (1;-1') 1(x)
vhere
(1) the subseripts w and L refer to upper

and 1ower surfaces respectively.

(11) -qeq 1s the unit step function:
(g.):r o x £ 0

Since, in general, flows above-and helown-
@re-independent consider only flow above the

wing and drop the subseript. For the surface
* . : |

the tangency condition 'requires

8- z'n st = o (3.9.)
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K.}A ;

e . Y
Transforming into P.L.K. space via equations
(3.5.)
€ h*(x, ) = ehlisy) + €%, (uy,3) huluyy)

and
[(' + £ QDW) (‘ —e'x—lw) (é L"w -+ e.‘:"\uw +e‘3ﬁwk‘w)]

Herdoy hy] ~[C1— exg)Ce oz + e-“nlj] =0
Equating coefficients of powers of e
o) : I — %% = 0O (3.i0)
O(eﬁ—) :“‘“@owkw — z_,.w‘\w + 3(.,‘\““. + xwul'\-“— <+ &t;z ‘\a.

."”—’%‘8 CP,,-& '—-mz =0 ~(3- H.)
Assuming @, («,4,3) is a regular function of

% » for % sufficiently small, these boundary

conditions may be evaluated at the mean plane

=0 , - .
E aole) .q’og =hw (%=°) (3.12.) -

T 0GY: D= Dok + Pghy +qhusc (30130)
+=&B %g —_— N¢o%‘t

It shou;d be noted that this latter boundary

condition differs from that used by Sugo'but
agrees with the form given by Clarkson3 .
The difference is significant, and in the spec-
foonat o be
ific calculation of ¢ 5.2.6. it isAmost import-
ant.
The second order boundary condition may be

furthe£ simplified:

(i) The boundary condition in linear theeory

may be written



ax?;‘—‘-’—e—-?iz—- =€’-|~

I+ & Qow
OF ehu (1+6 TPou) = € Pog
Differentiate .+ to %

e*hu ‘Pou% = € ‘pairg'g
which indicates that @iy 1is o(e)
smaller than @uz . Consequently the
term k@ 0f eq®(3.13.) is ole3) and may
be neglected. .

(11) It will be shown later that in general
8:'250 (See é 5.2020)

Hence tpe second‘brder boundary condition reduces
to .
- ¢l‘s = _¢¢w‘~w + Cpo.a L\,q.a + X huw ) (301“"0)

3.7.3. Supersonic Flow Conditions
The conditions of § 3.7.I. (ii) require that
" the flow be everywhere supersonic. This is only
a slightly more restrictive conditidn than that
already imposed on the wings in this regard in
é 3.3: For discussion of this featurevéee
Ref.9 p374. Local departures, such as leading
edge stagnation lines of a subsonic edge wing,
¢an be handled by special methods; such cases

will be discussed if and where they arise.



3.7.4. Influence Zone Boundary Conditions.

Boundary conditions representing flow behaviour

at influence zone boundaries are obtained from
_ 7
Lighthill's detailed analysis of conditions near

a shock wave. Actually his analysis can also be

ﬁsed to describe behaviour at expansion boundaries
as well as shock waves; in such a case it is
found that thé shock has zero strength and the
adjoining expansion region ié the dominant feature,
The correct upstream conditions are the shock -
vave eqﬁgzions applied at the shock wave location
which is upstream of the envelope of Mach cones
emanating from the leading edge. Linearised
theory and ordinary secoqé\prder theory use the
simplest condition of afsho;k of zero strength
located at the freé stream Mach cone envelope,
Here this boundary'condition is refined by taking
into account a first gzgzgmgorrection to the
influence zone boundary?’In'fact this is done
automatically in the solution process by the
P.L.K. technique. The P.L.K. transformatisn,
introduced initially to remove troublesome higher
order singularities of the second iteration stage,
achieves this effect by a co-ordinate trans-
formation which is precisely that necessary to

reposition the influence zone boundary.to its

first order position. Consequently P.L.K. space

>



may be interpreted physically as a co-ordinate

system relative to the adjusted influence zone

boundary. Inboard flow quantities, being directly

dependent on the influence zone configuration,

must therefore be considered as quantities'of

P.L.K. space. All boundary conditions are applied

at this corrected influence zone boundary posit-

ion i.e. at the Mach cone envelope in P.L.K.

.spaee. The actual boundary conditions used are:

(a)

(b)

(c)

First order flow quantities satisfy the zero
order condition of‘continuity of both
potential and velocity at the boundary.

The second order potential is continous

through the boundary. This result is immed-
iate for an expansion boundary and follows
from the continuity of tangential velocity

through a shock wave in this latter dase.

The simple condition of continuity of second
erder veloeity at the boundary is used here.
The validity of this approximation is ngt
obvious for a sheck wave boundary in a
second order theory. It may be thought that
the velocity discontinuity through a shock

of first order is significant. However,
Wallace and Clarke'ohave shown that the

contribution to the result from a consider-

e



ation of this discontinuity is _O{es’t)which
is legitimately ignored in~ a second order
theory. Continuity of velocity is obvious
for a boundary dominated by an inboard _

expansion region.

The actual method'of applicatioh of these boundaryt
conditions is impqrtagt. In this paper the P.L.K.
technique is used primarily to render solutions
uniformly valid within influence zones; It is
‘then found-that the regions of validity overlap
between the zero order boundary and the P.L.K.
(or 1limiting) boundary position. The actual
second order boundary position is located by
application of the condition of continuity of
velocity there. Once the boundary has been
located, the solution is uniquely determined.
This interpretation differs significantly from
that of Sugo in the supersonic-edged wing case.

3.8. Formulation of the Problem,

The results of the fore-going sections concerning
the solution for the first and second order velocity -

potentials may be summarised as follows:

: =)



3.8.1 L ]

3.8.2.

First 6rder Problem

(1) f"‘f’om = Q’o%ﬁ - (ﬂo.gé = Q.

(2) @Palu,y,¢) = O wgo

(D B l0) = heucCo) 5o
(4) ¢,, ¢, continuous at influence zone

bo_t‘mdari es.

Seecond Order Problem

' (I)' E}qoiuu—v (P“al‘ . 'S = ( md‘{(l‘I)l"I“J— LJ (pﬁ“‘

+ 2% | Poune
—[2rm2 Byt sy ] Pousy
~[2m3 Poz + z'x,s:] q?ew&
F P (Bt = Xyy - g3)
vhere the R.H.S. is determined once
the solution of eqn.(3.8.I.), and = (wy,3)
thel unknown function introduced by the
P.L.K. technique, are known.
(2) Determine  =¢,(w,4,3)
(3) ®(wv,2) = 0 ws o

- () “Prs c""a“j;\'n Fowhi + (Pm&l'\ls oy by,

(5) ¢, ¢, continuous at influence zone bound-

aries.
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Pressure Distribution

The aim of this work is to enable the determination
of aerodynamic forces exerted over &' wing. These
forces may be obtained from a knowledge of the press-
ure distribution over the wing; once this has been
determined the problem will be considered solved. The
pressure distribution 15 most conveniently derived in
the form of the pressure coefficient.
P P
t P UT

For an isentropic flow it can be shown that

D
* 2 - x <
Cp = x_—‘m;‘ {[l + "_i" mY (1-4 )] I ]} (3.16.)

