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Abstract

Falls prevention in older people is a growing area of study. Multiple studies have

employed fixed pressure mats on beds and chairs to detect when a person exits the

bed or chair and alert caregivers to intervene and supervise the patient. In general,

randomized control trials using these techniques found little variation in the num-

ber of falls in older people because of the large number of false alarms producing

alarm fatigue among caregivers.

Wearable technology—capable of providing information from locations other than

the bed or chair—provides an alternative to pressure mats used in hospitals. How-

ever, studies that use wearable technology for falls prevention or alarming approaches

is lacking. Moreover, technological approaches focused on activity recognition rarely

consider the activities of older people. This is because collecting data from this pop-

ulation is difficult due to the constraints of their age, especially with hospitalized

patients. In addition, previous wearable sensor studies considered battery-powered

sensing units to provide consistent measurements. However, the use of battery-

powered body-worn sensor units for activity recognition of older people in hospi-

tal settings face a number of practical limitations such as the unit’s size, high cost,

attachment method and need for maintenance. Furthermore, older people have ex-

pressed interest in using wearable sensors built upon RFID technology that are small

and unobtrusive.

This thesis proposes a falls prevention intervention based on the use of a batteryless

(passive) wearable sensor platform capable of identifying patients and their move-

ments; the use of such body-worn, passive sensor has not been previously studied

with older people for falls prevention. Despite the benefits of the proposed sensor—

small, batteryless, and lightweight—the captured data is usually noisy and sparse,

an inherent limitation to human activity recognition problems. Therefore, the main

aim of this work is to investigate and evaluate methods for the recognition of ac-

tivities in older people, in particular, hospitalized older people, wearing a passive

wearable sensor as part of a technological falls prevention intervention to generate

timely alarms to caregivers to assist patients attempting a high-risk activity. Given
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Abstract

the use of a novel sensor, this thesis also investigates the acceptability and wearabil-

ity of the proposed sensor as perceived by older people.

The research in this thesis makes several contributions to the field of human activity

recognition. In particular, the formulation and development of methods for human

activity recognition to accomplish a technological intervention for the prevention of

falls using a novel RFID-based sensor technology, the evaluation of these methods

with healthy and hospitalized older populations, the contribution of three datasets

for human activity recognition research with different demographics, and the devel-

opment of a sensor acceptability model to determine acceptability and wearability

of the proposed sensor by the trialled cohorts.

This thesis suggests that the deployment of a wearable sensor based falls prevention

intervention is feasible, especially in a hospital setting. Furthermore, the use of this

technology was considered acceptable by the trialed cohorts as it was unobtrusive

to physical movements and easy to use; however, older people were conscious of

using the device as it was a highly visible sensor prototype.
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Chapter 1

Introduction

Falls among older patients in hospitals and nursing homes are common and costly.

These falls are estimated to increase hospital bed days by 886 000 per year and cost

AU$1375 million annually by 2051 in Australia alone [1]. Moreover, fallers have sig-

nificantly larger hospitalization costs than non-fallers of a similar age, gender and

diagnosis-related group [2]. A 12-month study of 200 000 falls reports in the UK

indicates that inpatient falls are the most frequent (40 %) type of safety incident [3].

Falls were directly responsible for 26 patient deaths and about 1500 fractures, in-

cluding 530 hip fractures [3]. In addition to the falls-related economic costs, there

are also falls-associated psychological sequelae to the individual that include anxi-

ety, depression, loss of confidence, fear of falling and, ultimately, a downward spiral

of decline in health [4]. Staff and families are also impacted by the occurrence of falls;

feelings of distress, guilt and anxiety are contributors to conflict and are often cited

in litigations or inquests [5]. Therefore, hospitals and health providers are acutely

interested in developing effective falls prevention strategies for older patients in care

settings.

1.1 Falls Prevention Strategies in Hospitals

Several intervention strategies for falls prevention have been studied in the litera-

ture [5, 6] and recommended as best practice for use in hospitals to reduce the risk

of falls and injuries in older patients [1, 3]. Some strategies aim to reduce specific

causes of falls. For example, a review of medications used by patients can help iden-

tify and modify the use of certain drugs that can increase falls risk such as those that

cause drowsiness; the use of non-slippery footwear can help patients avoid slipping

on wet floors, especially in the toilet; and the provision of more opportunities for pa-

tients to be mobile and exercise in a supervised manner can help improve balance
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and minimize prolonged bed rest [1, 3]. Other intervention strategies have been de-

veloped to reduce the severity of injuries caused by falls such as bone fractures by

using hip protectors or modifying floor materials [1, 3]. However, multiple random-

ized controlled trials (RCTs), focused on the prevention of falls in older people have

found no clear evidence of a significant reduction of falls based on any particular

intervention [5, 7, 8].

Various clinical studies have determined that most falls of older people, 70 %, oc-

cur in hospital bedrooms [9, 10] and about 10 % of falls occur in hospital or nurs-

ing home restrooms [9, 10, 11]. Moreover, 80 % of falls in hospital bedrooms occur

around the bed [12] and falls from transferring movements, i.e. getting in and out

of bed and chair (≈ 40 %), are more common than falls when ambulating (≈ 35 %)

[6, 11]. Most falls are also related to the need of the faller to go to or return from

the toilet, exiting a soiled bed or getting a tissue [9]. Many falls occur at night when

nurse staffing levels are low, patients are in bed and confusion or nocturia occur

[13, 9]. Therefore, technology based interventions such as movement sensor alarms

on beds or chairs—e.g. pressure mats [14, 15, 16], infra-red beam detectors [14]—are

used to monitor unsupervised activities by patients and prevent falls by mitigating

the risk of falls associated with patients’ circumstances of falls by alerting hospital

staff of a patient’s bed and chair exits to facilitate a timely supervision. However,

recent long term RCTs using pressure sensors on beds and chairs for falls preven-

tion in hospitals have shown not to reduce falls [15, 16]. One of the reasons for this

lack of success is attributed to “alarm fatigue” due to the low specificity of pressure

sensors (about 0.3 % in [14]) resulting in high number of false alarms. Given the

significance of the problem and the lack of evidence supporting the use of pressure

sensors on beds and chairs to reduce falls, it is imperative that we explore new tech-

nologies to develop more effective movement sensor alarm interventions suitable

for older people [17, 18].

1.2 Technology Preference of Older People

Recent studies by Bergmann et al. [19] and Chaudhuri et al. [20] have determined

that older people have an interest in small sensors embedded in their clothing over

the use of environmental devices (e.g. video cameras) as body-worn sensors are min-

imally invasive and allow continuous monitoring [19, 20]. Moreover, small body-

worn sensors are perceived to preserve the privacy of individuals, as older people
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Chapter 1 Introduction

have expressed concern regarding their privacy being violated by approaches that

rely on cameras [21, 22].

Various studies have investigated the use of body-worn sensors in laboratory set-

tings [23, 24, 25], and free-living environments [26, 27, 28, 29] to detect falls or assess

falls risk. However, very few have investigated falls prevention in acute hospitals

or residential care environments [30]. Body worn sensors provide an opportunity

to re-examine technological interventions to monitor patients and develop more ef-

fective movement sensor alarm systems for falls prevention [17, 18]. However, most

sensors employed have been battery powered, expensive, large and relatively heavy

units [31, 32, 30, 26] requiring the wearer to recharge the unit during sleep or change

batteries regularly or replace the sensor unit entirely, as clinically used sensors have

an average battery life of 3 to 4 days [33]. These maintenance procedures increase

the workload of staff as length of stay of patients can last several weeks to a month

or more. Moreover, removal of the sensing device at night for recharging is not

practical as nursing levels are lower, patient confusion is increased and fall rates are

higher during nighttime [13].

Therefore, lightweight, wearable sensors that can be integrated to clothing can pro-

vide new opportunities to monitor older patients without invading their privacy

and restricting their movements. Moreover, these sensors are likely to be accepted

by older people. Furthermore, sensors that are low-cost and therefore easily dispos-

able are also desirable as a way to prevent health issues due to possible contamina-

tion, contact with bodily fluids and spread of highly infectious diseases, as well as

to avoid creating a maintenance burden on healthcare staff.

1.3 Proposed Intervention

This thesis investigates a sensor alarm intervention for the prevention of falls in

older people based on a wearable sensor that is small, batteryless, inexpensive,

lightweight and can be continuously worn. In particular, a Wearable Wireless Iden-

tification and Sensing Platform (W2ISP, see Section 1.3.1)—a low cost passive sensor

enabled Radio Frequency Identification (RFID) tag [34] that only requires a single

attachment site over clothing and is capable of real time monitoring of a person

wearing the device and capturing the person’s body movement information—is in-

vestigated. This study is part of an ongoing ageing and technology research project
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at the Basil Hetzel Institute, the Queen Elizabeth Hospital located in Adelaide, Aus-

tralia, and the Auto-ID Labs at the University of Adelaide.

The proposed movement sensor alarm intervention framework is shown in Fig. 1.1.

A patient wears the W2ISP on top of their clothes, the sensor signals are collected by

the real time monitoring environment—consisting of the RFID infrastructure: RFID

readers and antennas—and sent to the patient monitoring software for processing

and analysis. When the patient attempts to perform a high risk activity of interest

e.g. exit the bed or chair, the patient monitoring software recognizes this attempt

and sends an alarm to hospital staff to facilitate a timely supervision of the patient.

Once a hospital staff, wearing an individual RFID tagged name badge, enters the

room to help the patient, their identities and presence in the room are recognized by

the system and the alarm is automatically turned off.

In terms of high risk activities of interest targeted by the intervention; the researchers,

considering where falls occur and the circumstances of falls, have identified the fol-

lowing high risk activities as those leading to a fall in hospitals [35]: i) entering into

a toilet or a bathroom facility without the aid of a caregiver, or leaving a patient’s

room without the aid of a caregiver; ii) getting up from a bed-side chair without

the aid of a caregiver; iii) getting out from a bed without the aid of a caregiver; and

iv) mobilizing without a walking aid.

The proposed intervention is significantly different to existing approaches where the

sensor is in the room infrastructure, e.g. beds and chairs, and monitoring is limited

to bed and chair exits where the presence of a caregiver or the likely location or pos-

ture of the patient other than the bed or chair cannot be determined. The approach

of wearing a sensor allows continuous ambulatory monitoring, is not restricted to a

specific piece of furniture and permits the unique identification of patients. Further-

more, in contrast to audible bed side alarms, typical of pressure mat based bed and

chair exit methods, clinical staff providing a response receive alert messages on their

handheld mobile devices with the following information: i) the identity of the pa-

tient (who – provided by the unique electronic identifier stored on the W2ISP); ii) the

physical location of the patient (where – provided by the localization performed by

the RFID readers, antennas and W2ISP); iii) the type of high risk activity (what); and

iv) a timestamp of when the high risk activity was detected (when). Notably, only the

what information is determined by the patient monitoring software; the remaining

information is extracted directly from the RFID infrastructure and the W2ISP.
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Isolating silver coated fabric

Flexible antenna

W2ISP circuitry

av

af

al

(a)

(b)

Figure 1.2: (a): W2ISP and axes of the acceleration sensor. (b): Block diagram of the W2ISP.

(ADC). The firmware executing on the microcontroller is an implementation of the

ISO-18000-6C air interface protocol [40] so that the W2ISP can be read by standard

commercial off-the-shelf UHF RFID readers. The 10-bit per axis accelerometer data

is sampled and embedded in the 96-bit EPC (Electronic Product Code) where a par-

tition of the EPC is used to include a unique identifier [41]. The sensor response is

backscattered and subsequently received by an RFID reader antenna and decoded

by an RFID reader.

The W2ISP is constructed with a flexible antenna using low-loss flexible foam (C-

foam), of dimensions 36 mm × 85 mm and 2 mm (l × w × h), for comfort of the

person wearing the sensor. The W2ISP also includes a washable RIPSTOP silver

coated nylon fabric (230 mm × 220 mm) to isolate the W2ISP circuitry and antenna

from the effects of a human body, i.e. avoid degrading the performance of the W2ISP

due to detuning of the W2ISP antenna [37].

1.3.2 RFID Infrastructure

Sensor enabled RFID tags such as the W2ISP cannot work standalone and require

other components to capture the sensor information. i.e. RFID readers and backend
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systems. RFID readers, also called interrogators, are responsible for powering and

communicating with the W2ISP.

RFID readers are generally placed at fixed locations with their antennas strategi-

cally placed to detect tagged objects passing through their EM field. Typically RFID

readers can read multiple co-located RFID tags simultaneously, e.g. up to several

hundred tags per second can be read by a modern RFID reader. The reading dis-

tance ranges from a few centimetres to more than 10 m, depending on factors such

as the operating frequencies of the tags, the transmitted power of readers, antenna

gain, and interference from other RF devices [36]. RFID readers can read a W2ISP

tag up to a maximum distance of 4 m [37].

RFID readers are generally capable of multiplexing between multiple antennas, which

are used for transmitting and receiving RF signals from tags. Readers interface with

a local data network (LAN) infrastructure to send the captured information from

RFID tags to backend systems, such as the patient monitoring software shown in

Fig. 1.1, for processing, storage and sharing of information.

UHF RFID readers operate between 920 and 926 MHz in Australia. The radiated

power from RFID reader antennas is reported to be well below the level for hu-

man safety published by the International Commission on Non-Ionizing Radiation

Protection (ICNIRP) guidelines [42]. Currently, based on present studies, there are

no known adverse effects from RFID readers operating in the UHF region on pace-

makers or implantable cardioverter-defibrillators. Furthermore, there is no known

evidence that RFID systems operating in the far field using the UHF spectrum in-

fluence the performance of commonly used medical devices such as physiological

monitors, e.g. electrocardiogram monitors, and intravenous pumps.

1.4 Objectives

The objective of this thesis is the investigation and evaluation of methods for the

recognition of activities in older people wearing a novel batteryless wearable sensor

(W2ISP) as a means to realize the proposed technological intervention for prevent-

ing falls in hospitals. The intention is to issue timely and accurate alerts to allow

hospital staff to provide assistance when a high-risk activity that can lead to a fall is

being attempted by a patient. In particular, this study explores methods for recog-

nizing bed exiting and being out-of-bed or chair exiting and being out-of-chair by
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1.5 Outline of the Thesis

analyzing data gathered from the RFID infrastructure and the wearable batteryless

sensor, and the generation of timely and accurate alert signals. Given that we are

interested in the effective recognition of alerts, the evaluation of these methods fo-

cuses on the reduction of false alarms, i.e. generated alerts not caused by a high-risk

activity, and missed alarms, i.e. high-risk activities that were undetected.

The main demographic for this study is frail older people in hospitals and nursing

homes. Besides the use of pressure mats on chairs and beds, very few technological

solutions have been trialled on older patients. Therefore, an objective of this thesis is

to evaluate the techniques developed for the recognition of high-risk activities with

older people in hospital settings. To the best of the author’s knowledge, this is the

first study to evaluate wireless batteryless body-worn sensor technology for activity

recognition of older people.

Our wearable batteryless sensor device can be used on top of clothes, is lightweight

and unobtrusive. Moreover, the device requires no-maintenance from staff and thus

staff do not have to remember to recharge batteries. Further, the low-cost nature

of the device allows the sensor to be easily disposed to support infection control

practices in hospitals and to manage hygienic issues (contact with bodily fluids).

Nevertheless, we are interested in investigating the feasibility of our approach by

determining the acceptability and understanding the perception of our technolog-

ical approach by the trialled cohorts, in particular, hospitalized older people. This

is an important objective given that few studies studies (1.3 %) using body-worn

sensors have considered the perception of users about the technology [19].

1.5 Outline of the Thesis

This document, a combination thesis, integrates chapters in the standard format with

chapters as publications. This thesis is structured in nine chapters, excluding the

conclusion and bibliography, as shown in Fig. 1.3. Given that human activities are

by nature sequential, i.e. activities consist of a sequence of movements or motions

that the body naturally follows; this thesis focuses mainly on conditional random

fields (CRF) based structured prediction methods. CRF is a well-suited technique

for activity recognition as it considers the possible complex dependencies between

performed motions and the possible transitions from one activity to the next.
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Chapter 2

Overview of Methods for 

Falls Prevention and 

Activity Recognition

Chapter 3

Analysing and 

Identifying Bed 

Exit Movements

Chapter 4

Conditional Random Field 

Method for Identifying Bed 

Exit Movements

Chapter 5

Sensor Data 

Segmentation for Real 

Time Inference with 

CRF

Chapter 6

Learning from 

Imbalanced Multiclass 

Sequential Sensor Data 

with CRF

Chapter 9

Hierarchical 

Classification Method 

for Recognizing 

Alarming States

Chapter 7

Recognition of Bed and 

Chair Exits on Healthy 

Older People in Real 

Time Using Dynamically 

Weighted CRF Method

Chapter 8

Feasibility and 

Effectiveness in 

Recognizing Bed and 

Chair Exits in Hospitalized 

Older People

Figure 1.3: Structure of thesis

Chapter 2 reviews previous literature on fall prevention interventions in older peo-

ple and studies on human activity recognition. Activity recognition studies are re-

viewed based on the sensor platform and the methods used to make decisions re-

garding performed activities. This overview highlights the benefits of wearable sen-

sors and the use of growing techniques such as machine learning in the detection of

activities of interest.

Chapter 3 develops two approaches for sensor location (on-body and off-body), us-

ing a single passive RFID based sensor (WISP—Wireless Identification and Sensing

Platform), for the recognition of bed exits on a healthy young adult population.

The first method uses the passive sensor as a body-worn sensing unit worn on the

chest, the second method places the same sensor unit on the side of a mattress.

Both approaches use empirical decision trees to identify bed exits. These approaches

demonstrate the feasibility of collecting wearable sensor data from a younger pop-

ulation and are corner stone for further development with older adults.
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1.5 Outline of the Thesis

Chapter 4 introduces the machine learning classification method of conditional ran-

dom field (CRF) for sequential data, as is the case of sensor data that captures hu-

man activities, and is important as various CRF-based methods are developed in

this thesis. This chapter is based on a published paper, and sets the initial baseline

for analysis using CRF machine learning technique and compares with the empirical

methods described in Chapter 3. The CRF method developed in this paper classifies

human motion data sequences from healthy older volunteers wearing a W2ISP to

recognize bed exits. This study presents the activity recognition problem formula-

tion as a machine learning problem instead of the empirical method in Chapter 3.

This chapter also investigates the acceptability and wearability of the sensor as per-

ceived by the trialled population.

Chapter 5 analyzes two problems related to CRF classification of sensor stream data

given the positive results from Chapter 4. The first problem is the study of segmen-

tation methods on sequential data and contextual information features extracted

from fixed and dynamic sized sliding window based segments, relevant to the cur-

rent sensor observation, to improve CRF classification performance. The second

problem is the prediction of events in real time; this is because sequential learning

algorithms such as CRF usually provide class labels for complete series of data, and

in the case of healthcare applications, access to information from patients in real

time is essential to make decisions or perform timely interventions.

Chapter 6 addresses the problem of data imbalance in sequential human activity

data. Imbalance is a problem as it can affect decisions from a classification model.

Imbalance is caused as the time spent performing the activities of interest is small

when compared to that of other activities and also due to the increased difficulty to

catch sensor readings from older patients while performing activities of short dura-

tions. This chapter proposes a dynamically weighted CRF, where class-wise weights

are not fixed but are autonomously calculated. This method maintains the integrity

of the sequence as modifying the time sequence changes the flow of movements and

the relationship between activities. This approach is based on the optimization of

the overall F-score as an effective metric to evaluate the reduction of false positives

and false negatives during the learning stage of the prediction model in conditions

of high data imbalance and low availability of training data.

Chapter 7 presents a technological intervention for the recognition of bed and chair

exits based on the concept in Section 1.3. This approach considers a two-stage

Page 10



Chapter 1 Introduction

method to generate bed and chair exit alarms and evaluates its performance with

a population of healthy older people in a clinical environment. The first stage is a

multi-class classifier based on the dynamically weighted CRF method developed in

Chapter 6, followed by a heuristics based stage that considers marginal probability

predictions to assign class labels in real time.

Chapter 8 develops a two-stage technological intervention for the recognition of bed

and chair exits. This chapter differs from Chapter 7 in the use of available experi-

mental data from hospitalised older patients trialled in their hospital rooms and in

the activity recognition methodology. The proposed approach uses weighted SVM

for the recognition of bed and chair exits. A second stage follows consisting of a

decision function that generates an alarm signal based on the predicted class prob-

abilities. This method is compared with the CRF-based method in Chapter 7. This

chapter also presents the results from an investigation of the acceptability and wear-

ability of the sensor among the population of hospitalized older patients.

Chapter 9 introduces a hierarchical classifier as a one-stage technological interven-

tion for the recognition of alarming states in older people. This method avoids the

use of empirically determined heuristic methods or multiple processing stage meth-

ods such as cascaded classifiers or the two-stage approach in Chapter 7 and Chap-

ter 8 to make a decision regarding the generation of an alarm. The hierarchical

classifier formulates the real time recognition of alarm and no-alarm states corre-

sponding to exiting and being out of the bed or chair as high level activities, where

low-level activities correspond to observable motions or postures. The methods in

this chapter are evaluated on data from healthy and hospitalised older participants.

Chapter 10 summarizes the contributions, discusses the results obtained in this the-

sis in the context of existing approaches and presents possible future research direc-

tions.
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Chapter 2

Overview of
Methodologies for Falls

Prevention Interventions
and Activity Recognition

This chapter presents a literature review on falls prevention interventions in older

people. We explore recent clinical studies that measured the effects of current alarm-

ing procedures for the prevention of falls in hospitals. In addition, we explore tech-

nical studies for the recognition of activities that, if performed by older people, have

the potential to cause a fall and thus can be used in the context of falls prevention.

These approaches are described based on their sensing platform and classification

methods. This review serves as background to the methods developed in the fol-

lowing chapters.

2.1 Clinical Interventions for the Prevention of Falls

In recent years, several studies have investigated methods for the prevention of falls

in older adults, using multiple types of interventions to reduce the number of falls

in hospitals or nursing homes. For example, the Cochrane Database of System-

atic Reviews for preventing falls in older people in care facilities and hospitals [43],

a review of 60 intervention trials, indicated some of the most widely studied in-

tervention methods were: i) Exercise e.g. improving of balance and gait, strength,

physiotherapy, or tai-chi; ii) Medication review, mostly targeting psychoactive med-

ications and decreasing their use; iii) Vitamin D alone or with calcium to improve

muscular strength and musculoskeletal function; iv) Staff training on patient-safety

to a wide range of healthcare staff; v) Environment/assistive technology such as
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room adaptations (e.g. carpeted floors, low beds), communication/signalling aids

(e.g. identification bracelets, pressure alarm sensors), protection aids (e.g. hip pro-

tectors), mobility aids (e.g. walkers, fitted footwear); vi) Various other methods such

as olfactory stimulus or exposure to sunlight.

Recent reviews of mostly randomized control trials (RCT) in nursing homes and

hospitals [43, 44, 45, 7, 46, 8] have demonstrated that, in few cases, the use of multi-

ple component or multifactorial interventions can achieve a reduction of falls. How-

ever the evidence of a decrease of falls or fallers is not significant in all the reviews

and thus making their benefits inconclusive. It is also not clear which interven-

tion components are most effective toward the reduction of falls from these studies.

Moreover, cases of single intervention studies, reported in these reviews, indicate

almost no significant improvement in the reduction of falls.

Following the limited success of RCTs in reducing falls, several limitations remain

regarding the restricted success with: i) patients with cognitive impairment; ii) first

time fallers; and iii) interventions in acute hospital settings, where the length of stay

is shorter as the rate of falls are higher during the first two weeks of hospitalization

[47]. Technological interventions provide a way to overcome these limitations; how-

ever, little information and limited technological deployment studies can be found

in the literature. For example, in the systematic review of Hempel et al. [44] on

hospital-based studies about 24 of 59 studies used bed exit alarms; similarly, the re-

view of Goodwin et al. [46] on hospitals, nursing homes and community-based stud-

ies only 5 of 18 studies used some type of technological intervention. Section 2.1.1

describes some of the latest studies focused on technological clinical interventions

aimed at preventing falls by automatically producing an alert to notify a carer to

provide supervision to a patient.

2.1.1 Technological Interventions

As mentioned in Section 2.1, a limited amount of studies are available in the litera-

ture that are focused on technological interventions for falls prevention. Moreover,

these studies reported only the number of actual falls during the study and failed to

report on the performance of the system based on the number of issued alarms in

the same period of time. The problem with this approach to measuring performance
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is that failure to prevent a fall is not only related to a failure of the monitoring sys-

tem to raise an alert. In fact, multiple causes such as long distance from the patient

to the nurses’ station, busy personnel, or a delay in response to the alert, can restrict

hospital staff from supervising the patient on time.

Most clinical studies that include a technological approach introduced interventions

based on localized recognition of activities that can lead to falls, as is the case of bed

and chair exits. For instance, various studies have focused solely on the effects of

bed and chair exit alarms in the reduction of falls [16, 15, 48] using pressure mats.

These devices consisted of sensor enabled mats placed on the bed or chair over the

contact areas with the human body where the loss of contact would initiate an alarm.

The studies by Sahota et al. [16] and Shorr et al. [15] reported the number of falls in

their respective interventions; whereas the study of Wong Shee et al. [48] was able

to report the number of joint bed and chair exit alarms. However, the performance

of the alarming system in [48] was not clearly determined; this was due to a mix

of alarming and nursing call systems and the dependence on nursing personnel re-

ports to determine data accuracy. Falls prevention results of the studies by Sahota

et al. [16] and Shorr et al. [15] are unclear as the use of pressure mats had no signifi-

cant effect on the number of falls. In the study by Wong-Shee et al. [48] a significant

reduction of falls was noted when comparing pre-intervention and intervention pe-

riods; however, falls during intervention and post-intervention as well as pre- and

post-intervention periods were not significantly different. Some possible explana-

tions for the failure in the reduction in falls include the insufficient response time to

alerts from caregivers, a large number of false alarms, patients falling immediately

on exiting the bed or chair and multiple organizational factors such as communica-

tion, leadership and management that were underestimated during implementation

[16, 15].

In addition to using bed and chair exit alarms on high risk patients, the study by

Dykes et al. [49], proposed an intervention that also considered a risk assessment

tool using health information technology to decrease falls in four urban hospitals in

the US. The approach produced personalized care plans and posters; the study was

able to reduce falls in people over 65 years old significantly, but failed to prevent

repeated falls.

The previous approaches [16, 15, 48, 49] considered only one type of sensor for

alarming, i.e. pressure mats; in contrast, the study by Capezuti et al. [14] found that
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pressure sensor alarms worked better when combined with other sensors such as

infra-red (IR) beam detectors. In addition, this research found that pressure sensors

were unreliable with low weight patients—less than 45.4 kg [14], a common weight

for patients associated with dementia and other conditions; and that sensor location

has to be customized to the body and motion of each individual patient. Nonethe-

less, even with the combined sensors, specificity was very low, i.e. a high rate of

false alarms, with a value of 0.3 %.

Other types of sensors to prevent patients from leaving a bed or chair used mechan-

ical activation. One of the simplest methods is a wired clip which is attached to

the patient’s garment. Once the patient attempts to leave, the clip detaches from

the control box and an alarm is activated; however, there is risk associated to this

method as there is evidence of death by asphyxia by entrapment due to a cord that

failed to detach [50].

These previous approaches have been limited in their scope as these environmental

sensors were localized to the bed and chair area. In contrast, wearable technologies

have been scarcely studied, although there is an express interest from older people

in small wearable sensors (see Section 1.2). For example, the recent study by Wolf

et al. [30], the only one to our knowledge to use a wearable sensor in a hospital

trial, was able to detect bed exits by using a battery powered accelerometer sensor

worn on the thigh and secured with bandages. The study used a commercially

available sensor; where the cost of a single unit is about US$400.00. Nurses were

required to ensure the cleanliness and powering of the device routinely; in addition,

the performance of the equipment was measured by interviewing the nurses who

indicated the system was reliable. Thus, this approach is costly to implement and

maintain as the recharging of batteries and cleansing of devices are mandatory and

are performed by clinical staff. Given this lack of studies focused on monitoring

technologies for older people, we expand this review to examine studies focused on

the recognition of activities on other demographics that can also be applied to older

people for monitoring activities of interest in a hospital room environment.

2.2 Human Activity Recognition Approaches

This section reviews activity recognition approaches on different demographics based

on the use of sensing technologies that are capable of recognizing bed or chair exits
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Figure 2.1: Taxonomy of falls prevention studies for the recognition of human activities.

and ambulation movements. In general, these studies characterize the motion of a

person performing an activity of interest by using different types of sensors to cap-

ture a specific action or a sequence of actions. Although many studies exclusively

utilize video feed for patient monitoring, we do not include these methods in this

review as the use of cameras can be perceived as a violation of privacy by those

being monitored, especially older people [22]. Similarly, we exclude studies that fo-

cus only in the detection of falls, as our approach is focused on fall prevention and

the detection of activities that can lead to falls; and studies that use smartphones

[51, 52, 53, 54] or personal digital assistants (PDA) [55] for recognizing activities as

these devices (bulky and with short battery life) are not suitable for hospitalized

older people.

We base the categorization of the methods considered in this section according to

two different aspects of the proposed solutions, namely: i) sensing approaches as

sensors can be body worn or environmental; and ii) a classification or selection

methodology used for activity recognition. The taxonomy used to identify the stud-

ies is shown in Fig. 2.1.
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2.2.1 Sensing Approaches

Depending on the approach, sensors can be placed on the body of the participant, in

the environment where measurements are being taken or in a combination of both

places.

Body Worn Sensors Using a Single Sensor Location

Early studies applied kinematic sensors such as accelerometers [26, 27] or a combi-

nation of accelerometer and gyroscope [31]. The study by Najafi et al. [31], one of

the first studies to trial body-worn sensors in an older population, used a battery

powered kinematic sensor consisting of a bi-axial accelerometer and a gyroscope.

The sensor unit was attached to the chest of a participant and used for ambulatory

monitoring of multiple activities such as walking, sitting, standing and lying and

posture transitions such as sit to stand and stand to sit. The collected data was

stored in a data logger for offline analysis. This method obtained high sensitivity

and specificity values of > 90 % for activity recognition.

The recent study by Godfrey et al. [26] was an improvement over that of Najafi et

al. [31] as it simplified both the use of sensors and the necessary calculations to iden-

tify the activities of interest. This research [26] used a single tri-axial accelerometer

attached to the chest and connected to a data logger to detect sitting, standing, walk-

ing and lying efficiently by using simple digital filters. Godfrey et al. [26] also esti-

mated the body tilting angle by calculating the difference between the actual posture

and a previously known posture (standing) of the person, using vector operations.

The results from this study [26] point to the feasibility of using a single battery-

powered sensor for the detection of participants’ postures, obtaining results close to

those of Najafi et al. [31]. Both studies [26, 31] secured the sensor unit with straps

to the older person’s body; while a second unit containing a data-logger, which re-

ceived data from the sensors with a short cable, was worn by the participant on the

waist. This practice, although ideal for data collection, is neither comfortable for the

user nor feasible for an elderly patient who has to recharge or change batteries from

its unit. In addition, the detection of events was not in real time as analysis was

performed offline, after extracting the data from the data-logger.

Later studies by Najafi et al. [29] and Schwenk et al. [32] used a single sensor unit

on the chest to help determine the risk of falls in older people. Both studies tested
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older people with cognitive impairment [32] and diabetes and peripheral neuropa-

thy [29]. The researchers were able to determine the patients’ risk of falling after es-

tablishing the correlation between the associated risk and the time taken to perform

some specified activities, such as stand to sit. Interestingly, Schwenk et al. [32] found

that some differences in activity time durations were noticeable between fallers and

non-fallers, even when regular tests such as Time Up and Go (TUG) or 5-Chair stand

indicated no difference between these groups.

Other studies that placed a single sensor on the chest are those by Brodie et al. [28]

and Lee et al. [56]. The study by Brodie et al. [28] used a freely worn pendant sensor

housing an accelerometer and a gyroscope to assess the risk of falling of older people

living independently. This study measured the number of steps in short and long

walks and found a correlation between fallers and the number of steps in their walks

in relation to non-fallers, with several days of monitoring being necessary to assess

propensity for falling. The study by Lee et al. [56] also placed a single accelerometer

on the chest to recognize, in real time, activities such as lying, walking, standing,

going upstairs and downstairs. This method performed standalone calculations in a

laptop carried by the volunteer wearing the sensor and achieved accuracies > 86 %.

Moreover, after activity detection, [56] was able to provide energy expenditure for

the detected activity.

Other studies located the sensor on the waist of the participant such as the stud-

ies by Narayanan et al. [27] and Karantonis et al. [57]. The study of Narayanan et

al. [27] used a tri-axial accelerometer for the evaluation of falls-risk of older people

in independent living using TUG, 5-Chair stand transitions and alternate step (on

a platform) tests. This study achieved a high correlation between their results and

those of a physiological profile assessment, which estimates the possibility of falling

within 12 months of the assessment [27]. Similarly, the research by Karantonis et

al. [57] collected data from an accelerometer with a micro-controller and a small

memory where a classification algorithm was performed once per second. The unit

contains an active transponder that sends the information to a computer using the

ZigBee (IEEE 802.15.4) wireless communication protocol for storage, minimal anal-

ysis and display. The system was able to detect walking, sitting, standing and lying

with high accuracy, where all activities but walking, which was detected by the cen-

tral computer, were classified within the remote microcontroller unit. In the case of

falling, the system issued a “possible fall” alert with 100 % accuracy. Fall detection
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accuracy was high because this event was left to further analysis, collecting data

for one minute and analysed by a human operator. Results from walking activities

were satisfactory for normal and fast paces, but these are not adequate for elderly

patients who mostly move at slow paces. Furthermore, some inconsistencies were

found due to the sensor location, as in some tests the sensor changed position or

rotated.

The pelvic region has also been used to place sensor units. Cho et al. [58] used

the information of a tri-axial accelerometer and an image sensor included in a belt

buckle to recognize activities such as walking, sitting, standing, turning, running

and going up/down stairs. We consider this study in this review, although it uses

an image sensor because this signal is combined with that of a kinematic sensor and

images were not recorded or transmitted; however, no information was given about

the population trialled.

Body Worn Sensors Using a Multiple Sensor Locations

All previously mentioned studies considered a single sensor location for activity

recognition; however various other studies placed sensor units on multiple body

locations [59, 25, 60, 24]. In the study by Luštrek et al. [59], four location sensors

placed on the chest, waist and ankles, and one tri-axial accelerometer placed on the

chest of the participant were used to capture motion and location of both the sensor

and the participant in an apartment, as well as the height of the sensor with respect

to the ground. The approach was able to recognize activities such as lying, sitting

and falling with accuracy ≥ 84 %.

The study by Varkey et al. [25] used two wireless battery powered sensor units con-

sisting of a tri-axial accelerometer and tri-axial gyroscope on the wrist and ankle

of three young volunteers. This study aimed to recognize two levels of activities;

starting from high level activities such as walking, jogging and smoking to a more

specific or low level such as arm-moving-up or arm-moving-down. Misclassifica-

tion for both levels of activities was about 9 %, and 20 % for high level and low level

activities respectively.

Other studies used only accelerometers in their multi-sensor approach. The study

by Uslu et al. [60] used one or two wearable devices equipped with tri-axial ac-

celerometers worn on the wrist and ankle; this study was able to recognize simple

actions such as lying, sitting, walking, standing and using a wheelchair, along with
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their transitions. This study achieved a detection success rate of above 94 %. Al-

though this study aims to serve older people, no information is given about the

tested population. In the case of the study of Banos et al. [24], the dataset of a previ-

ous study by Bao et al. [61] was used for the detection of activities such as cycling,

running, lying, going upstairs or walking. This dataset uses bi-axial accelerometers

located on the hip, wrist, arm, ankle and thigh of young volunteers This method

considers that partial decisions can be made at sensor level and activities are recog-

nized at a later stage using these partial decisions achieving > 95 % accuracy.

These previously mentioned methods using multiple sensor locations on the body,

may not be comfortable for the participant using or wearing them, and these meth-

ods have not been trialled with an older population. Moreover, an important consid-

eration when using body worn sensors that is common to the previously mentioned

studies is the issue of sensor power as most tested sensors are battery powered and

securely encased. This makes the devices bulky and subject to maintenance, which

is not a desirable characteristic of monitoring devices for older people [19].

A summary of these methods is shown in Table 2.1

Table 2.1: Details of body worn sensor studies for detection of activities and prevention of falls.

Author(year) Type of sensors used Tested population Performance

Najafi(2003) [31] Chest attached accelerometer and

gyroscope wired to data logger

9 older participants,

average age 66± 14

Offline analysis

recall > 90%, specificity

> 92% for all activities

Karantonis(2006) [57] Triaxial accelerometer connected via

Zigbee to remote computer

5 young (22–23) and

one older healthy

adult (60)

Real time analysis except

for falls (1 m delay),

accuracy > 63% for all

activities

Cho(2008) [58] Triaxial accelerometer with

embedded one image sensor in a belt

No information Detection using 2 s

windows

accuracy ≥ 80% for all

activities

Narayanan(2010) [27] Waist mounted triaxial

accelerometer with wireless data

collection

68 older participants,

age: 72–91

Combined falls risk test

correlation with

physiological profile

assessment value,

ρ = 0.81

Luštrek(2011) [59] Triaxial accelerometer worn on the

chest and up to four tags on different

parts of the body for location and

velocity calculations

10 healthy

participants, tests

included falls

Detection using 1 s

window; accuracy > 83%

for all activities and

average accuracy of

94.7%

Godfrey(2011) [26] Chest strapped accelerometer wired

to data logger

10 healthy older

participants

age: 70–83

Offline analysis

recall and specificity

> 83% for all activities
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Lee(2011) [56] Triaxial accelerometer attached to

the chest and connected to laptop via

USB cable

20 healthy young

participants

age: 22–30

Detection every 5 s

accuracy ≥ 86% for all

activities

Varkey, 2012 [25] Triaxial accelerometer and

gyroscope, on wrist and ankle

3 young participants

age: 26–28

Detection every 0.8 s

accuracy > 91% for all

activities

Banos(2013) [24] Five biaxial accelerometers

distributed on limbs and hip as in

[61]

20 young adult

participants as in [61]

age: 17–48

Detection every 6 s

accuracy > 95%

Uslu(2013) [60] 2 sensors attached to ankle and wrist

or single sensor attached to leg or

wrist

No information Real time detection;

success rate > 94% using

multiple sensors

Najafi(2013) [29] Triaxial accelerometer with

embedded logger attached to chest

8 older participants

with diabetes and

peripheral

neuropathy;

average age 77± 7

TUG activities

recognition recall and

specificity of 100%

Schwenk(2014) [32] Similar device used in [31] 77 older patients with

cognitive impairment,

average age 81.6 ±6.3

Statistical significant

difference between

physical activity sensor

based parameters of

fallers and non-fallers

(p=0.008) where

performance tests

showed no difference

(p> 0.23)

Brodie(2015) [28] Freely worn pendant sensor housing

a triaxial accelerometer and pressure

sensor

18 independent living

older participants,

average age 83.4 ±7.0

Statistical significant

difference of gait features

between fallers and

non-fallers (p< 0.05)

Environmental Sensors for localized detection of activities

In this approach, furniture such as a bed, chair or commode were used to place a

variety of pressure sensors to detect some important movement transitions, such as

bed or chair exiting. For example, a commercially available product consisting of a

bed mat to monitor sleep activity and bed exits was trialled in the study by Bruyneel

et al. [62]. A bed exit was determined when the presence sensors produced no signal

and the measured temperature at the mat was under 33 ◦C. The performance results

for sensitivity and specificity were between 90 and 100 % for their tested population

of young and middle aged participants. On the other hand, the time for the sensor

to reach a stable temperature was from 70 to 90 min, which means that activities in

the first hour can potentially be undetected.

A diverse approach to the use of bed mats includes the use of pressure sensors lo-

cated in sensitive areas used by patients before and during bed exiting such as bed
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railings as in the study of Hilbe et al. [63]. In this study [63], the sensor system per-

formed well with sensitivity and specificity values of 96 % and 95.5 % respectively;

however, it was tested on a population of nurses acting as older patients and was

unable to classify one postural condition in which the patient had both legs on top

of the railings. Additional downsides to using pressure sensors are their associated

cost, such as maintenance and replacement, which impact on their clinical deploy-

ment; moreover, the use of bed rails is not recommended as they can increase the

height of a fall [12].

Alternative studies, such as that of Hoque et al. [64] was focused on the study of

sleeping behaviour. The researchers used three accelerometer enabled RFID tags,

denominated as Wireless Identification and Sensing Platform (WISP), attached to

three sides of a mattress (two laterals and close to the legs) and an RFID reader

antenna located under the bed. The study was able to detect bed presence and

analyse sleep quality and body positioning during sleep by analysing the mattress

deformation caused by the participant’s body. This method obtained a accuracies of

90 to 100 % for body positioning in the bed.

Environmental Sensors for the recognition of multiple sets of activities

This type of approaches focuses on the recognition of a wider set of activities, dis-

tributing the sensing platform around the living environment [65, 66, 67, 68]. In

the study by Buettner et al. [66], RFID tags with embedded accelerometers (WISPs

as used in [64]) were attached to everyday objects and the RFID reader antennas

were located on the ceiling, making the user free of devices. This approach obtained

a performance of about 90 % for both precision and recall, and also had an over-

all better performance when compared to using a portable RFID reader and short

range RFID tags on the same objects. However, the system was prone to problems

caused by sensor occlusion due to the positioning of the sensors with respect to the

reader antennas on the ceiling, the handling of the tagged objects and the increased

distance to the RFID reader antenna, causing the tag to receive insufficient power.

The advancement and miniaturization of sensors in general have allowed large scale

deployments of sensing and monitoring technologies in smart homes where inter-

actions with the sensing platform are used to monitor or recognize activities. In

the study by Cook [65], multiple sensors (e.g. motion, door, temperature, light and

water) were installed inside the settings of seven houses of a wide adult age range
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population. Activity monitoring was of a general context: cook, work, leave home,

personal hygiene, sleep, bed-to-toilet and relax were some of the activities of in-

terest. This environment information was used to infer the most probable activity

being performed by the house’s inhabitant. The results from these methods were not

generalizable as accuracy values varied from 32 % in one house dataset, while other

datasets achieved 100 % accuracy. In addition, the results are not demographically

segmented, making the impact of this study on elderly people unclear.

Other approaches using smart homes have been explored for the recognition of ac-

tivities, monitoring of patterns and location of participants. For example, the studies

of Helal et al. [69, 70] used multiple sensors in a home setting with sensors in elec-

tric outlets, floors, bed, bathroom and other locations for the recognition of activities;

and an ultrasound positioning system for the location of a user in the home environ-

ment. In the study by Tapia et al. [67], a number of state-change sensors were placed

on locations such as cabinets, doors, windows and appliances to determine generic

activities such as preparing lunch, toileting or doing laundry, with recognition ac-

curacy per activity > 25 %. The system expects that monitoring possible pattern

variations of these activities that can be linked to health problems; however this

premise was not trialled. The study by Lu and Fu [68] used wireless sensors inte-

grated into objects such as floors, power outlets and appliances as well as RFID tags

on objects. The main approach of the sensing platform is capturing the interaction

of humans and objects, and environmental information, whilst also being capable of

receiving commands and activate actuators. This method [68] achieved accuracies

of over 67 % for detecting activities such as using PC, studying, watching tv, using

different appliances, making tea, walking and sitting. None of these four studies

[70, 69, 67, 68] reported tests with older adults. Moreover, common challenges for

smart home deployments are the presence of multiple inhabitants or the recognition

of interleaved activities, which were not addressed in these studies.

We also considered studies where sensors were located on fall prevention apparatus

such as in the studies of Hirata et al. [71] and Wakita et al. [72]; both studies devel-

oped robotic aids for older people: a walking aid and a supporting cane respectively.

