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SummarTy

Graph theory to date tends to be mostly of a combinatorial
or topological nature. More algebraic aspects of graph theory
have been studied, however they deal almost exclusively with the
problem of determining graphs with given combinatorial properties
whose automorphism group is isomorphic to a given abstract group.
A bibliography to the literature on this subject is given in [11]
pP.263.

This thesis discusses a different algebraic side of graph
theory, namely the theory of graphs with transitive automorphism
groups. A large class of such graphs is given by the Cayley graphs,
and the problem immediately arises as to how the class § of graphs
with transitive automorphism groups is related to the class L of
graphs which are isomorphic to Cayley graphs. This problem is dise=
cussed in the first four chapters of the thesis.

In chapter I the basic definitions and terminology are given,
and it is shown by examples that ¥ properly contains L.

In chapter II it is shown that ¥ and L are both closed under
cartesian products, but not under the reverse operation of factor-
ising a graph with respect to cartesian products. It is also shown
that to each simple graph G in ¥, there exists a complete graph
whose cartesian product with G is in L.

Two natural generalizations of Cayley graphs are discussed
in chapter III. The first of these is shown to give arbitrary

simple graphs in ¥, generalizing a theorem of Sabidussi which



characterises the graphs in & by means of their automorphism
groups. This is used to deduce a theorem on homomorphisms, which
states in Reidemeister's language that any simple graph in ¥ may
be covered by a graph in L. Similar results hold for the second
generalization of Cayley graphs, and are used to deduce a further
characterisation of the graphs in L.

The problem of finding usable gufficient conditions for a
graph to be in X is discussed in §7 using the results of chapter
I1I, and in §10 using Petersen's alternating path method. It is
for example shown that if a regular graph of degree 2 with p2 ver-
tices (p prime) is in ¥, then it is already in L. This is deduced
from a rather stronger result involving the alternate composition
graph of a graph.

Some further applications of the alternating path method are
also considered in §9 and §10, and the strong practical applicat-
ions of this method are demonstrated in §11 in the construction
of an infinite set of regular graphs of degree 2 which are in L
but not in Y.

In chapter V Hamiltonian arcs in Cayley graphs are discussed.
It is shown for instance that a connected Cayley graph of a finite
abelian group always has a Hamiltonian arc, and the problem of
existence and classification of Hamiltonian arcs in Cayley graphs

is solved or partially solved in a number of other special cases.
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Notes o n Terminology

The basic graph theoretical terminology follows as far as
possible Oystein Ore's "Theory of Graphs" (A.M.S. Collogquium pub-
lications vol.38).

The terminology for permutation groups is tha£ of H; Wielaﬁdt
"Finite Permutation Groups" (Academic press 1964). This terminol-
ogy differs from the classical terminology in a few instances. In
particular "regular" is used instead of "regular transitive" to
describe a transitive permutation group whose stabilizer subgroups
are trivial, and the term "block" is used for "set of imprimitiv-
ity".

In the first three chapters the arithmetic used is cardinal
arithmetic, though it is often restricted to the usual finite

arithmetic.



CHAPTER I : Introduction

§1. Basic Definitions

Intuitively a graph consists of a configuration of points
with lines joining them, and each line may or may not have a dir-
ection assigned to it. We call thé lines directed or undirected
edges of the graph according to whether they have an assigned
direction or not. In order to avbid the inconvenience of having
to consider directed and undirected edges simultaniously, we will
consider an undirected edge to be a pair of oppositely oriented
directed edges.

A graph may have several edges from one given vertex to an-
other. For the present it is inconvenient to distinguish these
edges, so we shall characterise an edge simply by its initial and
terminal vertices and its "multiplicity" - the number of times it
occurs in the graph. These considerations motivate the following
formal definitions.

A graph G is a triple (V,E,P) consisting of a vertex set V;

an edge set E of ordered pairs of vertices; and a multiplicity

function £, which maps VAV into.the class of all cardinal numbers
and has the property that P(a,b) # O if and only if (a,b) € E.

if (a,b) ¢ E, we say G has an edge from a to b of multiplic-
ity p(a,b), and we call a and b respectively the initial and ter-

minal vertices of the edge. If P(a,b) = 1 we call (a,b) & simple



edge, otherwise a multiple edge. An edge of the form (a,n) is
called a loop at a.
A graph is already fully described by its vertex set and

multiplicity function. Further a simple graph - that is a graph

with no multiple edges - is fully described by its vertex and
edge sets, and will therefore often be described only 5y the pair
(v,E).

1f ¢ = (V,E,P) and ¢’ = (V°,E’,P’) are graphs with V' V,
E'c E, and P’ (a,b)< P(a,b) for all (a,b)e V'xV’, then we call
6’ a subgraph of G. If P’(a,b) = F(a,b) for all (a,b)e V'xV’, we

call G’ the full subgraph of G on the set V'.

The number of outgoing edges at a vertex a of G is called

the local out-degree at a, denoted by p(a). The local in-degree

P*(a) at a is similarly defined. Clearly

(1) Pla) = S_Aa,b) 5 pP*(a) = > F(b,a).

beV beV

We say G is out-regular of degree n (n a finite or infinite

cardinal number) if P(a) = n for all aeV. Similarly G is in-reg-

ular of degree n if p*(a) = n for all aeV. G is half-regular if

it is both in- and out-regular, and is regular of degree n if it

is both in- and out-regular of degree n.

We say G is finite if the number IVl of vertices and the

number > ,P(a) ( = > ;#*(a)) of edges are both finite.
a6V - aeV

The following lemma is trivial:



Lemma 1.1. A finite half-regular graph is regular.

That the finiteness condition is necessary is shown by the

Example 1.1. G = (V,E) is the simple graph with vertex set V =

{(m,n):m and n integers, n 32 0}, and edges ((m,n),(m+1,2n)) and

((myn),(m+1,2n+1)) for each (m,n) in V.

n =23
n=2
n=1
n=20

m= =2 -1 o - 1 2
This graph is in-regular of degree 1 and out-regular of

degree 2, hence half-regular but not regular.

The converse graph G* of a graph G = (V,E,p) is the graph

with vertex set V and multiplicity funtion P¥ defined by
(2) pr(a,b) = P(b,a) , ((a,b)e VaV). |
It is obtained by reversing the edges of G.
If 6, = (V,Ei,Pi), ieI, is & set of graphs on the vertex
set V, their edge direct sum is the graph G = (V,E,P) with

(3) P(a,b) = 2 _F (a,d)

iel

for all (a,b)e VxV, It is denoted by > :Gi’ or if I is finite,
iel

say I = {1,2, «... ,n}, also by G, ,+G,+ ees #G .

The undirected graph Gu of a graph G is the edge direct sum



G+G* of G and its converse graph G¥*.

We say that the vertex a of G is path-connected to the vertex

b of G if there exists a sequence a=8,,8,, .- ,assb of vertices
of G such that (31_1,31) is an edge of G for each i = 1,2, ... 8.
The vertices a and b are said to be connected in G if they are
path-connected in Gu.

The relation of connectedness is clearly an equivalence rel-
ation on the vertex set. The full subgraphs of G on the equival-

ence classes of this relation are called the connected components

of G, or simply the components of G. G is connected if it has

only one component.

The following lemma is standard, so we ommit the proof.

Lemma 1.2. Path-connectedness and connectedness are equivalent

concepts in finite regular graphs.

That this lemma does not hold in general for infinite reg-
ular graphs is shown by the graph whose vertices are the integers
and whose edges are all integer pairs of the form (i,i+1). For
instance the vertex 1 is connected but not path-connected to the

vertex O in this graph.

§2, Homomorphisms, Symmetric and Group Graphs

Let G = (V,E,P) and G, = (V1,E1,P1) be graphs, and let ¢

be a mapping of V onto V1. We say ¥ is a homomorphism of G onto



G, if for all (a,b) €V %V,

(1) f1(a,b) = Zf’(oyd) ’
the summation being over all (c,d) € VxV for which (cp,de) = (a,b).

A one-one homomorphism is called an isomorphism. In this

case (1) reduces to the condition:
(2) f_’1(cw,dw) = P(c,d) , for all (c,d)e VxV.

An automorphism of the graph G is an isomorphism of G onto

ijtself. The set of all automorphisms of G forms a group under

composition, called the automorphism group of G and denoted by

[(G). We consider an automorphism to be a permutation of the
vertex set, so [(G) is a permutation group.

If [(G) is a transitive group we say that G is a symmetric
graph. Since an automorphism must map a vertex onto a vertex of
the same local in- and out-degrees, a symmetric graph is half-
-regular, and hence if finite it is regular. Example 1.1 gives an
_infinite symmetric graph which is not regular. The symmetry of
this graph follows from the fact that the following two permutat-
jons of the vertex set are automorphisms of the graph and gener-
ate a transitive permutation group: (The arrow means "is mapped
onto".)

«t (myn)—> (m+1,n) for all (m,n) e V;
(m,n) if mgOorny2,
g+ (myn)— (m,n+2m-1) if O¢n ¢2® " and m3 1,

(m,n-2m-1) if 2m-1‘ n<2"™ and m 31.



‘The verification that « and P are automorphisms is easy. To
show that they generate a transitive group, we consider an arbit-
rary vertex (m,n) of the graph. If the binary expansion of n is
21+ b o +E828, wﬁere each £i is either 0 or 1, then

o Eg -1 Eg_1 - _1 €9 -
one readily verifies that us+1 mp sx 1p g 14 1 ceo K 1ﬁ Ox 1

0
n= 602 +£1

maps
(0,0) onto (m,n), so our statement is proved. We remark that «
and g do not generate the full automorphism group, for one can
show that the full automorphism group is uncountable and hence it
cannot be finitely generated.

We now define a spcial type of symmetric graph. Let H be &
group and.S a subset of H; the Cayley graph [H,S] of H with res-
pect to S is the simple graph with vertex set H, and edge set
(3) E= {(a,as):aeH,seS} .

A Cayley graph generally has an associated "colouring" of the
edges - that is, a mapping of E into some set of "colours" -
however for our purposes this is redundant.

The graph G is a group graph of the group H if it is isomor-
phic to [H,S] for some subset S of H. Since Cayley graphs of non-
-isomorphic groups can be isomorphic, a graph can be a group
graph of several different groups.

The Cayley graph [H,SI is clearly regular of degree the car-
dinality of S, so group graphs are regular.

The following characterisation of group graphs is due to G.

Sabidussi [16]. He only proves it for undirected graphs, but his



proof holds without change for directed grabhs.

Theorem 2.1. G. Sabidussi. The simple graph G is a group graph

of the group H if and only if [(G) contains a regular subgroup
isomorphic to H.
Since we shall prove a rather more general theorem in §5, we

do not prove this theorem here.

Example 1.1 gives a simple symmetric graph which is not a
group graphs indeed this graph is not even regular. Finite simple
symmetric graphs which are not group graphs appear to be rare, at
least among small graphs. We give two examples.

Example 2.1. The Petérsen graph. This graph is undirected of

degree 3. For convenience we draw the pair of oppositely oriented

edges connecting a given pair of vertices as one line.
0

NV

3 2
R. Frucht [8] showed that the automorphism group of this .

graph is isomorphic to the symmetric group of degree 5 and is
generated by the permutations (01234)(56789) and (26)(39)(78). If
the graph were a group graph, then by theorem 2.1 its automorphism
group would contain a regular subgroup. This subgroup would have

order 10, and its elements of order 2 would be fixpoint free. But



one readily verifies that every automorphism of order 2 leaves 4
vertices fixed. Hence the Petersen graph is not a group graph.

Example 2.2.

? .
This graph has degree 2. In §11 we shall show that its auto-~

morphism group is transitive of order 20, and is generated by
(01234)(56789) and (05)(1748)(2936). Every automorphism of order

2 leaves 2 vertices fixed, so as above, this graph is hot a group

graph.

To close this chapter we consider briefly the trivial cases
of symmetric graphs.

If V is any set, we denote by &(V) the diagonal of VxV; that
is the set of pairs of the form (a,a) with aeV. The simple graphs
(v,vav), (V,VxV-a(V)), (v,¢), and (V,A(V)) are called respectively

the complete graph, the complete graph without loops, the trivial

graph, and the trivial graph with loops or identity graph on the

vertex set V. They each have the full symmetric group on V as

automorphism group.

Conversely we have as an immediate consequence of the defi-

nition of "doubly transitive"®



Theorem 2.2. If the graph G = (V,E,f) has doubly transitive

autoﬁorphism group, then it is the edge direct sum of complete
graphs without loops and jdentity graphs on V, and r(c) is the

full symmetric gromp on V.
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CHAPTER II ¢ Cartesian Products of Graphs

§3. Cartesian Products of Graphs

We define a cartesian product of graphs in the natural way
by taking the cartesian product of the vertex sets and then def-
ining the structure componentwise. More formally:

Let G, = (V1,E1,P1) and G, = (V2,E2,f2) be two graphs. Their

cartesian product is the graph G xG, = (V1xV2,E,F) where 7 is
defined by |

(1) P((8yc),(b,d)) = £,(8,0)Fy(cyd)

for all ((&,c),(v,d))e¢ (V1xV2)x(V1xV2). Note that ((a,c),(b,d))e¢E
if and only if (a.,b)e'E1 and (c,d)e E,. Hence under the canonical
jdentification of (v1xv2)_x(v1xv2) with (V1xV1)x(V2xV2), E is just
E1XE2‘

We shall restrict ourselves to cartesian products of pairs
of graphs, however it is clear that cartesian products of arbit-
rary sets of graphs may be similarly defined, and the following
discussion can be correspondingly éeneralized.

