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Suurnary

Graph theory to date tende to be nostly of a conbinatorial

or topological nature. More algebraic aspecte of graph theory

have been studied, however they tleaÌ almost exclusivety with the

problen of deterninlng graphs vith glven comblnatorial properties

whose autornorphisrn group ls iedrnorphic to a given abstract group'

Ä, bibliography to the llterature on thls subject is gíven in i1 1l

p.26r.

This theeis allscusses a cllfferent algebraic side of graph

theory¡ nanely the theory of graphs with transitive automorphism

gToups.AlargeclassofsuchgraphslsglvenbytheCayleygraphs'

and the problen innecliately arisee as to how the class t- of graphs

vith traneitive automorphisn g¡.oups 1s relatetl to the class i of

graphs vhlch are isonorphic to Cayley graphs' Thie problem is dis-

cuaeedinthefirstfourchaptersofthethesis.

In chapter I the baeic definltions and terrninology are givent

and lt is shovn by examples that f properly contains I"

In chapter II lt le ghown that f antl f, are both closed under

carteslan produets, but not under the reverse operation of factor-

ising a graph wlth respect to cartesian products. It is also sholrn

that to each simple graph G in t-e there exists a complete graph

whose cartesian prciduct with C is ln f,"

TwonaturalgenerallzationsofCayleygraphsarediscussed'

in chapter III. The first of these is shown to give arbitrary

slnple graphs in l, generalizíng a theorem of Sabidussi which



iÍ

characterises the graphs ln f by means of their autornorphism

groups. This ls used to deduce a theoren on homonorphisms, which

states ln Reidemeisterf s language that any sinple graph. in 'f rnay

be covered by a graph in I. Slurilar results hold for the second'

generallzation of Cayley g¡aphse and are used to d'educe a fulther

characterlsation of the graphs in 't'

The problen of findlng usable sufffcient conditlons for a

graph to be in X is digcusse<t in $? using the regults of chapter

III, anrl in $tO using Petersenfs alternating path method' It ís

>wn that lf a regular graph of ttegree 2 vith p2 o"''

tices (p prine) ls ln f,r then 1t ls already in I. Thls is deiluced'

fron e rather stronger resul-t lnvolving the alternate composition

graph of a graÉh.

Sonefurtherapp].icationsoftheal-ternatingpathrrethodare

also coneldered itt $9 ana $to, and the strong practical applicat-

lons of this Eethod are denonstrated tn $1'! in the construction

of an infinite set of regular graphs of tlegree 2 which are in f,

but not 1n f.

ïn chapter v Hamlltonlan arcs ln cayley graphs are discussed'

It is shovn for instance that a connected cayl-ey graph of a finite

abellangroupalrayshasaEanlltonianarc,andtheproblemof

exlstence and claselflcatlon of Eamiltonian arcs in cayley graphe

1g soÌved or partially solvetl Ln a nunber of other speclal c&s€so
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iv

Notee on EernlnologY

lhebasfc,graphtheoretlcalterninologyfollowsesfaras

possible gystein gretg 'rllheory of Grapher' (A.M.S. Colloquiun pub-

llcatione vol"r8) "

The terninology for pernutation groups is that of H. wielandt

"Finlte pernutation Groups'r (Acadenic pregs 1964). Thie terminol-

ogydlffersfrontheclaeslcalterminologyinafewingtances.In

partlcular 'reguLarrr is Ueeal inetead of t'regular transitive" to

describe a transltive pernutation group nhose stabilizer subgroups

are trlvlal, and the tern ttblocktr ls used' for "aet of inprinitiv-

ltytr o

chaptere the arithnetic used is card'inal

often restrlcted' to the usual finite
In the

arithnetic t

arithnetlc.
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