Multiple sensors and laser range finders allowed the robotic aids to provide support

to the user when the device detected the user was in trouble, for example when the

displacement of the person’s feet base in relation to the robot was insufficient to pro-

vide support to the person. However, there are no reported trials with these devices
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as they are still heavy, the robotic cane is 50 kg. Moreover, a person with cognitive

impairment can easily forget to use such aids. A summary of these environmental

sensor based methods are shown in Table 2.2

Table 2.2: Details of environmental sensor studies for detection of activities and prevention of

falls.

Author(year) Type of sensors used Tested population Performance

Helal(2003) [70] Ultrasound location system Testing robot Location error < 22 cm

within a house setting

Tapia(2004) [67] State-change sensors in doors,

windows, cabinets, drawers,

microwave ovens, refrigerators,

stoves, sinks, toilets, showers, light

switches, lamps, containers, other

appliances and locations

2 participants,

ages: 30 and 80

Detection every 5 s,

accuracy > 25% for all

activities

Helal(2005) [69] Smart home with sensors in

appliances, electric outlets, floors,

doors, bed, bathroom, and others

No information No results presented

Hirata(2007) [71] Walker type robot with laser range

finder and tilt angle sensors

No information Real time functionality, no

quantitative results

Buettner(2009) [66] Accelerometers embedded in RFID

tags attached to everyday items

10 participants Activity recognition

precision > 73% and

recall > 40% for all

activities, overall

precision and recall = 90%

and 91% respectively

Lu(2009) [68] Wireless sensors integrated into

objects; detection of current flow,

voltage, pressure, vibration, motion,

acceleration, distance and contact

along with IDs from RFID tags

10 participants Recognition of activities

accuracy > 68% for all

activities

Hoque(2010) [64] Three triaxial accelerometers

embedded in RFID tags attached to a

bed mattress

11 participants Body position inference

accuracy > 90%

Hilbe(2010) [63] Pressure sensitive side rails for

hospital beds

62 adults (age: 18–60)

behaving like older

people

Bed exit detection recall =

96.0% and specificity =

95.5%

Bruyneel(2011) [62] Commercial bed sensor mat to detect

body temperature, presence and

movement

17 participants older

than 18

Bed exit recall = 100%,

specificity = 85%,

detection considered after

2 minutes of exit

Cook(2012) [65] Multiple homes equipped with

various on-off sensors: doors,

switches, light , water and burners

and temperature

Young healthy

participants and older

(healthy and with

dementia) participants

Overall activity accuracy

> 34% for all house

datasets

Wakita(2013) [72] Cane robot including force and tilt

angle sensors, and laser ranger

finders

Intended for elderly

and handicapped, 3

participants

Real time functionality

testing coincidence of

robot and intended

direction
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Hybrid Approaches

This section reviews studies that combine environmental and body worn devices

[23, 73, 54, 74]; body worn devices considered included wearable sensors or RFID

readers [23, 73, 74].

A usual configuration includes multiple wearable devices with accelerometer sen-

sor units and portable RFID readers to interact with tags in the environment, as in

the study by Wang et al. [74]. This approach achieved real time recognition of activ-

ities by recognizing gestures at sensor level and high level (complex) activities at a

centralized processing device with an overall 82 % accuracy.

A different approach to wearing sensors consists of the participant using a portable

RFID reader in order to recognize activities of interest based on the use of previously

tagged objects [23, 73]. These studies mined the web for object terms relative to each

activity of interest and used this information to determine the activities performed

based on the human interaction with multiple objects. The activities of interest in

these studies have different scope. For example, in [23], the activities are focused

into specific movements or objects such as make coffee, brush teeth, watch tv, clean

table or read a book; whereas in [73], the activities of interest can include various

types of movements or objects such as oral hygiene, take medication, housework,

washing or leisure activity. Precision and recall for [23] were about 92 %; whereas in

[73], metrics were > 64 % and > 33 % respectively.

A special case is the study by Cohn [75], where the authors tried to detect human

motion by using only the human body as an antenna to receive the environmental

electric noise from the power lines to which we are all exposed. The system reads

the changes on this signal while the body is moving, achieving an average accuracy

of 92.7 %. Although the participant does not use any sensor, the participant carries

the processing unit in a backpack which is connected to the body on the neck. In

addition, the system had problems in identifying mirror movements for left and

right hand motions.
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2.2.2 Classification Approaches

These studies can also be differentiated by their classification or decision methods;

clearly, we can distinguish the studies of interest into those that use machine learn-

ing or non-machine learning based approaches (empirical) to make a decision. Re-

gardless of the taxonomy, the studies considered analyse physical data in order to

make decisions about the postures and/or activities for recognition.

Empirical or Non-Machine Learning Methods

Studies that used non-machine learning methods such as thresholds, in general,

used a single constant stream of data from their sensors for analysis. For exam-

ple the studies by Najafi et al. [31], Godfrey et al. [26], Brodie et al. [28], Bruyneel

et al. [62], Hilbe et al. [63], Karantonis et al. [57], and Wolf et al. [30] were able to

determine if some activity has occurred by post-processing the sensor data. In the

case of kinematic sensor data streams, the information is usually passed through

digital filters such as low pass, band pass and high pass filters, or Discrete Wavelet

Transforms as in [31] to isolate frequency components that provide movement in-

formation or to remove noise from the sensor signal. Some studies do not require

filtering post-processing, as in the case of [63] where raw signals from static sensors

(fixed on the bed) were immediately classified.

The output of the filtering processes is verified by an empirical threshold-based clas-

sifier and an activity was determined if the processed value lies outside an accept-

able predefined threshold. The construction of empirical decision trees is common

in methods using thresholds as in the aforementioned studies [31, 26, 28, 62, 63,

57, 30], where the division of branches corresponds to the responses to established

threshold levels for the different activities of interest. In general, these methods

were trained and tested using the same population, hence determining thresholds

level using the testing population. For these methods to work, data streams require

a constant data sampling as methods rely on digital filtering processes and thus,

sensors require a battery powered sensing unit.

Machine Learning Methods

The increasing complexity of human activity recognition tasks, e.g. multiple or si-

multaneous performed activities, has widened the previous classification methods
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to the use of machine learning techniques in human activity recognition studies [18].

In this context, the system learns prediction models from training data to recog-

nize the performed actions by the monitored participants. Most commonly used

methods were based on Decision Trees (DT), Naı̈ve Bayes Classifiers (NBC), Hid-

den Markov Models (HMM), Conditional Random Fields (CRF), Emerging Patterns

(EP), Neural Networks (NN) and Support Vector Machines (SVM).

We present a brief introduction to the most commonly used machine learning tech-

niques for activity recognition. We do not introduce CRFs as this method will be

explained more thoroughly in Chapter 4.

Decision Trees This approach creates a set of rules by examining the discrimina-

tory ability of the data features. This method can be understood as a sequence of

questions, where a question depends on the answer to previous questions; creating

a tree where each branch from the root to the leaf node is a classification rule. Hence,

classification starts at the root where different links from the root represent differ-

ent values and all links are mutually exclusive, i.e. only one link is to be followed.

Each leaf node bears a label; hence, once reached, that label is assigned to the input

data [76, 77]. One of the advantages of decision trees is that the models are easy for

humans to understand. One of the most popular decision tree algorithms is C4.5;

this approach is based on the concept of information gain to select the attributes that

should be placed in the top nodes. In addition, this method can handle discrete and

continuous attributes as well as missing features [76]. This algorithm uses heuristics

for pruning the tree, i.e. deleting redundant antecedents on the learned tree rules.

Naı̈ve Bayes Classifier These are a family of methods that apply the Bayes theo-

rem and assume that every pair of feature observations are independent and iden-

tically distributed (i.i.d.). This is, given a feature vector x = {x1, · · · , xn}, where

n is the number of features, all features are independent variables; and the class

variable y = {1, · · · , K} has K possible values. Bayes theorem states the following

relationship:

P(y = k|x) =
P(y = k) ∏n

i=1 P(xi|y = k)
P(x)

(2.1)

y = arg max
yk

P(yk)P(xi|yk) (2.2)

This model learns from the training data the conditional probability of each feature

given its class label. However, this classifier oversimplifies the classification prob-

lem by assuming that all features are independent given a class value; nonetheless,
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that assumption does not always hold, e.g. acceleration signals from different axes

are highly correlated, as are other physiological signals [18, 78].

Hidden Markov Models Hidden Markov models are generative probabilistic mod-

els for representing distributions over data sequences. HMMs have two compo-

nents, an observable (x) and a hidden component (y); we assume that the hidden

process satisfies the Markov property, i.e. the current state yt depends only on the its

previous state yt−1 (first-order Markov property). HMMs are trained by determin-

ing state transitions, assumed to be first-order Markov chains; and the probabilities

of each possible set of observations to be related to a hidden state. In this model,

each set of observations depends only on the respective hidden state; considering

conditional independence between observed variables [79, 80]. Calculation of the

model parameters is usually done with the Baum-Welch algorithm [79].

Given a sequence of class variables Y = {y1, · · · , yT} and the sequence of observa-

tions X = {x1, · · · , xT}, where T is the number of elements in the sequence. The

HMM model is defined as:

P(X) = ∑
y∈Y

T

∏
i=1

P(yi|yi−1)P(xi|yi) (2.3)

where Y is the set of all possible label sequences Y. Two prediction problems can

be solved: i) finding the probability of the observations; and ii) finding the most

likely state trajectory given the observation. Solutions for these problems require

application of the forward-backward and the Viterbi algorithms respectively [79].

Dynamic Bayesian Networks These are Bayesian networks for representing time

series, as Bayesian Networks cannot represent temporal dependencies. This means

that an event can cause another event in the future, but not viceversa. One of

the simplest cases corresponds to the first order Markov model, where each vari-

able is influenced only by its predecessor. In this case, for a sequence of data Y =

{y1, · · · , yT} the joint probability is given by: P(Y) = P(y1)P(y2|y1) · · · P(yT|yT−1).

Common applications such as Kalman filters and HMMs are particular cases of

DBNs. DBNs allow for richer sets of relationships than HMMs as the model can

be extended to higher orders or a factored representation, as is the case for facto-

rial HMMs, where the underlying state transitions evolve independently from each

other in independent Markov chains [81, 82].

Support Vector Machine This supervised machine learning method finds the opti-

mal separating hyperplane between two classes with the maximum margin between

Page 29



2.2 Human Activity Recognition Approaches

the nearest training data points of the participating classes, see Fig. 2.2, where train-

ing data are assumed as i.i.d. SVM can project the data from the original feature

space to a higher dimensional space. This way, data from two classes can always

be separated given a sufficiently high dimension. Moreover, a linear separation in

a higher space is equivalent to a non-linear separation in the original space [83].

Given the training data {xi, yi}, i = 1, · · · , l, where the d-dimensional feature vector

xi ∈ Rd is associated to the class label yi ∈ {−1, 1}.

The optimal separating hyper-plane

wTx + b

is obtained by solving the optimization problem:

minimize 1
2‖w‖2 + C

l

∑
i=1

ξi (2.4)

subject to: yi(wTxi + b) ≥ 1− ξi (2.5)

ξi ≥ 0; i = 1, · · · , l (2.6)

where C is a constant regularization parameter that penalizes margin violations and

ξi are slack variables and represent error margin from non-separable data classes.

This convex constrained optimization problem can be solved using its dual formu-

lation [83, 84] given below.

maximize
m

∑
i=1

αi − 1
2 ∑

i,j
αiαjyiyjxT

i xj (2.7)

subject to: 0 ≤ αi ≤ C (2.8)

∑
i

αiyi = 0 (2.9)

where αi are Lagrange multipliers and the data samples xi where αi > 0 are the

points on the margin and are called support vectors. Moreover, the inner product

xT
i xj can be replaced with a kernel function K(xi, xj). The kernel function computes

the inner product into a high dimensional feature space, and thus, generating non-

linear decision boundaries in the input data space.

Prediction of testing data is done by determining on which side of the hyperplane

(H in Fig. 2.2); a test feature vector lies and assigning the corresponding label. This

is done with the decision function:

sgn(wTxtest + b) (2.10)
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Figure 2.2: Graphical representation of separating hyperplanes for a linear SVM, the samples on

the separating hyperplanes are support vectors.

Neural Networks These models are inspired by the functioning of the biological

nervous system. NNs have two main components: i) processing nodes (or neurons);

and ii) weighted connections between nodes. Nodes, typically organized in layers,

take inputs (at input layer) or outputs from previous layers and produce a scalar

valued response to a non-linear activation function, characteristic of the node. The

connection weights between nodes are the model parameters and are determined

during training.

NNs can have multiple architectures (e.g. feedforward or recurrent networks) and

learning algorithms, such as the back-propagation algorithm. It has been shown

that NNs with a sufficient number of nodes and layers can approximate any contin-

uous function; however, in some cases, methods can suffer from slow convergence

or reach local minima [85]. The topology of the network is often determined heuris-

tically, as knowledge of the problem can be used to determine the network structure;

however, this is not trivial, as poor performance and overfitting can be caused by

topologies too simple or complex, respectively. This is also related to the model

complexity given by the number of parameters or weights in the network [76].

Most studies base their approaches in the aforementioned methods; Table 2.3 illus-

trates the classification algorithms in the various activity recognition studies consid-

ered.

Table 2.3: Classification algorithms used in fall prevention and human activity recognition stud-

ies.

Type Classifier Author(year)
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Non-machine

learning

Thresholding Najafi(2003) [31], Godfrey(2011) [26],

Bruyneel(2011) [62], Hilbe(2010) [63],

Karantonis(2006) [57], Wolf(2013) [30],

Narayanan(2010) [27], Najafi(2013) [29],

Schwenk(2014) [32], Brodie(2015) [28]

Bayesian NBC, Bayesian

Networks

Hoque(2010) [64], Tapia(2004) [67], Lu(2009)

[68], Uslu(2013) [60], Cook(2012) [65],

Philipose(2004) [73]

Markovian HMM, CRF Buettner(2009) [66], Uslu(2013) [60],

Cook(2012) [65]

Decision Trees C4.5 Banos(2013) [24], Luštrek(2011) [59]

Feature Detection SUSAN Uslu(2013) [60]

Domain

Transformation

SVM Banos(2013) [24], Luštrek(2011) [59],

Cohn(2012) [75], Cho(2008) [58],

Varkey(2012) [25]

Instance Based K-Nearest Neighbour Banos(2013) [24]

Neural Networks Perceptron Lee(2011) [56]

Meta Learning Majority Voting,

Hierarchical Decision,

Boosting

Banos(2013) [24], Cook(2012) [65]

Similarity Measure Dynamic Time

Warping

Wang(2012) [74]

Pattern Discovery EP Wang(2012) [74], Gu(2010) [23]

Simple probabilistic models such as NBC were applied successfully in the studies

by Tapia et al. [67], Hoque et al. [64] and Lu et al. [68] for the recognition of ac-

tivities in home settings. In Tapia et al. [67], sets of activities to recognize for each

participant were different, and thus results were participant-specific; moreover the

volunteers had to label their activities for days, which was troublesome for system

users and can cause potential inaccuracies during training. This study [67] demon-

strated that a multiclass NBC and multiple binary NBCs performed similarly with

±5 % difference. In Hoque et al. [64] the classifier performed better with higher

overall accuracy (1− error) using data from multiple sensors as opposed to any in-

dividual sensor using only acceleration sensor readings. The study by Lu et al. [68]
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was able to recognize inter-leaved activities by implementing several NBCs in par-

allel for each activity to recognize; these classifiers were not exclusive, hence two

activities may occur simultaneously. Moreover, features were selected for each ac-

tivity NBC as opposed to making a general feature selection process; in addition, it

used a user-defined weighted factor to reduce errors during training.

Other popular techniques for activity recognition applications were the methods

of SVM and HMM in the studies of Cohn et al. [75], Cho et al. [58], and Buettner

et al. [66] as these methods have achieved good performance in comparative stud-

ies [86]. In Cohn et al. [75], DC and frequency components from the AC power

signal were used as features for a SVM classifier to identify gestures and location

of the person. In this method, participants performed activities of specific dura-

tion to synchronize with data segments. However, the classifier can be affected by

electrical changes in the environment. Moreover, the authors suggest use of HMM

can improve the performance by avoiding imprecise data segmentation that lead to

misclassifications and using discrete states for each gesture as in HMMs. In Cho et

al. [58], a hybrid classifier using SVM with data from a tri-axial accelerometer in 2 s

windows and an image sensor using the grid-based optical flow method was able to

determine walking, sitting, up/down stairs, standing and running activities. How-

ever, image sensor component was only better when walking and turning. The use

of HMM, which, as opposed to NBC and SVM, considers dependencies of the ob-

served states, was successfully applied by Buettner et al. [66] to map the observed

data into activities or sequences of activities in a smart home environment.

Multiple classifiers have also been used, in chains or simultaneously, to process in-

formation from multiple sensors and improve the output of a single classifier. For

example, the study of Uslu et al. [60] used a model that considers multiple sensors

and a hybrid classifier that uses NBC, HMM and a SUSAN Corner Detector (SCD)

to detect transitions between activities in real time. During the classification chain,

the NBC processes chunks of sensor information to find the posterior probability; if

a decision is not made at this stage, the data is processed by the SCD which maps

data and establishes distances to the possible activities. After a non detection at this

stage, the HMM determines the activity label. Similarly, the study by Luštrek et al.

[59] used multiple methods to build its activity recognition model. For example,

the authors use Random Forests to detect activities of interest; and a second stage

of classifiers such as SVM and C4.5, which combined with location information, are

Page 33



2.2 Human Activity Recognition Approaches

used to detect activities including falling. The accuracy of using location informa-

tion sensors, in general, performed better than that of accelerometers sensors. Lee et

al. [56] used various NNs to determine, first, a NN was used to determine the state

of the participant is either static (lying or standing) or dynamic (walking, driving,

up/down stairs). Second, two NNs were used to determine which static or dynamic

activity was performed respectively.

Another method to address the recognition of activities with multiple classifiers is

using a hierarchical approach where different granularities of the performed activi-

ties were recognized at each level of the classifier. In this context, different hierarchi-

cal levels recognize different levels of complexity (complex and simple or high-level

and low-level activities respectively) from the performed activities. For example,

in the study of Varkey et al. [25], the first stage of the activity recognition process

detects the activity of interest (high level activity) whereas the second stage finds

specific motions (low level activities) within the high level activity. Both stages

were based on SVM classifiers. However, the decisions were based on measuring

the predictions within a two-window method where a label that identifies the outer

window of fixed size is determined by the class of the inner-window, of size pre-

determine during training, that has the largest distance to the hyperplane.

Similarly, the study of Wang et al. [74] also used two levels of recognition. The first

level detected low level activities (gestures) by comparing the collected sequence

with a database of template gestures using Dynamic Time Warping, a method that

measures the similarities between two time series, not necessarily linearly aligned.

The second level combined the gestures and environmental information using an

EP based algorithm for real time classification in a mobile device. This method was

compared with HMMs achieving better accuracy by up to 35 %. The study of Banos

et al. [24] is able to recognize activities using a multiple stages. The first stage con-

sists of multiple simple binary classifiers, per activity and sensor where each clas-

sifier applies a one-vs-all strategy. The output of these classifiers were introduced

to the different levels of the hierarchy which grouped and ranked the output of the

previous stage to decide on the activity level. This way, a decision is made at sensor

level and then at a general level using the selected outputs from each sensor. This

method achieved better performance than multi-class classifiers even when using a

single sensor; in general, good performance is achieved using the SVM classifier.
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The use of multiple sensors in a smart home environment can potentially produce

large amounts of sensor data streams as these sensors report regularly over time.

The study by Cook [65] used data mining techniques in addition to machine learn-

ing techniques, where various classifiers (NBC, HMM and CRF) were applied and

compared for activity recognition individually and in an ensemble. This study [65]

showed that ensemble classifiers and semi-supervised learning models, using the

ensemble for labelling new data, performed better than individual classifiers.

Finally, some studies, such as those of Philipose et al. [73] and Gu et al. [23], mined

the internet for lists and sequences of objects and actions used in completing an

activity and thus avoiding the collection of labelled data and obtaining multiple

combinations of activity patterns. In [73], the activities are inferred using a DBN

classifier, where the models are based on probabilities extracted from the mined in-

formation and the observed data corresponds to the objects that have interaction

with the participant. Similarly, in [23] data is mined from how-to-do websites ex-

tracting lists of objects related to each activity and determining their weight. Based

on the mined activity-object-weight information, a model is constructed using an

EP derived algorithm (contrast patterns) that constructs sets of possible objects used

(fingerprints); a score function is then used to recognize the activity performed com-

paring object fingerprints and a sequence of data readings input. One advantage of

these models is that model parameters can be learned without supervision due to

the data mining-training process.

2.3 Summary

In this chapter, we have presented an overview on previous approaches for the pre-

vention of falls and recognition of activities. Clinical approaches for the prevention

of falls have had limited success with interventions focused to provide supervision

for hospital patients and face several limitations e.g. patients with cognitive impair-

ment, a high rate of falls in first time fallers and falls in acute hospitals. We also

presented methods for the recognition of activities using technological approaches.

The benefits of using wearable sensors, in this review, are counterbalanced by their

need for batteries and equipment maintenance; on the other hand, environmental

sensors leave the participant free of sensors but monitoring is restricted to certain

areas and have been only tested with people living independently. Nevertheless,
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we emphasise on wearable technology as a viable platform for sensor deployment;

moreover, older people have indicated their preference in light, wearable devices for

monitoring in a previous study [19]. We also underscore the application of emerging

techniques such as machine learning for activity recognition and its growing pres-

ence in healthcare applications. We consider the advantages of structured classifiers

as activities are sequential by nature and not necessarily independent of each other.

In the next chapter we present two technological approaches to identify bed exits

using wearable and environmental sensor approaches. The following chapters build

methods for the recognition of bed exits and chair exits in the framework of the

proposed intervention described in Section 1.3.
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Chapter 3

Analysing and Identifying
Bed Exit Movements

This chapter, based on a published paper of the author [87], aims to investigate the

accuracy of two technological approaches using a wearable, low-cost, passive sen-

sor device, Wireless Identification and Sensing Platform (WISP), to identify posture

transitions associated with bed exiting automatically, in order to provide caregivers

with the opportunity to intervene when the bed exit is detected. The two different

technological methods evaluated are: i) WISP located over sternum; and ii) WISP

attached to mattress on the lateral side away from the entry or exit side.

3.1 Methods for Bed Exit Detection

3.1.1 WISP Attached Over Sternum Method

In this method, a WISP tag was located over the sternum of the subjects on top of

their attire with double sided adhesive tape as shown in Fig. 3.1(c). The acceleration

data used in this approach is expressed in a gravitational scale, i.e. in terms of g (1 g

= 9.8 m s−2), and the data was considered in 20 s segments. The algorithm, shown

in Fig. 3.1, uses acceleration readings from the three axes, denoted by: i) yg: the

mediolateral axis; ii) xg: the anteroposterior axis; and iii) zg: the dorsoventral axis,

which vary with the alignment of the WISP sensor with respect to gravity during

postural transitions. The algorithm considers the strength of the wireless signal sent

from the WISP tag and received at an RFID reader antenna referred to as the RSSI

(Received Signal Strength Indicator) [88, 89] to estimate the location of the subject

with respect to the reader’s antennas (such as near the bed or chair). A bed exit event

is defined as a sequence of two actions; a posture transition (PT) of lying to sitting,

shown in Fig. 3.1(a), followed by a PT of sitting to standing as in Fig. 3.1(b). The
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20 second segmentation
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Figure 3.1: Algorithm for bed exiting detection, (a) transition to a lying state: standing to lying

was detected using the anteroposterior axis data. (b) Bed exit event detection:

PTs of standing-to-sitting and sitting-to-standing were classified in the absence of

lying and using sin(θ), RSSI and the duration of the posture transition where a bed

exit event activates an alarm. (c) WISP is attached over a garment on top of the

sternum.

reverse sequence of PTs indicates bed entry. Each of these PTs were differentiated to

determine a bed exit or entry event.

Lying to Sitting and Sitting to Lying

A static lying state can be discriminated from a sitting and standing state by analysing

acceleration readings from the anteroposterior axis (xg). Readings from the antero-

posterior axis will be approximately 0 g when lying and around 1 g when standing.

However to identify possible onset of a bed exit event, lying-to-sitting and sitting-

to-lying PTs as described in part (a) of the algorithm presented in Fig. 3.1 must be

identified.

PTs of lying-to-sitting and sitting-to-lying were detected based on a threshold based

method first established by Najafi et al. [31]. The lying-to-sitting and sitting-to-lying

PTs can be detected using the filtered (to remove noise) vertical acceleration (xg) as

shown in Fig. 3.2. The time of occurrence of a PT (tPT) is the estimated time at which
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(eq. 3.1) based only on accelerometer information.

θ ≈ arctan
(

zg

xg

)
(3.1)

We use the pattern of sin(θ) as a classifier [31]. The sin(θ) values were filtered using

a forward-backward third order Butterworth band pass filter (BPF) with cut-off fre-

quencies at 0.04 and 0.7 Hz to isolate the information signal associated with sitting-

to-standing and standing-to-sitting transitions. From the filtered signal, sinF(θ), tPT

was considered as the time corresponding to the maximum of sinF(θ). The sinF(θ)

at their tPT exceeding a threshold value of 0.16 was observed for sitting-to-standing

and standing-to-sitting PTs. TD is measured as the time interval from the beginning,

tp1, to the end, tp2, of a PT. For sitting to standing and standing to sitting transitions,

TD is measured from the beginning of the leaning forwards phase at tp1 to the end

of the leaning backwards phase at tp2; tp1 and tp2 correspond to the minimum of

sinF(θ) before and after tPT. PTs of sitting to standing and standing to sitting TDs

exceeded a threshold value of 1.725 s. This result confirms that reported by Najafi et

al. [31] using a gyroscope to estimate sin(θ).

RSSI, which describes the strength of the WISP signal detected at an RFID reader an-

tenna, was used as a method of estimating the distance of the person to the antenna

and hence whether the person was standing or sitting at the end of the PT. RSSI is in-

versely proportional to the quadruple power of distance [88, 89]; this indicates that

the distance variation from the antenna due to the displacement of the body will

cause an increase or decrease in RSSI, depending on the location of the receiving

antenna. In the test environment, antennas were located higher than 1.6 m above

floor level; as a result, when standing, the distance from the WISP to the antenna is

shorter than that when the person is sitting. This caused an RSSI negative gradient

when standing-to-sitting and a positive gradient when sitting to standing. RSSI was

reported by the RFID reader for each received signal from a WISP. A sensor at any

given time would have different RSSI readings on different RFID reader antennas,

making each antenna a reference point for location and displacement purposes.

3.1.2 Mattress Attached WISP Method

In this method, we used only one WISP attached to the side of the bed opposite the

side frequently used for getting in or out of bed to avoid damage to the device or
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occlusion from the subject’s body. The signal of interest corresponds to the acceler-

ation readings of the z axis (zp), perpendicular to both gravity and the side of the

mattress, in percentage values (where 50 % is equivalent to 0 g) and its derivative z′p.

If a subject lies or sits on the mattress, the change in the alignment of the sensor as a

result of the deformation of the mattress during the activity causes a change in (zp).

It has been established that if a subject keeps a static posture in bed or if the mattress

is empty, the derivative z′p remains in a defined value range [64]. For this research,

it was observed that the value range for z′p for static posture was [−20, 20]. A static

state was defined as: i) sitting on the bed; ii) lying on the bed; or iii) an empty

bed. Readings from zp obtained when the mattress was empty were observed to be

49.94± 0.11%. The mean value of zp for empty, sitting and lying conditions were

below 50 %, between 50 % and 50.5 %, and above 50.5 % respectively.

An algorithm (Fig. 3.3) was developed considering the changes in zp and z′p to iden-

tify a significant movement in bed as a PT out of a static state or significant move-

ment made by the subject while remaining in a static state. Detection of getting into

and getting out of the bed was realized by monitoring two successive static states. A

possible static state is triggered by: i) the occurrence of an out-of-range event (z′p ex-

iting the static state value range [−20, 20]); and ii) if there were no other out-of-range

event in the following 5 s. However, if the next out-of-range event duration were

shorter than 5 s, the first out-of-range event was discarded and the system waited

for the next event. The first event was discarded because the activity was consid-

ered a significant movement made by the subject while remaining in a static state

and too rapid to qualify as a posture transition. The mean value of zp during the

5 s period was subsequently used to determine the current static state. A transition

was classified as getting into bed if the next state of the patient belonged to either

sitting or lying and was preceded by an empty state. Similarly, a posture transition

was classified as getting out of bed if the next static state were empty and preceded

by a sitting or lying static state. In addition, the next static state was updated with

the current static state for the next classification iteration. When a new static state

did not match any classification, the current static state was left unaltered.
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3.1.4 Data Collection

Each subject was given scripted routines of postural transitions that included: i) get-

ting into bed, lying and getting out of bed; ii) walking (for example walking from the

bed to the chair and vice versa); and iii) sitting down on or getting up from a chair.

Each subject was given three separate scripts with random orderings of these postu-

ral transitions. The algorithms were not customized to each subject. The transitions

were recorded by the patient monitoring software and annotated simultaneously in

the software system by a researcher during the data collection process. This allowed

for subsequent evaluation of the results.

3.1.5 Statistical Analysis

True positives were the correctly identified bed exit events (in the case of WISP on

sternum algorithm, both lying to sitting followed by sitting to standing were de-

tected correctly). True negatives were events of no-interest that were correctly iden-

tified as not bed exits events (for example, getting into bed). False negatives were

known bed exit events that were not identified (i.e. misses). False positives are other

movements that were identified as a bed exit event. Sensitivity and specificity, (3.2)

and (3.3) respectively, of identifying bed entry and exit were then estimated to com-

pare the performance of the two methods. Receiver operating characteristic (ROC)

curves were also evaluated.

Sensitivity =
true positives

true positives + false negatives
× 100 (3.2)

Specificity =
true negatives

true negatives + false positives
× 100 (3.3)

3.2 Results

Subjects performed over 180 PTs including standing-to-sitting, sitting-to-lying, lying-

to-sitting and sitting-to-standing for the WISP attached to a body trunk algorithm

and 100 PTs for the algorithm based on the WISP sensor attached to mattress in-

cluding, sitting, standing (implying bed empty) and lying. The results, shown in

Table 3.1, suggest that the WISP over the sternum method obtained higher sensi-

tivity in detecting entry into and exit out of bed when compared with the WISP on
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mattress method. Whilst both methods recorded similar specificity in terms of de-

tecting entry into bed, the WISP on mattress method had marginally better (97.4 %

vs. 93.8 %) specificity in terms of identification of bed exit events.

Table 3.1: Performance of two technological methods for the classification of posture transitions

(WISP located over sternum vs WISP attached to mattress).

Algorithm Postural

transition

TP TN FP FN SensitivitySpecificity

WISP located over

sternum

Getting into bed

(stand-sit-lying)

39 40 1 3 92.8 % 97.5 %

Getting out of

bed

(lying-sit-stand)

38 45 3 4 90.4 % 93.8 %

WISP attached to

mattress

Getting into bed

(empty-

lying/sitting)

32 37 1 6 84.2 % 97.4 %

Getting out of

bed

(lying/sitting-

empty)

30 37 1 8 79.0 % 97.4 %

Both methods have most of their data scattered close to the left side of the ROC

graphs indicating low False Positives (i.e. false alarms) (Fig. 3.4). We calculated the

areas under the ROC curves (AUC) by trapezoidal integration of the data. The body

worn WISP AUCs were 0.931 and 0.859 for getting in and out of bed respectively

and the sensor on bed algorithm had AUCs of 0.882 and 0.855 respectively. The

WISP over sternum method demonstrated a better response as its curves depicted

closer alignment to optimal performance (top left corner) and a larger AUC for both

getting in and out of bed, compared with the WISP on mattress method.

3.3 Discussion

The main finding of this study was that a single WISP placed over the sternum ac-

curately identified movement into and out of bed. The small, battery free and low
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Loosely fitted hospital garments may not allow the sensor to follow body move-

ments closely affecting the effectiveness of body worn WISP algorithms to detect

bed exit posture transitions. However, since the algorithms are based on thresholds

and patients are automatically and uniquely identified by their electronic ID within

a WISP, it will be possible for staff to adjust the threshold levels for each patient.

Nevertheless the tolerance of the algorithm to inadvertent sensor repositioning and

loosely fitted clothing still needs to be investigated. Finally, evaluation was under-

taken in healthy adult subjects but frail older patients may not get out of or into

bed as quickly or in the same way as younger people. Other types of bed exits,

such as shuffling down to the foot of the bed to exit, or exiting over bedrails; and

those involving use of support, e.g. walking aids or holding on to a chair or table,

also warrant investigation to ensure the system identifies less conventional bed exit

methods.

3.4 Conclusions

In this chapter, we have progressed two technological methods involving WISPs to

detect bed exits accurately, a postural transition often associated with falls in hospi-

tals and aged care settings. It was demonstrated that the WISP over sternum method

was superior and further investigations in older frail people are required. In the fol-

lowing chapters, we evaluate our body worn sensor approach with older people,

our population of interest, to determine the feasibility and performance of ambula-

tory monitoring systems for this population.
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Chapter 4

Conditional Random Field
Method for Identifying

Bed Exit Movements

In previous chapters we have proposed a framework intervention for the preven-

tion of falls in older people based on the use of a passive lightweight sensor em-

bedded RFID tag. We tested two methods for the recognition of bed exits using

these sensors on a population of young adults with results favouring a body-worn

sensor option. The previously used methods favoured the use of sensor data and

received power information from the sensor. Post processing of the data was nec-

essary given the irregular nature of data collection in passive devices; this included

interpolation and digital filtering of the signals. These two methods made classifi-

cation decisions based on empirical decision trees using thresholds achieving high

performance. However, these methods were not tested with an older population;

who, we expect, perform activities differently than younger people.

In the present chapter we focus on the recognition of bed exits in a group of healthy

older people. We introduce a machine learning technique for the classification of

sequential data as is the case of human activity. Furthermore, we extract data of in-

terest from raw sensor readings, avoiding interpolation and filtering processes. We

demonstrate that the use of machine learning is better suited than threshold based

methods in the case of wearable passive sensor data streams from older people. In

addition, we present the perception of the sensor by the trialled population regard-

ing wearability and freedom of movement.

This chapter is divided as follows, Section 4.1 introduces a machine learning clas-

sifier, Conditional Random Fields (CRF), and its suitability as an appropriate tool

for the recognition of human activities from sequential data as is the case of sensor

data streams. We describe inference and training of CRFs based on the linear chain

Page 47



4.1 Conditional Random Fields

structure as used in this thesis. Section 4.2 contains one published article that evalu-

ates the use of machine learning on movement information from older people using

our passive wearable sensor, compares its performance with threshold methods and

presents the perception of users on the wearability of the device.

4.1 Conditional Random Fields

Conditional random fields (CRF), first introduced by Lafferty et al. [92], are prob-

abilistic models learned for structured classification. Human activity, consisting of

complex movements that are always a sequence of actions over time, can be consid-

ered a structured domain where CRFs are appropriately efficient tools.

4.1.1 Conditional Random Fields for Human Activity Recognition

Activities performed by humans are by nature sequential, i.e. every activity has a

sequence of movements or motions that the body naturally follows and depend on

previous body motion. CRF is well suited for the recognition of human activity

as CRF takes in consideration complex dependencies between class labels (activi-

ties), modelling the possible transitions from one activity to the next. In addition,

CRF makes no independence assumptions about the observations; this allows the

incorporation of various overlapping and complex features without violating any

independence assumption. Hence, CRF can use flexible non-independent feature

functions that can incorporate a human expert’s knowledge on the problem domain

into the model. This discriminative model also allows the use of topologies that al-

lows exact inference over the labels such as chains or trees. This chapter focuses on

the case of linear chain conditional random field structure as this model has shown

high classification performance in the literature [93, 94].

4.1.2 Graphical Representation

The probability distributions in the model can be represented in a graphical form,

where distributions over various variables can be represented as a product of local

functions, each depending on a subset of variables. There is a close relationship be-

tween this factorization to the conditional independence relationships between vari-

ables; where the absence of an edge between two variables, represented by nodes
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yt−1· · · yt yt+1 · · ·

x

Figure 4.1: Graphical representation of a liner chain conditional random field

in the graph, indicates conditional independence between these two variables. This

means that two random variables A and B are said to be conditionally independent

given a third random variable C if their conditional probability distributions are also

independent

p(A = a, B = b|C = c) = p(A = a|C = c)p(B = b|C = c)

We use the notation (A ⊥ B|C) to indicate that A is conditionally independent of B

given C [95].

In undirected graphical models such as that of CRF, the model structure has direct

consequence on the efficiency of the inference process. For example, exact inference

tends to be intractable when the graph structure contains loops. The case of a linear

chain CRF, our case of study, is shown in Figure 4.1, where the sequence of observa-

tion variables of length T given by X = {xt}T
t=1 = {x1, x2, · · · , xt, xt+1, · · · , xT} corre-

sponds to a label sequence Y = {yt}T
t=1 = {y1, y2, · · · , yt, yt+1, · · · , yT} and any indi-

vidual variable yt can take a value from the finite set of class labels Y = {1, · · · , |y|}.
The conditional independence in this case, for example, can be seen with variables

yt; which are conditionally independent if all paths between any pair of nodes

are blocked by an observed variable. We can see that all paths between nodes

through X are blocked. Hence, yt−1 is conditionally independent of yt+1 for all

t ∈ {2, · · · , T − 1}; this is equivalent to a first order Markov assumption over the

label sequence.

Let G = (V, E) be an undirected graph with edges E and vertices or nodes V =

X ∪ Y. Given the collection of cliques (complete subgraphs) in G, C = c ⊂ V, the

probability distribution of an undirected graphical model is defined as the product

of its factors of the form φc(xc, yc), where each factor is a function over clique c ⊂ V.

This factorization is performed such that conditionally independent variables are

not within the same factor, i.e. they belong to different cliques. The joint probability
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can be written in the form

p(X, Y) =
1
Z ∏

c∈C
φc(xc, yc) (4.1)

where factor φc is a non negative function called a potential function of the variables

within a clique c ∈ C. The normalization constant Z, also called partition function,

ensures the distribution of p sums to 1 and defined as Z = ∑V ∏c∈C φc(xc, yc). A

challenge in undirected graphs is the calculation of Z as the summation is over all

possible variables; this makes the computation of the joint probability p(X, Y) in-

tractable.

Given that graph G is a linear chain where its cliques are the edges and vertices, G

meets the local Markov independence criteria as any node yt ∈ Y is independent of

the rest of nodes in the graph given its immediate neighbours. By the Hammersley-

Clifford theorem [96, 97], which states that a strictly positive distribution that fol-

lows the Markov independence criteria can be represented by the factorization on

cliques that cover all nodes and edges of G. Thus, the distribution over the label

sequence Y given X has the form.

p(Y|X) =
1

ZX
∏
c∈C

φc(xc, yc) (4.2)

where C is the set of all cliques defined by the graph and the biggest possible clique

is two neighbour nodes; the normalization constant ZX is computed by summing

over all possible label sequences, which is tractable in linear chains, and has the

form

ZX = ∑
Y

∏
c∈C

φc(xc, yc) (4.3)

In the case of linear chain CRF, the cliques of the graph contains every pair of nodes

of variables Y and the observation sequence, so ct = {yt−1, yt, X}. Moreover, the

non-negative potential function can be defined as:

φct(yct , xct) = exp (〈λ, f (yt−1, yt, X)〉) (4.4)

where the weight λ is a weight vector over the number of feature functions f (). The

weight vector is the model parameter which is learned during training. The feature

functions represent properties from the variables and the interactions between them,

they operate on a set of variables that form a maximal clique in G.
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Feature functions, formally, can be any function that maps both sets of variables,

observations X and labels Y, to a real number i.e. f : X × Y → R. However, these

are often considered as indicator functions and the value of the feature function is

given by the weights these functions are multiplied to. Generally, two types of fea-

ture functions are defined; we have transition feature functions which in the case

of a chain have the form: ft (yi−1, yi, X) = 1{yi−1=m}1{yi=n} that depends on the pre-

vious and current label and state feature functions, 1 is the indicator function, and

m and n are possible label values from the label set Y . We also have emission or

state feature functions which correspond to an observation-label pair of variables

and has the form: fe (yi−1, yi, X) = 1{yi=n}1{xi=o}, where o is the value of an obser-

vation data. In the case of human activity we can consider for example a transition

feature function that assesses the transition between two postures, for example if

two possible activity labels are lying on bed and sitting on bed, we have the fea-

ture function ft (yi−1, yi, X) = 1{yi−1=”Lying on bed”}1{yi=”Sitting on bed”}. Similarly, in the

case of emission feature functions, if we consider for example the label to be ”Ly-

ing on bed” when readings of an accelerometer to be 0 m s−2, we have the function

fe (yi−1, yi, X) = 1{yi=”Lying on bed”}1{xi=0 m s−2}.

Finally, the conditional distribution can be written as

p(Y|X; λ) =
1

Z(X)
exp

(
T

∑
t=1
〈λ, f (yt−1, yt, X)〉

)
(4.5)

where the normalization term or partition function Z(X), is given by

Z(X) = ∑
Y

exp

(
T

∑
t=1
〈λ, f (yt−1, yt, X)〉

)
(4.6)

which sums over all possible sequences, which is tractable in chain structures.

4.1.3 Inference

In this section, we seek to find the most likely sequence of labels for Y for a given

input sequence of observations X. We also use inference during training as we need

to efficiently calculate the normalization function Z(X).

In a linear chain, these tasks can be performed exactly with the belief propagation

algorithm [98, 79]. The expression for the partition function in (4.6) can be expanded
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and summations grouped for variable elimination [95] as

Z(X) = ∑
yT

∑
yT−1

φ(yT−1, yT , X) ∑
yT−2

φ(yT−1, yT−2) · · ·

∑
y2

φ(y2, y3, X) ∑
y1

φ(y1, y2, X)φ(y0, y1, X) (4.7)

From (4.7), we can iteratively eliminate sums of the internal variables; this approach

reduces exponentially the amount of calculations to perform [99]. We define a set

of forward variables αt that store the intermediate summations. Hence, for the first

elimination on the inner-most summation, we consider the term α1(y1) = φ(y0, y1, X)

which is a chain start initialization potential; and the term for the first sum is:

α2(y2) = ∑
y1

α1(y1)φ(y1, y2, X) (4.8)

The partition function is then of the form

Z(X) = ∑
yT

∑
yT−1

φ(yT−1, yT , X) ∑
yT−2

φ(yT−1, yT−2) · · ·∑
y2

φ(y2, y3, X)α2(y2) (4.9)

where calculations are reduced by summing over y1.

We generalize the term α to be of the form:

αt(yt) = ∑
yt−1

αt−1(yt−1)φ(yt−1, yt, X). (4.10)

Therefore recursive computations of alpha results in the calculation of Z(X) as:

Z(X) = ∑
yT

αT(yT) (4.11)

Note we can also perform a backwards recursion over (4.7) where the summations

are performed in reverse order. We initialize the backwards chain with initialization

term βT(yT) = 1, and the recursive term beta is defined as:

βt(yt) = ∑
yt+1

βt+1(yt+1)φ(yt, yt+1, X). (4.12)

Hence, we can also calculate the partition function as Z(X) = ∑y1
β1(y1)φ(y0, y1, X).

To calculate the marginal probabilities, p(yt|X), for every element in a sequence, we

compute the summation over all other elements in the sequence:

p(yt|X) = ∑
y−t

p(y|X) (4.13)
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where y−t denotes all elements of the sequence except t i.e. y1:t−1,t+1:T, hence the

expanded formulation for the marginal probability p(yt|X) is:

p(yt|X) =
1

Z(X) ∑
y1

· · · ∑
yt−1

∑
yt+1

· · ·∑
yT

φ(y0, y1, X)φ(y1, y2, X) · · ·

· · · φ(yt−1, yt, X)φ(yt, yt+1, X) · · · φ(yT−1, yT , X) (4.14)

reducing variables from the start and the end of the sequence using (4.10) and (4.12),

we have the expression for the marginal to be

p(yt|X) =
1

Z(X)
αt(yt)βt(yt) (4.15)

Note this means, that to infer the assignment of a label in a sequence we require

past, present and future information for every variable yt in the sequence.

