

Decision Support for Project Rescheduling to Reduce Software Development Delays based on
Ant Colony Optimization

Wei Zhang1,2 , Yun Yang1,3 *, Xiao Liu4, Cheng Zhang1 *, Xuejun Li1, Rongbin Xu1, Futian Wang1,
Muhammad Ali Babar5

1 School of Computer Science and Technology, Anhui University,

Hefei, Anhui 230601, China
2School of Software, East China Institute of Technology,

Nanchang, Jiangxi 330013, China
 3School of Software and Electrical Engineering, Swinburne University of Technology,

Melbourne, Victoria 3122, Australia
 4 School of Information Technology, Deakin University,

Melbourne, Victoria 3125, Australia
5School of Computer Science, The University of Adelaide,

Adelaide, South Australia 5005, Australia
E-mails: fengzhizi_83_83@163.com; yyang@swin.edu.au; cheng.zhang@ahu.edu.cn

Received 5 February 2018

Accepted 16 March 2018

Abstract

Delays often occur during some activities in software development projects. Without handling of project delays
effectively, many software development projects fail to meet their deadlines. If extra employees with same or
similar skills and domain knowledge can be rescheduled for the remaining activities of the delayed projects, it can
be possible to reduce or even eliminate existing delays in concurrent software development projects of similar
nature. However, it is evident that employee rescheduling may result in delaying other activities, which may lead to
the problem of delay propagation. Hence, it is important to investigate how to reduce or even eliminate the delay in
one project without impacting other projects. By nature this is an NP-hard problem. Therefore, we propose a novel
generic rescheduling strategy based on adaptive ant colony optimization algorithm to provide decision support for
software project managers to select appropriate employees to deal with project delays. We have carried out a set of
comprehensive experiments to evaluate the performance of the proposed strategy. In addition, three real world
software project instances are also utilized to evaluate our strategy. The results show that our strategy is effective,
efficient and able to outperform its representative counterparts significantly.

Keywords: Decision Support; Ant Colony Optimization; Project Management; Rescheduling; Optimization

1. INTRODUCTION

Currently, many software companies such as IBM and
SAP provide dedicated solutions for specific fields by
designing such as universal business flows. The final
customized software products for different customers

have similar structures and functions, for examples,
Financial Management Systems, Customer Relationship
Management Systems and Ecommerce Websites. For
concurrent customer’s orders, a company needs to
organize corresponding project teams of employees
possessing same or similar skills and domain knowledge

* Corresponding authors

Copyright © 2018, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

894

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 894–910

(skill for short in this paper is defined as ability for
completing one activity rather than general skill such as
C++ programming or Java programming). Customers
expect that their orders can be delivered by agreed
deadlines, however, delays often occur in software
development projects for various reasons such as
rework, abandonment and erroneous or uncertain initial
estimates according to Ref. 1. Serious delay can make
customers very unsatisfied which can damage a
company’s reputation and profit. In order to reduce or
eliminate delays in software development projects,
employees are often forced to work overtime. However,
working longer hours is likely to cause fatigue and
dissatisfaction among employees. As a result, software
quality may also be jeopardized. In this paper, we
assume that employees can be re-allocated but working
overtime is prohibited. Therefore, it is important to find
out how to reduce or even eliminate delays without
requesting employees working overtime.
In practice, according to Ref. 2, project planning models
for scheduling are based on CPM (Critical Path Method)
or PERT (Program Evaluation Review Technique).
Based on Ref. 3, project network model has four key
parameters for one activity. They are the early start time,
early finish time, late start time and late finish time
respectively. Therefore, any activity in a project can
propagate delay if its real finish time exceeds its late
finish time. If delay has not been properly handled along
the line, it will be eventually propagated into the final
deadline. In order to block delay propagation, how to
handle delay for remaining activities in the delayed
projects (called delayed activities in this paper) becomes
a key issue. In general, resource (i.e. employees in this
paper) rescheduling is a promising approach for
handling delays. But the challenge is to decide who
should be requested to handle the delayed activities.
According to one of the software engineering principles
in Ref. 4, adding inexperienced persons would cause
further delay due to the learning curve and extra
communication overhead. However, this research aims
at reallocating skilled employees among concurrent
projects of similar nature for solving such an issue to
minimize, if not entirely avoid, the learning curve and
extra communication overhead. In our scenario,
multiple concurrent similar software development
projects can provide skilled employees. If employees
from other concurrent projects with the same skills are

available, they can be reallocated across the projects
without much learning curve and extra communication
overhead. For one example, one employee is assigned to
conduct multiple activities. When the activity she/he
currently works on is delayed, other subsequent
activities which she/he will be working on can be
delayed as well. Hence, it becomes necessary that other
employees with same skills to be reallocated to help
with these delayed activities. For another example, one
delayed activity can be handled by a replacement
employee possessing the same skill with higher
productivity. By doing so, the delay may be reduced or
even eliminated. However, due to employee reallocation,
a potential problem is that other concurrent projects may
be impacted by such as reducing the delay in one project
causing delays in other projects. In practice, it is
difficult for managers to rely on their experiences to
make appropriate decision for rescheduling employees.
To address the abovementioned problems, we propose a
novel generic decision-making strategy based on
adaptive ant colony optimization (ACO) algorithm with
three rescheduling rules. Our proposed strategy provides
decision support for software project managers to
reallocate employees for concurrent projects in order to
reduce or even eliminate the delay in the current project
without jeopardizing the deadlines of other projects.
Based on simulations of benchmark project networks
available from well-known PSPLIB from Ref. 5 with
randomized parameters such as durations for activities
and skills of employees, the experimental results
demonstrate that our proposed strategy is very effective,
efficient and can achieve better performance than other
representative strategies.
In this paper, we have the following major contributions:
1. All software development activities are treated
without constraints now.
2. Employees can now have multiple skills as they
should possess.
3. A general multi-fork tree is defined for searching
feasible solutions.
4. A generic decision-making strategy based on adaptive
ACO is proposed to help select appropriate employees
to be assigned to the delayed activities.
5. A set of comprehensive experiments is conducted to
evaluate the performance of the proposed strategy.
The remainder of this paper is organized as follows.
Section 2 introduces related work. Section 3 describes

895

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 894–910

the problem formulation. Section 4 proposes our
strategy. Section 5 presents the evaluation. Section 6
concludes our contributions and points out future work.

