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Abstract 

Delays often occur during some activities in software development projects. Without handling of project delays 
effectively, many software development projects fail to meet their deadlines. If extra employees with same or 
similar skills and domain knowledge can be rescheduled for the remaining activities of the delayed projects, it can 
be possible to reduce or even eliminate existing delays in concurrent software development projects of similar 
nature. However, it is evident that employee rescheduling may result in delaying other activities, which may lead to 
the problem of delay propagation. Hence, it is important to investigate how to reduce or even eliminate the delay in 
one project without impacting other projects. By nature this is an NP-hard problem. Therefore, we propose a novel 
generic rescheduling strategy based on adaptive ant colony optimization algorithm to provide decision support for 
software project managers to select appropriate employees to deal with project delays. We have carried out a set of 
comprehensive experiments to evaluate the performance of the proposed strategy. In addition, three real world 
software project instances are also utilized to evaluate our strategy. The results show that our strategy is effective, 
efficient and able to outperform its representative counterparts significantly. 

Keywords: Decision Support; Ant Colony Optimization; Project Management; Rescheduling; Optimization 

1. INTRODUCTION 

Currently, many software companies such as IBM and 
SAP provide dedicated solutions for specific fields by 
designing such as universal business flows. The final 
customized software products for different customers 

have similar structures and functions, for examples, 
Financial Management Systems, Customer Relationship 
Management Systems and Ecommerce Websites. For 
concurrent customer’s orders, a company needs to 
organize corresponding project teams of employees 
possessing same or similar skills and domain knowledge 
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(skill for short in this paper is defined as ability for 
completing one activity rather than general skill such as 
C++ programming or Java programming). Customers 
expect that their orders can be delivered by agreed 
deadlines, however, delays often occur in software 
development projects for various reasons such as 
rework, abandonment and erroneous or uncertain initial 
estimates according to Ref. 1. Serious delay can make 
customers very unsatisfied which can damage a 
company’s reputation and profit. In order to reduce or 
eliminate delays in software development projects, 
employees are often forced to work overtime. However, 
working longer hours is likely to cause fatigue and 
dissatisfaction among employees. As a result, software 
quality may also be jeopardized. In this paper, we 
assume that employees can be re-allocated but working 
overtime is prohibited. Therefore, it is important to find 
out how to reduce or even eliminate delays without 
requesting employees working overtime. 
In practice, according to Ref. 2, project planning models 
for scheduling are based on CPM (Critical Path Method) 
or PERT (Program Evaluation Review Technique). 
Based on Ref. 3, project network model has four key 
parameters for one activity. They are the early start time, 
early finish time, late start time and late finish time 
respectively. Therefore, any activity in a project can 
propagate delay if its real finish time exceeds its late 
finish time. If delay has not been properly handled along 
the line, it will be eventually propagated into the final 
deadline. In order to block delay propagation, how to 
handle delay for remaining activities in the delayed 
projects (called delayed activities in this paper) becomes 
a key issue. In general, resource (i.e. employees in this 
paper) rescheduling is a promising approach for 
handling delays. But the challenge is to decide who 
should be requested to handle the delayed activities. 
According to one of the software engineering principles 
in Ref. 4, adding inexperienced persons would cause 
further delay due to the learning curve and extra 
communication overhead. However, this research aims 
at reallocating skilled employees among concurrent 
projects of similar nature for solving such an issue to 
minimize, if not entirely avoid, the learning curve and 
extra communication overhead. In our scenario, 
multiple concurrent similar software development 
projects can provide skilled employees. If employees 
from other concurrent projects with the same skills are 

available, they can be reallocated across the projects 
without much learning curve and extra communication 
overhead. For one example, one employee is assigned to 
conduct multiple activities. When the activity she/he 
currently works on is delayed, other subsequent 
activities which she/he will be working on can be 
delayed as well. Hence, it becomes necessary that other 
employees with same skills to be reallocated to help 
with these delayed activities. For another example, one 
delayed activity can be handled by a replacement 
employee possessing the same skill with higher 
productivity. By doing so, the delay may be reduced or 
even eliminated. However, due to employee reallocation, 
a potential problem is that other concurrent projects may 
be impacted by such as reducing the delay in one project 
causing delays in other projects. In practice, it is 
difficult for managers to rely on their experiences to 
make appropriate decision for rescheduling employees. 
To address the abovementioned problems, we propose a 
novel generic decision-making strategy based on 
adaptive ant colony optimization (ACO) algorithm with 
three rescheduling rules. Our proposed strategy provides 
decision support for software project managers to 
reallocate employees for concurrent projects in order to 
reduce or even eliminate the delay in the current project 
without jeopardizing the deadlines of other projects. 
Based on simulations of benchmark project networks 
available from well-known PSPLIB from Ref. 5 with 
randomized parameters such as durations for activities 
and skills of employees, the experimental results 
demonstrate that our proposed strategy is very effective, 
efficient and can achieve better performance than other 
representative strategies.  
In this paper, we have the following major contributions: 
1. All software development activities are treated 
without constraints now. 
2. Employees can now have multiple skills as they 
should possess. 
3. A general multi-fork tree is defined for searching 
feasible solutions. 
4. A generic decision-making strategy based on adaptive 
ACO is proposed to help select appropriate employees 
to be assigned to the delayed activities. 
5. A set of comprehensive experiments is conducted to 
evaluate the performance of the proposed strategy. 
The remainder of this paper is organized as follows. 
Section 2 introduces related work. Section 3 describes 

 
___________________________________________________________________________________________________________

895

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 894–910



 

 

the problem formulation. Section 4 proposes our 
strategy. Section 5 presents the evaluation. Section 6 
concludes our contributions and points out future work. 

