
 

 

 

 

 

An Empirical Study of Architecting 
and Organizing for DevOps 

 

 

 

 

Author: Mojtaba Shahin 

 

Principle Supervisor: Prof. Dr. Muhammad Ali Babar 

Co-supervisor: Prof. Dr. Liming Zhu 

 
 
 
 

A thesis submitted for the degree of Doctoral of Philosophy  

in 

Centre for Research on Engineering Software Technologies (CREST) 

School of Computer Science 

Faculty of Engineering, Computer and Mathematical Sciences 

The University of Adelaide 

 

 

 

August 2018 
 



 

 

i 

 

 

List of Figures ............................................................................................................................................................... v 

List of Tables ............................................................................................................................................................. vii 

Abstract .................................................................................................................................................................... viii 

Declaration ..................................................................................................................................................................ix 

Acknowledgements ..................................................................................................................................................... x 

Dedication ................................................................................................................................................................. xii 

Chapter 1 Introduction ............................................................................................................................................ 1 

1.1 Background .............................................................................................................................................................. 1 

1.2 Research Objectives and Questions ..................................................................................................................... 2 

1.3 Thesis Contributions .............................................................................................................................................. 3 

1.4 Outline of Thesis and Publications ..................................................................................................................... 4 

1.5 Statement of Contribution  .................................................................................................................................. 6 

1.6 Writing Style ........................................................................................................................................................... 7 

1.7 Other Publications ................................................................................................................................................. 7 

Chapter 2 Research Design .................................................................................................................................... 8 

2.1 Systematic Literature Review ............................................................................................................................... 8 

2.2 Mixed-methods Emiprical Approach ................................................................................................................. 8 

2.2.1 Interviews ............................................................................................................................................................ 9 

2.2.2 Survey ................................................................................................................................................................. 15 

2.2.3 Threats to Validity ............................................................................................................................................ 17 

2.3 Industrial Case Study ........................................................................................................................................... 18 

2.3.1 Context ............................................................................................................................................................... 19 

2.3.2 Data Collection ................................................................................................................................................. 19 

2.3.3 Data Analysis .....................................................................................................................................................20 

2.3.4 Threats to Validity ............................................................................................................................................ 21 

Chapter 3 A Systematic Review on Continuous Integration, Delivery and Deployment ...................... 23 

3.1 Introduction .......................................................................................................................................................... 23 

3.2 Research Gap ........................................................................................................................................................24 

3.2.1 Existing Literature Reviews ..............................................................................................................................24 

3.2.2 Motivation for This SLR on Continous Practices .......................................................................................... 27 

3.3 Research Method ................................................................................................................................................. 27 

3.3.1 Research Questions ........................................................................................................................................... 27 

Contents 



 

 

ii 

 

3.3.2 Search Strategy ..................................................................................................................................................28 

3.3.3 Inclusion and Exclusion Criteria .................................................................................................................... 29 

3.3.4 Study Selection .................................................................................................................................................. 30 

3.3.5 Data Extraction and Synthesis ..........................................................................................................................31 

3.4 Results ................................................................................................................................................................... 33 

3.4.1 Demographic Attributes ................................................................................................................................... 33 

3.4.2 Approaches and Tools to Facilitate Continuous Practices (RQ3.1) ............................................................. 36 

3.4.3 Tools Used to Design and Implement Deployment Pipelines (RQ3.2) ....................................................... 41 

3.4.5 Challenges of Adopting Continuous Practices (RQ3.3) ................................................................................ 43 

3.4.6 Practices Reported for Implement Continuous Practices (RQ3.4) ..............................................................50 

3.5 Discussion .............................................................................................................................................................56 

3.5.1 A Mapping of Challenges to Practices  ............................................................................................................56 

3.5.2 Critical Factors for Continuous Practices Sucess........................................................................................... 57 

3.5.3 Contextual Factor ..............................................................................................................................................59 

3.5.4 Architecting for Deployability ........................................................................................................................ 60 

3.5.5 Engineering Deployment Pipeline .................................................................................................................. 61 

3.6 Threats to Validity ............................................................................................................................................... 61 

3.6 Conclusions and Implications ............................................................................................................................62 

Chapter 4 Moving from Continuous Delivery to Continuous Deployment ..............................................65 

4.1 Introduction ..........................................................................................................................................................65 

4.2 Related Work ...................................................................................................................................................... 66 

4.3 Research Method .................................................................................................................................................67 

4.3.1 Interviews ...........................................................................................................................................................67 

4.3.2 Survey .................................................................................................................................................................67 

4.4 Findings  .............................................................................................................................................................. 68 

4.4.1 Practicing CDE vs. CD ..................................................................................................................................... 68 

4.4.2 Current State of Automation Support in Continuous Deployment Pipeline ............................................ 69 

4.4.3 Moving from CDE to CD..................................................................................................................................70 

4.5 Discussion ............................................................................................................................................................ 77 

4.5.1 Summary of Main Results  ................................................................................................................................78 

4.5.2 Implications for Research and Practice ..........................................................................................................78 

4.5 Conclusion ........................................................................................................................................................... 79 

Chapter 5 Continuous Delivery and Deployment: Organizational Impact ............................................. 80 

5.1 Introduction ......................................................................................................................................................... 80 

5.2 Related Work ....................................................................................................................................................... 81 

5.3 Research Method .................................................................................................................................................82 



 

 

iii 

 

5.3.1 Interviews ...........................................................................................................................................................82 

5.3.2 Survey ................................................................................................................................................................. 83 

5.4 Findings ................................................................................................................................................................ 83 

5.4.1 Team Structures for Adopting CD Practices (RQ5.1) ..................................................................................... 83 

5.4.2 Collaboration (RQ5.2) ..................................................................................................................................... 89 

5.4.3 Responsibilities (RQ5.3) .................................................................................................................................. 92 

5.5 Discussion and Conclusions .............................................................................................................................. 94 

Chapter 6 Architectural Impact of CD Practices: Practitioners’ Perspectives ........................................ 96 

6.1 Introduction ......................................................................................................................................................... 96 

6.2 Related Work ...................................................................................................................................................... 98 

6.2.1 General Literature on CD ................................................................................................................................ 98 

6.2.2 Architecting for CD Practices ......................................................................................................................... 99 

6.3 Research Method ............................................................................................................................................... 100 

6.3.1 Interviews ......................................................................................................................................................... 100 

6.3.2 Survey ............................................................................................................................................................... 100 

6.4 Practicing Continuous Delivery and Deployment ......................................................................................... 100 

6.5 Findings ............................................................................................................................................................... 101 

6.5.1 Monoliths and CD ........................................................................................................................................... 103 

6.5.2 Moving Beyond the Monoliths ...................................................................................................................... 106 

6.5.3 Quality Attributes that Matter (Largely/Less) in CD ................................................................................... 112 

6.5.4 Perspectives on Operational Aspects ........................................................................................................... 120 

6.6 Discussion and Conclusion .............................................................................................................................. 124 

6.6.1 Main Findings  ................................................................................................................................................. 124 

6.6.2 Practical Implications .................................................................................................................................... 126 

Chapter 7 On the Role of Software Architecture in DevOps Success ....................................................... 129 

7.1 Introduction ........................................................................................................................................................ 129 

7.2 Research Design ................................................................................................................................................. 130 

7.3 Results .................................................................................................................................................................. 131 

7.4 Lessons Learned ................................................................................................................................................. 140 

7.5 Related Work ..................................................................................................................................................... 142 

7.6 Conclusion ......................................................................................................................................................... 142 

Chapter 8 Conclusions and Future Works ...................................................................................................... 143 

8.1 Answers to the Research Questions ................................................................................................................. 143 

8.2 Opportunities for Future Research .................................................................................................................. 145 

8.2.1 Replicating the Study ...................................................................................................................................... 145 

8.2.2 Investigating Microservices Architectures in DevOps................................................................................ 145 



 

 

iv 

 

8.2.3 Understanding the Role of Software Architect in DevOps ........................................................................ 146 

8.2.4 Understanding the Impact of DevOps on Operations Responsibilities ................................................... 146 

Appendix A Interview Guide for Mixed-methods Study ............................................................................. 147 

Appendix B Survey Instrument ......................................................................................................................... 150 

Appendix C Interview Guide for Case Study .................................................................................................. 158 

Appendix D Selected Studies in Systematic Review ..................................................................................... 162 

Appendix E Approved Ethics Applications ..................................................................................................... 166 

Reference  ............................................................................................................................................................... 169 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

v 

 

 

1.1 The relationship between continuous integration, delivery and deployment ................................................. 2 

1.2 An overview of the thesis scope and organization .............................................................................................. 5 

2.1 Mixed-method research method steps................................................................................................................ 9 

2.2 Demographics of the interviewees in the mixed method study ..................................................................... 12 

2.3 Qualitative analysis process using NVivo tool in the mixed-methods study .................................................13 

2.4 Steps of applying conceptualized thematic analysis leading to “team dependencies” theme ..................... 14 

2.5 Steps of applying conceptualized thematic analysis leading “no visible Ops” theme .................................. 14 

2.6 Demographics of the survey participants in the mixed-methods study ........................................................ 16 

2.7 Constructing codes from the interview transcripts (case study) .................................................................... 21 

2.8 Building a category by applying open coding and constant comparison (case study) ................................ 21 

3.1 Phases of the search process ............................................................................................................................... 30 

3.2 Number of selected studies published per year and their distribution over types of venues ...................... 34 

3.3 An overview of tools used to form deployment pipeline ................................................................................. 43 

3.4 An overview of challenges and practices of adopting CI, CDE, CD, and their relationship ........................ 57 

4.1 How continuous delivery and deployment are implemented – aggregated results  .................................... 68 

4.2 Statement 1: How you would grade your CDP in terms of automation? ...................................................... 69 

4.3 Statement 2: We have the right tools to set up fully automated CDP .......................................................... 69 

4.4 Stages of Continuous Deployment Pipeline .....................................................................................................70 

4.5 Statement 3: How important is “lack of full test automation” in adopting CD  ........................................... 71 

5.1 Team Structure for effectively initiating CD practices .................................................................................... 84 

5.2 Survey results on patterns of organizing Dev and Ops teams for initiating and adopting CD  ................. 86 

5.3 Survey results on CDP team patterns (n=93) ................................................................................................... 88 

5.4 The practices to promote collaboration ........................................................................................................... 89 

5.5 Statement S1: Collaboration between team members has increased since the adoption of CD................. 89 

5.6 Statement S2: How important is “lack of suitable awareness on the status of a project”  ........................... 91 

5.7 Statement S3: My responsibility has changed after our organization adopted CD practices ..................... 92 

5.8 Three high-level changes in team members responsibilities for practicing CD .......................................... 92 

6.1 Implemented continuous delivery and deployment in participants’ organization ...................................... 101 

6.2 A conceptual framework of the findings showing how to (re-) architect for CD ....................................... 102 

6.3 Survey responses to the statement on the possibility of practicing CD within the monoliths ................. 104 

6.4 The survey respondents indicate the most important challenges in architecting for CD ......................... 104 

6.5 The main characteristics of “small and independent deployment units” principle ................................... 108 

List of Figures 



 

 

vi 

 

6.6 Additional factors to characterize “small and independent deployment units” ........................................ 108 

6.7 Survey responses to the statements on deployability and operational aspects ........................................... 113 

6.8 Survey responses to statements on quality attributes that need more attention in CD context ............... 116 

6.9 Survey responses to the statements on operational aspects .......................................................................... 123 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

vii 

 

 

1.1 An overview of research questions and research methods used to answer them ............................................ 3 

2.1 Mixed-methods research summary ..................................................................................................................... 9 

2.2 Summary of the interviewees’ details in the mixed-methods study ............................................................... 11 

2.3 Overview of the investigated projects, teams and interviewees in the case study ....................................... 18 

3.1 Comparison of this SLR with existing secondary studies ................................................................................. 25 

3.2 Research questions of this SLR ...........................................................................................................................28 

3.3 Inclusion and exclusion criteria of this SLR ..................................................................................................... 29 

3.4 Data items extracted from each study and related research questions ......................................................... 32 

3.5 Distribution of the selected studies on publication venues ............................................................................ 34 

3.6 Number and percentage of papers associated with each research type and data analysis type .................. 35 

3.7 Distribution of application domains of the selected studies ........................................................................... 36 

3.8 A classification of approaches and associated tools to facilitate CI, CDE and CD practices ....................... 39 

3.9 A classification of challenges in adopting CI, CDE, and CD practices .......................................................... 46 

3.10 A classification of practices and lessons learned for implementing CI, CDE, and CD ............................... 54 

3.11 List of critical factors for continuous practices success ..................................................................................59 

4.1 Summary of confounding factors in moving from CDE to CD........................................................................ 71 

6.1 Strategies for increasing the amount of attention paid to the operations team and their concerns ......... 123 

7.1 Decision for “external configuration” ................................................................................................................ 132 

7.2 Decision for “smaller, more loosely coupled units” ........................................................................................ 133 

7.3 Decision for “one monolithic deployment unit”.............................................................................................. 133 

7.4 Decision for “multiple deployment units in production” .............................................................................. 134 

7.5 Decision for “one repository per unit/artefact” ............................................................................................... 135 

7.6 Decision for “one massive repository for all units/artefacts” ......................................................................... 135 

7.7 Decision for “application should capture and report status properly” ........................................................ 136 

7.8 Decision for “application should be standalone, self-contained” .................................................................. 137 

7.9 How often the teams deploy to different environments   ............................................................................. 138 

7.10 Decision for “three distinct environments should be provided…” .............................................................. 139 

7.11 Decision template for “Teams should be cross-functional, autonomous” .................................................. 139 

 

 

 
 
 

List of Tables 



 

 

viii 

 

 
 

An Empirical Study of Architecting and Organizing for DevOps 

by Mojtaba Shahin 

 

Attracted by increasing the need of being able to improve business competitiveness and 

performance, many organizations have started to optimize themselves to develop and 

deliver high-quality values more quickly and reliably. Development and Operations 

(DevOps) is emerging as a promising approach in the software industry to help 

organizations to realize this goal. However, establishing DevOps practices, specifically 

continuous delivery and continuous deployment practices, in the industry is a challenge as 

it requires new organizational capabilities and novel techniques, methods and tools for 

application design, testing and deployment. 

Most research on DevOps focuses on tooling support, improving automation in testing 

and deployment, improving performance and integrating security into the deployment 

process to initiate and implement DevOps. To date, little is known about the impact of 

continuous delivery and deployment as two main DevOps practices on organizational 

structure (i.e., team structure) and the architecture of a system, those that are supposed to 

be fundamental limitations to adopt these practices. 

This thesis aims at filling this gap by conducting a set of empirical studies. We first design 

and conduct a systematic literature review to gain a comprehensive understanding of the 

concept of continuous delivery and deployment and the current state of research in this 

regard. Second, we design, implement and analyze a large-scale mixed-methods empirical 

study, consisting of 21 interviews and 98 survey responses. Finally, we conduct an in-depth 

industrial case study with two teams in a case company to explore the role of software 

architecture in DevOps transition. The empirical studies contribute to (1) provide detailed 

insights into the specifics of challenges moving from continuous delivery to continuous 

deployment; (2) find how teams are organized in software industry for adopting 

continuous delivery and deployment; and (3) develop evidence-based guidelines on how to 

(re-) architect an application to enable and support continuous delivery and deployment. 

 
 
 
 
 
 
 
 
 
 
 

Abstract 



 

 

ix 

 

 
 

I, Mojtaba Shahin, certify that this work contains no material which has been accepted 

for the award of any other degree or diploma in my name in any university or other 

tertiary institution and, to the best of my knowledge and belief, contains no material 

previously published or written by another person, except where due reference has been 

made in the text. In addition, I certify that no part of this work will, in the future, be used 

in a submission in my name for any other degree or diploma in any university or other 

tertiary institution without the prior approval of the University of Adelaide and where 

applicable, any partner institution responsible for the joint award of this degree.  

I give consent to this copy of my thesis when deposited in the University Library, being 

made available for loan and photocopying, subject to the provisions of the Copyright Act 

1968. 

I acknowledge that the copyright of published works contained within this thesis resides 

with the copyright holder(s) of those works.  

I give permission for the digital version of my thesis to be made available on the web, via 

the University's digital research repository, the Library Search and also through web 

search engines, unless permission has been granted by the University to restrict access for 

a period of time.  

I acknowledge the support I have received for my research through the provision of an 

Australian Government Research Training Program Scholarship. 

I am also truly thankful to Data61, a business unit of CSIRO, that has partially supported 

my PhD.  

 
 
 
Date: 2/08/2018 

Signature 

 

 
 
 
 
 
 

 
 

Declaration 



 

 

x 

 

 

 

 

First and above all, I wish to thank God, the Almighty, for all the gifts that I have had in 

my life: health, strength, and a great family. 

I would like to express my deepest gratitude to my principal supervisor, Prof. Dr. M. Ali 

Babar. I really thank Ali for giving me the opportunity to conduct the research on DevOps. 

It would not have been possible to finish this thesis without his patience, wisdom, endless 

support, constructive criticism, insightful comments, and motivations along the journey of 

my PhD.  

A heartfelt thanks to Prof. Dr. Liming Zhu, my co-supervisor, who has played an 

informative role in my PhD. Liming helped me to improve the quality of my papers by 

providing the detailed reviews and excellent comments.  

I wish to thank my collaborator, Dr. Mansooreh Zahedi, for her excellent comments and 

insights which contributed to this thesis. 

I would like to thank my examination committee members, Prof. Dr. Filippo Lanubile and 

Dr. Jingyue Li. I greatly appreciate your time and valuable comments on this thesis. 

I must thank all the members of CREST: Faheem Ullah, Bakheet Aljedaani, Chadni Islam, 

Jamal El Hachem, Nguyen Khoi Tran, Matthew Thyer, Benjamin Ramsey, Victor 

Prokhorenko, and Hao Chen. It was a pleasure to work with you all. A special thanks 

should go to Faheem for his feedback and comments on the early versions of my papers 

and presentations. 

I should give credit to Prof. Peng Liang, who has been playing a significant role in my 

research career since I was a master student. Peng introduced me to the world of software 

engineering research and has always been supporting me as a good friend and a mentor. 

I am also truly thankful to all the participants and companies involved in this research. 

Thank you for your time and sharing your knowledge and experiences on DevOps. 

I want also to thank all my teachers in the school and the university, who have helped and 

supported me to achieve the PhD.  

I must thank my extended family members. I cannot name all of you, but I would like to 

express my deepest gratitude to all of you, especially my uncles, Abbas, Shahram, 

Shahpoor, and Farshid, my aunts, Golchin, Esmat, Eshrat, Shiva, and Atefeh, and all my 

cousins. You have always been motivating me to pursue my education. 

The last but not the least, I would like to thank all members of my family. It is absolutely 

impossible to find the right words to express my feeling about them. A great thanks should 

go to my sister, Farzaneh, for being a kind, compassionate, inspirational, and supportive 

sister all the time. I must thank my brother-in-law, Yaser, for his continuous support. 

Special thanks to my lovely niece, Taraneh, for being the biggest source of happiness for 

Acknowledgments 



 

 

xi 

 

me and my family. I am immensely grateful to my brothers, Farzan and Fardin. Thank you 

so much for your love and supporting our family and taking all responsibilities instead of 

me. I am forever grateful to my parents, Avazali and Zomorod, for all their kindness, 

sacrifices, love, and support. My father is my role model in any aspect of my life. For me, 

he is truly the icon of a family man as he has sacrificed all his life to provide us with 

opportunities to be successful. I should express my deepest gratitude and affection to my 

mother, who has always been the front-line supporter in all aspects of my life with 

unconditional love. Without you guys, I could not have finished my PhD.  

 

 

Mojtaba Shahin 

2/08/2018 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

xii 

 

 
 
 
 
 
 
 
 
 

To my family

Dedication 



 

 

1 

 

 

1.1 Background 

To succeed in a world where the requirements of customers and technologies change at the speed of 

light, software organizations need new paradigms for software development, in which they outpace 

their competitors by delivering changes to customers faster. Development and Operations (DevOps) 

is a new movement in the software industry to solve the disconnect between development and 

operations teams by promoting collaboration, communication, and integration between them [6]. 

Put another way, DevOps is characterized by treating operations staff as first-class stakeholders of 

the software development process by bringing them close to the software development team right 

from the beginning [7]. The main idea behind integrating development and operations stuff is to 

reduce the time between committing a change and deploying the change into production without 

quality degradation [7]. A set of technical and social-technical practices are associated with DevOps 

including continuous integration, continuous delivery, continuous deployment, and infrastructure 

as code [8, 9]. Through continuous integration, continuous delivery, continuous deployment, IT 

organizations are enabled to accelerate delivering high-quality value to customers. 

Continuous Integration (CI) is a widely established development practice in software development 

industry [10], in which members of a team integrate and merge development work (e.g., code) 

frequently, for example, multiple times per day. Continuous integration enables software companies 

to have shorter and frequent release cycle, improve software quality, and increase their teams’ 

productivity [10]. This practice includes automated build and testing [11].  

Continuous delivery is a software engineering approach that aims at keeping software releasable all 

the time after successfully passing automated tests and quality checks [12, 13]. Continuous delivery 

employs a set of practices e.g., continuous integration, and deployment automation to deliver 

software automatically to a production-like environment [9]. According to [13, 14], this practice 

offers several benefits such as reduced deployment risk, lower costs, and faster user feedback. Figure1 

1.1 indicates that having continuous delivery practice requires continuous integration practice.    

Continuous deployment practice goes a step further in order to automatically and continuously 

deploy new changes to production or customer environments [12, 15]. There is a robust debate in 

academic and industrial circles about defining and distinguishing between continuous delivery and 

continuous deployment [10, 12, 13]. It is mainly because continuous delivery and deployment are 

highly correlated and intertwined, and their meanings highly depend on how a given organization 

interprets and employs them [16, 17]. Continuous deployment is a push-based approach and should 

not include any manual steps. It means that as soon as developers commit a change, the change is 

released to a production environment through a pipeline [18]. In contrast, continuous delivery is a 

pull-based approach for which a business decides what and when to release [18]. In other words, the 

scope of continuous delivery does not include frequent and automated release, and continuous 

deployment is consequently a continuation of continuous delivery. Whilst continuous delivery 

practice can be applied to all types of systems and organizations, continuous deployment practice 

                                                           
1 Note that the icons that are used in the figures of this thesis are taken from freepik.com and thenounproject.com 

Introduction 

Chapter 1 



 

 

2 

 

may only be suitable for certain types of organizations or systems [13, 18, 19]. Figure 1.1 shows the 

relationship between these practices. We also present how an application is deployed to different 

environments [20]. Whilst a production environment is where applications or services are available 

for end users, a staging environment aims at simulating a production environment as closely as 

possible. 

 

Figure 1.1 The relationship between continuous integration, delivery, and deployment 

1.2 Research Objectives and Questions 

DevOps promises many benefits such as improvement in the business competitiveness and 

performance, faster development and deployment of new changes, and faster failures detection [7, 9, 

21]. For example, it has enabled many highly innovative organizations such as Facebook, Netflix, and 

Etsy to significantly reduce time to market as they release software changes to their customers 

multiple times a day [22]. Continuous Delivery and Deployment (CD) are the key DevOps practices 

to suitably realize the promises of DevOps [7]. However, implementing CD practices might be a 

challenging task for IT organizations because they may need to change and/or augment 

organizational processes, practices, and tools, which may not be ready to support the highly 

complex and challenging nature of these practices.  

Software engineering community has recently started a notable investigation of different aspects of 

CD. Existing studies have mostly focused on reporting the challenges of CD adoption [11, 23, 24], 

tooling support [25-27], improving automation in testing and deployment [28, 29], improving 

performance [30, 31] and integration security [32] into the deployment process to initiate and 

implement CD. On the other hand, it has been recently proclaimed that the fundamental limitations 

to adopting these practices are deeply ingrained in the organizational structure (i.e., team structure) 

[33] and the architecture of a system [7, 9, 34] and fixing these limitations often requires making 

alignment between organizational structure and software architecture [35]. It is mainly because 

according to Conway’s Law “organizations which design systems ... are constrained to produce designs 

which are copies of the communication structures of these organizations” [36]. Whilst, academic, and 

industry communities have called a new line of research to fill in this gap [9, 37-40], there are a few 

studies on this subject and almost all of them are not across multiple projects, organizations, and 

contexts. Overall, the goal of this thesis is to empirically investigate how organizational structure 

and software architecture being impacted by or impacting CD practices [41]. This PhD thesis 

provides guidelines in this regard with empirical evidence for research and practice and thereby 

increasing the success of adopting CD and suggesting recommendations for better practices and 

tools development. 

Build 
Unit Tests 

Acceptance 
Test 

CI Server 
Staging Environment 

Production Environment 

Commit  Trigger Deploy 

Developers 

Continuous Delivery 

Continuous Deployment 

Manual Step Automated Step 

Code Repository Package 
Performance 

Test 

Continuous Integration 

Release 

Production Feedback 

CI Feedback 

Staging Feedback 



 

 

3 

 

Problem Statement: A deeper understanding of continuous delivery and deployment 

practices and their impact on architecting and organizational structures is needed as it is 

expected to provide an evidence-based body of knowledge for practitioners and 

researchers in order to support further development and adoption of these practices.  

To realize the goals of this thesis, three high-level research questions, along with their sub-research 

questions are defined, which would be the focus of this thesis (See Table 1.1). Moreover, Table 1.1 

shows which research methods are used to answer the research questions and indicates 

corresponding chapters where the research questions are addressed. 

Table 1.1 An overview of research questions and research methods used to answer them 

High-level Research Questions Sub Research Questions Chapter # Research Method 

RQ1. What is the state of art of 
continuous integration, delivery 
and deployment research? 

RQ1.1 What approaches and associated tools 
are available to support and facilitate 
continuous integration, delivery, and 
deployment? 

Chapter 3 Systematic 
Literature Review 

RQ1.2 Which tools have been employed to 
design and implement deployment pipelines 
(i.e., modern release pipeline)? 

RQ1.3 What challenges have been reported 
for adopting continuous integration, 
delivery, and deployment? 

RQ1.4 What practices have been reported to 
successfully implement continuous 
integration, delivery, and deployment? 

RQ2. What are the organizational 
impacts of CD? 

RQ2.1 What factors do limit or demotivate 
moving from continuous delivery to 
continuous deployment?  

Chapter 4 

Mixed-methods 
Study 

RQ2.2 How are development and operations 
teams organized to initiate and adopt 
continuous delivery and deployment? 

Chapter 5 
RQ2.3 How is collaboration among teams 
and team members improved for adopting 
continuous delivery and deployment? 

RQ2.4 How does adoption of continuous 
delivery and deployment impact on team 
members’ responsibility? 

RQ3. What are the architectural 
impacts of CD? 

RQ3.1 How should an application be (re-) 
architect to enable and support continuous 
delivery and deployment? 

Chapter 6 

RQ3.2 What key architectural decisions are 
made by a case company to adopt DevOps? 

Chapter 7 Case Study 

1.3 Thesis Contributions 

The key contributions of this thesis can be categorized into six areas: 

1. Establishing a solid background knowledge of three key practices of DevOps, namely 

continuous integration, delivery and deployment (Chapter 3) 



 

 

4 

 

o A taxonomy of the approaches, associated tools, and challenges and practices of 

continuous integration, delivery, and deployment in an easily accessible format 

o A set of factors that a given organization should carefully consider when 

implementing continuous integration, delivery and deployment practices 

2. Designing and conducting the largest empirical study, to date, concerning the state of the 

practice on architecture and organizational aspects of continuous delivery and deployment 

(Chapter 2).  

o Publicly available survey instrument enables other researchers to replicate our 

study in different organizations and contexts  

o A publicly available dataset of 98 anonymized survey responses 

3. Understanding why continuous delivery has been adopted more than continuous 

deployment in the industry (Chapter 4)  

o Understanding the structure (e.g., phases) and limitations of the deployment 

pipelines in the industry 

o Identifying confounding factors that influence moving to continuous deployment 

from continuous delivery  

4. Understanding the impact of continuous delivery and deployment on teams (Chapter 5). 

o Identifying four distinct working styles of organizing development and operations 

teams 

o Providing an evidence-based understanding of collaboration strategies for CD 

o Identifying new/required responsibilities and skills for succeeding in CD  

5. Understanding practitioners’ perspectives on software architecture and design aspects of 

continuous delivery and deployment (Chapter 6) 

o A better understanding of practicing CD within monoliths  

o Characterizing “small and independent deployment units” principle attempted by 

the practitioners to ease a CD journey 

o Identifying a set of CD-driven quality attributes 

o A conceptual framework to (re-) architect for CD 

6. Exploring a DevOps journey from software architecture perspective in a case company 

(Chapter 7) 

o Identifying, documenting and analyzing the architectural decisions and their 

implications made by the case company to implement DevOps 

1.4 Outline of Thesis and Publications 

The core chapters of this thesis are derived from the publications which have been previously 

published or are currently under submission. Figure 1.2 shows an overview of the thesis scope and 

outline. The rest of this thesis is organized as follows: 



 

 

5 

 

 

Figure 1.2 An overview of the thesis scope and organization 

Chapter 1 – This chapter describes the motivations behind this thesis, the research questions, the 

contributions of this research, and the organization of this thesis. Parts of this chapter have 

appeared in: 

❶ Mojtaba Shahin, Architecting for DevOps and Continuous Deployment, In Proceedings of 24th 

Australasian Software Engineering Conference (ASWEC), Doctoral Symposium Track, Vol II, Pages: 147-

148 Adelaide, Australia, 2015, ACM. 

Chapter 2 – This thesis uses three different research methods to answer the research questions 

presented in Table 1.1. Furthermore, the results of Chapters 4, 5, and 6 are based on one large-scale 

mixed-methods empirical study. Therefore, this chapter presents a detailed description of each 

research method including the reasons behind the chosen research method, the challenges faced in 

using the research method and strategies adopted to overcome those challenges. 

Chapter 3 – This chapter addresses the research question RQ1 and presents the results of a 

systematic literature review to classify the approaches, tools, challenges, and practices of continuous 

integration, delivery, and deployment reported in the literature. This chapter has been previously 

published as: 

Chapter 3: A 
Systematic Review on 

Continuous 
Integration, Delivery 

and Deployment  

Chapter 4: Moving from 
Continuous Delivery to 

Continuous Deployment 

Chapter 5: Continuous 
Delivery and Deployment: 

Organizational Impact  

Chapter 6: Architectural 
Impact of Continuous 

Delivery and Deployment: 
Practitioners’ Perspectives 

Chapter 7: On the Role of 
Software Architecture in 

DevOps Success 

Mixed-methods Approach Case Study 

Organizational Aspects Architectural Aspects 

Adopting DevOps, Continuous Delivery, Deployment in practice 

Empirical Results 

Potential Outcomes 

Providing Background 

Gain insights into how industry deal 
with challenging nature of DevOps, 
continuous delivery and deployment 

Improvement to the adoption of 
DevOps, continuous delivery and 

deployment 

Recommendations for better 
practices and tools 

development 



 

 

6 

 

❷ Mojtaba Shahin, Muhammad Ali Babar and Liming Zhu, Continuous Integration, Delivery and 

Deployment: A Systematic Review on Approaches, Tools, Challenges and Practices, IEEE Access, 5 (99), 

Pages: 3909-3943, 2017, IEEE. [Impact Factor (2017): 3.55, SJR rating: Q1] 

Chapter 4 – This chapter answers the research question RQ2.1 by conducting a mixed-methods 

empirical study. First, it presents the current state of automation support in continuous delivery and 

deployment. Second, it identifies a set of confounding factors that limit or demotivate organizations 

to have the automatic and continuous deployment. This chapter has appeared in: 

❸ Mojtaba Shahin, Muhammad Ali Babar, Mansooreh Zahedi and Liming Zhu, Beyond Continuous 

Delivery: An Empirical Investigation of Continuous Deployment Challenges, In Proceedings of 11th 

ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM), 

Pages: 111-120, Toronto, Canada, 2017, IEEE. [Core rating: rank A, acceptance rate: 19% (21/109)] 

Chapter 5 – This chapter empirically investigates the impact of adopting continuous delivery and 

deployment on team structures (RQ2.2), collaboration (RQ2.3) and team members’ responsibilities 

(RQ2.4). This chapter has been published as:  

❹ Mojtaba Shahin, Mansooreh Zahedi, Muhammad Ali Babar and Liming Zhu, Adopting Continuous 

Delivery and Deployment: Impacts on Team Structures, Collaboration and Responsibilities, In Proceedings 

of 21st International Conference on Evaluation and Assessment in Software Engineering (EASE), Pages 

384-393, Karlskrona, Sweden, 2017, ACM. [Core rating: rank A, acceptance rate: 37.5% (27/72)] 

Chapter 6 – This chapter introduces a catalogue of findings of architecting for continuous delivery 

and deployment to address the research question RQ3.1, which is expected to make a significant 

contribution to the growing body of evidential knowledge in this regard. This chapter includes the 

following papers: 

❺ Mojtaba Shahin, Muhammad Ali Babar and Liming Zhu, The Intersection of Continuous Deployment 

and Architecting Process: Practitioners’ Perspectives, In Proceedings of 10th ACM/IEEE International 

Symposium on Empirical Software Engineering and Measurement (ESEM), Pages: 44:1-44:10, Ciudad Real, 

Spain, 2016, IEEE. [Core rating: rank A, acceptance rate: 22% (27/122)]  

❻ Mojtaba Shahin, Mansooreh Zahedi, Muhammad Ali Babar and Liming Zhu, An Empirical Study of 

Architecting for Continuous Delivery and Deployment, (subject to minor revision): Journal of Empirical 

Software Engineering (EMSE), 2018, Springer. [Impact factor (2107): 2.93, SJR rating: Q2] 

Chapter 7 – This chapter reports on the results of an industrial, in-depth case study. This chapter 

collects, reports and analyzes a set of significant architectural decisions (e.g., architectural tactics) 

and their implications made by two teams in a case company to smooth the DevOps transition path. 

This contribution answers the research question RQ3.2. The results presented in this chapter will be 

submitted to a CORE A-ranked software engineering conference. 

Chapter 8 – The last chapter concludes the thesis. It closes the thesis with suggestions for future 

work. 

1.5 Statement of Contribution  

I as the author of this thesis was the primarily responsible for the inception, plan, design, data 

collection, analysis and write-up of all the activities and publications presented in this thesis. 

1.6 Writing Style 

It is argued that constructing knowledge is a community-based activity [42, 43]. Although I was the 

main responsible for all activities in this PhD thesis, most of them have been conducted in 



 

 

7 

 

collaboration with my PhD supervisors. Hence, the first person plural we is used in this thesis to 

refer to collaborative efforts [43]. For places that are needed to explicitly distinguish the roles of the 

researchers involved in this thesis, for example when describing the analyzing process of the mixed-

methods study, the present author is used to refer to the author of the thesis and other 

researchers (or persons) are used to refer to others. 

1.7 Other Publications 

In parallel to the research presented in this thesis, I have collaborated in the following publications 

as first author or co-author, which are not used in this thesis: 

❼ Mojtaba Shahin and Muhammad Ali Babar, Improving the Quality of Architecture Design through 

Peer-reviews and Recombination, In Proceedings of 9th European Conference on Software Architecture 

(ECSA 2015), Pages: 70-86, Dubrovnik/Cavtat, Croatia, 2015, Springer. [Core rating: rank A, acceptance 

rate (full papers): 12% (12/100)] 

❽ Mansooreh Zahedi, Mojtaba Shahin and Muhammad Ali Babar, A Systematic Review of Knowledge 

Sharing Challenges and Practices in Global Software Development, International Journal of Information 

Management, Elsevier, 36 (6), Part A, Pages 995–1019, 2016, Elsevier. [Impact factor (2017): 4.51, SJR rating: 

Q1]  

❾ Faheem Ullah, Adam Johannes Raft, Mojtaba Shahin, Mansooreh Zahedi and Muhammad Ali Babar, 

Security Support in Continuous Deployment Pipeline, In Proceedings of 12th International Conference on 

Evaluation of Novel Approaches to Software Engineering (ENASE), Pages: 57-68, Porto, Portugal, 2017. 

[Core rating: rank B] 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

8 

 

 

This chapter presents the research approaches pursued in this thesis. It starts with a brief 

explanation of the systematic literature review and its goal, followed by describing the 

mixed-methods research approach adopted for Chapters 4, 5 and 6. Finally, we describe the 

design of an exploratory, holistic, two-case study, which is used for Chapter 7.   

2.1 Systematic Literature Review 

In order to establish a solid background knowledge on DevOps, continuous integration, delivery and 

deployment practices, we used Systematic Literature Review (SLR) that is one of the most widely 

used research methods in Evidence-Based Software Engineering (EBSE) [44]. SLR aims at providing 

a well-defined process for identifying, evaluating and interpreting all available evidence relevant to a 

particular research question or topic [45]. An SLR evaluates existing studies on a specific 

phenomenon fairly and creditably. This research method involves three main phases: defining a 

review protocol, conducting a review, and reporting a review. We discuss the review protocol and 

the results of this SLR in Chapter 3. 

2.2 Mixed-methods Empirical Approach 

It is argued that the research method should be selected based on the nature and objectives of the 

studied problem [46]. Considering the exploratory nature of the research questions RQ2.1, RQ2.2,  

RQ2.3, RQ2.4 and RQ3.1 introduced in Chapter 1, we chose a mixed-methods approach with a 

sequential exploratory strategy [46] to answer them. The mixed-methods approach makes use of 

both qualitative and quantitative research methods for data collection and analysis [46] in order to 

enable researchers to compensate for the weaknesses of both methods [47]. The mixed-methods 

approach consisted of interviews and a survey to find the answer to these research questions. 

Gathering data from different sources (i.e., data triangulation) increases the accuracy and reliability 

of the results [46, 48]. 

As shown in Figure 2.1, after creating an interview guide, we conducted 21 interviews with software 

practitioners to gather a wide range of perspectives and to gain a deep understanding of how 

adopting CD practices may impact on the organizational and software architecting processes. The 

interviews had a qualitative focus and mainly dealt with “How” and “What” questions (See Appendix 

A). At the next step, we ran a survey to reach out to large populations of software industrial 

practitioners. The survey aimed at quantifying, augmenting, and generalizing the findings obtained 

from the interviews. Although the survey mostly focused on quantitative aspects, we had some 

open-ended questions to gain further thoughts and opinions from the respondents. Both the 

interviews and survey have been conducted under the ethics approval obtained from the Human 

Research Ethics Committee at the University of Adelaide (See Appendix E). We developed a research 

protocol using appropriate guidelines [49, 50] and meticulously followed it whilst conducting this 

study. Table 2.1 summarizes the mixed-methods research method. Chapters 4, 5 and 6 report the 

Research Design 

Chapter 2 



 

 

9 

 

findings of this mixed-methods research. The following sections deal with the commonalities (e.g., 

recruitment process and threats to validity) between Chapters 4, 5 and 6 in terms of research 

method. However, there might be slight differences, for example, each chapter targets specific 

interview and survey questions. We will describe these differences in the corresponding chapters. 

Hence, Chapters 4, 5 and 6 would have a very short research method section and we mostly refer to 

Chapter 2 when their research methods are introduced. Due to the confidentiality purpose, the 

anonymity of the interviewees, the survey participants, and their respective organizations have been 

strictly maintained when presenting the findings in each chapter. 

 

Figure 2.1 Mixed-methods research method steps 

Table 2.1 Mixed-methods research summary 

 Goal Participants  Protocol  Analysis 

Interviews 

Exploring the impact of 
continuous delivery and 

deployment on 
architecting and 

organizational aspects 

21 practitioners 
(P1-P21) from 19 
organizations 

Semi-structured; 
60-90min; 19 
Skype- and 2 
email-based 
interviews 

Thematic Analysis-
NVivo 

Survey 
Quantifying and 

generalizing the interviews’ 
findings 

98 practitioners 
(R1-R98) 

Approx. 20 min 

Descriptive 
Statistics + 

Thematic Analysis- 
NVivo 

2.2.1 Interviews 

2.2.1.1 Protocol   

The interview guide involved 40 open-ended questions that were designed to support a natural 

conversation between the interviewer and the interviewee. The interview questions enabled the 

participants to freely and openly share their experiences and thoughts. We carried out 21 semi-

3. Formulate and Distribute Survey 

Findings 

2. Conduct and Analyze Interviews 1. Create Interview 
Guide 

Interview Guide 

Multi-vocal 
Literature Review 

Systematic 
Literature Review 

1a 

1b 

Conduct interviews 

Data analysis 

Transcribe 
interviews 

Themes 

Formulate survey 
questions 

Data analysis 

Distribute survey  

2a 

2b 

2c 

3a 

3b 

3c 

60-90 min   

~ 20 min   

2 Analysts 

2 Analysts 



 

 

10 

 

structured, in-depth interviews with participants from 19 organizations. Most of the interviews (i.e., 

19) were carried out via Skype. Given the time and geographical restrictions, 2 of the participants 

opted for sharing their responses via email. After getting practitioners’ consent for participation in 

the interviews, we shared the questions with them before conducting the interviews. This practice 

enabled the participants to become familiar with the objectives of the interview’s questions before 

participating in the interview [49].  

As the study progressed, we modified some of the questions based on the feedback from the 

interviewees [48]. This included rephrasing three questions, dropping four questions (e.g., the 

question related to development methodology) to shorten the interview time, and adding two 

questions. Although the interview questions were only stable after the fifth interview, we believe this 

did not affect our findings as the findings reported in this thesis were confirmed by multiple 

interviewees. It is worth mentioning that the interviews were exploratory in nature and 

generalizability was not the main goal. The interviews were conducted by one person (i.e., the 

present author), each of which lasted from 60 to 90 minutes. With the interviewee’ consent, we 

audio-recorded the interviews and fully transcribed them for an in-depth analysis. For readability 

purposes, we fixed the grammatical issues in the transcripts of the interviews. Figure 2.1 shows that 

the interview guide was created based on the systematic review of literature reported in Chapter 3 [1] 

and multi-vocal literature review (i.e., non-peer-reviewed sources of information such as blogs [51]).  

The interview instrument had four main parts. First part briefed the high-level goals of the research 

to the interviewees. Second, the interviewees were asked demographic questions (e.g., role and 

number of years of experience). Third, we asked them to select at least one project from their 

organization or client that had adopted or was adopting Continuous delivery or/and Deployment 

(CD) practices. In fact, CD had to be the major focus in the project to be used as a reference point 

for each of the interviews. Next, the interviewees were asked to share how adopting CD practices 

have (positively/negatively) influenced their organizational and architecting processes and the 

principles, strategies, and practices that they employed to succeed in. At the end of each interview, 

we asked the interviewees to share any other comments and potential issues regarding the 

questions. The interviews produced a total of almost 26 hours of audio and over 90000 words of 

transcriptions. The interview guide is included in Appendix A of this thesis. 

2.2.1.2 Participants 

We aimed to recruit participants using purposive sampling for this study [52]. We approached 

software practitioners who either had worked for the organizations adopting DevOps/CD practices 

(e.g., were DevOps engineers) or were involved in DevOps consulting organizations (e.g., were 

DevOps consultants). The interviewees were identified in multiple ways: (i) we identified the 

potential participants, for example, through our personal networks, and by exploring the list of 

speakers and attendees of industry-driven conferences on DevOps, CD, or software architecture. 

Furthermore, we ran the following search terms on the Google search engine to find highly relevant 

practitioners in this regard: “architecting for DevOps”, “architecting for continuous 

delivery/deployment”, and “microservices and continuous delivery/deployment”. (ii) We strictly 

analyzed their profiles to understand whether they had the right kind of experiences and expertise 

to participate in our study. The targeted population included people who worked in the 

organizations adopting DevOps/CD practices, people who provided consulting services, and people 

who were regular speakers at industry conferences in these areas. (iii) Then, we sent an invitation 

email to them directly. Apart from rigorously analyzing the potential participants’ profiles to 

understand whether they had the right types of competences for this research, as discussed in 

Section 2.2.1.1, the interview questions were sent in advance to the potential participants so that they 

could decide whether or not they were suitable participants.  



 

 

11 

 

We motivated the interviewees by giving them a free copy of a book (i.e., “DevOps: A Software 

Architect's Perspective” [7]) after the study. It should be noted that we interviewed practitioners 

with different levels of seniority, different project roles, and different types of experiences in order to 

achieve a broad and rich understanding and characterization of the implications of CD. We also 

used “snowballing technique” to ask participants to introduce suitable candidates for participation 

[53]. Out of 21 interviewees, 5 were identified through our personal contacts, 2 using the snowballing 

technique and 14 by googling and browsing their profiles.  

Interviewees characteristics: In total, 21 practitioners (i.e., indicated by P1 to P21 in Chapters 4, 5 

and 6) participated in the interviews. All the participants were male and came from 19 organizations 

in 9 countries. Table 2.2 presents a summary of the demographic details of the participants and their 

projects.  

Technical role: As shown in Figure 2.2, 7 out of 21 the interviewees were currently in the role of an 

architect, followed by consultants (4 out 21, %19). The rest of them were executives (e.g., CTO, 2), 

team leads (2), program managers (2), a developer (1), DevOps engineer (1), operations engineer (1), 

and software engineer (1). 

Experiences: Regarding the interviewees’ experiences in software development, 14 interviewees had 

more than 10 years, five had 6-10 years and two had 1-5 years of experience. 

Organization sizes and domains: The interviewees’ organizations were from different domains 

including consulting and IT services (8), financial (2), telecommunication (2), games (2). Among the 

21 interviewees, 9 worked in large organizations (>1000 staff), 7 in medium-sized (100-1000 staff) and 

5 in small ones (<100 staff). 

Table 2.2 Summary of the interviewees’ details in the mixed-methods study 

ID Role Country Project Domain Type Team Size 

P1 Architect Australia 

Project 1: Cloud-based 
system 

Greenfield  10 

Project 2: Data integration 
system 

Maintenance 7-8 

P2 Developer China Network monitoring system Greenfield  7  

P3 
Senior DevOps 
Consultant  

US Financial system Greenfield  20 

P4 Program Manager  Australia N/A Greenfield  25 

P5 
Director of 
Engineering  

India Supply chain system Maintenance 40 

P6 
Vice President of 
Development  

US Commercial credit software N/A 15 

P7 
Manager/Chief 
Architect  

US 
Network access management 
system 

Maintenance 14 

P8 DevOps Engineer Australia Telecommunication system Greenfield  10-15 

P9 
IT Consultant/ IT 
Architect 

Netherlands 

Project 1: Transport system  Maintenance 15 -20  

Project 2: Banking system Greenfield  5 

Project 3: Financial system Maintenance  
6 teams with about 7 
members 



 

 

12 

 

P10 
Continuous 
Delivery 
Consultant  

Netherlands Insurance website Maintenance 
Development team (21) 
DevOps/CD team (4)  

P11 Architect Germany N/A Maintenance 10 

P12 
Technical 
Lead/Architect 

England 
Content management 
system  

Greenfield  50 in 4-5 different teams 

P13 Architect US Financial system Maintenance 25 

P14 
Architect/ 
Independent 
Consultant 

Latvia Financial system Greenfield 
3 distributed teams each 
50 members. 

P15 
Architect/ 
Consultant 

Latvia Financial system Greenfield 15 

P16 
Operations 
Engineer  

Finland 
Website application for 
selling game  

Greenfield 7 

P17 Technical Lead USA Software game Maintenance 150 

P18 Consultant UK Scientific software Maintenance  100 

P19 Solution Architect USA N/A N/A N/A 

P20 Software Engineer USA Email software Maintenance 15 

P21 Solution Architect India Word processing software Greenfield 5 

 

 

Figure 2.2 Demographics of the interviewees in the mixed method study 

7

4

2

2

1

1

1

1

1

1

Architect

Consultant

Program Manager

Technical  Lead

DevOps Engineer

Developer

Director of Engineering

Vice President of Development

Ops Engineer

Software Engineer

Role

1 1

5

14

0

2

4

6

8

10

12

14

16

1–2 3–5 6–10 > 10

Development Experience

5

7

9

Organization Size

1-100 101-1000 > 1000

8

32

2

2

4

Organization Domain

Consulting and IT services
Technology
Financial
Telecommunication
Games
Other



 

 

13 

 

2.2.1.3 Analysis 

We performed a qualitative analysis of the interviews’ data using a conceptualized thematic analysis 

technique in software engineering [54]. Given the large volume of data, we decided to use a 

qualitative data analysis tool called NVivo2. This allowed a systematic and more convenient analysis 

and comparison of emerging themes. Our data analysis process started after the third interview, 

indicating both data collection and analysis proceeded in parallel [55]. While the analysis process 

was performed by one person (i.e., the present author), all extracted themes were examined by 

another researcher to confirm the themes and identify any other potential themes. A screenshot of a 

concrete use of NVivo tool in data analysis process is shown in Figure 2.3. 

 

Figure 2.3 Qualitative analysis process using NVivo tool in the mixed-methods study 

The five steps of the conceptualized thematic analysis method were conducted as follows: 

(1) Extracting data: data analysis began with reading and examining the transcripts of the 

interviews line-by-line to extract the key points of each interview and transferred them to the 

NVivo tool. 

(2) Coding data: at this step of the analysis, the initial codes were constructed. Our interview 

mostly targeted “How” questions, which were answered in detail. This enabled us to extract the 

initial codes for later analysis (See Figures 2.4.A and 2.5.A). Making use of NVivo enabled us to 

move back and forth between the codes easily and review all the extracted data under a 

particular code. 

(3) Translating codes into themes: for each interview transcript, the codes identified in the last 

step were clustered into potential themes (See Figures 2.4.B and 2.5.B).  

(4) Creating a model of higher-order themes: this step involved re-evaluating the extracted 

themes against each other to merge presumably related themes or exclude the themes with low 

evidence support [56]. At the end of this step, we generated a higher-order model of themes (See 

Figures 2.4.C and 2.5.C). 

(5) Assessing the trustworthiness of the synthesis: through this step, we first assessed the 

trustworthiness of the interpretations from which core themes emerged [54]. In this step, we 

established arguments for the extracted themes, for example in terms of credibility, are the 

                                                           
2http://www.qsrinternational.com  



 

 

14 

 

claimed core themes supported by the evidence of the thematic synthesis? For confirmability 

purposes, is there any consensus among the researchers on the coded data? Then, each core 

theme was given a clear and precise name.  

Figures 2.4 and 2.5 show the application of the conceptualized thematic method on some of the 

interview transcripts to identify the “team dependences” and “no visible Ops team” themes 

respectively.   

 

Figure 2.4 Steps of applying conceptualized thematic analysis leading to “team dependencies” theme 

 

Figure 2.5 Steps of applying conceptualized thematic analysis leading “no visible Ops” theme 

“(…) we had multiple teams working on the same 
codebase. (…) many teams are trying to push many 
things in the same time. And you could see a lot of 
friction on deployment pipeline itself.”  

“(…) software architecture largely determines whether 
you are able to have individual teams deliver software 
on the continuous basis because if I have multiple 
teams which uses software which has a lot of cross 
dependencies….”   

“We had to change the structure of business as well 
because initially we had large monolithic codebase and 
it is hard to work on single monolithic codebase when 
you have 100 or 200 people working on the same 
codebase”   

“(…) the components in microservices should be 
developed by one team and one team should not create 
two or three microservices because this would produce 
more problems…  

Large team working on 
monolithic application 

Unsuitable architecture 
impacts on ability of 

delivery teams  

Multiple teams working on 
the same monolithic 

codebase 

Dependency between 
hardware and software team 

Teams implementing more 
than one component/service 

“(…) they [hardware team] had their own hardware; 
their infrastructure was not ready; they had serious 
and significant quality cycle. So, we had to go 
through… it was pretty tiring and exhausting when we 
were going to deployment cycle.   

Team 
Dependencies 

A. Initial codes B. Themes C. Higher-order 
Theme 

A. Initial codes B. Themes C. Higher-order Theme 

“Well we had operational personnel at the team; 
they were there at every moment of the project as 
we [were] making decision. So, they were integrated 
part of the team; …” 

“(…) we had to change this mindset and in about 
three year we moved to cross functional team and 
where operations were part of the team….” 

“In our team, our developers do all the jobs like you 
write the code, you do unit test on your own code… 
we do all of operational jobs like delivery your final 
code on production server …” 

Fully shared 
responsibilities 

Forming cross-functional 
teams 

Ops team integrated in 
Dev team 

No visible Ops 



 

 

15 

 

2.2.2 Survey 

2.2.2.1 Protocol 

The online survey was designed based on the guidelines suggested by Kitchenham and Pfleeger [50] 

and hosted on Google Forms. The survey questions were formulated based on the interviews’ 

findings to augment and generalize the findings with a larger sample size. In the survey preamble, 

we briefly explained the study’s goals and the eligibility requirements of the potential participants. 

We also clearly defined the architecting process, continuous delivery, continuous deployment, and 

deployability terminologies. This information was necessary to ensure that all the survey 

participants understood and used those terminologies consistently.  

Apart from demographic questions (6 questions), the survey had 46 questions including five-point 

Likert-scale (31 questions), multiple-choice (3 questions), single-choice (4 questions) and open-

ended (8 questions) questions. All questions were mandatory. For multiple- and single-choice 

questions, an “Other” field was added to collect further perspectives and thoughts form the 

participants [57]. Likert-scale questions asked the participants to rate five types of statements: (1) 

how they agreed or disagreed with the statements (i.e., from strongly agree to strongly disagree); (2) 

how important (i.e., from very important to unimportant) the statements or the challenges reported 

in the statements were; (3) how frequently the statements occurred (i.e., from almost always to 

never); (4) how likely they experienced the statements (i.e., from not at all to very much); and (5) 

how they scored the statements (i.e., from 1 to 5). At the end of the survey, we included an optional 

open-ended question to collect any general comments about the questionnaire. Feedbacks provided 

by the participants through this question helped us to rephrase five questions (e.g., removing 

ambiguity in a question’s wording) and add three questions (i.e., Q19, Q28, and Q43 in Appendix B) 

in the middle of running the survey to cover more aspects of CD. It is worth noting that the survey 

questions were not reworded any further after receiving the tenth response. The survey was in 

English and took about 20 minutes to complete. The complete list of the survey questions is shown 

in Appendix B of this thesis.     

2.2.2.2 Participants 

We employed three recruitment methods for our survey. Initially, we publicly advertised the survey 

to several groups interested in the topics related to DevOps, CD, and microservices on LinkedIn. 

Secondly, an invitation letter was sent to 4050 GitHub users via email and invited them to complete 

the survey. In the email invitation and survey preamble, we asked the participants to forward the 

survey to any colleague eligible to participate. We incentivized the participation in the survey by 

offering five copies of a DevOps book (i.e., “DevOps: A Software Architect's Perspective”) to five 

randomly selected respondents, who would have wished to be considered for the draw. However, we 

were not successful in recruiting practitioners using the first two methods as fewer than 10% of all 

responses came from these recruitment approaches. We believe that it is mainly because our survey 

needed an advanced level of knowledge and expertise in both software architecture and CD. 

Murphy-Hill et al. [58] also revealed that posting the survey on social networks may not encourage a 

large number of practitioners to participate. 

Although we only used the email addresses that were publicly available on GitHub to invite the 

GitHub users, this approach raised minor issues, e.g., a few numbers of them complained about why 

their email addresses being harvested. Therefore, we approached the highly relevant practitioners by 

following the process used to recruit the interviewees: finding highly relevant practitioners (e.g., 

speakers and attendees of industry-driven conferences on CD, DevOps, and SA), thoroughly 

analyzing their background and expertise, and contacting them directly via email. Overall, we 



 

 

16 

 

emailed the survey to 487 highly relevant practitioners. In the end, we received 103 responses from 

all the three recruitment methods. All 103 responses were examined to identify careless responses 

[59]. We found 5 invalid responses by analyzing outliers, examining inconsistencies in response to 

two related questions (e.g., Q45 and Q47 in Appendix B), and recognizing the same responses to 

consecutive questions (e.g., Q29 to Q32 in Appendix B) [59]. It should be noted that we abstained 

from measuring a response rate for our survey due to having a heterogeneous target population 

(e.g., practitioners might be members of multiple LinkedIn groups). 

Survey participants characteristics: 98 software practitioners (i.e. indicated by R1 to R98 in 

Chapters 4, 5 and 6) completed the survey.  

Technical role: As shown in Figure 2.6, the majority of the survey participants were architects (40), 

followed by DevOps engineers (12), consultants (10), and team leads (8). The rest were developers 

(7), software engineers (6), executives (e.g., director, 3), operations engineers (3), and others (9). 

Experiences: 75.5% of the participants had more than 10 years of experience in the software 

industry, 14.3% 6-10 years, 7.1% 3-5 years, and 3.1% 1-2 years.  

Organization sizes and domains: Similar to the interviewees, the survey participants came from 

very diverse organizations in terms of the domain including consulting and IT services (36), financial 

(10), e-commerce (10), and telecommunication (6). 39 practitioners from large, 31 from medium-

sized and 28 from small organizations completed the survey. 

 

 

Figure 2.6 Demographics of the survey participants in the mixed-methods study 

40

12

10

8

7

6

3

3

2

Architect

DevOps Engineer

Consultant

Team Lead

Developer

Software Engineer

Ops Engineer

Executive

Program Manager

Role

3
7

14

74

0

10

20

30

40

50

60

70

80

0–2 3–5 6–10 > 10

Development  Experience

28

31

39

Organization Size

1-100 101-1000 > 1000

36

10
10

6
4

32

Organization Domain

Consulting and IT services

Financial

E-commerce

Telecommunication

Retail

Other



 

 

17 

 

2.2.2.3 Analysis  

We applied descriptive statistics to analyze the data gathered from the closed-ended questions (e.g., 

Likert-scale questions) [58]. To analyze the open-ended questions, we followed the conceptualized 

thematic analysis method described in Section 2.2.1.3. Similarly, the present author conducted the 

analysis process and then other researcher examined all the extracted themes.   

2.2.3 Threats to Validity 

Whilst we followed strictly the guidelines reported in [50, 60] to conduct this study, similar to other 

empirical studies, there are some threats that may have affected the findings of this study. 

Internal validity: One of the threats that may occur in any empirical study concerns the sampling 

method. As we described in Sections 2.2.1.2 and 2.2.2.2, we purposively recruited the participants 

(e.g., analyzing the profiles of potential practitioners). It was possible to select the practitioners who 

did not have the right kind of experience and expertise in order to take part in the study. To address 

this issue, we applied strict criteria (e.g., seeking for potential practitioners and rigorously reviewing 

their public profiles) for selecting participants for both parts of this study. Additionally, we explicitly 

added the characteristics of the target practitioners in the survey preamble. We also gathered the 

level of experience in DevOps/CD adoption. We are confident that most of the interviewees and the 

survey participants had the right experience and expertise to participate in our study.  

Our results may have been affected by one specific role bias (e.g., DevOps engineer). We avoided 

this threat by targeting the participants holding different roles in software development. In the 

retrospective studies (e.g., interviews), the participants may not have been able to remember all the 

details during interviews [58]. We adopted two strategies to alleviate the memory bias: first, we sent 

the interview questions in advance to the interviewees. This helps them to refresh all the relevant 

details and implicit decisions. We also asked them to share their experiences from their most recent 

projects or clients. Another threat that may have influenced the participants’ answers was social 

desirability bias [61, 62], in which a participant tries to answer the questions in a manner that s/he 

perceives a researcher would want. We limited this bias by informing the participants at the 

beginning of the interviews and survey that personal details are not to be divulged and all the 

collected data would be anonymized [57].  

Researcher bias can be another potential threat to the validity of the findings in a qualitative study. 

A large part of the data analysis step was conducted by one person (i.e., the present author). In order 

to minimize this threat, a second person investigated all the extracted themes. In case of any doubt, 

continuous discussions were organized to maintain the accuracy of the analysis process, which was 

also guided by the pre-defined research protocol described in Sections 2.2.1 to 2.2.2. This study used 

the triangulation technique to collect data from two sources to minimize any researcher bias. The 

findings of the interviews and formulation of the survey questions heavily relied on the interviewees’ 

statements, which might be subjective, and can negatively impact on the findings of this study. To 

alleviate this threat, we have only reported those findings that were confirmed by multiple 

participants (e.g., at least two participants). In addition, we provided a precise description of the 

terminologies used in the interview and survey questions to the participants. We are confident that 

this strategy helped both the researchers and the participants to have a common understanding of 

the terminologies used. 