An immediate consequence of the definition is that a cartes-
jan product of non-trivial graphs is simple if and oniy if the
factors are simple. One verifies easily that the same holds for
regulérity and half-regularity of graphs, if one restricts the
g?aphs considered to be locally finite (that is all local degrees

are finite); for the local in-degree at a vertex (a,c) of G,xG,
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is just the product of the local in-degrees of a and ¢ in G1 and
G, respectively, and similarly for local out-degrees.
The corresponding statement does not hold for group graphs

or symmetric graphs. For instance the graph
<=2 3D

is not symmetric, even though its cartesian product with the graph
1@2

is the graph

(1,1) (2,2) (1,2) (2,1) (3,1) (3,2)

e

However although the symmetry of a cartesian product of

which is a group graph.

graphs does not imply the symmetry of the factors, the reverse

implication does hold.

Theorem 3.1. (i). If G1 and G2 are group graphs of the groups H

and K respectively, then G1kG2 is a group graph of HxK.

(ii). If G, and G, aré symmetric graphs, then so is G,xG,.

Proof. (i). Without loss of generality G, = [H,S] and G, = [x,7] .
where S and T are subsets of H and K respectively. Let G =
[HxK,S»xT]. Since multiplication in HxK is defined componentwise
and the edges of G1xG2 are defined componentwise, G and G1XG2
have the same edge sets. Since they are both simple graphs, they
are equal.

(i1). Let.G1 - (V1,E1,fq) and G, = (V2,E23fé) be symmetric graphs

with cartesian product G,xG, = (V1xV2iEyf)- Let I = P(G1)xF(q2)
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be considered as a permutation group on V1xV2 in the natural way;

that is (a,b)(w,¢) = (ar,bée) for all (a,b)e V.V, and (mye)e .

2
By transitivity of P(G1) and F(GZ), we can find for arbitrary

(a,c) and (b,d) in V xV,y, me r(c1) and de[’(Gz) with am = b and

ce = d. Then (a,c)(nr:s) = (b,d), so I" is transitive.

Now for any ((a.,c),(b,d))'e (V1xV2)X(V1xV2) and any (7,¢)e I
we have P((a,c)(nm,8),(b,d)(7,¢)) = P((amcé),(bm,ds)) =
r,(ambé)Py(emae) = £y(a,0)Py(c,a) = £((8yc),(b,d)), 80 (7,6) is
an automorphism of G,xG,, so ['c F(G1xG2). Hence ['(G1xG2) is

transitive. ‘ Q.E.D.

Theorem 3.2. If 6 = (V,E) is a simple symmetric graph and H is

any transitive subgroup of [(G), then there exists a complete
graph C such that CxG is a group graph of H.

Proof. Let a be any vertex of G and Ha the stabilizer subgroup of
a in H., The Cayley graph C = [Ha,HaJ is clearly the complete graph
with vertex set Ha' Let S be the subset of H defined by

(2) S = {meH:(ama) ¢E} .

We shall show that CxG is isomérphic to [H,S].

Let R be a set of left coset representatives of Ha in H. Then
each element of H has a unique representation in the form ¢ with
T¢R and ¢ eHa. Further R-1 is a set of right coset representatives
of Ha in H, so eqch vertex of G has a unique representat;on in
the form a?" with v eR., Hence the following mapping ¥ of the ver-

tex set H of [H,S] onto the vertex set Haxv of CxG is well defined
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and one-one,
(3) ¥ TG#—)((,a‘t'-1) y (re R,geHa).

Call the edge sets of [H,S].and CxG E1 and E2 respectively.
Then for any T,, T, €R and ¢,, 6, ¢H_we have (2‘141,12;2) €E, &

-1 -1 =1 -1_=1 _ =1_=1
(7141) Tp6p €5 & (a3 7] t‘zdz,a) €E & (as] T, 186, T, ) ¢ E.

-1 -1 . -1 -1
But 61 and 62 are in Ha’ 80 a61 = 362 = g, Hence
(36;11';1 ,aé?’r;) €E & (a.‘:";1 ,a.‘c:‘;l )€ B, But C is complete, so

(a‘t‘;",at';) €eE & ((61,31"1'1),((2,&2’;1) €E,. We have thus shown

that (*7’1( ¢2)6E1.(=>((‘r1 61)V,(¢'262)V)éE2, so since [H,S] and

1772
CxG are both simple graphs, ¥ is an isomorphism of (H,S) onto CxG.

Q.E.D.

Theorem 3.3. (i). The graph G = (V,E) is a group graph if and

only if its components are hutually isomorphic group graphs.
(ii). The graph G = (V,E,P) is symmetric if and only if its com-
ponents are mutually isomorphic symmetric graphs.

Proof. "If". Let G have n components, all isomorphic to G1. Then
G is isomorphic %o G;xT, where T is the n-vertex trivial graph
with loops. Since T is certainly a group graph, the "if" follows
in ‘both cases from theorem 3.1.

"Only if". (i)e If G is a group graph isomorphic to the Cayley
graph [H,S], then its components are all isomorphic %o [K,S)
where K is.the subgroup of H generated by S.

(ii). We first remark that.an automorphism of a graph maps paths

into paths, so it preserves the relation of connectedness and

hence just permutes the components of the graph among themselves.
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If G1 and G, are any two components of the symmetric graph G, we

2
choose vertices a and b of G1 and 62 respectively. Since F(G) is
transitive there is a me (G) with aw = b. This 7 must map G,
isomorphically onto G2, so the components of G are mutually iso-
morphic. In the case G1 = 62, " induces‘an automorphism of G1

which maps a onto b, so since a and b can be chosen arbitrarily

in Gi, G1 is symmetric. Q.E.D.
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CHAPTER III : Generalized Cayley Graphs

§4. Introduction

Given a group H and a subset S of H one can define genersal-
jzations of the Cayley graph [H,S] by taking as vertices the left
or right cosetsbof»some subgroup U in H instead of the elements
of H.’ |

The first of these two generalizations gives arbitrary simple
symmetric graphs, as we show in §5. It has apparantly not been
studied before.

The second generalization gives arbitrary connected regular
graphs of countable degreé with a weak restriction on multiple
edges, as was shown by Reidemeister [15]. We state his results in
§6. Reidemeister only considered undirected graphs of finite deg-
ree, but the relevant parts of his work carry over with no change

$o the more general case stated here.

§5. Symmetric Generalized Cayley Graphs

LetIH be a group, U a subgroup, and S a subset of H. The
graph [H,U,S] is defined to be the simple graph (V' ,E’) with
(1) V' = {xUsixeH} ,
(2) E’ = {(xU,xsU0)sixe H,s¢ S},

If U is the trivial subgroup then [H,U,S] is just the Cayley

graph [H,S].
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The following is a generalization of theorem 2.1,

Theorem 5.1. The graph [H,U,S] contains in its automorphism group

the transitive representation of H as a permutation group on the
left cosets of U, and is hence symmetric.

Conversely if G is a simple symmetric graph then G is iso-
morphic to a graph of the form [H,U0,S]. H can be chosen as any
transitive subgroup of [(G), and U as a stabilizer subgroup of H.
Proof. Let [H,U,S] have vertex and edge sets Vv’ and E’ as defined
in (1) and (2). The element of the representation of H as a perm-
utation group on the left cosets of U'which corresponds to the
element he H is the permutation which maps the coset xU onto the
coset h'1xU for each x € H. This clearly maps E’ onto itself, so
the first part of the theorem is proved.

Now let G = (V,E) be any simple symmetric graph. Let H be
any transitive subgroup of ['(G), a any vertex of G, and U the
stabilizer subgroup Ha of a in H. Define
(3) S = {meH:(ama)€E}.

Denote the graph [H,U,S] by G’, with vertex and edge sets v’
and E'. Let ¢ be the mapping of Vv’ onto V defined by
(4) fr wU— arr | , (meH).
¢ is well defined and one-one since U = Ha’ 80 ﬂaU = nEU =
ﬂ;3725114=? aﬂ:1 = an;1. It is defined on the whole of V'and is

"onto" since H is transitive. We show it is an isomorphism of G’

onto G.
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If (rr1U,rr2U) is an arbitrary element of V'xV', then
(rr1U,.-r2U) eE’(=>rr2U = 171,\17U for some meS and A e U <-——>rr24 = 'rr1,\Tr

for some meS and )6 €U ¢=))\-1IT;1T1’25 €S for some A ¢e€U &

11-'-11'[ 6,8) €E (a)«-1'rr-1,as-1a‘-'-1) €E, But ;\-1,6'1 el = B_,
1 72 1 2 a
L ag = a, so (aA-1w;1,aé'1 L

(a)™
rr"1) = (am, ai’r-1) which is
| 2 1 187

just the image of (Tr1U,772U) under . Since G and G’ are both

simple graphs, ¢ is an isomorphism. Q.E.D.

We note that an edge of [H,U,S] generally has many represen-
tations in the form (xU,xsU) with x ¢H and s ¢S. We may choose &

single représentation of each edge by the following lemma.

Lemma 5.2, Let H be a group, U a subgroup, and S a subset of H.
If T is & set of representatives of the left cosets of U that
occur in USU, then

(i). [H,U,S] = [H,U,T] ;

(ii). If R is any s'et of left coset representatives of U in H,
then each edge of [H;ﬁ,T] has a unique representation in the form
(rU,rtU) with r¢R and te T,

Proof. We first note tl}ree-properties of T

(5) If s and t are distinct elements of T then sU ;4 tU
(6) 70 = USU ;
(7 UT ¢ TU .

(5) and (6) are just a restatement of the definition of T. (7)
holds since T cUSU, so UT ¢UUSU = USU = TU.

(i_). Since T cUSU, any t eT is expressible as t = usv with u,vel
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and se S. Hence any edge (xU,xtU) of [H,U,T] is expressible as
(xU,xtU) = (xU,xusvl) = (xuU,xusU), and is hence an edge of
[H,U,S]. Conversely any s ¢S is certainly in USU = TU, so it is
expressible as s=tu with t ¢T and ueU, Thus any edge (xU,st) of
[H,U,S] is expressible as (xU,xsU) = (xU,xtul) = (xU,xtU), and is
hence an edge of [H,U,Tl. Hence (i) is proved.
(ii): Let R be any set of left coset representatives of U in H.
Let (xU,xtU) with x¢H and te& T be any edge of [H,0,T]. RU = H,
8o x=ru for some r¢R and ueU, By (7) ut=t'v for some t'¢T and
v eU. Hence (xU,xtU) = (rul,rutl) = (rU,rt"vl) = (rU,rt’U). It
remains only to show that this representation is unique.

Indeed if (rU,rtU) = (r'U,r t'U) with r,r’'¢R and t,t’eT,
then from rU=r'ﬁ followﬁ fnr', gince R is a set of left coset

representatives of U in H. Hence tU=t"U, so t=t" by (5). Q.E.D.

An immediate corollary of the preceding lemma is:

Corollary 5.3. If H is a group, U a subgroup, and S and S’subsets

of H, then [H,U,5] = [H,U,S] if USU = Us’v,

We remark without proof that the converse also holds.

If G is a graph and n any cardinal number, we denote by nG

the edge direct sum of n copies of G.

Theorem 5.4. If G is & simple symmetric graph and H is a trans-
itive subgroup of ['(6) such that the stabilizer subgroups ‘of H
have order n, then nG is a homomorphic image of (H,T] for a

suitable subset T of H.
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Proof. By theorem 5.1 and lemma 5.2 we may assume G = \H,U,T],
-where T is as in lemma 5.2 (ii).

Let ¥ be the mapping of [H,T] onto G defined by
(8) ¥s h—> hlU ,’ o{en).

Let R be any set of left coset representatives of U in H and
u be any element of U, Then Ru is also a set of left coset repre-
sentatives of U in H. Define E = {(xyxt)1x ¢ Ru,t ¢ T}. By lemma
5.2 (ii), E, is mapped one-one onto the edge set of G by ¥. But
the n sets Ru, ueU, partition H, so the n sets Eu,tleUy part-
jtion the edge set of [H,T]. Hence ¥ maps the edge set of [H,T]
n-fold onto the edge set of [H,U,T], so it is a homomorphism of

[H,T] onto n[H,U,T]1 = nG. ' Q.E.D.

§6. Regular Generalized Cayley Graphs

If V is a set, a permutation graph on V is a regular graph

of degree 1 with vertex set V., If w is any permutation of V, we
define a corresponding permutation graph Py = (V,E,) on V by
defining

(1) E, = {(a,aﬂ)xaeV}.

This defines a one-one correspondence between the permutations of

V and the permutation graphs on V.

A permutation: subgraph of a graph G is a subgraph of G which

is & permutation graph on the full vertex set of G.

