
Computational Statistics and Data Analysis 104 (2016) 79–90

Contents lists available at ScienceDirect

Computational Statistics and Data Analysis

journal homepage: www.elsevier.com/locate/csda

Partial identification in the statistical matching problem
Daniel Ahfock a,∗, Saumyadipta Pyne b,c, Sharon X. Lee a, Geoffrey J. McLachlan a

a Department of Mathematics, University of Queensland, Australia
b Public Health Foundation of India, IIPH Hyderabad, India
c CR Rao Advanced Institute of Mathematics, Statistics and Computer Science, Hyderabad, India

a r t i c l e i n f o

Article history:
Received 20 November 2015
Received in revised form 15 June 2016
Accepted 15 June 2016
Available online 22 June 2016

Keywords:
Data integration
Missing data
Positive-definite matrix completion
Statistical matching

a b s t r a c t

The statistical matching problem involves the integration of multiple datasets where some
variables are not observed jointly. This missing data pattern leaves most statistical models
unidentifiable. Statistical inference is still possible when operating under the framework
of partially identified models, where the goal is to bound the parameters rather than
to estimate them precisely. In many matching problems, developing feasible bounds
on the parameters is equivalent to finding the set of positive-definite completions of a
partially specified covariancematrix. Existingmethods for characterising the set of possible
completions do not extend to high-dimensional problems. A Gibbs sampler to draw from
the set of possible completions is proposed. The variation in the observed samples gives
an estimate of the feasible region of the parameters. The Gibbs sampler extends easily to
high-dimensional statistical matching problems.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The statistical matching problem involves the integration of multiple datasets where we have a set of variables common
to all datasets, and other variables which only appear in some datasets. In the simplest terms, we have two samples A and B
of nA and nB independent observations, respectively, from the same population. In sample Awe have measurements on sets
of variables X and Y , and in sample Bwe have observations on variables X and Z . Our objective is to recover the joint density
function f (x, y, z) from the lower dimensional datasets. The statistical matching problem is a special class of a missing data
problem, where the defining characteristic is that we have no joint observations of Y and Z .

We often assume that the joint density function belongs to some parametric family {f (x, y, z; θ) : θ ∈ Ω}, where Ω

denotes some parameter space. The objective is to perform statistical inference on the parameter θ. Because of the missing
data structure in the statistical matching scenario some of the parameters may be unidentifiable. Statistical inference is still
possible if the model is viewed as a partially identified model. The concept of partially identified models stems from the
belief that identification is not a simple binary issue. In a partially identified model, the range of values that the parameter θ
can take while leaving the observed data likelihood function unchanged is some non-trivial set. Informally, given an infinite
dataset, under an identifiable model we can recover the true value of the parameters. In a partially identified model, given
an infinite dataset, we are limited to being able to restrict the parameters to some feasible set. In a partially identifiedmodel,
some elements of θ may be point-wise identifiable while others are only partially identifiable.

Standard estimation approaches for missing data problems can exhibit pathological behaviour when the model is only
partially identified. Use of the EM algorithm (Dempster et al., 1977) is complicated by the fact that the observed data
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Table 1
Missing data structure in the canonical statistical matching
problem. Observed dimensions for each observation have
been shaded.

likelihood will not have a unique maximiser, the likelihood will have a ridge over the allowable range of the partially
identified parameters. It can be shown that the EMparameter estimateswill converge to values that are located on likelihood
ridge, and that the limiting estimates depend on the choice of initial values (Schafer, 1997, p. 53). This phenomenon is
illustrated for the statistical matching problem in Section 4.2.2 of Rässler (2002). The high sensitivity to the initial values
complicates the interpretation of the single point estimate returned by the EM algorithm. Bayesian approaches easily extend
to partially identified models, however the posterior distribution can be highly sensitive to the prior, even in large samples
(Gustafson, 2015). Credible intervals can also have very poor frequentist coverage (Moon and Schorfheide, 2012). We will
pursue a frequentist strategy for estimating the partially identified parameters.

In the statistical matching problem, the partially identified parameters are often elements of a covariance matrix. It is
typical to have all elements of the covariance matrix identifiable, other than the values that require joint observations on
Y and Z . In this setting, estimating the identified set corresponds to determining the set of positive-definite completions
of a partially specified covariance matrix. Existing methods for doing so are not applicable when both Y and Z are
multivariate (D’Orazio, 2015). We take a new sampling based approach to characterising the identified set which is easily
applicable to high-dimensional problems. We propose a Gibbs sampler to draw values uniformly from the identified set of
covariance parameters. The range of the sampled values gives a direct measure of the uncertainty attached to the partially
identified parameters. The Gibbs sampler extends the range of datasets that can be analysed using the statistical matching
methodology.

