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I

Suurnary

Graph theory to date tende to be nostly of a conbinatorial

or topological nature. More algebraic aspecte of graph theory

have been studied, however they tleaÌ almost exclusivety with the

problen of deterninlng graphs vith glven comblnatorial properties

whose autornorphisrn group ls iedrnorphic to a given abstract group'

Ä, bibliography to the llterature on thls subject is gíven in i1 1l

p.26r.

This theeis allscusses a cllfferent algebraic side of graph

theory¡ nanely the theory of graphs with transitive automorphism

gToups.AlargeclassofsuchgraphslsglvenbytheCayleygraphs'

and the problen innecliately arisee as to how the class t- of graphs

vith traneitive automorphisn g¡.oups 1s relatetl to the class i of

graphs vhlch are isonorphic to Cayley graphs' Thie problem is dis-

cuaeedinthefirstfourchaptersofthethesis.

In chapter I the baeic definltions and terrninology are givent

and lt is shovn by examples that f properly contains I"

In chapter II lt le ghown that f antl f, are both closed under

carteslan produets, but not under the reverse operation of factor-

ising a graph wlth respect to cartesian products. It is also sholrn

that to each simple graph G in t-e there exists a complete graph

whose cartesian prciduct with C is ln f,"

TwonaturalgenerallzationsofCayleygraphsarediscussed'

in chapter III. The first of these is shown to give arbitrary

slnple graphs in l, generalizíng a theorem of Sabidussi which
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characterises the graphs ln f by means of their autornorphism

groups. This ls used to deduce a theoren on homonorphisms, which

states ln Reidemeisterf s language that any sinple graph. in 'f rnay

be covered by a graph in I. Slurilar results hold for the second'

generallzation of Cayley g¡aphse and are used to d'educe a fulther

characterlsation of the graphs in 't'

The problen of findlng usable sufffcient conditlons for a

graph to be in X is digcusse<t in $? using the regults of chapter

III, anrl in $tO using Petersenfs alternating path method' It ís

>wn that lf a regular graph of ttegree 2 vith p2 o"''

tices (p prine) ls ln f,r then 1t ls already in I. Thls is deiluced'

fron e rather stronger resul-t lnvolving the alternate composition

graph of a graÉh.

Sonefurtherapp].icationsoftheal-ternatingpathrrethodare

also coneldered itt $9 ana $to, and the strong practical applicat-

lons of this Eethod are denonstrated tn $1'! in the construction

of an infinite set of regular graphs of tlegree 2 which are in f,

but not 1n f.

ïn chapter v Hamlltonlan arcs ln cayley graphs are discussed'

It is shovn for instance that a connected cayl-ey graph of a finite

abellangroupalrayshasaEanlltonianarc,andtheproblemof

exlstence and claselflcatlon of Eamiltonian arcs in cayley graphe

1g soÌved or partially solvetl Ln a nunber of other speclal c&s€so
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Notee on EernlnologY

lhebasfc,graphtheoretlcalterninologyfollowsesfaras

possible gystein gretg 'rllheory of Grapher' (A.M.S. Colloquiun pub-

llcatione vol"r8) "

The terninology for pernutation groups is that of H. wielandt

"Finlte pernutation Groups'r (Acadenic pregs 1964). Thie terminol-

ogydlffersfrontheclaeslcalterminologyinafewingtances.In

partlcular 'reguLarrr is Ueeal inetead of t'regular transitive" to

describe a transltive pernutation group nhose stabilizer subgroups

are trlvlal, and the tern ttblocktr ls used' for "aet of inprinitiv-

ltytr o

chaptere the arithnetic used is card'inal

often restrlcted' to the usual finite
In the

arithnetic t

arithnetlc.

firet

though

three

tt is



CHAPTffi I ¡ Introduction

$r. Basic Definitions

Intuitively a graph conslsts of a configuration of points

with llnes Joining then, and each l1ne may or nay not have a dir-

ection asslgned to tt. l,Ie call Èhe lines tlirected or undirected

erlges of the graph according to wheüher they have an assigned

d.irection or not. fn order to av'otA the inconvenience of having

to consider directett and unrllrected etlges sinultaniouslyr ve wiII

consider an undirected edge to be a palr of oppositely oriented

dlrec'i;ed edges

Â graph may have geveral edges fron one given vertex to an-

other. For the present it is inconveníent to dietinguish these

etlges¡ eo tre shall chafacterise an edge sinply by its Ínitial and'

terninal vertices ancl its trnultiplicity" - the nunber of times it

occurs in the graph. Theee consideratione motivate the following

fornal d.ef initions.

A graph G ie a triple (vrore) conslsting of a vertex set v;

an edse set E of ordered pairs of verticee¡ and a ¡nultiplicitv

function p , shich maps vxv into. the class of all cardinel, nunbers

and has the property that P(art) * O if and only if (arb) e E.

' If (arb) e E, we say G has an edge fro¡n e to b of multiplic-

ity P(arb), and we call a end b reepeotively the þ!-!þ! and ter-

ninal vertices of the edge. ff P(arb) = 1 we call (.rU) a -@,
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edgs, otherwise a 4gf-!$f3. edge. Àn ettge of the form (a,a) is

call-eil a Ìoop at 8.

A graph is already fu}ly descrÍbed by its veitex eet and

nultlplicity functlon. Further a gj.n¡]s-g.4þ - that is a graph

wlth no urultiple edges - is fully degcribed by its vertex and

edge sets, and will therefore often be descrlbed only by the pair

(v,n).

If G = (vrnrr) and G' = (V' ,ß'rP' ) are graphs with r'Ç Y,

E'E E, and ?'("rt)< f(aru) for all (.ru)é v'xy', then ve call

G' a subsraph of G. !-f P'(",U) - ¡(a,b) for all (",t) êv';-'l', ve

call G ' the furl subsranh .of G on the set V'.

tlhe nu¡nber of outgólng edges at a vertex a of G is called'

the loca I out-des"ee at a , denoted by f(a). Îhe local in-degree

f (a) at a is similarly deflned. Clear1y

(r) f("),=Eda,b) i P+(")=)Tr(t,"¡'

l{e eay G is out-reß¡lar of ttegree n (n a finite or infinite

cardinal nunber) ff Ê(a) = n for all aeV. Simtlarly G is fn-res-

ular qf_dqglge.-q if f*(a) = n for aII a eT. G is !gL{::@I if

it is both in- and out-regular, ancl ls regt¡Iar of degree n if it

ls both in- and out-regular of degree n'

l,Ie say G is @ if the number lvl of vertices and the

nunber Xr(") ( - îf*(a)) of edgee are both finlte'
a¡V acV

The foltoslng lenna Ls trlvlal¡
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Lenma 1.1. A finite half-regular graph is regular'

That the finlteness contLition is necessary 1s shol'n by the

Exanple 1.1. Ç - (Vrn) ig the slmple graph with vertex set V =

{(rrr)¡n and n Lntegers' n70}, and eclgee ((t,")¡(m+1,2t)) and

( (rrr), (n+1 12n+1) ) for each (t,t) in V'

tr'a.
11 =,

n=2

11 É1

n=0

tn= -2 -1 O 1 2

Thisgraphisin-regu}arofdegreelandout-regularof
;

degree 2¡ hence half-regular but not regular'

The gg¡fgryEÈ G* of a graph G = (V,n,f) ís the graph

vith vertex set v and multiplicity funtion /ø* defined, by

(z) p*(*,b) =f(t,") ' 
((",b)cvrv).

ft le obtainett by reversing the edges of G'

If Gt = (vrErrPl), ie I, is a set of graphs on the vertex

their etlee tlirect eum is the graph G - (Vrgr") vlthset V,

(l) P(a,b) = If. (a,b)
¿1Cl

for" all (arb)e YxV. It ls denoted uv X-cf , or if I is finite'
iel ¡

aey I - {'l¡2, rn], aleo by Gr+Gr+ .... *Grr.

The untl irected sraph Gu of a graPh G is the eclge tlirect gum



We say that

b of G if there

4

0+0t of G and ite converse graPh G*.

the vertex a of G is pa th-connected to the vertex

exists a aequencê aca'ral r ... ,""-b of vertlces

of c such that (ar-rra1) ls an edge of G for each i = 1¡2t "' te'

Thé vertices a antl b ere salal to be connected in G if they are

path-connected in Grr.

The relatlon of connectedness ls clearly an equivalence rel-

ation on the vertex get. The full subgraphs of G on the equival-

ence classes of thig relatlon are called the connected conDonents

of G, or slmply the components of G' G lp connected if it has

only one conponent. '

thefollovingle¡nmaisstandardrSoweommlttheproof'

Lenma 1.2. Path-COnnectedness and connectedness are equivalent

concepts ln flnlte regular graphs'

That thie lemna doee not hold 1n general for infinlte reg-

ular graphs is sholrn by the g,rsph Yhoee vertices are the integers

and whose edges are al1 lnteger.palrs of the form (iri+l)' For

instance the vertex 1 is connected but not path-connectetl to the

vertex O ln thls graPh"

$2. Hom rohis Srrnme íc and Grouo Graphs

Let c = (vrnrP) and G, = (vrre.,rfr) be graphe' and ret 7

be a raapplng of v onto v.,. ïle say f La a Ïromonorphig¡û of G onto
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Gt lf for all ("rb) eV.,rV.,

(r) f1(a,b)=f,(c'a) '
the sunmation being over all (",¿)e VxV for whlcn (cfrd?) = (arb)'

A one-one hononorphisn is called an igonorphien. In thls

caae (1) reduces to the contlitlon¡

(z) f,,(cvrdr') - f(cril) , for all ("r¿) e'VxY

An automorrhissr of the graph G is an leonorphisur of G onùo

Iteelf. The set of all autonorphisns of o fOrms a g1toup under

composition, called the automorphlg¡r group of G anti denoted by

f(C). tJe consider an autonorphisn to be a permutation of the

vertex set, so f(C) is a pernutation gloup'

If f(G) ie a transitive group ïe say that 0 is a snmnetrlc

glg!þ. Slnce an autonorphisn nust map a vertex onto a vertex of

the e8,ne local ln- and out-degreee, a e¡rnnetriq g'raph le half-

-regular¡ and hence if ftnite lt is regular. Example 1.1 gives an

lnfinites¡rnrretricgraphvhichisnotregular.Thes¡nametryof

thls graph follors fron the fact that the foLloving two perrnutat-

long of the vertex get are automorphlsne of the grsph and gener-

ate a transltive pernutatlon g¡ot¡ps (Tne arrow neans ffis mapped

ontot'. )

dt (rro)¡-+ (n+1 ,n) for all (ur¡n) e Y;

if n<0 or n)2nr

) rr o{.n <2ß-1 and mÞ1,

) rr 2^-1 *n<2nandm¡1"

nrn)

nro+2n-1F t (t,t)r--r
mrn-2n-1
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The verificatlon that < and. p are autornorphisns is easy. To

shov that they generate a transltive groupt ue consider an arbit-

rary vertex (trt) of the graph. If the binary expansion of n is

¡ E fO2O+ tr21+ ... +t,e28, ,h"t" each f , is either O or 1, then

one readiry verlfies that -s+ 
1-mUla^-1Oee-1^-1 ., " ^-11€on-1 

naps

(OrO) onto (trn)r so our etatement is proved' tJe remark that <

anil p do not generate the full autonorphlsn group¡ for one can

shon that the full automorphlen group ls uncountabte and hence it

cannot be finitelY generated.

We now tlefÍne a epclal type of symnetric glaph' Let H be a
a

group ancl S a subset of II; the 99¿!g.3gþ IHISJ of H with res-

pect to s is the siurple graph r¡ith vertex set II, and ed'ge set

(l) f = fiaras):ae il,s e S] c

Â cayley graph generally. has an associatecl I'colouringn of the

edges-thatis,amappingofEintosomesetof''colourg''-

horever for our purpoões thig is redundant'

The graph G is a ggp-g¡4þ of the group H if it is isomor-

phic to IIITSJ for some subeet s of H. since cayl-ey graphs of non-

-isomorphic groups can be fsomorphic, a graph can be a group

greph of several ctlfferent groups'

The cayley graph IH'SJ is clearly regular of d.egree the car-

dinality of S, so group graphs are regular'

ThefolloringcharacterlgatlonofgroupgraphslgduetoG.

Sablttusst f'167',IIe onLy proves 1t for undlrected graphs¡ but hie
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proof holds without change for directed graphs'

Theorem 2 .1. G. Sabidussl.. The sinple graph G is a group graph

of the group E if anct only if f(0) contalns a regular subgroup

ieonorphic to E.

. Slnce we shall prove a rather nore general theore¡n in $5, r¡e

d.o not prove this theoren here.

Example 1.1 gives a ainple s¡rmnetric graph vhich is not a

gfoup grBpht indeed thie graph is not even regular. Finite sinple

s¡rnmetric graphe r¡hlch are not group graphs appear to be rsret at

least anong snall graphs. tJe give two exir'mplea'

n This graPh is undirectett of

deg¡ee 1. For convenlence we draw the pair of oppositely oriented

edges oonnectlng a glven pair of vertices as one line.

R.Frucht[B]showedthattheautonorphisngroupofthis

graph is ieomorphic to the synrnetric group of degree 5 antl is

senerared by rhe pernutations lotzlùßfia9) and (26)(19)(78). If

the graph were a gl¡oup SraPhr then by theoreu¡ 2.1 its autonorphisn

group vould contaln a regqlar subgSoup. Thls subgroup would have

order 10, antl lts elementg of order 2 roultl be fixpoint free' But

14

,
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one readily verifies that every automorphlsn of order 2 leaves 4

vertices fixed. Eence the Petersen graph 1s not a glloup graph.

Exa,nple 2. 2.

I

1

2

6

5

4

9

This graph has degree 2. In $t1 we shall show that its auto-

norphfsn group ls transitive of ord'er 20, and' is generated by

lotzlùßelag) anil (05)(1?4s)(zg16), Everv autonorphiem of order

2 reaves 2 vertlces fixed¡ Bo aB above, this graph is hot a' gloup

graph.

Toclosethlschapterrreconsld'erbrlef].ythetrivialceses

of e¡rnnetric graPhs"

If T is any set, re denote by ô(v) the tl.iagonal of vxY; that

is the set of pairs of the forn (ara) with a ¿ v. The sirnple graphs

(vrvrv), (vrv"v-ô(v)), (v,/), ana (v,â(v)) are calleti respectivelv

the c ete sraph , the ete Eraph vl thout looPs " the trivial

Esr anct the lrlvial graph with loops or identitv sraph on the

vertex set v.'They each have the fuIl aymnetric group on v as

'automorphlsm group.

convereely we have aa an innedlate conseguence of the tlefi-

nltlon of "doublY traneitiver'¡'
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gþeoren 2.2. If the graph ç - (1>rlrr) Ì'ras ôoubly transitive

autonorphlsn soupr then lt ls the eitge tllrect sun of conplete

graphe rltbout loopa and tdentlty graphe on T, anA f(G) ls the

sroü¡t on î.full aymetllo ¡EoEP on T.