(3.1I5.)

CP (‘x) 3.1) g)-::

where 1"* = (ouedly) b

. -
= Lt + 42;‘ + 2o

Substituting from eqns. (3.3) and (3.5.) and equating

coefficients of powers of &£ :
©@

0f(e) : Cp = —2qQ,.

ofe¥): c(,? = —2¢, + 2x. Tou, + 3%{’;
- N 2 (3.17.)
© —q’o“ — oy -

Hence C,=Cp+Cp represents the pressure coefficient

to second order accuracy.

Ka.
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3.10. Remarks on the Problem

The only problems considered are those for which
the linearised solution is known. The problem is
essentialiy the determination of @, the second order
eontribution to the streamwise velocity component.
This entails the solution of eqn.(3.7.); a linear non-
_ homogeneéus partial differential equation for which

' the form of the complementary function is known. If
by any means a particular integral can be written down
.the problem is essentially solved. The complete
solution consists then of the particular integral plus
the complementary function; the latter adjusts the
solution to fit the boundéry'éonditions. fﬁe role of
the particular integral is to transferithe_non-

- homogeneity of the problem from the equation to the
boupdary'conditions vhere it presents less difficulty.
For linear parfial differential eéuations this is
always possible in principle. In f&ct with the ald of

. 1aten rm)
Green's Formula it can be shown that a particularAof

L = Py = Fgg = ey )

is given by .
®» ., fff (5, 7, %) A% oy 4X _.
¥. =27, Je -G+ G D’

where A, the region of integration, consists of that

part of. the fore Mach cone from the point (am,g)for
which {(Enpi) is defined. But in general this._fb



i1s not feasible. Discovery of'a direct particular
solution would represent a great simplification.

An exact partiéular integral has not been found.
Van,Dyke’;has glven a partial particular integral |
which simplifies the triple integral given above
but does not lead directly to a siﬁple solution.
Subsequently Sugo' claimed to have found a direct
particular integral suitable for the general three-
dimgnsional.case, This particular integral and the
approximations on which it is based &re discussed

in detail in the next section.

“’:‘5.



h: THE PARTICULAR INTEGRAL.

This section critically examines the solution
proposed by Sugo'and then modifies it.

The second order problem has been formulated in
section 3; as mentioned earlier the essential problem i
is the construction of a particular integral for the = el

second order equation.

4.I. 8implification of Differential Equation.

(© N2 o .
Let ¢, and @ respectively,. denote the complementary "

function and particular integral of equation (2.7.),
which is rearranged in the following, more convenient i
form i el
829, Prgy = Py = [ JOIMet 2] B G
| T2 Qo Pewry — 2o Fog Pauey
-~ 4—261:4“,¢%uﬂb"'21ﬁ1 Po wy
-2y %us + Do (8%~ Gy ”“n)(h.h)_
Ip future the abbrgviation P.I. will be used to denote =y
particular integral.and L, will denote the linear
partial differential operator

L= €5 -5 -5
Since
L[ % Qo |= 26 1 Pos, — 2y Poug = 2%i3 Pouy
Setting + Qoo (313"% = gy = g
{p)

cp‘ = X 4+ 5 Qo (4.2.)



~equation (k.I.) is reduced to -
LEX»] = - m:o [ {(-‘“')M:; + ?‘} (pow’@c;u.w

+ 2Py By + 2Py Pouer, :]

(4,3.)
: 2
Following Van Dyke, define

. N .
N = @M“" ( = 2m _ 1in notation of Sugo)

28* (+o4.)

Whence equation (h;3§)ébec6mes

LLX] =2 [(’-"“O 8" P Prssst Poy Yoy *'%Sq?“?g.s.')

This equation written in cylindrical polar co-ordinates
(u,r,®) is then z-
2 2
Bz XM - Xy — —;‘F)C‘,. 'f' ‘,‘L::. XG—G= 'Z’ﬂoo[(”l-‘)s <pcu_cpm,u~
T + Dy Pouu(

. B
+3L_ o ‘Po-e- ()-1-.6.)

The last term on the R.H.S. is a triple product term
but is retained because of its importance in axially

symmetrie flow,

4.2, Known Solutions.

P.I¥s have been found in both the two dimensional
and axially symmetric cases.

Equation (4.5.) reduces to the two—diméhsional,
plane case, if y dependence is removed (%5 o)

x &
Bl

-



B, —X g = 27 [ (N=1)8 0 Peuan ”"'sq’w‘s](u.'z.)

33
» L y
P.1. Xpim . mtx) (pow[(' —'%/)(po- + {3' @G‘&] ()+ 8 )

Equation (4.6.) reduces to the axially symmetric case

if © -dependence is removed (aie? Q). :

sz,uw —_ X’H‘ - %,. Xﬁ. = —zm;'[(nf—') BL(POW(powu.. -+ (R"" (pc""'.
: ] b3 (,-‘-09 °)
=+ ‘i (PO'H" (Po\r j

() > 3
P.I. X = m:q)ow[:(pa.i. ,J.HPM] — T v q., (4.10.)

4,3. Guiding Principles.
Sugo determines an approximate P.I. by satisfying
the tvwo conditions:
(i): The P.I. approaches the axially symmetric form
asymptotically for large distances from the body
(in a specified region above and below the body)

(i1) In the neighbourhood of the wing surface (3= 0()
the P.I. satisfies equation (4.5.) to the order

of accuracy of the equation (Oféz) .

4.4, The Axial Symmetry Condition.
For large ¥, the dominant term of the axially

symmetric P.I. is

LN Qo B = 5N P [ 4%y + 3% ]



Sugo proposeé that his P.I. should approach this
form for the region of + 1arge(0(é»giVen by 3 large&ﬂéh
and 4 O(); to have any meaning the region considered
must necessarily be inside the envelope of Mach cones.
This region is indicated by the hatched portions of the

figure below.

WING

SIDE ELEVATION

PLAN

The condition then requires
kS
Xy — My N3 %%%g 3' O(‘L) (4+.11)
4 0(«)
As justification for this assumption, Sugo proposed
that if + is large (O (é—)), then terms _{;x@ and :fp‘ﬁ’,@ Do
of equation (4.6.) are O(¢) smaller than the other terms

and may be neglected; equation (k.6.) reduces to



B0 = Por —L O = —2mi[ (V- ) B o P
®i N
+ %o four + {@0&—? (Po-.- ]
This is exactly the form of the axially symmetric
equation (%.9.) for which the P.I. is given by equation
(4.I0.) and the dominant term in the region described

is given by equation (4.11.)

This argument is not valid in general. It tacitly
assumes that all derivatives of @, in cylindrical polar
co-ordinates are of the same order. But the initial
pertubation hypothesis is that the disturbance velocity
components (g;!i, %) %‘%) y OT (%% )_a+) = “3%) are of the same
order (basically all are &) and actual order determined
by the premultiplying power of €). Whence < %—g =0(i)
giving %%zt o6i) = o(—é—) for ~ large. This contra-
diects Sugo's implicit assumption.