2. The statistical matching problem

A standard mathematical description of the statistical matching problem is as follows (Rässler, 2002). Let X , Y , Z be
multivariate random variables with joint density function f (x, y, z; θ). Assume we have a sample of nA i.i.d. observations
distributed according to f (x, y, z; θ), which we will call file A, and another independent sample of size nB from f (x, y, z; θ),
which we will call file B. Let sAi be a row vector representing the ith observation in file A for i = 1, . . . , nA. Similarly, let
sBj be a row vector representing the jth observation in file B for j = 1, . . . , nB. The ith observation in file A can be written
as sAi = (sAiX , s

A
iY , s

A
iZ ), where sAiX is a row vector representing the value of X and sAiY , s

A
iZ are row vectors representing the

values of Y and Z , respectively. We can also form an identical partition sBj = (sBjX , s
B
jY , s

B
jZ ) for observation j in file B. Let the

observations in file A have the Z values missing and the observations in file B have the Y values missing. Table 1 represents
the data matrix in the statistical matching problem. We can consider inference in the statistical matching problem to be
inference under a partially identified model. We call a model partially identified if the observed data likelihood is flat for a
range of the parameters (Tamer, 2010). The identified set for a parameter is the range of values it can takewithout altering the
observed data likelihood function. We use the notation 2(θj) to denote the identified set for parameter θj. When analysing
a partially identified model we are interested in forming a set of plausible values for the non point-identified parameters.
For example, assume we have observations (X, Y , Z)T from a trivariate normal distribution,

N3


µ =


µX
µY
µZ


, 6 =


σXX σXY σXZ
σYX σYY σYZ
σZX σZY σZZ


,

and the standard statistical matching problem applies. The likelihood function formed from the observed data will not
depend on σYZ , and so σYZ can be considered to be a partially identified parameter. All the parameters are point-wise
identifiable other than σYZ . Even though we do not have any data to estimate σYZ from, as we do not observe Y and Z
jointly, our modelling assumptions induce non-trivial bounds on the parameter. Given the other parameters, the possible
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values thatσYZ can take are limited to thosewhich result in a positive-definite covariancematrix for the underlying trivariate
normal distribution. The identified set for the parameter σYZ is given by

Θ(σYZ ) =


σYZ :


σXX σXY σXZ
σYX σYY σYZ
σZX σZY σZZ


is positive-definite


.

In this example we will obtain an interval for σYZ which is a function of the other covariance parameters (Rässler,
2002). When estimating parameters from data, consistent estimators for the identified parameters allow us to construct
a consistent estimator of the identified set. In the trivariate normal example above, we could use the maximum likelihood
estimates for the identifiable parameters σXX , σXY , σYY , σZZ and σXZ . This estimated identified set can be used to gauge the
amount of uncertainty surrounding the partially identified parameters (Conti et al., 2013).

Characterising the identified set has been a difficult problem in statistical matching. Most investigations only consider
multivariate normal data and that will be our focus for now. We first discuss previous work on statistical matching before
presenting our Gibbs sampler.

3. Matching in the multivariate normal case

Wenow assume that X, Y and Z have amultivariate normal distributionwithmeanµ and covariancematrix6. The joint
distribution can be represented asX

Y
Z


∼ Nd


µ =


µX
µY
µZ


, 6 =


6XX 6XY 6XZ
6YX 6YY 6YZ
6ZX 6ZY 6ZZ


,

where we have applied an obvious partition of the parameters. Given the other parameters in the model, the identified set
for 6YZ is

Θ(6YZ ) =


6YZ :


6XX 6XY 6XZ
6YX 6YY 6YZ
6ZX 6ZY 6ZZ


is positive-definite


. (1)

We can expand the matrices 6YZ , 6YX and 6XZ as follows

6YZ =


σY1Z1 σY1Z2 · · · σY1ZdZ
σY2Z1 σY2Z2 · · · σY2ZdZ

...
... · · ·

...
σYdY Z1 σYdY Z2 · · · σYdY ZdZ

 ,

6YX =


σY1X1 σY1X2 · · · σY1XdX
σY2X1 σY2X2 · · · σY2XdX

...
... · · ·

...
σYdY X1 σYdY X2 · · · σYdY XdX

 ,

6XZ =


σX1Z1 σX1Z2 · · · σX1ZdZ
σX2Z1 σX2Z2 · · · σX2ZdZ

...
... · · ·

...
σXdX Z1 σXdX Z2 · · · σXdX ZdZ

 .

Here σXiZj denotes the covariance between Xi and Zj. Finding an explicit expression for values of the matrix 6YZ that satisfy
the condition in (1) is an open problem (Rässler and Kiels, 2009). For multivariate X , Y and univariate Z , the identified set
can be shown to be the interior of an ellipsoid.