2. RELATED WORK

Resource scheduling is an effective method for
optimizing complex practical problem. In software
project development and management area, the Project
Scheduling Problem (PSP) has always been a research
hot spot. As explained in Ref. 6, project scheduling
“involves separating the total work involved in a project
into separate activities and judging the time required to
complete these activities. Usually, some of these
activities are carried out in parallel. Project schedulers
must coordinate these parallel activities and organize
the work so that the workforce is used optimally”.
Clearly, PSP is a typical NP-hard problem and hence
many metaheuristics based scheduling algorithms have
been employed. According to Ref. 7, metaheuristics
include methods to solve search and optimization
problems inspired by the biological principles of
selection and the collective intelligence of natural
systems such as Genetic Algorithm (GA) or ACO. In
this section, we present an overview of several
representative approaches. Authors of Ref. 8 propose a
multi-skill scheduling model which considers some key
factors such as skill proficiency of employees and
resource conflict. Authors of Ref. 9 use GA to solve the
general project scheduling problem. Authors of Ref. 10
discuss estimated schedules and project scheduling
based on GA. They propose a two-stage probabilistic
scheduling strategy, which aims to decrease schedule
overruns. Authors of Ref. 11 propose a new design
based on GA to solve the PSP problem based on
problem formation proposed in Ref. 9. In their approach,
normalization of dedication values is proposed to
remove the problem of overwork. Authors of Ref. 12
present a value-based human resource scheduling
method among multiple software projects by using GA.
Besides GA, ACO is also popular in solving PSP. Ref.
13 shows that the software project scheduling problem
(SPSP) can be naturally converted into a graph-based
search problem. Therefore, ACO is suitable for solving
the problem. Its experiments reveal that the ACO
algorithm outperforms the GA approach for the SPSP.

Authors of Ref. 14 propose a new scheduling strategy
based on event-based scheduler and the ACO algorithm
is applied to search feasible solution for a single project.
Authors of Ref. 15 propose Multi-objective
Evolutionary Algorithm using decomposition and Ant
Colony (MOEA/D-ACO) to minimum cost and duration
for the SPSP problem. The experiments show that
MOEA/D-ACO can obtain solutions with much less
time for all instances and outperforms NSGA-II (Non-
dominated Sorting Genetic Algorithm-II) with less
duration for most of test instances.
From the above, we can see that most related work
mainly discusses how to apply GA or basic ACO
strategy to solve the scheduling problem. In order to
primarily save time for software companies during the
planning stage. However, the problem that we
investigate is that delays often occur during the
development stage. How to handle project delays in the
context of development stage across multiple projects
has not been well addressed in the literature. In addition,
during the planning stage all activities need to be
scheduled. During the development stage not all
activities need to be rescheduled (activities where no
delay occurs do not need to be rescheduled). Otherwise
it may easily lead to further delay. Authors in Ref. 1
propose a tandem genetic algorithm to reduce project
completion date. In the paper, firstly for a given staffing
level and a random or uniform people distribution
across teams, an optimal WPs (work packages) ordering
is determined. Then for the given staffing level and WPs
ordering previously determined, an optimal organization
of teams is computed. Authors of Ref. 16 propose a
multi-objective evolutionary algorithm based proactive-
rescheduling method to address four objectives of
project cost, duration, robustness and stability
simultaneously when facing disruptions. However, these
two papers only discuss reallocation under single
project while multiple projects are not considered. In
addition, the scale of instances is relative small in Ref.
16 where at most 40 tasks are applied to verify the
proposed strategy for one instance. In our experiment,
each project can have many more activities. In Ref. 17,
a very preliminary ACO-based scheduling strategy is
proposed which can only handle delay in some simple
cases. Then in Ref. 18, how to reschedule employee in
multiple concurrent projects in order to reduce overall

896

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 894–910

penalty of all projects without any overtime is very
briefly discussed.

3. PROBLEM FORMULATION

Our problem formulation is originated from the work
presented in Ref. 9. Assume there is given a set of
projects P1 ….Pn; a set of employees e1 ….eq and a set of
skills skill1 ….skillp respectively; a set of activities
a1

i
 ….as

i where i again indicates the activity coming from
the ith project; an activity precedence graph – a directed
graph with activities as nodes and activity precedence as
edges.

Here our graph is slightly different to its counterpart in
Ref. 9. In order to conveniently reallocate employees
and monitor the time change of activities, we further
breakdown the activity defined in Ref. 9 as: (1) one
activity requires only one skill and is conducted by only
one employee; (2) each activity is atomic activity which
has no sub-activities. To reflect the real world, we set
that an employee may have more than one skill and
conduct several activities in the project(s). In addition,
we emphasize again that no employee working overtime
is required.

Let us give a simple example to illustrate how to make
decision to select an appropriate employee in order to

find feasible solutions, i.e. delay is reduced or even
eliminated at one project while another project is not
impacted.

Suppose there are two projects P1 and P2. P1 has two
activities a1

1 and a2
1. P2 has two activities a1

2, a2
2. We

assume that Monday is set as the first day of the
planning agenda in our example. Though no overtime is
allowed, the block with text in red indicating weekends
is included in figures. The corresponding activity
precedence graph is shown in Fig. 1.
All parameters of these two projects are listed in Table 1.