Construct validity: Appropriateness and comprehensibility of the questions and answer options 

used in both the interviews and the survey can be another source of threat in our study [63, 64]. In 

order to deal with this threat, the interviews’ questions were designed based on the systematic 

review presented in Chapter 3 [1] and multi-vocal review, with seeking feedback and validation from 



 

 

18 

 

the other researchers and a few industrial practitioners. The feedback collected at the end of the 

interviews and the survey was valuable as it helped us to fine-tune some questions (e.g., changing 

questions wording) that were confusing or unclear. During the interviews, we mostly used open-

ended questions, and extensively encouraged the interviewees to provide as detailed answers as 

possible. The survey questions originated from the interviews’ findings. Wherever required we 

included open-ended questions or an “Other” field in questions responses to collect additional 

information. It should be noted that we did not find too much additional information through the 

open-ended questions and “Other” fields, suggesting the interviews successfully identified the 

significant findings. We are confident that our questions covered the important aspects of CD. 

External validity: Similarly, to other empirical studies, generalizability is a potential threat to the 
findings of our study. For the interviews, the participants with a wide range of backgrounds (e.g., 
different roles) were knowingly selected and invited from very diverse types of organizations in 
terms of size, domain, and the way of working in several countries. We believe our sampling 
technique largely improved the reliability of our analysis and the generalizability of the findings 
[65]. Additionally, we augmented and generalized the findings of the interviews through the survey. 

2.3 Industrial Case Study 

Given DevOps is a relatively new phenomenon and the exploratory nature of RQ3.2 introduced in 

Chapter 1, we applied a case study approach to gain a deep understanding of the role of software 

architecture in DevOps transition in the context of a company (i.e., it is referred to the case 

company in this thesis) who develops Big Data solutions [66]. A case study is “an empirical method 

aims at investigating contemporary phenomena in their context” [67]. Our case study was an 

exploratory, holistic, two-case study as we studied two teams from the same company [66, 68]. 

Informed by the established guidelines for conducting a case study [66, 67], a research protocol was 

developed in advance and was strictly followed when performing the case study (See Appendix C) 

Table 2.3 Overview of the investigated projects, teams and interviewees in the case study 

Team 
Project 
Domain 

Project 
Type 

Team Size 

Characteristics of Interviewees  

ID Role 
Years of  
experience in role 

Experience 
in IT 

TeamA 
Social 
Media 
Platform 

Greenfield 8 

PA1 
Software 
Engineer 

2.5 10 

PA2 
Solution 
Architect 

5 15 

PA3 
Software 
Architect 

15 20 

TeamB 
Social 
Media 
Platform 

Greenfield 
Engineering team: 5 
Data science team: 4 

PB1 
Senior 
Software 
Engineer 

2 6 

PB2 
System 
Architect 

1 12 

PB3 
Software 
Engineer 

2 2 



 

 

19 

 

2.3.1 Context 

2.3.1.1 The Case Company 

The case company is a research and development organization, which develops and delivers robust 

Big Data solutions and technologies (e.g., tools). By providing such Big Data capability, the 

customers and end users of the case company are enabled to make critical decisions faster and more 

accurately. The case company is made up of several teams working on various research and 

development programs. Each team includes a variety of roles such as software engineers, software 

architects, and data scientists. In this study, we studied two teams: TeamA and TeamB. 

2.3.1.2 TeamA 

TeamA develops a social media monitoring platform which collects the available online multimedia 

data (text, image, and video) and tries to make them digestible to security analysts. This can enable 

the analysts to quickly extract and identify intelligence and unforeseen insights. Facebook and 

Twitter are the main data sources for this platform. This project is to descriptively summarize the 

social media by applying image processing and natural language processing approaches. TeamA 

consists of 8 members including software engineers, developers, and software architects in a cross-

functional team. The team started by 4 members for about 18 months, but by growing the project, 

more people were added. The platform is a greenfield project. TeamA started with microservices 

architecture style, but they changed the architecture of the platform to a monolith. 

2.3.1.3 TeamB 

TeamB is another team in the case company who works on a greenfield platform. The platform aims 

at identifying and tracking the potential social event trends. The platform ingests a large amount of 

publicly available data from a diverse range of social media websites (e.g., Facebook). The goal is to 

automatically and accurately predict and track society level events such as protest, celebration and 

disease outbreak. The predictions will then be used by the data science team. TeamB has two teams: 

one engineering team and one data science team. The work style is that the data engineering team is 

the customer for the engineering team and data science team has its own customers (e.g., security 

analysts). The engineering team is composed of 5 members including system architect and software 

engineers. The team had recently re-architected the platform and converted it from a monolith to a 

new architecture (i.e., the team refers to it as microarchitecture), to more rapidly introduce new 

data sources into the platform.  

2.3.2 Data Collection 

The data collection process initially started by an informal meeting with CTO of the case company 

and one key informant from each team. That meeting enabled us to get a basic understanding of the 

case company’s structure and domain and helped us to find the projects adopting DevOps to be 

used as a reference point for further steps of our case study. Furthermore, the team members who 

were suitable for interviews (e.g., those who had a broad view of the software development process 

such as software architects and senior software engineers) were identified during the meeting. 

Finally, that meeting helped us to understand what documents in the case company should be 

investigated. 

Face-to-face, semi-structured interviews were the main tool of data collection. We conducted 6 

interviews in total, 3 interviews with each team. From TeamA, one software engineer, one solution 

architect, and one software architect, with an average of 15 years of experience in the IT industry 



 

 

20 

 

participated in the interviews (See Table 2.3). We also interviewed two (senior) software engineers 

and one system architect in TeamB, who had an average of 6.6 years of experience in IT industry 

(See Table 2.3). Each interview had 30 open-ended questions, but we asked follow-up questions 

based on the participants’ responses. The initial questions in the interviews were demographic 

questions (e.g., participants’ experiences in their current role). Next questions asked about team 

organization and the characteristics of the projects (e.g., domain, deployment frequency, tools, and 

technologies used for deployment pipeline). Later, we primarily focused on the challenges facing by 

each team, and the practices, decisions, and tools used at the architecture level for adopting 

DevOps. Last part of the interviews investigated architectural decision-making process in the 

DevOps context. However, following semi-structured interview, the participants were allowed to 

openly discuss any significant DevOps related experiences and insights they had during their 

respective project, not limited to the architecture [49]. The complete list of the interview questions 

is available in Appendix C3. 

It is important to mention that we shared the interview guide with the participants before 

conducting the interviews. This helped them to be prepared for answering the questions and 

engaging in discussions [49]. The interviews lasted from 40 minutes to one hour and were 

conducted at the interviewees’ workplaces. All 6 interviews were recorded with the participants’ 

permission and then transcribed, resulting in approximately 40 pages of transcripts.  

Besides the interview data, we used the internal documents provided by the case company and 

publicly available organizational data (e.g., the case company’s newsletters). This enabled us to 

triangulate our findings and increase the validity of our findings [66]. Particularly, we had access to 

project documents (e.g., project plan) and architecture documents stored on an internal wiki. 

It should be noted that when we refer to data from the interviews with TeamA and TeamB, we use 

PAX and PBX notations respectively. For instance, PA1 refers to the interviewee 1 in TeamA (See 

Table 2.3). The excerpts taken from the documentation are marked as D. 

2.3.3 Data Analysis 

We analyzed the interviews data and documentation using the core qualitative data analysis 

techniques of Grounded Theory (GT) including open coding and constant comparison [69, 70]. We 

also used NVivo4 to support qualitative coding and analyzing. Data analysis process began with 

performing open coding over multiple iterations in parallel with data collection to thoroughly 

analyze the data. This resulted in capturing key points in our data and assigning a label (i.e., code) 

to each key point. Figure 2.7 depicts an example of applying open coding on a portion of an 

interview transcript. 

Then, the constant comparison was performed to compare the codes identified in the same 

interview against each other, and to the codes from other interviews and the excerpts taken from the 

documentation [71]. We then iteratively grouped these emergent codes to generate higher levels of 

abstraction, called concepts and categories in the Grounded Theory [70], which became the 

architectural decisions presented in the Result section in Chapter 7. As data analysis progressed, we 

constructed relationships among the categories. Figure 2.8 shows how the category, “application 

should capture and report status properly” was built from six concepts. 

                                                           
3Some of the interview’s questions are inspired by/taken from “2017 State of DevOps Report” [35] "2017 State of DevOps Report, 

Available at: goo.gl/Y6sm13 [Last accessed: 10 November 2017]." 2017.. 
4http://www.qsrinternational.com  



 

 

21 

 

Raw data: “We’re trying to make sure everything [to be] more substitutable, which allows to do mocking if we 

need it. We’re trying to keep everything independent as you can just test that set of function; that succeeded in 

unit tests”. 

Key point: “Independent stuff as can be mocked and can be independently tested” 

Code: Independent units for test 

Figure 2.7 Constructing codes from the interview transcripts (case study) 

 

Figure 2.8 Building a category by applying open coding and constant comparison (case study) 

2.3.4 Threats to Validity 

Our research method and findings in this case study may have few limitations which we discuss 

below from qualitative research perspective [72]. 

Transferability: The main limitation of this study is that the findings (e.g., architectural decisions 

and design challenges) are entirely based on one organization in a particular domain. Whilst we 

have tried to minimize the potential validity impact of this limitation by studying two independent 

teams working on two different projects in one organization, our findings may not be (statistically) 

generalizable to other organizations or domains. However, it should be noted that the focus of this 

study was to provide a deep understanding of architectural decisions, tactics, and problems within 

the case company in transition to DevOps. Moreover, this study aimed at discussing important 

lessons learned through rigorous data collection and analysis [66], so that other organizations and 

practitioners can benefit from that. Finally, it is worth mentioning that the studies involving a single 

organization are regarded as valuable contributions in the software engineering community as they 

contribute to scientific development [73, 74]. 

Credibility: Using two different data sources (i.e., interview and documentation) and investigating 

two different teams ensured that the obtained findings to a large extent are plausible. Selection of 

the participants can be another threat to the credibility of our findings. To recruit motivated 

participants, we ensured that personal details, opinions, and thoughts would be regarded as strictly 

confidential and will not be divulged to the researchers and other team members by making a 

confidential disclosure agreement. After discussing the objectives of this study with the CTO and 

two key informants at the case company, suitable persons from each team for the interviews were 

introduced to us. This gives us confidence that the team members who chose to participate were 

likely more willing and had the right types of competences to provide an unbiased opinion. 

Another possible limitation is about the interview questions. Our interview questions were primarily 

designed based on a comprehensive systematic review (See Chapter 3) [1] and the existing empirical 

studies on software architecture and DevOps [2, 35, 38, 75]. In addition, we tried to fine-tune the 

Concepts 

Collect logs to diagnose errors 

Not too much metric analytics 

SA in DevOps should be easy to monitor 

The abundance of monitoring and logging data 

Monitoring infrastructures are shared among teams 

Monitorability by two tools Consul and Ganglia 

Application should capture and 
report status properly 

Category 



 

 

22 

 

questions and ask appropriate follow-up questions according to the participants’ responses and their 

projects. 

Confirmability: Data analysis was conducted by one researcher (i.e., the present author). Whilst 

this helped to obtain consistency in the results [76], it can be a potential threat to the validity of the 

findings. This was mitigated to some extent by organizing internal discussions to review and verify 

the findings and solicit feedback. Furthermore, other research also indicated that data triangulation 

strategy, which previously described for improving credibility, can be used to establish 

confirmability as it can reduce the subjectivity of researcher’s understanding and judgment [77].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

23 

 

 

 

Continuous practices, i.e., continuous integration, delivery, and deployment, are the 

software development industry practices that enable organizations to frequently and 

reliably release new features and products. With the increasing interest in and literature on 

continuous practices, it is important to systematically review and synthesize the 

approaches, tools, challenges, and practices reported for adopting and implementing 

continuous practices. This chapter aims at systematically reviewing the state of the art of 

continuous practices to classify approaches and tools, identify challenges and practices in 

this regard, and identify the gaps for future research. To realize this goal, we conducted a 

systematic literature review (SLR) method for reviewing 69 peer-reviewed papers on 

continuous practices published between 2004 and 1st June 2016. Whilst the reported 

approaches, tools, and practices are addressing a wide range of challenges, this chapter also 

identifies several open challenges and gaps (e.g., architecting for continuous delivery and 

deployment) which require further research work. 

3.1 Introduction 

With increasing competition in the software market, organizations pay significant attention and 

allocate resources to develop and deliver high-quality software at a much accelerated pace [78]. 

Continuous Integration (CI), Continuous DElivery (CDE), and Continuous Deployment (CD), called 

continuous practices for this chapter, are some of the practices aimed at helping organizations to 

accelerate their development and delivery of software features without compromising quality [28]. 

Whilst CI advocates integrating work-in-progress multiple times per day, CDE and CD are about the 

ability to quickly and reliably release values to customers by bringing automation support as much 

as possible [10, 79].  

As described in Chapter 1, continuous practices are expected to provide several benefits such as: (1) 

getting more and quick feedback from the software development process and customers; (2) having 

frequent and reliable releases, which lead to improved customer satisfaction and product quality; (3) 

through CD, the connection between development and operations teams is strengthened and 

manual tasks can be eliminated [11, 14]. A growing number of industrial cases indicate that the 

continuous practices are making inroad in software development industrial practices across various 

domains and sizes of organizations [11, 80, 81].  

A Systematic Review on Continuous 
Integration, Delivery and Deployment   

Chapter 3 

Related publication:  

This chapter is based on IEEE Access paper “Continuous Integration, Delivery and 
Deployment: A Systematic Review on Approaches, Tools, Challenges and Practices” [1]. 



 

 

24 

 

Due to the growing importance of continuous practices, an increasing amount of literature 

describing approaches, tools, practices, and challenges has been published through diverse venues. 

An evidence for this trend is the existence of five secondary studies on CI, rapid release, CDE and 

CD [33, 34, 82-84]. These practices are highly correlated and intertwined, which distinguishing these 

practices are sometimes hard and their meanings highly depend on how a given organization 

interprets and employs them [16]. Whilst CI is considered the first step towards adopting CDE 

practice [9], truly implementing CDE practice is necessary to support deploying software changes 

automatically and continuously to production or customer environments (i.e., CD practice). We 

noticed that there was no dedicated effort to systematically analyze and rigorously synthesize the 

literature on continuous practices in an integrated manner. By integrated manner we mean 

simultaneously investigating approaches, tools, challenges, and practices of CI, CDE, and CD, which 

aims to explore and understand the relationship between them and what steps should be followed to 

successfully and smoothly move from one practice to another. This chapter aimed at filling that gap 

by conducting a Systematic Literature Review (SLR) of the approaches, tools, challenges, and 

practices for adopting and implementing continuous practices. 

This chapter provides an in-depth understanding of the challenges of adopting continuous practices 

and the strategies (e.g., tools) used to address the challenges. Such an understanding is expected to 

help identify the areas where methodological and tool support to be improved. This increases the 

efficacy of continuous practices for different types of organizations and software-intensive 

applications. Moreover, the findings are expected to be used as guidelines for practitioners to 

become more aware of the approaches, tools, challenges and implement appropriate practices that 

suit their industrial arrangements. For this review, we have systematically identified and rigorously 

reviewed 69 relevant papers and synthesized the data extracted from those papers in order to 

answer a set of research questions that motivated this review. The significant contributions of this 

work are: 

1. A classification of the reported approaches, associated tools, and challenges and practices of 

continuous practices in an easily accessible format.  

2. A list of critical factors that should be carefully considered when implementing continuous 

practices in both software development and customer organizations. 

3. An evidence-based guide to select appropriate approaches, tools, and practices based on the 

required suitability for different contexts.  

4. A list of researchable issues to direct the future research efforts for advancing the state-of-the-art 

of continuous practices. 

Chapter organization: In Section 3.2, we outline the existing research gap. Section 3.3 describes the 

systematic literature review process with the review protocol. The quantitative and qualitative 

results of the research questions are described in Section 3.4. Section 3.5 reports a discussion of 

findings. The threats to validity are discussed in Section 3.6. Finally, we present our conclusions in 

Section 3.7. 

3.2 Research Gap 

3.2.1 Existing literature reviews 

During this review, we also found five papers that have reported reviews on different aspects of 

continuous software engineering - two studies have investigated continuous integration in the 

literature [82, 84], two papers have explored continuous delivery [33] and deployment [34], and one 

study has targeted rapid release [83] (See Table 3.1). We summarize the key aspects of these studies. 



 

 

25 

 

Table 3.1 Comparison of this SLR with existing secondary studies 

Study Focus # included papers Search date 

Stahl and Bosch [82] CI 46 October 2012 

Eck et al. [84] CI 43 N/A 

Mäntylä et al. [83] Rapid release 24 N/A 

Rodríguez et al. [34] CD 50 27 June 2014 

Laukkanen et al. [33] CI and CDE 30 February 2015 

This work CI, CDE, and CD 69 1 June 2016 

 

Stahl and Bosch [82] have presented an SLR on different attributes or characteristics of CI practice. 

That review has explored the disparity in implementations of CI practice in the literature. Based on 

46 primary studies, the study had extracted 22 clusters of descriptive statements for implementing 

CI. The clusters have been classified into two groups: (a) culled clusters (e.g., fault frequency) which 

either came from one unique source or the literature interpreted and implemented them the same; 

and (b) preserved clusters (e.g., build duration) were described as statements that there is 

contention on them in the published literature. The paper proposed a descriptive model (i.e., the 

main contribution of the paper) to address the variation points in the preserved clusters.  

Eck et al. [84] conducted a concept-centric literature review to study the organizational implications 

of continuous integration assimilation in 43 primary studies. The review revealed that organizations 

require implementing numerous changes when adopting CI. The study proposed a conceptual 

framework of 14 organizational implications (e.g., providing CI at project start) of continuous 

integration. The authors also conducted a case study of five software companies to understand the 

organizational implications of CI. Mäntylä et al. [83] performed a semi-systematic literature review 

to study benefits, enablers, and problems of rapid release (including CI and CD) in 24 primary 

studies. The review did not comply with several of the mandatory aspects of an SLR’s guidelines 

reported in [45] (e.g., lack of doing data extraction and analysis rigorously, including papers that 

were not found through applying search string). The review revealed that rapid releases are 

prevalent industrial practices that are utilized in several domains and software development 

paradigms (e.g., open source). It has been concluded that the evidence of the claimed advantages 

and disadvantages of rapid release is scarce. Rodríguez et al. [34] reported a systematic mapping 

study on continuous deployment to identify benefits and challenges related to CD and to 

understand the factors that define CD practice. Based on 50 primary studies, it has been revealed 

that moving towards CD necessitates significant changes in a given organization, for example, team 

mindsets, organization’s way of working, and quality assurance activities are subject to change. The 

authors also found that not all customers are happy to receive new functionality on a continuous 

basis and applying CD in the context of embedded systems is a challenge. However, the main 

contribution of this mapping study lies in the identified 10 factors that define CD practice. For 

example, (a) fast and frequent release; (b) continuous testing and quality assurance; (c) CI; (d) 

deployment, delivery, and release processes and configuration of deployment environments. 

We found that the work done by Laukkanen et al. [33] is the closest work to our study in this 

chapter. They conducted a systematic review of 30 primary studies to identify the problems that 

hinder adopting CDE practice. The authors also reported the root causes of and solutions to the 

problems. The study grouped the problems and solutions into seven categories: build design, system 

design, integration, testing, release, human and organizational, and resource. The review [33] only 

focused on CDE practice rather than CD, in which the authors investigated CDE as a development 

practice where software is kept production-ready (i.e., CDE practice), but not necessarily deployed 

continuously and automatically (i.e., CD practice). Laukkanen et al. [33] also revealed that the work 

by Rodríguez et al. [34] used the term CD, while it actually referred to CDE practice. Furthermore, 



 

 

26 

 

the SLR done by Laukkanen et al. [33] indicated that whilst it is interesting to study CD, but it failed 

to find highly relevant literature on CD.  

It is worth noting that it is common in software engineering to conduct several SLRs on a particular 

concept or phenomenon. To exemplify, there are four reviews (i.e., SLR or systematic mapping 

study) on technical debt [85]. What differentiates SLRs on a particular subject from each other is 

having different high-level objectives, research questions, included studies and results. Having done 

a thorough analysis of the related reviews, we observed the following differences between our SLR 

and the existing reviews: 

Search string, inclusion and exclusion criteria: Our search string, inclusion, and exclusion 

criteria were significantly different with [33, 34, 82-84] for selecting the primary studies. Our work 

was aimed at reviewing papers that included empirical studies (e.g., case studies and experiments); 

we excluded the papers with less than 6 pages, which were included in [33, 82, 84]. It is important to 

note that the previous reviews except [33] used only automatic search, but we used both automated 

searches and snowballing for finding the relevant papers. Due to the aforementioned reasons, there 

is a significant difference in the papers reviewed by our SLR with the included papers in other SLRs. 

Out of 69 papers in our SLR, there were only 10, 2, 7, and 12 common papers with [33, 34, 82, 84] 

respectively.  

Research questions and results: regarding RQ3.1 and RQ3.2 and their respective goals (i.e., 

presented in Table 3.2), there are no similar questions in other reviews. Both goals and results of 

RQ3.4 are different to RQ1 in [82, 84]. Whilst the objective of our research question (RQ3.4) was to 

comprehensively identify and analyze practices, guidelines, lessons learned and authors’ shared 

experiences for successfully adopting and implementing each continuous practice, the given 

statements for implementing CI in [82] were not sufficiently abstracted and generalized and were 

not reported as practices for adopting and implementing CI. In fact, the main goal was to indicate 

there is a lack of consensus on implementing CI in practice. The focus of the review reported in [84] 

is on the organizational aspects of assimilating CI practice rather than individual software projects. 

Furthermore, for both reviews [82, 84], the main contributions are model, conceptual framework, 

and empirical study rather than systematically summarizing, analyzing, and classifying the literature 

on CI. It is worth noting that due to having different coding schemes, level of details and emergence 

of categories, it was not easy to make a one-to-one comparison of the identified challenges and 

practices between our SLR and [33]. However, our study identified a more comprehensive list of 

challenges, practices, guidelines, lessons learned and the authors’ shared experiences. Our findings 

show that we only have 5 common practices with [33].  

Regarding RQ3.3, there is a partial overlap between our SLR and the RQ1 and RQ4 in [33, 34] 

respectively. Whilst the goal of the questions has some overlaps with together, closely looking at the 

result from each study, it clearly indicates a complementary relationship between them. Some of the 

major differences in the identified challenges are lack of awareness and transparency, general 

resistance to change, distributed organization, team dependencies, customer environment, 

dependencies with hardware and other (legacy) applications, which were not reported in the previous 

reviews [33, 34].  

Analyzing CI, CDE, and CD practices in an integrated manner: As discussed earlier, CI, CDE, 

and CD practices are highly correlated and intertwined concepts, in which there is no consensus on 

the definitions of these practices [17]. In our understanding to obtain a clear understanding of the 

approaches, tools, challenges, and practices, it is essential to broadly study and cover CI, CDE and 

CD practices across its different dimensions, such as approaches, tools, contextual factors, practices, 

and challenges simultaneously in an integrated manner.  



 

 

27 

 

3.2.2 Motivation for this SLR on continuous practices 

According to [10], continuous software engineering includes a number of continuous activities such 

as continuous integration, delivery, and continuous deployment. It is asserted that CI is a 

foundation for CDE, in which implementing reliable and stable CI practice and environment should 

be the first and highest priority for a given organization to successfully adopt CDE practice. We have 

mentioned that CDE and CD practices are frequently confused together and used interchangeably in 

the literature and practitioners’ blogs. It is sometimes hard to distinguish these correlated and 

intertwined practices. The meanings of these practices highly depend on who uses them [16, 17]. 

Since the main objective of this study is to systematically collect, analyze and classify approaches, 

tools, challenges, and practices of continuous practices, we believe these practices, particularly CDE 

and CD practices, should be investigated together. Analysing CI, CDE, and CD practices in an 

integrated manner provides an opportunity to understand what challenges prevent adopting each 

continuous practice, how they are related to each other, and what approaches, associated tools, and 

practices exist for supporting and facilitating each continuous practice. Furthermore, this helps 

software organizations to adopt continuous practices step by step and smoothly move from one 

practice to another. We could not find any systematic review, which has studied these intertwined 

practices (i.e., integration, delivery, and deployment) together. The abovementioned reasons 

indicate the need for conducting a literature review tailored to the scope of the continuous 

integration, delivery, and deployment in an integrated manner. 

3.3 Research Method 

As we described in Chapter 2, we used Systematic Literature Review (SLR) to obtain a solid 

background knowledge on continuous integration, delivery and deployment practices [44]. 

Following the SLR guidelines reported in [45], our review protocol consisted of (i) research 

questions, (ii) search strategy, (iii) inclusion and exclusion criteria, (iv) study selection, and (v) data 

extraction and synthesis. We discuss these steps in the following subsections: 

3.3.1 Research questions 

Our study in this chapter aimed at summarizing the current research on “continuous integration, 

continuous delivery and continuous deployment practices in software development”. We 

formulated a set of research questions (RQs) to be answered through this chapter. Table 3.2 

summarizes the research questions as well as the motivations for them. The answers to these 

research questions can be directly linked to the objective of this SLR: an understanding of the 

available approaches and tools in the literature to support and facilitate CI, CDE, and CD practices 

(RQ3.1, RQ3.2), challenges (RQ3.3) and practices (RQ3.4) reported by empirical studies during 

adopting each continuous practice. The results of these research questions would enable researchers 

to identify the missing gaps in this area and practitioners to consider the evidence-based 

information about continuous practices before deciding their use in their respective contexts.  

It is worth noting that we distinguish between approaches and practices in this SLR. Cambridge’s 

and Longman’s dictionaries define the approach, method, and technique similarly as the following “a 

[special/planned/particular] way of doing something”; however, practice is defined as “the act of doing 

something regularly or repeatedly” [86, 87]. In this SLR, we define approach, method, and technique 

as a technical and formalized approach to facilitate and support continuous practices [88]. For 

simplicity purpose, the approaches, methods, techniques, algorithms, and frameworks, along with 

the tools to support them, that are developed and reported in the literature for this purpose, are 

classified as an approach rather than practice. On the other hand, software practice is a social 



 

 

28 

 

practice [89] and is defined as shared norms and regulated rules and activities, which can be 

supported and improved by an approach [88, 90].  

Table 3.2 Research questions of this SLR 

Research Question Motivation 

RQ3.1 What approaches and associated 
tools are available to support and 
facilitate continuous integration, 
delivery, and deployment? 

To gain a comprehensive understanding of approaches (e.g., 
methods, algorithms, frameworks, techniques) and associated 
tools to facilitate implementation of continuous practices and to 
develop a classification of the approaches and tools. 

RQ3.2 Which tools have been employed 
to design and implement deployment 
pipelines (i.e., modern release pipeline)? 

The deployment pipeline is significantly important to move 
towards continuous practices (in particular CD/CDE). The idea of 
this question is to understand how researchers form deployment 
pipelines and which tools are employed to implement the 
deployment pipelines. It should be noted that the tools identified 
in RQ3.1 can also be covered by this question provided that they 
are integrated and implemented in the deployment pipeline. 

RQ3.3 What challenges have been 
reported for adopting continuous 
practices? 

There might be obstacles and conflicts when adopting and 
implementing continuous practices in software provider and 
customer organizations. So, the idea of this question is to get an 
overview of different types of technical and organizational 
challenges, problems, and constraints that the organizations 
might experience in the transition to continuous practices. 

RQ3.4 What practices have been 
reported to successfully implement 
continuous practices? 

To identify good practices, guidelines, lessons learned and shared 
experiences when adopting and implementing CI, CDE, and CD. 

3.3.2 Search strategy 

In order to retrieve as many relevant studies as possible, we defined a search strategy [45, 91]. The 

search strategy used for this review is designed to consist of the following elements: 

3.3.2.1 Search method 

We used automatic search method to retrieve studies in six digital libraries (i.e., IEEE Xplore, ACM 

Digital Library, SpringerLink, Wiley Online Library, ScienceDirect, and Scopus) using the search 

terms introduced in Section 3.3.2.2. We complemented the automatic search with snowballing 

technique [92].    

3.3.2.2 Search terms 

We formulated our search terms based on guidelines provided in [45]. The resulting search terms 

were composed of the synonyms and related terms about “continuous” AND “software”. After 

running a series of pilot searches and verifying the inclusion of the papers that we were aware of, we 

utilized the final search string as presented in the following. It should be noted that the search terms 

were used to match paper titles, keywords, and abstracts in the digital libraries (except 

SpringerLink) during the automatic search. The reason we included the “software” and its related 

terms in the search string was that continuous delivery and continuous deployment terminologies 

are also used in other disciplines (e.g., medicine). Therefore, we were able to avoid retrieving a large 

number of irrelevant papers. 



 

 

29 

 

TITLE-ABS-KEY ((“continuous integration” OR “rapid integration” OR “fast integration” OR “quick 

integration” OR “frequent integration” OR “continuous delivery” OR “rapid delivery” OR “fast delivery” 

OR “quick delivery” OR “frequent delivery” OR “continuous deployment” OR “rapid deployment” OR 

“fast deployment” OR “quick deployment” OR “frequent deployment” OR “continuous release” OR 

“rapid release” OR “fast release” OR “quick release” OR “frequent release” OR “deployability” OR 

“continuous build” OR “rapid build” OR “fast build”  OR “frequent build” OR “quick build”) AND 

(“software” OR “information system” OR “information technology” OR “cloud*” OR “service 

engineering”)) 

 3.3.2.3 Data sources 

We queried six digital libraries, namely IEEE Xplore, ACM Digital Library, SpringerLink, Wiley 

Online Library, ScienceDirect, and Scopus for retrieving the relevant papers.  According to [93], 

these are the primary sources of literature for potentially relevant studies on software and software 

engineering. For all these libraries, except SpringerLink, we ran our search terms based on title, 

keywords and abstract. It is important to note that currently, SpringerLink search engine does not 

provide any facility for searching on the title, abstract and keywords [94]. We were forced to either 

restrict our search on the title only or apply search terms on the full text of the articles. While the 

former resulted in a quite few numbers of papers, the latter strategy returned more than 11700 

papers. In order to address this situation, we followed the strategy adopted in [94]; we examined 

only the first 1000 papers retrieved by the search on the full text. However, we believe that Scopus 

was a complement to SpringerLink as Scopus indexes a large number of journals and conferences in 

software engineering and computer science [95, 96]. It is worth noting that Google Scholar was not 

selected as the data source because of having the low precision of search results and generating 

many irrelevant results [93]. 

3.3.3 Inclusion and exclusion criteria 

Table 3.3 presents the inclusion and exclusion criteria, which were applied to all studies retrieved 

from digital libraries. We did not choose a specific time as the starting point of the search period. 

Only peer-reviewed papers were included, and we excluded editorials, position papers, keynotes, 

reviews, tutorial summaries, panel discussions and non-English studies. Papers with less than 6 

pages were excluded. We selected only those papers that have reported the approaches, tools, and 

practices using empirical research methods such as case study, experience report, and experiment. 

In cases where we found two papers addressing the same topic and have been published in different 

venues (e.g., in a conference and a journal), the less mature one was excluded. We eliminated 

duplicate studies retrieved from different digital libraries.  

Table 3.3 Inclusion and exclusion criteria of this SLR 

Inclusion Criteria 

I1 A study that is peer-reviewed and available in full-text. 

I2 A study that presents approaches (e.g., methods, techniques, frameworks, and algorithms) 
and associated tools to facilitate continuous practices or reports practices and challenges in 
adopting continuous practices. 

I3 Empirical study: a study that evaluates, validates, or investigates the proposed approaches, 
tools and practices through empirical research methods such as case studies, survey, and 
experiments. 



 

 

30 

 

Exclusion Criteria 

E1 Non-peer-reviewed papers such as editorials, position papers, keynotes, reviews, tutorial 
summaries, and panel discussions. 

E2 Short papers (i.e., less than 6 pages). 

E3 A study that is not written in English. 

E4 Non-empirical studies (e.g., tool demo) 

3.3.4 Study selection  

 

Figure 3.1 Phases of the search process 

Figure 3.1 shows the number of studies retrieved at each stage of this SLR. The inclusion and 

exclusion criteria were used to filter the papers in the following way: 

Phase 0: We ran the search string on the six digital libraries and retrieved 14723 papers. Considering 

only first 1000 results from SpringerLink, we finally found 3942 potential papers. 

Phase 1: We filtered the papers by reading title and keywords. When there were any doubts about 

the retrieved papers and it was not possible to determine the papers by reading the titles and 

keywords, these papers were transferred to the next round of selection for further investigation. At 

the end of this phase, 449 papers had been selected. 

Phase 2: We looked at the abstracts and conclusions of the retrieved articles to ensure that all of 

them were related to the objective of our SLR. We applied the snowballing technique [92] to scan 

the references of the selected papers in the second phase. We found 51 potentially relevant papers by 

title from the references of these 174 papers.  

N=174 
 

Data Sources: IEEE, ACM, ScienceDirect, 
Wiley, Scopus, Springer 

Phase 2  
 

N=3942 

Phase 3 
 

N=202 
 

Apply inclusion and exclusion criteria by 
reading abstract and conclusion 

 

Apply inclusion and exclusion criteria by 
reading title and keywords 

 

Phase 1  

Read full paper and appraise work 
 

Snowballing: Scan the references of selected 
papers got in 2nd phase 

 

Phase 2  
 

Phase 0  
 

N=28 
 

N=449 
 

N=69 
 



 

 

31 

 

Inclusion and exclusion criteria were applied to the abstracts and conclusions of those 51 potentially 

relevant papers and we finally selected 28 papers for the next phase. It is important to mention that 

the main reason for conducting snowballing in this phase rather than applying it in the third phase, 

was to find as many relevant studies as possible. 

Phase 3: In the last (third) selection round, we read the full text of the selected studies from the 

second phase and if a paper met all the inclusion criteria, this paper was selected for inclusion in this 

SLR. We excluded the papers that were shorter than 6 pages, irrelevant, or whose full texts were not 

available. Furthermore, we critically examined the quality of primary studies to exclude those had 

low quality e.g., low reputation venues. We found four types of papers on continuous practices:  

• Papers that present approaches (e.g., methods, techniques, frameworks, and algorithms) and 

associated tools to facilitate each continuous practice (RQ3.1).  

• The second group consists of experience report papers which either present the challenges, 

problems, and confounding factors in adopting and implementing continuous practices (RQ3.3) 

or discusses practices, guidelines and lessons learned for this purpose (RQ3.4). 

• A group of papers reporting surveys of the usage and importance of agile practices (e.g., 

continuous integration and delivery) in software development organizations.  

• The papers in the fourth group used the concepts of continuous integration, delivery, and 

deployment on developing and deploying an application, for example, applying CI practice on 

robotic systems, and most reported the potential benefits obtained by these concepts.  

Since most papers in third and fourth groups did not meet any of the research questions and were 

out of the objectives of this review, we excluded a large number of the papers in those groups. 

Finally, we selected 69 papers for this review. In each phase, we recorded the reasons of inclusion or 

exclusion decision for each of the papers, which were used for further discussions and reassessment 

whether a paper had to be included or not. A cross-check using a random number of the selected 

papers for each step was performed by another researcher.  

3.3.5 Data extraction and synthesis 

3.3.5.1 Data extraction 

We extracted the relevant information from the selected papers based on the data items presented 

in Table 3.4 in order to answer the research questions of this SLR. It shows the research question(s) 

(described in Section 3.3.1) that were supposed to be answered using different pieces of the extracted 

data. The extracted information was stored in MS Excel Spreadsheet for further analysis.  

3.3.5.2 Synthesis 

We divided the data extraction form into a) demographic and contextual attributes, b) approaches, 

tools, challenges, practices and critical factors of continuous practices. We used descriptive statistics 

to analyze the data items D1 to D10. In order to identify the research types (i.e., data item D7) 

reported in the selected papers, we classified them into six well-known research types: validation 

research, evaluation research, solution proposal, philosophical paper, opinion paper, and experience 

report [97]. The second set of data items (i.e., D11, D12, D13, and D14) were analyzed using qualitative 

analysis method, namely thematic analysis [56]. We followed the five steps of the thematic analysis 

method [56] as detailed below: 



 

 

32 

 

(1) Familiarizing with data: we tried to read and examine the extracted data items, e.g., D11 

(approaches and tools), D12 (challenges), D13 (practices) and D14 (critical factors) to form the 

initial ideas for analysis. 

(2) Generating initial codes: in the second step, we extracted the initial lists of challenges, 

practices, and factors for each continuous practice. It should be noted that in some cases, we 

had to recheck the papers. 

(3) Searching for themes: for each data item, we tried to combine different initial codes generated 

from the second step into potential themes.  

(4) Reviewing and refining themes: the challenges, practices and critical factors identified from 

the third step were checked against each other to understand what themes had to be merged 

with others or dropped (e.g., lack of enough evidence). 

(5) Defining and naming themes: through this step, we defined clear and concise names for each 

challenge, practice, and critical factor. 

Table 3.4 Data items extracted from each study and related research questions 

# Data item Description RQs (Section 3.3.1) 

D1 Author(s) The author(s) of the paper.  

D2 Year The year of the publication of the paper  Demographic data 

D3 Title The title of the paper  

D4 
Publication 
type 

The type of publication (e.g., journal paper)  Demographic data 

D5 Venue  The name of the publication venue Demographic data 

D6 
Data analysis 
type 

Qualitative, quantitative or mixed.   Demographic data 

D7 Research type 
The type of research i.e., validation research, evaluation 
research, solution proposal, philosophical paper, opinion 
paper, and experience report. 

Demographic data 

D8 Study context 
The study contexts are categorized in industry and non-
industry (e.g. student) cases. 

Demographic data 

D9 Project type 
It recodes the type of project e.g., greenfield or 
maintenance. 

Demographic data 

D10 
Application 
domain 

The type of application used for reporting challenges as 
well as for validating proposed techniques, tools, and 
practices. 

Demographic data 

D11 
Techniques 
and tools 

The techniques and tools that facilitate the continuous 
integration, delivery and deployment (i.e., continuous 
practices). 

RQ3.1, RQ3.2 

D12 Challenges 
It documents the challenges and barriers that have been 
reported to adopt continuous practices in software 
development and customer’s organizations. 

RQ3.3 

D13 Practices 
It records lessons learned, authors’ experiences and good 
practices to successfully implement continuous practices. 

RQ3.4 

D14 Critical factors  
Factors to be considered when introducing and adopting 
continuous practices. 

Discussion 



 

 

33 

 

3.4 Results 

Following subsections report the results from analyzing and synthesizing the data extracted from 

the reviewed papers to answer the research questions. The results are based on synthesizing the data 

directly collected from the reviewed papers with our minimal interpretations. We interpret and 

reflect upon the results in the discussion section.  

3.4.1 Demographic attributes 

This subsection reports the demographic and research design attributes information: studies 

distribution, research types, study context and data analysis type, and application domains and 

project types. All of the included papers are listed in Appendix D. 

3.4.1.1 Studies distribution 

It is argued that reporting demographic information on the types and venues of the reviewed papers 

on a particular research topic is useful for new researchers who are interested in conducting 

research on that topic. Therefore, the demographic information is considered one of the important 

pieces of information in an SLR. Figure 3.2 summarizes how 69 primary papers are distributed along 

the years and the different types of venues. The selected papers were published from 2004 to 2016. 

Note that the review only covers the papers published before 1st June 2016. In spite of continuous 

practices, in particular, continuous integration and delivery are considered as the main practices 

proposed by agile methodologies (e.g., eXtreme Programming) introduced in early 2000, we were 

unable to find many relevant papers to our SLR before 2010.  

We found a couple of papers that conducted surveys on the usage and importance of agile practices 

(e.g., continuous integration and delivery) in software development organizations before 2010, but 

those papers have been excluded as they did not report any approach, practice and challenge 

regarding CI and CDE. It is argued that CDE and CD practices have recently been known and 

studied in academia (i.e., last 5 years) [98]. Figure 3.2 indicates a steady upward trend in the number 

of papers on continuous practices in the last decade. We noticed that 39 papers (56.5%) were 

published during the last 3 years, suggesting that researchers and practitioners are paying more 

attention to continuous practices. It is clear from Figure 3.2 that conference was the most popular 

publication type with 48 papers (i.e., 69.5%), followed by journal (14 papers, 20.2%), while only 7 

papers [S15, S23, S28, S62, S63, S64, S65] came from workshops.  

There are 11 out of 14 journal papers that have been published in 2015 and 2016, which indicates that 

the research in the area is becoming mature. Table 3.5 summarizes that the reviewed papers were 

published in 47 venues, in which IEEE Software and International Conference on Agile Software 

Development (XP) are the leading venues for publishing work on continuous practices research as 

they have published 10.1% (7 papers) and 8.6% (6 papers) of the reviewed papers. The International 

Conference on Software Engineering (i.e., 5 papers) and Agile Conference (e.g., 4 papers) maintained 

the subsequent positions. There are two venues (i.e., ITNG and RCoSE) with only two papers each. 

We note that more than half of the papers (40 out of 69, 57.9%) were published in 40 different 

venues. Some of the publication venues are not directly related to software engineering topics such 

as Robotic; it indicates that the research on continuous practices is being adopted by researchers in 

several areas that require software development.  

 

 

 



 

 

34 

 

Table 3.5 Distribution of the selected studies on publication venues 

Pub. Venue # % 

IEEE Software 7 10.1 

International Conference on Agile Software Development (XP) 6 8.6 

International Conference on Software Engineering (ICSE) 5 7.2 

Agile Conference 4 5.7 

Information and Software Technology (IST) 3 4.3 

International Workshop on Rapid Continuous Software Engineering (RCoSE) 2 2.8 

International Conference on Information Technology: New Generations (ITNG) 2 2.8 

Others  40 57.9 

 

Figure 3.2 Number of selected studies published per year and their distribution over types of venues 

3.4.1.2 Research types 

This section summarizes the results from analyzing the data item D7 about research types. Table 3.6 

shows that a large majority (49 out of 69, 70.9%) of the papers were reporting evaluation or 

validation research, in which they each correspond to 36.2% (25 papers) and 34.7% (24 papers) of the 

selected papers respectively. The high percentage of the evaluation research was not surprising 

because a noticeable number of the reviewed papers investigated and extracted challenges and 

practices of CI, CDE, and CD in the industry through case studies with the interview as data 

collection method (e.g., [S4]). That is why a vast majority of the papers in this category had used 

qualitative research approaches. Since prominent research methods of the validation papers are the 

simulation, experiments, and mathematical analysis [97], 22 out of 25 papers in this category 

employed quantitative research methods. We also categorized 15 (21.7%) papers as personal 

experience papers, in which practitioners had reported their experiences from introducing and 

implementing one of the continuous practices. Solution proposal (5 papers) maintained the 

subsequent position. To give an example, [S9] collected the opinions of three release engineers 

through interviews on continuous delivery’s benefits and limitations, the required job skills, and the 

required changes in education. The reviewed papers were not fallen in the philosophical and opinion 

categories because we only included empirical studies. 

Y2004 Y2006 Y2007 Y2008 Y2009 Y2010 Y2011 Y2012 Y2013 Y2014 Y2015 Y2016

Workshop 0 0 0 0 0 0 0 1 3 0 3 0

Conference 2 1 2 3 3 1 3 5 3 12 9 4

Journal 0 0 0 0 0 0 0 2 1 0 10 1

0

5

10

15

20

25

N
u

m
b

e
r 

o
f 

S
tu

d
ie

s 



 

 

35 

 

3.4.1.3 Study context and data analysis type 

We classified the reviewed papers into industry and academic cases. The industrial studies were 

carried out with industry or used real-world software-intensive systems to validate the proposed 

approach and tool; whilst the academic category refers to those studies, which were performed in an 

academic setting. Our review reveals that a large majority of the reviewed papers (64 out of 69, 

92.7%) are situated in the industry category, whilst only 6 [S1, S2, S16, S20, S22, S40] papers were 

conducted in academic settings.  

It shall be noted that one paper [S40] has been placed into both categories as it conducted two case 

studies in academic and industry. The high percentage of the industry papers indicates a significant 

level of relevance and practicality of the results reported in this SLR. According to Table 3.6, there 

was the same number of reviewed papers that used qualitative and quantitative (26 out of 69, 37.6% 

each) research approaches. We also found 14 papers (20.2%), which employed both qualitative and 

quantitative research approaches for data analysis. It was not possible for us to specify the data 

analysis method of three studies [S15, S30, S47] based on the provided information.  

Table 3.6 Number and percentage of papers associated with each research type and data analysis type 

 Data Analysis Type  

 Qualitative Quantitative Mixed Unclear Total 

R
e

se
a

rc
h

 T
y

p
e

  

Evaluation 
Research 

S5, S6, S7, S9, S10, 
S12, S13, S31, S36, 

S43, S45, S46, 
S56, S60, S62, S63  

(16) 

S18, S28, S51  

(3) 

S4, S11, 
S33, S41, 

S44 

(5) 

S30  

(1) 
25 (36.2%) 

Validation 
Research 

S22, S67  

(2) 

S1, S2, S3, S8, S21, 
S23, S24, S27, S32, 
S34, S38, S40, S53, 
S54, S55, S61, S69  

(17) 

S16, S20, 
S25, S29, 

S64  

(5) 

(0) 24 (34.7%) 

Experience 
Report 

S26, S37, S42, 
S49, S50, S52, S65  

(7) 

S39, S48  

(2) 

S14, S17, 
S57, S58  

(4) 

S15, S47 

(2) 
15 (21.7%) 

Solution 
Proposal 

S35  

(1) 

S19, S59, S66, 68  

(4) 
(0) (0) 5 (7.2%) 

Opinion 
Paper 

(0) (0) (0) (0) 0 (0%) 

Philosophical 
Paper 

(0) (0) (0) (0) 0 (0%) 

Total 26 (37.6%) 26 (37.6%) 14 (20.2%) 3 (4.3%)  

3.4.1.4 Application domains and project types 

We analyzed the data items D9 and D10 in Table 3.4 in order to provide potentially useful 

information for practitioners who are interested in project types and the domain-specific aspects of 

the approaches, tools, challenges and practices reported for CI, CDE, and CD. Table 3.7 shows the 

application domains in which the reviewed approaches, practices, and challenges can be placed. 

Regarding the application domain, not all the reviewed papers provided this information, which 



 

 

36 

 

resulted in categorizing 38 studies under “unclear” category. For those papers that reported the 

application domains, we classified them into 13 application domains. The approaches, tools, and 

practices introduced in one study can be applied in more than one application domain with several 

cases. For example, the continuous integration testing approach reported in [S40] has been applied 

in two different domains including communication software and information management system. 

If one study uses more than one system as a case study, then we count this study N (number of 

systems) times in Table 3.7. The work reported in [S34] uses two utility software as case studies, and 

x represents the number of cases in S34(x).  

It becomes clear from Table 3.7 that the “software/web development framework” domain has gained 

the most attention for continuous practices, followed by “utility software” and “data management 

software”. We investigated the type of project (i.e., greenfield and maintenance) that continuous 

practices have been applied to. Our analysis of the data item D10 revealed that the greenfield and 

maintenance projects were reported in 17 and 16 papers respectively. However, there are 36 papers 

without any information about the types of projects for which the proposed continuous approaches, 

tools and practices had been applied. 

Table 3.7 Distribution of application domains of the selected studies 

Application domain No. of Cases Cases 

Unclear 39 

S1, S4, S5, S6, S9, S10, S12, S13, S16, S17, S18, 
S22, S23, S27, S28, S31, S33, S37, S38, S42, S44, 
S46, S47, S48, S49, S50, S55, S57, S58, S60, S61, 
S62, S63, S64, S65, S66, S67, S68 

Software/Web development framework 13 S3(2), S21, S24(4), S25, S32, S34, S36, S59(2) 

Utility software 9 S3(3), S24(3), S30, S34(2) 

Data management software 8 S3(2), S24(4), S25, S43 

Financial Software 5 S7(2), S41, S43, S45 

General software library 5 S2, S3(2), S24, S25 

Embedded system 5 S11, S19, S26, S52, S56 

Information management system 4 S8, S24, S40, S53 

Web server 3 S3(2), S24 

Communication software 3 S3, S24, S40 

Military Software 3 S11(2), S39 

Distributed system 2 S14, S54 

Web browser 2 S29, S69 

Other domains 11 S3 (4), S7, S15, S20, S51, S24, S34, S35 

3.4.2 Approaches and associated tools to facilitate continuous integration, 
delivery, and deployment? (RQ3.1) 

We found 29 papers (42%) that reported approaches and associated tools to support and facilitate 

continuous integration, delivery or deployment practices. Table 3.8 lists all approaches and 

associated tools presented in the reviewed papers. The Description column provides a summary of 

the proposed approaches and associated tools. The third column indicates the proposed approaches 

and tools have been mainly used and applied to facilitate what continuous practices. We classified 

the available approaches and associated tools into six groups depending on their features and/or the 



 

 

37 

 

areas in which they were used as the followings. Apparently, the six categories are not mutually 

exclusive, as there were several approaches and tools fallen in more than one category. For brevity 

purpose, we only elaborate a small subset of the studies as examples.  

3.4.2.1 Reduce build and test time in CI 

The approaches and tools in this category aim at minimizing the total time in the build process and 

test phase, which consequently improves performance and efficiency of continuous integration 

practice [S3, S19, S23, S25, S34, S55, S64, S67]. Since slow build process can be an obstacle to 

practicing continuous integration, Bell et al. [S3] proposed two approaches namely VMVM (Virtual 

Machine in a Virtual Machine) and VMVMVM (Virtual Machine in a Virtual Machine on a Virtual 

Machine) to isolate in-memory and external dependencies among test cases respectively. Whilst 

eliminating in-memory dependencies between tests enables running each test in its own process, 

which significantly reduces the overhead of dependencies among short test cases, VMVMVM 

approach executes the long-running test cases in parallel. The combination of VMVM and 

VMVMVM accelerates the total build time, which can relieve a deployment pipeline from long-

running builds.  

A number of papers [S34, S55, S64] in this category developed approaches that reduce the time of 

test execution by selecting a set of tests cases and prioritizing them, in which developers are enabled 

to receive the results early in the testing process. To give an example, Elbaum et al. [S55] proposed 

CRTS (Continuous Regression Test Selection) and CTSP (Continuous Test Suite Prioritization) 

approaches to effectively run regression tests within continuous integration development 

environments. The proposed approaches use test suite execution history data to improve the cost-

effectiveness of pre-submit testing (i.e., tests performed by developers before committing code to 

the repository) and reduce test case execution costs.  

McIntosh et al. [S25] revealed that in C and C++ applications there might be header files that not 

only increase the time of the rebuild process but also due to frequent maintenance requires 

significant effort. Thus, these header files, called hotspots, are a bottleneck to continuous 

integration build process. Through analysis of the Build Dependency Graph (BDG) and the change 

history of a system, the proposed approach in [S25] enables the team to identify the header files that 

should be optimized first to improve build performance. Hence, the team members only can focus 

on header files with added value.  

3.4.2.2 Increase visibility and awareness on build and test results in CI 

As the frequency of code integration increases, the information (build and test results) produced 

during practicing CI would increase exponentially. This may considerably slow down the feedback in 

CI. Therefore, it is critical to collect and represent the information in a timely manner to help 

stakeholders to gain better and easier understanding and interpretation of the results. Several 

studies [S1, S2, S13, S22, S24, S33, S38, S52, S64, S67] have reported approaches and associated tools 

for improving developers’ understanding of their projects’ status when implementing CI practice. 

The authors of [S2] found that stand-alone CI tools (e.g., Jenkins) produce a huge amount of data 

that may not be easily utilized by stakeholders (e.g., developers and testers). They developed a 

framework and platform called SQA-Mashup to integrate and visualize the information produced in 

CI-toolchain using two views: (1) dynamic view, which is a visualization view for developers and 

testers and (2) time view, which indicates a chronological view on events (i.e., failure event) 

happened in CI-toolchain. It was found that the interpretation of the proposed views is time-

consuming and should be performed by professionals (e.g., tester). Brandtner et al. [S24] proposed a 

rule-based approach, named SQA-Profile, to classify stakeholders based on their activities in the CI 



 

 

38 

 

environment. The project-independent SQA-Profile enables tailoring and dynamic composition of 

scattered data in the CI system. Nilsson et al. [S13] have found that companies need to describe and 

arrange testing activities and efforts before moving to CI. CIViT (Continuous Integration 

Visualization Technique) aims at visualizing the end-to-end process of testing activities. CIViT 

enables team members to avoid duplicate testing efforts and visually understand the status (i.e., 

time and extent) of testing of quality attributes.  

3.4.2.3 Support (semi-) automated continuous testing 

There are 7 papers that have proposed approaches and tools for (semi-) automating tests in 

deployment pipelines [S19, S32, S38, S40, S52, S53, S54]. Two papers [S40, S53] have provided 

frameworks to support Continuous Integration Testing (CIT) in SOA systems. Whilst the work 

reported in [S40] partly automates test case generation in CIT using sequence diagrams as input, 

Surrogate, the simulation framework proposed by [S53], enables CIT for partial implementation. 

Through this framework, bugs can be identified when some components or even all components are 

still unavailable. Kim et al. [S38] proposed NHN Test Automation Framework (NAFT) as an 

integrator for existing CI servers to facilitate CI practices through automating repetitive and error-

prone processes for testing. In addition, tests and test environments are visualized using tables and 

communication among stakeholders would be improved.     

3.4.2.4 Detect violations, flaws and faults in CI  

Addressing the failures and violations in continuous integration systems, particularly at the early 

stage of development are the targets of several papers [S16, S21, S25, S32, S33, S34, S42, S52, S53, S54, 

S55]. For example, one study [S16] reported an approach and associated tool called WECODE to 

automatically and continuously detect software merge conflicts earlier than a version control system 

is used by developers. The tool enables developers to detect the conflicts in uncommitted code that 

version control systems are not able to detect. In [S21], the authors developed a method includes 

incremental integration with simple and true backtracking in order to reduce the impacts of broken 

builds in the context of component-based software development. In the normal situation, a failure 

in the build process of a component stops the integration process. The failure should be resolved, 

and the component needs to be rebuilt. But the incremental integration method addresses this issue 

by building components using the earlier build results of the same components. This approach leads 

the integration process becomes more resilient against build failures. 

3.4.2.5 Address security and scalability issues in the deployment pipeline 

Our literature review has identified only two papers dealing with the security issue in deployment 

pipelines [S27, S66]. Gruhn et al. argued that continuous integration systems are vulnerable to 

security attacks and misconfiguration [S27]. Having proposed a secure build server, they 

encapsulated build jobs using virtualization environment with snapshot capability to prevent one 

project’s security attacks from infecting other projects’ build jobs in multitenant CI systems. In 

[S66], it has been discussed that the security of a deployment pipeline may be threatened by 

malicious code being deployed through the pipeline and direct communication between 

components in the testing and production environments. Rimba et al. [S66] proposed an approach, 

which integrates security design fragments (i.e., security patterns) through four compassion 

primitives namely connect tactic, disconnect tactic, create tactic, and delete tactic to secure 

deployment pipelines. For a large-scale software project, the full build can take hours as it includes 

compilation, unit testing, and acceptance testing. Roberts [S47] has extended normal continuous 

integration process and proposed Enterprise Continuous Integration (ECI) approach to split up a 



 

 

39 

 

project into several modules using binary dependencies. Despite every module has its own CI, ECI 

provides the feedback that a single-project CI provides. ECI addresses the scalability issue in normal 

CI and enables small teams to continuously integrate with the binary dependencies developed by 

other teams. 

3.4.2.6 Improve dependability and reliability of deployment process 

Some papers [S8, S59, S68] dealt with the deployment process of applications that have adopted 

continuous delivery or deployment practices. The work reported in [S8] investigated the reliability 

issue in high-frequency releases of Cloud applications. It has been argued that two major 

contributing factors i.e., cloud-infrastructure APIs (EC2 API) and deployment-tool (i.e., OpsWorks5 

and Chef6) can affect the reliability of cloud applications when they adopt continuous delivery and 

deployment. Four error-handling approaches have been implemented on rolling upgrade tool to 

deal with reliability issues and facilitate continuous delivery. Increasing the frequency of 

deployment (e.g., by adopting CD practice) would make error diagnosis harder during sporadic 

operations [S68]. An approach, called Process Oriented Dependability (POD), has been proposed to 

improve the dependability of the deployment process in cloud-based systems. The POD approach 

models the sporadic operations as processes through collecting metrics and logs in order to alleviate 

the difficulty of error diagnosis process in deploying cloud-based systems on a continuous basis.  

Table 3.8 A classification of approaches and associated tools to facilitate continuous integration, delivery 
and deployment: ❶ (reduce the build and test time in CI); ❷ (increase visibility and awareness of build 
and test results in CI); ❸ (support (semi-) automated continuous testing); ❹ (detect violations, faults, 
and flaws in CI); ❺ (address security and scalability issues in deployment pipeline); ❻ (improve 
dependability and reliability of deployment process) 

Description of Approaches and Tools  Category Apply to 

Wallboard technique [S1]: It indicates the current integration and delivery status of 
all branches within a project. 

❷ All 

SQA-Mashup [S2]: It can integrate and visualize data produced in CI 
environments. 

❷ CI 

VMVM/VMVMVM [S3]: It is used to isolate in-memory and external dependencies 
among test cases. 

❶ CI 

Error-handling approaches on rolling upgrade [S8]: A set of error-handling 
approaches to deal with reliability issues which are inherent to cloud 
environments.  

❻ CDE/CD 

CIViT [S13]: It is used to visualize the end-to-end process of testing activities in the 
transformation to continuous integration. By visualizing the end-to-end process of 
testing activities, team members are enabled to reduce testing efforts. 

❷ CI 

WECODE [S16]: It automatically and continually detects software merge conflicts 
earlier than a version control system is used by developers as well as detects 
conflicts in uncommitted code. 

❹ CI 

uBuild [S19]: It provides continuous testing making reproducible and deterministic 
tests in order to achieve automated build.  ❶❸ CI 

Backtracking Incremental Continuous Integration [S21]: Through simple and true 
backtracking approaches, this approach increases the resilience of build process 
against failures and ensures that a working version is available at all times.  

❹ CI 

BuildBot Robot [S22]: It notifies who is responsible for test failure in the CI 
environment in a friendly and funny way. It makes continuous integration 

❷ CI 

                                                           
5 https://aws.amazon.com/opsworks/ 
6 https://www.chef.io/chef/  



 

 

40 

 

environment visible to all developers. 

Hydra [S23]: It is Nix-based continuous build tool, which automatically produces a 
build environment for projects. Therefore, it can reduce the efforts to maintain a 
continuous integration environment. 

❶ CI 

SQA-Profile [S24]: Through a set of rules, it can provide a dynamic composition of 
CI dashboards based on stakeholder activities in tools of a CI environment. ❷ CI 

Hotspot Approach [S25]: In order to have a fast build system in continuous 
integration infrastructure, this approach identifies header files that are bottlenecks 
for the build process. 

❶❹ CI 

Secure Build Server [S27]: It extends the default build server in a CI environment 
using encapsulating infected build jobs and prevents spreading infection to other 
build jobs in multitenant CI systems. 

❺ CI 

Automatic and agile testing of product lines based on combinational interaction 
testing [S32]: It makes automatic testing as an integrated part of continuous 
integration framework and enables developers of software product lines to identify 
potential interaction faults in the build process. 

❸❹ CI 

Ambient awareness-based approach [S33]: It enhances build status awareness 
among team members, which results in decreasing the number of broken builds 
and a strong sense of responsibility towards failures in the build process. 

❷❹ CI 

Integrating fault localization and test case prioritization technique in CI [S34]: The 
fault location and test case prioritization approaches are combined to support 
commit built in continuous integration, which consequently improves efficiency 
(time) and effectiveness of the whole CI process. 

❶❹ CI 

NHN Test Automation Framework [S38]: It supports CI practices through 
automating repetitive and error-prone processes for testing in a continuous 
integration environment. It aids communication among various stakeholders using 
tables to represent tests and test environments. 

❷❸ CI 

Continuous Integration Testing for SOA [S40]: A Unified Test Framework (UTF) 
for Continuous Integration Testing (CIT) of SOA, which would partly automate 
test case generation in CIT using sequence diagrams as input. 

❸ CI 

User-defined Script [S42]: It supports enforcement at commit time by establishing 
a pre-commit step (i.e., Subversion pre-commit hook) to force developers into 
fixing the violation in code commit. It does not allow committing codes that 
comply with conventions (e.g., as-build architecture).  

❹ CI 

Enterprise Continuous Integration [S47]: A modified version of the normal 
continuous integration process to split up the project into several modules using 
binary dependencies. Despite every module has its own CI, ECI provides the 
feedback that single-project CI provides. 

❺ CI 

Tinderbox [S52]: It is a continuous integration and automated testing system, 
which helps find integration problems earlier in the development cycle, reduce the 
cost to fix the integration problems and improve visibility and awareness among 
team members. 