2.  RELATED WORK 

Resource scheduling is an effective method for 
optimizing complex practical problem. In software 
project development and management area, the Project 
Scheduling Problem (PSP) has always been a research 
hot spot. As explained in Ref. 6, project scheduling 
“involves separating the total work involved in a project 
into separate activities and judging the time required to 
complete these activities. Usually, some of these 
activities are carried out in parallel. Project schedulers 
must coordinate these parallel activities and organize 
the work so that the workforce is used optimally”. 
Clearly, PSP is a typical NP-hard problem and hence 
many metaheuristics based scheduling algorithms have 
been employed. According to Ref. 7, metaheuristics 
include methods to solve search and optimization 
problems inspired by the biological principles of 
selection and the collective intelligence of natural 
systems such as Genetic Algorithm (GA) or ACO. In 
this section, we present an overview of several 
representative approaches. Authors of Ref. 8 propose a 
multi-skill scheduling model which considers some key 
factors such as skill proficiency of employees and 
resource conflict. Authors of Ref. 9 use GA to solve the 
general project scheduling problem. Authors of Ref. 10 
discuss estimated schedules and project scheduling 
based on GA. They propose a two-stage probabilistic 
scheduling strategy, which aims to decrease schedule 
overruns. Authors of Ref. 11 propose a new design 
based on GA to solve the PSP problem based on 
problem formation proposed in Ref. 9. In their approach, 
normalization of dedication values is proposed to 
remove the problem of overwork. Authors of Ref. 12 
present a value-based human resource scheduling 
method among multiple software projects by using GA.  
Besides GA, ACO is also popular in solving PSP. Ref. 
13 shows that the software project scheduling problem 
(SPSP) can be naturally converted into a graph-based 
search problem. Therefore, ACO is suitable for solving 
the problem. Its experiments reveal that the ACO 
algorithm outperforms the GA approach for the SPSP. 

Authors of Ref. 14 propose a new scheduling strategy 
based on event-based scheduler and the ACO algorithm 
is applied to search feasible solution for a single project. 
Authors of Ref. 15 propose Multi-objective 
Evolutionary Algorithm using decomposition and Ant 
Colony (MOEA/D-ACO) to minimum cost and duration 
for the SPSP problem. The experiments show that 
MOEA/D-ACO can obtain solutions with much less 
time for all instances and outperforms NSGA-II (Non-
dominated Sorting Genetic Algorithm-II) with less 
duration for most of test instances.  
From the above, we can see that most related work 
mainly discusses how to apply GA or basic ACO 
strategy to solve the scheduling problem. In order to 
primarily save time for software companies during the 
planning stage. However, the problem that we 
investigate is that delays often occur during the 
development stage. How to handle project delays in the 
context of development stage across multiple projects 
has not been well addressed in the literature. In addition, 
during the planning stage all activities need to be 
scheduled. During the development stage not all 
activities need to be rescheduled (activities where no 
delay occurs do not need to be rescheduled). Otherwise 
it may easily lead to further delay. Authors in Ref. 1 
propose a tandem genetic algorithm to reduce project 
completion date. In the paper, firstly for a given staffing 
level and a random or uniform people distribution 
across teams, an optimal WPs (work packages) ordering 
is determined. Then for the given staffing level and WPs 
ordering previously determined, an optimal organization 
of teams is computed. Authors of Ref. 16 propose a 
multi-objective evolutionary algorithm based proactive-
rescheduling method to address four objectives of 
project cost, duration, robustness and stability 
simultaneously when facing disruptions. However, these 
two papers only discuss reallocation under single 
project while multiple projects are not considered. In 
addition, the scale of instances is relative small in Ref. 
16 where at most 40 tasks are applied to verify the 
proposed strategy for one instance. In our experiment, 
each project can have many more activities. In Ref. 17, 
a very preliminary ACO-based scheduling strategy is 
proposed which can only handle delay in some simple 
cases. Then in Ref. 18, how to reschedule employee in 
multiple concurrent projects in order to reduce overall 
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penalty of all projects without any overtime is very 
briefly discussed. 

3. PROBLEM FORMULATION 

Our problem formulation is originated from the work 
presented in Ref. 9. Assume there is given a set of 
projects P1 ….Pn; a set of employees e1 ….eq and a set of 
skills skill1 ….skillp respectively; a set of activities 
a1

i
 ….as

i where i again indicates the activity coming from 
the ith project; an activity precedence graph – a directed 
graph with activities as nodes and activity precedence as 
edges. 

Here our graph is slightly different to its counterpart in 
Ref. 9. In order to conveniently reallocate employees 
and monitor the time change of activities, we further 
breakdown the activity defined in Ref. 9 as: (1) one 
activity requires only one skill and is conducted by only 
one employee; (2) each activity is atomic activity which 
has no sub-activities. To reflect the real world, we set 
that an employee may have more than one skill and 
conduct several activities in the project(s). In addition, 
we emphasize again that no employee working overtime 
is required.  

Let us give a simple example to illustrate how to make 
decision to select an appropriate employee in order to 

find feasible solutions, i.e. delay is reduced or even 
eliminated at one project while another project is not 
impacted. 