'l
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CHAPTXR II t Cartes ian Producte of 0raPt¡e

$r. Cart sian Products of Graphs

Uedefineacartesianprocluctofgraphsinthenaturalway

by taklng the cartesian product of the vertex sets and then tlef-

inlng the etructure oo¡nponentwige, lfore fornallyt

Let G, - (vt rE1rP1) and. G, - (vrrnrrPr) ae two graphs' Their

cartesian product ig the graPh G1xo2 - (vrxvr rBrr) where f rs

definetl bY

(r) f((",c),(b,d)) - f,,(a,a)P"(c,d)

for art ((r,"),(b,a)) t (vrxvr)r(vrxvr). Note that ((t,"),(t'a)) ¿ s

if and only if (arb) . Et an¿ (cra) e Er. Hence under the canonical

iitentification or (v.,xvr)^(vr*v2) vltrr (vrxvr)r(vrxvr), E is just

ErxEr.

ue shall restrfct ourselves to cartesian prod.ucts of pairs

of graphs¡ however tt ls cleer that cartesian products of arbit-

rary sets of graphs nay be sinilarly ttefined, and the fo}loving

diecuselon can be correepondlngly generalized'

An lnnediate consequence of the deflnition le that a cartes-

lan product of non-trlvlal graphs is sinple if antl only if the

factore are sfnple. One verifies eaelly that the sane holds for

regularlty and. half-regularity of grapha, if one restricts the

graphs conefdered. to be 1ocally fintte (ttrat tg all loca1 degreee

are flnfte)¡ for the local ln-degree at a vertex ("'") of GrxG,
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ie Just the product of the local in-degrees of a and c in G., and

G, respectively, anrl slnilarly for local out-degrees'

The correspondlng etatenent doee not hold for group graphs

or Blmmetric graphs. For instance the graph

1 2 
'ð

ls not symmetric, even though its carteglan product with the graph

ie the graph

(t't) (z,z) (t,z) (z,t ) (l,t) ß,2)

which ia a group graph.

However although the e¡rmnetry of a cartesian produot of

graphs d.oee not inply the eynmetry of the factors, the reverse

lnplication does holð.

lheorem 1.1. (i). If Gl antt G, are group graphs of the groups II

and K respeotively¡ then G.titC, is e group graBh of I{xK'

(fi). If G1 antl G, are synnetric graphs¡ then so is G1*G2'

Proof. (i). hrlthout loss of generallty Gt = IH'SJ anti G, = [K'TJ

nhere s and T are subsets of H antl K respectively. Let G =

fH*KrSxTI " Since multiplication in ExK is ttefined conponentwise

and the edgee of G1xo, are ttefinetl componentwige, G ancl 01*G2

have the eane edge sete. Since they are both einple graphsr they

are equal.

(ir). i,et G, r (vrro.,rPr) and or.- (vrrn"'rfr) te symnetric graphs

vlth oarteel.en produot o.,xo, - (v.,xvrisrf)' Let t. - f'(cr)xf(Ge)

21
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be considered. aa a pernutation group on VrxY, in the natural way;

that is (arb)(rrrc) - (anrbø) for alL ("rb)e VrxV, and. þrr<)c f ,

By transitivity of l.(C,, ) antl f(CZ) r re can fÍntl for arbitrary '

("r") ana (ura) in Y.,xv, s nê f(or) ana ccf(Gr) with aÍ = b and

c6 - d.. Then ("r")(rrc) , (tr¿), so f is traneitive.

t{on for any (("r")r(br.l)).e (v.,xvr)"(v,xvr) and any (rrr<)e l'

re have f((a,c)(r,r),(b,a)(n rc)) = P(Grrc,a),(ur,aø)) E

fr(anrb6)fz(cnrd.e) - ¡r(a,b)frbrd) - f((rrc),(b,d)), so (o,¿) is

an automorphien of G.,xGrr so fc¡(cr*cr). Eence f(crxer) ls

trans itlve. Q. E.D.

Theoren 1.2. If G = (Vrn) is a sinple symnetric graph ancl H is

any transitlve subgroup of f(C), then ttrere exists a oomplete

graph C such that CxG i.s a group graph of E.

lroof. Let a be any vertex of G antl H" the etabilizer subgroup of

a in II. The Cayley greph C - [H"rIIrJ le clearly the conplete graph

vith vertex set H". Let S be the subeet of Ii tteflnetl by

(a) S=fncHr(anra)éE].

We ehall sholr that CxG ts teonàrphic to IH'SJ.

tet R be a set of left coeet repreeentativee of H" in E. Then

each elenent of E has a unlque representation in the form re vith
-1re R and c cÍl . Further Ra

ie e set of right coset repreaentatives

of E" ín H, so each vertex of G has a unique representation in

the forn "r-1 *Lt]¡ tcR. Eence'the following mapping 7 of the ver-

tex set E of [ËrSJ onto the vert€r eet H"xT of CxO is well defined
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and one-one.

(¡) Yr T6.é (c rar-1 ) , (t " R, eelr).

CaIl the edge sets of [ErS7 and, CxG 8., and. E, respectively.

Fhen for any t1, tze R antl 61t 62êfirwe have (tlólr1262) e E,, Ê+

(r 
re ,)-1'"rr2e s €=Ð (alf ltilr zlzr") c E (â (*si1ti1 ,ac-r1ri1) e E'

are in E"r so aeil-1But d and d
1

-1
2

-1n8ó - a. Eence
2

(acf1ci1 ,aellrl1 ) c E Ê+ (ttît ,rt71 ) " 
E. lut c is conplète¡ so

(rtit ,"tã1¡.n t+ ((drratfl) ,(cr,rtl1) rEz, t+e have thus ehown

that (2,' c1,tz62). Er.€ (kt6t)vr(rze)v) eE¡ so since LH,sl and'

cxç are both einpLe graphsr I' le an lsonorphisn or lg¡sJ onto cxc'

Q. E. D.

Theorem 1.1. (i). The graph 0 - (vrg) ie a group greph if anti

only if its conponents are mdtually isornorphic group graphe.

(ii). The graph G = (Vrnrf) is eymnetrlo if and only if its com-

ponente are nutually lsonorphic e¡rnnetric graphs'

Proof. rrlfrr. Let G hale n conponente, all isomorphic to G.t' Then

G is isomorphic to G.,xT, where T is the n-vertex trlvial graph

vith loops. since T is oertainLy.a group SraPhr ttre lfifl' followe

in both caaes fron theotem ].1"
lgnlJr ifrf. (f). If G is a gloup gf,aph isonorphic to the Cay1ey

graph [IirSJ, then lts conponents are al] lsonorphic to IKtSJ

vhere K la.the subgroup of E generatetl by S'

(if). We fi¡st renark that an automorphien of a graph maps paths

into pathe¡ so I't preserYes the relatlon of oonneatedngee and

hence juet pernutee the conponents of the graph anong themselves'
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If cl and G2 are any trro oomponents of the symrnetric graph Gr ïe

choose vertices a and b of G., anct G, respectively. Since f(C) is

transitive there is a re r(c)'with'&r o b' This ¡r nust naP G.,

isonorphically onto Gr, so the conponents of-0 are nutually iso-

norphic. In the cese G. - Q2, n inducee an autOnOrphiem of 01

uhich naps a onto b, so glnce a and b can be ahogen arbitrarily

in O., r G, ls e¡mnetrLc. Q,E.D.
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CHAPTffi III ¡ Generalized Cavlev Graphs

$d, Introduction

Gfven a gÏoup H anô e subset s of II one can cleflne general-

lzations of the Cayley graph [HrS] by taking ês vertlces the left

or rlght cosets of,some subgroup u in iI instead of the elements

of H.

The first. of theee two generalizationg gives arbitrary sinple

s¡rnnetric graphar as we ehow ln $!. It has apparantly not been

studleal before.

The gecond generalization gives arbitrary connected regUlar

grephs of countable ttegree with a weak restrlction on nultlple

etlges¡ 88 lr88 shoïn by Reidenelster [15]. tle state his reeults in

$6. neideneister only consideretl undireoted graphs of finite tieg-

rê€r but the relevant parts of hfg work carrJf over wtth no change

to the more general caete stated here'

$!. Slrnmetrlc Generalized Cavlev Gqaphs

Let I be a groupr U a subgroup¡ and s a subset of E' The

graph fErllrsl is atefinetl to be the sinple g:raph (T' ,E') t'ith

(r) Y' a {xII¡xeE} '
(z) E'! fixllrxell)rx¿Eree SJ

If g le the triviaL eubgroup then [ErItrSJ is iust the Gayley

frrepb [HrS].
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The follovlng 1s a generallzation of theoren 2'1'

Theoren 5.1. The graph [Erurs] Contalns in lts eutonorphism group

the transitlve representation of E as a pernutation group on the

left cosets of II, antl is hence s¡nnmetrío'

ConverselytfGieaeinples¡rrrnetriographthenGisiso-

norphlc to a graph of the forn [Ertrs]. t can be chosen as êny

transitive subgroup of f(G), antl U as a stabilizer subgroup of H'

Proof. Let IHTIITSJ have vertex qntl edge sets Vt anð E' as definetl

in (t) anA (e). Íhe elenent of the representatÍon of II aa a perm-

utatlon gl)oup on the left cosets of u. vhich corresponds to the

elenent he H ie the pernutatlon whioh ¡nap8 the coset xIi onto the

coset h-1xt for each x€H. Thle clearly naps E' onto itself, so

the flrst part of the theoren Íe proved'

Now let G = (VrU) be any simple aynnetria graph' Let H be

any transitive eubgroup of f(C) t a any vertex of G' anti U the

stablLizer subgroup E" of a in H' Deflne

(l) s= {relfr("rt'")êE}.
Denote the graph FTUTSJ by G', wlth vertex and edge setg V'

and E'. Let I be the napping of V' onto V ileflnetl by

(¿) ft trtl t-> atfl , (tr é E)'

f is we1-I definecl anit onê:on€ since II = H*r so ïî'rÚ - Tfrt ê+

Oia'rsft.ê+ ¿n.f1 - ,oi'. It 
'e 

deflned on the whole of'V'and 
's

norltof, aince E is transitive. u€ show lt 1g an isomorphien of G'

onto G.
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If (rr.,IlrrrrU) is an arbltrary elenent of V'xV'r then

(rtU, nrll) eE'(+ ,2V o rr.,,rnU for sone ¡re S and ¡ e U c+ n2t ' t\^Tî

for sone n ¿S and \s6 eu ç-) f1'l1or¿ ¿S for some r'e e g fi

("r-1 nilvrtra.) e E t+ ("¡-1 'oi1 ,rr-f i1) 'n' But 
"-1 "-1 

€ II o E"r

so aÀ-1 - *g-1= ,, so ("o-1of1 ,* t-1r;1'¡ - ("rît ,^n|t ) which ls

just the lnage of (rr,ÏIrr2U) undør 9' Since G and G' are both

sinple graphs¡ I ls an ísonorphlsm' Q'E'D'

I,fe note that an ed.ge of IIITUTSJ generelLy has ¡nany represen-

tationg in the forn (xurxeÜ) with x ¿ II and s e s. hle may choose a

single repres€ntation of each edge by the following lenma'

Lenma 5.2. L,et H be a group, II a Èubgroup¡ and S a subset of H'

If T is a set of representatives of the left cosets of. u that

occur in tSU, then

(i). [HrursJ = [HrûrTJ i

(ir). If R is "rr" "å, of left coset representatives of U in H,

then each edge of tgrÛr1l has a unlque representation in the forn

(rUrrtt) with r¿R ana tef.

Proof. Ue firet note tþree'properttes of T¡

(l) If s and. t are tlistinct elenents of T then.eu / tv;

(6) îu - tsu ¡

(z) Iir É TII .

(¡) and (6) are just a restatement of the definitlon of T' (Z)

holtie since TçIISU, so IITçUÜSU = USt o TU

(f ). Since T çUSItr any t eT is' expreesible as t ¡ ü8v with u'v øU
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and se S. Ilence any edge (xgrxtg) of [HrUrTJ ie expressible ag

(x1irxtg) - (xtrxusvü) - (xullrxueg)¡ and is henoe an ed"ge of

[HrtrSJ. gonversely any s e S 1e certainly ln I]SII = TIIr so it ls

expressible ae s=tu with t e T and ü é U. Thus any ed'ge (xurxst) of

[Hrtrs] is expreesible as (xII¡xeg) = (xIIrxtu1i) = (xIIrxtU), and is

hence an edge of [ErUrTJ. Eenc€ (i) 1s proved'

(if)¡ Lret R be any set of left coset representatives of II in II'

Let (xUrxtII) rith x éE antt te I be any edge of [HrUrT]. RU = Hr

Bo xEr\¡ for soúe réR and u et" 3y (l) ut-t'v for gome t'él[ and'

v éII. Eence (xürxtg) - (rut¡rutt) = (rlirrt'v1l) = (rIIrrt'U). It

remalns only to eholr that this r€presentatlon is unique.

Ind.eetl if (rurrtll) - (r'u ,,^'t'tJ) vith rrt'êR antl l''t"c1'

then fron rt=r'ÎI follove ror'r eince R is a set of left coset

r€presentatlves of II in iI. Eence tg=t'Ur so t=t' ty (f). Q.E'D'

Aniurrnediatecorollaryoftheprecedlnglennaist

Corollary 8.4. If E is a group, U a subgfoup, antl S and S'subsets

of H, then lErurs] = [ururs? 1f ust - us'II"

Weremarkwlthoutproofthattheconversealgoholds'

If0iaagraphanttnany.cardlnalnunber,vedenotebynG

the edge direct sun of n coPies of G'

theoren 5.4. If O le a ginple e¡nnnetrfc graph and' H is a trsne-

itive subgroup of f(0) euch that the etabilizer subgroups'of H

have order n, then n0 1s a hononorphio image of IE'TJ for a

euitable subset !I of E.
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proof. By theoren !.1 and lemma 5,2 ve may assune 0 - [HrU¡TJr

rhere T is as in lenma 5'2 (Íi).

Let Y be the napping of üI'TJ onto 0 defined by

(e) Yt hr+ hII ' 
(tr e x).

Let R be any set of left coset representatives of It in I{ and

u be any elenent of t. Then Ru le also a set of left coset repre-

eentativea of II in H. Define Eo o {(tr*t)rx e Ru¡t € l}. By lenna

,.2 (if)r Eu ie mapped one-one onto the edge set of G byY' But

the n sets Ru, u é u, partÍtlon H, so the n eets Eor u s lir part-

itlon the ettge eet of IHrTJ. Hence f uraps the edge set of t'ErTJ

n-fold onto the edge set of [IIrtrTJr so lt ls a hononorphisn of

[ErT] onto n[UrtrTJ o rG. e'E'D'

$6. Re¡n¡Iar Oeneralized Cavley Graphe

IfVtsasetra permu tation cranh on V is a regular graPh

of degree 1 rith vertex set v. If rr is any permutation of v' ne

define a oorr€sponttlng pernutation graph Pn - lvrfo) on V by

d.ef ining

(r) EÍ-{(ar"rt)¡acï}. .

Thle deflnee ê orrê-ore correspondence between the pernutations of

V and the Pernutatlon graPhs on V'

A oernutation subgraqh of a g:raph G ls a subgraph of G vhich

ie e pernutation graph on the fulL vertex set of G'

ye now de.flne the eeoondt type of generallzed Cayley graph'
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Let H be a g"oup, U a subgroup¡ &nd S a subset of II. We choose a

set R of right coset representatives of U in H ancl define the

graBh (HrUrS) to be the graph with vertex and edge eets

(Z) V' = {Urrr e R} i

(l) E' - {(urrllrs)rr e Rrs € sJ. ,

If n is the number of representations an edge has in the forn

(UrrIIrs) with r ¿R and. s e S, we give this edge nultiplicity n.