However, since Sugo'only required the flow to be
axially symmetric to 0&9 in the region of large 39 it
is possible that some symmetric slender wings may satis-
fy this condition. But this is too restrictive for a

general wing theory.

4,5, Sugo's Approximate P.I.
Sugo postulates the form of his P.I. as

%O ol [ B {(-1)% + Lo +“s¢«5'“4&%%ﬂ



In order to satisfy condition (h.}If), Sugo then
assumes that for large 5,,(33? is Oé)smaller than. the
other derivatives of the potential. He bases this
assumption on an order of ﬁagnitude investigation of
flow about a slender conej; this does not inspire con-
fidence in the assumption for wiﬁgs other than those

mentioned in the last paragraph of §_H.h.

Accepting this approxihation for the ﬁoment, substitute
into the differential equation . .
=PV _ .yt : _
LLX P )= -2mg [Qv'-,)glcpw%m-;- Pog Vuisg + Do Powy ]
+ teore Wan CPOZ% (or clorivatives)
4+  bavens WA.QA&(’P-QL?’.&I Ly %
+ [N Py g + N Bny Py ]
( :
(4.13.)
In the reglon of the wing surface, 3 ss( 06)), cg,nhas been
shown to be 0@9,@ 3.7.'2) , and if the wing has con-

stant slope in the stream direction'QQusvanishes on the
éurface. Hence the P.I. may bé considered an approx-
imation in the sense that the excess terms aré O(e3 in
the region near the wing surface i.e. the P.I. appears
to satisfy the second order equation for the region of'z

sufficiently small.

4,6, Discussion.

The last three sections have summariged the approx-



imation to the P.I. proposed by Sugot The validity of
the key approximation, described in§h.3.(ii), is sub-
sequently investigated. Nevertheless, Sugo's P.I. does
not seem to be the best available in the sense of
{4.3.(11). The condition{lt.3.(1), which has dubious
value anyhow, forces the restriction that the wing sur-
face must have constant slope. This restriection can be
removed with no appafent loss of generality in the

= = ()
method. The following modification %P to X will be

used henceforth.

%,7. Revised Guiding Principles.
Replace the conditions of§h.3. by the following: ‘
(1) If any trial form satisfies the differential equa-
tion it is a P.I.,independent of the methods used.
to derive it.

(ii) Consider three—dimenSionél flow as an extension of

plane flow 1i.e. build up the P.I. from the known

solution in the two-dimensional case.

(111) In the neighbourhood of the wing surface the P.I.
should satisfy equation (4.5.) tofxak.e. yield" an
tapproximation' in the same sense as proposed by

Sugo § 4.3.(i1) .

4,8. Modified P.I. ‘
The particular integral for plane flow



Plaw.

X(P) = m.:' (Pou«['(‘ _— %’)(Po + % Zs qloog]

and the symmetry of equation (4.5.) with respect to ¢
and 3 sugzest the basic form for the P.I. as
%= Ms G [( =) P + Sy oy + L%y |
+ g 3sh)
In order to satisfy coﬁdition§5.1.(iii), take
BZLP)S m;—(p"“"‘}:(i*d&) P + '%.Z—(Pog + r%.%cpog,

Operating on this with L, yields
L[:)?(P) ] = ~1m[; {(N"‘“) Bl(pou.(pou.w"'%ua q)oe-.u, -+ Cﬂ.g (?O“S.S

+ Foens Ww <?a'g-
(ot dg}ivitives)

+  Ferrns iy Lick Loy (4.I5.)
The restrictive terms requiringugﬁhstant slope wings
have been.égégggzg (c.f.equation(4.,I3.)) Thus equa-
tion (4.I4.) givés the form of the ’approximate P.I.,

which will now be investigated in detail.

4.9, Qualitative Investigation of Approximation,

If eﬁuation (4.5.,) 1is written in the form

Lij = F£¢a; “’)‘733 7
then (4.19.) gives

LEX] = FU® 5 vy 3) + glrems of 0]
it cpasg.ﬂ[{f'.u—wxs Gf OC‘)J

- Since L is a linear operator

L[x %] = 3-Lteme 0C)] + Pogg-Lrees 0()]
(4.16)-

i

o(z) = 0(€) or 3 —3O



The solution for the pertubation potential, and
hence 76, is required only in the region near the wing
surface where both 3 and %, are O€) ., Then to second
order accuracy, equation (k.I6.) in the region of the
wing surface is

L[x—-Xx] =0
j.e. X —X = Terms of complementary function.
i.e. On the wing surface iwrepresents a first

W)
approximation to X in the sense that

erx? _ g2 7-2(1’? + OC€3)

Fiarther. investigation suggests that this argument,
based rather loosely 6H an order of magnitude argument,
may not be correct. The presence of the 3-space var-
iable in the differential operator and in the non-
homogeneous terms presents some difficulty. The further
investigations in this matter are presented in Appendix
A, but it should be noted that no definite conclusion
could be reached., theoretically. Therefore, in the
next section, the ’approximation is used in a specific
ealeulation to determine whether there is any empirical
justification for the method before an extensive invest-

igation of the approximation is made.
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15.1‘.

APPLICATION TO WING THEORY

Introduction

In this Sectign a solution of a general wing-flow
problem is developed using the approximate P.I. of
{ 4.8, For present purposes, as mentioned in § 3.9.,
a problem will be considered solved oncé the pressure

coefficient distribution Cu(~=,4,3) is known over the

wing surface.

The method employed can be summarised as follows:
the P.L.K. transformation necessary to ensure converg-
ence of the iteration process is determined(§5.2.2.);
the physical problem is transformed into P.L.K. co-
ordinates, where the approximate P.I. Of'§hw80 is
used to derive an expression for the second order
pressure coefficient (§f5.2.3.&h.); finally by invert-
ing the P.L.K. transformation, the solution is given
in physical space co-ordinates.

Only simple delta wings are considered here. The
flow over these wings 1s conical and therefore not
strictly three-dimensional. However the application
of the method to such wings illustrates the essential
features with less detail consideration than would be
necessary for more general wings. But the most import-
ant reason for this choice is the doubtful theoretical
validity of the P.I.,yhich makes an empirical evaluat-



-ion essential; conical wings are chosen because there
exlst linear and exact theoretical as well as experim-
ental results for comparison. Furthermore, as Sugo'
used conical wings in his investigation, this facili-
tates comparison between the consequences of the
original and the modified P.I.S.

Application of the method to a delta mg with
supersonic leading edges, being more straightforward
than for the subsonic edge case, is treated'firstf
The theory is illustrated in the former case by
reference to a flat plate at incidence. The supersonic
edge case is considered in detail but time did not

permit detail consideration of the subsonic edge case.

5.2. Supersonic Edged Delta Wing.
5.2.1. Wing configuration.
Introduce the concepts;

"Inboard region"— defined as that part of the wing
contained within the apex influence

zone.

