
THE UNIVERSITY OF ADELAIDE
SCHOOL OF COMPUTER SCIENCE

Providing Metacognitive Support Using Learning by
Teaching Paradigm

Thesis of Master Project - 2017

Student: Ahoud Alhazmi [a1660266]

Supervisor: Dr. Amali Weerasinghe

3rd of November, 2017

Acknowledgement
First and above all, I praise God (Allah) always and forever in allowing me to complete this

research. There are several people without whom this thesis would not have been at all possible.
I would like to o↵er my sincere gratitude and thanks to my supervisor Dr. Amali Weerasinghe
for her enthusiasm, motivation, patience and immense knowledge in supervising me. Especially,
her guidance and support helped me to clarify my thinking for this research and move forward.
Many thanks to my colleague (Refka Maaroufi) for helping to contact with participants during in the
experiment days. Also, thanks to all participants for agreeing to take part in the experiment. I want
also to express my gratitude and deepest appreciation to my husband, Abdulwahab, who always
prayed for my success. I have very very special thanks to my daughter Addanah who shared with
me these years in Australia and discovered with me the happiness and burdens of adapting to a new
country and lifestyle. Finally, but by no means least, I would like to thank my parents, my sisters,
and brothers for their continuous support and their phone calls.

2

Abstract
Learning by teaching technique is a powerful approach that enhances students to think deeply,

orally and repeatedly. However, there are some obstacles to use this technique in school settings
such as time-consuming, the anxiety of failing in front of the classmates and finding matching
peers. In order to take advantage of this method for the student, there are several computer-based
systems have been implemented to apply this approach where students teach the virtual agents
to play the tutee role. All of these existing systems focus on various domains, and none of them
have considered programming problem solving. In addition to that, the majority of the exiting
systems did not provided meta-cognitive support. They only the focus on providing feedback about
the content such as providing correct answers. This type of feedback called Knowledge of Correct
Response: KCR). In our work, we build a computer-based learning environment that enables the
novice programmers to teach problem solving to an animated agent. It combines learning by teaching
technique and meta-cognitive support. That will help novice programmers to acquire deep learning
on how to solve problems and prepare those programmers for future learning tasks. This project
could provide a solution to novice programmers who usually tend to focus on writing the code rather
than understanding the problem properly because that would lead them to be frustrated when they
do not know how to deal with unfamiliar programming problems.

We conducted an experiment in order to compare the e↵ect of providing guided meta-cognitive
feedback and KCR feedback on the novice programmers’ skills in learning by teaching paradigm. We
implemented two versions of our system. The first version which provides meta-cognitive feedback
and the other version which provides KCR feedback. We analysed data from novice programmers,
18-25 years old, who at least studied and passed at least one programming course. They are from
College of Computer at Al-lieth in Umm Al-Qura University. The place of the conducted experiment
was in the college’s lab. We found that the meta-cognitive feedback e↵ect positively on the novice
programmers’ skills comparing among the pre-test, post-test and delayed test. The performance of
82% of the participants in the experimental group (who received guided meta-cognitive feedback) has
been improved after the post-test whereas the performance of only 30% of participants in the control
group (who received KCR feedback) has been improved. Although the di�culty of the delayed
test compared to the pre-test and the post-test, the performance of 70% of the participants in the
experimental group has been improved whereas the performance of only 50% of the participants in
the control group has been improved. We are not surprised about the improvement of the control
group because learning by teaching technique can encourage (but not to induce) the practice of
meta-cognitive skills implicitly whereas the experimental group use learning teaching technique
with meta-cognitive support in an explicit way.

3

Contents

1 Introduction 11
1.1 Educational Software . 11
1.2 Pedagogical Agents . 11

1.2.1 Intelligent Tutor Environments for Programming Problem Domain 12
1.3 Project Motivation . 12
1.4 Project Aims . 13
1.5 Project Scope . 14
1.6 Research Questions . 14
1.7 Project Significance . 15
1.8 Structure of the Thesis . 16

2 Literature Review 17
2.1 Metacognition Definition . 17

2.1.1 Di↵erence Between Metacognition and Cognition 18
2.2 Metacognition and Problem Solving . 19

2.2.1 The Relationship Between Metacognition and Problem-Solving Process in Pro-
gramming . 19

2.2.2 The Di�culties of Novice Programmers and the Essential Metacognitive Skills 20
2.2.3 Polya’s Problem Solving Techniques . 21
2.2.4 Guided Metacognitive Feedback versus Other Types of Feedback 22

2.3 Learning by Teaching . 23
2.3.1 Drawbacks with Learning by Teaching in School Settings 25

2.4 Teachable Agents Environment Background . 25
2.4.1 Pedagogical agents . 26
2.4.2 Previous Work of Teachable Agent Systems . 26

2.4.2.1 Betty’s Brain system . 26
2.4.2.2 Guardian of History System . 29
2.4.2.3 A Teachable Agent Game . 30
2.4.2.4 SimStudent system . 31
2.4.2.5 Other Systems . 33

2.5 The Limitation of the Existing Teachable Agent Systems 35

3 System Design 37
3.1 Adapting Polya’s Approach in Solving Programming Problems 37
3.2 The Context of the Chosen Problems . 39
3.3 Designing our System . 49

3.3.1 Designing the virtual Agents: Amy and Ms. Sarah 49

4

3.3.2 Describing the Processes of the Proposed System 50
3.3.3 Data Flow Diagram of the Proposed System . 50
3.3.4 Architectural Design of the Proposed System . 51
3.3.5 Feedback Design . 53
3.3.6 Prototype of The System . 54

3.4 A Scenario of How the System Works: . 58
3.5 Tools Used to Develop the System . 59

4 Implementation 60
4.1 Overview of Activities of the Proposed System . 60

4.1.1 Selection of Problems Module . 61
4.1.2 Teaching Module . 62
4.1.3 Amy’s Feedback and Inquiry Module . 62
4.1.4 Quiz Module . 63
4.1.5 Ms. Sarah Feedback Module . 64
4.1.6 Re-teaching Module . 65
4.1.7 Indicator Module . 65
4.1.8 Explanation Module . 65
4.1.9 Skill Meter Module . 66
4.1.10 Previous Answers Module . 67

4.2 Main Classes in our System . 68
4.2.1 User Interface Classes in the System . 69
4.2.2 Model Classes in the System . 71

4.2.2.1 AmyBrain . 71
4.2.2.2 Ms. SarahBrain . 74
4.2.2.3 Tracker . 77

4.2.3 Database Classes in The System . 77
4.2.4 Generation of Log Files . 77

5 Experimental Study of the system 79
5.1 Objective . 79
5.2 Experimental Design . 79

5.2.1 Procedural Skill Test . 80
5.2.2 Motivational test . 81
5.2.3 Evaluation Survey . 82

5.3 Structure of study . 82
5.3.1 Preparation of Study . 82
5.3.2 Tasks of Study . 82

5.4 Participants and The Place of the Conducted Experiment 83

6 Results and Discussion 84
6.1 Participants . 84
6.2 Results of Motivational Test of Participants . 84
6.3 Results for RQ1 . 87
6.4 Changes in Knowledge Monitoring Accuracy (KMA) 91
6.5 Results for RQ2 . 93
6.6 Analysis of Interaction With The System . 96

5

6.6.1 Can Programming Problem Solving Be Learned By The Computer-based System? 96
6.6.2 Usability of The System . 97
6.6.3 Participants’ Evaluation of The Benefits of The System for Developing Their

Own Skills . 97
6.6.4 Participants’ Opinion About The Most Positive and Negative Aspects in The

System . 98

7 Conclusions and Future work 99
7.1 Conclusion . 99
7.2 Research Contributions . 100
7.3 Limitations of the Work . 100
7.4 Future Work . 101

A Appendices 109

6

List of Figures

1.1 Learning Cycle . 14

2.1 Components of Metacognition [1] . 18
2.2 Polya’s Approach to Problem Solving . 21
2.3 Direct and Recursive Feedback [2] . 24
2.4 Disciplines Involved in Teachable Agent Environment based on [3] 25
2.5 Betty’s Brain System [4] . 27
2.6 GoH Interface Using Concept Map [5] . 29
2.7 GoH Interface Using Timeline [5] . 29
2.8 Teachable Agent Game Interface [6] . 31
2.9 SimStudent Interface [7] . 32
2.10 Chan & Chou’s Tutee Interface [8] . 33
2.11 AdventurePlayer System [9] . 34

3.1 Problem Solving Stages Based on Polya’s Approach . 38
3.2 Pseudocode of Finding Odd Numbers without testing 39
3.3 Solving the Even Numbers Problem Based on The strategy shwon in Figure 3.1 42
3.4 Solving the Odd Numbers Problem Based on The strategy shwon in Figure 3.1 42
3.5 Solving the Factorial Problem Based on The strategy shwon in Figure 3.1 43
3.6 Solving the Exponentation Problem Based on The strategy shwon in Figure 3.1 44
3.7 Finding the Biggest Number Problem Based on The strategy shwon in Figure 3.1 . . . 45
3.8 Finding the Smallest Number Problem Based on The strategy shwon in Figure 3.1 . . 45
3.9 Converting From Decimal to Binary Based on The strategy shwon in Figure 3.1 46
3.10 Converting From Binary to Decimal Based on The strategy shwon in Figure 3.1 47
3.11 Find a Sub-string in a String Problem Based on The strategy shwon in Figure 3.1 . . . 48
3.12 Finding Three Tails Attempts Problem Based on The strategy shwon in Figure 3.1 . . . 49
3.13 The Virtual Agent . 50
3.14 The Virtual Agent Ms. Sarah . 50
3.15 Data Flow Digram of the Proposed System . 51
3.16 Architectural design of the Proposed System . 53
3.17 The Teaching Interface . 55
3.18 The Progress of the Skills Window . 55
3.19 Some Hits from Ms. Sarah to Show the Issues of the Solution 56
3.20 Amy’s Skill Indicator for a Particular Problem . 57
3.21 Amy’s Explanation . 57
3.22 Login Window . 58

4.1 The Homepage of the System . 61

7

4.2 The Teaching Workspace . 62
4.3 Amy Feedback . 63
4.4 Amy Inquiry . 63
4.5 Quiz Workspace . 64
4.6 Sarah Feedback . 64
4.7 Skill Indicator . 65
4.8 Amy Explanation . 66
4.9 Skill Meter . 67
4.10 Previous Solutions . 68
4.11 Classes of our System . 69
4.12 The UML of all User Interfaces classes and relationships among them 71
4.13 Showing all the classes that are needed to build AmyBrain 72
4.14 Showing all the classed that needed to build Ms. SarahBrain 75
4.15 Four solutions are provided the same results for solving the same problem. 76
4.16 How to calculate the performance and classify the results as Bad, Ok, Good, and Excellent 76
4.17 The Tracker class as UML static structure diagram . 77

5.1 di↵erence between control and Experimental groups . 80

6.1 Comparing The Score of Participants for Both Tests (Pre-Test and Post-Test) in The
Experimental Group . 87

6.2 Comparing The Score of Participants for Both Tests (Pre-Test and Post-Test) in The
Control Group . 88

6.3 Comparing the Score of Participants for Both Tests (Pre-Test and Delayed-Test) in The
Experimental Group . 89

6.4 Comparing The Score of Participants for Both Tests (Pre-Test and Delayed-Test) in the
Control Group . 90

6.5 The three classified of KMA Score for both groups for Pre-test 92
6.6 The three classified of KMA Score for both groups for Post-test 93
6.7 The three classified of KMA Score for both groups for Delayed-test 93
6.8 The average for each problem in log files for Experimental group 94
6.9 The average for each problem in log files for Control group 95
6.10 Comparing the average for eleven problems in log files for both groups 96

8

List of Tables

2.1 Feedback Example of SRL-C and SRL-A [4] . 28
2.2 Summary of All Previous Teachable Agent Systems . 36

3.1 The 16 Pairs of Chosen Problems . 40
3.2 Some Feedback Example From Ms. Sarah . 54

4.1 User Interfaces Classes in our systems and the description 70
4.2 Showing all the classes name and the description for building AmyBrain 72
4.3 Showing all the classes name and the description for building Ms. SarahBrain 74
4.4 Database Classes in our systems and their description 77

5.1 KMA values for performance and prediction . 81
5.2 Classification of KMA . 81
5.3 Organization of the experiment sessions. 83

6.1 The number of participants in both groups . 84
6.2 The average for each questions for all participants in the experiment in Motivation part 85
6.3 The average for each questions for all participants in the experiment in learning strate-

gies part . 86
6.4 Classification of groups based prior knowledge . 90
6.5 the numbers of participants based prior knowledge split 90
6.6 KMA value of the experimental group for three tests. Hints (Ref) in the table means

this participant was not attended in this test . 91
6.7 KMA value of the control group for three tests . 91
6.8 The average of KMA in three tests for both experimental and control groups 92
6.9 the participants’ opinion if programming problem solving can be learned by the

computer-based system . 96
6.10 Attributes of usability questions and the average of each question for both groups and

the average of all participants . 97
6.11 The evaluation the benefits of the system and the average of both groups 98

9

List of Abbreviation

TA Teachable Agent

ITS Intelligent tutoring system

LBT Learning-by-Teaching

AI Artificial Intelligence

SRL Self-regulated learning

SRL-C Self-regulated learning - Cognitive feedback

SRL-A Self-regulated learning - A↵ective feedback

GoH Guardian of history

CTA Challenging Teachable Agent

DENISE Development Environment for an Intelligent System in Economics

MCL Math Concept Learning

KORI KORea university Intelligent agent

GUI Graphical User Interface

SWT Standard Widget Toolkit

KCR Knowledge of Correct Response

KMA Knowledge Monitoring Assessment

MSLQ The Motivated Strategies for Learning Questionnaire

MAI Metacognitive Awareness Inventory

LPK Low Prior Knowledge

APK Average Prior Knowledge

HPK High Prior Knowledge

10

Chapter 1

Introduction

1.1 Educational Software
Over the last few decades, the role of technology in education has evolved significantly. All tradi-

tional tools in classrooms such as black boards and white boards have increasingly been replaced by
digital tools and platforms. Some of these tools and platforms usually include specific software for
a particular field, and this software may typically di↵er according to the targeted educational field.
However, it is not enough to provide students with hardware and software that support the acqui-
sition of domain knowledge. More e↵ort needs to be concentrated on how to foster students’ skills
to help them to be independent learners [1]. Especially, educational establishments are starting to
focus on ’di↵erentiated learning’ nowadays, because they want to move the education approach from
a one-to-many homogeneous experience to a one-to-one deeply immersive, personalized learning
experience [2].

For that, many researchers from psychology, education and computer science have worked together
for creating educational software, where students can follow a curriculum individually and enhance
their learning capabilities [3]. On such support system is intelligent learning environments whose
design is informed by cognitive theory and cognitive modelling [4]. These environments are capable
of adapting the instruction to each individual student based on Artificial Intelligence (AI) techniques.
Thus, they have the ability to support students to accomplish tasks which they cannot accomplish
independently.

1.2 Pedagogical Agents
One of the educational software that has been developed. It includes virtual pedagogical agents

that can play pedagogical roles such as teachers, students or mentors. This type of software can be
categorized into two groups according to the roles of the agents. Firstly, virtual pedagogical agents
which play a tutor role to teach a domain knowledge to students and provide materials and exercises.
As these agents act mainly as teachers, they evaluate the level of students’ learning. This type is called
as Intelligent tutoring system (ITS). Teachable Agent (TA) environment is another type of pedagogical
agents. It comes from an educational technique called Learning-by-Teaching (LBT), where students
can play the teacher role and teach the animated agent using well-structured visual representations
[5]. In this project, we will focus on the Teachable Agent Environment since the traditional ITS cannot
promote students’ motivation and skills.

11

A Teachable agent is an agent where it is taught by a student new information about a particular
subject. This technique (learning by teaching) assists the student to understand the material because
she will prepare herself e↵ectively to deliver the information to somebody else. This approach has a
positive impact on students’ skill as will be discussed in chapter 2.

We will implement the learning by teaching strategy into a computer-based system where human
students can teach the agent programming problem-solving. Due to the fact that students are not
experts in solving programming problems correctly, and that will negatively impact the performance
of the agent when facing a new problem, we will also build another agent to monitor the students’
performance when teaching the agent. Therefore, our project will contain two agents. One agent
(called Amy) plays the tutee role. The second agent (called Ms. Sarah) will monitor how the human
student teaches the agent Amy.

1.2.1 Intelligent Tutor Environments for Programming Problem Domain
As mentioned previously, we are interested in programming problem solving to be the targeted

domain in our system especially, due to the lack of teachable agent environments with this domain.
Also, this domain need greater metacognitive skills in order to solve the problem successfully.

To give overview about this domain. It is one of the complex and ill-structured kinds of problems
[7]. It is not a linear, straightforward process. Rather it is an iterative and cyclical process and
involves ongoing monitoring and evaluation. Therefore, metacognition is critical for successful
problem solving [8].

Such this domain is considered challenges to development in intelligent systems because it has two
types of learning (acquiring declarative knowledge and problem-solving skills). It is very confused
to decide the programming problem is well-defined domain or ill-defined domain. The authors
of [6] discussed deeply how to distinction such these domains. Programming problem solving is
considered as well-defined domain but the instructional tasks in this domain is ill-defined. Based on
[6] we mean by domain is declarative domain knowledge or the domain theory while the instructional
task is the task the student is learning in terms of problem-solving skills.

To illustrate, the concept of solving any programming problem is well defined. However, the task of
developing solutions for a particular problem itself is ill-defined because it is usually underspecified
and ambiguous, there is no algorithm to use to come up with the solution. Also, some researcher
believes that ill-defined tasks are those domains have multi-correct solutions. However, in a teaching
situation, the teacher often has a good pedagogical reason for preferring one particular solution over
the others [8].

1.3 Project Motivation
Most novice programmers feel frustrated when they encounter unfamiliar programming problems.

One of the main issues is that those novice programmers tend to focus on writing the code rather
than understanding the problem properly. Most introductory programming courses often focus on
the features of a programming language including syntax [9]. Thus, they may fail to understand the

12

problem or use successful strategies for solving the problem in the first place. Thus, they usually
use trial and error strategy. However, their approach could work in some cases but often take longer
time and e↵ort. In addition to that, trial and error strategy most likely produce unorganized and
unreadable code.

Furthermore, such these courses do not help students how to think, evaluate and monitor about
solving problems in general. Students are often concentrate on the textbook questions at the end
of each chapter, solved using material discussed earlier in the chapter [10]. Therefore, students
in these programming courses acquired the cognitive skills more that metacognitive skills because
they are usually taught about the basic cognitive skills such as variables, selection statements and
iterative statements. However, mastering only these component skills is not enough for beginner
programmers to deal with non-routine problems because they need to know what and how to do [11]
[12]. This aspect of the problem is called metacognition. It helps novice programmers about when
and how to use specific strategies for problem solving.

Metacognition is a higher order thinking that allows students to understand, analyse and control
their own thought processes [13]. In other words, it refers to think about one’s own thinking process
such as study skills, memory capabilities, and the ability to monitor learning [14]. Furthermore, it
plays a significant role of the distinction between experts and beginners in a domain [15].

This project will provide metacognitive support that will enhance novice programmers to think,
monitor and control their problem solving skills before generating program code. In order to achieve
that, we only focus on the first three steps from six steps to solve any programming problem.
Particularly, these first three steps are considered the toughest tasks for novice programmers [12].
The six s six steps to solve any programming problem are formulating the problem, planning the
solution, designing the solution, implementation, testing and delivery [16].

1.4 Project Aims
There are several aims of this project:

• To explore how metacognitive sca↵olding could be supported on the proposed system (teach-
able agents environment).

• To assist novice programmers to improve their problem-solving skills in terms of planning,
knowledge construction, monitoring, evaluating and revising.

• To assist novice programmers to know their own strengths and weaknesses of programming
problem skills.

• To support novice programmers to get the ideal solution.

• To understand novice programmer’s progress and then provide feedback on their own metacog-
nitive skills and the domain content.

• To evaluate the e�ciency and usability of the proposed system.

13

1.5 Project Scope
In this project, we build a computer-based learning environment to support novice programmers in

problem-solving. It combines learning-by-teaching technique with metacognitive support to enable
novice programmers to acquire deep learning on how to solve programming problems and prepare
them for future learning tasks. To the best of our knowledge, this project is the first project that
provides support to the novice programmers to think about their thinking of solving the problem
rather than writing the code.

As mentioned, previously, the proposed system have two animated pedagogical agents. The first
agent is Amy which plays the tutee role. The second agent (called Ms. Sarah) will monitor how
the human student teaches the agent Amy. Furthermore, it provides several actions for teaching the
animated agent. As well, it provides metacognitive feedback in order to develop learner’s abilities
to monitor the agent knowledge and their own learning and understanding progress. Figure 1.1
shows the summary of the learning cycle in the project. The learning cycle has five components: (i)
present the first problem, (ii) teach Amy, (iii) observe Amy’s solution of another isomorphic problem,
(iv) obtain metacognitive feedback from Ms. Sarah and (v) correct Amy’s solution to get the ideal
solution.

Present the first
problem

Teach Amy

Observe Amy's solution of
another isomorphic problem

Obtain Metacognitive feedback
from Ms. Sarah

Correct Amy's
solution

Move to
next problems

Figure 1.1: Learning Cycle

1.6 Research Questions
The main goal of this project is to provides metacognitive support to the novice programmers in

learning by teaching paradigm. In general, feedback improves students’ performance in problem-
solving. For that, it becomes important in computer-based learning environments. There are many
types of feedback. Firstly, metacognitive feedback is like guided feedback that is to assist a student
in solving the problem but without giving the correct solution. Secondly, another type of is called

14

Knowledge of Correct Response: KCR) it informs the learner of the correct answer to a specific
problem with no additional information.

Our research questions are:

1. What is the e↵ect of KCR and metacognitive feedback on novice programmer’s own problem
solving skills (planning, monitoring, evaluation, debugging skills)?

2. How can KCR and metacognitive feedback a↵ect on novice programmers to adjust their ap-
proach for teaching the teachable agent (Amy)?

1.7 Project Significance
Learning by teaching helps learners to understand the domain knowledge in a profound way.

The authors [17] report that people who teach others in the interest of preparing themselves for a
quiz have performed better than those who prepare only themselves for the same quiz. The authors
believe that because during the preparing stage of teaching others, people will be forced to organize
their ideas to gain a deeper understanding of the materials in order to be able to explain the materials
in a simple way for others [18]. Moreover, authors in [19] [20] found that students who teach others
spent more time in learning than those who spent the time to learn themselves, and that leads to gain
more knowledge in the targeted domain.

Therefore, this project’s aim is to enhance novice programmers to prepare themselves and organize
their knowledge of how to solve problems using metacognition approach. We aim to make the
students improve their thinking of solving a programming problem before start coding any solution
for that problem. In addition, this project provides support to novice programmers who seem to
be frustrated about their learning and organizing the knowledge as well as monitoring their own
learning progress for solving programming problems.

As mentioned previously, metacognition is very significant in the learning process and solving a
problem. For that, lack of metacognitive skills makes analysis problem-solving task di cult for novice
programmers. However, providing metacognitive support, explicitly or implicitly, will improve
novice programmers to gain expertise and solve any problem successfully. [21] recommends that the
metacognitive support should be explicit support because it makes the support for metacognition
apparent and induces the learner to practice metacognition whereas implicit metacognitive support
does not induce (only encourage) the learner to practice metacognition. Therefore, metacognitive
feedback will assist novice programmers to prepare themselves in the future learning in e↵ective
way.

Previous studies have designed systems which have the characteristic of learning by teaching
technique for programmers, where these systems allow those users to teach animated agents (which
are as students or peers). Also, these systems provide directed feedback to the users regarding
missing information. directed feedback such as KCR is useful only in early stage of learning process
[22]. For that, metacognitive feedback would reinforce an exploratory and constructivist learning
approaches for programmers.

15

1.8 Structure of the Thesis
This document includes seven chapters Chapter 1 introduces the research topic and presents

project motivation. It also presents the scope, aims of the project and an overview of the research
questions with the significance of the project. Chapter 2 is the literature review. Firstly, It presents
the relationship between metacognition and problem-solving process in Programming with showing
the di�culties of Novice Programmers. It also presents the role of metacognition to enhance the
thinking of novice programmers. Secondly, it presents the benefits of learning by teaching approach
for learners Thirdly, it describes some existing teachable agent environments and presents also the
limitation of these existing systems. After that, Chapter 3 and Chapter 4 are dedicated to our system.
Chapter 3 describes the design of the system and Chapter 4 describes the implementation of the
system in details.

Chapter 5 presents the experimental study of this research. It was an empirical evaluation of novice
programmers’ interaction with our system focusing mainly on the observation of how metacognitive
feedback in learning by teaching paradigm a↵ects on performance changes. The experiment was
undertaken with undergraduate students at College of Computer at Al-lieth in Umm Al-Qura Uni-
versity. The design of the experiment is presented with the materials that used in the experimental
study. Chapter 6 summarises and discusses the results Also, it presents and main contributions of this
work. Finally, chapter 7 presents the conclusion, the contribution of this work, and the limitations.
Also, it includes a section to explain the future work.