Clearly <HrUrS> is independant of the chosen set R of right

coeet representatíves, an¿ it ls regular of clegree lS,. If U is

the trivial subgroup then (ErIIrS) = IErSJ.

Translating the results 'of nei¿enelster t15J ch. 4 $t7 to

the language used here givest

Theore¡n 6.1. Let G be a oonnected regUlar graph expressible as

ed.ge direct sun of a set Ppr tt f S, of distinct perrnutation sub-

grapha. Then the pernutation g,roup E generetetl by S 1s transítive,

anct G is ieomorphic.tp (H'U¡S) rhere U is any stabiLizer subgroup

of,E.

Analogously to theoren 5.4, or alternatívely as a corollary

of :'the discussion in ElrJ ch. 4 $19¡ orlê obtainst

Theorenr 6. 2 Und.er the cond.itlons of theoren 6.1, nG is a homo-

norphic inage of IErSJ, vhere n ia the order of any stebilizer

subgroup E" of E.

. The f,ollowing lenna showe that the conciltions of theore¡ns
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6.1 and 6.2 ate by' no neans very restrictive.

Len¡na 6 5 (0. Ore t11l p.160). A connected regular graph of at

rnost countable d.egree ls expreseible as the edge direct suur of

pernutatÍon subgraPhs.

.These pernutation subgraphs need not be dístinct'.The cond'-

ition of theorems 6.1 andl16.2 that the P, be distinct ie a (rather

weak) restrlction on the nultiple edges of G.

In Reittemeieterrs langUage theoren 6.2 states that under the

given cond.itlons G hag an n-fo1d covering by LHtS]. A I'coverÍng'l

is basicly a homonorphfsn in our sense, vith the added condition

thet if the homonorphlsrn naps the vertex ê of the one graph onto

the vertex b of the other, then every edge at b should be the

inage of sone eclge at a. thle conititlon is clearly satisfied by

the hononorphisn of theorem 5.4¡ go theorem 5.4 can aleo be in-

terpreted as a theoren on coveringe.

Theorem 6.4. The connected graph G is a group graph if and only

if it is the eclge clirect gum of tiistinct pernutation subgraphs

PrrrrcSr where S generates a regUlar pernutation group. fn fact G

is iso¡ûorphic to IH'SJ, where H is the group generatetl by s.

proof. The nifil is a cllrect coroLlary of theore¡¡ 6,'1 .

"Only ifilt Suppose G ls a connectett group graph. Without loss of

generality 0 - IK'TJ vhere K ls a group ancl T a subset of K. Let

E and, S be the lnages of K and I under the natura] isonorphiem of
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K onto lts ri.ght regUlar representatLon as a pernutation group

on the elemente of K. G is then the ed'ge tlirect sum of the perm-

utation_ graphs P¡rtréS, Since G is connected, S generates a trans-

Ítive group t by theorem 6.1. I¡ is a subgroup of H; but ilr as a

regular FouPr has only iteelf as trangttive aubgloup, 8o S

generates II. q'E'D'

$?. Aonlications

Ue now apply the characterisationa of group graphs given by

theorens 2.1 and 6.4 to the problem of finding usable sufficient

conclitions for a graph to be a gloup g:raph'

Theorem 7.1. If G ie a simple g"aph satisfying one of the foll-

owing conditions, then 1t is a g:roup gTaph'

(f). 0 is s¡rnnetric and. has a prime nunber of vertices'

(if). G is syrnmetric and regular of degree 1"

(ffi). 0 is symmetric end regular of ttegree 2 ancl has both dir-

ecte<l antL und.iräctect edges"

(i.tt). G is eymrnetric or connected. and ie expressible as the eclge

direct sum of pernutation subgraphs Prrres, suoh that any two

elenents of S connute.

Proof. I{e nay aasu¡ne in eaoh case that G fs connected' For lf G

is not connected, lt suffices ,to consider the conponents of G by

theorem ].).
(f)r Let O be sinpl.e and eymnetric with p verticeel where p is a
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prine number. f(C) is transitlr¡e of degre€ Pr eo its order ls

d.ivisible by pr eo it has an elenent of order p by cauchyrs

theoren. This elenent nust be a p-cycle, so it generatee a regular

cyclic sibgroup off(C), eo G 1s a group graph by theorêfl 2.1'

(if)¡ If 0 Ís conneoted. an¿ regular of degree 1, then it 1s a

pernutation graph Pn corresponciing to a cyclic permutation Íf' îî

generates e regular group, so G ig a group graph by theorem 6'4'

(iii)¡ Let G be connectedr sJ[nnetricr and regUlar of degree 2'

and. have both directett and undirected edges. Since f(G) is trane-

itlve, it sufficee to shon that any autonorphisn which fixeg a

vertex of 0 Lg trÍvia1, f,or thenf(G) 1s regular,so theoren 2'1

gives the d.esired. conclusion. At each vertex G has one undirected

edge, one lnconing d'irected edge, and one outgoing dlrected edge;

for otherwise G has onLy directed or only undirectetl etlges at

some vertex, and by symrnetry thls would holct at every vertext

contradicting the aseunption that G hsve both tlirectecl and und'ir-

ecteti edgee. If n |s- an autornorphism which leaves the vertex ê

fixed., it nuet permute the edges 8t a. But the edges at a are all

of different rrtypeg,,, so Í leaves them fixect, and hence leaves

any vertex atlJacent to a fixed. since G is connectetl, repeating

the arguslent shovs that rf leaveg all vertices fixed and ie thus

trivial, '

(fv)¡ Let G be a oonnectecl graph expressible as the edge direct

sun of the pernutation subgraphs P6r?résr vhere any trro elements

of s comnute. llhe group generatecl by s ie tranaitive by theorem
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6:t._But lt ls abellan, and. an abelian traneitive group is reg-

ular. Ilence G ie a group graph by theorem 6,!. Q'E'D'

Ïte renerk that one can say rather nore in caees (i)r (ii)t

anA (fv) of the above theoren. In fact we ehoved in the proof

that G le a group graph of a cyclia group in case (i).gne can

easily show that the eane holds in case (ii)r if 0 hae a finite

nunber of conponents. In general one,can only eay that G is a

group grgph of an abelian group in caseg (if) ana (iv). This needs

a sinple exteneion of part (i) of theor em J.) or can alternatively

be proved ttireotly with no dlfficulty.



a

25

CHAPTER IV ¡ Remrlar Oraphs of Deeree 2z The A1 ternatine Path

Methotl

$e, Introtluction

rn this chapter ve shall discuss the 'ralternating path

nethodr', applying it ín $9 to the inveetigation of pernutation

and relatett subgraphs of a finite regular graph of ttegree 2 and

in $t0 to the coneid.eration of the autonorphism groups of finite

reguLar s¡rmnetric graphe of degree 2' In $t1 ve apply the results

of $9 and $t0 to the constructlon of an infinite set of synnetric

graphs rhlch are not group graPhs'

The alternating path.nethod vas fntrod'uced by Petersen t121,

and has eince beco¡ne a standartl tool in the investigation of sub-

graphs of bipartite (c.f. [11] p.1O6) and directed graphs. The

results of $9 are stand.ard, though not in the precise fonn given

here. They are for instance contained in essense ln 0' Qrers dls-

cusglon of the natching theorens (tlfl ch.?) if one translates

the }anguage of bipartite graphe to that of directed graphs (c'f'

t1lJ p.159). The applicatlon of the alternating path nethod to

automorphisn groups appears to be new'

Much of the follovlng can be generalizett to infinite graphst

hovever for slnpliclty fn preeentation we do not do so, antl only

indlcate the generalizatlons where they are of interest.
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$9. Alterna tinE Pàths

, Throughout this section we aaaune that the nuLtiple edges of

a graph 0 - (Vrnrn) are tlistlnguLshable, and dlstinguish then by

subscrÍpts (trb)1r("rb)r, r.. ,("rb)r, where n is the nultiplicity

of (arb). Ifence when we say that tno edges ("rb) and' (crd) are

distinct¡ ïê lnê&r that eitlnet a f c, or b f d', or they are a pair

of the forn (trb)t, (",b), with i I A. T4" edges of the converae

graph G* are distinguiphed correspondingly and are furthermore

a.ssuned to be distinct from the ettgee of 0'

The alternat e conposition sraph G of G ie the g"raph with

vertex set V, and an edge ("r¡) for each paír of distinct edges

(*r") ana (Urc) of G. [T is the alternate conposition graph of

the converse graph 0* of G. Thie ilefinltion äiffers fro¡n that of

15S) ln that he doee not require that ("r") and'

(tr") be d.istinct¡ eo for each a ev f(a) loope are added to E at

the vertêx 8.

Lemma 9.1. (i). E and F are undlrected.

(ii). r(c)cf(d) ; f(e)Ef(õr).
(iii). If G is regular of degree n then E and EF are regular of

d.egree n( n-t ) .

Proof. Sfnce l'(C) - f(G*) and G+ is regular of ttegree n if G is'

it suffices to prove the etatenents for õ only'

(i) ls trivial from the clefinltion.

(rr). An automorphfen rrof G naps paira of eclgee'of the form
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("r"), (br") into sinilar pairs, so it mape edges of õ into edges

of E. The sane holds for rr-1 since rr-1 fs algo an automorphism of

G. Ëenoe ¡r ie an autonorphism of E, so f(c) sf(õ)'

(iff). Ii a is any vertex of the regular graph G of degsee n'

then to each of the n eclges of 0 of the forn ("'") there are n-1

edges ¿istinct fron tt of the forn (bro). a hence has n(n-1) out-

golng edges 1n õ, so since õ ie unòlrected., a also has n(n-1 ) in-

coning edges in E. But a lras an arbitrary vertex, eo E is regular

' q'E'D'
of degree n(n-1).

tJenov'",,,'"thatGigaftnlteregulargraphofdegree2.

Sinceïearedietinguiehingedges,Gischaracterisedbyits

vertex and edge sete v antt E alone. õ and õ; """ untlirected and

regularofdegree2,aotheyeachconsietofdlsjoíntunionsof

und.lrectetl cYclic graPhe'

Let

(r) [ = ("or"1)(a.,rar) ... (a"-,,at)

be a path ín the undirected. graph Gor whose edges belong altern-

ateLy to G and G*. The etige" ("or*1), (^z'"1)'("2 ''r)'('O'*1)' "'

then all betrong to G or all belong to Gt. l'fe ¡nake the requirenent

that they be tllgtlnct¡ and call A an a]-ternating path of G' If

the above ed'gee all belong to 'G we call A an :!-path and denote

the above set of etlges ty f(¡,). Otherwise ve call A an *pg!h

and d.enote the set of edges (a.| r ao) , ("1 '"r) ' 
( ar'a2) 

'(ar'a'O) ' " '

of 0 by n(t). g(¿) is'cellect the etlge set of A. The set of initial



(terrninal) vertices of edges in E(¡,) ie called the initial (term-

inal ) vertex set of A , denoted ty v(¡') (v*(l) ).

tle call the altsrnating path of (t) cycltc if ite legnth r

ie even and' ao = 8r. lJe then call the corresponding aubgraph

(V(l)uy*(t)rn(¡)) of c an alternatins circuit of 0, denoting it

often by the sane letter À..

An alternating ciróuit has eeveral representations by alter-

nating pathe; for instance if

(z) Ç = ("or"t)(a.,rar) ... ("r"-1 ,"g)

ls a cyclic <-Pathr then

(l) c'= (a., rao)("0r"2"-t )(.e"-l ,^2"-z) ... (arra,,)

t" 
: 

cyclic n*-path representing the same alternating circuit of

G.

Iret O have precj-sely n alternating cicuits

(+) A1 ,A2r o.. ,An,

antt define

(¡) vt = v(lr) ; vî - v*(Ài) t Et - E(Ai) ; (i=1¡2¡ ""n)'

Ler¡rna 9.2. õ and [! each have precisely n conponents and these

nay be so indexed. that the component õ, of d n"" vertex set Vi

and the component Ff of F hae vertex set V{ for each i=1r2r

28

aaa

n

proof. Let E, be.any component of E. õ,, is an undfrected cycle,
I

so ye nay rrite its edges in a sequence

(6) ["Or"2JtLartaO)t '.. ,far"-rragJ,
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vhere the equare bracket is used to denote undirected. (tfrat ie

pairs of oppositely orfentetl) edges. By tlefinition of õ we can

find a vertex ^2i-1 for each l=1¡2¡ ... rs such that (rrr-rr"Z¡-t)

and (arr r*zL-,1) are ettges of o (indtces moduro t").. ("or"t)þ,rar)

...'("2"_tr"O) 1e then a cyclio<-path of 0 which defines a unique

alternating circuit whose initial vertex eet ie the vertex set

{"Or"2, ..r ,^Za_Zl of G.,. The uniqueness ie clear since G has

only 2 outgoing edges at each yertex.

Conversely lf an alternating circuit is given we nay repre-

sent ft by the ¡-path of (Z) EBlr It ie then clearly obtainect by

the above argUnent fron the component of F ïhose edges are as in

(6).

The above argunent hence d.efines a one-one correftpondence

with the degired property between the sets V. anti the conponents

of E. The gtatement for F folLowe sinilarly. e.E.D.

Lenma 9.ï. (i), The Y. (t <i <n) partition V'

(ri). the vT (t <i <n) partition v.

(iii). The E. (r <r 4n) partition E.

Proof. (1) and (ii) are consequencea of lemma !.2, since the ver-

tex eets of the conponents of a gfaph partition the vertex eet of

the graph.

(iif). Each edge (*rb) of G occurs ln one of the Er, since aeY,

for some i and both outgoing ed.ges of G at a are Ín the corres-

pond.lng Ur.. (ari) cannot be ln toth E, ancl E, (il¡) as this ttoutd
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inply that a is Ín both of the dlsjoint eets v. and v..1J
q.E.D.

(*zr*,

(r)

Nor let the alternating circuit A1 bè represented by the

cyclic,,-path of (Z). t'le split the eet E, = ("0r",)r("rr",)'

), ... ,(.0r"2"-t)] into two disjoint sete

("ort., ), ("2 ,^r), o. ' ,('zr-zra2"-1)l

{Gzr"1 ), ("4 ,^r), ' o ' , (*or"z"-t )}

vhlch are unlquely tlefined up to order, but may be exchanged by

taking a ttifferent path representing 4.. tire ni (t " r < n, j=1r2)

partition E since the E. tto. Furthermore for each i the initial

and terminal vertices of the edges in nl run once thiough V'

Y{ resnectively, and' the garne holds for El'

), ("4'"1

EJ E
1

n?-
1

and

Theoren 9.4. If 0 = (vrnrf) is a finite regular graph of degree

2, then the subgraph p =, (Vrnr) ls a permutetion subgraph of G if

andonlyiffofeachl=lr2raaatnErcontainsoneofthesets

nl ana nl ana 1s d'isjoint fron the other'

Proof. Let E- have the given property' If a is any vertex of G

then a e V, for some i with 1 3 1-< n' Each of f] ana U! contains

precisely one outgoing edge at a, so since E, contains one of

these sets and is d.isjoint fro¡n the other, E, contains precisely

one outgoing edge at a. Since a },aa arbitrary, P is out-regular

ofdegreel.SlrnilarlyPisin-regularofdegreel,soitisa
pernrutatloh subgraPh of G.