"Outboard regions"— defined as those parts of the
wing‘outside the apex influence

zone.
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5.2.2. The P.L.K. Transformation.

The second order equation is

B> P — cpp‘a‘j - an%} = [.m" {('('OM +1} o + 28 :t"“’-]tpow
""1(Mao 4)0‘1 + '14.1) ‘Po.md
— 2 (3 fag + %3 Poug

d z%,w — Ay - X 3
+d,.. (B 44 Ws.1.)

where @, and its derivatives are supposed known from

linear theory and it only remains to determine 'x‘,(u,q»‘s).

e.g. for a flat plate wing slope Azh. the relevant

linearised theory flow quantities are:

- Ssveg
¢owl = {_ '-"7
= = ';"""‘1
3=o0 R li—r" E-f - 25 ‘o——-‘z“’"'-] [5;7_.':_’
k)\ ] . L. LS,VS—'--
. (P‘“J[ = i B — = e
=0 - k> [T — 2tan m
ne i
' kV' l——r\ [5' ZLJ
O
STy T yorameaty [s-29
(o)
pou-g = i —a2a klv‘
e [c.24]
Tl {‘h—ja,lt:)\r\ — it
@O'S = L\w e ,S\ [S“.ZL]

Firstly, flow in the outboard region is constant and

regular. Therefore outboard of the apex influence zone
it is sufficient to take x=0.



Inboard of the apex influence zone ¢,  and Qv are
y

0({ugey) as w—zRy and therefore %M,‘H,w

in the R.H.S. of eqn.(5.I), have square root singul-

which appear

arities at the apex Mach cone.
c.f. eqns. (5.2a&e), (5.2 b&d) above.

The term q%u} behaves differently. If the streamwise
slope X\ has continuous, finite u-derivative, then q%w}
(z=0) must be continuous and finite. If the slope has
a discontinulty this wili,lead to a shock-wave or an
.expansion-wavevat the point of discontinuity; this
complication will not be considered here.

e.g.4}“f=0 everywhere for a flat plate.

The P.L.K. technique has introduced the function
1qbgm§) expressly to remove the singularities from the
foreing term of eqn. (5.I.); % 1is determined such
that the coefficients of the singular terms vanish at
the éingular points ('Macﬁ,cone - wing intersections)

i.e. choose x(uy;3)such that :
28, —MELE-NME + 2] Peu = O ]
Xy + MG Poy =0 L

v = 3 (5.3.)
3= 0

and since ¢ _1s regular everywhere Y is arbitrary;

Cu}
setting %y =0 simplifies x,(u,u,,-s) to a&:(u,sj).

For the flat plate wing the velocity components
at the transformed Mach cone are given by eqns.

(5.2,a & b), Substituting in eqn. (5.3.), gives



3¢

ol gy = e =10 (T2

Q=
3 =0 N
= —Arg [:N-—v?
ehL—F
‘x““j v—_—__-:;__lé — - m:‘d k% . (50”"0)
) 8\"—7\}—

It is sufficient then to take
Kigl > v > 2111

B"“V\" ESI—V\. (5050)
~For a second order theory the P.L.K. transformation is

simply

o> = W 6"_"1(“)"1)
e.g. for the flat plate

> = W — and, [Q\[ )u. -I—klé-]

'.—-r\,

x—=‘¢*f[:t — }JL(V5—]

where n<ky €l
' O

5.6
R > i

or

M 4

e - [nl-l ] sz—] o skesn

B{i—w
Henceforth all caleculations will be carried out in
P.L.K. space as epposed to physical space; Con-
sequently, wings given in physical problems must be
transformed into the corresponding vings in P. L.K.
spacey if quantities of physical space are denoted by

an asterisk superscript, the following transformations



are necessary.
v o= V* E | — Xi tb‘.v:*)_]/’ =
by = B , } (5.7.)
T — ]
where Xg{s*)= 2qi) in second order

theory.

5.2.3. Determination of (@,

" The only quantity still unknown in the expression
for Cp ( § 3.9.) 1s the second order velocity compon-
ent P, . This is determined from a consideration of
contributions from the complementary function.and P.I.

. P
separately. 1.e. P..= Pu + P

G |
q).r is given in section 4, equation (4eI4a) +(He20)

@ :
9 = L P [P + Loy + L1y
—N‘ﬁ%,\_ﬂj + % Qo
(9.8.)

Differentiating
kS
(pi - , = I"): (Pcu.w [‘(J - '%_)(Po 4+ © 5% CPL\1] -+~ IYI: (l-—%‘)(po’b

)
'/L ‘ﬁ’(pom(ﬂwu.g *xlw%w + 'xl(ﬂﬁu.u.

+ My
(5.9.)
(M . .
Then <Pm is determined in terms of linear theory
results ((5.2.))_ and x,(w,y) ,( (5.5.))
It only remains to determine CP,(:? « The comple-

(A
mentary function (F%')is given by the source type sol-



ution

(pt(')(“"i;o) = f[A ﬂ E)VI‘) ‘l—}'47

N@-)~ 82" (5.10.)
vhere ' e
(1) XG)D is given by (c.f. Ref. 5, section Ik)
S ' © .
. & (5.11.)

. 'z=o
(11) The region of integration,d, is that
part of the wing surface (approximated by
2=©° ) contained within the fore Mach cone
from the point (it,4,0).
From equation (3.Ik.)

@ @
q7' +¢i' J: @owi’\w + (Pogtxg +°’ql\u,u,

- %2 (5.12.)

| -
33 g=eo

' © (g
vhence ‘\.3%. , £ and then . .

For the flat plate wing husi, """11“'":‘0 eqn. (5.12.)

yields '

9" (®

‘éi = A <p:'w - (p.s
Eqn. (5.8.) gives

) LY

' (p, 2 - A My cPow
hence

/g[u.,vp = —T>T; gi Cpow
and

() | g c}ow %,7) ;;d
q)l (u“" C) :f = -\ ( 511 :? ES ‘3]
YA Vet - BT (g -v) '




e ,
where Dy = it TSTs L

N [ 2 --nrﬂ.u
= — I i — < = - sv<l
@‘, T 1—; o i—-——].,l'v‘ ° .B

H—r

"'EI,IOU..

The calculation of Cﬂu, from eqn. (5.I3.) is quite?
and is relegated to Appendix B. The final result
may be given in the following form:

© - > 4L < L
82 ()= T hered
S n ~ K- e
. ‘1(‘_’:') I:T(' 28 I—T: ]
— A f, ot Cco'l:'l'}_;‘if” ¢
T Jo G-, Ke=rmd(5.11,)

where the integral is to be interpreted as the
principal value of an improper integral. Actually
qﬁ? as given above was calculéfed by approximating
to P.L.K. space by physical space. The error
incurred is only O(s%) since ¢, is already a
second order term.

P, 1s now completely determined by eqns. (5.9)
and (5.Ik4,).

5.2.4, Validity of Solution.