❷❸❹ CI 

Surrogate [S53]: A simulation framework to implement continuous integration 
testing for SOA systems when some components or even all components are still 
unavailable. With this, bugs are identified at the early stage of development.  

❸❹ CI 

CiCUTS [S54]: It integrates CUTS, system modeling executing tool, with 
continuous integration environments. Through this approach, developers and 
testers are enabled to continuously perform system integration testing on target 
environments using emulation approaches and identify performance problems 
before components are completely implemented. 

❸❹ CI 



 

 

41 

 

Continuous Regression Test Selection (CRTS) [S55]: It enables running effectively 
regression testing within continuous integration development environments. The 
technique improves the cost-effectiveness of pre-submit testing (i.e., tests 
performed by developers before committing code to the repository) and reduce test 
case execution costs. 

❶ CI 

Continuous Test Suite Prioritization (CTSP) [S55]: It can reduce delays in fault 
detection during post-submit testing (i.e., all tests that are performed after code 
submitted to the repository). In overall, it can improve the cost-effectiveness of the 
continuous integration process.  

❶❹ CI 

Rondo [S59]: Adopting continuous deployment in dynamic environments such as 
pervasive computing environments is associated with a number of challenges. 
Deployment process in such environments should be reproduced in different sites, 
support customizability, and should be equipped with custom rollback mechanism. 
Rondo, an automation tool, satisfies all above-mentioned requirements to facilitate 
adopting continuous deployment practice in dynamic environments. 

❻ CDE/CD 

Code-Churn Based Test Selection (CCTS) [S64]: This technique analyses code 
churns and test execution results to select an optimal subset of test suites on the 
system level. So, it helps large-scale software development organizations speed up 
CI. It enables team members to gain a better understanding of the number of test 
failures.  

❶❷ CI 

Enhancing the security design of a deployment pipeline [S66]: This approach 
integrates four security design fragments (i.e., security patterns) at the design level 
to secure deployment pipelines. The security of the pipeline is ensured through not 
allowing malicious code is deployed through the pipeline and preventing direct 
communication between components in the testing and production environments. 

❺ CDE/CD 

Morpheus [S67]: It facilitates CI practice through improving the quality of 
feedback, in which each developer only receives the test results of his own changed 
code (i.e., easy interpretation of test results). Additionally, in order to minimize 
build and test time, it executes automated tests in the environment that is similar 
to the production environment. 

❶❷ CI 

Process Oriented Dependability (POD) [S68]: An approach to improve the 
dependability of the deployment process in cloud-based systems. This approach 
models the sporadic operations as processes in order to alleviate the difficulty of 
error diagnosis during sporadic operations when CD practice is adopted and 
implemented. 

❻ CDE/CD 

3.4.3 Tools used to design and implement deployment pipelines? (RQ3.2) 

This section presents the findings to answer to RQ3.2 Deploying software on a continuous basis to 

end users has increased the importance of deployment pipelines [98]; the success of adopting 

continuous practices in enterprises heavily relies on deployment pipelines [78]. Hence, the choice of 

appropriate tools and infrastructures to make up such pipeline can also help mitigate some of the 

challenges in adopting and implementing continuous integration, delivery and deployment 

practices. We have investigated the deployment toolchain reported in the literature and the tools for 

implementing deployment pipelines. Since continuous delivery and deployment might be used 

interchangeably, we used the term deployment pipeline, which is equal to the modern release 

engineering pipeline [98], instead of continuous integration infrastructure, or continuous delivery or 

deployment pipeline.  

A deployment pipeline should include explicit stages (e.g., build and packaging) to transfer code 

from the code repository to the production environment [7, 78]. Automation is a critical practice in 

the deployment pipeline; however, sometimes manual tasks (e.g., quality assurance tasks) are 

unavoidable in the pipeline. It is worth noting that there is no standard or single pipeline [78]. Our 

literature reveals that only 25 out of 69 studies (36.2%) discussed how different tools were integrated 



 

 

42 

 

to implement toolchain to effectively adopt continuous practices. It should be noted that the tools 

reported in this section are mostly existing open sources and commercial tools, which aim to form 

and implement a deployment pipeline. However, the tools discussed in Section 3.4.2 are intended to 

facilitate the implementation of continuous practices.  These tools can be also used as part of the 

deployment pipeline implementation provided that they are integrated and evaluated in the 

pipeline. As shown in Figure 3.3, we divided the deployment pipeline into 7 stages: (i) version 

control system; (ii) code management and analysis tool; (iii) build tool; (v) continuous integration 

server; (vi) testing tool; (vii) configuration and provisioning; and (viii) continuous delivery or 

deployment server. It should be noted that not all stages are compulsory as well as we could not find 

any primary study among the 25 studies that had implemented a pipeline involving all stages 

mentioned in Figure 3.3. At the first stage, developers continually push code to code repository. The 

most popular version control systems used in deployment pipelines are Subversion7 and Git/GitHub8 

as each has been reported in 6 papers. We found 7 papers [S2, S14, S18, S20, S42, S52, S62], which 

used code management and analysis tools as part of the deployment pipeline to augment the build 

process. The work reported in [S20] integrated SonarQube9 into Jenkins10 CI server for gathering 

metric data such as test code coverage and coding standard violations and visualized them to 

developers. Continuous integration servers check the code repository for changes and use 

automated build tool [99]. Through CI servers, it is possible to automatically trigger the build 

process and run unit tests. Jenkins [S2, S14, S17, S20, S26, S27, S30, S35, S62, S63, S66] has gained the 

most attention among existing CI servers in the literature. It should be noted that some CI servers 

(e.g., Jenkins, Bamboo11, and Hudson12) are also able to deploy software to staging or production 

environment [100]. A study reported in [S30] used Jenkins as continuous delivery/deployment server. 

Bamboo and CruiseControl maintained the subsequent positions. [S39, S58] used TeamCity as CI 

server in the pipeline and other CI servers have been reported in one paper each. The next step of 

the deployment pipeline is to run a set of tests in various environments. There are only four papers 

[S18, S35, S54, S62], which integrated testing tools as part of the deployment pipeline. Two papers 

[S35, S18] employed JUnit13 and NUnit14 for the unit test in the pipeline respectively, while one paper 

[S35] also used a test runner called Athena to execute test suites and store the results in a format 

that can be used by Jenkins. Furthermore, TestLink15 as a test management framework has been 

employed to store the results of acceptance tests run on different sites. The work reported in [S54] 

combined CUTS as a system modeling executing tool to CruiseControl16 to enable developers and 

testers to continuously run system integration tests at the early stages of the software lifecycle (i.e., 

before complete system integration time) of component-based distributed real-time and embedded 

systems. The tool can capture performance metrics of executing systems such as execution time, 

throughput, and the number of received events. It is asserted that providing automated 

configuration of servers and virtual machines is one of the innovations in deployment pipelines [98]. 

That can be the reason why we observed only two studies [S58, S63] that used configuration 

management tools as an integrated part of the deployment pipeline to streamline the configuration 

and provisioning tasks. One study [S1] used HockeyApp17 as a continuous delivery server to 

distinguish external release from internal one as well as it enables to deliver a build as a release to 

customers. The cases reported in [S17, S62] respectively used a Ruby-based software deployment 

called deoloyr and Web Deploy tool to automatically deploy code to production. 

                                                           
7 https://subversion.apache.org/  
8 https://github.com/git/git  
9 www.sonarqube.org/ 
10 https://jenkins-ci.org/  
11 https://www.atlassian.com/software/bamboo/ 
12 hudson-ci.org/ 
13 junit.org/ 
14 http://www.nunit.org/ 
15 testlink.org/  
16 http://cruisecontrol.sourceforge.net/  
17 http://hockeyapp.net/features/ 



 

 

43 

 

 

Figure 3.3 An overview of tools used to form deployment pipeline 

3.4.4 Challenges of adopting continuous practices (RQ3.3) 

This section summarizes the results of RQ3.3, “What challenges have been reported for adopting 

continuous practices?” As discussed in Section 3.3.5.2, we analyzed the data item D12 using the 

thematic analysis method [56] for identifying and synthesizing the challenges for moving to and 

adopting CI, CDE, and CD. Our analysis resulted in the identification of 20 challenges, which are 

shown in Table 3.9. We provide detailed descriptions of the identified challenges as a follow:  

3.4.4.1 Common challenges for adopting CI, CDE and CD practices 

Under this category, we list the challenges of implementing all continuous integration, delivery and 

deployment practices together. Most of the challenges are usually associated with introducing any 

new technologies or phenomena in a given organization.  

A) Team Awareness and Communication 

Lack of awareness and transparency: Our review has identified several papers that report a lack 

of sufficient awareness among team members may break down transition towards continuous 

practices [S6, S10, S31, S43, S45, S50, S56, S62]. Espinosa et al. [101] defined “awareness” as short-term 

knowledge about a team and its tasks. Continuous delivery process should be designed in a way that 

the status of a project, number of errors, the quality of features, and the time when features are 

finished are visible and transparent for all team members [S10, S31, S43, S50]. The work reported in 

[S31] asserted a lack of sufficient knowledge about the changes made in the main branch during 

developing work packages by self-organized teams resulted in an increased number of merge 

conflicts in delivery.  

Coordination and collaboration challenges: Some of the reviewed studies also reported that 

successfully implementing continuous practices requires more collaborations and coordination 

between all team members [S4, S6, S10, S41, S45, S56, S62]. For example, compared to less frequent 

release, deploying software on a continuous basis requires more communication to and coordination 

Deployment Pipeline 

Versioning Control 
System 

 

Testing 
 

CI Server 
 

Build System 
 

Code Management 
and Analysis 

 
 

CD Server 
 

Configuration and 
Provisioning 

 

Stash (S1)  
Git/GitHub (S1, 
S2, S15, S17, S58, 
S63)  
BitBucket (S2)  
Subversion (S20, 
S30, S33, S38, S39, 
S42)  
IBM Rational 
ClearCase (S14) 
 

SonarQube (S2, 
S20)  
Ndepend (S18)  
PartCover (S18) 
CheckStyle (S42) 
Flexelint (S52) 
gcov (S52) 
CodePlex 
Stylecop (S62) 

 

Make (S15) 
Maven (S20) 
Ant (S39) 
NAnt (S18, S47, 
S54, S62) 
MSBuild (S62) 

 

Bamboo (S1, S20, 
S33)  
Jenkins (S2, S14, 
S17, S20, S26, S27, 
S30, S35, S62, S63, 
S66)  
CruiseControl 
(S15, S18, S38, S47, 
S54)  
Sysphus (S21) 
Hudson (S32)  
Hydra (S23)  
TeamCity (S39, 
S58) 
Tinderbox (S52) 
 

NUnit (S18, S62) 
TestLink (S35)  
JUnit (S35)  
Athena (S35) 
CUTS (S54) 
NAFT (S38) 
Microsoft 
MSTest (S62) 
Selenium (S62) 
MbUnit (S62) 
Borland Silk4Net 
(S62) 

HockeyApp (S1) 
Deployr (S17) 
Jenkins (S30) 
Microsoft Web 
Deploy (S62)  

 

Puppet (S58) 
Yum (S58) 
Hiera (S58) 
Chef (S63) 

 



 

 

44 

 

with operations teams [S4]. Gmeiner et al. [S62] argued that the real benefits of the deployment 

pipeline can be obtained by having a common understanding and collective responsibilities among 

all stakeholders. Another study [S41] noted that there is a need for strong coordination and 

communication between the release manager and other team members (e.g., testers) to improve the 

release process. Laukkanen et al. [S45] also reported coordination and collaboration challenges as 

part of adopting continuous integration in distributed teams.  

B) Lack of Investment 

Cost: Cost and investment play an important role in embracing continuous practices in both 

customer and software development organizations. Several of the reviewed studies [S4, S6, S12, S27, 

S37, S43, S45, S49, S57, S62] reported that practicing efficiently each of the continuous integration, 

continuous delivery or deployment is associated with the high cost that can be attributed to many 

factors. For example, a study [S37] reported that a major resource upgrade was needed to support CI 

practice. Gruhn et al. [S27] observed that adopting continuous integration in Free, Libre and Open 

Source Software (FLOSS) requires extra computation, bandwidth, and memory resources. CI 

systems are required to perform build jobs, which include downloading patch files, compiling new 

versions of code, and running a large set of unit and acceptance tests.  

The work reported in [S43] revealed that performing automated acceptance tests in the deployment 

pipeline requires a significant amount of resources from customers. Two studies [S57, S62] observed 

that building, improving, and maintaining infrastructures (e.g., deployment pipeline) for continuous 

deployment practice needed a significant amount of time, money and training. There was also cost 

associated with training and coaching team members to adopt continuous practices [S57].      

Lack of expertise and skill: Several papers [S4, S5, S6, S12, S45, S49, S57] reported a significant gap 

in the required skills when implementing continuous practices. This is mainly because most of the 

practices (e.g., test and deployment automation) associated with CI, CDE, and CD demand new 

technical and soft (e.g., communication and coordination) skills and qualifications. Several studies 

[S4, S6, S57] indicated the needs of highly skilled developers for practicing CD.  

More pressure and workload for team members: It has been reported that building high-quality 

applications that are supposed to be frequently released to customers may cause some team 

members to face more stress and extra efforts [S4, S5, S6, S45, S49, S58]. Callanan and Spillane [S58] 

discussed that the operations team was under more pressure to deliver software on a continuous 

basis. The study reported in [S49] has found that transforming a six-month release into continuous 

release noticeability increased the workload of the developers and the release team. Whilst the 

transition forced developers to more analyze their codes in order to thoroughly identify the negative 

side effects of their codes, the release team experienced difficulties to find issues in the release 

process. One reason for this pressure could be that team members are directly responsible for 

affecting their customers’ experiences. 

Lack of suitable tools and technologies: According to eleven studies [S5, S6, S8, S10, S27, S43, S49, 

S56, S57, S60, S66], the limitations of existing tools and technologies are inhibitors to achieving the 

goals of continuous practices. Researchers pointed out [S5, S10] that the existing tools are inefficient 

in reviewing code and providing feedbacks from test activities in continuous integration. They 

emphasized that test automation is not sufficiently provided by current infrastructure. Other studies 

[S8, S27] highlighted the build and deployment tools employed in the deployment pipeline are 

vulnerable to security and reliability issues. Analyzing the reliability issue in high-frequency releases 

of Cloud applications revealed that using external resources and cloud-based tools in a deployment 

pipeline leads to increased errors and delays, which consequently hinders continuous delivery 

practice [S8].  



 

 

45 

 

Olsson et al. [S10] indicated that the high-frequency changes in tools and the need for learning new 

tools are the major barriers to adjust to continuous integration. Three papers [S56, S57, S60] 

revealed that the current tools and technologies either have limited functionalities or cannot enable 

all organization to truly adopt CD practice. To exemplify, a study [S56] reported that a lack of 

appropriate technologies hindered automatically and continuously deploying applications in 

embedded system domain with customer-specific environments.  

C) Change Resistance 

General resistance to change: Whilst employees generally resist to change, people may embrace 

changes provided that there are convincing reasons for those changes [102]. Introducing continuous 

practices may necessitate adopting a new way of working for some team members (e.g., accepting 

more responsibilities by developers). The reviewed studies reported that objections to change were a 

barrier to move towards and successfully implement continuous practices [S4, S5, S6, S12, S56, S57, 

S62]. A study [S62] found that establishing the necessary mindset required by a continuous delivery 

was a time-consuming process; another study [S5] concluded that changing the old habits of 

developers was problematic when introducing CI. Our investigation revealed that the team 

members were unwilling to change their ways of working due to lack of trust and rapport on the 

benefits of continuous practices, fear of exposing low-quality code, and suffering more stresses and 

pressures. 

Skepticism and distrust on continuous practices: Six papers [S4, S5, S6, S12, S45, S49] referred to 

lack of trust and skepticism about the added values that may bring by adopting continuous practices 

as potential risks for moving towards these practices. To give an example, the experience reported in 

[S49] revealed that the release team was worried about allowing several concurrent releases. This is 

mainly because continuous release might bring side effects to them and make them unable to 

identify which release was causing which problem. In addition, another study [S12] reported that 

lack of trust in application’s quality may reduce the confidence of team members to move from CI to 

CD and deploy the application to production on a continuous basis. 

D) Organizational Processes, Structure, and Policies  

Difficulty to change established organizational policies and cultures: According to [103], the 

organizational culture is a set of habits, behaviors, attitudes, values and management practices 

adopted by an organization. Two studies [S10, S12] discussed the difficulties in changing 

organizational cultures for aligning with the principles of continuous practices. Based on a study, 

Olsson et al. [S10] reported that being traditionally a hardware-oriented company was an obstacle in 

the transition towards CI practices, however, [S12] highlighted this issue as the case company used 

to have a six-month release cycle. Both papers revealed the lack of suitable and agile business model 

in organizations resulted in negative consequences for continuous practices. Rissanen and Münch 

[S43] found that practicing the short-lived feature branching, which is regarded as one of the best 

practices in continuous delivery is not easy to apply in a company with long-established practices.  

Distributed organization: It has been reported that practicing continuous integration and 

deployment in distributed development teams can be associated with a number of challenges (i.e., 

lack of visibility) [S12, S37, S45]. In both cases [S12, S45], the authors argued that introducing CI 

practice in distributed development model was challenging. That is mainly because it would 

prohibit having consistent perceptions among distributed teams and decrease the visibility of 

development sites. In an experience reported by Sutherland and Frohman [S37], it has been asserted 

that the distributed development model adopted by Scrum team was a barrier to CI practice. It is 

mainly because allocating a dedicated and private integration server environment to each individual 

Scrum team led to detecting integration issues that have been postponed to a very large extent. As a 

result, the team was forced to put all teams into a single server environment. 



 

 

46 

 

Table 3.9 A classification of challenges in adopting CI, CDE, and CD practices  

  Challenges Key Points and Included Papers # 

C
o

m
m

o
n

 C
h

al
le

n
g

es
 f

o
r 

A
d

o
p

ti
n

g
 C

I,
 C

D
E

, 
an

d
 C

D
 

T
ea

m
 A

w
ar

en
es

s 
an

d
 

C
o

m
m

u
n

ic
at

io
n

 Ch1. Lack of awareness 
and transparency 

▪ Lack of awareness and transparency in the delivery process 
[S6, S10, S31, S43, S45, S50, S56, S62] 

▪ Lack of understanding about the status of the project 
increases the number of merge conflicts [S31] 

 
8 

Ch2. Coordination and 
collaboration challenges 

▪ Practicing CI, CDE, CD needs more and effective 
coordination and communication between team members 
[S4, S6, S10, S41, S45, S56, S62] 

 
7 

L
ac

k
 o

f 
In

ve
st

m
en

t 

Ch3. Cost 
▪ Major upgrade in infrastructures and resources [S4, S6, S12, 

S27, S37, S43, S45, S49] 
▪ Training and coaching [S57, S62] 

10 

Ch4. Lack of experience 
and skill 

▪ CI, CDE, and CD demand new technical and soft skills [S4, 
S5, S6, S12, S45, S49, S57] 

▪ Need highly skilled developers [S4, S6, S57]  
7 

Ch5. More pressure and 
workload for team 
members 

▪ More stress for developers and operations team [S4, S5, S6, 
S45, S49, S58] 

▪ More responsibilities for developers [S49] 
6 

Ch6. Lack of suitable 
tools and technologies 

▪ Lack of mature tools for automating tests and reviewing 
code in CI [S5, S6, S10, S43, S49] 

▪ Frequency changes in tools [S10] 
▪ Security and reliability issues in build and deployment 

tools [S8, S27, S66] 
▪ Current tools don’t fit all organizations [S56, S57, S60] 

11 

C
h

an
g

e 
re

si
st

an
ce

 Ch7. General resistance 
to change 

▪ Changing the old habits of team members [S4, S5, S6, S12, 
S56, S57, S62] 

▪ A time-consuming process to change team mindset [S62] 
7 

Ch8. Skepticism and 
distrust on continuous 
practices 

▪ Lack of trust on benefits of CI, CDE, CD [S4, S5, S6, S12, 
S45, S49] 

6 

O
rg

an
iz

at
io

n
al

 p
ro

ce
ss

es
, 

st
ru

ct
u

re
 a

n
d

 p
o

li
ci

es
 

Ch9. Difficulty to change 
established 
organizational policies 
and cultures 

[S4, S6, S10, S12, S43] 
▪ Lack of agile and suitable business model [S10, S12] 
▪ Changing long-lived feature branching to short-lived one 

in an established company [S43] 

5 

Ch10. Distributed 
organization 

▪ Distributed team model [S12, S37, S45] 
▪ Inconsistent perceptions among team members [S12, S45] 

3 



 

 

47 

 

C
h

al
le

n
g

es
 f

o
r 

A
d

o
p

ti
n

g
 C

I 

T
es

ti
n

g
 

Ch11. Lack of proper test 
strategy 

▪ Lack of fully automated testing [S4, S5, S12, S36, S41, S43, 
S45] 

▪ Lack of test-driven development [S12] 
7 

Ch12. Poor test quality 

▪ Instable tests [S4, S5, S6, S41, S45, S50, S62] 
▪ Low test coverage [S56] 
▪ Low-quality test data [S6] 
▪ Long-running tests [S4, S5, S45, S50] 
▪ Test dependencies [S5, S41] 

8 

M
er

g
in

g
 

co
n

fl
ic

ts
 

Ch13. Merging conflicts 

[S4, S6, S21, S31, S41, S45] 
▪ Third party components [S45] 
▪ Incompatibly among dependent components [S31] 
▪ Lack of understanding about changed components [S31] 

5 

C
h

al
le

n
g

es
 f

o
r 

A
d

o
p

ti
n

g
 C

D
E

 

L
ac

k
 o

f 
su

it
ab

le
 

ar
ch

it
ec

tu
re

 

Ch14. Dependencies in 
design and code 

[S4, S5, S6, S10, S31, S41, S57, S60] 
▪ Highly coupled architectures [S60] 
▪ Difficulty to find autonomous requirements for frequent 

integrations [S5] 

8 

Ch15. Database schema 
change 

▪ Frequent changes in database schema [S6, S57, S58, S62] 4 

T
ea

m
 

d
ep

en
d

en
ci

es
 

Ch16. Team 
dependencies 

▪ Cross-team dependencies [S6, S31, S45, S50, S56, S57] 
▪ Ripple effects of changes on multiple teams [S50] 
▪ Dependency between feature team and module team in 

embedded system domain [S56] 

6 

C
h

al
le

n
g

es
 f

o
r 

A
d

o
p

ti
n

g
 C

D
E

 

C
u

st
o

m
er

 c
h

al
le

n
g

es
 

Ch17. Customer 
environment 

▪ Lack of access to customer environment [S56, S60] 
▪ Complex and manual configuration [S10, S62] 
▪ Diversity and complexity of customer sites [S4, S6, S10, S29, 

S43] 
▪ Difficulty to stimulate production-like environment [S56, 

S60] 

8 

Ch18. Dependencies with 
hardware and other 
(legacy) applications 

▪ Releasing an application on a continuous basis requires 
deploying all dependent applications in customer site [S6, 
S10, S29, S43, S56, S62] 

▪ Hardware and network dependencies [S56] 

6 

Ch19. Customer 
preference 

▪ Not all customers happy with the frequent release [S6, S29, 
S43] 

▪ Customer organization policy may affect practicing CD 
[S57] 

4 

D
o

m
ai

n
 

co
n

st
ra

in
ts

 

Ch20. Domain 
constraints 

▪ Some domains don’t allow or cause difficulties to truly 
adopt and implement CD [S4, S5, S6, S9, S10, S24, S31, S41, 
S44, S48, S56, S57, S60, S65] 

14 



 

 

48 

 

3.4.4.2 Challenges for adopting CI practice 

A)  Testing 

Lack of proper test strategy: One of the most prominent roadblocks to adopting continuous 

integration reported by several studies was the challenges associated with the testing phase. Whilst 

it is asserted that automated test is one of the most important parts of successfully implementing CI, 

the case organizations studied in [S4, S5, S12, S36, S41, S43, S45] were unable to automate all types of 

tests. Lack of fully automated testing may stem from different reasons such as poor infrastructure 

for automating tests [S12], time-consuming and laborious process for automating manual tests [S43] 

and dependencies between hardware and software [S5]. Whilst lack of test-driven development 

(TDD) practice has been reported in [S12] as a barrier to establishing CI practice, Debbiche et al. [S5] 

have revealed that regardless of TDD being practiced or not, a huge dependency between code and 

its corresponding tests made integration step very complicated. The work reported in [S36] revealed 

that although automating Graphic User Interface (GUI) testing through applying a set of GUI testing 

tools could partially alleviate the challenges of rapid release, but due to reliability concerns, the 

quality assurance (QA) members were needed to manually check the system during running 

automatic test. 

Poor test quality: The next challenge in testing phase during CI adoption is about low-test quality. 

This includes having unreliable tests (i.e., frequent test failures) [S4, S5, S6, S41, S45, S50, S62], the 

high number of test cases [S50], low test coverage [S56] and long-running tests [S4, S5, S45, S50]. 

These issues not only can impede the deployment pipeline but also can reduce the confidence of 

software development organizations to automatically deploy software on a continuous basis. Rogers 

[S50] observed that the number of tests grows in large-codebase and they run slowly. Therefore, 

developers are not able to receive the feedback from tests quickly and practicing CI starts to break 

down. To give another example, the author of [S62] found that it is hard to stabilize tests at the user 

interface level. 

B) Merging Conflicts   

Our review has revealed that conflicts during code integration cause bottlenecks for practicing CI 

[S4, S6, S21, S31, S41, S45]. There are several reasons for these conflicts that can occur when 

integrating code: one study [S45] reported that third-party components caused severe difficulty to 

practice CI. Sekitoleko et al. [S31] observed that incompatibility among dependent components and 

lack of knowledge about changed components caused teams facing extra effort to rewrite their 

solutions. It is asserted that merge conflicts are mainly attributed to the highly coupled design [S31, 

S41].  

3.4.4.3 Challenges for adopting CDE practice 

A) Lack of Suitable Architecture 

We found several studies discussing that unstable application architectures create hurdles in the 

transition towards continuous delivery and deployment practices.    

Dependencies in design and code: Some authors [S4, S5, S6, S10, S31, S41, S57, S60] asserted that 

inappropriately handling dependencies between components and code cause challenges in adopting 

continuous integration and in particular continuous delivery and deployment practices. The work 

reported in [S10] argued that the existence of huge dependency between components and the 

dependency between components interfaces resulted in highly dependent development teams and 

the ripple effect of changes. It has been concluded that highly coupled architectures can cause a 

severe challenge for CDE practice because changes are spanned across multiple teams with poor 



 

 

49 

 

communications between them [S57, S60]. There was only one paper [S5], which considered 

software requirements as a challenge for CI as the interviewees reported that (i) finding the right 

size of requirements for being tested separately when broken down is challenging; (ii) it is not easy 

to understand whether small changes that do not directly add value to a feature are worth 

integrating or not. 

Database schema changes: Technical problem relating to database schema changes should be 

effectively managed in the deployment pipeline. Four reviewed studies [S6, S57, S58, S62] revealed 

that frequent changes in database schema as a technical problem when moving to continuous 

delivery. One study [S6] in this category highlighted that small changes in code resulted in constant 

changes in database schemas. Another study [S62] argued that a large part of concern in the 

configuration of the automated test environment involved setting up databases. The study reported 

in [S57] discussed that one of the studied case companies did not put extra effort to streamline its 

database schema changes, which resulted in severe bottlenecks in its deployment process. 

B) Team Dependencies 

Team structures and interactions among multiple teams working on the same codebase system play 

an important role in successfully implementing CDE and CD practices. Several of the reviewed 

studies [S6, S31, S45, S50, S56, S57] reported that high cross-team dependencies prohibited 

development teams to develop, evolve and deploy applications or components and services into 

production independently of each other. This issue also has a major impact on practicing CI as a 

small build break or test failure may have ripple effects on different teams [S50]. The author of [S56] 

argued that feature and module (hardware) teams developing embedded domain systems were 

highly dependent, in which each feature was compiled, tested and built by a combination of both 

teams. This required a strong and proper communication and coordination among them. Two 

studies [S50, S57] in this group also discussed that nonexistence of a suitable architecture can 

increase the cross-team dependency. 

3.4.4.4 Challenges for adopting CD practice 

It has been noted that CD practice may not be suitable for any organizations or systems. We discuss 

the challenges and barriers that can limit or demotivate organizations from adopting CD practice. 

A) Customer Challenges 

Customer environment: A set of papers discussed that diversity and complexity of customers’ sites 

[S4, S6, S10, S29, S43], manual configuration [S10, S62], and lack of access to customer environment 

[S56, S60] may cause challenges for team members when transferring software to customers through 

CD practice. According to [S4, S43], continuously releasing software product to multiple customers 

with diverse environments was quite difficult as it was needed to establish different deployment 

configurations for each customer’s environment and component’s version. Two papers [S56, S60] 

reported that it was not easy, if possible, to provide production-like test environment. Lwakatare et 

al. [S56] also observed that lack of access to and insufficient view on customer environment 

complicated simulating the production environment. The aforementioned issues caused 

organizations challenges in providing fully automated provisioning and automated user acceptance 

test. 

Dependencies with hardware and other (legacy) applications: Our analysis has revealed that 

albeit an application might be production-ready, dependencies between the application with other 

applications or hardware may be roadblocks to transition from CDE to CD practices (i.e., deploying 

the application on a continuous basis) [S6, S10, S29, S43, S56, S62]. It means it is needed to ensure 

that there is no integration problem when deploying an application to production. For example, a 



 

 

50 

 

study [S10] reported that an increased number of upgrades and new features made the networks 

highly complex with the potential of becoming incompatible with legacy systems. The authors of 

[S56] found that dependency with hardware and compatibility with multiple versions as a challenge 

for steady and automatically deploying software into the customer environment. 

Customer preference: Some studies considered the preference of customers and their policies as 

important factors which should be carefully considered to move towards CD practice. It was 

revealed that not always customers are pleased with the continuous release due to frequent update 

notifications, broken plug-in compatibility and increased bugs in software [S6, S29, S43]. Customer 

organization’s policy and process may not allow truly implementing CD, as in an experience report 

Savor et al. [S57] reported that banks did not allow them to continuously push updates into their 

infrastructures. 

B) Domain Constraints 

A software system’s domain is a significant factor that should be considered when adopting 

continuous deployment practice [S4, S5, S6, S9, S10, S24, S31, S41, S44, S48, S56, S57, S60, S65]. A 

qualitative study by Leppänen et al. [S4] indicated domain constraints could change the frequency 

of deploying software to customers as well as the adoption of deployment method (e.g., calendar-

based deployment). Compared with telecommunication and medical systems, web applications 

more frequently embrace the frequent deployment. In [S24], it has been reported that despite 

continuous integration practice was successfully adopted by a case company, it was not possible to 

fully apply continuous deployment practice on safety-critical systems. We found two studies 

discussing the challenges of adopting CD in embedded systems [S56] and pervasive systems [S65].  

3.4.5 Practices reported to implement continuous practices (RQ3.4) 

This section reports the findings from analysis of the data extracted (i.e., D13) to answer RQ3.4, 

“What practices have been reported to successfully implement continuous practices?” Similar to 

RQ3.3, we first provide a high-level classification of practices to understand which practices can be 

applied to each CI, CDE, CD and which practices are common for all CI, CDE, and CD. Table 3.10 

presents 13 practices and lessons learned reported in the reviewed papers.  

3.4.5.1 Common practices for implementing CI, CDE, and CD  

A) Improve Team Awareness and Communication 

In Section 3.4.2.2, we discussed how approaches and associated tools can increase a project’s 

visibility and transparency for adopting continuous practices. This section reports the analysis of a 

few papers [S6, S31, S37, S43, S44, S47, S49] that provided practices for increasing team awareness 

and communication. Robert [S47] observed that appropriately labelling the latest version of client 

source and keep updating the server version in client-server application enabled developers to 

understand when everything is working together. To make changes visible for customers, a study 

[S44] in this category suggested recording the changed features in a change log to enable customers 

to track what and when features have changed. Marschall [S49] suggested that team members be 

regularly informed (e.g., by email) about branches that are completely out-dated. We found four 

papers [S6, S31, S37, S44] that argued knowledge sharing practice should be consolidated among 

team members as enablers for adopting CI [S31, S37] and improvement for rapid release [S44].  

B) Investment 

Planning and documentation: It is argued that establishing continuous practices in a given 

organization necessitate planned and structured steps for clearly defining and documenting all the 

business goals and development activities [S28, S31, S36]. This is considered helpful to minimize the 



 

 

51 

 

challenges associated with continuously releasing software features [S28, S31, S36]. Bellomo et al. 

[S28] observed that weaving requirements and designs through prototyping at the beginning of a 

release planning cycle enabled the studied team to smooth continuous delivery process. The release 

level prototyping with quality attributes focus enabled product owner and architect to work closely 

for quickly responding to prototype feedback. The case organization studied in [S58] developed a 

standard release path (i.e., a set of rules) for application packaging and deployment for which all the 

steps and activities to production are determined. This enabled the organization to easily embrace 

CD and release frequently and with confidence. Adopting CD should be slow with preparing, 

understanding and documenting engineering processes. For example, one of the case companies 

studied in [S57] spent 2 years to institutionalize CD practice. Five studies [S6, S11, S17, S37, S43] 

emphasized the importance of documentation when adopting continuous practices. It has been 

suggested that continuous activities (build, test, and packaging) should be well documented to help 

different stakeholders to understand the history of the activities in deployment pipeline. For 

example, Ståhl and Bosch [S11] proposed a descriptive Integration Flow Model for enabling team 

members to describe and record integration flow implementations in software development 

companies. The model consists of “input” (e.g., binary repository), “activity” (e.g., packaging) and 

“external triggering factors (e.g., scheduling)” elements.  

Promote team mindset: As discussed earlier, the lack of a positive mindset about continuous 

practices is a confounding factor in the adoption of these practices. Two papers [S5, S45] reported 

that organizational management organized CI events, which were run by the team who built the CI 

infrastructure to spread the positive mindset about CI. In order to encourage new developers to 

commit code several times per day, Facebook runs a six-week boot camp [S48] to help developers to 

overcome their fear of code failure. Another paper [S57] argued giving freedom to developers (e.g., 

full access to the company's code) enabled them to feel empowered to release new code within days 

of being hired. 

Improve team qualification and expertise: Our review has identified the practices that aim at 

improving team qualification and expertise to bridge the skills gap to successfully implement 

continuous practices. We found several studies [S5, S6, S45, S48, S57] that provided formal training 

and coaching (for example through events) arranged by organizations. For instance, OANDA, a 

company studied in [S57], assigned new developers to the release engineering team for several 

months in order to get trained and familiar with CD practice. Claps et al. [S6] reported a software 

provider that leveraged CI developers’ experience for the transition from CI to CD by integrating 

automated continuous deployment of software into the existing CI workflow of developers to ensure 

there is no or a low learning curve. 

C) Clarifying Work Structures  

Our analysis identified the practices that emphasize the importance of clarification of the work 

structures in successfully adopting and implementing continuous practices. 

Define new roles and teams: A noticeable practice is defining new roles and responsibilities in 

software development lifecycle when a project adopts continuous practices [S1, S9, S29, S30, S45, 

S48, S49, S51]. Krusche and Alperowitz [S1] defined hierarchical roles such as release manager and 

release coordinator to introduce continuous delivery to multi-customer projects. Another work 

[S29] indicated that using a dedicated build sheriff role proved successful in practicing CI. The build 

sheriff engineer not only watches the build machine continuously but also aids developers by 

identifying and resolving the backouts that previously had to be addressed by developers. Another 

case [S45] reported the rotational policy implemented to enable team members to take different 

responsibilities to get a higher understanding of the status of the CI process.  

Another study [S57] also reported similar practice as developers were encouraged to rotate between 

different teams. Hsieh and Chen [S30] advocated having a single responsible person on the team to 



 

 

52 

 

constantly authorize and watch CI system. This helps to prevent ignoring broken builds by 

developers, particularly those happen during overnight. It was also reported that establishing a 

temporary or dedicated team to facilitate transitions towards continuous practices was helpful. The 

experience reported in [S37] highlighted that establishing a virtual Scrum team with expertise in 

infrastructures and operations was helpful to mitigate potential risks in a software release. Another 

study [S5] observed the usage of the pilot team who trained other team members and provided 

guidelines about CI goals to them through workshops and meetings to stimulate CI concepts. Two 

studies reported the establishment of a dedicated team for design and maintenance of infrastructure 

and deployment pipeline. This helps organizations in CD transformation [S57] and reduces the 

release cycle time [S58].   

Adopt new rules and policies: Several studies have reported the need of new rules, regulations, 

policies, and strategies for enabling CI/CD [S26, S39, S45, S46, S48, S50, S58]. For example, one 

company [S39] enforced developers to solve the errors occurred during their commits in less than 30 

minutes or revert the check-in. A paper [S46] reported a set of rules for improving deployability such 

as: creating tests cases at the system-level should take one day on average. In another paper [S26], 

the authors argued that having deployable software all the time has been reached by the following 

rule “whenever a test complained, the integration of a change set failed, and the software engineer is 

obliged to update the test code or production code”.  

3.4.5.2 Practices for implementing CI  

This category presents three types of practices namely improving testing activity, branching 

strategies and decomposing development into smaller units, to enable and facilitate practicing CI. 

A) Improve Testing Activity  

Whilst Sections 3.4.2.1 and 3.4.2.3 summarized a set of approaches and tools proposed in the 

literature for improving test phase during CI, this section discusses three practices for this purpose. 

Karvonen et al. [S12] indicated that adopting test-driven development (TDD) and daily build 

practices are essential for CI practice. Neely and Stolt [S17] reported that one of the appropriate 

practices for removing manual tasks of QA was “test planning”. This practice stimulates close 

collaboration between QA and developers to document a comprehensive list of automated tests. 

They argued that this practice liberates QAs from manually testing the majority of the software 

applications for regression bugs [S17]. The authors in [S39] suggested another practice called “cross-

team testing”, which means integration test of module A should be performed by programmers or 

testers who have not been involved in the implementation of module A. It has been argued that this 

practice helped detect more defects and build an objective appreciation of the modules. Rogers [S50] 

argued that the problem of slow unit tests in CI system can be alleviated by separating them from 

functional and acceptance tests. 

B) Branching Strategies 

Branching is a well-known CI practice. The practices such as repository use [S30, S44] and short-

lived feature branching [S43] were presented as software development practices that support CI. 

Short-lived branching also supports the adoption of CDE practice as one study [S43] reported that 

an organization changed the long-lived feature branches to short-lived and small ones for exposing 

new features faster to the clients to receive feedback faster. Two studies [S29, S48] reported the 

practice of having developers to commit changes to a local repository and later on those changes 

would be committed to a central repository. However, in one case [S29], the code that passed all 

build and automated tests would be committed to the central repository by build sheriffs (i.e., 

introduced in Section 3.4.5.1.C). In this way, a release process will be more stable. It was also 

reported that having many branches hampers practicing CI. Feitelson et al. [S48] observed that 



 

 

53 

 

working on a single stable branch of the code reduces time and effort on merging long-lived 

branches into trunks. 

C) Decompose Development into Smaller Units  

A set of the reviewed papers [S5, S10, S30, S36, S45, S47, S48, S49, S50, S51, S57] emphasized that 

software development process be decomposed into smaller units to successfully practice CI, but 

none of them provided concrete practice for this purpose. The main goal of this type of practice is to 

keep build and test time as much small as possible and receive faster feedback. Three papers [S10, 

S48, S49] argued that large features or changes should be decomposed into smaller and safer ones in 

order to shorten the build process so that the tests can be run faster and more frequently. For cross-

platform applications, the complexity of dependency between components increases dramatically 

and it can be an obstacle to applying CI to them. Hsieh and Chen proposed a set of patterns namely 

Interface Module, Platform Independent Module, and Native Module to control dependency between 

modules of cross-platform applications [S30]. They suggested that the platform-independent code 

should be placed into Platform Independent Module and these modules should be built in the local 

build environment. Through this pattern not only the build time reduces, but also the build scripts 

remain simple. Another paper [S5] proposed dead code practice, which can reduce dependency 

between components before integration through activating and testing a code or component only if 

all dependencies among them are in place. Decomposing development process into independent 

tasks enables organizations to have smaller and more independent teams (e.g., cross-functional 

teams), which was argued as an enabler for fully practicing CI [S50] and CDE [S51, S57].  

3.4.5.3 Practices for implementing CDE 

A) Flexible and Modular Architecture  

As discussed in Section 3.4.4.3.A, the technical dependency between codes or components can act as 

an obstacle to adopt CDE and CD. The reviewed studies reported that delivering software in days 

instead of months requires architectures that support CDE adoption [S7, S12, S28, S30, S45, S51, S57]. 

The software architecture should be designed in a way that software features can be developed and 

deployed independently. Loosely coupled architecture minimizes the impact of changes as well. For 

example, Laukkanen et al. [S45] observed that the studied organization had to re-architect their 

product (e.g., removing components caused trouble) to better adopt CI and CDE. It is also asserted 

that teams that are not architecturally dependent on (many) other, they would be more successful in 

implementing CDE and CD [S57]. The work reported in [S7] has conducted an empirical study on 

three projects that had adopted CI and CDE. The study concluded that most of the decisions (e.g., 

removing web services and collapsing the middle tier) made to achieve the desired state of 

deployment (i.e., deployability quality attribute) were architectural ones. The collected deployability 

goals and tactics from three projects have been used as building blocks for the deployability tactics 

tree. Two studies [S5, S30] recommend that the component interfaces be clearly defined for making 

continuous delivery- or deployment-ready architectures. 

B) Engage all people in the deployment process 

A set of papers [S6, S9, S43, S44, S48, S57, S58] argued that achieving the real benefits of continuous 

delivery and deployment practices requires developers and testers being more responsible for their 

codes in the production environment. With this new responsibility, they are involved in and aware 

of all the steps (e.g., deploy into production), and are forced to fix problems that appear after 

deployment [S44]. As an example of involving developers in the release process, Facebook adopted a 

policy, in which all engineers team who committed code should be on call during the release period 

[S48]. 



 

 

54 

 

Table 3.10 A classification of practices and lessons learned for implementing CI, CDE, and CD  

  Practices Key Points and Included Papers # 

C
o

m
m

o
n

 P
ra

ct
ic

es
 f

o
r 

Im
p

le
m

en
ti

n
g

 C
I,

 C
D

E
, 

C
D

 

T
ea

m
 A

w
ar

en
es

s 
an

d
 

C
o

m
m

u
n

ic
at

io
n

 

PR1. Improve Team 
Awareness and 
Communication 

▪ Listing the changed features in changelog entries [S43] 
▪ Labelling the latest version and new features [S6, S47] 
▪ Informing team members about branches that are 

completely outdated [S49] 
▪ Improved knowledge sharing between technical and 

management staffs on different levels [S6, S31, S37, S44] 

7 

In
ve

st
m

en
t 

PR2. Planning and 
documentation 

▪ A planned path for adopting continuous practices [S28, 
S31, S36, S57, S58] 

▪ Document builds, tests and other activities in 
integration processes [S6, S11, S17, S37, S43] 

▪ Integration Flow Model [S11] 

 
10 

PR3. Promote team 
mindset 

▪ Organizing events about continuous practices to spread 
mindset and train team members [S5, S6, S45, S48] 

▪ Giving much freedom to developers [S57] 
▪ Empowering culture [S6, S57] 

5 

PR4. Improve team 
qualification and expertise 

▪ Formal training and coaching team members [S5, S6, 
S45, S48, S57] 

5 

C
la

ri
fy

in
g

 W
o

rk
 S

tr
u

ct
u

re
s 

PR5. Define new roles and 
teams 

[S1, S9, S29, S30, S37, S45, S48, S49, S51, S57, S58] 
▪ Establishing a dedicated team to develop and maintain 

the deployment pipeline [S57, S58] 
▪ Sheriff engineer [S29] 
▪ Piloting team [S5] 
▪ Virtual Scrum team [S37] 

11 

PR6. Adopt new rules and 
policies 

[S26, S39, S45, S46, S48, S50, S58] 
▪ All developers should be on call when releasing software 

[S58]. 
7 

P
ra

ct
ic

es
 f

o
r 

Im
p

le
m

en
ti

n
g

 C
I 

Im
p

ro
ve

 T
es

ti
n

g
 

A
ct

iv
it

y 

PR7. Improve Testing 
Activity 

▪ Practicing test-driven development [S12, S50] 
▪ Test Planning practice [S17] 
▪ Cross-team testing practice [S39] 
▪ Designing decoupled tests by separating unit tests from 

functional and acceptance tests [S50] 

4 

B
ra

n
ch

in
g

 

S
tr

at
eg

ie
s 

PR8. Branching Strategies 

▪ Using integration or local repository [S29, S48] 
▪ Short-lived feature branching [S43] 
▪ The practice of repository use [S30, S44] 
▪ Not too many branches [S48] 

5 



 

 

55 

 

D
ec

o
m

p
o

se
 D

ev
el

o
p

m
en

t 
 

in
to

 S
m

al
le

r 
U

n
it

s 

PR9. Decompose 
Development into Smaller 
Units 

[S5, S10, S30, S36, S45, S47, S48, S49, S50, S51, S57] 
▪ Dead code practice [S5] 
▪ Breaking down large features and changes into smaller 

and safer ones [S10, S48, S49] 
▪ Small and independent teams [S50, S51, S57] 

11 

P
ra

ct
ic

es
 f

o
r 

Im
p

le
m

en
ti

n
g

 C
D

E
 

F
le

xi
b

le
 a

n
d

 M
o

d
u

la
r 

A
rc

h
it

ec
tu

re
 

PR10. Flexible and Modular 
Architecture 

[S5, S7, S12, S28, S30, S45, S51, S57] 
▪ Deployability concern in mind when designing software 

systems [S7] 
▪ Defining component interface clearly [S5, S30] 

8 

E
n

g
ag

e 
al

l 
p

eo
p

le
 i

n
 

D
ep

lo
ym

en
t 

PR11. Engage all people in 
deployment process 

▪ Developers and testers should take more responsibility 
for their code [S6, S9, S43, S44, S48, S57, S58] 

▪ On call developers [S48] 
7 

P
ra

ct
ic

es
 f

o
r 

Im
p

le
m

en
ti

n
g

 C
D

 

P
ar

ti
al

 R
el

ea
se

 

PR12. Partial Release 

▪ Zero release (Empty release) [S1] 
▪ Hiding and disabling new or problematic functionalities 

to users [S6, S17, S44, S48] 
▪ Deploying software to a small set of users [S17, S44, S57] 
▪ Rolling back quickly to stable state [S48] 
▪ Independent releases [S58] 

7 

C
u

st
o

m
er

 

In
vo

lv
em

en
t 

PR13. Customer 
Involvement 

[S10, S12, S28, S36, S43, S44, S49, S61, S63] 
▪ Lead customer [S10, S12]  
▪ Pilot customer [S43] 
▪ Involving customers in testing phase [S61, S63] 
▪ Triage meeting [S36] 

9 

3.4.5.4 Practices for implementing CD 

A) Partial Release 

Releasing software to customers potentially may be risky for software providers as their customers 

may receive buggy software. This issue can intensify when deploying software on a continuous 

basis (i.e., practicing CD). It is critical for software organizations to adopt practices in order to 

reduce potential risks and issues in release time. We identified three types of practices for this 

purpose: (i) deploying software to a small set of users [S44, S17, S57]; (ii) hiding and disabling new 

or problematic functionalities to users [S6, S17, S44, S48]; (iii) rolling back quickly to a stable state 

[S48]. Three papers [S17, S44, S48] pointed out dark and canary deployment methods that can 

significantly help transit to continuous deployment. In canary deployment method, the new 

versions of software are incrementally deployed to a production environment with only a small 

set of users affected [104]. Deploying software by this method enables the team to understand 



 

 

56 

 

how new code (i.e., the canary) works compared to the old code (i.e., the baseline). In [S57], it was 

found that both Facebook and OANDA released software products to a small subset of users 

rather than releasing them to all customers. For example, Facebook first releases the software 

products to its own employees to get feedback to improve the test coverage. Another incremental 

release method, dark deployment, hides the functional aspects of new versions to end-users [105]. 

This method tries to detect potential problems, which may be caused by new versions of software 

before end-users would be affected. In order to deal with the large features (i.e., dark features) in 

OnDemand software product that may not be developed and deployed in a small cycle, one 

organization [S6] employed the practice of small batches. Through this practice, the development 

process of dark features was hidden from customers. However, when the entire feature is finally 

developed, the switch of dark feature will be turned on and then customer is able to interact with 

and use them. Another study [S58] reported the implementation of microservices that were 

independently released while maintaining backward compatibility with each release as a tactic of 

addressing delays in the deployment pipeline. In order to introduce CD practice to novice 

developers, Krusche and Alperowitz [S1] suggested “empty release” practice, in which besides 

development teams get in touch with continuous workflows and infrastructures from day 0, the 

continuous pipeline is initially run with a simple application (e.g., "hello world").  

B) Customer Involvement 

Several papers [S10, S12, S28, S36, S43, S44, S49, S61, S63] aimed at exploring the role of customers 

or end-users as an enabler in the transition towards continuous deployment. A couple of papers 

[S10, S12] defined the concept of “lead customer“, at which customers not only are incorporated 

in software development process, but also are eager to explore the concept of continuous 

deployment. The work reported in [S43] used the term “pilot customer” and argued that it would 

be better to apply CDE or CD to those companies that are willing to continuously receive updates. 

It has been noted that it is needed to renew existing engagement model with customers to be 

compatible with the spirit of CD. Agarwal [S36] described a process model based on Type C 

SCRUM, called Continuous SCRUM, and leveraged a number of best practices to augment this 

process model and achieve sustainable weekly release. One of the noticeable practices was “triage 

meeting”, in which product-owner runs the meeting and she/he determines the triage 

committee. A product-owner review has been introduced into the sprint to enable and approve 

changes to product requirements as well as the product-owner was enabled to prioritize the back-

log of product requirements. We found a set of papers [S61, S63] arguing the involvement of 

customer in testing was an effective practice for adopting CDE and CD practices. A study [S61] 

revealed that involving customers in the testing phase is a helpful practice for those companies 

that do not have enough resources for practicing CD. The study indicated that customers can be 

greatly successful in finding lower impact functional defects. 

3.5 Discussion 

In this section, we discuss the findings and reflect upon the potential areas for further research. 

3.5.1 A Mapping of Challenges to Practices  

Figure 3.4 presents a mapping of the identified challenges in Section 3.4.4 onto the practices 

reported in Section 3.4.5. This mapping is intended to provide a reader (i.e., researcher or 

practitioner) to quickly determine which challenges are related to which practices. For example, a 

flexible and modular architecture is expected to decrease dependencies in design and code. Figure 

3.4 also indicates that that there might be dependencies among the challenges (i.e., exacerbation) 



 

 

57 

 

or practices (i.e., support). A practice may support or positively affect another practice, for 

example, by making the implementation of that practice easier. For example, we found that 

distributed organization can exacerbate the challenge of and need for coordination and 

collaboration in adopting continuous practices; however, adopting and implementing partial 

release can be greatly supported by engaging all people (in particular customer) in deployment 

process.  

 
 

Figure 3.4 An overview of challenges and practices of adopting CI, CDE, CD, and their relationship 

3.5.2 Critical factors for continuous practices success  

Based on our analysis in Sections 3.4.4 and 3.4.5, we have identified 20 challenges and 13 practices 

for CI, CDE, and CD. We have also found 30 approaches and associated tools that have been 

proposed by the reviewed studies to address particular challenges in each continuous practice. It 

General resistance to change 

Lack of awareness and transparency 

Cost 

Skepticism and distrust on continuous 
practices 

Difficulty to change established 
organizational polices and cultures 

Distributed organization 

Coordination and collaboration 
challenges 

More pressure and workload for team 
members 

Lack of suitable tools and technologies 

Lack of experience and skill  

Lack of proper test strategy 

Poor test quality 

Merging conflicts 

Dependencies in design and code 

Database schema change 

Team dependencies 

Customer environment 

Dependencies with hardware and 
other (legacy) applications 

Customer preference 

Domain constrains 

Promote team mindset 

Improve team awareness and 
communication 

Improve team qualification and 
expertise 

Planning and documentation 

Adopt new rules and policies 

Define new roles and teams 

Improve testing activity 

Branching strategies 

Decompose development into 
smaller units 

Flexible and modular architecture 

Engage all people in deployment 
process 

Partial release 

Customer involvement 

Challenge 

Practice 
A challenge exacerbates 

another challenge 
A practice addresses 

a challenge 
A practice supports 

another practice 

Legen
d 

Common Challenges 
and Practices in CI, 
CDE, CD 

Challenges and 
Practices in CI 

Challenges and 
Practices in CDE 

Challenges and 
Practices in CD 



 

 

58 

 

is important to point out that there was no one-to-one relationship between the identified 

challenges and the proposed practices, approaches and associated tools as there were some 

challenges for which we were unable to identify any practice or approaches to address them and 

vice versa. We decided to define a set of critical factors that should be carefully considered to 

make continuous practices successful. To identify what factors (i.e., both in software development 

and customer organizations) are important to successfully adopt and implement continuous 

practices, we again analyzed the results reported in Sections 3.4.2, 3.4.4, and 3.4.5. A factor is 

accumulated challenges, approaches, and practices pertaining to a fact. For example, we found a 

number of challenges (Section 3.4.4.2.A), approaches and associated tools (Sections 3.4.2.1 and 

3.4.2.3), and practices (Section 3.4.5.2.A) for testing activity in moving towards continuous 

practices. Therefore, we considered “testing” as a factor, which should be carefully considered 

when adopting continuous practices. If a factor is cited in at least 20% of the reviewed studies, 

then we regard that factor as a critical factor for making continuous practices successful.  

Table 3.11 shows the list of 7 critical factors, which may impact the success of continuous 

practices. “Testing” (27 papers, 39.1%) is the most frequently mentioned factor for continuous 

practices success, followed by “team awareness and transparency” (24 papers, 34.7%), “good 

design principles” (21 papers, 30.4%) and “customer” (17 papers, 24.6%). Our results indicate that 

“testing” plays an important role in successfully establishing continuous practices in a given 

organization. Our research reveals that long-running tests, manual tests, and high frequency of 

test cases failure have failed most of the case organizations in the reviewed studies to realise and 

achieve the anticipated benefits of continuous practices. Whilst we have reviewed several papers 

that revealed a lack of test automation was a roadblock to move toward continuous practices, 

there were only a few papers (i.e., 7 papers), which had developed and proposed approaches, tools 

and practices for automating tests for this purpose.  

Continuous practices promise to significantly reduce integration and deployment problems. It 

should be designed in a way that the status of a project, number of errors, who broke the build, 

and the time when features are finished are visible and transparent to all team members. We have 

found “team awareness and transparency” as the second-most critical factor for adopting 

continuous practices. Improved team awareness and transparency across the entire software 

development enables team members to timely find potential conflicts before delivering software 

to customers and also improves collaboration among all teams [106].  

Our review has identified 17 papers that report challenges, practices, and lessons learned 

regarding customers, which enabled us to consider “customer” as a critical factor for successful 

implementation of continuous practices. It is worth mentioning that this factor mostly impacts on 

CD. We found that not always customer organizations are happy with the continuous release. 

That is why we need to investigate the level of customer satisfaction when moving to CD practice: 

unavailability of customer environments, extra computing resources required from customers, 

incompatibility of new release with existing components and systems, and increased chance of 

receiving buggy software all together can demotivate customers about advantages of continuous 

deployment. Our results also indicate that “highly skilled and motivated team” (15 out of 69, 

21.7%) is a critical factor to drive software organizations towards continuous practices. We argue 

that releasing software continuously and automatically can be achieved with the solid foundation 

of technical and soft skills, shared responsibilities among team members, and having motivated 

teams to continuously learn new tools and technologies. 

Whilst this SLR reveals that continuous practices have been applied successfully to both 

maintenance and greenfield projects, we argue that “application domain” can play a significant 

role in the transition towards continuous practices, in particular, continuous deployment. As 



 

 

59 

 

discussed earlier, continuous delivery can be applied to all types of applications and 

organizations. However, practicing CD in some application domains (e.g., embedded systems 

domain) is associated with unique challenges, in which they make almost impossible to truly 

practice CD or affect the frequency of releases to customer environments. We emphasize that 

application domains and limitations of customers should be carefully studied before adopting 

continuous deployment. Our SLR reveals that one of the leading causes of failure in fully 

implementing continuous practices is missing or poor infrastructures. By “appropriate 

infrastructure”, we mean all software development tools, infrastructures, networks, technologies 

and physical resources (e.g., build server and test automation servers) employed by an 

organization to do continuous practices well. This is mainly because implementing each 

continuous practice, in particular, continuous delivery and deployment in a given organization 

requires extra computing resources and also tools and technologies to automate end-to-end 

software development (e.g., testing) and release process as much as possible. This consequently 

would affect the organizational budget. We assert that one of the core components of an 

appropriate infrastructure, which considerably enables automation support and impacts the 

success of continuous practices, is the deployment pipeline. We will concretely discuss the 

engineering process of the deployment pipeline in Section 3.5.5. 

Table 3.11 List of critical factors for continuous practices success 

ID Factor # % Studies 

F1 Testing (effort and time) 27 39.1 
S3, S4, S5, S6, S12, S17, S19, S23, S25, S32, S34, S36, S38, 
S39, S40, S41, S43, S45, S50, S52, S53, S54, S55, S56, S62, 
S64, S67  

F2 
Team awareness and 
transparency 

24 34.7 
S1, S2, S4, S6, S10, S13, S22, S24, S31, S33, S37, S38, S41, 
S43, S44, S45, S47, S49, S50, S52, S56, S62, S64, S67 

F3 Good design principles 21 30.4 
S4, S5, S6, S7, S12, S10, S28, S30, S31, S36, S41, S45, S47, 
S48, S49, S50, S51, S57, S58, S60, S62 

F4 Customer 17 24.6 
S4, S6, S10, S12, S28, S29, S36, S43, S44, S49, S55, S56, 
S57, S60, S61, S62, S63 

F5 
Highly skilled and 
motivated team 

15 21.7 
S4, S5, S6, S9, S12, S43, S44, S45, S48, S49, S57, S56, 
S57, S58, S62        

F6 Application domain 14 20.2 
S4, S5, S6, S9, S10, S24, S31, S41, S44, S48, S56, S57, S60, 
S65 

F7 Appropriate infrastructure 14 20.2 
S5, S6, S8, S10, S27, S43, S47, S49, S56, S57, S59, S60, 
S66, S68 

3.5.3 Contextual factor 

The importance of contextual attributes and what should be reported as contextual attributes 

have been discussed in the software engineering literature [107-109]. It has been argued that 

software development approaches, tools, challenges, lessons learned and best practices need to be 

explored and understood along with their respective contexts [108, 110]. Particularly, we tried to 



 

 

60 

 

understand in which methodological and organizational contextual settings (i.e., research type, 

project type, application domain, organization size, and domain) the proposed approaches, tools, 

best practices and challenges have been reported. According to the results reported in Section 

3.4.1.2, the reviewed studies were evaluation research (25 papers, 36.2%), followed by validation 

research (24 papers, 34.7%) and experience report (15 papers, 21.7%). Since all of the experience 

papers were based on practitioners’ experiences, the combination of both evaluation and 

experience papers means that 57.9% of the reviewed papers came from industry setting. The high 

percentage of the papers with industrial level evidence improves the practical applicability of the 

reported results and encourages practitioners to adopt and employ the proposed approaches, 

tools, practices and consider the challenges when adopting each continuous practice.  

As reported in Section 3.4.1.4, a considerable number of the reviewed papers did not provide the 

information on application domain and type, resulting in these papers being categorized as 

“unclear”. There was a general lack of information about the organizational contexts (i.e., size and 

domain) in the reviewed papers. We were forced to drop them for data analysis and 

interpretation. We strongly suggest that more attention should be paid to reporting the 

contextual information about the reported studies. The contextual information is likely to 

improve the quality and credibility of the reported approaches, tools and practices in continuous 

integration, delivery, and deployment. Such information can also help a reader to better 

understand the reported research. 

3.5.4 Architecting for deployability 

The results of this SLR indicate that sound architecture design (i.e., “good design principles” 

factor) has a significant influence on the success of practicing CI, CDE, and CD. Several of the 

reviewed papers have discussed modular architecture, loosely coupled components, and clearly 

defined interfaces as contributing factors for adopting and implementing continuous practices, in 

particular, CDE and CD. Based on Section 3.4.4.4.A, the importance of this issue increases sharply 

in heterogeneous environments as they can hinder continuous software deployment. We argue 

that one of the most pressing challenges of adopting and implementing continuous practices is 

how software applications should be (re-) architected to develop, integrate, test and deploy 

independently in multiple environments. Therefore, the architecting phase should be considered 

as one of the most important phases for appropriately adopting and implementing continuous 

practices [38]. Deployability as an emerging quality attribute has a high priority for continuous 

delivery and deployment [9, 37, 111]. By deployability, we mean “how reliably and easily an 

application/component/service can be deployed to (heterogeneous) production environment” [111]. 

