Metamorphic evolution of the

western Gawler Craton

Thesis submitted in accordance with the requirements of the University of Adelaide for an Honours Degree in Geology/Geophysics

Philippe Dupavillon

November 2015

TITLE: METAMORPHIC EVOLUTION OF THE WESTERN GAWLER CRATON RUNNING TITLE: METAMORPHISM OF THE WESTERN GAWLER CRATON

ABSTRACT

The tectonothermal evolution of the western Gawler Craton, including the Fowler Domain, during Proterozoic Australia is currently poorly understood. In-situ U-Pb ages obtained in this study from the Fowler Domian yielded ages of metamorphism at c. 1732–1701 Ma attributed to the Kimban Orogeny, and at c. 1599 Ma attributed to Kararan/Hiltiba events. Quantitative phase equilibria modelling, i.e. pressure-temperature pseudosections, provide the first modern metamorphic constraints on pressure-temperature conditions for two areas within the Fowler Domain and are ~2.6–7.4 kbar and 550– 700°C for the Barton Block, and 8.2–8.7 kbar and 450– 475°C for the Nundroo Block which equate to apparent thermal gradients of approximately ~116–135°C /kbar and \sim 50–60 °C/kbar respectively. These thermal gradients occur within the hotter part of the 'high T/P or Barrovian' (Barton Block) and 'colder than normal' (or eclogite-high-pressure granulite, Nundroo Block) subdivisions of P–T space. This is suggestive of extension in the Barton Block and later convergence in the Nundroo Block. Kimban-aged tectonism in other parts of the Gawler Craton records thermal gradients ranging between ~150–133 °C/kbar. These differences in thermal gradients are appreciably, and in some cases different from previous studies on the Fowler Domain. The Curnamona Province (north-north eastern South Australian Craton) possesses sedimentation and thermal gradients consistent with divergence within this time period. This has prompted many scientific debates surrounding tectonic regime of the Proterozoic time line, which are yet to include any metamorphic quantitative pressure-temperature considerations. Apparent thermal gradients presented in this study are consistent with both divergence within the Kimban Orogenisis time line 1730–1690 Ma, and convergence within Kararn-/Hiltiba time line 1600–1550Ma. These processes are interpreted to record Tasmanide type tectonic regimes.

KEYWORDS

U-Pb geochronology, P-T pseudosection, geothermal gradients, Proterozoic Australia, Tectonics

TABLE OF CONTENTS

Title: METAMORPHIC EVOLUTION OF THE WESTERN GAWLER CRATON1
Running title: METAMORPHISM OF THE WESTERN GAWLER CRATON1
Abstract1
Keywords1
Table of Contents2
List of Figures
List of Tables
1. Introduction
2. Geological Background7
2.1 Regional geology7
2.2 Fowler Domain10
2.2.1 Nundroo Block
2.2.2 Central Block
2.2.4 Colona Block12
2.2.3 Barton Block
3. Methods
3.1 Sample Preparation
3.2 LA–ICP–MS monazite U–Pb geochronology18
3.3 Whole rock and mineral geochemistry19
3.4 Phase equilibria forward modelling20
3.5 Apparent thermal gradient calculations21
4. Results
4.1 Metamorphic petrography21
4.1.1 Barton Block metasediments
4.1.2 Nundroo Block metasediments23
4.2 LA–ICP–MS monazite U–Pb Geochronology25
4.3 Mineral geochemistry27
4.3.1 Barton Block metapelites
4.3.2 Nundroo Block metapelite
4.4 Phase equilibria modelling

Metamorphism of the western Gawler Craton

4.4.1 <i>T–M</i> ₀ pseudosections	33
4.4.2 <i>T–M</i> _{H20} pseudosections	36
4.4.3 Pressure-temperature conditions	40
5. Discussion	44
5.1 Monazite U–Pb geochronology	44
5.2 Peak <i>P–T</i> conditions and apparent thermal gradients	46
5.3 Possible tectonic settings at time of metamorphism	47
5.4 Tectonic interpretations from elsewhere in Gawler Craton	50
5.5 Possible implications for Proterozoic Australia	51
6. Conclusions	55
Acknowledgments	56
References	57
Appendix A: geochemistry/ mineral chemistry	62
Apendix B: La-Icp-ms Geochronology	68
Appendix C: Scanning Electron Microscope (SEM XL-30)	73

LIST OF FIGURES

Figure 1. Simplified interpreted subsurface geology of the Gawler Craton,
Figure 2. Total magnetic intensity image of the western Gawler Craton including the Fowler Domain 14
Figure 3. Photomicrographs of petrological relationships24
Figure 4. U-Pb LA-ICP-MS analysis Concordia plots for (a) BAC23, (b) BAC28 and (c) NDR127
Figure 5. (a) EPMA elemental maps Ca, Fe, Mn, and Mg from sample BAC23
Figure 6. (a) EPMA elemental maps Ca, Fe, Mn, and Mg from sample BAC28
Figure 7. (a) EPMA elemental maps Ca, Fe, Mn, and Mg from sample NDR1
Figure 8. <i>T</i> – <i>M</i> ₀ pseudosection for sample BAC2334
Figure 9. <i>T</i> – <i>M</i> ₀ pseudosection for sample BAC28
Figure 10. <i>T–M</i> ₀ pseudosection for sample NDR1
Figure 11. <i>T–M</i> _{H2O} pseudosection for sample BAC2337
Figure 12. <i>T–M</i> _{H2O} pseudosection for sample BAC28
Figure 13. <i>T–M</i> _{H2O} pseudosection for sample NDR1
Figure 14. <i>P</i> – <i>T</i> pseudosection for sample BAC2341
Figure 15. <i>P</i> – <i>T</i> pseudosection for sample BAC2842
Figure 16. P–T pseudosection for sample NDR143
Figure 17. Time-space plot for the southern Gawler Craton54
Figure 18. EPMA maps of samples (a) BAC23, (b) BAC28, (c) NDR164
Figure 19. Probability density plots from LA-ICP-MS geochronology

LIST OF TABLES

Table 1. Summary of events within the Gawler Craton	10
Table 2. Summary of previous and current data from the Fowler Domain	17
Table 3. Chemical ranges of selected minerals from EPMA analysis	30
Table 4. EPMA representative analysis for sample BAC23	65
Table 5. EPMA representative analysis for sample BAC28	66
Table 6. EPMA representative analysis for sample NDR1	67
Table 7. Analysis of unknowns for samples in this study	70