We now define the second type of generalized Cayley graph.
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Let H be a group, U a subgroup, and S a subset of H. We choose a
set R of right coset representatives of U in H and define the
éraph ¢H,U,SY to be the graph with vertex and edge sets
(2) V' = {UrsreR} ;
(3) E’ = {(Ur,Urs):r«¢R,s ¢S}. '
If m is the number of representations an edge has in the form
(Ur,Urs) with r¢R and s €5, we give thié edge multiplicity m.
Clearly <H,U,S> is independant of the chosen set R of right
coset representatives; and it is regular of degree IS|/. If U is
the trivial subgroup then <H,U,S> = [H,S5].
Translating tﬁe results of Reidemeister [15] ch. 4 §17 to

the language used here givess

e

Theorem 6.1. Let G be a connected regular graph expressible as

edge direct sum of a set P, 7 ¢S5, of distinct permutation sub-
graphs. Then the permutation group H generated by S is transitive,
and G is isomorphic.to <H,U,SY” where U is any stabilizer subgroup

of H.

Analogously to theorem 5.4, or alternatively as a corollary

of "the discussion in [15] ch. 4 §19, one obtains:

Theorem 6.,2. Under the conditions of theorem 6.1, nG is a homo-

morphic image of [H,S], where n is the order of any stabilizer

subgroup Ha of H.

The following lemma shows that the conditions of theorems
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6.1 and 6.2 are by no means very restrictive.

Lemma 6.3 (0. Ore [11] p.160). A connected regular graph of at

most countable degree is expressible as the edge direct sum of
permutation subgraphs.

‘These permutation subgraphs need not be distinct. The cond-
jtion of theorems 6.1 and 6.2 that the Pw be distinct is a (rather

. weak) restriction on the multiple edges of G.

In Reidemeister's language theorem 6.2 states that under the
given conditions G has an n-fold covering by [H,S]. A "covering"
is basicly a homdmorphism in our sense, with the added condition
that if the homomorphism maps the vertex a of the one graph onto
the vertex b of the other, then every edge at b should be the
image of some edge at a. This condition is clearly satisfied by
the homomorphipm.of theorem 5.4, so theorem 5.4 can also be in-

terpreted as a theorem on coverings.

Theorem 6.4. Thé connected graph G is a group graph if and only

if it is the edge direct sum of distinct permutation subgraphs

P., TeS, where S generates a regular permutation group.'In fact G

v
is isomorphic to LH,S], where H is the group generated By S.
Proof. The "if" is a direct corollary of theorem 6.7.

"Only if"s Suppose G is a connected group graph. Without loss of
generality G = [K,T] where K is a group and T a subset of K. Let

H and S be the images of K and T under the natural isomorphism of
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K onto its right regular representation as a permutation group

on the elements of K. G is then the edge direct sum of the perm-
utation graphs P,, wéS, Since G is connected, S generates a trans-
itive é;oup L by theorem 6.1. L is a subgroup of Hj; but H, as a
regular group, has only itself as trangitive subgroup, 80 S

generates H. Q.E.D.

§7. Applications

We now apply the characterisations of group graphs given by
theorems 2.1 and 6.4 to the problem of finding usable sufficient

conditions for a graph to be a group graph.

Theorem 7.1. If G is a simple graph satisfying one of the foll-

owing conditions, then it is a group graph.

(i). G is symmetric and has a prime number of vertices.

(ii). G is symmetric and regular of degree 1.

(iii). G is symmetric and regular of degree 2 and has both dir-
ected and undirected edges.

(iv). G is symmetric or connected and is expressible as the edge
direct sum of permutation subgraphs P, 7eS, such that any two
elements of S commute.

Proof, We may assume in each case that G is connected. For if G
is not connected, it suffices to consider the components of G by
theorem 3%.3.

(i)s Let G be simple and symmetric with p vertices, where p is a
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prime number. ['(G) is transitive of degree p, so its order is
divisible by p, so it has an element of order p by Cauchy's
theorem. This element muét be a p-cycle, so it generatés a regular
cyclic subgroup of r(G), so G is a group graph by theorem 2.1.
(ii): If G is connected and regular of degree 1, then it is a
permutation graph P, corresponding %o a cyclic permutation 7. 7
generates a regular group, so G is a group graph by theorem 6.4,
(iii)s Let G be connected, symmetrlc, and regular of degree 2,
and have both directed and undirected edges. Since ['(G) is trans-
itive, it suffices to show that any automorphism which fixes a
vertex of G is trivial, for then ['(G) is regular, so theorem 2.1
gives the desired conclusion. At each vertex G has one undirected
edge, one incoming directed edge, and one outgoing directed edge;
for otherwise G has only directed or only undirected edges at
gsome vertex, and by symmetry this would hold at every vertex,
contradicting the assumption that G have both directed and undir-
ected edges. If is en automorphism which leaves the vertex a
fixed, it must permute the edges at a. But the edges at a are sall
of different "types", so 7 leaves them fixed, and hence leaves
any vertex adjacent to a fixed. Since G is connected, repeating
the argument shows that 77 leaves all vertices fixed and is thus
trivial.

(iv)s Let G be a connected graph expressible as the edge direct
sum of the permutation subgraphs Pr, T€S, where any two elements

of S commute. The group generated by S is transitive by theorem
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6.1, But it is abelian, and an abelian transitive group is reg-

~

ular, Hence G is a grouﬁ graph by theorem 6.4. Q.E.D,

We remark that one can say rather more in cases (i), (ii),
and (iv) of the above theorem. In fact we showed in the proof
that G is a group graph of a cyclic group in case (i). One can
easily show that the same holds in case (ii), if G has a finite
number of components. In general one can only say that G is a
group graph of an abelian group in cases (ii) and (iv). This needs
& simple extension of part (i) of theorem 3.3 or can alternatively

be proved directly with no difficulty.
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CHAPTER IV s Regular Graphs of Degree 2; The Alternating Path

Method

§8. Introduction

In this chapter we shall discuss the "glternating path
method", applying it in §9 to the investigation of permutation
and related subgraphs of a finite regular graph of degree 2 and
in §10 to the consideration of the automorphism groups of finite
regular symmetric graphs of degree 2, In §11 we apply the results
of §9 and §10 to the construction of an infinite set of symmetric
graphs which are not group graphs.

The alternating path method was introduced by Petersen neaj,
and has since become a standard tool in the investigation of sub-
graphs of bipartite (c.f. [11] p.106) and directed graphs. The
results of §9 are standgrd, though not in the precise form given
here. They are for instance contained in essense in O, Ore's dis-
cuasion of the matching theorems ([11] ch.7) if one translates
the language of bipartite graphs to that of directed graphs (c.f.
[11] p.159). The application of the alternating path method to
automorphism groups appears to be new,

Much of the following can be generalized 1o infinite graphs,
however for simplicity in presentation we do not do so, and only

indicate the generalizations where they are of interest.
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§9. Alternating Paths

Throughout this section we assume that the multiple edges of
a graph G = (V,E,”) are distinguishable, and distinguish them by
subscripts (a,b)1,(a,b)2, B0 ,(a,b)m, where m is the multiplicity
of (a,b). Hence when we say that two edges (a,b) and (c,d) are
distinct, we mean that either a # c, OorT b % d, or they are a pair
of the form (a,b)i, (a,b)d with i # j. The edges of the converse
graph G* are distinguished correspondingly and are furthermore
assuqed to be distinct from the edges of G.

The alternate composition graph G of G is the graph with

vertex set V, and an edge (a,b) for each pair of distinct edges
(a,c) and (b,c) of G. G* is the alternate composition graph of
the converse graph G* of G. This definition differs from that of
0. Ore ([11] p.158) in that he does not require that (a,c) and
(v,¢) be distinct, so for each aeV r(a) 1dops are added to G at

the vertex a.

Lemma 9.1, (i). G and G* are undirected.

(ii). (6)er(@®) 5 r(e)er(e¥).

(iii). If G is regular of degree n then G and G* are regular of
degree n(n=-1). "

Proof. Since (G) = "(G*) and G* is regular of degree n if G is,
it suffices to prove the statements for € only.

(i) is trivial from the definition.

(ii). An automorphism W of G maps pairs of edges of the form
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(a,c), (b,c) into similar pairs, so it maps edges of G into edges
of G. The same holds for'ﬂ-1 since n’1 is also an automorphism of
G. Hence 7 is an automorphism of G, so M(G) < (G).

(iii). If a is any vertex of the regular graph G of degree n,
then to each of the n edges of G of the form (a,c) there are n-1
edges distinct from it of the form (b,c). & hence has n(n-1) out-
going edges in E, 80 8since C is undirected, a also has n(n-1) in-
coming edges in G. But a was an arbitrary vertex, 80 G is regular

of degree n(n-1). Q.E.D.

We now assumé thet G is a finite regular graph of degree 2.
Since we are distinguishing edges, G is characterised by its
vertex and edge sets V and E ﬁloné. T and G* are undirected and
regular of degree 2, 80 they each consist of disjoint unions of
undirected cyclic graphs.

Let
(1) A= (30,31)(31,a2) ces (ar_1,ar)
be a path in the undirected graph Gu, whose edges belong altern-
ately to G and G*. The edges (ao,a1),(az,a1),(az,a3),(a4,33), o%e &
then all belong to G or all belong to G*. We make the requirement

that they be distinct, and call A an alternating path of G. If

the above edges all belong to G we call A an x-path and denote
the above set of edges by E(A). Otherwise we call A an x*-path

and denote the set of edges (31,30),(a1,az),(aj,az),(aj,aA), ces

of G by E(A). E(A) is called the edge set of A. The set of initial
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(terminal) vertices of edges in E(A) is called the initial (term-

inal) vertex set of A, denoted by V(A) (v*(a)).

We call the alternating path of (1) cyclic if its legnth r
is even and 8y = 8¢ We then call the corresponding subgraph

(v(a)uv*(A),E(A)) of G an alternating circuit of G, denoting it

often by the same letter A.
An alternating circuit has several representations by alter-
nating paths; for instance if
(2) ¢ = (30’31)(31’32) L (328_1030)
is a cyclic «x-path, then

(3) ¢'= (2y180) (80855 1) (8pg_1185.0) -+ (2034)

is a cyclic «*-path representing the same alternating circuit of

G.
Let O have precisely n alternating cicuits
(4) A1’A2’ - lAnl
and define
= . * s * = H i= ) .
(5) vi V(Ai) ’ vi v (Ai) i Ei E(Ai) ) (1 1v2v 1n)

Lemma 9.2. G and G* each have precisely n components and these
may be so indexed that the component Ei of G has vertex set Vi
and the component E;i of EI has vertex set V; for each i=1,2, ...
n.

Proof. Let 61 be .any component of el E1 is an undirected cycle,
80 we may write its edges in a sequence

(6) [aosazjv[azva Jy eee 4La 3y

4 28-2"20
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where the square bracket is used to denote undirected (that is
pairs of oppositely oriented) edges. By definition of G we can

find a vertex a for each i=1,2, ... ,s such that (a

2i-1 2i-2'8p5.1)

and (a21,321_1) are edges of G (indices modulo 2s). (ao,a1)(a1,a2)
. (525_1,a0) is then a cyclic x=-path of G which defines a unique
alternating circuit whose initial vertex set is the vertex set
{ao,az, eos ,828_2} of 61. The uniqueness is clear since G has
only 2 outgoing edges at each vertex.

Conversely if an alternating circuit is given we may repre-
sent it by the x-path of (2) say. It is then clearly obtained by
the above argument from the component of G whose edges are as in
(6).

The above argument hence defines a one-one correspondence

with the desired property between the sets Vi and the components

of G. The statement for G* follows similarly. Q.E.D.

Lemma 9.3. (i). The v, (1<¢1i<n) partition V.

(ii). The L (1 ¢i<¢n) partition V.

(iii). The E; (1 3 <n) partitién E.

Proof. (i) and (ii) are consequences of lemma 9.2, since the ver-
tex sets of the components of a graph partition the vertex set of
the graph.

(iii1). Each edge (a,b) of G occurs in one of the E,, since a eV,
for some i and both outgoing edges of G at a are in the corres-

ponding Ei..(a,f) cannot be in 5oth Ei and Ej (i%j) as this would
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imply that a is in both of the disjoint sets V. and V.. Q.E.D.
N l J

Now let the alternating circuit Ai be represented by the
cyclic x=-path of (2). We split the set E; = {(ao,a1),(a2,a1),
(32,53),(34,a3), oo ,(ao,a28_1)} into two disjoint sets
- E% = {(30’81)’(a2’83)’ % TS ,(a28_2,328_1)}

E = {(az,a1),(a4,33), . ,(30,325_1)}

which are uniquely defined up to order, but may be exchanged by
taking a different path representing A, . The Eg (1¢i<n,j=1,2)
partition E since the Ei do. Furthermore for each i the initial

and terminal vertices of the edges in El run once through Vi and

VI respectively, and the same holds for Ei.

Theorem 9.4. If G = (V,E,P) is a finite regular graph of degree

2, then the subgraph P = (V,EP) is a permutation subgraph of G if
and only if for each i=1,2, +.. 410 EP contains one of the sets
E; and Eg and is disjoint from the other.

Proof. Let E. have the given property. If a is any vertex of G

P

then a.eVi for some i with 1¢ is‘n. Each of El and Ei contains
precisely one outgoing edge at a, so since EP contains one of
these sets and is disjoint from the other, EP contains precisely
one outgoing edge at a. Since a was arbitrary, P is out-regular
of degree 1. Similarly P is in-regular of degree 1, so it is a
permutation subgraph of G.