Suppose there are two projects P1 and P2. P1 has two 
activities a1

1 and a2
1. P2 has two activities a1

2, a2
2. We 

assume that Monday is set as the first day of the 
planning agenda in our example. Though no overtime is 
allowed, the block with text in red indicating weekends 
is included in figures. The corresponding activity 
precedence graph is shown in Fig. 1. 
All parameters of these two projects are listed in Table 1. 

Table 1.   Duration of each activity of projects P1 & P2 

                                            
P1 

Scheduled start time 
and end time 

Duration 
(planned)  

Employee 
(planned)  

Skill 
Required 

a1
1 From the 3rd day to 

the 8th day (2 days 
weekend) 

  4 days    e1 skill1 

a2
1  From the 9th day to 

the 11th day 
  3 days    e1 skill2 

(a) 
P2 Scheduled start time 

and end time 
Duration 
(planned)  

Employee 
(planned)  

Skill 
Required 

a1
2 From the 4th day to 

the 8th day (2 days 
weekend ) 

  3 days    e2 skill3 

a2
2  From the 9th day to 

the 9th day 
  1 day    e3 skill4 

(b) 

 
Fig. 1.  Activity precedence graph of P1 and P2. 
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Suppose that for some reasons, employee e1 is absent on 
the 3rd day and returns on the 5th day. So the start time of 
a1

1 is delayed to the 5th day. The deadline of P1 will be 
delayed to the 15th day. Meanwhile, the current finish 
time of P2 is the 9th day. Table 2 lists the skills 
possessed by each employee. 

Table 2. Skills of employees (P1 & P2) 

Employee skills 
e1 skill1;skill2; 

e2 skill3;skill1;skill2; 

e3 skill4;skill2; 

We illustrate how to reschedule employees between the 
two projects in order to reduce the delay of P1 as much 
as possible without jeopardizing P2. The specific 
parameters are listed in Table 3.  

Table 3. Duration of activity with help (P1 & P2) 

 e1 e2 e3 

a1
1 4 days 4 days N/A 

a2
1 3 days 1 day 8 days 

a1
2 N/A 3 days N/A 

a2
2 N/A N/A 1 day 

Firstly we describe precedence relations and time 
parameters of activities for projects P1 and P2. 
Project P1: 

Duration of project P1 is from the 3rd day to the 11th day. 
Fig. 1 shows that activity a1

1 with skill1 is the 
predecessor of a2

1 with skill2. Employee e1
 is shared by 

the two activities. Based on the parameters listed in 
Table 1, the planned schedule of a1

1 is from the 3rd day 
to the 8th day. It includes two days weekend. The 
duration of employee e1 conducting a1

1 is 4 days. The 
planned schedule of a2

1 is from the 9th day to the 11th 
day. The duration of employee e1 conducting a2

1 is 3 
days.  
Project P2: 

Duration of project P2 is from the 4th day to the 9th day. 
Based on the parameters listed in Table 1, the planned 
schedule of a1

2 with skill3 is from the 4th day to the 8th 
day. It includes two days weekend. Employee e2 is 
allocated to work on the activity. Its duration is 3 days. 
Fig. 1 shows activity a2

2 with skill4 is the immediate 
successor of a1

2 with skill3. The planned schedule of a2
2 

with employee e3 is from the 9th day to the 9th day. Its 
duration is 1 day.  

Delay analysis: 

Due to the absence of employee e1, the start time of a1
1 

is delayed to the 5th day. The end time of a1
1 will be the 

10th day, i.e. activity a1
1 is delayed. Activity a2

1 must 
wait until a1

1 is finished. Its start time is delayed until 

   
Fig. 2. First strategy 
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the 11th day and the end time will be the 15th day. 
Obviously the end time of a2

1 exceeds planned finish 
time of P1. Project P1 will be delayed into the 15th day. 
Note that the current finish time of P2 is the 9th day. 
Then our problem is how to handle the delay of project 
P1. Two different strategies below are illustrated. 
First strategy: 

The strategy is shown in Fig. 2. Because employee e2 
has skill1, we firstly can reallocate employee e2 to 
conduct a1

1. So a1
1 can run from the 3rd day. According 

to the parameters listed in Table 3, duration of a1
1 with 

e2
 is 4 days. Due to the two days weekend, the end time 

of a1
1 would be the 8th day. Meanwhile, employee e1 has 

return on the 9th day and can conducts activity a2
1.  

Activity a2
1 can run from the 9th day on schedule. 

According to the parameters listed in Table 3, the 
duration of a2

1 with e1
 is 3 days. Its end time is the 11th 

day. The delay is eliminated for P1 but is transferred to 
P2. More specifically, since e2 is transferred to a1

1, a1
2
 

must wait until a1
1 is finished. So the delay would occur 

at a1
2. The start time of activity a1

2 will be postponed to 
the 9th day. But because activity a1

2 cannot be helped 
due to lack of skilled employees, the end time of 
activity a1

2 is the 11th day and the delay would be 

further propagated to its subsequent activity. Since 
activity a2

2 is the immediate successor of a1
2, its start 

time will be delayed to the 12th day and the end time is 
the 12th day. Obviously delay is introduced in project P2. 
Therefore, this strategy is not desirable. Our goal is that 
the delay of P1 is reduced or even eliminated without P2 

being impacted. 

Second strategy: 

We change the strategy as shown in Fig. 3. Suppose a1
1 

runs without any help which means that the delay is 
fully propagated to a2

1. Meanwhile, a1
2 is finished on 

schedule. Its end time is the 8th day. Since e2
 has skill2, 

the employee can replace e1
 to carry out activity a2

1 on 
the 11th day. According to Table 3, duration of activity 
a2

1 with e2 is 1 day. The end time of activity a2
1 is the 

11th day. Therefore, the delay is eliminated in project P1 
and no delay is introduced to project P2, i.e. no impact 
to P2. Clearly this is a better rescheduling strategy. 