16

Chapter 2

Literature Review

In general, this chapter includes three significant parts. The first part introduces the metacognition
definition and relationship between it and problem-solving in programming. Also, it presents the
di�culties of Novice Programmers and how the metacognitive support can enhance their thinking.
The second part gives an overview about learning by teaching technique. It also presents the
advantages of this technique and the obstacles of using it in the school setting. The third part presents
the existing system that supports learning by teaching paradigm with presenting the limitation of
these systems.

2.1 Metacognition Definition
Metacognition is a term in educational psychology filed. It comes from the root word "meta"

- to refer "thinking about thinking" or "knowledge about knowledge". Metacognition is a higher
order thinking that allows students to understand, analyze and control their own thought processes
[10]. In other words, it refers to think about one’s own thinking process such as study skills,
memory capabilities, and the ability to monitor learning [11]. Metacognition is as an awareness
about the student to learn or solve a problem because it allows learners to plan and monitor their
learning process to improve their performance [12] [13]. The authors of [12] [14] [1] defined the
components of metacognition as shown in 2.1. Firstly, it is knowledge about cognition which is called
metacognitive knowledge that consists of (i) Person variables knowledge which is understanding
one’s own capabilities, (ii) Task variables knowledge which is how one perceives the di�culty of
a task which is the content, length, and the type of assignment. (iii) Strategic variables knowledge
which is one’s own capability for using strategies to learn information. Secondly, it is regulation
of cognition which is called self-regulation and consists of the following: planning, monitoring,
evaluating, and revising.

17

Metacognition

Metacognitive
 Knowledge

Metacognitive
 Regulation

Knowledge of
person variables

Knowledge of
task variables

Knowledge of
strategy variables

Monitoring EvaluatingPlanning Revising

Figure 2.1: Components of Metacognition [1]

Metacognition plays a critical role for many of our daily activities such as reading comprehen-
sion, problem-solving, social cognition ... etc. In other words, it is a key factor for learners to be
successful as well it is related to intelligence [15][16][17][18]. Furthermore, paper [19] displays how
metacognition was included in the thinking objectives such as critical thinking, decision-making,
problem-solving, creative thinking and searching for meaning. For that, metacognition is the most
factor that distinguishes between poor learners and good learners. In [15] the authors argue that good
learners are more flexible in their methods to deal with problems and they are more self-monitoring.
As well, they have a larger repertoire of strategies and they are more organized about their strategies
to ensure their activities works in the appropriate sequence. Furthermore, we will explain more
about its benefits to novice programmer in order to solve a programming problem in section 2.2.

2.1.1 Di↵erence Between Metacognition and Cognition
The di↵erence between metacognition and cognition is complicated. For example, when we read

a text, we need cognitive skills. This is di↵erent when we want to monitor our own understanding
of text. That is considered metacognitive skill. Another example, novice programmers know about
basic cognitive skills such as constants and variables; comparison and logical operators; selection
statements; iterative statements; and arrays. When they have to know when and how to use them
that is considered metacognitive skills. [20] defines that cognitive strategies help learners to achieve
a goal whereas metacognitive strategies ensure the achievement of a goal. However, theses previous
examples are not clear enough to distinct between metacognitive and cognitive skills. In [20] the
authors show the example about the interchangeability of cognitive and metacognitive functions.
For example, the activity is about looking for the main points in a text. That also can be seen as the
strategy itself due to monitoring function and reflection of the knowledge.

In [12], Flavell’s model of metacognition assumes that metacognitive and cognitive are distinct in
their content and function, but that there is a resemblance in their quality and form. The similarity
between them, they can be acquired, forgotten, corrected or not. In contract, they are di↵erent in terms
of contents. The contents of metacognition come from the learner’s internal mental representations
(such as skills about cognition) but the contents of cognition come from the learner’s external reality.
The second di↵erence is about function. The function of cognition is to solve the problem, but the

18

problem solver needs to regulate their cognitive operation in order to execute a task that is considered
the function of metacognition.

2.2 Metacognition and Problem Solving
Problem solving is complex mental process. It is an iterative and cyclical process, and it involves

ongoing monitoring and evaluation. For finding solution, problem solver needs three factors. [11]
explains these factors are domain-specific knowledge (content knowledge in a specific discipline) and
structural knowledge (the knowledge of how concepts within a domain are interrelated). In addition,
metacognition is the third factor that is very significant because it involves ongoing monitoring and
evaluation.

There are three cyclic stages of problem solving process in any discipline: familiarization stage,
production stage and judgement or evaluation stage. The first stage is about understanding the
problem. It is very important stage in problem solving because a correct solution depends on this
stage more than others [21]. The second stage about producing the solution paths. The third stage is
about evaluating the solution which could help to select the best solution.

In our daily lives, when we solve a problem, we acquire something. However, the performance for
solving a problem could be di↵erent from person to another. What is demanding and challenging to
a person might be easy and simple to another thus is not considered as a problem solving situation.
The interaction of person’s experience and the demands of the task make the problem-solving are
di↵erent from person to person [22][23]. The authors in [24][25] demonstrate who utilize their
intellectual skills consciously and who show perseverance and flexibility in problem solving. They
have well-developed their metacognitive abilities. Therefore, metacognition in general helps problem
solver to recognize and figure out the problem to be solved and understand the idea of how to reach
the solution. There are many metacognitive processes in problem solving domain involved in
(i) determining and identifying what kind of problem it is, (ii) representing and developing mental
model of problem, (iii) planning how to proceed especially when problem is novel and (iv) evaluating
the performance [20].

2.2.1 The Relationship Between Metacognition and Problem-Solving Process in
Programming

In general, the steps of problem solving include the identification and the definition of a problem,
the formulation of a strategy, the organization of information, resources allocation, observartion
and monitoring, and evaluation [26]. Solving programming problems requires similar steps. [27]
presented six steps of problem solving that help a programmer to develop their model. Theses steps
are formulating the problem, planning the solution, designing the solution, implementation, testing
and delivery. In this project, we will focus on the first three steps because the programmer would
need them before generating the code. These steps are considered the di�cult tasks for beginners
since the first three steps require the problem solving ability to solve any problem. Most likely, those
novice programmers lack these three steps.

19

For that , the importance of metacognition is very obvious. [28] found students who use metacogni-
tive strategies outperform in programming than who do not use it. Furthermore, [29] stated whenever
a programming problem increases the complexity, a student will need more metacognitive control
for their process because they need to understand the problem, devise a plan, correct errors, test
program output and think deeply about their solutions. In [30] authors propose four metacognitive
skills that a programmer needs: understanding and interpreting the problem correctly, determining
the required steps sequentially, choosing the best solution with considering programmers’ skills and
evaluating the solution correctly.

2.2.2 The Di�culties of Novice Programmers and the Essential Metacognitive
Skills

In [31] defined novice programmers is a person that lack the knowledge and programming skills.
Their approach for solving the programming problem is that they read the problem statement and
start directly writing the code. That means they are confused between problem solving and coding.
Writing the code is the stage of expressing the solution to the problem in a way that it can be
transferred to the computer [32]. Additionally, novice programmers usually use the trail-and-error
strategy. In some cases, their approach works but often takes time and e↵ort. As well, their code
would be unreadable and hard to understand. Indeed, the limitations of their approach is that they
use line-by-line of written code rather than understanding the big picture of program structures. In
[32] they emphasize the problem solving is a heart of programming rather than coding. For that, we
will focus on how to solve programming problem before starting coding.

When novice programmers resort to non-productive trail-and error strategy, they develop their
own problem solving strategy. For that, they need about 10 years to become an expert programmer
[33]. Researchers investigated what the di↵erence between novices’ and experts’ methods for solving
a programming problem are. Although, beginner programmers face grammatical problems in a
programming language, they have a limitation to decompose problems. They are not skilful at
problem decomposition, and they usually use the low level of abstraction. In contrast, experts have
the ability to decompose problems into sub-problems and manage it easily. In addition, they can
find alternative solutions and choose the best solution [34][35]. Thus, lack of strategies and tactical
knowledge of problem solving is one of the challenges that the student should deal with.

As mentioned previously, novice programmers usually learn about the basic cognitive skills such
as: constants and variables, comparison and logical operators, statements of selections, statements of
iterations, and arrays. However, they face a problem about how and when to use the cognitive skills.
[36] argued that most students are able to solve routine problems (familiar problems to the students
and they know how to solve) because students can engage both cognitive and metacognitive skills
easily. However, to solve non-routine problems (problems have been failed to solve in the past or
are new), students need metacognition. Furthermore, in [30] the author confirms the importance of
metacognitive skills that enhance the performance of the qualities of a successful problem solver.

To emphasize the critical role of metacognition to distinguish between novice and expert program-
mers, authors of [37] reported that expert programmers (i.e. who had at least two years experiences
of the filed) were superior to the novice programmers (i.e. who were trained in the domain but did

20

not have any work experience) only in the metacognitive knowledge of the programming task. Ex-
perts programmers have more abstract hierarchical organization based on the principles of program
functions, whereas novice programmers have only syntax-based knowledge organization. Further-
more, they found novice programmers lack the mentoring goal-setting, plan for finding solution,
self-monitoring skills and awareness of errors in a problem. Thus, providing metacognitive support
will help novice programmers to become strategic learners and expert programmers. For that, one
of the parts of our project will be responsible for providing metacognitive feedback to the user in
order to develop their metacognitive skills and apply these skills during the programming problem
solving in the future.

2.2.3 Polya’s Problem Solving Techniques
A problem solver always uses step-by-step method to get closer to the end of solution. As men-

tioned previously, beginner programmer lacks three steps which are considered hardest tasks that
leads to frustration. Firstly, it is formulating the problem that explaining preliminary problem de-
scription clearly and structuring the problem representation. Secondly, it is planning the solution that
refers to strategy discovery, goal decomposition. Thirdly, it is designing the solution which refers to
organization and refinement [27].

In [38] George Polya (Professor of Mathematics) displayed primary importance to successful prob-
lem solving skills. His method has four steps as shown in figure 2.2 understand the problem, devise
a plan, carry out the plan and look back. The process of these steps is not linear, the problem solvers
need to go back and forth to the steps until they reach the goal. For instance, problem solver tries to
create a good plan. Then in this stage, she discovers a need to understand the problem better. So, she
will go back to understand the stage and evolve their understanding of the problem.

Figure 2.2: Polya’s Approach to Problem Solving

Despite that Polya uses his process for mathematical problem solving, his approach to problem
solving was used in other disciplines. In [32] used Polya’s approach with the programming problem.
They also suggest two extra processes after the look back step. They describe what the learnt lessons

21

from the process and write summary about assumptions that have been made and conditions that
must be met before the solution. However, we will not consider these both steps because we expected
the users will notice by themselves after following the metacognitive feedback.

Furthermore, [32][38] suggest some actions for each of the previous steps. Firstly, it is about
understanding the problem. The beginner programmers need to break the problem into sup-problems
and determine the requirements of the problem such as input and output. They also need to examine
the special cases of the problem. In some cases, they need to separate various parts of condition.
Secondly, it is about obtaining a plan of the solution. They need to try to simplify the problem by
solving the easiest sup-problem. As well, the users need to design what they are doing. Also, they
need to check all the information in the problem statement have been considered. Thirdly, it is about
carrying out the plan. It is writing the sequence of the solution for example as pseudo-code with
checking the order of the actions correctly. Lastly, it is about verifying any defects in the solution in
order to find some bugs.

2.2.4 Guided Metacognitive Feedback versus Other Types of Feedback
Before explaining what the di↵erence between the metacognitive feedback and others, we will

presents the feedback as generally. Feedback is one of the most powerful influences on learning and
achievement. It is conceptualized as information provided by an agent (e.g., teacher, peer, parent,
self, experience) regarding aspects of one’s performance or understanding. [39] provided an excellent
summary in their claim that "feedback is information with which a learner can confirm, add to, over-
write, tune, or restructure information in memory, whether that information is domain knowledge,
meta-cognitive knowledge, beliefs about self and tasks, or cognitive tactics and strategies".

The main aim of providing feedback is to assist students to develop and increase their knowledge,
skills, and understanding in some content area or general skill (e.g., problem solving). The temporary
assistance from a teacher helps students to complete the tasks e�ciently. Vygotsky [40] defined this
area as the zone of proximal development. For that, teachers usually ask themselves how the feedback
should be. That authos of [41] suggested that feedback should be specific, accurate, timely, clear and
necessary to encourage a person in order to change their thinking and then improve their experience.

The benefits from the feedback is the students can reduce the cognitive load of learners, especially
novice or struggling students [42]. These students can become cognitively overwhelmed during
learning due to high performance demands, and thus they may benefit from supportive feedback
designed to decrease the cognitive load.

The feedback factor consists of three main elements: (a) the content of the feedback (i.e., evaluative
aspects, such as verification, as well as informative aspects, such as hints, cues, analogies, expla-
nations, and worked out examples); (b) the function of the feedback (i.e., cognitive, metacognitive,
and motivational); and (c) the presentation of the feedback components (i.e., timing, schedule, and
perhaps adaptively considerations)[43].

There are many types of feedback depending on the content of the feedback [43]. [[44] explain the
some of them. First, correct response feedback is known as knowledge of correct response (KCR),

22

it informs the learner of the correct answer to a specific problem with no additional information.
Secondly, it is knowledge of result as known as verification feedback and it informs the learner about
the correctness of her response(s), such as right/wrong or overall percentage correct. Error-flagging
is also known as location of mistakes (LM), error-flagging highlights errors in a solution, without
giving correct answer. There are others.

There are many studies that examining which the good feedback type has to be provided the
students. For instance, giving feedback response as only correct or incorrect report (Knowledge of
Response: KOR) is less useful to learners than providing feedback with the correct found answer
(Knowledge of Correct Response:KCR) [44]. [45] discovered that students require feedback that does
not provide too many comments and also gives more guidance to be useful for their improvement.
Since, they will think more about how to fix the mistakes and they will use their intellect skills. The
defining characteristic of intelligent novices seemed to be an ability to control and monitor their own
thought processes.

Intellectual skills are defined as the methods that an individual can use to evaluate or orga-
nize information and data [46]. The authors in [24] [25] demonstrate who utilize their intellectual
skills consciously and who show perseverance and flexibility in problem solving. They have well-
developed their metacognitive abilities. In general, metacognition helps problem solver to recognize
and figure out the problem to be solved and understand the idea of how to reach the solution. [47]
explain metacognition helps learners to plan, monitor, and regulate or change their learning strate-
gies. Furthermore, [12] stated the contents of metacognition comes from the learner’s internal mental
representations (such as skills about cognition) but the contents of cognition come from the learner’s
external reality. In order to improve learner’s learning performance, supporting and guiding learners’
metacognitive control becomes necessary. One e↵ective method facilitating learners’ self-regulation
and learning may be to provide feedback on their metacognitive processes, such as decisions about
which and how to use cognitive strategies [48].

Metacognitive feedback is the communication that makes a learner conscious of the learning
strategies and styles being used and the degree of success. Feedback is an accepted strategy for
increasing the learner’s awareness of what is unknown, what knowledge is needed, and what learning
strategies work [49]. For that, providing feedback on metacognitive skills of novice programmers
help them to aware their strengths and weaknesses. Then in future, Those who know their strengths
and weaknesses in this areas will be more likely to "actively monitor their learning strategies and
resources and assess their readiness for particular tasks and performances". Furthermore, the absence
of metacognition connects to the research by the authors of [50]. They found that "people tend to be
blissfully unaware of their incompetence," lacking "insight about deficiencies in their intellectual and
social skills."

2.3 Learning by Teaching
Learning by teaching is a powerful method to learn. It is recommended by educators and cognitive

science researchers because it increases in the use of techniques such as memorizing, organizing and
reflecting [51]. It has three phases: preparing, teaching, and gaining feedback [2].

23

Firstly, when preparing to teach, tutors consider two questions about delivering the knowledge:
what the knowledge is and how to deliver it. So, some studies found this approach is better than
traditional learning approach which the learners only listen. For example, [52] found the performance
students who prepared to teach others to take a quiz is better than those who prepared to take the
quiz themselves. Furthermore, preparing to teach other people enhances the sense of responsibility.
[53][54] found the students spent more time in order to teach computer agent than they spent time to
teach themselves. Also, preparing to teach others can engage metacognition because teachers usually
prepare themselves to anticipate the questions of their students. For that, they are more organized
when they explain information. For example, [52] found that college students (who prepare to teach)
understand the topic deeply more than students (who prepare to take a quiz). Similarly,[55] reports
that students (who prepared to teach) gain deeper understanding of the materials.

Although learning by teaching approach forces the learner to prepare themselves better, it enhances
three critical aspects of teaching interactions. Firstly, it is re-structuring of teacher’s understanding.
Tutors often answer the pupils’ questions. These questions lead the teachers to recognize and repair
gaps in their own understanding [55]. Secondly, it is taking responsibility. The teachers usually ensure
that their students leave their classroom with all the tools they need to continue their learning on
their own [56]. Thirdly, it is the reflection. E�cient teaching process demands the explicit monitoring
of how the information is understood and used. For that, teachers often reflect on their interactions
with students during and after the teaching process [57]. This reflection helps teachers to evaluate
their own understanding of domain knowledge and evaluate their approach that was used to transfer
this understanding to their students.

After teaching process, the teachers observe how their students apply what they have been taught.
In [2] di↵ers between direct and recursive feedback in learning by teaching paradigm as shown
in Figure 2.3. In addition, they found the students-tutor (who receive recursive feedback when
they observed their agent) use logic to solve novel problems compared to those who receive direct
recursive feedback.

EnvironmentPerson

Direct Feedback

EnvironmentPupilPupil

Recursive Feedback

Figure 2.3: Direct and Recursive Feedback [2]

24

2.3.1 Drawbacks with Learning by Teaching in School Settings
However, this technique often is not used in the class because of some factors. It takes time and

e↵ort. Especially the numbers of students have been increased and time of scheduled class is limited.
In addition, some students do not prefer this method because of their anxiety from failing in front
of their classmates. Furthermore, there is another drawback which is finding matching peers. For
example, student-teacher could be too low competence compared with his students who are too
high competence. In this case will reduce the possibility of knowledge exchange [58]. In addition,
[59] found a student with high competence prefers a teacher that exhibit similar characteristics. To
overcome these limitation, many researches have created educational software.

2.4 Teachable Agents Environment Background
As mentioned previously, teachable agents environments is computer system that uses learning-

by-teaching technique where students explicitly teach an computer agent. It helps to enable learning
process to be an e↵ective and significative manner by using a variety of computing technologies. The
di↵erence between teachable agents environment and the traditional Intelligent Tutor system is how
to the student’s evolving to interpret information. In traditional ITS, the virtual tutor tries to modify
the student’s knowledge to converges to the tutor. However, this approach is very static one because
the students do not monitor their learning activities. Di↵erent from traditional ITS, when students
identify the information and they monitor and evaluate their learning progress.

Thinking about learning process, it is more than learning content. Some researchers discuses how
to design guidelines in order to create the teachable agents. According to [60], there are three main
fields is considered the basis on Teachable agents environments as shown in Figure 2.4. Education
filed helps the design of teaching strategy and detect what is the best pedagogical intervention for
each individual to provide feedback. Psychology provides insights into how we learn and feel and
computer Science assists how to design artificial intelligent systems.

 (Education)
leraning
theory

(Computer Science)
human-

 computer interaction

(Psychology)
cognitive psychology

Teachable

 agents

Figure 2.4: Disciplines Involved in Teachable Agent Environment based on [3]

25

In our project, we will need dealing with these three fields. From the educational perspective, our
system will focus on learning by teaching approach where a user behaves as a human teacher in order
to teach a computer agent about problem-solving skills. Furthermore, problem-solving is considered
as one of teaching strategies that relies on motivating students to analyze, think, propose and test
alternatives or hypotheses. As well, the e↵ectiveness feedback is very important in the learning
process. From the perspective of Psychological filed, it helps researchers to understand the learning
process of students and assist in simulating the agent with behaving like a human. All these factors
should be realized through a computer-based system. For that, Artificial Intelligence (AI) (which
is subfield in computer science) becomes necessary at this stage in order to understand the student
approach in the teaching process and monitor them during receive feedback.

2.4.1 Pedagogical agents
Educational software includes pedagogical agents which take the role such as the expert person, a

student, a peer competitor or collaborator. In this project, we will focus on the teachable agents (TA).
The first a computer agent is taught by the user. this agent is dependent on the student when it is
taught. Furthermore, [53] state this type of agent has to behave independently. Also, there is another
agent who mentor the problem solving approach and provide metacognitive feedback

2.4.2 Previous Work of Teachable Agent Systems
A number of systems have been designed where students can interact and teach a computer

agent and try to learn from that interaction. These systems have shown e↵ect on student’s learning
processes positively [61]. In addition to that, these systems motivate students to spend more time
and e↵ort to get their goal from teaching the agents [53] [54] [6].

Di↵erent from traditional intelligent tutoring systems, human students can engage in identifying,
planning, developing solutions and evaluating their own ideas and solutions. For that, they have to
unfold, examine, and reflect on their own ideas.

2.4.2.1 Betty’s Brain system

Betty’s Brain has been improved for more than 10 years which is built by Vanderbilt University
by the Teachable Agents Group. We will focus on Betty’s Brain Version 2 because they apply
metacognitive learning theories in order to aid learners in developing metacognition strategies in the
future. In general ,Betty’s Brain system combines learning by teaching technique with self-regulation
mentoring to help learner to understand the topic deeply. However, in Version 1, they only focus on
developing learner’s cognitive strategies about the specific topic in science.

[62] [63] [4] [64] designed Betty’s Brain system that is an open-ended learning environment where
middle school students teach a virtual agent about river ecosystem. The interface of this system
is shown in Figure 2.5. Middle school students are encouraged to learn by teaching computer
agents(called Betty) through the use of three strategies. They can teach Betty using concept map
representation. They can also query her with their own questions to see if she understands. She uses
qualitative reasoning methods for answering questions. That operate through chains of links from
the source concept to the target concept In addition, Betty can take a quiz to see how well it performs

26

in that quiz. The questions in quiz will be selected by Mr. Davies (who is another virtual agent).
He will compare the user’s concept map to the expert map and finding some incomplete ,missing or
incorrect links or concept. Then he will provided some questions about that. In order to organize
the student’s learning and teaching process, there is other activates that user can use them: reading
resource , editing the causal map and listening to Betty’s explanation.

Figure 2.5: Betty’s Brain System [4]

Interestingly, there are di↵erent types of feedback that can be provided by a mentor agent (called Mr.
Davis). The first type is content feedback that includes correct and incorrect answers that Betty made
on the quiz after every quiz. The second type is guided metacognitive feedback that will help human
students to monitor their metacognitive strategies for future learning. The metacognitive feedback
aids users in order to decompose the resources correctly, understand the resources to convert the
information to map as well as monitor Betty’s understanding continually. All theses feedback will
help user to gauge their progress and find deficiencies in learning process. Furthermore, there is
another feedback is provided from Betty but this is inquisitive rather than explicitly instructive. She
focuses on the interactions between the user and herself, ine↵ective behaviors . For example, if
the user has not been asking her to explain many answers. She will say "Could you listen to my
explanations and make sure that they match what the resources say?".

There were a lot of experiments on this system. In [63] the authors wanted to compare among
traditional learning , Learning-by-teaching and learning-by-teaching with metacognitive support for
self-regulated learning, they divide students into thesed3 groups. The first group used ITS where Mr.
Davies asked user to create concept map then it would correctly answer of test question. The second
group used LBT where users teach Betty to help her pass test. The third group used self-regulated
learning (SRL) where user teach Betty to pass test Betty behavior integrated metacognitive support.

27

In beginning, the results showed the users in ITS and LBT groups outperformed than SRL groups
about the task of creating concept maps to answer specific questions. The reasons for the previous
performance for SRL group is this group spent the first time in learning self-regulation strategies but
after that, they understand these strategies. Thus, their performance improved extremely. Further-
more, SRL Students developed better learning and monitoring strategies and they also had the ability
to continue the learning and teaching process than other groups. In addition, this group is able to
learn and understand the new material better than other groups.

Due to the many of forms of feedback, in [4] they wanted to examine which the best feedback
mechanisms in teachable agent systems in order to improve students’ abilities to monitor their
agent’s knowledge as well as to improve their own process of understanding and learning. For
that, they divide students into 3 groups similar in [63] and they focused on feedback mechanism in
the three groups. The ITS and LBT groups received only corrective feedback, whereas, SRL group
received guided metacognitive feedback. The results show the corrective feedback help the students
only in the early stages of the quiz than who received guided feedback. Interestingly, metacognitive
feedback assists the student for preparation for future learning task . Furthermore, [4] studied how
the guided feedback may a↵ect the student’s learning behaviors. They created two version of SRL
System. Firstly, SRL-cognitive feedback (SRL-C) is content directed feedback and hints that help the
user applies metacognitive strategies to improve the learning, monitoring and debugging task.