In particular, we are more interested in calculating the most likely label for each

variable yt, i.e. argmaxyt
p(yt|X); instead of finding the most likely labelling for the

sequence Y, i.e. argmaxY p(Y|X). Calculation of the latter is possible using the Viterbi

or max-product algorithm [79], which is similar to the forwards and backwards ap-

proach previously discussed but instead of using summations in (4.7) these are re-

placed with maximization.

4.1.4 Training

Let us consider a set of N training sequences N = {X(n), Y(n)}N
n=1, where each pair

(X(n), Y(n)) is independent and identically distributed to any other pair of training

sequences in N . We seek to determine the set of weights λ that maximizes the

conditional probability p(Y|X). However, it is more convenient to work with the

log-likelihood as we are working with logistic regression functions. Therefore, we

maximize the function L(λ).

L(λ) =
N

∑
n=1

log p(Y|X; λ) (4.16)

L(λ) =
N

∑
n=1

T

∑
t=1
〈λ, f (y(n)

t−1, y(n)
t , X(n))〉 −

N

∑
n=1

log
(

Z(X(n))
)

(4.17)

In order to avoid overfitting the likelihood is penalized with a term that affects those

weights with large norm [100]. A common regularization method is the square of
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the `2 norm of the weight vector multiplied by a regularization parameter 1/2σ2

that determines the degree of penalization. Other types of regularization are pos-

sible such as the `1 norm; however, throughout this thesis we use the `2 norm for

regularization. The log-likelihood is then the expression:

L(λ) =
N

∑
n=1

T

∑
t=1
〈λ, f (y(n)

t−1, y(n)
t , X(n))〉 −

N

∑
n=1

log
(

Z(X(n))
)
− ‖λ‖

2
2

2σ2 (4.18)

We calculate the gradient of L with respect to the weights.

∂L
∂λk

=
N

∑
n=1

T

∑
t=1

fk(y(n)
t−1, y(n)

t , X(n))−
N

∑
n=1

1
Z(X(n)))

∂Z(X(n))
∂λk

− λk
σ2 (4.19)

∂L
∂λk

=
N

∑
n=1

T

∑
t=1

fk(y(n)
t−1, y(n)

t , X(n))−
N

∑
n=1

1
Z(X(n))) ∑

Y′
exp

(
T

∑
t=1
〈λ, f (y′(n)

t−1, y′(n)
t , X(n))〉

)

T

∑
t=1

fk(y′(n)
t−1, y′(n)

t , X(n))− λk
σ2

(4.20)

∂L
∂λk

=
N

∑
n=1

T

∑
t=1

fk(y(n)
t−1, y(n)

t , X(n))−
N

∑
n=1

∑
Y′

p(Y′|X(n))
T

∑
t=1

fk(y′(n)
t−1, y′(n)

t , X(n))− λk
σ2 (4.21)

The first term of the gradient corresponds to the sum of the occurrence of each fea-

ture in the training set. The second term corresponds to the expectation of each

feature under the model distribution p(Y|X; λ), which can be computed efficiently

using the belief propagation method in the previous section.

In terms of optimization of the log likelihood function, we note the function in (4.18)

is concave as the expression of the form log ∑ exp(), found in the second term of

(4.18), is convex. Similarly the regularization term is convex, and the first term in

(4.18) is linear, assuring the log likelihood to be concave and that there is a global

optimum.

There are multiple optimization methods, in the work of Lafferty et al. [92] an iter-

ative scaling algorithm is used to maximize the log likelihood function. However,

faster methods based on gradient-based optimization such as conjugate or mixed

conjugate gradient descent and the limited memory BFGS (L-BFGS) [101]. L-BFGS

is a second order optimization algorithm, faster than conjugate gradient methods

which are first order methods. L-BFGS approximates the calculation of the inverse

Hessian matrix and uses a limited amount of memory. Therefore, the method is
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not interested in exactly approximating the Hessian matrix, but to determine the

direction of update. Moreover, L-BFGS has performed well compared to conjugate

gradient methods [102, 103].

This section provided a brief introduction to CRFs and its suitability for activity

recognition; the following section focuses on the application of this sequential learn-

ing algorithm into activity recognition methods for falls prevention.

4.2 Recognition of Bed Exits Using CRFs

The article contained in this section is a conference paper that introduces CRFs into

motion data from healthy older people in two datasets using the W2ISP. We compare

the prediction of complete sequences of activities from our method with an empir-

ical threshold based method as used in the previous chapter and demonstrate the

advantages of using CRFs in the detection of bed exits.

R.L. Shinmoto Torres, D.C. Ranasinghe, Q. Shi and A. Sample. ”Sensor enabled

wearable RFID technology for mitigating the risk of falls near beds”, 7th Annual

IEEE International Conference on RFID, pp.191–198, 2013. (Best paper finalist).
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Abstract—The increasing ageing population around the world
and the increased risk of falling among this demographic,
challenges society and technology to find better ways to mitigate
the occurrence of such costly and detrimental events as falls.
The most common activity associated with falls is bed trans-
fers; therefore, the most significant high risk activity. Several
technological solutions exist for bed exiting detection using a
variety of sensors which are attached to the body, bed or
floor. However, lack of real life performance studies, technical
limitations and acceptability are still key issues. In this research,
we present and evaluate a novel method for mitigating the
high falls risk associated with bed exits based on using an
inexpensive, privacy preserving and passive sensor enabled RFID
device. Our approach is based on a classification system built
upon conditional random fields that requires no preprocessing of
sensorial and RF metrics data extracted from an RFID platform.
We evaluated our classification algorithm and the wearability
of our sensor using elderly volunteers (66-86 y.o.). The results
demonstrate the validity of our approach and the performance is
an improvement on previous bed exit classification studies. The
participants of the study also overwhelmingly agreed that the
sensor was indeed wearable and presented no problems.

I. INTRODUCTION

Falls occur commonly in residential care and hospitals,

especially at night and in the surroundings of the bed [1]–[3].

Falls are costly as patients have a longer length of stay (LOS)

at hospitals [4] and can result in anxiety, depression and a loss

of independence; similarly, caregivers and nurses may also be

affected by psychological trauma [5]. Monitoring the patient

and recognizing their high risk falls related activities provide

an opportunity to intervene and prevent a fall or provide

immediate attention from a caregiver [6], [7] as opposed to

falls detection [8], [9]. However, a fall detection strategy does

not server as a falls mitigation strategy.

Previous studies were focused on detecting bed exits. In

the case of methods in [6], [7], [10]–[12], these were based

on one or multiple sensors strategically placed on or around

the bed. Most of these methods involved pressure sensors

achieving varying performance results as a consequence of

the multiple types of sensing units employed. Furthermore,

pressure sensors were found unreliable with patients lighter

than 45.4 kg, a common weight for frail patients, but improved

performance was achieved in combination with other sensors

[12]. The location of these units (bed mats, bed rails, floor

mats) makes them susceptible to constant mechanical stress,

requiring regular maintenance and/or replacement. In addition,

these units need thorough cleaning as they may be exposed to

body fluids and/or other contaminated material.

Other studies focused on human activity recognition. These

methods used different sensor systems, which can be divided

either into worn sensors or environment sensors. However,

a more accurate categorisation of these studies can be done

based on their classification system: i)techniques based on

threshold based algorithms; and ii)machine learning based

approaches. From the former, in [13]–[16] sensors such as

accelerometers and gyroscopes were used to extract physical

features as input to a threshold based classification system as

first proposed by Najafi [13]. Most methods required the use of

bulky battery powered devices with multiple sensors that were

attached to the subject’s body. This approach implies heavy

instrumentation of the subject which is not practicable with

frail elderly subjects, and a high maintenance cost [13]–[15].

Furthermore, these methods relied on heavily preprocessed

data e.g. multiple filtering stages, prior to the classification

algorithms to isolate information content or extract desired

features. This results in unwanted delays, added computational

overhead and algorithmic complexity; all of which are detri-

mental to a responsive, scalable system [13]–[16].

Studies based on machine learning based classifiers, such as

those of [17]–[22], included hidden Markov models (HMM),

conditional random fields (CRFs) and support vector machines

(SVMs). Generally, these methods demonstrated better perfor-

mance than threshold based methods but to varying degrees

of success. In the case of [17]–[19], these techniques suffered

similar practical deficiencies as those of the threshold based

methods i.e. battery powered equipment and subject instru-

mentation. In contrast, the methods in [20]–[22], all subjects

were instrument free but the setting was around independent

living, which is not the case for our target population. In

addition, results showed great variability, this inconsistency

affects the application of these techniques to elder care in

a medical environment as result discrepancy leads to poor

reliablity and lack of acceptance over time of a proposed

strategy.

In order address the shortcomings of previous methods for

bed exit detection, in this article, we propose an accurate, low

978-1-4673-5750-0/13/$31.00 ©2013 IEEE
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computational overhead, low latency and low cost method

for mitigating the risk of falls caused by bed exiting of

elderly patients in hospitals and residential care environments.

Furthermore, have addressed the issues of privacy concerns

around using video based approaches [23] by indirectly infer-

ring the activities of patients.

Firstly, our proposed approach utilizes a light, low cost,

inexpensive, battery free RFID tag called Wearable WISP

(Wireless Identification and Sensing Platform) or W2ISP [24]

(see Section II-A). This sensor is worn by elderly patients

attached to their clothes (Figure 1(b)). Secondly, in order to

improve the system responsiveness we keep the computational

cost low by using a single accelerometer per person and

minimum data preprocessing by eliminating filtering steps.

Responsiveness is a key consideration because of the urgency

of attending to a high risk situation (such as bed exiting)

requires a prompt system response to provide a timely alert to

a caregiver to proceed to an intervention in a hospital environ-

ment as described in [25]. Thirdly, to consider the dependency

among consecutive activities, we use CRFs [26] to model

and predict activities with flexibility of introducing various

features to improve the performance of previous approaches

[16]. Finally, since the use of video images for monitoring

systems has been perceived as intrusive [23] to a patient’s

privacy, our approach preserves the privacy of a person. In

summary, the contributions of this paper are as follows:

• We designed a simple approach for supporting bed exit

classification using a single truly wearable device for

the first time (to the best of our knowledge). The de-

vice is small, low cost, battery-less and can be worn

continuously; moreover, the device relies on a single

accelerometer sensor and is able to protect a patient’s

privacy.

• Utilize noisy and incomplete information effectively for

activity classification by using conditional random fields

based algorithm.

• Present a method that has been proven in elderly popu-

lation as we have conducted extensive trials with elderly

volunteers (66 to 86 years old), closely resembling the

target population for this application as opposed to our

previous trial using healthy adult volunteers [16].

The rest of the paper is organized as follows, Section II gives

a brief overview the overall system and the data sources used;

Section III describes the experimental settings and procedures,

Section IV describes our experimental results and we present

our conclusions in Section V.

II. SYSTEM OVERVIEW

The proposed monitoring system consists on a wireless

sensing platform, an activity recognition system (ARS) and

a bed exit alert system (BEAS).

A. Wireless Sensing Monitoring Environment

The wireless sensor, W2ISP [24], is a passive RFID tag

based on the WISP developed in [27] (see Figure 1(a)). A

W2ISP includes a tri-axial accelerometer (ADXL330) and a

TABLE I
PARAMETERS REPORTED BY A READ EVENT FROM THE RFID READER)

Parameter symbol

Tag Identification tID

Antenna Identification aID

Acceleration on X* axis av

Acceleration on Y* axis al

Acceleration on Z* axis af

Frequency Channel fCH

Phase φ

Received Signal Strength Indicator RSSI

*X, Y and Z axes are relative to the sensor; vertical(v), lateral(l) and
frontal(f) axes are relative to the subject.

microprocessor (MSP430F2132) and is powered by the elec-

tromagnetic (EM) energy radiated by nearby RFID antennae.

The accelerometer works in low power mode and therefore

requires minimum power to read the sensor. Although the low

power operation mode increases read rate, it also introduces

noise. The W2ISP differs mainly from the WISP [27] in its

wearability and increased read range as the tag employs an

improved flexible antenna that isolates human body effects

by using a conductive fabric. Experimentally, the sensor has

reported a maximum read range of 4 m from [24] when

attached over a person’s chest area, on top of their clothing

(see Figure 1(b)).

Three or four antennae located around the patient’s room,

directed mainly towards the chair, bed and walking area, due

to the high risk of falls associated with these areas [1] are

used to capture data from W2ISPs. Antennae are powered

by an Speedway Revolution reader operating at the regulated

Australian RF frequency band of 920-926 MHz operating at a

maximum regulated power of 1 W. Antennae were strategically

located to closely simulate a real hospital room deployment

(see Section III-A). Furthermore, the reader is capable of

reading and discriminating multiple tags simultaneously. The

information from the reader, shown in Table I, is reported to an

in-house designed middleware which formats and timestamps

the data for further analysis by the classification algorithms.

B. Classification Problem

We must consider two key issues related to our classification

system. First, we need to understand the sequence of activities

comprised in bed exiting. Based on observations of elderly

subjects we considered the sequence of states:

• Lying

• Sitting on bed

• Out of bed.

Secondly, we need to acknowledge the limiting nature of

RFID technology. The effects of variable distance to antenna,

destructive interference due to multipath, RF band interference

and occlusion by RF opaque objects such as the human

body, cause irregular, incomplete and noisy readings which

are delivered to the ARS. Hence, the sequence of activities

from the sensor that describe a bed exit can be discontinuous
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TABLE V
NEAR BED RELATED ACTIVITY RECOGNITION IN BOTH DATASETS

Activities RoomSet1 (%) RoomSet2 (%)

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

Lying 99.62±0.25 99.74±0.21 99.43±0.59 97.45±4.08 98.15±4.17 94.66±5.71

Sitting on bed 96.37±1.94 92.51±6.11 97.78±1.07 94.67±6.55 78.28±11.42 96.08±5.35

Out of bed 96.62±2.02 87.97±4.99 97.76±2.09 96.07±5.64 71.84±12.61 98.04±3.33

TABLE IV
ARS OVERALL ACCURACY AND RELATIVE COMPOSITION OF EACH

LABEL IN RESPECTIVE DATASETS (%)

RoomSet1 RoomSet2

ARS Overall Accuracy 96.34±1.94 94.14±6.56

Composition for Lying 59.04 88.67

Composition for Sitting on bed 28.86 7.11

Composition for Out of bed 12.09 4.21

TABLE VI
BED EXIT RECOGNITION IN BOTH DATASETS, RESULTS IN %

Method Dataset Accuracy Sensitivity Specificity

BEAS
RoomSet1 84.55±6.78 78.24±12.6 87.33±5.35

RoomSet2 86.9±8.85 90.14±13.47 86.57±11.11

Baseline RoomSet1 68.28±5.9 14.45±15.4 91.14±5.85

[16] RoomSet2 69.6±8.36 19.02±19.72 93.36±4.8

of RoomSet2 the highly accurate result is partly due to the

greater composition of Lying observations (> 88%). Samples

from lying states achieve a greater prediction accuracy than

other labels in that dataset (see Table VII). This disparity in

observations is also due to the lack of observations (sensor

reads) in positions other than lying attributed to the change in

antenna disposition. The lack of reads result from the distances

between the W2ISP wearer and antennae being maximised

as the antenna facing the subject sitting on bed (antenna4

in RoomSet1) is moved to being almost on top of the subject

(antenna3 in RoomSet2) as seen in Figure 4. From this ceiling

position, readings can be hindered due to obstruction by folds

in the clothing breaking the ground plane of the sensor or

other body parts such as the head obstructing RF signals.

In addition, we have to consider the reduced number of

antennae. The likelihood of having a feeding antenna in range

to generate a response from cold start reduces as the subject

moves from one position to the next, as demonstrated in

SectionIV-A.

Comparison of both datasets clearly indicates that RoomSet1

data achieves better accuracy (≥ 96%), sensitivity (≥ 88%)

and specificity values (≥ 97%) as shown in Table V. All

states achieved high accuracy values (> 94%), particularly in

RoomSet1, in which sensitivity values were noticeably higher

than those in RoomSet2. These results indicate that the system

is able to differentiate between subjects Lying and Sitting-

on-bed, which is an added advantage in patients that are not

supposed to get up from bed unsupervised, especially at night

TABLE VII
BED EXIT RESULTS FROM PREVIOUS STUDIES

Study Author Sensitivity(%) Specificity(%)

Hilbe [11] 96.0 95.5

Bruyneel [10] 91.0 100.0

Ranasinghe [16] 90.4 93.8

time where a Sitting-on-bed state implies that the patient is

probably attempting to go to the toilet. Another important issue

to notice is that in all cases the level of specificity or false

alarms is relatively low (≥ 94.6%), explicitly in RoomSet1

where specificity ranges from 97.8% to 99.4%.

We evaluate the BEAS performance using ARS predictions.

The results are shown in Table VI where accuracy for both

datasets is > 84%. Results indicate that RoomSet1 deployment

achieves lower performance than that of RoomSet2. However,

these results seem to contradict those of individual label

predictions where RoomSet1 achieved higher performance

values for all labels when compared to data from RoomSet2.

The explanation lies in the higher numbers of scattered label

recognition errors resulting in increased FP and FN values in

RoomSet1. Furthermore, in RoomSet2, the low composition of

Out-of-bed observations does not reduce performance of bed

exit classifications as only one predicted label is enough to

trigger an alarm.

We compare these results with those of the Baseline method

applied to both datasets. We notice that accuracy and sen-

sitivity values are much lower than those of BEAS because

the baseline method requires detection of PTs in order to

perform its threshold based classification. The method fails to

detect most PTs due to incomplete data from elderly subjects,

producing many FNs.

Furthermore, our proposed bed exit classification algorithm

achieved a low false alarm rate (specificity > 86%). This result

is important as a high false alarm rate can cause frustration

in caregiver staff affecting the acceptance of the intervention.

Although the baseline method depicts a larger specificity, it is

only because of a general failure to detect possible events to

evaluate rather than the classifier not producing FPs.

Moreover, we compare these results with previously de-

veloped fall prevention devices [10], [11], [16] shown in

Table VII. Hilbe et al. [11] achieved sensitivity and specificity

values in the order of 95%. The system is composed of a

pressure sensor mounted on the bed rails; however, bed rails

are not recommended as a method to prevent falls as it may

increase the height of a fall and the risk of related injuries
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[3], [29]. Bruyneel et al. [10] used multiple sensors (presence,

movement, temperature) built in a bed mat. This method

achieved no false alarms but has an increased associated cost

due to demands of servicing and cleaning as the product is

exposed to body fluids from patients. Moreover, mats are

prone to displacement due to body movement and this method

confirms a bed absence signal after a 2 minute delay. Similarly,

in the baseline method [16] a 20 s data segmentation strategy

is employed resulting in maximum response delays of 20 s.

In contrast to these methods, our proposed system achieves

comparative results and offers additional advantages as it is

wearable, wireless, inexpensive, maintenance free and free of

heavy data cleaning and conditioning steps such as filtering;

therefore, free of processing delays that might withhold the

timely execution of a high risk alarm [10], [16].

C. Wearability of the Wireless Sensor Equipment

This section investigates the users perception on the wear-

ability of the device among the elderly volunteers. A short

questionnaire filled out by each subject after their trial. The

questionnaire was designed based on the work of [30] which

identified several factors for evaluating wearable sensors. In

our study, we focused on the use of the equipment and the

restrictions on freedom of movement of the user while wearing

the equipment. The questions were awarded a score from

an 11 level point system (0-10). Although the questions are

formulated in either positive or negative statements, in all

cases a score of 10 demonstrate complete satisfaction on both

question sets. The questions for measuring the wearability of

the W2ISP were:

1) Wearing the equipment was no problem.

2) I just forgot I am wearing it.

3) I am satisfied using the equipment.

4) I find the equipment easy to use.

The specific questions for measuring freedom of movement

were:

5) How did you experience wearing the equipment while

performing activities?

6) Were you hindered by the equipment while walking?

7) Were you hindered by the equipment while sitting?

8) Were you hindered by the equipment while lying?

The tabulated results (Table VIII) show great satisfaction

towards the equipment and its wearability. In particular the

results indicate that the elderly volunteer participants were not

constrained or obstructed by the device while performing their

activities. The system achieved average scores of 9.8 and 9.7

for both question sets. In general female subjects provided

higher scores on all questions than male subjects with the

exception of Question 8. Furthermore female responses to

Question 8 has the largest SD as well as the lowest score,

perhaps indicating that females may have felt some discomfort

when lying with the sensor attached over the breast bone.

However, further studies (such as a focus group) will be

required to develop a more definitive conclusion. Overall, these

results overwhelmingly support the use of the W2ISP as a

wearable and easy to use device, suitable for use with elderly.

TABLE VIII
SCORE AWARDED TO EQUIPMENT ACCEPTANCE AND FREEDOM OF

MOVEMENT: AVERAGE ± SD

Trials Population

Question Overall Males Females

1 9.88±0.48 9.5±1.00 10±0.00

2 9.7±0.84 9.5±1.00 9.76±0.83

3 9.76±0.66 9.5±1.00 9.84±0.55

4 9.88.±0.48 9.5±1.00 10±0.00

Average Equipment 9.8±0.63 9.5±1.00 9.9±0.5

5 9.7±0.68 9.5±1.00 9.76±0.6

6 9.88±0.48 9.5±1.00 10±0.00

7 9.88±0.48 9.5±1.00 10±0.00

8 9.29±1.57 9.5±1.00 9.23±1.73

Average Freedom of
Movement

9.69±0.92 9.5±1.00 9.75±0.92

V. CONCLUSION

In this article, we provide a novel approach to bed exit

classification for mitigation the risk of falls. We considered

the use of raw signals i.e. with no preprocessing such as fil-

tering, to achieve bed exit alarming capability. We proposed a

classification algorithm based on CRFs to correctly predict the

label of each observation and ultimately distinguish whether

the subject has exited the bed using these labels. The system

was successful evaluated using two datasets.

The results demonstrate that the proposed system has similar

performance as more expensive, bulky bed exit alarm sys-

tems requiring regular maintenance.In addition, our proposed

classification algorithm is a significant improvement over the

threshold based algorithm. Furthermore our approach achieves

high accuracy with incomplete and noisy raw data.

Furthermore, the system can be developed for real time

processing as the proposed classification algorithm is capable

of making a prediction for every observation. In addition, the

system is capable of multi-tag reading, thus, capable of multi-

patient monitoring and alarming. In terms of responsiveness

our system provides minimal delay, however this does not

guarantee a prompt intervention from respondents (carers).

Further trials are needed to establish the effectiveness of our

approach as a falls prevention strategy.

The use of two room configurations shows that the use

of more antennae does not necessarily improve the overall

performance of the system. The use of a more focused antenna

placement as in RoomSet2 where antennae were particularly

oriented towards high falls risk locations such as the bed and

chair achieved higher performance as opposed to RoomSet1

which covered a wider horizontal plane. Furthermore having

a unnecessarily larger area of coverage also lead to more

scattered errors due to the relatively large numbers of readings

obtained from locations outside the vicinity of the bed. How-

ever having a more a more focused area of coverage makes

the system more sensitive to a varying room configurations.

However, given that clinical rooms in the same hospital or
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residential care environment have similar layouts, classifier can

be trained to adapt to new conditions.

This research also demonstrates the feasibility of using the

Wearable WISPs as an activity monitoring device. The use of

such device is clearly advantageous as an inexpensive, wire-

less, maintenance free device can easily be discarded when

exposed to a high risk infection environment unlike using bed

rails or bed mats. The feedback given from participants in the

study confirmed the device to be wearable and non-obstructive.

A practical implementation of the solution will however

imply a one time infrastructure cost of deploying commercial

UHF readers and antennae. Nevertheless, RFID hardware

prices have been falling as RFID technology is more widely

adopted. The only recurrent cost component is the tags,

however, the cost of the tags are continuing to diminish. At

present the W2ISP is expected to cost around $2 to $3 when

mass produced [24], [31].

Finally, our group is currently working on collecting infor-

mation from real patients in their clinical environment to verify

the performance of this study with real patient data. Our future

work will also involved extending the classification algorithms

to include the prediction of other risk related activities such as

getting up from a chair, going to the toilet and walking without

a walking aid. In order to improve classification accuracy

we are currently considering support vector machine based

algorithms that incorporate learning so that we can move

towards a system that evolves over time.
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Chapter 5

Sensor Data Segmentation
Methods for Real Time

Inference with CRF

In the previous chapter we have demonstrated the better performance of a Con-

ditional Random Fields based method in the recognition of bed exits, in complete

sequences, when compared to a threshold based classifier tested with healthy older

adults. We have also evidenced that the response of a classifier to different pop-

ulations such as young and older people are very different and that recognizing

activities in older people is a harder problem to solve. However, the classification

method considered the batch processing of sequences of activities and only consid-

ered instantaneous features, extracted from every received sensor observation.

The article contained in this chapter is a conference paper that consider these two

limitations. First, we evaluate various segmentation methods and relevant contex-

tual information features extracted from fixed and dynamic sized sliding window

based segments to improve the performance of a CRF classifier. Second, based on

the sum product algorithm, we modify the class prediction model to obtain marginal

probabilities for every incoming sensor observation as opposed to inferring a com-

plete sequence of activities, e.g. using the Viterbi algorithm, as in the previous chap-

ter.
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Abstract. The development of human activity monitoring has allowed
the creation of multiple applications, among them is the recognition of
high falls risk activities of older people for the mitigation of falls occur-
rences. In this study, we apply a graphical model based classification
technique (conditional random field) to evaluate various sliding window
based techniques for the real time prediction of activities in older sub-
jects wearing a passive (batteryless) sensor enabled RFID tag. The sys-
tem achieved maximum overall real time activity prediction accuracy of
95% using a time weighted windowing technique to aggregate contextual
information to input sensor data.

Keywords: Conditional random fields · RFID · Feature extraction

1 Introduction

The development of accurate human activity recognition methods is a growing
field of study as many applications can be derived from this base. One application
is the mitigation of high falls risk activities of older people in hospitals or age care
facilities, as falls events occur especially in the bedroom [1]. A correct recognition
of such high risk events can lead to an intervention to mitigate an event that
can potentially cause further physical injury and mental distress [12]. For high
falls risk mitigation the accurate recognition of real time activities is paramount
as most falls occur during transfer activities, which are changes of static activities
or locations (e.g. sit to stand, stand to sit or ambulating) [1,14]. In this article we
consider activity recognition in the context of identifying high falls risk related
activities.

Recent work on real time recognition of events have succeeded using body
sensors [2,4,8,9,13,17], using tri-axial accelerometers, magnetometers and gyro-
scopes. These studies along with research using video images [11,18] or
environment sensors [7,10] required the use of different time or data (number of
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samples, pixels) based segmentation approaches to extract relevant information
for data classification.

The difficulty for real time recognition of activities using sensors is that
individual sensor readings are limited in time-space and by themselves provide
little additional information about the related activity for the classifier to predict
an activity correctly. In order to provide further contextual information to data
collected [6], incoming sensor data stream is segmented for feature extraction
prior to evaluation.

Using data segments is not precise as there is no pre-defined window size and
sizes may differ depending on the application [4,8] or sensor platform used [2,8].
In addition, a passive sensor’s data stream is not continuous and data collected
can be incomplete or noise distorted. These factors can influence the informa-
tion quality of the individual data segment. Moreover, the occurrence and infor-
mation value of future readings are uncertain and the classifier relies exclusively
on current and past information to emit a result. The classifier performance is
also affected by the presence of data from unrelated activities (e.g. distant past
activities’ data or sensor readings from unrelated areas or activities) and data
from unrelated activities may outweigh current activity information in a given
data segment [7].

This paper describes several sliding window segmentation methods for a real
time per sensor datum prediction of human activities from a sensor and ID data
stream from a battery-less wearable radio frequency identification (RFID) plat-
form, called W2ISP [5]. Our main focus is the implementation and evaluation of
the effectiveness of segmentation methods using a multi-class classifier to identify
incoming activity data in real time. We used a conditional random field (CRF)
classifier because of its desirable sequence dependency modelling capabilities.
The main contributions of this study are: (i) development of a real time CRF
based classifier for activity recognition of passive sensor and ID data streams;
(ii) implementation and testing of multiple fixed and dynamic sized windowing
methods for contextual information extraction based on data characteristics;
and (iii) experimental demonstration of the accuracy of these methods using
data gathered from a trial with older subjects (66–86 years old) in a clinical
environment.

The rest of the paper is described as follows: Sect. 2 gives a brief overview of
related work, Sect. 3 discusses the methodology for our windowing approaches.
Section 4 shows the evaluation results from the various methods in the previous
Section and finally conclusions are given in Sect. 5.

2 Related Work

There are several studies with as many approaches for the real time recognition
of human activities using threshold and machine learning classification systems.
Some real time results [4,8,13] imply the timely recognition of body positions or
postures, however, these methods required a data buffer from which the classifier
makes a prediction. Hence, results are available periodically rather than having



386 R.L.S. Torres et al.

an output per individual sensor reading; some studies considered overlapping of
data to provide faster output while having larger data buffers [8]. A study by
Wang et al. [17] used a 1 s sliding window and a smartphone processing platform
producing a recognition delay (time elapsed from ground truth to prediction of
the ground truth) of ∼ 5.7 s. Other real time smartphone based studies relied
on the sensors embedded in the device [9] or were used as a hub for other worn
sensors [2]. Current smartphones are not imperceptible devices and their usage
with older populations needs to be studied.

All these methods used different approaches to segmenting and windowing
data. Most tried empirically different segment sizes to find that which maximized
the resulting accuracy using the same set of features [8,17] or the window selec-
tion was arbitrary [9]; while others were limited by the underlying technology
itself [4]. In addition, most of these studies produced periodical results only and
used battery operated sensors which are bulky and not appropriate for older or
frail subjects. Furthermore, none has been evaluated on an older population.

In the work of Krishnan et al. [7], several methods were applied to evaluate
the best sliding window method for smart home data sets. Each method provided
extra features for added information about the last received sample. The nature
of irregular and incomplete data from environment sensors in the smart home is
similar to that of passive worn sensors in an RFID platform, as is our case. This
research study implements methods adapted from [3,7] to the ID and sensor
data stream from sensor enabled passive RFID devices to evaluate time series
data segmentation approaches for real time classification of scripted activities
from older people.

3 Methodology

In this section, we present the developed windowing methods for feature extrac-
tion and describe the datasets and classification system used. These methods are
based on the passive sensor platform (W2ISP) constraints where signal collec-
tion is irregular, noisy and incomplete. Our RFID deployments used antennae
location to obtain readings from targeted areas of high falls risk activities (in
and around a bed and a chair) in two clinical rooms (Sect. 3.7).

Using a tri-axial acceleration (ADXL330) data stream from a W2ISP we pre-
dicted the activity label (Sect. 3.7) that best represented every datum received.
Our feature vector included: V = [af , av, al, sin(θ), RSSI,AID,�T ] for the
recognition of bed exits, where af , av and al are frontal, vertical and lateral
components of the tri-axial accelerometer sensor, sin(θ) refers to the body tilt
angle, RSSI is the strength (power) of the signal received from the W2ISP by
an RFID reader, AID = {aID1, .., aIDA} (where A is the number of anten-
nae) is the identifier of the antenna that collected the datum and �T is the
time difference between current and previous reading [15]. In [15] we obtained
high accuracy for label detection using batch processing of activities sequences
segmented by trial and by patient with a CRF classifier. In this study, we use
CRF for real time activity recognition and apply different windowing techniques
for feature extraction and predict the activity label of the last received sensor
reading.
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3.1 Activity Windowing (AW)

This approach considers that the system knows in advance the activity that is
being performed and segments the data per each activity for both training and
testing stages. Although knowing the activities performed beforehand in a real
environment is implausible given that the separation of activities is unambiguous,
maximum accuracy is expected from the predicted labels. Given this condition,
we consider this technique our golden standard. However, this approach does
not perform predictions in real-time but predicts samples in different sized pre-
segmented batches where each batch represents a single activity. We use the
generic set of features V for each observed sensor reading (Sect. 3) as input to
the classifier.

3.2 Fixed Sample Windowing (FSW)

This approach considers a sliding window with fixed number of samples. The
windowed sample sequence provides contextual information about the last sam-
ple in the window to enable the classifier to emit a more accurate prediction [7].
Different window sizes can better fit the duration of different activities (labels)
as was the case in Sect. 3.1 when the activities are already known. To illustrate
this case, consider resting positions such as lying or sitting on bed or the chair
that usually last several minutes or hours when compared to dynamic activities
such as walking. The lengths of such events are disproportionate and difficult to
segment in real data; whereas a fixed sample segmentation is simple to produce.

The selection of window size is an empirical process, where the best result
corresponds to the segment length that best fits all activities. For this analysis
additional features are extracted and added to our generic feature vector V as
contextual information. In contrast to [7] the set of extra features corresponds
to the count of events reported by each antenna in the window, as we can differ-
entiate sensor reading origin by the antenna used. Hence, the number of extra
features is equal to the number of antennae present. Moreover, these summed
amounts are further normalized to four levels of importance (0: unused, 1: low,
2: medium and 3: high importance) computed as follows:

F (i, k) =
⌈ 3 ∗ ci,k∑A

j=1 cj,k

⌉
(1)

where A is the number of antennae and ci,k corresponds to the count of antenna
i events in the window for the last reading k.

Two issues are present in this method. First, the window duration can span
a long time and readings from distant past activities can affect the classifier
decision. Second, a large volume of readings from previous activities unrelated
to the current activity or spurious readings from distant antennae covering a
distinct area present in the window can also alter the classifier decision. In order
to meet these issues, weighted features are considered to balance the influence
of unrelated data [7] and are described in Sects. 3.3 and 3.4.
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3.3 Time Weighted Windowing (TWW)

This method is based on FSW in Sect. 3.2, as it uses a fixed sample window.
However, more importance is given to events closer to the last sample to reduce the
effect of historical events on the classifier. This technique gives each sample i in
a window a distinct weight T (i, k) which is a function of the time difference �i,k

between the last received sample k and sample i in the fixed time window. The
evaluation of the weights is defined by an exponential function:

T (i, k) =

{
0 if �i,k >= 1

D
exp (−D ∗ �i,k) else

(2)

where D is the rate of decay, if D > 1 elements very close (�i,k <1 s) are given
priority as the exponential function decays quickly; smaller values of D allows
the function to consider a wider time range of sensor readings. The method also
considers a limited amount of time, bounded by �i,k = 1

D , as larger values of
�i,k provide less weight. The extra features now consist of the sum of the weights
for the readings corresponding to each antenna in the window and replaces the
extra features from FSW method. Hence, the extra features are defined by the
vector: W = [

∑
T (i, k)δ(ai, aID1), . . . ,

∑
T (i, k)δ(ai, aIDA)], where ai ∈ AID

is the antenna corresponding to the ith sample and the function δ(am, an) is
defined as:

δ(am, an) =

{
0 if am �= an

1 if am = an
(3)

In addition, we normalize vector W to levels of importance using (1).

3.4 Mutual Information Windowing (MI)

Similarly to TWW (see Sect. 3.3), this method uses a fixed sample window (see
Sect. 3.2). However, this approach intends to reduce the influence of readings
from antennae focused on areas unrelated to the current activity. In general,
samples of different activities are collected from antennae depending on the
activity location. Nevertheless, readings from distant antennae occur in real data
with low received energy (RSSI), although these readings are rare. We consider
two types of mutual information between the ith sample and the last sample k
in a segmented window: (i) MI1: mutual information (MI) of two consecutive
readings occurring from any pair of antennae as defined in [7] and given in (4);
and (ii) MI2: the MI of two consecutive readings occurring from a given pair
of antennae at any time (i.e. disregards the order of antennae occurrence while
focusing only on antenna relationships), defined in (5), where N is the number
of elements in the training sequence, ai ∈ AID and function δ(.) is as defined
in (3).

MI1(m,n) =
1

N

N−1∑

j=1

δ(aj , am)δ(aj+1, an) (4)

MI2(m,n) =
1

N

N−1∑

j=1

(δ(aj , am)δ(aj+1, an) + δ(aj , an)δ(aj+1, am)) (5)
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The mutual information is built from the entire training data set prior to test-
ing where a square matrix (A×A) with all possible antennae pairs and a triangu-
lar matrix is obtained for MI1 and MI2 respectively. These MI weights are used
to build the extra features, where all sensor readings in a window are weighted
in relation to the last reading and summed in relation to their corresponding
antenna, obtaining the vector W = [

∑
MIr(i, k)δ(ai, aID1), . . . ,

∑
MIr(i, k)

δ(ai, aIDA)] where r = {1, 2}. Vector W is normalized to levels of importance
using (1).

3.5 Dynamic Windowing (DW)

This method considers a time based window of varying size using statistical
properties of the data to continually adapt the window size. This method, first
devised by Jeffery et al. [3] for cleaning of RFID data streams, was applied
because the algorithm balances the need to provide contextual information by
increasing the window size and reducing the window size when sensor readings
become more sporadic. This method considers a stepped window size increments
(0.5 s per sample) but reduction is rapid (halving the window size) when required
[3]. We assume a standard epoch1 duration of 0.25 s and sensor observation
probability of 90% [3]. For this method we use the extra features of the FSW
method (see Sect. 3.2).

3.6 Fixed Time Windowing (FTW)

This method considers a sliding window of fixed time duration T ∗, as opposed
to a dynamic changing time window size as in DW. All readings within the time
interval T ∗ from the last received reading k are considered in a window. Given
the irregular collection of data (due to the nature of the passive device), the
number of samples per segment will differ. For this method we use the extra
features of the FSW method (see Sect. 3.2).

3.7 Datasets

We used data from two clinical room deployments as described in [15]; where
both datasets (RoomSet1 and RoomSet2 ) used four and three antennae respec-
tively. In RoomSet1 one antenna is placed on top of the bed (ceiling) and three
on the walls focusing on the chair and around the bed providing a wide area
of coverage. In RoomSet2 two antennae were placed on top of the bed (ceil-
ing) and one antenna focused on the chair. Fourteen older subjects were trialled
(age:74.6±4.9), wearing the W2ISP on top of their garments. They performed a
series of scripted activities which included: (i) lying (in bed); (ii) sitting in bed;
(iii) sitting in chair; and (iv) ambulating. The CRF classifier was used to predict
these four activity labels. In order to collect the ground truth, activities were
annotated in real time by an observer. The same basic features were extracted

1 Epoch refers to a group of RFID interrogation cycles.
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for each dataset; however, the total number of features differed for both datasets
as the aggregated extra features are based on their antennae deployment.

3.8 Classifier

In this research, we used a linear chain CRF, a model for structured classification
(prediction) [16], as in a previous study [15]. We have preferred this method as
it models the dependencies of activities in a sequence. Due to this advantage
the system is trained using the complete sequence of activities of each training
trial for parameter estimation with the exception of the first method (AW) as
it assumes activities are previously known and independent from each other.
In CRF, training and testing stages require the probabilistic inference of the
target labels (hidden variables). In general, the inference process allows us to
obtain: (i) marginal probabilities of the labels (using sum-product algorithm);
and (ii) the most probable global state of all our hidden variables i.e. maximum
a posteriori (MAP) assignment (using max-product algorithm). Our application
requires real time response, thus we use the sum product algorithm (which only
propagates the messages forwards) to find the marginal probability of the current
hidden variable given the past and current observation efficiently. The prediction
is done by maximizing the marginal probability.

The sum product algorithm propagates messages for every edge (i, j) con-
necting nodes i and j in a graph. In Fig. 1, circles represent the state variables
Y = {y1, . . . , yk} and squares represent factors (node and edge potentials). The
message updating and marginal probability are computed as follows:

mi,k(sk) =
∑

si

(ψ(si)ψ(si, sk)
∏

t∈Ni\{k}
mt,i(si)) (6)

p(sk) = 1
Z ψ(sk)

∏

i∈Nk

mi,k(sk) (7)

where ψ(si) and ψ(si, sk) are node and edge potential respectively, si represents
node i, Ni\{k} represents the set of neighbours of node i with the exception of
node k, p is the marginal probability and Z is a normalization factor. In the case
of our real time application, we are only interested in the marginal probability
of the last variable (yk) given the input observation as shown in Fig. 1, where
the marginal probability of variable yk reduces to:

p(yk | x1:k, λ) = 1
Z(λ,x1:k) ψ(yk;x1:k, λ)mk−1,k(yk;x1:k, λ) (8)

where messages mi,j are calculated using (6) and λ = {λt} represents the
parameters estimated in training. Moreover, the message mk−1,k(yk;x1:k, λ) is
recursive as it depends on previous messages as in the expression mk−1,k(yk;x1:k,
λ) =

∑
yk−1

ψ(yk−1;x1:k, λ)ψ(yk−1, yk;x1:k, λ)mk−2,k−1(yk−1;x1:k−1, λ).
This derivation for the sum product is appropriate for real time streaming

data as the sequence of information is always increasing and an activity label
prediction is required for each datum. Therefore, we apply the expression in (8)
for inference during testing.



Evaluation of Wearable Sensor Tag Data Segmentation Approaches 391

Fig. 1. Message propagation for the probability distribution of yk

3.9 Statistical Analysis

The analysis of results was obtained using a 10-fold cross validation where gen-
eral performance was measured using overall accuracy (referred as accuracy and
given in (9)), and individual label performance using geometric mean (GM) and
Fscore as defined in (9), where N is the number of readings, TP is true positives
and recall, specificity and precision are determined as per standard definitions.
Results are shown as mean ± standard deviation (SD). Statistical significance
is measured using a two-tailed two-sample t-test at 5 % significance level.

Accu =
TP

N
GM =

√
recall.specificity Fscore =

2.recall.precision

recall + precision
(9)

4 Evaluation

The first evaluation corresponds to labelling a pre-segmented sequence in the AW
method. High accuracies (> 97.7%) and high Fscore and GM values (> 87%
and > 92%) are obtained for RoomSet1 and RoomSet2 datasets (see Table 2).
In RoomSet2, metrics for sitting-in-chair are affected by one test fold where
only 17 samples were present for that activity which was missed (false negative),
affecting all metrics. Accuracies for the FSW method are shown in Table 1(a),
which tested sliding windows of 5 to 60 samples. Highest accuracy for RoomSet1
is achieved between N = 10 and 20; the largest source of error is caused by false
negatives (FN) of sitting-in-bed and false positives (FP) in ambulating labels.
These errors are minimal in AW approach. RoomSet2 is affected by one fold
where samples collected during lying and sitting-in-bed caused mutual errors,
which also affected the rest of the methods. Given that RoomSet2 metrics do
not vary in this set of window sizes, we consider the window sample size of 15
as the best parameter for this method.

The TWW method was tested using a fixed window size of 15 samples as
found in FSW method. For this study we tested decay rate values of D = 2−7 to
20 as shown in Table 1(b). Highest accuracy for RoomSet1 occurs for D = 2−2

and then drops slightly. In contrast, best performance for RoomSet2 occurs
between D = 2−1 to 2−3 with some folds affected by mutual error between lying
and sitting-in-bed as in FSW method. However, accuracy is not significantly
different across RoomSet2 (p > 0.34). Hence, we consider a decay rate of D =
2−2 as the best parameter for this windowing case.

Results for MI windowing indicates that both MI1 and MI2 approaches (see
Sect. 3.4) obtained similar results as shown in Table 2, where results are almost
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identical. From the MI1 matrices shown below, we can see that for RoomSet1
there is little interaction between antennae, with higher values for self transition
of antennae as found in [7]; in RoomSet2 there are strong transition values for
antennae aID2 and aID3 both of which are located on top of the bed and report
most in-bed and around-bed sensor readings.

MI1RoomSet1 (%)
aID1 aID2 aID3 aID4

aID1 35.12 0.25 2.18 3.28
aID2 0.22 8.77 0.04 0.06
aID3 2.23 0.03 16.48 4.33
aID4 3.24 0.04 4.36 19.26

MI1RoomSet2 (%)
aID1 aID2 aID3

aID1 3.19 0.16 0.31
aID2 0.17 21.92 18.15
aID3 0.4 18.14 37.42

The DW method produced high accuracy (94.6 %) results for RoomSet2 but for
RoomSet1 results are comparable to those of previous windowing methods as
shown in Table 2. However, Fscore and GM are significantly different compared
to MI (p < 0.01). Partial results for FTW are shown in Table 1(c), where time
durations of 1 to 128 s were tested. The highest accuracies were achieved with a
4 s time window for both datasets. In RoomSet2, there is little variation among
different time windows. In contrast, for RoomSet1 this method achieves the
highest accuracy for all tested methods as seen in Table 2 but this result is still
significantly different from that of the golden standard (p ∼ 10−7).