Investigation of the expression for q%L just derived
confirms that the P.L.K. technique has effectively
removed the singularities at the free stream Mach cone
and simultaneously positioned the apex influence zone

boundary to its first order position. Actually the



position obtained is to be interpreted as a limiting
position of the influence zone boundary. Presumably the
exact boundary lies between the free stream Mach cone
envelope and the limit position. This doncept is
amplified in the discussion of the specific example in
§5.2.6. It will be shown below that the boundary
position obtained does correspond to the expected
first order position i.e. within O(ﬁ;); verification
that singularities of the flow have beep'removed is
not reproduced here as it is more readily seen in the
similarity law form of 45.2.5.

To show that the influence zone boundary does éor-
réspond to the first order position consider the exp-
ression derived by Sheppard"from a consideration of
Llinearised theory flow quantities. Defining © as shown
in the diagram below, the first order boundary locat-

ion is given by (in the notation of Reference II.)

Ton® = tampe + Atba-B
ket

Aton® = "’:g [k+3(d a‘[

/l’ \’
/ > (H o)

which becomes in the notation of this paper
AvF =~ X T Wor N =
= g L ]

| a:_.,t!;-f :}{T_“[yywud N



From the P.L.K. technique, the adjusted boundary

position is given by /

which, on transformation to physical co—ofdinates,

yields:
V'*

Bovnde \C

.o

T %408)]
i o~ L ¢ mt :
= % XE;;,EH-‘Q+Mﬁ3

The two expressions for the boundary agree to O(Xz);
i.e. the P.L.K. technique has successfully repositioned

the influence zone boundary.
5.2.5, ©Similarity Considerations -

.The optimum form for the secopd order pressure
‘coefficient is thét which allows animum use of dyn-
amic similarity between flows. Van Dyke,zhas given
possible similarity law forms for the second order
pressure coefficient of which his equation (EIDb):is
the most suitable here. However van Dyke's work is
btased on an ordinary second order theory as opposed to
an uniformly valid theory such as used here. This dif-
ference is important; it has already been mentioned
in $3.7.4. but is repeated here for the sake of
continuity. .

An alternative way of looking at the difference
between ordinary second order theory and the uniformly

valid solution concerns the position of the influence



zone boundary. Ordinary theory uses the simple cond-
ition of the influence zone boundary located at the
free stream apex Mach cone, while an uniférmly valid
solution is essentially one taken relative to a
corrected boundary position. Now if van Dyked formulae
are interpreted as rgferring to co-ordinates taken
relative to the apex influence zone boundary, this is
consistent with the original meaning-but the general-
isation to an uniformly valid solution is obvious;
viz. Van Dyke's similarity law forms are applicable to
the present solution provided all flow qualities are
deseribed in P.L.K. space. This is sufficient to de-
rive most of the benifits of dynamic similarity theory
except that, because the particular P.L.K.. transforms
may vary, similar wing -flow problems in P.L.K. space
may not be similar in physieal coordinates and vice-
versa. )

Equation {IIb) of van Dyke's paper gives the simil-
arity law form
Colx,y,3 3 MY T,)., p(*»ﬁj;ﬂg Pﬂ)

+f‘[p,c Y+ O b )N*’)"’ p3(i]

vwhere p, ,p,, Py, are functions of the same arguments
as P. Translating into the notation of this paper:
(i)i6 (thickness

)
.}parameter corresponds to T
X (slope)



(11) Me replaces M
(111) B=JM>-I replaces f
(iv) n=% « 1 (A = as: :t ratio )

N D Y-
;.{n) is equivalent to ¢ - A)
| 3 = W B . -

"o F(n,kv) is equivale  to g(x, py, fz; BA)
(for conical flow)

The form of the similarity law is therefore

. . . _ g o= '
CP.-_-. %P(n,kr) + }‘TPI( )+ ’%‘}—:—Pv( ?+ Qd__"l“ Pz ( ):]

It will be shown that the expression for CP for the

flat plate wing may be put in this form. Extension to
the general case should present little difficulty but

is not done here.

Introduce the notation:
(1) Denote by f a function in the outboard region
and by f the corresponding function inboard.

(ii) A = T — Qiu;.-‘ﬁ.;%ii‘

D = T — ke (R
Kv {i— v

C = Jl-—n" ( l—-}::"v::-) ‘ W — s
The function P(n,kv ) contains the first order

contribution to CP'

. 22X L ¢cos-L
73 C}l’o) = ~2@,. = iBJI-—w" & S
284 v
%—B—h" O v s r

hence take C;a') _ {“p‘ O wtopord



where

— 2
P = Ti— (5.17)
2A
;P mw — > (5018)
The second order contribution
W s> LS « (?)
CP 38(?7“ ~¢"j _ﬁ:—z + 1x‘“’¢0v~ ~'—2’¢tw 2’%1&

can be written in the form

2 m; . QNM:;

N brcni) + D2 )+ 202 ()]
where, for the flat plate wing:

_ 2.
p: = I — > (5019)
= ~} - "“IDL A zA
P i~ ) = =) 7 wa—a)
{ > n— oI
+ €~ o ) ] GOL-. n ol
LU fo()-—- Y (RN kv — net (5020)
L= —28* L 4K v ¢-k3 11— 2
P Tf‘(:-vi"-) T o [ '] + . T ‘—c': E Tt‘]
(5.22)
Fo= =i .a e (5.23)

' LS A
h“ -n’*()—m) + =< [’ "'n']

_ (5.24)
Note that the apparent singularities 6f the second

order terms p, and p; arising from the factor C which

is O(r;—,g-J as ke-->tn (i.e. asv>+4) are effectively ’
removed because of the multiplying brackets:

- (== [

§— A £

[1—27 = 2 bes! TR = O((Fo05) a0 sl

k v [ R e

Thus each term is in fact regular at v-tf{, This con-



‘firms that, for this case at least, the P.L.K. tech-

nique has rendered the solution uniformly valid.

5.2.,6. Specific Example

The solution for C;(n?,k*v*) for the supersonic
edged wing (flat plate at incidence ) has now been

given:

Eqns. (5.16),(5.17),(5.19),(5.21),(5.23)— C, outboard
Eqns. (5.16),(5.18),(5.20),(5.22),(5,2%)—>C; inboard

and
V‘*r- A

El*-— X*q]{v‘)]
maps P.L.K. space into physical space, giving C:(o—*)

Consider the flat plate supersonic edge wirg at ine:

[+ (o]
cidence -4 , with W45 sweepbackson the upper or com-:

pression surface, - : X
m“ — 3.
k¥ = 0.
N = 0.069¢
T = .40

The pressure distribution on this wing has already
]! ]
and Sugo using

been calculated by Fowelln,'Sheppard
respectively an exact theory, an improved linearised
result and an approximate second order theory.