Secondly, SRL-a↵ective(SRL-A) feedback is similar to SRL-C feedback, but the responses are
emotional rather than content-oriented. Table 2.1 show the examples about SRL-A and SRL-C
response. The result demonstrate SRL-C response help students to extract information from the text
recourse and creating concept better than SRL-A group . Also, SRL-C had better learning perform
in new domain. However, the performance of students who recieve SRL-A feedback is not good to
prepare the students in the future because after the metacognitive support was removed. They did
not show any improve for their performance whereas SRL-A group show better performance even
metacognitive support is removed.

Table 2.1: Feedback Example of SRL-C and SRL-A [4]

Pattern Cognitive Response A↵ective Response
If after four questions, Betty has
not been queried on an unlinked
concept

Excuse me. You taught me a concept, but didn’t
teach me any relationships between it and other
concepts. Please teach me more, and ask me
questions to make sure I understand

Hey, I’m confused and I don’t under- stand what
you taught me. Please teach me more, and ask
me some questions.

Overall, [63][4] show that metacognitive support helps users to prepare better in future learning
even metacognitive support is removed. However, getting metacognitive feedback could not help
novice learner in the early stage of the learning process but after that assist the users to learn and
understand new material better than others. Focusing only on corrective feedback will help the users
only to pass quiz but without understanding the important correlation between the concepts. That
appears from the attempted in resources, quires and quiz access, LBT group focus only on getting
quiz right answer. They do understand the important correlation among them. In other hand,
metacognitive feedback will assist the user to pass quiz with abilities to learn and understand better
such as shown with SRL-C group.

28

2.4.2.2 Guardian of History System

Another system that uses learning by teaching paradigm is Guardian of history(GoH). This system
includes learning activities that correspond to the Swedish national curriculum for history in 5-6th
grade [5]. Users can teach the agent by using concept map and timeline as shown in Figure 2.6 and
2.7. The main idea from this system is to add challenges to the traditional teachable agent such as
Betty’s Brain in order to see how users can handle theses challenges. The agent in this system is
perceived as the troublemaker peer agent whereas Betty agent is a very polite student. The added
challenging behaviors are three challenges. Firstly, it is introduction of error. The agent will give an
erroneous suggestion, then user will react and o↵er a correct solution. The second challenge is the
rejection of correct fact. The agent will refuse the proposal answer (ex. I think that you picked the
wrong period). The user will confirm the answer or withdraw his answer. The third challenge is
proposal of higher level of di�cult. The agent will encourage user to select highest level. For that,
GoH system would help human students to be more self-confident on di↵erentiating between correct
and incorrect answers. However, the system does not provide any metacognitive feedback.

Figure 2.6: GoH Interface Using Concept Map [5]

Figure 2.7: GoH Interface Using Timeline [5]

29

There is experiment on this system. Data is collected from 146 students, in 5-6th grade, from a
Swedish school. Di↵erent agent conditions are used: traditional teachable agent (TA) or a challenging
TA (CTA) in order to compare the results. The first and second challenging behaviors (introduction
of error and rejection of correct fact) are used in two conditions in agent: traditional TA and CTA.
When a student teaches the agent wrong concept in TA condition. Then, the agent will suggest the
same concept to the student during the quiz time. However, the behavior frequency is higher in the
CTA condition than Traditional TA. The third challenge is the proposal of a higher level of di�culty
only occurs in CTA condition

The results show no di↵erence between Traditional TA and CTA on the the learning gain. Both of
them were positive. In addition, the results show students in the CTA condition show high level of
self-e�cacy. This finding explains the finding of Bandura (1994) that students people who have a
high level of self-e�cacy better respond to di�culties and attributes it as something positive.

Sometimes, we think if someone refuses our answers in class, it could make kind of confusing
to students. However, the authors in this paper found students accept when the agent proposed
an incorrect fact in TA condition. However, students in CTA condition have a higher appropriate
response to incorrect fact proposals. That means, Students get better decisions about correct and
incorrect answer in CTA condition. Also, they found the rejection of correct is better accepted than
the introduction of errors. Then, it also conducted in a higher appropriate response rate.

2.4.2.3 A Teachable Agent Game

[65] [6] designed and implemented a teachable agent game to engage primary school children to
learn basic arithmetic concepts and reasoning as shown in Figure 2.8. They combine two techniques
learning-by-doing (playing the game) and learning-by-teaching (teaching the agent to play) in order
to leverage engagement, reflection and learning. Additionally, they use an agent-driven question
dialogue which o↵ers three benefits to children. Firstly, it is to challenge students’ mathematical
thinking. Secondly, it is to explain implicitly how ideal learner behaves. Lastly, it is to transfer
game knowledge to out-of- game mathematics. Also, this system focus only on corrective feedback.
Interestingly, the agent in this system is designed to mimic the characteristics of an ideal learner who
is active, creative, self motivated, and curious person. For example, the agent asks deep questions
such as: why, why not, how, and what-if/not. It does not ask a shallow question such as: who, what,
when, and where.

30

Figure 2.8: Teachable Agent Game Interface [6]

In [65] the authors reported findings from an evaluation study of the game. They divided partic-
ipants into two groups. The first group is who use the game and teach the agent and the second
group is who attend standard instruction and take the test. In terms of learning gain, the first group
have better learning gain than the second group. They learned more about problems dealing with
the conceptual understanding of the base-10 system when playing on their regular mathematics
lessons, and they did not drop behind in other mathematical skills being tested but not practiced on
in the game. That shows playing students group have better learning gain especially in the category
of conceptual understand. Thus, this study supports a connection between learning in the game
and learning outside the game. Furthermore, the results show young primary students can act as
successful tutors. They can teach the agent, response the questions and explain. However, grade 2nd
students had challenges during the teaching the agent due to their lack of reading. Thus, they were
the only group who judged playing the game as more enjoyable than teaching the agent.

2.4.2.4 SimStudent system

SimStudent is another computer agent is taught linear equations as shown in Figure 2.9 . It is
designed to be suitable for young students from 6th to 8th grade students [66]. Users can teach the
agent by collaboratively solving a problem [67]. The user provides an equation to the agent. Then,
the agent attempts to answer it depending on what has been taught. After that, it will ask the user
whether a certain operation is correct or incorrect. If the answer is correct, the agent will move to the
next equation, but if the answer is incorrect, the agent will ask a hint from the user in order to find
the correct answer. In addition, the system allows the user to refer similar examples in the interface.
During the teaching stage, the system will store the student’s problem solving. Then during quizzing
stage, the agent will use the similar pattern to solve the quiz problem. Thus, the incorrect procedure
will avoid the agent to complete solving a problem whereas the correct procedure will assist the agent
to complete solving a problem.

31

Figure 2.9: SimStudent Interface [7]

Their studies showed that users usually select problems are familiar with them[7]. For that, [68] is
developed the second version of the system which o↵ers metacognitive sca↵olding on what problems
users should teach. Mr. Williams is another agent in this system which takes the role of the teacher
agent. He provides metacognitive help when asked. He suggests to students what problem should
be tutored next and explains why (ex."Since Mandy was wrong on the quiz, you may want to give
4y-8=10 to Mandy") [68].

The results in [66] [67] show the students’ skills improve after tutoring the agent for about 70 min-
utes in average. They improved their skills with solving equations and identifying errors in given
solutions. Furthermore, the results show the students with low proficiency on equation solving often
got stuck when providing a hint to the agent’s request for what to do next. The system provides
Curriculum Browser contents and example problems. However, these students still did not use these.
Also, when they want to provide an example to the agent, they started with a number and some
arithmetic to make another number. For example, the student may said, "I’ll start with 4, that is an
x. If I multiply it with 3, I get 12. I’ll add 5, which is 17. So, 3x+5 = 17".Thus, these students did not
understand the conception related to equation solving. However, in[68] the authors reported the
metacognitive help given by Mr. Williams allowed users to select appropriate problems that a↵ected
both the agent and their learning especially with who usually used only familiar examples.

32

2.4.2.5 Other Systems

There are many of system where students can teach a computer agent in this section we will
provided only description about theses system. Firstly, Chan & Chou’s system [8] showed di↵erent
types of agents (a tutor and a peer) for teaching Lisp programs. Specifically, we found only this
system which focuses on computer science domain. However, this system combines between the
traditional intelligent tutoring system and the teachable agent environments. The agent and the user
take reciprocal roles. For example, User is tutor and agent is tutee. As well, the user is tutee and
agent is tutor. Figure 2.10 shows the interface for tutee role. However, this system focuses only on
giving debugging tasks. However, it teaches only syntax, so such as system could not help users to
recognize and detect that there is a problem to be solved.

Figure 2.10: Chan & Chou’s Tutee Interface [8]

AdventurePlayer system is another system that helps users to teach computer agent (called Billy)
about solving a sequence of problems involving the delivery of packages among cities as shown
in Figure 2.11 [60]. The targeted users are undergraduate students in Cognitive Science. Firstly,
users will read the introduction of the problem. Then, they teach Billy and they see and correct
his behaviour. At the end, if the users have taught Billy successfully, they can move on to the next
problem. In general, the problems require Billy to choose among airplanes that travel at di↵erent
speeds (100, 200 and 300 mph), and decide on alternate routes to perform the deliveries in a way that
minimizes the time for delivery.

33

Figure 2.11: AdventurePlayer System [9]

Moby is another TA environments. It was designed to help high school students to learn biology
through a process of hypothesis induction and testing [2]. These system has two agents: Good Moby
and Evil Moby. Evil Moby is a competing agent that provides wrong and incorrect solution.

Furthermore, DENISE (Development Environment for an Intelligent System in Economics) is an-
other system where the agent can be taught economics using a dialog template [69]. The agent probes
the student-teacher for more information on material as it is taught, but the student can take control
at any time, and specify new relationships instead of following the agent’s directive probes. Students
have access to a dictionary that contains all of the concepts they have taught the agent. They can
also query the agent about relations between concepts. However, this system does not show any
representation that help user to monitor their information that was taught to the agent.

Furthermore, MCL (Math Concept Learning) system is very similar to SimStudent system in
terms of design stages. MCL system was developed for solving simultaneous linear equations [70].
Students teach the agents by creating example solutions to linear equations. Then, it uses its built-in
knowledge of the structure of linear equations to learn problem solving strategies in the form of
rules from the users’ examples. Additionally, both of them are implemented by using two learning
strategies: learning from examples and learning by tutored problem solving.

Similarity to Betty’s Brain, in [71] authors designed and implemented the KORI (KORea university
Intelligent agent), in which primary students play a role of a science tutor. Those students teach
the agents by drawing a concept map and posing questions. Then, KORea system provides only
immediate feedback to that agent abut content. However, this system doe not provided ant guided
metacognitve feedback. Furthermore, [71] explained how the agent generates its own knowledge by
the inference engine and updates it through the feedback mechanism.

34

2.5 The Limitation of the Existing Teachable Agent Systems
Table 2.2 shows a comparison of the designs of previous systems. It includes the teaching domain,

the takes of the user , targeted audience, the roles of the agents , sca↵olding tools and providing the
feedback and its type. All the system the take of the user is a teacher, but Chan & Chou’s system is
only the system the task of the user could change to be tutee.

Teachable agents have been built for many domains such as math, Biology , programming...etc.
These teachable agents environments were very appropriate to any domain. Furthermore, Learning
by teaching paradigm is vey suitable for any educational level such as in primary school [5][65][6],
middle school [62] [63][67] , high school [2] and undergraduate [8][9][69]. Significantly, most the
pervious systems show the students performance in learning by teaching is better that traditional
teaching process.

As mentioned previously, learning by teaching has three phases: preparing to teach, teaching
process and gaining feedback. All of the pervious system considered the first two phases (preparing
and teaching process). In contrast, Betty’s Brain , SimsStudent and GOH also considered the third
phases. For that, containing all these phases make the learning by teaching very e↵ectively. Thus,
our system will focus on these phases especially the feedback.

Furthermore, the type of feedback is vey significant to improve the performance of the learners
for future about the domain. As mentioned previously, providing feedback about content (correct or
incorrect answers) does not help the user to prepare themselves in future learning. Only Betty’s Brain
and SimStudent were implemented to provided metacognitive support to the user. Metacognitive
help in SimStudent is to support the student to select the appropriate problems but it does not
help the problem solve to improve their own skills to solve those equations. However, [4] report
how metacognitive feedback in Betty’s Brain helps the user to improve their performance in future
learning. Thus, our system will provided metacognitive feedback in order to improve the thinking
process of problem solver.

The simplicity of the using the system is very important to the user. If a system is very complicated
to use, such as includeing complex interface. This lack of an explicitly shared representation restricts
the students’ learning abilities. Some of the previous systems are the sample to used such as Betty’
Brain, GoH and SimStudent. However, Moby system was very complicated to use comparing to
other systems because it includes the complex interface. DENISE system has the same limitation.

In [66] the authors recommend to the agent which takes the role as students or peer tutee should
not have any prior knowledge because it would a↵ect the tutor’s learning outcome. Some systems
is build agents that pretend to learn from the users, but they have full knowledge of the domain
internally [51] such as GoH. Conversely, Betty and SimStudent does not have any knowledge before
the user teach her. Therefore , our agents will not have any prior knowledge.

35

Ta
bl

e
2.

2:
Su

m
m

ar
y

of
A

ll
Pr

ev
io

us
Te

ac
ha

bl
e

A
ge

nt
Sy

st
em

s

N
o

Sy
st

em
D

om
ai

n
Ta

sk
of

th
e

U
se

r
Ta

rg
et

ed
A

ud
ie

nc
e

N
um

be
r

of
A

ge
nt

s
T

he
R

ol
e

of
V

ir
tu

al
A

ge
nt

s
Sc

a↵
ol

di
ng

To
ol

s
Ty

pe
s

of
fe

ed
-

ba
ck

1
Be

tt
y’

s
Br

ai
n

Ec
os

ys
te

m
Tu

to
ri

ng
M

id
dl

e
Sc

ho
ol

St
ud

en
ts

2
Be

tt
y

as
st

ud
en

t
ag

en
t

an
d

M
r.

D
av

is
as

m
en

-
to

r
ag

en
t

C
on

ce
pt

m
ap

,
po

si
ng

qu
es

tio
ns

an
d

ta
ki

ng
qu

iz

co
nt

en
t

an
d

m
et

ac
og

ni
tiv

e
fe

ed
ba

ck
.

2
G

oH
H

is
to

ry
Tu

to
ri

ng
Fo

r
5t

h
an

d
6t

h
gr

ad
e

1
A

s
tr

ou
bl

em
ak

er
pe

er
ag

en
t

C
on

ce
pt

m
ap

an
d

tim
e-

lin
e

C
on

te
nt

fe
ed

-
ba

ck
3

A
Te

ac
ha

bl
e

A
ge

nt
G

am
e

Ba
si

c
A

ri
th

m
et

ic
Tu

to
ri

ng
Pr

im
ar

y
sc

ho
ol

st
ud

en
ts

1
Id

ea
lp

ee
r

tu
te

e
4

ca
te

go
ri

es
of

ga
m

es
:

Fi
nd

Pa
ir,

Pa
ck

M
an

y,
R

em
ov

eA
ll,

an
d

D
iv

id
e.

N
o

4
Si

m
St

ud
en

Li
ne

ar
eq

ua
tio

n
Tu

to
ri

ng
6t

h
an

d
8t

h
gr

ad
e

2
A

s
st

ud
en

ts
an

d
th

e
se

c-
on

d
ag

en
ta

s
m

et
a-

tu
to

r
A

se
t

of
ce

lls
re

pr
es

en
t-

in
g

ei
th

er
th

e
le

ft
-

or
ri

gh
t-

ha
nd

si
de

of
an

eq
ua

tio
n

or
a

tr
an

sf
or

-
m

at
io

n

N
o

5
C

ha
n,

&
C

ho
u’

s
sy

st
em

LI
SP

Pr
og

ra
m

m
in

g
Tu

to
ri

ng
an

d
Tu

te
ei

ng
U

nd
er

gr
ad

ua
te

st
u-

de
nt

s
1

Tu
te

e
an

d
tu

to
r

D
ia

gn
os

is
-H

in
t-

Tr
ee

C
or

re
ct

iv
e

fe
ed

-
ba

ck
6

A
dv

en
tu

re
Pl

ay
er

sy
st

em
So

lv
in

g
pr

ob
le

m
s

(in
-

vo
lv

in
g

th
e

de
liv

er
y

of
pa

ck
ag

es
be

tw
ee

n
ci

tie
s

on
th

e
sp

ec
ifi

c
m

ap
)

Tu
to

ri
ng

U
nd

er
gr

ad
ua

te
st

u-
de

nt
s

1
Tu

te
e

C
ho

os
in

g
on

th
e

m
ap

N
o

7
M

ob
y

Bi
ol

og
y

Tu
to

ri
ng

H
ig

h
sc

ho
ol

2
C

om
pe

tit
iv

e
Pe

er
s

Pr
op

os
iti

on
al

an
d

m
a-

tr
ix

m
en

u
N

o

8
D

EN
IS

E
Ec

on
om

ic
s

Tu
to

ri
ng

U
nd

er
gr

ad
ua

te
st

u-
de

nt
s

1
C

om
pe

tit
iv

e
Pe

er
s

A
di

al
og

te
m

pl
at

e
N

o

9
M

C
L

sy
st

em
Li

ne
ar

eq
ua

tio
n

Tu
to

ri
ng

U
ni

de
nt

ifi
ed

1
Tu

te
e

C
re

at
in

g
ex

am
pl

e
so

lu
-

tio
ns

to
lin

ea
r

eq
ua

tio
ns

N
o

10
K

O
R

I
Ec

os
ys

te
m

Tu
to

ri
ng

U
nd

er
gr

ad
ua

te
st

u-
de

nt
s

1
Tu

te
e

C
on

ce
pt

m
ap

an
d

po
s-

in
g

qu
es

tio
ns

N
o

36

Chapter 3

System Design

This chapter is dedicated to explaining our system design. The main goal of this chapter is
to describe what framework we used in designing the system, what problem-solving skills and
programming problem-solving contexts we chose to include in the system, and the reasons for the
selection. Then, we present the steps that are needed to design the system from designing the virtual
agent and processes in our system. Also, this chapter presents the architecture of the system and how
the user interface was designed and developed for di↵erent phases of the system.

3.1 Adapting Polya’s Approach in Solving Programming Problems
As mentioned in the last chapter, Polya’s approach introduces the thinking process of how to solve

the mathematical problems. As we know that introductory programming is close to mathematical
problems [3]. As a result, it will be suitable to apply Polya’s approach on solving basic programming
problems.

The author of [32] suggests some strategies for each stage in Polya’s approach because he claims
that these strategies would assist the programmer to get rid of confusion and concentrate on problem
solving rather than writing code. Figure 3.1 shows what the most strategies would be useful for our
problems.

As mentioned previously, we do not focus on implementing the solution using any programming
language because the novice programmer needs to enhance their thinking process about the problem
rather than writing the code and dealing with syntax in a particular language. Concentrating on the
characteristics and syntax of the used programming language would shift those beginner program-
mers to focus on how to write the code of the problem rather than how to comprehend the substantial
algorithmic model to solve the problem in an accurate way [13]. As result of focusing on syntax
could produce any solution to the problem without enhancing the ability of students to be sure if the
provided solution is accurate or not.

As mentioned before, the novice programmers find non-routine problem solving is very hard be-
cause they do not know what and how to do although they know the cognitive skills such as variables,
logical and comparison operators and selection statements. However, they need metacognition that

37

Problem solving stages

Understand the problem

1. Restate/ rephrase the problem
using different representation:
Ex. draw diagram,
list the parts of the problem

2. Determine the requirement
(Input/Output)

3. Examine special cases of
the problem

4. Separate various part
of condition

5. Dose the problems have
 sub-problems?

Devise a plan

1. Use all the information
in the problem statement

2. Design a solution
plan in main steps

3. Identify all
sub-problems

4. Try to Simplify
 the problem

Carry out the plan

1. Check the sequence
of actions if it is correct

Look back

1. Check to know some
bugs (defects) in solution

Figure 3.1: Problem Solving Stages Based on Polya’s Approach

help them to find a solution with non-routine problem [36]. We will discuss the process explained in
Figure 3.1 on how to solve the following example:

(A) Write an algorithm to calculate N! ?

(B) Write an algorithm to calculate xy (x and y are integer numbers)?

(C) Write an algorithm to test each number between 1 to 99 determine if it is odd and prints the
odd numbers?

The first stage in solving the three problems above is to correctly understand what each problem
requires. This step could be a significant challenge to students if they have not faced these problems
before. Consider the example (A), it seems very simple to understand. However, if the beginner
focuses only on positive integers and forgets the zero factorial, that means the students missed
examining the special case of the problem before testing the solution. That refers to that the student
does not understand the problem completely.

Furthermore, novice programmers could not separate various part of conditions in this stage.
Consider the example (B), students could focus only in the case (y) if it is greater than zero and they
do not pay attention when (y) is equal to zero or less than zero. That means students do not notice the
various parts of condition of this problem. Thus, students do not understand the problem completely
and determine the steps required to solve the problem.

After the stage of understanding the problem completely, the next stage is how to devise a plan to
solve the problem. Authors of [30] explained that in cases where the problem was misunderstood,
it is likely to produce solutions which sometimes provide correct results. Consider the example (C),
students may understand only printing odd numbers which outputs all odd numbers individually

38

by adding 2 as shown in Figure 3.2. However, this solution explains the student does not use all the
information in the problem statement which is testing the number if it is odd number or not. That
means students lack the ability to evaluate their own solution.

OddNumbers

 1.For counter =1 to 99 with step =2 do

 1.1.Print counter

End

Figure 3.2: Pseudocode of Finding Odd Numbers without testing

After device a plan stage, students need to carry out the plan. They have to write down the
sequence of actions necessary to solve the problem and ensure the order of the actions if it is correct.
Hint, in this stage, we talk about writing pseud-code before implementing using any programming
language. For example, students could notice what the problem needs such as how to read the width
and length and then how to calculate the area of a rectangle. That shows the students know the
required steps to solve the problem. However, if they do not know the order the steps sequence
correctly (eg. changing the ordering between reading input and calculate the area of rectangle), that
means students have weaknesses in verifying the order of the steps sequence of a solution correctly.

The last stage, students have to look back at the solution in order to find if there is any bug. There
are many examples for possibility to have defects in the solution such as the start and the end of a
loop statement and also in logical operator such as < , <=. We expected if the students find this bug
before testing code, that could help them to improve their thinking process of the problem solving.

However, our goal is not to teach novice programmers about the problem solving skills directly,
but we want them to enhance their thinking process about the problem after receiving feedback from
our system.

3.2 The Context of the Chosen Problems
At this stage, we have developed 16 pairs of problems. The first stage in the proposed system, the

user will teach the virtual agent about the first problem and then the second stage is to let the virtual
agent to solve the second problem from the pair based on the way taught by the student.

Our selection of the problems was based on the near-isomorphic problems such as structured
problem representation, the sequences of process and number of the cases. However, in some cases
the di↵erence between two problems is not a big deal in our project because we want to focus on the
user’s thinking about the problem solving strategies as known as metacognitive skills rather than
cognitive skills.

The 16 pairs of problems are grouped in 6 classes. First group contains very simple problems.
Second group includes problem that should be solved by using conditions. Third group encompasses
problems that need iterative process to be solved. Fourth group contains the recursive problems.
Fifth group are the problems that should use nested loops to be solved. In the sixth group, we try to

39

use complexed problems that may require several skills to be solved. In this this group, we selected
string matching problems. Table 3.1 shows these problems.

Table 3.1: The 16 Pairs of Chosen Problems

Group Type No Problems in Teaching Stage Problems in Quiz Stage

Group 1:
Simple
Problems

1 Write an algorithm to change the time from sec-
onds to minutes

Write an algorithm to change the time from min-
utes to hours

2 Read in a number representing a temperature in
Celsius and print it out as a value in Fahrenheit. If
the Celsius value is C, then the Fahrenheit value
F is calculated as follows: F = (9 / 5) * C + 32.

Read in a number representing a temperature in
Fahrenheit and print it out as a value in Celsius. If
the Celsius value is C, then the Fahrenheit value,
F, is calculated as follows: C = (5 / 9) * F - 32.

3 Write an algorithm to calculate the area of a
circle and print the result : use the formula :
A=(3.1416)*r2

Write an algorithm to calculate the volume of
sphere and print the result : use the formula :
V=(4/3) * (3.1416)*r3

4 Write an algorithm to calculate the average of
homework grades

Program calculate the average temperature of
seven days

Group 2: Using
Conditions

5 Write an algorithm to change a numeric grade to
pass/no pass grade Hint: >= 50 pass <50 no pass

Write a pseudocode to read a real number and
print (positive) when it is greater than zero and
negative otherwise

6 Write an algorithm to change a numeric grade to
a letter grade

• IF numeric grade between 100 and 90 = "A"

• IF numeric grade between 89 and 80 = "B"

• IF numeric grade between 79 and 70 = "C"

• IF numeric grade between 69 and 60 = "D"

• IF numeric grade <60= "D"

Write an algorithm that performs the following:
Ask a user to enter the year of birth and print out
to the user’s generation as follows:

• IF year in between 1946 and 1964 = "Baby
Boomers"

• IF year in between 1965 and 1984 = "Genera-
tion X"

• IF year in between 1985 and 2000 = "Genera-
tion Y"

• IF year >2000 = "Generation Z"

Group 3: Using
Iterative
Process

7 Write an algorithm to find the biggest of a set of
integers

Write an algorithm to find the smallest of a set of
integers

8 Write an algorithm to test each number between
1 to 99 determine if it is even and prints the even
numbers.

Write an algorithm to test each number between
1 to 99 determine if it is odd and prints the odd
numbers.