Finally, we combined time and space based segment contextual information
extraction with expected performance improvement. Combination of FTW and
MI1, introduced mutual information rather than counting events in FTW. The
results for RoomSet1 lie between the amalgamated methods; however, the over-
all performance for RoomSet2 is lower than FTW and MI1. The combination
case of TWW and MI1 introduced extra features from both methods, achiev-
ing the highest accuracy for RoomSet2 which is comparable with our golden
standard (p = 0.14). Results for RoomSet1 are slightly lower than the best per-
formance with FTW method (see Table 2). This is because TWW+MI1 had a
rich extended information. However, in FTW+MI1 the fixed time window did
not bring enough mutual information as the number of samples in a segment
can be as low as one, performing lower than counting per antenna samples.

Further analysis of Table 2 indicates low Fscore and GM values for
RoomSet1 created mostly by FNs and FPs (false positives) for sitting-in-bed
and ambulating respectively. These errors were reduced in the FTW case but
not greatly. Metrics for RoomSet2 were affected by two main causes, one fold in
particular produced large FN and FP for lying and sitting-in-bed respectively
and few readings for sitting-in-chair label which in some folds are ignored pro-
duced recall, Fscore and GM values of zero and affected these averages. In both
datasets, the low composition of ambulating activity data (not shown) compared
to the other states affected individual and average metrics as only a couple of
seconds of data are retrieved as a subject walked away from the reading range
of antennae near the bed or chair.

These results indicate the real time inference algorithm (marginal infer-
ence) found most difficulty predicting ambulating and sitting-in-bed samples
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for RoomSet1. In general, no method was able to produce maximum results for
both datasets, although results for FTW and TWW+MI1 methods are compa-
rable (p > 0.48) in both datasets. RoomSet2 disposition using two antennae
focusing on the bed was able to avoid classification error in RoomSet1, however
there were relatively smaller number of sensor readings for sitting-in-chair as
only one antenna powers the tag in RoomSet2. In terms of real time analysis,
test inference calculation time for both datasets is of 5.12µs and 7.31µs per sam-
ple respectively and this time is minimal compared with the observed minimum
inter-sample duration time of 25 ms. These results were obtained using algo-
rithms implemented in MATLAB scripts and mex code but these algorithms
will run faster if developed in a low level language as C/C++ and therefore
our results also demonstrate that the classifier is capable of real time sample
prediction.

Table 1. Partial accuracies for FSW, TWW and FTW methods

(a) Accuracy for Fixed Sample Window method

Datasets N = 5 N = 10 N = 15 N = 20 N = 30 N = 60

RoomSet1 70.6±6.0% 71.2±6.1% 72.5±5.9% 72.2±6.2% 70.6±6.2% 70.7±5.9%

RoomSet2 94.9±4.3% 91.9±11.5% 91.8±11.2% 91.7±11.3% 91.2±11.6% 93.5±6.9%

(b) Accuracy for Time Weighted Window method

Datasets D = 20 D = 2−1 D = 2−2 D = 2−3 D = 2−4 D = 2−7

RoomSet1 70.3±6.1% 71.6±6.1% 73.1±7.5% 71.8±6.2% 71.7±6.0% 71.8±6.1%

RoomSet2 91.3±11.2% 94.3±5.0% 91.7±11.2% 93.5±4.6% 92.1±11.1% 90.2±10.8%

(c) Accuracy for Fixed Time Window method

Datasets T = 1 T = 2 T = 4 T = 8 T = 16 T = 128

RoomSet1 70.5±6.2% 73.9±7.1% 78.2±7.3% 73.6±6.8% 71.9±6.7% 70.2±5.7%

RoomSet2 91.5±11.3% 91.6±11.4% 92.3±11.2% 92.2±11.1% 92.2±11.0% 91.2±11.0%

Table 2. Classification accuracy for all tested methods for both datasets, including
average Fscore and GM for all activities.

RoomSet1 (%) RoomSet2 (%)

Method Accuracy Fscore GM Accuracy Fscore GM

AW 98.1±1.8 93.5±5.5 96.1±3.7 97.7±3.6 87.0±21.0 92.8±16.6

FSW 72.5±6.0 57.9±6.5 76.6±5.5 91.8±11.2 67.5±23.2 82.5±17.7

TWW 73.1±7.5 59.0±9.2 77.1±8.0 91.7±11.2 69.3±21.4 84.4±18.0

MI1 70.8±6.0 55.2±5.0 74.0±4.3 94.4±5.2 68.6±20.5 84.3±17.2

MI2 70.8±6.1 55.3±5.4 74.1±4.9 93.8±5.2 67.5±20.4 83.3±16.8

DW 74.7±8.1 61.2±10.2 79.2±8.4 94.6±4.7 68.4±22.7 83.4±18.6

FTW 78.2 ± 7.3 65.1 ± 11.5 82.1 ± 9.2 92.3±11.2 68.5±23.9 82.8±18.7

FTW+MI1 71.5±6.0 56.6±5.6 75.2±4.8 91.7±11.1 67.1±22.9 82.9±17.8

TWW+MI1 77.1±7.8 63.8±11.5 81.0±9.1 95.0 ± 4.2 71.6 ± 20.2 85.8 ± 16.8



394 R.L.S. Torres et al.

5 Conclusions

In this study we have developed a number of sliding window based data segmen-
tation techniques for real time prediction of human activities where contextual
information was introduced as extra features to the input observation to improve
classification accuracy. Although no segmentation method exceeded the golden
standard for both datasets, methods TWW+MI1 and FTW achieved high per-
formance metrics in both datasets and had comparable results with the golden
standard with RoomSet2 dataset. In general RoomSet2 achieved better results
than RoomSet1, due to its more focused antennae disposition which caused less
prediction errors as opposed to a wider area coverage as in RoomSet1. Moreover,
the system can process real time streaming data using fixed or variable window-
ing approaches on a sample by sample basis with high accuracy as in the case of
RoomSet2 ; and using a CRF classifier which learned the model using complete
sequences of activities and applied into real time label prediction.

A limitation comes from the scripted nature of the activity datasets. Nonethe-
less, all related sensor worn research (see Sect. 2) were based on scripted set of
activities, where execution order was random or sequential. Further analysis is
required to determine whether these segmentation techniques based on scripted
models can perform well with unscripted and undirected activities.

Finally, this work sets the foundation for high level applications such as high
falls risk activities (bed and chair ingress or exit, room exiting and bathroom
access) recognition in real time.
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Chapter 6

Learning from Imbalanced
Multiclass Sequential

Sensor Data with CRF

The previous chapter introduced segmentation methods for the extraction of contex-

tual information to improve the classification performance in CRF and also the real

time inference of sequential data; these contributions are intrinsic to the methods in

the remaining chapters of this thesis. However, a major challenge with sensor data

streams for human activity monitoring is the occurrence of data imbalance; this is

natural in frail older people in a nursing homes or hospitals, as they can spend more

time lying on the bed than walking. Other external factors, such as the nature of the

sensor platform, can also affect the imbalance problem. In addition, optimization

metrics such as accuracy are not representative of the results in the minority classes

and are biased towards the dominating class.

The article contained in this chapter is a journal paper that considers the problem

of data imbalance in the cases of low availability of training data. The method pre-

sented uses class-wise weights that are dynamically determined during the training

of the classification model, the weights seek to optimize the overall F-score as op-

posed to metrics that favours the majority class such as accuracy. Our model avoids

cumbersome validation processes to obtain optimal weight parameters such as grid

search that requires an exponential number of processes. We tested our approach

with two datasets for human activity monitoring using batteryless and battery pow-

ered sensor platforms.

R.L. Shinmoto Torres, D.C. Ranasinghe, Q. Shi and A. van den Hengel. ”Dynami-

cally weighted conditional random fields for learning from imbalanced body worn

sensor data streams”, Transactions on Neural Networks and Learning Systems, 2017. To

be submitted.
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Dynamically Weighted Conditional Random Fields
for Learning from Imbalanced Body Worn Sensor

Data Streams
Roberto L. Shinmoto Torres, Damith C. Ranasinghe, Qinfeng Shi, and Anton van den Hengel

Abstract—Data imbalance is an inherent characteristic of
human activity data from body worn sensors in a growing
number of healthcare applications. Imbalanced data can neg-
atively bias the performance of classifiers favoring majority
classes; however, minority classes, corresponding to short du-
ration activities, provide important information for applications
such as falls prevention or falls risk assessments. We investigate
a probabilistic graphical model based method of Conditional
Random Fields (CRF) for improving learning from imbalanced
sequential multi-class data streams from body worn sensors.
We propose a class-wise dynamically weighted CRF (dWCRF)
where weights are automatically determined during training by
maximizing the expected overall F-score. We tested our method
with two datasets using batteryless and battery-powered body
worn sensors (BLBW and BPBW respectively) and compared
performance and training times with a set of state-of-the-art
classification methods. Overall, our method outperformed other
CRF based methods and performed similar to or better than
SVM based methods. Our method outperformed or performed
similar to other classifiers in terms of minority class predictions.
Further, dWCRF requires significantly less time to build a
prediction model than other state-of-the-art methods evaluated.
dWCRF can improve the real-time classification performance
of sequential body worn sensor data streams in the presence
of data imbalance, especially when labeled training data are
scarce, which is often the case in real-world applications such
as recognition of activities for falls prevention in older people.

Index Terms—Data imbalance, Dynamically Weighted Con-
ditional Random Fields, dWCRF, F-score optimization, Human
activity recognition.

I. INTRODUCTION

DEVELOPMENTS in emerging wearable sensor technolo-
gies are enabling a multitude of applications in health-

care such as gait analysis, falls risk assessments, monitoring of
heart rate and of Parkinson’s symptoms, and falls prevention.
[1]–[4]. The recognition of activities in older people is of
particular interest as a means of preventing injuries from
events such as falls by providing an early intervention, or
identification of function decline, as in those with Alzheimer’s
or Parkinson’s disease.

One of the main challenges in human activity recognition is
that sensor data is usually imbalanced as data from activities

R. L. Shinmoto Torres and D. C. Ranasinghe are with the
Auto-ID Lab, School of Computer Science, The University of
Adelaide, Adelaide, SA 5005, Australia (e-mail: roberto.shinmototorres,
damith.ranasinghe@adelaide.edu.au).

Q. Shi and A. van den Hengel are with The Australian Centre for
Visual Technologies (ACVT), School of Computer Science, The Uni-
versity of Adelaide, Adelaide, SA 5005, Australia (email: javen.shi, an-
ton.vandenhengel@adelaide.edu.au).

of daily living (ADL) are not necessarily equally distributed.
This is because people naturally perform some activities that
are of longer duration than others. For example, in the context
of patient monitoring in hospitals or nursing homes, resting
activities such as lying on bed (i.e. sleeping) or sitting on a
chair or the bed are of longer duration than ambulating activ-
ities, where destinations, such as the restroom, are very close.
Moreover, those performing these short-duration activities (e.g.
ambulating) are potentially at risk of falling and injury [5].
This data imbalance in the training information can negatively
affect the classifier by being biased to prefer the majority class
[6]. Hence, it is important to increase the overall classification
performance, in particular, in identifying minority classes.

Another challenge that also contributes to data imbalance
in human activity monitoring applications arises from the
difficulty of collecting data for the training of activity recog-
nition systems in real-life environments. For instance, it can
be more difficult to collect data from certain activities such
as those performed closer to the sensing infrastructure, e.g.
environmental motion sensors, than those activities performed
farther from the sensor as data collected from the latter can be
scarcer. Moreover, collection and labeling of a large corpus of
training data with frail participants such as hospitalized older
patients is difficult due to the physical limitations associated to
their older age and ailments [7]. Therefore, a classifier which
is highly accurate at predicting all activity classes in datasets
where availability of training data is scarce is highly desirable.

This paper presents a novel method for learning from
imbalanced data using conditional random fields (CRF) [8],
a graphical model for structured classification that captures
dependency relationships between performed activities as de-
scribed by sensor data streams. We propose a class-wise
cost parameter based classifier that considers the influence
of individual classes for learning from sequential imbalanced
multiclass datasets. The cost parameters (weights) are not fixed
as they are dynamically adjusted during the training process,
while the classifier seeks to optimize the model’s expected
overall F-score to minimize both false positives (false alarms)
and false negatives (missed classifications). Hence, weights
are learned during training, avoiding an empirical search for
optimal weights which can be time consuming. Further, our
approach takes less time to train and validate new parameters
than other state-of-the-art methods.

The performance of our approach is evaluated with two
human activity recognition datasets: 1) a batteryless body
worn sensor worn over clothing of healthy and hospitalised
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older people in the context of a falls prevention application in
clinical and hospital settings; and 2) a battery powered body
worn sensors on healthy adults in a laboratory environment
for the collection of ADLs, in cases of high data imbalance.

A. Related works
This section reviews previous methods developed for im-

proving the classification of imbalanced data, such as data re-
sampling [9]–[12], adjusting decision thresholds [13] or the
inclusion of cost parameters or weights into the classification
algorithm [14]–[21], as in our proposed method.

Re-sampling: These methods consider the removal or in-
troduction of data to modify the levels of imbalance [9]–[11].
However, such approach can modify a sequence structure and
its meaning, this is an issue with real world applications that
require maintaining the original data structure. For example, in
human activity recognition the time sequence is important to
determine the flow of movements and modifying the data can
change the sequence of activities and the way it is analyzed,
e.g. affecting transition probabilities in Markov chains.

Decision threshold: Methods such as that of [13] used
receiver operating characteristic (ROC) curves to decide which
decision threshold produces the best performance, achieving
similar results to re-sampling techniques. However, ROC
curves, which depend on specificity, do not reflect the errors
in imbalanced data. This is due to specificity of the minority
class being conditioned to include the true positives of the
majority class and thus leading to over optimistic results.

Cost parameter: This approach requires the inclusion of
fixed class-wise costs into the classifier’s objective function
during training to reinforce the learning of under-represented
classes. Generally, cost sensitive learning approaches have
been reported to perform better than re-sampling techniques
in some applications [6]. Some cost parameters have the
form of a cost matrix that weighs each misclassification case,
giving higher costs to misclassifications of a minority class
observation in comparison to majority classes [14]–[16].

Costs were also used to rescale the data; by re-weighting, re-
sampling the training samples or moving decision thresholds
according to their costs. These costs are usually user provided,
e.g. from a cost matrix [16]. Similarly, fixed class-wise costs
were considered in [19], [20] that depended on the class
population and misclassification cost per class. The issue with
fixed costs [19], [20] is that these are usually given, and
optimal costs have to be determined by an extensive validation
process. This process can be cumbersome and computationally
expensive as a grid search for optimal parameters uses an
exponential number of operations, making model training and
updating (in case of new training data) difficult.

In contrast, other studies [17], [18], [22] dynamically
changed the costs by verifying classification errors on each
optimization iteration [18], [22] or in proportion to the par-
ticipating classes in the training data in incremental learning
algorithms [17]. However, model optimization was based on
classification error (1-accuracy) minimization [17], [22], which
is not ideal for imbalanced data. This is because accuracy
is largely favoured by the dominant class and provides little
performance information regarding the minority class [23].

Other studies offered alternative methods [24], [25]. Soda
[24] decided between an unbalanced or a balanced classifier
for every observation and measured its performance based
on accuracy; while Beyan et al. [25] proposed a hierarchical
method based on clustering and outlier detection that, in gen-
eral, was not significantly better than other methods. Moreover,
both studies did not consider multi-class problems.

Cost parameters methods in CRF: These methods have
been applied in [21], [26] to improve CRF classification
performance. The study of Gimpel et al. [26] used fixed costs
according to specific performance tasks (task-wise) such as
improving recall, precision or both (as in F-score) [26] as
opposed to classification error minimization as in previous
studies. On the other hand, the method of Lannoy et al. [21]
considered a fixed set of class-wise weights in its model
(WCRF) that were also not learned during training.

The study of Dimitroff et al. [27] considered a learning
algorithm for binary classification using a maximum likelihood
model (weighted maximum entropy) to optimize the expected
F-score during training where weights were calculated au-
tonomously. Our study extends the method in [27], originally
proposed for binary classification problems, to multiclass
structured prediction using CRF.

Furthermore, previous studies have considered human ac-
tivity recognition using body worn sensors where few of
these datasets are freely available. Moreover, most datasets
are produced in controlled conditions presenting little class
imbalance. For example, from the UCI machine learning
repository, there are few datasets that collected human activ-
ities in continuous sequences using wearable devices [28]–
[31]. From these, only Opportunity (OPR) [28] and Activity
Recognition from Chest Accelerometer (ARA) [30] show
some degree of imbalance given by their low ratio between
number of elements of minority class and that of the majority
class (0.11 and 0.08 respectively). In addition, later studies
using these datasets have not addressed the issue of data
imbalance during the learning stages of the classification
process. In contrast, we consider a dataset of older participants
in a clinical environment including hospital patients where
data imbalance is implicit in the dataset given the application
context of monitoring older people in a hospital setting.

B. Paper Contributions
Our approach extends existing knowledge by formulating

an algorithm for sequence learning that relies on maintaining
the integrity of the sequential data, while seeking to improve
overall harmonic mean of recall and precision. We make the
following contributions:

1) We present a novel cost sensitive learning method for
imbalanced multiclass data classification in real time,
based on weighted conditional random fields (WCRF).
The optimization process is based on maximizing the
expected overall F-score where class-wise cost param-
eters are dynamically computed during training. To our
knowledge, this is the first attempt for multiclass classifier
optimization based on F-score to learn from imbalanced
data with dynamically learned cost parameters, in partic-
ular, for graphical models such as CRF.
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2) We apply our method to two scenarios. The first considers
two case studies of sequential data streams from healthy
and hospitalized older people using a batteryless body
worn sensor over their clothing. The second scenario uses
a published dataset, with modified imbalance, that uses a
battery powered body worn sensor for collecting ADLs.

3) Our approach achieves, in general, a better performance
than other CRF based methods and similar to better
performance than SVM based classifiers. Moreover, our
approach takes considerably less time to train and validate
parameters than other state-of-the art methods

II. PROPOSED DYNAMICALLY WEIGHTED LEARNING
METHOD

In this section we begin by briefly revisiting CRFs, a
probabilistic graphical model for structured classification [8],
[32], before defining our method in Section II-A.

Let us assume a set of training data sequences D =
{x(n), y(n)}Nn=1, where input sequences are i.i.d. to each
other — i.e. sequence in {xi, yi} is independent of that in
{xj , yj} for i 6= j. Hence we consider a single training
instance {x(n), y(n)} in our formulation as this does not
complicate the algorithms, consisting of a sequence of input
observations {xt}Tt=1 and their corresponding labels {yt}Tt=1,
where yt ∈ {1 · · ·K} and K is the number of classes to
infer. The advantage of CRF is that it constructs pairwise
relationships between adjacent hidden variables and their
corresponding observations, a property from the first order
Markov assumption. The probability distribution in CRF is
given by:

p(y|x, λ) =
1

Z
exp

(
T∑
φt (yt−1, yt, x;λ)

)
, (1)

Z(x) =
∑

y1···T

exp

(
T∑
φ(yt−1, yt, x;λ)

)
. (2)

Here the potential function exp(φ(yt−1, yt, x;λ)) follows the
logistic model function

φ(yt−1, yt, x;λ) = λ1f(yt−1, yt) + λ2f(yt, x) (3)

where λ =
(
λ1, λ2

)
are the model parameters to be estimated

during training and f(.) are transition and emission feature
functions that produce boolean values. The term Z(x) is the
partition function and normalizes the conditional probability.

During model training, we seek to maximize the conditional
log likelihood (CLL) L, defined as:

L(λ) = log p(y|x), (4)

L(λ) =
T∑(

λ1f(yt−1, yt) + λ2f(yt, x)
)
− log(Z(x)). (5)

Since L is a convex function we apply a quasi-Newton
method for estimation of model parameters λ such as the L-
BFGS optimization algorithm. The partition function considers
a summation over all possible values of x and y. We calculate
the value of Z(x) using the belief propagation (sum–product)
algorithm which recursively calculates the passing of messages

over all elements in the tree. In the case of linear chain graph-
ical models, belief propagation provides an exact solution for
the calculation of Z(x), given by Z(x) =

∑
yT
αT , where αt

are the messages propagating forward in the algorithm.

A. Dynamically Weighted Conditional Random Fields
(dWCRF)

This section details our dynamically weighted CRF
(dWCRF) approach for structured predictions to address the
negative effects of imbalanced data on learning.

Let’s assume that every training sequence in D has number
of classes K = 3 where class k1 has number of elements
T1, where T1 << T2,3, T2 ∼ T3, and T2 and T3 are
number of elements of classes k2 and k3 respectively. We
use a case of imbalance on a single class for simplicity;
however, this can be extended to other cases of K and minority
classes. In order to balance k1 with other classes, we replicate
kmin observations a number of times w1. The location of
replicated samples in a structured sequence is important as
randomly allocating them changes the temporal relationships
in a sequence. Hence, replicated samples should be adjacent
respecting the natural sequence of classes. In a resulting
balanced sequence {x∗n, y∗n} of length T ∗, larger than T
(length of original {xn, yn}), maximization of L∗(λ) will
result in a longer training process due to the increased dataset.

The CLL L∗(λ) is given by

T∗∑(
λ∗1f(y∗t−1, y

∗
t ) + λ∗2f(y∗t , x

∗)
)
− log(Z(x∗)).

Let us divide the first term above by classes y∗t :

T∗
1∑(

λ∗1f(y∗t−1, y
∗
t ) + λ∗2f(y∗t , x

∗)
) ∣∣∣∣
y∗t =k1

+ · · ·

+

T∗
3∑(

λ∗1f(y∗t−1, y
∗
t ) + λ∗2f(y∗t , x

∗)
) ∣∣∣∣
y∗t =k3

where
∑
i T
∗
i = T ∗. This is equivalent to multiplying the

sequence by a class-wise weight wk; thus a single value weight
does not modify the class imbalance. We have that T ∗1 =
w1T1, T ∗2 = w2T2 and T ∗3 = w3T3. Hence we rewrite the
above expression as of size T (shorter and faster to train):

T1∑
w1

(
λ1f(yt−1, yt) + λ2f(yt, x)

) ∣∣∣∣
yt =kmin

+ · · ·

+

T3∑
w3

(
λ1f(yt−1, yt) + λ2f(yt, x)

) ∣∣∣∣
yt =kmaj2

This expression can be generalized to K classes and intro-
duced to L∗(λ) as a weighted CLL.

L(λ,w) =

N∑

n=1

w log p(y(n)|x(n), λ) (6)

Equation (6) considers all training sequences D to show that
w is a scalar weight not dependent on n and affects each
element of the sequence of length T (weight vector [wt]

T
t=1).

Our objective function is similar to that in [27]; however, the
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weight term in [27] equally affects the complete sequence and,
therefore, does not address class imbalance.

In addition, classification performance metrics such as ac-
curacy (1-error) are not suitable as results are biased towards
the majority class. Hence, we impose the minimization of false
positives (FP ) or false alarms; and false negatives (FN) or
missed classifications. Intuitively, this means increasing both
true positives (TP ) and true negatives (TN) of all classes.
We use the expected F-score [27] as an optimization metric
for our model as it considers FN and FP in its definition. In
[27], Dimitroff et al. demonstrated using the Pareto optimality
concept that there exists a set of weights wFβ for which λF , the
parameter that optimizes the expected Fβ-score, coincides with
weighted maximum likelihood optimization parameter λwML.
More information on Pareto efficiency can be found in [27],
[33]. Although, the approach followed in [27] was for a binary
Maximum Entropy classifier; this article extends this previous
work to multiclass classification using dWCRF.

The expected overall Fβ-score (F̄ ), given by the mean
expected Fβ-score over all classes has the expression

F̄ =
1

K

K∑

k=1

(
(1 + β2)Precisionk.Recallk
β2 · Precisionk + Recallk

)
(7)

where β ∈ R is non-negative and balances the contribu-
tions from precision and recall. Henceforth, for simplicity,
we consider β = 1, where precision and recall have the
same influence; i.e. the harmonic mean of both precision
and recall. Let us assume λ̂ to be the maximizer of F̄ ,
and considering that TPk =

∑
i:yi=k

p(yi = k|x, λ) and
FPk =

∑
i:yi 6=k p(yi = k|x, λ); expanding and operating in

(7), can be rewritten as

F̄ (λ) =
2

K

[
TP1

TP1 + T1 + FP1
+ · · ·+ TPK

TPK + TK + FPK

]

(8)

where Tk are the number of elements of class k in the training
sequence, i.e.

∑
k(Tk) = T . From (8), we want to show that

λ̂ is an element of the Pareto optimal set of the multicriteria
optimization problem (MOP)

max
λ
{TP1, TP2, · · · , TPK}. (9)

We do not consider the FP term from (8) as we are
interested in maximizing TP s and reducing FP s; moreover,
increasing TP{1···K}\u (set of all TPs except that for class
u) will reduce FPk=u. If we consider that λ̂ is not Pareto
efficient in the MOP in (9), then there is a λ0 such that
(TP1(λ0), · · · , TPK(λ0)) dominates (TP1(λ̂), · · · , TPK(λ̂));
i.e. at least one of the objectives is improved by λ0 compared
to that of λ̂. Since the expression in (8) increases as TPk
increases, implying that F̄ (λ0) > F̄ (λ̂); this contradicts the
initial assumption that λ̂ maximizes F̄ .

We can also observe that the Pareto optimal set of (9) is
contained in that of the MOP

max
λ
{p(y1|x, λ), p(y2|x, λ) · · · , p(yT |x, λ)} (10)

this is because if we assume a λ that is Pareto optimal for
(9) but not for (10), then we have a λ0 that improves at least

one of the objectives in (10) without decreasing the others.
This means the K-tuple (TP1(λ0), · · · , TPK(λ0)) dominates
(TP1(λ), · · · , TPK(λ)), contradicting the assumption that λ is
Pareto optimal for (9). Thus the F̄ optimizer λ̂ is also Pareto
optimal for (10) and therefore λ̂ is Pareto optimal for the MOP

max
λ
{log p(y1|x, λ), · · · , log p(yT |x, λ)} (11)

given that log(.) is a strictly increasing function. The expres-
sion in (11) is equivalent to the set of potential functions in (3)
for t = 1 · · ·T . Moreover, the Pareto optimal set of (11) can
be obtained by maximizing non-negative linear combinations
of its objectives [33]. This means there is a set of weights
wt |Tt=1 such that

λ̂F = arg max
λ

(w log p(y|x, λ))

= arg max
λ

(`(λ,w)) (12)

where the rightmost expression corresponds to the weighted
log-likelihood as expressed in (6) when training sequences are
i.i.d. to each other. Our work above expands the proof in [27]
from binary to multiclass classification.

B. Weights Estimation

Now we are interested in computing the set of weights w in
dWCRF that maximizes the function F̄ . We use the previous
result in (12), which indicates that the objective functions F̄
and weighted log-likelihood have gradients equal to zero at
the optimal λ̂. We have the gradient of the function F̄

(13)

∇λ{F̄ (λ̂)} =
∑

t:yt=1

∂TP1
F̄ (λ̂)∇λp(yt|x, λ̂) + · · ·

+
∑

t:yt=K

∂TPK F̄ (λ̂)∇λp(yt|x, λ̂)

and the gradient of the log-likelihood function:

∇λ`(λ̂) =
w

p(y|x, λ̂)
∇λp(y|x, λ̂) (14)

where ∇λ{F̄ (λ̂)} = ∇λ`(λ̂) = 0 at the optimal parameter λ̂.
Considering the expression in (13) we can obtain the partial

derivative:

(15)

∂F (λ)

∂TPk
= q

[
d

dTPk

(
TP1

TP1 +N1 + FP1

)
+ · · ·

+
d

dTPk

(
TPK

TPK +NK + FPK

)]

where q = 2/K and given that previously we have considered
FPk to be a function of all TP s other than k, (15) can be
expressed as:

(16)

∂F (λ)

∂TPk
= q

Nk + FPk
(TPk +Nk + FPk)2

+ q
∑

j:1···K\k

−TPj dFPjdTPk

(TPj +Nj + FPj)2

we consider that the derivative term in (16) are close to zero
at the optimal (λ→ λ̂) and that the derivative is much smaller
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than its quadratic denominator term; hence we eliminate the
summation term from (16), resulting in

∂F (λ̂)

∂TPk
' q Nk + FPk

(TPk +Nk + FPk)2
. (17)

The resulting weights for optimizing the weighted maxi-
mum likelihood and the corresponding expected overall F-
score can now be defined as:

wt =





p(yt = 1|x, λ̂)∂TP1
F̄ (λ̂) if yt = 1

· · ·
p(yt = K|x, λ̂)∂TPK F̄ (λ̂) if yt = K.

(18)

We also consider a parameter τ > 0 that corresponds to
the number of times ` is computed during the optimization
process. We use this parameter to apply λ considerations for
(17), by executing first homogeneous weights as in linear chain
CRF. Hence the resulting weights have the form:

wt,τ =

{
q if number interations < τ

wt, as in (18) if number interations ≥ τ. (19)

C. Real Time Inference

Usually, class inference process for CRF is performed for
complete sequences of data where methods as the forward-
backwards or Viterbi algorithms are applied to the test segment
and complete sequence of labels is returned [34]. In a previous
study, we have underscored the importance of real time predic-
tion of activities [35] where we applied the belief propagation
method to obtain the marginal probabilities of the last received
observation; we use the current sensor observation and the
information from the last inference made on the previous
observation. This is given by the form:

m(yt)

=
1

Zt

(
exp (φ (yt, x))

∑

yt−1

(exp (φ (yt−1, yt))m (yt−1))
)

(20)

where m(yt) is the marginal probability corresponding to the
tth observation xt and Zt corresponds to the normalizing term
so the marginals at a given time t sum to unity and prevents
floating point underflow. The assigned label corresponds to the
activity with the highest marginal probability.

III. EXPERIMENTAL STUDIES

We evaluate our dWCRF method using datasets from two
different human activity recognition approaches: i) using bat-
teryless body worn sensors (BLBW); and ii) battery powered
body worn sensors (BPBW).

A. Problem Formulation

Both scenarios, BLBW and BPBW, consider sequential data
from the sensors; these are time series of the form {xt}Tt=1,
where xt ∈ Rd, and associated with a sequence of activity la-
bels {yt}Tt=1, where yt ∈ Y = {1 · · ·K}, and K is the number
of activity labels to predict. In sequence learning problems,
we assume that training sequences D = {(x(n), y(n))}Nn=1

are i.i.d. from each other. However, dependency relationships
between variables in a sequence cannot be assumed. Hence,
given a testing sequence T = {(x, y)}, we are interested in
predicting individual class labels ŷt for every observation xt
using our trained dWCRF model.

B. Batteryless Body Worn Sensor Datasets (BLBW)

These datasets were obtained in the context of a larger
project by our research group directed at the ambulatory
monitoring of hospitalized older patients to prevent falls [36],
and have ethics approval by the Human Research Ethics
Committee of the Queen Elizabeth Hospital, South Australia,
Australia (protocol number 2011129).

We evaluate two case studies based on motion information
from healthy and hospitalized participants using a battery-
less wearable sensor [37]. Trial participants were requested
to perform a series of broadly scripted ADLs which included:
i) Sitting on bed; ii) Sitting on chair; iii) Lying on the bed;
and iv) Walking to the bed, chair or door. A researcher,
present during the trials, annotated the labels directly into the
middleware for reference as ground truth.

We consider that posture transitions such as sit to stand
and stand to sit are integrated into the ambulation or sitting
movements. For example, we consider that a person starts
ambulating as soon as the body stops contact with the bed or
chair. Ambulation, in this case, also includes standing and any
motion the person performs while walking around the room.

Given the limitations imposed by the physical space and
motion of our target demographics, the BLBW datasets con-
sider four classes (K = 4) to distinguish whether a person is
in or has exited a resting posture. These classes are: i) Sit-on-
bed; ii) Sit-on-chair; iii) Lying; and iv) Ambulating. Details of
the sensor platform and the case studies are explained below.

Sensor platform: The participants wore a flexible Wear-
able Wireless Identification and Sensing Platform (W2ISP)
device, developed by our team [37], over a garment on top
of the sternum. The W2ISP, based on [38], encases a tri-
axial accelerometer (ADXL330) and a 16 bit microcontroller
(MSP430F2132). The W2ISP is a batteryless sensor that har-
vests its energy using the electromagnetic field illuminating the
tag from RFID antennas, which also collect the W2ISP sensor
data. The main motivations for using this passive (batteryless)
sensor compared to using battery powered sensors are twofold:
i) the device requires no maintenance as it is battery free,
lightweight, inexpensive and easy to replace; and ii) frail older
people, especially those with conditions such as delirium or
dementia, require easy-to-use equipment [39].

We collect tri-axial acceleration signals and the received
signal strength indicator (RSSI) data from the sensor signals.
RSSI is used as a measure of relative distance to the antenna
receiving a sensor observation, especially over short distances
as in our case studies [40]. Further, due to the passive device,
sensor observations are not regularly collected in time, and
thus increasing the complexity of the problem (see Figure 2).

Case Study 1: Fourteen healthy older volunteers, with av-
erage age of 74.6±4.9 years old, completed around five trials
each, based on their ability and level of fatigue. Participants
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(a)

(b)

(c)

(d)

Fig. 1: Physical deployments of an RFID antenna infras-
tructure (antennas A1...A4) for collecting three datasets: (a):
healthy older people (Room1); (b): healthy older people
(Room2) and (c): hospitalized older people (Room3). (d):
Front and lateral view of sensor axes for a participant standing
and sitting/standing with respect to vertical.

were allocated into two different room configurations: Room1
and Room2, each a dataset with 4 and 3 antennas deployments,
shown in Figure 1(a) and (b), respectively. Datasets available
at http://autoidlab.cs.adelaide.edu.au/research/ahr.

Case Study 2: Twenty six hospitalized patients, with
average age of 84.4±5.3 years old, performed a short sequence
of ADLs due to the frailty of the participants. Patients were
trialled in their respective rooms, constituting dataset Room3.
However, data from three patients was removed due to sensor
malfunction and insufficient data collection. In this hospital
room configuration, see Figure 1(c), the displayed measure-
ments are approximate due to differences between rooms used
in the experiments (single or double bed), and the bed and the
chair were always next to each other. Both populations were
tested using the extracted features described in Appendix A.

C. Battery Powered Body Worn Sensor Dataset (BPBW)

To further validate our approach, we consider the Opportu-
nity activity recognition dataset (OPR) [28]. The large size of
OPR (609 651) allows us to modify its levels of imbalance. In
this dataset, four participants with multiple sensors attached
to their body and the environment perform multiple ADLs.
From the features provided (243), we select those related to
the trunk of the participant, i.e. sensors located on the hip and
the back of the participant. Therefore, we use 19 trunk-related
features and a time related feature shown in Appendix B.

Trunk-worn sensors are considered due to similarity with
our real world scenario (hospital). Moreover, dataset BPBW
has modes of locomotion labels: Stand, Walk, Sit, Lie, similar
to the BLBW datasets. The null class was considered as an
additional class where we assume the participant is doing
something other than the four basic locomotion activity labels.
We considered observations where readings from both trunk

sensors were present, otherwise the observation was discarded.
Finally, we subdivided the data into 5 datasets where each
dataset contains data from the 4 participants. The main ob-
jective of this test is not to compare with the established
benchmarks, but to compare different methods in situations
of high data imbalance not present in the original data.

The levels of imbalance are modified for all classes except
the majority class (Stand), to create imbalance levels similar
and greater than those of our BLBW dataset. Three levels of
data removal are used as shown in Figure 3(c), Op1: remove
up to 9 of 10 consecutive sensor readings for each activity;
Op2: remove up to 11 of 12 consecutive sensor readings for
each activity; and Op3: remove up to 14 of 15 consecutive
sensor readings for each activity.

D. Statistical Analysis

We determine class specific performance measurements:
TP are the correctly predicted activity labels. FP are those
predicted labels that do not match the ground truth. FN
correspond to those ground truth classes that were missed. TN
are those non-target (not intended) classes that were correctly
identified.

In addition, we evaluate the performance of each class k
using the harmonic mean of Precision (Pr) and Recall (Re):

Precisionk(Pr) = TPk/(TPk + FPk) (21)
Recallk(Re) = TPk/(TPk + FNk) (22)

F-scorek =
2×Prk×Rek
Prk +Rek

. (23)

In terms of overall performance, we use the average of
the class-specific performance metrics i.e. F-scoreOverall =∑
k F-scorek/|k|.
Note we do not evaluate metrics depending on TN such as

specificity [4], [41] as, mentioned previously, specificity does
not appropriately reflect the performance of the minority class.

We are interested in comparing the F-score results of our
classifier with other classifiers. We compare the significance
between results using a two-tailed independent t-test. A p-
value (p) <0.05 is considered statistically significant.

Evaluation of these metrics in the case of the BLBW
datasets was performed using a 10-fold cross validation pro-
cedure, where each fold considered complete sequences of
activities (a trial) of different people. We considered 6 folds
for training 2 folds each for testing and validation. In the case
of the BPBW datasets, these were evaluated using a 4-fold
cross validation for each dataset, due to the reduced number
of trials per dataset; we use two folds for training and one for
testing and validation respectively.

E. Performance Evaluation

The performance of our dWCRF model is compared with
linear chain CRF [8]; a weighted CRF with fixed weight values
(fWCRF) given by the inverse of the class distribution [21];
and a cost parameter based CRF such as the softmax-margin
model (C-CRF) [26], we use the L2 regularized model for each
classifier of the form θ‖λ‖2. Regularization parameter θ was
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evaluated in the range [10−4, 10−1]. Parameter τ was chosen
from the range limited by the lowest number of iterations for
linear chain CRF.

In addition, we also compare with multiclass SVM for linear
and radial basis function (RBF) kernels (L-SVM and R-SVM
respectively) and the weighted SVM for both classifiers (L-
WSVM and R-WSVM) [42], [43]. Selection of hyperparam-
eters for the SVM classifiers’ regularization, C, and RBF
kernel, γ, were evaluated using a grid search in the range
[2−5, 25] for both parameters. SVM algorithms were evaluated
using libSVM [44] toolbox in Matlab, which performs a one-
vs-one approach for multiclass classification.

The weight parameters for C-CRF, L-WSVM and R-
WSVM, are found through cross-validation, evaluating the
validation set. Notably, for fWCRF, the weights are fixed and
determined solely on the class distribution. In the case of
C-CRF, the parameters are selected to optimize F-score as
in [45]; we applied an extensive grid search to obtain the
optimal parameters in the value range [0, 20]. For weighted
SVMs, the algorithms require a weight per class, K = 4
in our case, requiring a larger grid-search evaluation of the
order of N4 operations, where N is the number of elements
in the range to evaluate. Instead we use the covariance matrix
adaptation evolution strategy (CMA-ES) [46], a widely used
evolutionary optimization algorithm, to find the optimal set
of per-class parameters. Given the stochastic nature of the
initial parameter selection for the iterative CMA-ES process,
we require evaluating multiple starting values; in our case, we
evaluated 350 random initial points uniformly distributed in
the range [0, 20] for each classifier. In all cases, the set of
parameters that produced the highest F-score was chosen.

Hyperparameter validation for the tested methods was per-
formed on a cluster of Intel 8 core E5 series Xeon micropro-
cessors.

IV. RESULTS AND DISCUSSION

A. Class Imbalance in BLBW Datasets

Two main sources of imbalance affect the BLBW dataset.
The first is the duration of different activities. This is expected,
for example, lying on bed is of longer duration than ambulat-
ing. The second source of imbalance is due to the passive
nature of the W2ISP sensor; this affects the device powering
and the regularity of sensor readings. Sensor positioning
and proximity to RFID antennas, posture of the participant
(causing occlusion) can also affect the powering of the sensor;
moreover, these conditions can change from person to person
and room to room.

From the room settings, we can see that Room1 intends to
collect sensor observations from the complete room, whereas
Room2 and Room3 are focused on obtaining data from specific
areas around the bed and chair while saving on hardware
infrastructure. In Room3, the small dimensions of the path
between bed and chair cause ambulation time to be minimal.

Figure 2 illustrates the resulting data imbalance from sensor
observations. Data from Room1, see Figure 2(a), indicates that
sensor inter-reading times when the participant is sitting on
bed range from 0.2 to 1.3 s, from 0.5 to 4.2 s, when the person

Fig. 2: Raw data corresponding to body tilting, see Figure 1(d),
with respect to the vertical for the three datasets (a) Room1, (b)
Room2 and (c) Room3 where black vertical marks represent
sensor readings and classes are: Sit-on-bed (blue), Ambulating
(red), Sit-on-chair (green) and Lying (orange).

is ambulating and 0.5 to 6 s when sitting on a chair. In addition,
the first observation corresponding to Ambulating and Sit-on-
chair are received after 0.7 s and 4.5 s respectively.

In the case of Room2 and Room3, shown in Figure 2(b) and
(c) respectively, sensor observations from a person lying in bed
(orange background) are more frequently collected due to the
location of the antennas when compared to a person sitting on
bed (blue background) or ambulating (red background).

Class imbalance of the datasets are shown in Figure 3(a).
Datasets Room1 and Room3 show similar imbalance where
Lying is the dominant class and the minority class Ambulating
has the lowest proportion in both datasets. However, Room1,
has more than double the number of sensor observation of
Room3—see Figure 3(a); and the minority class (Ambulating)
for both datasets has a similar number of observations. Dataset
Room2 is dominated by one class (Lying) and the remaining
classes have decreasing values of participation with Ambu-
lating being the minority class. Room2 has almost the same
amount of sensor readings as Room3; albeit Room3 having
collected data from more participants than the other datasets.

B. BLBW Datasets

First, we demonstrate the overall results corresponding to
the datasets from Case Study 1 (Room1 and Room2) and
Case Study 2 (Room3). These were obtained by averaging
all participating classes’ individual F-score and are shown in
Figure 4. For Room1, the maximum F-score variation between
classifiers is about 7 % between fWCRF and R-WSVM; the
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TABLE I: Instantaneous features.

Feature Description

af frontal acceleration
av vertical acceleration
al lateral acceleration
sin(α) sine of body tilting angle
aID receiving antenna identification
RSSI received signal strength indicator
∆t time difference with previous observation
yaw trunk yaw angle
roll trunk roll angle
sex participant’s gender

TABLE II: Contextual information features.

Feature Description

aSUM1..M number of events per antenna
amaxRSSI antenna collecting maximum received power
aminRSSI antenna collecting minimum received power
V disp vertical displacement
MIbed−chair mutual information of bed and chair areas
r[fv,fl,vl] Pearson correlation coefficient for acceleration axes

TABLE III: Inter-segment features.

Feature Description

∆Max[af , av , al] Difference of acceleration maxima per axis
∆Min[af , av , al] Difference of acceleration minima per axis
∆Med[af , av , al] Difference of acceleration median per axis
∆MaxRSSI1..M Difference of power maxima per antenna
∆MinRSSI1..M Difference of power minima per antenna
∆MedRSSI1..M Difference of power median per antenna

marker as a participant is more likely to occupy an area
near the antenna reporting a higher RSSI during the segment
duration. Other feature is the vertical displacement measured
from acceleration readings in the vertical axis (av) in the
segment. The mutual Information between bed and chair areas
considers the occurrences of consecutive observations from
two antennas focused towards the chair and bed occurring
in either directions as used in [35]. We also consider the
Pearson correlation coefficient of all combinations of the three
acceleration components of all observations in the segment.

Inter-Segment Features: These features, see Table III,
aim to capture information trend variations from consecutive
segments and are useful as these variations are insensitive to
noise in unfiltered raw sensor data. We include the difference
of the maxima, minima and median of the segments’ acceler-
ation readings in the three axes with respect to the participant:
vertical, frontal and lateral axes. In addition, we are interested
in the changes of RSSI, as an indicator of position shifting,
given by the difference of the segments maxima, minima and
median of the RSSI readings per antenna.

