Semantic Component
Selection Based on Non-
Functional Requirements

Amir Kanan Kashefi

The School of Computer Science
The University of Adelaide

January 31, 2018

Contents

1

INEFOTUCTION. ...ttt 9
1.1 (0o] 0] o] g T=Y o AT =] [=Tox o TR 15
1.2 IMIOTIVATION 1.ttt s e s st e e s e smb e e e e sanr e e e sannaeessanneeesannaeenas 16
1.3 Problem Statement & Research QUESTIONcccceeeirieriirienie e 20
1.4 CONTIDULIONS ...ttt e s bt e e bt e e be e e s aee e sareesaneesaneean 20
1.5 THESIS SEIUCTUIE ...ttt st sbe e be e sme e s saee e naee 21

2T T 1€ 01U Vo SR 23
21 INEFOAUCTION ...ttt sttt et st e ee e ereeane e 23
2.2 ComMPONENt RELIEVAI ..vvieiiiiiiiieee et e e e s ere e e e e e e eae e e e e e e e s snnraeeeeaeenan 23
2.3 ReqUIremMent ENGINEEIING ...cciiiiiiiiiiieiie ettt ettt e e s e ribre e e e e s s sbare e e e s s ssaanne 30
2.4 (O UE:] 1 2017, oY 1Y ST 32

REIAEEA WOTK ..t et be e e s et e e s at e e sareesabeesaree s 35
3.1 System Requirements through Goal-Orientationcccccveeeiiiiii e, 35
3.2 Component Selection using Quality Models..........ocooieiiiiiiiee e 36
33 Ontology-base Selection of COMPONENTS........ccoiciiiiiiiiieiciie e e 39

3.3.1 Ontology for Non-functional ReEqQUIr€MENTSccccueieiiiiiiieiiee e e 40
34] U101 0 - VAP PP PPPPPPPPPPPPPP 41

Challenges in Developing Component-Based SOftWaAreccccccveeeecieeecciiie e e 44

V=T o g [o] loY Y A USSR 47
5.1 Refine Existing Quality Models and Quality Definitionsccccceevieeeeciiiee i, 48
5.2 Baseling ONtolOgY IMOAEooei ettt e e e e e e re e e e e e e ernnnes 49
5.3 Supplementary Ontology MOdElccuiiiiiiieice e e e 49
5.4 Automate the Reasoning Based on the Main NFRs Ontology Model.........cccccvvveeeernnnnnnnn. 50
5.5 Algorithm DEVEIOPMENTviii i e stre e s eate e e e sbae e s sreeeeeenes 50
5.6 Combination of Query and Semantic ApProaches........ccccccveeeecieieicciee e 51

Design and IMpPlemeENnTationcueei i sre e s e e s e e s ar e e e s nraeeean 54
6.1 (D T=E] =4 o [U OROO PO PPRPPPPPPPPPPPRE 54

6.1.1 ArChItECTUIE ettt e be e e sne e s b e e ene e e snneeas 54

LT 0 A N F-Jo Y 1 o o PSSP 56

L0 0 T © T | o Uo Y=Y 2SR SRRRY 56

(ST R S - o To] 1 1V 2O PPPPPPPPPPPPP 57

6.1.5 Non-Functional REQUIFEMENTS.......cccueiiiiiiie ettt et e e e tee e s eare e e 61
6.2 T g o] [=Ta Y=Y o1 = 4[] o H SRR 76

Page |2

LS R Voo E=1 o o I W =Tel o[a1 To [0 T3 RSP 76

6.2.2 ODbject-Oriented ANAIYSISuiiiiciie e e e et srre e e areas 79
6.3 USE-CASES ittt sttt e s e s e e s e e 82
6.3.1 REASONING USE CASE ...uuueiiiieieiiiiiiitteeeeeriiitee et e e s itree e e s s sesasteeeeeesessnbtaaeeesssansssaeeesssnsnsnne 82
6.3.2 Reformulate QUEry USE CasSe.......cccciieiiiiiieieiiie ettt e ettee e ertee e s etee e e e saaee e e stae e s sneee e eneeas 85
CalCUIALe SCOME USE CASEuieiiieeiierieeeiee ettt ettt et e st sb e st esbe e e sabe e sabeesabeesabeesbeeeaneeesareesanes 87
L7 T3 TP P TP PROSPRUOPO 87
6.3.4 Generate Description USE CASEccccceieeiieineeiiieiernrrerevenreeeeererereeeeeereeeeeeeeeeeeesesasasasaaees 89
6.3.5 Select Best MatCh USE CaSe.......ccievuieieriirieeieeieeee ettt 92
5.3.6 SEAICN USE CaSE ..eiiiieiieeiieeie ettt ettt ettt ettt e e bt e bbbt et e et e e be e b e e nbeenbeenrean 93
A O 1Yol U1 [o PP PSPPSR 97
7.1 CommMUNILY CASE STUAY .uvvieiiiiie ettt e e ette e e eetta e e e et e e e eeataeeeebaeeesnraeeeanes 101
7.2 Research Question: What type of component description express all of the information
that is needed by the COMMUNITY?.......oooiiiiii et e e e e e e e e e areas 107
721 RESUIES ettt ettt et s et ae e e sae e e sare e s beeeree s 108
7.3 Research Question: Is our approach useful for the community?ccooveeiiieeciee e, 110
7.3 1 RESUIES e e s ne e e sae e sare e s reeeree s 111
7.4 Research Question: What does the community understand non-functional requirements
to be? 116
TA.L RESUITS ottt st st sttt st st s st naee 116
2 [o T YU T4 a1 o - V2RSSR 118
7.5 PerformManCce ANGIYSIS .. .uuiiiciiee ittt e e e e e et e e e st e e e e abae e e s raaeeenares 119
RUNTIME ANAIYSIS ..vveiieiiee ettt e e et e e et e e e e e ata e e e sbaeeesentaeeesseneesantaneeanes 119
7 Tt RO PPPPPPPPPP 119
7.5.2 SUMIMAIY ittt e et e e e e e e e e eaaaaeaeaaaeas 125
8 Conclusions and FULUIE WOTK.......ccoiueieiiiieiiieiieeeee ettt et e st e e e sare e sans 126
8.1 CONEMADUTION <ottt sttt st sttt sre s bt b et eeeeneeas 127
8.2 FUTUNE WOTK ..ttt st e e s e e sar e enee s 128
RETEIEINCES ...ttt et b bt et e bt e b e s bt e s b e e b e e n bt e sbe e s h e e s neesreenneenneen 130
AN o] 0 1= o | PSP 139

Page |3

Figures

Figure 5-1 ThesSisS WOTKFIOWciiiiiiiiiiiee sttt s e e s b e e s rara e e e sareeessaneaeeas 48
Figure 5-2 Weight Calculation AIZOrithmccuuiiiiiiii e e 51
Figure 6-1 Architecture for Automated NFR r€aSONiNg........cccecuiiiiiiiiieeiiieeesieeeesireeesiree e sree e e sevee e 55
(O I ST | E N)oY T] o VU 58
Figure 6-3 Performance Efficiency taXOnNOomMYcooiiiiiiiiiiie it e e e e e saaee e 59
Figure 6-4 Relationship example of Reliabilityccoovviiiiiiiiiiiiiicc e 60
Figure 6-5 FiNd Parent NOAE QUETIYuiiiiiiiiiiiiee ettt sttt e e e s e svtte e e e e e s e saateae e e e e e ssnnanneeeessennnnnes 77
Figure 6-6 SAmPIE RDF FIl@coiiiiieeciiiee ettt ettt e e e e st e et e e e e ta e e e sabaeeessbaeeesnnreeean 78
Figure 6-7 Find Realtionship Between TWO NOUES..........cuevieeiiciiiiiiie ettt e eearrre e e e e e eeanens 79
Figure 6-8 Components Selection System Class Diagramcccceeeccveieeiiieeeiiiee e 81
Figure 6-9 Semantic Selection System Use Case Diagrami.......ccccueevriueririiieeiiiiieeesiineessireeessneeessseeeens 82
Figure 6-10 Sequence Diagram Of REASONINGceiiiiiiiiiiiieecciec ettt e e e e rae e e e are e e s eanaeeeas 84
Figure 6-11 Sequence Diagram of Reformulate QUErYcooeviiiiiiiiiiicciec e 86
Figure 6-12 Circular REfEIENCINGuviiiiii et e e et e e e e e e s bt e e e e e e s esnnteeeeeeeeeennnnns 88
Figure 6-13 Sequence Diagram of Calculate SCOre........uiviiiiiiiiiiiciee e 89
Figure 6-14 Sequence diagram of Generate DesCriptionccccviieie it e e 91
Figure 6-15 Sequence Diagram of Select Best MatChc.cooociiiiiciiiiiciiieeccee e 93
Figure 6-16 Sequence Diagram Of SEArCH........oo i e 94
T U Rt N LoV = I =T g =Y SR URP 99
FIUIE 7-2 ValUB PAN@Ieeiiieieee ettt ettt e e e et e e st e e e st e e e e sbe e e e nsaeeasnraeeennsanaaan 99
T U g O e B T U] =T o V=Y RPN 99
Figure 7-4 Runtime for single Non-functional requirements queries with repositories of various sizes

... 121
Figure 7-5 Runtime for predefined grouped Non-functional requirements queries with repositories of
VAETOUS SIZES ciiiiitieeee ettt ettt e e e st e e e s s sttt e e e s e s e bt e e e s e s bbbt et e e s sesnnbeateeesesannranaeaesssanannne 122
Figure 7-6 Sample query to check the Of NFRccoo it 123

Figure 7-7 Runtime for random grouped Non-functional requirements queries with repositories of
VATTOUS SIZES ceeiieieuiiiieeeeeeiiitttee e e e e sttt teeeeesabebeeeeeesaaasabtateeesesasabebaeeeessasassbaaeeeseesaanseaaaeesssaanssnaanesssnnsnnne 124
Figure 7-8 Runtime for random grouped Non-functional requirements queries with repositories of
VAETOUS SIZES ciiiiiiitieee ettt e ettt e e e st e e e e s sttt e e e s e s b e et e e e s e s bbbt et e e s s e s annbaaeeeesesannraneeeesssanannne 124

Page |4

Tables

Table 6-1 Non-functional RequiremMeNnt RANEEScccviiiiiiiiiiiiiiiie ettt ecitee sttt e st e e s sae e e e sabae e sseaeeens 76
Table 6-2 REASONING USE CASE ..eeiuiiieeeiiieeeiiieeeeiteeeeetteeeeeetteeeestaeeeestaeeeessaeaeasseeesssesssassesssessasesansrneann 83
Table 6-3 Reformulate QUENY USE CaSE......cuueiiicuiiieeiiiieeiieieeeiiteeesiveeessttreeessaeeessseesssssseessssseeesnssseenns 85
Table 6-4 Calculate SCOME USE CaSE ...ccuuiiiiiiiiiiiiieeesiitte e sttt e sttt e s sttt e s sbeeeessaaeeessbeeessaseeesssseeesnsseeesnn 88
Table 6-5 Generate Description USE CASEcicicuieieeiiiieiiiieeeeiiteeeeiteeessiteeeesaaeeessaraeessnsaeeeensseeesnasneeens 90
Table 6-6 Select best MatCh USE CaSeccccuiiiiiiiiiiiiiiie ittt ettt sae e s e e s aae e s s saeeessaaaeeeas 92
TablE 6-7 SEAICN USE CASE ..eiiuiiiiiieiiieiieeeitte et ste e st e st e sbeeestte e st teesateesbeesbeeesaeessseessseesnseesnsseenssnenns 93
Table 7-1 Tool Benefits for PartiCipantsc..ceecuieeiiiieeiciiee e eee et e e e svre e e nre e e 115

Page |5

Abstract

Reusing existing software components in place of requiring the implementation of new
components can reduce the complexity of the software development process. However, for a
software component to be effectively identified and selected for reuse, we need a good
understanding of both the functional and non-functional requirements of the component
needed, and the components available. Functional requirements specify what a software
component does and non-functional requirements specify how a software component achieves

its goals.