Table 1. Duration of each activity of projects P1 & P2

P1

Scheduled start time
and end time

Duration
(planned)

Employee
(planned)

Skill
Required

a1
1 From the 3rd day to

the 8th day (2 days
weekend)

 4 days e1 skill1

a2
1 From the 9th day to

the 11th day
 3 days e1 skill2

(a)
P2 Scheduled start time

and end time
Duration
(planned)

Employee
(planned)

Skill
Required

a1
2 From the 4th day to

the 8th day (2 days
weekend)

 3 days e2 skill3

a2
2 From the 9th day to

the 9th day
 1 day e3 skill4

(b)

Fig. 1. Activity precedence graph of P1 and P2.

897

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 894–910

Suppose that for some reasons, employee e1 is absent on
the 3rd day and returns on the 5th day. So the start time of
a1

1 is delayed to the 5th day. The deadline of P1 will be
delayed to the 15th day. Meanwhile, the current finish
time of P2 is the 9th day. Table 2 lists the skills
possessed by each employee.

Table 2. Skills of employees (P1 & P2)

Employee skills
e1 skill1;skill2;

e2 skill3;skill1;skill2;

e3 skill4;skill2;

We illustrate how to reschedule employees between the
two projects in order to reduce the delay of P1 as much
as possible without jeopardizing P2. The specific
parameters are listed in Table 3.

Table 3. Duration of activity with help (P1 & P2)

 e1 e2 e3

a1
1 4 days 4 days N/A

a2
1 3 days 1 day 8 days

a1
2 N/A 3 days N/A

a2
2 N/A N/A 1 day

Firstly we describe precedence relations and time
parameters of activities for projects P1 and P2.
Project P1:

Duration of project P1 is from the 3rd day to the 11th day.
Fig. 1 shows that activity a1

1 with skill1 is the
predecessor of a2

1 with skill2. Employee e1
 is shared by

the two activities. Based on the parameters listed in
Table 1, the planned schedule of a1

1 is from the 3rd day
to the 8th day. It includes two days weekend. The
duration of employee e1 conducting a1

1 is 4 days. The
planned schedule of a2

1 is from the 9th day to the 11th
day. The duration of employee e1 conducting a2

1 is 3
days.
Project P2:

Duration of project P2 is from the 4th day to the 9th day.
Based on the parameters listed in Table 1, the planned
schedule of a1

2 with skill3 is from the 4th day to the 8th
day. It includes two days weekend. Employee e2 is
allocated to work on the activity. Its duration is 3 days.
Fig. 1 shows activity a2

2 with skill4 is the immediate
successor of a1

2 with skill3. The planned schedule of a2
2

with employee e3 is from the 9th day to the 9th day. Its
duration is 1 day.

Delay analysis:

Due to the absence of employee e1, the start time of a1
1

is delayed to the 5th day. The end time of a1
1 will be the

10th day, i.e. activity a1
1 is delayed. Activity a2

1 must
wait until a1

1 is finished. Its start time is delayed until

Fig. 2. First strategy

898

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 894–910

the 11th day and the end time will be the 15th day.
Obviously the end time of a2

1 exceeds planned finish
time of P1. Project P1 will be delayed into the 15th day.
Note that the current finish time of P2 is the 9th day.
Then our problem is how to handle the delay of project
P1. Two different strategies below are illustrated.
First strategy:

The strategy is shown in Fig. 2. Because employee e2
has skill1, we firstly can reallocate employee e2 to
conduct a1

1. So a1
1 can run from the 3rd day. According

to the parameters listed in Table 3, duration of a1
1 with

e2
 is 4 days. Due to the two days weekend, the end time

of a1
1 would be the 8th day. Meanwhile, employee e1 has

return on the 9th day and can conducts activity a2
1.

Activity a2
1 can run from the 9th day on schedule.

According to the parameters listed in Table 3, the
duration of a2

1 with e1
 is 3 days. Its end time is the 11th

day. The delay is eliminated for P1 but is transferred to
P2. More specifically, since e2 is transferred to a1

1, a1
2

must wait until a1
1 is finished. So the delay would occur

at a1
2. The start time of activity a1

2 will be postponed to
the 9th day. But because activity a1

2 cannot be helped
due to lack of skilled employees, the end time of
activity a1

2 is the 11th day and the delay would be

further propagated to its subsequent activity. Since
activity a2

2 is the immediate successor of a1
2, its start

time will be delayed to the 12th day and the end time is
the 12th day. Obviously delay is introduced in project P2.
Therefore, this strategy is not desirable. Our goal is that
the delay of P1 is reduced or even eliminated without P2

being impacted.

Second strategy:

We change the strategy as shown in Fig. 3. Suppose a1
1

runs without any help which means that the delay is
fully propagated to a2

1. Meanwhile, a1
2 is finished on

schedule. Its end time is the 8th day. Since e2
 has skill2,

the employee can replace e1
 to carry out activity a2

1 on
the 11th day. According to Table 3, duration of activity
a2

1 with e2 is 1 day. The end time of activity a2
1 is the

11th day. Therefore, the delay is eliminated in project P1
and no delay is introduced to project P2, i.e. no impact
to P2. Clearly this is a better rescheduling strategy.

From the above simple illustration, we can conclude
that not all delayed activities need to involve immediate
rescheduling. In our case, if we handle delay at a1

1
firstly, the delay at project P2 will be introduced
although the delay at project P1 is eliminated. Therefore,

Fig. 3. Second strategy

899

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 894–910

sometimes we may need to propagate the delay where a
feasible solution can be found.
According to the above analysis, we use notations to
denote the rescheduling process, i.e. (exay

n) indicates
that employee ex is selected to conduct activity ay

n. In
addition, since some activities may share one employee,
those activities must execute in sequence. Now we can
use the notation to describe the entire second strategy:
e.g. < (e1a1

1), (e2a1
2),(e2a2

1),(e3 a2
2)>. Here

since employee e2 is shared by activities a1
2 and a2

1, a1
2

precedes a2
1.