ConveraelyletPbeapermutationsubgraphofGandlet
(a.rar) te any edge of P. Let the alternating cÍrcuit A. ïhose
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etige set contains (a.ra.,) te represented by the.<-path of (Z).

Then (arra,r) çn, as (aora.,) e Ep antl E, containe only one incoming

edge at ar. Henc 
" 

(^Zrarle E, as E, nust contain an outgoing edge

at ar. Hence (*4rrr) É Ep as E, contains only one lncoming edge at 
.

,r. Continulng the argunent ghows that E, contains one of the sets

ul ana u! and is dieJoint fron'the other. since P hae an edge

fron every vertex of 0, antl hence certalnly fron every Yir this

must hold for every L=1¡2¡ .o. rllr so Er'hag the etated form.

' e.E'D.

Nov let B = (Vrn"rPu) be a subgraph of G wÍth the propertyt

There exist disüinct verticee a and b of G, called respeitively

the 3g!!þ! and lgrninal vertex of B, euch that

(e)
rf(*) E 1 for all xe v-{a},Pf;(a) = o .

ue cerl such a subgraph a broken pernutation subgraph of G' rt is

the ctísjoint union of a (possibly enpty) set of direoted cycles

together with one directed arc. Thie.arc has lnit.lal and. terminal

vertices a and b resPectlvelY.

Theoren 9.5. If G = (VrfrP) is a finite regular graph of degree

2, then thê sub.graph B = lVrnr) is a broken permutatíon subgraph

with lnitial and. terninal vertices a and b if and' only if the

following conditions are gatigfietl¡

(f). îhere is an alternating circult À of G representable by a

cyclic o1*-path
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(g) ("0,"1 )(a.,ar) (" rr-r, a2t-1) ( "rr-,, ^zt)aao

aa a (r r"-rr rz"-1) ( 
"r"-r, "o )

with t - "O I ^rr-, o b for sone 1 < t -(s'

(if). The edges of Eu that are in E('o') are precisely

("^. 
.1 ,tzJ) for 1 .( J ( t-1 ;

(lo) ¿¿'

(rrj_rtrzj-z) for t+1 éj(e.

(iii), For any a1lernating circuit Orl A, EB contains one of the

sets E] anA El and ie ilisioint fron the other'

proof. gne readlly verifies that 1f EB gatisfie" (l), (ii), and

(ifi), then B 1s a broken pernutation subgraph of G vith initial

vertex a and. terminal vertex b.

If B is a'broken pernutation aubgreph of G with initial

vertex a and terminal vertex b we choose j such that a evi and

put A - Aj, i{e may then repregent À by an <*-path as ir, (g) with

8 r 8Oo Suppose A l8'Z¡-, for each t-1 t7t "' '8' Since B has no

inconing edgee at a - "o, 
("t rao) É Er' Since B nust havé an out-

going edge at 4., r (a,, ,ar) € EB. Since 3 has only one inconing edge

at ar, ("lrør) ê 8". Contlnuing the argunent yield's finally that

("r"-, ra') e Erl but thie fs a contrattiction aa B has no incoming

edges at a - aor so our aupposltion wag faLse an<i b o 8^. .l for

some t wlth I (t (s.

The sane method of conslclering edges sequentially around the

alterneting ctrcuiüs of 0 now yieltls (ii) and (iii). Q.E.D'
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$to. Finite Re erlar S etric Granhs of Ðe PT e ø?

Throughout thls section let G = (VrErP) te a finite synnetric

graph of degfee 2 with m vertices and n alternating circuits'

l{e index the alternating c,ircuits, their initial and terminal

vertex sets, anti the components of õ and F "" in lenrna !.2 and in

the comnents innecliately precetling that lenma"

a.ny autonorphlsn rr of G certainly naps alternating circuits

onto alternating circuits, so rr pernutes the À, (t < f en) anong

thenselveg. Hence T pernutes the v, anong themselves and the vt

Bnong thenselves in euch a ray that it naps v{ onto vt whenever

itnapsV.ontoT,.Eence¡rpernutesthenonenptysetsofthe

forn V,ltVî (t Si <n) anong thenselves and if pernutes the nonenpty
L1

sets of the forn Vinvl (t < f rJ Sn, tlù anong the¡nselves.

Len¡na 10.1. (i). f(C) acts transltively on the V. and on the Vf.

The T, and Yt are aII of equal eize.

(ii). r(c) acts transitively on the nonenpty sets of the form

Vlnvi (t -<irJ (n, tld). In particular they are all of .equal size'

(fiij. Either yt - V{ for each i or YrâV{ - þ foc each i (l<:-<n).

Proof. (i)r For any. V" and' Tt ctroose a êV" and' b eïr' By symnetry

of G there is a îre l'(c) with ê?r' b' T"'r is one of the seta v'r

and is not disJoint frot Vt .eince b = alr éY"í. Ilence V"ir o Vrr so

since V" and V* were arbitrary, ¡.(C) acts traneitively on the Vr'

Sfnilarly f(G) acte transi'tively on the V{'
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In partículer the n sets v, are all of equal gize. But they

partition V vhich has n elenente, so lYfl - m/rl for each i. Si¡n-

tlarly lvîl - m/n for each 1, so lVrl E lvîl for all i and j with

1 (ir j (n.

(if ) anil (iií)r Let srtrkrl be arbitrary r¡ith 1ds't'krl<n an¿

VsnvT I þ rrnd V¡r1vi I ø. Choose acV"ñY{ antl be v/rvf" If rr is an

automorphis¡n with a:f - b, then by the argunent of (f), V"F = Yk

and Y{rr= vI, whence (v"nv1)n = (vnnv1). Hence f(G) acts traneit-

ively on the nonenpty sets of the forn VinVî (t <f ri (n). But an¡i'

automorphien pernutes the vrfv{ anone thenselves and the Ttnvj

(i/¡) among thenselves. Hence elther all the vinvT are enpty' or

att the Vinvi (il¡) are enpty. The latter inplies that Vl = V'nVT'

Q.E.D.nhence vi = VI for eech 1.

Lemma 10.2. If 1 <i(n and lVrl f Z tnen the action of an auto-

morphlsn ft. l'(G) on the eet V{ is tleterninetl by its action on V' '

proof. Note that the definition of V, and V{ fron the aiternating

circuit A, inplies that v{ is Juet the set of ternlnal vertices

of edgee whoae initial verticee are in V"

Suppoee lVfl f Z ana suppose the actíon of rí on V, is knovn'

If ,vit Ë 1 then ,\rîl E 1 and the lenna is trivial. If iqtl'>r1

then to any c eY{ there is a pair,arb of vertices in Vt such c

is the unique vertex of Vï for whfch (arc) ana (trc) are in E.

But afr and bf are known, and crîie the unlque vertex with (airrcn)

ana (bnrcrr) ln E, so the action of rr on c is deternined. Q.E'D'



... .8'm

t,

tle ehalL need the following simpl-e lemma¡

temma 10.1. The unrlirected cycLic graph with n verticea &ate2t

a
m

a1

A.D-l ^2

,,

l¡
l¡

has traneitive autonorphign group l' generateil' by the pernutations

t< E tat ,2. . . "r) antl p = (tt "rnlÞ2'zk-t) "' 
("n 

"n*1)

where y - lnf2J,

If ¡r is oðd ., the only regular subgroup of I ts .tÌre cyclie

subgroupgeneratetlbya;ifniseventherelsalsotheregular

dihedral subgroup generated by a2 and' f'

I i".primitive if and only if .n i8 prime'

proof. The state¡nentg of the lenna are afl eaeí1y verified'' That

rn prÍne inplies l'prinitive is given by theorem 8.1 of lJielandt

[1?J. If n te not prine, then the eet f"n'"2n' '!' t"qp] is a

nontrivlal, bloc1t of f for any nontrivial factorisation' p = pq of

I'o " Q'E'D'

The final etatenent of lem¡na 10.] holde for much nore general

graphs.

Theorem 10.4. I f the finite symmetric graph of tlegree 2 has n

vertices an¿ if f(G) ls not doubly tra¡¡sitive' tfren f(G) is

prirnítíve lf and' only if n 1e prlne'

I
\
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Rer¡arks. The contlition tfrat l'(G) be not d.oubly transitive only

erininatee triviar ceses (".f. theoren 2.2 ). rf G ts lnfinite

e¡rnnetric sith }ocal tlegreea not exceettíng 2 then a sinilar proof

gives tt¡at l-(G) is afweys inprimitive'

Proof of 1O.4. If n is prine ttren f(C) as I trarÍsitive group of

pri.ne degree le primitive (t1il thn'8'1)'

Conversely suppose f(C) ls prinitíve. nfren f(E) ie prinitive

as lt containe l(c) Uy lemna !'1' If the V, each had' k efemente

with 1(k(n, then they woulil be nontrivial bLocks for f(õ)'

Hence either lY*l = 1 for each i, or E fs connected'

IflYrl4lforeachlthenGhas,onlytioubleed.ges.Gis

not d'isconneoted, for lf it verö, the vertex sets of its compon-

ents ïourd be nontriviar blocks or l"(c). I{ence G is the edge dir-

ect sun of two copÍes of a direoted cyclic BraPhr so ite autornor-

phlsm group is cycllc genetated by (a', 'z " ' a*) satr' ¡n is prime

since otherwise {"nra2n, "' ,"qp} would' be a block of f(c) for

any nontrivlaL factorisation n - PQ of m'

If E ls connected, then it is an undirected cycle of legnth

m, so by lenna 1O.' the primitlvlty or f(E) iurpliee again that ¡n

is prine. Q'E'D'

Intherenainderofthd.ssectionrrediscussconditÍonsfora

finite a¡rnnetrfc graph of degree 2 to o" 
." 

group graph'

llheorem 10.q. Let G be a flrrite efnple synnetric greph of degree

2 rlth ¡n vertioee¡ ttl a¡r oôd nunber. Let each of the n components
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of E lave precisely k vertices. If no nontrivial, factor of k is

lese than n then G ie a gtroup graph. If G is furthermore corn€c-

ted then f(G) is regUlar or contains a regular subgroup of index 2'

We use the folloving lemma¡

Lenrna 10.6. Let the finite sinPle a¡nnuretric grePh G of degree 2

satisfy the oontlitionst

(t). 0 has an odd number n of vertices;

(ir). Each V* is equal to gone vt (1 lsrt <n)'

Then G is a gf,oup graph" If e ig connected', tiren f(G) 1e regular

or has a regular subgroup of lnd'ex 2'

Proof. The lemrna is trivial for m - ]. We uge lnd'uction on n¡' If

G ig disconnected antl satisfíes (i) ana (rt), then lts conponents

certalnly satisfy (i) ana (ii) and have a snaLler number of ver-

tlcesthano,sotheyaregroupgraphsbyinttuctfonhypothesis.G

ie then a group g:raPh bY theorem 1'1'

l,lenayhenceasguneGtobeconnected.Bylerrnal.2anytwo

vertices of 0 are path connected. We renark also that lVil ls a

divisor of n ahd. hence not 2 as m is odti, so lemma 10.2 is appli-

cabl e.

ay (if) we nay clefine a sequence of sets V, -v1rvt1 ror,
o

with V for each i-0r1 r2r caa t V{ is the set of
a v !

i
vertices of G which can be reached by an edge frot V1' Vt

2

!ti+1 1
vl.êt

=Vtt1

Ls

t

theeetofvertioeeoforhichcanbereachedbyanedgefronn

,anðhencebyatlirecteclpathoflegnth2fronV..Ingeneral
1

v
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v^ ls the set of vertices that can be reachetl by a tiirectecl path
1,.

1

of legnth i fron v., I 8o as any two vertices of G are path conflêG-

ted¡ every vertex of G occurg in soxne vti (i>o)'

If tr is anY automor

then by rePeated aPPli,ca

ined on Ur.,- VTr Vtr- Vl

the vhole of V.

Let a cv¿l and let rr be any autonorphism of G which leaves a

fixed. Then n must naP V,,

gives an automorPhisn of õ

phism of G whose action ls given on V,, r

tion of lemma 10.2 ite action is determ-

r ... . Hence its actÍon ig deternined on

1

onto itself, eo its restriction to Y.,,

1. But the autonorphisn group of G., is

by lenna 10.J traneitive of ord,er twice its d'egree, so its a-sta-

bilÍzer subgroup has order 2. Since f is already uniquely tlefined

by f ts action on v., , there are at most trro automorphisnos of G

which leave a fixed, "o'th" a-stabilizer subgroup l" of f = f(C)

hae order 1 ot 2.

If lf"l = 1 then i-, as a transitive g?oup r¿ith trivial stab-

ilizer subgroupr-'is regular, go G is a group g:raph by theorem 2'1'

If lL' = 2 then f t"" order 2n. Since m is odd, l- hag a

nornal eubgroup iI eay of 'order n ([r7Jtht.4,6), The etabilizer

subgroups of f have order 2, so any nontrivial automorphisn of G

which fixee a vertex muet have order 2. Hence no nontrivial elem-

ent of H fixes a vertex, for H has odd order. Hence E, as a group

of order equal to itg degtree 'and with trivial stebilizer subgroups t

ls reguler, so G is ê group graph by theorem 2'1' Q'E'D'
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Proof of theorem 10.!. Suppose G satisfies the cond'itions of

theoren 10.5. It suffices to prove that G satisfies the conditions

of 1enma 10.6. Condition (i) is gatisfied.by assumptionrso we need

only verify (ii).

Let 1€g <n. l,/e must find a t with 1<t<n and Vä = Vt' If

V = V* Ìfe have finishetl, eo by lemma 10.1(ili) we may assune
ss

Y fl1l'* - ó.sg
Let p be the number of nonempty sete of the for¡n Y./lv*

(f < i 4n). Sinee v"flV! = /r p<n, so by àesunption p cannot be a

nontrivial ciivisor of k. But p d.ivities k, for the p none¡npty sets

of the forn VrnV* (t<icn) partition Vä which has k elements,

and they have equal size by lenma 10.1(ií)' Hence p = 1' so there

1<t<n and. vrnvål ø, It follows that

as they both have equal size. Q. E.Ð.

corollary 10.J. If G is a einpi-e s¡rmnetric graph of degree 2 nlth

p2 vertices where p ls prine, then G is a group graph'

Lroof.Forp=2oneverifiesthegtatenentbyconstructingthe
posslbilities. IIence assume P>5. Since the sets V' (t < f <n)

have equal- sÍze and partition Y, n nust be a clívieor of p2. If
^,, = pz th"r, ,Vif E 1 for each 1e so G has only double edgesr con-

tradicting a8sumption. Hence n - 1 or p and the conditions of

Q. E.D.theoren 1O.! are satisfled."

is preciselY one t with

VtnVä = Vfr so Vt = V*

Theoren 10.8. If G is a fínite s¡rmnetrio

conpoeJ.tion graPh Gt

graph. of degree 2 with

then G is a grouP graPhconnected alternate
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of a cycllc group.