Conversely let P be a permutation subgraph of G and let

(ao,a1) be any edge of P. Let the alternating circuit A; whose
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edge set contains (ao,a1) be represented by the «-path of (2).
Then (32,a1) ¢E, as (a.o,a.1) ¢Ep and E; contains only one incoming

edge at a,. Hence (az,ai)wsEP as E_ must contain an outgoing edge

1 P

at 8ye Hence (54,33)¢EP as EP contains only one incoming edge at

3 Continuing the argument shows that EP contains one of the sets

1 2
Ei and Ei

from every vertex of G, and hence certainly from every Vi,‘ this

a

and is disjoint from the other. Since P has an edge

must hold for every i=1,2, ... ,n, 80 EP'has the stated form.
' Q.E.D.

Now let B = (V,EB,F%) be a subgraph of G with the property:
There exist distinct vertices a and b of G, called respectively
the initial and terminal vertex of B, such that
- P(x) = 1 for all xe V-{b},~(b) = 0 ;
(8) | B' _ B
P]*g(x) = 1 for all xéV-{a},Pg(a.) =0 .

We call such a subgraph a broken permutation subgraph of G, It is

the disjoint union of & (possibly empty) set of directed cycles
together with one directed arc. This arc has initial and terminal

vertices & and b respectively.

Theorem 9.5, If G = (V,E,P) is a finite regular graph of degree

2, then the subgraph B = (V,EB) is a broken permutation subgraph
with initial and terminal vertices a and b if and only if the
following conditions are satisfied:

(1). There is an alternating circuit A of G representable by a

cyclic x*=-path
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(9) (ao’ao‘)(al"az) . (aZt-Z’aZt-1)(a2t-1’a2t) L
(85021229217 (825.1720)

with a = &, # 8,4.q = b for some 1<t <s.

(ii). The edges of Ey that are in E(A) are precisely

(a,. ,s8,,) for 1&j<t=1;
(10) 2,]-1 Zj

(8551182522

(iii). For any alternating circuit Ai ﬂ A, EB contains one of the

) for t+1 $j<s

1 2
sets Ei and Ei

Proof, One readily verifies that if Ej satisfies (1), (ii), and

and is disjoint from the other.

(iii), then B is a broken permutation subgraph of G with initial
vertex a and terminal vertex b,

If B is a broken permutation subgraph of G with initial
vertex a and terminal vertex b we choose j such that a.evg and
put A = Aj. We may then represent A by an «*-path as in (9) with
a = a,. Suppose b ﬁ 8541 for each t=1,2, ... ;8. Since B has no
incoming edges at a = aq9 (a1,a )¢F}. Since B must have an out-
going edge at a,, (a1,a )E'EB. Since B has only one incoming edge
at 8, (aj,a )¢E}. Continuing the argument yields flnally that
(a28_1,ao)1EEB; but this is a contradiction as B has no incoming
edges at a = 8qr 80 our supposition was false and b = 8ot 1 for
some t with 1 €t <8,

The same method of considering edges sequentially around fhe
alternating circuits of G now yields (ii) and (iii). Q.E.D.

L4
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§10. Finite Regular Symmetric Graphs of Degree 2

Throughout this section let G = (V,E,P) be a finite symmetric
graph of degree 2 with m vertices and n alternating circuits.

We index the alternating circuits, their initial and terminal
vertex sets, and the componentsy of G and C* as in lemma 9.2 and in

the comments immediately preceding that lemma.

Any automorphism 17 of G certainly maps alternating circuits
onto alternating circuits, so m permutes the Ai (1¢1i <n) among
themselves. Hence 7 permutes the Vi among themselves and the V*{
among themselves in such a way that it maps V*{ onto V?].‘ whenever
it maps Vi onto Vj. Hence i permutes the nonempty sets of the
form Vi(lV"i‘ (1¢i <n) among themselves and 7T permutes the nonempty

sets of the form vinvs (1¢i,j $n, i#j) among themselves.

Lemma 10.1. (i). ['(G) acts transitively on the V., and on the VY.
The Vi and V*i‘ are all of equal size.

(ii). [(G) acts transitively on the nonempty sets of the form
vinvg (1€i,j&€n,y i;‘j). In particular they are all of equal size.

(iii). Either V, = V¥ for each i or V.Y = $ for each i (1&i¢n).

i
Proof. (i): For any Vs and Vt choose aevs and b éVt. By symmetry
of G there is a we[(G) with aw = b, V_r is one of the sets V,,

and is not disjoint from Vt since b = aiT evsﬂ. Hence VB.‘r = Vt, so

since Vs and Vt were arbitrary, I’(G) acts transitively on the Vi.

Similarly [(G) acts transitively on the VI.
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In particular the n sets Vi are all of equal size. But fhey
partition V which has m elements, so lViI = m/n for each i, Sim-
ilarly |V}| = m/n for each i, so [Vl = ]V;l for all i and j with
1¢€i,j ¢n.

(ii) and (iii)s Let s,t,k,1 be arbitrary with 1<s,t,k,1¢n and
vsnv';; # § and VW3 4 B, Choose ae VAVY and be VAW, If 7 is an
automorphism with aw = b, then by the argument of (i),.Véw = Vk
and Viw = VI; whehce (vsnv;)wu= (anV{). Hence [(G) acts transit-
ively on the nonempiy sets of the form vinvg (1 <i,d ¢n). But any
automorphism permutes the vinv; among themselves and the vinvg
(i%j) among themselves. Hence either all the vfnv; are empty, or
all the vinv*Js (i#j) are empty. The latter implies that V, = VAV,

whence Vi = VI for each i. Q.E.D.

Lemma 10.2. If 1€idn and |V | # 2 then the action of an auto-

morphism Tre¢ F(G) on the set V; is determined by its action on Vi'
Proof. Note that the definition of Vi and V; from the aiternating
circuit Ai implies that Vg is just the set of terminal vertices
of edges whose initial vertices are iﬁ Vi.

Suppose |vi: % 2 and suppose the action of W on Vi is known.
If lVil = 1 then IVII = 1 and the lemma is trivial. If jvip 23
then to any ¢ eV; there is a pair a,b of vertices in Vi such ¢
is the unique vertex of V¥ for which (a,c) and (b,c) are in E.

But am and b@ are known, and cw is the unique vertex with (am,cw)

and (bm,cm) in E, so the action of @ on ¢ is determined. Q.E.D.
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We shall need the following simple lemma:

Lemma 10.3. The undirected cyclic graph with m vertices Bir8os

a a8
L . m 1

has transitive automorphism group [ generated by the permutations
< = (31 By o o - am) and p = (51 _azk)(a.2 azk_1) . (ak ak+1)
where k = [m/2]. '

If m is odd., the only regular subgroup of [" is the cyclic
subgroup generated by «; if m is even there is also the regular
dihedral subgroup generated bya(2 and £.

l'is.primitive if and only if m is prime.

Proof. The statements of the lemma are all easily verified. That
m prime implies I primitive is giveﬁ by theorem 8.3 of Wielandt
[17]. If m is not prime, then the set {hp,azp, elems ,aqp} is a
nontrivial block of [ for any nontrivial factorisation m = pq of

m. . Q.E.D.

'The final statement of lemma 10.3 holds for much more general

graphs.

Theorem 10.4. If the finite symmetric graph of degree 2 has m

vertices and if ['(G) is not doubly transitive, then [(e) is

primitive if and only if m is prime.
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Remarks. The condition that {°(G) be not doubly transitive only
eliminates trivial cases (c.f. theorem 2.2 ). If G is infinite
symmetric with local degrees not exceeding 2 then a similar proof
gives that "(¢) is always imprimitive.

Proof of 10.4. If m is prime then [(G) as’a transitive group of

prime degree is primitive ([17] thm.8.3).

Conversely suppose [(G) is primitive. Then "(G) is primitive
as it contains "(G) by lemma 9.1. If the V, each had k elements
with 1 <k <m, then they would be nontrivial blocks for [(G).
Hence either lVil = 1 for each i,or G is connected.

If lVi] = 1 for each i then G has .only double edges. G is
not disconnected, for if it were, the vertex sets of its compon-
ents would be nontrivial blocks of I'(c). Hence G is the edge dir-
gct sum of two copies of & directed cyclic graph, so its automor-
phism group is cyclic generated by (a.1 B, oo am) say. m is prime

since otherwise {ap,a . ,aqp} would be a block of '(G) for

2p’
any nontrivial factorisation m = pq of m.
If G is connected, then it is an undirected cycle of legnth

m, so by lemma 10.3 the primitivity of IN(G) implies again that m

is prime. Q.E.D.

In the remainder of this section we discuss conditions for a

finite symmetric graph of degree 2 to be a group graph.

Theorem 10.5. Let G be a finite simple symmetric graph of degree

o with m vertices, m an odd number. Let each of the n components
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of G have precisely k vertices. If no nontrivial factor of k is
less than n then G is a group graph. If G is furthermore connec=
ted then M(G) is regular or contains a regular subgroup of index 2.

We use the following lemma:

Lemma 10.6. Let the finite simple symmetric graph G of degree 2

satisfy the conditions:

(i)s G has an odd number m of vertices;

(ii). Each vx is equal to some i (1¢s,t <n). |

Then G is a group graph. If @ is connected, then f(6) is regular

or has a regular subgroup of index 2.

Proof. The lemma is trivial for m = 3. We use induction on m, If

G is disconnected and satisfies (i) and (ii), then its components
certainly satisfy (i) end (ii) and have a smaller number of ver=-

tices than G,.so they are group graphs by induction hypothesis. G
is then a group graph by theorem 3630 -

We may hence aseuﬁe G to be connected. By lemma 1.2 any iwo
vertices of G are path connected. We remark also that IVi] is a
divisor of m and hence not 2 as m is odd, so lemma 10.2 is appli-
cable.,

By (ii) we may define a sequence of sets V, =V, V. ,V_ 4, «so
to 1 t1 t2

with V = V* for each i=0,1,2, eee o V_ = V¥ is the set of
ti+1 ti . t1 1

vertices of G which can be reached by an edge from V1. Vt = V%
is the set of vertices of G which can be reached by an edge from

Vt , and hence by a directed path of legnth 2 from V1. In general
1 :
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Vt is the set of vertices that can be reached by a directed path
i : _

of legnth i from V1, so as any two vertices of G are path connec=-

ted, every vertex of G occurs in some Vt (i;()).
i

If 7 is any automorphism of G whose action is given on V1,

then by repeated application of lemma 10,2 its action is determ-

1 t, %

the whole of V.

ined on Vt = V?, V, = V*, ... . Hence its action is determined on

Let a,eV1 and let m be any automorphism of G which leaves &
fixed. Then w must map V1 onto itself, so its restriction to V1
gives an automorphism of 51. But the automorphism group of 61 is
by lemma 10.3 transitive of order twice its degree, so its a-sta-
bilizer subgroup has order 2. Since 77 is already uniquely defined
by its action on V1, there dre at most two automorphisms of G
which leave a fixed, so the a-stabilizer subgroup Pa of = [(G)
has order 1 or 2.

If lFaI = 1 then I', as a transitive group with trivial stab-
jlizer subgroup,. is regular, so G is a group graph by theorem 2.1.
If lf;l = 2 then | has order 2m. Since m is odd, i has a

normal subgroup H say of order m ([17]thm.4.6). The stabilizer

subgroups of I’ nave ordér 2, so any nontrivial automorphism of G
which fixes a vertex must have order 2. Hence no nontrivial elem-
ent of H fixes a vertex, for H has odd.order. Hence H, as a group

of order equal to its degree and with trivial stabilizer subgroups,

is regular, so G is a group graph by theorem 2.1, Q.E.D,
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Proof of theorem 10.5., Suppose G satisfies the conditions of

theorem 10.5. It suffices to prove that G satisfies the conditions
of lemma 10.6. Condition (i) is satisfied by assumption,so we need
only verify (ii).

Let 1¢8 ¢n. We must find a t with 1 ¢t <n and V; B Vt. If
Vs = V; we have finished, so by lemma 10.1(iii) we may assume
v vy = @,

Let p be the number of nonempty sets of the form vinv;
(1éi.§n). Sinece Van; = ¢, p<n, so by assumption p cannot be a
nontrivial divisor of k. But p divides k, for the p nonempty sets

of the form V,NV¥ (1<4ign) partition V¥ which has k elements,

i
and they have equal size by lemma 10,1(ii). Hence p = 1, so there
is precisely one t with 1< t<n and vtnvg # f. It follows that

thV; = V;, so V,_ = V; as they both have equal size. Q.E.D,

t

Corollary 10.7. If G is a simple symmetric graph of degree 2 with

p2 vertices where p is prime, then G is & group graph.

Proof. For p = 2 one verifies the statement by constructing the
possibilities. Hence assume p3» 3. Since the sets V, (1¢i<n)
have equal size and partition V, n must be a divisor of p2. If
n= p2 then IVil = 1 for each i, so G has‘only double edges, con-
tradicting assumption. Hence n = 1 or p and the conditions of

theorem 10.5 are satisfied. Q.E.D.

Theorem 10.8., If G is a finite symmetric graph of degree 2 with

connected alternate composition graph E, then G is a group graph
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of a cyclic group.
Remark. The finiteness condition is not necessary; a gimilar proof
holds in the infinite case.