9 Write a pseudo code to print all multiples of 5
between 1 and 100 (including both 1 and 100)

Write a pseudo code to print all multiples of 4
between 1 and 100 (including both 1 and 100)

10 Write an algorithm to calculate N! Write an algorithm to calculate Xy (X and Y are
integer numbers)

11 Write to convert binary to decimal Write to convert decimal number to binary
12 Sort list of characters in the alphabetical order Sort the list of numbers in ascending order

Group 4:
Recursive
Problems

13 Write a recursive algorithm in pseudo-code to
find the combination of n objects taken k at a
time using the definition C(n, k) =,1 if k=0 or
n=k = c(n-1, k) + c(n-1, k-1) if n >k >0

Write a recursive algorithm in pseudo-code to
calculate the Fibonacci sequence of n objects
taken k at a time using the definition Fib(n)=0 if
n=0 =1 if n=1 = Fib(n-1)+Fib(n-2) if n>1

14 Write a recursive algorithm to find the greatest
common divisor (GCD) of two integers using the
definition GCD(x,y)= x if y=0; GCD(y, x mod y)
otherwise

Write a recursive algorithm to find the least com-
mon multiple (LCM) of two integers using the
definition LCM (x,y) = x if y=0; LCM x*y/ GCD
(x,y) otherwise

Group 5:
Nested Loops

15 Alternating,disk: you have a row of 2n disks of
two colors n dark and n light. They alternate
dark, light, dark , light and so on. You want
to get all the dark disk to the right hand end
and all the light disk to the left hand end. The
only moves you are allowed to make are those
that interchange the positions of two neighboring
disk

rearrange the order of words: so that all vowel
on the right hand and all the consonants on the
left hand and print how many Vowels and how
many consonants with print how many letters in
Vowel as well in constant

Group 6:
Advanced
Problems

16 Write an algorithm that can determine if sub-
string is part of a given string " Some researchers
found this result" and print " find or not"

Write an algorithm that check a given (HTHTH-
HTHTTTHH) attempts of throwing a coin if the
tails occurred three in sequence and print "Find
or not"

40

As we have 16 pairs, the 32 problems are assigned into the teaching stage and the quiz stage. The
quiz stage contains the complicated problem from the pair. For example, the problem of finding Xy

is complicated than finding N! because it contains more conditions. The reason we are doing this is
because we want students to monitor and reflect on their own strategist for solving the problem after
providing feedback to their student agent. That will support the students to enhance their ability of
the thinking process.

For the current stage in our project, we have selected randomly 5 pairs out of the aforementioned
16 pairs. Our goal is to examine these problems and investigate the relationship between expected
errors might committed by users and their level of metacognitive skills.

The first pair is about finding odd or even numbers from a specific range of numbers and print these
numbers as shown in Figure 3.3 and Figure 3.4. These figures also show the approach of a problem-
solving based on the polya’s approach we have covered in section 3.1 (fig). For each problem, we
analysed the problem and provide one of the ideal solutions that student may produce. However,
there are some expected errors that could be committed by the user in both problems. They would
not know which is the start and end numbers of the iterative statement. In the examples provided,
the start and the end numbers are 0 and 99 respectively. In addition to that, the loop could be started
from number 1 in the odd example. The solution would be correct but in this case, students have the
lack of ability in verifying whether the solution of the problem is linked to their knowledge of the
task requirements.

There are other expected errors. The student might not test the numbers whether even or odd, or
might not print the results. As mentioned previously, the student does not use all the information
provided in the problem statement. That means student lacks the ability to evaluate their own
solution. Furthermore, the student may not know how to write the formula to test the numbers
whether odd or even.

41

Problem Stage Strategies Sketch

Understand
the problem

Devise a plan

Carry out
the plan

Look back

Restate the problem

Determine the
requirements

Does the problem
 have sub-problems

Use all the
information in the

problem statement

Design a solution plan
in main steps

Write pseudocode and
 check the sequences

actions

Check to know some
bugs in solution

0,2,4,6.....98

Input : No
Output: all even numbers (0-99)

The problem does not have
sub-problems

Test and print are very important

Loop 0 to 99 (check the
number is even and print

the number)

[Not supported by viewer]

An ideal solution

Write a pseudocode to
 test each number
 between 0 and 99
 to determine if it is
even number and

print the even
numbers

EvenNumbers

1- For number =0 to 99 with step =1 do

1.1 number % 2 == 0

1.1.1 Print number

End

1

2

3

4

Figure 3.3: Solving the Even Numbers Problem Based on The strategy shwon in Figure 3.1

Problem Stage Strategies Sketch

Understand
the problem

Devise a plan

Carry out
the plan

Look back

Restate the problem

Determine the
requirements

Does the problem
have sub-problems

Use all the
information in

the problem statement

Design a solution
 in main steps

Write pseudocode and
check the sequence

actions

Check to know some
bugs in solution

1,3,5,7....99

Input : No
Output: all odd numbers (0-99)

the problem does not
 have sub-problems

Test and print are very important

Loop 0 to 99 (check the number
is odd and print the number)

1.Check (the start & end) of loop
2.Check the condition (modulo of
 the number by 2) is not equal 0

An ideal solution

Write an algorithm to
 test each number
between 0 and 99
to determine if it is

 odd number and print
the odd numbers

OddNumbers

 1- For number =0 to 99 with step =1 do

 1.1 number % 2 != 0

 1.1.1 Print number

End

1

2

3

4

Figure 3.4: Solving the Odd Numbers Problem Based on The strategy shwon in Figure 3.1

The second pair of problems is to calculate factorial and exponentiation as shown in Figure 3.5
and Figure 3.6. These figures also show the approach to problem-solving. There is more than one
ideal solution but we choose one at this stage. However, there are several expected errors from
novice programmers could be committed in both examples. Those programmers may not examine

42

all special cases. In this case, the results will be di↵erent according to the type of integers whether
zero, positive or negative number as in calculating exponentiation. That means the students do not
recognize all cases for the problem and that leads to misinterpreting the problem improperly. There
is another error which is forgetting some of the main steps such initializing the variable. That leads
students do not design what the required steps to solve the problem carefully. However, this error
could be fixed very quickly if the user implement these examples in any programming language but
this step is very important in carrying out the plan because this variable will be used in the formula
that calculate the factorial or exponentiation.

Problem Stage Strategies Sketch

Understand
the problem

Devise a plan

Carry out
the plan

Look back

Restate the problem

Determine the
requirements

Examine the special
case of the problem

Use all the
 information in

the problem statement

Design a solution
in main steps

Write pseudocode
and check sequence

of actions

Check to know some
bugs in solution

N! = N*(N-1)*(N-2)......2*1

Input : integer number
Output: result of the factorial

There are three cases
N = (0or positive)

Knowing the results
of factorial for the set of integers
(0 and positive numbers)

1- Read N
2- Initialise result =1
3- Calculate (If N=0 or N >0)
4- Print result

1- Check (the start & end) of loop
2- Check the two conditions

An ideal solution

Write an algorithm
to calculate N!

Factorial

 1- Read N

 2- Initialise Result =1

 3- IF N ==0 then

 3.1 Result =0

 4- Else

 4.1 For counter =1 to N with step =1 do

 4.2.1 Result = Result * counter

 5- Print Result

 End

1

2

3

4

Separate various
part of conditions

1- N=0 , result =1
2- N >0 , result = N!

Figure 3.5: Solving the Factorial Problem Based on The strategy shwon in Figure 3.1

43

Problem Stage Strategies Sketch

Understand
the problem

Devise a plan

Carry out
the plan

Look back

Restate the problem

Determine the
requirements

Examine the special
case of the problem

Use all the
information in the

 problem statement

Design a solution
in main steps

Write pseudocode and
 check the sequence of

 actions

check to know some
bugs in solution

Xy= X*X*X*...X
X numbers = y

Input : integer number
Output: result of X power y

There are three cases
y = (0, positive or negative number)

Knowing the results of X^y for
the set of integers

(0 and none/negative numbers)

1- Read N
2- Initialise result =1
3- Calculate (If y=0 , y >0 or y< 0)
4- Print result

1- Check (the start & end) of loop
2- Check the three conditions

An ideal solution

Write an algorithm
 to calculate X^y

(X and y are
integer numbers)

 Exponentiation

 1- Read X and y

 2- Initialise Result =1

 3- IF y ==0 then

 3.1 Result =0

 4- Else

 4.1 IF y>0 then

 4.1.1 For counter=1 to y with step =1 do

 4.1.1.1 Result =Result* X

 4.2 Else

 4.2.1 IF X ==0 then

 4.2.1.1 Print "Infinity"

 4.2.2 Else

 4.2.2.1 For counter =1 to |y| with step =1 do

 4.2.2.1.1 Result = Result *X

 4.2.2.2 Result = 1/ Result

 5- Print Result

 End

1

2

3

4

Separate various
part of conditions

1- y=0 , result =1
2- y >0 , result = Xy
3- y < 0 && X !=0 , result = 1/(X^y)
4- y,0 && X ==0 , result = Infinity

Figure 3.6: Solving the Exponentation Problem Based on The strategy shwon in Figure 3.1

The third pair of problems is to find the smallest and biggest number of unsorted set of integers as
shown in Figure 3.7 and Figure 3.8. Similar to the pervious pairs of problem, these figures also show
the approach to problem-solving and providing an ideal solution. However, the expected error in
these examples could be the value of initializing the number to test it with the list of integer numbers.
For example, if the user initializes this variable equal to zero and the list contains these numbers -1,
-4, -5, -2 and the problem is to find the biggest number. The expected result is -1 but in this case, the
result will be 0 because the wrong way of initialization of the variable. This means students lack of
evaluate the solution.

44

Problem Stage Strategies Sketch

Understand
 the problem

Devise a plan

Carry out
the plan

Look back

Determine the
requirements

Does the problem
have sub-problems

Use all the
 information in the
problem statement

Design a solution
in main steps

Write pseudocode and
check sequence of

the actions

check to know some
 bugs in solution

Input : set of integers
Output: biggest number

yes , Unsorted set and
it consists of positive and

negative numbers

Finding and printing
 the biggest number

1- Read the set of integers
2- Initialise biggest
3- Find the biggest number
4- Print

1.Check (the start & end) of loop
2.Check the condition of

the biggest number

An ideal solution

Write a pseudocode to
 find the biggest

of an unsorted set of
integers and

print this number

 FindtheSmallest

 1. Read the set_intgeres

 2. Initialize biggest= -∞

 3. For i=0 to set_intgeres.length-1 do

 3.1. If (set_intgeres[i] > biggest) then

 3.1.1. biggest = set_intgeres[i]

 End For

 4. Print biggest

 End

1

2

3

4

Figure 3.7: Finding the Biggest Number Problem Based on The strategy shwon in Figure 3.1

Problem Stage Strategies Sketch

Understand
the problem

Devise a plan

Carry out
the plan

Look back

Determine the
requirements

Does the problem
have sub-problems

Use all the
information in

the problem statement

Design a solution in
main steps

Write pseudocode
and check sequences

of the actions

Check to know some
 bugs in solution

Input : set of integers
Output: smallest

yes , Unsorted set and it consists
 of positive and negative numbers

Finding and printing
the smallest number

1- Read the set of integers
2- Initialise smallest
3- Find the smallest number
4- Print

1. Check (the start & end) of loop
2. Check the condition of
the smallest number

An ideal solution

Write a pseudocode to
 find the smallest of
 an unsorted set of

integers and
print this number

 FindtheSmallest

 1. Read the set_intgeres

 2. Initialize smallest= ∞

 3. For i=0 to set_intgeres.length-1 do

 3.1. If (set_intgeres[i] < smallest) then

 3.1.1. smallest = set_intgeres[i]

 End For

 4. Print smallest

 End

1

2

3

4

Figure 3.8: Finding the Smallest Number Problem Based on The strategy shwon in Figure 3.1

45

The next pair of problems is to convert decimal to binary numbers and vice versa as shown in
Figure 3.9 and Figure 3.10. In terms of expected errors for both problems is similar to the pervious
examples. However, these problems have other sub-problems. For example, to convert decimal to
binary number, we need to rearrange the order of remainders after getting them from right to left.
Similarly, there is a sub-problem in converting binary to decimal number problem. It is starting from
the most left index of Binary String. If the student does not recognize them, that means the student
lack of understanding the problem and determining the steps required to solve the problem.

Problem Stage Strategies Sketch

Understand
the problem

Devise a plan

Carry out
the plan

Look back

Restate the problem

Determine the
requirements

Examine the special
case of the problem

Use all the information
in the problem

statement

Design a solution
in main steps

Write pseudocode and
 check the sequence of

the actions

Check to know some
bugs in solution

 4/2 = 2 , 4%2= 0
2/2 = 1 , 2%2= 0

 1/2 =0 , 1%2= 1
 4= (100):binary

Input : decimal number
Output: binary number

There is one case
(positive integer) of input

Converting decimal number
to binary and print

1- Read N
2- Initialise BinaryString =""
3- convert
4- the order of the remainders
5- Print result

1- Check (the condition) of loop
2- Check the order of binary string

An ideal solution

Write a pseudocode
 to convert a positive
integer from base 10
to a binary number

and print the
 binary number

 DecmailToBinary

 1. Read Decimal number

 2. Binary =""

 3. While (Decimal >0) do

 3.1 = Remainder = decimal %2

 3.2 = Binary = Binary + Remainder

 3.3 = Decimal = Decimal /2

 End While

 4. Rearrange the order of binary string from right to left

 5. Print Binary

 End

1

2

3

4

Remainder

Does the problem
 have sub-problems

Yes, how to order the remainder

Figure 3.9: Converting From Decimal to Binary Based on The strategy shwon in Figure 3.1

46

Problem Stage Strategies Sketch

Understand
 the problem

Devise a plan

Carry out
the plan

Look back

Restate the problem

Determine the
requirements

Examine the special
case of the problem

Use all the information
in the problem

statement

Design a solution
in main steps

Write pseudocode and
check the sequence of

 the actions

check to know some
bugs in solution

Binary number(100) = (22) =4

Input : binary number
Output: decimal number

One case(binary and not including
 floating-point number) of input

Converting binary number
 to decimal and print

1- Read N
2- Initialise decimal
3- Convert
4- Print result

1- Check (the start & end) of loop

An ideal solution

Write a pseudocode to
 convert binary

 to the decimal number
and print the number

 (not including
floating-point number)

BinaryToDecmail

 1- Read Binary-String

 2- Initiize decimal =0

 3- For i =Binary-string.length-1 down to 0 with step 1 do

 3.1 decimal = decimal+(2i * Binary-string[i])

 End For

 4- Print Binary

 End

1

2

3

4

Does the problem
have sub-problems

starting from the most left index
in a Binary string

Figure 3.10: Converting From Binary to Decimal Based on The strategy shwon in Figure 3.1

The solutions of the next problems are very similar as shown in Figure 3.11 and Figure 3.12.
However, the di↵erence is only the value of initializing the input of the problem. The challenges for
these problems is how to use nested loops with finding all valid shifts with which a given substring
occurs in a given sentence. Furthermore, there are expected errors in both problem. One of those
errors is the inconsistent checking between the sentence and a sub-string. That means the student
lack of determining the steps required to solve the problem and Lack of verify whether solution is
correct.

47

Problem Stage Strategies Sketch

Understand
the problem

Devise a plan

Carry out
the plan

Look back

Determine the
requirements

Does the problem
have sub-problems

Use all the
information in the

problem statement

Design a solution
 in main steps

Write pseudocode and
check sequence of

the actions

Check to know some
bugs in solution

Input : attempts
 = "HTHTHHTHTTTHH"
and three-tails
Output: Find/not find

Yes, if we have partial matches.
If we found the first attempts,

we should find the next matched..etc

Find the matches
print if it find or not

1- Set attempts,Three Tails
2-Finding the matching
3- Print find/not find

1- Check (starting & ending) of loop
2- Check the conditions of matching

An ideal solution

Write an algorithm that
checks a given

(HTHTHHTHTTTHH)
attempts

of throwing a coin
if the tails occurred

three in sequence and
print "Find or not"

 FindtheStringMatching

 1- Set Attempts= "" HTHTHHTHTTTHH"

 2- Set Tails= "TTT"

 3- For i=0 to Attempts.length-1 with step =1 do

 3.1 Initialize j=0

 3.2 While (j<= Tails.length-1 && Attempts[i+j] == Tails [j]) do

 3.2.1 j=j+1

 3.3 IF (j== Tails.length-1) then

 3.3.1 Print " Find"

 3.3.2. Break

 End For

 4- IF i== Attempts.length-1 then

 4.1. Print " Not Find"

 End

1

2

3

4

Figure 3.11: Find a Sub-string in a String Problem Based on The strategy shwon in Figure 3.1

48

Problem Stage Strategies Sketch

Understand
the problem

Devise a plan

Carry out
the plan

Look back

Determine the
requirements

Does the problem
have sub-problems

Use all the
information in

the problem statement

Design a solution in
 main steps

Write pseudocode and
check sequence of

the actions

Check to know some
bugs in solution

Input : String" Some researchers
 found this result" and

substring will enter from the user
Output: Find/not find

Yes, if we have partial matches.
If we found the first letter,

we should find the next matched..etc

Find the matches
print if it find or not

1- Set given string
2- Read substring
3-Finding the matching
4- Print find/not find

1- Check (starting & ending) of loop
2- Check the conditions of matching

An ideal solution

Write an algorithm
that can determine

if substring
is part of a given string

" Some researchers
found

this result" and
print " find or not"

 FindtheStringMatching

 1- Set Given-String = " Some reseachers found this result"

 2- Read Sub-String

 3- For i=0 to Given-String.length-1 with step =1 do

 3.1 Initialize j=0

 3.2 While (j<= Sub-String.length-1 && Given-String[i+j] ==Sub-String [j]) do

 3.2.1 j=j+1

 3.3 IF (j== Sub-String.length-1) then

 3.3.1 Print " Find"

 3.3.2. Break

 End For

 4- IF i== Given-String.length-1 then

 4.1. Print " Not Find"

 End

1

2

3

4

Figure 3.12: Finding Three Tails Attempts Problem Based on The strategy shwon in Figure 3.1

3.3 Designing our System

3.3.1 Designing the virtual Agents: Amy and Ms. Sarah
We designed and developed two virtual agents that could interact with the user in the interest of

providing interactive learning environment. The first agent takes the role of an active student which
is called Amy as shown in Figure 3.13 . As mentioned previously, she can learn from the user about
problem solving strategies. Also, she can provide explanations about what she understood and ask
the user to confirm about her explanation. For example, if the user teaches her correctly about how
to convert a binary number to a decimal number. She might say "Thank you for teaching me. Now I
know about how to convert binary to decimal number. start with the binary numbers and multiply
each binary digit by its weight. Then after multiplying all the digits, I will add the results. Is my
explanation correct?". In some cases, she provides feedback to the user.

The second agent is a mentor agent which is called Ms. Sarah as shown in Figure 3.14. She can
provide guidance and suggestions. Clearly, she grades Amy’s quizzes and provides feedback to the
user and Amy related to the task. She also evaluates the user’s strategies and allows the user to ask
her an advice.

49

Figure 3.13: The Virtual Agent Figure 3.14: The Virtual Agent Ms. Sarah

3.3.2 Describing the Processes of the Proposed System
In general, we will divide our teachable agents environment to three stages. The first stage is the

teaching process. That enables the user to teach problem solving to a virtual agent which called
"Amy". The problem will be provided from the system. Amy takes the role of an active student.
During this stage, the student will take the role of a teacher to teach the agent Amy. Amy will record
what the user teaches her about problem solving strategies. Also, Amy can ask questions if she did
not understand.

After finish this stage, the user can request Amy to take a quiz to ensure the quality of teaching
problem. In the quiz stage, Amy can take the quiz for another problem. This problem is near-
isomorphic to the first problem taught by the user. Then, she will apply what she understood from
the user. For example, if the user teaches her correctly, Amy will perform better, and her solution
will be like an expert solution. In contracts, if the user did not teach her correctly in the first problem.
Amy will perform based on the knowledge passed by the user, and in this case Amy most likely will
not provide a correct solution.

The third stage is providing feedback about the performance of the agent Amy. After finishing the
quiz stage, Ms. Sarah (she is a mentor agent) will provide metacognitive feedback list to the user
and Amy. Furthermore, Ms. Sarah will require from the user to re-teach Amy about her mistakes or
the incomplete tasks for the second problem. Then, user will start to re-teach Amy again in order to
make Amy able to provide a correct solution to the problem. If the user re-teaches each error from
the feedback list correctly, then Amy will explain her understanding and asking user to confirm her
explanation. If user say "Yes", Amy will ask for help on the next error from Ms. Sarah list. Conversely,
if the user say "No", the system will allow the user to write his explanation on that error and so forth.
Ms. Sarah (the mentor agent) can provide advises and some hints about the targeted problem in
order to remind the user of the required steps to solve any problem

3.3.3 Data Flow Diagram of the Proposed System
We design data flow diagram as illustrated in Figure 3.15. It describes system’s high-level modeling,

and it shows sets of the processes, data stores and dataflow of the system and how they are linked
to each other. In the beginning, the user will teach the virtual agent Amy the first problem. Then,
the user strategies for solving the problem will be stored in D1. Amy has learned the user strategies
which used in the first problem. Then she will use the same strategies to solve the second problem.
After finishing the second problem, Ms. Sarah will evaluate the solution of the second problem and

50

she will provide metacognitive feedback to the user and Amy. After receiving the feedback, in case
of incorrect solution, the user will teach Amy again about the second problem. In addition to that,
if the user teaches Amy correctly, Amy will present her explanations and ask confirmation from the
user. Then, if the user agrees with Amy’s explanation, these new strategies acquired will be stored in
D2. In contrast, if the user disagrees with Amy’s explanation, the system will allow the user to write
his own explanation and it will be stored in D

Figure 3.15: Data Flow Digram of the Proposed System

3.3.4 Architectural Design of the Proposed System
We translated all the requirements of the teachable agents’ environment into the architectural

design as shown in Figure 3.16. As mentioned previously, the system has two animated agents which
Amy and Ms. Sarah to interact with the student in order to provide interactive learning environment.
Also, there are two other agents will be used in the system to handle data relevant to the specified
functionalities. These agents are the Tracker, and Interfacer. The main purpose of these Agents is to
interact with the animated agents when some events are generated by these animated agents and the
user.

- Amy

51

To make an e�cient learning-by-teaching environment, the agent Amy needs to demonstrate
qualities of an active student. In order to be an active and good student, she will provide an
explanation about her understanding after the user teaches her again about the mistakes or missing
tasks. For that, Tutors (The users) obtain profound understanding from interactions with tutee (Amy)
that includes explaining and discovering misconceptions [72] [52].

- Ms. Sarah

Ms. Sarah is the mentor agent which is an expert about the domain knowledge in problem-solving.
She will provide feedback in order to help the user to improve their metacognitive strategies. In
addition, she will evaluate Amy’s solution and she also will ask the user to help Amy for providing
a correct solution.

- Tracker

The tracker uses an automated approach to determine the user’s progress and notify other agents
Amy and Ms. Sarah. For example, if the user requested Amy to take a quiz without teaching her, the
tracker detects that and trigger an event to inform Amy. Another example, if the user spent longer
time to teach Amy, in this case another type of trigger will be issued to Ms. Sarah to provide some
helps.

- Interfacer

Interfacer acts as a broker between all the system structures and the reasoning mechanism and the
Graphical User Interface (GUI). In the beginning, the user will interact with the GUI. Then, Interfacer
will display the updated view in the GUI. When Amy and Ms. Sarah need to interact with the user
as a composing message (i.e. feedback or explanation). The Interfacer will display that message to
the user.

52

Figure 3.16: Architectural design of the Proposed System

3.3.5 Feedback Design
In general, the temporary assistance from a teacher helps students to complete the tasks e�ciently.

Vygotsky [40] defined this area as the zone of proximal development. Due to the targeted users of
our system will be the novice programmers, they surely need feedback and guidance to help them
to progress through solving the programming problems. Providing feedback to the user about their
performance and progress helps them to complete the tasks e↵ectively and interactively [43].

One of the main goal of this system is to provide guided metacognitive feedback. Ms. Sarah has
the responsibility to do this task. This feedback is organized as successive hints that provide the
answer to the current problem step. Ms. Sarch feedback contains two stages.