Since time did not permit the‘rather lengthy cal-

culations involved in the complete inboard solution to



be carried out, it was decided that an assessment of
the solution could be obtained from a knowledge of

(a) C? on the wing centre-line ( v=9)

(b) C, in the outboard region (v>§)

(¢c) The position of the apex influence zone

boundary.
The justification for this step is that -all known
theoretical solutions and experimental results for this
¢lass of wing ‘are, qualitatively, of a very similar
form but.are'd§§tinguished quantitatively by the val-
ues at the three points (a), (b) and (c).
The values of C; corresponding to (a) and (b)

above are found to be

(a) C:(bentre-lin®==0,q&§

(b) €, (outboard)=0.059

The position of the apex influence zone, and the

overall solution is determined by interpreting the
results as follows: there exist two partial repre-
sentations of the complete solution; the inboard sol=-
ution, which has now been rendered uniformly valid,
and the outboard solution which, in this case, repre-
sents a constant flow region. These two represent-
ations apparently overlap in the region'between the
zero order position of the influence zone boundary and
the limiting position of this boundary as given by the
inboard P.L.K. transformation. The relevant solution

is extracted by applying the boundary condition of



continuous velocity and pressure at the influence zone
boundary i.e. the boundary position is given by the
1nter§ection of the inboard representation and the con-
stant outboard solution. On the wing surface on the
compression side of the wing the boundary is actually
an expansion wave, but, as mentioned in §3.7.k., this
does not affect the application of Lighthill's 'Shock-
wave'! analysis. |

In order to assess the solution the pressure co-
efficient has been calculated at two further points
just inboard of the boundary. |

(1) At the limiting position of the inboard repre-

sentation
=% < 0.35 — ¥=0.43
: Cy = 0.066 (+.002)

(i1i) At the zero order boundary position
kv = kK= 0,35 €<— v*= 0.35
Ch = 0.052 (% .003)
Estimating the solution from these results, together
with (a) and (b) above, locates the apex influence
zone boundary at
Rl = 0.42 (%.02)
Boundary
Detailed inboard calculations are necessary to place
this boundary more accurately.
The solution, and method of locating the boundary,
js shown in Fig. I. together with the other theoret-



dical results for this wing. A comparisorn with these
other theories suggests that the present method does
give a useful second order result. The solution ap-
proaches Fowell's exact solution frcm below much as
expected for a second order theory, the chief discrep-
ancy arising just inboard of the boundary where the
present method gives a more pronounced expansion.
However, the pressure gradient is vefy’similar to that
of linearised theory near the boundary and is not

unreasonable,
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6: CONCLUSION

Tt has been shown that the second order super-
sonic wing theory proposed by Sugo' is incorrect be-
cause of ‘errors occurring in the construction of a
particular integral of the second order equation and
in its application to wing problems; However, it has
also been shown that a second order theory, utilising
the basic approximation concept implicit in Sugo's
work, has led to useful results. The only actual
justification given for the approximation is empir-
ical; the results of applying the theory to the cal-
culatidn of the pressure distribution over a simple
supersonic-edged, conical wing suggest that the ap- .
proximation is indeed valid for this case., Further-
more there seems to be no suggestion that the approx-
imation will be any worse for other simple wings,
However, it must be emphasised that, in general, the
appréximation advocated will be’ﬁseful only near the
wing surface. Conseguently, Wallace snd Clarke's
generalisation of their cruciform wing theory to three
dimensions is in error because they assume firstly,
that Sugo's particular integral is exact, and secondly
that it is applicable throughout the flow region.

Application of the present method to compression
surfaces of other simple supersonic—edged wings should
be straight. forward. Delta wings with single-wedge
and double-wedge sections will reguire only detail
modifications to boundary conditions but curved wing
sections will require considerably more complex cal-
culations; prectangular planforms should present little
difficulty. Extension of the analysis to expansion
surfaces may require more careful apnlication of
boundary conditions at the leading edge expansion
wave and near the influence zone boundary but no

other. difficulties are expected.



For a subsonic-edged wing there are singularities
at the influence zone boundaries and at leading edges.
Singularities at the influence zone boundaries can be
removed immedidtely, for simple wings at least, by the
P.L.K: technique. Following Sugo, the leading edge
singularity may be removed simultaneously by using the
Karman-Tsien approximation that ¥=-1 near the stag-
nation line, ¥ being the ratio of specific heats.:
This is a reasonabie approximation in this region but
the best method of incorporating it in the general
solution is not clear. There is little doubt that a
general result can be found which would, presumably,
be as useful as the corresponding result for super-
sonic-edged wings. -

It must be pointed out that for wings with curved
leading edges the present theory would probably be-
come intractable, because of the lengthy numerical
calculations necessary. However, if an ordinary sec-
ond order solution can be calculated for the flow
field, then, following Wallace and Clarke? such a sol-
ution need be corrected only in critical regions by
using either results from the uniformly valid first
order theory or a physical, shift rule ssfdez inter-
pretation of the P.L.K. technigue. This meﬁhod may
represent an important simplification’in the theory
but even an ordinary second order solution will in-
volve considerable calculation. Therefore second or-
der supersonic wing theory is unlikely to be of wvalue
in wing design unless examination of a small number of
specific examples reveals means of simplifying the
method without incurring significant errors. There is
hppe that a combined théoretical and experimental in-
vestigation of delta wings will enable a simplified
theory to be developed,
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Appendix A

’

A.I. In section 4.9. a rather qualitative argument,
based on orders of magnitude of quantities, has
been used to investigate the approximation in-
volved in the postulated form of the particular
integral. It suggests that the approximations
involved are legitimate for a second order theory.
However, attempts to confirm this by more rigor-

'. ous methods have not been successful; in fact
they seem to suggest that the approximation has
no mathematical justification. In this appendix
some of the attempts are reproduced. None are
complete., Some comments are made as to possible

interpretations of the results in each case.

A.2, Consider the linear partial differential equation

LLOT= 8% =Py ™ P = Flowd)  (a1n)

for which the complementary function @&J

and the non-homogeneous term F(x,4,3) are known.
The problem is to find a particular integral.
No exact particular integral could be found but

there exists a function @(x,4,7) <.t

L_E(PJ:' 6(1‘) "]1 %) (A020>



A. 3-

vhere

G(ﬁ')"]'g‘) - F(i'\—;"; )-:' k R,(')(,L) + 0(- 1)
PETATEOVT T (a3

This function akkﬂﬁi)is the 'apbroximate'

P.I. used in the solution in the main text. Does
it really represent an approximation to the exact
P.I. for small 3 (re.3=0(<)?

Define ¥-q@—¢ , then

LCV’J = 3 Kl (9';, ) —+ O(‘s") (Ao)"l’c)

The problem is now.: is ‘Pm

2 (o)) 2

small (0(e)) for small

For the wings considered, Floy,7) (Fanes K(u.,sj) may
have no‘singularities, square root singularities
or logafithmic singularities. In general it will
be assumed that F is regular everywhere, i.e. ei-
ther the singularities may be removed or the reg-
ions considered do not include the essential sin-

gularities.

