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Abstract

To determine whether or not the MIDI and MID2 genes contribute to the OS

phenotype, a mutation screen was undertaken. Fifteen Australasian and one British patient

diagnosed as having Opitz Syndrome were screened for mutations in the MIDI and MID2

genes. In total, 8 unique MIDL mutations (E115X, Aexon2, F/S l0sldelC, R368X, F/S

1330insA, Q468X, R495X 8L L626P) were identified. The majority of these mutations

resulted in the truncation of the MIDI protein, midin (6 of the 8 mutations), disrupting the C-

terminal domain (CTD). El15X was the most N-terminal mutation identified, resulting in a

midin protein with only the RING finger domain. Two OS patients had nucleotide changes

producing a frameshift, one was a deletion of a C nucleotide (1051delC) while the other was

an insertion of a single A nucleotide (1330insA). One OS patient had a small in-frame

deletion encompassing exon 2 (Lexon2) and another unique mutation resulted in an amino

acid change from a leucine to a proline (L626P), representing the most C-terminal mutation

identified so far. ln the MID2 gene, there was a missense mutation caused by a change

1073C>4. This mutation was present in OSP#7, 9 and 13 probands, which suggested that the

MID2 gene may also have a role in the OS phenotype. The OS phenotype varies between

individuals but there was no correlation between the OS phenotype and genotype in the

mutations examined.

The MIDL mutations, El15X, Âexon2, R495X andL626P, were chosen to investigate

the effect of the mutations on the intracellular localisation of the MIDI protein (midin). A

Green Fluorescent Protein tag (GFP) was used to visualise the intracellular localization of the

wild-type and mutated midin. Wild-type midin was located only in the cytoplasm of the cell

and was associated with the microtubule network, while the mutated forms of midin were

found to have an altered intracellular localisation. The El15X mutated protein lost its ability

to localise in the cytoplasm. The Âexon2 mutated protein remained in the cytoplasm but lost

vl



its ability to associate with the microtubules. Intracellular localisation of R368X and L626P

mutated proteins showed cytoplasmic clumping. The R368X and L626P mutated proteins

also had a reduced ability to associate with microtubules. This suggests that the mutations

result in a loss of function of the ability of midin to bind to the microtubules, overall resulting

in the OS phenotype.

An antibody to human midin, MIDI antibody, was raised in rabbits and characterised

using Western analysis. Experiments were undertaken to determine the specificity of the

MIDI antibody. The MIDI antibody was found to be specific to midin and was unable to

interact with the MID2 protein. In addition, the MIDI antibody was unable to interact with

midin that had mutations. The MIDI antibody also was unable to interact with tissue samples

from zebrafish embryos and chicken embryos although these species have the MIDI gene

present. This suggested that the C-Terminal domain appeared to facilitate the interaction

between MIDI antibody and midin.

The zebrafish (Danio rerio) was used as a model system in which to find a MIDL

homologue in order to further analyse the function of MIDI and how it may cause the OS

phenotlpe. From the zebrafish genome a homologue, zMID, was isolated and cloned. In situ

hybridisation experiments revealed that the zMID was expressed only in the retinal

neuroepithelium cells of the developing eye in zebrafish, highlighting the boundary of the

optic stalk before it differentiated into the optic nerve. This expression was very different to

the MID1 pattem of expression in mice, which has been shown to be ubiquitous. The

multiple banding patterns observed in Southern analysis, when various probes were

hybridised to zebrafish genomic DNA, indicated that there were multiple copies of the MIDI

gene in the zebrafish genome. In addition, the banding pattern suggested there might be

multiple copies of MID2 or even the presence of MIDJike genes in the zebrafish genome. A

phylogenetic analysis using the MIDI and MID2 homologues revealed that the zMID gene

and the fugt MID gene were a monophyletic group that excluded the other homologues. A

vl1



protein alignment: of all MID sequences revealed these. homologues had been highly

conserved across species. The lowest conservation seen across species was in the most

carboxy terminus of the MID1 protein.

In the future, all multiple copies of the MIDI gene present in the zebrafish g*à-.

noed to be isolated and sequenced to enable transgenic experiments to be are carried out in the

zebrafish. Transgenic zebrafish could be used to model the mutations found in OS patients

and used to determine the mechanisms involved in the loss of function of the MIDI gene.
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