Firstly, she provides clues about the reasons for the incorrect answer of Amy. Secondly, she suggests
specific activities to the user in order to help Amy. Table 3.2 shows some examples of Amy’s behaviour
and what the feedback will be provided from Ms. Sarah. Furthermore, if the user could not help
Amy about the feedback that means the user needs more information about the feedback. For that,
Ms. Sarah will provide hints as next level of the feedback to assist the user in order to teach Amy
again. For instance, if Amy missed some of main processes such as initializing a variable, the user
read this message "Amy’s answer is not complete. There is one of the main steps is missing. Please

53

review her process and find this step". If the user still cannot help Amy. Ms. Sarah will provide
corrective feedback, she may say "The result variable was not initialized".

Table 3.2: Some Feedback Example From Ms. Sarah

No Amy’s behaviour Agent Feedback

1
Did not know the subject such as: how to convert binary
to decimal

Amy’s answer is wrong because she does not know how to convert binary
number to decimal number. You should read about it and then re-teach
her this information.

2
Forgot some special case such as 0! Amy’s answer is incomplete because this problem has more than one

cases. Please read the problem statement and think all these cases and
then help her.

3
Missed some sub-problems : such as how to order the
remainder in convert decimal to binary

Amy’s answer is not complete because there is sub-problem missing
which is order the remainder. You should identify the sub problem and
then re-teach her this part.

4
Did not determine the requirement like: read input in
Factorial problem

Amy does not determine the input of algorithm. Could you please deter-
mine it?

5
Did separate various part of conditions. Such as xy if y
>0 or y <0 has another solution

Amy’s answer is incomplete because this problem has more than one
conditions. Please help her to find two parts of conditions.

6
Missed some information in the problem statement such
as forget test if number is even or not

Amy’s answer is incomplete because she does not use all information
on the problem statement. Please read the problem statement and find
missing information and then help her

7
Did not break down the problem as (step by step) such
as in matching string no using two pointers

Amy does not know how to break down the problem correctly there is
something missing. Please help her to break down the problem correctly.

8
Missed one of main process such as initialization Amy’s answer is not complete. There is one of the main steps is missing.

Please review her process and find this step.

9
Incorrect ordering of action such as Result = L*W Read
L*W

Amy’s answer is wrong because the ordering of action is not correct. You
should help Amy to order the actions correctly

10
Incorrect starting or ending of iteration. Amy’s answer is wrong because there is a logical error in Iteration. Please

help her to find the bug(s)

11
Incorrect condition expression such as >and >= Amy’s answer is wrong because there is a logical error in condition. Please

help her to find the bug(s)

12
The value of Initialization is wrong Amy’s answer is not right due to the value of Initialization. Please help

her to fix it.

13
Using incorrect operator precedence such as x= a*b+c x=
a*(b+c)

Amy’s answer is not right due to using incorrect operator precedence.
Please help her to fix it.

There is another feedback in the system which is provided by Amy. This feedback is inquisitive
rather than explicit instruction for solving the problem. She focuses only on the interactions between
herself and the user such as ine↵ective behaviors and making corrective suggestions. For example,
if the user does not teach Amy and wants to request her to take a quiz. Amy might say "Excuse me.
You have not taught me anything. Please teach me before you send me to take the quiz". Appendix L shows
more examples about Amy’s feedback.

3.3.6 Prototype of The System
To design a our Teachable Agent learning environments, we design the user interface to be friendly

interface. That means the User Interface should allow the user to move among all phases in seamless
way.

The graphical user interface consists of two main interfaces teaching and quiz interfaces. The
teaching interface as shown in Figure 3.17 has some particular tools that helps users to generate
pseudo-code. These tools are located in the right side of the interface. On the top of the window, the
problem statement will be provided from the system to user. On the middle, the user can write the
pseudo-code by using the tools in the right side along with writing the required text. In the bottom

54

of the interface, Amy agent is located along with a part where Amy could provide her feedback to
the user. On the lower right corner of the interface, there is a quiz button which enables the user to
send Amy to take a quiz. Also, the upper right corner, there a skills progress button that the user can
click to see Amy’s overall progress as shown in Figure 3.18.

Figure 3.17: The Teaching Interface

Figure 3.18: The Progress of the Skills Window

55

Quiz interface is the second interface in our system. This interface has many features in common
with the Teaching Interface. However, it includes extra features such as the feedback list provided
by Ms. Sarah as shown in Figure 3.19. The bottom part (Ms. Sarach response) of the interface is the
most interesting part in this interface. It has three components. The first component is feedback list.
It displays the feedback and the situation of this feedback if it is corrected or not. Also, it provides
explanations of this feedback if user click on the word "More" as shown in Figure 3.19. The second
component is Amy’s skill indictor that shows the accuracy measurements for the current problem as
shown in Figure 3.20. The third component is "Ask advice".

Figure 3.19: Some Hits from Ms. Sarah to Show the Issues of the Solution

56

Figure 3.20: Amy’s Skill Indicator for a Particular Problem

Furthermore, there is a hidden feature in this interface, and it is located under the agent Amy as
shown in Figure 3.21. It comes up after the user re-teaches Amy correctly about one of the feedback
of Ms. Sarah. This feature is a place where Amy can provide an explanation on how she understood
the user, and she will ask the user to confirm her explanation.

Figure 3.21: Amy’s Explanation

57

3.4 A Scenario of How the System Works:
To give a clear overview of how the system works, we are going to present a scenario and go

through it step by step. In beginning, if the user uses this system as the first time, the system requires
his login information as shown in Figure 3.22. Then, the user will be provided a problem by the
system. The problem is for example "write a pseudocode to calculate N!". The user will teach the
agent and solve the problem. After finishing, the user will click the button "Done" and then the user
can click the button "Quiz" as shown in Figure 3.19. However, if he does not send Amy to take the
quiz after finishing the teaching. She will provide feedback saying "Thank for teaching me, you can
send me to take quiz".

Figure 3.22: Login Window

Then, Amy will take the quiz for a similar problem such as "write a pseudocode to calculate Xy".
Amy will solve this problem by herself with using the same strategies the she was taught by the user.
After finishing, Ms. Sarah provides feedback to the user and Amy about her solution as shown in
Figure ??. In case is there are errors, the user will teach Amy again about this problem based on the
feedback provide by Ms. Sarah. For example, if the user wants to fix the Amy’ solution if she missed
some of special cases for instance. The user can read more information about this feedback after
clicking the word "More" as shown in Figure 3.19. However, if the user does not show any progress.
Ms. Sarah will provide more hints about the feedback. She may say "Amy does not deal with the
case y is less than zero". However, if the user teaches Amy correctly, she will provide an explanation
about what she understood. She may say" Thank you for helping me. Now I know this problem
has three special cases when y is positive number ,negative number and zero. Then, she asks for
confirmation from the user about her explanation. She may say "Is my explanation correct?".

58

3.5 Tools Used to Develop the System
The proposed system is implemented in Java (java SE-1.8). In addition, we use the Standard Widget

Toolkit (SWT). It is an open source widget toolkit for Java. This toolkit helps to design the Graphic
User Interface.

Because of dealing with pseudocode (which is informal high-level language), we will need to use
some tools that support natural language processing. There are many tools available with java SE
SDK that support natural language processing. Low-level Java has String libraries that includes
String, StringBu↵er, StringTokenizer, StringBuilder classes. These classes have several methods that
perform matching, text replacement, and searching. Furthermore, java supports regular expressions
and provides many techniques to use regular expressions.

59

Chapter 4

Implementation

As we know, the ultimate aim of the educational systems is to facilitate student’s learning and
to stimulate their learning interest. For that, we designed e↵ective educational interventions as
discussed in the last chapter. In this chapter, we will discuss the implementation of the proposed
system. This chapter is organized into the following sections. Firstly, it gives an overview of the
activities in the proposed system. As well, it presents the introductory explanation of the modules
in the system with providing the screen-shots of these activities. After that, the components of the
implementation process are described in details.

4.1 Overview of Activities of the Proposed System
As mentioned previously, the ultimate goal of all the educational systems is to facilitate student’s

learning and to stimulate their learning interest. In general, the teaching process enhances students
to think deeply, orally and repeatedly. There are some recommendations to identify the fundamental
requirements of Teachable Agents (TA) systems which are summarized as follows: first, the TA system
should at the very beginning give students enough hints to help them to know what they need to teach
and what the next task that they need to achieve. This may help students to immerse themselves
into the teaching role e↵ectively. Second, the TA system should have an explicit representation
of the appropriate knowledge, which can help students clearly represent their knowledge to the
agent and reciprocally understand the TA’s reasoning process. Additionally, the TA system should
provide diverse feedback to students throughout the teaching process in order to improve their
performance. The feedback may enhance student’s reflection and influence their self-monitoring and
self-evaluation.

We have designed our system’s modules (as listed below) in order to achieve the aforementioned
goals. Some of these activities are done by the human student (the tutor). Other activities are
provided from our system and the agents (Amy and Ms. Sarah) to the tutor. The interaction with our
proposed system follows a sequence of activities whose emphasis is on problem-solving skills and
metacognitive support. These activities are:

1. Module 1: Selection of the problems - students can use it to select a specific problem to be
taught to the TA (Amy).

2. Module 2: Teaching workspace - A workspace to teach the TA (Amy)

60

3. Module 3: Amy’s feedback and her queries - this module is to present Amy’s feedback or her
queries to her tutor.

4. Module 4: Quiz workspace - this module is to enable Amy to take a quiz based on the knowledge
she gathered from her tutor in the teaching module.

5. Module 5: Ms. Sarah’s Feedback - this module is to grade and evaluate what Amy does in
the quiz. Ms. Sarah also provides guided metacognitive feedbacks to Amy if there are some
mistakes in her solution.

6. Module 6: Re-teaching - based on the feedback explained (Module 5), the tutor can re-teach
Amy again based on these hints in order to get the ideal answer.

7. Module 7: Explanation - this module enables Amy to provide an explanation about what she
understands from the tutor after fixing her mistakes.

8. Module 8: Indicator - this module enables to show the quality of the solution of the current
problem.

9. Module 9: Skillmeter - this module is to display Amy’s overall progress in skills.

10. Module 10: Previous answers - this module is to present what the tutor and Amy solutions for
the previous problems that have been done.

4.1.1 Selection of Problems Module
This module is considered as the home page in our system. That means when a student runs our

system, this page will present all the programming problems. Thus, the human student can choose
one problem to teach the agent, Amy. Figure 4.1 shows a screen-shot of this module.

Figure 4.1: The Homepage of the System

61

4.1.2 Teaching Module
After selecting the problem, the human student can teach Amy about how to solve the selected

problem. This module enables the student to teach the TA, Amy. Hence, Amy will learn from the
tutor (student) how to solve the current problem using pseudo-code. Amy will build her knowledge
based on the tutor’s sequence steps of solving the problem.

Figure 4.2 shows the screen-shot of the teaching module. In the right side of this module, we
provide all required keywords that can be used in writing the pseudo-code of solving any problem.
For example, for repetitions structure, the keywords include While...End; Repeat ... Until; ForâĂęEnd.
For Selection, the keywords include IF...ELSE End, Switch()...Case End. In addition to that, Read,
Print, Comment, List, Initialize are the keywords that a student can use. Anyway, the tutor is free to
use these keywords or she can write those words by herself.

Figure 4.2: The Teaching Workspace

4.1.3 Amy’s Feedback and Inquiry Module
This module enables to present Amy’s feedback or her query during the teaching stage. This

allows Amy to interact with the tutor in case if the tutor did not behave in an understandable way
such as requesting Amy to take the quiz without teaching her. Figure 4.3 shows one example of
Amy’s Feedback. Furthermore, in this stage, Amy can enquire the tutor, especially about ambiguous
variables names. Figure 4.4 shows one example of Amy’s inquiry. Also, the tutor can write his own
answer to Amy.

62

Figure 4.3: Amy Feedback

Figure 4.4: Amy Inquiry

4.1.4 Quiz Module
After Amy is taught by the tutor in the teaching module, she can take a quiz to answer an isomorphic

question. The quiz module enables the tutor to assess the knowledge that Amy obtained during the
teaching stage. As a result, Amy will approach the question based on what she has been taught.
Figure 4.5 shows an example of Amy’s solution. As it can be seen, there is another animated agent in
this stage which is Ms. Sarah. The following section will explain her role.

63

Figure 4.5: Quiz Workspace

4.1.5 Ms. Sarah Feedback Module
In the Quiz module, Amy needs to see the correctness of her answer. Thus, we provide Ms. Sarah

Feedback module. In this module, Ms. Sarah will evaluate Amy’s answer. Then, Ms. Sarah provides
metacognitive feedback list to Amy. Figure 4.6 shows the feedback list for one of the questions. That
will help the tutor to figure how to fix the incorrect parts. Hence, Ms. Sarah will send a message to
the tutor in order to help Amy to improve her solution. The tutor can get more information about
the feedback by clicking "More". Here, Ms. Sarah will provide information about the incorrect parts.
Firstly, she provides clues about the reasons for the incorrect answer of Amy. Secondly, she suggests
specific activities to the user in order to help Amy. Usually, she will ask the tutor to re-teach Amy
again.

Figure 4.6: Sarah Feedback

64

4.1.6 Re-teaching Module
After reading the feedback, the tutor will re-think about their strategies and then try to fix Amy

solution. Hints: he or she can use the same tools in teaching activity which are on the right sides in
quiz interface as shown in figure 4.6. Thus, the tutor will earn many skills such as debugging errors,
monitoring the solution process, self-explanation, planning, evaluating and revising skills. All these
skills will be considered in teaching and re-teaching activities.

4.1.7 Indicator Module
Any programming problem can have several potential correct answers. However, the levels of

these answers vary from acceptable to excellent answers. As a result, we create a module to evaluate
the accuracy of the answers that is done by Amy. Ms. Sarah will be responsible to assess Amy’s
answer for any given problem. Ms. Sarah will represent her evaluation in the skill indicator as shown
in the figure 4.7. There are four levels in this indicator: Bad, OK, Good and Excellent.

Figure 4.7: Skill Indicator

4.1.8 Explanation Module
In this module, Amy would provide an explanation after the tutor re-teach her correctly for each

of her mistakes of the first attempt. Then, she will ask to confirm her explanation from the tutor.
There are several aims of this module. Firstly, this module shows that Amy is an active student.
The authors in [] recommend that the teachable agent should be an active, creative, self-motivated,
and curious during the teaching stage because that enables their tutors to improve the domain and
teaching skills. Secondly, we can ensure the tutor has acquired some new strategies. Figure 4.8 shows
one example about Amy’s explanations.

65

Figure 4.8: Amy Explanation

4.1.9 Skill Meter Module
This module presents Amy’s overall progress for all the problems she has approached as shown

in figure. The tutor can access this module during the teaching and quiz stages. This module
shows various skills of the learning progress for Amy such as the performing all the problems,
determining the inputs and outputs, examining all special cases, checking the bugs in conditional
and loop statements. As shown in Figure 4.9, for each skill, there are two progress bars. The first
bar is to show the relative amount of problem that was covered. The second progress bar is to show
the measurement of the correct and incorrect understanding. The tutor can get this information as
percentage numbers by hovering the mouse on the bars.

66

Figure 4.9: Skill Meter

4.1.10 Previous Answers Module
The tutor can see the previous answer for a specific problem when teaching Amy. Also, this tutor

can see how Amy answer the isomorphic problem. In addition to that, the tutor can see how he/she
teaches Amy correctly in order to get the ideal solution. Figure 4.10 shows a screen-shot of this
activity.

67

Figure 4.10: Previous Solutions

4.2 Main Classes in our System
There are 29 created classes in this system. The main classes are briefly described below in the

following subsections. These classes are organized into three groups as shown in Figure 4.11: User
Interface Classes, Model Classes, and Database classes. Having this structure of classes would make
the code more readable and ensure modifiability because it would not a↵ect the entire model if we
want to change or update any component of the interface.

68

Figure 4.11: Classes of our System

4.2.1 User Interface Classes in the System
User Interface classes define the abstractions necessary for human-computer interaction. Basically,

the benefits of user interface class diagram are:

1. To define GUI components such as buttons, text boxes, text fields, etc.

2. To define the required events of each GUI components that capture the user interaction.

There are seven User Interfaces Classes in our systems. The Table 4.1 shows the name of these
classes and its description. Figure shows a class relation diagram (UML diagram) with the main user
interface classes in the system.

69

Table 4.1: User Interfaces Classes in our systems and the description

No Class Name Class Description
1 MainFrame Creates all GUI Frames and add them to the application

2 LogIn Frame for the tutor information such as name, age, gender and
university level.

3 HomePageInteface Frame for provided problems on the system

4 TeachingPanel
Panel for Teaching the agent Amy. It contains some buttons which
helps the user to teach the agent (If .. Else, Initialize the variable,
or for)

5 TecahingIntefcae
Frame for teaching the agent Amy. It presents the problem state-
ment and some tools for providing the solution and Amy’s feed-
back during this stage if it necessary.

6 QuizIntefcae

Frame for the Quiz stage where the agent Amy’s knowledge can
be assessed. It presents the problem statement for the quiz and
some tools for re-teaching the agent. Also, it presents Ms. Sarah
response and feedback.

7 AmySkilloMeterIntefcae Frame presents Amy’s overall progress.

8 HintsIntefcae It presents hints from Ms. Sarah to show the issues of the solution
of Incorrect behaviour

9 PerviousSolutionsInteface
Frame presents previous problems that were taught to Amy along
with the provided answer from the tutor to Amy and what Amy
has answered during the quiz stage.

70

Figure 4.12: The UML of all User Interfaces classes and relationships among them

4.2.2 Model Classes in the System
These classes are considered as the bridge between the Database class and the view. They contain

the main components of the systems such as AmyBrain, Ms.SarahBrain, Tracker and Analyzer. We
will firstly explain AmyBrain and Ms.SarahBrain in details, respectively. Then, we will explain other
classes. Tracker class is to determine the user’s progress and inform other agents Amy and Ms.
Sarah about what the tutor is doing. AmySkillProgressController is to measure what the correct and
incorrect understanding of specific skills of all provided problems.

4.2.2.1 AmyBrain

In this section, we will explain the framework of the agent Amy. This framework is illustrated in
Figure 4.13 as UML static structure diagram. The role of Amy is to be an active student during the
teaching and the quiz stages. As discussed in the previous sections, Amy is a virtual student that
can learn from the tutor (human student). She can also provide feedback and ask the tutor when
she could not understand some parts of the solutions. Based on the knowledge that Amy obtained
from the tutor during the teaching stage for a particular problem, she can apply this knowledge to

71

another isomorphic problem and try to solve it by herself. So, that can help to show the quality of
the knowledge that the tutor passes to Amy. Table 4.2 displays classes that implement Amy’s brain.
The following subsections provide an explanation on how we implement each of Amy’s roles.

Figure 4.13: Showing all the classes that are needed to build AmyBrain

Table 4.2: Showing all the classes name and the description for building AmyBrain

No Class Name Class Description

1 AmyBrain A class to handle control the role Amy learn, solve, provide feed-
back, inquire and explanation

2 SolutionofProblem Class to get the solution from the tutor and provide the solution
for quiz

3 DomianKnowledge Class to provide all declarative knowledge for each problems.

4 ProceduralKnowledge Class to determine all action sequence for solving problem for
each problem.

5 AmysFeedbcak Class to provided Amy’s feedback to the tutor depending on his
interactions with Amy

6 AmyInquiry This class is to extend from Amy’s Feedback. It is to provide
Amy’s Inquiry if the tutor used some mysterious variable names

7 BasicStructureofPseudocode Class to contain all the basic operation and structure about Pseu-
docode

8 AmyExplanation It provides the Amy explanation about what she learns from the
user after re-teaching correctly

Teaching Amy
The tutor (human student) teaches Amy by solving the programming problem using pseudo-code.
Pseudo-code is an artificial and informal language that helps programmers to develop algorithms.
As the tutor provides the pseudo-code as a solution, Amy monitors the way and the strategy that

72

the tutor uses. As a result, Amy can learn from the tutor those strategies for solving the isomorphic
problem. Regardless the solution quality provided by the tutor whether the tutor teaches Amy a
correct, incomplete, or incorrect solution, Amy will follow the same strategy to solve the isomorphic
problem.

As mentioned before, Amy does not know the steps or strategies for solving any problem, but she
knows all the basic operations of pseudo-code, structure and the goal from every steps in pseudo-
code structure That means, she knows what the goal from read statement, print statement, selection
and iterative statements. As it ban be seen, she behaves like novice programmers which they usually
know the basic cognitive skills in the programming structures: variables and constants; logical and
comparison operators; selection statements; iterative statements; and arrays. Furthermore, she knows
the declarative knowledge of each problem. We mean by declarative knowledge in the problem is
domain knowledge. For example, she knows the base of a hexadecimal is 16 and binary is 2. Another
example, she knows the equation for checking the number is odd or even. The human teachers
usually do not provide the declarative knowledge with the quiz for solving any programming
problem because they expect that the students know it before. For that, we build Amy like novice
programmers who usually know this domain knowledge and the basic computer operations and
structure.

However, she will learn from the tutor about the procedural knowledge of the problem. The
definition of procedural knowledge is the action sequence for solving problem (Rittle-Johnsan &
Wagner 1999). In other words, she will learn the steps of solving specific problems. First, she will get
the tutor solution and the problem. Then, she will break down the solution into some steps. After
that, she will consider the goal from each steps and how their linking to other steps. Thus, she will
learn from the tutor.

In terms of how she will solve the second problem in quiz stage, first, she accesses domain knowl-
edge of this problem. Then, she will follow the same procedural knowledge of the first problem in
teaching stage with changing name variable by suitable name of the problem and domain knowledge.

Amy’s Feedback and Inquiry
As mentioned previously, Amy provides feedback and inquiry in some cases during teaching Stage.
This feedback is inquisitive rather than explicit instruction for solving the problem. She focuses
only on the interactions between herself and the tutor such as ine↵ective behaviours and making
corrective suggestions. For example, if the tutor does not teach Amy and wants to request her to take
a quiz, Amy might say "Excuse me. You have not taught me anything. Please teach me before you send me
to take the quiz". Another example, if the tutor taught Amy and did not request her to take a quiz.
She might say "Thank you for teaching me, you can send me to take quiz". All the information that help
Amy to decide which suitable feedback is needed to send to the tutor is depending on the sending
information from Tracker class.

Furthermore, Amy inquires in some cases during teaching stage if she faces some ambiguous
actions or mysterious variable names. As we know, sometimes the name variables like i, j and x
if the teacher did not explain what those variables mean, it may make the student confused. For
that, Amy will ask about the meaning of these mysterious variable names. For example, for finding
the biggest integer from unsorted integer list, the tutor could initialize the biggest number like x

73

variable in line 3, Amy will say "what do you mean by ’x’ variable in line 3?". For that, Amy will
have the knowledge for all basic operations actions in pseudo-code such as Read, Print, If and Else,
For, While, Repeat, and Until. Also, she knows the structure for each one. For example, "READ Sec-
onds" she knows the seconds is a variable name. Appendix K shows all the Amy feedback and inquiry.

Amy explanation
After the tutor re-teaches Amy correctly about her mistakes, Amy will provide what she understood
and asks to confirm her explanation. First, she knows all her mistakes or incomplete tasks based on
Ms. Sarah’s feedback. Then, she monitors the tutor during the re-teaching process of her mistakes.
After that, she will provide explanation about each mistake if the tutor re-teach her correctly. Finally,
she asks to confirm her explanation. For example, if Amy did not consider some special cases of the
problem such as if ’y’ is less than zero for finding Xy. Then, the tutor teaches her that correctly. She
will say "Thanking you for teaching, this problem has more than one case. I should consider all cases. One
of them is y less than zero. Is my explanation correct?". Appendix L shows some of Amy explanations
especially her explanations depending on the tutor behaviour on the problem.

4.2.2.2 Ms. SarahBrain

Now, we will focus on the agent framework (Ms. Sarah). The framework is illustrated in Figure
4.16 as UML static structure diagram. The role of Ms. Sarah is to mentor the agent Amy and the user.
Ms. Sarah can provide guidance and suggestions. She has several works can do it to the human
tutor and Amy. Firstly, she grades Amy’s solutions and provides metacognitive feedback to the
tutor and Amy. Secondly, she can evaluate Amy performance for solving the problem to display the
performance as Amy’s skill Indicator for current problem in quiz. The Table 4.3 shows some classes
that Ms. Sarah need them to do her role for assessing and monitoring Amy’s solution and interacting
with the tutor and Amy.