APPENDIX B
BPBW FEATURES

These features were extracted from body worn sensors as
determined in [28] and shown in Table IV.
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TABLE IV: OPR features.

Feature Description

∆t Time difference between readings
Acbh[x,y,z] On-body accelerometer (3 axes) on hip
Acbb[x,y,z] On-body accelerometer (3 axes) on back
Acgb[x,y,z] Garment accelerometer (3 axes) on back
Gygb[x,y,z] Garment gyroscope (3 axes) on back
Mfgb[x,y,z] Garment magnetic field sensor (3 axes) on back
Qugb1−4 Garment quaternions (1-4) on back
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Chapter 7

Recognition of Bed and
Chair Exits in Real Time

Using a Dynamically
Weighted CRF Method

The previous chapter introduced a classification (dWCRF) method that considers

the imbalance present in the data using class-wise weights that are autonomously

calculated. Although result at the classifier were encouraging, we have not tested

this approach in the recognition of more complex activities such as bed exits or chair

exits.

The published article contained in this chapter presents a monitoring system to gen-

erate bed and chair exits alarms in real time from healthy older people. The partic-

ipants use the W2ISP on top of their clothes and were trialled in a clinical environ-

ment. This study presents a technological intervention that is based on the data

collected from the wireless sensor and applies the classifier introduced in Chapter 6

(dWCRF) to improve performance in the presence of imbalanced data. This method

also applies a score function to reduce false positives in the recognition of bed and

chair exits when compared to our previous approaches.
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to provide caregivers an opportunity to provide assistance [5,6]. Moreover, there is no clear indication
of which component contributed most to the reduction of falls.

Other clinical studies, such as that of Shorr et al. [7] and the recent study of Sahota et al. [8] focused
on fall prevention using only the technological components of fixed bed and chair exit alarms. In these
approaches, motions such as bed and chair exits trigger an alarm to provide caregivers an opportunity
to provide assistance when such activities are being attempted without supervision. These studies
reported no changes in falls after using pressure sensors. Although the performance of the sensors
was not reported, a contributing factor for these results may be the high rate of false alarms leading
to “alarm fatigue” in caregivers [7]. The study of Wong-Shee et al. [9] used similar bed and chair
alarms achieving significant reduction of falls when compared to the pre-intervention period; however,
there was no significant reduction of falls when compared to the post-intervention period. This study
reported the number of alarms, producing as many false alarms as approximately 80% of true detected
alarms. Additionally, other recent approaches such as the use of bed mats with multiple sensors [10]
or side rails with pressure sensors [11] obtained high performance but were tested on young and
middle-aged volunteers rather than on older participants. Moreover, it has been reported that the
use of bed rails to prevent falls actually increases the risk of injury as it raises the height of a fall [12].
Multiple studies have also used video images for fall prevention; however, previous research has
manifested privacy concerns with the use of cameras in older people’s living environments [13].

The use of wearable sensors provide new opportunities for monitoring patients [14,15]. However,
most studies are focused on the monitoring of activities or gait [16–19], or the assessment of falls
risk [20,21], which evaluates the long term risk of the person by using a self-evaluation tool and targets
mostly older people living independently. Researchers have investigated sensor units on the torso
consisting of an accelerometer, in some cases in combination with other sensors such as gyroscopes,
magnetometers and barometers. Nonetheless, these wearable units were bulky as they were battery
operated and in some cases required the patient to be wired, which is not recommended for older
people. Other wearable sensor based studies used more than one sensing device attached to the
participant’s body; for example, in [22], a participant wore wearable sensors (IMOTE2, (sensor node
platform developed by Intel Research) and radio frequency identification (RFID) readers on both
wrists and a third mote on the body, an approach that is uncomfortable for older people as they are
heavily instrumented.

There is a lack of studies using wearable technology to prevent falls that are capable of notifying
a caregiver [23]. A recent successful study by Wolf et al. [24] trialled a commercial sensor unit—Shimmer
(Shimmer, Dublin, Ireland) equipped with a tri-axial accelerometer—With hospital patients for the
detection of bed exits. Like previous studies, the sensing unit is expensive, relatively heavy, battery
powered and needed to be strapped to the leg, which can be uncomfortable to some patients. In this
study, we are interested in investigating a batteryless and lightweight wearable data collection platform
that has the potential to be inconspicuous to the person wearing it, while also able to collect and
transmit data from the user. Moreover, recent studies have demonstrated that older people have
an interest in lightweight sensors that can be embedded in their clothes for monitoring [25], and that
chest-located sensors [26] are better able to capture upper-body movements to effectively determine
postures in older people [16,17].

The present work focuses on methods for the monitoring of activities in older people using
a batteryless wearable sensor which is part of a larger technological intervention to prevent falls
(see Figure 1). This study builds on previous research from our team for the detection of bed exits
using wearable technology; in [27], we investigated the use of an empirical algorithm on a cohort of
young people. In [28], we used a batteryless sensor enabled RFID device, called W2ISP (Wearable
Wireless Identification and Sensing Platform) [29,30], with a cohort of healthy older people where the
W2ISP was worn over their clothing for the collection of human motion information and was found to
be acceptable and non-obstructive among the cohort of older people that took part in the trials. Unlike
in [28], this study focuses on the recognition of both bed and chair exits and the real-time prediction of
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activities from streaming sensor data. This characteristic is important for clinicians [25] as a way for
them to make instant assessments, prioritize supervision as well as provide a timely intervention to
prevent a fall.

Figure 1. Overview of the proposed fall prevention technological intervention. Data collected by
the radio frequency identification (RFID) infrastructure is sent in real-time to the bed and chair exit
recognition approach stage. Caregivers can be notified via alert messages to assist the electronically
identified patient (who) that is performing a bed or chair exit (what), the alert is issued in real-time (when)
and the RFID antenna and reader identifiers can indicate the room occupied by the patient (where).

The main objective of the present study is to evaluate the performance of our batteryless sensor
based bed and chair exit recognition approach for real-time identification of bed and chair exits.
We investigate the application of our wearable device in a population of healthy older people
using two different deployment options suitable for hospitals. The bed and chair exit recognition
approach consists of: (i) a feature extraction stage; (ii) an activity prediction model built based on
a statistical learning method called dynamically weighted conditional random fields (dWCRF) that
learns class related weight parameters during training; and (iii) a bed and chair exit recognition
algorithm. In order to support future research in the area of wearable sensors for human activity
recognition in older populations, we have also made the data used in this study publicly available
(http://autoidlab.cs.adelaide.edu.au/research/ahr).

The rest of the paper is organized as follows. Section 2 presents the concept of our technological
intervention for fall prevention; Section 3 details our trial and data processing methods. Results and
discussion are described in Section 4, and Section 5 presents our conclusions and future work.

2. Technological Intervention

This study is part of a proposed general deployment, shown in Figure 1, that is part of a larger and
ongoing intervention strategy being researched for fall prevention for hospitalized older people [31].
Our approach is based on RFID, a technology used in various healthcare applications [32,33], where
passive RFID tags—Batteryless, small and inexpensive devices—Can be easily replaced or disposed to
prevent possible spread of infections. Moreover, RFID platforms are increasingly being deployed in
hospitals, a current reality for monitoring the location of equipment, patients and personnel [34,35];
therefore, integration with an existing RFID infrastructure (i.e., RFID antennas and readers) can result
in ease of integration with existing systems and the reduction of operational costs.

In our proposed intervention, the participants, using a batteryless wearable sensor, have data
corresponding to their movements and their identification being collected in real-time via the RFID
infrastructure (see Figure 1). The data is received at the bed and chair exit recognition approach stage
for processing and analysis (shown in detail in Figure 2); this stage issues an alert to caregivers to
assist the identified patient after a bed or chair exit has been recognized.





Sensors 2016, 16, 546 5 of 17

The W2ISP includes a printed circuit board based RFID circuitry module and sensing unit with
a flexible antenna (referred to as sensor hereafter) for patient comfort and a washable RIPSTOP
silver coated nylon fabric to isolate device and human (Figure 3) [30]. The W2ISP communicates
with off-the-shelf UHF RFID readers and harvests its power using the electromagnetic (EM) field
illuminating the tag from the RFID reader antennas. The RFID reader transmits interrogation signals to
the passive tags using the 920–926 MHz ISM (industrial, scientific and medical) band under Australian
electromagnetic compatibility regulations. The W2ISP responds with its unique ID and sensor
information by backscattering and modulating the incident RF signal from the reader [36]. The
strength of the received backscattered signal captured by an RFID reader antenna and processed by a
reader is called received signal strength indicator (RSSI); other information relative to the RF signal
such as frequency channel is also collected.

2.2. Bed and Chair Exit Recognition Approach

The approach shown in Figure 2 consists of three main stages: (i) feature extraction; (ii) activity
prediction; and (iii) activity recognition process. Feature extraction refers to obtaining essential
information from the sensor data stream from which the activity predictor can accurately infer
the likelihood of the performed activity; the set of predicted activities (classes) in this study are:
(i) Sitting-on-bed; (ii) Sitting-on-chair; (iii) Lying; and (iv) Ambulating. The activity recognition process
collects the output of the activity predictor, assigns an activity to each sensor observation using a score
function and generates an alert using the activity recognition algorithm in the event a bed or chair exit
is recognized. The use of a score function is important to reduce the number of misclassification errors
as discussed in Section 3.2.3.

3. Methods

3.1. Data Collection

3.1.1. Study Participants

This study had ethics approval by the Human Research Ethics Committee of the Queen Elizabeth
Hospital (protocol number 2011129). Fourteen volunteers participated in the study, they were 65 years
and older with no cognitive impairment and able to mobilize independently. Participants were
recruited from geriatric clinics or from lists of interested volunteers who had participated in other
geriatric research studies. Request for participation was over the phone. Written informed consent
was obtained and no honorarium was provided. During the trial, a researcher was present to instruct
the participants the activities that needed to be performed from a script. The same researcher also
annotated the activities in the sensor data capturing software built by the research team. Participants
were informed of the activities contained in the script to ensure that they had no objections to any of
the proposed activities but were not informed of the order before the trial start.

3.1.2. Clinical Setting and Procedure

The study was undertaken within two different clinic room configurations: (i) Room 1, with one
antenna located on a high stand at ceiling level facing down to the bed, and three other antennas
located on vertical stands facing front; and (ii) Room 2, with two antennas located on high stands at
ceiling level facing towards the bed area and an antenna on a vertical stand facing the chair (Figure 4).
These settings were designed to closely resemble two single room configurations common in a hospital
environment (single bed and arm chair in the room). Each room configuration yielded a dataset. We
refer to the corresponding data set obtained from each room as Room 1 dataset and Room 2 dataset.

Each participant was assigned to one room setting and randomly allocated to undertake
approximately five trials using one of two broadly scripted lists of activities of daily living that
included walking to the chair, sitting on the chair, getting off the chair, walking to bed, lying on bed,
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getting off the bed and walking to the door. Participants were instructed at the beginning of the trial
to perform each activity at their own pace and as comfortably as possible; no other instruction was
given as to how to perform each activity. In general, participants performed more in-bed activities,
i.e., sitting and lying in bed, than sitting on the chair, and, typically, the trials included twice as many
lying on bed activities as sitting on chair activities. Consequently, the participants spent more time
sitting or lying than ambulating. This is also reflective of hospitalized older people where rooms are
small and furniture such as chairs and bed are in close proximity and where patients spend more time
on the bed than on the chair. Participants were also instructed to request a trial termination if they
were distressed or in discomfort. The duration of the trials per participant was between 90 to 120 min
and was performed during the day between 10 am and 3 pm. A researcher annotated in real-time the
activities being undertaken (ground truth), and this was later contrasted with activities as determined
by the algorithm to measure the system performance.

Figure 4. The two room configurations used in the study. Configuration of equipment with antennas
on ceiling level shown as circles and vertical antennas shown as rectangles facing either the bed or
chair. (A) Room 1, antenna3 is at ceiling level on top of the bed and the rest of the antennas are on a
vertical stand. Antenna2 is inclined towards the chair and antenna1 and antenna4 face front (chest
level) towards the bed area; and (B) Room 2, antenna2 and antenna3 are at ceiling level tilted towards
the bed and antenna1 is on a vertical stand inclined towards the chair.

3.2. Data Processing

3.2.1. Feature Extraction

This stage extracts from the sensorial data the features that describe the underlying signal patterns
of body motions as input to the activity prediction stage. We consider time domain features extracted
from the W2ISP readings such as: acceleration, time, phase, frequency channel and RSSI.

A challenging aspect of feature extraction is the formulation of features given noisy and irregular
sensor observations. A limitation of RFID technology originates in the tag powering, as it depends
on EM illumination from RFID antennas to collect and transfer data from the sensor. Hence, the
effects of variable distance to antenna, destructive interference due to multipath, radio frequency band
interference and occlusion by RF opaque objects such as the human body cause irregular, incomplete
and noisy readings that are delivered to the bed and chair exit recognition approach shown in Figure 2.
We can see in Figure 5 some of these effects as incomplete signals are collected from a study participant
wearing the sensor where some readings are separated by several seconds, as is the case when the
participant is sitting on the chair. This irregularity can cause the loss of sensor readings during posture
transitions, e.g., getting out from bed, and can cause a person to have similar sensor readings before
and after changing posture. For instance, a person with the sensor on the chest is first sitting on a chair
and later stands up, or vice versa, these two postures can potentially have similar sensor readings as
the person’s body has similar chest orientation during both sitting on chair and standing.
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We are interested in using acceleration data from the W2ISP as they contain information about
the performed movement. Common features in the literature consider the use of frequency-domain
features (e.g., frequency components, energy and entropy) [37], which require regularly sampled
data or interpolation methods that add post-processing stages to our method. Hence, we consider
time-domain features from acceleration signals and additional sources of information from the received
RF signal.

We are particularly interested in RSSI as an indicator of relative proximity to a reading antenna
as low values can represent the participant being further from the reading antenna than higher RSSI
values. This is because RSSI (1) is inversely proportional to the direct distance (do) from transmitting
and receiving antennas [38], given by the equation:

RSSI =
KPtGtλ

4|H|4
(4πdo)4 (1)

where K is the tag backscatter gain, Pt is the output power of the reader, Gt is the gain of the monostatic
reader antenna and H is the channel response to multipath [38]. Previous studies have established
the importance and utility of RSSI based features. In [39], the combined use of RSSI with acceleration
based features improved the classifier performance compared to using acceleration based features by
themselves; this study [39] also demonstrated that the combination of features provided similar or
better performance to using time and frequency domain features from acceleration readings alone.
In [27], variations in RSSI data were useful to determine changes in postures that would otherwise
be difficult to discriminate using only acceleration based data, e.g., a person sitting in the chair and
standing has the participant’s trunk to be upright in both postures. Other information such as RF
phase measures the phase angle between the RF carrier (at a given frequency channel) transmitted by
the RFID reader and the returned signal from the sensor [40]. Similar to RSSI measurements, phase
changes are sensitive to variations in distance and motion of the sensor [40].

Figure 5. Sample of collected sensor data. (A) Raw accelerometer readings along the three axes; and
(B) RSSI (received signal strength indicator) received from three antennas in the room and RSSI pattern
changes across four activities.

Despite the irregular and noisy nature of RFID data, we can see in Figure 5A that the transfer
of a person from lying to sitting on bed is evident in the acceleration readings and the RSSI patterns
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from the readings from antenna2 (see Figure 5B). In contrast, the transition from ambulating to sitting
on chair cannot be clearly determined by using acceleration alone; however, the RSSI patterns for
antenna1 can help discriminate this transition.

Therefore, we combine time domain information in RSSI, phase, frequency channel and
acceleration sensor data and employ three categories of features based on studies in [16,28,39–41]; we
describe them in detail below.

Instantaneous features:

These features are obtained from the current reported sensor observation and provide information
about the action being performed as reported by the sensor and the participant information. However,
no general information of what is occurring in the temporal vicinity is provided. Features included are:

• Accelerometer readings in the three axes: av, al and a f shown in Figure 3B;
• Body tilting forwards and backwards given by sin(θ) = sin(arctan( a f

av )), θ shown in
Figure 3E [16,28];

• Rotational angle yaw = arctan( al
a f );

• Rotational angle roll = arctan( al
av );

• ID of the antenna receiving the sensor data (aID) [28];
• Received power from the sensor (RSSI) [28];
• Time difference with the previous observation; and
• Gender of the person.

Contextual information features:

These features are obtained from a 4 s fixed time sliding window segment where the first element
in the segment corresponds to the current sensor observation. This segmentation method was
evaluated in Shinmoto Torres et al. [41] for extraction of contextual information returning good
prediction performance and is easily implemented [41]. These features provide an insight into the
temporal variations of the sensor information during the segment, hence covering the deficiencies of
instantaneous features. The segment information is important as events distant in time (outside the
segment) become less relevant to the current activity. Features included are:

• Importance of each antenna in collecting sensor observations given by the relative number of
readings per antenna in the segment [41];

• Mutual information between bed and chair areas given by: 1
n ∑n−1

k=1 1[{aIDk ,aIDk+1}={chair,bed}] +
1[{aIDk ,aIDk+1}={bed,chair}], where 1x is the indicator function and n the number of elements in the
segment [41];

• IDs of antennas receiving maximum and minimum RSSI in segments;
• Displacement in the av axis (Figure 3B), given by:

∫∫ t1
t1−4s av dt2;

• Mean† and standard deviation† of acceleration readings av, al and a f ;
• Mean† and standard deviation† of RSSI for all antennas;
• Pearson correlation between pairs of acceleration axes;
• Standard deviation† of variable frequency phase rate (VFPR) [40]; and
• Sum of modulus† of constant frequency phase rate (CFPR) [40].

Inter-segment features:

These features are obtained from the differences in information from consecutive segments. These
features characterize the acceleration and received signal power variation trends over successive
segments. These pattern variation trends provide information about motion and relative proximity to
the area of interest, i.e., bed or chair, that is not affected by noise. The inter-segment information trends
are obtained using the features:
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• Difference of median, maximum and minimum of acceleration readings av, al and a f from
consecutive segments; and

• Difference of median, maximum and minimum of RSSI per antenna from consecutive segments.

We also performed feature selection using the data from each room configuration, Room 1 and
Room 2, before introducing the data to the Activity predictor stage. We selected simple classifiers such
as random forests and probabilistic models such as Bayes network and logistic regression, eliminating
low ranked features. Hence, the features above are used for both room configurations, except those of
the form f † which are used by Room 1 alone.

3.2.2. Activity Predictor

The activity prediction stage is based on the probabilistic modeling method of linear chain
conditional random fields (CRF) [42], a structured classifier that models the dependencies of activities
in a sequence, i.e., takes into consideration the information from adjacent observations rather than
considering each observation as independent of each other. Moreover, our data is class imbalanced
because human activities, by nature, have some activities of longer duration than others e.g., lying
on bed is of longer duration than ambulating in the room; another reason is the availability of sensor
readings within those activities due to the use of passive devices, as shown in Figure 5.

A recent study from our group introduced dynamically weighted CRF (dWCRF), a method that
improves classification performance in class imbalanced data when training information is limited [43].
The classifier introduces a class related weight parameter into the objective function to give a higher
cost to errors in minority classes. Therefore, given a training sequence {xt}T

t=1 associated with a label
sequence {yt}T

t=1, where yt ∈ Y = {1 · · ·K}; the weighted log-likelihood function has the form

L(λ, w) =
T

∑
t=1

wt log p(yt|xt, λ) (2)

where λ are the model parameters, wt are the dynamically calculated class related weight parameters
that maximize the overall harmonic mean of recall and precision (F-score). Our dWCRF model
evaluates in real-time the extracted features and produces marginal probabilities for each possible
activity class. This approach, as opposed to our previous study in [28], takes into consideration the
effects of class imbalance without adding complexity to the resulting model and is able to evaluate
the occurrence of activities of interest in real-time. In our study, the dWCRF model was implemented
based on the crfChain toolbox by Schmidt et al. [44]. Furthermore, obtaining an activity prediction
model that maximizes recall and precision as opposed to accuracy is important because metrics based
on the number of true negatives (i.e., accuracy, specificity) do not give a fair metric in the case of
imbalanced data, as true negatives for the minority class are the true positives of the other classes
including the majority class, which usually dominates the prediction model.

In general, during activity prediction, a learned CRF model is used to classify complete series
of observations described by their extracted features into a sequence of activities as in our previous
study [28]. This approach cannot be used in our scenario where activity prediction is required in
real-time as an alarm signal must be generated as soon as a bed or chair exit occurs. Therefore, we
implemented a real-time activity prediction algorithm that produces the desired marginal probabilities
for each class for each received observation by using the sum-product algorithm [45], and is described
previously in [41]. The marginal probability inference has the form

mk(yk,t|xt)
∣∣K
k=1 =

1
Zt

(
exp(F(yt, x)) ∑

yt−1

exp(F(yt−1, yt))mk(yk,t−1|xt−1)

)
(3)

Term m(yt|xt) are the predicted marginal probabilities for all K possible values of y given the
observed sensor data xt, Zt is a normalizing term and F is the potential function determined by feature
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functions from the data. In general, it is expected that inference of complete sequences will be more
accurate than real-time inferencing; in the latter case, decisions are based on the current and past
sensor observations, whereas, in a sequence, the inference process has disposition of past, current and
future information about every observation in the sequence.

We consider that individual activity predictions (i.e., activity with the highest marginal probability
for each observation) are not of interest as raw noisy data is used and can induce single prediction errors
resulting in emitting an unwanted alert to caregivers (Figure 1). Instead, in the activity recognition
process, we use the marginal probabilities that represent the degree of confidence in each possible
predicted activity for each sensor observation. Hence, marginal probabilities can be considered as
normalized scores for each possible activity.

3.2.3. Bed and Chair Exit Recognition

In this stage, an alert signal is triggered on the occurrence of a recognized bed exit or chair exit
as shown in Figure 6. To evaluate this occurrence, we propose a score function that first sums the
normalized scores per activity over 1 s of data from the last processed observation (at time t′) from the
activity prediction stage. The assigned label yt′ is given by the expression:

yt′ = arg max
yk

t′

∑
t=t′−1 s

mk(yk,t|X) (4)

where mk is the marginal probability from the activity predictor stage, yk,t are all possible labels at
time t and X are the observed sensor readings. The goal of the score function is to assign an activity
class that is dominant in the 1 s of data and as a consequence is less affected by activity prediction
errors caused by noise. We used a period of 1 s as we want to consider enough data to recognize
a posture transition, but not exceed the minimal posture transition duration of 1.75 s, as periods
longer than this can overlap valid posture transitions [27]. The score function then selects the activity
with the highest sum and assigns that activity to the last processed sensor observation. This scoring
function implements a noise removal process, filtering those erroneous predicted activities with high
marginal probabilities that could potentially produce false alarms if unfiltered. In addition, performed
activities are mostly represented by multiple predictions from multiple sensor observations, hence
single predicted activities that are dissimilar to those predicted readings close in time are likely to be
erroneous and noise induced. We compare the effectiveness of using our score function in Section 4.

Figure 6. Bed and chair exit recognition. State machine transition model used to recognize a bed or
chair exit.

The activity recognition process uses a simple finite state machine, as illustrated in Figure 6,
and triggers an alert signal when either a bed or chair exit is identified in real-time by the activity
recognition algorithm. Bed exit alerts are generated if an Ambulating or Sitting-on-chair predicted
activity is preceded by either Lying or Sitting-on-bed. Similarly, Chair exit is identified if the previous
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predicted activity is Sitting-on-chair is followed by any other activity. We have included the recognition
of bed exit when the participant transfers from bed to the chair and chair to bed for chair exit without
ambulation, as it is possible to miss sensor observations while ambulating. After an alert is issued, we
consider that it is physically impossible for an alert of the same type to occur in the next 1.75 s as this is
the minimum time for a posture transition to take place; therefore we disregard any subsequent alert
within the next 1.75 s period [27].

3.2.4. Statistical Analysis

In this study, true positives (TP) were correctly recognized bed or chair exit alerts when: (i) the
alert occurs when the person is actually performing an activity of interest; or (ii) the real activity
(ground truth) occurs no more than a time T = 5 s after the alert signal. False positives (FP) are
recognized bed or chair exits that do not follow the TP criteria, i.e., incorrectly identified as target
activity. False negatives (FN) are bed and chair exits that were missed.

The performance of the system was evaluated using the metrics:

recall (sensitivity) =TP/(TP + FN) (5)

precision =TP/(TP + FP) (6)

F-score = (2× recall× precision) / (recall + precision) (7)

We focus on these metrics as they consider the occurrence of errors in relation to TP. Given
that we are focused on evaluating the occurrence of alarming activities, we do not focus on true
negative metrics.

Evaluation of these metrics was performed using a 10-fold cross validation procedure that divides
the data of a given dataset (i.e., Room 1 dataset or Room 2 dataset) into 10 subsets, where six of these
subsets were used for training (learning the dWCRF model in Figure 2), two subsets (validation set)
for parameter selection and two subsets for testing which reports the test results of the model selected.
In our case, each subset contains data from more than one participant; hence, it is possible that different
trials of the same person are distributed in the training, testing and validation subsets, and, therefore,
our results are not participant independent. However, use of 10-fold cross validation does allow us to
obtain results that are less sensitive to the partitioning of the data. Best parameters were selected from
the validation set of returned F-scores. Results are presented as mean ± standard deviation (STD).

For comparison of results, we use a two-tailed independent t-test; a p-value of p < 0.05 is considered
statistically significant.

4. Results and Discussion

Fourteen healthy participants (average age of 74.6± 4.9 years) and male to female ratio of 2:5
participated in the study. In general, when using the score function, our method achieved a consistently
higher F-score performance for all activities as shown in Table 1, with dWCRF [43] parameters τ

(number of iterations) and ϑ (L2 regularization parameter) of values τ = 8, ϑ = 3.1× 10−4 for Room 1
and τ = 1, ϑ = 3× 10−4 for Room 2. As expected, the score function improves the overall F-score
and precision (reducing false positives) at the expense of decreasing recall. This is because some
short duration activities can be under-represented in a window and erroneously assigned to a more
dominant class label in the window. Although there is overall improvement in mean performance
metrics when using the score function, the differences are not statistically significant with p ≥ 0.14 for
all metric comparisons; p-values not shown in Table 1.

These results show that room configuration Room 2 performs better for real-time bed exit
recognition with statistical significance (p ≤ 0.001) as it obtains higher recall, i.e., low missed bed and
chair exits, and precision, i.e., low false alarms, while having a more practical deployment than Room 1.
In contrast, Room 1 achieved, in general, higher mean performance metrics for chair exits although
only recall results were statistically significant (p < 0.001). These results are important as they indicate
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that a smaller deployment as that of Room 2, with two antennas facing the bed, achieves better results
recognizing bed exits than a larger deployment as that of Room 1, with three antennas facing the bed.

Table 1. Bed and chair exit recognition results for two room configurations. Comparison of recognition
of bed and chair exits with and without the use of a score function. p-value corresponds to comparison
between Room 1 and Room 2 using score function.

Without Score Function Using Score Function

Room 1 (%) Room 2 (%) Room 1 (%) Room 2 (%) p-value (p)

Bed Exit
Recall 67.07± 9.6 94.16± 8.1 64.24± 8.9 93.45± 9.8 <0.001

Precision 48.96± 9.9 72.07± 14.4 57.24± 11.0 78.83± 13.9 0.001
F-score 55.98± 8.2 80.50± 8.7 59.77 ± 7.7 84.4 ± 7.9 <0.001

Chair Exit
Recall 95.98± 7.0 61.75± 22.5 94.87± 7.2 60.50± 21.2 <0.001

Precision 61.05± 17.7 67.92± 27.4 67.02± 16.6 70.74± 22.6 0.68
F-score 73.35± 14.5 63.03± 22.1 77.64 ± 13.4 63.78 ± 18.7 0.07

We also present the results of our previous method in [28] where we evaluated a machine learning
approach, specifically CRF, in contrast to the empirical approach in [27] to detect bed transfers. In [28],
we only considered detection of bed exits, sequence prediction and a reduced number of classes and
features. For this comparison, we detect chair exits and bed exits as illustrated in Figure 6, and we use
the features, class labels and real-time inference algorithm used for this study. The results shown in
Table 2, with CRF parameter ϑ = 0.1 for both Room 1 and Room 2, indicate that our method achieves
higher performance than the method in [28] for bed and chair exits in Room 2 and bed exits for Room 1;
however, our method has a lower performance for chair exits in Room 1. Differences between F-scores
are not statistically significant for all cases (p > 0.13) except for bed exits for Room 2 (p = 0.047), where
our method significantly outperforms that of [28].

A fair comparison of our results with other studies is difficult as environmental settings and
cohorts of people participating are not the same. In an earlier study, Capezuti et al. [46] used pressure
sensors on beds to detect bed exits in nursing home residents; the tested system achieved recall metric
of 71% and a low specificity of 0.3% [46]. This high false alarm rate might be one reason why pressure
sensors have been found to be ineffective in recent clinical trials [7,8]. Other studies in the literature
that focused on bed exits have reported recall and specificity values over 90%, but these studies were
undertaken with young and middle aged adults which is a significant limitation [10,11].

Table 2. Bed and chair exit recognition using previous method in [28].

Room 1 (%) Room 2 (%)

Bed Exit
Recall 72.64± 8.90 91.91± 9.70

Precision 43.22± 8.70 66.93± 13.10
F-score 53.96± 5.84 76.40± 8.80

Chair Exit
Recall 96.98± 4.90 61.75± 22.50

Precision 71.13± 21.80 63.99± 30.10
F-score 80.51± 16.14 60.55± 24.30

There are various causes that affect the performance of the system given in Table 1 in both Room 1
and Room 2. Firstly, class imbalance due to the heterogeneous duration of activities, such as lying
on bed and ambulating and the passive nature of our sensor affect the learned model of the classifier.
Although we use a classifier that considers the effects of imbalance (dWCRF), the classifier is unable to
completely discriminate minority class labels (especially Ambulating) as evidenced in the confusion
matrix shown in Figure 7. Here, only about 60% of Ambulating sensor observations are correctly
predicted. This problem resulted in the Ambulating class being incorrectly identified in approximately
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30% and 5%–10% of cases as Sitting-on-bed, and Sitting-on-chair, respectively, see Figure 7. In both
room configurations, Ambulating class is about 3.7% and 1.5% of total labels in Room 1 and Room 2,
respectively, and correctly predicting these sensor readings as Ambulating is important to determine a
bed or chair exit event as illustrated in Figure 6.

(a) Room 1. (b) Room 2.

Figure 7. Confusion matrix for data of (a) Room 1 and (b) Room 2. Output of dynamically weighted
conditional random field (dWCRF) classifier for labels 1: Sitting-on-bed, 2: Sitting-on-chair, 3: Lying
and 4: Ambulating. Results in %.

Secondly, the inadequate powering of the W2ISP and the random access nature of the air interface
protocol EPC Class 1 Gen 2 [47] used by the RFID technology produces a variable number of readings
per second [48], as evidenced in Figure 5. Inadequate powering maybe caused by incident RF power
variations due to the sensor being occluded from the RFID reader antenna by the human body in
different postures. Moreover, in [28], we demonstrated that placing the W2ISP at different distances
and angles from the reader antenna affected the time required for the sensor to transmit data as a
result of the variable levels of incident RF energy on the W2ISP. These causes aggravate the imbalance
problem and also result in missing some posture transitions (sit-to-stand or stand-to-sit) or transitions
being unobserved. Hence, the classifier has to discriminate between a person sitting and ambulating,
where the trunk of the person is upright in both postures, and the failure of the current features to
totally disassociate both postures lead to misclassifications. This is evident in the confusion matrix
(Figure 7), where 3%–6% of readings for classes Sitting-on-chair and Sitting-on-bed were predicted
as Ambulating. These errors caused false alerts (false positives) in Room 1, producing low precision
(<60%) in bed and chair exit recognition. Room 2 is also affected, particularly the low performance of
chair exits where classes Sitting-on-chair and Ambulating have the lowest amount of readings in the
dataset (2.3% and 1.5% of the data, respectively).

Thirdly, at the end of some trials where the participant was required to exit the chair or bed and
exit the room in Room 1, the participant exits the bed occluding the sensor with his body during the
posture transition. In such occurrences, while walking a short distance towards the door, antenna1
and antenna4 facing the bed, fail to adequately energize the W2ISP and capture sensor readings. This
caused misses (false negatives) for both chair and bed exits.

We also analyze the bed and chair exit recognition delays to understand the effects of using a
passive sensor and our activity recognition method. The results in Table 3 show the average and
median delay for recognized bed and chair exit events in relation to the ground truth data for both
room settings. We can see that for both rooms the average delay is smaller than 3.3 s. We can also see
that the average delays for bed exits are larger than those for chair exits. These longer delays are due to
a lack of readings between the participant starting to ambulate after exiting the bed and sitting on the
chair as the participant wearing the sensor is facing away from the RFID antennas. However, in general,
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the delay is low (median ≤ 1.25 s), especially for chair exits for Room 2 with median = 0. Absence of a
delay, i.e., delay = 0 s, is possible when the last observation in the score function, corresponding to the
first observation out of the chair, correctly determines an actual chair exit.

Table 3. Delay in recognition of bed and chair exit. Time in seconds.

Room 1 Room 2

Bed Exit Mean±STD 2.63± 4.08 s 3.22± 6.05 s
Median 1.20 s 1.25 s

Chair Exit Mean±STD 1.93± 2.55 s 2.15± 1.56 s
Median 1.13 s 0.00 s

5. Conclusions

This technological development study for real-time activity monitoring to recognize bed and chair
exits that incorporates a single RFID sensor worn by healthy older participants suggests promising
preliminary results. In particular, Room 2 antenna positioning demonstrated that a smaller deployment
designed to illuminate specific areas of interest can obtain significantly higher F-score (84%) for bed
exits compared to that of Room 1 (59%), albeit a lower F-score (63%) for chair exits, although statistically
not significantly different from that of Room 1 (77%). This is important in a practical context, as a
reduction of antennas suggests a decrease of deployment cost for improved performance in bed exit
recognition. This is because most of the cost corresponds to RFID infrastructure as RFID tags are
inexpensive and maintenance free. Although RFID infrastructure costs can be relatively high compared
to the cost of a sensor, it is important to note that RFID infrastructure is increasingly deployed in
hospitals for applications such as patient and equipment tracking [34,35] and our proposed approach
can easily leverage upon such existing infrastructure.

We have improved upon our previous study in [28] by enhancing the set of extracted features using
a dynamically weighted classifier that considers class imbalance and produces real-time predictions of
both bed exits and chair exits. The results of this initial study with older people to determine bed and
chair exits in real-time are important due to the lack of methods in the literature that use wearable
batteryless sensors for fall prevention on older people. In addition, the results are important, as they
investigate the use of batteryless body worn sensors for activity recognition, especially with a cohort
of older people.

Our study is not short of limitations, and thus further research must consider various areas
of development for improvement. A system limitation, as evidenced in previous discussion, is
the antennas’ positioning as it affects the collection of sensor observations. The lower chair exit
performance for Room 2 indicates that further study is needed to secure better performance from
chair exit events by improving antenna positioning strategies. Future studies should also consider
placing the sensor on the shoulder to reduce occlusions from ceiling mounted antennas and evaluate
its performance. Such an arrangement can potentially increase the data collected when the participant
is sitting and ambulating, and thus contribute to increasing the performance of our approach as well
as reducing delays to detect bed and chair exits.

Another area for future work is the development of inconspicuous sensors that are textile
integrated, and smaller in size without losing performance [49]. In this direction, our group is
using washable conductive textile material (RIPSTOP silver fabric) [50,51] to build the antenna of the
sensor. Future work in the area of machine learning methods must investigate additional sources
of information to extract robust features to help discriminate similar postures. Moreover, the short
duration of the trials in this study may not represent the duration of a complete day at a hospital.
Therefore, long term trials, including both day and night times, must be considered with a larger
sample of hospitalized older participants to validate our approach and evaluate the acceptability of
the device after wearing the sensor for long periods of time.
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Chapter 8

Feasibility and
Effectiveness of

Recognizing Bed and
Chair Exits in Hospitalized

Older People

The previous chapter introduced a fall prevention technological intervention based

on the recognition of bed and chair exits with a population of healthy older people.

However, these alarming conditions have not been investigated with real patients

who, we expect, perform activities in a different manner due to their frailty and due

to the hospital settings.

The article contained in this chapter is a journal paper that presents a technological

intervention for the generation of bed and chair exit alerts from frail hospitalized

older people using our W2ISP sensor on top of their clothes. This study presents

a monitoring system based on weighted SVM that recognizes the high risk activi-

ties of bed exits and chair exits from motion data from hospitalized older people,

trialled in their respective hospital bedrooms. The collected data is irregular and

noisy. Alerts are generated for both bed and chair exits using a score function that

processes prediction within a fixed time window to determine the occurrence of an

alerting event. Results are compared with the method in Chapter 7.

This study also demonstrates the acceptance of this technology in the population of

interest, i.e. hospitalized frail older people, considering several acceptance factors.
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Introduction

Falls are the leading cause of preventable injuries in hospitalized older people, especially those

with dementia or delirium, where 30% of falls result in injury, and 4 6% in serious injury

including death [1]. Moreover, about 2.5 million older people are hospitalized annually due to

a fall related injury in the U.S. alone [2]. Apart from physical injury and added financial bur

den from related expenses, falls cause psychological trauma such as fear, loss of confidence,

anxiety and depression, which in turn impact on an older person’s independence [3, 4]. In

monetary terms, the U.S. Centers for Disease Control and Prevention (CDC) estimates for

2016 the hospital cost of a single fall related injury at US$35 777 and the direct medical costs

for falls injuries to reach US$34.8 billion (both amounts adjusted for inflation since 2013) [5].

Falls are reported to commonly occur in patients’ rooms (84%) including those around the

bed and chair [6, 7] or in the toilet (11%); in terms of activities at the time of the fall, most falls

occur when ambulating (19%), especially without the necessary walking aid [1]. In addition,

risk of falling increases as cognitive functions decline in older people [8, 9]. Best practice stan

dards for falls prevention in hospitals and nursing homes include the use of safe footwear,

review of medications or use of bed and chair exit alarm systems for patients at risk of falling

to provide timely alerts to staff to lend assistance to patients attempting to ambulate unsuper

vised [10]. However, falls rates remain high [11 13].

Two recent long term fall prevention trials using pressure sensors on beds and chairs by

Sahota et al. [14] and Shorr et al. [15] have reported no decrease in falls rate; this lack of success

can be partially attributed to “alarm fatigue” due to the very low specificity of pressure sensors

(about 0.3% in Capezuti et al. [4]) resulting in high number of false alarms. In addition to the

poor performance of pressure mats placed over the chair or mattress, these sensors require

constant maintenance such as cleaning and disinfection as pressure mats are likely to be in

contact with body fluids, and thus increasing the workload of staff. Moreover, audible alarms

[15] result in ‘noise’ that distresses patients, especially those with cognitive impairment. Multi

ple studies have also used video images for preventing falls [16 18]. However, previous

research has shown the manifestation of privacy concerns with the use of cameras in older peo

ple’s living environment [19]. The study in [19] among community dwelling older people

reports that cameras raised greater privacy concerns than other technologies, even when meth

ods for extracting silhouettes were in place to preserve privacy. Further, the robustness of

vision based recognition techniques can be challenged due to multiple reasons such as chang

ing illumination, clutter, dynamic backgrounds, occlusions and, in a hospital context, multiple

people, patients or visitors in a single ward room.

Wearable sensors as part of a falls prevention alarm system can provide new opportunities

for individualized monitoring of patients [20 22] where human motion data can be collected

and transmitted in real time for analysis. More importantly, recent studies [23, 24] suggest that

older people have demonstrated interest in small sensors embedded in their clothing. In addi

tion, as sensors are decreasing in size and power consumption, the inclusion of multiple sen

sors can further extract physiological signals of interest [20 22] along with motion data. Most

studies using wearable sensors that target older people have mainly focused on the recognition

of activities of daily living [25, 26], gait analysis [27] or the assessment of future falls risk

against a validated clinical scale in older people [28 30].

Our study, based on the use of a batteryless werarable sensor device, focuses on methods

for the recognition of unassisted bed and chair exits as part of a larger intervention strategy for

falls prevention as illustrated in Fig 1 [31]. We propose the use of wearable battery less sensor

enabled radio frequency identification (RFID) devices [32], placed on top of patient’s clothes,

to collect human motion information [33]. The use of wearable sensors is advantageous as it is
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low cost, disposable, easy to replace and is maintenance free. Data from the sensor is collected

through the RFID infrastructure (wall or ceiling mounted antennas, and readers) connected to

a local area network. The system identifies which patient, via their unique RFID tag identifier,

requires clinical supervision to move out of a bed or chair. An alert is issued to staff once an

unsupervised bed or chair exit is recognized. Staff responding to the individual patient’s alert

may then intervene and prevent a fall from occurring or provide immediate assistance in the

event of a fall incident to prevent a ‘long lie’.

We have tested our proposed batteryless sensor device worn on the chest on top of the par

ticipant’s clothes in young volunteers [34] and healthy older people [35, 36]. High recognition

accuracy of bed exits using a heuristics based approach in [34] achieved with young people did

not perform well in healthy older people. Using machine learning techniques, we were better

able to identify bed exits and chair exits in real time [36]. Our studies in healthy younger and

older people confirmed the feasibility of using batteryless wearable sensors and the use of a 3

antenna deployment as an effective method to collect motion data from the batteryless wear

able sensor. More significantly, our preliminary work has highlighted the need to develop algo

rithms for the intended target population i.e. frail hospitalized patients because of observed

differences in posture transitions and ambulation of frail older people and the consequential

inability of learned models developed in the domain of healthy older people to adapt effectively

to the domain described by frail hospitalized patients. Furthermore, an evaluation of a system’s

ability to detect risk movements such as bed and chair exits has not been reported with hospi

talized older people, except for the studies by Capezuti et al. [4] where a combination of pres

sure mats and infrared beams was investigated and Wong et al. [37] which used pressure mats.

Most studies to date have focused solely on reporting the occurrence of falls as a metric to

determine the efficacy of the tested falls prevention method [13, 38 40]. Unfortunately, the

occurrence of falls cannot directly reveal the underlying performance of the tested falls preven

tion technology; for example other factors such as staffing levels and timeliness of staff to

Fig 1. Overview of our technological approach for falls prevention. A patient wears our wearable batteryless sensor, namely a

Wearable Wireless Identification and Sensing Platform (W2ISP), on top of their clothing. The sensor device sends movement information to

the movement monitoring sensor system which issues an alarm to staff when a bed or chair exit is recognized.

https://doi.org/10.1371/journal.pone.0185670.g001
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attend to patients can also influence the reported number of falls and thus we cannot deter

mine whether non prevented falls were caused by failure of the alarming method or other

causes. Nevertheless, from the two studies that have measured the performance of the alarming

system with hospitalized older people, the study in [4] found that pressure mat based systems

generated a large number of falls alarms a specificity of 0.3% was reported in the study;

whereas the system of [37] obtained almost similar false alarms to true alarms, especially at

night.

In addition, less than 1.3% of current literature on body worn sensors have considered the

perception of end users (e.g. patients) [23] but yet we know that ultimately, the opinion of the

end user matters most if the technology is to be successfully translated. Hence, it is also imper

ative that we investigate the patient’s perception as well as the acceptability of our system.

Therefore, the aims of this pilot study are twofold: i) to explore the performance of our wear

able sensor based system in identifying the movement transitions of bed and chair exits in hos

pitalized older people; and ii)to explore the acceptability of the system to inpatients. This is a

vital developmental step prior to investigating the system within a randomized control trial

(RCT) to confirm cost effectiveness of the intervention in preventing falls in hospitals.

Materials and methods

Ethics statement

This pilot study is designed as a prospective, non randomized clinical study. The study is

approved by the Human Research Ethics Committee of the Queen Elizabeth Hospital (proto

col number 2011129) located in Adelaide, South Australia, Australia.