Assuming without loss of generality 6 is a correlation matrix, we wish to find the identified set of correlations. For
univariate Z , 6YZ is a column vector and the ellipsoid is governed by the equation

6YZ − 6YX6−1
XX 6XZ

T
A

6YZ − 6YX6−1

XX 6XZ


= 1, (2)

where A = (1 − 6ZX6−1
XX 6XZ )

−1
· (6YY − 6YX6−1

XX 6XY )
−1 (Rässler and Kiels, 2009). In the case of univariate Y and Z , as

considered by Moriarity and Scheuren (2001), this reduces to the interval [C −
√
W , C +

√
W ], where

C = 6YX6−1
XX 6XZ , (3)

W =

1 − 6ZX6−1

XX 6XZ

·

1 − 6YX6−1

XX 6XY

. (4)

A simple rescaling of these formulas gives the identified set of the covariances.
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The true values of the identifiable parameters can be substituted into these expressions to determine the allowable range
for the partially identified parameter 6YZ . This represents the absolute limit of the possible knowledge we can obtain about
the joint relationship ofY and Z fromour data (D’Orazio et al., 2006).When estimating parameters fromdata,wewill assume
that we have some consistent estimators of the model parameters that can be used to obtain a consistent estimate of the
identified set. As there are no closed form expressions for the identified set when both Y and Z are multivariate, this direct
approach to estimating the identified set cannot be used. When Y and Z are both multivariate, numerical methods have
been proposed for finding admissible completions of the covariance matrix. These methods involve grid search techniques
which can be very inefficient in high dimensions (Moriarity and Scheuren, 2001; D’Orazio et al., 2006).

We suggest an alternative sampling based approach to characterising the identified set. We propose using a Gibbs
sampler to draw values uniformly from the identified set. The range of observed values can then be used to infer the
amount of uncertainty attached to each parameter. The general idea of sampling from the identified set when an analytical
representation is intractable is also suggested in the unpublished work of Kline and Tamer (2015). Kline and Tamer (2015)
do not consider the statistical matching problem, and give the broad recommendation to use slice sampling (Neal, 2003) to
draw values from the identified set. We present a concrete Gibbs algorithm for the statistical matching problem.

Thedesire to fit a jointmodel in statisticalmatching is often to impute themissing data for downstreamanalyses.Multiple
imputation is desirable to reflect the uncertainty introduced by the missing data. Initial work in this vein by Kadane (1978)
and Rubin (1986) has been extended by Moriarity and Scheuren (2003) and Rässler (2003). These multiple imputation
procedures often require the analyst to specify a range of values in the identified set. The multiple imputation procedure is
thus somewhat ad-hoc, as there is no guarantee that the range of imputed datasets fully captures the uncertainty over the
partially identified parameters.

For multivariate normal data, the statistical matching problem reduces to finding positive-definite completions of a
partially specified covariance matrix. Finding the range of plausible values is important to accurately gauge the amount of
uncertainty introduced into the statistical analysis by the missing data (Rodgers, 1984). Existing methods for characterising
the identified set rely on mathematical formulas which have not been extended to problems with both multivariate Y and
Z . We will develop a Gibbs sampler that generalises easily to high-dimensional problems and simultaneously addresses the
need for a principled method to generate values from the identified set.

4. Methods

Gibbs sampling is a powerful tool for sampling from constrained sets (Gelfand et al., 1992). Finding values that lie within
a complex high-dimensional restricted set can be difficult. The full conditionals are oftenmuch easier to deal with aswe only
have to consider the feasible range of a single parameter. For the statistical matching problem, the full conditionals reduce
to the issue of finding the identified interval for a single partially identified parameter. In other terms, the full conditionals
are developed from a covariance matrix where only a single term is unspecified. If we wish to sample uniformly from the
identified set, we will simply sample uniformly from the identified interval in each conditional distribution. Again without
loss of generality, we assume that 6 is a correlation matrix.

Before stating the full conditional distributions we introduce some notations and definitions. Let σ
(−)
Yr Zs denote all the

elements of 6YZ other than σYr Zs for r ∈ {1, . . . , dY } and s ∈ {1, . . . , dZ }. Given r and s letX = (X1, X2, . . . , XdX , Y1, . . . , Yr−1, Yr+1, YdY , Z1, . . . , Zs−1, Zs+1, ZdZ ).

The dummy random variableX represents all variables other than Yr and Zs. We also defineY = Yr andZ = Zs. We let 6XX
denote the correlation matrix of X . We also let 6YX denote the row vector containing the correlations betweenY and X .
Finally let 6ZX denote the row vector containing the correlations betweenX andZ .