Based on the example, we find that there are two
choices when an activity gets delayed. One choice is
that the activity is executed by the original employee,
i.e., a delay is propagated to its subsequent activities.
Another choice is that the activity is executed by
another employee with the same skill. Different choices
for handling delay of an activity can lead to different
results. For instance, at activity a1

1, in the first strategy,
it chooses to reschedule employee e2 to handle the delay
immediately while in the second strategy, it chooses to
propagate the delay to its subsequent activity. The result
is that both projects can finish on schedule with the
second strategy while a delay is introduced in P2 with
the first strategy. So selecting an appropriate employee
for the activity determines whether or not a feasible
solution can be obtained. An immediate question is how
to find an appropriate employee for a delayed activity.
When all possible selections for all employees with
same skills from all activities are linked together, a
multi-fork tree is formed according to the data structure
addressed in Ref. 19. Feasible solutions may exist in the
tree which is detailed next.

4. ADAPTIVE ACO BASED STRATEGY FOR
EMPLOYEE RESCHEDULING

In this section, first we provide an overview of the basic
ACO algorithm. Then we present our adaptive ACO
based strategy with three rescheduling rules defined to
avoid unnecessary search for suitable employees for
each delayed activity as much as possible.

4.1. An Overview of ACO Algorithm

Based on the above analysis, a feasible solution may
exist in the multi-fork tree. How do we find the best

feasible solution? One simple method is to traverse all
possible paths in the tree. However, the number of
nodes in the tree increases exponentially. Obviously this
is an NP-hard problem. In this paper, we propose an
adaptive ACO approach to solve such an optimization
issue. But first, in this section, according to Ref. 20, we
provide an overview of ACO developed by Dorigo et al.
which has been widely applied to optimization problems.
The key idea of ACO is the use of simulated
pheromones, which attract ants to the better trails
through graph, i.e. multi-fork tree in our case. The main
processing loop alternates between updating the ant
trails based on the current pheromone values and
updating the pheromones based on the new ant trails. By
sensing the concentration of pheromone at the path,
other ants can choose appropriate path to find food.
ACO algorithm works by dispatching a group of
artificial ants to build solutions to the problem
iteratively. In general, based on Ref. 20, ACO algorithm
has two core procedures:
(1) Solution construction:
During each iteration of the algorithm, a group of ants
sets out to build solutions to the problem. Each ant
builds a solution in a constructive manner by selecting
components step by step to form a complete solution.
The selections are made according to pheromone and
heuristic information.
In ACO, pheromone is a record of the past search
experience of ants for guiding the following ants to
make decisions. The selected component belonging to
the best solutions found by the previous ants usually
accumulates more pheromone, attracting more ants to
select in future iterations. Heuristic provides some
problem-dependent information that helps ants have
higher probabilities to select appropriate component in
the solution construction procedure.
(2) Pheromone management:
Along with the solution construction procedure,
pheromone values are updated according to the
performance of the solutions built by ants. Ants tend to
deposit more pheromone to the components of better-
performed solutions.
Our proposed solution is formed by ants selecting an
appropriate employee for each delayed activity. In order
to increase randomness of selecting employee, Roulette
wheel selection from Ref. 21 is applied according to a
random probability based on pheromone. The Roulette

900

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 894–910

wheel is applied to choose a suitable employee. When a
better feasible solution is found, the correspondent
employee pheromone from the better solution at each
activity will be strengthened while pheromones of other
employees at each activity will be weakened. In our
research, employee pheromone ()y xe a  is set to help
ant select appropriate employee. ()y xe a  denotes that
employee eY is selected to work on activity ax. The
overall procedure of ACO is described below.
Step a:
Evaluate the value of ()y xe a  for all activities and
initialize the number of generations and ants.
Step b:
Employee pheromone determines which employee is
selected. ()y xe a  is used to compute the probability

()y xP e a . Then based on the Roulette wheel strategy,
employee will be chosen. Here N is the set of all
available employees.

()
() where

()

y x
y x y

y x

y

e a
P e a e N

e a
e N








 




(1)

Step c:
Given P1 is the delayed project that we try to reduce or
even eliminate the delay, we define a fitness function
that determines whether the ant finds a feasible solution.
The fitness function is described as (Delay(P1)<
min_delay(P1), finish time (P2) <= planned finish time
(P2) ,….. , finish time (Pn) <= planned finish time (Pn)
where min_delay(P1) indicates the minimum value of
Delay(P1) when one ant finishes its tour.
Step d:
When all ants in one generation have finished the tour,
the correspondent pheromones will be updated. If a
feasible solution exists, at each delayed activity, the
pheromones of the correspondent employees from the
best-so-far solution will be strengthened while the
pheromones of other employees are weakened.
Employee pheromone is changed as follows:

() ()y x y xe a e a     
 (2)

where  indicates that employee pheromone is
changed by  .
The evaporation is done by weakening pheromone trails.

(1)    (0 , 1  (3)

Step e:

Increase the generation number by 1, when exceeding
the maximum generation number set, the algorithm

terminates with the final result as output, otherwise, go
to Step b.

4.2. Proposed Rescheduling Strategy

In order to avoid unnecessary search as much as
possible, we find that the selection for which employee
to conduct the delayed activity can be optimized based
on the following three rules. These rules form the
foundation of our novel adaptive ACO strategy, which
can increase its hit count, i.e. the number of feasible
solutions found.

We assume that activity ai
n requiring skillx is a delayed

activity. The original employee is ep. ej
 is the available

employee who has skillx. Activity ak
m of project Pm

 is the
next activity where employee ej

 will be working on. In
order to express the rules clearly, we define some
parameters in Table 4.

Rule 1:

If finish_time((ejai
n)(m1).real_start_time, (ejai

n).

duration) > finish_time((epai
n).real_start_time, (ep

ai
n).duration), employee ej cannot be rescheduled.

Explanation: If the finish time of activity ai
n with

employee ej exceeds the finish time of activity ai
n with

original employee ep , rescheduling should be avoided.

Rule 2:
If ak

m.late_start_time >= finish_time(ejai
n).real_start

_time, (ejai
n).duration), rescheduling employee ej

would not impact on the start time for activity ak
m.