Suppose the function ¥ introduced above may be

expanded in the form

‘I’(x,.).g) =, (y_,,,}) + 3*‘1‘"-;'»)) +"§L*,_(x,~))"" cee e (Ae5)
and the R.H.S. of (A.Lk.,) may be taken as

K(X,b’)s) = 32,[397) + 3’- Rz{:'-,l-])f— e e L (Ac6.)
Substituting these expansions in (A.4.) and



AL,

collecting coefficients of powers of 3 ylields

2 .
8 Yoy "-"‘1’-.] — ¥, =0

2
a AR — ¥ yg - 3!*3 = R,
gy -+ L

T X2 7—1‘4 i! 'h.r* &L (A-7o)
2 :
- _ i

¢ 3»»-'Ggg“‘ gﬂ}ﬁks

If @ isiéuitable approximation to @ , the
Plxn0) = @, ,0) which requires H (¢, )= 0
(A.7.) gives n equations for ~+z unknowns.
Two more equations are needed;

g
The boundary conditionn(2.I.4) gives
b} a , -
P = 39 (3=0)

a‘s ) 8.)
) A.G.
te. - T\K-.-.-O (3_‘0) (
._.\.I.‘.’ | .
But % = ¥+ 234a O(;)

Hence (A.8,) gives <, =a

Substituting back into (A.7.) yields + (= %)
whence Y5ty 00000000 . However the method break~s

down because there does not exist another bound-

ary condition on the surface 3=0.

As mentioned earlier the Green's Formula method
is not particularly useful in general because of
the difficulty of evaluating the triple integral.

However it would appear that equation (AY4,) is



A05o

amenable to such a method, especially if the
region of integration is chosen to exclude sing-
wlarities of Réxy) e.g. inboard of the apex in-
fluence zone of a supersonic edge delta wing.

The particular integral of (Ack.) is then

@ 3R, (5,) + O(F?) dxdydl
\'y(-'!)\. )= ! )? - £
R KIIA (&‘3)1"31[_(‘3""1),—4 Q- $) LJ

Is this expression Cﬁ@, 3 small ?

After extensive investigation and integration

over possible surfaces, the details of which are

not included, it was found there was no reason
¥

whatsoever for suggesting that =0(3) (in fact

the residue terms suggested the approximation has

1ittle meaning in this sense.)

Since there exists an exact P.I. for the two dim-
ensional problem, this affords a means of check-
ing thé proposed approximation. In particular
consider plane flow over a curved boundary. The
particular integral for a second order equation
for this problem has been given by Van Dyke :

pp 494-7. In the following investigation, re-
sults derived by Van.Dykelare quoted (in the

notation of this paper) without proof.

The second order equation for plane flow

0 = By = 2 [0 G G +Box oy ]



has an exact P.Il.

(P] 2 r'!‘
CP‘ = =Mu N{,% cpa'x. (Pog

Plone,

Consider flow past a curved wall whose equation

is
S = c 41(4)

The solution of the first order problem is then

@, = Jé %('x—— Bjs)
Substituting in the second order equation given

above, yields
BYQ — Pigy = - 27 Noltx-8y) 3"(x-8y)
with PI. / .
. Q= 'g‘i‘_g % C g’(')c.—%s)]
Now following the approximation adopted in this
paper, neglect terms of CM£9; the second order

equation becomes

. Glcyhx-)c. - %‘;g
Tt must be shown that any 'approximate' P.I.

= —2m% N gltd g"()

which satisfies this last equation differs from
the exact P.I. only by terms of O or comple-
mentary function terms.

Consider two specific examples.

(1) Flow past a sharp corner

o n <O
c"(')"): { x x 20

Then

(P >y
CP‘ = M« 'JS
2B
But the approximate form of the sec-

ond order equation is
2
) — =
‘3 q::r..ao ¢‘33 Rl O



and the result

@ v

is almost. trival for this case.

(ii): Flow past a parabolic bend

Q , W<
Then
| CPV) — mw-'l— N 3 ('zc - 33‘)1

! B
The approximate equation is

81¢‘1x_ ¢'13 = ‘?-m:r‘lx,

An obvious P.I. of this equation is
0~ —ak s
CPI - '6_8—':'_ *

Hence

o¥ _ 7 o o WS
+ . 6 61
But this difference is not significant

because it can easily be written as a
combination of complementary function
terms plus terms of O(3)
e.ge x3=(?<.~-8-5)3+ 3 Qx"3 —381xg‘+835?
<C.F. + O()

o qol'u’) —_ .(p')

—3"” = c.r. + 0@

It has been found that the approximation is valid

in all 2-D examples tested. However, as there is

a significant difference between the 3-D and 2-D

wave equations, the results need not generalise.

Attempts to construct counter examplesalltfailed.



Appendix B,

Calculation of the contfibution to the
streamwise velocity component from the

second order complementary function term.

It has been shown in ¢ 5.2.3. that the
second order complementary function is

given by

© A 8> (19,0) d¥d
(‘\.L)t‘ =f i 7 (B.Il)
R o) /A Jer)s - ety -

1

Where the integration extends over the
region of the wing included in the fore
mach éone from the point P(ugﬁ,o). There
is a difficulty hére,vin that the inte-
gration includes inboard and outboard
regions rpr‘which the P.L.K. coordinates
differ. However, since ¢, is already O()
the difference tetween these two spaces
gives a contribution'Oﬂﬁ)which_is not sig-
nificant. The following calculations are
best considered in physical space coord-
inates (equivalent to PiL.K. form outboard)
For convenience asterisks are not included

and «w(=%+06) notation is also retained.

‘In the evaluation of this integral

points outtoard, (denote by P ) and



inboard points(P))must be considered separately.
f,”~

/
/////’/!/(/

Inboard
region

Outboard

l

VAN
Inboard

For a point P in the outboard region of this
wing, flow is equivalent to that over an in-

clined rectangular wing of infinite aspect ratio

and slope,
R
hence
() 2
Pu| = 2
P [ N

(B.2.)



For the representative inboard point (P)

P o N | ol (=

A Joo* - e (y—p-

BAr~ Jf d?zlY
T — W"(v ))

i -—rx

ﬁ-qu ~r;§fﬁb
[/ ) — kTR C‘L}'cl«7

Al w-g)* - @ (y- h

(B.3.)
The first term of (B.3.) gives a contribution
to C,D.(:)'
. i ST
(p(C) i) - }\L [:'T ——ZS»—» ka"f’ ]
ol ‘T(l—- 1= ke

s (Boh’o)

It oniy remaing to determine the contribution

to @. from the second term of (B.3.)

viz.

- -an’

cp(c) (’—)_ > g \* I/ ,w\ d}'ab.]
vle T mim ) TR (- s)‘—e‘(v )

Anl (B.5.)

where the regién of integration is now confined
to the region of the wing contained within the
intersection of the fore flach cone (A ) from

P and the apex flach cone (rH becaﬁse the

integral is defined as zero outboard.



Instead of evaluating (B.5.) directly for the
symmetrical delta wing it is simpler to build up
the result by considering the half wing shown in

Fig.2brelow. - H

Fig.2b,

Denote by P an inboard point on the half wing
(i.e. ¥>° ) and P, an inboard point outside the

wing (i.e. 4y<9).