From the above simple illustration, we can conclude 
that not all delayed activities need to involve immediate 
rescheduling. In our case, if we handle delay at a1

1 
firstly, the delay at project P2 will be introduced 
although the delay at project P1 is eliminated. Therefore, 

              
Fig. 3. Second strategy 
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sometimes we may need to propagate the delay where a 
feasible solution can be found.  
According to the above analysis, we use notations to 
denote the rescheduling process, i.e. (exay

n) indicates 
that employee ex is selected to conduct activity ay

n. In 
addition, since some activities may share one employee, 
those activities must execute in sequence. Now we can 
use the notation to describe the entire second strategy: 
e.g. < (e1a1

1), (e2a1
2),(e2a2

1),(e3 a2
2)>. Here 

since employee e2 is shared by activities a1
2 and a2

1, a1
2 

precedes a2
1.  

Based on the example, we find that there are two 
choices when an activity gets delayed. One choice is 
that the activity is executed by the original employee, 
i.e., a delay is propagated to its subsequent activities. 
Another choice is that the activity is executed by 
another employee with the same skill. Different choices 
for handling delay of an activity can lead to different 
results. For instance, at activity a1

1, in the first strategy, 
it chooses to reschedule employee e2 to handle the delay 
immediately while in the second strategy, it chooses to 
propagate the delay to its subsequent activity. The result 
is that both projects can finish on schedule with the 
second strategy while a delay is introduced in P2 with 
the first strategy. So selecting an appropriate employee 
for the activity determines whether or not a feasible 
solution can be obtained. An immediate question is how 
to find an appropriate employee for a delayed activity. 
When all possible selections for all employees with 
same skills from all activities are linked together, a 
multi-fork tree is formed according to the data structure 
addressed in Ref. 19. Feasible solutions may exist in the 
tree which is detailed next. 

4. ADAPTIVE ACO BASED STRATEGY FOR 
EMPLOYEE RESCHEDULING 

In this section, first we provide an overview of the basic 
ACO algorithm. Then we present our adaptive ACO 
based strategy with three rescheduling rules defined to 
avoid unnecessary search for suitable employees for 
each delayed activity as much as possible.  

4.1. An Overview of ACO Algorithm  

Based on the above analysis, a feasible solution may 
exist in the multi-fork tree. How do we find the best 

feasible solution? One simple method is to traverse all 
possible paths in the tree. However, the number of 
nodes in the tree increases exponentially. Obviously this 
is an NP-hard problem. In this paper, we propose an 
adaptive ACO approach to solve such an optimization 
issue. But first, in this section, according to Ref. 20, we 
provide an overview of ACO developed by Dorigo et al. 
which has been widely applied to optimization problems.  
The key idea of ACO is the use of simulated 
pheromones, which attract ants to the better trails 
through graph, i.e. multi-fork tree in our case. The main 
processing loop alternates between updating the ant 
trails based on the current pheromone values and 
updating the pheromones based on the new ant trails. By 
sensing the concentration of pheromone at the path, 
other ants can choose appropriate path to find food. 
ACO algorithm works by dispatching a group of 
artificial ants to build solutions to the problem 
iteratively. In general, based on Ref. 20, ACO algorithm 
has two core procedures: 
(1) Solution construction: 
During each iteration of the algorithm, a group of ants 
sets out to build solutions to the problem. Each ant 
builds a solution in a constructive manner by selecting 
components step by step to form a complete solution. 
The selections are made according to pheromone and 
heuristic information.  
In ACO, pheromone is a record of the past search 
experience of ants for guiding the following ants to 
make decisions. The selected component belonging to 
the best solutions found by the previous ants usually 
accumulates more pheromone, attracting more ants to 
select in future iterations. Heuristic provides some 
problem-dependent information that helps ants have 
higher probabilities to select appropriate component in 
the solution construction procedure. 
(2) Pheromone management:  
Along with the solution construction procedure, 
pheromone values are updated according to the 
performance of the solutions built by ants. Ants tend to 
deposit more pheromone to the components of better-
performed solutions. 
Our proposed solution is formed by ants selecting an 
appropriate employee for each delayed activity. In order 
to increase randomness of selecting employee, Roulette 
wheel selection from Ref. 21 is applied according to a 
random probability based on pheromone. The Roulette 
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wheel is applied to choose a suitable employee. When a 
better feasible solution is found, the correspondent 
employee pheromone from the better solution at each 
activity will be strengthened while pheromones of other 
employees at each activity will be weakened. In our 
research, employee pheromone ( )y xe a   is set to help 
ant select appropriate employee. ( )y xe a   denotes that 
employee eY is selected to work on activity ax. The 
overall procedure of ACO is described below.  
Step a:  
Evaluate the value of ( )y xe a   for all activities and 
initialize the number of generations and ants. 
Step b: 
Employee pheromone determines which employee is 
selected. ( )y xe a   is used to compute the probability 

( )y xP e a . Then based on the Roulette wheel strategy, 
employee will be chosen. Here N  is the set of all 
available employees. 