Table 4.3: Showing all the classes name and the description for building Ms. SarahBrain

No Class Name Class Description

1 MsSarahBrain Class to handle control the role Ms.Sarah grades, evaluates, Amy’s
solution provide feedback to the tutor and Amy

2 Performance Class of range of performance and indicator to Amy’s skills

3 MsSarahFeddback Class to provided Ms.Sarah feedback to the tutor and Amy what correct
and incorrect

4 Evaluation Class to evaluate and check many parts in solution what is correct and
incorrect compare it with ideal solution which will be represent as class

74

Figure 4.14: Showing all the classed that needed to build Ms. SarahBrain

Ms. Sarah Feedback List
As mentioned before, she will grade Amy solution and provide feedback what the correct and
incorrect in her solution. In addition, she also will ask the human tutor to help Amy for providing
a correct solution. For more information about the feedback of Ms. Sarah was discussed in section
3.3.5

As we know the correct solutions for any could be represent in di↵erent ways. In other words,
programming problem has more than one solution. For that, we build Ms.Sarah to consider all the
situation for every solution. For example, in Figure 4.15 four solutions are provided the same results.

In terms how she will deal with all the situation, she will firstly access to the declarative and
procedural knowledge of the problem, then she will verify the steps of the problem by using the
methods in Evaluation class. Then, she will decide which the suitable feedback to have to send to the
tutor and Amy.

75

Figure 4.15: Four solutions are provided the same results for solving the same problem.

Depending on the our problems as discussed on the section —, strategist will be verified form Ms.
Sarah. They are as following:

1. Determining the input and output.

2. Examining all special cases.

3. Order of actions.

4. Use correct actions in right place

5. Using all information in problem statement.

6. Using correct equations.

7. Checking the bugs in the conditional statement.

8. Checking the bugs in the loop statement such start, end and increment or decrement for loop.

Display the Performance
Ms. Sarah will calculate the performance of Amy and the tutor skills to present problem as the
indicator. First, she will decide all the strategist that needed to solve the specific problem. Then, she
will evaluate all the correct and incorrect. Finally, she sums all the correct strategies divide by all the
total strategies that needed problem. Then, it is decided which is Bad, Ok, Good and Excellent. The
next equation presents how to calculate.

Figure 4.16: How to calculate the performance and classify the results as Bad, Ok, Good, and Excellent

76

4.2.2.3 Tracker

As mentioned previously , the tracker uses an automated approach to determine the user’s progress
and notify other agents Amy and Ms. Sarah. For that, for every events that the tutor does in the
Graphical user interface (GUI) it will be notified to the Tracker. Then it will detect what is. Also,
one of its role is to follow Amy progress for each problem in order to show her progress in skills as
progress bars for her tutor. Figure 4.17 shows the Tracker class as UML static structure diagram.

Figure 4.17: The Tracker class as UML static structure diagram

4.2.3 Database Classes in The System
In order to interact with database components in terms of adding, deleting and updating, we

needed to build some classes. There are seven database classes as shown in Table –. The main goal
from theses classes is to keep the tutor’s information, problems provided, tutor’s attempts to teach
Amy and summaries about the tutor’s metacognitive strategies and acquired strategies. Table shows
every class and and class descriptions.

Table 4.4: Database Classes in our systems and their description

No Class Name Class Description

1 Student It is possible to reach all student’s information such as name, age,
gender and their Uni year

2 Problems It keeps the description of the developed problem for teaching
and quiz stage and the expert solutions for each problem.

3 TutorExplanation It keeps the user opinion about Amy explanations. If he agree or
disagree and why or the tutor answer for Amy inquiry.

4 Metacognitive feedback It retrieves which is suitable feedback that Ms. Sarah decide

5 PrviousslySolvedProblems It keep the number of problem that have done, nd what the tutor
solutions and Amy solution

4.2.4 Generation of Log Files
In order to achieve our aim of the examining the e↵ects of our system on the novice programmers’

skills, we implemented log files. Also, this files will help us in our experiment which will be discussed
in the chapter 5. The system automatically recorder user events interactions. We build three log files

77

for recorder the user interaction. The first file is to recode the user interactions for selected the
problems in homepage. The specific parameter in this file are user name, time of opening the frame,
user attempts before clicking on confirm button with time and, selected the previously solved problem
and confirming the final chosen problem.

The second file is to recode the user interactions in teaching stage. The specific parameters in second
file are username, problem tutored and number, time of opening the frame, time of starting teaching
User Attempts for teaching, final solution, Amy feedback and inquire about she misunderstands and
User explanation, Time of Sending Amy to Take Quiz , Time of selected to Back to Homepage and
progress in skills.

The third file is to recode the user interactions in Quiz stage. Every action from opening the frame
until the close it will be recorded such what the agents do and how the user act with them. The
parameters in the file user name, problem and number in this stage, Time of Opening the frame, Amy
solution, Time of Click -Check solution button- for helping Amy, Time of starting Re-teaching, user
attempts for reteaching, time of selected skills Indicator, time of reading Ms. Sarah message, Time
of selected Feedback list, Selected More for more details, Amy explanation and user opinion, time
of getting ideal solution. Every action will be recorded it with the time stamp. Appendix M shows
screenshots of theses the files.

78

Chapter 5

Experimental Study of the system

The main goal of this chapter is to outline how we design the experiment, how the pilot study will
be conducted, and how the participants will be recruited and allocated to the di↵erent groups in the
experiment. Also, it presents all the materials and documents that will be used in the experiment.

5.1 Objective
As mentioned previously, feedback in general improves students’ performance in problem-solving.

For that, it becomes important in computer-based learning environments. There are many types of
feedback. Firstly, metacognitive feedback is like guided feedback that is to assist a student in solving
problem but without giving the correct solution. Secondly, another type is called Knowledge of
Correct Response (KCR). It informs the learner of the correct answer to a specific problem with no
additional information. Therefore, our research questions are the following:

1. What is the e↵ect of KCR and guided metacognitive feedback on novice programmer’s own
problem solving skills (planning, monitoring, evaluation, debugging skills)?

2. How can KCR and guided metacognitive feedback a↵ect novice programmers to adjust their
approach for teaching the teachable agent (Amy)?

Since our research questions are regarding two di↵erent type of feedback, we will observe and
measure the e↵ect of these two types on the students who will use our systems.

5.2 Experimental Design
The experiment design has two groups: experimental group and control group. The first group

will use the system which provides guided metacognitive feedback form Ms. Sarah in the Quiz stage
(as presented in the previous chapters). The Control group will use the second system which has
the same features of the previous system. However, Ms. Sarah in this system only provides the
correct answer to the human students. Figure 5.1 shows the two groups of subjects each with specific
conditions.

79

Experimental Group

Students interact with system has these stages:

1. Teaching Amy

2.Observing Amy’s solution of another isomorphic
problem

3. Obtaining [guided metacognitive feedback] from
Ms. Sarah in order to help Amy to get Excellent
grade

Control Group

Students interact with system has these stages:

1. Teaching Amy

2.Observing Amy’s solution of another isomorphic
problem

3. Obtaining [ideal solution] from Ms. Sarah in
order to help Amy to get Excellent grade

Figure 5.1: di↵erence between control and Experimental groups

5.2.1 Procedural Skill Test
The experimental design has three procedural skills tests: pre-test, post-test and delayed-test. The

aim of these tests is to assess participants’ proficiency in programming problems. For each test, there
are two parts. The firs part is to estimate students’ knowledge in terms of whether or not they would
be able to solve a given problem by answering "Yes or "No" to the question. For example: "Do you
think you can solve the given problem correctly?". The first part in Appendix A ,B and C show it
pre-test, post-test and delayed-test, respectively. After completing the first part, the participants will
do the second part which require to programming problems into pseudo-code. The second part in
Appendix A ,B and C present the second part for pre-test, post-test and delayed-test, respectively

Regarding the description of containing the three tests, they provide isomorphic programming
problems. We develop these problems into three constructs for structured program: sequence,
selections and repetitions. The pre-test includes four problems: (one problem for sequence (i.e.
simple instructions), two problems for selections (two-way selection and multiple selections) and
one problem for repetition). In addition, the post-test includes four problems; (one problem for
sequence (i.e. simple instructions), two problems for selections (two-way selection and multiple
selections) and one problem for repetition). Also, the delayed-test includes 4 problems; (one problem
for sequence (i.e. simple instructions), one problem for selections (two-way selection) and two
problems for repetition). As can be seen, the number of the problems that have the repetition of
constructs has been increased in the delayed test. We believe the repetition of constructs needs more
control and monitoring skills. Especially, they also are a combination of sequence and selections of
constructs.

In terms of the given time for each test, the time was given for pre-test is 30 minutes for the two
parts. Also, the post-test and delayed-test should be completed in 40 minutes. We did not decide
how the time should be consumed for the first part and the second part in order to avoid confusing
participants. Anyway, we will inform them about the instructions and time of the tests.

The scoring of each answer of the problems is given as follows: 2.0 points for an ideal answer,
1.0 point for a partially correct answer, 0.5 points for an incomplete answer and 0 for an incorrect
answer [20] [31]. In this study, we are interested in comparing between the experimental and the
control group and not in absolute measures of performance improvement in either group separately.
Appendix D shows ideal solutions of three tests.

80

To clarify more about the reasons for di↵erentiating the score of ideal and correct solutions, it
is because the main goal our system (as mentioned earlier). Our goal is to enhance the novice
programmer’s skills to get the ideal solution for any problem. For that, we want to measure student’s
prediction of their knowledge and their actual performance. We use the Knowledge Monitoring
Assessment(KMA) method [73] for measuring KMA. Especially, (KMA) appears to be a naturalistic
and robust measure of knowledge monitoring that has good reliability and excellent internal validity
[74].

Table 5.1 presents the KMA with an eight score value for a, b, c, d, e, f, g, h, A score of 1 is given for
the following situations of (a) and (h). A score of -1 is given for the following situations of (g) and(b).
A score of -0.5 for all the others. After that, The mean of the KMA scores over all the problems solved,
yields the current KMA state of the Student. Table 5.2 presents the classification of the KMA value,
students with a KMA value between -1 and -0.25 are categorized as someone with a weakness for
estimating correctly their knowledge level in the majority of situations. Whereas a student who is
average in correctly estimating their knowledge level is indicated by a KMA value between -0.25 and
0.5. A high KMA (0.5 -1) shows that they are able to estimate their knowledge level correctly most of
the time. Appendix D shows all the ideal solutions of the problems in the three tests.

Table 5.1: KMA values for performance and prediction

PredictionPerformance Know Do not Know
Provides ideal solution a b
Provides partially correct solution c d
Provides incomplete solution e f
Provides incorrect solution. g h

Table 5.2: Classification of KMA

KMA Value Classification Description

-1 to -0.25 Low Weakness at estimating knowledge level correctly in
majority of situations

-0.25 to 0.5 Average Average in estimating knowledge level correctly, but
makes frequent slightly wrong or completely wrong estimation

0.5 to 1 High Most of the time makes correct estimation

5.2.2 Motivational test
We are interested in the measurement of metacognition of participants before starting using our

systems. There are many surveys that can achieve the targets such as Metacognitive Awareness In-
ventory MAI [13], Learning and study strategies inventory (LASSI) [75] and The Motivated Strategies
for Learning Questionnaire (MSLQ) [76]. MSLQ is a very well established measurement of not only
metacognition, but motivation [77]. It contains 81- items, 7-point Likert scale (1 = not at all true of me
and 7 = very true of me). There are essentially two sections to the MSLQ, a motivation section, and
a learning strategies section. The motivation section consists of 31 items that assess students’ goals
and value beliefs for a course, their beliefs about their skill to succeed in a course, and their anxiety
about tests in a course. The learning strategy section includes 31 items regarding students’ use of

81

di↵erent cognitive and metacognitive strategies. In addition, the learning strategies section includes
19 items concerning student management of di↵erent resources. We select this MSLQ because it
covers some limitations in others such as answering the items in a specific way depending on the
domain the learner has in mind. For instance, the item "I summarise what I have learned after I
finish" in evaluation component, may be rated high if the learner thinks of her behaviour in literature
or history, or low if she refers to her pattern in maths.

Furthermore, we pickup what the suitable items for programming problem course. Appendix E
shows this questionnaire. It includes 7 items for motivation part and 14 items for learning strategies.
The reasons of selecting this number of items in learning strategies part is because it includes the
self-regulated and metacognitive strategies. Before this part, we set up some questions for getting
personal and education background.

5.2.3 Evaluation Survey
In order to evaluate the system from participants’ perspective, we collect their feedback on our

system at end of the experiments. Appendix F shows the usability questionnaires. The first part from
question 1 to 10 is based on [78].

Other questions from 11 to 16 are to assess what the participants think about the benefits of the
system to develop their thinking process on solving problems. In addition, there are two open end
questions to explain what the most positive and negative aspects from participant perspectives.

5.3 Structure of study

5.3.1 Preparation of Study
Before study days, we installed the system on the computers’ lab. Also, we stuck the participant

ID on the screen that can be seen in order to keep their personal information such their names to be
anonymous and confidential. Appendix G shows the IDs for both control and experimental groups.
Absolutely, we printed and checked all questionnaires and rearrange them to avoid any mistakes
during the study. Furthermore, we recorded video on how to use the system. We will play it to the
participants in the first session.

Furthermore, we send email to the group of computer science students as the experiment adver-
tisement as shown in Appendix J. After they wanted to take part in the experiments, we inform to
participants the days and time of the study days and the location. In addition, we collected their sig-
nature to attend all the sessions using Consent Form as shown in Appendix H. Finally, the materials
used in the research work are presented in Appendix I.

5.3.2 Tasks of Study
Each participant taking part in the experiment was required to attend three sessions on di↵erent

days. Table 5.3 shows the structure for each session with the time limited for each subtask in that
day. The first session is on 11/10/2017 at 11:00 am, and the second session is on 15/10/2017 at 11:00

82

am. Delayed-Test is administered one week after the second session and was on 22/10/2017 at 11:00
am. The first and second sessions are two hours. The third sessions is 40 minutes

Our reasons for make more than one session is to make good atmosphere for participants and more
trust for using the system. Especially we want to measure the improvement of own skills and every
participant could have their own ability. Thus one session can be di�cult to measure the progress of
participants if participant lacks the confidence of using the system. Also, make one session would
force us to make the time of sessions long. Then, that would a↵ect on participants that could be
fatigued.

Furthermore, we make these sessions are not consecutive days in order to measure any long-term
retention of acquired skills, especially we deal with metacognition.

Table 5.3: Organization of the experiment sessions.

Sessions Task Duration
Motivated Strategies for Learning Questionnaire 10 minutes
Pre-test: Part I and Part II. 30 minutes
Video for how to use system 10 minutesThe first session

Using our system 1 hour and 10 minutes
Using our system 1 hour and 10 minutes
Post-test: Part I and Part II. 40 minutesThe second session
Evaluation and Usability Questionnaire 10 minutes

The third session Delayed-test: Part I and Part II. 40 minutes

5.4 Participants and The Place of the Conducted Experiment
The study was agreed to be conducted in Saudi Arabia in the College of Computer at Al-lieth

in Umm Al-Qura University due to the easiness to conduct the study and collect data. We will
select novice programmers who study at least one programming course and passed this course.
All the participants have started to study programming courses in the first year in university as
required in the plan of the department. Also, the programming course often focus on the features
of programming language more than how to think about solving problems. We will divide the
participants into two groups randomly without any prior knowledge of their programming skills.
Due to the time constraint, we only consider female participants.

83

Chapter 6

Results and Discussion

The main goal of this chapter is to summarise and discuss the results of the data analysis. Also,
it presents our findings for the research questions. In addition, it also presents an analysis of the
participants’ opinions about the system.

6.1 Participants
The participants consisted of a total 21 undergraduate students of Computer Science department.

We randomly divide them into two groups: 11 participants in the experimental group and 10 par-
ticipants in the control group as shown in Table 6.1. All of them were female. Their ages ranged
between 18 and 25 years. Furthermore, all of them studied two programming courses which are
Introduction Computer Science and Computer Programming. They have also passed at least one of
the programming course.

All the participants except one attended all the three sessions. One participant from the experi-
mental group was absent in third session. Thus,the number of participants in the experimental group
was 10 but the control group did not change.

Table 6.1: The number of participants in both groups

Experimental group Control group
Number of Participants 11 (Novice Programmers) 10 (Novice Programmers)

6.2 Results of Motivational Test of Participants
As discussed in chapter 5, we want to the measure meta-cognition in participants. They were asked

to fill-in Motivated Strategies for Learning Questionnaire (MSLQ) which had 21 items (includes 7
items for motivations part and 14 items for learning strategies as shown in Appendix E). Each item
had a 7-point Likert scale (1= not at all true of me and 7 = very true of me). Students were asked to
use their behaviour in most recent programming course when filling in the questionnaire.

In terms of The Motivation part, Table 6.2 shows the average of each question for all participants
in the experiment. Most participants feel anxious when they take the exam. That would negatively
impact their performance. Interestingly, the average rating for control of learning is 3.95 ; i.e. they do

84

not believe if they did not understand the course material that does not mean they did not try hard
enough to understand the course. Furthermore, they prefer course material that really challenges
them. So, they prefer the programming problem solving because it is considered challenging.

Table 6.2: The average for each questions for all participants in the experiment in Motivation part

Value component Definition The questions The average of each
question

In a class like this, I prefer course
material that really challenges
me so I can learn new things.

6
Intrinsic Goal
orientation

It refers to the participants’
perception of the reasons why
they are engaging in a learning
task

The most satisfying thing for me
in this course is trying to under-
stand the content as thoroughly
as possible.

5.52

Extrinsic Goal ori-
entation

It completes Intrinsic Goal orien-
tation and concerns the degree to
which students perceive them-
selves to be participating in a
task for reasons such as grades,
rewards, performance, evalua-
tion by others, and competition.

The most important thing for me
right now is improving my over-
all grade point average, so my
main concern in this class is get-
ting a good grade

6.67

Task Value

It refers to the student’s evalua-
tion of the how interesting, how
important, and how useful the
task is

I am very interested in the con-
tent area of this course. 6.00

Control of Learn-
ing

It refers students’ beliefs their
the e↵ort to learn

If I do not understand the course
material, it is because I did not
try hard enough.

3.95

Expectancy for suc-
cess and self e�-
cacy

It refers to performance expecta-
tions and relates specifically to
task performance

I am confident I can understand
the most complex material pre-
sented by the instructor in this
course.

4.43

Test anxiety

It has been found to be neg-
atively related to expecting
expectancies academic perfor-
mance

I have an uneasy and upset feel-
ing when I take an exam. 5.57

In terms of learning strategies part, we have 8 strategies that were asked from the participants. The
table 6.3 shows theses strategies with average rating for them. The average rating for help seeking is
4.81. That means the participant are willing to ask for support from others such as peer or teachers.
We also want to measure the meta-cognition. The self-regulation is one of aspects we measured. This
was measured using 6 questions. The average rating for self-regulation strategies is 5.33. That means
the participants has achieved some level of self-regulation.

85

Table 6.3: The average for each questions for all participants in the experiment in learning strategies part

Value component Definition The questions The average of each
question

Rehearsal

It involves reciting or naming
items from a list to be learned.
These strategies are best used
for simple tasks and activation
of information in working mem-
ory rather than the acquisition
of new information in long term
memory

When studying for this class I
read my class notes and the
course readings over and over
again.

4.57

I try to relate ideas in this subject
to those in other courses when-
ever possible

5.52

Elaboration
Strategies

It helps students to store
information into long-term
memory by building internal
connections between items to be
learned

When I study for this class I pull
together information from dif-
ferent sources such as lectures,
readings and discussions

4.38

Organization
Strategies

It help the learner select appro-
priate information and also con-
struct connections among the in-
formation to be learned.

When I study the readings for
this course I outline the mate-
rial to help me to organize my
thoughts

5.43

I ask myself questions to make
sure I understand the material I
have been studying in this class

5.24

When studying for this course I
try to determine which concepts
I do not understand well.

5.57

When I study for this class I set
goals for myself in order to di-
rect my activities in each study
period

4.19

When I become confused about
something I am reading for this
class I go back and try to figure
it out

6.29

If course materials are di�cult to
understand, I change the way I
read the material

5.14

Self-regulation

It is one of the components of
metacognition. Self-regulation
activities include many activate
such as planning, monitoring
look back

Even when course materials are
dull and uninteresting I manage
to keep working until I finish.

5.57

Collaborating
It refers work jointly on an activ-
ity, especially to produce or cre-
ate something

When studying for this course I
often try to explain the material
to a classmate or a friend.

6.33

Help seeking The degrees of asking to support
from others

Even if I have trouble learning
the material in this class I try to
do the work on my own without
help from anyone.

4.81

Time management

It is the process of planning
and exercising conscious control
over the amount of time spent on
specific activities

I make good use of my study
time for this course 5.43

Critical Thinking

It refers to the degree to which
students report applying previ-
ous knowledge to new situations
in order to solve problems

Whenever I read or hear an as-
sertion or conclusion in this class
I think about possible alterna-
tives.

4.33

86

6.3 Results for RQ1
In order to answer Research Question 1 (RQ1), we wanted to explore the e↵ect of knowledge

of correct response (KCR) and guided meta-cognitive feedback on novice programmers’ problem-
solving skills.

In order to investigate the impact of both types of the aforementioned feedback, we verified the
results by comparing the pre-test and post-test, we also compared the pre-test and delayed-test for
both groups (Experimental and Control).

We marked each question for each participant as follows: 2 points if the participant provided a
correct solution for the question, 1 point if the participant provided a partially correct solution, 0.5
point for incomplete solution and 0 for incorrect solution or if the participant did not provide any
solution. Then, we calculated the total for all the questions in each test. Hence, each test has the same
number of questions and isomorphic problems as mentioned in Chapter 5.

To compare the pre-test and post-test for participants in the experimental group, Figure 6.1 shows
the performance for those participants in both tests. We found that 9 out of 11 participants have been
improved. In other words, the performance of the experimental group has been improved by 82%.

Figure 6.1: Comparing The Score of Participants for Both Tests (Pre-Test and Post-Test) in The Experimental Group

87

To compare the pre-test and post-test for participants in the control group, Figure 6.2 shows the
performance for those participants in both tests. We found that only 3 out of 10 participants have
improved. That means the performance of only 30% of the participants in control group has improved.

Figure 6.2: Comparing The Score of Participants for Both Tests (Pre-Test and Post-Test) in The Control Group

As mentioned previously, the problems in delayed-test are more challenging compared to pre-test
and post- test. To compare the pre-test and delayed-test for participants in the experimental group,
Figure 6.3 shows the performance of the experimental group in pre-test and delayed-test. We found
that 7 out of 10 participants have been improved. That means the performance of the experimental
group has been improved by 70%.

To compare the pre-test and delayed-test scores for participants in the control group, Figure 6.4
shows the performance for those participants in both tests. We found that only 5 out of 10 participants
have been improved. That means the performance of the control group has been improved only by
50%.

88

Figure 6.3: Comparing the Score of Participants for Both Tests (Pre-Test and Delayed-Test) in The Experimental Group

89

Figure 6.4: Comparing The Score of Participants for Both Tests (Pre-Test and Delayed-Test) in the Control Group

As we can see, some of the participants in both groups have improved, and we believe that the
reason of this is the learning by teaching e↵ect which participants have done in both groups. We
can also notice a high percentage of experimental group participants have been improved more than
the control group because in the experimental group, we enable the participants to use their meta
cognitive skills during solving problems whereas in the control group we provide the ideal solution
in the case if the participants did not provide a correct solution.

In order to investigate the participants (who have improved in both groups), we divided the
participants into three groups based on their pre-test scores as shown in table 6.4 below. The total
scores of the pre-test and the post test is 8. Table 6.5 shows how we divided the three groups of
participants for both experimental and control groups.

Table 6.4: Classification of groups based prior knowledge

Scores Groups based prior knowledge
0 to 3 Low Prior Knowledge (LPK)
4 to 5 Average Prior Knowledge (APK)
6 to 8 High Prior Knowledge (HPK)

Table 6.5: the numbers of participants based prior knowledge split

Groups HPK APK LPK
Experimental Group (11 Patricians) 1 5 5
Control Group (10 Patricians) 1 5 4

90

As indicated above, only 3 participants have improved in the control group in the post-test. After
dividing participants based on the Table 6.4, we found that those participants belong to the average
prior knowledge (APK) group whereas participants in both HPK and LPK did not improve.

When we did the same procedure for the experimental group, we found that participants, who
their scores improved in the post-test, are from all of the three groups (HPK, APK, and LPK). Those
participants are 1 participant from the HPK, 3 participants from APK, and 5 participants from LPK.
Interestingly, two of the participants from APK group achieved scores as the participants in the HPK
group and one participant in the LPK group achieved scores as the participants in the APK group.

6.4 Changes in Knowledge Monitoring Accuracy (KMA)
In order to assess the knowledge monitoring which is part of the metacognition component, we

use KMA as discussed in chapter 5. Firstly, we calculated the mean of the KMA scores over all the
problems solved for each participant for both experimental and control groups in the three procedural
tests. Table 6.6 shows the experimental group for all tests (pre-test, post-test, and delayed-test). Table
6.7shows the control group for all test (pre-test, post-test, and delayed-test).