Architecting with testability and deployability in mind during the design time has been featured 

in many white papers and practitioners’ blogs [9, 37] as a noticeable practice for CDE and CD, but 

we could find only one paper [S7] that has explicitly considered the deployability scenarios for 

upfront design decisions and concluded that most of the decisions made for deployment-related 

issues were architectural one. We assert that there is an important need of research to gain a deep 

understanding of how continuous delivery or deployment adoption can influence the architecting 

process and their outcomes in an organization. We argue that this research area (i.e., architecting 

for deployability) should be more investigated in the future. This motivates the following 

questions: How can we evaluate and measure the deployability of a designed architecture at the 

early stage of development time? What are quality attributes in support of or in conflict with 

deployability? Which architectural patterns, tactics, and styles are more-friendly for 

deployability? 



 

 

61 

 

3.5.5 Engineering deployment pipeline 

In Section 3.4.3, we have discussed that deployment pipeline is a key enabler for enterprises to 

successfully adopt continuous practices. Our review has revealed that despite a significant 

number of the reviewed papers conducted in industrial settings and reported by practitioners, 

many papers lacked sufficient details about how enterprises design and implement deployment 

pipelines and what challenges they might experience. In fact, only 36.2% of the included studies 

presented the tools, which have been employed to implement deployment pipelines. This 

investigation was interesting because there is no standard or single pipeline [78] and modelling 

and implementing a deployment pipeline in a given enterprise may be influenced by a number of 

factors such as team skills, experience and structure, organization’s structure and budget, 

customer environments, and project domain [7]. Therefore, software development organizations 

need to allocate time and resources to appropriately select and integrate a wide variety of open 

source and commercial tools to form a deployment pipeline tailored to them. The evidence of this 

growing need is the emergent of consulting companies such as Sourced Group18 and Xebia19 that 

are assisting enterprises in designing and implementing deployment pipeline.  

In the meanwhile, with the increasing size and complexity of software-intensive systems, the 

number of builds and test cases increase dramatically. Whilst infrastructures with high-

performance computing resources and selecting appropriate tools are mandatory for 

implementing continuous practices and deployment pipeline, this is not sufficient to deal with 

such tremendous growth rate. Therefore, it is needed to develop innovative approaches and tools, 

which not only enable team members to receive build and test results correctly and timely but 

also they should be aligned and integrated with the deployment pipeline. In Section 3.4.2, thirty 

approaches and associated tools have been reported to support and facilitate continuous 

practices. Most of them (24 out of 30) only target CI practice; 18 out of 30 are stand-alone tools 

that have not been integrated and evaluated in a deployment pipeline. Another increasing 

concern in the deployment pipeline is how to secure a deployment pipeline [112]. According to 

[112], the main concern raised during RELENG20 workshop in 2014 was “what happens if someone 

subverts the deployment pipeline”. All stages and tools involved in the deployment pipeline as 

well as integrating application to other infrastructures can potentially be compromised by 

attackers. Two papers [S27, S66] have investigated the security issue in deployment pipelines. We 

conclude that there is a paucity of research aimed at systematically studying engineering process 

of deployment pipelines. We assert software engineering researchers and practitioners need to 

pay more attention to systematically architect deployment pipelines and rigorously selecting 

appropriate tools for the pipelines. 

3.6 Threats to validity 

Whilst we strictly followed the guidelines provided by [45], we had similar validity threats like 

other SLRs in software engineering. The findings of this SLR may have been affected by the 

following threats: 

Search strategy: One of the threats that may occur in any SLR is the possibility of missing or 

excluding the relevant papers. To mitigate this threat, as discussed in Section 3.3.2.3, we used six 

popular digital libraries to retrieve the relevant papers. We argue that using Scopus as the largest 

indexing system which provides the most comprehensive search engine among other digital 

                                                           
18 http://www.sourcedgroup.com/ 
19 https://xebia.com/ 
20 http://releng.polymtl.ca/RELENG2014/html/ 



 

 

62 

 

libraries [110], enabled us to increase the coverage of the relevant studies. Additionally, we 

employed three strategies to mitigate any potential threat in the search strategy: i) search string 

was improved iteratively based on the pilot search and were tested carefully before executing for 

searching the relevant papers for this review; 2) we consulted the search strings used in the 

existing SLRs [83, 84] for building our search string; 3) a snowballing technique (i.e., manual 

search on references of the selected papers) was employed in the second round of the papers 

searching process (See Figure 3.1) to identify as many related papers as possible. 

Study selection: This step can be influenced by researchers’ subjective judgement about whether 

or not a paper meets the selection criteria for inclusion or exclusion. The potential biases in the 

study selection have been addressed by strictly following the pre-defined review protocol, 

recording the inclusion and exclusion reasons for on-going internal discussions about the papers 

that raised doubts about their inclusion or exclusion decisions. At the first step, the inclusion and 

exclusion criteria have been validated on a small subset of primary studies. Any disagreements 

during study selection were resolved through the internal discussions. Furthermore, a cross-check 

using a random number of the selected papers was conducted. 

Data extraction: Researchers’ bias in data extraction can be a basic threat in any SLR, which may 

negatively affect the results of SLRs. We implemented the following steps to address this threat. 

First, we created a data extraction form (See Table 3.4) to consistently extract and analyze the 

data for answering the research questions of this SLR. Second, since a large part of the data 

extraction step was conducted by one person (i.e., the present author); in the case of any doubt, 

continuous discussions were organized with other researchers for correcting any disparities in the 

extracted data. Third, a subset of the extracted data was verified by two other researchers.  

Data synthesis: As we argued in Section 3.3.5.2, we applied quantitative and qualitative methods 

to analyze the extracted data. It should be noted that sometimes there were some difficulties in 

interpreting the extracted data due to lack of sufficient information about the data items. We had 

to subjectively interpret and analyze the data items, which might have had an effect on the data 

extraction outcomes. To reduce the researchers’ bias in interpretation of the results, besides 

reading the given study, where possible we also referred the approach’s and tool’s website and any 

training movie (e.g., RQ3.1 and RQ3.2) to get more reliable information. It should be noted that 

for other data items, we did not have any interpretation unless the data items have been explicitly 

provided by the study (e.g., application domain). 

3.7 Conclusions and Implications 

This chapter has presented a Systematic Literature Review (SLR) of approaches, tools, challenges, 

and practices identified in empirical studies on continuous practices in order to provide an 

evidential body of knowledge about the state of the art of continuous practices and the potential 

areas of research. We selected 69 papers from 2004 to 1st June 2016 for data extraction, analysis, 

and synthesis based on pre-defined inclusion and exclusion criteria. A rigorous analysis and 

systematic synthesis of the data extracted from the 69 papers have enabled us to conclude: 

(1) The research on continuous practices, in particular continuous delivery and deployment are 

gaining increasing interest and attention from software engineering researchers and 

practitioners according to the steady upward trend in the number of papers on continuous 

practices in the last decade (See Figure 3.2). More than half of the reviewed papers (39 papers, 

56.5%) have been published in the last three years. 

(2) With respect to the research type, most of the selected papers were evaluation (25 out of 69, 

36.2%) and validation (24 out of 69, 34.7%) research papers. While 21.7% of the selected papers 



 

 

63 

 

were “experience papers”, a small number of papers were solution proposal (7.2%). A large 

majority of the papers were conducted in industrial (i.e., 64 out of 69, 92.7%) rather than 

academic (i.e., 5 papers) settings. With respect to the data analysis approach, the same 

number of the selected papers used quantitative and qualitative research approaches (i.e., 

37.6% for each), while this statistic was 20.2% for mixed approaches.   

(3) The approaches, tools, challenges, and practices reported for adopting and implementing 

continuous practices have been applied to a wide range of application domains, and among 

which ‘‘software/web development framework’’ and “utility software” have received the most 

attention. This SLR also revealed that continuous practices can be successfully applied to both 

greenfield and maintenance projects. 

(4) Thirty approaches and associated tools have been identified by this SLR, which facilitate the 

implementation of continuous practices in the following ways (i.e., not mutually exclusive): 

reducing build and test time in CI (9 approaches), increasing visibility and awareness on build 

and test results in CI (10 approaches), supporting (semi-) automated continuous testing (7 

approaches), detecting violations, flaws and faults in CI (11 approaches), addressing security, 

scalability issues in deployment pipeline (3 approaches), and improve dependability and 

reliability of deployment process (3 approaches).  

(5) We observed that only 36.2% of the selected papers reported what and how tools and 

technologies were selected and integrated to implement deployment pipeline (i.e., modern 

release pipeline). Subversion and Git/GitHub as version control systems and Jenkins as 

integration server were the most popular tools used in deployment pipelines.   

(6) The identified approaches (See Section 3.4.2), challenges (See Section 3.4.4) and practices (See 

Section 3.4.5) of CI, CDE, and CD have enabled us to find seven critical factors that impact the 

success of continuous practices, in an order of importance: “testing (effort and time)”, “team 

awareness and transparency”, “good design principles”, “customer”, “highly skilled and motivated 

team”, “application domain”, and “appropriate infrastructure”. 

(7) Implications for researchers: (i) this SLR has revealed the scarcity of reporting contextual 

information (e.g., organization size and domain) in the selected papers. To improve the quality 

and credibility of the results, researchers ought to report detailed contextual information. (ii) 

In this review, we found only two papers that investigated the security issue in deployment 

pipelines. Given the increased importance of security in deployment pipelines, there is a need 

for further research to explore how deployment pipelines should be designed and 

implemented to mitigate security issues. (iii) Out of 30 approaches and associated tools 

reported in this SLR, only 12 approaches and tools were integrated and evaluated in the 

deployment pipeline. We encourage researchers to evaluate their proposed approaches and 

tools with real deployment pipelines. (v) As discussed in Section 3.5.4, architecture design and 

deployability quality attribute are very important factors in successfully adopting and 

implementing continuous practices, however, there is a lack of guidance of architecting for 

deployability. We suggest that researchers in cooperation with practitioners come up with 

frameworks, processes, and tools to support deployability quality attribute at design time.  

(8) Implications for practitioners: (i) a very high percentage of the reviewed papers provide 

industrial level evidence (i.e., evaluation and practitioners’ experience papers as presented in 

Section 3.4.1.2). This improves the practical applicability of the reported results. Such findings 

are expected to encourage software engineering practitioners to adopt and employ appropriate 

approaches, tools, practices and consider the reported challenges in their daily work based on 

the suitability for different contexts. (ii) The identified approaches, tools, challenges, and 



 

 

64 

 

practices have been classified in a way that practitioners are enabled to understand what 

challenges are for adopting each continuous practice, what approaches, and practices exist for 

supporting and facilitating each continuous practice. We found a number of challenges and 

practices that were common in the transition towards all CI, CDE, and CD. (iii) The identified 

critical factors can make practitioners aware of the factors that may affect the success of 

continuous practices in their organizations. For example, whilst it is important for 

practitioners to know that a lack of team awareness and transparency may fail them to realize 

and achieve the real anticipated benefits of continuous practices, this SLR has identified 

several approaches, associated tools, and practical solutions to improve and sustain team 

awareness and transparency in continuous practices.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

65 

 

 
 

 

 

 

 

 

 

In Chapter 3, we observed many researchers have started investing significant efforts in 

studying different aspects of Continuous DElivery (CDE) and Continuous Deployment 

(CD). However, many studies refer to CDE (i.e., where an application is potentially 

capable of being deployed) and CD (i.e., where an application is automatically deployed 

to production on every update) as synonyms and do not distinguish them from each 

other. Despite CDE being successfully adopted by a large number of organizations, it is 

not empirically known why organizations still are unable or demotivated to have 

automatic and continuous deployment (i.e., CD practice). This chapter aims at 

empirically investigating and classifying the factors that may impact on adopting and 

implementing CD practice. Through a mixed-methods empirical study consisting of 

interviewing 21 software practitioners, followed by a survey with 98 respondents, we 

found 11 confounding factors that limit or demotivate software organizations to push 

changes automatically and continuously to production. Our findings highlight several 

areas for future research and provide suggestions for practitioners to streamline the 

deployment process. 

4.1 Introduction 

“We do continuous delivery even to on-premise environments. Using continuous 

delivery, we would not be pushing out every day. We might only push out new release 

to the client site every three months. We are still using continuous delivery to keep 

software deployable. It is quite important to distinguish continuous delivery and 

continuous deployment” P18-Consultant.  

“You can apply continuous delivery and not implement continuous deployment yet 

(e.g., because the customer has security constraints to deploy remotely)” R97-Team 

Lead.  

Whilst several studies have investigated the challenges and issues for adopting and implementing 

Continuous DElivery (CDE) [14, 24, 113] and Continuous Deployment  (CD) practices  [11, 23, 114, 

Moving from Continuous Delivery to 
Continuous Deployment  

Chapter 4 

Related publication:  

This chapter is based on ESEM paper, “Beyond Continuous Delivery: An Empirical 
Investigation of Continuous Deployment Challenges” [3]. 



 

 

66 

 

115], they usually use CDE and CD as synonyms [33, 116]. However, there is the other side of the 

coin. A recently published literature review on CDE [33] reveals that existing literature uses the 

term CD while they actually refer to CDE because they do not include or provide fully automatic 

deployment to production. Furthermore, our SLR in the previous chapter [1] and the review done 

by Laukkanen et al. [33] could not find highly relevant scientific literature on CD implementation. 

Recently industrial communities [117-119] have underlined the challenges, experiences, and lessons 

learned in moving from CDE (i.e., where an application is potentially capable of being deployed) to 

CD (i.e., where an application is automatically deployed to production on every update). In 

addition, two studies [27, 120] reveal that delivery (i.e., CDE) and deployment (i.e., CD) capabilities 

of software organizations may be different as, for example, there might be a tension between 

software quality and deployment frequency. In [27], a new line of research is explicitly sought to 

explore the reasons for this difference.  

To the best of our knowledge, none of the previously published literature reports this issue and 

specifically distinguishes between the challenges of adopting CDE and CD. This chapter aims at 

empirically investigating and classifying confounding factors that particularly impact on adopting 

and implementing CD practice: despite software potentially is production-ready (i.e., CDE), there 

are still factors that limit or demotivate organizations to continuously and automatically ship code 

changes from development into production without human intervention (i.e., CD). To help to 

close this literature gap, we investigate the following research question: 

RQ4.1 What factors do limit or demotivate software organizations to move from 

continuous delivery to continuous deployment? 

To answer this research question, we leveraged the data collected through the mixed-methods 

empirical study discussed in Chapter 2. Our analysis reveals 11 factors that are confounders to 

truly adopt CD practice, including: “lack of fully automated (user) acceptance test”, “manual 

quality check”, “deployment as business decision”, “insufficient level of automated test coverage”, 

“highly bureaucratic deployment process”, “lack of efficient rollback mechanism”, “dependency at 

application level”, “demotivated customer”, “customer environment”, “domain constraints”, and 

“manual interpretation of test results”.  

Chapter organization: Section 4.2 summarizes related work. We describe the research method 

in Section 4.3. Section 4.4 reports our findings. Section 4.5 reflects a discussion on findings. 

Finally, the chapter is concluded in Section 4.6. 

4.2 Related Work 

This section places our work in this chapter in the context of other related studies. Lwakatare et 

al. [115] present high-level challenges for the adoption of DevOps in embedded systems domain. 

The identified challenges are the huge dependency between hardware and software versions, lack 

of access to customer environments, and lack of appropriate technologies to automatically and 

continuously deploy software to customer environments. Whilst [14, 113] present the obstacles and 

challenges of adopting CDE practice, adopting CD practice has been evaluated by [11, 23, 114]. 

Claps et al. [23] report the challenges that a single case software company faced in transition to 

CD. The identified challenges are classified into technical and social ones including team 

experience, continuous integration, partner plugins, and changing database schemas. The study 

also reveals what solutions (e.g., adopting social rules and investment in infrastructures) the case 

company employed to address those challenges. 

Savor et al. [22] investigate the effect of adopting CD practice on team productivity (i.e., number 

of added or modified code lines pushed to production per developer) and product quality (i.e., 



 

 

67 

 

number of failures in production) at Facebook and OANDA. The study discusses a number of 

challenges including management support and extra effort for understanding updates that an 

organization may face in the path of CD adoption. The challenges identified for adopting CD [14, 

113] are almost similar to those that are found for CDE [11, 23, 114]. For example, most of the 

studies indicate that manual testing, unsuitable architecture, and resistance to change are 

roadblocks to practicing CDE and CD. In addition to the challenges reported in [11, 14, 23, 114], 

Laukkanen et al. [24] show that the stage-gate process negatively impacts on CDE success. This is 

mainly because the attributes (i.e., tight schedule) of the stage-gate process significantly limit the 

time needed for CDE adoption. The study argues that it is almost impossible to adopt CDE in a 

stage-gate managed organization without changing the process.  

Our findings in this chapter have significant differences to the existing studies [11, 14, 23, 24, 113-

115]: (1) our findings come from interviewing 21 experts in CDE and CD practices and a survey of 

98 software professionals from a wide range of organizations in terms of size, domain, and the 

way of working rather than one practitioner’s own observations [14, 113] or a single case company 

[23, 24] and a particular domain [115]. The study [115] focuses only on adopting DevOps in 

embedded systems and the studies [14, 113] only identify the challenges and issues of adopting 

CDE and CD based on the experience of authors. (2) In this chapter, we discuss the current state 

of automation support to adopt CD, which has not been reported in the previous work. (3) Most 

of the previous studies did consider CDE and CD as one practice and did not distinguish the 

challenges associated with adopting CDE and CD. (4) To the best of our knowledge, our study 

reports the first (large scale) piece of work, which distinguishes CDE from CD and empirically 

investigates the confounding factors that limit or demotivate organizations from moving towards 

CD from CDE. 

4.3 Research Method 

This chapter uses the mixed-methods research approach, which was described in Chapter 2. The 

results of this chapter are based on 21 in-depth, semi-structured interviews and surveying 98 

software professionals. 

4.3.1 Interviews 

The relevant parts of the interviews for this study are described as follows: the first part briefed 

the high-level objectives of the study to the interviewees. In the second part, we precisely defined 

CDE and CD terms for the interviewees and explained what differences exist between them. Next, 

questions related to the participant’s background were asked (e.g., what is your role and 

responsibilities in the project team?). Fourth, the participants explained challenges, their personal 

experiences and concerns around moving from CDE to CD, and why they were still unable or 

demotivated to have a fully automatic deployment to production. In the last part, questions 

related to deployment pipeline and automation were asked (e.g., is your deployment pipeline fully 

automated or not? why?). We finished the interviews by asking the interviewees “Is there any 

comment or issue you want us to know?” 

4.3.2 Survey 

We precisely defined CDE and CD practices at the beginning of the survey instrument. The 

relevant survey questions used for this study were composed of 4 demographic, 3 five-point 

Likert-scale, 2 single-choice, 2 multiple-choice and 4 open-ended questions.  



 

 

68 

 

4.4 Findings 

In this section, we first present our findings regarding differences in practicing CDE and CD in 

the participants’ organizations. Next, as automation is a key component of CD, we describe the 

current state of automation support in this regard. Then, we report confounding factors in 

moving from CDE to CD. 

4.4.1 Practicing CDE vs. CD  

We aimed at understanding the differences between practicing CDE and CD and also assessing 

the maturity of CDE and CD practices in our participants’ organizations. To this end [9, 11, 27], 

both the interviewees and the survey participants were asked two questions: (1) on average, how 

often your applications are in releasable state or production-ready? This question, to a large extent, 

indicates how an organization adopts and implements CDE practice. To measure CD adoption in 

an organization, we asked (2) on average, how often do you deploy your applications to production? 

Figure 4.1 shows that almost 53.7% (64 out of 119 (21+98)) of the participants indicated that on 

average the applications in their respective or client organizations were in deployable-state 

multiple times a day or once a day, indicating they were successful to truly implement CDE. 

However, CD was less adopted in the participants’ organizations as in total 43 out of 119 (36.1%) 

participants indicated that the application changes were automatically pushed multiple times a 

day or once a day to production. This finding can have twofold implications: First, it shows that 

compared to the organizations studied in [11, 27], our participants’ organizations were more 

successful in implementing CDE and CD practices. That means our findings came from reliable 

sources. Second, it reveals that the practitioners believe that CDE and CD are quite different 

practices: despite CDE being successfully adopted by the participants’ organizations, there might 

be factors that limit or demotivate them to have the automatic and continuous deployment to 

production (i.e., CD practice). Section 4.4.3 reports these confounding factors. 

Key Finding 

Finding 1. From a practitioner’s perspective, continuous delivery and continuous deployment are indeed 

distinguishable practices in the industry. 

 
 
 

 

Figure 4.1 How continuous delivery and deployment are implemented – aggregated results of interviews and 
survey 

53

11

31

19

2 3

26

17

31

37

7

1

Multiple times a
day

Once a day A few times a
week

A few times a
month

A few times a year N/A

On average, how often your applications are in releasable state?

On average, how often do you deploy your applications to production?



 

 

69 

 

4.4.2 Current State of Automation Support in Continuous Deployment 
Pipeline 

Continuous Deployment Pipeline (CDP) (aka. continuous delivery pipeline) plays a significant 

role in helping organizations to achieve continuous and automatic deployment [98]. This means 

that the success of practicing CD in an organization heavily relies on the degree of automation 

support in the CDP [78]. A fully automated CDP enables organizations to automatically build, 

test, configure and deploy new features to production. Therefore, we were interested in 

understanding how automation is supported in CDPs in the practitioners’ organizations. The 

survey respondents were asked to score their CDPs in terms of automation on a 1-5 scale (i.e., 

from 1-completely manual to 5-completely automated). The data from Figure 4.2 shows that over 

70% (69 out of 98) of the surveyed participants scored their CDPs 3 or 4, which can be considered 

as semi-automated CDPs. Surprisingly, only 19 out of 98 of the respondents indicated that they 

had fully automated CDP to transfer the changes from the repository to production. 

 

Figure 4.2 Statement 1: How you would grade your CDP in terms of automation? 

Through a five-point Likert-scale question, we asked the survey participants to indicate how 

strongly they agree or disagree with this statement (S2): “we have the right tools to set up fully 

automated continuous deployment pipeline”. Figure 4.3 shows that whilst 25.5% of the respondents 

strongly agreed, 43.4% agreed that there are the right tools for this purpose.  

 

Figure 4.3 Statement 2: We have the right tools to set up fully automated CDP 

Key Finding 

Finding 2. Whilst only 19.3% of the surveyed participants believe that their deployment pipeline is completely 

automated, the last stages of the pipeline including “acceptance testing”, “production deployment”, and 

“configuration and provisioning” stages are likely to be semi-automated or manual. 
 

Furthermore, we intended to explore what stages of a CDP may more or less support automation. 

Typically, a CDP is composed of explicit stages (e.g., build) to push code from the source code 

repository to production [7, 78]. There is no standard or single pipeline as organizations may 

design and implement their own CDPs with different stages and diverse tools [78]. Through a 

multiple-choice question, we first asked the surveyed participants which of the following stages 

constitutes their CDPs: “version control”, “build”, “continuous integration”, “artifact repository 

management”, “unit/integration testing”, “acceptance testing”, “production deployment”, 

“configuration and provisioning”, “log management and monitoring”, and “containerization”. We 

also included “Other” field to collect any other stages in a CDP. As Figure 4.4 shows, “version 

2 8 29 40 19

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

1 (Completely Manual) 2 3 4 5 (Completely Automated)

25 43 18 10 2

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Strongly agree Agree Neutral Disagree Strongly disagree



 

 

70 

 

control”, “build”, “unit/integration testing”, “continuous integration” and “production 

deployment” were the most common stages of CDPs. However, “containerization” was the least 

commonly mentioned stage in CDPs as only 37 survey participants referred to the 

“containerization” stage. We also found that not all stages are compulsory in a CDP as only 19 

survey participants indicated that the CDP in their respective organization includes all of the 

abovementioned stages. Figure 4.4 demonstrates that only 5 respondents completed the “Other” 

field. One respondent pointed out that each application has its own CDP; therefore, there is high 

variability from application to application. Two others referred to “configuration and 

provisioning” stage in different ways (e.g., “Cloud Management and Self-Service” R80 and 

“Automated Provisioning of Environments” R90).   

Through two open-ended questions, the survey respondents were asked which of the above-

mentioned stage(s) have the most and the least automation support respectively. The responses 

to these questions indicate that “acceptance testing”, “production deployment”, and 

“configuration and provisioning” were the stages that had the least automation support 

respectively. In contrast, “build”, “continuous integration” and “unit/integration testing” stages 

got the most automation support. Our analysis has revealed that the organizations with 

completely automated CDPs were much more successful to achieve frequent and automatic 

deployment.  Among the respondents who scaled their CDPs as semi-automated or manual, only 

30.3% indicated that (application) changes are automatically pushed to production multiple times 

a day or once a day. The responses to these two open-ended questions were fed into our 

qualitative analysis process, where applicable, to explore why some CDP’s stages had less 

automation support and how lack of fully automated CDP limited the participants’ organizations 

to truly adopt CD (See Section 4.4.3).  

 

Figure 4.4 Stages of Continuous Deployment Pipeline 

4.4.3 Moving from CDE to CD 

This section reports the confounding factors in moving from CDE to CD, which are extracted 

from the interviews and the survey open-ended questions. We also assess and quantify these 

factors by indicating the number and percentage of the survey respondents who experienced 

these factors (See Table 4.1). 

94

95

87

75

89

55

86

66

66

37

5

Version Control

Build

Continuous Integration

Artifact Repository Management

Unit/Integration Testing

Acceptance Testing

Deployment

Configuration and Provisioning

Log Management and Monitoring

Containerization

Other



 

 

71 

 

Table 4.1 Summary of confounding factors in moving from CDE to CD 

Confounding Factors # % 

F1. Lack of fully automated user acceptance test  43 43.9 

F2. Manual quality check 42 42.9 

F3. Deployment as business decision 41 41.8 

F4. Insufficient level of automated test coverage 34 34.7 

F5. Highly bureaucratic deployment process 31 31.6 

F6. Lack of efficient rollback mechanism 24 24.5 

F7. Dependency at application level 23 23.5 

F8. Demotivated customer 19 19.4 

F9. Customer environment 16 16.3 

F10. Domain constraints 15 15.3 

F11. Manual interpretation of test results 11 11.2 

1) Lack of fully automated (user) acceptance test 

We found that one of the major changes that usually would happen during the transition to CD is 

to identify reworks and eliminate their root causes effectively. An often-heard reason for reworks 

in the development process was manual testing. Several interviewees stated that an extensive 

effort and time in transition to both CDE and CD practices have been spent on automating 

existing manual tests (e.g., “From a technical perspective, you have to reduce time and move fast, 

you have to care about testing. The problem is that you can’t automate everything because it sounds 

time consuming” P13). We were interested in gathering viewpoints of the practitioners in this 

regard on a quantifiable scale. Hence, we asked the survey participants (n=93) to rank how 

important was the challenge of “lack of full test automation” in CD adoption, so because of which 

they faced serious challenges in automatic and continuous deployment. Figure 4.5 indicates that 

78.7% of the respondents rated the severity of this challenge as very important or important.  

 

Figure 4.5 Statement 3: How important is “lack of full test automation” in adopting CD and put you in 
trouble to have automatic deployment 

The interviewees disclosed that they considerably succeeded in automating unit and integration 

tests, but automating the tests occurring at the end of development process such as (user) 

acceptance test and performance test has remained a challenge and requires heavy workloads and 

time. As one consultant observed:  

“They [organization] really often have challenges to get it [test automation] done, for 

acceptance tests most of the time it is not easy to fully automate” P9. 

Our survey’s results were aligned with our interviews’ findings as “lack of full user acceptance test 

automation” has presented the most confounding factor (43 out of 98, 43.9%) for CD success. The 

survey participants shared the following reasons why (user) acceptance tests were or could not be 

fully automated.  

48 25 14 3 3

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Very important Important Moderately important Of little importance Unimportant



 

 

72 

 

a) Too much effort with low gain  

More survey participants than expected mentioned concerns about the potential benefits of 

automating acceptance test at large scale compared to its associated complexities and costs (e.g., 

“I'm guessing it [automating user acceptance test] is seen as a high effort for low gain” R61). That is 

why in some participants’ organizations there is not enough demand for this purpose. 

Furthermore, some believed that acceptance testing should involve human intervention (e.g., for 

assessment of results) as it would bring more value and increase confidence in code quality. As 

explained by R14  

“Acceptance testing [is manual] due to high frequent UI changes, [in which] it is 

more efficient for manual testing to validate user experience against requirements”.  

In this regard, the survey participants also indicated that they experienced a significant burden of 

learning and changing the mindset of customers to support fully automated acceptance testing. 

As stated by R40  

“Member acceptance test [is manual]; we cannot dictate customer workflow”. 

b) Tools limitations 

A few of the survey participants reported that current tools and technologies are immature to 

fully automate acceptance tests (e.g., “Acceptance testing [is manual], because we have lacked the 

tools and technology to suitably automate this” R2 or “The tools we use [for automating acceptance 

tests] are too crude” R91). 

c) Lack of automation skills  

Lack of automation skills was another reason for having manual acceptance testing. R2 explained 

the reason to adopt manual acceptance test as “The staff involved in acceptance test phase are 

often domain experts with little or no automation knowledge or development skills”.  

2) Manual quality check 

The analysis of the qualitative data also indicates that although automation is critical in CD 

practice, manual tasks are sometimes unavoidable. For example, the organization that P15 helped 

to adopt DevOps was always able to deploy working versions to lower environments (e.g., staging 

environment) in an hour, yet the step for getting a working version from a low-level environment 

into production involved additional verification and approval. That is why it was not truly CD, but 

it was more CDE. The most common manual task mentioned by the interviewees was code 

review. The interviewees’ organizations performed several manual code reviews before deploying 

software to production. This is partially because some organizations may not have highly skilled 

developers for truly practicing CD. As explained by a participant: 

“That is second code check because first code reviews done within team and there is a 

final check by release manager who is one of the most knowledgeable developers in 

the organization” P10. 

Ideally, Quality Assurance (QA) tasks should be automated and integrated into CDP [121]. Several 

interviews’ participants expressed that using automated testing could have enabled them to 

effectively deal with QA team and their tasks as they are not a severe bottleneck for practicing CD 

anymore. However, for some of them, it does not mean removing all manual QA tasks from CDP. 

One of the interviewees reported on the reason that changes are not immediately pushed to 

production in the following words: 



 

 

73 

 

“We fully automatically deploy on the test environments. But currently, there is still a 

second button to deploy it out to the customer side. It is just because of sort of 

caution around, basically it would not be hard for us to automate it but there is just 

too much concern around quality level and having another round of sign off. That is 

probably our biggest trouble how to get the initial quality to a level that they can be 

deployed simply with developers independently” P7. 

Many interviewees’ organizations still need to perform many manual quality checks before each 

release. Team members still need to release software (changes) to the QA team to get certified.  

According to Table 4.1, the second most mentioned pain by the survey participants (i.e., 42.8%) 

for continuous and automatic deployment was conducting the manual check and confirming the 

changes before each release. Some of the survey participants also revealed that their organizations 

are not willing to automate all QA tasks in the CDP (e.g., due to lack of trust in existing tools) and 

believe that manual quality checking brings much more value to them. As one respondent stated: 

“Deployments to production need a human trigger. We feel [it is] safer to look closely 

at the metrics during the deployment process” R89. 

3) Deployment as a business decision 

The interviewees indicated that in their organizations the development teams were not able to 

immediately deploy every change to the production environment, despite passing all the tests and 

quality checks. This is mainly because deploying to production was considered as a business 

decision, which had to be made by management or financial sectors. In other words, development 

team members have little control over production deployment. Furthermore, different 

organizations may adopt different policies and timeslots for release, which can bring the most 

value to their customers [13, 122]. As can be seen from the following quote, despite developers 

could deploy changes into lower environments at any point of time, production deployment 

occurred every three weeks through a formal process.  

“At any point of time, [if] we wanted we could deploy into lower environments, but 

the major release was done every three weeks because the release process still was 

quite important for management to have sign off from the testers …” P15. 

The survey respondents were asked to determine whether this factor (i.e., deployment as a 

business decision) impacted their capability to have automatic and continuous production 

deployment. According to the survey responses (See Table 4.1), this factor was ranked as the third 

most common confounding factor in this regard, in which out of 98 survey participants, 41 

(41.8%) indicated that production deployment is considered as a business decision and is out of 

developers’ control.  

4) Insufficient level of automated test coverage 

Lack of sufficient automated test coverage was also deemed as a bottleneck to transition from 

CDE to CD (e.g., “Of really large problem [in this journey] was maintaining our automated test 

coverage” P17). It is important to note that insufficient level of automated test coverage reduced 

the confidence of some interviewees’ organizations in the readiness of their applications for actual 

deployment. Our survey results also confirm this concern as a large number of the survey 

respondents (34 out of 98, 34.7%) indicated this as a CD challenge.  

5) Highly bureaucratic deployment process 

We found that the deployment process in some organizations is still highly bureaucratic. Our 

findings characterize a highly bureaucratic process as the one having a large number of formal 



 

 

74 

 

tasks (e.g., getting approvals from various people) to be performed manually before each release. 

For example, one interviewee and one survey participant highlighted this in the following quotes:  

“Solution deployment to customer side involves taking agreement and acceptance 

from their backend teams. So we were given some slots based on their delivery cycle 

or their priorities and we had to obey those slots” P5. 

 “Telecom operators have deployment processes that have formal bureaucratic 

checklists prior to deployment, due to multiple integrations in their network. 

Solutions come from various vendors and having CD to make eco-systems working 

across the vendors involve manual checks” R67. 

Table 4.1 reveals that 31 of the survey respondents (31.6%) chose that deployment process in their 

respective organizations or client organizations was highly bureaucratic. 

6) Lack of efficient rollback mechanism 

In comparison with CDE practice, CD requires better monitoring solutions and fully automated 

rollback mechanisms [12]. Whilst P17 stated that integrating automated rollback in CDP increased 

their confidence to have automatic deployment, our analysis of qualitative data reveals that lack 

of having efficient rollback mechanism, forced a couple of the interviewees’ organizations to 

decrease the pace of pushing changes to production. Lack of efficient and automated rollback 

mechanism to quickly recover issues in deployment process may put software organizations at 

risk of delivering buggy code to their customers. 24.5% of the participants confirmed that this 

confounding factor was the reason for having the manual deployment. One survey participant, an 

architect, stated:  

“Deployment [is manual], because it doesn't support rollback neither has power to 

provision of a machine/instance. The rollout could be better by testing the released 

version in production, load tests, micro benchmark, etc.” R43. 

7) Dependency at the application level 

Our study has found that albeit an application might be at deployable state, dependencies 

between that application and other systems may have inhibited some of the participants’ 

organizations to transition from CDE to CD. It means organizations need to ensure that there is 

no integration problem when deploying an application to production. Deploying software 

changes on a continuous basis necessitates continuously deploying all dependencies (e.g., 

dependent applications). One interviewee described this situation vividly:  

“The difficulties become visible when you automate deployment for a complex stack. 

Then you have sometimes challenges to get everything working within one task. To 

all dependencies of your deployment, if [you] have legacy applications, then you need 

to deploy all these things together and everything should work after deployment and 

you always face things more difficult. So, there are always some tasks to automate” 

P9.  

As shown in Table 4.1, the survey results moderately confirmed our interviews’ findings as 23.5% 

of participants agreed that dependency at application level was a confounding factor. To give an 

example, one survey participant discussed the reason for manually deploying their application in 

these words:  

“Deployment is a manual process because once an artifact is created, [in order] to 

allow coordination with other services; dependencies must be known in advance and 

aren't written down” R41. 



 

 

75 

 

8) Demotivated customer 

Based on our analysis and the interviews’ discussions, we perceived that the time and pace of 

deployment to production greatly depends on customers’ cultures, policies, and goals. We found 

that not all customers are mature enough to accept a continuous release. The interviewees 

pointed out that whilst they were able to give updates as frequently as possible to their client 

organizations, the established cultures and policies in the client organizations did not support 

fully transition to CD practice. Therefore, they had to follow pre-defined timeslots (i.e., calendar-

based release) for releasing software. 

Our survey participants confirmed this finding as 19 of them indicated that their customers were 

not happy or had no need to receive the continuous and automatic release. One architect and one 

consultant from the survey study explained respectively: 

“Upgrading to a new release is expensive and strategic for customers, they don't want 

to run the risks of a continuous daily or weekly delivery, they want to upgrade once a 

year at most” R78. 

 “Moving into production [is manual] because that is not done too often; and it is a 

handover to Ops” R13.  

Our study shows that compared to CDE, customers need to be actively involved in continuous 

and automatic deployment for truly practicing CD (e.g., “I think our domain and customer are not 

yet in the position to have continuous deployment” R23). 

9) Customer environment 

Our findings have revealed that the participants often found themselves struggling with customer 

environment as a severe roadblock to moving from CDE to CD. It was often stated by the 

interviewees that lack of carefully studying and exploring customer environments before moving 

to CD led to challenges in the continuous and automatic release. One CD consultant observed: 

“I saw a customer actually who did not take regulation compliance into consideration 

and invested a huge amount of time and money on doing microservices and fancy 

tools. In the end, they couldn’t deliver more often than once a month, because of 

regulations. Many things should be taken into considerations for the success of this 

[CD] journey” P14. 

Table 4.1 displays that 16 out of 98 survey respondents indicated that the challenges (e.g., manual 

configuration of complex software) associated to customer environment negatively affected their 

capability to automatically and continuously release software (changes). During our interviews 

and survey studies, we heard the following challenges associated with production environments 

as confounders to adopt CD. 

a) Manual configuration of complex software 

Anecdotally, several of the interviews’ and survey participants have said that manual 

configuration of complex software, particularly when there is a tight coupling between software 

and hardware, and regulatory environments represented a significant obstacle to CD success. 

Here are just a few of the examples indicating the participants struggled with manual 

configuration: 

“On the customer/onshore side, requirements developed, and additional expertise was 

brought in to manage and support the manual deployment due to firewall and legacy 

processes preventing CD on the client side” P3. 



 

 

76 

 

“This [production deployment] still involves a manual step to move the release 

artifact from one environment to another, due to network separation” R71. 

“Configuration and provisioning vary from site to site at the customer location. 

Hence this involves manual configuration from team” R67. 

Besides the complex and error-prone process of configuration and provisioning in some 

production environments, we also noticed several other reasons for having manual configuration 

and provisioning: (i) lack of mature tools (e.g., “We do not have a robust toolset for automating 

configuration” R49 and “Configuration is [manual] in Puppet but requires restarting of applications 

to bootstrap and load new configurations adding a manual step into the process. We use load 

balancing, so Puppet can't restart at will” R41); and (ii) not much value in automating 

configuration and provisioning. A team lead commented  

“Provisioning [is manual], because we update instance images only a few times per 

week” R52.     

b) Hard to simulate/access real production 

Our analysis highlights that a lack of control on, access, and simulation of the production 

environment (e.g., on-premise environment) make it difficult to deploy potentially releasable 

changes on a continuous basis. When there is no direct and regular access to customer 

environments, a software development team needs more communication with the operations 

team at customer side to get confirmation and agreement for each release. The following quote 

depicts this issue: 

“We had a project and we had concrete control through the infrastructure and choice 

of technologies. That kind of environment is pretty simple to kind of get deployment 

pipeline that you want. But when we are working with a customer that does not use 

that model of working, that’s needed to have a lot of communication, a lot of 

mentorships, e.g., why we need to do these things” P12. 

The interviewees frequently shared that it is not easy (if possible) to simulate production-like 

environments with realistic data. Therefore, lack of access to and control on production 

environment make it much harder to fully automate the deployment process. One interviewee 

described this situation perfectly: 

“There is always challenge on how to keep testing environment in synchronization 

with production environment. Because you can’t have the same testing environment 

like production environment, for example network is different” P14. 

Due to the above-mentioned issues, there was some debate about the real benefits of staging 

environment in the context of CD. According to the interviewees, this is mainly because staging 

environments do not show how really software works as a few of them explicitly stated that 

staging environment can be disruptive to successfully adopt CD [117]. One interviewee told us: 

“We used to have a staging environment because the reason that we needed to have a 

place where we integrate all the changes in one version, we test and then we deploy. 

But I think when we are going to more rapid deployment, all the time continuously 

deploy. Then we started to feel this [staging] doesn’t fit this pattern because the 

problem is that you don’t have the whole data. So, you have the risk because staging 

and production are not equal. So, it is like cheating you; the real life is different” P16. 

 



 

 

77 

 

10) Domain constraints 

Many challenges in the applicability of CD arise due to domain constraints. This factor could 

change the frequency of releasing software (changes) to production [11]. Whilst CD practice is 

more easily applied to web-based applications, it may not be easily applied to other domains such 

as embedded systems and financial systems [18]. One possible reason for this is that such domains 

are more conservative to automatic deployment to customers and require more (manual) 

verifications before each release [81, 115]. Table 4.1 indicates that among 98 survey participants, 15 

considered domain constraints as a confounding factor. Whilst the survey participant R40 told us 

that they are a financial exchange and are not able to deploy during business hours, another 

survey participant described the domain constraints in the following words: 

“I deal with Big Data style petabyte state. Large-scale state migration during 

deployment remains a challenge at this scale due to the cost of backup and impact of 

lost state” R46. 

11) Manual interpretation of test results 

Long-running tests and test results’ interpretation were seen as other confounding factors. Long-

running tests not only increased the cycle time (i.e., the time required to get the code from code 

repository into production) in a CDP but also have hindered developers from getting real-time 

feedback. One interviewee revealed that a large portion of cycle time had been spent on running 

regression tests and interpreting the tests results. Another issue mentioned by a number of the 

interviewees was the fact that there was very little automation support for regression tests. So it 

involves manual efforts and takes huge cycle time. Hence, it depends on the extent the regression 

tests can be automated, organizations can significantly reduce the overall cycle time in the CDP. 

Furthermore, with the increasing number of test cases, the interpretation of test results becomes 

quite time-consuming and labor-intensive process. One interviewee reflected:  

“We have some challenges to fully automate deployment process; one of the 

challenges is the interpretation of test results. There is manual and intervention, 

between build the test and actual deployment, to interpret the results” P6. 

Only 11 participants in our survey (See Table 4.1) confirmed that “manual interpretation of test 

results” was a confounder in the transition from CDE to CD as one of them stated “Acceptance 

testing still requires manual assessment of results” R24.  

Key Findings 

Finding 3. Overall, making the decision to move from continuous delivery to continuous deployment is 

influenced by both technical and socio-technical factors.  

Finding 4. The three most cited stumbling blocks to automatic and continuous deployment are (1) lack of fully 

automated user acceptance test (2) quality concerns (3) considering production deployment as a business 

decision. 
 

4.5 Discussion 

This section first discusses some of the main findings from our study. Second, we suggest 

implications for practitioners and researchers based on the themes that emerged from five-top 

reported factors and analysis of the responses to an open-ended question: “Given the increasing 

importance of automation in CD, in your understanding what are the top four things that you look 

for/need/would like to see in automation”. 



 

 

78 

 

4.5.1 Summary of main findings 

Our study indicates that there is a well-understood difference between practicing Continuous 

DElivery (CDE) and Continuous Deployment (CD). Specifically, there are factors because of which 

organizations may be unable or demotivated to move from CDE to CD (i.e., having automatic and 

continuous deployment). These factors are “lack of fully automated (user) acceptance test”, 

“manual quality check”, “deployment as business decision”, “insufficient level of automated test 

coverage”, “highly bureaucratic deployment process”, “lack of efficient rollback mechanism”, 

“dependency at application level”, “demotivated customer”, “customer environment”, “domain 

constraints”, and “manual interpretation of test results”. Moreover, we found that most of the 

participants’ organizations still have semi-automated CDPs, in which “acceptance testing”, 

“production deployment”, and “configuration and provisioning” stages have least automation 

support. 

4.5.2 Implications for research and practice 

Better automated testing: Both the interview and survey data show a strong need for better 

support for automated testing, specifically (user) acceptance testing. Several of the participants 

mentioned that the current automated testing tools need significant improvements in order to 

harden them for different environments. The participants thought that (user) acceptance testing 

on the relative scale have to be run and assessed by a human as it brings more value and safety. 

The participants also mentioned the need to test all types of applications (for example mobile 

testing as it is fragile and expensive to automate), techniques and tools that enable parallelization 

of automated testing and infrastructure automation testing. 

Integrating automated quality checks: Software quality was one of the major concerns in the 

interviewees’ and the survey participants’ organizations before each release. It was also among the 

top priorities for business leaders. Security and performance were the most frequently reported 

quality concerns. According to the participants, attention to security needs to increase and 

performance testing should be conducted at production scale to truly implement CD. However, 

an open question is how to efficiently automate quality checks inclusive of performance and 

security and incorporate them into CDP. For instance, there is a strong need for integrating 

performance baselines into CDP. 

Management support: Participants perceive “managers” are hesitant to allow developers 

immediately push out every change to production because only business leaders of their 

organizations are responsible to make the decision about when and what to be deployed to 

production. Our analysis shows that compared to CDE, successfully adopting CD needs better 

management support. This is mainly because deployment on a continuous basis without human 

intervention may increase complexity as organizations need to deal with more components, more 

people, more roles, and more concerns. Hence, this can be much more a business or political 

problem rather than just an engineering problem. Management at both customer and vendor 

organizations is expected to have a clear understanding of business drivers of continuous 

deployment and get all the stakeholders on board. Whilst the main business leaders’ concern is 

around the quality level, our results suggest that integrating automated quality checks and 

security test in both development and operations processes can alleviate this concern and to a 

large extent make continuous deployment compelling to business leaders. To achieve CD, 

organizations must break down barriers at production. This is mainly achievable by allowing 

developers to be part of deployment decision-making and placing more trust in them. By this, the 

manual approval process described in Section 4.4.3.5 will be significantly reduced.  



 

 

79 

 

Easier tools integration: As we discussed in Section 4.4.2, CDP is a tool-chain, which a number 

of open source and/or commercial tools should be integrated for this purpose. This is mainly 

because deploying with one and only tool would make automatic deployment process more 

complicated. However, a commonly mentioned issue was compose-ability of tools. Software 

organizations need to spend too much engineering effort to architect each of distinct tools to 

interface and integrate with other tools to make them work seamlessly. We observed that due to 

the availability of a gamut of tools and lack of standardization between them, there is too much of 

chaos in the way each organization adopts their continuous delivery or deployment journey. It is 

highly recommended that tool vendors consider applying standards that enable an organization 

to easily stitch tools together. Such standards would drastically minimize the difficulty and effort 

required for tools integration. 

Digestible visualization and monitoring: Although there are lots of monitoring tools available, 

the survey participants often expect tools and techniques, which enable them to have full 

monitoring coverage. In the meanwhile, having a visual representation of end-to-end build, test 

and deployment would make a huge difference in the capability of organizations to release faster 

and often. Unfortunately, current tools are not great for this; presumably, because they do not do 

a good job (e.g., lack of domain specific monitoring tools) or are exceedingly complex for this 

purpose. Furthermore, scaling CD practice in large organizations with multiple teams and 

applications can worsen this problem as a wide range of stakeholders need to be able to 

understand what is happening, what has happened, and why in a real-time manner. Hence, there 

is a need to develop tools that provide real-time, digestible and customizable monitoring and 

alerting for the different types of stakeholders [123, 124]. 

Other needs: There are also serious needs for (1) better tools to simplify configuration and 

provisioning of environments and support automatic setup of distributed environments; (2) tools 

to manage, validate and automate schema upgrades and database migrations in CDP; and (3) 

better post-deployment checks (e.g., automated smoke and reliability testing after deployment). 

4.6 Conclusion 

This chapter has reported an empirical investigation into the reasons (e.g., manual user 

acceptance testing) because of which organizations may be unable or demotivated to 

automatically push out every change to production in order to have many production 

deployments every day. Our findings came from a mixed-methods study consisting of data 

collection and analysis from 21 semi-structured interviews and an online survey completed by 98 

software practitioners. This research reveals the current state of automation support to truly 

implement continuous deployment. Interestingly, the majority of the participants’ organizations 

did not have fully automated deployment pipelines, with mostly semi-automated or manual 

“acceptance testing”, “production deployment”, and “configuration and provisioning” stages. We 

have also identified several future research directions (e.g., better tooling support) along with a 

set of recommendations (e.g., management support) that can help streamline continuous and 

automatic deployment. 

 

 



 

 

80 

 

 

 

While some efforts have been made to study different aspects of Continuous Delivery 

and Deployment (CD) practices, a little empirical work has been reported on the impact 

of CD on team structures, collaboration, and team members’ responsibilities. To this end, 

we leveraged the data collected from 21 in-depth, semi-structured interviews in 19 

organizations and a survey with 93 software practitioners (i.e., as described in Chapter 2) 

to empirically investigate how Development (Dev) and Operations (Ops) teams are 

organized in the software industry for adopting CD practices. We report that there are 

four patterns of organizing Dev and Ops teams for this purpose. The research presented 

in this chapter also provides insights into how software organizations actually improve 

collaboration among teams and team members for practicing CD. Furthermore, we 

highlight new responsibilities and skills (e.g., monitoring and logging skills), which are 

needed in this regard. 

5.1 Introduction 

The highly complex and challenging nature of DevOps practices, particularly Continuous Delivery 

and Deployment practices (i.e., they are referred to CD practices in this chapter), make it 

inevitable that organizations improve their skills, form the right teams, and investigate 

organizational processes, practices, and tool support to gain anticipated benefits from DevOps 

practices [23]. With the increasing popularity of CD practices, the research community has been 

conducting extensive research efforts to understand how organizations initiate and implement 

these practices. For example, a few papers have investigated the challenges that organizations 

may face in adopting CD practices [11, 23, 113]. The other area of interest in CD is to provide and 

integrate appropriate technologies and tools to support automated configuration and deployment 

processes [26]. On the other hand, it is asserted that achieving CD may require a new way of 

working and changes in team structures and responsibilities [23, 125, 126]. Furthermore, CD 

practices demand tighter and stronger collaboration and integration among teams and team 

members [127]. However, there is no systematic research about how organizations actually form 

and arrange Development (Dev) and Operations (Ops) teams and also how they increase 

collaboration among teams and team members to optimally embrace CD practices. We assert that 

Continuous Delivery and Deployment: 
Organizational Impact   

Chapter 5 

Related publication:  

This chapter is based on EASE paper, “Adopting Continuous Delivery and Deployment: 
Impacts on Team Structures, Collaboration and Responsibilities” [4]. 



 

 

81 

 

such questions should be explored and answered through empirical studies involving 

practitioners from diverse organizations rather than through one case company or one 

practitioner’s perspective [125, 126]. To address this gap, we report an empirical investigation to 

address the following research questions: 

RQ5.1 How are Dev and Ops teams organized to initiate and adopt continuous delivery and 

deployment? 

RQ5.2 How is collaboration among teams and team members improved for adopting 

continuous delivery and deployment? 

RQ5.3 How does adoption of continuous delivery and deployment impact on team 

members’ responsibility? 

We used part of the mixed-methods study presented in Chapter 2 to answer these research 

questions. The main findings of this chapter are: 

(i) There are four common types of patterns for organizing Dev and Ops teams to effectively 

initiate and adopt CD practices: (1) separate Dev and Ops teams with higher collaboration; (2) 

separate Dev and Ops teams with facilitator(s) in the middle; (3) small Ops team with more 

responsibilities for Dev team; (4) no visible Ops teams. 

(ii) The participants shared that co-locating teams, rapid feedback, joint work and shared 

responsibility, using collaboration tools more often, increased awareness and transparency, and 

empowering and engaging operations personnel enabled them to increase the collaboration 

among teams and team members in the path of adopting CD. 

(iii) Team members have three key high-level changes in their responsibilities: expanding skill-set, 

adopting new solutions aligned with CD, and prioritizing tasks. 

Chapter organization: Section 5.2 summarizes related work. Section 5.3 describes the research 

methodology. We report our findings in Section 5.4. Finally, Section 5.5 closes the chapter with 

discussion and conclusions. 

5.2 Related Work 

There are a number of empirical studies that have investigated the challenges and practices of 

adopting DevOps and CD [2, 11, 23, 115]. Among the reported challenges (e.g., monolithic 

architectures [2]) and practices (e.g., management support [22]), the studies have also briefly 

discussed the skills required for practicing CD, and how collaboration and coordination among 

teams and their members can be consolidated for this purpose.  

Savor et al. [22] report that the developers needed to gain new skills as a result of implementing 

continuous deployment at Facebook and OANDA. The studied companies assigned new 

developers to the release engineering team for several months. Claps et al. [23] identified 20 

technical and social challenges (e.g., team experience and team coordination) that a single case 

company faced in the transition towards continuous deployment. In order to move from 

continuous integration (CI) to continuous deployment, the case company studied in [23] 

leveraged CI developers’ experience by integrating automated continuous deployment of software 

into the existing CI workflow of developers. This approach helped them to reduce the learning 

curve for developers. Other studies discuss that when a project adopts CD practices, it would be 

helpful to define new roles and teams in software development lifecycle to smooth this path. 

Krusche and Alperowitz [128] define hierarchical roles such as release manager and release 

coordinator to adopt and implement continuous delivery in multi-customer projects. It is argued 



 

 

82 

 

that these roles improve coordination among team members. Other studies argue that 

establishing a dedicated team for the design and maintenance of infrastructure and deployment 

pipeline helps organizations to smoothly transform to CD and reduce release cycle time [22, 129]. 

Wettinger et al. [127] present the idea of solution repositories to provide efficient collaboration 

between developers and other team members (i.e., operations stakeholders). Each team in 

software development lifecycle may use their own solutions and repositories to build and 

maintain knowledge and documents around corresponding solutions. This approach could 

significantly hinder knowledge sharing and collaborative work in a team. The collaborative 

solution repositories automatically collect and store different solutions and their metadata from 

diverse environments (e.g., test environments) and sources (e.g., Chef). Then this data is utilized 

to establish consolidated knowledge base instances for supporting collaboratively work. 

Nybom et al. [130] conducted a case study with 14 practitioners in an organization to investigate 

the potential impact of mixing responsibilities between developers and operations staff. The study 

reveals that mixing responsibilities, among other impacts, remarkably increases collaboration and 

trust, and fosters team members’ workflow. However, this approach is associated with a number 

of negative implications. For example, given more responsibilities to developers and constantly 

learning about operations tasks might demotivate some developers to have collaboration with 

operations personnel. 

França et al. [131] conducted a multivocal literature review to characterize DevOps principles and 

practices. The study highlights that developers and operations personnel need to gain both social 

(e.g., communication) and technical (e.g., math skills for performance analysis) skills to truly 

perform DevOps. This also enables team members to effectively collaborate on fixing bugs. The 

study also found a number of practices to improve collaboration among team members including 

role rotation, face-to-face communication, and open information.  

It should be noted that none of the above-mentioned studies has systematically and empirically 

explored the actual impact of CD practices on the structure of Dev and Ops teams, team 

members’ responsibilities, and collaboration among them. Whilst analyzing our data for RQ5.1, 

we came across a few blogs [125, 126], which suggest different team structures (e.g., Ops as 

Infrastructure-as-a-Service) for DevOps success. That increased our confidence in the importance 

of exploring how Dev and Ops teams are organized in practice for adopting CD. We assert that 

our findings provide an evidence-based and detailed view of different team setups when adopting 

CD, as they are not restricted to a single case company or observations of one practitioner. 

5.3 Research Method 

As described in Chapter 2, a mixed-methods empirical study was adopted to answer the research 

questions introduced in Section 5.1. For this chapter, we have collected qualitative data through 21 

in-depth, semi-structured interviews and a survey of 93 practitioners to further gain the evidence 

and understanding of our findings from the interview study. 

5.3.1 Interviews 

We initiated the analysis by breaking down the transcripts into three high-level segments 

according to our research questions: the impact of practicing CD on team structures (RQ5.1), 

collaboration (RQ5.2) and team members’ responsibilities (RQ5.3). Then we rigorously reviewed 

the transcripts and extracted and coded data related to each of the research questions.  



 

 

83 

 

5.3.2 Survey 

Apart from demographic questions (e.g., role and experiences), we particularly asked about how 

practicing CD has influenced team structure, responsibilities, and collaboration of team members. 

The relevant survey questions used for this study contained 11 questions including demographic (4 

questions), five-point Likert-scale (3 questions), single-choice (2 questions) and open-ended (2 

questions).  

5.4 Findings 

We present our findings of different team structures in software organizations to adopt CD, 

followed by strategies and practices adopted to effectively improve collaboration. Finally, we 

describe how CD adoption may change the responsibilities of team members.  

5.4.1 Team Structures for Adopting CD Practices (RQ5.1) 

This section reports how Development (Dev) and Operations (Ops) teams are organized to 

implement CD practices (See Figure 5.121). First, we present the main patterns of team structures 

for this purpose, which are extracted from the interviews. Second, we assess and quantify these 

patterns by indicating the number of the survey respondents reported these patterns.  

Separate Dev and Ops teams with higher collaboration: Our analysis has disclosed that for a 

couple of the interviewees’ organizations, in particular hierarchical ones, adopting CD does not 

necessarily mean huge changes in team structure or complete breakdown of silos (i.e., divisions of 

labor) between teams. They tried to leverage their existing Dev and Ops teams by providing the 

needed infrastructures and emphasizing the culture of empowerment in order to make a higher 

and tighter collaboration between Dev and Ops teams (See Figure 5.1.A). Through this strategy, 

they were able to achieve DevOps and CD goals as much closeness as they could. The amount of 

collaboration between teams and team members, in particular application developers and 

operations team, increased after adopting CD. It was explained by one of the interviews’ 

participants in the following words: 

“They [organization] did very successful continuous delivery even though they have 

separate teams for development and operations. So, I mean you are on a spot that 

there should be close Ops cooperation, but it is not necessarily [to have] the full 

DevOps in the sense of making the teams [that] do operations and development tasks 

by themselves. I think you do need to have close collaboration, but you do not need to 

have teams to do both Ops and Dev [tasks]” P11. 

We found that placing operations team next to developers (e.g., in the same office) and 

encouraging them to have more collaboration and face-to-face communication with other team 

members are simple strategies adopted by the interviewees’ organizations to bridge the 

collaboration gap between Dev and Ops teams. One interviewee (i.e., a program manager) 

pointed out this in these words: 

“There are two sub-groups, who reported me. There is some division of labor who 

focus on development and there is another subgroup of 3 people who are focusing on 

the operations and deployment. But they sit next to each other and they work very 

closely together” P7. 

                                                           
21 Note that the icons that are used in this figure are taken from freepik.com and thenounproject.com 



 

 

84 

 

 

Figure 5.1 Team Structure for effectively initiating CD practices 

We asked the survey participants to determine whether this pattern describes the structure of 

Dev and Ops teams in their respective or client organizations. As shown in Figure 5.2, of 93 survey 

responses to this question, 33 (35.4%) of the respondents indicated that they still have separate 

Dev and Ops teams; however, it was reported that collaboration and coordination among even 

the separate teams had significantly improved. Interestingly, this pattern was mainly adopted by 

large organizations, followed by medium-sized organizations as 48.6% of the large organizations 

had structured their Dev and Ops teams in this way. While only 5 out of 26 small organizations 

chose this pattern.  

Separate Dev and Ops teams with facilitator(s) in the middle: As part of the strategy to 

improve communication and collaboration between developers and operators, some interviewees’ 

organizations would go a step further by defining and establishing a team, for example, so-called 

DevOps team, to facilitate communication and collaboration between Dev and Ops teams (See 

Figure 5.1.B). This team acts as an integrator between these teams to consolidate work together 

and knowledge sharing. The participant P4 highlighted the role of this team as the follows:  

Dev Ops 

Dev 
Ops 

Dev 
Ops 

No visible Ops 

Integrator 

(A) 

(B) 

(C) 

(D) 

Separate Dev and Ops teams closely located 

More collaboration is encouraged 

Separate Dev and Ops teams 

Integrator team (DevOps) between Dev and Ops 
teams 

More responsibilities on Dev 

Small Ops team with mentoring and support role 

Merging Dev and Ops into one team 

Everybody responsible for delivery of software unit 
(e.g. service) 



 

 

85 

 

“We had DevOps engineer [who has] job to integrate between development and 

operations. He [is] primarily responsible for integrating between Dev and Ops to 

make sure the all changes are applicable to operations” P4. 