( )
( )  where  

( )

y x
y x y

y x

y

e a
P e a e N

e a
e N








 




              

 

(1) 

Step c: 
Given P1 is the delayed project that we try to reduce or 
even eliminate the delay, we define a fitness function 
that determines whether the ant finds a feasible solution. 
The fitness function is described as (Delay(P1)< 
min_delay(P1), finish time (P2) <= planned finish time 
(P2) ,….. , finish time (Pn) <= planned finish time (Pn) 
where min_delay(P1) indicates the minimum value of 
Delay(P1) when one ant finishes its tour. 
Step d:  
When all ants in one generation have finished the tour, 
the correspondent pheromones will be updated. If a 
feasible solution exists, at each delayed activity, the 
pheromones of the correspondent employees from the 
best-so-far solution will be strengthened while the 
pheromones of other employees are weakened. 
Employee pheromone is changed as follows: 

( ) ( )y x y xe a e a                   
         (2) 

where  indicates that employee pheromone is 
changed by  . 
The evaporation is done by weakening pheromone trails.  

(1 )     (  0  , 1                                       (3) 

Step e: 

Increase the generation number by 1, when exceeding 
the maximum generation number set, the algorithm 

terminates with the final result as output, otherwise, go 
to Step b. 

4.2. Proposed Rescheduling Strategy 

In order to avoid unnecessary search as much as 
possible, we find that the selection for which employee 
to conduct the delayed activity can be optimized based 
on the following three rules. These rules form the 
foundation of our novel adaptive ACO strategy, which 
can increase its hit count, i.e. the number of feasible 
solutions found. 

We assume that activity ai
n requiring skillx is a delayed 

activity. The original employee is ep. ej
 is the available 

employee who has skillx. Activity ak
m of project Pm

 is the 
next activity where employee ej

 will be working on. In 
order to express the rules clearly, we define some 
parameters in Table 4. 

Rule 1: 

If finish_time((ejai
n)(m1).real_start_time, (ejai

n). 

duration) > finish_time((epai
n).real_start_time, (ep 

ai
n).duration), employee ej cannot be rescheduled. 

Explanation: If the finish time of activity ai
n with 

employee ej exceeds the finish time of activity ai
n with 

original employee ep , rescheduling should be avoided. 

Rule 2: 
If ak

m.late_start_time >= finish_time(ejai
n).real_start

_time, (ejai
n).duration), rescheduling employee ej  

would not impact on the start time for activity ak
m.  

Explanation: When employee ej
 is rescheduled to 

conduct activity ai
n, activity ak

m where employee ej
 will 

be working on needs to wait for finishing activity ai
n. If 

real_start_time of activity ak
m does not exceed its late 

start time, rescheduling would not impact on the start 
time for activity ak

m.  
Rule 3: 
When ak

m.late_start_time < finish_time(ejai
n).real_ 

start_time, (ejai
n).duration), employee ej

m cannot be  

rescheduled if Pm. project_earilest_possible_finish_ 

time >Pm. project_finish_time.  

Explanation: This rule has the opposite condition of 
Rule 2. When real_start_time of activity ak

m does 
exceed its late start time, we need to estimate the finish 
time of Pm . Each activity which has not been executed 
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so far will be estimated based on its minimum duration 
in Pm . If the estimated finish time of Pm under this 
circumstance exceeds its planned finish time without 
any rescheduling, rescheduling should be avoided. 

Now we describe the whole procedure of our generic 
rescheduling strategy based on adaptive ACO. The 
following steps show the flow of rescheduling strategy 
at each delayed activity. 

Step 1: For the next activity, all employees with the 
required skills are assessed whether they conform to 
Rule 1. If there are no available employees, the activity 
will be executed by the original employee as scheduled. 
Otherwise all available employees are stored in array1.  

Step 2: This step is to assess whether there exist any 
employees stored in array1 who conform to Rule 2. If 
so, all those employees are stored in array2. The end 
time of activity with each employee in array2 is 
calculated so that the employee with the minimum end 
time is chosen for rescheduling. Then go to Step 5. 
Otherwise, if there is no employee in array1 who 
conforms to Rule 2, go to Step 3. 

Step 3: Employees stored in array1 will be assessed 
whether they conform to Rule 3. If there are no 
employees, the activity will be executed by the original 
employee, again as scheduled. Otherwise, those 

employees are stored in array3 and the original 
employee is also added to array3.  

Step 4: One employee from  array3 is chosen  by ant-
based  Roulette wheel  selection based on employee 
pheromone. 

Step 5: The activity is executed by the selected 
employee and the correspondent parameters such as real 
end time of the activity and release time of the 
employee are updated accordingly. 

5. EVALUATION 

In this section, we firstly set experiment parameters. 
Then five different experiments are reported to show the 
results of our strategy. Finally we compare our adaptive 
ACO with other two representative counterparts: basic 
ACO and GA. In addition, three real world software 
project instances are also utilized to evaluate our 
strategy. At the end, the threats to validity are presented. 

5.1. Experimental Settings  

In the reported experiments, we test the proposed 
rescheduling strategy when the number of concurrent 
projects is 2, 5, 10, 15, 20 respectively which are 

Table 4.   Explanation of parameters in rules 

employee_release_time It is the time indicating that employee can execute new 
activity only after the employee has finished the current 
activity. 

real_start_time It is the maximum value of real finish time of all 
predecessors of the activity and the release time of the 
corresponding employee. The parameter indicates that 
activity is executed only after all predecessors of the 
activity have been finished and the corresponding 
employee is available. 

late_start_time It is the planned late start time of the activity. 
finish_time 

(real_start_time,duration) 
The function is defined to calculate real finish time of 
activity conducted by employee based on given 
real_start_time The detail of the function is given in the 
text below this table. 

project_finish_time It is the finish time of the project without any 
rescheduling. 

project_earilest_possible_finish_time It is the estimated earliest possible finish time of the proje
ct. 