Remark. The finfteness condition 1s not neoessary; a sinilar'proof

holds in the infinlte c88€¡

Proo
--:--^ò^¡ i+

f of 10.g. Let G harie n vertíceg. since G is connected, it is

an undirectetl cyclic graph with n vertices, so f(õ) is ae in

Iem¡na 1O.r. If f(C) = f(õ) tfren l-(G) contains a regular cyclic

subgroupbylenrnalo,S¡sotheorem2.lgivesthetiesiredresult.

We nay hence assume f(C)c f(E). The order of f(C) is then a factor

of ll(E) I - Zn, and. it is'a nultiple of its tlegree m' so fl"(G)l =In'

Hence r(G) is regular, as it is transitive of order equal to its

degree. If f(C) is cyclio we have finlshed. But by lenama 10'l the

only other possibillty is that f(G) is regular dihedral' This can-

not occur, as then G voulrr be a group graph of degree 2 of a dih-

edral group¡ and. one verifies easily that ã vouLd then be discon-

nected with either 2 ot nf| componente' Q'E'D'

the elternating path nethod has useful practical applications

to the cal,culation of autonorphisn glroups of regular graphs of

degree 2 antt to the,construction of graphs with given propertiee'

For inetance if one usea theore¡o g.4 I'o calcurate the perm-

utation subgraphs of a given EraPhr then using the fact that

autonorphismsofthegraphmustpermutethepermutationsubgraphs

anong thensel-veg reduces the calculation of the autonorphism gToup'

lle uge thls methoct tn the next gection'

Anotherappllcationlsinthesearchforfinites¡rnrnetric
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grs,phs of degree 2 which are not group graphs' One can show for

'-n'l a D -t 1çr f.h .CLnstance that the graph of exarnple 2.2 ls the only s¡rmrnetri

graph of tlegree 2 with legs than 12 vertices which is not a group

greph. However even vith the nethods of this chapter thig involves

a tedious consideration of numeroüg cêBêg'

Syasinilarargunen'ttotheproofoftheorenl0.5onecan

ghon that theorem 10.! atil} holds if n ls even of the form 2pt

where p is a prirne number congruent to -1 ¡notiulo 4' As a flnal

application of the nethods of this chapter ne construct examples

whichshowthatthisisnotsoifpa+1¡noduIo4.

$t'. A Set of Svnme tric Oraphe nhlch are not Group Oraphs

Letpbeaprinenumbercongruentto+lnodulo4.Ifxisan

lntegergedenotebyltheuniquenunberwith06Ägp-1and'x=x

nod.ul.o p.

l,et b !" " 
prini-tive root of p and r = o(p-r )/4, that is a

isaprlrnitive'4throotofunitynodulop.theninpartlcular
c(l) i' - p-1.

tet G be the sinple graph with vertex set v r{ort, ..' ,2p-1l/

and edge set E - s]unfunlu,l, vhere

[(r rp*i*L), o -< I < p-1],

{(i,p+-r-.l) t o -. i < P-1}'

fip*rri-a)¡o -< i 5. P-1],

Í p*i rÅ1") : o S i .< P-1] .

El r

Eî -

EL-
E7-

(z)
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using (t), one readlly'verifies that the permutations

(l) o( = (orz ..' p-1)(p p+1 .'t 2p-1),

(+) p a (op)(1 p+a ¿ p+;g),..' (i p*¿e g n+:-ie) "'
. . o ( (p-r ) /z p+!p-t\^ú -(p-t I p+{tÐa/ z)

are autonorphisns of 0. They clearLy generate a transitive group¡

so G is s¡rnmetric. tl€ non show that G is not e g:lloup graph'

The subgraph A., r 1V,n]upf ) ia clearly conposed of conplete

alternating circuits of G. ueíng the fact that the initial vertex

setsofthealternatingclrcuitsof0mustallhave2rPror2p

elenentg one sees that 41 is in fact itself an alternating circuit

of 0. Si¡nilarly A2 - (V rn\vn2r) is an alternating oircuit of G, and

einceA.,andArtogetherinvolvealltheed'gesofG'theyarethe

only alternating circuits of 0. Hence the sete Ei (irJ = 1 12) are

the eeta definecl ltt (?) of $g, so by theore¡n 9.4 the pernutation

subgraphe of 0 are iust Pr. - lvrnfunl) (i,i - 1'2)'lre denote

the pernutation of V which correepond.e to Pii tyríiJ (c'f' $6)'

Now (o,p+1), (p+1 ,f -"), (l:g,p+.?-a) ,(p+þ,r&.), " ' are the'

edgee of Pr., eo

(l) ifit a (o p+t lg p+-þ 2-2& "" p+t-(i-t)a i-ia "'

. .. P+!:j-PS)'
Slnnilarly

(6)

(z)

azz - (O p*i -1+a p+-2+?. -2*24 " ' p+-id-P-1Þ,) '

ljz - (O P+t ,1'+a P+!lg 2+2a oa(¡-1 )a )'

(A) Ír., ! (O P+3! -1-a P+Æ -2-28 "' -o-(p-1 )a

Hence the pennutation subgraphs of G are all cyclic'

).
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GcanbeexpressedastheetigeclirectsumofpernutatÍon

subgraphs ln precisely two waybr 0 - P.1., * Pz2 - P1z * Pza' since

frZZ L, not a poner of iT., , and'íTr,, is not a power of l12t neither

frll anô.t , not \i\Z ,nd TZ1 generate a regular Bernutation groupt

so by theoren 6.4 G is not a group graph'

IrIe now show that f(G) has order {p and' is generated' by o< and'

P. slnce the group generateci by '< and f contains "/ and f whose

orders are p ancl {r. it has orðer at least {p' so since it is con-

tained in f(c), it suffices to proYe the firgt statement, To do

this it suffices to shon that a stabilizer subgroup of l(C) has

order 2.

tet r be en ele¡nent or f(c) which leaves 0 fixed'. 'I7 permutes

the pernutatÍon subgrephs of o, eo in particular it naps P.¡|. onto

P11, P1Z, PZI, or Prr' If it naps Pr', onto P.,', then it is the

trivial autonorphÍsn. If it naps P', ', onto P1, then it naps p+j =

p+:g=L-a-1)g onto P+:Ël-3a!þ = 9+1-2a¡ so it naps the edge

(orp*:1) onto (0rp+14) which ie not an edge. Thie is hence in-
a'

poseible. SÍnllarly f cannot nap P',', onto Pr1 I but the permutation

whlchmaPsPr.,ontoPrrd'oesgiveanautornorphisn'Ilencethereare

Just2autonorphisnsofGwhichLeave0fixed''whichiswhatwe
tt"n"lntr"Ï";hat 

for p - 5 and. a o 2r G ie.just the graph of

exarrple2, 2and'<and'Pe¡nettretwoperrrutationsgi.venthere.

onecanshor'thatifpigaprirnenumbercongruenttol

urotlulo {, ancl if G'is e synnetric graph of degree 2 with 2B
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vertioes whtch ie not a group faphr then lf lf (C') i - 4P or if

F does not have p conponents, g' 1s ieonorphic to tþe graph 0

oonsttruoted above. I clo not kni¡w r¡hether the last conditlon is

necessatly. Bhe ptoof of thlg etatement needg other tools to thoee

re heve tleveloped he¡er so ve onnit it'
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CHAPÎER V ¡ Maximal Schreier I'Iord.s in Finite Groqpq

$r z. Introduction

If C is a directed EraPhr a Hamil-tonian arc inGlsa(pos-

sibly infinite) path in G, whloh starts fror¡ some vertex and pas-

ees pfeclsely once through every other vertex of 0. A Hamiltonian

circuit of G is a cyclic path in G (that is a path whose first

and Last vertices are equal, or in the infinite ca'se a two way

infinj.te path) which passes precisely once through each vertex of

0.

A ltaniltonian oircuit is Juet a cyclic permutatioir subgraph,

and in the finite case a Ha¡niltonian arc fs .just a connected

broken perrnutation subgraph (c.f . $g).

fn thie chapter we congid.er Haniltonian arcs and. circuits in

finite group graphs; or more precisely, in finite cayley graphs.

A Ha¡niltonian arc can clearly only exist tf the graph is

conneoted; in the cayley graph fHrsl this juet neans that s must

be a generating set for II. l'le note also that in a s¡rmnetric graph,

and hence certainly in a Cayley g'raph, it aufficee to consider

Hamiltonian arcs which start frorn some fixed base pointr for any

Haniltonian arc nay be napped by a suitable graph autonorphl-sxn to

gtart fro¡n this base Point.

Now let E be a finite group, s a generating set of Er and

suppose we have a llaniltonian aro B starting fron the identity
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ele¡oent e of H in the Cayley g:raph fHrSJ. If f Hl

have legnth tr-1, so it has the forn

(r) B = ("r"1)("rr".,"2)("r"zrs,arø') . . .

. . . (s,rs, ... "h-2r"1"2 
.t. "fr-Z"fr-t)

where s1 ,s2r .... ,sh-1 a,re (not necesearily distinct) elements of

Sr and erg1r81s2r . r . r8192 ... th-1 are distinct elements of H'

Eence B deffnes a word s.,s, ... "h-1 
ln the free nonoid F(S) g"t'-

erated by S such that the initÍal segments ersl rs1s2r ' ' '

"1"2 ..e "h-1 
of legnths 011 ,2r... ,h-1 respectively have distirrt

values in H" Conversely i! is clear that eny such word' defines a

Haniltonian arc (f ) in IH'SJ.,l,Ie call euch a word' of l-egnth h-1

in r(s), whose inítial seguents have dlstinct values in H, 8'

nax].maI Schreier word of IÍ with respect to S or in the elements of

S.

We are using the symbol r¡ = s1"2." "h-1 
simultaniously as

an element of the free monoid F(S) r that is a word for which init-

ial segBente can be ctefined., and a,s an element of H for whÍch

initial eegments can certainly not be defined. Although this ie

fornally incorrect, it.is rather more convenient than using a

different synbol for the nultiplicatlon 1n F(S). tJhere it could

lead to confueion we d.istingUish the two concepts by writing

w¿F(s) or weH, or by saying |tthe word w" or "the value of w"'

If w is an arbitrary word of legnth n, we denote the value

of its initiaL segnent of legnth i (O < t <n) by wr' In particular

wO.- e and vo ie the value of the word w'

h then B nust



47

In the following we sha1l use the abbrevlation ns-word for

naxinal Schreier vord.. Íhe ns-word w = s1s2 "' en-',-e r(s) is

called precyclic 1f wn-r"h - " for sone Ún e S' and in this case

we call the word. ltsh B s1s2 ... "h-1"lreF(S)
a cvclic ms-worè.

fhere is clearly a o4ê-orê correspondence betr'¡een the precyclic

and cycllc ns-vords of H with reepect to s, for one nay obtain

the one fron the other in a unique fashion by adding or dropping

the final letter. The cyclic ns-words of II nith resBect to s just

correspontt to the Ha¡niltonian circuite Ín [HtSJ'

IfthegroupEhas&Ít8-}lordvithrespecttothegenerating

eet S, we shall call S a IIami tonian Eenerat ing set.

' l,Ie may nolr restate the ain of this chapter as a discuesion

of ms-\rordsr cyclic ns-Ìrordg, and Haniltonian generating sets in

ftnítegroups.-Inparticu}arweshal].considertheproblensof

existence and claesification for ms-words and cyclic ßg-$ol.der

and the problen of how snall .a Harnlltonian generating set can be

for a given glouPo

Notation. rhe identity el,enent of an abstraot group will always

be denoted. by e' The not¿tlon E - (x1 , "' '*rrtÎ1 t "' rrt) means

that the group is gJ-ven by the generators x1 , " ' rxn and' relations

rlrooarrm.Ifarbra.aareelenentsorsubseteofthegroupHt

then the notatfon gp{arbr ."} is ueed for the subgroup of H

generated. by arb, .r. . Final-ly sn and. An nean respectively the

s¡rmnetric g¡oup ancl the alternating group on the set {112, r.' rn}r

and C denotes the cyclio group of order n'
n
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$t 1. Basic Properties of Maximal Schreier I'ford.s

hle shall use the fol-lowing lenna inplicitely in much of the

following discussion.

Lenma 11.1. If d ls a finite group and S is a generating set of

t then

(i)" The word w E s1s2 .oo sn-,, ef(S) ie a me-word of H if and'

only if no nontrivial segment has value e, and' h = IHT '
(ii). The word v E s1s2 ... snetr'(S) is a cyclic ms-nord of H if

and. only if no nontrivial proper segg¡ent of v has value e, and

h - lHl. .

(By nontrivlal segment of a word *1*2..r x' ve nean a subl¡ord' of

the forn *i*i*1 ... x, where 1<t<i(n. It is a proper seg¡nent

Lrilloriln,)
Proof. (i). Let 1 <i <i <h-1 . Then w.-. = "j ë eiai+1 '"' "i =

ti].,t, = ". 
Hence the initial segrnents of w have d'istinct values

if and only if no nontrivial segment of w has value e. They run

through the elements of H if and. only if they are dietinct and"

there are ¡H¡ of then, that is lHi = h"

(ii). Suppose ¡ = fgl and no nontrivial proper Étegment of v has

value e. Then in particular no nontrivial segment of s,,s, '.. "h-t
has value e, so this ie a ms-worô. If vn I e, we would have vn -

v. for some i with 1 <i -<h-1 r and the nontrivial proper segment
1

-1
"i*1gi+2 oo. B, would' have value v

a cyclic lts-word.

.v.sl_n êo Hencethoêsovis
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Conversely if v is a cyclic ms-word then s',s, o" "h-1 
is a

ms-Ìrord, so no nontrivial segment of it has value e. the only

other nontrivial proper seguents of v are of the forn

"i*1"i*2 o.r sn (t <i <h-1), and if this hatl value e we would

s. = v. r contradicting the fact thathave € = th - "i"i+18i+2..' "h = Yit contra

"1"2 
... 

"h_1 
ie e ms-word. Ilenc'e no nontrivial' proper segraent of

v has value e. q'E'D'

The following lenna gtates, that if we know the ms-ltords for

so¡re generating set s of H, then we knon then for any set related

to s by automorphisns and, antiautonorphisms of H. Thus for instanee

the 1oB d.istinct pairs of generators of s4 fa11 into five crasses

under the action of autonorphiens, so to find all ms-words of s4

in a pair of g;eneratora one need only consider I pairs'

Lem¡na 11,2, If H 1s

an autornorPhisro of Ht

(r). t = B1B, ".. sr,

respect to S.

(ii). vf = s ,9 srt' ...

respeot to Sf.
' '1 -1(iii). rÍ-' - ";'"i-r

nlth reepect to S-1.

Proof . The proof is trivial using lemna '1,'1' Q'E'D'

A further ueefçl method. in the oLaseification of (cyclic) Íìs-

-words ls glven by the operations of cycling and reversing a given

a fÍnite SrouPr S a generating subsett and' I

then the folloníng statenents are equivalent:

ls e ms-word (cycIlo ns-word) of H with

g?
n-

fg a û¡s-word (cyol.ic ns-wortt) of H with

o.. 
"1

1 i" t ms-Ìrord (cyclic ns-word) of H
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Ìtord. If v - glsl .., s' is any nord

r¡ord.g of w are the words ,r(i) = "i*t,,
(i - or1, ... ,n-1), and the ry

Rlf - "rr"r,-1 "' "2"1'

fn r(s), then the cycled

"i+2 '
word

a

ofwis
2 "'. "i-1"i
the word

"rr" 1 "

theoren 11,Jt If v = e 1s2 c.. sn is a cyclíc ms-word of H with

respect to S, then so are the cycled. word'e of v.