Table 6.6: KMA value of the experimental group for three tests. Hints (Ref) in the table means this participant was not attended in this test

Participants KMA value of
pre test

Classification of
pre test

KMA value of
post test

Classification of
Post test

KMA value of
delayed test

Classification of
delayed test

P1 -1 Low -0.75 Low -0.875 Low
P2 0.25 Average -0.125 Average 0.25 Average
P3 0.625 High 0.75 High 0.625 High
P4 -0.375 Low -0.75 Low 0.25 Average
P5 0.125 Average 0.25 Average 0.25 Average
P6 0.625 High -1 Low 0.25 Average
P7 -0.25 Average -0.75 Low 1 High
P8 0 Average -0.625 Low 0.5 High
P9 -0.5 Low -0.375 Low Ref Ref
P10 -0.75 Low 0.75 High -0.25 Average
P11 -0.125 Average 0.625 High -0.625 Low

Table 6.7: KMA value of the control group for three tests

Participants KMA value of
pre test

Classification of
pre test

KMA value of
post test

Classification of
Post test

KMA value of
delayed test

Classification of
delayed test

P1 0.125 Average 0.25 Average 0.25 Average
P2 -0.25 Average 0.5 High -0.5 Low
P3 0.125 Average -0.5 Low -0.375 Low
P4 0.125 Average -0.125 Average -0.125 Average
P5 0.125 Average 0.625 High 1 High
P6 -0.375 Low -0.375 Low 0.25 Average
P7 0.125 Average -0.75 Low 0.5 High
P8 -0.625 Low -0.25 Average 1 High
P9 0 Average -0.5 Low -1 Low
P10 0.125 Average -0.25 Average 0.625 High

In order to compare between the two groups, we measure the means of the KMA scores for both
groups among theses tests. Table 6.8 shows descriptive values between the two groups. By looking
at the tables, we can see the mean of the score of the KMA for the experimental group has improved

91

in between pre and post-test as predicted. In contrast, in control group, there is no improving in
monitoring their knowledge.

Table 6.8: The average of KMA in three tests for both experimental and control groups

The average of KMA in pre-test in post-test in delayed-test
Experimental group -0.5 -0.181818182 0.1375
Control group -0.1 -0.1375 0.1625

Looking at the distribution of KMA organized by the categories (low, average and high) the groups
presented the following distribution. Both figure 6.5 and 6.6 show the the distribution of KMA for
both groups for the pre-test and post-test.

For the control group, the distribution at the beginning of the experiment was: 80.0% had an
average KMA, 20.0% a low KMA and 0.0% presented a high KMA in the pre-test. This distribution
changed at the end of the experiment (post-test) showing the increase of the high KMA group with
20.0% of the students and falling into the average category with 40.0%. There was also an increase of
low KMA students (40.0%).

For the experimental group, the distribution at the beginning of the experiment was 46.0% had an
average KMA, 3.6.0% a low KMA and 18.0% presented a high KMA. We can observe a redistribution
of these percentiles at the end of the experiment, where 55.0% presented a low KMA, 18.0% had an
average KMA, and 27.0% a high KMA.

Interestingly, there is increased of high KMA students in the experimental group as shown in
Figure 6.6. That means most of the time they make correct estimation.

Figure 6.5: The three classified of KMA Score for both groups for Pre-test

92

Figure 6.6: The three classified of KMA Score for both groups for Post-test

In terms of the delayed test, Figure 6.7 shows the KMA classification of delayed test for both group.
This distribution is changed at the end of the experiment in the delayed test. It becomes 30% in high
KMA of experimental group and becomes 50% and 20% in average and low KMA respectively. By
comparing the KMA for the three tests, we can see that the KMA of high group have been increased
for the experimental group as well for the control group.

Figure 6.7: The three classified of KMA Score for both groups for Delayed-test

6.5 Results for RQ2
The Research Question 2 (RQ2), as explained in Chapter 1, is "How can KCR and meta-cognitive

feedback a↵ect on novice programmers to adjust their approach for teaching the teachable agent

93

(Amy)?" For this question, we analyse the performance for teaching Amy. We were looking at the log
files for each participant, and we mark the degree of teaching Amy for the selected problems in the
Teaching stage. Then, we measure the average for each problem in log files for both groups as shown
in figures 6.8 and 6.9. Hence, the challenges of the problems increase from problem 1to problem 11.
All participants taught Amy the problems from 1 to 8. However, Participants did not teach Amy the
problem 9, 10, and 11 because the limitation of the time. All participants spent the limited time in the
experiments to teach Amy. That is similar to [6][53] [54], the learning by teaching paradigm motives
students spend more time and e↵ort to get their goal from teaching the agents.

Figure 6.8: The average for each problem in log files for Experimental group

94

Figure 6.9: The average for each problem in log files for Control group

By looking at Figure 6.10, it shows the average of the performance for each problem of both groups
(experimental and control groups). There is a little bit increase on the performance of the experimental
group than control groups. That means participants from the experimental group have acquired some
strategies such as looking back, monitoring and control for teaching Amy and solving the problem.
Generally, the performance of both groups depended on the di�culty of the questions because the
learning by teaching strategy can engage the metacognition in implicit way. The performance of
control group was close to the experimental group.

95

Figure 6.10: Comparing the average for eleven problems in log files for both groups

6.6 Analysis of Interaction With The System
This section gives overview about the participants opinion about the system. It presents the results

of the usability and evaluation of the system.

6.6.1 Can Programming Problem Solving Be Learned By The Computer-based
System?

We collected the participants’ opinions if programming problem solving can be learned by the
computer-based system before and after using the system for both experimental and control group.
This question is 7-point Likert scale (7 = strongly agrees and 1= strongly disagree). We measure the
average for both group as shown in 6.9.

Table 6.9: the participants’ opinion if programming problem solving can be learned by the computer-based system

The average before using
the system

The average after using the
system

Experimental group 5.82 6.46
Control group 5 5.7
The average of all participants 5.429 6.095

As we can seen, most the participants that agree and believe that programming problem solving can
be learned by the computer-based system. Also, the average of of their opining have been increased
after using the system. That means both groups agree and strongly agree that computer system can
help the to learned the programming problem solving.

96

6.6.2 Usability of The System
At the end of the experiment, all participants filled their opinions of the usability of the system

using the point Likert scale (7 = strongly agrees and 1= strongly disagree). We categorised our
ten questions (part of usability as shown in Appendix F) into five attributes as describes by [79] as
following:

• A↵ect that shows the degrees of the user’s emotional reaction to the software .

• E�ciency that means the degree of user’s feeling about the system assists them or not.

• Helpfulness that measures the extent to which the system is easy to use.

• Control that measures the extent to which the user feels in control of the software when use the
system.

• Learnability that measures the speed and facility with which the user feels that they have been
able to master the system, or to learn how to use new features when necessary.

Table 6.10 shows these attributes and the average of each question for both groups. In addition to
that, the average of all participants for both groups for each question. We found their participants
opinion is agree and strongly agree about each questions. Interestingly, we found the most partici-
pants would like to use this system frequently and recommend it to their friends. Unexpectedly, the
average of control group (that is easy to make the system do exactly what I want) is slightly agree.

Table 6.10: Attributes of usability questions and the average of each question for both groups and the average of all participants

Attributes Usability questions
The average of
experimental
group

The average of experi-
mental group

The average of all par-
ticipants for both groups
for this question

A↵ect I would recommend this system to my
friends. 6.18 5.9 6.05

A↵ect I would like to use this system frequently 6.55 6.2 6.38

E�ciency I would find the system useful in my
studies for problem solving 6.27 6.2 6.24

Helpfulness It was easy to learn to use this system 6.27 6.1 6.19
Helpfulness The interface of this system is pleasant. 5.73 6.2 5.95

Helpfulness The organization of information on the
system screens is clear. 6.36 6.7 6.52

Helpfulness The way that Ms. Sarah’s information is
presented is clear and understandable 6.09 6.2 6.14

Helpfulness The way that Amy’s information is pre-
sented is clear and understandable 6.09 5.8 5.95

Learnability I feel comfortable using this system 5.73 6 5.86

Control It is easy to make the system do exactly
what I want 5.00 4.9 4.95

6.6.3 Participants’ Evaluation of The Benefits of The System for Developing
Their Own Skills

In the evaluation part (as shown in Appendix F), the participants thought about the benefits
of the system to develop their thinking process on solving problems. Also, all participants filled
their evaluation of the system using point Likert scale from 1 to 20 points. In addition to that, the
participants should explain their reasons for given this score.

97

As we can see in Table 6.11 , the average of experimental group of the each questions is high than
control group. Furthermore, The participants found the guided meta-cognitive feedback is more
useful than provided ideal answer.

Table 6.11: The evaluation the benefits of the system and the average of both groups

The average of Experimental group Control group
Motivating their own thinking process on solving problem 15.82 14
Assisting to find their own strengths and weaknesses on problem solving skills 13.91 14
Improving your problems solving skills 16.18 13.9
How much Ms. Sarah feedback assist you to develop your skills in the future 17.27 15.1

6.6.4 Participants’ Opinion About The Most Positive and Negative Aspects in
The System

There are two open questions to explain what the most positive and negative aspects based on
the participants’ perspectives. Most participants in both groups answered that there is no negative
aspect of the system, but some participants found that the system has limited number of questions
and there are some deficiencies in the system without explaining more.

In terms of positive aspects, these are some answers of some participants such as assisting to
improve my programming problem-solving skills, helping to find their own mistakes, easy using the
system, and the user interface is friendly.

98

Chapter 7

Conclusions and Future work

The main goal of this chapter is to present the conclusion of our work. Also, it presents the main
contributions of this work and the limitations of it. The last section displays some further suggestions
for future research.

7.1 Conclusion
The main goal of our research is to enhance the meta-cognitive skills of beginner programmers

in order to improve problem-solving skills. We build a computer-based learning environment. It
combines learning by teaching technique and guided meta-cognitive support. A novice programmer
has the opportunity to teach Amy which is a virtual agent that plays the tutee role. There is another
virtual agent (Ms. Sarah) who plays a mentor agent that can evaluate Amy’s solution and provide
guided meta-cognitive feedback to the novice programmer in order to re-teach Amy correctly. As it
is known, the ultimate goal of all the educational systems is to facilitate learning of students and to
stimulate their learning interest. For that, we developed a sequence of activities in the system whose
emphasis is on problem-solving skills and meta-cognitive support.

Furthermore, our system covers the limitation of all of these existing systems that focus on various
domains and none of them have considered programming problem-solving. In addition to that,
the majority of the existing systems did not provide meta-cognitive support. They only focus on
providing feedback about the content such as providing correct answer whereas our system provides
meta-cognitive feedback to novice programmers.

For that, we conducted an experiment in order to investigate the e↵ect of these two types of
feedback on novice programmers’ problem-solving skills and their approach to teach the teachable
agent (Amy). We conducted a study to evaluate the e↵ectiveness of the meta-cognitive support
provided by the system.This study consisted of three sessions. They were not on consecutive days to
measure the long-term retention of the acquired skills especially metacognition. So, the study took
a place at the College of Computer at Al-lieth in Umm Al-Qura University. We analysed the data
gathered from novice programmers, 18-25 years old, studied and who have passed at least one of the
courses of programming.

99

The results show the meta-cognitive feedback had a positive e↵ect on the novice programmers’
skills comparing when the performance on the pre-test, post-test and delayed test are analysed.
At the end of the post-test, 82% of the experimental group participants improved whereas it was
limited to 30% for the control group. At the end of the delayed post-test, 70% in experimental group
improved whereas only 50% of the control group improved. Furthermore, the results revealed that
the average of KMA score for both groups has increased gradually. That means they have ability to
monitor their knowledge. In other words, most of the time they make correct judgements about their
have ability to provide correct solutions. In terms of improvements related to adjusting the novice
programmers’ approach for teaching Amy, the performance of the experimental group is slightly
higher than that of the control group. The analysis revealed that experimental group participants
acquired some strategies such as looking back, monitoring and control their teaching process, and
their ability to solve the problem.

7.2 Research Contributions
The results of this thesis contributed to an intersection of di↵erent disciplines: education, psy-

chology and computer science particularly novice programmers in solving problems. This research
benefits novice programmers to improve their problem solving before starting to write the source
code in any programming language.

The major contributions of this work can be obtained from four perspectives:

1. Identification of the benefits of learning by teaching technique for novice programmers.

2. Development of instructional design system that includes the activities that support the learning
by teaching approach and guided meta-cognitive feedback.

3. Comparing the two types of feedback. The first is to focus on the content of solving the problem.
The second type of feedback is to enhance the meta-cognitive skills of those programmes.

4. Knowing the e↵ect of these two types of feedback on the performance of those programmes.

7.3 Limitations of the Work
This project was an interdisciplinary project encompassing computer science, education and psy-

chology; i.e. we as computer scientists needed to work closely with education and psychology experts
in order to make sure that we meet the educational requirements of the novice programmers in de-
signing the system. Working in between these two disciplines resulted in some conflicts, especially
in the di↵erent ways of reporting the results of the study.

Furthermore, the project was done at the University of Adelaide in Australia whereas the experi-
ment was conducted in Saudi Arabia. Keeping the two teams together in two di↵erent countries as
well as two di↵erent disciplines required a lot of time and energy.

100

It was di�cult to execute the experiment in Australia as all participants studies English as the
second language. We recognize that our experiment has some limitations concerning its design.
Firstly, the number of participants in the experiment was small. It was very di�cult to gather
volunteers for the experiment due to the issue of having more than one session and these sessions
were not conducted on consecutive days.

An additional factor that reduced the power of the experiment was the limited number of problems
in the system. This was not possible due to time constraints.

Another limitation which is not related to the experiment, but to the design of the system is that the
types of problems presented in the system were not tailored to each student’s skills of programming
problem-solving. Thus, some participants found these problems in the system are more challenging
during the experiment. However, the majority of participants tried to solve them even if they did not
provide complete solutions. Thus, we believe that some of the results may have been influenced by
these limitations.

7.4 Future Work
Even though the results of this study revealed many interesting findings regarding the e↵ectiveness

of applying the learning by teaching approach, there is more space for improving this work in the
future in terms of improving AmyBrain or Ms.SarahBrain.

We can develop Ms. Sarah’s Brain to understand the behavior of the human students and the style
of learning. That could help to provide more suitable feedback to the human student. In this case,
we need to read more about psychology field.

Also, we can develop Ms. Sarah to communicate and interact more with Amy and human students
to enrich the way of learning. Also, we can let human students to communicate with her. In this case,
we need natural language techniques.

Also, we can improve Amy’s Brain, so that can make the relationship between all the previous
problems in order to improve her knowledge. However, we need be careful in this case because Amy
could be excel her teacher who is supposed to be a novice programmer. Especially, our goal is to to
improve the human students skills not Amy because we consider Amy as a reflection of the students
to show their skills level.

Another suggestion which is not related to the Ms. Sarah’s Brain and Amy’s Brain is that we can
develop the system to have more challenging programming problems. Furthermore, we can allow
human students to write their own problems to teach Amy. Furthermore, we can develop the system,
so that it can provide suitable resources to assist the human students to improve their programming
skills and teaching process.

101

Another venue for further research is to make the system adaptive to support each individual
student. Currently, each student receives the problems from our system. In other words, the students
cannot provide their own programming problems to teach Amy.

102

Bibliography

[1] Douglas J Hacker, John Dunlosky, and Arthur C Graesser. Metacognition in educational theory and
practice. Routledge, 1998.

[2] Sandra Y Okita and Daniel L Schwartz. Learning by teaching human pupils and teachable
agents: The importance of recursive feedback. Journal of the Learning Sciences, 22(3):375–412,
2013.

[3] Michael de Raadt, Mark Toleman, and Richard Watson. Training strategic problem solvers. ACM
SIGCSE Bulletin, 36(2):48–51, 2004.

[4] Jason Tan, Gautam Biswas, and D Schwartz. Feedback for metacognitive support in learning by
teaching environments. In Proceedings of the 28th Annual Meeting of the Cognitive Science Society,
Vancouver, Canada, pages 828–833. Citeseer, 2006.

[5] Camilla Kirkegaard. Adding Challenge to a Teachable Agent in a Virtual Learning Environment Adding
Challenge to a Teachable Agent in a Virtual Learning Environment. PhD thesis, Linköping University
Electronic Press, 2016.

[6] Lena Pareto, Magnus Haake, Paulina Lindström, Björn Sjödén, and Agneta Gulz. A teachable-
agent-based game a↵ording collaboration and competition: Evaluating math comprehension
and motivation. Educational Technology Research and Development, 60(5):723–751, 2012.

[7] Noboru Matsuda, Evelyn Yarzebinski, Victoria Keiser, Rohan Raizada, William W Cohen,
Gabriel J Stylianides, and Kenneth R Koedinger. Cognitive anatomy of tutor learning: Lessons
learned with simstudent. Journal of Educational Psychology, 105(4):1152, 2013.

[8] Chih-Yueh Chou and Tak-Wai Chan. Reciprocal tutoring: design with cognitive load sharing.
International Journal of Artificial Intelligence in Education, 26(1):512–535, 2016.

[9] Gautam Biswas, Thomas Katzlberger, John Bransford, Daniel Schwartz, et al. Extending intelli-
gent learning environments with teachable agents to enhance learning. In Artificial Intelligence
in Education, pages 389–397, 2001.

[10] Michael J Hogan, Christopher P Dwyer, Owen M Harney, Chris Noone, and Ronan J Conway.
Metacognitive skill development and applied systems science: A framework of metacognitive
skills, self-regulatory functions and real-world applications. In Metacognition: Fundaments,
applications, and trends, pages 75–106. Springer, 2015.

[11] Yun-Jo An and Li Cao. Examining the e↵ects of metacognitive sca↵olding on students’ design
problem solving and metacognitive skills in an online environment. Journal of Online Learning
and Teaching, 10(4):552, 2014.

103

Ahoud Alhazmi

Ahoud Alhazmi

Ahoud Alhazmi

Ahoud Alhazmi

Ahoud Alhazmi

[12] John H Flavell. Metacognition and cognitive monitoring: A new area of cognitive–
developmental inquiry. American psychologist, 34(10):906, 1979.

[13] Gregory Schraw and Rayne Sperling Dennison. Assessing metacognitive awareness. Contempo-
rary educational psychology, 19(4):460–475, 1994.

[14] Barry J Zimmerman and Dale H Schunk. Reflections on theories of self-regulated learning and
academic achievement. Self-regulated learning and academic achievement: Theoretical perspectives,
2:289–307, 2001.

[15] John G Borkowski, Martha Carr, and Michael Pressley. "spontaneous" strategy use: Perspectives
from metacognitive theory. Intelligence, 11(1):61–75, 1987.

[16] Martha Carr, Beth E Kurtz, Wolfgang Schneider, Lisa A Turner, and John G Borkowski. Strategy
acquisition and transfer among american and german children: Environmental influences on
metacognitive development. Developmental Psychology, 25(5):765, 1989.

[17] Chris D Frith. The role of metacognition in human social interactions. Phil. Trans. R. Soc. B,
367(1599):2213–2223, 2012.

[18] Reza Pishghadam and Gholam Hassan Khajavy. Intelligence and metacognition as predictors of
foreign language achievement: A structural equation modeling approach. Learning and Individual
Di↵erences, 24:176–181, 2013.

[19] R Swartz and C McGuinness. Developing and assessing thinking skills. final report part 1, 2014.

[20] Claudia Amado Gama. Integrating metacognition instruction in interactive learning environments.
University of Sussex, 2005.

[21] Diane F Halpern. Critical thinking across the curriculum: A brief edition of thought & knowledge.
Routledge, 2014.

[22] Eugene Bardach and Eric M Patashnik. A practical guide for policy analysis: The eightfold path to
more e↵ective problem solving. CQ press, 2015.

[23] Elizabeth C McNie. Reconciling the supply of scientific information with user demands: an
analysis of the problem and review of the literature. Environmental science & policy, 10(1):17–38,
2007.

[24] H Lee Swanson. Influence of metacognitive knowledge and aptitude on problem solving. Journal
of educational psychology, 82(2):306, 1990.

[25] Annemieke E Jacobse and Egbert G Harskamp. Towards e�cient measurement of metacognition
in mathematical problem solving. Metacognition and Learning, 7(2):133–149, 2012.

[26] Robert J Sternberg and Peter A Frensch. Complex problem solving: Principles and mechanisms.
Psychology Press, 2014.

[27] Fadi P Deek and James A McHugh. Problem solving and cognitive foundations for program
development: an integrated model. Information and communication technology, 2003.

104

[28] Susan Bergin, Ronan Reilly, and Desmond Traynor. Examining the role of self-regulated learning
on introductory programming performance. In Proceedings of the first international workshop on
Computing education research, pages 81–86. ACM, 2005.

[29] M Havenga. Problem-solving processes in computer programming: a case study. SACLA, Ballito,
KwaZulu–Natal, SA (July 6-8), 2011.

[30] Margaret Bernard and Eshwar Bachu. Enhancing the metacognitive skill of novice programmers
through collaborative learning. In Metacognition: Fundaments, Applications, and Trends, pages
277–298. Springer, 2015.

[31] Siti Nurulain and Mohd Rum. A metacognitive support environment for novice programmer using
semantic web. PhD thesis, University of Malaya, 2016.

[32] Paul Vickers. How to think like a programmer: problem solving for the bewildered. Cengage Learning
EMEA, 2008.

[33] Elliot Soloway and James C Spohrer. Studying the novice programmer. Psychology Press, 2013.

[34] Essi Lahtinen, Kirsti Ala-Mutka, and Hannu-Matti Järvinen. A study of the di�culties of novice
programmers. In Acm Sigcse Bulletin, volume 37, pages 14–18. ACM, 2005.

[35] Minjie Hu, Michael Winiko↵, and Stephen Cranefield. Teaching novice programming using
goals and plans in a visual notation. In Proceedings of the Fourteenth Australasian Computing
Education Conference-Volume 123, pages 43–52. Australian Computer Society, Inc., 2012.

[36] Richard E Mayer. Cognitive, metacognitive, and motivational aspects of problem solving.
Instructional science, 26(1):49–63, 1998.

[37] Anneli Eteläpelto. Metacognition and the expertise of computer program comprehension. Scan-
dinavian Journal of Educational Research, 37(3):243–254, 1993.

[38] G Polya. How to solve it princeton univ. Press, Princeton, NJ, 1945.

[39] PH Winne and DL Butler. Student cognition in learning from teaching. International encyclopedia
of education, 2:5738–5775, 1994.

[40] Lev Semenovich Vygotsky. Mind in society: The development of higher psychological processes.
Harvard university press, 1980.

[41] George A Brown, Joanna Bull, and Malcolm Pendlebury. Assessing student learning in higher
education. Routledge, 2013.

[42] Fred Paas, Alexander Renkl, and John Sweller. Cognitive load theory and instructional design:
Recent developments. Educational psychologist, 38(1):1–4, 2003.

[43] Valerie J Shute. Focus on formative feedback. ETS Research Report Series, 2007(1), 2007.

[44] Susanne Narciss. Designing and evaluating tutoring feedback strategies for digital learning
environments on the basis of the interactive tutoring feedback model. Digital Education Review,
(23):7–26, 2013.

105

[45] Sally Brown and Peter Knight. Assessing learners in higher education. Psychology Press, 1994.

[46] Janet G Donald. Intellectual skills in higher education. Canadian Journal of Higher Education,
15(1):53–68, 1985.

[47] Hyeon Woo Lee. The e↵ects of generative learning strategy prompts and metacognitive feedback on
learners’ self-regulation, generation process, and achievement. The Pennsylvania State University,
2008.

[48] Deborah L Butler and Philip H Winne. Feedback and self-regulated learning: A theoretical
synthesis. Review of educational research, 65(3):245–281, 1995.

[49] John W Jacobs and John V Dempsey. Simulation and gaming: Fidelity, feedback, and motivation.
Interactive instruction and feedback, pages 197–227, 1993.

[50] David Dunning, Kerri Johnson, Joyce Ehrlinger, and Justin Kruger. Why people fail to recognize
their own incompetence. Current directions in psychological science, 12(3):83–87, 2003.

[51] Krittaya Leelawong and Gautam Biswas. Designing learning by teaching agents: The betty’s
brain system. International Journal of Artificial Intelligence in Education, 18(3):181–208, 2008.

[52] John A Bargh and Yaacov Schul. On the cognitive benefits of teaching. Journal of Educational
Psychology, 72(5):593, 1980.

[53] Catherine Chase. Teachable agents and the protégé e↵ect: Increasing the e↵ort towards learning
catherine chase, doris b. chin, marily oppezzo, & daniel l. schwartz stanford university.

[54] Krittaya Leelawong, Karun Viswanath, Joan M Davis, Gautam Biswas, Nancy Vye, Kadira
Belynne, and John D Bransford. Teachable agents: Learning by teaching environments for
science domains. In IAAI, pages 109–116, 2003.

[55] Gautam Biswas, Daniel Schwartz, and John Bransford. Technology support for complex problem
solving: From sad environments to ai. In Smart machines in education, pages 71–97. MIT Press,
2001.

[56] Alice F Artzt and Eleanor Armour-Thomas. A cognitive model for examining teachers’ instruc-
tional practice in mathematics: A guide for facilitating teacher reflection. Educational Studies in
Mathematics, 40(3):211–235, 1999.