Explanation: When employee ej
 is rescheduled to

conduct activity ai
n, activity ak

m where employee ej
 will

be working on needs to wait for finishing activity ai
n. If

real_start_time of activity ak
m does not exceed its late

start time, rescheduling would not impact on the start
time for activity ak

m.
Rule 3:
When ak

m.late_start_time < finish_time(ejai
n).real_

start_time, (ejai
n).duration), employee ej

m cannot be

rescheduled if Pm. project_earilest_possible_finish_

time >Pm. project_finish_time.

Explanation: This rule has the opposite condition of
Rule 2. When real_start_time of activity ak

m does
exceed its late start time, we need to estimate the finish
time of Pm . Each activity which has not been executed

901

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 894–910

so far will be estimated based on its minimum duration
in Pm . If the estimated finish time of Pm under this
circumstance exceeds its planned finish time without
any rescheduling, rescheduling should be avoided.

Now we describe the whole procedure of our generic
rescheduling strategy based on adaptive ACO. The
following steps show the flow of rescheduling strategy
at each delayed activity.

Step 1: For the next activity, all employees with the
required skills are assessed whether they conform to
Rule 1. If there are no available employees, the activity
will be executed by the original employee as scheduled.
Otherwise all available employees are stored in array1.

Step 2: This step is to assess whether there exist any
employees stored in array1 who conform to Rule 2. If
so, all those employees are stored in array2. The end
time of activity with each employee in array2 is
calculated so that the employee with the minimum end
time is chosen for rescheduling. Then go to Step 5.
Otherwise, if there is no employee in array1 who
conforms to Rule 2, go to Step 3.

Step 3: Employees stored in array1 will be assessed
whether they conform to Rule 3. If there are no
employees, the activity will be executed by the original
employee, again as scheduled. Otherwise, those

employees are stored in array3 and the original
employee is also added to array3.

Step 4: One employee from array3 is chosen by ant-
based Roulette wheel selection based on employee
pheromone.

Step 5: The activity is executed by the selected
employee and the correspondent parameters such as real
end time of the activity and release time of the
employee are updated accordingly.

5. EVALUATION

In this section, we firstly set experiment parameters.
Then five different experiments are reported to show the
results of our strategy. Finally we compare our adaptive
ACO with other two representative counterparts: basic
ACO and GA. In addition, three real world software
project instances are also utilized to evaluate our
strategy. At the end, the threats to validity are presented.

5.1. Experimental Settings

In the reported experiments, we test the proposed
rescheduling strategy when the number of concurrent
projects is 2, 5, 10, 15, 20 respectively which are

Table 4. Explanation of parameters in rules

employee_release_time It is the time indicating that employee can execute new
activity only after the employee has finished the current
activity.

real_start_time It is the maximum value of real finish time of all
predecessors of the activity and the release time of the
corresponding employee. The parameter indicates that
activity is executed only after all predecessors of the
activity have been finished and the corresponding
employee is available.

late_start_time It is the planned late start time of the activity.
finish_time

(real_start_time,duration)
The function is defined to calculate real finish time of
activity conducted by employee based on given
real_start_time The detail of the function is given in the
text below this table.

project_finish_time It is the finish time of the project without any
rescheduling.

project_earilest_possible_finish_time It is the estimated earliest possible finish time of the proje
ct.

Function finish_time(real_start_time,duration): from real_start_time, days are counted until given duration is

satisfied. If the current day is weekend, the day will be skipped. The last day is the real finish time.

902

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 894–910

representative enough to demonstrate the overall
performance of our novel strategy. We have also
conducted experiments with other settings and the
results are similar.
The project networks are derived from PSPLIB of Ref.
5 where the benchmark project networks in PSPLIB
have been widely used in project management in
various fields (including software project management).
According to Ref. 22, these benchmark project networks
are classical representation for the activity precedence
relations of (software) projects. However, in order to
appropriately capture the characteristics of real-world
projects, we generate all parameters randomly for those
networks. Randomized parameters include activity
duration for employee and skill(s) of employee. Each
project has 122 activities in this case.
We have conducted 5 different experiments for different
number of concurrent projects in order to validate the
effectiveness of our strategy. For each experiment, the
strategy is run 10 times. In addition, in order to show
the effectiveness of our strategy in larger scale projects,
we choose project network with 122 activities. We
assume that all 122 activities are different. So for one
project, there are 122 required skills. The number of
skills of each employee is 6 at most. The duration of
each activity is set from 10 days to 25 days. Three levels
of skills (high, medium and low) are set for employee
randomly. So in order to show the effectiveness of our
strategy, the original delay is set from 1 day to 70 days
and is injected at the beginning of each project. The
execution for experiments is based on Eclipse on a PC
(Intel Core i7 CPU, 2.4GHz, 8GB RAM).
In addition to the above settings, in order to compare the
three algorithms under the same iteration condition, we
set the following parameters. The number of ants and
generations of our adaptive ACO and basic ACO are set
as 10 and 50 respectively so that the total iterations
would be 500. Accordingly, the iterations of GA
algorithms are also set as 50 and the population size of
GA algorithm is set as 10.

5.2. Experiments

In Experiment 1, we have 2 concurrent projects. There
are 244 different activities in total. Originally, delay
occurs at one project. Our aim is that the delay at that
project is reduced or even eliminated while the other

project is not impacted. Table A.1 in Appendix shows
the parameters and results of Experiment 1. Original
delay is the value of injected delay. Remained delay is
value of delay remaining after running. In Experiment 2,
we have 5 concurrent projects. There are 610 difference
activities in total. Similar to Experiment 1, delay occurs
at one project, our aim is again that the delay at that
project is reduced or even eliminated while all other
projects are not impacted. Table A.2 in Appendix shows
the parameters and results of Experiment 2. In
Experiment 3, we have 10 concurrent projects. There are
1220 difference activities in total. Similarly, Table A.3
in Appendix shows the parameters and results of
Experiment 3. In Experiment 4, we have 15 concurrent
projects. There are 1830 difference activities in total.
Table A.4 in Appendix shows the parameters and results
of Experiment 4. In Experiment 5, we have 2concurrent
projects. There are 2440 difference activities in total.
Table A.5 in Appendix shows the parameters and results
of Experiment 5.