Equation (B.5.) yields for a pcint R

. -B(y~v) T
() 3 4 w-Blg-v) (n"}"‘-—-k‘ T
28X S~ ¥ 1
(.p' =3 5...';-3-[ L 4 8 15 e 5
7 JLu_ 5-)’1 . gl( "1 " y))x

JTZ%T::I?7§fﬁT:"
(B.6.)
where
2B
Integrate by parts ot to § 3 this serves to

change the integral from one with an (integrable)

PR



singularity at the upper limit to one with the
§ingularity at the lower 1imit (which 1s inde- A
pendent of w) therety simplifying differentiation

Lu‘*‘to u«

u. 8(. ) -1 W } ]
9 3 Gk
¢I( = D.G )\2— [ f (17 ds ——,_-51 1_1_ " } }’2('— ‘7')
B ] NPT - I< s (El ") }

4 D ey
g [a g e Ck/rtf«?)”

g,? J“E‘ W (5% k‘.]‘)

Differentiate wvrto w
u,l?(%ﬂr?‘:e_.kii_ i

(<) 28 X 4 LEl g e
cp‘*srr‘-r—“m[I JNI{? JTC?»&»(:»: kv')\'(w -—8’(.11)

+ f d/7 Gak'(l) Fls, VD
i w—sfq *3) ~ 1
4 7 {lz \rr\,}' l<‘ Y (E Kt t)J '?) ’(77)

Hk N

c= BN ‘:[5 “@(3;]) (=
.u, 7;1{7:; : _‘[" }.Lkl'f She 71)((—»\;?'—‘8‘@5‘
+f S fw%’ =

'78,) J"‘,s_l k""’L (}‘ k?) (M-F) @2( ‘))1

(B.7.)

Since the flow is in fact conical, this last
expression may be further simplified by introdﬁc—
ing the conical variable lxzé’ and transforming
from (§7 ) to (g k) variables.



Then

N N
QW(Té)—;QSX [fdk/ (:ﬂ‘ %quﬂ%lUJﬁi’

‘| [ e ’<

+[ (lL\,! dg (- [RIR o)t @ghY)

(B.8,)

where %,, is the last value of §4 (in(g,h) co-

ords) which givesa contribution to the flow at P.

Performiég the % -integration and simplifying

2z i ' -1 | Bk
((,) ( ) e )\ 3 r:: k’-’m G'o‘» l ; ( L\)
(plu, = T l R k"l\l) i v

(B:9.)
But the wing also induces a flow for points P,
off the wing surface but inside the apex in-
fluence zone. From (B.5.) and Fig.2b

(i) LL’B(‘ - ) SO
(C,_) H 2 gl— ) 3 - (st _k* LW
P, — 28X j b ] gy S el
p, THi-n"lo B e :.3-:_ eecll
T = 8y
where
qo =

Carrying through the analysis as for P, , the
following result is obtained.

(2) 2 | l—gz«L—
: Y [3 - 2 TS
S R Sl W e G lcw-»k)
e tey o Y0 T hanr (i- Ic’k) A
(B.I0.)
() (,’) Q) (‘-)
i.e. Cp"’" l P, = C{}pw /

Py



Superposing two such half wings, the positive
one and its negative éounterpart, reconstructs

the original wing for Which then

7 L -t j1-8%hvw
q#)!__~4@X’/3_EE:M G Iiﬁiio e
" ‘ P B ?’7—;’— o V- (- e e U
' (B.II.)

This may be further simplified by the change of
variabley o=8k .

=

©

lr

Gl ln_-kv'.o( d

i
NN f = -
T g (CR) (1—ee¥) ko e

P (B.I2.)

On inspection, the integral of (B.I2.) has
apparent singularities of the form'T?(ifio as
*x—3% at e =i and x=Bw , (x=4 is
outside range of integratibne) The apparent
divergence of the integral at «=8v 1is removed
by taking the principal value. As the inte-
gratioh could not be performed analytically, a
numerical evaluation is necessary.

- In order to determine the degree of re-
finement necessary to obtain a suitable approx-
imation to the integral by-numerical methods,
the centre-line integral (v=o0) is first evalu-
ated for varying subdivision steps.

On the wing centre-line (v=°) the integral
contributing to (REJ (equ.(B.I2.) ) simplifies



e

)
(C) ‘(1 . _ q_h’)\z. JI ¢(l—_ GAL\‘,(_.L) (LD(
' " o (o—n‘x”)u—ua’-) =

(B.I3.)
where
(1) ' (&)= O(&gx) a» x>0

Hence

<t Gr (L) e an =0

i.e. The integral vanishes as =0
instead of giving the singu-
larity expected from the gen-

eral form.

(1i) It can be shown that
PN 2

Coo b < O( I )
I— o f—
as o>/

L
In fact G = o LZ ¢ .99cwx<y
i— o b —

(iii) Since the integral of (B.I3.)

(denote by I) is multiplied by
T - "o
the integral itself need only be
evaluated such that
[Evvos & T|< to.5% 1 zf -0(A%)

(i.e. contribution to total error
is not significant)
A crude numerical integration

shows



Therefore it is sufficient to

evaluate -1 s £,
lEFV‘("{‘I < 'os
Truncatlng the integral at m-.9999

and using inequality of (ii) shows

=
The numerical integration of
- r,q : <>(L G)’JL" A d"(
T f 0.0000 (=)t ~rEe™) (x)
9999
/3 99 Y dﬁ( + f o [{] ((,)(
°§9c0

using intervals of length .0l in the first inte-
gral and 1ength¢eéo; in the second yields the
value
L = 0.97 £ .05~
which is within the desired accuracy.
This value is used in the calculation of

Cp on the centre-line

A more general method had to be evolved for
calculation of the integral off the centre-line.
This was derived by modification of a method for
evaluating singular integrals given by Roper'¢ o

The calcdation proceeds as follows:

gv’—-g " K, X

I, = fo G () Goi! [kwr el I



— - ’ e s 4 A b il sl B5E g P

[ a¥d

I,= 8 G(Be+8) Goi! ln-. K2e™ _ ke g/
;)

[

~ &

-+ S.» G(BV"-—S.) GM/;\«—’ n — k_:'j} - kv—-. g.}

4 f3‘:’-:- Dot ["—h,('r‘] QBG" v(‘) G/)Lv-.l "~ kv ¢ e
Br-& L—o)?* o) (1= 2)” Ke — nu«

TR &
+.& _s Clx) Nk d <
v o ke <1 ko )t

. 995
. i Lv" n — Ko, x X
Iy Glx) Go l———-—- o
Bov~§ -

ke — not

~ Where

1) Gl = (T

(i1) & 4is chosen such that the first inte-
gral term af I, may be neglected to
the order of accuracy of the c¢alcul=i.

ation.

(11i) A1l integrals, except the one men-
tioned in (ii), are now non-singu-

lar and integrable.

(iv) The behaviour of I; as x—>i corres-
ponds to that of the centre-line
integral -and is truncated in the same

manner.

Since each of the integrals into which I has



been analysed can now te intégrated by standard
numerical methods, the essential difficulties

have been overcome,

Time did not permit these calculatiéns to be

carried through.
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