17.2% of the survey respondents stated that they are using a facilitator team as an enabler for 

communication and collaboration. Only one small size organization used this pattern, remainders 

were large (9) and medium-sized (6) organizations. 

Small Ops team with more responsibilities for Dev team: DevOps often recommends that 

developers take more accountability about their code in production environments [7]. Some 

interviewees’ organizations have gradually and smoothly shifted operational responsibilities from 

infrastructure and operations teams to Dev team. By applying this change, Ops team is more 

responsible for mentoring, coaching and helping developers to write operational aspects of the 

code, for example writing provisioning code. This strategy enabled the interviewees’ organizations 

to make operations process easier and helped developers to commit codes that made less trouble. 

This is mainly because Ops team influenced the way the applications were configured to make 

them easier to deploy. Furthermore, Ops team may still exist to handle initial incidents in 

production environments. Hence, the development team is not available like 24/7 to address 

incidents in production and initial incidents handling will be out of developers’ accountability. As 

one interviewee commented:  

“They (operations team) often would pass the problems to the development team, if 

they cannot solve the problem itself and then the development team will get involved 

in operational things, incidents, that kind of things” P18. 

Organizations within this category still had a distinct operations team, albeit a small one with 

limited responsibilities (See Figure 5.1.C). According to the interviews’ participants, operations 

team is still needed to support deployed system in the production. They are mainly in charge of 

running the system, monitoring it, and fixing the performance issues. As P12 stated that: 

“The organization that I am talking about is a very hierarchical organization and we 

are not able to inroad and change the organizational hierarchical. I really like these 

things [operations tasks] run [by] product team where you have Ops people 

embedded in the product team and then whole team working together. We have not 

got that state but we could get through months and months like talking to each other 

and having bear with each other” P12. 

We could not conclude that the Ops team in this category is a part of Dev team as there are 

always a bunch of tasks that are not really related to or out of the expertise of a development 

team. 27 out of 93 survey respondents indicated that there is a very small Ops team (e.g., 2-3 

people) in their organizations to do specific tasks and most of the responsibilities of Ops team 

have been shifted to the Dev teams. The distribution of this pattern was almost similar among 

large (8), medium-sized (9), and small organizations (10). There is always a need to be someone 

on duty, particularly in critical systems such as financial systems, which has to be available 24/7. 

An IT architect, who worked in a company specialized in DevOps and CD and helped other 

organizations to adopt DevOps practices, pointed out that: 

“For me, you may want to know, I have not seen in many organizations that DevOps 

team, the ideal situation, is really happened as a practice at the moment. So, what I 

mean this is a full responsibility; they are a really multi-disciplinary team and they 

can do all the technologies themselves and that requires highly skilled people to learn 

real DevOps team” P9. 



 

 

86 

 

 

Figure 5.2 Survey results on patterns of organizing Dev and Ops teams for initiating and adopting CD (n=93) 

No visible Ops team: Our analysis has revealed that in a few organizations, the Ops team has 

been an integrated part of Dev team (See Figure 5.1.D). There is no specific and visible Ops team; 

all team members have a shared responsibility and purpose to cover the entire spectrum of the 

software application, from requirement gathering, to continuously deploying, monitoring, and 

optimizing application in production environments.  

“Well we had operational personnel at the team; they were there at every moment of 

the project as we [were] making decision. So they were integrated part of the team; 

there is no communication overhead for operation teams because we have no 

operations in a separate operations team” P13. 

The results from the survey show that 17.2% of the respondents, especially in small organizations, 

stated that they do not have a visible and distinct Ops team. Those organizations have structured 

team members in the cross-functional team for each software unit (e.g., service and component); 

therefore, each team includes developers, business analyst, quality assurance (QA) people, and 

operations people. It is also asserted that creating a cross-functional team (e.g., operations team is 

completely embedded in development team) necessitates highly skilled people and this pattern 

has usually been found in Start-up or highly innovative web companies [125, 126].  

“Initially we had separated operations team. There was a huge concern from the 

business because people came from IT background, you had to have developers who 

were far away from the production. It’s risky stuff and we had to change this mindset 

and in about three years we moved to the cross-functional team where operations 

were part of the team” P14. 

A small number of the interviewees emphasized that if organizations want to efficiently adopt and 

implement DevOps practices, in particular CD practices, they cannot really have operations silo 

(i.e., separate Ops team), even small one. Having operations silo may lead to a lot of frictions in 

the deployment process and fail organizations to achieve the real anticipated benefits of CD 

practices. 

2.2%
1

17.2%
16

17.2%
16

29.0%
27

35.4%
33

Not Available

Separate Dev and Ops teams with facilitator(s) in
middle

No visible Ops team

Small Ops team with more responsibilities for
Dev team

Separate Dev and Ops teams with higher
collaboration



 

 

87 

 

Five respondents chose the “Other” field, but they did not provide a new pattern for organizing 

Dev and Ops teams. They mainly used this field to describe their team structures in other ways. 

Thus, we assigned them to existing categories. For example, R71 stated that  

“We have 2 Web Ops teams serving > 30 Dev teams. The Web Ops provide 

infrastructure, tooling, and deployment, but the Dev teams are monitoring and 

managing their own services in production”.  

5.4.1.1 Team Structures for Designing Pipelines  

It is asserted that the success of adopting DevOps practices (e.g., in particular CD) in 

organizations would heavily depend on the choice of appropriate tools, technologies, 

infrastructures, and level of automation to implement Continuous Deployment Pipeline (CDP) or 

also known as continuous delivery pipeline [12, 78]. It is worth noting that organizations used 

different terminologies to refer to CDP. We observed that the participants’ organizations adopted 

the following models to introduce CDP:  

Organization-driven model: Software organization may found a team to build and maintain 

platforms, infrastructures and toolchain (e.g., Jenkins and Chef) to set up a (semi-) automated 

CDP [132]. Then all project teams in the organization are able to use this CDP to build, test, 

package, and run their applications [7]. Having a common CDP enables organizations to improve 

consistency, governability and team productivity [133]. Among the 19 interviewees’ organizations, 

we observed three different patterns for organizing that team. For all cases, first an organization 

builds CDP by applying one of the following patterns, and then multiple projects simultaneously 

are fed into and ran on established CDP. 

Centralized Team: According to our participants, adopting and scaling CD practices at a large 

organization with multiple teams and applications necessitates a CDP that supports traceability, 

scalability, and flexibility [124]. The CDP must be able to perform no matter how large or many 

applications it processes, or how large their test suites are. It must also be flexible in a way that 

organizations can extend and tune it or parts of it without major disruption or major effort. 

Furthermore, the CDP should support traceability, which enables a wide range of stakeholders to 

understand what is happening, what has happened, and why. For some interviewees’ 

organizations, that is achievable by establishing a dedicated and centered team to design, develop 

and continuously improve CDP in the long term. One of the interviewees told us:  

“We had Squad that was responsible for basically taking care of the platform. … So, 

my colleagues, Squad was responsible for DevOps platform layer” P6. 

This was the most commonly chosen pattern by the survey respondents, with 39.7% (37) choosing 

that a central team in their organizations designed a CDP that would work best for all teams and 

applications. We found that this model of forming CDP team mainly appeared and practiced in 

large (20) and medium-sized (12) organizations. 

Temporary Team: In contrast to the previous pattern, CDP in this pattern is built by a temporarily 

established team in an organization and then the members of that temporary team join other 

teams because there is no need for them anymore. As one interviewee explained that: 

“Once we have set up continuous integration, they would call a pipeline, once the 

pipeline there, and if there is no problem, we will go back to the pool and we don’t 

stay all days.” P8. 



 

 

88 

 

Figure 5.3 shows that there were 23 (24.7%) survey participants that indicated this pattern. We 

observed a fairly uniform distribution of this pattern across small and medium-sized 

organizations.  

External Team: An external consulting organization helps both software provider and customer 

organizations by creating a customized CDP and then team members in the organization are 

trained to use and maintain that pipeline. Our results show that a few numbers of the 

interviewees’ and survey participants’ organizations sought external organizations for this 

purpose.  

Team-driven model: In this model, each team in an organization builds and develops their own 

pipeline to adhere to the needs of the team and project. This model was mainly found by the 

survey results. When we asked the participants about the formation of a CDP team, the “Other” 

field was also considered to gather more patterns. 22 survey respondents indicated that their 

organizations followed this model (i.e., individual team in Figure 5.3). As stated by R89, “Each 

team has organized their continuous delivery pipeline”, and R47, “Various pipelines are built by 

engineers and used by themselves”. We also found that in some organizations a central team 

provides consultancy to all project teams to help project teams to build and manage their own 

CDP (“Each team builds its own pipeline with help from a central team” R9). 

 

Figure 5.3 Survey results on CDP team patterns (n=93) 

5.4.2 Collaboration (RQ5.2) 

Based on the analysis of the interviews’ data, we found that besides changing the team structures, 

organizations are increasingly improving collaboration among teams and team members to 

effectively initiate and adopt CD practices. We asked the survey respondents to rate how they 

strongly agree or disagree that the collaboration between teams (e.g., developers, quality 

assurance team, testers, and operations personnel) has increased in their respective organizations 

since the adoption of CD practices (See statements S1 in Figure 5.5). The results indicate that 

73.1% of the respondents strongly agreed or agreed with this statement; only 6.4% of the 

respondents indicated disagreement with the statement S1, and none of them disagreed strongly.  

3.2%
3

8.6%
8

23.6%
22

24.7%
23

39.7%
37

External Team

Not Available

Individual Team

Temporary Team

Centralized Team



 

 

89 

 

 

Figure 5.5 Statement S1: The collaboration between team members has increased in my organization since 
the adoption of CD 

 

Figure 5.4 The practices to promote collaboration 

Through a mandatory open-ended question, we investigated how organizations could foster 

collaboration among teams. The respondents were expected to specify strategies employed by 

their organizations for this purpose. The analysis of the provided answers revealed the following 

practices (See Figure 5.4): 

Co-locating teams: The most common strategy to improve collaboration is co-locating teams 

and discuss, for example, operational issues more often before an application is released to 

production or customers (“Dev/Ops/InfoSec team co-location” R17). The respondents revealed 

that adopting CD not only needs tighter collaboration between Dev and Ops teams, but also other 

teams need to be physically close to each other to enable face-to-face communication, faster and 

easier interaction and knowledge sharing (e.g., “Placed hardware [team] along with software 

[team]” R57 or “Analysis [team] next to developers” R60).      

Rapid feedback: A few numbers of the participants emphasized that having shorter feedback 

loop at each stage in CDP enables teams and team members to partner in producing high-quality 

software. As described by R19 “the rapid feedback loop has allowed developers and testers to 

partner in producing high-quality software”. This also allows them to significantly reduce the time 

between problem identification and problem-solving (e.g., “Shorter loop from feedback to fixes 

bugs” R38). 

Joint work and shared responsibility: Our results reveal that the speed and frequency 

demanded by DevOps and CD practices drive the need for a more holistic view, in which team 

28 40 19 6 0

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Strongly agree Agree Neutral Disagree Strongly disagree
P

ra
ct

ic
es

 t
o

 p
ro

m
o

te
 c

o
ll

ab
o

ra
ti

o
n

Co-locating teams

Rapid feedback

Joint work and shared responsibility

Using collaboration tools more often

Increased transparency and awareness

Empowering and engaging operations personnel



 

 

90 

 

members from each side of the fence are needed to jointly work together and adopt shared 

responsibility as much as possible. As this quote from R28 shows: “Developers are working with 

operations to make sure their concerns are addressed as part of CD pipeline (i.e., monitoring and 

health checks)”. The respondent R33 also confirmed this in the following quote: 

 “Speaking for a large organization containing dozens of individual cases, it is my 

experience, however, engineers from each side of the fence need to sit down and 

discuss what the pipeline actually looks like, what it should look like, and what their 

respective roles in that pipeline are/should be”.  

Empowering the culture of shared responsibility is crucial to achieve CD, as shown in this 

example given by R88  

“The team as a whole is responsible for the quality of the application, everybody does 

testing, and everybody solves operations problems”.  

It is argued by the participants that this is a success of a team as a whole, any failure impacts each 

tier exponentially in terms of cost; hence, the aim is to minimize the failures, particularly before 

deployment process. 

Several survey respondents explained that the overhead of collaboration was sustainably reduced 

in their organizations by incorporating testing as an integral part of the development team 

instead of testers just being as assessors. For example, R79 pointed out that 

 “Many testers were trained to be developers and have become valuable members of 

staff, better developers than those with years of experience”.  

As indicated by R68, a QA team should be paired with the development team to successfully 

adopt CD:  

“CD asks for maximum collaboration between different disciplines of the system, a 

QA has to pair a lot with developers to understand the delivery to give the signoff”. 

Collaboration and communications among team members can considerably increase by 

establishing cross-functional teams as explained by R85  

“Cross-functional teams became the norm and communication and collaboration 

increased ten-fold, as teams became more self-organizing”. 

Using collaboration tools more often: Several participants indicated that the use of 

communication and collaboration tools to drive collaborative works between teams has increased 

since CD adoption (e.g., “Communication over Slack increased” R84). Several participants 

indicated that using common tools and processes across teams in an organization decreases the 

overhead of collaboration and communication. This enables teams to have cross-collaboration to 

refine work prior to releasing applications to customers or production environments. A program 

manager described this vividly: 

“Information is being shared in many ways across them [Dev and Ops] and sharing 

the same Wiki for example in terms of they both get notified when changes are made 

to documents on the Wiki, using the same JIRA system” P7.  

Increased transparency and awareness: During the interviews, we found that the lack of 

suitable awareness on the status of the project (e.g., build status, release status) among team 

members can be a bottleneck for collaborative work and significantly hinders the CD success. To 

better understand this challenge, we asked the survey respondents to rate the severity of this 

challenge through a five-point Likert-scale question.  



 

 

91 

 

 

Figure 5.6 Statement S2: How important is “lack of suitable awareness on the status of the project among 
team members” in adopting CD 

As shown in Figure 5.6, 55.9% of the survey participants voted the statement S2 as very important 

or important. While only 12 out of 93 participants considered this challenge as unimportant or of 

little importance. Besides visibility of build results and test suites execution results, our survey 

participants emphasized that operations tasks and stuff should be visible and traceable to 

everyone in the team. For example, R67 explained that:  

“Operations teams have now multi-channel feedback to Dev team (Email, Call, 

Monitoring Dashboard, Alarms, and Reports)”.  

R43 elaborated further this in the following words: “The operations team has a daily meeting and a 

Kanban that other teams can go and interact with”. 

Empowering and engaging operations personnel: Our survey data shows that the overhead of 

collaboration and communication between development and operations teams reduced by 

shifting some of the operations’ responsibilities to development team (e.g., “Development and QA 

teams are together in a cross-functional team. We also both perform an Op's function, through 

monitoring and analyzing production behavior” R71). This situation gives more freedom and time 

to Ops team to directly and freely collaborate with other team members as stated by R56: 

 “Most of the operations works have reduced and they are able to help Dev and QA as 

they are having [more] time to help”.  

Giving more power to Ops personnel and engaging them in software development life cycle right 

from the beginning was referred by a couple of the survey participants as enablers for 

collaboration. For example, participant R14 pointed out:  

“Collaboration between these groups has been high as it's always my intention to 

involve these groups early in the project lifecycle as possible to ensure the correct 

parties have their say early in the solution”.  

A number of the participants mentioned that the interaction between Ops stakeholders and other 

team members previously used to happen only during production deployment. It has been 

observed that Ops team became more interactive before each deployment after gaining a voice in 

development and deployment decisions and ability to influence on design and formation of CDP 

pipeline. One of the interviewees described this perfectly: 

“I think what we tried to do is to let operations team not only be responsible for 

operations tasks, and they may also be injecting requirements into build cycle within 

the project. So they need to be empowered to have an equal voice on the team in order 

to represent their needs and the team is empowered and required to support those 

needs. This is unlike to work traditional model in the past, where the operations team 

was a separate team. In our model, the operations team was tightly integrated into 

the development, decisions and planning on the daily basis” P6. 

21 31 29 10 2

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Very important Important Moderately important Of little importance Unimportant



 

 

92 

 

5.4.3 Responsibilities (RQ5.3) 

We observed that adopting CD practices changes the responsibilities of some team members. 

Rather sometimes there are more responsibilities that require the acquisition of new skills to align 

themselves with the spirit of CD practices. For example, P9 highlighted this change as the follows: 

“So, the real responsibility of deployment moved from these different departments to 

the development team. So, development teams become more and more a DevOps 

team. That’s what we tried to do it step by step. So, for example, we also tried to 

integrate database persons in the team; all the database changes are now performed 

by Dev team” P9.  

This means by adopting CD every function of an organization might be touched, not just 

development. We were interested in understanding the changes brought about by the adoption of 

CD in the daily work routine of team members. According to data from statement S3 in Figure 5.7, 

56.9% of the survey participants indicated that their responsibilities have changed somewhat, 

much, or very much.  However, of the 23 (24.7%) participants that responded to this statement as 

not at all, more than 60% introduced themselves as consultant or mentioned that their 

responsibilities have not changed because when they joined their current organizations, CD had 

already been implemented (e.g., “No [change], when I joined CD was already adopted” R89). 

 

Figure 5.7 Statement S3: My responsibility has changed after our organization adopted CD practices 

Through a follow-up question, we asked them to explain how their responsibilities have changed 

(e.g., what new skills they require for practicing CD) (See Figure 5.8). 

 

Figure 5.8 Three high-level changes in team members responsibilities for practicing CD 

Expand skill-set: Interestingly most of the respondents indicated that they have to constantly 

learn best practices and new tools for reliable release (e.g., “[working in CD context] requires 

familiarity with cloud deployment tools” R24 or “focus on tools of CI and CD” R67). In our survey, 

we perceived that the development team needs to significantly develop their operational skills as 

well. As the participant R76 stated that 

23 17 20 22 11

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Not at all A little Somewhat Much Very much

High-level changes in 
responsibilities

Expanding skill-set
Adopt new solutions aligned 

with CD
Prioritize tasks



 

 

93 

 

 “Coming from a development side, I had to develop some "ops" skills. When your 

commit goes automatically to production, you have to care about security, on-call, 

and performance of your application”.  

One of the operational skills that mostly mentioned by the respondents was monitoring and 

logging skills. Working in CD context necessitates developing monitoring skills and spending 

more time on monitoring to triage and quickly respond to production incidents. As stated by two 

surveyed participants: 

 “Ensuring the product stays deployment-ready all the time. Each check-in and 

change gets monitored” R20. 

“I have to be more watchful on the deliverables, more stress is on test automation” 

R23.  

Scripting and automation skills were another skills that were referred by several survey 

participants (e.g., “Scripting, deploying, automate everything instead of programming only” R58). 

We found that CD seeks new bureaucracies to access and manage production environments (e.g., 

“Infrastructure and Platform now treated as code [in CD context] and environments defined at last 

minute” R45). This helped them to reduce security problems, avoid downtime in the production 

environment and better follow ITIL (i.e., Information Technology Infrastructure Library) in the 

transition towards CD practices. In addition, for some of the respondents adopting CD means to 

understand the whole stack of the application: database, backend, front-end, OS, and build. One 

of them stated this in these words: “Skillset required has expanded to more of complete DevOps 

workflow” R65. This helped them to further and better be involved in bug fixing (e.g., “More in-

depth knowledge of the entire stack - to debug when something fails” R38). 

Adopt new solutions aligned with CD: The findings from the interviews suggest that CD 

expands and changes the role of architect (e.g., “You know in terms of overall architecture [for CD], 

it is not just to know about architecting actual product, it is about architecting the whole picture” 

P7) [134]. Our survey results were aligned with this finding; the role and responsibilities of 

software architects have significantly changed in CD context as only 6 out of 39 architects shared 

that their responsibility did not change at all. Architects are expected to define and design 

modern architectures that work with CD process of their organizations (i.e., CD-driven 

architectures). As explained by R68 

 “As an architect, I had to rethink on how we design the systems for continuous 

delivery”.  

Another participant validated this change through this quote:  

“I have taken on completely new roles; leading architecture work to define internal 

services to enable these practices [CD practices]” R33.  

Understanding and applying microservices architectural style and designing for different 

deployment models (e.g., Blue-Green deployment) were two main skills and changes reported by 

the architects to better support CD. 

Prioritize tasks: CD greatly helps some team members to concentrate on more valuable tasks 

(e.g., “[CD] allows me to focus more on solving business problems instead of release coordination 

and ceremony” R6). We also found that building high-quality applications to be deployed 

frequently and reliably may force team members to spend more time for standardizing their 

solutions and also improving confidence in the code. This is mainly achieved by performing 



 

 

94 

 

excessive (automated) testing or shifting part of testing responsibilities to Dev team.  One 

participant stated that  

“My responsibilities have shifted from always being able to reproduce every version of 

code to a model where you always move forward. So I have to think about ways to 

give trust and confidence in code” R11.  

Another example came from participant R32, a software engineer, who explained that online 

functional testing and deployment model checking were two of his new responsibilities towards 

CD. Furthermore, the focus has shifted more toward automating tasks as much as possible, for 

example, more concentrating on test automation, creating automated test-cases, and less on 

tracking down build failures in order to better allocate resources. As explicitly explained by 

participant R48  

“My responsibilities are not to do "operations" anymore but to think how we are 

organized and find solutions to provide automation, security and quality for 

repeatable, and trustable deployments”. 

5.5 Discussion and Conclusions 

DevOps paradigm stresses higher coordination and collaboration between members involved in 

software delivery to release high-quality software faster and more reliably [28]. It is asserted that 

collaboration is one of the key dimensions of DevOps [135, 136] for supporting the changes in 

organization’ structure and culture as a result of adopting DevOps. In many organizations, 

Development (Dev) and Operations (Ops) teams form silos that are possibly located in separate 

department [136]. Whilst this structure was motivated by traditional methodologies (e.g., 

waterfall), it is not suitable for recent software development practices that simultaneously deal 

with agility, and maintaining software in different environments [135]. Iden et al. [137] highlight 

that effective cooperation between Dev and Ops teams has a great impact on the quality of the 

final product. Any shortcomings in the interaction of these members usually manifest in problems 

such as excluding IT operations from requirement specifications, poor communication and 

information flow, and lack of knowledge transfer [137].  

Lwakatare et al. [138] indicate that collaboration can be enforced through practices such as 

broadening skill-set, information sharing and shifting responsibilities among these members. 

Nevertheless, implementing these practices demand changes in team structures, required 

responsibilities, the work culture of organization and mindset of team members [136, 138]. Some 

researchers have identified best practices to implement these changes (e.g., team structure). For 

example, Humble and Molskey [135] suggest re-architecting software product in form of strategic 

services and assigning each service to a small cross-functional team who takes the full ownership 

of it during the whole development lifecycle. Our research has been motivated by the need of 

empirically studying and understanding organizational practices promoting collaboration 

principle of DevOps. Our empirical study’s findings have identified four key patterns for 

structuring Dev and Ops teams to effectively initiate CD practices.  

The popularity and applicability of these patterns vary given the organizational context (e.g., 

hierarchies and size). There is a higher tendency among large organizations to initiate CD 

practices while maintaining separate Dev and Ops units. These organizations have promoted 

collaboration among their Dev and Ops teams through different means (e.g., collocating members 

and employing facilitator team); yet they have not drastically changed the organizational 

structure for breaking the silos. We have observed that small organizations have more flexibility 

and tendency to employ different patterns aimed at merging these units in form of unified 



 

 

95 

 

multidisciplinary team(s). We have pointed out that this difference may be rooted in the 

challenges that organizations face in adopting CD ideally with unified multidisciplinary teams. 

We can enumerate some of these challenges: availability of highly skilled members to form the 

multidisciplinary team, the possibility of re-structuring units/ departments, (re) architect 

software product to independent units (e.g., services) for assigning to multidisciplinary teams and 

having a highly cooperative organizational culture for forming and running unified teams. We 

speculate that larger organizations may face more restrictions to change established practices and 

address these challenges. Future research can extend our findings and investigate the role of 

different contextual factors (e.g., global distribution of sites, business domain, and type of 

products) in adopting different team structures when moving to CD practices.  

Our study has revealed several organizational practices improving collaboration among teams 

and team members to effectively implement CD. Our findings in this regard are aligned with the 

previous research [28, 135, 136] while providing significantly additional insights. It is evident that 

sharing the responsibilities of software delivery with all members [135] could promote 

coordination and collaboration in a team. We observed the practice of rotating roles [136] 

between developers and operations staff, i.e., involving developers in testing and QAs in 

development tasks. Our findings have highlighted the significant role of visibility and awareness 

of a project status for improving collaboration in a team and successfully adopting CD. Humble 

and Farley [28] recommend using big, ubiquitous dashboards in each team room to visualize the 

status of builds and sharing feedback with everybody. Our participants also indicated raising 

awareness in teams by involving operations staff in daily meetings [136] and interacting with 

Kanban board. We have discussed that collaboration among team members not only can be 

improved through processes but also by provisioning appropriate tool support. Some studies (e.g., 

[135]) have demonstrated that while organizations extensively utilize toolchains for building 

deployment pipeline, there is less focus on technologies facilitating communication and 

knowledge sharing in teams. Future research should explore the possibilities for promoting 

communication and collaboration through tools.  

Implementing CD practices demands skill-set and knowledge that are either brand new (e.g., 

tools for automating CD process), or lie at the intersection of development and operations 

responsibilities. Similar to [136], our study reveals that adopting CD broadens the scope of 

responsibilities and skill-set. It is evident that these changes are particularly significant for 

developers who sometimes take larger shares in operations activities [136]. Whilst developers are 

expected to take an active part in deployment for successful adoption of CD, it should not 

demolish operations’ functions. Broadening responsibilities of developers to a larger extent may 

negatively impact their productivity in core tasks. Shifting extensive amount of operations’ 

responsibilities to developers could cause fear of losing jobs for Ops team and may negatively 

affect the success of the transition to CD. Organizations should extensively promote knowledge 

sharing among team members to complement areas of skill-set and collaboratively work towards 

a shared goal. 

 

 

 

 

 

 

 

 

 

 



 

 

96 

 

 

 

 

In Chapter 3, we concluded that one of the fundamental limitations to rapid and safe 

deployment is rooted in the architecture of a system. However, only little is known about 

the role of software architecture in Continuous Delivery and Deployment (CD) and how 

an application should be (re-) architected to enable and support CD. This chapter aims to 

fill this gap through a systematic and rigorous analysis of the main part of the mixed-

methods empirical study described in Chapter 2. We present a conceptual framework to 

support the process of (re-) architecting for CD. We provide evidence-based insights 

about practicing CD within monolithic systems and characterize the principle of “small 

and independent deployment units” as an alternative to the monoliths. Our framework 

supplements the architecting process in a CD context through introducing the quality 

attributes (e.g., resilience) that require more attention and demonstrating the strategies 

(e.g., prioritizing operations concerns) to design operations-friendly architectures. We 

discuss the key insights (e.g., monoliths and CD are not intrinsically oxymoronic) gained 

from our study and draw implications for research and practice.  

6.1 Introduction  

As we described in the previous chapters, given the increasing popularity of Continuous Delivery 

and Deployment practices (i.e., they are referred to CD practices in this chapter) [9], several 

efforts have been allocated to study and understand how organizations effectively adopt and 

implement CD practices. We discussed the importance of choosing appropriate tools and 

technologies to set up modern deployment pipelines to improve the software delivery cycle in 

Chapter 3 [1, 14, 27]. Along with other research [11], Chapter 5 argues that the highly complex and 

challenging nature of CD practices require changes in a team’s structures, mindset, and skill set to 

gain the maximum benefits from these practices. As described in Chapter 3, the other area of 

interest in CD research is to support (semi-) automated continuous testing and increasing 

awareness and transparency in the CD pipeline [1]. 

On the other hand, it has recently been claimed that the fundamental limitations to adopting CD 

practices are deeply ingrained in the architecture of a system and these practices may bring 

Architectural Impact of Continuous Delivery 

and Deployment: Practitioners’ Perspectives  

Chapter 6 

Related publications:  

This chapter is based on ESEM paper, “The Intersection of Continuous Deployment and 
Architecting Process: Practitioners’ Perspectives” [2] and EMSE paper (minor revision), “An 
Empirical Study of Architecting for Continuous Delivery and Deployment [5]. 



 

 

97 

 

substantial architectural implications [1, 7, 9, 33]. Whilst the industrial community through white 

papers and practitioners’ blogs has investigated the role of software architecture in CD adoption 

[9, 37, 39], there is little empirical effort to study how software architecture is being impacted by 

or is impacting CD practices [38, 40, 139]. This is evident in the recently published systematic 

reviews on CD [1, 33, 34], in which a new line of research has been called to explore how an 

application should be (re-) architected for CD. Furthermore, to succeed in the DevOps/CD 

movement, which emphasizes on treating operations teams and operational aspects as first-class 

entities in the software development process, modern architectures should deal with both design 

and runtime considerations (e.g., predictive monitoring) [7, 140-143]. For example, software 

architecture in a CD context should ensure the desired level of quality attributes (e.g., 

deployability), and reduce the feedback cycle time from operations to development [75]. We 

assert that an appropriate software architecture (SA) is required to maximize the potential 

benefits of CD practices. To characterize CD-driven architectures, this chapter analyzes the main 

part of the mixed-methods empirical study described in Chapter 2. This chapter is guided by the 

following research question: 

 RQ6.1 How should an application be (re-) architected to enable and support continuous 

delivery and deployment? 

Our results suggest monoliths and CD are not intrinsically oxymoronic. However, adopting CD in 

this class of systems is more difficult due to the hurdles that they present in terms of team 

autonomy, fast and quick feedback, enabling automation (e.g., test automation) and scalable 

deployment. To that end, the principle of “small and independent deployment units” is used as an 

alternative to the monoliths by some participants’ organizations. We find that autonomy in terms 

of deployability, modifiability, testability, scalability, and isolation of business domain are the main 

characteristics of this principle. With that information, we intend to support organizations to 

move from a monolith to “small and independent deployment units”. We also discuss quality 

attributes including deployability, modifiability, testability, loggability, monitorability, and 

resilience, which require more attention when designing an application in a CD context. We 

provide concrete examples of these quality attributes in action and discuss their role for CD 

success. Finally, we demonstrate three strategies (e.g., prioritizing operations concerns) suggested 

by our participants to design operations-friendly architectures. This chapter makes the following 

contributions: 

(i) One of the largest empirical study, with 100+ experts, investigating the state of the practice of 

architecture side of CD; 

(ii) A better understanding of the characteristics of CD-driven architectures; 

(iii) A catalogue of 23 empirically-justified findings that can be used to help organizations and 

practitioners to adopt CD and to guide them in creating CD-driven architectures; 

(iv) A conceptual framework to support the process of (re-) architecting for CD; 

(v) Concrete and actionable recommendations for both practice and research. 

Chapter organization: Section 6.2 summarizes prior related work. Section 6.3 presents our 

research method. We present the current state of CD practices in the participants’ organization in 

Section 6.4. The quantitative and qualitative results are described in Section 6.5. Our discussion 

and reflection on the findings are presented in Section 6.6. 



 

 

98 

 

6.2 Related Work 

The related work is divided into the general literature on CD practices and specific literature on 
the role of SA in CD adoption. 

6.2.1 General Literature on CD 

Primary Studies on CD: Transition to CD practices is a nontrivial process and necessitates 

technical, cultural, process and tooling changes in organizations to support the highly complex 

and challenging nature of these practices. Adams and McIntosh [98] characterize a modern 

release engineering pipeline by defining six major phases (e.g., infrastructure-as-code), which can 

help to ease the adoption of modern release practices (e.g., CD practices). The study [98] argues 

that whilst the industry has started widely implementing these practices, the empirical evaluation 

of these practices is in the nascent phase. A number of studies have examined the challenges, 

pitfalls, and changes that organizations may have experienced in CD adoption and/or adopted 

practices for this purpose. Claps et al. [23] studied the technical and social challenges of adopting 

continuous deployment in a single case software company. Based on the analysis of the data 

gathered from 20 interviews with software practitioners in the case company, they identified 20 

challenges such as team experience, team coordination, continuous integration, infrastructure, 

and partner plugins. They reported on the strategies (e.g., rigorous testing for databases) adopted 

by the case company to alleviate the challenges. The findings of this study reveal that adopting 

continuous deployment necessitates changing team responsibilities, greater team coordination 

and involves several risks.  

Savor et al. [22] present an experience report of implementing continuous deployment at 

Facebook and OANDA. They reveal that despite the tremendous increase in the number of team 

members and the complexity of code size over six years, continuous deployment did not 

negatively affect the team productivity (i.e., lines of added or modified code deployed to 

production per developer) and software quality (i.e., number of production failures). 

Furthermore, the study distills some issues such as management support and extra effort for 

understanding updates that an organization may encounter during the journey towards 

continuous deployment adoption. Two other studies [11, 14] report the benefits that CD practices 

provide for software development organizations including reduced deployment risks, lower 

development and deployment costs, and faster user feedback. A number of obstacles and 

challenges (e.g., resistance to change, customer preference, and domain constraints) to CD are 

also reported in [11, 14], which are in line with the challenges reported by Claps [23]. Apart from 

the challenges reported in [11, 14, 23], the stage-gate process is also a roadblock to continuous 

delivery success [24]. A stage-gate process has several quality gates to ensure the quality of new 

releases before entering the next stage. Laukkanen et al. [24] indicate that tight schedules, process 

overheads and multiple branches, which are associated with a stage-gate process, make it almost 

impossible to adopt the continuous delivery practice in a stage-gate managed organization.  

Literature Reviews on CD: Recently, there have been several reviews published on CD practices 

[1, 33, 34] and rapid release [83]. Mäntylä et al. [83] conducted an SLR aimed at identifying the 

benefits (e.g., customer satisfaction), enablers (e.g., tools for automatic deployment) and 

challenges (e.g., time pressure) of rapid release (including CI and CD). Based on 24 primary 

studies, the review concludes that the rapid release is a popular practice in the industry; however, 

there is a need for empirical studies to prove the claimed advantages and disadvantages of rapid 

release. Three recently published reviews [1, 33, 34] on CD practices mostly focused on the issues 

that hinder adopting CD, along with solutions to address those issues. Some of the major 



 

 

99 

 

stumbling blocks to CD are rooted in the system design, production environment, and testing 

practices. Furthermore, it has been revealed that the solutions to testing and system design 

problems in CD are rare. In Chapter 3 [1], we also defined the critical factors that a given 

organization needs to consider carefully along the CD adoption path, including testing (effort and 

time), team awareness and transparency, good design principles, customer satisfaction, highly 

skilled and motivated teams, application domains, and appropriate infrastructure(s). Rodríguez et 

al. [34] identify 10 factors such as fast and frequent release, continuous testing and quality 

assurance, and the configuration of deployment environments, which together characterize CD 

practices. The configuration management process in CD refers to storing, tracking, querying, and 

modifying all artifacts relevant to a project (e.g., application) and the relationships between them 

in a fully automated fashion [28]. 

6.2.2 Architecting for CD Practices 

The software architecting process aims at designing, documenting, evaluating, and evolving 

software architecture [144]. Recently, Software Architecture (SA) research has been experiencing a 

paradigm shift from describing SA with quality attributes and the constraints of context (i.e., the 

context and requirement aspect) and structuring it as components, connectors and views (i.e., the 

structure aspect) to focusing on how stakeholders (e.g., the architect) make architectural 

decisions and reason about chosen structures and decisions (i.e., the decision aspect) [142, 145]. 

Whilst current research and practice mostly consider architecting as a decision-making process 

[146], it is been recently argued that SA in the new digitalization movements (e.g., DevOps) 

should cover the realization aspect as well [142]. The realization aspect of SA design is expected to 

deal with operational considerations such as automated deployment, monitoring, and operational 

concerns. However, the SA research community has provided few guidelines and systematic 

solutions for this aspect of software architecture [143]. Accordingly, our findings in this chapter 

are placed in all four aspects of software architecture in the context of CD. 

Nonetheless, whilst works indicate that an unsuitable architecture would be a major barrier to CD 

transition [1, 24, 33], there has been little empirical research on the role of SA as a contributing 

factor when adopting CD practices. Some initial efforts on this topic have been reported in [38, 

40, 75, 147, 148]. Mårtensson et al. [148] have conducted a case study to explore the behavior of 

developers in CI practice in two case organizations. They identify 12 enabling factors (e.g., “work 

breakdown” and “test before commit”) impacting the capability of the developers to deliver 

changes to the mainline. The study [148] argues that some of these factors (e.g., work breakdown) 

can be limited by the architecture of a system. Chen [38] reports on the experience of architecting 

25 software applications for continuous delivery. The study indicates that continuous delivery 

creates new challenges for architecting software applications. According to Chen, continuous 

delivery heavily influences a set of Architecturally Significant Requirements (ASRs), such as 

deployability, security, modifiability, and monitorability. It is asserted that the maximum benefits 

of continuous delivery are achieved by effectively satisfying the aforementioned quality attributes. 

Bellomo et al. [75] studied three projects involving continuous integration and delivery to 

understand deployability goals of those projects. The study [75] reveals that most of the decisions 

made to achieve the desired state of deployment (i.e., the deployability quality attribute) were 

related to the architecture of the systems in those projects. Based on the study’s findings, the 

authors formed a deployability tactics tree.  

Schermann et al. [40] conducted an empirical study to identify the current practices and 

principles in the software industry to enable CD practices. They observed that A/B test and dark 

launches as practices of CD are not often applied in industry and the feature toggles technique 



 

 

100 

 

may bring unwanted complexity. Recently, a few of academic and white papers have discussed 

microservices architecture as a first and promising architectural style for CD practices [111, 147, 

149]. Microservices architecture aims to design software applications as a set of independently 

deployable services [111, 150]. Balalaie et al. [147] report an experience of migrating a monolith to a 

microservices architecture. Apart from changing team structures (e.g., forming small cross-

functional teams), they applied a number of migration patterns (e.g., change code dependency to 

service call) to decompose the monolithic system into microservices [147]. Furthermore, the 

migration process included introducing new supporting components and using containerization 

to support CD practices. 

6.3 Research Method 

As described in Chapter 2, a mixed-methods empirical study was adopted to answer the research 

question. The findings of this chapter come from 21 interviews and a survey of 91 practitioners. 

6.3.1 Interviews 

The interview study for this chapter involved 26 open-ended questions. After asking demographic 

questions (e.g., role and experience years), the interviewees were asked to share the challenges, 

pitfalls, and the changes that CD practices may have brought to the architecting process, and the 

architectural principles and practices that they used to address them. Then, we asked them to 

share how they took into consideration the operations teams and their concerns in their 

respective development processes. At the end of each interview, we asked the interviewees to 

share any other comments and potential issues regarding the questions. We initiated the analysis 

by creating three top-level nodes in NVivo: (1) the challenges and pitfalls that the interviewees 

faced at the architecture level in transition to CD; (2) the architectural principles, solutions, and 

practices they employed to better support CD; and (3) the strategies and practices that the 

interviewees’ organizations employed to treat operations team and their concerns as first-class 

entities. 

6.3.2 Survey 

Like the interview guide, the survey targeted the questions about the participants’ background, 

the impact of CD on the architecting process, and operational aspects. Apart from demographic 

questions, the survey questions used for this chapter included five-point Likert-scale (25 

questions), multiple-choice (1 question), single-choice (2 questions) and open-ended (2 

questions).  

6.4 Practicing Continuous Delivery and Deployment 

We asked both the interviewees and the survey participants to indicate how often, on overage, the 

applications in their respective or client organizations are in the deployable state (i.e., 

implementing continuous delivery) and how often they deploy the applications to production 

(i.e., implementing continuous deployment). These questions were designed, to a large extent, to 

determine the maturity of implementing continuous delivery and deployment practices (i.e., how 

an organization adopts and implements continuous delivery and deployment) [11].  

It is clear from Figure 6.1 that 57.1% of the interviewees (12) and 54.9% of the survey participants 

(50) indicated that on average the applications in their respective or client organizations were in a 



 

 

101 

 

releasable state multiple times a day or once a day. This number for continuous deployment 

practice was lower, as 7 interviewees (33.3%) and 34 survey respondents (37.3%) stated that they 

automatically deploy their applications multiple times a day or once a day to production. These 

results indicate that our findings came from reliable sources as the participants’ organizations 

successfully implemented CD practices. Three interviewees (i.e., P11, P12, and P19) had no idea 

about how often the application changes were in the deployable state (i.e., shown as N/A in 

Figure 6.1). Interestingly, 6 participants indicating the changes were production-ready at least a 

few times a month had actual production deployment a few times a year. In Chapter 4, we argued 

that the reason for this may stem from factors such as domain constraints and quality concerns 

[3]. 

 
Figure 6.1 How continuous delivery and deployment are implemented in the interviewees’ (left) and the 

surveyed participants’ (right) organizations 

6.5 Findings 

In the following, we present a conceptual framework emerged from our findings to support (re-) 

architecting a system for CD (See Figure 6.2). We briefly introduce the framework here and 

provide details in the corresponding sections. The framework consists of five main parts: 

Monoliths, Migration, Small and Independent Deployment Units, Quality Attributes, and 

Operational Aspects. Monoliths part is shown on the top left side of Figure 6.2, which reflects the 

possibility of practicing CD within monoliths with potential challenges that may hinder CD 

adoption in this class of systems (See Section 6.5.1). Since monolithic architecture is predominant 

in software industries [31], there may be organizations that want to achieve CD with their 

monoliths. To this end, they need to augment/improve the architecture of their systems by 

applying the practices and strategies presented in Quality Attributes and Operational Aspects 

parts. Quality Attributes and Operational Aspects have the main goal of creating a CD-driven 

architecture apart from the chosen architecture style. It is worth mentioning that this is mainly 

because the practices and strategies in these two parts were often reported by our participants as 

prerequisites to, or supportive of CD-driven architectures. We show this fact in the framework by 

indicating Operational Aspects can be injected into the architecting process in the context of CD 

and Quality Attributes serves as input to both Monoliths and Small and Independent Deployment 

Units. Operational Aspects (left bottom side of Figure 6.2) provide the strategies to design 

operations-friendly architectures (See Section 6.5.4). At the bottom of Figure 6.2, we have the 

Quality Attributes that need to be carefully considered to design CD-driven architectures (See 

Section 6.5.3). We find that these quality attributes impact the architecture in the CD context in 

two dimensions: positive (+) and negative (-).  

11

1

4

2

0

3

3

4

1

10

2

1

Multiple times a day

Once a day

A few times a week

A few times a month

A few times a year

N/A

Measuring Continuous Deployment in Interview Study

Measuring Continuous Delivery in Interview Study

40 

10 

24 

16 

1 

21

13

28

25

4

Multiple times a day

Once a day

A few times a week

A few times a month

A few times a year

Measuring Continuous Deployment Survey Study

Measuring Continuous Delivery in Survey Study



 

 

102 

 

The challenging nature of the monoliths may compel organizations to move from monolithic 

systems with long development and deployment cycles to Small and Independent Deployment 

Units (top right side of Figure 6.2). The framework supports organizations in this journey by 

providing a list of reliable factors, shown as Migration in the middle of Figure 6.2. They can be 

used to characterize Small and Independent Deployment Units (See Section 6.5.2.1). The migration 

journey results in vertical layering or microservices (See Section 6.5.2.2). 

 
Figure 6.2 A conceptual framework of the findings showing how to (re-) architect for CD 

Migration 

Autonomy in terms of modifiability 

Autonomy in terms of deployability 

Autonomy in terms of testability 

Autonomy in terms of scalability 

Represent one business domain problem 

Low dependency  

Automation  

Team autonomy  

Less shared data  

1 

2 

3 

4 

8 

5 

6 

7 

9 

Highly cited 

Less cited 

Characteristics of “small and independent 
deployment units” 

DB DB 

Vertical Decomposition 

DB 

Microservice 

DB 

Microservice 

DB 

Microservice 

DB 

Microservice 

DB 

Microservice 

DB 

Microservice 

Microservices  

Small and Independent 
Deployment Units 

DB 

C1 
C2 

M1 

D1 D2 

Various 
Domains 

Modules, 
Components 

Monoliths 

Complex dependency  

Impeding teams ownerships  

Slow and indirect feedback 

Restricting automation  

Monolith’s Challenges in CD 

To be considered when design 

+ Positively affect - Negatively affect Quality Attributes  Impacts on 

How to (re-) architect for CD 

Operational Aspects 

Production 
Environments 

Study production 
environments to be aware 
of its constraints  

Operations 
Stakeholders 

Early and Continuous 
Engagement of Operations 
Staff in Decision-making 

Operations 
Requirements 

Prioritizing Operations 
Concerns 
Leveraging Logs and Metric 
Data for Operational Tasks 

D
ep

lo
yab

ility 
It can

 b
e ach

ieved
 w

ith
o

u
t 

m
ajo

r trad
e-o

ff 

+ 

M
o

stly im
p

acts o
n

 h
igh

-level 
d

esign 

L
o

ggab
ility/ 

M
o

n
ito

rab
ility 

+ 

B
u

ild
 m

etrics an
d

 lo
g d

ata in
to

 
so

ftw
are 

U
se extern

al to
o

ls 

T
estab

ility 

+ 

M
ak

in
g co

d
e m

o
re testab

le 

Im
p

ro
ve test q

u
ality 

M
o

d
ifiab

ility 

+ 

H
id

e u
n

fin
ish

ed
 featu

re at 

ru
n

tim
e 

S
tateless arch

itectu
re 

D
elay d

ecisio
n

s 

Id
en

tify au
to

n
o

m
o

u
s b

u
sin

ess 
cap

ab
ilities 

R
esilien

ce 

+ 

A
 system

 is sp
lit in

to
 u

n
its th

at 
sh

o
u

ld
 fail in

d
ep

en
d

en
tly 

R
eu

sab
ility 

- 

L
o

sin
g testab

ility 

In
creasin

g in
ter-team

 

d
ep

en
d

en
cies  



 

 

103 

 

6.5.1 Monoliths and CD 

In its non-technical definition, a monolith is defined as “a large block of stone”. Exploring 

literature and practitioners’ blogs shows that there is no common understanding and 

interpretation of the term monolith as different types of monoliths may be created during 

software development lifecycle: for example, monolithic applications, monolithic builds and 

monolithic releases [151]. In our study, we define a monolith as a single executable artifact that 

contains various domains, layers, and many components, modules, and libraries, in which all the 

functionality is managed and packaged in one deployable unit (See Figure 6.2) [152-154]. Our 

interview study demonstrates that monolithic architectures are seen as a major problem in 

organizations during CD adoption journey. The following is a representative quotation about the 

negative impressions given of the monoliths:  

“I do not know [if] they [the architects] are aware of that; they create kind of 

monolithic applications and the monolithic application contains large functional 

domains [that] would be hard to use in a large-scale organization if you want to have 

continuous delivery” P10.  

Whilst the monolithic architecture, as a barrier to CD, was one of the most commonly occurring 

codes in the interviews (i.e., indicated by 15 interviewees, of which 6 of them were in the role of 

architect), we also found empirical the evidence in the interviews that CD can be implemented in 

the monoliths. Particularly, when there is a loosely coupled and modular architecture with clearly 

defined interfaces and one single team working on. As an example, we have:  

“I have seen [examples of adopting] CD in monolithic applications, when they 

[organizations] don’t split them and they go very fast because [there is] still a single 

team, they can be extremely fast, high-quality. The software is modular, and it is not 

split, and it works well for them” P14. 

Furthermore, while conducting the survey, we received comments from the survey respondents 

that they had been successful in adopting CD within monolithic applications (e.g., “A monolithic 

service can use CD” R44 and “Microservices are not required nor is breaking up a monolith [for CD]” 

R22). All this motivated us to add a new statement to the survey: “It is possible to practice CD 

successfully in monolithic applications”. Figure 6.3 shows that 59.5% (25 out of 42) of the survey 

respondents answered this question as agree or strongly agree. Only 21.4% responded strongly 

disagree or disagree and others (i.e., 19%) took a neutral position in this regard (See statement S1 

in Figure 6.3). It is interesting to note that among 25 respondents who believed in the possibility 

of implementing CD within monoliths, only 8 were in the role of architect. 6 architects (strongly) 

disagreed with the statement S1 and 2 adopted a neutral position. Team leads, consultants, and 

developers were the roles that were the most positive about monoliths. We assert that this finding 

is not necessarily in conflict with the interviews’ findings as we did not conclude that it is 

impossible to practice CD within monoliths, but it seems that it would be much harder and more 

complicated to achieve CD within monolithic applications (e.g., “Any component or service can 

adopt CD, a larger one [has] a slower cycle. Components without tests cannot adopt CD” R85).  

In line with the work by Schermann et al. [40], our interview study shows that once the size of an 

application grows (e.g., by expanding its functionality) and the number of teams increases, the 

monoliths significantly impeded achieving scalable continuous deployment (e.g., “The main 

challenge is the weight of your architecture, it could be the reason why you can’t move to CD” P15  

and “We had to change the structure of our business as we had a large monolithic codebase and it 

was hard to work on when you have 50 or 100 people working on the same codebase” P14). This is 

mainly because the monoliths may slow down the deployment process and a small change may 



 

 

104 

 

necessitate rebuilding, retesting and redeploying the entire application [155, 156]. The next 

subsection lists the main categories of challenges about monoliths, which together hinder 

achieving CD. 

Figure 6.3 Survey responses to the statement on the possibility of practicing CD within the monoliths (n=42) 

6.5.1.1 Why it is difficult to practice CD within the monoliths  

 

Figure 6.4 The survey respondents indicated the most important challenges in architecting for CD. The 
inflexibility of the organizational structure with CD is the most critical barrier for implementing CD. 

C1. Dependency (Tightly Coupled): As the size and complexity of a monolith grows, the 

dependencies across the system will be so strong that it will become difficult to change different 

parts of the monolithic system independently. This impedes deploying software on a continuous 

basis as there is a need to thoroughly analyze and maintain all the dependencies in the 

deployment process [157]. One interviewee described this point vividly,  

“When you say we have software component X and I would like to deploy that to the 

customer; do I need to deploy other software components as well; do I really need to 

or not? These are the design issues that we really face” P9.  

External dependencies with other applications were another roadblock to frequent deployment 

(i.e., also confirmed by 24.2% of the survey respondents). Whilst an application might always be 

at releasable state, deploying a modified functionality within that application on a continuous 

basis may also necessitate the deployment of all dependencies (e.g., dependent applications). 

Therefore, software organizations need to refactor other legacy applications and ensure that there 

is no integration problem in the deployment process. As explained by an architect,  

“You always get integration challenges [in the deployment process] because you’re 

mixing new code, new systems with old systems; you still rely on old systems to do 

something” P13. 

60% 19% 21%S1. Possibility of practicing CD
in "monolithic applications"

Strongly agree Agree Neutral Disagree Strongly disagree

55%

69%

70%

49%

67%

26%

19%

20%

27%

15%

19%

12%

10%

23%

18%

S6. Difficulty of identifying autonomous
business capability

S5. Inflexibility of the organization’s 
structure with CD

S4. Huge dependencies and coordination
among team members

S3. Difficulty of breaking down a single-
monolithic database

S2. Difficulty of splitting a (monolithic)
application

Very important Important Moderately important Of little importance Unimportant



 

 

105 

 

Our study identifies challenges regarding (monolithic) databases in the context of CD. The 

interviewees’ organizations often faced difficulties deploying monolithic databases continuously 

as modifying any functionality in an application demands changing and incorporating database 

schema as well. Therefore, they gradually become an operational bottleneck and an undeployable 

unit. The interviewees expressed dissatisfaction with monolithic databases, for example,  

“One of the traditional [approaches] is that for big applications, they [organization] 

used one database. Then you know for every piece of functionality you change, you 

also need to incorporate database changes, you need to test the database. These are a 

source of a single point of [failure] for these big organizations, so they cannot 

continuously deploy the database. So, they need to refactor [it] and do changes [in] 

the software architecture” P9. 

Our combined findings indicate that software organizations often need to split their existing 

monoliths into small deployable parts that can be maintained and deployed independently for 

supporting CD. However, the interviewees highlighted the difficulties of breaking down a 

monolith (at application and database level) into smaller units. Through the survey, we asked the 

participants the extent to which they understand this issue as a challenge. As can be seen in 

Figure 6.4, 82.4% of the respondents considered the difficulty of splitting a (monolithic) 

application into independently deployable and autonomous components/services (i.e., statement 

S2) as very important, important or moderately important challenge. Furthermore, the difficulty of 

splitting a single-monolithic database (i.e., statement S3) was also widely recognized by the 

participants, as only 23% of the survey respondents considered it as unimportant or of little 

importance. 

C2. Team: According to Conway’s law, the architecture of a system mirrors the communication 

structure of the organization that designed it [36]. Our analysis demonstrates that introducing CD 

is challenging in the organizations where multiple teams work on a monolithic application. We 

observed that cross-team dependencies could cause frictions in CD pipeline. While one team could 

have full control over its development process, run quality-driven builds and release its output 

constantly, they can still be dependent on the performance of other teams. Therefore, they can 

easily break the changes that other teams are working on. As P12 explained,  

“We had multiple teams working on the same [monolithic] codebase. We started 

noticing that it was really affecting our ability to deploy software [continuously], only 

because many teams were trying to push many things at the same time”.  

The interviewees also referred to tension between software and hardware teams as a challenge to 

truly practicing CD, as software teams sometimes rely on infrastructure readiness at production,  

“Integration issues were part of the deployment [process] and [we had to] deal with 

their [hardware team’s] backend systems. They had their [own] infrastructure, 

[which] was not ready; they had a serious quality cycle. So, we had to go through this 

[cycle], which caused additional preparation work. It was exhausting [for us] when 

we [as the development team] were going to the deployment cycle. So, it was a 

challenge to adopt DevOps” P5.  

Furthermore, the interviewees’ organizations that had large teams working on the same codebase 

experienced difficulties in coordinating among interdependent teams and planning before each 

release. As shown in statement S4 in Figure 6.4, 70.3% of the survey respondents ranked the 

challenge of team interdependencies and coordination effort when adopting CD as very important 

or important. CD may also require changes in organizational structures in order to align them 

with CD throughput [158]. When we asked the respondents how important the challenge of 



 

 

106 

 

“inflexibility of the organization’s structure with the spirit of CD practice” is, 69.2% of them ranked 

this as very important or important (See statement S5 in Figure 6.4) 

C3. Feedback: Difficulties in getting fast, direct, and optimum feedback on code and test results 

in the monolithic applications was another category of challenges. In most of the statements that 

shared with us, long build time, long-running tests, and size of changes in the monoliths were 

main causes of slow and indirect feedback. As P12 explained,  

“[In our monolithic architecture] we started noticing that the number of tests started 

loading up, the feedback cycle was becoming very slow. We arrived at a state where 

[we had] very little ownership of [things] like test failures. You would have taken like 

around 3 or 4 hours to get any feedback. You could see a lot of friction on the 

deployment pipeline itself”. 

C4. Automation: A key practice in CD is automation [28]. A few interviewees ‘experience 

suggested that the heavy-weight nature of monoliths can often be a challenge (e.g., extra effort is 

needed) to fully automate tests and deployment across different environments. For example, P15 

explained how this situation would result in a longer and slower CD pipeline and extreme 

difficulties to move to automation: 

“If your monolithic architecture is to be complex, it may be hard to move to 

continuous delivery because the more components you have, the harder it is to install 

them, to deploy them, the pipeline will be longer, and harder to automate that”. 

Key Findings 

Finding 1. Monoliths (application and database) are great sources of pains for CD success, as they are 

hurdles for having team autonomy, fast and quick feedback, enabling automation (e.g., test automation) 

and scalable deployment. 

Finding 2. Both architects and other roles are likely to believe that implementing CD in monoliths is difficult. 

Furthermore, among other roles (e.g., consultants), architects are more pessimistic about CD success within 

monoliths. 

Finding 3. Breaking down monoliths into smaller pieces brings more value and flexibility to CD adoption; 

however, the participants’ organizations experienced it as a challenging process. 

Finding 4. Implementing CD is a challenge where multiple teams are working on one monolithic application 

as they gradually become dependent and need to spend too much time to coordinate and plan the delivery 

process.  

Finding 5. The inflexibility of organizational structure with CD is the most critical barrier for implementing 

CD. 

 

6.5.2 Moving Beyond the Monoliths 

In the previous section, we discussed how practicing CD in large monolithic systems with 

multiple teams is not a straightforward approach, as it might have negative impacts on team 

autonomy, direct and quick feedback, and automation. In this section, we first characterize a key 

architectural principle adopted by the participants to address the reported monolith-related 

challenges and then investigate how the key principle is implemented in industry.  



 

 

107 

 

6.5.2.1 Characterization of an Architectural Principle: Small and 
Independent Deployment Units 

Our findings agree with the argument of Lewis and Fowler [150], that a key architectural principle 

employed by the participants’ organizations for successfully practicing CD is to design software-

intensive systems based upon “small and independent deployment units” (e.g., service, component, 

and database). By ‘architectural principle’, we mean the fundamental rules and approaches that 

serve as a guide to architects to govern and reason architecture designs [159]. P18 described that 

applying this principle enabled them to bring the small units into production independently, 

“We are moving to smaller services, where microservices to my mind are a less 

interesting aspect, but the services are much smaller than in the past and they will be 

deployed into their own server and they [are] managed [e.g., deployed] by one team”.  

As we described in Section 6.5.1, the participants’ organizations had challenges with splitting the 

monoliths into smaller chunks. That is why they usually perform this process incrementally. As an 

example, we have, 

“We started with a big monolith. To be honest, initially we simply split it into a 

number of smaller chunks; maybe like seven or eight. That already gives us more 

value [in the deployment process]. In the future we might split things further” P18. 

Gradually breaking down applications should avoid the difficulties of service granularity. P13 

shared that it is easier to initiate the decomposing process with few large services and 

incrementally decompose them to smaller, fine-grained units:  

“If you are trying to go from monolithic to something like service-based or 

microservices, don’t try to break it down into little tiny pieces first of all right away. 

You’ll get struggles at service level, structurally you have to look at how coupled your 

components are”. 

Nevertheless, the above principle leaves us with yet another question: what does it actually mean? 

To characterize this principle, we asked the interviewees a number of questions to elaborate on 

their perception from a small and independent deployment unit, which serves as the foundation 

for CD success. We found that the practitioners typically consider four main criteria to 

characterize small and independent units, and accordingly design applications or break down 

large components or monolithic applications for practicing CD. These criteria include autonomy 

in terms of deployability (e.g., “[The monolith is split into] those small components [that] can be 

deployed and reproduced more quickly so as to map smaller iterative deliverables” P5), scalability 

(e.g., “The majority [ of criteria in decomposing process] was [to have] components that are being 

very scalable, which means that whatever you design and whatever you develop must be scalable” 

P5), modifiability (e.g., “[The monolith is] split into components, so that changes are likely to 

influence just one component” P11), and testability (e.g., “It can be tested/ qualified by itself, and 

won't break product or require other services/components to be pushed” P19). Furthermore, some 

other criteria emerged from data that were only described by a few interviewees. To give an 

example, for one of the interviewees small meant the maximum amount of work required for 

coding and testing a single feature should not exceed a three-day effort for one person. 

We asked the survey respondents to rate these four top criteria (See statements S7-S10 in Figure 

6.5) with a 5-level Likert-scale. The results show that, in general, the respondents considered all 

the above-mentioned criteria for this purpose. As shown in Figure 6.5, for each of the statements 

fewer than 10 respondents disagreed or strongly disagreed. However, the statement S7 (i.e., “a 

component/service is small if it can be modified (changed) independently”) received the most 



 

 

108 

 

attention, and 78%, 76.9% and 68.1% of the survey respondents answered to statements S9, S8 

and S10 strongly agree or agree respectively.  

Figure 6.5 The main characteristics of the principle of “small and independent deployment units”; A few 
survey participants (less than 12%) disagree with the above-mentioned criteria. 