Technology

Wearable sensor technology. We employed a flexible Wearable Wireless Identification

and Sensing Platform (W2ISP) device developed by our team, suitable for wear over garments

at the sternum level as shown in Fig 2(a) [33, 35] (picture obtained with patient’s consent,

patient’s face is blurred for anonymization). The W2ISP, referred to as simply the sensor hence

forth, is an RFID tag that integrates a tri axial accelerometer (ADXL330) and microprocessor

(MSP430F2132) with a flexible antenna for patient comfort and a silver fabric to isolate the

antenna from the patient; see Fig 2(a). The sensor does not require batteries (i.e. passive

device) as it harvests its energy from the electromagnetic (EM) field generated by the RFID

reader antennas illuminating it during the interrogation cycles performed by the RFID reader.

When adequately powered, the sensor simply backscatters the unique ID and accelerometer

information using the incident RF signal from an RFID reader antenna [41]. A consequence of

wirelessly powering the sensor with the incident EM fields is that information can only be

obtained when the sensor has gathered sufficient power for powering the W2ISP circuitry and

backscatters data back to the RFID reader. Number of factors, including distance to RFID

reader antennas, destructive interference due to multipath, radio frequency band interference

and occlusion by RF opaque objects such as the human body can alter the amount of power

gathered by our sensor. Hence, we have an irregular reading rate where the time interval

between sensor readings varies. In our practical deployment of the sensor, we obtained a sen

sor read rate of less than 20 reads per second. We can observe the sparse and irregular nature

of the sensor data stream from the extract of sensor data recorded from a hospitalized patient

shown in Fig 3.

The movement monitoring sensor system collects: i) acceleration readings from the tri

axial accelerometer av, af, al shown in Fig 2(a) where acceleration components are corrected

based on calibration data and converted to g values; ii)the measured strength of the received
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backscattered signal at the RFID reader antenna, called received signal strength indicator

(RSSI); iii) RFID reader antenna receiving sensor information; iv) F represents frequency val

ues in MHz of the channels used by the RFID reader to query the sensor; and v) RF phase (ϕ),

the phase angle between the transmitted RF carrier frequency F and the backscattered signal

from the sensor. The acceleration data captures body trunk movement information related to

the activities performed by the participant. RSSI is used as a measure of change in distances of

a patient wearing the sensor to the RFID reader antenna (aID) receiving the sensor reading

[35]. This is because a sensor located closer to the antenna reports higher RSSI values than a

sensor located further away. The phase ϕ is used as a source of spatial information (e.g. tag’s

velocity and distance) to analyze patient movements [42]. Thus, the collected data for every

reading has the information: (av, af, al, RSSI, aID, F, ϕ). We provide detailed description of the

features we have used in Feature extraction section.

Although the use of a passive wearable sensor approach provides the distinct advantages of

lightweight, low cost, and battery free; a limitation originates in the wireless powering, as it

depends on the sensor gathering sufficient power from EM signals from RFID reader antennas

for powering W2ISP circuitry and backscattering data from the sensor. Hence, the effects of

variable distance to RFID reader antennas, destructive interference due to multipath, radio fre

quency band interference and occlusion by RF opaque objects such as the human body cause

irregular, incomplete and noisy readings that are delivered to the movement monitoring sen

sor system (see Fig 4).

Fig 2. Wireless wearable sensor W2ISP and hospital room configuration. (a) Hospital patient wearing a W2ISP sensor (� 3 g,

dimensions: 18 × 20 × 2 mm), flexible antenna (36 × 85 × 2 mm) and isolating silver fabric (230 × 220 mm) on top of a gown for illustrative

purposes; also shown are the axes of the accelerometer embedded in the W2ISP. (b) Layout of furniture and equipment with antennas

shown in circles; antenna2 and antenna3 are at ceiling level on top of bed and antenna1 inclined towards the chair.

https://doi.org/10.1371/journal.pone.0185670.g002
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Movement monitoring sensor system. The proposed system considered activities of high

risk of falling that are performed by older patients without supervision in a hospital room con

text [31]. Previous research [31] has determined that exiting the bed and exiting the chair are

high falls risk movements that have to be identified for falls preventing falls. Hence, we pro

posed a movement monitoring sensor system, shown in Fig 4(a), that consists of three main

stages: i) feature extraction; ii) activity classification; and iii) bed and chair exit recognition

process.

Feature extraction refers to obtaining essential information from the sensor and RFID data

stream from which the activity classification stage, based on the class sensitive classification

method of weighted support vector machine (WSVM), can accurately classify the performed

activity. The present work has considered a set of activities (classes) representative of those per

formed by patients in a hospital ward room setting to support our wearable falls prevention

intervention. As a consequence, we considered the activities: i) Sitting on bed; ii) Sitting on

chair; iii) Lying; and iv) Ambulating. Although the number of activities are naturally limited by

Fig 3. Sensor readings of patient obtained during trial. (a) shows the sine of the body tilting angle (shown in Fig 5(a)) with respect to the

vertical. We can also see the sparsity of the sensor readings and the irregular time intervals between sensor readings during activity

performance, noted by the varying time intervals between markers on the plot. (b) shows RSSI values for the 3 antennas used in the hospital

deployment, we can see the changes in RSSI values across activity boundaries, most notable change is that of antenna 3 (in green) when

the patient moves from sitting on chair to ambulating.

https://doi.org/10.1371/journal.pone.0185670.g003
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the context of our application, there is clear intra class diversity, for example, patients lying on

bed were watching TV, resting or reading; similarly, during ambulation a patient can be either

walking with or without a walking aid. The bed and chair exit recognition process collects the

output of the WSVM model, assigns an activity to each sensor observation using a score func

tion and generates an alert using the bed and chair exit recognition algorithm in the event a

bed or chair exit is recognized following the patient state transitions described in Fig 4(b).

Data collection

Study participants. We trialled a cohort of hospitalized older people, inpatients in the

geriatrics ward of the Queen Elizabeth Hospital in Adelaide, South Australia. The patients

Fig 4. Proposed movement monitoring sensor system. (a): bed and chair exit recognition system and (b): patient state transition model

used by the bed and char exit recognition algorithm (green block in (a)).

https://doi.org/10.1371/journal.pone.0185670.g004
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were 71 years and older, a male to female ratio of about 1 : 2, with no cognitive impairment

and with the ability to mobilize independently or use a walking aid. The patients were

recruited directly from the hospital, informed written consent was obtained and no honorar

ium was provided. We trialled 26 patients in our pilot study. However, data related to three

patients were discarded from the performance evaluation study because of poor signal collec

tion from the sensor caused by a false contact at an antenna junction point due to mechanical

wear and tear. The mechanical failure is because of the laboratory prototype nature of the sen

sor developed for the study. Therefore, data from 23 patients were used to evaluate the perfor

mance of our system; patient’s data is available at S1 Dataset. However, the 26 patients

participated in two surveys which included one incomplete post trial survey.

The patients were informed of the activities contained in the script to ensure that they had

no objections to any of the proposed activities but were not informed of the order before the

trial start.

Hospital settings. The study was undertaken in the rooms of each patient; rooms were

single or double bed, hence the room dimensions in Fig 2(b) are approximate. Although every

room was different, beds and chairs and their respective setting were uniform for all trials. Our

investigation in [35] confirmed that in a clinical setting it was possible to achieve high perfor

mance for activity classification using three antennas focused on areas of interest rather than

more antennas covering a wider area. Therefore, this study in a hospital setting used a deploy

ment with two antennas located on ceiling level inclined towards the bed and one antenna on

the wall opposite the chair inclined towards it as shown in Fig 2(b); the bedside chairs were

located at either left or right side of the bed and the patient always exited the bed on the side of

the bed that was next to the chair. No other furniture was added or removed, and overbed

tables were placed outside the walking route during the trials.

The patients performed a set of scripted lists of activities of daily living (ADL) that included

walking to the chair, sitting on the chair, getting off the chair, walking to the bed, lying on the

bed, getting off the bed and walking to the door. The patients were instructed at the beginning

of the trial to perform each activity at their own pace and as comfortable as possible; no other

instruction was given as to how to perform each activity. The patients were also instructed to

request a trial termination if they were distressed or in discomfort. During the trials two mem

bers of the research team were present, the first member instructed the patients with the activi

ties that needed to be performed from the script and annotated the activities being

undertaken, the ground truth, in the sensor data capturing software; the ground truth was

later contrasted with the activities determined by our proposed method to measure the sys

tem’s performance. The second member was present to ensure the safety of the patient due to

their frail condition and could interrupt at any time.

Hospital trial procedure. Each patient was trialled in his/her respective room. Patients

only performed the ADLs described above, which were repeated two or three times, depending

on the patient’s ability to continue the trial. The duration of the trials for this cohort was about

20 to 25 minutes per patient and was performed during the day between 2 pm and 4 pm.

The patients were required to complete a pre trial survey and two post trial surveys, imme

diately before and after the trial respectively, to measure the changes of perception and their

level of acceptance of the system.

During trials, patients were not always lying flat on the bed. Patients in their bed had the

position of the movable head rest of the bed either flat or inclined as patients were resting,

receiving visits, watching television or reading. Hence, during the trials, multiple postures in

bed were captured when the patient was lying on the bed. Moreover, all the patients that par

ticipated in the trials when sitting on the bed, sat with legs off the bed as opposed to sitting
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straight up with their legs still on the bed; thus we consider a patient sitting with legs off the

bed as having the intention of getting out of bed after a period of lying on the bed.

Acceptability study survey design. Two surveys were designed to evaluate equipment

acceptability based on the Sensor Acceptance Model developed by Fensli et al. [43]. The first

survey is based on the “pre trial expectation” factor identified and used by Fensli et al. [43].

The questions measured the perception of the patients about the system to recognize bed and

chair exits and their apprehension towards the use of the equipment. Unlike in Fensli et al.

[43] where the first survey was only administered before the trial, in our study the survey was

completed by each patient before and after their trials to enable the measurement of change in

perception.

The second survey was completed after each trial to measure acceptability and privacy con

cerns perceived by the users. The Sensor Acceptance Model [43] identified five key factors

(hygienic aspects, physical activity, skin reactions, anxiety, equipment) to determine the

patients’ acceptance of wearable sensor based systems worn in contact with the skin. We

selected three of the factors identified by Fensli et al. [43]: “physical activity”, “anxiety” and

“equipment” as they are relevant to our study and our sensor is not worn against the skin. We

added “privacy” as an acceptability factor due to the importance of privacy violation concerns

identified in previous studies [19]. The questions were formulated as positive or negative state

ments and used an eleven point semantic differential scale (0 10) where answers indicated

agreement/disagreement and no problem/problem. Both surveys are shown in the Results sec

tion, where a score of 10 indicates full agreement or satisfaction with the system.

Data processing

Feature extraction. This stage generates from the sensorial data the features engineered

to capture the underlying body motions as input to the activity classification stage illustrated

in Fig 4. Each reading, vi = (af, av, al, RSSI, aID, F, ϕ) where i 2 N we obtain, contains informa

tion from the sensor and RFID infrastructure described previously in Section Wearable Sensor

Technology. We are interested in RSSI as its measurements are proportional to 1/d4 where d is

the line of sight distance between a sensor and an RFID antenna [44]. The hypersensitivity of

RSSI to distance implies that patterns in changes in RSSI values with relation to a given RFID

antenna can potentially help discriminate between postures, such as sitting and standing as

well as a change in posture from sitting to standing see Fig 3(b), that may not be noticeable

using acceleration information alone. This is because as acceleration measurements are often

similar for sitting and standing postures where the body trunk is likely to be upright as shown

in Fig 5(b). We also use RF phase (ϕ) as previous studies [42, 44] have demonstrated that phase

measurements computed by an RFID reader based on a received signal from an RFID tran

sponder provides spatial information such as a tag’s distance from an RFID antenna, and

velocity. Therefore we include RF ϕ based features that can potentially capture movements

and activities performed by hospitalized patients wearing the sensor. In addition to sensor

information vi, we also use the patient’s gender and the timestamp ti at which the sensor read

ing was captured. Hence we consider a sensor reading as the xi = (ti, gender, vi) from which we

derive two types of features: i) instantaneous features; and ii) contextual information features.

Instantaneous features. These features are obtained directly from the most recent sensor

reading and provide useful information related to the patient and the action being performed

as captured by the accelerometer sensor and the RFID infrastructure. For every sensor reading,

now defined by xi = (ti; gender; vi), we calculate a set of features directly derived from the values

observed in vi, i.e. instantaneous features, described in Table 1. In addition to considering ele

ments of v as features (i.e. af, av, al, RSSI, aID); we also consider the resultant acceleration
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(feature item 6), the sine of body tilting angle (θ) [26], and body rotation angles yaw (β) and

roll (α) determined as shown in Fig 5(a). Given that the W2ISP only includes an accelerometer,

these angular measurement values were approximated from the raw accelerometer readings

(feature items 4, 9 and 10 in Table 1). We also consider the time difference with the previous

reading Δti = ti−ti − 1 as the rate of received sensor readings are irregular i.e. Δti 6¼ Δti−1 and can

Fig 5. Body motion of person wearing W2ISP. (a) body rotational angles for a person using the W2ISP (in red) that are approximated

using acceleration information; (b) sequence of sitting to standing showing distance to antenna, where distance to a person standing (d2) is

shorter to when the person is sitting (d1); this also means that RSSI readings are higher when the person is closer to the antenna (standing).

https://doi.org/10.1371/journal.pone.0185670.g005

Table 1. List of instantaneous features extracted of interest to system. (* indicates feature used.)

Features Description

1. Frontal acceleration (af)* Dorsoventral axis acceleration values in g (i.e. range −1:1)

2. Vertical acceleration (av)* Anteroposterior axis acceleration values in g

3. Lateral acceleration (al) Left-right axis acceleration values in g

4. Sine of body tilting angle

(pitch)*
Sine of body tilting angle (θ) towards the front or back with respect to vertical in the midsagittal plane [26], approximated

as sin arctan af
av

� �� �

5. Received signal power

(RSSI)*
Received signal power from the sensor as received at reading antenna. RSSI is calculated as: PtG

2
t G

2
pathK where Pt is

the output power of the RFID reader, Gt is the RFID antenna gain, K is the W2ISP backscatter gain and Gpath is the one-

way path gain of the deterministic multipath channel [44] which is inversely proportional to the square of the direct path

distance (i.e. d2
0
). Hence, RSSI is inversely proportional to d4

0
.

6. Resultant acceleration* Magnitude of acceleration vector given by at a2
f þ a2

v þ a
2
l

p
.

7. Time difference Δt Time difference with previous sensor observation (regardless of receiving antenna).

8. Participant’s gender*

9. Trunk yaw angle* Rotational angle from dorsoventral axis, approximated as: b � arctan al
af

� �

10. Trunk roll angle* Tilting angle in the coronal plane, approximated as: a � arctan al
av

� �

11. Antenna ID (aID) RFID antenna receiving current tag reading.

https://doi.org/10.1371/journal.pone.0185670.t001
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provide potential information based on the EM illumination levels of the sensor based on its

orientation and distance from the studied fixed antenna configuration.

Contextual information features. These features are generated from segments obtained

from partitioning the time series of sensor readings. We generated contextual information fea

tures since a single sensor reading is insufficient to capture adequate information regarding

underlying activities of duration longer than a single sensor reading and to benefit from infor

mation in the temporal vicinity of an activity. Hence, contextual information features over

come the limited ability of instantaneous features to capture information. In general, these

features provide an insight into the physical motions and changes in location of a patient by

using information from the recent past sensor readings in a segment. In previous research [45]

we found that using a partitioning or segmentation approach for extracting contextual features

using a fixed time window method improved the performance to be better or similar to more

complex segmentation methods; moreover fixed time window based segmentation method is

easily implemented. Here, limiting the size of the segment is important as events distant in

time become less relevant to the current activity.

More formally, we define a segment as S½ti � T;ti � ¼ fðto; gender; voÞgj
ti
o ti � T

which contains all

received sensor readings during a period of T seconds from the sensor observation at time ti
where ti − T< ti. Using these sensor readings within the segment S[ti−T, ti], we calculate the con

textual features which are shown in Table 2. Subsequently, these features are calculated for the

next received reading at ti+1 and for every tj, where j> i. We have used T = 4s in our work.

In particular, we considered readings captured by each antenna (feature item 12) and

mutual information from bed and chair areas (feature item 16) as developed in [45]. We also

calculate features that can provide information about the variations of movement by the

patients as provided by the values in vi; for example, we consider the Pearson correlation coef

ficient (r), the approximate displacements from the acceleration component of the sensor’s

vertical axis av and the mean and standard deviation of acceleration values within the segment

Table 2. List of contextual information features extracted of interest to system. (* indicates feature used, p.a. = per antenna.)

Features Description

12. Readings p.a.* Indicator of number of readings per antenna in the segment, in our case we consider antenna2.

13. Antenna collecting maximum power ID of antenna (aID) with maximum received power in segment.

14. Antenna collecting minimum power* ID of antenna (aID) with minimum received power in segment.

15. Vertical displacement* (d)
Cumulative body displacement in the sensor’s vertical axis during a segment, calculated as: d

Rdt

0

R
avdt

2.

16. Mutual information of bed and chair

areas* (mbed−chair)

Events occurring between these two areas given by the number of consecutive readings captured in both

bed and chair areas, calculated as:mbed chair
1

n

Pn 1

i 1
ð1½fbed;chairg fanti ;antiþ1g�

þ 1½fchair;bedg fanti ;antiþ1g�
Þ; where 1x

assumes 1 if x is true and 0 otherwise and anti refers to the antenna receiving the ith sensor reading in a 4 s

segment with n sensor readings, used in [45]. In our case we use bed and chair antenna pairs (antenna3,

antenna1) and (antenna2, antenna1).

17. Pearson correlation coefficient* (r) Correlation between axes information, calculated as: ra;b
1

n 1

Pn
i 1

ai a
sa

� �
bi b
sb

� �
; where we considered a, b =

{av, af}, a 6 b and sx is the standard deviation of the samples x in the window.

18. Mean and standard deviation of RSSI* Mean and standard deviation of received power received per antenna during 4 s time window. In our case,

we consider antenna1 and antenna3.

19. Median, sum of absolute value and

standard deviation of CFPR*
Constant Frequency Phase Rate (CFPR) defined as CFPR = ϕaID, F(i) − ϕaID, F(i − 1), for each antenna.

Measured during a 4 s segment as defined in [42]. We consider median of antenna1 and antenna3;

absolute value of antenna2 and standard deviation of antenna2 and antenna3.

20. Standard deviation of VFPR* Variable Frequency Phase Rate (VFPR) defined as VFPR �ðiÞ �ði 1Þ

FðiÞ Fði 1Þ
, for antenna3 during a 4 s segment;

features as defined in [42].

21. Mean and standard deviation of

acceleration*
Mean and standard deviation of acceleration values during 4 s time window; we consider the mean of av, af,

al and standard deviation of al.

https://doi.org/10.1371/journal.pone.0185670.t002
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(feature items 15, 17 and 21). We also consider features that provide insight into the variations

in RSSI; we consider the mean and standard deviation of RSSI as well as identify the antennas

that capture minimum and maximum RSSI values within the segment (feature items 13, 14

and 18). Furthermore, we consider the features engineered in [42] which use phase informa

tion to determine possible small scale movements of the patient (feature items 19 and 20).

We performed feature selection to eliminate those features that are less relevant to our

activity classification problem without loss of information. From the complete feature vector

that considers instantaneous and contextual information features, we performed feature selec

tion using the WEKA data mining tool [46]. We selected two simple statistical classifiers

logistic regression and Bayes network and eliminated features that were low ranked for both

methods. The features selected are indicated in Tables 1 and 2.

Activity classification. The activity classification stage is based on the machine learning

method of weighted support vector machines (WSVM) [47], a classifier based on SVM [48]

originally designed for a two class problem (binary). In SVM, the model treats all training

samples with equal importance, and this can lead to misclassification in the case of imbalanced

data as is our case. Class imbalance is inherent to our problem because some activities per

formed by people are of longer duration than others; for example, a hospital patient will spend

more time lying in bed than ambulating. Moreover, data is more easily collected from some

activities than others; for example activities closer to the RFID antenna are easier to collect

than those performed farther from the RFID antennas, also the sensor can be occluded from

RFID antennas by the patient’s body during some movements affecting the sensor’s powering

and data collection.

Given the training data Dl ¼ fðxi; yi; siÞg
l
i 1

, where each training sample xi is a feature vec

tor associated to a two class label yi 2 {−1, +1}, WSVM, as opposed to SVM, treats each obser

vation xi differently according to its known weight si 2 R. The classification model w, is

learned by minimizing the convex objective function:

minimize FðwÞ ¼
1

2
kwk2

þ C
Xl

i 1

sixi

subject to yiðhw; xii þ bÞ � 1 � xi; i ¼ 1; � � � ; l

xi � 0; i ¼ 1; � � � ; l

ð1Þ

where C is a constant determined by model parameter selection (see Section Statistical Analy

sis), ξi are error margins and b is the offset of the hyperplane from the origin. Weights si are

only considered during the training stage as they are used to affect the model w treatment of

each individual class; the values of si are not determined autonomously by WSVM during

training, but are parameters to the model.

Nonetheless, there are two main limitations in using this model in our problem. The first

limitation is that our problem requires a multiclass classification model given our set of activi

ties i.e. yi 2 K ¼ fSitting� on� bed; Sitting� on� chair; Lying; Ambulatingg. We use a one

against one method for multiclass SVM as it has been demonstrated to perform better than

other methods for multiclass SVM [49]. In our study, we implemented the multiclass WSVM

model from LIBSVM [50].

The second limitation is that weights are unknown at the time of training. Therefore, we

formulate a second optimization problem to find the best set of weights ski for k 2 K that maxi

mizes the overall F score for the training set. We use covariance matrix adaptation evolution

strategy (CMA ES) [51], a state of the art evolutionary algorithm, for optimization of the set

of weights. This method determines the optimal solution by iteratively estimating an optimal
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set of parameters from an initial set of weights. In our study, we used the software of [51] to

optimize the set of class wise weights. We chose the best set of weights ski , during model param

eter selection (see Section Statistical Analysis), after analyzing 200 random sets of initial

weights.

Bed and chair exit recognition process. In this stage, an alert signal is triggered on the

occurrence of a recognized bed or chair exit. These exiting events from both bed and chair

occur in a common area around the bed and the chair as illustrated in Fig 2(b). Hence, the

intervening staff is directed to the same area of the bed and chair.

To evaluate the occurrence of bed and chair exits, we propose a score function that first

sums the estimated classification probabilities for each activity (class), considered as normal

ized scores per activity, over a non overlapping time window of duration T of data produced

from the activity classification stage. The goal of the score function is to assign an activity class

that is dominant in the time window T and is therefore less affected by activity classification

errors from the underlying WSVM model. The score function then selects the activity class

with the highest sum and assigns that activity to the complete data window T .

The scoring function mitigates the resulting effect of those misclassified sensor readings

that could produce undesirable false alarms if they were considered in the decision to issue an

alarm without the score function. The score function reduces possible false alarms by evaluat

ing the dominant class label of multiple sensor readings over a short time period as a more

accurate representation of the activity being performed to generate an alarm signal. We have

considered a fixed time window approach of duration T . We consider the value of T in the

range of 0.1 to 5.0 s where the limit value of 5.0 s is more than double the minimum time a pos

ture transition takes place [34] so that a complete transfer is included in a single window. The

value of T was chosen during model parameter selection (see Statistical Analysis) such that it

maximizes the overall F score.

When a bed or chair exit has been identified by the algorithm, an alert signal is issued as

detailed in Fig 4(b). Exits from a bed are detected when the classified activity of Lying on bed

is followed by a Sitting on bed or Ambulation. In the case of exits from a chair, we identify

such an event when a Sitting on chair activity is followed by any other activity. After an alert is

issued, we consider that it is physically impossible for another alert to occur in the next 1.75 s,

which corresponds to the minimum time for a posture transition to take place and longer peri

ods can possibly overlap with other valid posture transitions. Hence, we cancel any additional

alerts within that period. Pseudocode is presented in Supporting Information S1 Pseudocode.

Statistical analysis. In this study, true positives (TP) were correctly recognized bed and

chair exit alerts when: i) the alert occurs when the person is actually performing an activity of

interest as illustrated in Fig 6(a); or ii) the real activity (ground truth) occurs no more than a

time T = 5 s after the alert signal as illustrated in Fig 6(b). False positives (FP) or false alarms

are recognized bed and chair exits that do not follow the TP criteria, i.e. incorrectly identified

as target activity. False negatives (FN) are unrecognized bed and chair exits (misses).

We evaluate the performance of the proposed system using recall (also known as sensitivity

in the literature), precision and F score, the harmonic mean of recall and precision, as these

metrics consider the occurrence of errors (misses and false alarms) in relation to true alarm

events (TP). These are defined as: i) recall = TP/(TP+FN); ii) precision = TP/(TP+FP) and iii)

F score = (2×precision×recall)/(precision+recall).

We consider evaluating our approach using a leave one out cross validation because this

approach gives a clear indication of the performance of the system when tested with data from

a patient not known to the algorithm, as is the case in a practical deployment of the system in a

hospital. In this validation process, the data of a patient is used for testing (testing set); the data
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of a different patient is used for parameter validation (validation set) and the rest of the

patients’ data (21 patients) is used for training the system (training set). This process is

repeated sequentially where each of the 23 patients are selected one by one for testing. Hence,

the data of the patient used for testing is always unknown to the system as it was trained with

data of other patients. We performed model parameter selection using the validation set,

where the model with the highest F score was selected for testing.

We compare performance metrics (precision, recall, F score) of the movement monitoring

sensor system with other methods using an independent t test where our null hypothesis (H0)

is that the performance of our movement monitoring sensor system and other tested method

Fig 6. True positive of bed and chair exit recognition. A TP of bed and chair exit is said to occur when an alert (arrow) is triggered at t1
and t2 for: (a) a real activity is occurring; (b) real activity occurs less than 5 s after an alert.

https://doi.org/10.1371/journal.pone.0185670.g006
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are the same. To compare the pre and post survey responses, we use the Mann Whitney U
test, a non parametric test adequate for evaluating ordinal non normal data as is the case of

our surveys [52]. The non normality of the data was confirmed by the using the Shapiro Wilk

test. The null hypothesis (H0) of the Mann Whitney U test is that there is no difference

between the tested sets of data.

Results

Bed and chair exit recognition system performance results

We used sensor and RFID data from 23 patients as three patients were removed as explained

in Section Data Collection Study Participants. Recognition of bed and chair exits, shown in

Table 3, illustrates the results for our windowing method for all trialled patients. We used a

fixed time window of duration T = 4.8s where the overall F score metric is > 72%, as shown

in Table 4. We also compare with our study in [36], where we used a dynamically weighted

CRF model [53] to classify activities for the recognition of bed and chair exits as in Fig 4(b),

using the features developed in this research to make a fair comparison. We have determined

that the median delay for the recognition of bed and chair exits is of 4.09 s; also the mode of all

delays, rounded to the nearest second, is of 4 s. This indicates that the majority of recognized

alarms are not generally longer than the duration of the time window used for determining a

bed and chair exit alarm.

Table 3. Recognition of bed and chair exits in the hospital setting. TP = true positives, FP = false positives or false alarms and FN = false negatives or

misses.

Patient ID Total bed & chair exits Fixed time window

T 4:8 s
Method of [36]

TP FP FN TP FP FN

p.1 5 2 3 3 2 28 3

p.2 6 4 3 2 5 5 1

p.3 5 4 2 1 5 1 0

p.4 4 4 0 0 4 13 0

p.5 6 6 4 0 5 3 1

p.6 4 3 3 1 3 4 1

p.7 2 2 0 0 2 3 0

p.8 3 3 1 0 3 3 0

p.9 6 5 2 1 3 3 3

p.10 6 3 5 3 2 12 4

p.11 3 2 0 1 2 0 1

p.12 5 3 6 2 5 7 0

p.13 6 6 6 0 6 46 0

p.14 5 4 2 1 4 4 1

p.15 6 6 1 0 6 22 0

p.16 7 5 3 2 6 4 1

p.17 3 2 2 1 2 1 1

p.18 4 4 0 0 4 4 0

p.19 6 4 3 2 5 16 1

p.20 6 4 3 2 6 33 0

p.21 6 6 3 0 6 9 0

p.22 6 6 3 0 6 4 0

p.23 5 5 1 0 5 19 0

https://doi.org/10.1371/journal.pone.0185670.t003
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Acceptability study results

Twenty six patients participated in the surveys, with one patient that partially completed the

second post trial survey. Analysis of the first survey responses in Fig 7, where each radial axis

indicates the mean score of a question, indicates in general an improved perception of the sen

sor equipment by the patients after participating in the trial. The pre trial assessment of the

system had an overall average score of 7.83 with partial overall scores� 6.65 as shown in Fig 7

(red line). On the other hand, the post trial assessment achieved an overall average score of

9.03 (larger outer plot with scores higher than the smaller inner plot). However, patient’s pre

and post trial response score to question Q6: “I am afraid the equipment will harm me” had a

marginal overall score decrease of 0.2.

Fig 7. Results from first survey. Radar charts of pre-trial (red line) and post-trial (blue line) responses to the first survey, showing average

scores for overall and male and female participant cohorts. Score range from 0 to 10, where 10 indicates full satisfaction with the equipment.

https://doi.org/10.1371/journal.pone.0185670.g007

Table 4. Performance metrics for tested methods. Including fixed size window and the method of [36] modified for bed and chair exit detection. Results in

%.

Recall Precision F-score

Fixed time window 81.44 ± 18.89 66.82 ± 20.24 72.48 ± 17.84

Method of [36] 84.67 ± 20.69 42.80 ± 23.60 52.75 ± 21.09

https://doi.org/10.1371/journal.pone.0185670.t004
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Comparing pre and post trial response scores using Mann Whitney test (see Section Statis

tical analysis), for overall results, show that the medians for questions Q2 (U = 225.5,

P = 0.019), Q3 (U = 215.5, P = 0.016) and Q4 (U = 237.5, P = 0.022) are statistically significantly

different. Considering gender differences in our patient group, the difference in response

among male participants were not statistically significant (P> 0.08). However, the female par

ticipants’ pre and post trial response differences for question Q2: “I believe if I wear this device

I will have difficulties doing daily activities” (U = 90.5, P = 0.030), and Q3: “I am worried the

equipment will not give good enough signals for the research” (U = 84, P = 0.023) were statisti

cally significant. For all other questions, the median differences were not significant (P� 0.11)

although having consistently higher average scores in the post trial responses.

Analysis of the second survey shown in Fig 8 indicates an overall average score of 8.99 for

all four factors (� 6.68 overall) of the Sensor Acceptance Model (physical activity, anxiety,

equipment and privacy). The lowest score was for question E2: “I just forgot I am wearing it”

in the overall, and gender based analysis, demonstrating an overall concern for the high visibil

ity of the sensor during the trials.

Discussion

This pilot study to evaluate a new technological intervention for preventing falls in hospitals

and nursing homes completed with frail hospitalized older people suggests that it is possible to

undertake the monitoring of movements associated with bed and chair exits using a single bat

teryless sensor loosely worn over clothing by a patient. Furthermore, the sensor was found to

be acceptable to the hospitalized patients that participated in this pilot study.

Movement monitoring sensor system

This research builds on previous studies from our group focused on bed exits [34 36] in

healthy old and young people as opposed to hospitalized older people. In the current study, we

adopted a 3 antenna deployment since this arrangement performed well in [35, 36] for bed

exit detection. It is important to undertake research within hospitalized older people who are

frail as, unlike healthier cohorts, hospitalized older people perform shorter ambulations and

move differently when exiting beds and chairs. For example, during our trials, they made sev

eral attempts before successfully exiting a bed and their postural changes occurred much more

slowly. In addition, furniture tend to be placed in close proximity of each other given the ill

ness and frailty of hospitalized patients and their limited mobility limiting the time patients

ambulate between, for example, the bed and the chair. We therefore applied classification

methods that consider the effects of minority classes, present in our data because of short

duration activities and reduced sensor data collection during postures where the sensor is

occluded. We used a score function based on the use of a fixed time window to determine clas

ses and generate alarms to reduce errors from possible misclassifications.

Although our results demonstrate, for the first time to the best of our knowledge, the possi

bility of using a batteryless wearable sensor to detect bed and chair exits in hospitalized older

people, the resulting precision is below expected and thus the number of false alarms (FPs)

remains relatively high. This is shown in Table 3 where some of the FPs are caused by the clas

sifier not being able to discriminate among sitting on chair, sitting on bed and ambulating in

the space between a bed and a chair. This is caused by lack of sensor observations during tran

sitions, which are usually of short duration as the chair is placed next to the bed as shown in

Fig 2(b). Moreover, a patient’s posture while sitting in the bed or chair or ambulating might

not vary much as they keep an upright posture. This effect can be seen in Fig 9 showing the

output from the classifier where ambiguity between sitting in bed and in the chair is shown.
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Although this problem was reduced using non overlapping windows, it is the case for patients

p.1, p.6, p.12, p.13, p.16, p.19, p.20, p.22 where most FPs are caused by the classifier’s inability

to discriminate between these activities i.e. sitting on chair, sitting on bed and ambulating in

the relatively small area next to the bed and chair. However, as expected, the use of non

Fig 8. Results from second survey. Second survey conducted post-trial only, showing average score responses in the bar graph. F:

female, M: male O: overall.

https://doi.org/10.1371/journal.pone.0185670.g008
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overlapping windows produced most detection delays within the first processing time window.

In the case of patient p.10, misclassifications occurred when the patient was lying in bed, as

some readings were classified as sitting or ambulating.

The location of antenna1 focused on the chair on the wall opposite the chair collected

few sensor observations. In the case of people sitting on the chair, adequate powering of the

sensor is difficult due to the possibility of the chair or the patient being not directly illuminated

by this RFID reader antenna as the patient may sit leaning forward or not face the RFID

antenna (antenna1) directly. Thus, both ambulation (� 9% of total sensor observations) and

sitting on chair (� 22%) activities were captured with less sensor observations than lying

(� 56%). For example, patient p.9 has only one sensor observation of the patient sitting on the

chair. In the case of ambulation, sensor observations are obtained until the person walks by

antenna1 when going to the door and, similarly, in the opposite direction, readings are col

lected when the patient is close to antenna1. Past the location of antenna1, when going to the

door, none of the antennas illuminate the sensor as the patient’s body obstructs the sensor.

Moreover, ambulation events can also be of short duration as the patient can access the chair

located next to the bed in few short steps. This limited amount of data, especially for ambula

tion, manifests as poor quality information and features extracted by such sparse sensor obser

vations do not provide adequate information about the underlying patient movements to

discriminate activities and, consequently, poor activity recognition performance.

We were not able to find studies reporting both bed and chair exit results to compare with

our results, and a fair comparison is indeed difficult given the often different settings, e.g.

demographics of participants, sensor type and location, used by different studies. Therefore,

there is difficulty in comparing our approach with previous long term studies [4, 14, 15] as

these are longitudinal trials with larger populations of hospitalized older people monitored

during both on day and night time conditions that reported occurrence of falls and not alarm

recognition effectiveness. For instance, the recent long term RCT from Sahota et al. [14] used

bed and chair pressure sensors, their results did not report the alarming performance per

apparatus but the resulting falls rate. However, the study of Capezuti et al. [4] used pressure

sensors on beds in a longitudinal study to measure and report bed exit detection performance

in older people where the recall of the system was of 71% and specificity 0.3% [4]. This high

false alarm rate might be one reason why pressure sensors have been found to be ineffective in

recent clinical trials [14, 15].

Fig 9. Classified activity contrasted with the ground truth for a patient near a chair. In red: ground truth, in blue: classified activity.

https://doi.org/10.1371/journal.pone.0185670.g009
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There have been other studies [54, 55] that considered only bed exits and reported recall

and specificity values over 90%. However, these studies were undertaken with young and mid

dle aged adults and that is a limitation of those studies [54, 55]. Furthermore, the empirical

methods in [54, 55] were developed and tested with the same dataset, yielding optimal thresh

olds for heuristic measures for the particular dataset.

We compared our proposed method performance, F score of 72%, to the results from pre

vious studies in [36] as shown in Table 4. Comparing with the method in [36], where a

weighted classifier was used to address the problem of imbalanced data, only recall was slightly

lower for our method with a non statistically significant difference of P = 0.58. However, preci

sion and F score, were higher for our method with statistically significant difference

(P< 0.0013) than those of [36]. A possible cause is the use of a sliding window in [36] that fails

to filter some false alarms, affecting the overall F score, albeit producing slightly more true

alarms.

Acceptability study

Results from the acceptability study indicate that the sensor system appears acceptable to the

hospitalized older people that participated in this pilot study. Results from the first survey

denote, in general, increased confidence after the patients experienced the equipment as the

overall score increased to 9.0 in the post trial survey. Although post trial response scores for

Q6: “I am afraid the equipment will harm me” decreased after the trials for male patients and

slightly improved for female patients, this indicates a concern about their safety (see Q6 in Fig

7). This is possibly due to the visible infrastructure to keep RFID antennas in place in patient’s

rooms as well as the highly visible sensor prototype used in the study. The results from the sec

ond survey suggest a general acceptance of the equipment; however, lower scores regarding

the patients being conscious of wearing the device (E2) were most probably due to the experi

mental nature of the highly visible sensor device. In terms of privacy, the overall score was

high (9.1), suggesting that the patients that participated in the trial were comfortable with

being monitored using the wireless sensor device in the hospital setting. Overall, the results

from the two surveys indicate that: i) the participants of the trial found the sensor acceptable to

use; ii) initial anxiety about the equipment can be overcome by allowing older people to experi

ence the equipment; and iii) the development of our sensor device must aim to eventually be

integrated into textile such as a vest or the hospital gown so it is less obtrusive and unnotice

able to a patient.

Overall, our results agree with previous study findings [19] and show that, despite the very

visible nature of our particular sensor, wearable sensors are an acceptable technology for mon

itoring older people. Further, wearable sensors have the potential to overcome privacy issues

raised around the use of video monitoring of older adults in previous studies [16 18]. The

study in [17] recommends the avoidance of using video images for more ethical practices such

as silhouette extraction; however, this technology is still not widely accepted by older adults

[16, 19]. The study in [19] states that, among community dwelling older people, cameras

raised greater privacy concerns than other technologies, even when methods for extracting sil

houettes were in place to preserve privacy. The study in [16] using a camera for capturing

depth information (i.e. a person’s body silhouette) for assessing gait parameters in a home set

ting highlighted that 6 out of 15 eligible participants contacted did not want to participate in

the study despite being provided an explanation and a picture of the privacy preserving silhou

ette images collected from the depth sensor.

In addition to our body worn sensor being able to mitigate privacy concerns, our approach

also provides technical and economic advantages over video images: i) RFID hardware is
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increasingly deployed to support asset tracking in hospitals and our approach provides a dual

use for an existing infrastructure [56]; ii) the same technology can provide solutions to moni

toring not only falls risk but other conditions such as ‘wandering off’ [31] of individual

patients; iii) sensors can be capable of capturing more health related information such as heart

rate [57]; and iv) the automatic unique identification provides the ability to individualize

alarms to suit the monitoring needs of individual patients.

Limitations and future work

Our approach is not without limitations. Although the use of the non overlapping windows

method reduces some errors such as false alarms, it also bounds the delay to produce an alert

for staff to intervene, as most alarms are issued within the first time window of duration 4.8 s.

In addition, there will always be delays before a staff member is able to assist a patient unless

the staff is stationed very near to the patient’s room, and therefore, a timely intervention also

depends on the human response time. However, in the case of bed exiting, our problem for

mulation to consider the patient sitting on the bed as attempting to exit the bed gives extra

time for staff to intervene.

The proposed intervention for falls prevention has no direct method to detect a fall. How

ever, staff already notified of a bed or chair exit event can act upon a fall incident in the event

the fall is not averted and prevent the damaging effects of a ‘long lie’ condition where life

expectancy can be severely reduced as a result of an old person staying more than one hour on

the floor after a fall. In relation to the completed surveys, the unbalanced distribution of male

to female population and the small size of the trialled population is a limitation to our study.

Future trials must consider these population issues as well as resolution of the points raised by

our surveys, i.e. highly visible sensor device and RFID infrastructure, to derive more reliable

conclusions.

In terms of extending the study, given that some patients used walking aids, it would be rel

evant to assess ambulation without a required walking aid and alarm when an un aided unsu

pervised patient attempts ambulation. This can be carried out once a bed or chair exit has been

recognized, and the system can then assess whether a previously sensor tagged walking aid

associated with the patient is being used. The continuous improvement of innovative tech

niques such as robust classifiers for activity classification using machine learning techniques,

the introduction of improved motion descriptive features or the addition of extra sensors (e.g.

barometers) may further improve the performance of the present pilot study and are currently

being investigated. It should be highlighted that our approach is proposed for a hospital envi

ronment; applying these methods to an independent living environment, such as an older per

son living in their own homes, will require further development due to the greater variety of

activities performed, and multiple bedroom furniture settings possible in a home

environment.

Future work in the development of the intervention must address the limitation of the cur

rent study and verify improvements over the results obtained in this study. First, having all

antennas ceiling mounted can help focus on specific room locations and improve powering of

the sensor as well as a simple deployment option for different rooms. Second, placing the sen

sor on the shoulder rather than the chest is likely to achieve better illumination from ceiling

mounted antennas, avoid occlusion from objects and the patient’s body and reduce the spar

sity in the sensor data, especially during ambulation. Third, in terms of sensor improvements,

further research needs to improve resistance to wear and tear and reduce its size and visibility,

as was also suggested by the results from the acceptability study, without losing performance.

We have already made progress toward that end [58]. Future research must consider a trial
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with a larger cohort of hospitalized older people wearing a less obtrusive and more robust sen

sor prototype for longer periods and include scenarios such as staff interacting with patients

and people visiting patients and changing the location of the chair. Ultimately, we need to eval

uate the efficacy of this system to reduce falls in acute hospital settings using a RCT.

Conclusions

We have described a movement monitoring sensor system incorporating a single RFID sensor

worn by hospitalized older people that recognizes bed and chair exits and its preliminary pilot

study results are promising. We have identified areas of future development to improve our

system’s performance, such as placing sensors on the shoulder and RFID reader antennas on

the ceiling and improving sensor performance by reducing size and energy consumption by

embedded sensors. Further research may be undertaken to include a pilot study for a longer

period of time with further developed infrastructure to improve our result metrics and over

come the limitations of our pilot study, and increase the activities of interest (using walking

aids). Finally, the system was perceived acceptable to the patients performing the trials on all

factors of the sensor acceptance model and showed, in general, an increased confidence after

use.
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1 Pseudo code

Algorithm 1 Activity class assignment

Require: Output from classifier (probability for each class) Prk, Number of non-
overlapping windows M

1: for m=1 to M (M can be ∞ ) do
2: ytmp ←

∑
q(Prk,q); q ← (m− 1)× T to m× T .

3: ypred,m ← index of maxk(ytmp)
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Algorithm 2 Bed and chair exit recognition from assigned classes

Require: predicted output ypred
1: for n=2 to N (N can be ∞ ) do
2: if ypred(n− 1) = Sit on bed then
3: if ypred(n) = Sit on chair then
4: else if ypred(n) = Lying then
5: else if ypred(n) = Ambulating then

6: else if ypred(n− 1) = Sit on chair then
7: if ypred(n) = Sit on bed then
8: if previous predicted bed/chair exit occurred more than 1.75 s ago then
9: BedChairExitPred(n)← 1

10: else if ypred(n) = Lying then
11: if previous predicted bed/chair exit occurred more than 1.75 s ago then
12: BedChairExitPred(n)← 1

13: else if ypred(n) = Ambulating then
14: if previous predicted bed/chair exit occurred more than 1.75 s ago then
15: BedChairExitPred(n)← 1

16: else if ypred(n− 1) = Lying then
17: if ypred(n) = Sit on chair then
18: if previous predicted bed/chair exit occurred more than 1.75 s ago then
19: BedChairExitPred(n)← 1

20: else if ypred(n) = Sit on bed then
21: if previous predicted bed/chair exit occurred more than 1.75 s ago then
22: BedChairExitPred(n)← 1

23: else if ypred(n) = Ambulating then
24: if previous predicted bed/chair exit occurred more than 1.75 s ago then
25: BedChairExitPred(n)← 1

26: else if ypred(n− 1) = Ambulating then
27: if ypred(n) = Sit on bed then
28: else if ypred(n) = Lying then
29: else if ypred(n) = Sit on chair then

PLOS 2/2
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Chapter 9

Hierarchical Classification
Method for Recognizing

Alarming States

In previous chapters, we have introduced intervention methods for the generation

of bed and chair exit alerts on two populations of healthy and hospitalized older

people. Both studies used two-stage methods that evaluated the occurrence of these

high risk events in heuristics post-processing stages following a classification stage

that predicted class labels in real time.