For all r ∈ {1, . . . , dY } and s ∈ {1, . . . , dZ }, the full conditional distribution is given by

p

σYr Zs | σ

(−)
Yr Zs


∼ unif

C −

W ,C +

W , (5)

where C = 6YX6−1XX6XZ , (6)W =


1 − 6YX6−1XX6XY

 
1 − 6ZX6−1XX6XZ


. (7)

While the full conditionals are easy to specify and sample from, the gHammersley–Clifford positivity condition does
not apply so it is not guaranteed that the Gibbs sampler will converge to the correct stationary distribution (Hammersley
and Clifford, 1971). We have to establish that the Markov chain defined by the Gibbs sampler is irreducible. Laurent and
Varvitsiotis (2014) show that the identified set as defined in (1) is a convex set. Given fixed values for the other parameters,
the identified set for 6YZ can be considered the intersection of the cone of positive-definite matrices with a series of affine
subspaces. As the intersection of convex sets is also convex, the identified set will be a convex set. As a consequence, the
Markov chain is irreducible, and the Gibbs sampler will converge to the correct stationary distribution.
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Fig. 1. (a) Draws from the Gibbs sampler as black points. (b) The solid line denotes the convex hull of the Gibbs samples. The dashed ellipse shows the
border of the true identified set in both (a) and (b).

The Gibbs sampler requires an initial positive-definite completion of the covariance matrix. We recommend setting
6YZ = 6YX6−1

XX 6XZ , which always provides a positive-definite completion provided that one exists (Grone et al., 1984).
Determining an appropriate number of iterations to run the Gibbs sampler is a notoriously difficult problem (Cowles and
Carlin, 1996). Roberts and Rosenthal (1998) consider the convergence properties of Gibbs samplers for uniform distributions
on bounded regions. They establish that if the boundary satisfies a smoothness condition, the Gibbs sampler will be
uniformly ergodic. If we are willing to assume a smoothness condition on the boundary of the identified set, the Gibbs
samplerwill not necessarily break down in high dimensions. Aswith generalMarkov ChainMonte Carlomethods, increasing
the dimension of the target distribution can increase the amount of time it takes the sampler to reach the stationary
distribution.

When using the proposed methodology to estimate the identified set from data there will be two sources of error,
sampling error due to the finite number of observations and Monte Carlo error because the output from the Gibbs sampler
is being used to characterise the identified set rather than a closed form representation. The input to the algorithm is a
matrix of estimated covariances, that is subject to sampling error. Given the covariance estimates, the original dataset has
no influence on the Gibbs algorithm and as such we expect the Monte Carlo error to be largely independent of the sample
size. Similar reasoning can also be used to judge the sensitivity of the proposed method to outliers. If a robust estimator is
used for the identifiable parameters, outliers should have little influence on the accuracy of the procedure.

A wide variety of models result in an unidentifiable covariance matrix in the statistical matching scenario. In the next
section we show how the Gibbs sampler can be applied to matching problems involving multivariate normal, multivariate
skew normal and normal mixture models. We also compare our Gibbs sampler to a conjugate Bayesian model on a real
dataset.

5. Examples

5.1. Low-dimensional problem

To test the performance of the Gibbs sampling approach, we sampled from the identified set of a covariance matrix
where dX = 2, dY = 2 and dZ = 1. In this scenario we can use the exact ellipsoid formula to calculate the identified set. The
covariance matrix 6 was specified to have a compound symmetry structure with correlation 0.75, thus having the form

6 =


X1 X2 Y1 Y2 Z1

X1 1.00 0.75 0.75 0.75 0.75
X2 0.75 1.00 0.75 0.75 0.75
Y1 0.75 0.75 1.00 0.75 −

Y2 0.75 0.75 0.75 1.00 −

Z1 0.75 0.75 − − 1.00

.

We applied the Gibbs sampler to explore the range of possible values for σY1Z1 and σY2Z1 . We used five thousand burn in
iterations, and took twenty thousand samples. Fig. 1 compares the output of the Gibbs sampler to the correct solution. This
true identified set was calculated using the ellipsoid formula (2). The dashed ellipse in (a) and (b) represents the boundary
of the true identified set. In (a) we plot the Gibbs samples and see that they cover the identified set uniformly. In (b) we plot
the convex hull of the samples and see that we have identified the boundaries of the space. Trace plots and running mean
plots showed no evidence of poor mixing of the chain (Cowles and Carlin, 1996).
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Fig. 2. Estimation error against sample size. The upper and lower bounds on each parameter were estimated using the Gibbs sampler. Total error is based
on a comparison to the true identified set. Monte Carlo error is based on a comparison to the closed form maximum likelihood estimate of the bounds.

This low-dimensional problem is also useful to illustrate the impact of sample size on ourmethodology. Here it is possible
to compute a maximum likelihood estimate of the identified set by substituting the maximum likelihood estimates of the
identified parameters into the ellipsoid formula (2). The bounds from the Gibbs sampler output can be compared the closed
form maximum likelihood bounds to gauge the loss in efficiency from using a computational approach.