 

Through a mandatory open-ended question, we also asked the surveyed practitioners to share any 

other criteria or factors (i.e., those not covered by statements S7-S10) that need to be considered 

to characterize small and independent units for CD and also to decompose the monoliths for this 

purpose. Some of the respondents tried to elaborate what they had previously chosen in the 

Likert-scale questions (e.g., “It [the service] can be deployed/updated independently of any other 

service” R84, “Every feature (roughly mapping onto an Epic) should be small enough to be deployed 

independently” R31). The analysis of the open-ended question revealed five other criteria or factors 

as listed below, in order of their popularity (See Figure 6.6): 

 
Figure 6.6 The additional criteria/factors shared by the survey participants to characterize “small and 

independent deployment units” 

Representing only one business domain problem (23): Although a few interviewees indicated 

that monoliths need to be decomposed into smaller units, so they only cover and solve one 

business domain problem, this criterion was highly cited by the survey participants. For example, 

R88 explained, “A component [in a CD context] should implement a frontend and backend for one 

business concept”. We found that the definition of one domain problem varied significantly among 

the respondents. For some respondents, it means one function or one task (e.g., “[A small 

deployment unit in CD] should encapsulate one unit task end-to-end” R20), however, others 

believed that it can serve a logical set of functionalities for a line of business capability, e.g., “One 

[service] that solves one specific domain problem, not too small to be just a function, not bigger to 

68%

78%

77%

80%

20%

13%

13%

13%

12%

9%

10%

7%

S10. A component/service is small if it
can be "scaled independently"

S9. A component/service is small if it
can be "deployed independently"

S8. A component/service is small if it
can be "tested independently"

S7. A component/service is small if it
can be "modified independently"

Strongly agree Agree Neutral Disagree Strongly disagree

3

7

13

15

23

Less shared data

Team autonomy

Automation

Low dependency

Representing only one business domain problem



 

 

109 

 

try to solve different domains business” R43 and “It [the service] should manage one aspect or 

collection of features [within] a bounded context” R41.  

Low dependency (15): Some participants stated that the size of a component/service is not an 

important factor for them, but a component or service should have little dependency on other 

components/services, in particular during the deployment process: “[It is] less about size (e.g., 

lines of code), [but I think] more about loose coupling and clear implementation for component 

API's, such as RESTful interfaces“ R46. Respondent R91 emphasized that a service in a CD context 

needs to be decoupled from other services in such a way that the upgrade and downgrade of the 

service would have no impact on SLAs and ongoing transactions. This factor can be augmented by 

implementing a well-defined interface for each service or component (e.g., “[A component should 

be a] small code base, independent of all other services except via API calls” R72).  

Automation (13): Another factor that emerged from the responses was that a small and 

independent unit can be tested and released in an entirely automated fashion within a time-

boxed slot, in which it does not require to coordinate with external components/services: “It must 

be designed with the intention of being easily built and automatically tested and deployed” R53. The 

respondents shared that CD essentially requires components or services with fast build times and 

fast testing loop in order to have quick and direct feedback, e.g., “The service should be built and 

tested in less than a couple of minutes” R76. 

Team autonomy (7): We perceived that having team-scale autonomy strongly affects the size of 

a component and decisions during decomposition. The respondents shared that adopting CD 

practices for a component/service is easier if one team can comprehend, build, test and deploy it 

(e.g., “[A component should be] small enough for the owning team to comprehend it” R9). Another 

participant answered as “A team should be able to own a backlog of multiple deployable [items]” 

R30. 

Less shared data (3): A few participants also reported that having separate data storage per 

service or component (i.e., no common database) can help successfully implement CD. 

Respondent R61 stated that a service should have “no shared storage (with other services)”, while 

another respondent pointed out that “my definition isn't about the size, it's [about] the boundaries 

and responsibilities, including what data it owns versus what data it uses” R39. 

Key Findings 

Finding 6. The participants’ organizations are increasingly considering small and independent 

deployment units as a key architectural principle to provide them with more flexibility in a CD path and 

achieve frequent and reliable deployments. 

Finding 7. Autonomy in terms of deployability, modifiability, testability, scalability, and isolation of the 

business domain are the main factors to characterize the principle of “small and independent deployment 

units”, and they significantly drive decomposing strategies to safely and incrementally break down a 

monolith into smaller independent parts. 

6.5.2.2 How is the key principle implemented in the industry? 

To embrace the principle of “small and independent deployment units”, the participants’ 

organizations usually adopted two approaches: vertical layering and microservices (See Figure 

6.2). Whilst these approaches might be used in many different scenarios to reach different goals 

(e.g., scalability), we examine them from the perspective of CD practices (i.e., promoting delivery 

speed). We note that vertical layering and microservices share many common characteristics. As 

shown in Figure 6.2, both representing independent deployment units, but the main difference 



 

 

110 

 

between them is the level of granularity. Vertical layering is more coarse-grained than 

microservice [153, 160]. Verticals are autonomous systems that are larger than microservices. 

Verticals are mainly used to reduce operations’ complexity, as there would be fewer number of 

deployment units. Another notable difference is that vertical layering allows sharing of some 

assets such as databases and infrastructures, as exemplified by P17,  

“Every vertical slice would have talked to the same databases in the same way unless 

we explicitly decided that we didn't want one service talking to a specific backend. It 

was a hybrid model that worked very well for us”. 

Vertical layering (decomposition) was a significant approach attempting to embrace the 

principle of “small and independent deployment units”. Through this approach, a software 

application or a large component is decomposed into vertical layers (i.e., independent, 

autonomous systems) rather than horizontal layers; accordingly one team (ideally) would be 

responsible for one layer or component during the full development lifecycle (e.g., “We are 

changing the paradigm of a more horizontal layered architecture to a more vertical one and 

isolating architectures, as it will help us to get this performance [deployability]” P9) [153]. Vertical 

layering also decreases interdependency among teams as a team minimally depends on what 

other teams are working on or are responsible for. Furthermore, this approach hampers the ripple 

effects resulting from any changes. Nevertheless, it was found that adopting this approach was 

associated with challenges in the formation of one integrated development team comprising all 

required skills (e.g., operations skills) as there is a tendency in software organizations to team up 

those human resources with similar skill sets. Here are just a few of the examples indicating the 

benefits of this approach for CD:  

“We had separated layers in the architecture. If there are three teams responsible for 

one of these layers, all teams need to work together to bring a new piece of functional 

alive [in production]. To make it better [the delivery process], we swapped the 

organization and now each team is focused on one functional domain and works in 

its own layer. So, they are working in large isolation and we minimize the 

dependencies” P10. 

“We also changed the teams to align them to one or two (autonomous) subsystems. 

It was a big change because before that the teams worked on any part of the system. 

So that contributed to the monolith. It’s not perfect but we definitely get some 

benefits from splitting down the domain lines and restricting development of that 

part to just one team as they can focus on it and have ownership around that” P18. 

A microservices architecture style was adopted by some interviewees’ organizations as a 

practical architectural style that suits CD [7, 161]. Our interviews revealed that some of the 

organizations have been able to successfully adopt the microservices style to smooth their CD 

adoption journey. Nevertheless, it was evident that implementing this architectural style was also 

associated with challenges that could negatively impact on the deployment capability of 

organizations. As mentioned by P15,  

“So microservices solve some of the issues but also introduce some other issues, 

especially the orchestration and the configuration of that. Microservices can bring 

some overhead for operations team as well… if you split too much, you have too many 

microservices. The operational aspects [of] managing all those services become more 

complex because you have to make all the configuration options available, you have 

to orchestrate all those services”.  



 

 

111 

 

Due to these difficulties, some of the participants’ organizations either avoided implementing 

microservices or did not experience promising results from this architectural style. One of the 

frequently raised issues regarding microservices was the operational overhead that they introduce 

(e.g., for monitoring and administrating services), which require highly skilled operations teams 

for implementation. That is why P12, a technical lead and architect, opted to break a monolith 

codebase into smaller components, each with its own repository. Whilst this decision gives more 

flexibility to the teams working on the codebase, as the teams were not mature enough to handle 

multiple runtime services, they decided to have one deployment unit rather than several runtime 

services. As stated by P12, “We felt that the teams were not ready for that [implementing 

microservices] and then we compromised, deciding we are not going to make the application as 

microservices at least for now”. Each component, which in this case is a binary dependency, is 

added as a runtime dependency on the parent application. We recognize that the implementation 

of a microservices style of architecture enforces changes in the organizational structure. The 

organizations that successfully implemented the microservices style tended to have the structure 

of teams and their communication pattern aligned with this architectural style. Yet, being able to 

implement the microservices style at this level requires team maturity and organizational 

readiness [162]. P14 observed that  

“A company struggles with microservices architecture and they have implemented 

microservices, as they slow down [in software releases]. [It is] because they are not 

ready to change the organization to support this microservices architecture. The 

microservices’ interactions don’t reflect the structure that they have”. 

We have previously, in Section 6.5.1, discussed how (monolithic) databases bring unique 

challenges to CD. Both two above-mentioned approaches highlight the importance of revising the 

core database design and decomposing it into smaller individual databases. There are repeated 

statements in the interviews which support the need to treat the database as a continuously 

deployable units, similar to other software components. Incorporating the database in the CD 

pipeline as a software component is expected to avoid unexpected issues that database updates 

may pose at production deployment. We found that keeping everything related to databases (e.g., 

associated configurations) in a version control system in a consistent manner plays a crucial role in 

improving the deployability of databases, because that helps trace the changes to the database 

schema. P18 emphasized that this practice “is really useful to monitor databases in different 

environments and [to] compare them to know databases have deviated [from] version control”. 

Using tools to automate the database schema changes and configurations, and also to automate 

detection of database changes in different environments was also indicated as helpful for 

continuously deploying databases. Furthermore, our findings show that a schema-less database 

(i.e., the schema exists in code, not in the database) is more compatible with the spirit of CD 

practices. As mentioned by participant P17,  

“Scheme just exists in the code instead of living permanently in the database. 

Schema-less lets you change the schema with a code, which is exactly what you want 

with continuous deployment. This is a significant architecture change driven almost 

exclusively by continuous deployment requirements”. 



 

 

112 

 

Key Findings 

Finding 8. Vertical decomposition and microservices are two primary architectural styles to implement the 

principle of “small and independent deployment units” principle in industry.  

Finding 9. Adopting vertical decomposition and microservices architecture styles to promote delivery speed 

comes at a cost as they necessitate considering organizational structures and highly skilled teams (e.g., 

operations skills). Ignoring this necessity may negatively impact the deployment capability of an organization. 

Finding 10. The key practices to improve the deployability of the database in a CD context are (1) incorporating 

the database in a CD pipeline as a software component; (2) keeping database configurations in version control; 

(3) automating database schema changes and migration, and (4) using the schema-less database. 

 

6.5.3 Quality Attributes that Matter (Largely/Less) in CD 

While we have investigated both practicing CD within the monoliths and breaking apart the 

monoliths into “small and independently deployment units”, we are also interested in the quality 

attributes that are most likely to affect (negatively or positively) the CD success (See Figure 6.2). 

In the following sections, we try to answer this question regardless of the choice of architectural 

styles, as the following quality attributes deserve serious consideration to realize the anticipated 

benefits from CD. 

6.5.3.1 Deployability 

The findings from our interviews indicated that deployability has gained a high priority in CD as 

the interviewees frequently shared that deployability concerns are accredited during architectural 

design and drive many decisions to have independently deployable units [9, 38]. We were 

interested in understanding how deployability concerns impact different aspects of (architecture) 

design. Taking inspiration from Manotas et al.  [163], we introduced the statements S11-S14 to ask 

the surveyed practitioners how often deployability concerns impact the design of individual 

classes, components/services, interactions among components/services and the entire 

application. We provided a definition of deployability for all the participants to ensure common 

understanding. We defined deployability as: “deployability is a quality attribute (non-functional 

requirement) which means how reliably and easily an application/component/service can be 

deployed to a (heterogeneous) production environment”. Figure 6.7 indicates that the frequency of 

impacting deployability concerns on low-level designs is not significant as a sustainable number 

of the respondents (70 out of 91, 76.9%) indicated that in the projects adopting CD practices, 

deployability impacted class’s design sometimes, rarely or never. In contrast, high-level designs 

were more influenced by deployability concerns (See statements S12-S14 in Figure 6.7). It is a 

commonly held belief among over 60% of the respondents that deployability impacted the design 

of components/services, interactions, and entire applications often or always. We observed that 

none of the respondents answered the statements S12 and S13 as never and only 3 respondents 

believed that the design of the entire application was never impacted by deployability concerns. 

During the interviews, we found that deployability has a minimum conflict with other quality 

attributes (e.g., “They [quality attributes] have sometimes conflicts; deployability has a minimum 

conflict with other quality attributes” P4). Another interviewee, P14, described the relationship 

between deployability and other quality attributes as follows: “I would say that deployability 

doesn’t really conflict with other aspects of continuous delivery, but it requires some practices”. To 

investigate this claim further, we asked the participants how frequently they could compromise 



 

 

113 

 

other quality attributes to improve the deployability of an application. Figure 6.7 shows that the 

vast majority of the respondents are not willing to compromise other quality attributes to 

improve deployability. 68.1% of the respondents answered to the statement S15 with rarely or 

often, while 29.6% believed that they could sometimes sacrifice other quality attributes to achieve 

more deployability. 

Figure 6.7 Survey responses to the statements on deployability and operational aspects 

Key Findings 

Finding 11. Concerns about deployability (e.g., ease of deployment) impact how applications are designed. 

However, high-level designs, in particular interactions among components/services, are more influenced by 

deployability concerns than low-level designs (e.g., the design of individual classes). 

Finding 12. Deployability can be supported in CD without major trade-off as it has a minimum conflict with 

other quality attributes and most of the quality attributes are in support of deployability. 

 

6.5.3.2 Modifiability 

One of the top priorities for the participants when designing an application in a CD context was 

to support frequent and incremental changes. They reflected that they break down software into 

units that are small enough to be modified, replaced and run independently. The participants also 

tried to minimize the impact of changes for CD as described by one of the interviewees (i.e., an 

architect) as: “For me, the autonomy is the most important quality attribute for continuous delivery. 

If you don’t have dependency, you can isolate your changes and, as a team, you can independently 

do your lifecycle and of course, your lifecycle also means bringing it to production” P19. We learned 

that the participants employ four main techniques for this purpose. 

T1. Identify Autonomous Business Capabilities: Our findings show there is a tendency among 

the participants’ organizations to structure an architecture based on business capabilities rather 

than functionalities [150]. As revealed by the interview study, techniques such as domain-driven 

84%

2%

63%

67%

70%

23%

11%

30%

25%

25%

20%

37%

5%

68%

12%

8%

10%

40%

S16. Consider operational aspects during
design phase

S15. Sacrifice performance, security, etc. to
improve deployability

S14. Deployability impacts design of the
entire application

S13. Deployability impacts design of
interactions among components/services

S12. Deployability impacts design of
individual components/services

S11. Deployability impacts design of
individual classes

Almost Always Often  Sometimes Rarely Never



 

 

114 

 

design, bounded context22, and event storming were employed to determine the business 

capabilities of software architecture that can be independently developed, modified and deployed 

into production environment [164]. Domain Driven Design (DDD) aims to “design software based 

on connecting the implementation to an evolving model of the core business concepts” [165]. 

Bounded context is a concept in DDD to describe the conditions under which a specific model is 

defined [165, 166]. The models in each bounded context do not need to communicate with the 

models inside other contexts [111]. For example, one of the interviewees told us:  

“We primarily use techniques such as domain-driven design and event storming to 

actually identify the autonomous business capability of software architecture” P21.  

Event Storming is a collaborative design technique, in which all the key stakeholders (e.g., 

domain experts) assemble to identify and describe what operations (i.e., domain events) happen 

within a business domain [167]. These techniques were also deemed very useful by the 

interviewees to decrease team interdependencies as mentioned by P14:  

“[In our CD journey] we needed to break down requirements into different, isolated, 

and autonomous business values and then each team had to be assigned to them. So, 

we could have reduced the dependency between the teams”. 

Our survey results were aligned with the findings from the interviews that domain-driven design 

and bounded context patterns have become a mainstream in the CD context when designing CD-

driven architectures. A majority of the survey respondents (54 out of 91, 59.3%) answered the 

statement S20 (See Figure 6.8) as strongly agree or agree, while only 7.6% strongly disagreed or 

disagreed. Interestingly, this statement (S20) received the highest number of “neutral” responses 

(30 out of 91) by the survey respondents. Only 9 out of 30 respondents who selected “neutral” to 

respond to this statement introduced themselves as an architect. This may suggest that this 

statement is a highly specialized statement to architects, with which other roles may be 

unfamiliar with. An initial step of applying these patterns is to find the autonomous business 

capabilities of software architecture. However, it is interesting to note that the majority of the 

interviewees and the survey respondents believed that it was difficult to find such autonomous 

business capabilities as 81.3% of the survey respondents rated the severity of this challenge as very 

important, important or moderately important (See statement S6 in Figure 6.4). 

T2. Delay Decisions: Software architecture in CD should be extremely adaptable to 

unpredictable and incremental changes [149]. That is why we found that it is difficult to make 

many upfront (architectural) design decisions in CD context. Instead, the participants in our 

study only focused on an initial set of core decisions and other architectural decisions (e.g., 

decisions to choose a technology stack) are made as late as possible. Decisions are made when the 

time is right, for example, when requirements and facts are known [168]. This enables architects 

to keep architecture alternatives open to the last possible moment. Our findings show that 

deploying software changes frequently may necessitate making (architectural) design decisions on 

a daily basis. Furthermore, the participants also reported that the decisions were sometimes made 

unconsciously in CD context. For example, P16 stated:  

“I try to avoid making big decisions. We need to probably decide what kind of 

technologies [are] useful for running microservices; but I try to, even for those things, 

keep them as flexible as possible. We probably want to change it [in the future] and I 

also try to not look down and make too many strong decisions”. 

                                                           
22http://martinfowler.com/bliki/BoundedContext.html 



 

 

115 

 

To support this claim further, empirically, we asked the survey participants how strongly they 

agree or disagree with this statement: “compared with less frequent releases, we avoid big upfront 

architectural decisions for CD practice to support evolutionary changes”. As shown in Figure 6.8, 

65% of the respondents (54 out of 83) strongly agreed or agreed that architectural decisions in a 

CD context are made as late as possible (See statement S17 in Figure 6.8).  

T3. Stateless Architecture: Having a stateless application, in which there is no need to maintain 

the state within the application, was another technique used to support incremental changes at 

operations level, e.g.,  

“If a WAR file is completely stateless and if I want to deploy a new version, I can 

simply deploy a new version on the top of it and there is no state to keep for migrating 

to the new version” P10. 

T4. Hide Unfinished Features at Run-time: Our study shows that working in CD mode needs 

everybody to push their changes to the master branch on a continuous basis. We found from the 

interview study (i.e., confirmed by P12, P20, and P21) that having long-lived feature branches is a 

stumbling block for CD, as they are associated with the challenges such as delayed feedback and 

increased merge complexity [169, 170]. The participants’ organizations realized that instead of 

creating new branches, which developers may work on for a couple of months and then integrate 

them back to the master, they need to switch off the long-lived feature (i.e., the unfinished 

feature) and then release it to the users only when the feature is ready. A feature toggle23 pattern 

was indicated by some interviewees to achieve this goal. This pattern helps a team to release new 

changes to end users safely as the features that the team are developing are still in production, 

but nobody can see them because they are toggled. This pattern can be combined with and made 

more elegant by the branch by abstract24 technique, which aims at making large-scale changes to 

a system in production. This technique first creates an abstraction layer around an old component 

and them gradually reroutes all interactions to the already created abstraction layer. Once the 

new implementation of the old component finishes, all the interactions are rerouted to the new 

implementation. P12 stated,  

“We can also make feature toggle much more elegant by using branch by abstraction 

when you have implementation details separated out by interfaces and the child of 

implementation is on toggles”.  

Other participants realized incremental changes by having side-by-side execution at the 

component level rather than at feature level. P7 explained,  

“We needed to improve the architecture to have side-by-side execution of components 

as it might be two versions of components, both installed at run-time. We could start 

to gradually cut the load over from the old version to the new version”. 

                                                           
23https://martinfowler.com/articles/feature-toggles.html 
24http://polysingularity.com/branch-by-abstraction/ 



 

 

116 

 

 

Figure 6.8 Survey responses to the statements on the quality attributes that need more attention in CD 
context. While the importance of monitorability, loggability, and modifiability has increased, overthinking 
about “reusability” (confirmed by 43% of the surveyed participants) at architecture level may overturn CD 

adoption. 

Key Findings 

Finding 13. Domain-driven design and bounded context patterns are increasingly used by organizations to 

design loosely coupled architectures based on autonomous business capabilities. However, most (81.3%) of the 

participants stated that identifying the autonomous business capabilities of software architecture is difficult. 

Finding 14. Compared with less frequent releases, CD places greater emphasis on evolutionary changes. 

This requires delaying (architectural) design decisions to the last possible moment. 

6.5.3.3 Loggability and Monitorability 

Building and delivering an application on a continuous basis may potentially increase the number 

of errors, and the chance of unavailability of the application [7, 38]. This compelled the 

participants’ organizations to have more investment in logging (i.e., the process of recording a 

time series of events of a system at runtime [7]) and monitoring (i.e., the process of checking the 

state of a system) in order to hypothesize and run experiments for examining different 

functionalities of a system, identify and resolve performance issues, and recover the application in 

case of problems. Therefore, the organizations practicing CD need to appropriately record, 

aggregate and analyze logs and metrics as an integral part of their CD environment. One 

interviewee highlighted this trend as  

“We have everything based on the log. One aspect can be getting visibility in any part 

of the components, which is being pushed in the DevOps cycle. We already have it as 

part of our framework” P5. 

When we asked, “since moving to CD practice, the need for monitoring (i.e., a centralized 

monitoring system) has increased”, the survey participants rated this statement (S18) strongly 

agree (36.2%), agree (46.1%), neutral (8.7%), disagree (6.5%), and strongly disagree (2.1%). As 

shown in Figure 6.8, the responses for statement S19 also indicate that 75.8% of the respondents 

43%

80%

59%

76%

82%

65%

29%

12%

33%

16%

9%

16%

29%

8%

8%

8%

9%

19%

S22. Overthinking on reusability at
architecture level hinders CD success

S21. CD adoption increases the need for
resilience

S20. For CD, Domain Driven Design and
Bounded Context are more used

S19. CD adoption increases the need for
logging

S18. CD adoption increases the need for for
monitoring

S17. In CD, architectural decisions are made
as late as possible

Strongly agree Agree Neutral Disagree Strongly disagree



 

 

117 

 

strongly agreed or agreed that the need for centralized logging system has increased since their 

clients or respective organizations moved to CD. In the following, we provide more insights into 

how monitorability and loggability are improved: 

T1. Use external tools: Our analysis shows that there are limitations in CD tools (e.g., Jenkins), as 

they are not able to provide sufficient log data and also enable aggregation and analysis of logs 

from different sources. The participants’ organizations extensively used external tools to address 

these limitations. As an example, we have,  

“So, basically those logs will be collected by other (external) systems. Then, we (the 

infrastructure team) can easily download and aggregate those logs on our own big 

data platform” P2. 

T2. Build metrics and logging data into software was another solution adopted by the 

participants’ organizations. The participants stated that large-scale applications adopting CD 

need to expose different monitoring and logging data. For example, two interviewees mentioned:  

“You build log capability such they can be turned on and off in the code in order to 

eliminate the performance problems” P6. 

”If we are talking about the logging aspect, if any tier fails for any particular reasons, 

then appropriate reason code must exist” P5.  

Regarding the two above-mentioned solutions, the interviews’ participants raised two areas that 

need further consideration. Firstly, it is necessary to determine to what extent the log data should 

be produced (e.g., “We have internal meeting discussions about how much effort we can put to 

capture [logs] per system; you know how much with the level of detail [is] appropriate” P7). 

Secondly, readability of the logs for all stakeholders should be taken into consideration. As the 

developers mostly build the logging mechanism in the code, there is a chance that logs become 

unfathomable for operations teams and may not be efficiently employed to perform diagnostic 

activities, e.g.,  

“Support people (the operations team) feel that there is too much logging. So, they 

have to swim [in] too much information and find problems. The support people need 

to have cleaner and simpler logs to look at, where developers get all this information 

they need” P13. 

We also observed that the importance of loggability and monitorability considerably increases 

when a monolithic application is split into smaller units (e.g., microservices). This is due to the 

fact that splitting a monolith into multiple independently deployable services introduces 

challenges in identifying problems (e.g., performance issues) in a system. Furthermore, it is 

needed to trace how services go through a system. It is essential to ensure that there is enough 

trace information for logs.  

Key Findings 

Finding 15. Monitorability and loggability quality attributes really matter in CD. They help build architectures 

that are responsive to operational needs over time. 

Findings 16. While software organizations extensively use monitoring tools to address the shortcomings of 

CD tools, the applications in a CD context should expose the different types of log and monitoring data 

with a standard format. 

 



 

 

118 

 

6.5.3.4 Testability 

One of the main concerns stated by the participants in transition to CD was about testing. It was 

observed during the interviews that addressing testability concerns influences architectural 

design decisions for explicitly building testability inside a system. It is emphasized that 

architectures in a CD context should support testing to the extent that tests should be performed 

quickly and automatically. Another solution adopted by the participants to improve testability 

was using the right tools and technologies. Nevertheless, the participants worried about the 

potential limitations of tools, as tools alone are insufficient for addressing all the testing 

problems. For example, we were told that existing automated testing tools tend to be fragile in 

some types of applications (e.g., mobile applications) or environments (See Chapter 4 for more 

information). That is why the participants typically approached the testing challenges by 

combining architectural (i.e., testability inside the design) and technological (i.e., selecting the 

right tools) solutions. Apart from choosing appropriate testing tools, we found the following 

techniques support testability inside a system: 

T1. Improving test quality: To avoid putting overhead on a CD pipeline, it was frequently 

suggested that there should be improvements to the quality of tests (data) rather than increasing 

the number of test cases. As one interviewee put it,   

“We are looking at the quality to improve the DevOps model. One of the things that 

we can improve is the quality of the tests themselves; do we have the right test suites? 

Do we have the right coverage?” P6.  

This includes improving quality by selecting the right number of test cases to be performed at the 

right time on quality test data (e.g., it was also affirmed by P5, P12, P15, and P17). The cycle time 

of a CD pipeline (i.e., the required time to push code from the repository to the production 

environment) can be increased by long-running tests. Furthermore, the long-running tests can 

slow down the feedback cycle in a CD pipeline. Respondent R5 commented that running tests in 

parallel can decrease the cycle time of a CD pipeline. These issues happen when test cases are 

poorly written and designed. One of the interviewees described that how improving the quality of 

tests could help them to accelerate the feedback cycle in the CD pipeline. He (P12) mainly 

highlighted two practices: (i) designing smaller test units that result in immediate feedback, (ii) 

decreasing the number of functional tests. The applied practices resulted in receiving the same 

level of feedback from applications, in a timely manner. 

T2. Making code more testable It was also found that testability should be addressed at code 

level. Whilst services and components need to be tested independently, testing them within a 

larger CD pipeline with all dependencies can be a complicated and costly process. For instance, it 

may be costly to provide all the resources (e.g., databases) for testing in staging environments. A 

typical solution to this problem was dependency injection, which would bring more flexibility to 

the testing process. One participant opined:  

“From the architectural standpoint, we very often build projects that use dependency 

injection a mechanism in, like Spring so that we can inject a set of dependencies. For 

example, you inject an in-memory fake database rather than production database, 

you inject a fake set of resources rather than relying on [real] resources, which makes 

the code much more easily testable” P13. 

Another example comes from participant P6, who built performance tests into the code. Rather 

than just running performance tests as black box testing from the outside of the code, 

performance testing was actually tightly integrated into the code. Put it another way, the code 



 

 

119 

 

itself would be measuring start and stop times between operations and between events occurring 

within the code. All these times (i.e., the start and stop times for different operations in the 

system) are recorded to compare them with a baseline to decide whether there is a problem or 

not. According to P6, this practice significantly improved the overall performance of the system. 

Key Findings 

Finding 17. CD practices require high quality tests that run easily. Therefore, it is necessary to make 

informed (architectural) design decisions to improve the testability of a system by (1) improving test quality 

(e.g., more suitable, simpler test methods and decreasing test cycle times); (2) making code more testable; (3) 

using smaller components. 

 

6.5.3.5 Resilience 

Increasing the frequency of deployment to production may increase the number and severity of 

failures. So, the failures are inevitable in a CD context. Through the interview study, we found 

that for some participants designing for failure guides their architecture designs. P11 

characterized the software architecture in the CD context as follows: “an architecture that splits 

the system also by units that should fail independently” and P14 told us, “resilience is also a matter 

of integration aspect: how to integrate with the third party [units]; what if a third party starts to 

fail”. We also observed that many discussions among the participants were centered on resilience 

versus reliability as the main concern was not to prevent failures but to think about how fast the 

failures can be identified and isolated, and how to automatically rollback to an early stable 

version. An example of this trend is vividly typified in the following anecdote:  

“I think when we are moving to this paradigm [CD], rather than ensuring your 

software is gold before you deploy it to production, for example, by three month 

testing cycles to validate every bit of it, we are going to a mode [where the] mean time 

to recovery [is important]. [For example] if I face an issue in production, how soon I 

can recover from that failure” P10. 

Whilst we could not conclude that the resilience quality attribute needs to be prioritized over 

reliability within CD context [171], the responses to the statement S21 indicate that the survey 

participants are significantly concerned with resilience when designing and implementing 

applications. This quality attribute appeals to a large portion of respondents: 80.2% strongly 

agreed or agreed that the CD practices increase the need for resilience (See statement S21 in 

Figure 6.8). 

Key Finding 

Finding 18. Design for failure is considered as the foundation of the architecture in a CD context, in which a 

system is split into units that should fail independently. Instead of preventing failures (reliability), it is more 

important to learn how to deal with failures (resilience). 

 

6.5.3.6 Reusability 

Our analysis reveals the architecture designs that emphasize reusability could make practicing CD 

more challenging. The drawbacks of overthinking on reusability at architecture level (e.g., using 

shared components, or packaged software) in the context of CD are twofold: (1) inter-

dependencies between software development teams increase in the sense that they rely on shared 

software units. It means that changing the shared units requires seeking inputs and reaching 



 

 

120 

 

agreements among all the relevant stakeholders, which demands significant time and effort (e.g., 

“If you really do not control explicitly what you really expose and what you really reuse, you will end 

up with a lot of mess in the code.” P14). This approach hinders the autonomy of software teams in 

building and deploying software components and applications. (2) The other concern is about 

being able to test the configuration of shared software units (e.g., well-known packaged software). 

Our interviews revealed that it is vital for the application developers working in the context of CD 

to write test cases, through which they can validate the configuration of software packages used 

in the application. Hence, reusing packaged software may hinder their ability to perform potential 

unit tests and push the packaged software into CD pipeline on a continuous basis. This leads to 

losing the testability of those configurations, which is significant. As P14 explained: 

“We had a plenty of products and there are a lot of [common] things between them. 

We reused [things] like utilities and even some part of the domain. We spent a vast 

amount of time maintaining agreements between teams; [for example] how to evolve 

them. We decided to fork them; just go your own way, whatever you want and just 

leave us alone, because reuse has side effects. So, we have to understand duplication 

is not evil” P14. 

As shown in Figure 6.8, about 42.8% of the survey respondents (39 out of 91) strongly agreed or 

agreed that overthinking about reusability at architecture level (e.g., reusing packaged software) 

hinders CD success, while 28.5% disagreed or strongly disagreed. This fairly agrees with the 

interviews’ findings. We found that such attitudes were mostly dominant among software 

architects as 20 out of the 39 architects who participated in the survey have voted the statement 

S22 as strongly agree and agree, while only 7 architects rated it as strongly disagree or disagree. 

Other respondents (28.5 %) had no idea about whether or not having too much reusability is a 

major roadblock for CD. 

Key Finding 

Finding 19. Overthinking about reusability at architecture level has two side effects: (1) increased inter-team 

dependencies and (2) losing testability. However, among other roles (e.g., developers), software architects 

strongly believe that a lack of explicit control on reuse at architecture level (e.g., shared components) would 

make practicing CD harder. 

 

6.5.4 Perspectives on Operational Aspects 

The importance of operational aspects management (i.e., of the production environment, 

operations stakeholders and their requirements) for the architecting process in a CD context was 

highlighted during the interview study. We observed that the participants’ organizations have 

been shifting from considering operational aspects as separate and sometimes uncontrolled 

entities to treating them as first-class entities in the architecting process, particularly after CD 

adoption [7]. The shift from the first to the second paradigm was also confirmed by the survey 

results, in which 83.5% of the respondents indicated that they consider operational aspects during 

the architecting process almost always or often (See statement S16 in Figure 6.7). Additionally, the 

respondents believed that operations requirements and aspects significantly impact on 

architecture design and design decisions (See Figure 6.9). 83.5% of the surveyed practitioners 

strongly agreed or agreed with the statement S24 in Figure 6.9 (“Operational aspects and concerns 

impact on our architecture design decisions”). Other studies have also found that involving 

relevant stakeholders in the architecting process leads to informed and balanced architectural 

decisions [172, 173]. This might help to mature the architecting process [161]. In the following 



 

 

121 

 

subsections, we provide more insights into why operational aspects need to be perceived as 

important in a CD context. 

6.5.4.1 Production Environment Challenges 

The interview study revealed that production environments may pose challenges to architecture 

design. One of the top challenges is to make sure software changes are being seamlessly 

transferred and deployed into multiple, inconsistent production environments. A program 

manager (P4) described the challenge of the inconsistent environments thus,  

“One challenge is that there are multiple environments. [We must] make sure that 

the system of development is compatible with all environments, which means we 

[need to] give the current infrastructure, hardware and technical details of all 

environments”.  

Regulatory and controlled environments were also stumbling blocks to CD as these environments 

usually follow a formal deployment process. There is a need to adjust and adapt architectures in 

the regulated environments so that apart from those parts of a system that are not really able to 

adopt CD, the rest being deployed on a continuous basis. As P14 mentioned, 

“Architecture is also about compliance and security as well. Because let’s say there is 

a kind of regulated environment and you want to have CD there; how [should we] to 

adjust the architecture? For example, you can rip out part of your software and make 

sure it is part of your architecture which can’t really support CD but let the rest of the 

architecture and software be deployed in a CD fashion”. 

Our results in Chapter 4 show that a lack of control of the production environment by the 

development team negatively impacts on deployment frequency (e.g., “Inside the client network, 

the processes are less mature and more overhead exists to deploy code to controlled environments, 

in which requires manual processes to turnover code” P3). 

Another category of the challenges is related to the extent to which operations requirements need 

to be collected and shared with software architects. Taking into account too many requirements 

of an operations environment could result in designing a system too specific for that 

environment. This introduces the risk that design decisions become dependent on the operational 

configurations and are therefore fragile to the changes that are made in that environment. On the 

other hand, ignoring the characteristics of an operations environment during the architectural 

design of an application is likely to result in losing the operability of the designed architecture. 

This challenge was explained by P5, 

“They [the operations team] had purchased some infrastructure and some hardware 

and what they wanted from us [was] that our solution (architecture design) should be 

in compliance with their already purchased infrastructures. This all added the 

challenges [to the architecture design]”. 

All the above challenges may lead to the expansion of the role of architects. Architecting for CD 

goes beyond designing only a software application: it requires incorporating consideration of the 

whole environment (e.g., database, automation, and test data). Architects are expected to look 

into a broader spectrum and propose solutions that keep consistency after the application is 

deployed and upgraded. This implies versioning the whole environment rather than versioning 

the source code alone (i.e., everything-as-code [174]). One interviewee described this trend in 

these words:  



 

 

122 

 

“It is not architecting things in terms of source code, but it is more about architecting 

the deployment as a larger entity, [for example], in finding ways to drive and 

maintain the consistency across those environments after we deploy and upgrade 

because they are on different servers. It is not [similar to] a cloud system in a multi-

tenant environment” P7. 

6.5.4.2 Operations Stakeholders and Requirements 

In this section, we discuss what strategies have been applied in industry to treat the operations 

team and their concerns as the first-class entity in software development process, which also 

affects the architecting process (See Figure 6.7). 

S1. Leveraging logs and metric data in an appropriate format for operational tasks: The 

most cited strategy, indicated by 62 (68.1%) survey respondents, refers to collecting and 

structuring logs, metrics (e.g., CPU and memory usage) and operational data in appropriate 

formats to enable the operations team to make faster and more informed operational decisions in 

post-deployment activities such as assessing the deployed application in production. For example, 

we have:  

“One of the key aspects [of CD] would be around having sufficient logging in place, 

which you can identify when things go bad. You have to build a dashboard to tell you 

what the current load is and also aggregate that data on the period of time” P12. 

S2. Early and continuous engagement of operations staff in decision-making: The 

participants also reported that early and continuous involvement of the operations team in the 

development process, particularly in the design process boosted the productivity of their 

respective organizations in delivering value on a continuous basis. It is mainly because 

deployability of the application is more thoroughly considered in the development and design 

phases; the deployment process would not be a big issue at the end. As shown in Table 6.1, this 

was the second most cited (55, 60.4%) strategy by the survey participants. Here are just a few of 

the example quotations supporting this strategy: 

“Once the operations team was brought into planning meetings, we got things much 

smoother. Most of the operations requirements could be negotiated off and we would 

find cheaper wins that would be less expensive than the original plans of the software 

developers. So those operations requirements could be better implemented and landed 

in production” P17.    

“When people do the design, they normally do not engage with operations teams. So, 

this is an area [that] we are trying to improve; when we finalize the design, we are 

getting the operations teams to sign-off the design” P4. 

S3. Prioritizing operations concerns: It is argued that the operations team has a set of concerns 

(e.g., quickly detecting and predicting failures), which should be effectively addressed [7]. During 

the interviews, we learned that despite the adoption of CD, operations concerns and requirements 

still have a lower priority than other requirements. This is moderately confirmed by the survey 

study as 41.7% of the survey respondents (strongly) agreed with this finding (See statement S23 in 

Figure 6.9). It is interesting to note that there is a relatively large proportion of the respondents 

(29.6%) who are neutral about the statement S23 and only 28.5% strongly disagreed or disagreed. 

The interviewees revealed several reasons for deprioritizing operations requirements. For 

example, developers usually believe that the role of the operations team is only to serve the 

development team. It has been discussed that people who historically decide on priorities (e.g., 



 

 

123 

 

the product owner) usually do not consider so much business value from operational aspects. 

According to the interviewees, ignoring and deprioritizing operations requirements have resulted 

in severe bottlenecks for deploying applications on a continuous basis. The interviewees’ 

organizations started treating the operations personnel and their requirements as having the 

same priority as others. So, the operations requirements became an integrated part of the 

requirements engineering and architecture design phases. Table 6.1 shows that 41 (45.1%) of the 

surveyed practitioners adopted this stagey. P18 referred to this strategy as follows:  

“One thing [that] we are doing for this client, for this software is to emphasize the 

importance and address operational things much more. That is starting to happen, 

but it is quite a big change”. 

When we asked the participants about their experiences in thinking about operational aspects 

from day one of a project, we noted several benefits: (i) it puts operations staff on the team and 

reviews their concerns quite early; (ii) it influences how developers look at applications in 

production effectively; (iii) it forces architects to think much more about the problems that may 

happen in the deployment process (e.g., “Only recently we have realized that operations concerns 

are really fundamental part of architecture. If you take that as part of the architecture and treat 

them as first-class citizens, it allows you to build an architecture that is much more flexible” P13); 

(iv) it provides much more flexibility and enables organizations to get applications deployed 

much faster and therefore realize CD. 

We also added the “Other” field to gather more strategies in this regard. Interestingly, only 8.7% 

of the survey respondents filled in the “Other” field. The respondents mostly used the “Other” 

field to elaborate their previous choices (e.g., “Ensuring we have scheduled placeholders to revisit 

changes in operational requirements, and that we have an operational requirements champion” R16, 

“Operations [team] owns the final solution and must sign off on it” R40). 

 

Figure 6.9 Survey responses to the statements on operational aspects: The respondents indicated that there 
is a trend to consider operations aspects at early stages of the development process (e.g., architecture 

design), which helps design CD-driven architectures.  

Table 6.1 Strategies for increasing the amount of attention paid to the operations team and their concerns 

Strategy # % 

Leveraging logs and metric data for operational tasks  62 68.1 

Early and continuous engagement of operations staff in decision-making process  55 60.4 

Prioritizing operational concerns  41 45.1 

Others  8 8.7 

84%

42%

11%

30%

5%

29%

S24. Operational aspects impact on our
architecture design decisions

S23. Operations team’s concerns still have less 
priority than other stakeholders

Strongly agree Agree Neutral Disagree Strongly disagree



 

 

124 

 

 

Key Findings 

Finding 20. Inconsistent, regulatory and controlled production environments hinder the implementation 

of CD. 

Finding 21. The requirement for continuously and automatically deploying to unpredictable production 

environments can expand the role of architects as apart from software design, they need to collaborate 

substantially with operations personnel and deal with infrastructure architecture, test architecture, and 

automation. 

Finding 22. Designing highly operations-friendly architectures are achieved by (1) leveraging logs and 

metric data; (2) engaging operations personnel in decision-making; (3) prioritizing operational concerns; and 

(4) understanding production environments’ constraints. 

Finding 23. The participants do not have a clear understanding of the extent to which operations 

requirements should be collected to simultaneously deal with the fragility of design decisions and improve the 

operability of software systems. 

 

6.6 Discussion and Conclusion 

This chapter has empirically explored how an application should be (re-) architected for CD. We 

applied a mix-methods approach consisting of semi-structured interviews and an online survey 

for collecting qualitative and quantitative data, which have been systematically and rigorously 

analyzed using appropriate data analysis methods. The research presented in this chapter are 

expected to make significant contributions to the growing body of evidential knowledge about the 

state of the art of architecting for CD practices. Furthermore, the results of this research can 

provide improvements to the adoption of DevOps and CD. In this section, we first discuss the 

main findings of this chapter while comparing and contrasting them with the existing literature 

on this topic. Then, we present some implications for practitioners. It is worth noting that from 

the methodological perspective, our study includes varied demographics rather than the 

peculiarities of practitioners’ own experiences [7, 28, 38, 111] or a single case company and 

particular domain [38, 147]. 

6.6.1 Main Findings 

Monoliths and CD are not intrinsically oxymoronic. Our conclusion is in line with the results 

of [33, 40, 111] that monoliths present the most significant challenges to CD success. Yet, we have 

found some examples in both the interview and the survey parts of this study that it is possible to 

do CD with monoliths. This has also been indicated by personal experience reports by Prewer 

[175], Vishal [39], Schauenberg [176] and Savor et al. [22]. However, an overwhelming majority of 

the interviewees and the survey participants believe that it is much more difficult to adopt CD 

within large monolithic systems or large components. Compared with the works by Bass et al. [7], 

Schermann et al. [40], and Newman [111], our study has independently identified the reasons why 

practicing CD within the monoliths is difficult. We found that growing monoliths leads to 

increased complexity of internal and external dependencies, restricted automation (test and 

deployment), impeding teams’ ownership and having slow and inconsistent feedbacks [33, 40, 

156], which together can be roadblocks to frequent and automatic deployment. Finally, we have 

provided principles, practices, and strategies with concrete examples to achieve CD with 

monoliths. Specifically, those organizations that effectively embraced CD for their monoliths 

mostly employ the following practices to optimize their deployments: (i) developing highly 

customized tools and infrastructures for monitoring and logging [39]; (ii) reducing test run times 



 

 

125 

 

by improving the test quality (e.g., parallelization of automated testing); (iii) describing, testing 

and deploying components/services only through interface specification with backwards 

capability; and (iv) deploying all entities including components and databases through a rigorous 

CD pipeline. 

Characteristics the principle of “small and independent deployment units”. All of the 

above-mentioned monolith-related challenges compelled many participants’ organizations to 

move beyond the monoliths to facilitate the CD adoption journey. Similar to Newman [111] and 

Lewis and Fowler [150], we can conclude that the principle of “small and independent deployment 

units” is an alternative to monolithic systems for this purpose and serves as a foundation to design 

CD-driven architectures. As elaborated in Section 6.5.2.2, this principle has mostly been 

implemented in the industry using two concrete architectural styles: vertical layering 

(decomposing) and microservices. Our findings particularly emphasize that adopting these 

architectural styles may result in overhead costs to deal with complex deployment processes, 

which require having sophisticated logging and monitoring mechanisms and high operations 

skills [162]. For example, the microservices architecture style requires every team to build a CD 

pipeline for each component or service rather than having one CD pipeline for the whole 

application. Software organizations incrementally split their applications into “small and 

independent deployment units” that can be independently managed.  

Our study includes other scopes compared with [111, 150] as we also focused on the 

characterization of “small and independent deployment units”. We have proposed that 

“deployment units” need to represent only one business domain problem (i.e., it should not cross 

its bounded context) and each of the deployment units should be autonomous in terms of 

deployability, modifiability, testability, and scalability. These factors are among the highest rated 

statements by the participants (i.e., more than 68% of the participants (strongly) agreed with all 

these factors). That means organizations can use these factors as reliable criteria when moving 

towards CD. Other factors such as having team-scale autonomy per “deployment unit” are 

desirable but less cited by the participants. 

First class quality attributes in the CD context. Our findings indicate that CD and its 

associated constraints (e.g., unpredictable environments) expect a certain kind of architecture to 

emerge. That means CD practices significantly change the priority of some quality attributes such 

as deployability, modifiability, testability, monitorability, loggability, and resilience. Whilst these 

quality attributes are important for all types of contexts and systems, they are considered 

critically important for a CD-driven architecture design.  

Previous research also highlights the importance of these quality attributes [38, 75]. Bellomo et al. 

[75] only focus on deployability as a new quality attribute in three projects and introduce tactics 

to achieve deployability. In contrast to [75], we have investigated the impact of deployability on 

different aspects of (architecture) design (high-level design vs. low-level design) and also we have 

indicated that deployability has a minimum conflict with other quality attributes. Chen [38] also 

highlights what quality attributes (i.e., deployability, modifiability, security, monitorability, 

testability, and loggability) can be more important in the context of CD; however, he did not 

provide any details about how these quality attributes can impact on the architecture design in 

CD context and how they can be achieved. Our results confirm and extend the previous findings 

[38, 75] (i) by improving our understanding of how the aforementioned quality attributes affect 

architectural decisions; and (ii) by introducing techniques to achieve these quality attributes (e.g., 

keeping components stateless helps improve modifiability). Whilst we targeted the quality 

attributes of applications in the context of CD in this chapter, Bass et al. [7] focus on the quality 

concerns of a CD pipeline rather than applications. They indicate that the primary quality 



 

 

126 

 

concerns that need to be built early in a CD pipeline include repeatability, performance, 

reliability, recoverability, interoperability, testability, modifiability, and security. 

We have also observed that from an architect’s perspective, “reusability” at the architecture level 

is the only quality attribute that should not be overthought, as it contributes to overturning CD 

adoption. It should be noted that we could not conclude that CD substantially influences other 

quality attributes (e.g., security as indicated by Chen [38]). On the other hand, our study 

highlights that CD practices seek software architectures that are easily composable, self-

contained, and less monolithic with less shared data among components/services. Architectures 

in CD should be atomized for autonomy and independent evolution to make sure there is a 

minimum overlap between teams. Consequently, software architects should avoid upfront 

(architectural) design decisions and delay them to the last possible moment to effectively meet 

the aforementioned quality attributes.  

Operations-friendly architectures One of the most intriguing findings of this study is that 

there is an increasing trend of paying significant attention to operational aspects (e.g., operations 

requirements) in the architecting process. Interestingly we have observed that the constraints of 

the production environment (e.g., lack of access to the production environment) may slow down 

the pace of the production deployment [3, 11, 115]. We can conclude that one of the reasons for the 

participants’ organizations not continuously and automatically deploying into production 

environments stems from not carefully understanding and dealing with the production 

environments’ constraints. We recommend that software development organizations invest time 

in understanding their production environments and their respective constraints that may not 

support CD. Accordingly, software architects need to collaborate substantially with operations 

teams during the requirements engineering and architecture design phases. This practice helps 

architects to design and implement operations-friendly architectures. Though we know from 

other studies (e.g., Bass et al. [7]) that the operations team and their requirements play significant 

roles in CD adoption, our study is the first large-scale piece of empirical work that has specifically 

explored the strategies (e.g., early and continuous engagement of the operations team in 

architecture design) that are practiced in industry to achieve this goal. We emphasize that 

considering the operational aspects of a system early in the software development process helps 

to scale the complexity of the deployment process at approximately the same pace as the code 

base. This trend has changed the role and responsibilities of the architect. From the research 

perspective, further investigation is necessary for understanding how software architects perform 

their work in a CD context to provide guidance for the required job skills and education programs 

[21, 142]. 

6.6.2 Practical Implications 

It is argued that the findings of empirical studies should provide insights for practitioners. At the 

end of the online survey, the participants were asked if they wanted to receive the results of our 

study by providing their email addresses. Surprisingly, 81.3% (74 out of 91) of the respondents 

provided their email as they were interested in receiving the findings of this study. We believe 

this indicates that our findings are highly likely to draw the interest of software engineering 

practitioners. Based on the findings from this study, we draw implications for practice. 

Deployable units do not only mean software components/services. The results of our study 

in this chapter suggest the concept of “Continuously Deployable Units”. This indicates that in 

addition to software components/services, every entity (e.g., database and dependencies) that an 

application depends on, should be a unit of deployment in the CD pipeline. We have observed 

that database should be continuously provided with as much automation support as possible for 



 

 

127 

 

successfully implementing CD practices. Whilst the participants in our study employed some 

practices (e.g., schema-less databases) and used appropriate tools for this purpose, it is clear that 

there is not much support for automatically delivering database changes on a continuous basis 

[25, 177].  

Our study reveals that there are a number of organizations that could not succeed with CD due to 

a lack of database automation in their CD pipeline. The reason for this stems from the fact that 

validating data and managing schema migration in the CD pipeline remain immature (e.g., 

manual steps requiring DBA involvement). Hence, organizations prefer to do it offline. We 

believe that this can be a reason that our study participants rated the database-related challenges 

as the least important in their CD journey (See Section 6.5.1.1). On the research side, more focus is 

needed on mining and analyzing database-related failures in the CD pipeline to thoroughly 

understand the behavior of databases in a CD context. This helps to design effective and robust 

solutions (e.g., tools) to support organizations in automating the deployment of schema 

modifications and data conversions in CD pipelines without compromising the continuous 

deployment of application code changes [25]. 

Adjust the organizational structure to support CD. Our experience in this study was that the 

process of changing to a CD organization requires more than providing tool support and 

automation. CD impacts on organizational structures (e.g., team structures), roles, and 

responsibilities. From practitioners’ perspectives, the inflexibility of organizational structures with 

the spirit of CD practices is the most critical challenge for implementing CD (See Section 6.5.1.1). 

A software organization can succeed in CD adoption once there is flexibility in optimizing 

organizational structures to be aligned with CD and certain skills and responsibilities need to be 

sought. Finding the best organizational structures that suit an organization depends on many 

factors, such as the flexibility of the current organizational structure, available skills, and 

management procedures [125, 126]. Answering this question requires extensive empirical studies 

to explore these organizational structures supporting CD practices in different situations. Chapter 

4 [4] has provided preliminary findings about how team structures, roles, and responsibilities can 

change while adopting CD. We have identified four main patterns for organizing development 

and operations teams (e.g., no visible operations team) in industry. We believe that there is a 

need for further research to gain an in-depth understanding of suitable organizational structures 

for implementing CD.   

Real-time, digestible and customizable monitoring is key. As elaborated in Section 6.5.3.3, 

we have seen the growing importance of monitorability and loggability in the transition to CD. In 

fact, there is a growing tendency to adopt log-driven, log-specific architectures that support the 

continuous collection of operational data, facilitate aggregation of logs and transform them into a 

searchable format [178]. More importantly, breaking down a monolith into “small and 

independent deployment units” can worsen the monitoring challenges because tracing a large 

number of independently deployable units and identifying problems inside a system can be even 

more challenging. Such issues can significantly impact the way that a system is composed of 

smaller pieces. Whilst a number of solutions (e.g., extensive use of monitoring tools, creating 

monitoring and log data into applications) have been introduced, there are still several challenges 

to be addressed in order to implement monitoring and logging in CD context. Based on our 

knowledge, two main areas that usually cause practical challenges in this regard are the 

readability of logs for all stakeholders and the abundance of logs and monitoring data.  

We believe these challenges can be alleviated by (1) establishing a standard for logging and 

monitoring by which all developers and applications in an organization create consistent logging 

and monitoring data [179], and (2) applying analytical techniques (e.g., machine learning 



 

 

128 

 

approaches) to summarize, prioritize or filter monitoring and logging data. Our findings re-

emphasize the conclusion by Bass et al. [7] and Humble and Farley [28] that to achieve effective 

monitoring in the CD context, there is a need to build a centralized platform for providing real-

time, digestible and customizable monitoring and alerting for the different types of stakeholders. 

This would enable stakeholders to understand what happens and why in real (or near) time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

129 

 

 

Chapter 6 was focused on the perception of practitioners from different organizations 

around the world on how software architecture being impacted by or impacting two key 

DevOps practices, namely Continuous Delivery and Deployment (CD), which led to a 

conceptual framework to (re-) architect for CD. However, the practical applicability of 

architectural practices or tactics for enabling and supporting DevOps is tightly associated 

with organizational context (i.e., domain), and very little rigorous research conducted in 

this area. This chapter reports on an in-depth, industrial case study with two teams in a 

company working on Big Data technologies, which is analyzed with analysis approaches 

of Grounded Theory. We identify the architectural decisions and tactics the studied 

teams find essential to DevOps transition and describe the implications (costs and 

benefits) of those architectural decisions. Our key findings are DevOps works best with 

modular architectures and developers have difficulties with operations tasks that require 

an advanced level of expertise. 

7.1  Introduction 

Attracted by increasing the need of being able to improve business competitiveness and 

performance, many organizations have adopted DevOps to develop and deliver high-quality 

values to customers quickly and reliably [35]. The current research typically focuses on challenges 

and practices related to organizational culture, process, and tools. Several studies have focused on 

tools and techniques to integrate and improve security [180, 181], automation [26, 27, 182], and 

performance [30] in DevOps tool-chains (also known as deployment pipeline) to automatically 

and securely transfer code from a repository to production. Other studies report the challenges 

(e.g., limited visibility of customer environments) that organizations encountered in DevOps 

adoption and the practices (e.g., test automation) employed to address those challenges [115, 182, 

183].  

As reported in Chapter 4, another line of research investigates how organizations have 

restructured (e.g., re-organizing development and operations teams), trained developers, and 

sought new skills for adopting DevOps [4, 126]. However, it is increasingly becoming important 

for both researchers and practitioners to understand how an application should be (re-) 

architected to support DevOps [7, 35]. Besides our study in Chapter 6 [2, 5], a few studies can be 

found on software architecture and DevOps, yet they have mostly investigated the software 

architecture in Continuous Delivery and Deployment (CD) as two key practices of DevOps [38, 

75]. Another type of studies in this regard has primarily leveraged microservices-based 

architectures to provide a flexible deployment process in DevOps context [129, 147].  

Whilst DevOps, CD and microservices share common characteristics (e.g., automating repetitive 

tasks) and reinforce each other [184, 185], there might be organizations that follow and adopt only 

On the Role of Software Architecture in 
DevOps Success 

Chapter 7 



 

 

130 

 

one of them to achieve their business goals, e.g., delivering better quality software in a shorter 

time and more reliable way than before [183]. For example, some of the essential characteristics of 

CD appear to be incompatible with the constraints imposed by organizational domain [3]. 

Furthermore, architecting an application to be compatible with DevOps is in its infancy. This 

deserves a fair, thorough, specific, and contextual investigation of different architectural tactics, 

practices, and challenges for DevOps as argued by Bass et. al [186], this helps to understand 

“which architectural practices are best for which kinds of systems in which kinds of 

organizations?”. Studying a DevOps journey from a software architecture perspective is important 

in order to develop deep insights into the nature of the relation between software architecture 

and DevOps. To achieve this goal, we carried out an exploratory case study (i.e., described in 

detail in Chapter 2) with two teams in a company, which is referred to the case company in this 

chapter, to investigate the following research question: 

RQ7.1 What key architectural decisions are made by the case company to adopt DevOps? 

Description: We concluded in Chapter 6 that the role and responsibilities of architects in the 

context of DevOps expand as apart from software design they need to deal with infrastructure 

architecture, test architecture, and automation. The goal of this question is to learn more about 

the correlation of software architecture and DevOps through identifying those architectural 

decisions/tactics, along with their consequences that fall under the name DevOps in the case 

company. 

Our case study in an industrial context presents in-depth results and confirms certain findings 

from Chapter 6, which can benefit other practitioners and researchers. Furthermore, our study 

identifies two concrete improvement areas for the case company: (i) leveraging operations 

specialists to manage shared infrastructures among teams and to perform the operations tasks 

that require a deep understanding of advanced expertise, and (ii) investing in testing could be a 

significant driver for releasing software more quickly. 

Chapter organization: Section 7.2 outline our research method. It is followed by presenting the 

results of the qualitative study in Section 7.3. Section 7.4 discusses the lessons learned from our 

work and then we examine the related work in Section 7.5. Finally, we close the chapter in Section 

7.6. 

7.2  Research Design 

As described in Section 2.3 in Chapter 2, we used a case study to deeply investigate the role of 

software architecture in DevOps transition in a software development context. We conducted 6 

face-to-face, semi-structured interviews with the members of two teams, namely TeamA and 

TeamB in the case company. Besides the interview data, we had access to a number of documents 

(e.g., software architecture document, internal Wiki documentation) provided by the case 

company, which enabled the data triangulation process. It should be noted that when we refer to 

data from the interviews with TeamA and TeamB, we use PAX and PBX notations respectively. 

For instance, PA1 refers the interviewee 1 in TeamA (See Table 2.3 in Chapter 2). The excerpts 

taken from the documents are marked as D. 

7.3  Results  

This section presents the results of analysing the interviews and documents. We identified 8 high-

level (hard-won) architectural decisions of DevOps transformation. As mentioned in Section 7.1, 

apart from software design, architects in the context of DevOps need to deal with infrastructure 



 

 

131 

 

architecture, test architecture, and automation. Therefore, the identified architectural decisions 

target application architecture, deployment pipeline architecture, and infrastructure architecture. 

For the sake of readability, the identified decisions are presented using a decision template 

including concern, decision, implication, and technology option [187, 188]. Concern describes the 

problem that is solved by a decision (See Tables 7.1 to 7.11). The potential positive (indicated by 

“+”) or negative (indicated by “-“) consequences of a decision are captured in implication. A 

plus/minus sign (+/-) shows that a decision might have both positive and negative impacts. 

Important implications are bold. For example, a decision might influence one or more system 

quality attributes [7, 189]. Finally, we show the technologies, tools, and tactics that help to 

implement or complement a decision with technology option.  

D1. External configuration 

We have found that the key architectural decisions in DevOps transition were about 

configuration. From the interviews and documents, it is clear that the concept of external 

configuration is at the centre of our findings. This can be illustrated by the following quote: 

“The key architectural thing is [to] making [application] externally configurable as 

you can be aware of the test environment, production environment etc.” PB2. 

External configuration aims at making an application externally configurable, in which each 

application has embedded configuration (i.e., configurations are bundled within the application) 

for development and test environments and uses the configuration that lives in the production 

environment. Here configuration refers to storing, tracking, querying, and modifying all artefacts 

relevant to a project (e.g., application) and the relationships between them in a fully automated 

fashion [28]. The external configuration also implies multiple-level of configuration as each 

environment has a separate configuration. All makes deploying applications to different 

environments trivially easy as there is no complicated setup procedure. By this approach different 

instances of one artefact in different environments are considered as the same artefact; once one 

artefact is deployed to test environment, the same artefact gets deployed into the production 

environment. The solution architect from TeamA said: 

 “We externalize its [application’s] configuration as you can provide different 

[instances] in different environments but as the same artefact” PA2. 

Apart from positively impacting on deployability, this decision leads to improving 

configurability. This is mainly because the embedded configurations inside applications can be 

easily overwritten at target environments and there is no need to reconfigure the whole 

infrastructure as it is only needed to touch the things required. Those configurations that might 

rapidly change will be read from Zookeeper25, but large and static ones are read from HDFS26 

(Hadoop Distributed File System). PB2 explained the benefits of this decision vividly:  

“We also use Spring Boot. It is always looking for module name first, then for the file 

directly next to JAR and then for the embedded JAR. You can have multiple levels of 

configuration verities. So, inside our JAR, we have the same default and they always 

target the local favor environment. If you accidentally run a JAR file and you might do 

something crazy like delete data, so it lonely targets your local environment. Then the 

application YML one, like the external one, gets deployed to test environment”. 

 

                                                           
25 https://zookeeper.apache.org/  
26 https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html 



 

 

132 

 

Table 7.1 Decision for “external configuration” 

Concern  
Different instances of an application/service should be treated as the same artefact in 

different environments.  

Decision External configuration 

Implication  Configurability (+), Deployability (+), Co-existence (+) 

Technology Zookeeper, Hadoop HDFS, Spring Framework 

D2. Smaller, more loosely coupled units 

Our participants confirm that DevOps-driven architectures need to be loosely coupled to ensure 

team members working on the architecture would have a minimum dependency. By this, 

developers can get their works (develop, modify and test) done with high isolation [35]. This 

resulted in smaller, more loosely coupled units are considered as the foundation of the 

architectures in DevOps context for both the projects of TeamA and TeamB. For example, we 

have: 

“I guess [we are] trying to be mindful to reduce coupling between different parts of 

the application as we can separate those things” PB1. 