Proof. A nontrivial proper segment of o(t) *o"t either be a proper

segment of v, and hence not have value e, or have the forn

"J"J*t rt' "h"1"2 't' 
sn with k<i <J and' k+1 (j' But this has

value ("n*., . .. "¡-t )-1 since s.s, .. ¡ sn hae value e, and lience

cannot be e as then eo*1 ... "j-t would be a nontrivlaJ- proper

segment of v with value e" Q'E'D'

We now discuss a sufffcient condition for the reverse word

of a (cyclic) ns-vord' to be a (cyclic) ns-word.

If H is a group generated by the subset S, ve call H

reversible over S if there exists an autonorphism of H which maps

each elenent of S onto lts inverse. If such an autoraorphisn exists

then it is unique, for an automorphlsn is defined by its action

on ê generatlng set.

If E ís given by the set s of generators and a set of defln-

ing relations, then H is clearly reversible over S if antt only'íf

the relatfons obtained fron the given relations by replacing each

Ietter by its ínverse are again reLatione of H. For instance the'

netaoyolic group of order 21 ¡



(r) f, = (srf,: "7 - t1 = e, te = s2

is not reversible over S o fsrt] since t

r>

s
21 -1 1

s ) t does(

not hold it H.

It is well known that a group is abelian if and only if the

inversion nàpping fs an autonorphism of the group. Hence:

Lemna 11,4. The group H is reversible over every set of. generators

if and only if H is abelian.

Bysimplycheckingallpossiblecasesonenaysho}r:

Lemma 11.5. ff H has order lesg than 16, or is d'ihedral, or is the

synmetric group s4 or the alternating group À5, then H is revers-

ible over any Palr of generators"

Thls list rnay easily be extended. It shows however that rev-

ersibility is eurprizingly common among snall groups vlth very

snall generating setg, eO the following theorem has practical

value ae ïelI as acadenic interest.

Theoren 11.6. If the g,roup H ig reversfble over the 'generating

eet S, and u = s1s2 ro..sr, l-s a me-word (cyclic ns-word) of H

with respect to S, then so is the reverse word wR = errarr-1 " ' e1'

P¡oof. Let f be the automorphis¡n of E which maps each elenent of

S onto its inverse. By lemma 11.2(ii) wç'7- "i1"11 "' ";t ig a

ms-rrord (cyclic ms-word) of E with respect to S/ = S-1, so by

Lemma 1r.2(iii) lrrn)-1 - "r"rr-1 ... s1 is a me-word (cyclic ns-

-word) of B r¡fth respect to (s-t¡-t = S. Q'E'D'
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An example of & DS-lfoTd whose reverse word is not a ms-word

ls given by taking H to be the group of (1) above, S = {srt}, anå

(z) ,, = "5t"1æ4t2t2ts 
€F(s).

This word has legnth 20, and the values of its initial segpents

are in increasing order of legnth ers ,"2r"7rt4rt5r"5t, traztr"4t,

"4 
12 r trz r.' 12, 

"2 
t2 r t6 12, 

"6, "6a, 
s t, s' t, "' 12, 12 . since each erenent

of E has a unique expreesion in the form siti ,rith o<i <6 and'

0(j (2, these elements are distinct and run through H, so w is a

ms-Íord; in fact w is even precycric as wrot - tlt = e. The reverse

' R '--2',2a41"1tr5 has a segment ,1,212'2 r¡ith varue e, 8ovord lr o gtg r a '!s- rs- lta,g al ¡teglrelb ð uÞ u

lt ls not a na-wordo

gbserve that ( s6¡ ¡1ef(S.) ie.a cyclic'ns-}rord fn the above

group, an¿ so is lts reverse word (t"6)', d.espite the fact that H

is not reversible over S. Hence theoren 1].6 d.oes not give a nec-

essary contiition for the reveree of a Ds-word to be a ¡08-1'ford.

$t 4. A Boun d on the Siz e of a Snal1 est Hanilton ian Generating Set

Theoreml4.l.IfHisafiniteeolublegroupwhichhasasubnor-

¡aal series of legnth k with cyclic factors, then iI has a Ha¡oilt-

onian generatlng set with k elements.

l,Ie shal.l prove this by meana of the following generaL theorem:

Theore¡nl4.2rLetthefinitegroupHhavegeneratingeetS-

{s, rs2r ata ,rk] and. iet Ho - gPfe], Bt = gPfs,¡i,

8:p{Hir"t+1} r ... , H* ' H. tet i(i) =

E2- gp fs1 , srÌ ,

' ' ' tHi*1 lEi,Hi_l I for



each i = 1r2, ... rkt

Y(o) - e
(r)

2)"

w(r+r ) = (w(rJsr*, ¡j(r+t )-t*(t)

,3

and define a sequence of words in F(S) by

,r(r) = "1(t)-t ;

(i = 112, ,k-1).,

tet v(i) denote the value of the word v(i)sr*., and' let Yi =

g'p{v(i)} (i = 0r1, ... ,k-1). Î}ren w(i) is a mg-word of H' with

respect to {s.,,rsrr ... ,"i} for each i = 1r2, o" tk if and only

if
(z) ViEi = Hi*1 for each i = 1 12, ... ,k-1.

Remark. Since V. and"H, certainly generate Eí*1 , Q) can be re-

placed by either of the conditions¡

- HiVi for each i - 1r2, " ' ,k-1 '

is a grouP for each i = 1 ¡2r ... ,k-1.

(z)' v.H.11

v.H.
].L

(

proof. Suppoee w(i) is a ms-word of H, for each i. Then every el-

ement of Hi*1 (O<i <k-1) is the value of some initial segment of

w(i+t). But each initiat segment of w(i+1) has the form

(r(r)"i*t)Iu with O<L <i(i+t)-l ana u an initial eegnent of w(1);

and this has value v(i)Ix where x is the value of u. But v(i)}x '

v Hi it
. Suppose convelsely that VtEÍ = Hl+1 for each i = 1r2, "' 'k-1 '

w(1) ls oertainly & ms-worô of II., with reepect to fs.,ì. l'Ie assume

that w(f) fs I ,o'-rrord of H. r¡ith respect to fslrs2r ... ,"i] and

ded.uce the correspond.lng statenent for i+1 , proving the theorem

by induction.

tJe have already shown that the valuee of the initial segpents

of n(i+1) run through the elenents of the for¡n o(i)I* with

"o 
Hi*1 ÉViHi. Since both V. and Ii, are it Hi*1 , Hi*1 = Vitsi'
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O.< I <¡(i+f )-f and x the value of an initial segnent of w(i), and

by assunption n(i) i" I r"-word of IIrr so x rurls through H.. Thue

It suffices to shoï that each element of Hr*, has a unique exBre-

ssion fn the forn v(i)lx nlth o <1 < i(i+1)-t and x eHr'

Let J be the least positive nunber such that v(f)i . Ëi. Since

VtEi - Hi*1 every elenent of Hi*1 'fs expressible in the form

"irit* 
nith xeHr, and. since Ìre tnay absorb powers or n(i)i lnto

xr we ¡nay assu¡ne that 0 
'< 

I < J-1 ' It remains to show that thís re-

presentation is unique, for then it algo followe that IHt*tl =

¡lgil , whenoe i - i(i+t) antl the proof 1e oonpl-ete.

Suppose v(t)"* - tt(i)"y with O (rrs <J-1 and x'y e Hr' lJithout

loss of generality r (s. Then ,r(f )"-" o *tr-1 eH, an¿ O -4s-1. -<i-1 ,

so r = e by nlnlnality of j, whence aIEo x = I. q'E'D'

Proof of theoren 14.'1 . Let

( I ) {e} -Ho cr.a c.fiz .
be a subnormal geriee for B with oycllc factore' For each i = 1 12s

... ,k. let s, be a generator of E, moduJ,o Hi-1' If the V' are

deflned as in theorem ,14.2, then slnce E, fs nornal in H.*1 for

each i o 1¡2r ..r ¡k-1 , YiBt ís a group for each I = 1'2' "' tk-1 '

Eence (Z)" ig eatisfied r'' sq by theoren 1{'2 the s, (L = '1'2' " '

k) for¡n a Hanlltonian generating eet for H' Q'E'D'

Coroll-arl. 14.5-,- If the finite eol'ubIe g:roup iI has order

PfPe... Pk, where ttre pt are (not necessarily d'istinct) prirne

numbers, then Ii has a Haniltonian generating set with k elements'
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Indeed. ,we ¡nay take_any cornpositíon series of H as the

subnornal series of theorem 14.t.

one nay coneiderably weaken the solubility conditi.on in

theoren 14,1 and corollary 14,,), In fact it is sufficíent that H

have a serles (l) of subgroups such that for each i = 0r1r r..

k-1 r Hi*t has a "y"ii" 
subgroup v. with lfr*,l - viHi' For then we

uray take a generator v(f) of each V, and. d.efine inclucttvely

"1 = v(1), x(t) - o(r)i(t)-li "i*1 - x(i)-1o(i), x(i+t) =

o(i)içi+r )-r 11), (i = J ¡2¡. ,,. ,k-2); sk - x(t<-t )-1n(t-r );

where J(f ) - lHr.tEt-., I for I = 1r2, ... ,k' rt is then easily seen

that the s, ana v(i) B.re as in theore¡n 14,2 and the x(i) are just

the values of the words w(i) of theorem 14.2, ft follows that the

set {s., rsrr ... ,"k} ls a [aniltonian generating set of H'

The generalizeð so1ubillty cond.ition is satlsfied' for instance
i +1

by the symmetri" groop sk*1 of degree k+1, taking Hi = St*

(o <i <t<) anti V. = BP {(21 .., L+2)} (o <f <k-1)' However one

verlfieg éasily that it is not satisfied for instance by the a1t-

ernating gtoop 46.

If H is the elementery abelian group of ord.er pn (p prine),

then E hae no generating.set with less than n elernente, so the

bound of corollaty 1!.J 1s attafned. Hor¿ever for the symnetric

groop sk*1 the above d.iscusgion onLy ehows that a Eamiltonian

generating set rrith k elenents exists, and rre sha1l see in $t7

that there exists one with only I ele¡nente. Thus the problem of

fincling the nlnimal slze of Hamiltonian generating sets remains
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far fron golved.

It is tikely that the r¡ininal size of a Ëarniltonian €íenerat-

ing set can strictly exceed the rnihinal size of an arbitrary gen-

erating set but I know of no example to prove this. It would' appear

that snall relatively free groups (cf. Hanna Neumann 'rVarieties of

Groupsff Ergebnisee der Math. v.17 1967 p,!) would be likely to

provide an example, as thäy have only one autonorphisn class of

snallest generating eets. However the only non-abelian ("f. $tf

for abelian case) groups of thie type which are snall enough to

pernit tlirect calculation of ns-worde turn out to have mg-r¡ordg

in the relevant palr of generators. They are the groups

(+) iI = (srt,s'= 11= ", [tr"-1J = [t-1 ,sl = [srt]),

(the Surnside group of exponent 1 and rank 2) and

(l) H ' Grt¡s4= t4- fs¡tl 2= e, [trs-1J = Lt:1 ,sì = isrtJ),

(the relatÍvely free class 2 nilpotent groì¡p of exponent { r¡ith

rank 2), and they have cyclic ns-lrord's ("2t"2t"t2)1 *na

(k, r, s, rr2 t"2) 2 
"""p""tivety.

$1j. Maxi¡nal Schreier ÏJord.s in Abelian Groups

If E Ís an abelian group and' S = {s.,rs2, ... ,"k} is an arb-

itrary generating set, and if the subgroups E, and v. are tlefined

ae in theoren 14.,2t then condition (2)' of $t4 1e certainly sat-

igfied, so s is a llaniltonian generating set of B. Ilencet

theorem 15.1. Every generating set of a finite abelian group is



Eamiltonian.

Theorer¡ 1!.2 gLvêe å mg-vord of H in s for each ordering of

the set S, hor¡ever one does not in general obtain aII ns-word's of

H in thie way. For instance'if H is the abelian group

(r) II o (srt¡s4=(st)2=[srtJ= s¡
/

of order 8, then the two ways of ordering the generating set {stt}

give by theoren- 1!.2 ¡ae two ms-words "1ts, "rrd 
t1st1, Both are

precyclicr'and.!f one extends eÍther of then to a cyclic ms-word

and cycles it one obtains new ms-word's vhich are not given by the

construction in theorem 14.2.

Although the finlte abelian g'I.oup H always has a ms-ltord in

a given get of generators, ft need not have a cyclic ns-word in

these generators. For instance Lf we consider the cyclic group

(z) fl=(tr"6-"¡

of orcler 6, antl put t = "1 antl t = T2, then the only ms-nords of

H with respeot to s anÊ t are l2st2 and ststs' neither of which

ls precyclic.

57

MaxinaL Schre i er l,lord.s in Two Generators - the Coset Method$r 6.

In this section we derive a condition which greatly restriots
r-L

the possJ.ble forns that a &a-ïord. on two generators can take, and

hence has great practical value for the actual calculation of ¡ns-

-words, This condition results fron the d.irect translation of the

alternating path r¡ethod ($9) to group graphs. Though the itleas of
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this section are not new - they have been ind"icated or inplicitely

applied by Fletcher L7J, Dickinson L6l , and. Rapapor? L14.1 for

cyclic ¡ns-ltordg, and by Rankin Lltl for general permutation sub-

graphs of Cayley graphs of tiegree 2 - they have not been stated'

in an explicit forn for general 2 generator ms-words, and' the

faot that they are nothing but the alternating path nethod seems

to have escaped. notice. Rankin, F1etcher, and, Dickinson (loc. cit. )

d.escribe an application to oampanolory.

Let H be a fÍnite group generated by the set S = /srtÌ. Then

IH'SJ is regular of degree 2, so the nethodg of $9 are applicable'

We first consider the for¡n of the aLternating paths ef [H¡Sl.

Let the order of st-1 be n. Then for any x H the path

(r) A*o(x,xs)(xsrxst-1)(xst-1r*"t-1")...

. . (*(.r-1 ¡n-1,*(st-1 )t-1")(x(st-1 )t-1",*)

is a cyclic alternating <-path of IHrSJ. I'Ie denote the correspon-

ding alternating circuit of [E'SJ a1-so bJr Â*.

v(Ax) is the set of erenente x("t-1)i, i'orlr ... rm-1;
'4

that is V(Ax) = xC where C is the cycl-ic subgroup gpfst-] of H.

Since x ïas arbÍtraryr'and the alternating circuit containing

a given vertex ln its initial vertex set is unique, it follows that

every alternating ôircuit has the form À* for 6ome x É H.

The partition ($g,(Z)) of the ed.ge set U(l*) may be taken as

(z) n1(l*) - (y,v")rv exc] ; E2(Ax) E f(v,vt):vexc)'
Now if w = s,,e, .'. "rr-tl 

is any ns-Ìtord of H in s and t' l'e

tlefine lte g1|lgg!!g f*, to be the napping of E- [*f,-t ] to S
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d,efined by

G) fr"("i) = "r*., , (i = orlr ... rh-2)

The ns-word w is uniquely defined by its'word function, fqr

the corresponding Haniltonian arc of IIITSJ is full-y defined, by the

fact that its ed.ges are just the paire (xrxf*,(x)) with * / *h-1 .