We generated data from a multivariate normal model with the previous covariance matrix and zero mean vector for
various sample sizes. We took equal number of observations in each file so nA = nB. We applied the missing data pattern
for the matching problem with bivariate X, Y and Z as labelled previously. At each sample size we generated one hundred
datasets. On each dataset we estimate the identified set using the closed form solution and the Gibbs sampler. Fig. 2 gives
boxplots of the total error and the Monte Carlo error at each sample size. The total error is calculated by subtracting the
estimate from theGibbs sampler from the true bounds of the identified set. TheMonte Carlo error is calculated by subtracting
the Gibbs estimate from the exact maximum likelihood estimate of the bounds. In the top row of Fig. 2 we see the total error
decreasing with sample size. In contrast, in the bottom row we see that the Monte Carlo error has no relationship with the
sample size.

5.2. Multivariate normal model

In this example we assess the Gibbs sampler on a statistical matching problemwith bivariate X, Y and Z . The generative
model was a multivariate normal distribution with parameters

µ =


0.00
0.00
0.00
0.00
0.00
0.00

 , 6 =



X1 X2 Y1 Y2 Z1 Z2

X1 1.00 0.90 0.81 0.73 0.66 0.59
X2 0.90 1.00 0.90 0.81 0.73 0.66
Y1 0.81 0.90 1.00 0.90 0.81 0.73
Y2 0.73 0.81 0.90 1.00 0.90 0.81
Z1 0.66 0.73 0.81 0.90 1.00 0.90
Z2 0.59 0.66 0.73 0.81 0.90 1.00

.

The covariance matrix resembles an AR(0.9) correlation structure. We generated nA = 10 000 samples for file A and
nB = 10 000 samples for file B. We estimated the identifiable parameters using maximum likelihood and then applied the
Gibbs sampler. We used five thousand burn in iterations and drew fifty thousand samples. The range of the samples for each
partially identified parameter is reported in the maximum likelihood segment of Table 2. Looking at the interval widths, we
seewe have different levels of information about each parameter. The upper bound for all parameters is close to one, but the
lower bounds range from 0.09 to 0.35. We are sure of at least moderate correlation between Y1 and Z1 but cannot conclude
the same forY2 and Z2. This is interesting as the true correlation betweenY1 and Z1 is the sameas the true correlation between
Y2 and Z2. We can at least rule out negative correlations for the partially identified parameters. To gauge the quality of our
estimate of the identified set we repeated the Gibbs sampling process using the correct values for the other covariance
parameters instead of maximum likelihood estimates. These bounds are reported in the exact values segment of Table 2.
The estimated bounds change very little when using the exact values for the identified parameters.

This simulation scenario is also used to investigate how the dimension of the identified set affects the performance of
the Gibbs sampler. As mentioned earlier we expect dimension to primarily affect the required number of Gibbs iterations
to reach the stationary distribution. We assessed convergence to the stationary distribution using the interval ratio statistic
proposed by Brooks and Gelman (1998). The convergence diagnostic is calculated usingm independent chains started from
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Table 2
Estimated bounds in themultivariate normal example. The header row indicateswhat values of the identified
parameters were used in the partially completed covariance matrix.

Parameter True value Maximum likelihood estimates Exact values
Lower bound Upper bound Lower bound Upper bound

σY1Z1 0.810 0.354 0.950 0.359 0.952
σY1Z2 0.730 0.188 0.980 0.192 0.991
σY2Z1 0.900 0.264 0.925 0.263 0.918
σY2Z2 0.810 0.093 0.972 0.091 0.972

Fig. 3. Maximum interval ratio statistic against iteration.

overdispersed initial values. At a given iteration we take the ratio of the (1 − α)% interval from the pooled chains to the
average width of (1−α)% intervals fromwithin each chain. Interval ratios are calculated for each variable in the joint target
distribution. As them chains approach the stationary distribution the ratio statistic should approach one. This convergence
diagnostic was chosen as it is not based on approximate normality of the target distribution, and can detect if chains are not
fully exploring the support of the target distribution.

We generated data from a zero mean p-dimensional normal distribution for p = 6, 9, 15. We again used a similar
autoregressive structure for each covariance matrix. Element Σij was set to 0.9|i−j| for i, j = 1, . . . , p. The first p/3 random
variableswere designated as theX variables, the second p/3 as Y and the third p/3 as Z . Ten thousand sampleswere taken in
both file A and file B for all values of p. We then used the Gibbs sampler to estimate the identified set for the (p/3)2 partially
identified parameters on each dataset. Twenty thousand iterations were run on each dataset.