Proof of 10.8. Leth have m vertices. Since G is connected, it is

en undirected cyclic graph with m vertices, so r(G) is as in

lemma 10.3. If re) = F(E) then F(G) contains a regular cyclic
subgroup by lemma 10.3, so theorem 2.1 gives the desired result.
We may hence assume r(¢)e(G¢). The order of r(G) is then a factor
of |['(G)] = 2m, and it is’ & multiple of its degree m, so|i(G)] =m.
Hence F(G) is regular, as it is transitive of order equal to its
degree. If F(G) is cyclic we have finished. But by lemma 10.3 the
only other possibility is that F(G) is regular dihedral. This can=-
not occur, as then G would be a group graph of degree 2 of a dih-
edral group, and one verifies easily that G would then be discon-

nected with either 2 or m/2 components. : Q.E.D.

The alternating path method has useful practical applications
to the calculation of automorphism groups of regular graphs of
degree 2 and to the construction of graphs with given properties.

For instance if one uses theorem 9.4 to calculate the perm-
utation subgraphs of a given graph, then using the fact that
automorphisms of the graph must permute‘the permutation subgraphs
among themselves reduces the calculation of the automorphism group.
We use this method in the next section.

Another application is in the search for finite symmetric
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graphs of degree 2 which are not group graphs. One can show for
instance that the graph of example 2.2 is the only symmetric
graph of degree 2 with less thaen 12 vertices which is not a group
graph, However even with the methods of this chapter this involves

a tedious consideration of numerous cases,

By a similar argument to the proof of theorem 10.5 one can
show that theorem 10.5 still holds if m is even of the form 2p,
where p is a prime number congruent to =1 modulo 4. As alfinal
application of the methods of this chapter we construct examples

which show that this is not so if p 2 +1 modulo 4.

§11. A Set of Symmetric Graphs which are not Group Graphs

Let p be a prime number congruent to +1 modulo 4. If x is an
integer we denote by x the unique number with O &x ¢p-1 and X = x
modulo pP.

Let b ¥e a primitive root of p and a = b(p-1)/4, that is &
is a primitive 4th root of unity modulo p. then in particular
(1) 8% = p-1.

Let G be the simple graph with vertex set V a{0,1, eoe »2p-1}
and edge set E = E}UE?UE;UEE, where
{(i,p+i*1)10 ¢i¢ p-13,

{(1,p+i=1):0< 1 ¢p-13,
{(p+i,i=8)10 ¢ i< p-1},

f(p+i,i+a):0 <i gp-1}.

(2)
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Using (1), one readily verifies that the permutations

(3) o« = (012 +u. p=1)(p P+ oo 2p-1),
(4) p= (0p)(1 pta =1 p+=a) «.¢ (i p+ia =i p+-ia) ...

oNaYs ((p-1)/2 p+(p-1)a/2 -(p=1)/2 P+-(p-1)aZZ)

are automorphisms of G. They clearly generate a transitive group,

so G is symmetric. We now show that G is not a group graph.

The subgraph A1 = (V,E}UE?) is clearly composed of complete
alternating circuits of G. Using the fact that the initial vertex
sets of the alternating circuits of G must all have 2, p, Oor 2p
elements one sees that A1 ig in fact itself an alternating circuit
of G. Similarly A, = (V,E.

2 2
since A1 and A2 together involve all the edges of G, they are the

uEg) is an alternating circuit of G, and
only alternating circuits of G. Hence the sets Eg (i,j = 1,2) are
the sets defined in (7) of §9, so by theorem 9.4 the permutation
subgraphs of G are just Pij = (V,E%uEg) (i,j = 1,2). We denote

the permutation of V which corresponds to Pij by'ﬂij (c.f. §6).

Now (0,p+1),(p+1,1-a),(1-a,p+2-a),(p+2-a,2-2a), ... are the

edges of P11 80

(0 p+1 i-a p+2-8 2=28 ... p{ri-(i-‘l)a i=ig .o

(5) Ty =
oo p+2-gpﬂ1!a),
Similarly
(6) Too ™ (0 p+=1 =1+a p+=2+8 —2+28 ... p+=p+(p=-1)a),
(7) 'ﬂHZ = (Q p+1 1+a p+2+a 2428 oo p+2+g2_1)a),

(8) ., = (O p+=1 =1-8 p+=2-8 =2-28 ... P+zP= -1)a).
21 —

Hence the permutation subgraphs of G are all cyclic.
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G can be expressed as the edge direct sum of permutation

subgraphs in precisely two ways: G = P11 + P22 = P12 + P . Since

oo is not a power of )4 and'ﬂé1 is not a power of ﬂqz, neither
T4 andnéz nor T, and ﬂ§1 generate a regular permutation group,

so by theorem 6.4 G is not a group graph.

We now show that /'(G) has order 4p and is generated by e and
P Since the group generated by « and P contains  and F whose
orders are p and 4, it has order at least 4p, so since it is con-
tained in /(G), it suffices to prove the first statement. To do
this it suffices to show that a stabilizer subgroup of "(G) has
order 2.

Let 7 be an element of ['(G) which leaves O fixed. T permutes
the permutation subgraphs of G, so in particular it maps P11 onto
P

P P21, or P22. If it maps P11 onto P11 then it is fhe

11 "12?
trivial automorphism. If it maps P11 onto P12 then it maps p+=1 =

p+-a=(-a=1)a onto p+-a+(-a=-1)a = p+i-2a, so it maps the edge
(0,p+-1) onto (0,p+1-2a) which is not an edge. This is hence im-
possible, Similarly 7 cannot map P1 onto P21, but the permutation
which maps P11 onto P22 does give an automorphism. Hence there are
just 2 automorphisms of G which leave 0 fixed, which is what we
wished to prove.

Wé remark that for p = 5 and a = 2, G is just the graph of
example 2.2 and « and p are the two permutations given there.

One can show that if p is a prime number congruent to 1

modulo 4, and if G’ is & symmetric graph of degree 2 with 2p
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vertices which is not a group graph, then if |(¢")] = 4p or if
€ does not have p components, G’ is isomorphic to the graph G
constructed above. I do not know whether the last condition is
necessary. The proof of this statement needs other tools to those

we have developed here, so we ommit it.
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CHAPTER V‘: Maximal Schreier Words in Finite Groups

§12. Introduction

If G is a directed graph, a Hamiltonian arc in G is a (pos-

sibly infinite) path in G, which starts from some vertex and pas-

ses precisely once through every other vertex of G. A Hamiltonian

circuit of G is a cyclic path in G (that is a path whose first
and last vertices are equal, or in the infinite case a two way
infinite path) which passes precisely once through each vertex of
G.

A Hamiltonién circuit is just a cyclic permutatioh subgraph,
and in the finite case a Hamiltonian arc isljust a connected
broken permutation subgraph (c.f. §9).

In this chapter we consider Hamiltonian arcs and circuits in
finite group graphs; or more precisely, in finite Cayley graphs.

A Hamiltonién arc can clearly only exist if the graph is
connected; in the Cayley graph [H,S] this just means that S must
be a generating set for H. We note also that in a symmetric graph,
and hence certainly in a Cayley graph, it suffices to consider
Hamiltonian arcs which start from some fixed base point, for any
Hamiltonian arc may be mapped by a suitable graph automorphism to
start from this base point.

Now let H be a finite group, S a generating set of H, and

suppose we have a Hamiltonian arc B starting from the identity
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element e of E in the Cayley graph {H,S]. If [H} = h then B must
have legnth h-=1, so it has the form
(1) B = (e,8,)(5,,8,8,)(8,8,,8,8,85) « « .

o ad B (3152 cos By 51848, see sh_2sh_1)
where CPELPY o 18y _4 8Te (not necessarily distinct) elements of
S, and ©y8,98,8,9 o o o 38485 eo0 By 4 are distinct elements of H.
Hence B defines & word s s, ... 8, , in the free monoid F(S) gen-
erated by S such that the initial segments €y8,y88,59 ¢ o o
S48p s By 4 of legnths 0,1,2, ... ,h=1 respectively have distinct
values in H. Conversely it is clear that any such word defines a

Hamiltonian arc (1) in [(H,S]. We call such a word of legnth h-1

in F(S), whose initial segments have distinct values in H, a

maximal Schreier word of H with respect to S or in the. elements of
S. |

We are using the symbol w = CPEPERR 8y gimultaniously as
an element of the free monoid F(S), that is a word for which init-
ial segments can be défined, and as an element of H for which
initial segments can certainly not be defined. Although this is
formally incorrect, it is rather more convenient than using a
different symbol for the multiplication in F(S). Where it could
lead to confusion we distinguish the two concepts by writing
weF(S) or weH, or by saying "the word w" or "the value of w'".

If w is an arbitrary word of legnth n, we denote the value
of its initial segment of legnth i1 (0 <i ¢n) by w,e In pgrticular

'"0.' e and wn ig the value of the word w.
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In the following we shall use the abbreviation ms-word for
maximal Schreier word. The ms-word w = 5,8, e.. By _, € F(s) is

called precyclic if W _18, = e for some shesS, and in this case

we call the word WSy = 8,8, oo sh_1sh4sF(S) a cyclic ms-word.
There is clearly a one-one correspondence between the precyclic
and cyclic ms-words of H with respect to S, for one may obtain
the one from the other in a unique fashion by adding or dropping
the final letter. The cyélic ms-words of H with respect to S just
correspond to the Hamiltonian circuits in [H,S].

If the group H has a ms-word with respect to the generating

set S, we shall call S a Hamiltonian generating set.

We may now restate the aim of this chapter as a discussion
of me-words, cyclic ms-words, and Hamiltonian generating sets in
finite groups. In particular we shall consider the problems of
existence and’classification for ms-words and cyclic ms-words,
and the problem of how smallla Hamiltonian generating set can be
for a given group.
Notation. The identity element of an abstract group will always
be denoted by e. The notation H = <k1, cor 3X IT.y oo ,rm> means
thet the group is given by the genérators gy oo ' X and relations
Tyy eee sTpe If a,b, ... &re elements or subsets of the group H,
then the notation gpl{a,b, ...} is used for the subgroup of H
generated by &a,b, ¢.¢ o Finally s™ and A" mean respectively the
symmetric group and the alternating group on the set {1,2, eee 9N}y

and Cn denotes the cyclic group of order n.
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§13. Basic Properties of Maximal Schreier Words

We shall use the following lemma implicitely in much of the

following discussion.

Lemma 13.1. If H is a finite group and S is a generating set of

H then
(i). The word w = 8,8, oo sh_1eIF(S) is a ms-word of H if and
only if no nontrivial segment has value e, and h = [H].

(ii). The word v = 8,8, soe sh.eF(S) is a cyclic ms=-word of H if
and only if no nontrivial proper segment of v has value e, and

h = {H|]. .

(By nontrivial segment of a word X%, ...Ixn we mean a subword of
the form x.x,

iTi+d

if i 41 or j # n.)

ces xj where 141 ¢j ¢n., It is a proper segment

Proof. (i). Let 1<i ¢Jj<h=-1. Then w, _, = Vs 8,8, 4 eee 8y =
w;11wj = e. Hence the initial segments of w have distinct values
if and only if no nontrivial segment of w has value e. They run
through the elements of H if and only if they are distinct and
there are |Hi of them, that is |H| = h.

(ii). Suppose h = |H| and no nontrivial proper segmeﬁt of v has
value e. Then in particular no nontrivial segment of 848, soo Sy _y
has value e, so this is a ms-word. If i % e, we would have e &
\f for some i with 1 €i ¢h-1, and the nontrivial proper segment

-1 «
ees 8, would have value vi vh = e, Hence vh = e 80 Vv 1is

Si+18%i42 h

a cyclic ms-word.
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Conversely if v is a cyclic ms-word then 848, ot 8y 4 is a
ms-word, so no nontrivial segment of it has value e. The only
other nontrivial proper segments of v are of the form
85,18440 *°° 8y (1 <i ¢h-1), and if this had value e we would

have e = v, =V =V contradicting the fact that

i%i41%i+2 °*° ®n
848, oo LI ijs a ms-word. Hence no nontrivial proper segment of

v has value e. Q.E.D.
The following lemma states.that if we know the ms-words for
gsome generating set S of H, then we know them for any set related
to S by automorphisms and antisutomorphisms of H. Thus for instance
the 108 distinct pairs of generators of S4 fall into five classes

under the action of automorphisms, so to find all ms-words of S4

in a pair of generators one need only consider 5 pairs.

Lemma 13.2. If H is a finite group, S a generating subset, and ¢

an automorphism of H, then the following statements are equivalent:
(1)e w = 848, oo 5, is a ms-word (cyclic ms-word) of H with
respect to S.

(ii). w§ = 8,987 «0. 8,7 18 8 ms-word (cyclic ms-word) of H with
respect to S¢¥. |
(iii). G = 8;18;1

with respect to s,

1

g e s; is a ms-word (cyclic ms-word) of H

Proof. The proof is trivial using lemma 13.1, Q.E.D.

A further usefyl method in the classification of (eyclic) ms-

-words is given by the operations of cycling and reversing a given
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is any word in F(S), then the cycled

(1) _

word, If w = 848y eee B

words of w are the words w 8 ese 8 8,8, ese 8.

i+1%i+2 n°1%2 1=1%1
(i = 0,1, e+e yn=1), and the reverse word of w is the word

R
W = 8_8
n n-=1

s

LN 4 8281.

Theorem 13,3, If v = 5132 cee By

is a cyclic ms-word of H with
respect to S, then so are the cycled words of v,

Proof. A nontrivial proper segment of v(l) must either be & proper
segment of v, and hence not have value e, or have the form

sjs:j+1 ere 88,8, eee By with k <i ¢j and k+1 < j. But this has

value (s since 848, oo 8 has value e, and lence

ke1 *o 25o1)
cannot be e as then 814 83-1 would be & nontrivial proper

segment of v with value e. Q.E.D.