Function finish_time(real_start_time,duration): from real_start_time, days are counted until given duration is 

satisfied. If the current day is weekend, the day will be skipped. The last day is the real finish time. 
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representative enough to demonstrate the overall 
performance of our novel strategy. We have also 
conducted experiments with other settings and the 
results are similar. 
The project networks are derived from PSPLIB of Ref. 
5 where the benchmark project networks in PSPLIB 
have been widely used in project management in 
various fields (including software project management). 
According to Ref. 22, these benchmark project networks 
are classical representation for the activity precedence 
relations of (software) projects. However, in order to 
appropriately capture the characteristics of real-world 
projects, we generate all parameters randomly for those 
networks. Randomized parameters include activity 
duration for employee and skill(s) of employee. Each 
project has 122 activities in this case. 
We have conducted 5 different experiments for different 
number of concurrent projects in order to validate the 
effectiveness of our strategy. For each experiment, the 
strategy is run 10 times. In addition, in order to show 
the effectiveness of our strategy in larger scale projects, 
we choose project network with 122 activities. We 
assume that all 122 activities are different. So for one 
project, there are 122 required skills. The number of 
skills of each employee is 6 at most. The duration of 
each activity is set from 10 days to 25 days. Three levels 
of skills (high, medium and low) are set for employee 
randomly. So in order to show the effectiveness of our 
strategy, the original delay is set from 1 day to 70 days 
and is injected at the beginning of each project. The 
execution for experiments is based on Eclipse on a PC 
(Intel Core i7 CPU, 2.4GHz, 8GB RAM). 
In addition to the above settings, in order to compare the 
three algorithms under the same iteration condition, we 
set the following parameters. The number of ants and 
generations of our adaptive ACO and basic ACO are set 
as 10 and 50 respectively so that the total iterations 
would be 500. Accordingly, the iterations of GA 
algorithms are also set as 50 and the population size of 
GA algorithm is set as 10.  

5.2. Experiments 

In Experiment 1, we have 2 concurrent projects. There 
are 244 different activities in total. Originally, delay 
occurs at one project. Our aim is that the delay at that 
project is reduced or even eliminated while the other 

project is not impacted. Table A.1 in Appendix shows 
the parameters and results of Experiment 1. Original 
delay is the value of injected delay. Remained delay is 
value of delay remaining after running. In Experiment 2, 
we have 5 concurrent projects. There are 610 difference 
activities in total. Similar to Experiment 1, delay occurs 
at one project, our aim is again that the delay at that 
project is reduced or even eliminated while all other 
projects are not impacted. Table A.2 in Appendix shows 
the parameters and results of Experiment 2. In 
Experiment 3, we have 10 concurrent projects. There are 
1220 difference activities in total. Similarly, Table A.3 
in Appendix shows the parameters and results of 
Experiment 3. In Experiment 4, we have 15 concurrent 
projects. There are 1830 difference activities in total. 
Table A.4 in Appendix shows the parameters and results 
of Experiment 4. In Experiment 5, we have 2concurrent 
projects. There are 2440 difference activities in total. 
Table A.5 in Appendix shows the parameters and results 
of Experiment 5.  

5.3. Result Analysis 

In order to show the effectiveness of our proposed 
strategy, we compare ours with other two representative 
approaches, namely basic ACO and GA algorithms. 

Fig. 4 shows the overall hit count of the three strategies 
when the number of concurrent projects is 2, 5, 10, 15 
and 20 respectively. The values are collected based on 
10 runs for each strategy. From the figure, we find that 
the hit count of our adaptive ACO can be kept at a high 
value in all experiments while the hit counts of other 
two strategies are significantly lower. The average hit 
count of our adaptive ACO for 5 concurrent projects 

 
Fig. 4. Comparison of overall hit count 
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reaches 8.4. The hit counts of basic ACO and GA fall to 
0 when the number of concurrent projects is from 5 to 
20. In addition, combined with experiments presented in 
Section 5.2, we find that some relatively big delays can 
be reduced effectively in our adaptive ACO. For one 
example, in #5 of Experiment 4, the original delay is 47 
days and the remained delay is reduced to 1 day only. 
However, in some scenarios with fewer employees, our 
proposed strategy probably fails to handle delays. For 
example, in #10 of Experiment 5, the original delay is 
30 days and the remained delay is still 30 when the 
number of employee is 585. Experiment 5 has 2440 
activities. Roughly each employee needs to conduct 4.1 
activities on average. It indicates that many employees 
will be busy. So, it leads to fewer feasible employees for 
rescheduling. In general, our proposed strategy is 
effective in terms of finding a solution for reducing 
delays. 