To assess the speed of convergence we ran m = 3 independent chains and calculated the interval ratio statistic with
α = 0.05 at a grid of iteration numbers. The convergence diagnostic is plotted against iteration in Fig. 3. For ease of
comparison we only plot the maximum statistic over the (p/3)2 partially identified parameters at each iteration. Increasing
the dimension of the identified set increases the number of iterations before apparent convergence. This suggests that the
number of burn in iterations should increase with the dimension of the identified set.

5.3. Skew-normal model

We now consider characterising the identified set when the observations come from a skew normal model. We take the
general definition of the skew normal distribution to be the unified skew normal (SUN) distribution (details in Appendix).
The Gibbs technique is effective for SUN models as the SUN distribution can be expressed as the conditional distribution of
a regular multivariate normal model (Arellano-Valle and Azzalini, 2006).

Let S = (XT, Y T, ZT)T, where X, Y and Z have dimensions dX , dY and dZ respectively. Suppose that our observations
come from the restricted skew normal distribution (Pyne et al., 2009), S ∼ SUNp,1(µ, 6, 1, 1, 0), which is a special case of
the SUN distribution (see details in Appendix). We will also form a corresponding partition of the parameters

µ =


µX
µY
µZ


, 6 =


6XX 6XY 6XZ
6YX 6YY 6YZ
6ZX 6ZY 6ZZ


, 1 =


1X
1Y
1Z


.

Under the standard statistical matching problem, the only unidentifiable parameter is again 6YZ . Due to the underlying
conditioning representation of the SUN distribution, we face the problem of finding values of 6YZ such that the covariance
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Table 3
Estimated bounds in the skew normal example. The header row indicates what values of the identified
parameters were used in the partially completed covariance matrix.

Parameter True value Maximum likelihood estimates Exact values
Lower bound Upper bound Lower bound Upper bound

σY1Z1 6 5.094 7.050 5.003 6.996
σY1Z2 −6 −6.940 −4.962 −6.997 −5.004
σY2Z1 −6 −7.060 −5.056 −6.998 −5.006
σY2Z2 6 4.922 6.950 5.005 6.998

matrix of the latent multivariate normal distribution (9) is positive-definite. The identified set is

Θ(6YZ ) =

6YZ :

 1 1T
X 1T

Y 1T
Z

1X 6XX 6XY 6XZ
1Y 6YX 6YY 6YZ
1Z 6ZX 6ZY 6ZZ

 is positive-definite

 .

We used the Gibbs sampler to estimate the identified set in a statistical matching problem with bivariate X , Y and Z from a
joint restricted skew normal model. The parameters of the generative model were set to

µ =


0
0
0
0
0
0

 , 6 =



X1 X2 Y1 Y2 Z1 Z2

X1 2 −1 2 −2 3 −3
X2 −1 2 −2 2 −3 3
Y1 2 −2 5 −4 6 −6
Y2 −2 2 −4 5 −6 6
Z1 3 −3 6 −6 10 −9
Z2 −3 3 −6 6 −9 10

, 1 =


1

−1
2

−2
3

−3

 .

We generated nA = 10 000 samples for file A and nB = 10 000 samples for file B. The data are plotted in the supplementary
material (see Appendix B).

We estimated the identifiable parameters using maximum likelihood and then applied the Gibbs sampler to explore the
identified set for 6YZ . We use five thousand burn in iterations and drew fifty thousand samples. The estimated bounds on
each partially identified parameter are reported in the maximum likelihood segment of Table 3. A pair’s plot of the samples
is in the supplementary material (see Appendix B). Despite the fact that we have no joint observations of Y and Z we are
able to bound the unidentified parameters roughly within the intervals [5, 7] and [−7, −5]. The surprising tightness of the
bounds is due to the strong impact of the skewness parameters on the covariancematrix of the underlying latentmultivariate
normal distribution. We again obtained an alternative estimate of the identified set using the true values of the identifiable
parameters instead of maximum likelihood estimates. The bounds from this secondary run are shown in the exact values
segment of Table 3. Use of exact values only changes the estimated bounds slightly.