“[In this new architecture] we want to be able to address each of these stories, 

without being tightly coupled to another” D. 

The interviewees reported that the main reason behind this decision was to improve testability 

and deployability. If the decoupled architecture is fulfilled, it appears that team members can 

independently and easily test (e.g., better test coverage) units and drastically decrease the cycle 

time of test and deployment processes. One interviewee, PA1, affirmed that they were successful 

in implementing this principle as everything for unit tests is independent and substitutable, 

which allows them to do mocking if they need it. In both projects, the interviewees explained that 

decoupled architecture was achieved by extensive use of dependency injection27, feature 

toggle28, and building units that are backward and forward compatible. A participant from 

TeamA put it like this:  

“In terms of architecture, [we] build things that they are decoupled through 

interfaces, using things like dependency injection, using feature flags (feature on/off 

and if it is not ready for production; in the application features toggle that); these are 

[the topics related to] the architecture that we use to support deployability”. PA2. 

This architectural decision enabled the teams to make sure everything is nicely separable, 

reconfigurable, and extensible. According to the participants, all self-contained applications and 

components are intentionally designed small to be tested in isolation. As an example, we have: 

 “Number one thing [in DevOps] is to have software to be well tested, which you need 

to separate concerns into separate components that you can test individual piece of 

functionality [without] influencing other components” PB1. 

PB2 discussed the benefit of small and loosely coupled units from a different perspective. 

According to him, breaking down a large component (called Enricher) into five smaller and 

independent units enabled them to increase test coverage of each to 90%. PA3, on the other 

hand, pointed out that this was also helpful for having more efficient deployment pipeline as large 

                                                           
27 https://martinfowler.com/articles/injection.html 
28 https://martinfowler.com/articles/feature-toggles.html  



 

 

133 

 

components increase the deployment pipeline time and are hurdles for having quick and direct 

feedback from test results.  

Table 7.2 Decision for “smaller, more loosely coupled units” 

Concern  
Application’s architecture should allow the team to develop and deliver software more 

quickly. 

Decision Smaller, more loosely coupled units 

Implication  
Testability (+), Deployability (+), Modularity (+), Team collaboration (+), Time 

behaviour of pipeline (+), Modifiability (+/-) 

Technology Feature toggle, Dependency injection  

D3. One monolithic deployment unit vs. multiple deployment units 

Whilst TeamA and TeamB had many common architectural decisions (e.g., external 

configuration) to architect their systems in the context of DevOps, they differently deal with 

deployment process. This significantly impacted on their architectural decisions. TeamA had 

started with microservices architecture style, but once the team felt difficulties in the deployment 

process, they switched to monolith to have the minimum number of deployment units in 

operations. This significantly helped them to address the deployment’s challenges encountered 

earlier with the microservices style. PA2 and PA3 explained it in the following words: 

“We actually started with microservices. The reason was that we wanted to scale out 

some analysis components across machines. The requirements for the application 

changed, and this led to [move to] this monolith” and “We deploy it [the application] 

as one JAR file”. 

The following reasons were mentioned by TeamA members to build a monolithic-aware 

architecture: (i) they found it is much easier to deploy one JAR file instead of deploying multiple 

deployment units. This mainly because the deployment units are always required to be locked at 

the end, as changes are made to all of them at the same time. (ii) Having multiple deployment 

units can increase overhead in operations time. When PA1 was asked why their system (i.e., 

platform) uses one monolithic deployment, he replied: “There was a lot of overhead in trying to 

make sure that this version is backward compatible this version of that one. So, we make the whole 

thing as one big monolithic application”. (iii) It can be difficult to manage changes in the 

development side, where there are multiple, independent deployment units. In this scenario, 

TeamA found that it is easier to bundle all units together into one monolithic release. PA1 added: 

“We are doing monolith. I think that’s been slowly changing idea; we were originally going to have 

several suites of [deployment units] that work together but I think to cut down on development 

effort we are just going to put all in one tool”. 

Table 7.3 Decision for “one monolithic deployment unit” 

Concern The number of deployment units should be minimum in production.  

Decision One monolithic deployment unit in production. 

Implication  
Deployment (+), Supportability (+), Operability (+), Time behaviour of pipeline (-), 

Scalability (-), Testability (-)  

Technology - 

Opposite scenario happened to TeamB’s project as they invested a lot of time and effort in re-

architecting their monolithic system to have multiple deployment units. As expressed by PB2, 

“We cannot have a thing like TeamA [as] they have one monolithic JAR, and everything is just in 



 

 

134 

 

there and just deploy to one post. We are very much more microservices; we like to be far away from 

that [monolithic deployment] as much as possible”. This new architecture, is called 

microarchitecture by TeamB, is a combination of microservices and monolith approaches. Among 

others (e.g., parts of TeamB’s platform should scale and be tested independently of others), we 

observed that evolvability (modifiability) was the main business driver for this transition. A 

member from TeamB commented: 

“We used to have one big monolithic application and changing anything required to 

redeployment the whole application, which interrupted everything and interrupted all 

processes. [It is mainly] because we couldn’t change anything really without taking 

down others” PB1. 

TeamB uses bounded contexts and domain-driven design [166] as a way to split large domains, 

resulting in smaller, independent and autonomous deployment units (e.g., microservices and self-

contained applications). TeamB’s project includes more than forty libraries, microservices, and 

autonomous applications that automatically and independently are built and deployed. They are 

very small, and the intention was that keeping theme small as each of them should be single 

bounded and should do only one specific task. This enabled them to minimize external 

dependencies. PB2 reported:  

“We have seven Ingestion apps running. So, every single app has very specific things 

that it does, like Twitter Ingestor only does Tweets; the minimum stuff that they can 

do”. 

Table 7.4 Decision for “multiple deployment units in production” 

Concern  Parts of the system should be tested, deployed and scaled independently. 

Decision Multiple deployment units in production. 

Implication  
Modifiability (+), Testability (+), Scalability (+), Deployability (+), Modularity (+), 

Supportability (-) 

Technology Domain driven design, bounded context 

D4. One massive repository vs. one repository per unit 

Another difference we discovered between TeamA’s and TeamB’s projects was their decision 

about the repository. Driven by the team’s intention to build, test and deploy the artefacts in 

isolation, the TeamB has decided to build and maintain one repository per each artefact. They 

were frustrated with keeping all artefacts into one repository because with a monolithic 

repository, changing one thing required running all tests and re-deploy all things. PB3 referred to 

this decision as a key architectural decision which was deliberately made to simplify DevOps 

transition because it helped them to manage versioning of different libraries, modules, and self-

contained applications in the deployment process. Interviewee PB1 had a similar opinion to PB3 

and said:  

“I guess number one thing is that reusable libraries or components should potentially 

be in own artefact. So, you can build, test and deploy that artefact in isolation. With 

the monolith [repository] you change one thing to test that, the monolith is going to 

run all tests for everything for being (re) deployed”. 

We discovered that the concern about cycle time of deployment pipeline was another reason to 

move from one massive repository to multiple repositories in the TeamB’s project. PB3 described 

it as “build cycle in our old architecture was problematic as it hit the development and iteration”. In 



 

 

135 

 

the previous architecture, only build cycle took around 10 minutes. By re-architecting the 

deployment pipeline and having an individual repository for each artefact, the TeamB was 

enabled to rebuild a component that it has changed without rebuilding others. Therefore, the 

cycle time of the deployment pipeline turns around as currently all the build time, Ansiblizing the 

deployment process, and release to Nexus29 take approximately 10 minutes. 

Table 7.5 Decision for “one repository per unit/artefact” 

Concern  Build, test and deployment of each artefact should be performed in isolation. 

Decision One repository per unit/artefact 

Implication  
Time behaviour of pipeline (+), Testability (+), Deployability (+), Modifiability (+), 

Team collaboration (+), Versioning artefacts (+) 

Technology - 

Contrast to TeamB, TeamA uses one repository for all modules and libraries. This decision is 

heavily influenced by their monolithic architecture design. According to TeamA, their project 

used to have multiple repositories for some of components and libraries. This caused challenges 

for them in the deployment process such as it makes harder to synchronize units’ changes and it 

presents the integration problem. As explained by PA3,  

“So, if you make a change to one component, it is still built and passed the tests but 

when they would need to be together, it wouldn’t work. So, we merged all the 

components in the same repository, which then alleviated all those issues”.   

Table 7.6 Decision for “one massive repository for all units/artefacts” 

Concern Managing repository should be aligned with the architecture design. 

Decision One massive repository for all units/artefacts  

Implication  Operability (+), Modifiability (+/-), Supportability (+) 

Technology - 

D5. Application should capture and report status properly 

Monitoring and logging were identified and discussed by all interviewees as a primary area, which 

needs more attention in DevOps context. In both projects, they build logs and metrics data into 

software applications as these data can be leveraged by monitoring tools. Consequently, 

applications in DevOps context need to capture and report data about their operations properly 

[178]. The system architect in TeamA (PA3) believed that this is the most important implication 

driven by DevOps in terms of architecture. Another interviewee described the relationship 

between software architecture and monitoring as follows: 

“In order to trust your ecosystem works especially when you are changing things to 

be continuously deployed; if you don’t have strong architecture, then the application’ 

changes are less clear and is more difficult to monitor” PB1. 

Both TeamA and TeamB use two monitoring infrastructures, Consul and Ganglia, which are 

shared among a couple of projects in the case company. These systems are used for different 

purposes. Consul30 is mostly used as a high service to check the state of an application. This 

monitoring system aggregates and orchestrates metrics for cluster state, in which both the teams 

can utilize them to identify components’ changes among critical, warring or good states. 

                                                           
29 https://www.sonatype.com/nexus-repository-sonatype 
30 https://www.consul.io/ 



 

 

136 

 

According to an interviewee, this enables them to prioritize stability issues in clusters and from 

that, they are able to implement new fixes and deploy those fixes and capture the relevant 

information. As opposed to good, critical, and warring states, Ganglia31 is used for aggregating 

metrics like disc usages, input and output network, interfaces, memory usage, CPU usage. A 

software engineer in TeamB described the function of Ganglia system as follows:  

“It [Ganglia] is kind of aggregating the information. For example, this cluster node is 

constantly 100% CPU usage, this cluster almost is full disc usage. We can identify 

those stability issues as well and find out them early before becomes a real problem” 

PB3. 

It appears that whilst both the teams extensively improve their logging and monitoring capability 

using Consul and Ganglia to become DevOps, they are not interested in metrics data analytics. 

Apparently, the log and metrics data are mostly used for diagnostic purposes and they are not 

used for an introspective purpose- understanding how an application/service can be improved 

based on runtime data. We found that the low number of end users was the reason why TeamA 

and TeamB are not interested in metric analysis. A participant told us:  

“We don’t do a lot of analysis of the metrics. We do collect a lot of metrics, [for 

example] we have some centralized logging and centralized monitoring servers and 

pull all stuff in there, but it is mostly for diagnostic if the application fails and trying 

to figure out what went wrong” PA1.   

In both projects, the abundance of monitoring and logging data produced by the applications 

presents severe challenges, in which scaling up machines and capacities cannot solve the problem 

anymore. As a result, most participants felt that they have to re-think about their logging and 

monitoring approaches and how to reduce the size of logs. One participant complained about this 

pain point as follows:  

“We’ve got Consul to let us know memory usage in that computer, we’ve got a server, 

that executed by multi-tenant solution, and each of them is running their own 

application that may spin up in parallel; that consumes memory. So, you get the 

capacity issues. So maybe the solution was to scale out machine initially, but now I 

think that is an issue again” PB1. 

Table 7.7 Decision for “application should capture and report status properly” 

Concern  How observability of an application can increase in DevOps context. 

Decision Application should capture and report status properly. 

Implication  
Monitorability (+), Loggability (+), Supportability (+), Resources utilization (+), 
Analysability (+), Cost (-) 

Technology Consul, Ganglia 

D6. Application should be standalone, self-contained 

We found in the interviews frequent references to how the applications can get easily and reliably 

deployed to different environments. Besides applying “external configuration”, both the teams 

have decided that the deployment of an application or service should be locked and independent 

to other applications and services that it depends on. To this end, they have adopted a self-

contained and self-hosting approach [190], in which all dependencies need to be bundled to an 

application. An interviewee described the impact of this approach as:  

                                                           
31 http://ganglia.sourceforge.net/ 



 

 

137 

 

“Each of them [applications] like Ingestors are considered as a single standalone, self-

contained application, the pipeline is a self-contained app. They don’t really talk with 

any things else, they don’t have any external dependencies like taking one of those 

down doesn’t affect the other ones” PB2. 

To avoid interruptions of self-contained applications at runtime, they provide, where possible, the 

necessary infrastructures (e.g., load balancers) and multiple instances of applications or services 

behind them. Using Apache Kafka32 also enables them to segregate service components and 

isolate them as they can be easily swapped in/with new ones at operations time:  

“By using Kafka Buffer, you take a component out and then message its Buffers to 

either redeployed artefacts or new artefacts that are connected and consume 

messaging” PB3. 

Ansible33 tool is used as the main automation deployment tool to make sure everything is 

deployable using infrastructure-as-code. Our interviewees reported two main methods to achieve 

this. First, it should be ensured that everything along with its dependencies that is going to be 

deployed should be captured in Ansible. Second, Ansible playbooks should be written well. From 

TeamB’s architect perspective, writing good Ansible playbooks was the biggest challenge for them 

in the path of DevOps adoption and he defined a “good” Ansible playbook as: “I can run, there is 

no crush in the system if [there are] no changes. If no changes need to be made, [it] skips those little 

tasks” PB2. 

In TeamB’s project, everything is stateless as well. In addition, data fields are designed optional, 

which they can either exist or null. This was indeed helpful to the deployment process because 

there is no need to have the right database with the right data in it to restart the self-contained 

applications. The TeamB extensively uses Zookeeper34 tool to make code stateless. PB2 explained:  

”A good thing about [the applications] is that there is a clean separation between the 

apps. So, I can go and update Ingestors; I can go and updates DTO and add more 

data or meta-data to it without affecting anything downstream like I just continue 

operating on the old version of schema”. 

Table 7.8 Decision for “application should be standalone, self-contained” 

Concern  
Application in DevOps context should have the least dependency with others in 

production (i.e., operational efficiency). 

Decision Application should be standalone, self-contained. 

Implication  
Deployability (+), Replaceability (+), Recoverability (+), Availability (+), Team effort (-), 

Cost (-) 

Technology Zookeeper, Kafka, Ansible 

D7. Three distinct environments are provided to support different levels of 
development and deployment processes 

Providing sufficient physical resources (e.g., CPU and memories) to both the teams enabled them 

to establish three distinct environments including development, integration (or test), and 

production environments. In TeamA and TeamB, this was indeed a conscious decision to manage 

different levels of development, testing, and deployment in DevOps transformation [7].  

                                                           
32 https://kafka.apache.org/ 
33 https://www.ansible.com/ 
34 https://zookeeper.apache.org/ 



 

 

138 

 

Table 7.9 How often the teams deploy to different environments   

Deployment Frequency to 

 Development Environment Integration Environment Production Environment 

TeamA’s Project Multiple-time a day Once per week Once per Sprint (two-week) 

TeamB’s Project Multiple-time a day Multiple-time per Sprint At least once per Sprint 

Table 7.9 shows the frequency of deployments to these environments is different. They strictly 

follow three upfront rules in the above-mentioned environments to ease DevOps adoption: (i) in 

the development environment only unit tests need to be performed, and integration environment 

should include all dependencies to properly run integration tests against all snapshot builds. 

One participant described the test environment like this: 

“You can bring to own laptop all the infrastructure requirements of the cluster like 

Kafka Buffer, Postgre databases and Zookeeper instances. Then you locally test 

against that and then Jenkins automatically tests against the test environment” PB1. 

(ii) Code reviews should be performed before committing to the development branch. TeamA and 

TeamB use the Gitflow branching model35, in which developers do their work on feature branches 

and before merging changes to the development branch they should raise a pull request to review 

the changes in Bitbucket36 [57]. Then that pull is merged to the development branch. Except for 

large tasks which might not be merge-able in few days, multiple pull requests occur a day. The 

interviewee PB2 reported that pull request approach “would improve the merge [quality], and 

[make] development branch builds always ready for snapshot and deploying to the test 

environment”. 

(iii) Critical bugs should be fixed only on release candidate branch, not on the development 

branch. This working style along with automation support was deemed helpful to faster repair 

bugs and reduce the risk of deployed changes to production. The interviewee PB3 said: “If there is 

an issue, we can quickly fix and redeploy quickly. So, the turnaround is very small because all are 

automated at the moment”. 

Applying the above-mentioned principles leads to the development branch being potentially in 

the releasable state anytime, but it is not necessarily stable. An interviewee summarized it as:  

“It [main branch] is a stable artefact. The development branch, which is all integrated 

features, ready to be merged into master anytime, [but] that might not be quite 

stable” PB3. 

Therefore, both the teams have always stable version software that can be released anytime. 

Although they deploy to production at the end of Sprint, actual production deployments are not 

tied to the Sprint and can be frequent. One interviewee said: 

“We are working two weeks Sprint. We always try to our releasable is done in two 

weeks Sprint but often [we have] more releases, quite often. I think it is releasable in a 

couple of times a week” PB1. 

“Releases are not tied to the Sprint tempo - they can be more or less frequent” D. 

                                                           
35 https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow 
36 https://bitbucket.org/ 



 

 

139 

 

Table 7.10. Decision for “Three distinct environments should be provided to support different levels of 

development, testing, and deployment.” 

Concern  How development and deployment processes can be easier for DevOps context. 

Decision 
Three distinct environments are provided to support different levels of development, 

testing, and deployment 

Implication  Supportability (+), Testability (+), Deployability (+), Cost (-) 

Technology - 

D8. Teams should be cross-functional, autonomous 

Another key decision made by the studied organization to support DevOps transition is to set up 

small, cross-functional, self-organized teams. Both studied teams have end-to-end ownership of 

their own products, from design to deployment to supporting the code in production: “The 

significant part of engineering team’s time is to maintain the DevOps aspect of the app– I mean the 

complexity of operations as we have to maintain infrastructure as code and understand that, we 

have to spend time looking at metrics” PB1. Furthermore, each team is a full-stack team, in which 

not only all skills exist in the team, but also everybody should know about testing and operations 

skills (e.g., writing Ansible playbooks). In both the teams, testing is considered as a rotating 

activity, not as a phase, which should be performed by all developers. It should be noted that 

some software engineers have been frustrated with doing operations tasks as this can be a source 

of distraction for doing real software development tasks (e.g., debugging). As an example, we 

have:  

“Sometimes you [as a developer] spend a lot of time on debugging Ansible and Jenkins 

and infrastructures things, for example why Kafka Buffer is not coming from this 

host. It is kind of being dust by DevOps on deployment task” PB2. 

Both TeamA and TeamB are also autonomous by which they have the freedom to act 

independently and make their own architectural and technology decisions. For instance, as 

discussed earlier, they have chosen two different approaches for architecting their systems. 

Collaboration culture is well established in both the teams through co-design and shared 

responsibilities. Regarding the partnership in testing activity, the interviewee PA1 added: “We are 

rotating testing role so one person is responsible for testing everything in previous Sprint and then 

press proof button and say: to get deployed to the production”. Whilst each team has an architect 

inside it, other team members actively and substantially participated in the architecting process. 

According to an interviewee, the feedbacks of other team members constantly improve the 

architecture. Architects are mainly responsible for designing and evaluating the systems, 

however, in addition to be an architect they also do coding and testing. The architect of TeamA 

put the collaborative design in these words: 

“Everybody is involved in architecture [design], we are not going to have only I as a 

solution architect, everyone in the team can do that. The architecture is done in daily 

work and everyone can have his [own] idea” PA2. 

Table 7.11 Decision for “Teams should be cross-functional, autonomous.” 

Concern  How teams should be reorganized to effectively adopt DevOps. 

Decision Teams should be cross-functional, autonomous. 

Implication  Team collaboration (+), Team effort (-) 

Technology Confluence, HipChat, JIRA, Bitbucket 



 

 

140 

 

7.4  Lessons Learned 

In the previous section, we have provided the key insights about the architectural decisions and 

tactics and their potential implications that fall under name DevOps in our case study. In the 

following, we discuss some of the key lessons learned in the context of related works and the 

implications of our results, which might be helpful for other organizations and practitioners 

trying to adopt DevOps. 

Microservice-based architectures are not only DevOps-driven architectures: Whilst many 

software organizations [129, 147, 191] have adopted microservice-based architecture as a driver to 

succeed in DevOps, our results in this study have taught us that achieving a truly DevOps-driven 

architecture requires loosely coupled architectures and prioritizing deployability, testability, 

modifiability, monitorability, and loggability over other quality attributes. Our findings in this 

chapter and previous chapter are in line with recently published technical report by 2017 State of 

DevOps Report [35], which reveals that apart from architecting a system with microservices style 

or service-oriented architecture, loosely coupled architectures and teams are the biggest 

contributors to DevOps success (i.e., continuous delivery enabled by DevOps). Etsy is a notable 

example of this scenario as it has successfully implemented DevOps using a monolithic system 

[176]. Whilst both TeamA and TeamB realized that the fundamental limitation to rapid and safe 

delivery resides in the architectures of their systems, we did find significant differences in the 

architectural approaches employed by TeamA and TeamB to architect their systems: monolith vs. 

microarchitecture. Here monolith means a single build system, in which all the functionality is 

managed and deployed in one deployable unit [152, 153].  

This does not necessarily mean that a monolith is a highly coupled architecture. TeamA’s project 

uses one monolithic deployment unit, whilst TeamB’s project is composed of several autonomous, 

self-contained applications and microservices, which are built, tested, and deployed 

independently from each other. We observed that TeamB is more likely to have loosely coupled 

architecture than that of TeamA. It is mainly because changing architecture in TeamA’s project is 

not straightforward as the architect needs to get involved frequently when changes happen. 

Conversely, TeamB members could apply small-scale changes to their architecture without the 

need for communication and coordination with the software architect. However, in both systems 

applying large-scale changes requires involving architects. Another sign that shows the 

architecture of TeamB’s project is more modular is that TeamB has higher deployment frequency 

to lower environments (e.g., test environment) compared to TeamA (See Table 7.9).  

Our results in the previous chapter show that the architectures in DevOps context should support 

evolutionary changes. This implies that architectural decisions should be delayed until they are 

necessary (i.e., delaying decisions to the last possible moment) [168]. However, it does not mean 

that there is no longer a need to have a long-term vision of architecture. Put another way, core 

architectural decisions need to be made at the early stage of development in DevOps context. By 

ignoring this necessity, TeamA experienced a pain point in the architecting process as they ended 

up major refactoring of the whole stack of their system several times. 

Operations specialists always required: Our study shows that establishing cross-functional, 

autonomous teams was one of the key decisions made in the case company to implement 

DevOps. We observed that operations expert is not embodied as a distinct role on both TeamA 

and TeamB or there is no a dedicated operations team in the case company. Operations skills are 

regarded as a skillset that blends with other skills such as software development and need to be 

performed by developers. We have observed that performing the operations tasks that require a 

deep expertise in operations (e.g., provisioning infrastructures) is burdensome for developers. 



 

 

141 

 

This lead to the significant part of developers’ time is spent on operations tasks (e.g., writing 

Ansible playbook) rather than real software development tasks. Furthermore, the participants in 

this study found that this can give a good excuse for them to do not perfectly perform operations 

tasks. This can be exemplified by the Ansible playbooks written by the developers as part of their 

new responsibilities in DevOps transformation. Whilst teams’ members found that the written 

Ansible playbooks are not good, we found that there is no any demand to improve them. In our 

view, this could originate from the fact that operations responsibilities are ambiguous for 

developers and some of the operations tasks are not clear who should do. Furthermore, in 

DevOps transformation development side is more emphasized than operations side (See Section 

6.5.4 in Chapter 6 for more information). This could be due to the fact that most of the business 

values come from the development side (e.g., adding more features).  

Whilst the interviewees strongly emphasized that deployment tasks should be performed by 

developers in the context of DevOps, but we emphasize that operations specialties need to be 

embedded in each team for complex operations tasks [192, 193]. This really would be beneficial for 

development people as they can more concentrate on real software engineering’s tasks. This is in 

line with the findings from Chapter 3, which show that the majority of the surveyed organizations 

(76 out of 93) prefer having distinct operations team or operations specialists for specific 

operations tasks. 

The Road Ahead (Remaining Challenges): One of the most emphasized DevOps practices is 

continuous delivery or continuous deployment [21]. Both teams successfully practice continuous 

integration as the developers in each team integrate code into a shared repository multiple times 

a day [79]. However, despite having an automated deployment to production, they are not able to 

or do not practice continuous delivery or deployment as actual production deployment happens 

once per two weeks. Table 7.9 also shows that deployment pace to integration or test 

environment is low. As we discussed in Chapter 4, whilst deploying continuously into production 

might be influenced by many socio-technical factors (e.g., in this case study: the circumstance of 

the projects), we have observed a strong influence of test automation on rapid deployment.  

The problems that both TeamA and TeamB have about testing are not having enough test 

coverage, lack of comprehensive end-to-end integration test automation, and performance, security 

and acceptance tests are not part of the deployment pipeline. All these issues have reduced the 

confidence of the teams to have multiple times deployments a day. Both TeamA and TeamB have 

started automating end-to-end integration test and improving test coverage. However, given the 

size of the teams and end users, and the overhead (i.e., time and cost) of developing and 

maintaining automated performance and acceptance tests, both teams prefer to do these sorts of 

tests manually. For instance, as the overhead of maintaining Selenium-based User Interface (UI) 

testing increased (e.g., because UI changes a lot), the TeamA found that it is better to turn off UI 

testing in the deployment pipeline. That is why currently they do it manually on the release 

branch.  

Many architectural decisions reported in Section 7.3 were made to improve the testability of an 

application in DevOps context, however, as argued in [1, 21] organizations should ensure to have 

good test coverage, write tests that less consume cycle time of the deployment pipeline, and 

automate tests (e.g., performance) that occur at the last stages of the deployment pipeline for 

implementing continuous delivery and deployment. This provides confidence to deploy to 

production continuously and automatically. 



 

 

142 

 

7.5  Related Work  

This section presents existing research which has investigated the role of software architecture in 

the context of DevOps.  

Over the last seven years, Puppet37 has annually released non-peer reviewed reports to study the 

current state of DevOps in practice [9, 35]. In 2017 [35], the role of software architecture in 

DevOps was deeply examined to investigate how application architecture, and the structure of the 

teams that work on, impact the delivery capability of an organization. The main finding of this 

report reads, “loosely coupled architectures and teams are the strongest predictors of continuous 

delivery”. Surprisingly, it is also revealed that many so-called service-oriented architectures (e.g., 

microservices) in practice may prevent testing and deploying services independently from each 

other. Subsequently, it can negatively influence teams to develop and deliver software. The 

relation between software architecture and Continuous Delivery or Deployment (CD) as a key 

practice of DevOps was investigated in [38, 40, 75]. Schermann et al. [40] identify that monoliths 

are the main source of pain to practice CD in industry. Another study [38] elicit a set of quality 

attributes such as deployability, security, modifiability, and monitorability that need more 

attention to gain the maximum benefits of continuous delivery. In a retrospective study on three 

projects adopting continuous integration and delivery, Bellomo et al. [75] reveal that the 

architectural decisions made in those projects played a significant role to achieve the desired state 

of deployment (i.e., deployability). In [194], Di Nitto et al. outlined architecturally significant 

stakeholders (e.g., infrastructure provider) and their concerns (e.g., monitoring) in DevOps 

scenarios. Then a framework called SQUID was built, which aims at supporting the 

documentation of DevOps-driven software architectures and their quality properties. 

An alternative line of research has attempted to leverage microservice-based architectures in 

DevOps context [129, 147]. Based on an experience report, Balalaie et al. [147] present the 

architectural patterns (e.g., change code dependency to service call) and technology decisions 

(e.g., using containerization to support continuous delivery) employed by a case company to re-

architect a monolithic architecture into microservices in the context of DevOps. In [129], Callanan 

and Spillane discuss that developing a standard release path and implementing independently 

releasable microservices through building backward compatibility with each release were the 

main tactics leveraged by their respective company to smooth DevOps transformation. These 

tactics also significantly reduced the delays in the deployment pipeline. 

7.6  Conclusion 

This chapter has reported a case study with two teams in a company (i.e., it has been referred to 

as case company in this chapter), which provides insights into the architectural decisions, their 

perceived implications, and the challenges that both teams faced when architecting their systems 

as part of their DevOps journey. The successful architectural decisions and the challenges can 

serve as guidelines for architecting applications to enable and support DevOps. For example, 

organizations that would like to adopt DevOps may augment their applications using “external 

configuration” described in Section 7.3. Our findings suggest that DevOps success is best 

associated with modular application architectures and needs to prioritize deployability, 

testability, modifiability, monitorability, and loggability over other quality attributes. We also 

found that developers often struggle with performing those operations tasks need a deep 

expertise in operations. 

                                                           
37 https://puppet.com/ 



 

 

143 

 

 

This thesis presents a set of empirical studies on two key practices of DevOps, i.e., 

continuous delivery and deployment. More specifically, the goal of this thesis is to 

empirically investigate the impact of continuous delivery and deployment practices 

on organizational structure and software architecture, those that are supposed to be 

fundamental limitations to adopt these practices. To that end, we first designed and 

conducted a systematic literature review to assess the existing literature. Second, we 

designed, implemented, and analyzed a large-scale mixed-methods empirical study, 

consisting of 21 semi-structured interviews from 19 organizations and 98 survey 

responses. Finally, we conducted an industrial in-depth case study with two teams in 

a case company. In the remainder of this chapter, we first revisit the research 

questions introduced in Chapter 1, and then discuss some promising areas for the 

future work. 

8.1 Answers to the Research Questions 

RQ1. What is the state of art of continuous integration, delivery and deployment 

research? 

▪ We identified thirty approaches and associated tools to facilitate the implementation of 

continuous integration, delivery, and deployment. These approaches and associated tools 

(i.e., not mutually exclusive) are expected to (i) reduce build and test time in continuous 

integration (9 approaches), (ii) increase visibility and awareness on build and test results 

in continuous integration (10 approaches), (iii) support (semi-) automated continuous 

testing (7 approaches), (iv) detect violations, flaws, and faults in continuous integration 

(11 approaches), (v) address security, scalability issues in deployment pipeline (3 

approaches), and (vi) improve dependability and reliability of deployment process (3 

approaches).  

▪ We have identified 20 challenges and 13 practices for continuous integration, continuous 

delivery and continuous deployment practices, which can guide software organizations to 

adopt these practices step by step and smoothly move from one practice to another. 

▪ We found “testing (effort and time)”, “team awareness and transparency”, “good design 

principles”, “customer”, “highly skilled and motivated team”, “application domain”, and 

“appropriate infrastructure” are the most critical factors to successfully adopt and 

implement continuous integration, delivery, and deployment in a given organization. 

Conclusions and Future Works 

Chapter 8 



 

 

144 

 

RQ2. What are the organizational impacts of continuous delivery and deployment? 

▪ We noticed that there is an indeed difference between practicing continuous delivery and 

continuous deployment in industry. 

▪ We found that making a decision to move from continuous delivery to continuous 

deployment is influenced by both technical and socio-technical factors. 

▪ We looked at the current state of practice of deployment pipelines in the industry and 

found that “version control”, “build”, “unit/integration testing”, “continuous integration” 

and “production deployment” are the most common stages of the deployment pipelines. 

▪ We observed that the last stages of the deployment pipelines including “acceptance 

testing”, “production deployment”, and “configuration and provisioning” stages are likely 

to be semi-automated or manual. 

▪ We identified 11 confounding factors that demotivate or limit organizations to move from 

continuous delivery practice to continuous deployment (i.e., having automatic and 

continuous deployment). These factors include “lack of fully automated (user) acceptance 

test”, “manual quality check”, “deployment as business decision”, “insufficient level of 

automated test coverage”, “highly bureaucratic deployment process”, “lack of efficient 

rollback mechanism”, “dependency at application level”, “demotivated customer”, 

“customer environment”, “domain constraints”, and “manual interpretation of test 

results”. 

▪ We clustered development and operations teams based on types of activities they 

perform in adopting continuous delivery and deployment and identified four distinct 

clusters for their working styles. These clusters include (i) separate Dev and Ops teams 

with higher collaboration; (ii) separate Dev and Ops teams with facilitator(s) in the 

middle; (iii) small Ops team with more responsibilities for Dev team; (iv) no visible Ops 

team. 

▪ We revealed that “co-locating teams”, “rapid feedback”, “joint work and shared 

responsibility”, “using (common) collaboration tools more often”, “increased awareness 

and transparency”, and “empowering and engaging operations personnel” are the main 

strategies attempted by software-intensive organizations to improve collaboration among 

teams and team members for practicing continuous delivery or deployment. 

▪ We highlighted three key high-level changes in the responsibilities of teams or team 

members, which are needed to effectively initiate and implement continuous delivery and 

deployment, including “expanding skill-set”, “adopting new solutions aligned with 

continuous delivery/deployment”, and “prioritizing tasks”. 

RQ3. What are the architectural impacts of continuous delivery and deployment? 

▪ We discussed that whilst monoliths and continuous delivery/deployment are not 

intrinsically oxymoron, adopting continuous delivery/deployment in monoliths is more 

difficult, as there are hurdles for having team autonomy, fast and quick feedback, 

enabling automation (e.g., test automation) and scalable deployment. 

▪ We observed that breaking down monoliths into smaller pieces brings more flexibility in 

continuous delivery/deployment; however, this is a challenging process for organizations. 



 

 

145 

 

▪ We found inflexibility of organizational structure (e.g., team structure) with the spirit of 

continuous delivery/deployment practices is the most critical challenge for implementing 

these practices. 

▪ We empirically found “small and independent deployment units” is a key principle, which 

is widely used as an alternative to monoliths and serves as a foundation to design 

continuous delivery/deployment-driven architectures. 

▪ We revealed that autonomy in terms of deployability, modifiability, testability, scalability, 

and isolation of the business domain are the main characteristics of this principle. 

▪ We found adopting vertical layering and microservices to promote delivery speed comes 

at a cost as it necessitates considering organizational structures and highly skilled team. 

Ignoring this fact may negatively impact the deployment capability of an organization. 

▪ We found that the importance of a set of quality attributes including deployability, 

testability, modifiability, monitorability, loggability, and resilience has increased, but 

overthinking about “reusability” at architecture level may negatively impact continuous 

delivery/deployment adoption. 

▪ We provided empirical evidence that designing highly operations-friendly architectures 

are achieved by 

o prioritizing operations concerns,  

o early and continuous engagement of operations staff in decision-making, 

o leveraging logs and metric data for operational tasks. 

▪ We found DevOps works best with modular architectures. 

8.2 Opportunities for Future Research 

The research presented in this thesis constitutes a step toward an empirical understanding of the 

impacts of continuous delivery and deployment on software architecture and organizational 

structure. Despite this thesis makes a significant contribution in this regard, there are still several 

research areas, open challenges, and gaps which require further work. Whilst some ideas for 

future work have already been discussed in the previous chapters, here, we summarize them in 

the following areas: 

8.2.1 Replicating the Study 

Whilst our research is the first large-scale qualitative study on the impact of DevOps on 

architecture, the replication of our research with larger samples in different contexts can be a line 

of research for future research. This provides a more reliable generalization of the findings 

presented in this thesis and can be used to verify which architectural principles, practices, and 

challenges less or more fit for a specific context (e.g., cloud environments) [43]. Achieving larger 

samples would enable performing dependency analysis in the survey responses to gain insights 

into the correlation between them. 

8.2.2 Investigating Microservices Architectures in DevOps 

DevOps and microservices architectures are two important trends in software research and 

practice. It is argued that microservices is the first architectural style after DevOps practices 



 

 

146 

 

gathered momentum [149]. Whilst industry community mostly discusses the benefits of 

microservices-based architectures to embrace DevOps practices, our observation in Chapter 6 

shows that software organizations are more interested in designing architectures that are much 

less monolithic or only adopting the microservices architectural style in a minor way for DevOps 

practices. There may be several reasons for this strategy such as service granularity complexity, 

inflexibility of the organization’s structure with target architectures, and lack of strong evidence 

about the long-term success and benefits of microservices compared to its challenges (e.g., testing 

can be more complex) and drawbacks [162]. Hence, it would be interesting to empirically 

investigate the challenges and benefits of microservices-based architectures with DevOps 

practices. This may also lead to some guidelines for improving the adoption of microservices-

based architectures within the context of DevOps. 

8.2.3 Understanding the Role of Software Architect in DevOps 

In the empirical studies presented in Chapters 5, 6 and 7, we found that the roles and 

responsibilities of software architects have changed in the context of DevOps as they do not only 

design architecture; they often must deal with and guide infrastructure architecture, test 

architecture, and team structure. Recent studies [21, 142, 195] also discuss why the architect is 

important in moving to DevOps. Future works should focus on how software architects perform 

their work in DevOps context to provide guidance for required job skills and education programs.  

8.2.4 Studying the Impact of DevOps on Operations Responsibilities 

In Chapter 5, we uncovered several changes in team members’ roles and responsibilities for 

moving into DevOps practices. Our focus in Chapter 5 and other studies [62] was mostly on the 

engineering team (e.g., developer and architect) rather than operations team. However, it is 

argued that operators are also heavily influenced by DevOps [196]. Yet, it is unclear how DevOps 

changes operations responsibilities and what operations teams inside an organization would need 

to do/make for DevOps success. A better understanding of operations responsibilities’ changes 

under DevOps may help improve the importance of operations teams in the software 

development process as it is highly emphasized that they should be treated as first-class 

stakeholders in DevOps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

147 

 

 

 

Title: (Re-) Architecting for DevOps, Continuous Delivery and Deployment Practice 

Research Team: Mojtaba Shahin, M. Ali Babar and Liming Zhu 

Ethics Approval Number: H-2015-270 

The University of Adelaide, Australia 

General Information 

This study is exploring the impacts of DevOps (development and operations) and Continuous 

DElivery (CDE) and Deployment (CD) practices on architecting process and how appropriate 

architecture design of the software can help achieve highly frequent and reliable deployment into 

production. We are interviewing software practitioners who either have experiences in 

architecting for DevOps/CDE/CD (e.g., architect) or are closely involved with or influenced by 

architecture (e.g., maintainer, operations engineer). We call them architecturally significant 

stakeholders. 

Interview guide 

The interview will be semi-structured. The schedule will include the following topics and 

questions: 

Interviewee’s background 

▪ What are your role and responsibilities in the project team? 

▪ How long have you performed that role?  

▪ Have you had any experience as a software architect? If so, how long? 

▪ Please talk about the size and domain of your organization. 

Project’s description 

[Note: The project(s) adopting DevOps/CDE/CD practice or one of the continuous practices such 

as continuous integration, delivery, deployment, deployment automation or microservices 

were/are the major focus in this project] 

▪ What is/was the domain and type of project? 

▪ Team size: how many people are/were involved in this project? 

Interview Guide for the Mixed-methods Study 

Appendix A 



 

 

148 

 

▪ [Specific challenges for DevOps/CDE/CD context] Please give a brief overview of challenges 

that you might experience in this project? How could you manage these challenges? 

Deployment pipeline and deployment frequency 

▪ How often is/was the application in a releasable state?  

▪ How often do/did you deploy the application to production or the customer? 

▪ Was/is the deployment pipeline fully automated or not? If not, why? 

Dev and Ops teams 

▪ In this project, are/were the development and operations tasks performed by the same team?  

▪ Could you describe your team structure before and after the adoption of DevOps/CDE/CD?  

o How adopting DevOps/CDE/CD could change your team structure?  

▪ How could the adoption of DevOps/CDE/CD change your daily work activities? 

▪ How do/did you consider operations requirements in the design process? 

▪ Do/Did you involve operations stakeholders in the decision-making process at the early stage 

of software development? If so, how? 

▪ Do/Did you have any difficulties in prioritizing the concerns of operations stakeholders with 

other stakeholders?  

o How did you manage them? 

Architecture and Continuous Delivery/Deployment Practices  

[Note: deployability is a quality attribute (non-functional requirement) which means how reliably 

and easily an application/component/service can be deployed to (heterogeneous) production 

environment] 

▪ How would you describe the relationship between architecture and CDE/CD practice?  

▪ How does the adoption of CDE/CD practice change the architecting process? 

▪ How do/did you design the architecture of your system to enable and better support 

DevOps/CDE/CD practice e.g., improving deployability, easily changing and evolving code at 

the early stage of the development?  

o How do/did you predict and evaluate the deployability of your software system during 

the design process?  

o When you are/were designing the system, how you make/made trade-offs between 

design options in order to satisfy the deployability? 

o Can you provide examples of architectural decisions you made for improving 

deployability?  

▪ What architecture principles and practices (e.g., patterns, styles, and tactics) do/did you 

employ to promote and support CD practice?  



 

 

149 

 

o How do you break down the monolithic applications into independently deployable 

units/components/services?  

▪ Are you using any criteria for this purpose?   

o Are you using microservices style for this purpose?  

▪ What about other techniques for this purpose? 

▪ What challenges do/did you experience whilst designing application the application 

architecture for CDE/CD? 

o Can you provide some examples of these sub-optimal architectural decisions that let to 

deployment-related limitation? i.e., architectural decisions that impeded the desired 

level of deployment/led to substantial technical debt 

▪ What quality attributes are more influenced by the CDE/CD context? How is this so? 

▪ What quality attributes are in support of or in conflict with deployability? How is this so? 

▪ What is your opinion about logging and monitoring in DevOps/CDE/CD context? 

o Can you provide one example of these architectural decisions you made for this purpose? 

▪ What kind of runtime data (e.g., production data, operations metrics and runtime data) did 

you utilize to make informed DevOps-specific (architectural) design decisions? 

o Can you provide examples of these data? 

Are there any comments and issues you want us to know? 

Can you please suggest any suitable persons participate in this interview?  

 

 

 

 

 

 

 

 

 

 

 



 

 

150 

 

 
Title: (Re-) Architecting for DevOps, Continuous Delivery and Deployment Practices 

Research Team: Mojtaba Shahin, Prof. M. Ali Babar, Dr. Liming Zhu, and Dr. Mansooreh Zahedi  

Ethics Approval Number: H-2015-270 

The University of Adelaide, Australia 

General Information 

This survey aims at investigating how applications should be (re-) architected to enable and 

better support the principles of DevOps (Development and Operations) and Continuous 

DElivery/Deployment practices (i.e., frequently and reliably releasing new features and products 

with as much automation support as possible, close collaboration between Development and 

Operations teams, etc.). Furthermore, this survey is aimed at quantifying and augmenting the 

initial findings obtained from interviews with software industrial practitioners. If you are an 

industrial practitioner (e.g., developer, architect, consultant, program manager, tester, operations 

engineer, etc.) who works in DevOps context or DevOps practices, e.g., Continuous Integration 

(CI), Continuous DElivery (CDE), Continuous Deployment (CD), Microservices, and Deployment 

Automation, we would be greatly appreciative if you kindly respond to the following questions.  

Useful Definitions  

Architecting is a process of designing and evaluating software architecture of a system; 

essentially it’s a decision making for devising and assessing design solutions. Both conceptual 

solutions (e.g., architectural patterns and tactics) and technology solutions (e.g., tools) are 

considered as architectural solutions and subject to architectural decisions.  

Deployability is a quality attribute (non-functional requirement) which means how reliably and 

easily an application/component/service can be deployed to (heterogeneous) production 

environment 

Continuous DElivery (CDE) practice is aimed at ensuring an application being always in the 

releasable state (i.e., an application can potentially be deployed at any time to production-

like/stage environment). 

Continuous Deployment (CD) practice goes a step further and automatically and steadily 

deploys the application or changes to a production environment without human intervention. 

It is argued that while CD practice implies CDE practice, the converse is not true. The scope of 

CDE does not include continuous and automated release, and CD is consequently a continuation 

of CDE. There should be NO manual steps or decisions in CD, in which as soon as developers 

Survey Instrument 

Appendix B 



 

 

151 

 

commit a change, the change is automatically deployed to production through a continuous 

deployment pipeline. 

Your participation is important to enable us to correctly understand and characterize the 

challenges and key practices that should be considered when an application is (re-) architected 

for CD practice. The results will be used to develop recommendations for better practices and tool 

support in this regard. 

Ethics Approval 

This study has been approved by the Human Research Ethics Committee at the University of 

Adelaide (approval number H-2015-270) (you can download the Ethics Approval from this link: 

https://mojtabashahin.files.wordpress.com/2016/02/h-2015-270-babar-amendment-approval.pdf). 

Consent 

Participation in this survey is completely voluntary. You are free to decide to withdraw yourself or 

your information prior to the survey being submitted without any penalty. It should be noted that 

because participants are non-identifiable in this study, it will not be possible for participants to 

withdraw themselves and their information once they would have submitted the responses (as it 

will not be possible to determine which response is theirs). Therefore, the participants are only 

able to withdrawal themselves and their information prior to submitting their responses.  

All data collected from this survey will be subject to confidentiality (i.e., the anonymity of 

individuals and their respective organizations). We will NOT attribute your responses to any 

participant. You will not be identified in the potential publications in the future and your 

personal results will not be divulged. Answering this survey may take about 20 minutes. For most 

parts of this survey, you only need to rate how strongly you agree or disagree on the proposed 

statements. If you are interested to receive the results of the survey when published, you can 

provide your email address at the end of the survey. We invite practitioners who have experience 

in DevOps, Software Architecture, Continuous DElivery (CDE), Continuous Deployment (CD), 

Microservices and Deployment Automation, from different organizations with divergent domains 

and of varying business sizes. Particularly, we would be greatly appreciative of the practitioners 

who work for organizations that consider software architecture as a contributing factor to adopt 

and implement CDE or CD practices. More information about this study can be found in 

“Participant Information Sheet” (https://mojtabashahin.files.wordpress.com/2016/02/participant-

information-sheet_survey.pdf). 

It is worth noting that the completion and submission of this survey indicate that you consent to 

be involved in this survey study. 

Benefit 

It is not expected that you will benefit from participating in this survey, apart from knowing that 

your contribution will help contribute an evidence-based body of knowledge to support further 

development and adoption of CD practice.  

Take an appreciation of the participants' time, we are holding a drawing for five newly published 

DevOps book entitled "DevOps: A Software Architect's Perspective", SEI Series, Addison-Wesley, 

2015" among all survey participants. Furthermore, we will be happy to provide with an earlier 

version of the final report, so you would access to the knowledge and understanding produced 

based on this study before a wider audience of researchers and practitioners.  



 

 

152 

 

Contact 

If you have any question about this study, please contact us: 

Mr. Mojtaba Shahin, mojtaba.shahin@adelaide.edu.au || mojtabashahin@gmail.com, Tel: +61 831 

34519 

Prof. Muhammad Ali Babar, ali.babr@adelaide.edu.au 

Dr. Liming Zhu, liming.zhu@nicta.com.au 

Dr. Mansooreh Zahedi, mzah@itu.dk. 

This survey is being conducted by Mr. Mojtaba Shahin, Prof. M. Ali Babar, Dr. Liming Zhu and Dr. 

Mansooreh Zahedi from The University of Adelaide, Data61, Australia and IT University of 

Copenhagen, Denmark. 

What if I have a complaint or any concerns? 

If you have questions or problems associated with the practical aspects of your participation in 

the project or wish to raise a concern or complaint about the project, then you should consult the 

Principal Investigator. Contact the Human Research Ethics Committee’s Secretariat on phone +61 

8 8313 6028 or by email to hrec@adelaide.edu.au. If you wish to speak with an independent person 

regarding concerns or a complaint, the University’s policy on research involving human 

participants, or your rights as a participant. Any complaint or concern will be treated in 

confidence and fully investigated. You will be informed of the outcome. 

Thanks a lot in advance for your support! 

You are free to forward the survey to your colleagues who are eligible for participation without 

our consent. 

You may only participate in this survey if and only if:  

• I am 18 years old or older  

• I am working professionally in software/IT industry and my organization adopted or is 

adopting one of the following DevOps practices: Continuous DElivery (CDE), Continuous 

Deployment (CD), Microservices, and Deployment Automation. Or I am an independent 

practitioner/consultant and have experience with the above-mentioned practices.  

Survey Questions 

Questions Scale 

Demographic Questions 

Q1. How many years have you worked in software or IT 
industry?  

0–2 / 3–5 / 6–10 / > 10 years 

Q2. What is your role in the development project? Developer / Architect / Tester / QA / … 

Q3. How large is your organization?  1–100 / 101-1000 / >1000 employees  

Q4. What is the domain of your organization?  
Consulting and IT services / Embedded 
system/ … 

Q5. On average, how many people work on the projects that 
adopted/are adopting CDE/CD practice? 

Just me / 2–6 / 7–15 / 16-30 / > 30  



 

 

153 

 

Q6. How long ago has your organization adopted 
CD/CDE/Microservices/Deployment Automation practices? 

0–1 / 2–4 / 5–8 / > 8 years 

Continuous Delivery/Deployment Pipeline and Automation  

Q7. Regarding the design and implementation of continuous 
delivery/deployment pipeline in my organization: 

1. A dedicated/centered team in our 
organization has been established to 
design, develop and maintain a 
continuous deployment pipeline that 
would work best for the organization. 
Then other teams use that pipeline. 
2. The continuous deployment pipeline 
has been built by a temporarily 
established team in our organization and 
then other teams use that pipeline. 
3. An external consulting organization 
has built the continuous deployment 
pipeline for us and the teams in our 
organization have been trained by the 
consulting organization to use that 
pipeline. 
4. Other (Specify) 

Q8. On average, how often is your application in a releasable 
state (i.e., production-ready)?  

Multiple times a day / Once a day / A few 
times (e.g., one or two) a week / A few 
times (e.g., one or two) a month / A few 
times (e.g., one or two) a year 

Q9. On average, how often do you deploy/release your 
application to production or the customer environment?  

Multiple times a day / Once a day / A few 
times (e.g., one or two) a week / A few 
times (e.g., one or two) a month / A few 
times (e.g., one or two) a year 

Q10. Imagine your application is theoretically "production-
ready" (i.e., successfully adopting CDE practice), which of the 
following issues or factors (if any) limit or demotivate you to 
"continuously" and "automatically" deploy the application or 
changes to "customer/production environment" (CD practice): 

1. Lack of fully user acceptance test 
automation. 
2. Deployment process in our 
organization or our client organization is 
still highly bureaucratic (e.g., a large 
number of formal tasks, including 
documentations should be manually 
filled out and signed before each release). 
3. Quality assurance team has to 
manually check and confirm the 
application before each release. 
4. We need to do a lot of manual and 
complex configurations in a customer 
environment before a software release. 
5. We should deliver software to our 
customer based on specific and 
predefined timeslots (i.e., calendar-based 
release). 
6. Interpretation of test results is so time-
consuming and labor-intensive process. 
7. Deploying to production is considered 
as a business decision, which should be 
made by management and financial 
sectors.  It is out of low-level 
stakeholders' control (e.g., developers) to 
deploy every change immediately to 
production. 
8. Domain constraints (e.g., embedded 
system) do not allow us to deploy to 
customer environment frequently. 



 

 

154 

 

9. The application still has a lot of 
dependencies with other applications 
(i.e., integration problem with other 
applications in the deployment process). 
10. We don't have an efficient rollback 
mechanism to quickly recover issues in 
the deployment process. 
11. Insufficient level of automated test 
coverage reduces our confidence in the 
readiness of the applications for 
deployment. 
12. We do not face any challenge in 
continuously and automatically 
deploying software to 
customer/production environment at all. 
13. Other (Specify): 

Q11. How would you grade your continuous 
delivery/deployment pipeline in terms of automation? 

1 (completely manual) / 2 / 3 / 4 / 5 
(completely automated)  

Q12. Which of the following phases constitutes your continuous 
delivery/deployment pipeline? 

Version Control / Build / Continuous 
Integration / Artifact Repository 
Management/ Unit and Integration 
Testing / Acceptance Testing / 
Deployment / Configuration and 
Provisioning / Log Management and 
Monitoring / Containerization / Other 
(Specify) 

Q13. Which phase(s) in your continuous delivery/deployment 
pipeline has the most automation support? Why? 

Free text 

Q14. Which phase(s) in your continuous delivery/deployment 
pipeline has the least automation support? Why? 

Free text 

Q15. What are the names of the tools and technologies (e.g., 
Jenkins, Chef, Docker) that you are using to set up a tool-chain 
for continuous delivery/deployment pipeline? 

Free text 

Q16. We have the right tools to set up fully automated 
continuous deployment/delivery pipeline. 

Strongly agree / Agree / Neutral / 
Disagree / Strongly disagree 

Q17. Given the increasing importance of automation in CD/CDE 
practice, in your understanding what are the top four things you 
look for/need/would like to see in automation (e.g., type of 
automation needs to be improved, security support)? 

Free text 

Team Structures and Operations Stakeholders 

Q18. My responsibility has changed after our organization 
adopted CDE/CD practice. 

A little / Somewhat / Much / Very much 
/ Not at all 

Q19. Please explain how your responsibility has changed (e.g., 
what new skills you require for CDE/CD)? 

Free text 

Q20. The collaboration between team members (e.g., 
developers, quality assurance team, testers, and operations 
team) has increased in my organization since the adoption of 
CDE/CD practice. 

Strongly agree / Agree / Neutral / 
Disagree / Strongly disagree 

Q21. Please explain how collaboration has increased (e.g., 
placing operations team next to developers at the same 
office/location)? 

Free text 

Q22. Which of the following statements would best describe the 
structure of the development and operations teams in your 
organization: 

1. We still have separate development 
and operations teams, but they have 
more collaboration and coordination 
than ever. 
2. We still have separate development 
and operations teams, but they have 



 

 

155 

 

more collaboration and coordination 
than ever. Furthermore, we established a 
team/person, for example so-called 
DevOps team, between development and 
operations teams to manage and 
facilitate the collaboration and 
communication. 
3. We have a VERY small operations team 
(e.g., two or three members to do specific 
tasks) and most of responsibilities of 
operations team have been shifted to 
development teams. 
4. We don’t have a visible and distinct 
operations team at all, and the 
operations colleagues are completely 
integrated in development team (i.e., all 
team members have a shared 
responsibility and purpose). 
4. Other (Specify): 

Q23. Despite the adoption of CDE/CD practice in my 
organization, the operations team’s concerns and requirements 
still have a lower priority than other stakeholders. 

Strongly agree / Agree / Neutral / 
Disagree / Strongly disagree 

Q24. To increase the amount of attention paid to operations 
team and their concerns, my organization has adopted the 
following strategies:  

1. Prioritizing operations concerns (i.e., 
consider the operations and their 
requirements as being as important as 
others). 
2. Early and continuous engagement of 
Ops staff in the decision-making process 
for the development process (i.e., design 
process). 
3. Leveraging logs and metric data for 
operational activities. We collect and 
structure logs, metrics (e.g., CPU usage) 
and operational data.  
4. Other (Specify): 

Software Architecture and Quality Attributes in Continuous Delivery and Deployment  

Q25. How would you grade the importance of software 
architecture design in successfully adopting and implementing 
CDE/CD practice?  

Very important / Important / Moderately 
important / Of little importance / 
Unimportant  

Q26. When we are designing the architecture of an application, 
we also consider the operational aspects, requirements and 
concerns (e.g., to make the architecture readily supportive of 
CDE/CD). 

Almost Always / Often / Sometimes / 
Rarely / Never  

Q27. Operational aspects and concerns impact on our 
architecture design decisions. 

Strongly agree / Agree / Neutral / 
Disagree / Strongly disagree  

Q28. It is "possible" to successfully practice CDE/CD in 
“monolithic applications". 

Strongly agree / Agree / Neutral / 
Disagree / Strongly disagree 

In order to break down (monolithic) applications into smaller and independent units/components/services 
as STRONGLY recommended by CDE/CD practice, how would you define small service/component/unit in 
your organization? 

Q29. A component/service is small if it can be scaled 
independently. 

Strongly agree / Agree / Neutral / 
Disagree / Strongly disagree 

Q30. A component/service is small if it can be deployed 
independently. 

Strongly agree / Agree / Neutral / 
Disagree / Strongly disagree 

Q31. A component/service is small if it can be tested 
independently. 

Strongly agree / Agree / Neutral / 
Disagree / Strongly disagree 

Q32. A component/service is small if it can be modified Strongly agree / Agree / Neutral / 



 

 

156 

 

(changed) independently. Disagree / Strongly disagree 

Q33. Can you describe (e.g., in one sentence) how a component 
or service should be to be suitable for successfully practicing 
CDE/CD? 

Free text 

Q34. In the projects that have adopted or are adopting CDE/CD 
practice, deployability concerns impact(ed) the design of 
individual classes. 

Almost Always / Often / Sometimes / 
Rarely / Never 

Q35. In the projects that have adopted or are adopting CDE/CD 
practice, deployability concerns impact(ed) the design of 
individual components/services. 

Almost Always / Often / Sometimes / 
Rarely / Never 

Q36. In the projects that have adopted or are adopting CDE/CD 
practice, deployability concerns impact(ed) the design of 
interactions among components/services. 

Almost Always / Often / Sometimes / 
Rarely / Never 

Q37. In the projects that have adopted or are adopting CDE/CD 
practice, deployability concerns impact(ed) the design of an 
entire application. 

Almost Always / Often / Sometimes / 
Rarely / Never 

Q38. In order to improve deployability of an application, I can 
sacrifice performance, security, usability, etc. 

Almost Always / Often / Sometimes / 
Rarely / Never 

Q39. Focusing too much on reusability at component or 
application level can be a bottleneck to continuously deploying 
software. 

Strongly agree / Agree / Neutral / 
Disagree / Strongly disagree 

Q40. Since moving to CDE/CD practice, the need for 
monitoring (i.e., having a centralized monitoring system) has 
increased. 

Strongly agree / Agree / Neutral / 
Disagree / Strongly disagree 

Q41. Since moving to CDE/CD practice, the need for logging 
(i.e., having a centralized logging system) has increased. 

Strongly agree / Agree / Neutral / 
Disagree / Strongly disagree 

Q42. Since moving to CDE/CD practice, Domain Driven Design 
and Bounded Context patterns have been applied MORE and 
practiced for designing loosely coupled architectures. 

Strongly agree / Agree / Neutral / 
Disagree / Strongly disagree 

Q43. Compared with less frequent releases, we avoid big upfront 
architectural decisions for CDE/CD practice to support 
evolutionary changes (i.e., architectural decisions are made as 
late as possible). 

Strongly agree / Agree / Neutral / 
Disagree / Strongly disagree 

Q44. The CDE/CD practice increases the need for resilience 
(i.e., design for failure). 

Strongly agree / Agree / Neutral / 
Disagree / Strongly disagree 

Challenges and Barriers to Adopting Continuous DElivery (CDE) and Deployment (CD) Practices 
How important are the following challenges (if any) during adopting and implementing CDE/CD and which 
may put you in trouble? 

Q45. Huge dependencies and coordination among software 
development team members. 

Very important / Important / Moderately 
important / Of little importance / 
Unimportant  

Q46. Difficulty of splitting a (monolithic) application into 
independently deployable and autonomous 
components/services. 

Very important / Important / Moderately 
important / Of little importance / 
Unimportant  

Q47. Inflexibility of the organization’s structure with the spirit 
of CDE/CD practice. 

Very important / Important / Moderately 
important / Of little importance / 
Unimportant  

Q48. Difficulty of breaking down a single-monolithic database 
into smaller and continuously deployable databases (i.e., 
decentralized data). 

Very important / Important / Moderately 
important / Of little importance / 
Unimportant  

Q49. Difficulty of identifying autonomous business capabilities. 
Very important / Important / Moderately 
important / Of little importance / 
Unimportant  

Q50. Lack of fully test automation. 
Very important / Important / Moderately 
important / Of little importance / 
Unimportant 

Q51. Lack of suitable awareness of the status of the project (e.g., Very important / Important / Moderately 



 

 

157 

 

build status, release status) among team members. important / Of little importance / 
Unimportant 

Thank you for participating in our survey. You need to submit the form to finalize the survey 

completion. 

(Optional) Do you want to get the results of the survey? If so, please provide your email address 

(Optional) Do you want to take part in the drawing? If so, please provide your email address 

(Optional) Do you have any general comments about the questions of the survey? 