Noting that a Haniltonian arc 1s just a special type of

broken pernutation subgraphr theoren t.! gives:

Theorem 16,1. If w = g
I 2

..o S ie a ns-word of H in the elem-
h-1

k r¡ith 0Ek(n-1 i

if 0-< j <kt

ents s and tr f* its word function, and g = gp{st-1} has order m,

then

(i). *h-1 = t-1('t-1)k fot 
'ot"

(ir). rr(t-1(st-1¡J¡ E s

ã t ifk<J(n-1t

undeflnedifk=i;

(rii). If xC I t-t0 then fr" is ôefined. and constant on xC.

Proof. Let B be the Hamiltonian arc correeponding to tt. Then B is

a broken permutation subgraph of [ËrSJ with initial vertex e and

ter¡ninaI vertex wh_1 " The.<*-Path of theore¡n !.! must have the

form either

(+) (",t
... (t-1(st-1)k:1s,t-1("t-1)k)(t-1 ("t-1)k,t-1 ("t-1 )ks) ...

... (t-1 ("t-1 )t-1 ,")

vith rrn-' = t-1("t-1 )k, or the sa¡ne with s and. t exchanged through-

out.

ïn the second case h'e may use the fact that (t"-1)i= ("t-1)-i

-t 
¡ 1¡-t, r-1") (t-1", t-1"t-1 )
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to replace polters of ts-1 by porrers of "t-1, and then on reversing

the representatign of B we get e representation as ín (4).

(i) non follons inmetilately from theoren 9.5; and using the

fact that the edges of B are Just the paire (xrxf*(x)) (x I ron-.,')

and. usin g (2), (ii) and (iii) are direct traìslations of the cor-

respond.ing state¡nents of theorem !.!. q'E'D'

Corollarv 16.2. ff the number of tines s occurs in w is It then

"h-1 = t-1 1"t-1 ¡1'

I@. I is the nunber of ele¡nents of H-{*n-.,,} for r¡hich f"(x) = s.

ny (ii) fr(x) equals e for precisely k elenents of the coset t c,

and by (iii) f*(x) equale for either 0 or n elements of each other

coset of C. Hence I=k noðulo n, so (st-1)l - ("t-1)k, "g st-1 has

order m. the corollary now follons fron'(i)' Qr E. D.

CoroLl,arv 16.5. If st-1 has order 2 then every ma-word of II in s

and t is precYclic.

Indeed. w. . can then only takê one of the two values t
Il-l

t-1("t-1) - "-1("t-1)2 = "-1, by theorem 16't(i)'

Theoren 16.1 also gives a bound on the total nunber of ng-

-nord.s of II in g and t. Ind.eed. if C has index n in H then f* can

take one of 2 possibLe values on each of the n-1 I'eft cosets of C

other than t-1C, and on t-1C f,., ig deter¡nined by k which can täke
ld

ro possibÌe values. Hence E hae at most 2t-1^ l¡s-worôs in s and t'

fn fact 2t-1t is just the nuínber of broken pernutation subgraphs

of [Er{srt}l with initia]- vertex e.

or
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$t 7. Some Soecial Cases

In this section we d.iscuss sone cases where the calculation

of enall Hamiltonian generating sets and ms-words is rather êês-

ier than in the general case.

1). S:rnnetric ÃroüDS o

D
The s¡rnrnetric group S'of degree 2 is cyclic, so it has a

one elernent Haniltonian generating'set.

51 and s4 have ¡ns-words in every pair of generators. For s4

these are listett in Appendix 1; for S

1'l "2.

, ttrey are given by theoren

For general Sn'(" >7) we have the follor¿ing theoren:

orem 1 R. t 1 If n > I then the sYmnetric grouP Sn

has a cyclic mg-word in the three generators r ã (lZ) t

s E (tz)(tù ... (zt-t 
"ã)., 

t - (zÐ(qS) ... (zm 2m+t) , where

] o in/21 ancr m = l("-r )/2J.

Ilence a s¡rmnetric gfoup always has a three elenent Hanilton-

ian generating set. It seens like1y that this cên be red.uced' to 2.

2). A.Iterna tinE groups.

The arternating group.0,1 i.s cyclic, so it has a one element

Ha¡niltonian generating set.

A4 has ms-words in every pafr of generators; they are listed.

in Appendix 1

Direct calculation gÍves that for s = çlZllS) an¿ t = (lZl¡
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( 
"4t) 

2 Ê2 t2( 
"4t) 

2 ("2 t)2 
"4 

t"t2 "tsltsts4te 
t2sts1 is a ( non-precyclic )

¡ns-sord of .l5. I,Je shall prove fn $tB that ¡5 has no ¡nE-word in the

senerators (tz)ßq) and. (tl¡).

I have no results for An, n ) 5, other than the result that

for n >g ArL has a non-Ilaniltonian gene::ator pair (corollary 18.2)'

Direct calculation can only give very'special results and' is in

Any cêse too tine consuming, even for an electroniC computer, for

n>6. Thls holds even though for n - ! hand' calculation is still

feasible¡ and was used to find the abovê rs-Hord'

,). Dihed.ral sroups '

If Ii is the dihetlral group of order 2n:

(r) E = (rr srr2= s2= (t"¡t= 
"¡ ,

then the only generator pairs of $ are {rrs} and ferrs} and' images

of these under automorphisms. Hence by lenma 1r.2 Lt suffices to

consid.er the pairs {rre} and f"rtJ , where t - rer

Theoren 17.2. (t")t í" " "y"IÍc ns-word of E. Any ms-word of H in

r and e ís precyclic and. the corresponding cyclic word rnay be ob-

tained. by cycl-Írrg (rs)n.

(tn-t")2 i" a cyclio ms-lrord of If. Any ns-word of H ín s and

t is precyclic and. the corresponding cyclic ns-uord.nay be obtai-

ned by oycling (tt-1")2.

Proof. Qne verifies easiS.y that (re).t i" a cyclic ns-word of E.

Any mg-vOrtl of H ln r and s nust hAVe the fOrm 4srs...'oi 8!8r."'

eince r and s both have order 2. The first part of the theorem
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now follons i¡nmed.iatelY.

one verlfies easiry that (tn-t")2 i, a cycric ms-word of II.

Let w6 F(S) be any ms-ltord of H in s and. t and' let k be the number

of tines s occurg in v. t'Ie d.istinguish I cases i -

k> 1. Then w has a segnent etxstJs for some i,i )0. If i > i then

tjstjs is a segæent of w *ith varue e. rf i < j then stisti is a

segnent of w with value e. This caee can henCe not occur.

k = 2. Then w = ti"ti"tl for sone irjrl)0. Since w hae legnth

2n-1 we must liave

(z) i+j+I = Q¡-).

Clearly j<n-1. Suppose J (n-2. Then if i>ir w has a segment

tistJs with value e, and. if i-< j then I = 2n-7-í-iÞ2r^-1-i-(n-t) =

n-2-i > j-i, so 't{ has a segXnent t with value e. Hence

j (n-z gives a contradiction so J - ¿-'t' (z) now gives that

w = tietn-1"an-2-i *here 0 ( i ( n-2. The worit wt = tistn-1"'n-1-i

is obtained, by cycling (tt-1")2, ao w is a ms-word with the

tlesired propertY.

k = 1. Then w = tisti fo" eone i ¡i ÞO. Conelderation of the legnth

of w gives i = J = [-1, so w = ¡n-1stn-1. Hence ws = (tt-1")2, so

w has the stated. ProPertY. Q. E.D.

tstJ stJ

4). Groups expressibl as the product of two cvcl-ic subgroups.

Theorem 17.t. If the elernent t of E has order rn, then H has a ms-

word of the for¡n (tn-1s¡1-1*n-1 if and. onry if

3) g = BC where B = gPttÌ'and. C = 8Pf"t-1
..._1 r .

Proof. Putting s., = Tr 8a - s, H1 o Br and'-V, = gptt 'sl in



theore¡o 14.2 with k = 2 glves that H has a ns-word of the form

(tm-ts)1-tttn-1 if anti onry 1¡ ¡¡ - BVr, 3ut st-1= t(t-1")t-1 , "o
C==+ Et - BtVl

6q

.ButBt-B
Q,. E. D.

Q o tvl t-1 . 'Eence ¡¡ - BC (=). S - BtVl t

an¿ Et - Hr so H = BCåH = BV1.

1

since 3 and c of theoren 17,1 aertafnly generate H, II - BC if

antl only if BC = CB. Eence in particular¡

Corollary 17.4. I,f 3 or C of theoren 17.1 is norr¡a] ín Ht then

(l) is satisfied., so (tn-ts¡1-1tn-t is a ¡ns-word of E for suitable

1

Rankin [1,Jpp.21-21 discusses the existence of cyclic ms-

nords in the case that C is a norrnal subgroup of H. In fact he

givee necessary and sufficient conditions for the cayley graph

[8, {srt}i to have a perrnutation subgraph rith any given number of

conponente.

we shall need the following lenna in the next section.

Lenma 17.6. Let H be generated. by s and t and Let C be the sub-

g'roup C = Bp{"t-1J.Îhen
(i). If seC or !*C then H = C.

(i.i). If t has prlme order p ancl iHr0f <p then H = C'

(iii). If t has prine order p and. igrçl - p then (tp-t")l i" "
cyclic lts-word of H, where I = l0l.
proof. (i). If geC then t = ("t-1)-1" oC ae st-1ê C, But s and t

generate H so'II - C. Sinllarly te C inplies II = C'

(fi) and (iii). The least positive power of t which is in C ¡nust



65

be a divisor of the order p of t, so it is either 1 or p. ff it is

1 then ty (r) H = C. If it is p then the cogets crt0' '.. ,tP-1c

are dietinot so C has Íntlex at least p in H, proving (ii). If C

has index precisely p fn H, then these cosets cover H, so H = BC

where B - Bplt). Bence by theore¡n 1?.1 (tp-1s¡1-1*r-t is a ms-

the order of t-1s - tP-1", "o 
(tp-1")r l" "

Q'E'D '

-$ord of H. 1 is here

cyclic ms-Ìrord of E.

$1g. Maxinnal Schreier t¡Iords in two Generators of orders 2 and a

In this sectlon we consider'ns-words of a g¡.ollp H in the

generators s and t, where s and t have orders 2 and J respectively'

If E is abelian then it is cyclic of order 6, and direct cal-

culation gives that t2st2 and. ststs are the only ns-words of II in

e and t.

This completes the discussion of the abelian case, so in the

following we need only consid'ei non-abelian H'

Theoren 18.1. tet H be a finite non-abeLlan group generated by

the elenents s and t of ord.ers 2 and J respectively, and let Ç =

4

ep{st-} have order ¡o and index n in H' Then

(r). n t1;
(ii). If n = J then ("tz)t is a cyclic'ns-r¡ord of *. +tt" ms-'tdord

of H is precycLic and the corresponôing cycLic sls-word' nay be ob-

, ).m
tained by cycring (st2)n.

(iii). If n7J anð. if ¡f has a ms-word u in s and t, then w is not
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precyctic and one of the following c&ses holds¡

a). n = 4 and. w = ("t2)1-1 st(stz¡n/1 or vI E (t2r7^/lrr(t2")t-1 ,

b). n 3 5 and w = ("t2)t-1st(st2 )2^/l or 1r = (t2" )2^/1æ(t2")t-1,

c). n = 6,and rv = ("t2)t-1stst("t2)t-1" ;

d). n - ? &nd w = ("t2)t-1st(st2 )^/)tt("t2)t-1" ;

e). n = I and w = ("t2)t-1st(gt2)2^/1"t("t2¡t-1u ;

In particular if. n 29 then H hag no ms-word in s and t.

Proof. l,Ie write lHl = h and g'pttì'o B. Clearly h = IûrIr for m and'

n &re respectively order and intlex of the subgroup C of H. Further

h is divisible by 1, for H contains the element t of order 1.

Flnally rn)1, for n = 1 would' imply st

t have u.tequai orderg.

-l oêrgog=trbutsand-

If n ( I then by lenna 17.5(ii) E - C, so H ls abelian, con-

trary to assurnption. Hence n ),1 t proving ( i ) .

If n = l then by le¡nna 1?.5(iii) ("t2)t is a cyclic ¡rs-l¡ord

of H, proving the firet statement.ot (ii).

Let n )l and w be a ms-word of II in s and t. Since t7= s2= e,

v'nust have the forn

(r) ,., = ato"*tt" ... "tiP-1"tip 
ur(s),

rrith O Slj at t"j_Ì = OrPr and 1 *tj {2 for j = 1r2, "' ¡p-1 '

l.Ie write k, - ,.ãt, ,(t <J <p). Then the value of the initial

eegnent of legnth k, of w is juet

(z) *k.= ato"rtt" ... "tii-1s B ,(l <i <p).
J

lle consider a number of cases:
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Case 1. 1. - 2 for all j with 1.<i <p-1 '
tJ

Then n = *io1"t2¡n-1"*ir¡ .so u has legnth ,(p-1 )+1+io+in. But

n has legnth h-1 anti h is divisible by 1, so i'+in= 1 modulo 1'

Since 0 (io tLn1lr ve have the three possibÍlitiesr (i0rtn) -

(r ro) or (ort ) or (2r2), suppoee (ro,in) = (t,o); then \'t =

t(st2)p-1", and equating the 1eÀth of thie with h-1 gives h = lp'

Now m = p, for if m were greater than pr 11 = h/m would be less

than 1, contradicting part (i), an¿ if m "er" Less than p, ("t2)t

would.beanontrivialaegmentofwwithvaluee.Hencen=Jand

r, = t("t2)t-1". Ít = t(st2)n-1st crn be obtained by cycling the

cyclic rns-vord ("t2)t-1 , so It is a precyclic ¡¡ls-lrord'' Similarly

the case" (iorin) = (ort ) or (zrz) also read' to the concrusion

that n = ] and w is derived' frorn the cyclic ns-word ("t2)t'

Case 2. i= = 1 for at least one J with 1 <i <p-1'
ü

tlocompletetheproofwemustshovthatthiscaseleadsto

theconclusionsrt}5¡wisnotprecyolic,andwisof.oneofthe

forns glven rn (iii) a) - e)' }je firet shor¡:

(¡). rf 1 6J <p-1 and' i, - 1r then eitn"" wkil? = e and io = 0 or
J

.2
, rk.t' - *h_1 and in - o.

-j

rnd.eed,, suppose 1 s j 1p-1 and i. = 1. tt tort2 - wr with

kt (I.kp, lre can find a q with 1<q{p-1 such that kn<1<kq*1'

Since 1 ( q ( p-1, ,n ) ,, "o "kn*, = tnn'' It follows that wn 
'q.

,kn*1, **j, and tkr*t are four el'eroents of the left coset vn.B of
J

B. They are hence not d,istinct, as 3 '7, so we nust have q = i'
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2Eut this inpLies that wn , whfch is clearLy

or k -<1<h-1 . Ifp

t = 'üf. Of W.k. K.JJ
with 0-{1<

.i
+1

kt2impossible. He.nc" *k t =*1
j

O <1 <k1 then ltkj, *kr+1 , wO, ... , *n.,-, are k,,+2 d"istinct eLe-

ments of B, so k., < 1. kt = O is inpossible as k., E 1+1gr so k., = 1t

nhence iO - 0 and 1 = 0: Similarly On at <h-1 inplies ip - 0 
"ttd

1 - h-1. (l) is hence proved.