Non-functional requirements are typically complex, and difficult to both understand and
effectively articulate. Requirements engineering provides a solution to easing this process, and
involves performing the following reasoning steps: elicitation, analysis and description.
However, the output of these steps is based on reasoning that requires manual, expensive and
error-prone techniques. To solve such drawbacks, this thesis describes a framework that
provides the necessary tools and techniques for automating reasoning including: an ontology
for non-functional requirements as a conceptual model for reasoning; and a search algorithm
that matches the best component according to the reasoning process outputs. To validate our
framework, we develop an implementation that supports semantic search within a repository
to locate matches based on a user query, validated with experimental findings on a repository
consisting of 50 individual component descriptions. Our findings demonstrate the benefit
obtained from using an ontology, by minimizing the cost and complexity of analysing non-
functional requirements. Our algorithm is capable of running a complex query, for example,
supporting 5 non-functional requirements with total 16 prerequisites against a repository of
1000 components can run in 1750 second. It would be impossible for a field expert to compute

a complex query in this time frame.

Page |6

Declaration

I certify that this work contains no material which has been accepted for the award of any other degree
or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge
and belief, contains no material previously published or written by another person, except where due
reference has been made in the text. In addition, | certify that no part of this work will, in the future, be
used in a submission in my name, for any other degree or diploma in any university or other tertiary
institution without the prior approval of the University of Adelaide and where applicable, any partner
institution responsible for the joint-award of this degree.

I give permission for the digital version of my thesis to be made available on the web, via the
University’s digital research repository, the Library Search and also through web search engines, unless
permission has been granted by the University to restrict access for aperiod of time.

Signed:

Amir Kanan Kashefi

January, 2018

Page |7

Acknowledgment

I would like to thank my wife who has supported me with a great deal of love. This work would not
have been completed without her.

I would like to thank my family for their encouragement and support during my study. They gave me
hope during hard research times.

Finally, I would like to thank my supervisors, Professor Katrina Falkner, Associate Professor
Nickolas Falkner and Dr Claudia Szabo for their ongoing support, supervision and advice.

Page |8

1 Introduction

As technology has become increasingly pervasive in our society, we have seen a corresponding
increase in software complexity, size and the need for agility in software evolution.
Accordingly, software development companies are seeking techniques to increase their
productivity, to cope with this increased complexity and to adapt quickly to changing

requirements and markets [1, 2].

It is neither feasible nor economical to rebuild new systems every time significant
changes are made to software system requirements. Moreover, adapting a large monolithic
system, where understanding of full system operation and requirements is difficult, to new
environments and situations is hard if not impossible [3, 4]. For example, in 1994 a US air
traffic control system was overdue for replacement by a new, modern system, due to reliability
concerns. The federal aviation administration worked on this system evolution for more than
10 years without success, producing a new system with a monolithic structure of more than a
million lines of code, and riddled with bugs. The structure of the new system made it impossible

to put it into operation, hard to maintain and further evolve [3, 4] .

When software developers focus their attention on the elements of writing code, testing
their code and fixing errors, rather than systematic overall design, there is a considerable risk
involved in code maintenance and evolution. A small change within one part of the software
system may require other parts to change due to the interdependencies within the system,
potentially escalating a small change to significant system restructure. This process is time-

consuming, difficult to understand and increases the overall cost of the project.

Therefore, we should aim to build software systems that are evolvable and geared for

change. Software systems must be composed of distinct software components that can be easily

Page |9

reused and replaced. By adopting such techniques, we are better placed to keep pace with ever

changing and increasing requirement on software systems [3].

It is imperative that all software producers introduce specific design and development
discipline and strategies to ensure that their software development process is efficient, and can
cope with evolutionary needs. This discipline should facilitate the development of modules as
reusable entities, where the maintenance and upgrading of the software system as a whole
becomes more efficient [5] through the individual customisation, testing, debugging or

replacement of its modules.

In this chapter, we will motivate the need for new approaches to supporting modular
software development, extending current methodologies. This chapter will cover key
definitions and requirements of the proposed approach, and this thesis will explore a case study
of how this approach can support benefit in software development in contrast to traditional

development approaches [6-9].

A commonly used approach for software development is the Greenfield approach [10].
The Greenfield approach consists of developing all required software elements without
drawing on previously created software, excluding the possibility of reusing any existing
software systems. It typically follows a set of specific activities, or phases, such as analysis,

design, implementation, testing, installation, deployment and maintenance.

The analysis phase consists of preliminary analysis and system analysis i.e.
requirements definition. In preliminary analysis, the organization’s objectives and nature and
scope of the problem under study are defined. In system analysis, project goals are defined
into the intended function and operation of the application. In this process, facts are gathered
and interpreted, as a result problems are diagnosed and improvements to the system are

recommended [11].
Page |10

Desired features and operations are described in detail in the system design phase. This
includes the description of screen layouts, business rules, process diagrams, pseudocode and
other documents [11]. In the development phase, executable code is written. The integration
and testing phase brings all the parts together into a unified testing environment. In this phase,
the software is put into production. The final stage of initial development is installation and
deployment. In this stage, the software is put into production within the business. During the
maintenance phase, the system is assessed to ensure that it is not becoming obsolete. Changes
are made to initial software and it is evaluated continuously in terms of its performance during

the maintenance phase [12, 13].

This approach to software development has advantages, in that it provides an
opportunity for completely new design and development practices to be put into place, meaning
that a Greenfield project is not constrained by prior work. However, this approach introduces
disadvantages, since it restricts the opportunity to build on, and reuse, existing software
systems, requiring all components to be written anew. Therefore, this makes this approach
more time-consuming and, as a result, potentially more expensive for companies to adopt [14-

16].

In contrast, an approach in which previously developed software systems may be reused
or modified to meet new requirements, to be used as an element of a new system, is called the
extractive approach [17]. Component-Based Software Development (CBSD), an example of
the extractive approach, is a model for building software systems or applications from software
components, where a component is defined as “a reusable software product which is
independently developed and deployed to perform specific functions with well-defined
interfaces” [18]. An interface is “a service abstraction that defines the operations that the

service supports, independently from any particular implementation” [19].

Page |11

In CBSD [20], the set of activities involved in building a system consists of: component
assessment, component adaptation, requirements analysis, design, implementation, integration
and testing. However, due to extensive use of existing components, the realisation of CBSD
development activities are different to traditional approches. CBSD requires focus on not only
system specifications and development but also requires additional consideration to overall
system context, individual components properties, and component acquisition and integration

process [21].

CBSD is divided into component development and system development phases. The
system-level phase places emphasis on finding and verifying proper components; the
component-level phase emphasises reusable design. CBSD builds systems as an assembly of
components which are themselves developed as reusable entities. Thereafter, the system is

maintained by customising and replacing such components [21].

The component assessment phase is responsible for finding and evaluating the
components. The requirements analysis phase involves the assessment of suitable and available
components and defines a complete behavioural description of the system to be developed,
including the functional requirements and non-functional requirements; such as aspects of
performance, software maintainability, or security, of the system. After the requirements
analysis has been completed, the design phase commences, including problem-solving
activities and planning for the new system. The implementation phase places a preference on
the selection of available components over the development of new components, including the
modification of existing available components according to new requirements and design
specifications. The integration phase includes component composition, and the testing phase is

responsible for component certification [22].

Page |12

An advantage of CBSD is that it reduces development time since it requires less time
to buy a component than to build, design and test a new one. Moreover, it increases flexibility
as CBSD systems allow implementation of components and therefore, there is more choice of
component to be selected to meet a requirement. Reusing a component that has been already
tested in many different applications will enhance the quality of the system. The maintenance
process for CBSD is much lower when compared to Greenfield since the obsolete components
can be easily replaced with new enhance ones [21]. Therefore, CBSD reduces the development
cost, time-to-market and provides the customer with a system that is efficient in meeting the

changes required by the customer.

One of the disadvantages with CBSD is the difficulty of requirement satisfaction.
Component selection is an iterative process. The result of component selection depends on the
success of its classification and retrieval mechanism, where a wide variety of component
repositories are considered for performing component search. The component either might not
be found or when found might not perform the specific function or fail to interoperate with one
another [21]. Therefore, the requirement phase takes an important role in the overall
development process. A good requirement analysis helps the user in the selection process.
However, a poor requirement analysis can lead to component mismatch. The mismatch occurs
when the retrieved component is not fully related to the user requirements. In other words, the
mismatch may happen due to any incompleteness, inconsistencies or incompatibilities of user

query with selected component [21].

Another disadvantage of CBSD is the location of suitable components. When software
engineers include a component search as part of their normal development process they need
to be reasonably confident of finding suitable components from repositories. Interoperability

is another disadvantage of CBSD. This is a considerable challenge [21]. CBSD needs to ensure

Page |13

that component services are provided through standard interfaces to ensure interoperability.
Moreover, there are challenges in unit and integration testing for CBSD. Unlike traditional
applications such as Greenfield, individual components can be reused in a different set of

applications. This complicates the integrated testing process of the overall system [21].

However, the advantages of CBSD are promising and the disadvantages only increase
the need for careful preparation and planning to address these challenges by defining

guidelines, standards and an open architecture for CBSD [21].

There are four factors that lead an organization to select CBSD over Greenfield

software development approaches [22-24]:

e The challenge and cost of developing software from scratch and complexity
associated with huge codes that are difficult if not impossible to understand. CBSD
component reuse characteristics can simplify building new systems.

e The cost of maintenance of legacy software systems after they have been developed,;
the plug and play characteristic of CBSD allows the organization to replace
components with new components without affecting the performance of the
remainder of the software system

e Rapid development expectations. CBSD reuse components already developed
instead of developing the overall system from beginning. This will reduce
production time.

e Developing a quality product via supporting the construction of new software

systems with validated, existing software components.

In this thesis, a framework is introduced in order to overcome the disadvantages of CBSD,
assisting users in the component selection process. We demonstrate the usefulness of this

framework through the development of a prototype implementation and experimentation,
Page |14

showing that our approach reduces the cost and complexity of analysing non-functional

requirements in component selection, including an analysis of qualitative user preference.

1.1 Component Selection

In order to overcome the challenge of selecting the right component in the CBSD component
selection process, components must be well documented. Each component has a file associated
with it for providing a detailed description of its capabilities, so-called Component Description.
Component descriptions facilitate the selection and retrieval of components, which are

deposited in storage called a Repository.

One of the problems in actualising software reusability in organizations is the lack of
means to locate and retrieve existing software components [25] There might be software
available for use for a new application in the repository, but it is difficult for developers to
locate the software or even be aware that it exists [26]. Moreover, it is possible to mistakenly

retrieve a component which does not match the requirements [27].

These issues cause existing components to be re-invented over and over again [28]. The
costs of modification adds to overall project expenses [29]. Software reuse is deemed as a key
component of software productivity and quality by software engineering research [30, 31].
Effective software reuse requires that the system developers are able to find components that
can be used in conjunction with other components to form larger units [25]. Thus, an essential
stage for a low-cost and high quality software reuse is to provide the means for organizations
to quickly search a repository. The prerequisite for this is an automated mechanism for

component selection.

Page |15

Component selection is typically based on the services provided by components (i.e.
the functional requirements supported by the component) and its codified interface. While
current component-based technologies successfully manage these functional interfaces and this
degree of selection, this is insufficient for our purposes, as it is necessary to also consider and
select components based on their non-functional requirements, i.e. performance, resource
usage, etc; use cases, and test cases [23, 32]. Accordingly, organizations must also consider the
extra dimensions of non-functional capabilities that help them to meet quality needs and client

expectations.[33].

1.2 Motivation

Building large systems by integrating and reusing components is a viable development strategy
for software companies [34]. However, there are several disadvantages identified in the reuse
of existing components including the lack of clarity of component description (i.e. description
complexity) and the difficulty in finding the most closely related component, (i.e. component
mismatch), which is the result of an ill-defined component descriptions [35], and inadequate
interpretations. A developer needs knowledge of both functional and non-functional

requirements to describe a component or interpret a component description.

The software development industry has an expectation of quality software. In other words,
it has implicit expectations about how well the software will work [36]. These characteristics
include how easy the software is to use, how quickly it executes, how reliable it is, and how
well it behaves when unexpected conditions arise [36]. The concept of quality is also
fundamental and essential to software engineering, and to develop a quality software system,

both functional and non-functional characteristics must be taken into consideration [37].

Page |16

There are many approaches [6, 32, 33, 38] that can provide the necessary functional
and non-functional knowledge to developers in order to improve the accuracy of component
retrieval. These approaches utilise manual [33] or semi-automated techniques, such as

brainstorming, survey-structured interviews and discussion methods.

Interviews are a traditional method and provide a quick way to collect large amounts of
user preference and requirements data. A structured interview based on requirements analysis
questions is sufficient for selecting components in many cases, however their effectiveness
depends on the quality of interaction between the interviewees and interviewers. Thus, the

result of the interview depends on the skills of the interviewer and the question design [39].