The article contained in this chapter is a journal paper that considers the prob-

lem of recognizing alarm or no-alarm states (high-level activity) which are derived

from basic activities or postures (low-level activities). This method uses a graphical

model hierarchical classifier, based on CRFs, to recognize both levels of activities

simultaneously in real time. This model recognizes alarming states by constructing

relationships between the high-level activities, current sensor observations and the

predicted low-level activities e.g. sitting on chair, sitting on bed, lying and ambu-

lating. This method avoids the use of empirically determined heuristic approaches

or cascaded classifiers for the recognition of alerts , and takes less time to train and

validate parameters as opposed to other state-of-the-art approaches .

R.L. Shinmoto Torres, Q. Shi, Anton van den Hengel and D.C. Ranasinghe. ”A Hi-

erarchical Model for Recognizing Alarming States in a Batteryless Sensor Alarm

Intervention for Preventing Falls in Older People”, Pervasive and Mobile Computing,

vol. 40, pp. 1–16, 2017.
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Fig. 1. General description of the intervention for reducing falls and recognition of bed and chair exits. The patient is wearing the batteryless wireless
sensor, when exiting the bed or chair an alarm informs the caregiver to provide assistance to the patient. The W2ISP unit is shown on the bottom-left and
consists of a flexible antenna, a tri-axial accelerometer and a microcontroller that contains a firmware implementation of ISO-18000-6C RFID air interface
protocol.

high [8,9]. For example, a 10-year audit on in-hospital falls recorded only at public hospitals in the State of Victoria, Aus-
tralia, with a population of over 5 million people, determined that falls increased yearly at a rate of about 160 falls per year
with more than 21000 falls recorded in that 10-year period [8]. Recent falls prevention clinical studies in hospital settings
[10–12] based on pressure pads to generate an alarm after detecting a bed or chair exit to provide caregivers an opportunity
to assist patients found, in general, little to no reduction of falls. One reason may be attributed to ‘‘alarm fatigue’’ [11] due
to false alarms. For instance, the long term clinical study of Capezuti et al. [13] showed that approaches using pressure mats
alone or in combination with other sensors (infrared beam detectors) were confronted by high false alarm rates (low speci-
ficity of 0.3%). This study [13] also found that nursings staff must evaluate the size and body movements of the patients in
order to best locate and configure the mat and possibly include other sensors [13], making pressure mat-based approaches
more time consuming in practice and potentially cumbersome for nursing staff [14].

Wearable sensors provide new opportunities to monitor patients and develop more effective movement sensor alarm
systems for falls prevention [15,16] as continuous motion data can be collected and analyzed in real time. Moreover, as
sensors keep reducing in size,more vitalmedical data can also be gathered from these devices [15,16].Wearable devices also
eliminate privacy violation concerns raised by older people related to the use of intrusive technologies such as cameras [17].
Wearable sensor-based studies have explored the areas of recognition of activities of daily living (ADL) [18–23], falls
detection and assessment of the risk or propensity for falls in older people [24–28]. However, the use of this technology
in a clinical intervention to prevent falls remains under-explored.

Most studies using body worn sensors for human activity recognition [18–20,22,23,29] used a single or multiple battery
powered sensors attached or strapped to the body. This approach can cause discomfort to older people whom have shown a
preference for lightweight wearable devices [30,31]; in particular garment-embedded wearable sensors so that they do not
need to remember to use them [30]. Moreover, recharging or changing batteries of sensor devices increases the workload
of nursing staff as the length of stay of some patients can last several weeks to a month or more. In contrast to the use of
battery-powered sensor methods [18–20,22,23,29], we demonstrated in [32], for the first time, the possibility of using a
single batteryless, i.e. lightweight, radio frequency identification (RFID) tag with an integrated accelerometer sensor as a
bed exit movement sensor alarm with young people.

RFID, as a wireless and unique identification technology, provides the capability to simultaneously monitor multiple
patients; moreover, RFID platforms are increasingly being deployed in hospitals for monitoring equipment, patients and
personnel [33]. Therefore, integration with existing RFID infrastructure can result in the reduction of operational expenses.
Our RFID-based approach for monitoring patients and providing timely alarms to caregivers in a technological intervention
to prevent falls is illustrated in Fig. 1. In this proposed intervention, a patient wears the sensor over a loosely worn garment
at sternum level, as chest-located sensors [34] are better able to capture upper-body movements to effectively determine
postures in older people. The sensor, an accelerometer embedded passive RFID tag in a wearable embodiment (bottom-left
of Fig. 1), collects motion information from the patient in a sparse data streamwhich is processed by our proposed approach
for the recognition of alarms of interest associated with high-risk activities, such as getting out of bed, in real time. Hence,
once an unsupervised patient performs a given high-risk activity (i.e. exits the bed or chair), our approach recognizes an
alarming condition and issues an alarm for hospital staff to quickly access the room to supervise the patient and prevent
a fall. To our knowledge, there is no previous literature that uses a batteryless, wireless sensor device with healthy and
hospitalized older people for the prevention of falls.

In the context of our clinical intervention, we are interested in discriminating between alarming and no-alarming states
of a patient in a hospital setting, where an alarm state corresponds to a bed exit and being out-of-bed or a chair exit and
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being out-of-chair whereas a no-alarm encompasses any other state. In our previous studies in [21,32], our approach was to
identify posture transitions, for example getting out of bed. Themethod in [32]was purely heuristics-basedwith empirically
determined threshold levels and produced an output from 20 s segment windows, causing delays in alarm activation and
response from caregivers. In [21] we used a two-stage approach where we: (i) predicted an activity label sequence, such
as: lying, sitting-on-bed, ambulating from a time series of sensor observations; and (ii) subsequently used a heuristic based
empirical method to determine changes from previous and current predicted activity labels to identify alarming activities,
for example, sitting-on-bed to ambulating to recognize bed exits. This method [21] achieved better performance than that
of [32] when tested on older people. In the present study, our motivation is to formulate the alarm and no-alarm states as
high-level activities to be recognized using a hierarchical classifier where the model learns relationships between the alarm
and no-alarm states, the current sensor observation and the sequence of predicted low-level activities.

Other studies have also considered the recognition of high-level activities with bodyworn sensors. For example, walking,
running and cycling, in Banos et al. [20] and making coffee, toileting or watching television in Wang et al. [23], were
derived from the low-level activities of body or limb movements. In general, methods to determine high-level activities
have considered:

• Heuristic methods for the recognition of high level activities [18,32] (see Section 2.1); and
• Multiple stage classifiers [19–23,29] (see Section 2.2).

The use of heuristic methods implies that thresholds or other parameters are empirically determined, i.e. not learned by
the model, and calculated or pre-determined for the available testing data [18,23,32]. Often, these parameters must be
reevaluated to match the conditions of new testing data. Similarly, for cascaded classifiers [19,20,22], multiple classifiers
in sequence are trained where each prediction model requires the evaluation of model parameters (e.g. SVM’s trade-off
parameter C and kernel parameters). The use ofmultiple stages can extend the training time, significantly increasing the time
required to find optimal parameters. In addition, most studies do not consider the natural relationships between sequential
activities during classification.

Therefore, this article proposes a classification algorithm for learning to recognize in real time high level activities,
corresponding to the alarming states of a patient exiting a bed and being out-of-bed, or exiting a chair and being out-of-chair.
We expect this model to reduce training time from previous multi-stage classification approaches, reinforce the learning of
our alarming states, and eliminate the need to rely on empirically determined heuristic stages where real time inference is
required. In this study, our contributions are:

1. We develop a novel hierarchical classifier based on the probabilistic method of conditional random fields (CRF) capable
of modeling dependencies of activities in a sequence to learn to predict alarming states instead of using empirically
determined heuristic approaches or cascaded classifiers and thus avoiding the use of multiple processing stages. In
particular, our hierarchical CRF (HCRF) classifier incorporates the decision function to determine when to generate an
alarm by discriminating alarming states—which we refer to as our high-level activities—by constructing relationships
between high-level activities, current sensor observation and predicted low-level activities from sensor observations
(e.g. sitting, lying, ambulating). Furthermore, inferencing in our HCRF approach is achieved in real time using a
sum–product algorithm based method that computes the marginal probabilities for every received sensor data as
opposed to inferencing complete sequences as is typical in CRFs.

2. Our learning algorithm utilizes time-domain based information from the accelerometer and RFID data obtained from the
RFID infrastructure. This allows the rapid calculation of features in contrast to the use of frequency-domain accelerometer
information where data interpolation, given the sparse and irregular reading intervals of our passive sensor data, and
transformation to frequency domain are necessary.

3. We evaluate the real-time alarming performance of our approach with cohorts of 14 healthy older people and 26 older
hospitalized patients from a geriatrics evaluation and management (GEM) unit since we are interested in reducing falls
in hospitals.

2. Related works

This section describes previous methods formulated for human activity recognition. These approaches can be broadly
categorized based on their method to recognize activities of interest: (i) heuristics-only approaches; and (ii) multiple-stage
approaches, usually consisting of a single or sequence of classifiers followed by a heuristics method for activity recognition.
We also describe other studies based on hierarchical approaches using CRFs.

2.1. Heuristics-only approaches

In these methods [18,27,32,35] the activities of interest were transitions such as sitting to standing and standing to
sitting [18,27,35] or in-bed to out-of-bed [32]. These approaches used a heuristic decision-tree model based on thresholds
where the sensor data has to be interpolated and filtered various times according to the activity of interest; moreover,
thresholds and other parameters were empirically determined with the testing population and thus are not learned. None
of these methods were implemented in real time as [32], our previous approach evaluated with young adult volunteers,
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considered non-overlapping windows of 20 s duration and [18,27,35] used data-loggers and processed each participant’s
data in a single batch.

2.2. Multiple stage approaches

Thesemethods [19–23,29,36] usually considered a two-stage solution,where the first stage, amachine learning classifier,
predicted low-level activities followed by a second stage for post-processing the prediction stream to determine a label
corresponding to a high-level activity. In [21], we considered a two-stage approach where the first stage predicted postures
from a sequence of sensor data and the second heuristic-based stage evaluated change of postures from that of being in-bed
to out-of-bed to generate an alarm. The studies of Lee et al. [36], Lee et al. [29], Varkey et al. [19], and Wang et al. [23],
used cascaded classifier based processes to discriminate between two levels of activities from sensor information, where
an identified action, motion or type of movement (e.g. static or dynamic [29], arm moving up or down [19], or stand and
walk [36]) is followedby the recognition of thehigh-level activity of interest (e.g. driving, goingupstairs [29];writing, jogging
or walking [19]; and shopping or taking the bus [36]). In Banos et al. [20] multiple binary classifiers were hierarchically
ranked and combined, first at individual sensor level and then from multiple sensor sources to recognize an activity being
performed.

In the cascaded classifier models of [20,23,36] the high-level classifier waits for the output of the previous level (low-
level) classifier in order to perform classification. This can cause some processing delay; for example in [36] the high-level
model considers up to 5 min of collected data to make a decision. Other models [19,29] used the sensor data stream for
input to the classifiers; however, multiple classification models are trained and used on the high-level classification stage
depending on the output of the low-level classifier. In these methods, the high-level activity was determined directly by
the high-level classifier [19,29,36]; or a decision stage that decided on the weighted-sum of the outputs of the high-level
classifiers where weights were learned; or used a simple heuristics-based score function exceeding a threshold level that
was empirically predetermined [23]. Similarly, our approach in [21] used a heuristics method that considered the previous
and current predicted activity to issue an alarm.

2.3. CRF-based approaches

Our approach is based on a hierarchical model based on CRFs. Recent approaches usingmulti-level graphical models, also
named hierarchical CRF [37–41] weremostly focused on solving computer vision and imaging problems and did not require
real time prediction in their problem formulation as is our case. Moreover, these methods were not intended for sequential
time-series data where inference is based on temporal data which is never complete.

Other methods included multilayer approaches such as hidden conditional random fields [42–44] which considers a
linear chain model where a layer of variables, in contrast to our approach, is latent and inference of this layer is not required
as it is unknown. The study of Chatzis et al. [45] infers labels for two non-latent layers of variables as in our approach.
However, these studies [42,45] provide a single classification value for a complete series of observations. As a consequence,
these processes [42,45] require the complete set of inputs to perform inference which makes these algorithms unsuitable
for our problem which requires a prediction of alarm or no-alarm state for every received sensor observation to meet real
time requirements of our application.

In contrast to previous approaches, we develop a method that predicts in real time high level activities in a single
classification processwithout relying on empirically determined parameters or expensive post processing stages. Moreover,
all parameters are learned and not determined by testing data. This is the first attempt, to our knowledge, to investigate the
use of hierarchical CRFs in the recognition of high-level activities in real time, in our case corresponding to alarming states.
We describe the study’s approach and algorithms in the following sections.

3. Description of the proposed intervention

This study’s proposed intervention is illustrated in Fig. 1where older people use awearable sensor device calledWearable
Wireless Identification and Sensing Platform (W2ISP) attached on top of their clothing and described in detail in Section 4.2.
Once the patient exits the bed or chair without supervision, (i) data from upper-bodymotion; (ii) patient identification; and
(iii) radio frequency (RF) information such as RSSI (received signal strength indicator), phase and frequency; are collected via
the RFID reader infrastructure, i.e. RFID antennas and readers, and transmitted for high-level activity (alarms) recognition in
real time. The focus of this paper is the extraction of features from the received data and the recognition of alarming events
using two parallel hierarchical conditional random field classifiers.

The first hierarchical model recognizes the out of bed alarming state (exiting the bed and being out of bed), referred to
as bed exit henceforth for simplicity. For example, a bed exit considers a person leaving the bed after sitting or lying on it;
however, the change of a person lying to sitting on the bed does not generate an alarm as the person is still on the bed. The
second hierarchical model recognizes the out of chair alarm state (exiting a chair and being out of chair), referred to as chair
exit for simplicity. The hierarchical models predict an alarm or no-alarm state using an associated confidence level for each
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Fig. 2. Description of the experimental settings. (a) Room1, (b) Room2 and (c) Room3.

Table 1
Number of executed bed exits and chair exits during trials.

Room1 Room2 Room3
Bed exit Chair exit Bed exit Chair exit Bed exit Chair exit

83 48 52 20 67 51

prediction based on the marginal probability of the alarm state. Hence, a high confidence indicates a high likelihood of an
occurrence of a high-level activity, corresponding to an alarm signal.

The issued alarm is received by hospital staff, who also wear RFID embedded identification tags and can be uniquely
identified by the RFID platform, to access the room and perform necessary intervention to prevent a fall from the identified
patient [46]. The RFID name badges allow the system to automatically determine the provision of care to inferwhen a person
is being supervised or being cared for.

4. Data collection

4.1. Participants and environment

In this study, we trialled 14 healthy older volunteers aged between 66 and 86 years old and 26 older patients from the
geriatrics ward of an Australian hospital, patients were aged between 71 and 93 years old. The participants had no cognitive
impairment, were able to mobilize independently or use a walking aid and signed consent for the trials. The trials for the
healthy volunteers were performed in a clinical room which was instrumented to resemble two different clinical settings,
called Room1 and Room2 and shown in Fig. 2. The healthy older volunteers were assigned to either clinical setting Room1
or Room2. The setting of Room1, shown in Fig. 2(a), used four RFID reader antennas: one on top of the bed on ceiling level
and three at wall level covering the areas a person using the sensor device is likely to walk through, with one of these three
antennas facing the chair. In the case of Room2, see Fig. 2(b), two antennas are facing the bed and surrounding areas at
ceiling level and one antenna is facing the chair. In the case of the hospitalized patients, the trials were performed in their
own hospital rooms. Fig. 2(c) shows a general deployment in a hospital roomwhere three antennas were used: two directed
to the area next to the bed and one tilted towards the chair. The chairs were located at either side of the bed. The dimensions
for Room3 were not fixed since the experiments were carried out in the rooms occupied by participating hospital patients.

The participants performed a set of predefined activities such as lying on the bed, sitting on the bed, sitting on the chair,
walking frombed to chair and chair to bed andwalking to and from the door. The participantswere informed of the activities
to perform and were told to perform these activities as comfortably as possible and no indication was made as to how to
do each movement. The duration for the trials for healthy volunteer was of about 90–120 min and about 20–25 min for
hospitalized volunteers. Healthy participants performed about 5 trials each and completed on average 2 bed exits and 1
chair exit per trial. Hospitalized participants performed one trial each and completed on average 2–3 chair exits and bed
exits, depending on their physical condition. The total number of bed and chair exits performed during trials are shown in
Table 1. The data of 3 trials from a single volunteer from the healthy cohort in Room1 and the data of 3 patients from the
hospitalized cohort of Room3 were not used due to sensor malfunction and insufficient data collection; hence we use the
data of 23 patients in Room3. The data of these trials are available at http://autoidlab.cs.adelaide.edu.au/research/ahr.

4.2. Sensing platform

The sensing technology proposed for our intervention is a batteryless wearable sensor device called W2ISP [21,47], see
Fig. 1 (bottom left). The W2ISP consists of a sensor module embedded in a flexible antenna constructed from C-Foam [47]
for comfort of the user and a silver fabric to isolate the device from the person wearing it. The W2ISP includes a tri-axial
accelerometer (ADXL330) and a 16-bit ultra-lowpower consumptionmicrocontroller (MSP430F2132). TheW2ISP powers its
components with the energy harvested from the electromagnetic (EM) field produced by off-the-shelf Ultra High Frequency
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(UHF) RFID reader antennas. The accelerometer, in particular, has a minimum full scale range of ±3 g and low power
requirement of 180 µA with a supply voltage of 1.8 V. The firmware executing on the microcontroller is an implementation
of the ISO-18000-6C air interface protocol [48] so that the sensor can be read by standard commercial off-the-shelf UHF
RFID readers. The 10-bit per axis accelerometer data is sampled and embedded in the 96-bit EPC (Electronic Product Code)
that also includes a unique identifier [49]. The sensor response is backscattered and subsequently received by an antenna
and decoded by an RFID reader.

The RFID reader antennas are powered by an Speedway Revolution reader operating at the regulated Australian RF
frequency band of 920–926 MHz and at a maximum regulated power of 1 W. The RFID reader collects information from
all antennas and is capable of sending this data in real time via a connection to a local area network to back-end systems for
processing.

The passive nature of the device powering also constrains the amount of data collected as sensor readings are produced
when the sensor and micro-controller have sufficient power from the RFID reader antennas, this depends on factors such
as the distance to the antenna or if there is direct exposure or occlusion to the EM signals from the antennas. Hence, the
number of readings obtained from the sensing platform is variable and the sensor data stream is characterized by both noise
and sparsity [50].

We are interested in using the three axes acceleration data from the sensor as it contains movement information;
previous methods used frequency-domain features (frequency components, energy and entropy) [20,22,51,52], where
extracting this information requires processing regularly sampled data or interpolating irregular data. However, we have
previously shown in [50] that the combined use of RSSI and acceleration based features in the time domain can improve
the performance of a classifier compared to when using acceleration and RSSI based features independently, and achieve
similar or better performance than features extracted fromonly acceleration data in time and frequency domain. In addition,
extracting frequency domain features produces processing delays; therefore, in this study, we consider time-domain only
features from acceleration data and data obtained from the RFID infrastructure, such as RSSI and phase.

We consider the received signal strength indicator (RSSI), which corresponds to the received strength of the signal
returned by the sensor. RSSI is an indicator of relative distance to the RFID antenna as a sensor closer to the antenna has
higher RSSI readings than a sensor located further away. Previous studies have determined the importance of RSSI for activity
recognition [21,32,53]. For example, our study in [21] determined that relative changes in RSSI values can help determine
posture variations that may not be noticeable with acceleration information alone.

We can observe the patterns in RSSI and acceleration data in Fig. 3, which shows a bed exit (a)–(b) and chair exit (c)–(d)
of a hospitalized person. We can see on all cases that sitting and ambulating postures have scarcer sensor observations than
when lying on bed. Fig. 3(a) shows a bed exit, where sitting on bed has very few sensor observations and transferring to
ambulating can only be clearly seen in af values; however, RSSI values in Fig. 3(b) show that changes for antenna1 can also
help determine an exit from the bed. Similarly, Fig. 3(c) shows there is a fast acceleration changewhen exiting the chair, then
acceleration values recover to previous state; however, RSSI values have a clear variation (antenna3) to help discriminate
sitting on chair from ambulation. The sine of the body tilting angle (see Section 5.1) follows closely the variations of af . Other
RF information collected is RF phase, which measures the phase angle between a sent RF carrier (frequency channel) and
returned signal from the sensor [53].

5. Feature extraction

We are interested in extracting relevant human movement information from the sensor’s raw data as well as the data
captured by the RFID infrastructure such as RSSI and phase. We have considered three types of features in this study:
(i) instantaneous features; (ii) contextual information features; and (iii) inter-segment features. Since we have exploited
information dependent on the number of antennas in the room, we have variable feature vector dimensionsR78 for Room1,
R68 for Room2 and R70 for Room3.

5.1. Instantaneous features

These features capture information about the actions being performed by a person at a given instant. These features are
derived directly from the sensor, RFID infrastructure and user information. The included features are:

• Acceleration readings from three axes: av , af , and al shown in Fig. 1;
• Sine of body tilting angle in the sagittal plane, sin(θ) = sin(arctan(

af
av

)) as in [34];
• Rotational angle yaw = arctan(

al
af

);
• Rotational angle roll = arctan(

al
av

);
• ID of antenna receiving data (aID) [21];
• Received signal strength indicator (RSSI) [21];
• Time difference between observations as in [21];
• Resultant accelerationĎ, atotal =


a2f + a2v + a2l ;

• Gender of the participant.
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Fig. 3. Variations of acceleration readings, sine of body tilting angle and received signal strength indicator (RSSI), for a set of activities in the hospital setting
in Room3. (a) Acceleration readings for a bed exit, where readings for Lying on bed are clearly different to those of other activities while readings for Sitting
on bed and Sitting on chair are similar. (b) Variations of RSSI showing trend changes for readings captured by specific antennas during transitions between
activities. (c) Acceleration readings during a chair exit, also showing similar readings during sitting postures. (d) RSSI variations, mainly from antenna1,
provide trend variation information during changes in posture.

5.2. Contextual information features

These features provide recent temporal context on the action being performed; this is because activities that occurred
recently have an impact on the current action as opposed to earlier movements. These are obtained from a fixed time sliding
window of 4 s duration. In previous research [54], we found that using this segmentation method produced performance as
high as that of other more complex methods for context extraction. The included features are:

• Number of readings per antenna in a segment [54];
• Mutual information from bed and chair area antennas [54] (used antenna2–antenna4 in Room1, antenna1–antenna2 in

Room2, and combinations of pairs of antennas in Room3, due to bed and chair being next to each other);
• ID of antennas receiving higher and lower RSSI from tag responses;
• Displacement in the av axis, given by dav =

 t
t−4s avdt2;

• Mean and standard deviation of three acceleration axesĎ;
• Mean and standard deviation of RSSI from all antennasĎ;
• Pearson correlation between acceleration readings in the time window;
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• Total velocity during segmentĎ, vatotal =
 t
t−4s atotaldt;

• Displacement with total accelerationĎ, datotal =
 t

t−4s atotaldt
2;

• Standard deviation of variable frequency phase rate (VFPR)Ď as used in [53];
• Standard deviation, median and sum of modulus of constant frequency phase rate (CFPR)Ď as used in [53].

5.3. Inter-segment features

These types of features exploit trends and relationships between two segments. Hence, they provide an insight into the
long term variations that are consistent with posture changes.

• Difference of maximum, minimum and median of three acceleration axes from consecutive segments;
• Difference of maximum, minimum and median of sine of body tilting angle from consecutive segmentsĎ;
• Difference of maximum, minimum and median of RSSI per antenna from consecutive segments.

We performed feature selection using the WEKA data mining tool [55] using the simple classifiers: random forest; the
probabilistic models of Bayes network; and logistic regression, to rank the features based on each classifier evaluated
with each dataset. Then we eliminated features ranked low across the datasets. In general, we are interested in using or
eliminating complete sets of features as we aim to compare all datasets with the same sets of features. For example, we use
the values of the 3 acceleration axes in Section 5.1, butwe eliminated themean and standard deviation of these 3 acceleration
axes in a segment in Section 5.2 as these were ranked low by the datasets. Features above with Ď were eliminated for the
general evaluation in Section 7.2.

6. Activity recognition

This section provides detail of the formulation of our hierarchical classifiers, describing training, inference and alarm
activation methods. From the collected data, let x1:T denote x1, x2, . . . , xT , a sequence of observations of length T associated
to two sets of variables y1:T and h1:T that correspond to performed low and high level activities respectively. Low level
activities are observable motions such as lie, sit or ambulate, whereas high level activities correspond to an alarm or no-
alarm state, which are related to the low level activities. We assume K classes for the low level activities and H classes for
the high level activities; hence yt ∈ Y = {1, . . . , K} and ht ∈ H = {1, . . . ,H}. The proposed two layer HCRFmodel is given
by the conditional distribution p (h, y|x) and partition function Z .

p (h, y|x) =
1

Z(x)
exp


T

t=1

φt (ht , yt , yt−1, x)


(1)

Z (x) =


h′
1:T


y′1:T

exp


T

t=1

φt

h′

t , y
′

t , y
′

t−1, x


. (2)

We decompose the potential function into a set of smaller potential functions (3) resulting in a loop-free factor graph,
which is convenient as is simpler to solve and inference is exact. The factor graph is shown in Fig. 4.

φt (ht , yt , yt−1, xt) = φ1,t(yt , x) + φ2,t(yt−1, yt , ht) + φ3,t(ht , x). (3)

6.1. Training

During training, we aim to maximize the conditional log likelihood L

L = log p (h1:T , y1:T |x) (4)

L =

T
t=1

φ1,t(yt , x) + φ2,t(yt−1, yt , ht) + φ3,t(ht , x) − log (Z(x)) (5)

where φ1,t(yt , x) = ⟨θ1, f1,t(yt , x)⟩, φ2,t(yt−1, yt , ht) = ⟨θ2, f2,t(yt−1, yt , ht)⟩ and φ3,t(ht , x) = ⟨θ3, f3,t(ht , x)⟩, here
θ = {θ1, θ2, θ3} are parameters to be estimated and f (.) is a boolean value transition or emission feature function. In the
case of emission parameters, the trained model assigns a weight parameter for each possible discrete feature value (e.g. for
feature body tilting angle discrete values between −1 and 1 in steps of 0.05 are considered), for every possible value of
variable y in the case of θ1 and of variable h in the case of θ3.

An intra-class transition feature function example is f2,t(yt−1 = ‘‘Lying’’, yt = ‘‘Sitting on bed’’, ht = ‘‘No Alarm’’) =

1yk−1=‘‘Lying’’ · 1yk=‘‘Sitting on bed’’ · 1hk=‘‘No alarm’’, where 1{.} is the indicator function. Finally to exemplify an emission feature
function, consider the example of current observation xt containing a single feature of acceleration a, where a = 0 g , when
currently the person is lying, then f3,t(yt = ‘‘Lying’’, xt [a] = 0 g) = 1yk−1=‘‘Lying’’ · 1xk[a]=0 g .
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During training, we want to obtain the marginal probabilities of variables h and y, and to calculate the partition function
Z . The marginal probability for variables yt and ht are given by:

p(yt |x1:T ) =


y−t


h

p(h, y|x) (12)

p(ht |x1:T ) =


h−t


y

p(h, y|x) (13)

where y−t denotes y1:t−1,t+1:T , similarly for h−t . As in the case of the partition function, the marginal probability can be
solved using the sum–product algorithm. Given that messages from all neighbors to the variable nodes are required, we
also calculate messages passing backwards from the end of the sequence given by variable, yT , onto the first element of the
chain, y1, and alsomessages going to the leaves of the chain represented by variables ht . In the case of backward propagation
we have:

mβt (yt) =


yt+1


ht+1

exp

φ1,t+1(yt+1, x) + φ2,t+1(yt , yt+1, ht+1) + φ3,t+1(ht+1, x)


mβt+1(yt+1). (14)

Hence the marginal probability for variable yt in (12) is given by: p(yt |x) ∝ mαtmβt , or defined by the expression:

p(yt |x1:T ) =
1
Zt


ht


yt−1


yt+1


ht+1

exp

φ1,t(yt , x) + φ2,t(yt−1, yt , ht) + φ3,t(ht , x)

+ φ1,t+1(yt+1, x) + φ2,t+1(yt , yt+1, ht+1) + φ3,t+1(ht+1, x)

mβt+1(yt+1)mαt−1(yt−1) (15)

where Zt is a normalizing parameter. In similar manner the equation in (13) is defined as: p(ht |x1···T ) ∝

exp(φ3,t(ht , x))mφ2,tht (ht), where mφ2,tht (ht) =


yt−1


yt exp


φ2,t(yt−1, yt , ht)


· mytφ2,t (yt)myt−1φ2,t (yt−1). Therefore Eq.

(13) is given by:

p(ht |x1:T ) =
1
Zt


yt


yt−1

exp

φ1,t(yt , x) + φ2,t(yt−1, yt , ht) + φ3,t(ht , x)


mαt−1(yt−1)mβt (yt). (16)

Inference for the cases of testing or validation differs from that of training in that we require real time inference for
each received sensor reading as opposed to performing label inference on the complete input sequence.We have previously
defined a label inference method using the message propagation from the sum–product algorithm [54]. Given that we only
need to infer the current received datum, calculation of the backwards propagation is not necessary to obtain the marginal
probabilities of variables yt and ht at time t , which are given by the expressions:

p(yt |x1:t) =


y1:t−1


h1:t

p(h, y|x)

=
1
Zt


ht


yt−1

exp

φ1,t(yt , x) + φ2,t(yt−1, yt , ht) + φ3,t(ht , x)


mαt−1(yt−1) (17)

p(ht |x1:t) =


h1:t−1


y1:t

p(h, y|x)

=
1
Z ′
t


yt


yt−1

exp

φ1,t(yt , x) + φ2,t(yt−1, yt , ht) + φ3,t(ht , x)


mαt−1(yt−1). (18)

6.3. Alarm activation

Our HCRFmodel determines if the current sensor observation corresponds to an alarming state based on considering the
confidence level (marginal probability) associated with alarming state predictions i.e. bed exits and chair exits. We consider
a confidence model of the form µc + γcσc , where µc is the mean confidence probability of an alarming state (i.e. bed exit or
chair exit), σc is the standard deviation and γc is a confidence parameter. Both µc and σc are determined from the alarming
statemarginal probabilities of the training data; whereas γc is amodel parameter evaluated during parameter selection (see
Section 7.1). Therefore the alarming state for our model at any time t is given by:

alarmt


1 p(ht |x1:t) ≥ µc + γcσc
0 otherwise. (19)

This allows us to exploit the confidence level provided by marginal probabilities associated with alarm states to only
send alerts for those alarm predictions with high confidence levels. Hence the confidence model parameter allows us to
potentially reduce possible false alarms from alarm state predictions where the probability associated with the predicted
class labels cannot provide conclusive evidence to generate an alarm.
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7. Evaluation

To evaluate our method we consider each room individually as RSSI and phase features depend on the number of
antennas and the relative distribution of antennas with respect to the furniture in the room. In addition, people of different
demographics perform activities differently, for instance, in contrast to healthy older people, some frail hospitalized patients
made several attempts before transitioning out of bed while others preferred to roll out of bed.

In consideration of the actions performed, we determine the sets of labels for the HCRF classifiers to predict as Y =

{sitting on bed, sitting on chair, lying on bed and ambulating} and H = {alarm or no-alarm}, where the set of labels H
corresponds to a bed or chair exit alarm as shown in Fig. 1. The alarming process performance was evaluated with respect
to bed and chair exits on all datasets. We evaluate the performance of our hierarchical method and compare it with three
baselinemethods. The first baselinemethod uses amulticlass CRF classifier followed by a heuristics based stage to decide an
alarm or no-alarm label for each observation. The secondmethod is amulticlass SVM classifier using a one-vs-one approach;
and the third method is the multiple-stage classifier of Banos et al. [20], described in Section 2.2. We also demonstrate the
use of high-level activity specific feature sets to improve performance with the proposed HCRF classifier; and compare
training times required by our HCRFmethodwith the baselinemethods to further validate our approach in contrast to using
cascaded, multi-stage classifiers.

7.1. Statistical analysis

In this study, true positives (TP) are those correctly identified alarms corresponding to bed or chair exits when: (i) the
person is actually exiting or has exited the bed or chair (ground truth); and (ii) the ground truth alarm indicator occurs no
more than 5 s after the predicted alarm signal. False positives (FP) are those actions that are incorrectly recognized bed or
chair exits (false alarms). False negatives (FN) are those ground truth bed and chair exits that were not recognized by the
system (missed).

We evaluate the performance of the proposed system using recall, precision and F-score, the harmonicmean of precision
and recall; as thesemetrics consider the occurrence of errors in relation to TPs. Thesemeasurements are defined as: (i) recall
(RE) = TP/(TP+ FN); (ii) precision (PR) = TP/(TP+ FP); and (iii) F-score (FS) = (2× precision× recall)/(precision+ recall).

We evaluated thesemetrics using a 10-fold cross validationwith around 60% of sequences used for training, and 20% used
for testing and validation each. We use a 10-fold cross validation as it allows us to obtain results that are less sensitive to
the partitioning of the data. In the datasets from healthy older people cohorts (Room1 and Room2), the training, testing and
validation subsets contain data from more than one participant, where it is possible that different trials of the same person
are distributed in these subsets. However, in the case of older patients (Room3), given that each patient only performed a
single trial due to their frailty, data for training, testing and validation correspond to different patients. Therefore, the testing
results are a good indication of the results that can be expected from the HCRF classifier in a real-life deployment. We used
the validation sequences for parameter selection i.e. SVM’s C parameter in the range {2−5, . . . , 25

}, regularization parameter
for CRF andHCRF in the range {0, 10−5, 5×10−5, . . . , 5×10−2, 10−1

}, and confidence parameter γc for the alarm activation
stage in the range {0.01, . . . , 1}. We chose the parameter that produced highest F-score. We compared results using a two
tail t-test. A p-value (P) < 0.05 is considered statistically significant.

7.2. Performance comparison

This scenario compares the results of our approach with the three previously mentioned baseline methods. In the case of
the first baseline multiclass CRF method, the predicted labels are those of our label set Y and from this output a heuristics
based stage sums all previously predicted marginal probabilities in a sliding window of 1 s duration where the first element
is the prediction to the last received sensor observation.We then determine the low-level activitywith the largest sum in the
slidingwindowas the corresponding label for the last received sensor reading and the corresponding alarming condition.We
use this time duration as we have previously determined that the minimum time for a posture transition is about 1.7 s [32];
hence a window size larger than 1.7 s can potentially overlap more than one posture change.

The comparison between our proposed method and the baseline methods is shown in Table 2, for a fair comparison
we used the same subset of the features described in Section 5 for all classification models. Comparing results of our HCRF
methodwith the CRF-based heuristicsmethod, for Room1, the HCRFmodel has statistically significantly better performance
for recall for chair exits (P = 0.026) and precision for bed exits (P = 0.024), whereas the heuristic method had statistically
significantly better performance for recall for bed exit (P = 0.031). In the case of Room2 and Room3, none of the resulting
metrics were statistically significantly different (P > 0.29 for Room2 and P > 0.10 for Room3) compared to our HCRF
model. However, in general, the HCRF model provided higher mean performance for bed exits than the heuristics model.

Comparing HCRF results with the SVM multiclass model, for Room1, bed exit results are higher for the SVM model with
statistical significance (P < 0.028), whereas chair exits results are not significant (P > 0.15). Results for Room2 and Room3
indicate an overall higher performance for our HCRF model (P > 0.06), except for recall for bed exits in Room2 where the
SVMmodel has higher performance with significance (P = 0.014).

Comparing results with the method of Banos et al. [20], for Room1 and Room2, the results are not significantly different
(P > 0.09 for both rooms). However, our model showed higher mean F-score performance measures for Room2. In the
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Table 2
Comparison between hierarchical approach and two baselinemethods: CRF-based heuristic method, SVMmulticlassmodel and SVM-basedmultiple-stage
classifier of Banos et al. [20] (results in %). RE: recall, PR: precision, and FS: F-score. Highest F-scores for each high-level activity are shown in bold.

HCRF model CRF-based Heuristics model SVM multiclass model SVM-based model Banos
et al. [20]

Bed exit Chair exit Bed exit Chair exit Bed exit Chair exit Bed exit Chair exit

Room1

RE 57.13 ± 13.01 100.00±0.00 71.13±13.78 96.04 ± 5.18 67.71 ± 5.37 98.26 ± 3.68 63.20 ± 7.89 100.00 ± 0.00
PR 42.26 ± 12.53 51.60±17.31 30.96 ± 7.24 58.06 ± 19.85 55.89 ± 5.42 56.55 ± 16.93 49.42 ± 5.32 60.84 ± 10.56
FS 48.11 ± 11.94 66.62±14.23 42.79 ± 8.56 70.96 ± 16.94 60.97 ± 3.48 70.53 ± 13.63 55.09 ± 4.41 75.16 ± 8.33

Room2

RE 84.92 ± 11.41 68.42±22.97 88.93±11.44 68.42 ± 16.75 95.89 ± 5.55 67.58 ± 26.89 89.47±10.38 68.42 ± 25.82
PR 79.29 ± 9.89 57.50±24.34 73.70±13.24 66.20 ± 27.69 72.13±19.04 50.56 ± 27.32 67.04±19.36 56.14 ± 27.27
FS 81.66 ± 8.99 60.68±22.01 79.39 ± 6.54 63.05 ± 16.23 80.82±12.81 55.74 ± 26.87 74.68±13.00 59.34 ± 24.24

Room3

RE 71.73 ± 16.12 93.57 ± 8.33 63.77±10.89 90.48 ± 11.39 62.84±16.06 91.07 ± 13.74 79.24±14.23 87.14 ± 17.11
PR 23.24 ± 16.31 18.66 ± 5.42 21.71±10.62 24.04 ± 8.35 18.22±13.39 14.25 ± 4.98 18.27±13.88 12.50 ± 4.95
FS 31.70 ± 12.90 30.67 ± 7.40 30.48±10.66 36.96 ± 9.11 26.55±14.92 24.26 ± 7.34 27.57±16.16 21.44 ± 7.30

Table 3
Hierarchical approach results with improved model (%).

Improved HCRF HCRF (Table 2)
Bed exit Chair exit Bed exit Chair exit

Room1

RE 57.13 ± 13.01 98.26 ± 3.68 57.13 ± 13.01 100.00±0.00
PR 42.26 ± 12.53 61.11 ± 18.15 42.26 ± 12.53 51.60±17.31
FS 48.11 ± 11.94 74.15 ± 14.39 48.11 ± 11.94 66.62±14.23

Room2

RE 86.38 ± 10.29 69.25 ± 25.59 84.92 ± 11.41 68.42±22.97
PR 79.65 ± 14.76 62.50 ± 27.85 79.29 ± 9.89 57.50±24.34
FS 82.22 ± 10.52 64.23 ± 24.73 81.66 ± 8.99 60.68±22.01

Room3

RE 66.99 ± 14.90 87.26 ± 11.87 71.73 ± 16.12 93.57 ± 8.33
PR 26.76 ± 20.14 26.12 ± 10.58 23.24 ± 16.31 18.66 ± 5.42
FS 33.63 ± 13.08 39.19 ± 12.53 31.70 ± 12.90 30.67 ± 7.40

case of Room3, our HCRF model has a better performance with statistical significance for precision (P = 0.016) and F-score
(P = 0.012) for chair exits; all other results were not significantly different (P > 0.28).

A reason for the better performance of the SVM methods in Room1 than the other methods is that Room1 has more
data collected to train its model (≈52 000 sensor observations) than those of Room2 and Room3 (≈22 000 and ≈23 000
sensor observations respectively). SVM models have a lower performance with datasets with low data availability where
our HCRF model outperforms the SVM models in both Room2 and Room3. Room3 dataset represents a study in a real life
scenario in the context of our application, where data collection for training is difficult due to the difficulty in recruiting
participants, their frail condition and limited movements patients can perform safely; in this context our HCRF approach
has outperformed the SVM-based methods.

In summary, comparison results from Table 2 indicate that, in general, our model shows comparable or better
performance than the heuristics based model, according to F-score comparison and in general achieved better performance
than a SVMmulticlass model and the SVM-based method of [20].

7.3. Model adjustment

In the previous performance comparison evaluated in Table 2, all methods used the same set of features for all datasets to
determine both chair exits and bed exits. Given that our proposed formulation allows us to influence the learned models by
having a specific set of features to describe the high-level activities; we used feature selectionmethods outlined in Section 5
to craft two feature sets for bed exit alarms and chair exit alarms. Certainly, feature selection can also be employed with
the heuristics based baseline model; however, feature selection for the classifier in the baseline method can only improve
performance based on the recognition of low-level activities as high-level activities are determined in the heuristic stage.
The results from the evaluation of the improved and the previous HCRF model are shown in Table 3.
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Fig. 5. Total training times for the models including parameter selection: (in black) our HCRF model, (in red) the CRF-based heuristic model, (in green)
the SVM multiclass model; and (in blue) the SVM-based model from [20]. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

The improved HCRF increased the performance for chair exits for Room1 and both bed and chair exit for Room2 and
Room3. Room1 has an approximate F-score increase of about 7.5% (P = 0.18). In the case of bed exits for Room1, the
performance did not increasewhen compared to the use of the original subset of features, hencewe use the previous feature
set for bed exits. In the case of Room2 and Room3, F-scores for bed exits and chair exits were increased up to 8.5% for both
room sets.

7.4. Training time evaluation

We show in Fig. 5 the different total training times, including parameter selection, for each classification method tested
in Table 2. Fig. 5 shows that on average our HCRF model takes as much as the CRF-based heuristic model whereas the SVM-
based model of [20] takes at most 1400% longer to train than the respective HCRF model. Our model also takes less time to
train than the SVMmulticlass model for Room1 and Room3; however, for Room2, SVMmulticlass achieves the fastest total
training time but the model obtained does not translate to better performance. In the case of Room3, which has almost as
many sensor observations as in Room2, training times for SVM-based models are almost as long as those for Room1. The
training times for SVM-based models are affected by the evaluation of, mainly, two values of C = {24, 25

} that together
take about 60% and 67% of the total training time for SVMmulticlass (in green) and the method of Banos et al. [20] (in blue)
respectively.

7.5. Discussion

The proposed HCRF method achieved, in general, similar to higher F-score performance in comparison with those other
baseline methods. The HCRF formulation leads to a number of methodological improvements of HCRF compared to our
baseline methods: (i) HCRF avoids the use of multi-stage approaches where usually one or more stages are empirically
determined heuristic methods with parameters that are not learned, but determined by the user (e.g. size of the sliding
window in CRF-based heuristic method); however, parameters for HCRF are learned and determined during validation;
(ii) previous studies for human activity recognition with a single body-worn sensor have only considered battery-powered
sensor devices, generally testing their approaches with a young population; whereas our research is the first to study the
use of wireless, batteryless body-worn sensors in older people and in particular, hospitalized older people; (iii) HCRF was
compared with an SVM multiclass classifier and a recent published paper [20] that used a cascaded classification method.
HCRF performed better for datasets Room2 and Room3, and HCRF was, in general, faster to train than SVM-based methods
as shown in Fig. 5.