5.3. Result Analysis

In order to show the effectiveness of our proposed
strategy, we compare ours with other two representative
approaches, namely basic ACO and GA algorithms.

Fig. 4 shows the overall hit count of the three strategies
when the number of concurrent projects is 2, 5, 10, 15
and 20 respectively. The values are collected based on
10 runs for each strategy. From the figure, we find that
the hit count of our adaptive ACO can be kept at a high
value in all experiments while the hit counts of other
two strategies are significantly lower. The average hit
count of our adaptive ACO for 5 concurrent projects

Fig. 4. Comparison of overall hit count

903

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 894–910

reaches 8.4. The hit counts of basic ACO and GA fall to
0 when the number of concurrent projects is from 5 to
20. In addition, combined with experiments presented in
Section 5.2, we find that some relatively big delays can
be reduced effectively in our adaptive ACO. For one
example, in #5 of Experiment 4, the original delay is 47
days and the remained delay is reduced to 1 day only.
However, in some scenarios with fewer employees, our
proposed strategy probably fails to handle delays. For
example, in #10 of Experiment 5, the original delay is
30 days and the remained delay is still 30 when the
number of employee is 585. Experiment 5 has 2440
activities. Roughly each employee needs to conduct 4.1
activities on average. It indicates that many employees
will be busy. So, it leads to fewer feasible employees for
rescheduling. In general, our proposed strategy is
effective in terms of finding a solution for reducing
delays.

Fig. 5 shows the hit count of eliminating delay for 10
runs among the three strategies. From the figure, we
find only our adaptive ACO can obtain feasible solution
in which delays can be eliminated. The average hit
count of our adaptive ACO is about 1.8. In addition,
combined with experiments presented in Section 5.2, we
find that some relatively big delays can be eliminated in
some experiments. For example, in #1 of Experiment 1,
the original delay is 36 days which can be eliminated. It
indicates that our proposed strategy can offer good
quality of service for customers.
Fig. 6 shows the general effectiveness of our strategy.
From the figure, we find that the delay of a project can
be reduced to a much greater extent by our adaptive
ACO with the average reduction degree nearly halved

(about 46% on average) in comparison to others. It
indicates that the delay can be handled much more
effectively than other strategies as the reduction degrees
of the others are normally well below 10%.
Fig. 7 shows the trend of delay reduction with given
number of employees and number of skills when the
number of concurrent projects is 2, 5, 10, 15 and 20
respectively. In order to learn the impact of number of
employees and skills on delay reduction, we set five
different numbers of employees and five different
numbers of skills (6, 7, 8, 9, and 10) which employee
can have at most. Experiments are carried out by fixing
one parameter and changing another one. The degree of
delay reduction is the average value after running 10
times. Here we need to emphasize that although after
each run the total number of employees is different
under the same group, the numbers fall to small interval,
i.e. quite consistent. So the total number of employees
can be averaged.
From Fig. 7 (a), (b), (c), (d) and (e), we find that curves
have a similar trend: (1) when the total number of
employees is given, with the increase of the number of
skills, the degree of delay reduction presents a upward
trend; (2) when the number of skills is given, with the
decrease of the total number of employees, the degree of
delay reduction presents a downward trend. In essence,
increasing of the number of skills or employees
provides more available choices for rescheduling. So the
degree of delay reduction also increases. In addition,
some cases in Fig. 7 present opposite trend. For
example in Fig. 7(a), when the number of skill is 7, the
degree of delay reduction of 71 employees is slightly
greater than that of 77 employees. The reason is that

Fig. 6. Comparison of degree of delay reduction

Fig. 5. Comparison of hit count of eliminating delay

904

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 894–910

activity durations and delays are generated randomly for
each run and the difference of employee numbers is not
big between 71 employees and 77 employees. In
addition, we also find that when the number of
employee or skill is large, this trend is not obvious. The
reason is that the more people can balance the lack of
skills or the more skill can balance the lack of
employees. But as a whole, the general trend meets our
expectation.

5.4. Case Studies

In order to show the effectiveness of our research for the
real world cases, 3 real instances which come from
business software construction projects for a department
store company are provided in Ref. 14. Since they only
provide data for optimizing staffing scheduling at
planning stage, we need to make some changes: (1)
original delays are injected, (2) delay values are set
from 1 to 70 days, and (3) in order to conform to the

(a) (b)

 (c) (d)

(e)

Fig. 7. Trend of delay reduction with given number of employees and skills

905

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 894–910

settings in our research, we regulate that one activity
can only be conducted by one employee and employees
are deployed randomly to conduct activities. According
to the raw data, the number of employees is 30 and the
number of activities is 45 in total. Each employee has 5
skills. For the case studies, we conduct 10 rounds of
runs. Table 5 shows parameters and results of 3 real
instances.
Fig. 8(a) shows hit count for our adaptive ACO, basic
ACO and GA. The results are 10 out of 10, 3 out of 10
and 5 out of 10 respectively. Fig. 8(b) shows that only
our adaptive ACO obtains solution in which delays are
eliminated. Its hit count is 3 out of 10. Fig. 8(c)
describes the reduction degree of the three strategies.
The average reduction degrees of our adaptive ACO,
basic ACO and GA are 75.2%, 8.6% and 14.4%
respectively. According to Fig. 8, we find that no matter
hit count or reduction degree, the effectiveness of our
adaptive ACO is much better that of basic ACO and GA.
Those results conform to our previous analysis. In
addition, for our adaptive ACO, basic ACO and GA,
compared with reduction degree of five groups’

experiments described in Section 5.3, reduction degree
of 3 real instances is obviously higher. The main reason
is that there are only 45 activities in 3 real instances in
total. The smaller amount of activities narrows the
searching space. In addition, there are sufficient staffs
(30) with sufficient skills (5) in 3 real instances. So
these factors lead to obtaining feasible solutions more
easily. Finally experiments of the 3 real instances show
the effectiveness of our proposed algorithm in the real
word.
In summary, our strategy is clearly much better than the
other two approaches by producing quality feasible
solutions. It is obvious that there are some deficiencies
causing relatively lower hit count for the other two
approaches: (1) in the basic ACO algorithm, the ant
selects an employee only according to pheromone so
that some feasible employees may be neglected as the
reallocated employee may cause serious delay; (2) in the
GA algorithm, one solution is generated based on
crossover and mutation of previous solution, so for one
activity, the current state of the activity cannot
determine whether the activity needs to be rescheduled.