Informal discussions are a commonly used approach, and often become the default
method for component selection. These discussions involve all of the different stakeholders
who may participate in the development. However, due to the number of people who may be
required to attend, these sessions can be difficult to organise and manage. Further, the success
of discussion depends on the participants’ experience, expertise and understanding of their non-

functional requirements [39].

Another approach commonly used is brainstorming, which is an informal discussion to
rapidly generate as many ideas as possible without focusing on any one area in particular. One
of the advantages of brainstorming is that it allows the discovery of new and innovative
solutions to existing challenges. However, the disadvantage in using brainstorming is that it

does not explore the description in detail [40].

These techniques are sufficient to interpret and understand high-level component
descriptions; however, they are typically time consuming and, accordingly, costly. This is at
odds with the purpose of employing CBSD, which is designed to reduce time and monetary

cost in development. Most of them require a decision maker to define processes and criteria
Page |17

templates. These studies [6, 32, 33, 38] are interpreting the relationships between quality

attributes throughout the system development and usage.

This thesis considers non-functional requirements due to their importance to the success
of software systems. In order to successfully select the right component, a detailed
understanding of non-functional requirements is required, both in defining user queries for
suitable components, and in interpreting them as part of the selection process. This requires

that the task of defining non-functional requirements be explored in more detail.

A framework has been proposed that provides the necessary tools and techniques for
automating the process of component identification and selection base on non-functional
requirements. An automated process for this purpose requires the design and development of
appropriate tools and techniques for automatically analysing the user query and the component
descriptions in terms of their non-functional requirements for the purpose of component
assessment and finally component matching. Moreover, the framework is able to automate the

processes of query improvement, component assessment and component matching.

To add non-functional requirements to the process of analysis, we must introduce a
mechanism for defining such requirements in a way that they can be understood and analysed
by automated tools, along with requirements’ interrelationships. Requirements might be
directly or indirectly proportional to each other; for example, usability as an attribute is directly
related to the effectiveness of a component but since effectiveness has functional suitability as
a prerequisite, therefore, usability has an indirect relationship with functional suitability.
Moreover, the interrelationship of one requirement might subsume, prevent or contribute to the

fulfilment of another [41].

One of the principal approaches to defining non-functional requirements is the product-

oriented approach [38], which aims to develop formal definitions of non-functional
Page |18

requirements. This approach helps a software system to be quantitatively evaluated by the
degree to which it meets its requirements [42]. In addition, to correctly understanding non-
functional requirements and their impact on the specific software system, the relationship

between requirements must be analysed for conflicts or potential for trade-off..

Within this approach, non-functional requirements need to be specified formally by
stakeholders, however, this is often not a natural process for stakeholders, with non-functional
requirements typically remaining hidden in designs and related documentation. Consequently,
current approaches seek the assistance of experts in non-functional requirements and
requirements engineering techniques [41] to manually analyse and extract formal definitions
of requirements [43, 44]. A non-functional requirements expert is a person who has knowledge
of how non-functional requirements impact the quality of projects, how non-functional

requirements can be combined and how to measure their metrics.

As an example, when building airport traffic software, one needs to hire airport traffic
experts and conduct many discussions with themin order to avoid any conceptual errors. An
expert integrates the air traffic knowledge and requirements engineering techniques to
formalise the stakeholder’s need. This approach, while producing the formal requirements

descriptions needed, is both time consuming and costly.

Our approach builds on elements of requirements engineering, in terms of formal
approaches to interpreting the characteristics of the component and building a comprehensive
query. Our approach to automating this process is based on the development and use of an
ontology for non-functional requirements, providing a formal way for specifying non-
functional requirements, and their relationships, that can be reasoned about in an automated
manner, supporting the reasoning, organising and representation of this complex information
source [42, 43].

Page |19

1.3 Problem Statement & Research Question

This thesis seeks to demonstrate a framework for the automated analysis and selection of
components based on non-functional requirements, building on the development of an ontology

for non-functional requirements.

To achieve the above objective, the following research questions are considered:

1. What type of component description express all of the information that is needed by the
developers’ community?

2. Is this approach useful for the developers’ community?

3. What is the efficiency of the approach?

4. What does the developers’ community understand non-functional requirements to be?

1.4 Contributions

Component-Based Software Development (CBSD) facilitates software development in terms
of quality, time and cost of development. Component retrieval approaches are one of the main
processes of CBSD, designed to identify the most relevant component based on the user query.
However, the current retrieval approaches do not work efficiently in finding relevant
components according to the users [45]. The approaches are not strong in non-functional

requirements analysis, and therefore do not meet overall software development needs.

Our main contribution is a framework for the automated analysis and selection of
components based on non-functional requirements, building on the development of an ontology
for non-functional requirements. As users are not familiar with non-functional requirements,
any approach must produce and use non-functional requirements knowledge in support of the

selection process in a manner that is easily understandable and usable by stakeholders. A set of

Page |20

non-functional requirements are defined based on analysis of industry studies [6, 20] and the
literature [46-51], including their relationships and interdependencies. This study shows how
the proposed ontology and framework can be used to better support timely and informed

selection of components.

1.5 Thesis Structure

Chapter 2 discusses background information pertinent to the research discussed in this study.
In order to provide a basis for the decisions made in implementation, this thesis provides a
literature review in chapter 3 to encompass relevant work in the area and to explicitly define
terms that will be used throughout the remainder of the document. There follows a discussion
of the relevant technology of particular interest such as ontologies. Chapter 4 presents a
discussion on the challenges that occur when developing component-based software. Chapter
5 defines the methodology used to solve the outlined problem and concentrates on the
improvement of existing work. Chapter 6 details the implementation and design of the
component descriptions, ontology and algorithm. These experiments are carried out to verify
that the approach is valid and to also provide runtime statistics to show the effectiveness of the
solution. The result of the experiment, in conjunction with the experimental framework, forms
the basis of chapter 7. Finally, in chapter 8, conclusions are drawn from the theoretical and
practical work to state what impact this has on the field. Furethermore, future work, as

discussed and addresses other possibilities for this approach.

Page |21

Page |22

2 Background

2.1 Introduction

This chapter provides background information required for the development of the new ideas
and experimentation described later in this thesis. This chapter begins with a discussion of
necessary background concepts required to understand the processes involved in component
identification and retrieval in CBSD. Moreover, The principal components of CBSD are

defined.

To begin this chapter, Component description types such as non-functional and
functional are disccused. Then, All existing ways of defining functional or non-functional
capabilities of components as component descriptions are discussed. Additionally, All
techniques that are used for retrieving the components with discussed type of description plus
introducing a technique to assess the retrieval technique performance are covered. Finally, The
importance of non-functional requirements is introduced and discussed information required

to build a non-functional requirement ontology.

2.2 Component Retrieval

As we noted earlier in Chapter 1, the CBSD process encourages the use of existing software
components. The components required within CBSD are identified by analysing their formal
descriptions, which are typically based on a combination of product documentation, client
information, and the previous experience of the developers [35]. A component description
describes the capabilities of a component. There are two types of component descriptions for a
product: functional, those that describe what the component does and non-functional, those that
define the quality attributes of the component.

Page |23

Typically, there are four methods for defining component descriptions, although natural

language is the most commonly adopted method [52-54]:

e Natural language-based [55]
e Behaviour-based [55]
e Signature-based [56]

e Formal specification-based [57]

Natural language descriptions classify software using facets, where each facet represents a
keyword and describes a characteristic of a component. For example, software components
can be described by the functional requirements, non-functional requirements, and their
implementation details. These fall naturally into facets that can be ordered by their relevance
to reusability [58]. A drawback of the facets is the lack of concepts to describe links (relations)
between facets, terms or components classified in the schema. Although it is possible to define
the term of an existing facet as a new facet, it is not explicitly declared as a subtype relation or
specialisation [59] and also it usually does not cover non-functional requirements due to their
complexity. Moreover, due to the subjective nature and vagaries of natural language, different
developers may provide different descriptions for the same component, introducing complexity
in component matching. Accordingly, the description of a component can be sometimes
ambiguous, confusing or even contradictory. Furthermore, most of the time the component

documentation is incomplete [52-54].

Behavioural-based descriptions are limited to functional behaviour of components. In
order to describe a component, this method uses a set of input-output pairs, which can be
viewed as an approximate specification or description of the code component [60]. For
example, consider a component library that contains a number of string-handling function

components. Suppose that the functions are described by the sample input-output description,

Page |24

where each sample consists of the actual arguments before execution, the argument after
execution and the return value after execution. An as example, a component “sconcat” takes
two string as arguments then concatenate the second string at the end of first one. Its sample
description might be: [(“abc”,”xyz”), (“abexyz”,”xyz”), (“abexyz”)]. For developing this type
of description, the user records the set of inputs, which produce same output; input/output
checks can validate the functionality of component, however the non-functional requirements

can not be validated in this method [61].

Signature-based description uses signature information derived from the component. This
description is used for matching at both function and the module levels. The signature of a
function is simply its type and signature of a module is both a multi-set of user-defined types
and a multi-set of function signatures. For example if a user is looking for a specific function,
a query is performed based on the function’s type, the query includes a list of types of its input
and output parameters. Using this method is insufficient as it also does not consider non-

functional requirements when selecting a component.

Formal component description uses mathematical or formal languages to describe the
deposited component description and user requirements. These descriptions include pre- and
post-conditions of the component. For example, post conditions may state related properties of
returned values. Similarly, preconditions of related functions may state related boundary
conditions of input values [62]. A formal method is more powerful than other methods because
they precisely record the system’s functionality, both expected and delivered [63, 64].
However, this method can be very costly and time-consuming when there is a project with

many dependencies (i.e. relationships between components) [63].

Page |25

In order to re-use components deposited in a repository, there are some techniques, so-
called retrieval techniques, which facilitate the retrieval of the components. There are six

general types of component retrieval techniques[65]:

e Browsing-based retrieval technique,

e Behavioural-based retrieval technique,
e Specification-based retrieval technique,
e Signature-based retrieval technique,

e Query-based retrieval technique,

e Semantic-based retrieval technique,

e Internal retrieval technique, and

External retrieval technique,

Browsing-based retrieval facilitates the user request by representing the component
relationships as a weighted graph, which helps the user to navigate and return the required
component [65, 66]. In this method, the user is able to browse components by their names,
traversing the use-relations (the nodes of the graph correspond to components and the
edges linking the nodes correspond to cross component usage), searching similar
components that clustred to one node. The nodes in the graph are ranked by their weights.
Component relations might be constructed through the use of concept keywords or a
component’s functional properties. Each component property represents a node within the
graph; arelation is in the form of a logical formula, based on the specifications (interface’s pre-
and post-conditions, syntactic description of the interface, or specification of operations in the
interface [67]). Browsing-based retrieval uses different relations to build a suitable index for
the component. This approach needs a navigation structure, which requires a formal concept

analysis that feeds a hierarchical collection of concepts to navigate [68, 69]. In addition, the

Page |26

formed concept analysis should also investigate the non-functional requirements to identify the

most relevant nodes.

Approaches to behavioural-based retrieval [70-73] are based on the execution of
software components. As mentioned previously, the user executes the component with their set
of inputs and if the returned output of execution is relevant to user expectation, then the selected
component is the one that suits the user requirements. These types of retrieval consider only

functional requirements.

Approaches to specification-based retrieval [57, 62, 67, 74-76] use formal language
and mathematical logic to describe the desired component. A formal language is constructed
mathematically using a combination of formal rules and grammars, and may be domain-
specific. An automated theorem prover is used to check the validity of the formula. Automated
theorem proving is responsible for proving mathematical theorems with the help of a computer
programs. This technique may be time-consuming and difficult with respect to practical
applications [68]. The retrieval process commences by calling the theorem prover method for
each and every component in a repository till a match is found through an automated theorem
prover validation. Each component is associated with a formal specification that captures its
relevant behaviour. Any desired relation between two components (e.g., refinement, matching,

or reusability) is expressed by a logical formula composed from the associated specifications.

Signature-based retrieval compares the signature of repository components with a
provided query signature. The signature of a component consists of the component method
name; method arguments, arguments type, and method return value. There may be some
components that do not exactly match but the signatures are somehow similar. Those
components are also considered a match due to the user ability to modify the component or
query[77]. This technique considers only functional requirements.