Fig. 5 shows the hit count of eliminating delay for 10 
runs among the three strategies. From the figure, we 
find only our adaptive ACO can obtain feasible solution 
in which delays can be eliminated. The average hit 
count of our adaptive ACO is about 1.8. In addition, 
combined with experiments presented in Section 5.2, we 
find that some relatively big delays can be eliminated in 
some experiments. For example, in #1 of Experiment 1, 
the original delay is 36 days which can be eliminated. It 
indicates that our proposed strategy can offer good 
quality of service for customers. 
Fig. 6 shows the general effectiveness of our strategy. 
From the figure, we find that the delay of a project can 
be reduced to a much greater extent by our adaptive 
ACO with the average reduction degree nearly halved 

(about 46% on average) in comparison to others. It 
indicates that the delay can be handled much more 
effectively than other strategies as the reduction degrees 
of the others are normally well below 10%. 
Fig. 7 shows the trend of delay reduction with given 
number of employees and number of skills when the 
number of concurrent projects is 2, 5, 10, 15 and 20 
respectively. In order to learn the impact of number of 
employees and skills on delay reduction, we set five 
different numbers of employees and five different 
numbers of skills (6, 7, 8, 9, and 10) which employee 
can have at most. Experiments are carried out by fixing 
one parameter and changing another one. The degree of 
delay reduction is the average value after running 10 
times. Here we need to emphasize that although after 
each run the total number of employees is different 
under the same group, the numbers fall to small interval, 
i.e. quite consistent. So the total number of employees 
can be averaged.  
From Fig. 7 (a), (b), (c), (d) and (e), we find that curves 
have a similar trend: (1) when the total number of 
employees is given, with the increase of the number of 
skills, the degree of delay reduction presents a upward 
trend; (2) when the number of skills is given, with the 
decrease of the total number of employees, the degree of 
delay reduction presents a downward trend. In essence, 
increasing of the number of skills or employees 
provides more available choices for rescheduling. So the 
degree of delay reduction also increases. In addition, 
some cases in Fig. 7 present opposite trend. For 
example in Fig. 7(a), when the number of skill is 7, the 
degree of delay reduction of 71 employees is slightly 
greater than that of 77 employees. The reason is that 

 
Fig. 6.  Comparison of degree of delay reduction 

 
Fig. 5.  Comparison of hit count of eliminating delay 
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activity durations and delays are generated randomly for 
each run and the difference of employee numbers is not 
big between 71 employees and 77 employees. In 
addition, we also find that when the number of 
employee or skill is large, this trend is not obvious. The 
reason is that the more people can balance the lack of 
skills or the more skill can balance the lack of 
employees. But as a whole, the general trend meets our 
expectation.  

5.4. Case Studies 

In order to show the effectiveness of our research for the 
real world cases, 3 real instances which come from 
business software construction projects for a department 
store company are provided in Ref. 14. Since they only 
provide data for optimizing staffing scheduling at 
planning stage, we need to make some changes: (1) 
original delays are injected, (2) delay values are set 
from 1 to 70 days, and (3) in order to conform to the 

 
(a)                                                                                                            (b) 

  
                                                 (c)                                                                                                      (d) 

      
(e) 

Fig. 7.  Trend of delay reduction with given number of employees and skills 
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settings in our research, we regulate that one activity 
can only be conducted by one employee and employees 
are deployed randomly to conduct activities. According 
to the raw data, the number of employees is 30 and the 
number of activities is 45 in total. Each employee has 5 
skills. For the case studies, we conduct 10 rounds of 
runs. Table 5 shows parameters and results of 3 real 
instances. 
Fig. 8(a) shows hit count for our adaptive ACO, basic 
ACO and GA. The results are 10 out of 10, 3 out of 10 
and 5 out of 10 respectively. Fig. 8(b) shows that only 
our adaptive ACO obtains solution in which delays are 
eliminated. Its hit count is 3 out of 10. Fig. 8(c) 
describes the reduction degree of the three strategies. 
The average reduction degrees of our adaptive ACO, 
basic ACO and GA are 75.2%, 8.6% and 14.4% 
respectively. According to Fig. 8, we find that no matter 
hit count or reduction degree, the effectiveness of our 
adaptive ACO is much better that of basic ACO and GA. 
Those results conform to our previous analysis. In 
addition, for our adaptive ACO, basic ACO and GA, 
compared with reduction degree of five groups’ 

experiments described in Section 5.3, reduction degree 
of 3 real instances is obviously higher. The main reason 
is that there are only 45 activities in 3 real instances in 
total. The smaller amount of activities narrows the 
searching space. In addition, there are sufficient staffs 
(30) with sufficient skills (5) in 3 real instances. So 
these factors lead to obtaining feasible solutions more 
easily. Finally experiments of the 3 real instances show 
the effectiveness of our proposed algorithm in the real 
word. 
In summary, our strategy is clearly much better than the 
other two approaches by producing quality feasible 
solutions. It is obvious that there are some deficiencies 
causing relatively lower hit count for the other two 
approaches: (1) in the basic ACO algorithm, the ant 
selects an employee only according to pheromone so 
that some feasible employees may be neglected as the 
reallocated employee may cause serious delay; (2) in the 
GA algorithm, one solution is generated based on 
crossover and mutation of previous solution, so for one 
activity, the current state of the activity cannot 
determine whether the activity needs to be rescheduled. 

 
(a)                                                                       (b)                                                                         (c) 

Fig. 8. Comparison among three strategies at three real instances  

Table 5.   Parameters and results of 3 real instances 

 Original delay                             Remained delay Number of 
employees Adaptive ACO   Basic ACO GA 

#1 41 6 21 17 30 
#2 27 0 27 27 30 
#3 45 8 45 45 30 
#4 64 12 64 64 30 
#5 22 5 22 22 30 
#6 27 0 27 15 30 
#7 19 0 19 19 30 
#8 35 9 26 30 30 
#9 29 0 27 18 30 
#10 50 49 50 50 30 
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For example, although no any delay is introduced into 
one activity, the activity may need to be rescheduled. 
Finally, it is hard to find feasible solution. 