We now discuss a sufficient condition for the reverse word
of & (cyclic) ms-word to be a (cyclic) ms-word.
If H is a group genefated by the subset S, we call H

reversible over S if there exists an automorphism of H which maps

each element of S onto its inverse. If such an automorphism exists:
then it is unique, for an automorphisﬁ is defined by its action
on a generating set.

If H is given by the set S of generators and a set of defin-
ing relations, then H is clearly reversible over S if and only if
the relations obtained from the given relations by replacing each
letter by its inverse are again relations of H. For instance the

metacyclic group of order 21:
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(1) H = ds,tt s/ = %) = e, ts = 82t >

is not reversible over S = {s,t} since t-1s-1 = (5_1)2t-1

does
not hold in H.
It is well known that a group is abeliasn if and only if the

inversion mapping is an automorphism of the group. Hence:

Lemma 13.4. The group H is reversible over every set of generators

if and only if H is abelian.

By simply checking all possible cases one may shows

Lemma 13.5. If H has order less than 16, or is dihedral, or is the

symmetric group S4 or the alternating group As, then H is revers-

ible over any pair of generators.

This list may easily be extended. It shows however that rev-
ersibility is surprizingly common among small groups with very
small generating sets, so the following theorem has practical

value as well as academic interest.

Theorem 13.6. If the group H is reversible over the generating

set S, and w = 8,8, ....5 is a ms-word (cyclic ms-word) of H

with respect to S, then so is the reverse word wR =88 4 .- Sy

Proof. Let ¢ be the automorphism of H which maps each element of

-1 =1 -1

S onto its inverse. By lemma 13.2(ii) w¢ = 8, 8, ... 8, 18 8

ms-word (cyclic ms-word) of H with respect to S¢ = S-1, 80 by

lemma 13.2(iii) (w)'1 = 8_8

nBpoq °cc 8q is @ ms-word (cycllc ms-

-word) of H with respect to (S-‘I)-1 = S, Q.E.D.
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An example of a ms-word whose reverse word is not a ms-word
is given by taking H to be the group of (1) above, S = {s,t}, and
(2) w = sots’tstt2a%te €F(S).

This word has legnth 20, and the values of its initial segments

are in increasing order of legnth e,s,32,55,54,55,35t,t,52t,s4t,

C 5 2,92t2, 6 2,36,s6t st, th sstz,tz. Since each element

4t2,st
of H has & unique expression in the form sitj with 0<i <6 and
0<j <2, these elements are distinct and run through H, so w is a
ms-word; in fact w is even precyclic as Y50 t = t2t = e. The reverse

2 2

word wR = éts 2 4t53t55 has a segment stszt 8~ with value e, 80

it is not a ms-word.

Obsérve that (s6t)365F(S) is a cyclic ms-word in the above
group, and so is its reverse word (ts6)3, despite the fact that H
is not reversible over S. Hence theorem 13,6 does not give a nec-

essary condition for the reverse of a ms-word to be a ms-word.

§14. A Bound on the Size of a Smallest Hamiltonian Generating Set

Theorem 14.1. If H is a finite soluble group which has & subnor-

mal series of legnth k with cyclic factors, then H has a Hamilt-

onian generating set with k elements.

We shall prove this by means of the following general theorem:

Theorem 14.2. Let the finite group H have generating set S =

{81,82, ces ,sk} and let Hb = gpie}, H1 = gp{s1}, H2 = gp{s1,sé¥,

s e e ,H.

i+1 = gp{Hi,si+1}, see g Hk = H, Let j(l) = IHi:Hi-1’ for
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each i = 1,2, ... ,k, and define a sequence of words in F(S) by
W(o) = e 5 w(1) = ed(1)

yE+D=10y ) (1= 1,2, .e. Sk-1).

(1)
w(i+1) = (w(i)s

N

i+1
Let v(i) denote the value of the word w(i)si+1 and let Vi =
gp{v(i)} (i = 0,1, «.. ,k-1). Then w(i) is a ms-word of H, with
respect to {81,82, SR ,si} for each i = 1,2, ... ,k if and only
if

(2) viHi = H for each i = 1,2, eeo ,k=1o

i+
Remark. Since Vi and'Hi certainly generate Hi+1’ (2) can be re-

placed by either of the conditions:

(2)' V.H, = HV, for each i = 1,2, ese yk=1,

i
(2)" V.H, is a group for each i = 1,2, s0es k=1,

Proof. Suppose w(i) is a ms-word of Hi for each i. Then every el-
ement of H, (0 <i sk-1) is the value of some initial segment of
w(i+1). But each initial segment of w(i+1) has the form
(w(i)si+1)1u with 0€1 <j(i+1)=1 and u an initial segment of w(i);
and this has value v(i)lx where x is the value of u. But v(i)lx €

= V.H.o
11

V.H,, so H, ,<V.H Since both V, and H, are in H, ., H.
ii i+t i i i+ i+1

ittt
Suppose conversely that viHi = Hi+1 for each i = 1,2, «.. ,k=1.
w(1) is certainly a ms-word of H, with respect %o {s,} .+ We assume
that w(i) is a ms-word of H, with respect t0 {8,585y «e0 »8;} and
deduce the corresponding statement for i+1, proving the theorem
by induction.

We have already shown that the values of the initial segments

of w(i+1) run through the elements of the form v(i)lx with
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0¢1 ¢j(i+1)-1 and x the value of an initial segment of w(i), and
by assumption w(i) is & ms-word of H;, so x runs through H,. Thus
it suffices to show that each element of Hi+1 has a unique expre-
ssion in the form v(i)lx with 0 €1 ¢ j(i+1)=1 and x <H,.

Let j be the least positive number such that v(i)jtsﬂi. Since
viHi = Hi+1 every element of Hi+1 is expressible in the form
v(i)lx with xeH,, and since we may absorb powers of w'r(i)j into
x, we may assume that 0 <€1 ¢j-1. It remains to show that this re-
presentation is unique, for then it also follows that ,Hi+1,
jIHii, whence j = j(i+1) and the proof is complete.

Suppose v(i) x = v(i)®%y with 0 €<r,s <Jj-1 end x,y €H, . Without
loss of generality r ¢s. Then v(1)8°F - xy-‘l ¢H, and 0 &s-r £j-1,

so r = 8 by minimality of j, whence also x = Y. Q.E.D.

Proof of theorem 14.1. Let

(3) fe}=Hy cH, cH, c ... cH_jcH=H
be a subnormal series for H with cyclic factors. For each i = 1,2,
oo 7k let s, be a generator of H, modulo H . If the V., are

i i i-1 i
defined as in theorem 14.2, then since Hi is normal in Hi+1 for
e&Ch i = 1,2, eeo o 'k-1, ViHi iB a group fOI‘ each i = 1’2, oo ,k-1.
Hence (2)’’ is satisfied, so by theorem 14.2 the s, (1 =142, «.o

k) form a Hamiltonian generating set for H. Q.E.D.

Corollary 14.3. If the finite soluble group H has order

PqPy oo Py where the Py are (not necessarily distinct) prime

numbers, then H has & Hamiltonian generating set with k elements.
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Indeed we may take any composition series of H as the

subnormal series of theorem 14;1.

One may considerably weaken the solubility condition in
theorem 14.1 and corollary 14.3. In fact it is sufficient that H
have a series (3) of subgroués such that for each i = 0,1, «s¢ ,
k-1, Hi+1 haes a cyciic subgroup V:.L with Hi+1 = viHi' For then we
may take a generator v(i) of each Vi and define inductively
8, = v(1), x(1) = v(1)j(1)f1; B4 ™ x(i)-1v(i), x(i+1) =
v(i)j(i+1)-1i(i), (i = 152y 000 ,k=2); 8 = x(k-1)-1v(k-1);
where j(i) = IHi:Hi_1[ for 1 = 1,2, +.. ,k. It is then easily seen
that the s, and v(i) are as in theorem 14.2 and the x(i) are just
the values of the words w(i) of theorem 14.2. It follows that the
set {31,32, ese ,sk} igs a Hamiltonian generating set of H.

The generalized solubility condition is satisfied for instance
by the symmetric group Sk+1 of degree k+1, taking Hi = Si+‘I
(0 ¢i ¢k) and v, = gpi(123 ... i+2)} (0 <i ¢k-1). However one
verifies éasily that it is not satisfied for instance by the alt-
ernating group A6.

If H is the elementary abelian group of order pn (p prime),
then H has no generating set with less than n elements, so the
bound of corollary 14.3 is attained. However for the s&mmetric
group Sk'+1 the above discussion only shows that a Hamiltonian
generating set with k elements exists, and we shall see in §17
that there exists one with only 3 glements. Thus the problem of

finding the minimal size of Hamiltonian generating sets remains
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far from solved.

It is likely that @he minimal size of a Hamiltonian generat-
ing set can strictly exceed the minimal size of an arbitrary gen-
erating set but I know of no example to prove this. It would appear
that small relatively free-groups (cf. Hanna Neumann "Varieties of
Groups" Ergebnisse der Math. v.37 1967 p.9) would bé likely to
provide an example, as they have only one automorphism class of
smﬁllest generating sets. However the only non~abelian (cf. §15
for abelian case) groups of this type which are small enough to
permit direct calculation of ms-words turn out to have ms-words
in the relevant pair of generators. They are the groups
(4) H = (s,t333= t3= e, [t,s..13 = [t-1,s]= s, ,

(the Burnside group of exponent 3 and rank 2) and

(5) H = <é;t=s4= t4= [s,t]2= e, &,s‘i]=lj71,s]=ls,t]>,
(the relatively free class 2 nilpotent group of exponent 4 with
rank 2), and they have cyclic ms-words (sztsztstz)3 and

(ts3t353t32t32)2 respectively.

§15. Maximal Schreier Words in Abelian Groups

If H is an abelian group and S = {51,52, — ,sk} is an arb-
itrary generating set, and if the subgroups Hi and Vi are defined
as in theorem 14.2, then condition (2)° of §14 is certeinly sat-

isfied, so S is a Hamiltonian generafing set of H. Hence:

Pheorem 15.1. Every generating set of a finite abelian group is
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Hamiltonian.

Theorem 14.2 gives a ms-word of H in S for each ordering of
the set S, however one doés not in general obtain all ms-words of
H in this way. For instance -if H is the abelian group
(1) H = (s,t:s4= (st)2=[s,t]= ed>
of qrder 8, theg the two ways of ordering the generating set {s,t}
give by theorem 14.2 the two ms-words 53t53 and t33t3. Both are
precyclic}'and if one extends either of them to a cyclic ms-word
and cycles it one obtains new ms-words which are not given by the
construction in theorem 14.2.

Although the finite abelian group H always has & ms-word in
a given set of generators: it need not have a cyclic ms;word in
these generators. For instance if we consider the cyclic group
(2) H = {r:f6= e>
of order 6, and put s = r3 and t = r2, then the only ms-words of

H with respect to s and t are t25t2 and ststs, neither of which

is precyclic.,

§16. Maximal Schreier Words in Two Generators - the Coset Method

In this section we derive a condition which greatly restricts
the possible éérms that a ms=-word on.two generators can take, and
hence has great practical value for the actual calculation of ms-
-words. This condition results from the direct translation of the

alternating path method (§9) to group graphs. Though the ideas of
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this section are not new - they have been indicated or implicitely
applied by Fletcher [7], Dickinson [6], and Rapaport [14] for
cyclic ms-words, and by Rankin [13] for general permutation sub-

~ graphs of Cayley graphs of degree 2 - they have not been stated

in an explicit form for general 2 generator ms-words, and the

fact that they are nothing but the alternating path method seems

to have escaped notice. Rankin, Fletcher, and Dickinson (1oc. cit.)
describe an application to campanology.

Let H be a finite group generated by the set S = {s,t}. Then
[H,S] is regular of degree 2, so the methods of §9 are applicable.
We first consider the form of the alternating paths of [H,ST.

Let the order of st-1 be m. Then for any x H the path
(1) A = (x,xs)(xs,xst-1)(xst-1,xst-1s) g .

oo (x(et™ NP x(at7 )P e ) (x(st 7)™ s, x)
is a cyclic alternating «-path of [H,S]. We denote the correspon-
ding alternating ecircuit of [H,S8] also by Ax.

V(Ax) is the set of elements x(st-1)i, i= 0,1, eeo ,m=1;
that is V(Ax) = xC where C is the cyclic subgroup ép{st-y of H.

Since x was arbitrary, and the alternating circuit containing
a given vertex in its initial vertex set is unique, it follows that
every alternating circuit has the form Ax for some x ¢ H.

The partition (§9,(7)) of the edge set E(Ax) may be taken as
(2) B'(a,) = fly,ye)iyexc} 5 E2(a,) = {(y,yt)iy e xC}.