Page |27

Approaches to query-based retrieval formulate a user request in the form of a query to
select a number of components as a result [65]. The user sends the requirements by using natural
language, requiring a translation process to SQL using a query interface, and building on the

following processes:

e Natural language processing: facilitating the analysis of text using automated
approaches based on both a set of rules and a set of technologies [78].

e Ontology development: the specification of a domain, typically describing the
hierarchy of concepts and relating each concept’s properties with it.

e Domain modelling: providing a conceptual framework of the things, which are

concepts of real-world in the problem space.

The above processes improve the result of query-based retrieval techniques. However query
formation remains a difficult task, as a user often does not have a clear understanding of how

to search and what is needed. [79].

User queries are mainly specified based on the understanding of functional
requirements, which are decomposed into specific processes and actions that are encapsulated
in the object according to the domain model. The component objects are also analysed and the
matching process is responsible for retrieving the components with the highest percentage of
similar processes and actions [80]. The result of all these steps is a semantic query construction
but some approaches [81] consider semantic component descriptions as well. A semantic query
consist of more meaningful terms, which are chosen from domain model [80]. In the same way,
a semantic component description considers the lexical relationships among terms chosen to

describe services and operations that are provided by a component [81].

As an example, non-functional requirement based queries look for a component using

a set of non-functional requirements in a format of names paired with values. Each non-
Page |28

functional requirement name represents the desired quality that the component should have and
the value indicates the degree desired for that component quality. The following format is a

simple query for a component that is 100% reliable and secure.

" Reliability ":"100", " Security ":"100"
As mentioned in query based technique, semantic-based techniques use a domain
ontology to provide semantics in order to refine user queries. This supports matching between
a query, articulated in natural language, and component descriptions, which are stored in a

repository describing a set of reusable components [80, 81].

The internal techniques use information retrieval thechniques [53] to extract some
identifiers such as comments, classes, attributes, methods and parameters of the component.
Then, they separate and normalise the identifiers and, finally, index them. The underlying
assumption is that programmers use meaningful names for code items (identifiers). When this
technique is used, there is no external representation of a component and the component can
be considered as a particular type of document [82]. The internal techniques’ inputs

(identifiers) are not useful for non-functional requirements based selection.

The external techniques focus on an external description associated with the software.
Natural language-based descriptions [53] and facets [54] mentioned in Chapter 1 are among
the category of external component description. These techniques, index the component based

on its external representation [65].

All of the retrieval techniques aim to have high-performance measures. The following

models are used to assess the performance of retrieval techniques [83].

Page |29

Searching effectiveness refers to how well a given method supports finding relevant
items in a database. The items that satisfy software requirements are relevant. We have

evaluated searching effectiveness with recall and precision, the traditional measures.

Precision (P) is the number of relevant items (r) retrieved over the total number of items

(T) retrieved. Precision is defined as:

P_T
T

Recall (R) is the number of relevant items retrieved (r) over the number of relevant

items in the database (TC). Recall is a performance metric, which measures the proportion of

relevant material that is retrieved. Recall is defined as [65, 84]:

The closer these P and R values are to 1 identifies better performance of the retrieval.

2.3 Requirement Engineering

In the area of requirements engineering, there are two areas for which ontologies are developed

[85, 86]: functional and non-functional requirements [87].

Etymologists [88] define ontology as the knowledge of beings, and all that relates to
being. The term “entity” is used to describe all things which “are” and exist. According to this
point of view, stones, animals or people are “entities”. Mathematical objects, even those which
are only imagined, are also considered beings. Science and knowledge refer to, or examine, a
type of entity as either physical, (e.g. in the physical sciences) or abstract, as in mathematics

and the vast majority of the computational sciences [38].

Page |30

Ontology is an explicit formal specification that represents the entities that exist in a
given domain of interest and also defines the relationships that hold among them. Ontology
provides a machine-readable description of content and capabilities of the domain. Ontology
IS necessary in order to be able to reuse or share the knowledge multiple times in different

applications [89].

More information is provided by ontology (reasoning process) using a program called
a reasoner [89]. Logical consequences (knowledge) are inferred from sets of the ontology’s
logic and user-defined rules (axioms) using a reasoner [90]. An inference engine is need for
this process, which works based on its rules. An ontology language (such as OWL [91]), and a

description language are used in order to specify these rules [92, 93] .

Functional requirement ontologies include the most general concepts needed for any
domain due to the nature of functional requirements. Functional requirements are features of
the developing software system. A functional requirement ontology can be used to store the
domain knowledge of software requirements. For example, for representing functional
requirements in ontology, the objects may become functions in software and attributes may be
the scenarios of using the functions such as user (who), time (when), method (how). Moreover,

relations such as complement, inherit and contradict may exist among functions [94].

In contrast, a non-functional requirements ontology specifies a conceptualization of the
non-functional requirements domain in terms of concepts (i.e., general non-functional
requirements), sub-concepts (i.e., more specific non-functional requirements) and relations.
Concept or sub-concepts can be associated with their instance, which form the component
descriptions [95]. Non-functional requirements ontology is necessary to facilitate the analysis
of non-functional requirements due to following reasons: non-functional requirements are
always related to specific domains and also affected by context. Therefore, it is difficult to ask

Page |31

users to provide non-functional requirements explicitly. As a result, a significant portion of
non-functional requirements are neglected [96]. Moreover, requirements analysts usually lack
a deep understanding of relevant quality requirements of an application domain, thus additional
knowledge support is needed in the process of asking the right question to elicit requirements.
Furthermore, quality requirements are stated informally and there are few approaches that
define a quality model or attach metrics to non-functional requirements i.e. qualitative or

quantitative measures of the requirements [95].

Therefore, as a result of having an ontology in place, there is a requirement to have a
taxonomy and an appropriate structure for non-functional requirements interrelationships and

definitions.

2.4 Quality Model

Non-functional requirements are typically categorized by quality models. These models
provide general definitions, which facilitates understanding of non-functional requirements.
Moreover, they can be considered as a good reference for software engineering practices such
as quality measurment of software designs with software quality’s characteristics, sub-

characteristics and their metrics, which they provide [97].

The International Organization for Standardization (ISO) and International
Electrotechnical Commission (IEC) published 25051 [46], 25023 [50], 25010 [49], 25020 [47],
25022 [51] and 25021 [48] standards for defining requirements, evaluating software products,
measuring quality aspects. These standards are generic and define quality measures, quality

requirements for components, quality in use and provide a measurement reference model.

The taxonomy used for our ontology is based on the quality model ISO/IEC 25010,

which is published to introduce general software characteristics, with each characteristic

Page |32

divided into sub-characteristics. This model has two categories of quality: the quality in use
model, which has five characteristics and the product quality model, which has eight
characteristics. These models’ characteristics also have a set of related sub-characteristics as
described above (Section 2.4). A taxonomy is a structured overview of classes (characteristics),
subclasses (sub-characteristics) and instances of a domain [98]. A sample of the taxonomy is

defined in Chapter 5.

A non-functional requirements ontology is a formal description of non-functional
requirements and the relationships between them [99]. It facilitates non-functional
requirements knowledge sharing and reuse [100]. It defines a common vocabulary for
researchers who need to share information in the non-functional requirements domain. It
includes machine-interpretable definitions of basic concepts in the non-functional requirements
domain and relations among these concepts [101]. The analysis of non-functional requirements
definitions is needed to discover the relations among them. These relations are necessary for

constructing an ontology.

The first two chapters, discuss the importance of non-functional requirements and the
challenge of analysing them. Moreover, the necessary tool and techniques to analyse and elicit

them is discussed. In the next chapter, a review of related works is presented.

Page |33

Page | 34

3 Related work

This chapter reviews the existing work on component selection based on non-functional
requirements, with emphasis on requirements analysis considering non-functional
requirements. These existing works employ the techniques and tools that are introduced in the
previous chapters. We discuss how the existing works have addressed the concerns raised
regarding analysis of non-functional requirements in Chapter 1. The chapter concludes with a

summary of the perceived shortfalls and gaps in the current literature.

In this chapter, existing works that utilise software requirement techniques to elicit
functional and non-functional requirements and their relations in order to produce requirements
knowledge for component selection is discussed. Specifically, requirements’ categories,
requirements definitions and requirements’ relationships are a focus. Both (1) human or
manual approaches, and (2) automated approaches, commencing with a discussion of manual

approaches are considered.

3.1 System Requirements through Goal-Orientation

Chung et al. [7] propose a goal-orientation (requirement-orientation) approach, where
system requirements are represented as goals. In this approach, goals are identified as a higher-
level (general) form, that are decomposed into sub-goals (specific form). The hierarchy of goals
and sub-goals then represents the identified requirements. Goals consist of non-functional
requirements (soft goals) and functional requirements (hard goals). Moreover, these goals
might be from different stockholder with conflict or be synergistic with each other. For
example, one group of stakeholders may say “the security of the system should be of the utmost
concern,” while at the same time another group may say “the system should be as easily

changeable as possible, and that should be the top priority” [7]. One of the important steps of
Page |35

this study is eliciting, analysing, correcting, and validating the hierarchy of goals by asking

what, how, and who questions repeatedly.

Chung et al. [7] apply a set of techniques to elicit the set of requirements, including
interviews, checklists, and a review of the existing documentation of a system. Their approach
relies on manual reasoning to select the best set of non-functional requirements. The seletion
is based on the interrelationships whereby non-functional requirements subsume, prevent or
contribute to the fulfilment of another non-functional. For example, consider two non-
functional requirements being “the system should be easy to use” and “have a moderate cost”.
The interrelationship between these two goals is defined as negative, which means that making
the system easy to use prevents developing the system at a moderate cost [7, 8, 37]. The Chung
et al. framework can distinguish among parent (general) or children (specific) forms of non-
functional requirements and also their relationships; however, it requires a significant
investment of human and financial resources due to the manual nature of their approach,
introducing inefficiencies. Further, the use of manual reasoning introduces opportunities for

human error.

3.2 Component Selection using Quality Models

There are several other manual approaches, based on the development of quality models that
are of interest. Franch et al. [9] introduce an approach to build a quality model based on 1ISO
9126-1[102] to facilitate the description of requirements and components, where selection is
based on negotiation between user requirements and components capabilities. This work is
selected in order to investigate their catalogue of non-functional requirements and their
relations. The initial step of their approach is analysis and description of a domain of interest.
They illustrat this step by providing an example of a mail server. Then, the outcome is used to

build an 1SO-based quality model. They tailor the 1ISO model either by adding or eliminating

Page |36

sub-characteristics to or from characteristic/sub-characteristics or modifying qualities’
definitions. For example, they add basic and advanced suitability to the ISO quality
characteristic. The tailoring stops when the entire hierarchy of elements can be directly
measurable. Moreover, they identify three types of relationships for their model, which assist
in reasoning about non-functional requirements [9]. These relationships are collaboration,
damage and dependency relations. Requirement A has collaboration with requirement B when
growing A implies growing B. On the other hand, A damages B if growing A implies

decreasing B. Finally, some B conditions should be fulfilled before A completion.

This approach partial definitions make the automation of non-functional requirements’
management difficult. Since the metrics and quality attributes’ relations are based on a specific
domain or context, their model cannot be used as a good reference for domain independent

component selection, which is necessary for automation [23, 80].

Gemma et al. [103] have extended the approach introduced by Franch et al. by

providing a software system for selection of components. They define a set of tools introducing:

e Quality model tool: defines software quality factors, facilitates reuse of them,
states relationships among them, assigns relationships among them and
facilitates analysing of requirements.

e Evaluation tool: facilitates the evaluation of candidate components using a
quality model.

e Component selection tool: responsible for matching user requirements against
components specifications.

e Taxonomy tool: facilitates sharing or reuse of quality models.

Page |37

Gemma et al. did not automate their process of component selection. However, they have
developed a semi-automated framework that minimises the need for human actors, requiring

a.

e domain expert, who analyses the domain in order to build the quality model, and a
e requirements engineer, who defines requirements in order to perform the selection of

a component.

Joerg et al. [6] propose an experience-based method to elicit, analyse and document the non-
functional requirements using checklists and a prioritization questionnaire. The process starts
with the requirements engineer, who tries to identify the priority of non-functional
requirements by interviewing the developers. The next step is the non-functional requirements
elicitation, where the quality model is explained to developers and analysed by the
requirements engineer. The result of this step is the production of a checklist, which improves
the non-functional requirements elicitation by providing additional experience and
information. This step is very time-consuming [104]. Prioritization questionnaires facilitate the

identification of the most important quality attributes in a specific context.

This approach uses a repository, which contains the functional and non-functional
component descriptions extracted from the component marketing brochures. The matching
process starts by comparing the software goals (requirements) with component descriptions.
The selected component will be the one, which gains the highest-ranking score in terms of

relationship and number of matched goals [7, 8, 37].