(a) (b) (c)

Fig. 8. Comparison among three strategies at three real instances

Table 5. Parameters and results of 3 real instances

 Original delay Remained delay Number of
employees Adaptive ACO Basic ACO GA

#1 41 6 21 17 30
#2 27 0 27 27 30
#3 45 8 45 45 30
#4 64 12 64 64 30
#5 22 5 22 22 30
#6 27 0 27 15 30
#7 19 0 19 19 30
#8 35 9 26 30 30
#9 29 0 27 18 30
#10 50 49 50 50 30

906

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 894–910

For example, although no any delay is introduced into
one activity, the activity may need to be rescheduled.
Finally, it is hard to find feasible solution.

Fig. 9 shows the running time for our rescheduling
strategy when the number of projects is 2, 5, 10, 15, and
20 respectively, based on the average of 10 runs. When
the number of projects becomes larger, the running time
becomes longer as expected. However, since the time
granularity of SPSP is relatively large which is normally
in days, our strategy can finish rescheduling at tolerable
time, namely from around 0.65 minutes up to 138.6
minutes for the experiments described in Section 5.2 on
a single PC. In addition, the average running time of 10
runs for 3 real instances is around 0.27 minutes.
Therefore, these experiments show that our proposed
strategy is sufficiently efficient.

5.5. Threats to Validity

Here we discuss the key threats to the validity of our
evaluation.
Threats to External Validity. The main threat to the
external validity of our evaluation is the
representativeness of instances. Since most companies
do not want to publish or record development process, it
is hard to obtain real instances. So it threatens the
external validity. To minimize this threat, the widely
used PSPLIB set from Ref. 5 is applied in the paper. In
order to fully simulate the real world, we generate all
parameters such as duration, original delays etc.

randomly based on project network from PSPLIB. In
addition, in order to show the effectiveness of our
research for the real world cases, three real world
instances from Ref. 14 are also applied for validation of
our strategy. Therefore, instances in this paper are
reliable and can be true representation of real world
software projects.
Threats to Internal Validity. The main threat to the
internal validity of our evaluation is the
comprehensiveness of our experiments. The result
fluctuation is easily caused by the randomized data from
PSPLIB in the experiments. It threatens the internal
validity of our evaluation. To minimize this threat, we
run each experiment for 10 times and the average values
are collected. Average values can weaken deviation of
calculation effectively. In addition, in order to validate
the effectiveness of our strategy, instance which
includes 122 activities is chosen from PSPLIB and 5
different experiments for different numbers of
concurrent instances (2, 5, 10, 15, and 20) are conducted.
We think that these provide sufficient
comprehensiveness to demonstrate the effectiveness of
our strategy.

6. CONCLUSION AND FUTURE WORK

In this paper, with a number of similar concurrent
projects, we have discussed primarily on how to reduce
or even eliminate the delay in a software development
project without impacting on other projects. To achieve
this goal, an innovative generic decision-making
rescheduling strategy based on adaptive ant colony
optimization has been proposed. More specifically, we
provide three rescheduling rules in order to select
appropriate employees across projects. The experiments
have demonstrated that compared with other
representative algorithms, our proposed strategy is
much more effective to reduce or even eliminate the
delay in an efficient manner.

The work presented in this paper focuses mainly on how
to reschedule employees in order to reduce or even
eliminate the delay. The proposed strategy can be
deployed in a semi-automatic intelligent decision-
support system for supporting project managers to
handle the delay during software development.
Therefore, our future work can be along this line.

0.65 2.55
14.6

61.4

133.6

0

20

40

60

80

100

120

140

160

2 5 10 15 20

T
im

e
(m

in
u

te
s)

Trend of Running Time

Fig. 9. Trend of running time for 5 general experiments

907

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 894–910

7. ACKNOWLEDGEMENTS

This project is partly supported by the Australian
Research Council Linkage Project (Grant LP0990393)
and the National Natural Science Foundation of China
(Grant No. 61402007 and No. 61300042) and the
Jiangxi Engineering Laboratory on Radioactive Geo-
science and Big Data Technology (Grant No.
JELRGBDT201705).

REFERENCES

1. G. Antoniol, M. Di Penta, and M. Harman, A Robust
Search-Based Approach to Project Management in the
Presence of Abandonment, Rework, Error and
Uncertainty, in 10th International Software Metrics
Symposium, (Chicago, USA, 2004), pp. 172-183.

2. B. Hughes, Software Project Management, 5th edn.
(McGraw-Hill, New York, 2002).

3. A. Shtub, J. F. Bard, and S. Globerson, Project
Management: Processes, Methodologies, and
Economics, 2nd edn. (Prentice Hall, Englewood, NJ,
2007).

4. F. Brooks, The Mythical Man-Month: Essays on
Software Engineering, 2nd edn. (Addison-Wesley,
Boston, 1995).

5. R. Kolisch, and A. Sprecher, PSPLIB - A Project
Scheduling Problem Library: OR Software - ORSEP
Operations Research Software Exchange Program,
European Journal of Operational Research. 96(1) 1997,
205-216.