This survey has been approved by the Human Research Ethics Committee at the University of 

Adelaide (approval number H-2015-270) 

If you have further questions or any complains, please contact us via:  

Mr. Mojtaba Shahin, mojtaba.shahin@adelaide.edu.au, Tel: +61 831 34519 

Prof. Muhammad Ali Babar, ali.babr@adelaide.edu.au 

Dr. Liming Zhu, liming.zhu@nicta.com.au 

Dr. Mansooreh Zahedi, mzah@itu.dk 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

158 

 

 

Title: (Re-) Architecting for Enabling and Supporting DevOps38 

Research Team: Mojtaba Shahin, M. Ali Babar and Liming Zhu 

Ethics Approval Number: H-2015-270 

The University of Adelaide, Australia 

General Information 

This empirical study is aimed at “investigating the practices and tools that enable organizations of 

teams and architecting for successful adoption of DevOps”. We propose to carry out an in‑depth 

case study in a case company. 

Interview guide 

The interview will be semi-structured. The schedule will include the following topics and 

questions: 

Participant background 

1. What is your main role in the project team? 

▪ Developer  

▪ Architect  

▪ Tester  

▪ QA  

▪ Build Engineer  

▪ Project Manager  

▪ DevOps Engineer  

▪ Operations Engineer/Staff  

▪ Release Engineer  

▪ Software Engineer  

▪ Team Lead  

▪ Consultant  

                                                           
38Some of the interview’s questions are inspired by/taken from “2017 State of DevOps Report” [35] "2017 State of DevOps Report, 

Available at: goo.gl/Y6sm13 [Last accessed: 10 November 2017]." 2017.. 

Interview Guide for Case Study 

Appendix C 



 

 

159 

 

▪ Other:  

2. How many years have you been working in software or IT industry? In the current role? 

A description of the project(s) that adopting (or adopted) DevOps practices  

3. Can you please briefly (e.g., in one or two sentences) describe this project, e.g., its goals? 

4. What is the domain of this project? 

5. Is it a green-filed project or maintenance one? 

6. How many people are involved in this project? 

7. Which DevOps practices (e.g., continuous delivery and deployment, infrastructure as code, 

etc.) are realized by your organization in this project? Why? 

Continuous Delivery/Deployment (CD) Pipeline and Automation 

8. How often the primary application or service you work on is in a releasable state (production 

ready)? 

▪ Multiple times a day  

▪ Once a day 

▪ A few times (e.g., one or two) a week  

▪ A few times (e.g., one or two) a month  

▪ A few times (e.g., one or two) a year  

▪ Less than once a year  

9. For primary application or service, you work on, how often does your organization 

deploy/release to production or customer? 

▪ Multiple times a day  

▪ Once a day 

▪ A few times (e.g., one or two) a week  

▪ A few times (e.g., one or two) a month  

▪ A few times (e.g., one or two) a year  

▪ Less than once a year  

10. How would you grade your CD pipeline in terms of automation? Is it fully automated? 

i. Do changes directly go to production/customers? If no, why? 

ii. On average, how long does it take between committing code and successfully placing the 

code into production? 

▪ More than six months  

▪ Between one month and six months  

▪ Between one week and one month  



 

 

160 

 

▪ Between one day and one week  

▪ Less than one day  

▪ Less than one hour  

▪ I don't know or not applicable 

iii. What challenges/issues/choke-points you have/had to set up [fully automated] CD 

pipeline? 

1. Which steps are still manual in your CD pipeline? Why?  

2. Automated acceptance tests and quality assurance/security checks are part of 

your CD pipeline? 

iv. How do you design the CD pipeline stages and select tools and technologies to set up CD 

pipeline?  

1. Any trade-off for selecting tools? Any criteria for tool choices? 

v. As a practitioner, what do you want/would like to see in a CD pipeline? Any missing 

features in the current CD pipeline? Any limitations in current tools? 

11. What benefits and costs (negative aspects) DevOps practices would bring to your 

organization? 

i. Are you totally happy with DevOps adoption? Any dissenting opinions?  

Architecture and DevOps Practices  

Deployability is a quality attribute (non-functional requirement) which means how reliably and 

easily an application/component/service can be deployed to (heterogeneous) production 

environment. 

12. Does your organization/team take into consideration the role of software architecture in 

successfully and efficiently adopting DevOps practices? If so,  

i. Why do you think it is necessary to do this?  

ii. How do you design/change (modernize) the application architecture for this purpose, e.g., 

improving deployability and supporting incremental changes? 

iii. Do you have deployability and testability in mind when designing/modernizing the 

application?  

1. How deployability and testability concerns impact your architecture design? 

iv. How do you quantify and measure the deployability of your system/architecture?  

1. How do you evaluate the consequence of your architectural decisions on 

deployability of your system?  

2. Can you provide one example of architectural decisions you made for 

improving deployability of your application?  



 

 

161 

 

3. Can you provide one example of technology decisions you made for improving 

deployability of your application? 

4. Can you provide some examples of the sub-optimal architectural decisions that 

led to problems in deployment (release) process? i.e., architectural decisions 

that prevented automated deployment. 

v. Potential follow-up questions:  

1. Are you using microservices architecture style or monolithic architecture to 

enable DevOps?  

2. As part of (re-) architecting your application to enable DevOps, do/did you 

break down the application into smaller parts? If so, how? What challenges did 

you faced? 

a. What criteria (e.g., business domain and team autonomy) do you use to 

break down an application or large service/components?  

3. How could you manage database schema changes or messaging as part of 

(re-) architecting your application to enable DevOps? 

4. How do you deploy your application/service independently of other 

applications/services that it depends on? 

a. Can you make large-scale changes to the design of your application/service 

without depending on/permission of other teams? 

5. How do you deal with multiple and heterogeneous environments when 

practicing continuous and automatic deployment? 

a. Can you provide examples of architectural and technological decisions 

you made for this purpose?  

(Architectural) Decision Making Process in DevOps 

13. How does the adoption of DevOps change decision-making process?  

i. After adopting DevOps in your organization, do architects more collaborate with teams to 

make architecture design decisions? If so, how? 

ii. After adopting DevOps in your organization, do you become more independent to make 

your own (design) decision? If so, how? 

1. Do you need to communicate and coordinate with other teams/team members 

to make your own decision? Why? 

iii. What kind of data (e.g., production data, operations metrics and runtime data) do you 

utilize to make informed/data-driven (architectural design) decisions?  

1. How do you use them to inform the design of products and features? 

Do you have any other comments and feedback to share with us? 

 



 

 

162 

 

 

 
 

Table C1. Selected studies in the review presenetd in Chapter 3 

ID Title Author(s) Venue Year 

S1 
Introduction of continuous 
delivery in multi-customer project 
courses 

S. Krusche, L. Alperowitz 
International Conference 
on Software Engineering 

2014 

S2 
SQA-Mashup: A mashup 
framework for continuous 
integration 

M. Brandtner, E. Giger, H. Gall 
Information and Software 
Technology 

2015 

S3 
Vroom: Faster build processes for 
java 

J. Bell, E. Melski, M. Dattatreya, 
G.E. Kaiser 

IEEE Software 2015 

S4 
The highways and country roads to 
continuous deployment 

M. Leppänen, S. Mäkinen, M. 
Pagels, V. Eloranta, J. Itkonen, 
M.V. Mäntylä, T. Männistö 

IEEE Software 2015 

S5 
Challenges when adopting 
continuous integration: A case 
study 

A. Debbiche, M. Diener, R.B. 
Svensson 

International Conference 
on Product-Focused 
Software Process 
Improvement 

2014 

S6 
On the journey to continuous 
deployment: Technical and social 
challenges along the way 

G. Claps, R.B. Svensson, A. Aurum 
Information and Software 
Technology 

2015 

S7 

Toward design decisions to enable 
deployability: Empirical study of 
three projects reaching for the 
continuous delivery holy grail 

S. Bellomo, N. Ernst, R. Nord, R. 
Kazman 

International Conference 
on Dependable Systems 
and Networks 

2014 

S8 
Achieving reliable high-frequency 
releases in cloud environments 

L. Zhu, D. Xu, A.B. Tran, X. Xu, L. 
Bass, I. Weber, S. Dwarakanathan 

IEEE Software 2015 

S9 
The practice and future of release 
engineering: A roundtable with 
three release engineers 

B. Adams, S. Bellomo, C. Bird, T. 
Marshall-Keim, F. Khomh, K. 
Moir 

IEEE Software 2015 

S10 

Climbing the "Stairway to heaven" 
- A mulitiple-case study exploring 
barriers in the transition from agile 
development towards continuous 
deployment of software 

H.H. Olsson, H. Alahyari, J. Bosch 
Euromicro Conference on 
Software Engineering and 
Advanced Applications 

2012 

S11 
Automated software integration 
flows in industry: A multiple-case 
study 

D. Ståhl, J. Bosch 
International Conference 
on Software Engineering 

2014 

S12 
Hitting the target: Practices for 
moving toward innovation 
experiment systems 

T. Karvonen, L.E. Lwakatare, T. 
Sauvola, J. Bosch, H.H. Olsson, P. 
Kuvaja, M. Oivo 

International Conference 
on Software Business 

2015 

S13 
Visualizing testing activities to 
support continuous integration: A 
multiple case study 

A. Nilsson, J. Bosch, C. Berger 
International Conference 
on Agile Software 
Development (XP) 

2014 

Selected Studies in Systematic Review 

Appendix D 



 

 

163 

 

S14 

Implementation of continuous 
integration and automated testing 
in software development of smart 
grid scheduling support system 

J. Lu, Z. Yang,  J. Qian 
International Conference 
on Power System 
Technology 

2014 

S15 

Implementing continuous 
integration software in an 
established computational 
chemistry software package 

R.M. Betz, R.C. Walker 

International Workshop on 
Software Engineering for 
Computational Science and 
Engineering   

2013 

S16 
Making software integration really 
continuous 

M.L. Guimarães, A.R. Silva 
International Conference 
Fundamental Approaches 
to Software Engineering 

2012 

S17 
Continuous delivery? Easy! Just 
change everything (well, maybe it 
is not that easy) 

S. Neely, S. Stolt Agile Conference (AGILE) 2013 

S18 
Software product measurement 
and analysis in a continuous 
integration environment 

G. de Souza Pereira Moreira, R.P. 
Mellado, D.Á. Montini 

International Conference 
on Information 
Technology: New 
Generations 

2010 

S19 
UBuild: Automated testing and 
performance evaluation of 
embedded linux systems 

F. Erculiani, L. Abeni, L. Palopoli 
International Conference 
on Architecture of 
Computing Systems 

2014 

S20 
Using continuous integration of 
code and content to teach software 
engineering with limited resources 

J.G. Süβ, W. Billingsley 
International Conference 
on Software Engineering 

2012 

S21 
Backtracking incremental 
continuous integration 

T. van der Storm 
European Conference on 
Software Maintenance and 
Reengineering 

2008 

S22 
BuildBot: Robotic monitoring of 
agile software development teams 

R. Ablett, E. Sharlin, F. Maurer, J. 
Denzinger, C. Schock 

International Conference 
on Robot & Human 
Interactive 
Communication 

2007 

S23 
Mixed data-parallel scheduling for 
distributed continuous integration 

O. Beaumont, N. Bonichon, L. 
Courtes, E. Dolstra, X. Hanin  

International Parallel and 
Distributed Processing 
Symposium Workshops & 
PhD Forum 

2012 

S24 
SQA-Profiles: Rule-based activity 
profiles for Continuous Integration 
environments 

M. Brandtner, S.C. Muller, P. 
Leitner, H.C. Gall 

International Conference 
on Software Analysis, 
Evolution, and 
Reengineering 

2015 

S25 
Identifying and understanding 
header file hotspots in C/C++ build 
processes 

S. McIntosh, B. Adams, M. 
Nagappan, A.E. Hassan 

Automated Software 
Engineering 

2015 

S26 

Practical experience with test-
driven development during 
commissioning of the multi-star 
AO system ARGOS 

M. Kulas, J.L. Borelli, W. Gässler, 
D. Peter, S. Rabien, G.O. de Xivry, 
L. Busoni, M. Bonaglia, T. 
Mazzoni, G. Rahmer 

Software and 
Cyberinfrastructure for 
Astronomy III 

2014 

S27 
Security of public continuous 
integration services 

V.Gruhn, C. Hannebauer, C. John 
International Symposium 
on Open Collaboration 

2013 

S28 

Elaboration on an integrated 
architecture and requirement 
practice: Prototyping with quality 
attribute focus 

S. Bellomo, R. L. Nord, I. Ozkaya 

International Workshop on 
the Twin Peaks of 
Requirements and 
Architecture 

2013 

S29 
Rapid releases and patch backouts: 
A software analytics approach 

R. Souza, C. Chavez, R.A. 
Bittencourt 

IEEE Software 2015 

S30 

Patterns for continuous 
integration builds in cross-
platform agile software 
development 

C. Hsieh, C. Chen 
Journal of Information 
Science and Engineering 

2015 

S31 
Technical dependency challenges 
in large-scale agile software 
development 

N. Sekitoleko, F. Evbota, E. 
Knauss, A. Sandberg, 
M. Chaudron, H. H. Olsson 

International Conference 
on Agile Software 
Development (XP) 

2014 



 

 

164 

 

S32 
A technique for agile and 
automatic interaction testing for 
product lines 

M.F. Johansen, Ø. Haugen, F. 
Fleurey, E. Carlson, J. Endresen, T. 
Wien 

International Conference 
on Testing Software and 
Systems 

2012 

S33 
Ambient awareness of build status 
in collocated software teams 

J. Downs, B. Plimmer, J. G. 
Hosking 

International Conference 
on Software Engineering 

2012 

S34 
How well do test case 
prioritization techniques support 
statistical fault localization 

B. Jiang, Z. Zhang, W.K. Chan, 
T.H. Tse, T.Y. Chen 

Information and Software 
Technology 

2012 

S35 
Integrating early V&V support to a 
GSE tool integration platform 

J.P. Pesola, H. Tanner, J. Eskeli, P. 
Parviainen, D. Bendas 

International Conference 
on Global Software 
Engineering Workshops 

2011 

S36 
Continuous SCRUM: Agile 
management of SAAS products 

P. Agarwal 
India Software Engineering 
Conference 

2011 

S37 

Hitting the wall: What to do when 
high performing scrum teams 
overwhelm operations and 
infrastructure 

J. Sutherland, R. Frohman 
Hawaii International 
Conference on System 
Sciences 

2011 

S38 
Test automation framework for 
implementing continuous 
integration 

E.H. Kim, J. Chae Na, S.M. Ryoo 

International Conference 
on Information 
Technology: New 
Generations 

2009 

S39 
Using continuous integration and 
automated test techniques for a 
robust C4ISR system 

H.M. Yüksel, E. Tüzün, E. Gelirli, 
B. Baykal 

International Symposium 
on Computer and 
Information Sciences 

2009 

S40 
A Unified test framework for 
continuous integration testing of 
SOA solutions 

H. Liu, Z. Li, J. Zhu, H. Tan, H. 
Huang 

International Conference 
on Web Services 

2009 

S41 
Factors impacting rapid releases: 
An industrial case study 

N. Kerzazi, F. Khomh 

International Symposium 
on Empirical Software 
Engineering and 
Measurement 

2014 

S42 
Ultimate architecture enforcement 
custom checks enforced at code-
commit time 

P. Merson 

Companion of Conference 
on Systems, Programming, 
& Applications: Software 
for Humanity 

2013 

S43 
Transitioning towards continuous 
delivery in the B2B domain: A case 
study 

O. Rissanen, J. Münch 
International Conference 
on Agile Software 
Development (XP) 

2015 

S44 
Synthesizing continuous 
deployment practices used in 
software development 

A.A.U. Rahman, E. Helms, L. 
Williams, C. Parnin 

Agile Conference (AGILE) 2015 

S45 
Stakeholder perceptions of the 
adoption of continuous 
integration-A case study 

E. Laukkanen, M. Paasivaara, T. 
Arvonen 

Agile Conference (AGILE) 2015 

S46 
Toward agile architecture: Insights 
from 15 years of ATAM data 

S. Bellomo, I. Gorton, R. Kazman IEEE Software 2015 

S47 
Enterprise continuous integration 
using binary dependencies 

M. Roberts 
International Conference 
on Agile Software 
Development (XP) 

2004 

S48 
Development and deployment at 
Facebook 

D. G. Feitelson, E. Frachtenberg, 
K. L. Beck 

IEEE Internet Computing 2013 

S49 
Transforming a six month release 
cycle to continuous flow 

M. Marschall Agile Conference (AGILE) 2007 

S50 Scaling continuous integration R.O. Rogers 
International Conference 
on Agile Software 
Development (XP) 

2004 

S51 
Architectural tactics to support 
rapid and agile stability 

F. Bachmann, R.L. Nord, I. 
Ozkaya 

CrossTalk: The Journal of 
Defense Software 
Engineering 

2012 



 

 

165 

 

S52 
Continuous automated testing of 
sdr software 

J. Nimmer, B. Fallik, N. Martin, J. 
Chapin 

Software Defined Radio 
Technical Conference  

2006 

S53 
Surrogate: A simulation apparatus 
for continuous integration testing 
in service oriented architecture 

H.Y. Huang, H.H. Liu, Z.J. Li, J. 
Zhu 

International Conference 
on Services Computing 

2008 

S54 

CiCUTS: Combining system 
execution modeling tools with 
continuous integration 
environments 

J. H. Hill, D.C. Schmidt, A.A. 
Porter, J.M. Slaby 

International Conference 
and Workshop on the 
Engineering of Computer 
Based Systems 

2008 

S55 

Techniques for improving 
regression testing in continuous 
integration development 
environments 

S. Elbaum, G. Rothermel, J. Peni 
International Symposium 
on Foundations of Software 
Engineering 

2014 

S56 
Towards DevOps in the Embedded 
Systems Domain: Why is It so 
Hard? 

L. E. Lwakatare, T. Karvonen, T. 
Sauvola, P. Kuvaja, H. H. Olsson, 
J. Bosch, M Oivo 

Hawaii International 
Conference on System 
Sciences 

2016 

S57 
Continuous deployment at 
Facebook and OANDA 

T. Savor, M. Douglas, M. Gentili, 
L. Williams, K. Beck, M. Stumm 

International Conference 
on Software Engineering 

2016 

S58 
DevOps making it easy to do the 
right thing 

M. Callanan, A. Spillane IEEE Software 2016 

S59 
Rondo: A tool suite for continuous 
deployment in dynamic 
environments 

O. Günalp, C. Escoffier, P. Lalanda 
International Conference 
on Services Computing 

2015 

S60 
DevOps: A definition and 
perceived adoption impediments 

J. Smeds, K. Nybom, I. Porres 
International Conference 
on Agile Software 
Development (XP) 

2015 

S61 

Social Testing: A framework to 
support adoption of continuous 
delivery by small medium 
enterprises 

J. Dunne, D. Malone, J. Flood 

International Conference 
on Computer Science, 
Computer Engineering, 
and Social Media 

2015 

S62 
Automated testing in the 
continuous delivery pipeline: A 
case study of an online company 

J. Gmeiner, R. Ramler, J. Haslinger 
User Symposium on 
Software Quality, Test and 
Innovation 

2015 

S63 
Towards post-agile development 
practices through productized 
development infrastructure 

M. Leppänen, T. Kilamo, T. 
Mikkonen 

International Workshop on 
Rapid Continuous Software 
Engineering 

2015 

S64 
Supporting continuous integration 
by code-churn based test selection 

E. Knauss, M. Staron, W. Meding, 
O. Söder, A. Nilsson, M. Castell 

International Workshop on 
Rapid Continuous Software 
Engineering 

2015 

S65 
Requirements to pervasive system 
continuous deployment 

C. Escoffier, O. Günalp, P. Lalanda 
International Conference 
on Service-Oriented 
Computing Workshops 

2013 

S66 
Composing patterns to construct 
secure systems 

P. Rimba, L. Zhu, L. Bass, I. Kuz, 
S. Reeves 

European Dependable 
Computing Conference 

2015 

S67 
Fast feedback from automated 
tests executed with the product 
build 

M. Eyl, C. Reichmann, K. Müller-
Glaser 

International Conference 
Software Quality Days 

2016 

S68 
POD-Diagnosis: Error diagnosis of 
sporadic operations on cloud 
applications 

X. Xu, L. Zhu, I. Weber, L. Bass, D. 
Sun 

International Conference 
on Dependable Systems 
and Networks 

2014 

S69 
Feature toggles: practitioner 
practices and a case study 

M. T. Rahman, L. P. Querel, P. C. 
Rigby, B. Adams 

Working Conference on 
Mining Software 
Repositories 

2016 

 



166

Approved Ethics Applications  

Appendix E 



167



168



 

 

169 

 

References 

[1] M. Shahin, M. A. Babar, and L. Zhu, "Continuous Integration, Delivery and Deployment: A Systematic Review 
on Approaches, Tools, Challenges and Practices," IEEE Access, vol. 5, pp. 3909-3943, 2017. 

[2] M. Shahin, M. A. Babar, and L. Zhu, "The Intersection of Continuous Deployment and Architecting Process: 
Practitioners' Perspectives," in ACM/IEEE International Symposium on Empirical Software Engineering and 
Measurement, Ciudad Real, Spain, 2016, pp. 1-10: ACM. 

[3] M. Shahin, M. A. Babar, M. Zahedi, and L. Zhu, "Beyond Continuous Delivery: An Empirical Investigation of 
Continuous Deployment Challenges," in 11th ACM/IEEE International Symposium on Empirical Software 
Engineering and Measurement (ESEM), Toronto, Canada, 2017: IEEE. 

[4] M. Shahin, M. Zahedi, M. A. Babar, and L. Zhu, "Adopting Continuous Delivery and Deployment: Impacts on 
Team Structures, Collaboration and Responsibilities," in 21st International Conference on Evaluation and 
Assessment in Software Engineering, Karlskrona, Sweden, 2017, pp. 384-393: ACM. 

[5] M. Shahin, M. Zahedi, M. A. Babar, and L. Zhu, "An Empirical Study of Architecting for Continuous Delivery 
and Deployment," submitted to Empirical Software Engineering 2017. 

[6] M. Httermann, DevOps for developers. Apress, 2012. 

[7] L. Bass, I. Weber, and L. Zhu, DevOps: A Software Architect's Perspective. Addison-Wesley Professional, 2015. 

[8] G. Kim, K. Behr, and K. Spafford, The phoenix project: A novel about IT, DevOps, and helping your business win. 
IT Revolution, 2014. 

[9] "2015 State of DevOps Report, Available at:goo.gl/oJ2Tvi [Last accessed: 5 October 2015]." 2015. 

[10] B. Fitzgerald and K.-J. Stol, "Continuous Software Engineering: A Roadmap and Agenda," Journal of Systems 
and Software, vol. 123, 2017. 

[11] M. Leppanen et al., "The Highways and Country Roads to Continuous Deployment," IEEE Software, vol. 32, no. 
2, pp. 64-72, 2015. 

[12] I. Weber, S. Nepal, and L. Zhu, "Developing Dependable and Secure Cloud Applications," IEEE Internet 
Computing, vol. 20, no. 3, pp. 74-79, 2016. 

[13] J. Humble. Continuous Delivery vs Continuous Deployment,  Available at: goo.gl/qE1JoM [Last accessed: 1 March 
2016].  

[14] L. Chen, "Continuous Delivery: Huge Benefits, but Challenges Too," IEEE Software, vol. 32, no. 2, pp. 50-54, 
2015. 

[15] What is Continuous Deployment?, Available at: goo.gl/sLxWRD, [Last accessed: 12 July 2016].  

[16] A. Thiele. (2014). Continuous Delivery: An Easy Must-Have for Agile Development,  Available at: goo.gl/ymgCSq 
[Last accessed: 10 July 2016].  

[17] E. Luke and S. Prince. (2016). No One Agrees How to Define CI or CD. Available at: goo.gl/Z8Qonq [Last 
accessed: 1 August 2016].  

[18] M. Skelton and C. O'Dell, Continuous Delivery with Windows and .NET. O'Reilly 2016. 

[19] J. P. Reed. The business case for continuous delivery, Available at: goo.gl/Bq9ugb [Last accessed: 12 July 2016].  

[20] S. Prince. (2016). The Product Managers’ Guide to Continuous Delivery and DevOps, Available at: 
goo.gl/D8mGkH [Last accessed: 2 November 2016].  



 

 

170 

 

[21] L. Bass, "The Software Architect and DevOps," IEEE Software, vol. 35, no. 1, pp. 8-10, 2017. 

[22] T. Savor, M. Douglas, M. Gentili, L. Williams, K. Beck, and M. Stumm, "Continuous deployment at Facebook 
and OANDA," in 38th International Conference on Software Engineering Companion, Austin, Texas, 2016, pp. 21-
30: ACM. 

[23] G. G. Claps, R. Berntsson Svensson, and A. Aurum, "On the journey to continuous deployment: Technical and 
social challenges along the way," Information and Software Technology, vol. 57, pp. 21-31, 2015. 

[24] E. Laukkanen, T. O. A. Lehtinen, J. Itkonen, M. Paasivaara, and C. Lassenius, "Bottom-up Adoption of 
Continuous Delivery in a Stage-Gate Managed Software Organization," in 10th ACM/IEEE International 
Symposium on Empirical Software Engineering and Measurement, Ciudad Real, Spain, 2016, pp. 1-10: ACM. 

[25] M. d. Jong, A. v. Deursen, and A. Cleve, "Zero-downtime SQL database schema evolution for continuous 
deployment," in 39th International Conference on Software Engineering: Software Engineering in Practice Track, 
Buenos Aires, Argentina, 2017, pp. 143-152: IEEE Press. 

[26] J. Wettinger, U. Breitenbücher, O. Kopp, and F. Leymann, "Streamlining DevOps automation for Cloud 
applications using TOSCA as standardized metamodel," Future Generation Computer Systems, vol. 56, pp. 317-
332, 2016. 

[27] S. Mäkinen et al., "Improving the delivery cycle: A multiple-case study of the toolchains in Finnish software 
intensive enterprises," Information and Software Technology, vol. 80, pp. 175-194, 2016. 

[28] J. Humble and D. Farley, Continuous Delivery: Reliable Software Releases Through Build, Test, and Deployment 
Automation, 1st edition ed. Addison-Wesley Professional, 2010. 

[29] J. Gmeiner, R. Ramler, and J. Haslinger, "Automated testing in the continuous delivery pipeline: A case study 
of an online company," in IEEE Eighth International Conference on Software Testing, Verification and Validation 
Workshops (ICSTW), 2015, pp. 1-6. 

[30] J. Waller, N. C. Ehmke, and W. Hasselbring, "Including Performance Benchmarks into Continuous Integration 
to Enable DevOps," SIGSOFT Software  Engineering Notes, vol. 40, no. 2, pp. 1-4, 2015. 

[31] P. J. Andre van Hoorn, Philipp Leitner, Ingo Weber, "Report from GI-Dagstuhl Seminar 16394: Software 
Performance Engineering in the DevOps World. Available at: https://arxiv.org/abs/1709.08951," 2017. 

[32] L. Bass, R. Holz, P. Rimba, A. B. Tran, and L. Zhu, "Securing a deployment pipeline," in Third International 
Workshop on Release Engineering, ed. Florence, Italy: IEEE Press, 2015, pp. 4-7. 

[33] E. Laukkanen, J. Itkonen, and C. Lassenius, "Problems, causes and solutions when adopting continuous 
delivery—A systematic literature review," Information and Software Technology, vol. 82, pp. 55-79, 2017. 

[34] P. Rodríguez et al., "Continuous deployment of software intensive products and services: A systematic 
mapping study," Journal of Systems and Software, vol. 123, pp. 263-291, 2017. 

[35] "2017 State of DevOps Report, Available at: goo.gl/Y6sm13 [Last accessed: 10 November 2017]." 2017. 

[36] M. E. Conway, "How do committees invent?," Datamation, vol. 14, no. 5, 1968. 

[37] L. Northrop, "Trends and New Directions in Software Architecture, Available at: goo.gl/ZAnkQp," 2015. 

[38] L. Chen, "Towards Architecting for Continuous Delivery," in 12th Working IEEE/IFIP Conference on Software 
Architecture (WICSA), 2015, pp. 131-134. 

[39] N. Vishal. (2015). Architecting for Continuous Delivery, Available at: goo.gl/zWA5kT [Last accessed: 15 March 
2016].  

https://arxiv.org/abs/1709.08951


 

 

171 

 

[40] G. Schermann, J. Cito, P. Leitner, U. Zdun, and H. Gall, "An empirical study on principles and practices of 
continuous delivery and deployment," PeerJ Preprints 4:e1889v1, 2016. 

[41] M. Shahin, "Architecting for DevOps and Continuous Deployment," in 2015 24th Australasian Software 
Engineering Conference, Adelaide, SA, Australia, 2015, pp. 147-148: ACM. 

[42] S. Arunachalam, "Open access to scientific knowledge," DESIDOC Journal of Library & Information Technology, 
vol. 28, no. 1, p. 7, 2008. 

[43] D. Graziotin, "Towards a Theory of Affect and Software Developers' Performance," PhD Thesis, Faculty of 
Computer Science, Free University of Bozen-Bolzano, 2016. 

[44] B. A. Kitchenham, T. Dyba, and M. Jorgensen, "Evidence-Based Software Engineering," in 26th International 
Conference on Software Engineering, 2004, pp. 273-281, 999432: IEEE Computer Society. 

[45] B. Kitchenham and S. Charters, "Guidelines for performing systematic literature reviews in software 
engineering," in "EBSE Technical Report Ver. 2.3 " 2007. 

[46] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, "Selecting empirical methods for software engineering 
research," in Guide to advanced empirical software engineering: Springer, 2008, pp. 285-311. 

[47] J. W. Creswell and V. L. P. Clark, Designing and conducting mixed methods research. SAGE Publishing, 2007. 

[48] M. G. Waterman, "Reconciling agility and architecture: a theory of agile architecture," PhD Thesis, Victoria 
University of Wellington, 2014. 

[49] S. E. Hove and B. Anda, "Experiences from Conducting Semi-structured Interviews in Empirical Software 
Engineering Research," in 11th IEEE International Software Metrics Symposium, 2005, p. 23, 1092163: IEEE 
Computer Society. 

[50] B. A. Kitchenham and S. L. Pfleeger, "Personal Opinion Surveys," in Guide to Advanced Empirical Software 
Engineering, F. Shull, J. Singer, and D. I. K. Sjøberg, Eds. London: Springer London, 2008, pp. 63-92. 

[51] V. Garousi, M. Felderer, and M. V. Mäntylä, "The need for multivocal literature reviews in software 
engineering: complementing systematic literature reviews with grey literature," in 20th International 
Conference on Evaluation and Assessment in Software Engineering, Limerick, Ireland, 2016, pp. 1-6, 2916008: 
ACM. 

[52] L. A. Palinkas, S. M. Horwitz, C. A. Green, J. P. Wisdom, N. Duan, and K. Hoagwood, "Purposeful Sampling for 
Qualitative Data Collection and Analysis in Mixed Method Implementation Research," Administration and 
Policy in Mental Health and Mental Health Services Research, journal article vol. 42, no. 5, pp. 533-544, 2015. 

[53] L. A. Goodman, "Snowball Sampling," Annals of Mathematical Statistics, vol. 32, no. 1, pp. 148-170, 1961. 

[54] D. S. Cruzes and T. Dyba, "Recommended Steps for Thematic Synthesis in Software Engineering," in 
International Symposium on Empirical Software Engineering and Measurement (ESEM), 2011, pp. 275-284. 

[55] C. B. Seaman, "Qualitative methods in empirical studies of software engineering," IEEE Transactions on 
Software Engineering, vol. 25, no. 4, pp. 557-572, 1999. 

[56] V. Braun and V. Clarke, "Using thematic analysis in psychology," Qualitative research in psychology, vol. 3, no. 
2, pp. 77-101, 2006. 

[57] G. Gousios, M.-A. Storey, and A. Bacchelli, "Work practices and challenges in pull-based development: the 
contributor's perspective," in 38th International Conference on Software Engineering, Austin, Texas, 2016, pp. 
285-296: ACM. 

[58] E. Murphy-Hill, T. Zimmermann, C. Bird, and N. Nagappan, "The Design Space of Bug Fixes and How 
Developers Navigate It," IEEE Transactions on Software Engineering, vol. 41, no. 1, pp. 65-81, 2015. 



 

 

172 

 

[59] A. W. Meade and S. B. Craig, "Identifying careless responses in survey data," Psychological methods, vol. 17, 
no. 3, p. 437, 2012. 

[60] B. Kitchenham, L. Pickard, and S. L. Pfleeger, "Case studies for method and tool evaluation," IEEE Software, 
vol. 12, no. 4, pp. 52-62, 1995. 

[61] F. Adrian, "Response bias, social desirability and dissimulation," Personality and Individual Differences, vol. 7, 
no. 3, pp. 385-400, 1996. 

[62] J. Cito, P. Leitner, T. Fritz, and H. C. Gall, "The making of cloud applications: an empirical study on software 
development for the cloud," in 10th Joint Meeting on Foundations of Software Engineering, Bergamo, Italy, 2015, 
pp. 393-403: ACM. 

[63] M. S. Litwin and A. Fink, How to measure survey reliability and validity. SAGE Publications, 1995. 

[64] F. J. Fowler Jr, Survey research methods. Sage publications, 2013. 

[65] M. Q. Patton, Qualitative evaluation and research methods. SAGE Publications, 1990. 

[66] R. K. Yin, Case Study Research: Design and Methods, 3rd ed. SAGE Publications, 2003. 

[67] P. Runeson and M. Höst, "Guidelines for conducting and reporting case study research in software 
engineering," (in English), Empirical Software Engineering, vol. 14, no. 2, pp. 131-164, 2009/04/01 2009. 

[68] L. Prechelt, H. Schmeisky, and F. Zieris, "Quality experience: a grounded theory of successful agile projects 
without dedicated testers," in 38th International Conference on Software Engineering, Austin, Texas, 2016, pp. 
1017-1027, 2884789: ACM. 

[69] B. G. Glaser and A. L. Strauss, Discovery of grounded theory: Strategies for qualitative research. Chicago, Aldine, 
1967. 

[70] R. Hoda and J. Noble, "Becoming agile: a grounded theory of agile transitions in practice," in 39th International 
Conference on Software Engineering, Buenos Aires, Argentina, 2017, pp. 141-151, 3097386: IEEE Press. 

[71] R. Hoda, "Self-organizing agile teams: A grounded theory," PhD Thesis, Victoria University of Wellington, 
2011. 

[72] E. G. Guba, "Criteria for assessing the trustworthiness of naturalistic inquiries," Educational Technology 
Research and Development, vol. 29, no. 2, pp. 75-91, 1981. 

[73] B. Flyvbjerg, "Five misunderstandings about case-study research," Qualitative inquiry, vol. 12, no. 2, pp. 219-
245, 2006. 

[74] E. Kalliamvakou, C. Bird, T. Zimmermann, A. Begel, R. DeLine, and D. M. German, "What Makes a Great 
Manager of Software Engineers?," IEEE Transactions on Software Engineering, vol. PP, no. 99, pp. 1-1, 2017. 

[75] S. Bellomo, N. Ernst, R. Nord, and R. Kazman, "Toward Design Decisions to Enable Deployability: Empirical 
Study of Three Projects Reaching for the Continuous Delivery Holy Grail," in IEEE/IFIP International 
Conference on Dependable Systems and Networks (DSN), 2014, pp. 702-707. 

[76] K. F. Tómasdóttir, M. Aniche, and A. v. Deursen, "Why and how JavaScript developers use linters," in 
Proceedings of the 32nd IEEE/ACM International Conference on Automated Software Engineering, Urbana-
Champaign, IL, USA, 2017, pp. 578-589, 3155634: IEEE Press. 

[77] K.-J. Stol, P. Avgeriou, M. A. Babar, Y. Lucas, and B. Fitzgerald, "Key factors for adopting inner source," ACM 
Transactions on Software Engineering and Methodology, vol. 23, no. 2, pp. 1-35, 2014. 

[78] A. Phillips, M. Sens, A. de Jonge, and M. van Holsteijn, The IT Manager’s Guide to Continuous Delivery: 
Delivering business value in hours, not months. XebiaLabs, 2015. 



 

 

173 

 

[79] M. Fowler. Continuous Integration, Available at: goo.gl/5EhHR7 [Last accessed: 21 October 2015].  

[80] A. A. U. Rahman, E. Helms, L. Williams, and C. Parnin, "Synthesizing Continuous Deployment Practices Used 
in Software Development," in Agile Conference (AGILE), 2015, pp. 1-10. 

[81] H. H. Olsson, H. Alahyari, and J. Bosch, "Climbing the "Stairway to Heaven" -- A Mulitiple-Case Study 
Exploring Barriers in the Transition from Agile Development towards Continuous Deployment of Software " 
in 38th EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA), 2012, pp. 392-399. 

[82] D. Ståhl and J. Bosch, "Modeling continuous integration practice differences in industry software 
development," Journal of Systems and Software, vol. 87, pp. 48-59, 2014. 

[83] M. Mäntylä, B. Adams, F. Khomh, E. Engström, and K. Petersen, "On rapid releases and software testing: a 
case study and a semi-systematic literature review," (in English), Empirical Software Engineering, vol. 20, no. 5, 
pp. 1384–1425, 2015. 

[84] A. Eck, F. Uebernickel, and W. Brenner, "Fit for Continuous Integration: How Organizations Assimilate an 
Agile Practice," in 20th Americas Conference on Information Systems (AMCIS), 2014: Association for 
Information Systems. 

[85] N. S. R. Alves, T. S. Mendes, M. G. de Mendonça, R. O. Spínola, F. Shull, and C. Seaman, "Identification and 
management of technical debt: A systematic mapping study," Information and Software Technology, vol. 70, 
pp. 100-121, 2016. 

[86] "Longman Dictionary of Contemporary English Online, http://www.ldoceonline.com/," ed. 

[87] "Cambridge Dictionary, http://dictionary.cambridge.org/," ed. 

[88] Y. Dittrich, "What does it mean to use a method? Towards a practice theory for software engineering," 
Information and Software Technology, vol. 70, pp. 220-231, 2016/02/01 2016. 

[89] J. Nørbjerg and P. Kraft, "Software practice is social practice," in Social thinking, D. Yvonne, F. Christiane, and 
K. Ralf, Eds.: MIT Press, 2002, pp. 205-222. 

[90] K. Schmidt, "The Concept of ‘Practice’: What’s the Point?," in 11th International Conference on the Design of 
Cooperative Systems (COOP), Nice, France, 2014, pp. 427-444: Springer International Publishing. 

[91] H. Zhang, M. A. Babar, and P. Tell, "Identifying relevant studies in software engineering," Information and 
Software Technology, vol. 53, no. 6, pp. 625-637, 2011. 

[92] D. Budgen, M. Turner, P. Brereton, and B. Kitchenham, "Using mapping studies in software engineering," in 
20th Annual Meeting of thePsychology of Programming Interest Group (PPIG), 2008, vol. 8, pp. 195-204. 

[93] L. Chen, M. A. Babar, and H. Zhang, "Towards an evidence-based understanding of electronic data sources," 
in 14th international conference on Evaluation and Assessment in Software Engineering, UK, 2010, pp. 135-138, 
2227074: British Computer Society. 

[94] D. Maplesden, E. Tempero, J. Hosking, and J. C. Grundy, "Performance Analysis for Object-Oriented Software: 
A Systematic Mapping," IEEE Transactions on Software Engineering, vol. 41, no. 7, pp. 691-710, 2015. 

[95] M. Daneva, D. Damian, A. Marchetto, and O. Pastor, "Empirical research methodologies and studies in 
Requirements Engineering: How far did we come?," Journal of Systems and Software, vol. 95, pp. 1-9, 2014. 

[96] B. Kitchenham et al., "Systematic literature reviews in software engineering – A tertiary study," Information 
and Software Technology, vol. 52, no. 8, pp. 792-805, 2010. 

[97] R. Wieringa, N. Maiden, N. Mead, and C. Rolland, "Requirements engineering paper classification and 
evaluation criteria: a proposal and a discussion," Requirements Engineering, vol. 11, no. 1, pp. 102-107, 2005. 

http://www.ldoceonline.com/
http://dictionary.cambridge.org/


 

 

174 

 

[98] B. Adams and S. McIntosh, "Modern Release Engineering in a Nutshell -- Why Researchers Should Care," in 
IEEE 23rd International Conference on Software Analysis, Evolution, and Reengineering (SANER), 2016, pp. 78-90. 

[99] M. Meyer, "Continuous Integration and Its Tools," IEEE Software, vol. 31, no. 3, pp. 14-16, 2014. 

[100] V. Armenise, "Continuous Delivery with Jenkins: Jenkins Solutions to Implement Continuous Delivery," 
in IEEE/ACM 3rd International Workshop on Release Engineering (RELENG), 2015, pp. 24-27. 

[101] J. A. Espinosa, S. A. Slaughter, R. E. Kraut, and J. D. Herbsleb, "Team Knowledge and Coordination in 
Geographically Distributed Software Development," Journal of Management Information Systems, vol. 24, no. 1, 
pp. 135-169, 2007. 

[102] K. Dikert, M. Paasivaara, and C. Lassenius, "Challenges and success factors for large-scale agile 
transformations: A systematic literature review," Journal of Systems and Software, vol. 119, pp. 87-108, 2016. 

[103] J. Greenberg and R. A. Baron, Behavior in organizations, 9th ed. Pearson/Prentice Hall, 2008. 

[104] D. Sato. (2014). Canary Release. Available at: goo.gl/mqJVy3 [Last accessed: 10 October 2015].  

[105] J. Humble. Principle 2: Decouple Deployment and Release, Available at: goo.gl/wu7Smy [Last accessed: 22 
October 2015].  

[106] (2015). Continuous Delivery - Five Habits of Highly Successful Continuous Delivery Practitioners, Available 
at: goo.gl/o9Dr5c [Last accessed: 5 August 2016].  

[107] D. Kirk and S. G. MacDonell, "Investigating a conceptual construct for software context," in 18th 
International Conference on Evaluation and Assessment in Software Engineering, London, England, United 
Kingdom, 2014, pp. 1-10: ACM. 

[108] T. Dybå, D. I. K. Sjøberg, and D. S. Cruzes, "What works for whom, where, when, and why? on the role of 
context in empirical software engineering," in ACM/IEEE International Symposium on Empirical Software 
Engineering and Measurement, Lund, Sweden, 2012, pp. 19-28: ACM. 

[109] K. Petersen and C. Wohlin, "Context in industrial software engineering research," in 3rd International 
Symposium on Empirical Software Engineering and Measurement, 2009, pp. 401-404. 

[110] M. Zahedi, M. Shahin, and M. Ali Babar, "A systematic review of knowledge sharing challenges and 
practices in global software development," International Journal of Information Management, vol. 36, no. 6, Part 
A, pp. 995-1019, 2016. 

[111] S. Newman, Building Microservices. O'Reilly Media, Inc, 2015. 

[112] L. Bass, R. Holz, P. Rimba, A. B. Tran, and Z. Liming, "Securing a Deployment Pipeline," in IEEE/ACM 3rd 
International Workshop on Release Engineering (RELENG), 2015, pp. 4-7. 

[113] S. Neely and S. Stolt, "Continuous Delivery? Easy! Just Change Everything (Well, Maybe It Is Not That 
Easy)," in Agile Conference (AGILE), 2013, pp. 121-128. 

[114] T. Savor, M. Douglas, M. Gentili, L. Williams, K. Beck, and M. Stumm, "Continuous deployment at 
Facebook and OANDA," in Proceedings of the 38th International Conference on Software Engineering 
Companion, ed. Austin, Texas: ACM, 2016, pp. 21-30. 

[115] L. E. Lwakatare et al., "Towards DevOps in the Embedded Systems Domain: Why is It So Hard?," in 49th 
Hawaii International Conference on System Sciences (HICSS), 2016, pp. 5437-5446. 

[116] S. G. Yaman et al., "Customer Involvement in Continuous Deployment: A Systematic Literature Review," 
Cham, 2016, pp. 249-265: Springer International Publishing. 



 

 

175 

 

[117] T. Fitz. (2016). Continuous Deployment: Beyond Continuous Delivery. Available at: goo.gl/PPbTxL [Last 
accessed: 21 December 2016].  

[118] L. W. Richter. (2016). Getting from Continuous Delivery to Continuous Deploymenty. Available at: 
goo.gl/gYtAzG [Last accessed: 18 December 2016].  

[119] K. Lankford. (2013). Beyond Continuous Delivery—All the Way to Continuous Deployment, Available at: 
goo.gl/QAZ1DG [Last accessed: 13 January 2017]. .  

[120] G. Schermann, J. Cito, P. Leitner, and H. C. Gall, "Towards quality gates in continuous delivery and 
deployment," in IEEE 24th International Conference on Program Comprehension (ICPC), 2016, pp. 1-4. 

[121] (2016). 2016 State of DevOps Report, Available at:goo.gl/DrkW6U [Last accessed: 5 October 2017].  

[122] M. Mooney. Continuous Deployment For Practical People, Available at:goo.gl/LJjBnA [Last accessed: 11 June 
2017]. .  

[123] M. Brandtner, E. Giger, and H. Gall, "SQA-Mashup: A mashup framework for continuous integration," 
Information and Software Technology, vol. 65, pp. 97-113, 2015. 

[124] D. Ståhl, K. Hallén, and J. Bosch, "Continuous Integration and Delivery Traceability in Industry: Needs 
and Practices," in 42th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), 2016, 
pp. 68-72. 

[125] A. Brown. (2015). What’s the Best Team Structure for DevOps Success? Available at: goo.gl/3Z11og [Last 
accessed: 13 September 2017].  

[126] What Team Structure is Right for DevOps to Flourish, Available at: goo.gl/KM6N3p [Last accessed: 24 
September 2017].  

[127] J. Wettinger, U. Breitenbücher, M. Falkenthal, and F. Leymann, "Collaborative gathering and continuous 
delivery of DevOps solutions through repositories," Computer Science - Research and Development, journal 
article pp. 1-10, 2016. 

[128] S. Krusche and L. Alperowitz, "Introduction of continuous delivery in multi-customer project courses," in 
36th International Conference on Software Engineering Companion Hyderabad, India, 2014, pp. 335-343: ACM. 

[129] M. Callanan and A. Spillane, "DevOps: Making It Easy to Do the Right Thing," IEEE Software, vol. 33, no. 
3, pp. 53-59, 2016. 

[130] K. Nybom, J. Smeds, and I. Porres, "On the Impact of Mixing Responsibilities Between Devs and Ops," in 
17th International Conference on Agile Processes, in Software Engineering, and Extreme Programming, Edinburgh, 
UK, 2016, pp. 131-143: Springer International Publishing. 

[131] B. B. N. d. França, J. Helvio Jeronimo, and G. H. Travassos, "Characterizing DevOps by Hearing Multiple 
Voices," in 30th Brazilian Symposium on Software Engineering, Maringá, Brazil, 2016, pp. 53-62: ACM. 

[132] There's No Such Thing as a "Devops Team", Available at: goo.gl/ZCTNyY [Last accessed: 5 March 2017].  

[133] K. Bittner and T. Buntel. Overcoming Organizational Obstacles to DevOps and Continuous Delivery, 
Available at: goo.gl/9FpTL4 [Last accessed: 12 June 2017].  

[134] N. Ford. Continuous Delivery for Architects, Available at:goo.gl/dyWN5a [Last accessed: 20 October 2016].  

[135] J. Humble and J. Molesky, "Why enterprises must adopt devops to enable continuous delivery," Cutter IT 
Journal, vol. 24, no. 8, 2011. 



 

 

176 

 

[136] L. E. Lwakatare, P. Kuvaja, and M. Oivo, "An Exploratory Study of DevOps: Extending the Dimensions of 
DevOps with Practices," in The Eleventh International Conference on Software Engineering Advances (ICSEA), 
2016, pp. 91-99: IARIA. 

[137] J. Iden, B. Tessem, and T. Päivärinta, "Problems in the interplay of development and IT operations in 
system development projects: A Delphi study of Norwegian IT experts," Information and Software Technology, 
vol. 53, no. 4, pp. 394-406, 2011. 

[138] L. Lwakatare, P. Kuvaja, and M. Oivo, "Dimensions of DevOps," in Agile Processes, in Software 
Engineering, and Extreme Programming, vol. 212, C. Lassenius, T. Dingsøyr, and M. Paasivaara, Eds. (Lecture 
Notes in Business Information Processing: Springer International Publishing, 2015, pp. 212-217. 

[139] S. Bellomo, N. Ernst, R. Nord, and R. Kazman, "Toward Design Decisions to Enable Deployability: 
Empirical Study of Three Projects Reaching for the Continuous Delivery Holy Grail," presented at the 44th 
Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), 23-26 June 2014, 
2014.  

[140] P. M. Dooley, "The Intersection of DevOps and ITIL, Available at: goo.gl/tqg2hD [Last accessed: 14 June 
2017]." Global Knowledge2015. 

[141] L. Bass, R. Jeffery, H. Wada, I. Weber, and Z. Liming, "Eliciting operations requirements for applications," 
in 1st International Workshop on Release Engineering (RELENG), 2013, pp. 5-8. 

[142] G. Hohpe, I. Ozkaya, U. Zdun, and O. Zimmermann, "The Software Architect's Role in the Digital Age," 
IEEE Software, vol. 33, no. 6, pp. 30-39, 2016. 

[143] E. Woods, "Operational: The Forgotten Architectural View," IEEE Software, vol. 33, no. 3, pp. 20-23, 2016. 

[144] "ISO/IEC/IEEE Systems and software engineering -- Architecture description," ISO/IEC/IEEE 42010:2011(E) 
(Revision of ISO/IEC 42010:2007 and IEEE Std 1471-2000), pp. 1-46, 2011. 

[145] R. Capilla, A. Jansen, A. Tang, P. Avgeriou, and M. A. Babar, "10 years of software architecture knowledge 
management: Practice and future," Journal of Systems and Software, vol. 116, pp. 191-205, 2016. 

[146] A. Jansen and J. Bosch, "Software Architecture as a Set of Architectural Design Decisions," in 5th Working 
IEEE/IFIP Conference on Software Architecture, 2005, pp. 109-120. 

[147] A. Balalaie, A. Heydarnoori, and P. Jamshidi, "Microservices Architecture Enables DevOps: Migration to a 
Cloud-Native Architecture," IEEE Software, vol. 33, no. 3, pp. 42-52, 2016. 

[148] T. Mårtensson, D. Ståhl, and J. Bosch, "Continuous Integration Impediments in Large-Scale Industry 
Projects," in 2017 IEEE International Conference on Software Architecture (ICSA), 2017, pp. 169-178. 

[149] N. Ford and R. Parsons. (2016). Microservices as an Evolutionary Architecture, Available at: goo.gl/aysZvA 
[Last accessed: 20 March 2016].  

[150] J. Lewis and M. Fowler. Microservices: a definition of this new architectural term, Available at: 
goo.gl/me6tp5 [Last accessed: 05 January 2016].  

[151] M. Skelton. (2016). How to break apart a monolithic system safely without destroying your team, Available 
at: goo.gl/pqBVm2 [Last accessed: 4 November 2016].  

[152] P. Ketan. (2015). Monolithic vs Microservice Architecture, Available at: goo.gl/F46ptW [Last accessed: 24 
October 2016].  

[153] Self-Contained Systems: Assembling Software from Independent Systems, Available at: http://scs-
architecture.org/ [Last accessed: 1 June 2017].  

http://scs-architecture.org/
http://scs-architecture.org/


 

 

177 

 

[154] N. Dragoni et al., "Microservices: Yesterday, Today, and Tomorrow," in Present and Ulterior Software 
Engineering, M. Mazzara and B. Meyer, Eds. Cham: Springer International Publishing, 2017, pp. 195-216. 

[155] R. Chris. (2014). Pattern: Monolithic Architecture, Available at: goo.gl/royZ7i [Last accessed: 4 November 
2016].  

[156] G. Arun. (2015). Microservices, Monoliths, and NoOps, Available at: goo.gl/zou2x3 [Last accessed: 8 
November 2016].  

[157] S. Gibson. Monoliths are Bad Design... and You Know It, Available at: goo.gl/xVEbSE [Last accessed: 4 March 
2016].  

[158] J. Humble. (2011). Organize software delivery around outcomes, not roles: continuous delivery and cross-
functional teams, Available at: goo.gl/MnFtJN [Last accessed: 10 August 2016].  

[159] P. Beijer and T. de Klerk, IT Architecture- Essential Practice for IT Business Solutions. Lulu. com, 2010. 

[160] W. Hasselbring and G. Steinacker, "Microservice Architectures for Scalability, Agility and Reliability in E-
Commerce," in 2017 IEEE International Conference on Software Architecture Workshops (ICSAW), 2017, pp. 243-
246. 

[161] N. Ford. Architecture is abstract until operationalized, Available at: goo.gl/HorpbH [Last accessed: 21 
February 2016].  

[162] M. Fowler. (2015). MicroservicePremium, Available at: goo.gl/3WVKsn [Last accessed: 31 October 2016].  

[163] I. Manotas et al., "An empirical study of practitioners' perspectives on green software engineering," in 
38th International Conference on Software Engineering, Austin, Texas, 2016, pp. 237-248: ACM. 

[164] B. Sokhan. Domain Driven Design for Services Architecture, Available at: goo.gl/ftCLnR [Last accessed: 10 
January 2016].  

[165] V. Gitlevich and E. Evans. What is Domain-driven design? Available at: goo.gl/S3zMSR [Last accessed: 21 
June 2016].  

[166] E. Evans, Domain-driven design: tackling complexity in the heart of softwareT. Addison-Wesley 
Professional, 2004. 

[167] Alberto Brandolini. (2013). Introducing Event Storming, Available at: goo.gl/GMzzDv [Last accessed: 8 July 
2017].  

[168] M. Erder and P. Pureur, Continuous architecture: sustainable architecture in an agile and cloud-centric 
world. Morgan Kaufmann, 2015. 

[169] T. d. Pauw. (2017). Feature Branching is Evil, Available at: https://speakerdeck.com/tdpauw/xp2017-feature-
branching-is-evil/ [Last accessed: 27 May 2017].  

[170] M. T. Rahman, L. P. Querel, P. C. Rigby, and B. Adams, "Feature Toggles: Practitioner Practices and a 
Case Study," in IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR), 2016, pp. 201-211. 

[171] K. Gabhart. (2014 ). Resilient IT Through DevOps, Available at: goo.gl/6KwMtN [Last accessed: 1 July 2017]. .  

[172] K. Wnuk, "Involving Relevant Stakeholders into the Decision Process about Software Components," in 
IEEE International Conference on Software Architecture Workshops (ICSAW), 2017, pp. 129-132. 

[173] N. Ernst, J. Klein, G. Mathew, and T. Menzies, "Using Stakeholder Preferences to Make Better 
Architecture Decisions," in IEEE International Conference on Software Architecture Workshops (ICSAW), 2017, 
pp. 133-136. 

https://speakerdeck.com/tdpauw/xp2017-feature-branching-is-evil/
https://speakerdeck.com/tdpauw/xp2017-feature-branching-is-evil/


 

 

178 

 

[174] S. Suneja et al., "Safe Inspection of Live Virtual Machines," in 13th ACM SIGPLAN/SIGOPS International 
Conference on Virtual Execution Environments, Xi'an, China, 2017, pp. 97-111, 3050766: ACM. 

[175] L. Prewer. (2015). Smoothing the continuous delivery path – a tale of two teams, Available at: goo.gl/1oqjsP 
[Last accessed: 2 October 2016].  

[176] D. Schauenberg. (2014). Development, Deployment and Collaboration at Etsy, Available at: goo.gl/umGTM2 
[Last accessed: 1 September 2017].  

[177] Y. Yaniv. (2014). Closing the Gap Between Database Continuous Delivery and Code Continuous Delivery, 
Available at: goo.gl/mERZcV [Last accessed: 21 August 2016].  

[178] J. Bosch, "Speed, Data, and Ecosystems: The Future of Software Engineering," Software, IEEE, vol. 33, no. 
1, pp. 82-88, 2016. 

[179] A. Wallgren. (2015). Continuous Delivery of Microservices: Patterns and Processes, Available at: 
goo.gl/Yk6ddH [Last accessed: 10 February 2018].  

[180] W. John et al., "Service Provider DevOps," IEEE Communications Magazine, vol. 55, no. 1, pp. 204-211, 2017. 

[181] F. Ullah, A. J. Raft, M. Shahin, M. Zahedi, and M. A. Babar, "Security Support in Continuous Deployment 
Pipeline," in 12th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE), 
Porto, Portugal, 2017. 

[182] R. d. Feijter, "Towards the adoption of DevOps in software product organizations: A maturity model 
approach," Master Thesis, Utrecht University, 2017. 

[183] T. Laukkarinen, K. Kuusinen, and T. Mikkonen, "DevOps in regulated software development: case 
medical devices," in 39th International Conference on Software Engineering: New Ideas and Emerging Results 
Track, Buenos Aires, Argentina, 2017, pp. 15-18, 3102967: IEEE Press. 

[184] M. Schmidt. (2016). DevOps and Continuous Delivery: Not the Same, Available at: goo.gl/9q1zan [Last 
accessed: 2 October 2017].  

[185] "Exploring Microservices: 14 Questions Answered By Experts, Available at: goo.gl/rohpzK [Last accessed: 
7 January 2018]." xebialabs. 

[186] L. Zhu, L. Bass, and G. Champlin-Scharff, "DevOps and Its Practices," IEEE Software, vol. 33, no. 3, pp. 32-
34, 2016. 

[187] S. Haselböck, R. Weinreich, and G. Buchgeher, "Decision guidance models for microservices: service 
discovery and fault tolerance," in Fifth European Conference on the Engineering of Computer-Based Systems, 
Larnaca, Cyprus, 2017, pp. 1-10: ACM. 

[188] M. Shahin, P. Liang, and M. R. Khayyambashi, "Architectural design decision: Existing models and tools," 
in 2009 Joint Working IEEE/IFIP Conference on Software Architecture & European Conference on Software 
Architecture, 2009, pp. 293-296. 

[189] (2011). ISO/IEC 25010:2011 Systems and software engineering — Systems and software Quality Requirements 
and Evaluation (SQuaRE) — System and software quality models, Available at: goo.gl/KbpNbE [Last accessed: 18 
January 2018].  

[190] T. Cerny, M. J. Donahoo, and J. Pechanec, "Disambiguation and Comparison of SOA, Microservices and 
Self-Contained Systems," in International Conference on Research in Adaptive and Convergent Systems, Krakow, 
Poland, 2017, pp. 228-235: ACM. 

[191] T. Mauro. (2015). Adopting Microservices at Netflix: Lessons for Architectural DesignT, Available at: 
goo.gl/iUxqXA [Last accessed: 10 December 2017].  



 

 

179 

 

[192] G. Bergman. (2016). Serving 86 million users – DevOps the Netflix way, Available at: goo.gl/AhPRk3 [Last 
accessed: 5 January 2018].  

[193] G. Haff. (2017). DevOps success: A new team model emerges, Available at: goo.gl/c35qyE [Last accessed: 10 
January 2018].  

[194] E. D. Nitto, P. Jamshidi, M. Guerriero, I. Spais, and D. A. Tamburri, "A software architecture framework 
for quality-aware DevOps," in 2nd International Workshop on Quality-Aware DevOps, Germany, 2016, pp. 12-
17: ACM. 

[195] T. Potts and E. Ort, "Keep CALM and Architect On: An Architect’s Role in DevOps," 13th Software 
Engineering Institute Architecture Technology User Network (SATURN)  2017. 

[196] N. Kerzazi and B. Adams, "Who Needs Release and DevOps Engineers, and Why?," in IEEE/ACM 
International Workshop on Continuous Software Evolution and Delivery (CSED), 2016, pp. 77-83. 

 

 

 

 

 

 

 

 

 

 

 

 

 


	TITLE: An Empirical Study of Architecting and Organizing for DevOps
	Contents
	List of Figures
	List of Tables
	Abstract
	Declaration
	Acknowledgments
	Dedication

	Chapter 1 Introduction
	Chapter 2 Research Design
	Chapter 3 A Systematic Review on Continuous Integration, Delivery and Deployment
	Chapter 4 Moving from Continuous Delivery to Continuous Deployment
	Chapter 5 Continuous Delivery and Deployment: Organizational Impact
	Chapter 6 Architectural Impact of CD Practices: Practitioners’ Perspectives
	Chapter 7 On the Role of Software Architecture in DevOps Success
	Chapter 8 Conclusions and Future Works
	Appendix A Interview Guide for Mixed-methods Study
	Appendix B Survey Instrument
	Appendix C Interview Guide for Case Study
	Appendix D Selected Studies in Systematic Review
	Appendix E Approved Ethics Applications
	References