It foLlows that the condition of Case 2 inpliee that w is not

precyclic, for we know that there exists a i with 1 (i <p-1 such

that w t a € ox "h-1. 
If wO t2 ='h-1 then in = 0r so the word2

k j j
n ends wÍth Br B. lfence th-1" - th-2 / e and *h-1t o,k t2t = r,k

J

/ e, If n'. t2 * e then iO ' 0, so w1 ¡ 8. Hêro" th-1 / ", so

v .r^l'-., {- t2-e.,h-1" / s' = ei also w¡-tt / t*J

It renaine to shov that w is of one of the types given in

(iii) and, that n takes the corresponding value' (l) fmplies that

i. - 1 can occur for at noet two vaLues of i with 1 <i <p-1. thus
J

two poseibilities must be co+sidered'¡

Case 2a. i j it 1 with 1 {irl(p-1 and. j f 1.
2

t{ithout loss of generality we nay assurne by (¡') that wo t rê
J

_.2
and. w,- t¡- - L ,1. l'Ie also have that iO = ip o 0 so one of the

Kl 11-

followlng casee holds:

(l) ("t2rr-1st(st2¡i-1-tst(st2)p-i-1u , (r 'i);
(+) r E ("t2)i-1st(st2)r-J-1st(st2)p-1-1e ,(i <1) '

rr, (r) ("t2)1-1st(st2)i-1-1st2 - wo.t2 - e, so (st2)1-1"t =

J

j
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("t2¡1-i, so st = ("t2)1-i. H"r,ce t = t4 = t2sst2 = ("t)-1st2 =

("t2)i-1"t2 - ("t2)i uc, so b¡/ lenr¡a 17.5(i) H = c. fhis is con-

trary to the assunption that H be non-abelian, so (l) cannot occur.

rn (¿) ("t2)J = ("t2)i-1st2 - *k .t2 = e' so m ditrides j.
rJ

n <j would. irnply that ("t2)t ie a nontrivial segnent of w with

varue e, so IIr a j. aleo ("tz¡n-t ' !tnrt)-1*n-.,t2 =

(*n-.,r-t)-t*n 
-1tZ = t1 = e1 8o lll = P-1. Hence writing i-I-1 = Qr

(¿) becones v = ("t2)t-1st(et2)qet(et2)t-1s. w hence has legnth

6(n-1 )+lq

(r)

But clear

these val

This just

Case 2b.

av(

+5¡ and equating this vith h-1 = mr-1 gives

mr1 r 6m+Jq.

Iy 0 de 4rnr so 6n (nn (9n, Bo r = 61 7, or 8. Inserting

ues back itt (5) gives Q ' 0, n/1, ot znf ) respectivel"y'

gives cases (iii) c), d), and e) of the theorem.

tj = 1 for precisely one value of j with 1 {i < p-1'

A) this caee gives the two possibilities *n.tt = € &nd
J

i.,, = O or vL t2 = wh-,, and. in o 0. These give respectively the
u*j

two possibilitiee¡
i

(6) rl E ("t2)i-1st(st2)p-i-1st-P ;

(z) rr ! .io1"t2)i-1"t(st2)P-i-1" '
conparing the Legnths in each case with h-1 , and. 'noting that

h is divisible by 1, gives in = ' 
and' io = 2 respectively'

rn (6) (stz)i - ("t2)J-1"t2 - *k.t2 - e, so j - p. on writ-
J

ing p-j - q, (6) becomes Ì¡ E ("t2)t-1st(st2)a. This has legnth

l(n-1 )+2+)q' so equating with nn-1 gives



(e) mr1 = Jm+Jq,

But 04q as j ¿p; and. certainly g ¿.n. ilence Jrn z-mn 16m, so n = 4 æ

,, rneerting back into (g) gives q = n/1 and' 2nf1 respectively'

vhich gives the first possibilíties in cases (:.ii) a) and b) of

the theoren. Siu¡ilar,considêrations show tt¡at (Z) lead's to the

second possibility in each of these cases (alternatively one may

use the fact that a word of type (Z) ig just the revefse of one of

type (6)), so the theorem is proveð' Q'E'D'

Examp1eg.

18.1. H - SJ (the symmetric group of degree 1) of order h = 6;

s E ('tz), ! = (121). Then et-1 E (zù, so m = 2 and n = t' Hence

by theore¡n 1B.t(ii), ("t2)2 Lt " cyclic rns-word, and the words

st .2ts t2, and tst2s obtainabLe frot (rt2)22

7o

give all ms-words

of in s and t.

8tr

s'

18,2. H = Crwr0, (the wreath product of a cyclic group. of order I

by a cyclic group of ord'er 2) of order h - 18' This group may be

presented by H = (s r!,2s2= 15= f"-1t"rt] = e). one verifies easily

that st-1 hr" order'n - 6; hence n = 5, and we again have the

cyclic case, every ns-vrord. of H in s and t belng d.erivable from

the cyclic ms-h,ora (st2)6.

uslng stand.ard. 8r9tp theoretical rnethods one can show that

the above tvo exa,nples are the only examples (up to isonorphism)

vith n - 1, so the¡r are the only cases (up to isomorphism) of

g3oups having cyclic ¡¡s-nords in two generators of orders 2 anð' 1'
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18.1. H = À4 of order h = 12i I E (lz)(lÐ, | = (lz1). Then

st-1 s (zlù, son= J and. n=4. Bytheorem 1g,l(iii) a) &ûs-

-word. of H in s and t ¡nust have the forn (st2)2sts t2 or t2sts(t2")2,

One veriflee easily that both of these are 1n fact ns-vorcls.

18.4. H - S4 of order h - 24¡ Êr = ('tz), f,, = (ru). Then st-1 =

çlZlÐ¡ so rtr - d and'n - 6, 3y theorern 18.1(i1i) ")r à ms-ltord of

H in g and t nust have the forn (st2)'stst(st2)'s. This Ís a ms-

-WOrd¡

18.8. E - A5 of order h = 60; s - (lz)(lÐ, t = (tl>). Then

et-1 - (lz>lÐ, so m = ) and. n = 12. Since n>9, L5 has no ms-word

in s and t. (However it has s Ins-worä in a dlfferent generator

pair; cf. $t7.)

18.6. H, - Crvtr}, (the wreath of a cyclic group of order 2 by one

of order ]. This is isonrorphi.c to l4x}r). The order is h = 24i the

group may be presented by II - (ert¡s2= t1= Lt-lstrsJ = €). In this

n = 4. A ms-word of H in s and t

nust hence have the forr¡ ("t2)5st(st2)2 o" (t2") 2t"çt2"¡5, lut

these have segrnents et2stst2st and tst2stst2" """p"ctive1y 
vith

value e, so they are not ns-words. Hence Crwtl, has no ms-word in

g and t. (tt tras however a ms-wor¿ pq.p2qp'n'n5r'n'nntnn in the

generators p o gt and q - t2).

In the foLlovf.ng a "(2r7) generator pair" will r¡ean a pair

lsrt] of generators where s and t have orders 2 and J respectively.

n and. n r¡iIt denote, as usu8,1, the order and. ind.ex of the subgroup
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C = gpfst-1] of the group considered.

Surnsid.e (zi $$zgg and J01 ) classifies the (zrl) generated

groups with ß = 2r1rArit6. îor m = 2r1r4r) these groups are as in

exanples 18.1, 18,1¡ 18,4¡ 18.5 respectively. For m = 6 there are

already àn infínite nunber of such groups¡ only a finite number

of the¡o have n.(8, so the (Zrr) generator pair is non-Ha¡niltonian

for alnost all of then." ¡'or t ) J these groups d.o not appear to

have been classffied.

G. A. Miller tlol has shown that every nontrivial synmetric

or alternating group can be (Zrl) generated, vith the following

exeptions: s2, s5, s6, s8, ¡1 , L6, ¡,7, 48. For kÞ5, ak a.rd sk

have no cyclic subgroup of index less than 10, so n )10r so any

(z;Ð generator palr is non-Haniltonian. ¡'or Sl , L4, and 54, the

only (2rr) generator pairs are those given in examples 18.1r 18.5,

and 18,{ (up to eutonorphisn). Hence

Corollar.v 18.2. Sk has a (Zri) generator pair if an¿ only if

lç = 1, 4, 7, or k )9. Th.:'s pair ig Ha¡niltonian if and' only if

þ-1ot4.

Ak has a (2 rt) generator pair if and only if k = 4 ,5 ot k .2 J.

Thie pair is EaniltonÍan if and. only if k = 4.

Qne nay obtain enalogous results for other classes of groups.

For lnstance if p is an otld prine then the frectional linear group

LF(2,p) hae a (ZrÐ generator pair with n = P a¡ld n = (pz-l)/Z

(Coxeter and. Moeer [5Jn,94). This generator pair is non-Ilaniltonian
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for p)5, since r = (p2-l)/Z Ís then greater than 8.

The last pa.ragraph and. the second. part of corollary 18.2 both

give infinite sets of sinple groups with non-Eaniltonian (Zrl)

generator pairs. In fact the nunber of sinple groups with Hanril-

tonian (Z.rl) generator pairs is finite¡ for such a group has a

subgroup c of index n(8 by theoren 18.1r and since the pernutat-

ion representation on the left cosete of C must be faithful of

degree n¡ the group has order at nost 8!. I have been unable to

prove or disprove the coirespond.ing statement for arbitrary groups'

1o close this cbapter we nake the following two connents:

For abelian groups every generating set is Eaniltonian, but

we have seen that alnost all sinple groups have non-Ilaniltonian

generating sets., It therefore seeInB probable that the existence

of Haniltonian generating sets and ms-vords is fairly closely con-

nected with the con¡nutatorial structure of the group. This is ver-

ified to so¡oe extent by theoren 1-{.1, however I'have been unable

to flnd. any etrong connections.

The only non-Eaniltonian generating sets that I know of are

aLl (Zril generating pairs. It is extrenely unlikely that this is

in fact necess&ry for a generating set to be non-Ha¡oiltonian'

Eowever very rough plausibility considerations imply that the

larger the orðer of the generators, the greater the prôUatitity

that they forn a Hanittonian generating set. It is hence possible

that there ¡nay exist sufficient condÍtions of the type I'a given
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function of the orders of the generators i.s greater than a given

boundtr'fo" " geaerating set to be Eaniltonian, or reeuLts of a

siniler type nay bold" f have however been unable to obtain a'ny

results in this direction.
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APPENDfX 1 ¡ Tab1es of Maxina I Schreier l¡/ords

If s is a generating set of 'the group E, we call S ¡ninirnal

if no proper subset of S generates II.

Ehe following tables give all ns-r'tords in a nininal generator

pair for the fotlowing groups¡ all groups of order less than 12

which have a ninimal generator pair , L4, an¿ 54. The only reason

for not considering generator. palrs nhich are not nininal is that

there are too many such cases; - not because they lack interest'

The d.ihed.ral groups are ôealt with by theorem 1'.1 ,2, and are

hence o¡onitted fro¡n these tables.

For each group ne consid.er one generator pair out of each

autonorphisn class of mininal generator pairs. For each group and

generator pair we }ist a set of cyclic, os-lfoIlds fron rshich all

other cyclic ns-wordd are obtainable by cycling and' reversal, and

a set of non-precyclic ns-words fro¡¡ which all other non-Precyclic

ne-Ìrords are obtainable by reversal (cf. lenna 1).J and'theorem

11.6) .

6
c e).

6
o (r:r

2tg=f

CyclÍo

t
¡ None

Non-precyclic 3

.2 .2tst , ststs a
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2 q4CrxC - (PIQS P

I ! pr t = g.

CycIic r (st)4.
, ,Non-precycllc ¡ t st

s - Pg, t = Q.

[PrQ] = €).

çs1t)2, (tl")2.Cyclic

Non-precyclic ¡ None.

Q= ¿D.o sp 4=ooo-10=e> (QuaternÍon grouP).4=o

g=Prt=Q.

Cyclic t

Non-precyclic i ts , ,l , st,
( st )4.
,

, ,- (PrQ3P q = [pre] = ê).

s

CrxC

g = P, t = Qr

cycric , (uzt)',

Non-precyclic ¡ None.

(t2")5.

10
c = (rsr = 9).

10

4

Ê,2s=r/¡t-r-.
Cyclic ¡ l{one.

lfe¡¡-precyclic 3 (st)4s, t4st4, t2ststst2.

A1 on

s E (tz)(lÐ, f, = (tzr),

Cyc1ic t None.

lfea-precycric I ( st2 )2 etelz ,
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g = (tz1), t = (zt+),

Cyclic ¡ None.

Non-precyclic', "212"2ts2ts, 
t212t2

(tzÐ, t = (zqt),

cycric , (u2t2"t)2, (t2"2t")

Non-precyclic ¡ None.

s4 (svnme tric erouD on 11 ,2,1r41)t

s a (tzlÐ, t = (tzt),

cycric ¡ (r't"zt"t"t

.2gt gt.

2
a

(st ß2t2s2tz
2"1t2)

"5 
t"2 t2 "t("'t"tz )z ,( t" )2t1

"1 
t"2 t2

2r2
)t

)
2 ( r't"t

)2,
2

,

"7 
t2"2t

2
("t

Jt
ts ts2 t2 st

"2 
trçtz 't

") 
t? "t"1

)2(t" )2t2, "ltu2trt
.2st )

22
s t

tl tr? 12 
"tG? 

*)2 
"2 

t2 ,

¡ gtlst(srr)2stat?st1, ("t')2st2st(stt)2"t,

"1 
t 
"tr1t2 

s ts ts1 ts te t2,

,1t"( t2"1)

Non-precyclic ¡ None.

s ' (lz), t, = (ltq),

Cyctic ¡ None.

l{on-prepyclic : (et2 )'stst
s Ë (tz), | = (tzr+),

t2 et,t

("t2)'r"

Cyclic

$e¡¡-precycllc

¡ None.

tst( stt )2 ( "t"t5 )2.
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s= (tz5¡, t- (t4rz),

Cyclic ¡ None.

Non-precycric. r 
"2t1 

("2t2)2

tr? t) 
"2 

t"2 t

s ¡ (tzl+), t = (tlz+).

Cyclic : Non'e.

lrlon-precyclic, "1t2"t"2 
t2 rj

st( s s

t1"2(

ts

ts
t.

t g,

2.st .2
)8 tszt2atst2",( "t}

I t"t 22
a tst

,t1("t2)2,
1et? stl st,

"1 
t5 

"2 
t"t"Z t2 

") 
rj 

"2 
,

"2 
t"t2 

"1 
t2 stsl t

"2 
t' 

"2 
t("tl)2 

"2

t1(.2t)1",222t)

)

(st)2s2t2(u-t"t')2sts, ("Jtrt)2("1t)2sts,

u't2ut("'t)2"t"1t"2,

tl")j t2 stl .

g'{¡2"5#"2(t5 
"1 1t"lt2"t(,

2 r5 t2 "ttt

.2t ar

'"2t",..2t8t St

,2)¡
2

sts

2
s

") 
t.tj 

"7 
tz 

"2 
t"t"z tz 

" 
,

and. all words obtained. fron these twelve words

by exchangÍng s and t.
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