Now if w = S48y oo sh_1.is any ms-word of H in s and %, we

define its word function fw'to be the mapping of H-{yh_1} to S
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defined by

(3) fw(wi) = 8,4 (i = 0,1, «.. ,h=2).
The ms-word w is uniquely defined by its word function, for

the corresponding Hamiltonian arc of (H,S] is fully defined by the

fact that its edges are just the pairs (x,xfw(x)) with x # Wi _qe

Noting that a Hamiltonian arc is just a special type of

broken permutation subgraph, theorem 9.5 gives:

Theorem 16.1. If w = By8, eoe 8p 4 is 8 ms-word of H in thé elem-
ents s and t, f its word function; and C = gp{st-1} has order m,
then |
(i). L t-1(9t'1)k for some k with 0¢ k ¢m=1;
(ii). fw(t-1(st-1)j) = 8 if 0<j <k,
= % if k< J<m=-1,
undefined if k = j;
(iii). If xC # t='c then f is defined and constant on xC.
Proof. Let B be the Hamiltonian arc corresponding to w. Then B is

a broken permutation subgraph of [H,S] with initial vertex e and

terminal vertex wh

1" The «*-péth of theorem 9.5 must have the

form either
(4) (e, ™)+, 7 Te) (37" s,t™Tet™") L.
v 6 e, 17 (et B (17 (et ), 17T (s 7 ) e)
oo (8Nt 0)

with w = t-1(st-1)k; or the same with s and t exchanged through-

h-1

out.

In the second case we may use the fact that (ts-1)l= (.'=.‘t'.-1)"1
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to replace powefs of ta~! by powers of st'1, and then on reversing
the representation of B we gét & representation as in (4).

(i) now follows immédiately from theorem 9.5; and'using the
fact that the edges of B are Just the pairs (x,xfw(x)) (x # wh_1)

and using (2), (ii) and (iii) are direct translations of the cor-

responding statements of theorem 9.5. Q.E.D,

Corollary 16.2. If the number of times s occurs in w‘is 1, then

=t (st™ )L,

“h-1
Proof. 1 is the number of elements of H-{wh_i} for which fw(x) = 8.
By (ii) fw(x) equals s for precisely k elements of the coset t-1C,
and by (iii) fw(x) equals for either O or m elements of each other

coset of C. Hence 1=k modulo m, 8O (st-1)1 = (st-1)k, as st”' has

order m. The corollary now follows from (i). Q.E.D.

Corollary 16.3. If st-1 has order 2 then every ms-word of H in s

and t is precyclic.
Indeed v can then only take one of the two values t-1 or

-1
t-1(st-1) = 5-1(st-1)2 = 5-1, by theorem 16.1(i).

Theorem 16.1 also gives a bound on the total number of ms-
-words of H in & and t. Indeed if C has index n in H then fw can
take one of 2 possible values on each of the n-1 left cosets of C
other than t-1C, and on t_1C fw is determined by k which can take
m possible values. Hence H has at most 2n-1m ms=-words in s and t.
In fact 2n-1m is just the number of broken permutation subgraphs

of [H,{s,t}] with initial vertex e.
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§17. Some Special Cases

In this section we discuss some cases where the calculation
of small Hamiltonian generating sets and ms-words is rather eas-

ier than in the general case, .

1). Symmetric groups.

The symmetric group 82 oﬁ degree 2 is cyclic, so it has a
one element Hamiltonian generating set.

S3 and S4 have ms-words in every pair of generators, For S4
these are listed in Appendix 1; for S3 they are given by theorem
17.2.

For general Snw(n.;B) we have the following theorem:

Theorem 17.1. (Rapaport [14]) If n 33 then the symmetric group st

has a cyclic ms-word in the three generators Tr = (12) ’
s = (12)(34) ... (21-1 21) , t = (23)(45) ... (2m 2m+1) , where
1 = [n/2] and o = [(n-1)/2].

Hence a symmetric group always has a three element Hamilton=-

ian generating set. It seems likely that this can be reduced to 2.

2). Alternating groups.

The alternating group A5 is cyclic, so it has a one element

.Hamiltonian generating set.

A4 has ms-words in every pair of generators; they are listed

in Appendix 1.

Direct calculation gives that for s = (12345) and t = (321)
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(s4t)252t2(s4t)2(szt)284tst23t33tsts4tstzsts3 is a (non-precyclic)
ms=-word of AS. We shall prove in §18 that A5 has no ms-word in the
generators (12)(34) and (135).

I have no results for An, n>5, other than the result that
fornz9 A™ has & non-Hamiltonian generator pair (corollary 18.2).
Direct calculation can only give very special results and is in
;ny'case too time consuming, even for an electronic computer, for

n,}é. This holds even though for n = 5 hand calculation is still

feasible, and was used to find the above me=-word.

3). Dihedral groups.

If H is the dihedral group of order 2n:
(1) H = (r,s:r2= 8%= (ré)n= e> ,
then the only generator pairs of H are {r,s} and {s,rs} and images
of these under automorphisms. Hence by iemma 13,2 it suffices to

»’

consider the pairs {r,s} and {s,t} , where t = rs.

Theorem 17.2. (rs)™ is a cyclic ms-word of H. Any ms-word of H in

r and s is precyclic and the corresponding cyclic word may be ob-
tained by cycling (rs)”.

(tn'1s)2 is a cyclic ms-word of H. Any ms-word of H in s and
t is precyclic and the corresponding cyclic ms-word .may be obtai-
ned by cycling (tn-1s)2.
Proof. One verifies easily that (rs)” is & cyclic ms-word of H.

Any ms-word of H in r and s must have the form rsrs....0r SI'ST...

since r and s both have order 2. The first part of the theorem
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now follows immediately.

One verifies easily that (tn—1s)2 is a cyclic ms-word of H.
Let we F(S) be any ms-word of H in s and t and let k be the number
of times s occurs in w. We distinguish 3 cases:
k>3. Tﬁen w has a segment stistjs for some i,j>0. If i3> J then
tjstjs is a segment of w with value e. If i< j then stisti is a
segment of w with value e. This case can hence not occur.

1 for some i,j,1 >0. Since w has legnth

k = 2, Then w = tistjst
2n-1 we must have

(2) i+j+1 = 2n-3,
Clearly j ¢ n-1. Suppose j €n-2, Then if i>j, w has a segment
tIgt9s with value e, and if i< j then 1 = 2n-3-i=j> 2n=3-i-(n-1) =
n=2-1 3 j-i, so w has a segment tist‘jstj-i with value e. Hence

j €n=2 gives a contradiction so j = n-1. (2) now gives that

n-1stn-2-1 where 0 € i ¢ n-2. The word wt = tistn-1stn-1-1

w = tist
is obtained by cycling (tn-1s)2, so w is a ms-word with the
desired property.

k = 1, Then w = tistj for some i,j »>0. Consideration of the legnth
of w gives i = j = n=-1, so w = +7" V542", Hence ws = (tn-1s)2; S0

w has the stated property. Q.E.D,

4). Groups expressible as the product of two cyclic subgroups.

Theorem 17.3. If the element t of H has order m, then H has & ms-

m-1s)1-1tm-1 if and only if

word of the form (t
(3) H = BC where B = gp{t} and C = gp{st-g .

Proof. Putting s, = t, 8, = 8, H, = B, and'V1 = gp{t-1s} in
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theorem 14.2 with k = 2 gives that H has a ms-word of the form

1

(+%=16)1=148=" if and only if H = BV,. But st™'= t(t7's)t”, so

1

1.

. Hence H = BC &> H = BtV1t'1

C = tV1t- > Ht = BtV,., But Bt = B

and Ht = H, so H = BC & H = BV1. Q.E.D.

Since B snd C of theorem 17.3 certainly generate H, H = BC if

and only if BC = CB. Hence in particular:

Corollary 17.4. If B or C of theorem 17.3 is normal in H, then

(3) is satisfied, so (1:m-1s)l,"1tm-1 is a ms-word of H for suitable

1.

Rankin {13]pp.21-23 discusses the existence of cyclic ms-
words in the case that C is a normal subgroup of H. In fact he
gives necessary and sufficient conditions for the Cayley graph
[H,{s,t}] to have a permutation subgraph with any given number of

components.

We shall need the following lemma in the next section.

Lemmaz 17.5. Let H be generated by s and t and let C be the sub-

group C = gp{st-T}. Then

(i). If seC or t«C then H = C.

(ii): If t has prime order p and [H:C/ <p then H = c.

(iii). If ¢t has prime order p and jH:C| = p then (tp-1s)1 is a
cyclic ms-word of H, where 1 = |C/.

Proof. (i). If s &C then t = (st-1)-1s cC as st~ '€ C. But s and t
generate H so 'H = C. Similarly te¢ C implies H = C,

(ii) and (iii). The least positive power of t which is in C must
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be a divisor of the order p of t, so it is either 1 or p. If it is
1 then by (1) H = C. If it is p then the cosets C,tC, ... ,tP~ C
are distinct so C has.index at least p in H, proving (ii). If C
has index precisely p in H, then these cosets cover H, so H = BC
where B = gp{t}. Hence by theorem 17.3 (tpds)l-‘ltp-1 is & ms~

1

-word of H. 1 is here the order of t s = tp-1s, 50 (tp'1s)1 is a

cyclic ms-word of H. Q.E.D.

§18, Maximal Schreier Words in two Generators of Orders 2 and 3

In this section we consider ms-words of & group H in the
generators s and t, where s and t have orders 2 and 3 respectively.
If H is abelian then it is cyclic of order 6, and direct cal-

2

culation gives that t2st and ststs are the only ms-words of H in

s and t.

This completes the discussion of the abelian case, so in the

following we need only consider non-abelian H.

Theorem 18.1. Let H be a finite non-abelian group generated by

the elements s and t of orders 2 and 3 respectively, and let C =
gﬁ{st-1} have order m and in@ex n in H. Then

(1). n>3;

(ii). If n = 3 then (stz)m is a cyclic ms-word of H, Any ms-word
of H is precyclic and the corresponding cyclic ms-word may be ob-
tainéd by cycling (stz)m.

(iii). If n>3 and if H has a ms-word w in s and t, then w is not
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precyclic and one of the following cases holds:
(stz)ml-‘lst(stz)m/3 or w = (tZS)m/Bts(t2s)m-1;
(stz)m'1st(st2)2m/3 or w = (tzs)zm/Bts(tzs)m-1;
(stz)m-1stst(st2)m-1s ;
(stz)m-1st(stz)m/sst(stz)m-1s ;

(stz)m’1st(st2)2m/3st(st?)m-1s ;

8)e n = 4 and w

b)e n = 5 and w

c)e n =6 and w

d)e n = 7 and w

e)e n = 8 and w
In particular if n »9 then H has no ms-word in s and t.
Proof. We write |H| = h and gp{t} = B. Clearly h = mn, for m and
n are respectively order and index of the subgroup C of H. Further
h is divisible by 3, for H contains the element t of order 3.
Finally m >1, for m = 1 would imply st-1= e, so 8 = t, but s and
t have unequai orders.

If n<3 then by lemma 17.5(ii) H = C, so H is abelian, con-
trary to assumption. Hence n )3, proving (i).

If n = 3 then by lemma 17.5(iii) (st?)™ is a cyclic ms-word
of H, proving the first statement of (ii).
3

Let n»3 and w be a ms-word of H in s and t. Since t°= sz= e,

w must have the form
i i i i
(1) we=10%t's...8t 2 et Per(s),

with O gij ¢2 for j = O,p, and 1 sij $2 for j = 1,2y eeo 4p=1.

‘ i =
We write k, = j+§ i ,(1 <3 ¢p). Then the value of the initial

J 1=0
segment of legnth kj of w is Jjust
i i i,
(2) we=7% Ot 's +.. 8t 9" 's H (1 ¢3gp)e
J

We consider a number of cases:
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Case 1. ij = 2 for all j with 1 ¢J ¢p=-1.

Then w = tlo(stz)p-1st1p, 80 w has legnth 3(p=1)+1+ig+i . But
w has legnth h-1 and h is divisible by 3, so i0+;ps1 modulo 3.
Since O éio,ip<(3, we have the three.possibilitiesz (io,ip) =
(1,0) or (0,1) or (2,2). Suppose (io,ip) = (1,0); then w =
t(stz)p-1s, and equating the leg;th of this with h-1 gives h = 3p.
Now m = p, for if m were greater than p, n = h/m would be less
than 3, contradicting part (i), and if m Qere less than p, (st2)m
would be a nontrivial segment of w with value e, Hence n = 3 and
w = t(stz)m-1s. wt = t(stz)m-1st can be obtained by cycling the
cyclic ms-word (stz)m-1, so w is a precyclic ms-word. Similarly
the cases (io’ip) = (0,1) or (2,2) also lead to the conclusion
that n = 3 and w is derived from the cyclic ms-word (stz)m.

Case 2. :’L.j = 1 for at least one J with 1<) ¢p=1.

To complete the proof we must show that this case leads to
the conclusions n >3, w is not precyclic, and w is of one of the
forms given in (iii) a) - e). We first show:

(A)e If 14 ¢p-1 and i, = 1, then either wk_tz - eendij=0or

w 42 = w , end i = 0. ’

k
J

Indeed,‘suppose 1¢j<p=1 and ij = 1., If Wy t2 = Wy with
: J

k 41<<kp, we can\flnq a q with 1 <q €p=-1 such that kqé 1 <kq+1.

1
Since 1 € q ¢p=1, 1q> 1, so Ve 41 = wkqt. It follows that Wy s
k. and wkj+1 are four elements of the left coset wij of

B. They are hence not distinct, as B = 3%, so we must have q = Je

Yk +1° v
q
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But this implies that w t2 = W

K , which is clearly

. k. °F Yk.+1
j j 3

impossible. Hence w, 4% = w, with 0<1 <k, or k <1<h-t. If

J

0 €1 <k, then w

1 kj, wkj+1, Vo e wk1_1 are k1+2 distinct ele-

ments of B, so kﬁ <1, k1 = 0 is impossible as k1 = 1+io, 50 k1 =1,
whence io a 0 apd l= 07 Similarly kp=<1 £h=1 implies ip = 0 and
1 = h-1, (A) is hence proved.