Page |38

3.3 Ontology-base Selection of Components

Moving to automated approaches, firstly approaches that use ontology to select the components
are studied, and then those that use ontologies to select components based on non-functional
requirements. Sugumaran et al.’s [80] approach is based on the use of an ontology to select
components, which are in form of objectives, processes, actions, actors, and objects. This
format is specified for their domain model in order to provide the context information. The
ontology makes sure the use of appropriate terms in users’ query based on an application
domain (an auction application). To select components, a developer specifies a query in natural
language. Then, ontology is used to evaluate and revise the user query. To select a component,
the user query is decomposed into specific methods according to the domain of application,
and compared to the methods of components stored in the repository. The selected component
is the one that attains the desirable percentage of supported methods [80]. Sugumaran et al.’s
approach provides the benefit of an ontology that captures specific domain knowledge and then
provides that knowledge during the selection process, but this ontology cannot be used for other

domains since it is designed only for a specific domain such as the auction domain.

Yao et al. [81] define a reusable component as a service and used WSDL [105] , which
is an industry standard description language for service description to describe the components.
This language is used to describe interface, data type, binding information and address
information of components. They use web services to describe components. Web services are
standardized mechanism to describe, locate and communicate with applications [106]. The
process starts, when the user’s query sends to system in natural language. Then the query is
translated into a semantic representation format. The approach employs a domain ontology to
refine user queries and to match a user query agaist components in a reusable repository [81].

Yao et al’s approach is based on Sugumaran et al. ontology, with their ontology designed for a

Page |39

specific domain and the ontology definitions limited to the specified project domain (context).
Moreover, there is not a clear definition of their ontology in the article. Therefore, their
ontology is not compatible with other domains. Furthermore, they treat a software component
description as a description of the services provided by the component. Since services describe
the functionality of the components, this approach selection is based on functional

requirements.

3.3.1 Ontology for Non-functional Requirements

This Section provides a review of existing work that uses ontologies to select components
based on non-functional requirements. Li et al. [107] build an approach to retrieve components
using a non-functional requirements ontology-based approach. Each non-functional
requirement is specified with a set of keywords and concepts in the ontology. Keywords consist
of basic component information such as the name of the component, environment information
such as required resources for using the component, and functional capabilities of the
component. The ontology is designed in a way that can facilitate the production of components’

specifications in the repository.

To select a component, the user sends a natural language query to the system then the
system identifies the proper keywords and finally validates them using the ontology. Moreover,
This approach proposes an algorithm, which helps to calculate the relevance of a component
to the user query (keywords). The selected component is the one that gains the highest
percentage of the relevance [107]. The limitation of Li et al.’s approach is the proposed
ontology. The ontology is actually a non-functional requirements taxonomy but not an
ontology. It is only a hierarchical structure to classify the requirements while an ontology

Page |40

should be a hierarchical structure, which additionally defines properties (and their restrictions)
and relationships between concepts explicitly [108]. Their ontology only has an “is-a”
relationship, which is essential for classifying the requirements. They need to have their

concepts (class) expressions, which provide the necessary conditions for the reasoning about

functionality.

3.4 Summary

In the selection process, functional requirements are generally considered. However, users do
not typically have enough knowledge of the development processes to also describe the
necessary non-functional requirements. There are currently several approaches [33, 40, 43, 86],
which apply manual techniques such as questionnaire and group interview to gather non-
functional requirements knowledge. While these techniques can indeed elicit the necessary
requirements, they are time consuming and prone to human error, increasing the cost and time
of development. Automated approaches introduce the potential for considerable time and cost

improvements for the software development process.

Across all quality-based component selection methods is the common concern over the
required investment of time, and the commensurate cost to elicit the knowledge of domains,
components and requirements. In the context of component selection, automated approaches
to component selection can reduce cost and human effort, improving accuracy and enabling
the full potential of component-based development. However, automated support for
component selection is still in its infancy, due to the requirement for complex automated

decision support techniques [109].

This thesis presents the design and implementation of an approach to automated
component selection through an ontology-based non-functional requirements repository

Page |41

system. The next chapter describes the challenges that must be overcome to develop

component-based software.

Page |42

Page |43

4 Challenges in Developing Component-Based Software

A framework, forming an efficient mechanism for automating the process of component
selection based on non-functional requirements, is introduced in this study. Here, the key
challenges that are faced in component-based development is described. In later chapters,
possible solutions and design decisions to overcome the stated problems is introduced. This
chapter illustrates how developing component-based software is a complex task. Moreover,
existing solutions for the problem and their weaknesses are discussed. Prior to applying the

existing solutions the weaknesses need to be addressed and resolved.
Complexity of Requirements Description

To understand the stakeholders’ requirements, the requirement engineering team needs to
gather and document the required information about the desired system. Nowadays, software
systems are large and complex [110]. Therefore, requirements documentation is a significant
process, with requirements produced and frequently interpreted by people with different
experience levels and backgrounds [111]. Accordingly, in some instances, the process of
requirements description may result in misunderstanding of the overall system requirements,

as they may be incomplete or ambiguous [112, 113].
Incomplete Component Descriptions

There are two means for understanding the requirements of software components. The first is
by analysing the components design document; this method, however, this is not practical due
to the lack of availability of documents, and being time-consuming to analyse [114]. The
second method is by referring to and trusting the component descriptions, which are mostly in
natural language even though the natural language-based descriptions are not precise [115].

Clearly, the component descriptions are typically based on product documentation and the
Page |44

previous experience of developers [35], and there is no common language for characterizing

them.

Reuse of Definitions

Non-functional requirements can be defined in term of qualities, system properties, design
constraints, behavioural properties, system attributes or services, which depend on the type of
the project [116]. This thesis is based on the qualities’ definitions, which define the relationship
among non-functional requirements and their prerequisites. The current non-functional
requirements definitions are highly coupled with their project or domain context. Thus, they

might not be reusable for the projects with a different context.

Complexity

Generally, describing non-functional requirements is complex as they can be treated as
subjective i.e. they are influenced by personal feelings or interpretations. Moreover, they are
related to other non-functional requirements and these relations will not necessarily be
noticeable from a high-level view [32, 117]. A software engineer should develop a deep
understanding of non-functional requirements relations and definitions to use them correctly in

the project.

In this chapter, the major challenges facing component-based development occur when the
emphasis is on non-functional requirements have been addressed. This leads to the design of a
framework for automating the processes of component selection based on non-functional

requirements.

Page |45

Page |46

5 Methodology

This chapter describes how this study has been conducted. In this study, to improve
software reuse, an approach for component identification, starting with a search of potential
components that match user requirements is presented. The component search is based on the
component information available in an appropriate non-functional description format. A set of
non-functional characteristics associated with a component forms its description. Components
seach could be based on the functional characteristics of component. However, functional
requirement examination is out of scope of this study. Two types of selection, namely, query-
based retrieval and semantic-based retrieval are considered. Query-based retrieval techniques
facilitate the formulation of the user request in the form of a query, which is based on non-
functional characteristic of components. Semantic-based retrieval techniques facilitate the
query construction with more meaningful terms (characteristics) that are selected with the
knowledge provided by an ontology. Therefore, the ontology minimises complexity of
analysing (described in Chapter 4) Non-Functional Requirements (NFRs) and provides enough
information for matching the user query and a component description semantically [65]. An
algorithm operates with the ontology to facilitate the identification and selection of components
based on the non-functional knowledge described above. The Figure 5-1 shows the workflow

of activities used to investigate the research problem in this study:

Page |47

Refine Existing Quality Models

I

Refine Existing NFRs Definitions

.////

Y

18poj ABojojuQ suljeseg dojarsq

I8poj ABojojuq Aleyuatsiddng dojensg

/
\

Reasoning By Composed NModel

l

Algorithm Development

I

Retrieval Vliethods Combination

Figure 5-1 Thesis Workflow

5.1 Refine Existing Quality Models and Quality Definitions

In this study, non-functional requirements are selected based on an analysis of International
Standard Organization (1ISO) documents [46-51]. These documents contain sets of high-level
concepts designed to facilitate software development. Moreover, they provide the required non-
functional requirements definitions at a general level, which suits all type of project contexts.

Pursuing ISO further, the hierarchical ISO model is a quality model in which the quality
Page |48

attributes are organized into a tree-like structure. The structure allows representing information
using parent/child relationships: every non-functional requirement parent is connected with one
or more non-functional requirements child. All non-functional requirements are not applicable

for the use of CBSD.

5.2 Baseline Ontology Model

The baseline model is a conceptual model. The conceptual model is developed with the
knowledge gained in first two steps of the thesis workflow (Figure 5-1): refining existing
quality models, and refining existing definitions of non-functional requirements, providing the
ability to interpret the quality attributes based on their properties such as degrees and relations.
This knowledge builds based on non-functional requirements classes (concepts of ontology)
and relations, where naming, definition of types, properties and relationships of entities are
used to build knowledge. Based on the review and refinement of existing models, a set of

relationships is identified and explained further in Chapter 6.

5.3 Supplementary Ontology Model

The supplementary model contains a set of baseline instances, which are instantiated from the
non-functional requirement concepts defined in the baseline model. Each set forms the
component description, which is deposited in the repository. The baseline model and a Table
that defines the range of instances supply the necessary information, which is required for
generating these sets. The brief design description of this model is presented in Chapter 6. A

sample of the component description is also provided in Chapter 6.

Page |49

5.4 Automate the Reasoning Based on the Main NFRs Ontology Model

Our ontology represents the non-functional requirements knowledge as a hierarchy of concepts,
using a shared vocabulary, properties and interrelationships of those concepts in order to limit
complexity and organize non-functional requirements information for the user. One of the key
benefits of building an ontology-based approach is that the user can use a reasoner to derive
additional knowledge about the concepts that are modelled. The reasoner highlights various
relations among non-functional requirements. These relations, determine either the type of each

non-functional requirement (general and specific) or its prerequisites.

5.5 Algorithm Development

The core of the approach advocated in this thesis is the development of an algorithm that
operates with our ontology to extract non-functional requirements information. The input to
the algorithm is a non-functional requirement name-value pair, which is provided by the user.
The algorithm is designed so that it is able to search and elicit the non-functional requirement
prerequisites from the ontology and then search for them in each component ontological
description. The description format is Resource Description Framework (RDF) [118], which is
a foundation to standardise the definition and use of resource descriptions [119]. Each
description, with a complete list of prerequisites is validated and semantically matched to the
user request. SPARQL [120] is the semantic query language employed for search parts where
user inputs convert to SPARQL statements. The algorithm ranks the component descriptions
with a partial list of prerequisites by using the weight assignment strategy. This strategy assigns

a particular score to each relationship found in the NFR Component Description (CD). Each

Page |50

relationship score is based on a set of rules that precisely defines types of relationships. These

rules are explained in details in the next chapter.

The CD with the highest score is the most relevant product to the user query (the score
is used as the basic data to select a CD). Additionally, the algorithm is able to reduce the search
area by eliminating the CDs that do not contain the requested Non-Functional Requirement

(NFR).

C User request initialization)—C Start)

| Search area reduction HNFR Prerequisites elicitation |

v
Search CD repository |

| Search area reduction

Match = CD D)

NFR validation

| Search relations among NFRs |

y
| Weight setting |

y
| Score calculation |

y
@atch = CD with highest scoreH End)

Figure 5-2 Weight Calculation Algorithm

5.6 Combination of Query and Semantic Approaches

Search algorithms for query-based retrieval are traditionally based on literal matching of
keywords [121], such as, the non-functional requirement’s names, to retrieve components

descriptions. The performance is limited in this case since the conceptual non-functional

Page |51

requirement’s prerequisites are not applied. In order to select component with a semantic
query, this study combines two of the retrieval approaches described in Chapter 2, which are:
query-based retrieval and semantic-based retrieval. The retrieval approach is based on a
semantic knowledge base in place of a keyword based index. Query and semantic-based
approaches are based on an iterative retrieval process that is associated with an automatic query
reformulation [65]. In this study, reformulation is defined as searching the repository against

the requested quality attribute (non-functional requirement) and its prerequisites.

In this chapter, a high level overview of methods, used in the implementation and
design of this study is provided. Two retrieval approaches, query based and semantic are
combined, in order to map information found in component descriptions of a query into an
ontology and to obtain more knowledge about the information. Two approaches are used for
the validation porpuses. First, a qualitative end user evaluation with 30 participants. Last, a
performance analysis that uses synthetic data to explore time to process a query. The following

chapter discuss as the implementation process of this methodology.