5.4. Mixture model

The proposed methodology can also be applied to Gaussian mixture models, as the only partially identified parameters
are the covariance parameters between the Y and Z random variables in each component distribution. We generated
nA, nB = 10 000 observations from a six dimensional, two component Gaussian mixture. Components were weighted
equally. The first two variables are labelled as the X variables, the second two as the Y variables, and the final two as the Z
variables. The mean of the first component was set as (0, 0, 3, 0, 0, 3)T and the mean of the second component was set to
(3, 3, 0, 3, 3, 0)T. The covariance matrices for the first and second components respectively were



X1 X2 Y1 Y2 Z1 Z2

X1 1.00 0.50 0.25 0.12 0.06 0.03
X2 0.50 1.00 0.50 0.25 0.12 0.06
Y1 0.25 0.50 1.00 0.50 0.25 0.12
Y2 0.12 0.25 0.50 1.00 0.50 0.25
Z1 0.06 0.12 0.25 0.50 1.00 0.50
Z2 0.03 0.06 0.12 0.25 0.50 1.00

,



X1 X2 Y1 Y2 Z1 Z2

X1 1.00 0.90 0.81 0.73 0.66 0.59
X2 0.90 1.00 0.90 0.81 0.73 0.66
Y1 0.81 0.90 1.00 0.90 0.81 0.73
Y2 0.73 0.81 0.90 1.00 0.90 0.81
Z1 0.66 0.73 0.81 0.90 1.00 0.90
Z2 0.59 0.66 0.73 0.81 0.90 1.00

.

The second component has a higher degree of collinearity across dimensions. The data are plotted in the supplementary
material (see Appendix B). To estimate the identifiable parameters we used the EM algorithm, the specific case of Gaussian
mixtures with missing data is described in Ghahramani and Jordan (1994). An initial clustering was obtained by first
imputing the missing data using nearest neighbour matching, and then using k-means clustering. After estimating the
identified parameters, we then applied the Gibbs sampler to estimate the identified set for each component. The output
is summarised in histograms in Fig. 4. The true values of the covariance parameters are plotted as dashed lines. There is
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Fig. 4. Output of the Gibbs sampler from the mixture model example. Histograms for each partially identified parameter in both components are shown.
Dashed lines give the true covariances.

Table 4
Different matching scenarios considered with the abalone dataset.

X Y Z

Scenario 1 Length, diameter Height Shell weight
Scenario 2 Length, diameter Height, whole weight Shell weight

more uncertainty over the partially identified parameters in component 1 than in component 2, even though there are
roughly equal numbers of observations from each component. This is because the higher correlations in component 2 result
in the positive-definite constraint being more restrictive than in component 1.

Our methodology could also be used with mixtures of skew normal distributions. Identifiable parameters could be
estimated by extending the algorithm in Lin et al. (2009) for skew normal data with missing values to mixture models.

5.5. Data application

We also compare our method to an existing Bayesian approach on a real dataset. We used the abalone dataset available
from the UCI machine learning repository (Lichman, 2013). The dataset consists of various physical measurements on
abalone. We took the 1307 observations on female abalone. The data was log transformed to make a multivariate normal
model appropriate. The data are plotted in the supplementary material (see Appendix B). The complete dataset was split
into two files, with nA = 653 observations in the first and nB = 654 in the second.

We compared our method to a Bayesian approach for multivariate normal data with missing values proposed by Schafer
(1997). A Normal Inverse-Wishart prior is used on the parameters. An Inverse-Wishart prior is placed on the covariance
matrix, Σ ∼ InvWishart(3−1

0 , ν0) where 3−1
0 is a p × p scale matrix, and ν0 is a scalar giving the degrees of freedom. The

prior mean is normally distributed conditional on 6, µ|6 ∼ N(m0, Σ/κ0), wherem0 is a p-length vector, and κ0 is a scalar.
Gibbs sampling can be used to draw from the posterior using data augmentation. When the data is weakly informative it is
recommended to use a so called ridge prior, which improves numerical stability of posterior sampling and shrinks posterior
correlations towards zero (Schafer, 1997, section 6.3.4). The ridge prior consists of setting ν0 = ϵ, Λ−1

0 = ϵD, where D is
a diagonal matrix containing estimated variances for each of the variables and ϵ is some constant greater than zero. A flat
prior is induced on µ by setting κ0 = 0 leaving the choice of m0 arbitrary. The value of ϵ can be interpreted as the extra
degrees of freedom being introduced by the prior. In the statistical matching scenario the prior on ΣYZ conditional on the
other parameters must be proper in order for the posterior to be proper (Gelfand and Sahu, 1999). The smallest value of ϵ
which gives a proper Inverse-Wishart prior on Σ is ϵ = p.

We compare our sampling based method to the Bayesian posterior in two different matching scenarios. These are
described in Table 4. Low-dimensional problems are used as it is much easier to visually compare the distributions on
the partially identified parameters. Maximum likelihood was used to estimate the identified parameters. We set ϵ = p
in the ridge prior, to minimise the influence of the prior distribution on Σ while still keeping it proper. The matrix D was
formed from themaximum likelihood estimates.Weused five thousand burn in iterationswith twenty thousand subsequent
samples for both approaches.
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Fig. 5. Samples of the partially identified correlation in scenario one on the abalone dataset. Dashed lines represent the sample correlation.

Fig. 6. Samples of the partially identified correlations in scenario two on the abalone dataset. The twenty thousand original draws have been thinned to
two thousand for plotting. Dashed lines represent the sample correlations.