Fig. 9 shows the running time for our rescheduling 
strategy when the number of projects is 2, 5, 10, 15, and 
20 respectively, based on the average of 10 runs. When 
the number of projects becomes larger, the running time 
becomes longer as expected. However, since the time 
granularity of SPSP is relatively large which is normally 
in days, our strategy can finish rescheduling at tolerable 
time, namely from around 0.65 minutes up to 138.6 
minutes for the experiments described in Section 5.2 on 
a single PC. In addition, the average running time of 10 
runs for 3 real instances is around 0.27 minutes. 
Therefore, these experiments show that our proposed 
strategy is sufficiently efficient. 

5.5. Threats to Validity 

Here we discuss the key threats to the validity of our 
evaluation. 
Threats to External Validity. The main threat to the 
external validity of our evaluation is the 
representativeness of instances. Since most companies 
do not want to publish or record development process, it 
is hard to obtain real instances. So it threatens the 
external validity. To minimize this threat, the widely 
used PSPLIB set  from Ref. 5 is applied in the paper. In 
order to fully simulate the real world, we generate all 
parameters such as duration, original delays etc. 

randomly based on project network from PSPLIB. In 
addition, in order to show the effectiveness of our 
research for the real world cases, three real world 
instances from Ref. 14 are also applied for validation of 
our strategy. Therefore, instances in this paper are 
reliable and can be true representation of real world 
software projects. 
Threats to Internal Validity. The main threat to the 
internal validity of our evaluation is the 
comprehensiveness of our experiments. The result 
fluctuation is easily caused by the randomized data from 
PSPLIB in the experiments. It threatens the internal 
validity of our evaluation. To minimize this threat, we 
run each experiment for 10 times and the average values 
are collected. Average values can weaken deviation of 
calculation effectively. In addition, in order to validate 
the effectiveness of our strategy, instance which 
includes 122 activities is chosen from PSPLIB and 5 
different experiments for different numbers of 
concurrent instances (2, 5, 10, 15, and 20) are conducted. 
We think that these provide sufficient 
comprehensiveness to demonstrate the effectiveness of 
our strategy. 

6. CONCLUSION AND FUTURE WORK 

In this paper, with a number of similar concurrent 
projects, we have discussed primarily on how to reduce 
or even eliminate the delay in a software development 
project without impacting on other projects. To achieve 
this goal, an innovative generic decision-making 
rescheduling strategy based on adaptive ant colony 
optimization has been proposed. More specifically, we 
provide three rescheduling rules in order to select 
appropriate employees across projects. The experiments 
have demonstrated that compared with other 
representative algorithms, our proposed strategy is 
much more effective to reduce or even eliminate the 
delay in an efficient manner.  

The work presented in this paper focuses mainly on how 
to reschedule employees in order to reduce or even 
eliminate the delay. The proposed strategy can be 
deployed in a semi-automatic intelligent decision-
support system for supporting project managers to 
handle the delay during software development. 
Therefore, our future work can be along this line. 
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Fig. 9. Trend of running time for 5 general experiments 
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Appendix 

 

Table A.1. Parameters and results of Experiment 1 

 Original delay                             Remained delay Number of 
employees Adaptive ACO   Basic ACO GA 

#1 36 0 36 36 76 
#2 49 49 49 49 58 
#3 40 24 40 40 70 
#4 70 52 70 70 64 
#5 34 0 34 34 83 
#6 35 25 35 35 65 
#7 36 15 33 28 104 
#8 64 34 57 49 98 
#9 25 0 25 25 80 
#10 44 20 44 44 67 

 

 

Table A.2. Parameters and results of Experiment 2 

 Original delay                             Remained delay Number of 
employees Adaptive ACO   Basic ACO GA 

#1 53 19 53 53 153 
#2 33 0 43 43 214 
#3 59 59 59 59 169 
#4 44 30 44 44 158 
#5 42 42 42 42 155 
#6 69 41 69 69 178 
#7 34 18 34 34 185 
#8 34 14 34 34 156 
#9 18 0 48 48 186 
#10 69 20 69 69 164 

 

 

Table A.3. Parameters and results of Experiment 3 

 Original delay                             Remained delay Number of 
employees Adaptive ACO   Basic ACO GA 

#1 35 8 35 35 297 
#2 46 21 46 46 320 
#3 23 2 23 23 368 
#4 20 0 20 20 348 
#5 35 35 35 35 327 
#6 38 14 38 38 379 
#7 49 29 49 49 353 
#8 51 36 51 51 428 
#9 65 42 65 65 329 
#10 27 0 27 27 340 
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Table A.4. Parameters and results of Experiment 4 

 Original delay                             Remained delay Number of 
employees Adaptive ACO   Basic ACO GA 

#1 32 32 32 32 460 
#2 22 14 22 22 530 
#3 52 36 52 52 546 
#4 15 0 15 15 505 
#5 47 1 47 47 480 
#6 34 16 34 34 618 
#7 45 45 45 45 449 
#8 29 10 29 29 510 
#9 32 22 32 32 501 
#10 14 14 14 14 468 

 

 

 

 

Table A.5. Parameters and results of Experiment 5 

 Original delay                             Remained delay Number of 
employees Adaptive ACO   Basic ACO GA 

#1 14 0 14 14 745 
#2 43 22 43 43 650 
#3 69 19 69 69 676 
#4 72 46 72 72 736 
#5 56 53 56 56 590 
#6 78 11 78 78 675 
#7 37 14 37 37 712 
#8 41 41 41 41 593 
#9 21 18 21 21 686 
#10 30 30 30 30 585 
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