Page |52

Page |53

6 Design and Implementation

This chapter discussion is divided into two main parts: design and implementation. A three-
tier architectural model, which is the fundamental framework for the logical design is adopted.
These tiers are the ontological model, query processing layer and data model. The design and
implementation of the ontology is presented, along with a new algorithm for component
identification and selection. Moreover, we have described the NFRs definitions for the purpose
of this study. The final sections of the chapter focus on the overall strategy for implementation

tasks and use cases (using UML).

6.1 Design
This Section describes the design structure of the prototype. The structure comprises layers,

the properties of these layers and the relationship between them. The architectural Section is

responsible for describing how these layers fit and work together.

6.1.1 Architecture

This study adopts a 3-tier software architecture consisting from an ontological model, a query
processing layer and a data model, as shown in the Figure 6-1. The ontological model facilitates
the ability to interpret NFRs and empower the user query. The middle layer (query processing)
is responsible for all the communications between other tiers and the data model provides the
necessary data for the required processes. This 3-tier software architecture supports

independent change and evaluation of each tier. These are discussed in detail below.

Page | 54

[Ontological Model]
—_—
[Input/Output /4—"{ Query Processing Layer]* Repository

[Data Model]

The ontological model is responsible for capturing and reusing the knowledge of NFRs. This
knowledge helps the application analyse the relationships among NFRs in the user query and
component descriptions. The result of the analysis determines which component is valid and
semantically matched to the user request. Each user request’s element is assessed by the
ontological model (as described in Chapter 5). The assessment mechanism checks for the
query’s element prerequisites in the query and, if a prerequisite is missing, then it will be added
to the query. Moreover, the ontological model is used when the weighting strategy of algorithm

needs the relationships among a description’s NFRs.

The query processing layer is responsible for all object interactions in the system based on its
workflow and rules/logic. Moreover, it merges the ontology model with the data model
(described in Section 6.1.1.3) to make a new model before processing of the ontological
reasoning in runtime. The new model consists of classes (ontological concepts) and their
ontological instances (data). The query processing layer manages the system rules to produce
an output based on user input. Generally, this layer helps to answer queries over instances and

ontology classes (OWL [91]).

Page |55

The data model is responsible for generating and storing data. It handles the transactions from
query processing layer. This communication is performed by a query language to provide
necessary data for other processes such as weighting calculation (explained in Section 5.5). In
the weighting process a particular score is assigned to each relationship type (will be explained
in Section 6.3.3) found in component descriptions. The component description with the highest
score is the most relevant product to the user query. The score is used as the basic data to select
a component description. Each description with a complete list of prerequisites will be valid

and semantically matched to the user request.

6.1.2 Algorithm
An algorithm is the backbone of query processing layer, which provides an list of processes

such as running queries, parsing descriptions and processing result sets. The algorithm is
designed in such a way that it is able to elicit the NFR prerequisites from the ontology and
search for them in each component description using the NFRs’ knowledge. The algorithm is
also able to rank the component descriptions with a partial list of prerequisites by using a weight
assigning strategy. Additionally, the algorithm is able to reduce the search area by eliminating

the component descriptions that do not contain the requested NFR.

6.1.3 Ontology
This study’s ontology represents the NFRs knowledge as a hierarchy of classes (concepts),

using a shared vocabulary, properties and interrelationships of these concepts. One of the key
benefits of building an ontology-based approach is that it is possible to then use a reasoner to
derive additional knowledge about the concepts that have been modelled. In this case, the

reasoner highlights various relations among NFRs. These relations determine either the type of

Page |56

each NFR (general and specific) or its prerequisites. The ontology allows the NFR’s
prerequisites to be queried. Therefore, it is possible to formulate a natural language user query
into a conceptual query. This change is to improve the quality of a query in term of the
elements’ (NFRs) relationships. The main purpose of introducing an ontology is to move from
a query evaluation, based on words, to a query evaluation, based on semantic relations, thus

moving from syntax to semantics interpretation.

6.1.4 Taxonomy

Taxonomy shows the NFRs’ classification as a conceptual hierarchy. Therefore, it represents
a variety of concepts and predicates. The taxonomy plays an important role in the conceptual
modelling by providing substantial structural information. The taxonomy reflects a basic

ontological structure with a clear semantics.

The Figure 6-2 is the taxonomy, which is the ontological model backbone. It is the
tailored version of the 1SO 25010 model explained in the previous chapter. This taxonomy
consists of two types of nodes: parent and child. The Figure illustrates the semantic relations,
i.e. “is a” relations between the parent and child node. A child node is a node extending the
previous node. For example, ‘reliability’ is a child of ‘product quality’. Association of each
child to its parent is with an is-a relation and is shown with an arrow from child to parent like
the arrow from ‘trust’ to ‘satisfaction’. Moreover, there are five levels of nodes in the hierarchy.
“Thing’ is the top most level of the hierarchy and the main parent that has ‘quality attributes’
as its only child. The second level of the hierarchy is ‘quality attributes’ which has two children:
‘quality in use’ and ‘product quality’. The latter mentioned children are at the third level of

hierarchy. The rest of NFRs can be considered the children of these two nodes and are in the

Page |57

fourth level of hierarchy. All the nodes groupings are based on the ISO/IEC 25010 standard’s

groupings.

Functional Appropriateness Modifiability,

A
Portability

Context Coverage Context @

4

@ Quality
A 4

@ Quality A@
; Reliability

Reusability
Maintainability Testability

@ Operability
% Appropriateness Recognizabilit

Interoperability
Compatibility

A

A

Memory Utilization

@ CPU Utilization
Y

Resource Utilization

Recoverability

Performance Efficiency
A
Adaptability @
Time Behaviour
Fault Tolerance

h

Context Completeness

Satisfaction

Figure 6-2 NFRs Taxonomy

An exception is ‘Performance efficiency’ which has two modified children ‘Time

behaviour’ and ‘resource utilization’. They are modified as compared with ISO/IEC 25010

standard’s groupings to cover more quality characteristics of a software componenet. The

modifications are as following:

e Resource utilization:

“Memory utilization”

Page |58

it has been modified by adding two children, which are

and “CPU utilization”.

e Time behaviour: it has been modified by adding three children, which are

“Response time”, “Processing time” and “Throughput”.

The added nodes are the only ones located at the fifth level of hierarchy. This level is also

associated with an “is_a” relation to the forth level, which is indicated by the following Figure:

Memory Utilization

Is_a

CPU Utilization

Processing Time

Figure 6-3 Performance Efficiency taxonomy

Resource Utilization
Is_a
Performance Efficiency

Moreover, there are more relations and information associated with nodes, which are captured
by the ontological model i.e. NFRs relations and ranges. There are three types of relations,

which support the algorithm query processing logic.

Let A and B represent NFR entities:

e AHas_a Prerequisite B: B is required as a prior condition for A to happen or exist
e Als_a Prerequisite B: A is required as a prior condition for B to happen or exist
e As_aB: There is a true parent/child relationship between A and B and the child

(or subclass) inherits directly from the parent (or superclass)

The following Figure indicates the relations associated with the NFR called Reliability,

selected from the list of NFRs.
Page | 59

Has_a prerequisite
Is_a prerequisite e
e S

12 =N =
Context Completeness | [Flexibility Effectiveness | | Fault Tolerance | | Testability | [Recoverability |
A = i ™ A“:;~A»-‘/‘ z7
7z S ! S s
w-anlll . s a"\ —Ad wabiity] /.
/ ! - aptabi =
'-I |' | Usability |; N . Ry l! ——Matunty
1 \ 3 ,,-""‘.__"-~7‘.\ a
- \ 5 e ~ e . =
— T X T =
[Quality in use | \, s P e S
- e 2 eliability
Functional suitability 4 ~

/
W\ /

s
’\\l Product quality | _ \

N_ ¥
I Performance Efficiency

Figure 6-4 Relationship example of Reliability

The aim of Figure 6-4 is to demonstrate the complexity of NFRs. Three types of lines that
indicate three types of relations among NFRs (mentioned above) are provided. The line that
labels the “is_a” relation is based on ISO/IEC 25010 standard parent/child relationship [49].
The other two lines “has-a-prerequisite” and “is-a-prerequisite” show the prerequisites each
NFR has. Prerequisites are elicited from the definition of NFRs. For example, the reliability
definition (described in implementation Section 6.1.5.17) is dependent upon the following

properties:

1. Functionality of component,
2. Condition of performance and

3. Time of performance.

According to the ISO/IEC 25010 standard, “Functional suitability” addresses the first
requirement i.e. functionality of component and “Performance efficiency” addresses both
condition and time of performance. As the Figure 6-4 is indicating, the NFRs’ prerequisites
have their own prerequisites and this is the main reason of complexity analysis (this has been

addressed Chapter 4 in more details).

Page |60

6.1.5 Non-Functional Requirements

The set of NFRs and their definitions are selected from the ISO/IEC 25010 standard’s quality
model [49]. This document includes quality characteristics related to software products. It helps
to specify, measure and evaluate software product quality in general, but not specific, to
software components. Thus, the general quality model is tailord to a component quality model.
The ISO/IEC 25051 [46] standard that focuses specifically on component’s quality
requirements, but it only addresses test documentation, test cases and test reporting. In other
words, the ISO/IEC 25051 standard aim, to certify that components perform as offered and

delivered [122] but it does not offer any quality model.

In the following Section (6.1.5), a formula has been provided for each NFR (subject of
the formula) to facilitates its range calculation. These formulas are proposed to calculate the
the NFRs’ range and they should not be used to measure NFRs. Morover, a formula has more
than one variable. These variables are measured by a testing system (Section 8.2). The NFR

measurement is out of scope of this study.

NFRs’ ranges are calculated based on the information from ISO/IEC 25022 and 25023
[49, 51]. These standards do not specify any range for the NFRs. However, they provide an
explanation of how to measure NFRs using provided measurement methods and formulas. The
calculation method for each NFR’s range is discussed below. Moreover, in order to improve

ease of understanding, the ranges are specified in percentages rather than fractions.

Effectiveness measures accuracy and completeness to which a goal can be achieved, when
using a specific component. A component is completely effective when all its tasks are

completed correctly. The effectiveness range is a closed interval of [0, 100]. The degree of
Page |61

effectiveness changes whenever some tasks are either partially complete or faile. To calculate
the proportion of the tasks that are completed correctly, the number of tasks completed (C) is
divided by the total number of tasks attempted (T). The calculation formula is indicated by the

following equation:

C
Task Completion = T

The solution is a closed interval [0, 1], a real number that is greater than or equal to 0 and less

than or equal to 1.

Efficiency’s concerns are how the resources are consumed in relation to the accuracy and
completeness to which a component can be used by users to achieve their intended outcomes.
The efficiency range is a closed interval of [0, 100]. Time is the most common resource to
complete a task. Component efficiency increases when the effectiveness increases and the task
time decreases. To measure the efficiency, the proportions of the tasks that are completed
correctly are divided by mean time spent. The calculation formula is indicated by the following

equation:

o Task Completion
Task Ef ficiency =

task time

The solution is a closed interval [0, 1], a real number that is greater than or equal to 0 and less

than or equal to 1.

Satisfaction describes the degree to which a users’ needs are fulfilled when a product is used

by them to achieve their intended outcomes. A component gains a high level of satisfaction
Page |62

when it is fully functional and useable. A psychometric questionnaire is used to assess user
satisfaction. The format of a typical five-level psychometric questionnaire is a 5 point Likert
scale: Strongly dissatisfied; dissatisfied; neither satisfied nor dissatisfied; satisfied; and

strongly satisfied. Thus, the satisfaction range is a closed interval of [20, 100].

Trust is one of the satisfaction sub-characteristics. It indicates the level of assurance to
a user that a component works as intended. The degree of trust depends on the result of provided
test documentation, test cases and test reporting. To investigate whether users trust a
component, a method similar to satisfaction (five-level psychometric questionnaire) is
suggested. Thus, the trust range is same as the satisfaction range, which is a closed interval of

[20, 100].

Usability is used to measure the degree to which a component is used by users to
achieve listed outcomes with effectiveness, efficiency and satisfaction in a specific context of
use. To investigate whether a component is usable, a method similar to satisfaction (five-level
psychometric questionnaire) is suggested. Thus, the usability range is same as the satisfaction

range, which is a closed interval of [20, 100].