[57] Michelene TH Chi, Stephanie A Siler, Heisawn Jeong, Takashi Yamauchi, and Robert G Haus-
mann. Learning from human tutoring. Cognitive Science, 25(4):471–533, 2001.

[58] Christoph Rensing, Sara de Freitas, Tobias Ley, and Pedro J Muñoz-Merino. Open learning and
teaching in educational communities. In EC-TEL. Springer, 2014.

[59] Byron Reeves and Cli↵ord Nass. How people treat computers, television, and new media like
real people and places. CSLI Publications and Cambridge, 1996.

[60] J Leon and M Fisher. The use of virtual characters to generate teachable moments. In Museums
and the Web, 2006.

106

[61] Daniel L Schwartz, Catherine Chase, Doris B Chin, Marily Oppezzo, Henry Kwong, Sandra
Okita, Gautam Biswas, RD Roscoe, Hogyeong Jeong, and JD Wagster. Interactive metacognition:
Monitoring and regulating a teachable agent. Handbook of metacognition in education, pages 340–
358, 2009.

[62] Gautam Biswas, James R Segedy, and Kritya Bunchongchit. From design to implementation to
practice a learning by teaching system: Betty’s brain. International Journal of Artificial Intelligence
in Education, 26(1):350–364, 2016.

[63] Gautam Biswas, Krittaya Leelawong, Daniel Schwartz, Nancy Vye, and The Teachable
Agents Group at Vanderbilt. Learning by teaching: A new agent paradigm for educational
software. Applied Artificial Intelligence, 19(3-4):363–392, 2005.

[64] James R Segedy, John S Kinnebrew, and Gautam Biswas. The e↵ect of contextualized conversa-
tional feedback in a complex open-ended learning environment. Educational Technology Research
and Development, 61(1):71–89, 2013.

[65] Lena Pareto. A teachable agent game engaging primary school children to learn arithmetic
concepts and reasoning. International Journal of Artificial Intelligence in Education, 24(3):251–283,
2014.

[66] Noboru Matsuda, Victoria Keiser, Rohan Raizada, Arthur Tu, Gabriel Stylianides, William Co-
hen, and Kenneth Koedinger. Learning by teaching simstudent: Technical accomplishments and
an initial use with students. In Intelligent tutoring systems, pages 317–326. Springer, 2010.

[67] Ailiya Borjigin. A↵ective teachable agent in virtual learning environment. PhD thesis, 2014.

[68] Noboru Matsuda, Cassondra L Griger, Nikolaos Barbalios, Gabriel J Stylianides, William W
Cohen, and Kenneth R Koedinger. Investigating the e↵ect of meta-cognitive sca↵olding for
learning by teaching. In International Conference on Intelligent Tutoring Systems, pages 104–113.
Springer, 2014.

[69] David Nichols. Intelligent Student Systems: an application of viewpoints to intelligent learning
environments. PhD thesis, Lancaster University, 1993.

[70] Jean Hayes-Michie and Telephone Nos. Learning by teaching. In Scandinavian Conference on
Artificial Intelligence 89: Proceedings of the SCAI’89, Tampere, Finland, 13-15 June, 1989, volume 4,
page 307. IOS Press, 1989.

[71] Sung-il Kim, Sung-Hyun Yun, Mi-sun Yoon, Yeon-hee So, Won-sik Kim, Myung-jin Lee, Dong-
seong Choi, and Hyung-Woo Lee. Design and implementation of the kori: Intelligent teachable
agent and its application to education. Computational Science and Its Applications–ICCSA 2005,
pages 191–197, 2005.

[72] Richard R Burton and John Seely Brown. An investigation of computer coaching for informal
learning activities. International Journal of Man-Machine Studies, 11(1):5–24, 1979.

[73] Sigmund Tobias and Howard T Everson. Knowing what you know and what you don’t: Further
research on metacognitive knowledge monitoring. 2002.

107

[74] J Osborne. Measuring metacognition in the classroom: A review of currently-available measures.
Unpublished manuscript, 1998.

[75] Kevin Downing, Richard Ho, Kristina Shin, Lilian Vrijmoed, and Eva Wong. Metacognitive
development and moving away. Educational Studies, 33(1):1–13, 2007.

[76] Paul R Pintrich et al. A manual for the use of the motivated strategies for learning questionnaire
(mslq). 1991.

[77] David A Cook, Warren G Thompson, and Kris G Thomas. The motivated strategies for learning
questionnaire: score validity among medicine residents. Medical education, 45(12):1230–1240,
2011.

[78] James R Lewis. Ibm computer usability satisfaction questionnaires: psychometric evaluation
and instructions for use. International Journal of Human-Computer Interaction, 7(1):57–78, 1995.

[79] Jurek Kirakowski and Mary Corbett. Sumi: The software usability measurement inventory.
British journal of educational technology, 24(3):210–212, 1993.

108

Appendix A

Pre- test Part 1 and Part 2

Test (Part 1)

Participant ID: __________________

Note: your responses to this survey will be kept confidential and anonymous

Read each problem and provide your answer for each one (Yes or No) in next of the problem.
Please do not solve the problems.

Problem Do you think you can solve
the given problem correctly?

1 Write a pseudocode that reads two numbers and
prints the sum of the integers up

[] Yes [] No

2 Write pseudo code that tells a user that the number
they entered is not a 5 or a 6

[] Yes [] No

3 Write a pseudocode that performs the following:
Read entered a number. If the number is between 0
and 10, print the word blue. If the number is
between 10 and 20, print the word red. if the
number is between 20 and 30, print the word green.
If it is any other number, write that it is not a correct
colour option.

[] Yes [] No

4 Write pseudocode that reads five numbers and
counts the total of them and then prints result.

[] Yes [] No

Test (Part 2)

Participant ID: __________________

Instruction: Read and solve each given problem below of it. There are four problem and
time limit is 30 minutes to solve all the given problems. The experimenter will tell you when
the time’s up. You can solve the given problems in any order.

The box below illustrates what is Pseudocode. Please read it before starting.

Problems:

1. Write a pseudocode that reads two numbers and prints the sum of the integers up

2. Write pseudo code that tells a user that the number they entered is not a 5 or a 6

Pseudocode is an artificial and informal language that helps programmers develop
algorithms. It is a “text-based” detail (algorithmic) design tool. The rules of Pseudocode are
reasonably straightforward. All Statements showing “dependency” are to be indented. These
include WHILE, DO, FOR, IF and SWITCH.

3. Write a pseudocode that performs the following: Read entered a number. If the number is
between 0 and 10, print the word blue. If the number is between 10 and 20, print the word
red. if the number is between 20 and 30, print the word green. If it is any other number,
write that it is not a correct colour option.

4. Write pseudocode that reads five numbers and counts the total of them and then prints
result.

Appendix B

Post- test Part 1 and Part 2

Test (Part 1)

Participant ID: __________________

Note: your responses to this survey will be kept confidential and anonymous

Read each problem and provide your answer for each one (Yes or No) in next of the problem.
Please do not solve the problems.

Problem Do you think you can solve
the given problem correctly?

1 Write a pseudocode that reads two numbers and
divide them together and prints the result.

[] Yes [] No

2 Write a pseudocode that calculate absolute value
and print the result

[] Yes [] No

3 Write a pseudocode that reads three integers from
the user and determines the largest value.

[] Yes [] No

4 Write a pseudocode that rearranges the order of
numbers: so that all even number on the right hand
and all the odd numbers on the left hand and print
how many even numbers and odd numbers.

[] Yes [] No

Test (Part 2)

Participant ID: __________________

Instruction: Read and solve each given problem below of it. There are four problem and
time limit is 40 minutes to solve all the given problems. The experimenter will tell you when
the time’s up. You can solve the given problems in any order.

The box below illustrates what is Pseudocode. Please read it before starting.

Problems:

1. Write a pseudocode that reads two numbers and divide them together and prints the

result.

2. Write a pseudocode that calculate absolute value and print the result

Pseudocode is an artificial and informal language that helps programmers develop
algorithms. It is a “text-based” detail (algorithmic) design tool. The rules of Pseudocode are
reasonably straightforward. All Statements showing “dependency” are to be indented. These
include WHILE, DO, FOR, IF and SWITCH.

3. Write a pseudocode that reads three integers from the user and determines the largest
value

4. Write a pseudocode that rearranges the order of numbers: so that all even numbers on the

right hand and all the odd numbers on the left hand and print how many even numbers
and odd numbers.

Appendix C

Delayed- test Part 1 and Part 2

Test (Part 1)

Participant ID: __________________

Note: your responses to this survey will be kept confidential and anonymous

Read each problem and provide your answer for each one (Yes or No) in next of the problem.
Please do not solve the problems.

Problem Do you think you can solve
the given problem correctly?

1 Write pseudocode to convert distance from
kilometre to meter.
 Hints: 1Kilometre = 1000 Meter

[] Yes [] No

2 Write a pseudocode that reads the number of hours
worded and calculate wages. Note: Standard hours
in a work week is 40 hours and regular pay rate for
one hour is 10.25$ and overtime pay rate for one
hour is 14.5$.

[] Yes [] No

3 Write a pseudocode that reverses the letters of a
word.

 Hints-The reserved words of (abcd) is (dcba)

[] Yes [] No

4 Read number and print the first numbers in
Fibonacci sequence. The Fibonacci sequence,
1,1,2,3,5,8,13….

begins with two 1’s, and each successive number is
the sum of the preceding two numbers (e.g.,
5+8=13)

[] Yes [] No

Test (Part 2)

Participant ID: __________________

Instruction: Read and solve each given problem below of it. There are four problem and
time limit is 40 minutes to solve all the given problems. The experimenter will tell you when
the time’s up. You can solve the given problems in any order.

The box below illustrates what is Pseudocode. Please read it before starting.

Problems:

1. Write pseudocode to convert distance from kilometre to meter.
 Hints: 1Kilometre = 1000 Meter

2. Write a pseudocode that reads the number of hours worded and calculate wages. Note:

Standard hours in a work week is 40 hours and regular pay rate for one hour is 10.25$ and
overtime pay rate for one hour is 14.5$.

Pseudocode is an artificial and informal language that helps programmers develop
algorithms. It is a “text-based” detail (algorithmic) design tool. The rules of Pseudocode are
reasonably straightforward. All Statements showing “dependency” are to be indented. These
include WHILE, DO, FOR, IF and SWITCH.

3. Write a pseudocode that reverses the letters of a word. Hints-The reserved words of (

abcd) is (dcba)

4. Write a pseudocode that read number and print result in Fibonacci sequence. The
Fibonacci sequence, (1,1,2,3,5,8,13….) begins with two 1’s, and each successive number
is the sum of the preceding two numbers (e.g., 5+8=13)

Appendix D

This Appendix shows all the ideal solutions for all problems in Pre-Test, Post-Test and
Delayed-Test.

Problems in pre-Test:

1. Write a pseudocode that reads two numbers and prints the sum of the integers
up

1. Read num1 , num2
2. Sum = num1 + num2
3. Print Sum

2. Write pseudocode that tells a user that the number they entered is not a 5 or a 6

1. Read	num
2. 	IF	(num	==	5)	

a. Print	"your	number	is	5"	
3. Else	IF	(num	==	6)	

a. Print	"your	number	is	6"	
4. Else	Print	"your	number	is	not	5	or	6"
5.

 Other solution

1. Read	num
2. IF(num	==	5	||	num	=	=6)	

a. Print	"your	number	is	a	5	or	6"	
3. Else	

a. Print	"your	number	is	not	5	or	6"

3. Write a pseudocode that performs the following: Read entered a number. If the

number is between 0 and 9, print the word blue. If the number is between 10 and 20,
print the word red. if the number is between 21 and 30, print the word green. If it is
any other number, write that it is not a correct colour option.

1. Read Num
2. If (Num >=0 and Num <= 9)

a. Print “Blue”
3. else If (Num >=10 and Num <= 20)

a. Print “Red”
4. else If (Num >=21 and Num <= 30)

a. Print “Green”
5. else

a. Print "not a correct colour option”

6. Write pseudocode that reads five numbers and counts the total of them and then
prints result.

1. Read num1,num2,num3,num4, num5
2. Result = (num1+ num2+num3+num4,+num5)
3. Print

 Other solution

1. Initialize result =0
2. For i=1 to 5 with step=1

a. Read num
b. Result +=num

3. Print Result

Problems in Post-Test:

1. Write a pseudocode that reads two numbers and divide them together and prints the

result.

1. Read num1 , num2
2. IF num2 ==0

a. Print Error
3. Else

a. Result = num1/num2
4. Print Result

2. Write a pseudocode that calculate absolute value and print the result

1. Read num
2. IF num < 0

a. Result = num * -1
3. Else

a. Result = num
4. Print Result

3. Write a pseudocode that reads three integers from the user and determines the

largest value

1. Read num1, num2, num3
2. If (num1 >= num2 && num1 >= num3)

a. Print num1
3. Else

a. If (num2 >= num1 && num2 >= num3)
i. Print num2

b. Else
i. If (num3 >= num1 && num3 >= num2)

ii. Print num3

4. Write a pseudocode that rearranges the order of numbers: so that all even numbers

on the right hand and all the odd numbers on the left hand and print how many
even numbers and odd numbers.

1. Read Numbers
2. ListEvenNumbers={}
3. Initialize countEven =0
4. ListOddNumbers ={}
5. Initialize countOdd =0
6. ListResult={}
7. For i=0 to Number.length-1 with step=1

a. If (Number[i] %2 ==0)
i. ListEvenNumbers.add(Number[i])

ii.
b. Else

i. ListOddNumbers.add(Number[i])

8. ListResult = ListOddNumbers + ListEvenNumbers
9. Print ListResult , countEven , countOdd

Problems in Delayed-Test:

1. Write pseudocode to convert distance from kilometre to meter. Hints: 1Kilometre =

1000 Meter

1. Read num1
2. result = num1 * 1000
3. Print result

2. Write a pseudocode that reads the number of hours worded and calculate wages.

Note: Standard hours in a work week is 40 hours and regular pay rate for one hour
is 10.25$ and overtime pay rate for one hour is 14.5$.

1. Read HoursWor
2. IF (HoursWor >=1 * HoursWor <=40)

a. Result = HoursWor * 10.25
3. Else

a. IF (HoursWor > 40)
i. Result = ((HoursWor-40) * 14.5)+ (40 * 10.25)

3. Write a pseudocode that reverses the letters of a word. Hints-The reserved words of

(abcd) is (dcba)
1. Read word
2. Result ={}

3. For i= word.length-1 downto 0 with step =1
a. Result = word[i]

4. Print Result

4. Write a pseudocode that Read number and print the results in Fibonacci sequence.
The Fibonacci sequence, (1,1,2,3,5,8,13….) begins with two 1’s, and each successive
number is the sum of the preceding two numbers (e.g., 5+8=13)

1. Read num
2. IF num <=1

a. Return num
3. Initilize result =1;
4. Initilize pervious =1;
5. For i=2 to num with step =1

a. Temp = result
b. Result += pervious
c. Pervious = temp

6. Print result

Appendix E

Have you studied at least one of programming course?

Which course have you studies? (you can choses more than one chose)

 No

 Yes
 No

 Introduction to computer Science (3007101-3)
 Computer Programming (3007103-3)

 Other Programming Course

Have you passed at least one of the programming course?
 Yes

Motivated Strategies for Learning Questionnaire

Participant ID:

Section 1: Personal and Education Background

Your Age

Gender Female
																	Male		

 18 – 25 years

This survey will help us to understand metacognitive awareness with in programming problem course. I
will be very grateful if you can spend some of your precious time completing the given questionnaire.
Your responses to this survey will only be used for academic purposes.

Year of Study
in 2017

 26 – 30 years
 31 – 35 years

 The first year
 The second year
 The third year
 The fourth or fifth year
 Graduate

 Structural Programming (3007204-3)
 Advanced Programming (3007205-3)
 Logical Programming (3007317-3)

1

2

3

4

5

6

7

8

9

10

11

12

If I don't understand the course material, it is because I didn't try hard
enough.

I'm confident I can understand the most complex material presented by
the instructor in this course.

Section 2: The motivation and learning strategy section

Please rate the following items based on your behaviour in most recent programming course
you have taken. Your rating should be on a 7- point scale where 1= not at all true of me to
7=very true of me.

 In a class like this, I prefer course material that really challenges me so
I can learn new things.

I have an uneasy, upset feeling when I take an exam.

When I study the readings for this course, I outline the material to help
me organize my thoughts.

The most satisfying thing for me in this course is trying to understand
the content as thoroughly as possible.

The most important thing for me right now is improving my overall
grade point average, so my main concern in this class is getting a good
grade.

I am very interested in the content area of this course.

When studying for this class, I read my class notes and the course
readings over and over again.

I try to relate ideas in this subject to those in other courses whenever
possible.

When I study for this class, I pull together information from different
sources, such as lectures, readings, and discussions.

The Motivation part

Learning strategies

I ask myself questions to make sure I understand the material I have
been studying in this class.

To illustrate

1					2					3						4						5						6						7
Not	at	all	true	of	me Very	tr	ue	of	me

1					2					3						4						5						6						7

1					2					3						4						5						6						7

1					2					3						4						5						6						7

1					2					3						4						5						6						7

1					2					3						4						5						6						7

1					2					3						4						5						6						7

1					2					3						4						5						6						7

1					2					3						4						5						6						7

1					2					3						4						5						6						7

1					2					3						4						5						6						7

1					2					3						4						5						6						7

1					2					3						4						5						6						7

13

14

15

16

17

18

19

20

21

22 I believe that programming problem solving can be learned by the
computer based system.

To illustrate

Even if I have trouble learning the material in this class, I try to do the
work on my own, without help from anyone.

I make good use of my study time for this course.

Whenever I read or hear an assertion or conclusion in this class, I think
about possible alternatives.

Even when course materials are dull and uninteresting, I manage to
keep working until I finish.

When studying for this course, I often try to explain the material to a
classmate or a friend.

When I study for this class, I set goals for myself in order to direct my
activities in each study period.

When I become confused about something I'm reading for this class, I
go back and try to figure it out.

If course materials are difficult to understand, I change the way I read
the material.

When studying for this course I try to determine which concepts I don't
understand well.

1					2					3						4						5						6						7

1					2					3						4						5						6						7

1					2					3						4						5						6						7

1					2					3						4						5						6						7

1					2					3						4						5						6						7

1					2					3						4						5						6						7

1					2					3						4						5						6						7

1					2					3						4						5						6						7

1					2					3						4						5						6						7

1					2					3						4						5						6						7

Not	at	all	true	of	me Very	tr	ue	of	me

1					2					3						4						5						6						7

strongly
agree agree

Slightly
agree Non

Slightly
disagree disagree

strongly
disagree

1 I believe that programming problem solving can be
learned by the computer based system.

2 I would recommend this system to my friends.

3 I would like to use this system frequently.

4 I would find the system useful in my studies for problem
solving.

5 It was easy to learn to use this system.

6 The interface of this system is pleasant.

7 The organization of information on the system screens is
clear.

8 It is easy to make the system do exactly what I want.

9 I feel comfortable using this system.

10 The way that Ms. Sarah’s information is presented is
clear and understandable.

11 The way that Amy’s information is presented is clear
and understandable.

12

13

Appendix F

Please explain your reasons
	

To what extent this system helps you to find your strengths and weaknesses on problem solving skills?

																																Low																																																																																															High							

Please explain your reasons

Participant ID:

Evaluation and Usability Questionnaire

																																Low																																																																																															High							

To what extent this system motivates your thinking process on solving programming problems?

Note: your responses to this survey will be kept confidential and anonymous

This survey is part of a study to evaluate the usability of our system. By answering the next questions, you
will help us to understand your perception on the usability of the system. Please answer all the questions.

14

15

16

17

																																Low																																																																																															High							

																																Low																																																																																															High							

Please explain your reasons

Please explain your reasons

List the most negative aspect(s) about the system

List the most positive aspect(s) about the system

To what extent working on this system improves your problems solving skills?

Based on your use of the system Ms. Sarah provides feedback in order to re-teach Amy, How much
this feedback assist you to develop your skills in the future?

Appendix G

Number of Participants that used in the experiment

Number of Experimental group Number of Control Group
1 E241700 C250001
2 E241702 C250003
3 E241704 C250005
4 E241706 C250007
5 E241708 C250009
6 E241710 C250011
7 E241712 C250013
8 E241714 C250015
9 E241716 C250017
10 E241718 C250019
11 E241720 C250021
12 E241722 C250023
13 E241724 C250025
14 E241726 C250027
15 E241728 C250029
16 E241730 C250031
17 E241732 C250033
18 E241734 C250035
19 E241736 C250037
20 E241738 C250039

Appendix H

Consent Form

Thank you for agreeing to take part in this experiment. You will be used our system and answer
some questionaries. Also, we will give you information how to use the system. The aim of this
paper is to get your approval to take part in the experiment.

Your names will be kept confidential and anonymous. Also, any other your response will be
used for academic purpose.

Furthermore, you can withdraw at any time or refuse to answer any question without any
consequences of any kind even if you agree to participate. Finally, we will welcome to answer
any questions about the study.

I read and understood all the above information. I hereby consent to participate in this
study.

Name:

Date:

Signature:

Appendix I

Experiment Materials

This appendix contains all materials that are used in the main experiment in our research for
the three sessions

The materials are presented in the following order for all the three sessions:

1. Email that sending to inform the students
2. Consent Form.
3. Motivated Strategies for Learning Questionnaire
4. Video for how to use system
5. Pre-test: Part I and Part II.
6. Post-test: Part I and Part II.
13. Evaluation Questionnaire
14. Delayed-test: Part I and Part II.

Appendix J

Email that sending to inform the students

This appendix shows the email which sent to the group of computer sciense students

Appendix K

Amy feedback and inquiry

This table shows Amy feedback and inquiry
 The tutor behaviour Amy feedback
1 Asking for teaching her Hi, teacher tutorName. my name is Amy and I'm your

student. Could you please teach me how to solve this
problem

2 No Understanding such
user write not
pseudocode

I am sorry. I could not understand. Please teach me before
you send me to take the quiz"

3 Requesting Amy to take
quiz with Teaching

Thank you for teaching me, you can send me to take quiz"
Alright, what problem should I try !
Thanks, to ensure I understand, you can send me to take
quiz
 Thanks for teaching, OK. Let me know what I should do
next

4 Requesting Amy to take
quiz without Teaching

Excuse me. You have not taught me anything. Please teach
me before you send me to take the quiz"

5 mysterious variable
name such as x in line 3

What do you mean by ‘x’ variable in line 3?
What is the purpose of‘ x’ variable in line 3?

6 Ambiguous some
actions in Pseudocode
foe example in lines 3 ,5
and 10

Excuse me! I couldn't undertand what do you mean by
actions in lines 3 ,5 and 10. Please teach me them before
sending me to the quiz"
I'm sorry. I couldn't understand what is the purpose of
actions in lines3 ,5 and 10. Please teach me them before
sending me to the quiz"

Appendix L

Amy explanations

This table shows some examples about the Amy explanations what she learns from the
user after re-teaching correctly.

The tutor’s behaviour correctly in

re-teaching stage
Amy explanation

1 Identified input of the problem such

as how to convert minutes to hour
Thank you for teaching me, I have to determine
the input variable that means I have to read
minutes’ number.

2 Identified input of the problem such
as finding the smallest number

I have to determine the output variable that
means I have to print smallest value

3 Knew how to calculate the average
temperature of seven days

I should divide the total of the temperature of
seven days by 7

4 Put the solution steps in correct
ordering of the problem such as
checking the number is positive or
negative

I should put the steps of the problem in correct
ordering. First I have to read the inputs, then
check the number is greater than zero then print
positive or negative if the number less than
zero.

5 Broke down the problem correctly for
example, checking the number is
positive or negative

I have to break down a problem into some steps.
In this problem we have check about the
number if the number greater than zero or less
than zero.

6 Fix the logical error in condition I have to verify about conditional expressions
depending on the problem

7 Separated various part of conditions I should separate the two conditions if the
number is positive or negative

8 If she used switch incorrect place,
then the tutor fix this problem by
using If statement.

I should use IF statement because Using Switch
must be a constant expression and this problem
has rang for that it needs to be solve by using IF
statement

9 Teaches her correctly about how to
convert a binary number to a decimal
number

Thank you for teaching me. Now I know about
how to convert binary to decimal number. start
with the binary numbers and multiply each
binary digit by its weight. Then after
multiplying all the digits, I will add the results.
Is my explanation correct?

10 Fix the bugs start or end of in
repetition

I have to check the bugs in the loop by looking
back to the start and end value depending on the
problem.

11 Fix the bugs in increment part of
repetition

I should check increment value of the loop
depending on the problem.

12 Fix the value of initialize Next time i will be careful about the value of
initialize

13 Re-teach her how to calculate xy I should knew how to calculate x power y,
where "x" is the number I want to multiply and
"y" is the power I want to multiply it by.

Appendix M

Some Screenshots from Log files

1. Log	files	for	selection	the	problem	from	homepage	

2. Log	files	for	teaching	Amy	

3. Log	files	for	Quiz	stage	
	
	