However, the overall results are not desirably high enough for a clinical application for the recognition of bed and
chair exits. These lower than expected results were driven mainly by the passive nature of the sensor, leading to a lack of
observations during ambulation for the three datasets that caused difficulty to appropriately distinguish between sitting and
ambulating activities as body trunk postures are similar. In Room1, although the antenna setting covered a broad area around
the room, there is a lack of sensor readings when sitting on bed and standing next to the bed as there are few readings in this
position and the posture transition of getting out of the bed is not captured. In Room2, which has the highest performance of
all datasets, the antennas focused around the bed allow to capturemore readings while the person is lying on bed; however,
few readings are still capturedwhile sitting on the bed as illumination of the sensor from the antennas are obstructed by the
person’s body. In addition, while approaching the chair, older people give their back to the RFID antenna facing the chair and
may not face the antennawhile sitting on the chair. In Room3,which has the same distribution as Room2 in terms of number
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Fig. 6. Confusionmatrices from first layer of hierarchical classifier (a): Room1, (b): Room2 and (c): Room3, where SoB: Sitting on bed, SoC: Sitting on chair,
Ly: Lying and Amb: Ambulation.

of RFID reader antennas and direction of these antennas, the performance is lower than the other two datasets caused by
lack of sensor observations while ambulating and sitting. Moreover, the short distance between bed and chair reduces the
number of sensor readings collected while ambulating. Further, body posture of frail patients occlude the sensor as they
arch forward when ambulating or sitting.

We can see in Fig. 6 the affect of lack of sensor readings and the similarity of sitting and standing postures on the classifier.
Fig. 6(a) and (b) show the confusionmatrix from the first layer of theHCRF for Room1 and Room2. Here Ambulating activities
were labeled as Sitting-on-bed (≤29%) and Sitting-on-chair (≤14%); these misclassification errors are possible causes for
bed exit and chair exit alarm errors as shown in Table 2. These effects are also observed in Room3, shown in Fig. 6(c); in
addition, the short distance between the bed and chair cause misclassification between Sitting-on-bed and Sitting-on-chair
(≤36%). Moreover, about 80% of Sitting-on-bed labels were incorrectly predicted due to lack of readings while sitting on the
bed as ceiling mounted RFID reader antennas were unable to read the sensor when a patient was in a sitting posture and
arching forwards. Some patients were lying on bed with raised bed head boards as they read or watched TV during the day
and these non-horizontal postures while lying affected Sitting-on-bed label classification.

8. Conclusions

The present study presents a novel hierarchical classification model for a falls prevention intervention that can
successfully predict bed and chair exits in real time with better or similar performance than a heuristics based model and
SVM-basedmodels, as tested with healthy and hospitalized older people. We have described additional advantages to using
our hierarchical classification approach such as the ability to adjust the trainedmodel to the different high level activities of
interest and the lower training time required in relation to cascaded classification models. Although the proposed system
is not intended to detect falls but to issue an alarm to caregivers when a hospitalized older person is out of the bed or chair,
these alarms will allow an attending caregiver to act quickly if a fall has already occurred and prevent consequences arising
from a ‘long lie’.

There are however, limitations to be dealt with in future research. For example, the lack of sensor observations obtained
from our passive sensor approach. This occurs especially when transitioning between activities, due to the RFID antennas
not being able to power the sensor. This inadequate powering of the sensor is caused by the human body occluding the
sensor or misalignment of the body worn sensor antenna with the RFID reader antennas. This leads to reduced data while
performing some activities (sparse data shown in Fig. 3), affecting the performance from the classifier.

Althoughwe use features, such as RSSI, that depend on the antenna deployment; this is not a limitation in our application
context of preventing falls in hospitals as the relative positioning of furniture does not change from room to room. However,
changing the settings from, for example, a hospital context to a nursing home context may require gathering new training
data and re-training.

The present work has considered a set of activities representative of those performed by patients in a hospital setting
to support our wearable falls prevention intervention. As a consequence, the number of activities considered is limited and
if extended to monitoring older people outside of a hospital context, such as older people living independently at home, a
wider set of activities as well as RFID infrastructure deployments should be considered and evaluated. Future work should
consider improving the amount of data collected from the sensor by: (i) exploiting recent lower power consuming sensing
components such as themicro-controller and accelerometer to improve the sensor unit by reducing its power consumption;
(ii) considering the use of textile integrated antennas for the reducing the size of the sensor unit without decreasing
performance [58]; and (iii) improving the illumination of the sensor by RFID antennas and thereby energy harvesting by,
for example, changing the location of the sensor from the chest to the shoulder of the person and placing all RFID reader
antennas on the ceiling. This deployment strategy is a compromise between collecting more sensor readings and capturing
upper body motion information as previously used in [18,34], which we have found is not optimal for a passive sensor
deployment. These sensor location changes can reduce occlusions from the participants’ body during activities and ensures
the illumination of the sensor from ceiling located antennas.

Other future work in the context of the application should consider the implementation of a randomized control trial
(RCT) with a larger cohort of older patients to determine the effectiveness of our approach to reduce the rate of falls in older
patients. Moreover, such a long term trial can also indicate the alarming performance of the system over longer periods of
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time (during day and night) as opposed to that of short trials, as is the case for our datasets. In addition, we can evaluate the
impact of the alarming system on staff and investigate the burden of false alarms to develop a quantitative understanding
of ‘alarm fatigue’.
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Chapter 10

Conclusions and Future
Work

10.1 Conclusions

This thesis is focused on the development of a technological intervention for pre-

venting falls in older people living in nursing homes or in hospitals by employing

passive sensor enabled RFID technology to monitor their activities. In particular,

the research presented is focused on methods for recognizing bed and chair exits as

high risk activities where the older person performing these activities is at risk of

falling. For this purpose, this study evaluated an accelerometer embedded RFID tag

named W2ISP in a wireless, wearable and lightweight sensor device embodiment

that was worn over clothing at sternum level. Body worn passive sensor embed-

ded RFID technology for activity recognition has not been previously investigated;

therefore, this thesis: i) presents methods to exploit noisy, low and variable sam-

pling interval data and sparse sensor embedded RFID data streams in a body worn

passive sensor for activity recognition; ii) evaluates methods for generating alarms

on the occurrence of high-risk activities in real-time with healthy and hospitalized

older people; and iii) investigates the acceptability and wearability of the proposed

W2ISP sensing platform by the trialled cohorts.

There are clear benefits to using an RFID technology-based sensing approach as the

devices are small, lightweight, cable-free, battery-free, inexpensive and unobtrusive

to performed motions of older people. In addition to acceleration sensor informa-

tion, RFID technology provides convenient access to RFID data such as the user

identifier as well as RFID environment measurements such as the Received Signal

Strength Indicator (RSSI). This thesis exploits these benefits and sources of informa-

tion for the recognition of high risk activities of interest.
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The study in Chapter 3 used RFID technology based batteryless wireless sensor ap-

proach to detect bed exits using acceleration and RFID measurements such as RSSI.

This study determined the feasibility of using such sensor as a body-worn device,

showing better performance than using a fixed-bed sensor approach to detect bed

exits with a population of young volunteers. The body-worn sensor approach de-

tected bed exits using an empirical threshold-based method where data was interpo-

lated and digitally filtered with frequencies determined by a time-frequency motion

analysis as described by Najafi et al. [31]. Following this study, the use of the W2ISP

loosely worn over clothing at sternum level was considered adequate as opposed

to a strapped approach [31] to secure the sensor to the body which can be consid-

ered uncomfortable for older people. Though this method achieved good results

with young adults, similar results were not achieved with older populations, our

target demographics; hence the need to develop solutions in the domain of machine

learning to identify high risk activities.

Chapter 4 introduced the machine learning method of Conditional Random Fields,

a graphical model classification algorithm well suited for learning from sequential

data. This chapter proposed an alternative problem formulation to the method used

in Chapter 3. The proposed approach used a CRF-based approach for recognizing

bed exits using features engineered from raw sensor data i.e. acceleration and RSSI

(see instantaneous features in Appendix A). This CRF-based approach was tested

on a population of healthy older people in two clinical settings that resemble a hos-

pital environment. This approach achieved better performance than the empirical

method in Chapter 3 based on interpolation and digital filtering processes applied

to acceleration sensor data.

Chapter 5 developed several data segmentation methods and contextual informa-

tion features using fixed and dynamic sized windowing methods from a sensor data

stream for the extraction of contextual information, related to the current sensor ob-

servation. These approaches improved the performance of a CRF classifier by pro-

viding temporal information to the classifier given that individual sensor readings

provide limited information about the related activity for the classifier to make cor-

rect inference. Moreover, given that inference methods in CRF consider the evalua-

tion of the complete sequence e.g. Viterbi algorithm or sum-product; a real time CRF

inference method based on the sum-product algorithm that allows the prediction of

the marginal probabilities for each label for each incoming sensor reading was also
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developed therein. This inference approach allows the rapid inference of the current

sensor observation, avoiding the need to analyze complete data sequences in order

to determine the activity being performed and the timely activation of an alert.

The problem of data imbalance was studied in Chapter 6. Data imbalance is an in-

herent issue in activity recognition as activities performed by humans are of differ-

ent durations. In particular with older patients who stay in resting positions (lying

or sitting) longer than ambulating. Data imbalance can bias classification models

to favor a majority class. However, the correct classification of minority classes is

important. For example, detecting a person performing the minority class ambulat-

ing is important given the associated high risk of falling while ambulating. In the

light of this problem, a dynamically weighted CRF (dWCRF) method that consid-

ers the effects from imbalanced data was developed. This approach dynamically

calculates the cost parameters during training while optimizing overall F-score to

improve overall activity recognition performance (i.e. minimize both false alarms

and misses). The approach was evaluated with two datasets for human activity

recognition using batteryless and battery-powered body worn sensors, respectively,

where the latter corresponds to an external publicly available dataset. This study

established that dWCRF improves the overall F-score when compared to other CRF-

based methods and performed similar to better than other SVM-based classifiers. In

addition, dWCRF achieved a significant reduction in training and model selection

time when compared to other fixed-weight methods that require extensive valida-

tion to obtain optimal parameters.

Two methods to recognize bed and chair exits and generate alarms in real time was

proposed in Chapter 7 and Chapter 8. The alarming performance (true alarms and

false alarms) was evaluated with a cohort of healthy older people (66 to 86 years

old) in Chapter 7, and a cohort of hospitalized older people (71 to 93 years old)

in Chapter 8. Both alarm generation methods were based on a two-stage activity

recognition approach where in the first stage, a classifier identified the activities

performed, and a second stage using a heuristics-based decision function generated

the alarms. The method in Chapter 7 considered the use of the dWCRF method

from Chapter 6 and a heuristics stage to determine bed exits and chair exits in real

time with a population of healthy older people. The method in Chapter 8 consid-

ered a weighted SVM classifier in addition to a heuristic stage to determine bed and

chair exits jointly with a population of hospitalized older people and is compared
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with our approach from Chapter 7. These methods for the recognition of bed and

chair exits, with a healthy and hospitalized population of older people, suggest that

the use of wearable batteryless sensors for fall prevention on older people is feasi-

ble as results are promising given the improvements over the previous method in

Chapter 4. Moreover, these results are important as these are the first studies to use

wireless batteryless sensors on a population of older people.

Chapter 9 formulated a hierarchical CRF (HCRF) model that is able to recognize

alarming states corresponding to a bed exit and being out of bed, and a chair exit

and being out of chair, based on the simultaneous recognition of simple activities

and modelling dependencies between both alarming states and performed activi-

ties. HCRF provides and end-to-end method of learning a model to predict alarming

states from sensor enabled RFID data streams without the need for heuristic meth-

ods commonly employed to decide on an event from underlying classifications of

sensor observations (as in Chapter 7 and Chapter 8), and generate an alarm based

on a learned confidence parameter. HCRF performed, in general, similar to better

than other heuristic-based approaches or SVM-based activity recognition methods

with a population of healthy and hospitalized older people. Moreover, training and

model selection time for HCRF was, in general, lower than other multi-stage state-

of-the-art SVM-based activity recognition methods that require evaluation of multi-

ple binary classifiers and hence longer training and validation times.

Given that the proposed falls prevention strategy relies on patients using the body-

worn passive sensor to monitoring their activities, this thesis evaluated the accept-

ability and wearability of the proposed sensor device, as perceived by the partici-

pants in the studies. This analysis is necessary as final user opinion is paramount for

transferring to a hospital deployment; moreover, only 1.3 % of previous body-worn

sensor studies have considered the interest of their users [19]. The approach used

a modified sensor acceptability model consisting of two surveys, the first survey

was administered to older people before and after the trials to measure the changes

in perception of the device after use. The second survey was administered after

the trials and measured the acceptability and privacy concerns of the users towards

the sensor platform. In general, the trialled cohorts found the device to be easy to

wear and unobtrusive to their movements (Chapter 4 and Chapter 8). These re-

sults are in agreement with the findings of Bergmann et al. [19] where older people

showed preference for small, unobtrusive sensor devices. However, older patients
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were conscious of wearing the device as it was highly visible on top of their gar-

ment (Chapter 8). This indicates the need to reduce the size of the W2ISP for future

clinical applications.

Considering the performance of other falls prevention interventions, several recent

RCTs focused on falls prevention in hospitals reported their effectiveness in reduc-

ing the number of falls in older patients [16, 15]. However, no alarming performance

information was given in terms of detected bed exits or chair exits [16, 15]. There has

been, however, recent technological studies focused on falls prevention [63, 62, 14],

mainly bed exit detection, that reported the performance of their monitoring sys-

tems. Table 10.1 shows the results for bed exit detection from the methods of Hilbe

et al. [63] and Bruyneel et al. [62] using fixed sensors on hospital beds. These meth-

ods, although aimed at older patients, were not tested with older people. The study

of Capezuti et al. [14] achieved 71 % recall but a low specificity of 3 %; thus not

shown in Table 10.1. This study [14] is the only long term study with older people

that report the performance of pressure sensors (together with infra red beam) for

the detection of bed exits. Moreover, this study demonstrates the problem of us-

ing pressure sensors i.e. high false alarms, unreliability with light-weight patients

and need to individualize sensor location for each patient [14]. We also show in

Table 10.1 the results for bed exit detection from the important studies of Najafi et

al. [31] and Godfrey et al. [26] based on a battery powered sensor strapped to the

chest with a population of older people. In these studies [31, 26], the authors focused

on detecting posture transitions; and thus we consider the results for detecting sit-

to-stand posture transitions as similar to a bed exit movement as normally a bed exit

is the progression from lying to sitting to standing. Table 10.1 has not considered

specificity
(

true negative
true negative + false positive

)
, reported in previous studies [31, 63, 62, 26],

as activities regarded as true negatives were not clearly established across the stud-

ies and also was not considered in the evaluation of the methods in this thesis.

Table 10.1 also shows the results from the methods presented in this thesis for bed

exit recognition. Chair exit recognition results are not shown due to the lack of stud-

ies reporting this activity in the literature, and the purpose of Table 10.1 is to draw

similarities and differences between methods reporting a common activity (bed ex-

its). It should be made clear that direct comparisons between previous methods

cannot be made as populations, sensors and experimental settings, and procedures
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are different. Further, for the trials in this thesis, the sensor was worn over clothing,

attached to a loosely fitted garment.

We can see that performance of our approach with healthy young volunteers in

Chapter 3 is similar to those studies conducted by Hilbe et al. [63] and Bruyneel et

al. [62] with a healthy adult population. In the case of healthy older participants, the

methods in Chapter 7 and Chapter 9 also provide similar results to those of Najafi et

al. [31] and Godfrey et al. [26]. Notably, there are no quantitative performance mea-

sures of bed and chair exits in a hospital context. Therefore the approaches in Chap-

ter 8 and Chapter 9 present benchmarks for future intervention implementations in

hospital settings. The different results between the approaches in Chapter 8 and

Chapter 9 are due to their distinct methodologies. In particular: i) the approach in

Chapter 8 considers the effects of class specific data imbalance whereas the method

in Chapter 9 considers each class to equally affect the classifier. ii) Chapter 8 reports

on the alarming performance where the method does not discriminate between bed

and chair exits; however, the HCRF (Chapter 9) classifier is able to discriminate be-

tween bed and chair exits alarms. iii) In Chapter 8, the bed exit alarm component

includes the intention to exit the bed i.e. sitting on bed, previous to leaving the bed,

whereas the method in Chapter 9 considers a bed exit from the moment the person

leaves the bed.
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Table 10.1: Performance of bed exit studies

Approach Detected Exit Sensor device Precision Recall Participants’

age (years)

Fixed bed sensor location

Hilbe et al. [63] bed exit pressure rail 96 % 18 to 60

Bruyneel et al. [62] bed exit presence and

temperature

mat

100 % 91 % 37± 9 and

45± 11

Battery Powered Sensor Device (worn strapped over chest)

Najafi et al. [31] sit-to-stand

transfer

considered as

bed exit

accelerometer

and gyroscope

93 % 66± 14

Godfrey et al. [26] accelerometer 83 % 77.2± 4.3

Batteryless Sensor Device—W2ISP (worn attached to loosely fitted garment)

Chapter 3 bed exit accelerometer 90.4 % 26.4± 2.1

Chapter 7a bed exit accelerometer 78.8 % 93.5 % 66 to 86

Chapter 8bc bed and chair

exit

accelerometer 66.8 % 81.4 % 71 to 93

Chapter 9
ac bed exit accelerometer 79.3 % 84.9 % 66 to 86

bed exit accelerometer 23.2 % 71.7 % 71 to 93

aParticipants in age group 66 to 86 are healthy older adults. Here are considered results for the

room setting with 3 antennas (Room2), as is similar to that of hospital deployment
bBed and chair exits recognized together
cParticipants in age group 71 to 93 are older hospitalized patients.

Therefore, the results from this thesis strongly suggests that the deployment of a

wearable sensor based falls prevention intervention is feasible, especially in a hos-

pital environment; although further research is required to develop a deployable

system. The CRF-based classification methods developed in this thesis can perform

better than other CRF-based methods and similar to better than SVM-based meth-

ods using sequential data from a wearable passive sensor. Moreover, this thesis

determined that the use of this technology appears acceptable to users and it does

not restrict older peoples’ movement, in particular for hospitalized older people;

however the sensor was considered conspicuous to the user given the highly visible

sensor prototype. This thesis adds to the knowledge in the areas of falls prevention
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in older people using wearable sensors, machine learning techniques for sequential

sensor data streams, sets benchmarks and opens up new avenues for future work in

these fields.

10.2 Thesis Contributions

The main contributions of this thesis are summarized as follows:

• Investigate a new sensor technology to realize a novel technological intervention to

prevent falls in hospitals and nursing homes. This thesis investigates a sin-

gle wireless, wearable sensor device consisting of an accelerometer embedded

RFID tag, called W2ISP which is loosely worn on top of clothing. Sensor sig-

nals are collected by the RFID infrastructure and sent for processing in real

time. Once an alerting event is detected, hospital staff are notified of the event

and are able to supervise the patient. Based on the falls prevention framework

in Section 1.3, different methods for the recognition of bed exits and chair exits

were developed and tested with young people (Chapter 3); healthy older peo-

ple (Chapters 4 and 7); hospitalized older people (Chapter 8); and both healthy

and hospitalized older people (Chapter 9).

• Investigate and evaluate two approaches for sensor location (on-body and off-body) for

the recognition of bed exits. The study in Chapter 3 studied two possible loca-

tions for bed exit detection with young participants. The first approach con-

siders a body-worn sensor device located on top of clothes at sternum level to

collect information about the upper body motion of the participant; this ap-

proach differs from previous studies where sensor devices were strapped to

the body and were battery-powered. The second approach considers the same

sensor located on the side of a mattress to detect the mattress deformation due

to the weight of the person sitting or lying on the mattress. This experiment,

using digital filtering where parameters are based on the time-frequency anal-

ysis of motion data and an empirical decision tree suggested that a body-worn

sensor approach was better able to detect bed exits. This study also demon-

strated that the recognition of activities, in particular bed exits, was possible

using a wearable, batteryless sensing device including a single accelerometer

sensor, and RFID measurements such as RSSI to provide relative location of

the participant with respect to antennas.
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• Reformulate the activity recognition problem to a multi-class classification problem

using CRF. Chapter 4 formulated a machine learning-based method for the

recognition of bed exits in healthy older people using Conditional Random

Fields (CRFs), a structured classifier that models the dependencies of activi-

ties in a sequence. This method engineered features based on the raw accel-

eration data and RSSI measurements from received sensor observations (see

Appendix A), and detected bed exits in complete sequences using the Viterbi

algorithm for inferencing class labels. This method outperformed the empir-

ical body-worn sensor method, described in Chapter 3, with a population of

healthy older people. In addition, this method demonstrated that machine

learning is better suited for sparse and noisy data available from the RFID and

sensor data stream than using empirical methods to recognize activities from

older people.

• Investigate segmentation methods for the extraction of contextual information features

from wearable batteryless sensor data streams. Chapter 5 developed and tested

various data segmentation methods and contextual information features using

fixed and dynamic sized windowing methods to extract contextual informa-

tion related to the current sensor observation from a sensor data stream to

improve performance of a CRF classifier. Given that human motion is closely

related to the previous actions in recent past, this study considered such in-

formation (recent past) in terms of time and space—i.e. windows delimited by

time (duration) or number of sensor observations—to increase the information

quality of data segments and provide temporal context to the last received ob-

servation from body-worn passive sensors. Results achieved using contextual

information features (see Appendix A) from a fixed-time windowing method

with were similar or better than those using more sophisticated segmentation

methods.

• Real time inference of streaming sequential data using CRF. In linear chain CRF,

class inference is performed on complete sequences using methods such as

the Viterbi algorithm or the sum-product algorithm. This approach is not con-

venient for real time applications such as falls prevention, where the timely

recognition of high risk activities is paramount. Chapter 5 proposed a method

based on the sum-product algorithm to determine the marginal probabilities

of the last received sensor reading in real time. This method only requires the

current and previous sensor observations in order to make a prediction as we
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are only interested in the last received sensor observation, as opposed to using

complete sequences.

• Learning method for imbalanced sequential data—dynamically weighted CRF

(dWCRF). Chapter 6 developed a novel learning method based on linear chain

CRFs that considers the influence of individual classes in the training process,

called dynamically weighted CRF (dWCRF). The prevalence of imbalanced

data in human activity recognition problems is an issue as data imbalance

can bias classification models to favor the selection of the majority class. The

proposed dWCRF uses dynamically calculated class-wise cost parameters in

the learning process of the classifier. These cost parameters are not fixed as

they are dynamically calculated during training. Simultaneously, the train-

ing process seeks to optimize the overall F-score as a way to reduce both false

alarms and missed predictions, as opposed to metrics that are biased towards

the majority class such as accuracy. This approach was evaluated with two

datasets using batteryless and battery-powered body-worn sensors. The pro-

posed dWCRF, in general, outperformed CRF-based methods and achieved

similar to better performance to SVM-based approaches where dWCRF also

improved F-score performance for the recognition of minority classes. In ad-

dition, the training and model selection of dWCRF is faster when compared

with other methods that require extensive validation to obtain optimal fixed

class-wise cost parameters.

• Hierarchical CRF classifier for the recognition of alarming states from sequential sen-

sor data in real time. Chapter 9 proposed a hierarchical CRF (HCRF) classifier

that learns to recognize alarming states corresponding to bed exits and be-

ing out of bed and chair exits and being out of chair in real time. Alarms

are normally decided using two or more processing parametric stages, such as

empirically determined heuristic methods or multiple classification stages, e.g.

cascaded classifiers or those presented in Chapter 7 and Chapter 8. HCRF con-

siders alarming events as high-level activities, the labeled sensor observations

as low-level activities, and predicts both high- and low-level activities simul-

taneously. The HCRF model constructs relationships between sensor observa-

tions, low-level activities and high-level activities to determine the alarming

state of the current sensor observation. Moreover, the model incorporates its

decision function based on a learned alarm confidence level (marginal prob-

ability). Therefore, HCRF avoids the use of empirically determined heuristic
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methods or multiple classification stages for the recognition of alarm events.

The proposed HCRF, in general, produced similar to better performance than

other multi-stage classification methods for human activity recognition. Fur-

ther, HCRF requires less training time than the multi-stage classification meth-

ods.

• Collected and made publicly available three datasets for human activity recognition

research with different demographics. This study collected data from young vol-

unteers (aged 23 to 30) as well as healthy and hospitalized older people (aged

66 to 86 and 71 to 93 respectively) performing broadly scripted activities of

daily living that are common in a hospital or nursing home context such as

lying on a bed, sitting on the bed, sitting on a chair, and ambulating between

the door, bed and chair. All participants wore a wireless batteryless sensor

device to capture body motion information while performing activities. This

data is significant as previous studies for activity recognition have mainly used

battery-powered sensor devices and very few have considered older people,

especially hospitalized older patients, in their approaches. Further details

about settings are described in Appendix B. These datasets are available at:

http://autoidlab.cs.adelaide.edu.au/research/ahr.

• Develop a modified sensor acceptance model to determine the acceptability and wear-

ability of a body-worn sensor platform. This study used a quantitative survey

instrument based on a modified validated instrument to measure the accept-

ability and wearability of the equipment on three factors: physical activity;

anxiety; and equipment. In addition, the developed sensor acceptance model

considered a factor for privacy, to evaluate the importance of privacy violation

concerns that could be raised. The model consisted of two surveys where the

first survey was administered before (pre-survey) and after (post-survey) to

evaluate the changes in perception of the sensor after use; and the second sur-

vey, administered after the trial only, to measure the acceptability and weara-

bility of the sensor as perceived by the users (Chapters 4 and 8). The complete

sensor acceptance model instrument is shown in Appendix C.
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10.3 Future Work

From the work in this thesis, various future research directions can be developed.

First, further investigations and development of the RFID infrastructure can poten-

tially improve the activity recognition performance. In particular:

• Investigate changing the location of the sensor to the shoulder as an alternative

to the attachment over the sternum. Although an attachment over the ster-

num is considered in the literature as a better location to obtain upper-body

movement sensor readings, an attachment over the shoulder has not been in-

vestigated. This modification can allow the positioning of all antennas on the

ceiling and may significantly reduce the occlusion of the sensor by the human

body.

• Modification of different RFID deployment conditions and parameters such

as: i) modification of RFID reader parameters, such as the antenna receiving

sensitivity to discriminate spurious readings from sensors far from the area

of interest; ii) use of different types of antennas; for example, antennas with

different radiation patterns, specifically, directive antennas can be considered

to achieve a more focused antenna illumination in some areas such as the bed

or chair.

• Conduct experiments to evaluate any changes in performance due to the pres-

ence of different furniture in various locations of the room as well as the pres-

ence of visitors and clinical staff, as these variations can have an impact on

the reading rate of the tags present in the room and the type of movements

performed by the patient.

The study of these conditions is not trivial and ideally a long term in-hospital de-

ployment is necessary with a large cohort of patients to validate the results of each

study.

Second, further developments in the sensor platform are necessary. The trials and

evaluations in this thesis were performed with a prototype sensor device, which was

found to be highly visible by the trialled hospitalized population. Therefore, reduc-

tion in size and visibility without affecting sensor powering must be paramount for

clinical application and acceptability of this technology. For example, textile inte-

grated sensors can embed a fabric antenna into the patient’s garment, reducing the
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visibility of the sensor, and can be considered for future studies. These sensor plat-

form developments should also consider decreasing production costs when mass

produced, to successfully commercialize the technology.

In addition, the falls prevention systems can benefit from the aggregation of more

sensors on the device, such as pressure sensors (barometers) and magnetometers;

these can improve the data sources from which to capture relevant human move-

ments and provide further information about the activities being performed. How-

ever, this will both increase the cost of the sensor and the overall power consump-

tion. Nevertheless, augmenting additional power harvesting methods and the uti-

lization of components with reduced power consumption can minimize the occur-

rence of sudden drops in harvested power (brownouts) due to occlusion, or antenna

misalignment, as well as increase the reading range of the sensor device. Early work

on an approach to overcome brownout through intelligent power management is

demonstrated in [104].

Third, the performance of future movement sensor alarm systems must be evalu-

ated in long term clinical and hospital trials during both day and night with a larger

cohort of hospitalized older people. Eventually, a randomized controlled trial (RCT)

must be conducted with a newly developed sensor and further optimized hospital

RFID infrastructure. Planned RCTs must not only report the efficacy of the tech-

nology for preventing falls, but also the performance of the monitoring system in

recognizing high risk activities, e.g. bed exits or chair exits, in terms of recognized

true alarms and generated false alarms. The reason for reporting the performance

of the monitoring system, as opposed to reporting the occurrence of falls as in most

RCTs in the literature, is to analyze and better understand the contribution of the

monitoring system to the reduction (or not) of the number of falls and that of other

external factors such as the time clinical personnel takes to respond to an alert, the

number of healthcare personnel available and the time of day, and the effect of false

alarms such as alarm fatigue.

Fourth, future research must consider further development of machine learning ap-

proaches to improve the accuracy of event identification given the constrains of the

hospital environment. In particular, the development of dynamically calculated

class-wise weights for improving the performance of the hierarchical conditional

random fields (HCRF) approach in the presence of data imbalance. In addition,

future research can investigate learning methods such as active learning to update
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models to benefit from possible healthcare staff feed-back of alarms from a deployed

system.

Fifth, an extended monitoring system should recognize all four high risk activities

determined in Section 1.3. Therefore, further studies must consider the recognition

of other high risk activities not considered in the present thesis; i.e. entering or ex-

iting the toilet without the aid of a caregiver and mobilizing or ambulating without

a walking aid. Moreover, extending the context of the present thesis to that of inde-

pendent living in a home environment would reach a wider demographics of older

people while presenting different challenges to those present in a hospital context.

Sixth, future studies must validate the sensor acceptance model developed in this

thesis with a larger cohort of hospitalized patients.
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Features Extracted from
Sensor Data

This appendix shows all features used for the development of this thesis. These

features were extracted from the sensor, shown in Figure A.1, using sensor’s ac-

celeration data, ID, and RFID measurements (e.g. RSSI and phase). Features are

divided according to the method of extraction. i) Instantaneous features, shown in

Table A.1, are those extracted directly from the information of every received sensor

observation. ii) Contextual information features, shown in Table A.2, are extracted

from a fixed 4 s sliding window segment; these features provide an insight of the

temporal variations of sensor information during the segment. iii) Inter-segment

features, shown in Table A.3, are extracting from comparison between two consecu-

tive segments; these features characterize pattern variation trends about motion and

relative proximity to the area of interest.

Figure A.1: sensor used showing parts and sensor axes with respect to the body.
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Table A.1: List of instantaneous features extracted from sensor data stream.

Features Description

1. Frontal acceleration (a f ) Dorsoventral axis acceleration values in range

-1:1

2. Vertical acceleration (av) Anteroposterior axis acceleration values in

range -1:1

3. Lateral acceleration (al) Left-right axis acceleration values in range -1:1

4. Sine of body tilting angle

(pitch)

Sine of body tilting angle towards the front or

back with respect to vertical in the midsagittal

plane, calculated as: sin(arctan(
a f
av

))

5. Received signal power

(RSSI)

Received signal power from the sensor as

received at reading antenna.

6. Acceleration modulus

(aT)

Magnitude of acceleration vector or total

acceleration, calculated as aT =
√

a2
v + a2

f + a2
l .

7. Time difference Time difference with previous sensor

observation (regardless of receiving antenna) in

the range 25 ms – 10 s.

8. Participant’s gender

9. Trunk yaw angle Rotational angle from dorsoventral axis,

calculated as: arctan( al
a f

)

10. Trunk roll angle Tilting angle in the coronal plane, calculated as:

arctan( al
av

)

11. Antenna ID RFID antenna receiving current tag reading.
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Appendix A Features Extracted from Sensor Data

Table A.2: List of contextual information features extracted from sensor data stream.

(p.a. = per antenna)

Features Description

12. Events reported p.a. Indicator of number of readings per antenna in

the window.

13. Antenna collecting

maximum power

ID of antenna with maximum received power in

segment.

14. Antenna collecting

minimum power

ID of antenna with minimum received power in

segment.

15. Vertical displacement (d) Cumulative body displacement in the vertical

axis during a segment, calculated as:

d =
δt∫∫
0

avdt2.

16. Mutual information of

bed and chair areas

(mbed−chair)

Events occurring between these two areas given

by the number of consecutive readings captured

in both bed and chair areas, calculated as:

mbed−chair = 1
n ∑n−1

k=1 (1[{bed,chair}={antk ,antk+1}] +

1[{chair,bed}={antk ,antk+1}]); where 1x assumes 1 if x

is true and 0 otherwise and antk refers to the

antenna receiving the kth sensor reading in a

segment of size n, used in [105].

17. Pearson correlation

coefficient for frontal and

vertical acceleration axes

(r)

Correlation between axes information,

calculated as: ra,b = 1
n−1 ∑n

i=1( ai−ā
sa

)( bi−b̄
sb

); where

we considered a, b = {av, a f , al}, a 6= b and sx is

the standard deviation of the samples x in the

window.

18. Mean and standard

deviation of RSSI

Mean and standard deviation of received power

received per antenna during 4 s time window.

19. Median, sum of absolute

value and standard

deviation of CFPR

Constant Frequency Phase Rate (CFPR) defined

as CFPR = phase(t)− phase(t− 1), for each

antenna. Measurements from all frequencies

during the segment as defined in [106].
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20. Standard deviation of

VFPR

Variable Frequency Phase Rate (VFPR) defined

as VFPR = phase(t)−phase(t−1)
f requency(t)− f reqeuncy(t−1) ; features as

defined in [106].

21. Mean and standard

deviation of acceleration

Mean and standard deviation of acceleration

values (av, a f , al) during the segment.

22. Total velocity during

segment

Total velocity during the segment, calculated as

vaT =
δt∫
0

aTdt.

23. Total displacement

during segment.

Cumulative displacement during the segment,

calculated as daT =
δt∫∫
0

aTdt2.

Table A.3: List of inter-segment features extracted from sensor data stream. (p.a. = per

antenna)

Features Description

24. Difference of acceleration

maxima

Inter-segment difference of acceleration

(av, a f , al) maxima.

25. Difference of acceleration

minima

Inter-segment difference of acceleration

(av, a f , al) minima.

26. Difference of acceleration

median

Inter-segment difference of acceleration

(av, a f , al) median.

27. Difference of power

maxima p.a.

Inter-segment difference of received signal

power maxima per antenna.

28. Difference of power

minima p.a.

Inter-segment difference of received signal

power minima per antenna.

29. Difference of power

median p.a.

Inter-segment difference of received signal

power median per antenna.

30. Difference of sine of

body tilting angle

maximum, minimum

and median

Inter-segment difference of sine of body tilting

angle maximum, minimum and median.
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Appendix B

Released Datasets

For the completion of this thesis different datasets have been collected. These cor-

respond to healthy and hospitalized older people for data analysis to validate the

methods for the recognition of activities that can lead to falls. These trials had ethics

approval from the human research ethics committee of the Queen Elizabeth Hospi-

tal (TQEH), South Australia, with ethics reference number 2011129. All participants

were able to move independently, consented to the trials and also participated in

surveys about the perception and acceptability of the sensor technology. Datasets

are available at: http://autoidlab.cs.adelaide.edu.au/research/ahr.

Healthy Young People

Seven young healthy volunteers aged between 23 to 30 years old participated in

this study at the Basil Hetzel Institute, Woodville, South Australia. The volunteers,

wearing the WISP on top of their clothes at sternum level, performed random and

scripted lists of activities that are more likely to be performed by hospitalized older

people, such as: i) go to bed, lie down in the bed and exit the bed; ii) go to the chair,

sit on the chair and exit the chair; and iii) ambulate between bed and chair.

The activities were recorded and annotated in real time by an observer using mid-

dleware software developed in-house. The activities were labeled as: i) sit-on-bed;

ii) sit-on-chair; iii) lying; iv) standing; and v) walking.

Healthy Older People

For this study, fourteen participants, aged between 66 to 86 years old, were recruited

from geriatrics clinics and volunteers lists from previous studies. The participants

were able to live and mobilize independently, and able to consent to participate in
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the trial. The participants were contacted by phone and participation information

sheets were mailed to them. Before the trial, consent was obtained from the partic-

ipants and the process of the trial was explained, including the activities to be per-

formed, and the equipment to be used including the sensor. Each participant wore

the W2ISP on top of their clothes and performed about five series of broadly scripted

activities that included: i) walking to the chair, ii) sitting on the chair, iii) getting off

the chair, iv) walking to bed, v) lying on bed, vi) getting off the bed and vii) walking

to the door. The participants were instructed to perform the activities as comfort-

ably as they could and no honorarium was provided. The participants were able

to terminate the trial at any time and were routinely asked about their condition to

continue. The activities were recorded and annotated in real time by a researcher

present during the trials. In general, a trial with each participant lasted between 90

to 120 min and was performed during the day between 10 am and 3 pm.

The participants were allocated in two clinical room settings (Room1 and Room2) at

the Basil Hetzel Institute, Woodville, South Australia, shown in Fig. B.1, with differ-

ent distribution of furniture and RFID infrastructure. The rooms were designed to

resemble general deployments of different hospital room settings. Room1 was de-

ployed with four antennas, one of them at ceiling level facing down to the bed and

the rest of antennas placed on the walls to illuminate the whole room. In contrast

Room2, used three antennas focused in areas of interest, i.e. two antennas on ceiling

level facing the bed and surrounding area and a third antenna at wall level facing

the chair.

(a) (b)

Figure B.1: Two room configurations used with healthy older people. (a): Room1. (b): Room2.
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Appendix B Released Datasets

Hospitalized Older People

For this study, 26 patients, aged between 71 to 93 years old, were recruited from the

geriatrics evaluation and management (GEM) unit at the TQEH. The patients were

able to mobilize with or without a walking aid, had no cognitive impairment and

were able to consent to participate in the study.

The patients wore the W2ISP on top of their hospital gowns and were trialled in

their own hospital rooms—single or double rooms—with two antennas at ceiling

level facing the bed and a single antenna at the opposite wall facing the armchair

as shown in Fig. B.2. Trials were performed between 2 pm and 4 pm and had a

duration of about 20 to 25 min due to the frail condition of the participants. The

patients performed a broadly set of activities that included i) walk to the chair; ii) sit

on the chair; iii) get out of the chair; iv) walk to the bed; v) lie on the bed; vi) get

out of the bed; and vii) walk to the door. The patients were not instructed on how

to perform the activities, and were told to perform activities at their own pace and

request the termination of the trial if they felt discomfort or could not continue. Two

researchers were present during trials, one researcher annotated the activities in real

time and the second researcher made sure the patient was not hurt and acted if the

patient seemed at risk of falling as patients could get easily tired.

During the trials, the position of the movable head rest of the bed was either flat or

inclined as patients were resting or awake receiving visits, watching television or

reading prior to starting of the trials. Hence, multiple postures were captured when

the patient was on the bed during the trials.

Figure B.2: Hospital room configuration for trials.
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Appendix C

Developed Sensor
Acceptance Model

This sensor acceptance model was developed based on that of Fensli et al. [107],

originally for measuring the patients’ acceptance of a wearable skin-attached ECG

sensor. The developed sensor acceptance model, for this thesis, consists of two sur-

veys described below.

First Survey

This survey is based on the “pre-trial expectations” factor from the model of Fensli

et al. [107]. These questions measured the perception of people about the activity

recognition system and their apprehension towards its use. This model considered

the application of the survey before and after the trials (pre- and post-trial) to mea-

sure the changes of perception after usage. The survey questions are:

1. I expect this investigation can help prevent falls.

2. I believe if I wear this device I will have difficulties doing daily activities.

3. I am worried the equipment will not give good enough signals for the research.

4. I am afraid the equipment will fall from its attached position if I move too

much.

5. I am afraid the equipment will break if I move too much.

6. I am afraid the equipment will harm me.

Second Survey

This survey was designed for administration after the trials. The questions are de-

signed to measure acceptability and wearability about the system as perceived by
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users. The model for this thesis considered three key acceptance factors from [107],

i.e. “physical activity”,“anxiety” and “equipment” which determine the users’ ac-

ceptance of the device. This study also considered a new factor “privacy”, given the

importance of previous privacy violation concerns manifested in other studies [22].

The survey questions, divided by acceptance factors, are:

Physical Activity

1. How did you experience wearing the equipment while performing activities?

2. Were you hindered by the equipment while walking?

3. Were you hindered by the equipment while sitting?

4. Were you hindered by the equipment while lying?

Anxiety

1. I was frightened by this technology.

2. I don’t want the equipment to be seen by others.

3. I don’t like the feeling of being monitored.

Equipment

1. Wearing the equipment was no problem.

2. I just forgot I am wearing it.

3. I am satisfied using the equipment

4. I find the equipment easy to use.

Privacy

1. How did you experience wearing the equipment knowing that someone could

be aware of some of your activities?

In the analysis of Chapter 4, a short set of the above questions were considered, as

the focus of the study was to study the use of the equipment and freedom of move-

ment of the users while wearing the sensor device; hence this study used factors

“Equipment” and “Physical”, correspondingly.
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Appendix C Developed Sensor Acceptance Model

The analysis in Chapter 8 considered most questions above, except questions Phys-

ical-2 and Physical-3 because activities such as walking and standing can be con-

sidered already included when responding question Physical-1—a more general

question. In addition, this analysis did not include questions Equipment-3 and

Equipment-4 because of the short time of the trials with older patients (20 to 25 min),

which is insufficient for patients to determine satisfaction or easiness to use with the

sensor device. Instead, this analysis focused on their general experience of wearing

the sensor.

Page 183



Page 184



Bibliography

[1] Australian Commission on Safety and Quality in Healthcare, “Preventing falls and harm from

falls in older people: Best practice guidelines for Australian hospitals,” 2009.

[2] K. D. Hill, M. Vu, and W. Walsh, “Falls in the acute hospital setting - impact on resource utili-

sation,” Australian Health Review, vol. 31, no. 3, pp. 471–477, 2007.

[3] F. Healey, S. Scobie, B. Glampson, A. Pryce, N. Joule, and M. Willmott, “The third report from

the patient safety observatory. slips, trips and falls in hospital,” London: National Patient Safety

Agency, 2007.

[4] D. Oliver, “Evidence for fall prevention in hospitals,” Journal of the American Geriatrics Society,

vol. 56, no. 9, pp. 1774–1775, 2008.

[5] D. Oliver, F. Healey, and T. P. Haines, “Preventing falls and fall-related injuries in hospitals,”

Clinics in Geriatric Medicine, vol. 26, no. 4, pp. 645–692, 2010.

[6] C. Becker and K. Rapp, “Fall prevention in nursing homes,” Clinics in Geriatric Medicine, vol. 26,

no. 4, pp. 693–704, 2010.

[7] F. Bunn, A. Dickinson, C. Simpson, V. Narayanan, D. Humphrey, C. Griffiths, W. Martin, and

C. Victor, “Preventing falls among older people with mental health problems: a systematic

review,” BMC Nursing, vol. 13, no. 1, p. 4, 2014.

[8] E. Vlaeyen, J. Coussement, G. Leysens, E. Van der Elst, K. Delbaere, D. Cambier, K. Den-

haerynck, S. Goemaere, A. Wertelaers, F. Dobbels, E. Dejaeger, K. Milisen, the Center of Exper-

tise for Fall, and F. P. Flanders, “Characteristics and effectiveness of fall prevention programs

in nursing homes: A systematic review and meta-analysis of randomized controlled trials,”

Journal of the American Geriatrics Society, vol. 63, no. 2, pp. 211–221, 2015.

[9] E. B. Hitcho, M. J. Krauss, S. Birge, W. Claiborne Dunagan, I. Fischer, S. Johnson, P. A. Nast,

E. Costantinou, and V. J. Fraser, “Characteristics and circumstances of falls in a hospital set-

ting,” Journal of General Internal Medicine, vol. 19, no. 7, pp. 732–739, 2004.

[10] R. Cumming, C. Sherrington, S. Lord, J. Simpson, C. Vogler, I. Cameron, and V. Naganathan,

“Cluster randomised trial of a targeted multifactorial intervention to prevent falls among older

people in hospital,” British Medical Journal, vol. 336, no. 7647, pp. 758–760, 2008.

[11] K. Rapp, C. Becker, I. D. Cameron, H. H. König, and G. Büchele, “Epidemiology of falls in
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