6. I. Sommerville, Software Engineering, 8th edn.
(Addison-Wesley, Boston ,2006)

7. J. A. L. García, A. B. Peña, and P. Y. P. Pérez, Project
Control and Computational Intelligence: Trends and
Challenges, International Journal of Computational
Intelligence Systems. 10(1) 2016, 320-335.

8. O. Bellenguez-Morineau, Methods to Solve Multi-Skill
Project Scheduling Problem, A Quarterly Journal of
Operations Research. 6(1) 2008, 85-88.

9. E. Alba, and J. F. Chicano, Software Project
Management with GAs, Information Sciences. 177(11)
2007, 2380-2401.

10. X. Liu, Y. Yang, J. Chen, Q. Wang, and M. Li,
Achieving On-Time Delivery: A Two-Stage
Probabilistic Scheduling Strategy for Software Projects,

in International Conference on Software Process,
(Vancouver, Canada, 2009), pp. 317-329.

11. L. L. Minku, D. Sudholt, and X. Yao, Improved
Evolutionary Algorithm Design for the Project
Scheduling Problem Based on Runtime Analysis, IEEE
Transactions on Software Engineering. 40(1) 2014, 83-
102.

12. J. Xiao, Q. Wang, M. Li, Q. Yang, L. Xie, and D. Liu,
Value-Based Multiple Software Projects Scheduling
with Genetic Algorithm, in International Conference on
Software Process, (Vancouver, Canada, 2009), pp. 50-62.

13. J. Xiao, X. Ao, and Y. Tang, Solving Software Project
Scheduling Problems with Ant Colony Optimization,
Computers & Operations Research. 40(1) 2013, 33-46.

14. W. Chen, and J. Zhang, Ant Colony Optimization for
Software Project Scheduling and Staffing with an Event-
Based Scheduler, IEEE Transactions on Software
Engineering. 39(1) 2013, 1-17.

15. J. Xiao, M.-L. Gao, and M.-M. Huang, Empirical Study
of Multi-objective Ant Colony Optimization to Software
Project Scheduling Problems, in Proceedings of the
2015 Annual Conference on Genetic and Evolutionary
Computation, (Madrid, Spain, 2015), pp. 759-766.

16. X. Shen, L. L. Minku, R. Bahsoon, and X. Yao,
Dynamic Software Project Scheduling Through a
Proactive-Rescheduling Method, IEEE Transactions on
Software Engineering. 42(7) 2016, 658-686.

17. W. Zhang, Y. Yang, J. Xiao, X. Liu, and M. A. Babar,
Ant Colony Algorithm Based Scheduling for Handling
Software Project Delay, in Proceedings of the 2015
International Conference on Software and System
Process, (Tallinn, Estonia, 2015), pp. 52-56.

18. W. Zhang, X. Liu, and Y. Yang, Let Smart Ants Help
You Reduce the Delay Penalty of Multiple Software
Projects, in IEEE/ACM 39th IEEE International
Conference on Software Engineering Companion,
(Buenos Aires, Argentina, 2017), pp. 271-273.

19. T. H. Cormen, Introduction to Algorithms, 2nd edn.
(MIT Press, Cambridge, Massachusetts, 2001).

20. M. Dorigo, and T. Stutzle, Ant Colony Optimization.
(MIT Press, Cambridge, Massachusetts, 2004).

21. K. A. D. Jong, An Analysis of the Behavior of a Class of
Genetic Adaptive Systems, Doctoral dissertation.
(University of Michigan, 1975).

22. L. Ozdamar, and G. Ulusoy, A Survey on the Resource-
Constrained Project Scheduling Problem, IIE
Transactions. 27(5) 1995, 574-586.

908

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 894–910

Appendix

Table A.1. Parameters and results of Experiment 1

 Original delay Remained delay Number of
employees Adaptive ACO Basic ACO GA

#1 36 0 36 36 76
#2 49 49 49 49 58
#3 40 24 40 40 70
#4 70 52 70 70 64
#5 34 0 34 34 83
#6 35 25 35 35 65
#7 36 15 33 28 104
#8 64 34 57 49 98
#9 25 0 25 25 80
#10 44 20 44 44 67

Table A.2. Parameters and results of Experiment 2

 Original delay Remained delay Number of
employees Adaptive ACO Basic ACO GA

#1 53 19 53 53 153
#2 33 0 43 43 214
#3 59 59 59 59 169
#4 44 30 44 44 158
#5 42 42 42 42 155
#6 69 41 69 69 178
#7 34 18 34 34 185
#8 34 14 34 34 156
#9 18 0 48 48 186
#10 69 20 69 69 164

Table A.3. Parameters and results of Experiment 3

 Original delay Remained delay Number of
employees Adaptive ACO Basic ACO GA

#1 35 8 35 35 297
#2 46 21 46 46 320
#3 23 2 23 23 368
#4 20 0 20 20 348
#5 35 35 35 35 327
#6 38 14 38 38 379
#7 49 29 49 49 353
#8 51 36 51 51 428
#9 65 42 65 65 329
#10 27 0 27 27 340

909

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 894–910

Table A.4. Parameters and results of Experiment 4

 Original delay Remained delay Number of
employees Adaptive ACO Basic ACO GA

#1 32 32 32 32 460
#2 22 14 22 22 530
#3 52 36 52 52 546
#4 15 0 15 15 505
#5 47 1 47 47 480
#6 34 16 34 34 618
#7 45 45 45 45 449
#8 29 10 29 29 510
#9 32 22 32 32 501
#10 14 14 14 14 468

Table A.5. Parameters and results of Experiment 5

 Original delay Remained delay Number of
employees Adaptive ACO Basic ACO GA

#1 14 0 14 14 745
#2 43 22 43 43 650
#3 69 19 69 69 676
#4 72 46 72 72 736
#5 56 53 56 56 590
#6 78 11 78 78 675
#7 37 14 37 37 712
#8 41 41 41 41 593
#9 21 18 21 21 686
#10 30 30 30 30 585

910

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 894–910