Context coverage is the degree to which a component is used with effectiveness, efficiency,
freedom from risk, and satisfaction in both stated the context of use and in different contexts.
Context completeness definition (as a sub-characteristic of context coverage) is similar to
context coverage. However, its context is limited to specified context. Both context coverage
and context completeness ranges is a closed interval of [0, 100]. In order to calculate the

context of use proportion that a component is used, the number of contexts with unacceptable

Page |63

usability (N) is divided by a total number of contexts of use (T). The calculation formula is

indicated by the following equation:

N
Context Measure = T

The solution is a closed interval [0, 1], a real number that is greater than or equal to 0 and less

than or equal to 1.

Flexibility is the degree to which a component is used with effectiveness, efficiency, freedom
from risk, and satisfaction in contexts different to those initially specified in its requirements.
Different contexts have different set of tasks, users and environment. Thus, a flexible
component should be modifiable and adaptable to support different types of requests. The
flexibility range is a closed interval of [0, 100]. In order to calculate the extent to which the
component is used in the additional context of use, the number of additional contexts in which
the component is usable (U) is divided by total number of additional contexts in which the
component might be used (T). The calculation formula is indicated by the following equation:

- Y
Flexibility = T

The solution is a closed interval [0, 1], a real number that is greater than or equal to 0 and less

than or equal to 1.

Functional suitability focuses on the ability of a component to meet stated and implied

functionality when used under specified condition. The functional suitability range is a closed

Page | 64

interval of [0, 100]. In order to calculate the proportion of the function that meets stated and
implied needs, a formula based on similar quality attributes is designed. The calculation
formula is indicated by the following equation, which presents SF as number of functions that

meet stated and implied needs and T total number of functions:

. S SF
Functional Suitability = ra

The solution is a closed interval [0, 1], a real number that is greater than or equal to 0 and less

than or equal to 1.

Functional appropriateness focuses on the functionality of a component to facilitate the
achievement of specified tasks and objectives. A component is functionally appropriate when
a task completes only with the necessary steps, excluding any extra and unnecessary steps. The
functional appropriateness range is a closed interval of [0, 100]. In order to calculate the
number of implemented functions without any problem, the number of functions for pursuing
specific tasks (NF) is divided by the number of functions from which a problem is detected

(FP). The calculation formula is the following equation:

NF

Functional Appropriateness = P

The solution is a closed interval [0, 1], a real number that is greater than or equal to 0 and less

than or equal to 1.

Page |65

Performance efficiency is used to measure the performance relative to the amount of resources
used under specified conditions. The performance efficiency range is a closed interval of [0,
100]. In order to calculate the performance efficiency of a component, a formula similar to the
effectivness of ISO/IEC 25022 standard is designed (Section 6.1.5.1). The calculation includes
two steps i.e. functional completeness calculation and mean time calculation. The number of
functions completed (TF) is divided by the total number of functions attempted (MF). The

calculation formula is indicated by the following equation:

TF

Functional C let = —
unctional Completeness = -

The final calculation formula is indicated by the following equation:

Functional Completeness

Performance Ef ficiency = time
im

The solution is a closed interval [0, 1], a real number that is greater than or equal to 0 and less

than or equal to 1.

Time behaviour facilitates measure the degree to which a component’s set of response time,
processing time and throughput of task performance meets the requirements. These three sub-
characteristics are added to time behaviour in this study, which is not the case for the standard

ISO model (Section 6.1.4). Thus, there is no equation to calculate their ranges.

e Processing time: the elapsed time in a system between receiving a request and sending

the result.

Page |66

e Response time: the time taken by the system to display results after a command entered.

It includes processing time and transmission time.

The response and processing times are denoted as t € R* such that t,,, < t < t,, where t,,,
t, € Rt and t,, < t, represents maximum and minimum response and processing times.
Respectively, it is assumed that each process does not take more than 300000 milliseconds.
Thus, these NFRs’ range is a closed interval [1, 300000]. This range is only an assumption and
does not indicate any fact. One millisecond was assumed to be the minimum of any time
behaviour and 5 minutes (300000 millisecond) is a maximum for the time behaviour of a

component.

e Throughput measures the number of activities a system can process in the specified

time to achieve specific goals.

It is assumed that the range for throughput is a positive value for a signed binary integer, which
is 231 — 1. Thus, the throughput range is a closed interval [0, 2147483647]. This range is
defining a valid range for the throughput and it is only an assumption. The maximum range is
selected as the max throughput being an int32. As a result the maximum valid range is

2147483647.

Resource utilization facilitates measure the degree to which the amount of CPU and memory
is used by a component when performing its tasks, or meets their requirements. In this study,
two sub-characteristics, CPU utilization and memory utilization are added to resource
utilization attribute of standard product model and they are not part of the standard model.

Their range is indicated by a closed interval of [0, 100].

Page |67

To calculate the CPU time used to perform a given task, ISO/IEC 25023 suggests
dividing the operation time (OP) by the amount of CPU time actually used to perform a task

(CPU). The calculation formula is indicated by the following equation:

CPU utilization = oF
utilization =~

In order to calculate the memory space used to perform a given task, the total amount of
memory spaces (TM) is divided by the amount of memory spaces actually used to perform a

task (SM). The calculation formula is indicated by the following equation:

M tilizati —TM
emory utilization = =

The evaluation of resource utilization attributes is a closed interval [0, 1], a real number that is

greater than or equal to 0 and less than or equal to 1.

Capacity facilitates measure the degree to which the maximum limits of a component meets
their requirements. It might be the capacity of item stored, the bandwidth, number of users and
the size of database. The capacity range and its calculation method are same as the throughput
(Section 6.1.5.9). It is assumed that the range for capacity is the positive value for a signed
binary integer, which is 23! — 1. Thus, the capacity range is a closed interval of [0,
2147483647]. As described above, the range selected is an assumption. The maximum value

of capacity is an int32, therefore, its valid maximum range is 2147483647

Compatibility is used to measure the degree to which a component can perform its duties while

sharing the same environment. The compatibility range is a closed interval of [0, 100]. In order

Page |68

to check how compatible a component is in sharing its environment with others, the number of
entities with which a component is compatible is divided by the number of entities that require

compatibility. The compatibility is defined by the following equation:

of entities component is compatible with

C tibility =
ompatibtity # of entities require compatability

The solution is a closed interval [0, 1], a real number that is greater than or equal to 0 and less

than or equal to 1.

Co-existence is used to measure the degree to which a component performs its required
functions efficiently, without negative impact on any other component while sharing a common
environment and resources with other components. The Co-existence range is a closed interval
of [0, 100]. To check how flexible a component is in sharing its environment with others, the
number of entities with which component can co-exist as specified (CcoE) is divided by the
number of entities that require co-existence (T). The definition of co-existance is provided by

the following equation:

CcoE
T

Co — existence =

The solution is a closed interval [0, 1], a real number that is greater than or equal to 0 and less

than or equal to 1.

Page |69

Interoperability is used to measure the degree to which two or more components can exchange
and use the information that has been exchanged. The interoperability range is a closed interval

of [0, 100]. To calculate the interoperability of a component the following formula is provided:

of component with capability of having interaction

Int bility =
nteroperabtiity # of total components

The solution is a closed interval [0, 1], a real number that is greater than or equal to 0 and less

than or equal to 1.

Appropriateness recognisability helps users to select a component that is fit for their intended
use. In other words, appropriateness recognisability is a measure of a user comprehension of
the capabilities of a component. The appropriateness recognisability range is a closed interval
of [0, 100]. In order to calculate the proportion of functions that are described as understandable
in the component description, the number of functions described as understandable in the
component description (FD) is divided by a total number of functions (T). The appropriateness

recognisability range is defined by the following equation:
. o FD
Appropriateness recognisability = T

The solution is a closed interval [0, 1], a real number that is greater than or equal to 0 and less

than or equal to 1.

Operability provides the ability to measure the degree to which a component has features that
make it easy to function and control (properties of a component that make it work well in

production). In order to calculate the degree of operability, the number of implemented

Page |70

functions which is customized during operation (CF) is divided by the number of functions
requiring the customization capability (T). The calculation formula is indicated by the

following equation:

CF
Operability = T

Reliability focuses on the degree to which a component performs specified functions under
stated conditions for a stated period of time. The reliability range is a closed interval of [0,

100]. The following formula defines the reliability of a component:

of total defects

Reliability =
eHabtiity = of total functions

The solution is a closed interval [0, 1], a real number that is greater than or equal to 0

and less than or equal to 1.

Maturity is the capability of a component to meet its reliability needs under normal operation.
In order to calculate the proportion of the number of corrected faults that have been detected,
the number of corrected faults in design/coding/testing phase (NCF) is divided by the number
of faults detected in a review or during testing (T). The maturity range is a closed interval of

[0, 100]. Maturity is defined by the following equation:

) NCF
Maturity = —

The solution is a closed interval [0, 1], a real number that is greater than or equal to 0 and less

than or equal to 1.

Page |71

Fault tolerance indicates the capability of a component to maintain a specified performance
level in cases of operation faults. The fault tolerance range is a closed interval of [0, 100]. In
order to avoid critical and serious failures, the number of controlled fault patterns is calculated
using the number of ‘avoided critical and serious failure occurrence’ against test cases of ‘fault
pattern (F)’ divided by the number of executed test cases of fault pattern during testing (E).

Fault tolerance is defined by the following equation:

Fault tolerance = A

The solution is a closed interval [0, 1], a real number that is greater than or equal to 0 and less

than or equal to 1.

Recoverability measures the ability of a component to re-establish an acceptable level of
performance and recover any or all affected data in the case of failure or interruption. The
degree of effectiveness will change whenever some tasks are either partially completed or

failed. The recoverability range is a closed interval of [0, 100]. The recoverability is defined
by:

of recovered cases

Recoverability = # of total cases

The solution is a closed interval [0, 1], a real number that is greater than or equal to 0 and less

than or equal to 1.

Integrity measures the level of protection from unauthorized access to data or modification of
the program. The integrity range is a closed interval of [0, 100]. In order to calculate the level

of protection against data corruption within a component, the number of data corruption

Page |72

instances that actually occurred (DC) is divided by the number of accesses where data

corruption or data loss is expected to occur (X). Integrity is defined as:

Integrity = be
ntegrity = —
The solution is a closed interval [0, 1], a real number that is greater than or equal to 0 and less

than or equal to 1.

Reusability measures the degree to which a component (asset) is used in more than one
software/system. The reusability range is a closed interval of [0, 100]. The proportion of
reusable assets is calculated by dividing the number of assets reused (RE) by the total number

of assets in the reusable library (T) as defined by the following equation:
RE
Reusability = T

The reusability value is a closed interval [0, 1], a real number that is greater than or equal to O

and less than or equal to 1.

Modifiability focuses on the degree to which a component is effectively and efficiently
modified without quality degradation or the introduction of faults. The modifiability range is a
closed interval of [0, 100]. The modification success rate is calculated by dividing the number
of problem within a certain period of time before maintenance (PB) by the number of problems
in the same period after maintenance (PA). Modifiability is defined as:

e PB
Modifiability = A

The solution is a closed interval [0, 1], a real number that is greater than or equal to 0 and less

than or equal to 1.
Page |73

Testability measures the effectiveness and efficiency with which test criteria can be created for
a component and tests is executed to test the achievability of those criteria. The testability range
is a closed interval of [0, 100]. In order to investigate the testability of a component, the number
of test functions implemented as a specification (C) is divided by number of required test

F

The solution is a closed interval [0, 1], a real number that is greater than or equal to 0 and less

than or equal to 1.

Maintainability measures the degree of effectiveness and efficiency with which a component
is modified. It defines the level of effort required to modify a component. The maintainability

range is a closed interval of [0, 100]. Maintainability is defined as:

of fuctions af fected by a change
of total functions

Maintainability =

Portability measures the degree of effectiveness and efficiency with which a component is
relocated from one software system, hardware assembly, or environment to another. The

portability range is a closed interval of [0, 100]. Portability is defined by the following formula:

of working relocated functions

Portability =
ortabiiity # of total relocated fucntions

The solution is a closed interval [0, 1], a real number that is greater than or equal to 0 and less

than or equal to 1.

Page |74

Adaptability measures the degree of effectiveness and efficiency with which a component is
adapted from one software, hardware or another environment to another. The adaptability range
is a closed interval of [0, 100]. In order to investigate the adaptability of a component during
combined operating testing, the number of operational functions when tasks are not completed
or are not enough resulted to meet the adequate level (F) is divided by total number of functions

which were tested (T). Adaptability is defined by the following equation:

~|

Adaptability =

The solution is a closed interval [0, 1], a real number that is greater than or equal to 0 and less

than or equal to 1.