Fig. 5 compares uniform samples from the estimated identified set to samples from the posterior distribution in scenario
one. For ease of interpretation we report the identified set of correlations. The sample correlation between height and shell
weight on the complete dataset was 0.78, and is plotted as the dashed vertical line. Our approach yields samples drawn
uniformly from the interval (0.38, 0.9). Interestingly, the posterior appears to concentrate in a region in the middle of the
estimated identified set. The posterior probability of correlations greater than 0.75 is very small, which is undesirable as the
sample correlation coefficient is in this tail region. Our frequentist sampling strategy gives samples in the neighbourhood
of the true observed correlation.

Fig. 6 compares uniform samples from the estimated identified set to samples from the posterior distribution in scenario
two. The sample correlations from the complete dataset are plotted as dashed lines. The posterior again concentrates
in a small portion of the estimated identified set. There is almost no posterior mass in the joint region where the two
sample correlations lie, indicated by the intersection of the two dashed lines. Samples from the estimated identified set
are much more dispersed, and cover the region where the true observed correlations lie. The Bayesian approach appears to
underestimate the uncertainty surrounding the partially identified parameters, which can lead to misleading inference.

6. Conclusion

The statistical file matching problem is a data integration problem where missing data leaves some parameters
unidentifiable. When trying to fit a parametric model, the goal is often to characterise the identified set of the parameters
rather than to deliver a point estimate. Principledmethods to establish uncertainty bounds are crucial in statisticalmatching
problems to accurately represent the limitations of the observed data. The objective in statistical matching often reduces
to finding positive-definite completions of a partially specified covariance matrix. Existing techniques for finding the set of
possible completions are not applicable to high-dimensional datasets. We propose a Gibbs sampler that provides a simple
and computationally efficient method to explore the identified set in high-dimensional statistical matching problems.
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The proposed methodology involves sampling plausible values of the partially identified parameters. It was surprising
to see that a Bayesian model with a weak conjugate prior did not give similar results to our method. It would be interesting
to see if our algorithm resembles posterior sampling under a particular prior. Objective Bayesian inference on covariance
matrices can be difficult, and this issue appears to be compounded in the partially identified setting (Sun and Berger, 2007).

Statistical matching can be challenging when standard parametric families are inappropriate models for the data.
Parametric copulas are a very flexible tool for multivariate modelling (Smith et al., 2012; Kosmidis and Karlis, 2015), that
could be useful for statisticalmatching problems. Parametric copulas are also subject to partial identification in the statistical
matching problem (Ding and Song, 2016). Estimation of partially identified copula parameters using our Gibbs sampler could
make statistical matching possible on a wider range of datasets.

Multiple imputation is frequently used in statistical matching to supply complete datasets for downstream analyses.
Existing multiple imputation procedures require the user to specify a range of completed covariance matrices, introducing
subjectivity into the process. The Gibbs sampler is an automatic method which should facilitate more objective multiple
imputation procedures.
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Appendix A

A.1. The SUN Distribution

Arellano-Valle and Genton (2005) introduced the fundamental skew normal distribution (FUSN). A random variable S is
said to have the FUSNp,q distribution if S d

= [V |U > 0], where V is a p dimensional multivariate normal random vector,
and U is a q dimensional random vector defined on the same probability space. The probability density function of S can be
expressed as

f (s; µ; 6) = K−1
q φp(s; µ, 6)Qq(s), (8)

where Kq = E

Qq(V )


= P(U > 0) is a normalising constant and Qq(s) = P(U > 0|V = s). The term Qq(s) can be

interpreted as a skewing function. This is a very general formulation which encompasses the vast majority of skew normal
distributions in the literature. An important special case of the FUSN family is the unified skew normal (SUN) distribution,
which is also known as the closed skew normal (CSN) distribution or the hierarchical skew normal (HSN) distribution; see
Arellano-Valle and Azzalini (2006). In the SUN family, we assume thatU andV have a jointmultivariate normal distribution.
We say that S ∼ SUNp,q(µ, 6, 1, 0, τ) if S d

= [V |U > 0] for q-dimensional U and p-dimensional V , where
U
V


∼ Np+q


τ
µ


,


0 1T

1 6


. (9)

For the simulation in Section 5.3, we focus on one of the most commonly used formulations of the skew normal distribution
– the restricted skew normal distribution – as adopted by Pyne et al. (2009) and equivalent to Azzalini and Dalla Valle (1996)
and Branco and Dey (2001), and Lachos et al. (2010); see Lee andMcLachlan (2013). This corresponds to a highly specialised
form of the SUN distribution, where q = 1, τ = 0, and Γ = 1.

Appendix B. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.csda.2016.06.005.
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