It follows that the condition of Case 2 implies that w is not
precyclic, for we know that there exists a j with 1 <j ¢p-1 such

2 2 .
that wk.t = e Oor Wy .. If wk_t = Wy 9 then 1p = 0, so the word
J . J
; ) 2
w ends with an s. Hence w, ;8 = W, , # e and wh_1t = wkjt t = wkj

.2 .
4 e. If wkjt = e then iy = 0, so w, = 8. Hence Wi # 8, so
W, .8 # §2 = e; also w, ,t £ w t2 = e
h=1" ? h=1 kj '

It remains to show that w is of one of the types given in
(iii) and that n takes the corresponding value. (A) implies that
ij = 1 can occur for at most two values of j with 1 <j < p=1. Thus
two possibilities must be considered:

Case 28 iy = i) = 1 with 1<j,1<p-1 and i# L.
Without loss of generality we may assume by (A) that wk‘tzu e

J

and w tz =W . We also have that i, = i_ = 0 so one of the
k1 h-1 0 P

following cases holds:
(3) w= (s82) 8t (st2) 3 s 1 (e42)P s L (1 < 3)s

(4) v = (st 54 (st2) 19 a4(s42) P16 L (5 <1).

2)1-131;(31:2)‘]-1-151:2 - W 2)1-1817 .

In (3) (st g e, so (st

J

k
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(stz)l-J, so 8t = (st2)1-j. Hence t = t# = t%sst? =(st)-1st2 =

(s42)9"7642 = (s42)7 ¢C, so by lemma 17.5(i) H = C. This is con-
trary to the assumption that H be non-abelian, so (3) cannot occur.
In (4) (st2)9 = (st%)9"st2 - wk'tz = e, so m divides j.

! J
m <j would imply that (st2)m is a nontrivial segment of w with
value e, som = j. Also (stz)p-1 = (wklt)-1wh_1t2 =

(wh-1t-1)-1wh;1t2 i t3 = e, so m = p=1, Hence writing j-1-1 = q,

(4) becomes w = (stz)m-1st(stz)qst(stz)m-1s. w hence has legnth

6(m-1)+3q+5, and equating this with h-1 = mn-1 gives

(5) mn = 6m+3q. l

But clearly 0 <q <m, 80 6m {mn <9m, so n = 6, 7, or 8. Inserting
these values back in (5) gives q = O, m/3, or 2m/3 respectively.
This just gives cases (1ii) c), d), and e) of the theorem.

Case 2b. ij = 1 for precisely one value of j with 1 <j ¢p-1.

By (A) this case gives the two possibilities w t° = e and
J

i, =0orw t2 = W and ip = 0., These give respectively the

0 k. h-1
. J
two possibilities:
i
2+\J=1 2\p=Jj=1
(6) w = (st)9 " st(st%)P"9 et P,
i . 3
(1) w=t 0(st2)3-1st(st2)P-J-1s .

Comparing the legnths in each case with h-1, and noting that
h is divisible by 3, gives ip = 2 and iO = 2 respectively.

In (6) (st2)j = (st2)3-1st2 - W, t° = e, s0 j = m. On writ-
J

ing p-j = q, (6) becomes w = (stz)m-1st(st2)q. This has legnth

k

3(m=1)+2+3q, so equating with mn-1 gives
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(8) mn = 3m+3q.

But 04q as j <p; and certainly q <m. Hence Zm <mn < 6m, so n = 4 ar
5. Inserting back into (8) giveé qQ = m/3 and 2m/3 respectively,
which gives the first possibilities in cases (iii) a) and b) of
the theorem. Similar . considerations éhow that (7) leads to the
second possibility in each of these cases (alternatively one may
use the fact that a word of type (7) is just the reverse of one of

type (6)), so the theorem is proved. Q.E.D,

Examples.
18,1, H = S3 (the symmétric group of degree 3) of order h = 6;

s = (12), t = (123). Then gel (23), som = 2 and n = 3. Hence
by theorem 18.1(ii), (stz)2 is & cyclic ms-word, and the words
stzst, tzstz, and tst?s obtainable from (st2)2 give all ms-words

of 83 in s and t.

18.2, H = 03wr02 (the wreath product of a cyclic group of order 3

by a cyclic group of order 2) of order h = 18. This group may be

presented by H = <s,t=32= 2= [S-1ts,t] = e>. One verifies easily
that st-1 has order m = 6; hence n = 3, and we again have the
cyclic case, every ms-word of H in s and +t+ being derivable from

the cyclic ms-word (st2)6.

Using standard group theoretical methods one can show that
the above two examples are the only examples (up to isomorphism)
with n = 3, so they are the only cases (up to isomorphism) of

groups having cyclic ms-words in two generators of orders 2 and 3.
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18.3. H = A% of order h = 12; s = (12)(34), t = (123). Then
st”! - (234), som = 3 and n = 4. By theorem 18,1(iii) a) a ms-

2

-word of H in s and t must have the form (stz)zstst or t2sts(t2§2,

One verifies easily that both of these are in fact ms-words.

18.4. H = 5% of order h = 24; 8 = (12), t = (134). Then st™' =
(1234), som = 4 and ' n = 6. By theorem 18.1(iii) c¢), & ms-word of
H in s and t must have the form (stz)Bstst(stz)Bs. Thié is & ms=-
=word,

18.5. H = A2 of order h = 605 s = (12)(34), t = (135). Then

sl = (12534), som = 5 and n = 12, Since n »9, A2 has no ms-word

in s and t. (However it has a ms-word in a different generator

pair; cf. §17.)

18,6, H = C wrC3 (the wreath of a cyclic group of order 2 by one

2
of order 3. This is isomorphic to A4x02). The order is h = 24; the
group may be presented by H -'<s,f:sz= t3= [t-1st,sJ = ey, In this
case st-1 has order m = 6, son = 4. A ms-wérd of H in s and ¢
must hence have the form (stz)sst(stz)2 or (tzs)zts(tzs)s. But
these have segments stzststzst and tstzststZS respectively with
va}ue e, 8o they are not ms-words. Hence CzwrC3 has no msfword in

2 2 2.2 2
a p)

s and t. (It has however a ms-word pquqp p°q p qp qp in the

generators p = st and q = t2).

In the following a "(2,3) generator pair" will mean a pair
{s,t} of generators where s an@ t+ have orders 2 and 3 respectively.

m and n will denote, as usual, the order and index of the subgroup
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C = gp{st'h of the group considered.

Burnside ¢2]§§296 and 301) classifies the (2,3) generated
groups with m = 2,3,4,5,6, For m = 2,3,4,5 these groups are as in
examples 18.1, 18.3, 18.4, 18.5 respectively. For m = 6 there are
already an infinite number of such groups; only a finite number
of them have n <8, so the (2,3) generator pair is non-Hamiltonian
for almost all of them.'Fof m>7 these groups do not appear to
have been classified.

G. A. Miller [10] has shown that every nontrivial symmetric
or alternating group can be (2,3) generated, with the following

exeptions: 82, 55’ S6, S8 6 8. For k >»5, Ak and Sk

, A%, 4% 47, 4
have no cyclic subgroup of index less than 10, so n 310, so any
(2,3) generator pair is non-Hamiltonian. For 83, A4, and S4, the
only (2,3) generator pairs are those given in examples 18,1, 18.3,

and 18,4 (up to automorphism). Hence

Corollary 18.2. sk has a (2,3) generator pair if and only if

k=3,4, 7, or k39. This pair is Hamiltonian if and only if
k = 3 or 4.
Ak has a (2,3) generator pair if and only if k = 4,5 or k3 9.

This pair is Hamiltonian if and only if k = 4.

One may obtain analogous results for other classes of groups.
For instance if p is an odd prime then the fractional linear group
LF(2,p) has a (2,3) generator pair with m = p and n = (p2-1)/2

(Coxeter and Moser [5]p.94). This generator pair is non-Hamiltonian
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for p>3, since n = (p2-1)/2 is then greater than 8.

The last paragraph and the second part of corollary 18.2 both
give infinite sets of simple groups with non-Hamiltonian (2,3)
geﬁerator pairs. In fact the number of simple groups with Hamil-
tonian (243) generator pairs is finite; for such a group has a
subgroup C of index n <8 by theorem 18.1; and since the permutat-
ion representation on the left cosets of C must be faithful of
degree n, the group has order at most 8!. I have been unable to

prove or disprove the corresponding statement for arbitrary groups.

To close this chapter we make the following two cqmments:

For abelian groups every generating set is Hamiltonian, but
we have seen that almost all simple groups have non-Hamiltonian
generating sets.. It therefore seems probable that the existence
of Hamiltonian generating sets and ms-words is fairly closely con-
nected with the commutatorial structure of the group. This is ver-
ified to some extént by theorem 14.71, however I'hgve been unable
to find any strong connections,

The only'non-Hamiltonian generating sets that I know of are
all (2,3) generating pairs. It is extremely unlikely that this is
in fact necessary for a generating set to be non-Hamiltonian.
However very rough plausibility considerations imply that the
larger the order of the generators, the greater the probability
that they form a Hamiltonian generating set. It is hence possible

that there may exist sufficient conditions of the type "a given
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function of the orders of the generators is greater than a given
bound" for a ggnerating set to be Hamiltonian, or results of a
similar type may hold, I have however been unable to obtain any

results in this direction.
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APPENDIX 1 : Tables of Maximal Schreier Words

If S is a generating set of the group H, we call S minimal
if no proper subset of S generates H.

The foliowing tables give all ms-words in a minimal generator
pair for the following groups: all groups of order less than 12
which have a minimal generator pair, A4, and S4. The only reason
for not considering generator pairs which are not minimal is that
‘there are too many such cases; - not because they lack interest.

The dihedral groups are dealt with by theorem 17.2, and are
hence ommitted from these tables.

For each group we consider one generator pair out of each
automorphism class of minimal generator pairs. For each group and
generator pair we list a set of cyclic‘ms-words from which all
other cyclic ms-words are obtainable by cycling and reversal, and
a set of non-precyclic ms-words from which all other non-precyclic
ms-words are obtainable by reversal (¢f. lemma 13.5 and theorem

13.6).

C6 = <r:r6 = e,

S = 1‘3, t = 1‘2.
Cyclic ¢ None
2 .2

ot

Non-precyclic st , ststs .



2
CxC, = <Pyaip’ = a = [pyal= o

s = p, t = ¢q.
Cycliec : (st)4.

Non-precyclic : t3st3.

s =0pg, t=q. .
Cyclic : (th)z, (t55)2.
Non-precyclic : None.

Q= (p,q:p4 = q4 = pqp_1q = e) (Quaternion group).

g =p, t =q.
Cyclic : (st)4.
Non-precyclic : thss, tastB.
CzxCy = <p,q=p3 = q° = [p,al= e
s =p, t = q.
Cyclic H (szt)s, (tzs)B.

Non-precyclic : None.

C = <r=r10 = el

10

s = rs, t = r2.
Cyclic : None.,
Non-precyclic (st)4s, t4st4, t2statats,
54 (Alternating grouf on £1,2,3,43).

s = (12)(34), t = (123).

Cyclic : None.

Non-precyclic @ (stz)zststz.
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s = (123), t = (234).
Cyclice : None.

2tzsztszts, tzsztzstzst.

Non-precyclic @ s
s = (123), t = (243).

Cyélic : (sztzst)z, (tzszts)z.

Non-precyclic : None.

S4 (Symmetric group on 1,2,3,42 ).

s = (1234), t = (123).
Cyclic s (satsztststz)z, , (thsztzsztz)z,
(BBtsts2t2st)2, (thsfzsstz)z,
thszts(tsz)z(ts)ztz, s3ts2tst292ts5t2s2tst2,
3162126042610 (85)242 s ts’t2st(s tst?)?,
3162t2s4(s712)26242,  sdtets tlststs tstst’,
ths(tZSB)Btzst.
Non-precyclic : None.
s = (12), t = (134).
Cyclic : None.
Non-pregcyclic Cét2)3stst(st2)35.
s = (12), t = (1234).
Cyclic : None.
Non-precyclic stBSt(stB)zststzstj, (st3)2stzst(st3)25t,

tst(stj)z(ststj)z.



s = (123), t = (1432).

Cyclic : None.

Non-precyclic. s 52t3(52t2)2st3(st2)?,

2, 2.3 3

t52t3s ts t stzst st,

s = (1234), t = (1324).

Cyclic : None.
Non-precyclic : s3t2st32£253t383tzs,
83t382t8t82t293t382,

s2tst253t29t93t352ts,
S2t382t(8t3)282t8t28,
(st)zsztz(ststB)zsts,

thstBSBtzsztstsztzs,

st(szt)zsztB(szt)as,

t352(t35)3t2st3.

(33t3)253t232(ts)2,

sztsitSBtzst(SBt)zs,

ztzststzs,

2szts,

szt(sts)zsts
stthstZSBtzstst
(sstst)z(sst)zsts,

sitzst(SBt)zstBBtsz,

and all words obtained from these iwelve words

by exchanging s and t.
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