The non-functional requirement concepts predicted in the ontology and their ranges is listed in

the Table 6-1:

Effectiveness [0, 100]
Efficiency [0, 100]
Satisfaction or Trust [20, 100]
Context Coverage or Context completeness [0, 100]
Flexibility [0, 100]
Functional suitability [0, 100]
Functional appropriateness [0, 100]
Performance Efficiency [0,100]
Response time [1 mls, 300000]
Processing time [1 mls, 300000]

Page |75

Throughput [0,2147483647]
CPU utilization [0, 100]
Memory utilization [0,100]
Capacity [0, 2147483647]
Compatibility or Co-existence [0,100]
Interoperability [0,100]
Usability [20, 100]
Appropriateness recognisability [0, 100]
Operability [0, 100]
Reliability [0, 100]
Maturity [0, 100]
Fault tolerance [0, 100]
Recoverability [0, 100]
Integrity in [0, 100]
Reusability [0, 100]
Modifiability [0, 100]
Maintainability or testability [0, 100]
Portability [0, 100]
Adaptability [0, 100]

6.2 Implementation

6.2.1 Tools and Techniques
The main programming language for implementing this study’s prototype is Java. This study

employs different tool and techniques for automated identification and selection of

components.

Page |76

Algorithm: It is designed to calculate the score of each component description as a comparison
factor and then select the component with the higher score. The calculation rules (logic) of

algorithm explained in “Calculate Score” use case (Section 6.3.3).

Jena: it is a Java framework [123] for building Semantic Web applications. It provides a
programmatic environment for RDF [118], OWL [91], SPARQL [120] and includes reasoner
and inference engine. The Jena Framework includes: an RDF API, in-memory and persistent

storage and a SPARQL query engine

The RDF API provides the required interface for reading a RDF file. This AP1 is used as RDF
parser and serializer. The following is a sample SPARQL query that finds the parent node of

the “operability” node (a non-functional requirement) in an RDF graph.

"SELECT ?super WHERE { "
"BIND(ont:"Operability" as concept)"

"?concept rdfs:subClassOf ?super ."
"OPTIONAL{"

"?concept rdfs:subClassOf ?inbetweener ."
"?inbetweener rdfs:subClassOf ?super . "

"FILTER(?inbetweener I=?concept
&&?inbetweener I= ?super &&
lisBlank(?super))"}"
"FILTER(!BOUND(?inbetweener) && ?super I=
?concept && !isBlank(?super))"}"

Figure 6-5 Find Parent Node Query

The RDF API also provides the required interface for writing a RDF file. A component
description specifies the non-functional capabilities of a component. It contains a set of non-
functional names paired with values. Each name represents the actual quality of the component

and the value indicates the degree desired for that component quality that has defined range as

Page |77

described in the Section 6.5.1. The degree is specified in percentage format. The following is

a sample RDF file (Component Description):

<?xml version="1.0" encoding="windows-1252"7>

<rdf:RDF
xmlns:rdf="http://www.w3.0rq/1999/02/22-rdf-syntax—ns#"
xmlns:ace_lexicon="http://attempto.ifi.uzh.ch/ace lexicon#"
xmlns:owl="http://www.w3.0rq/2002/07/owl#"
xmlns:untitled-ontology-13="http://www.semanticweb.ora/digl/ontologies/2013/4/7/ontology-13#"
xmlns:ont="http://www.co-ode.org/ontologies/ont.owl#">

<ont:Functional_Appropriateness

rdf:about="http://www.semanticweb.org/digl/ontologies/2013/4/7/untitled-ontology-

13#Functional Appropriateness">
<ace_lexicon:PN_sg>Functional_Appropriateness</ace_lexicon:PN_sg>

<untitled-ontology-13:has_a_degree>"47"~"http://www.w3.0rg/2001/XMLSchema#double</untitled-ontology-

13:has_a_degree>
<rdf:type rdf:resource="http://www.w3.0rq/2002/07/owl#NamedIndividual"/>
</ont:Functional_Appropriateness>

<ont:Satisfaction rdf:about="http://www.semanticweb.orq/digl/ontologies/2013/4/7/untitled-ontology—

13#Satisfaction">
<ace_lexicon:PN_sg>Satisfaction</ace_lexicon:PN_sg>

<untitled-ontology-13:has_a_degree>"2"~"http://www.w3.0rg/2001/XMLSchema#double</untitled-ontology-

13:has_a_degree>
<rdf:type rdf:resource="http://www.w3.0rq/2002/07/owl#NamedIndividual"/>
</ont:Satisfaction>

<ont:Effectiveness rdf:about="http://www.semanticweb.orqg/digl/ontologies/2013/4/7/untitled-ontology—

13#Effectiveness">
<ace_lexicon:PN_sg>Effectiveness</ace_lexicon:PN_sg>

<untitled-ontology-13:has_a_degree>"52"~"http://www.w3.0rg/2001/XMLSchema#double</untitled-ontology-

13:has_a_degree>
<rdf:type rdf:resource="http://www.w3.0rgq/2002/07/owl#NamedIndividual"/>
</ont:Effectiveness>
</rdf:RDF>

Figure 6-6 Sample RDF File

Conceptual model (composed of ontological and data models): the Web Ontology Language
(OWL) Full [91] is used for authoring the NFRs knowledge base, it is compatible with RDF
schema. Apache Jena is used to extract data from, or write to, the model. The RDF files
represent the data (instances), which are in the form of RDF statements (subject-predicate-
object). Subject is what the statement is about (in our case NFR name), predicate is the

property, and object is the value of the statement.

Page |78

Automated reasoning: The internal reasoner of the Jena framework supports the process of
deriving additional information through term inference [123]. It represents relationships that
are implicit in the ontology based on explicitly stated relationships and implement semantics
internally. Reasoners provide a means of making inferences based on facts depicted as RDF

statements. This allows the algorithm (query processing logic) to infer new facts.

Semantic query language: The language that facilitates query functionality over the RDF and
OWL models is SPARQL [120]. It employs ARQ [124] which is a Java-based framework for
executing queries against other two tiers (ontology and data models). SPARQL query makes
use of variables and conditions. In the following simple query example the variables are

associated with RDF terms (NFR names)

SELECT ?predicate
WHERE{

performance_efficiency ?predicate
reliability

}

This query on our data has the following result: is_a_prerequisite, which is a relationship
between two NFRs (efficiency and reliability).

6.2.2 Object-Oriented Analysis

In this Section, a different level of abstraction is illustrated by the UML [125] class diagram to
document the implementation of the prototype. The highest level is the context level of
application which it models the high-level functionality of the system and also its interaction
with the outside world. Moreover, the interactions within a class and or its associated objects

are modeled.

To implement the system, Unified Modelling Language (UML) and SDLC [126] are

used. Furthermore, the abstractive definitions of the most important objects are used for the

Page |79

object-oriented modelling of the system. The building blocks of the object-orientated system

are.

Page |80

Component description class: responsible for keeping and managing each
component’s properties such as weight, name and semantic status. Moreover, it
generates the methods such as score calculation and weight calculation.
Non-functional requirement class: responsible for keeping and managing each
NFR properties and find the NFRs dependencies such as: finding the parent or
child of NFRs selected by the user.

Prerequisites class: responsible for finding each NFR prerequisites. In order to
do this, it needs to have full access to the non-functional requirement class as
its subclass.

Query class: performs query reformulation on user query. Moreover, it
communicates with all parts of the component selection system to assist
selection of the best result for the user.

Euclidean distance class: responsible for calculating the distance between
system results to the user requested NFRs. In order to perform mathematical
operations such as the Euclidean distance calculation in multidimensional
space, the Apache Commons mathematics library [127] is used. It is an open
source optimized library.

Data transfer object (DTO) classes: There are two DTO classes, which are
responsible for transferring data between different processes. These classes are
called a) Sort Function Class, which helps sort the components based on their
score, and b) Two Return Value Class, which helps the time needed to return
more than one item with the method call. Figure 6-8 shows all objects of the

designed system:

18| @29¢ed

Figure 6-8 Components Selection System Class Diagram

6.3 Use-Cases

The core requirements for this study’s prototype, actors and system components, are modelled

using the use-case diagrams. Next, the primary functionality of the system is described in the

sequence diagrams. A use-case diagram provides a high-level idea of what functionality the

system provides. Figure 6-9 shows the component selection system’s use case diagram.

Semantic Selection System

£ _Reasoning

App
Al ® Generate Descriptions
X Select Best Match

Figure 6-9 Semantic Selection System Use Case Diagram

6.3.1 Reasoning Use Case

User

In order to automate the analysis of non-functional requirements, the reasoning use case

captures and provides the required knowledge. It’s methods implement the reasoning

functionality. This method employs the Apache Jena framework for model management tasks

(read, write and integration) and reasoning purposes. It creates in-memory models (graphs) for

ontology (OWL), data (RDF component descriptions) and the inferred model. The Jena

Page |82

reasoner requires the data (RDF models) and user’s query to generate the inferred model and
derive knowledge. Therefore, this method also converts the user’s query to an executable query

format (SPARQL). The Table 6-2 and Figure 6-10 illustrate information about and execution

of this use case:

Use Case Deatails

Fulfilling the decision support technique for component selection
Generate relations from available knowledge

Relations are ready to use

Scores cannot be calculated

Application

Pre-condition The user should design query

The user clicks submit button

Table 6-2 Reasoning Use Case

Page |83

m || 7 S
H
i
R
e |
M || A

“““““““““““““““““““““““““““ =
4
- —————— e e H e e
.,ml
m |||||||||||||||||||||||||||||||||| 7~ s I
£ |
W
M ||||||||||||||||||||||||||||| mm_|||||||||||||||||||||.||JNai |||||||||||||||| e
$ i
£ | L
m\\\\\\\\\\\\\\\\\\\\\\\\UWT \\\\\\\\\\\\\\\ m\ \\
[1
5 | £
{ :
S y i . = |||m |||
| I
i g |
B i
i sl
5 i S 1 I I A I
] 1
= 2
- — -, e H I

- TE
£] .

.
(YR

Pace | 84

Figure 6-10 Sequence Diagram of Reasoning

6.3.2 Reformulate Query Use Case

In order to select the best component, the system needs to check the quality of user’s query and
improve it semantically. This use case finds and adds the missing prerequisites of NFRs to the
user’s query. Firstly; it distinguishes the type of NFR (as discussed in 6.1.4, there are two types
of NFRs: parent and child). Secondly, if the NFR is a parent class then its prerequisites are
direct prerequisites of both parent class and its children. However, if the NFR is a child class
then its prerequisites are just direct prerequisites of the child class. The Table 6-3 and Figure

6-11 illustrate information about and execution of this use case:

Use Case Deatails

Requirement Query improvement

Goal in context Add prerequisites of query

Successful end condition Query is ready to send to application

Fail end condition Prerequisite inspection fail and finally the logic fail
Actor Application

Pre-condition Relations should be analyzed

Trigger It triggers when there is an element (NFR) with
some prerequisites

Table 6-3 Reformulate Query Use Case

Page |85

98| =23¢ed

1 recursivePrel)

- L2a |

Figure 6-11 Sequence Diagram of Reformulate Query

|
|
]
|
|
I
loop, :
[l = pre. size()] !
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
I
|
|
|
i
1.2: preFinder(y |
alt 1.2
[NfrObj s uperCias sident fie rattribu teMame) == tree]
Check far being child or parent I_\1
[eise)
________________________________ ___ |needthe MFR name and FIND the super class PREREQUISITES
12,2 suprer Logi o e ()
H 1.2.3: chidDirectandlogicPrel)
1
E Find direct prerequisite ar:hllcll‘_*.‘
e
1.2.4
= ||
opt]

6.3.3 Calculate Score Use Case
In order to retrieve a semantically valid component, there is a mechanism to validate them

against the rules and score them accordingly. This use case describe the components indexing.
The following examples explain different situations in which the calculation rules assist

ranking the component descriptions.

Rule 1: The component description that contains the highest number of prerequisites
will earn a higher score. This score is then added to other scores (at the end of the process the

component description with highest score is selected).

There is an “is_a” relationship among the classes, which makes all child instances equal to their
parent instance. If Class and Classl are classes, then Class is_a Classl means that every
instance of Class, at any time, is an instance of Classl at the same time. Therefore, the
Appropriateness Recognizably and Operability attributes both have an “is-a” relationship with
the Usability attribute then Appropriateness Recognizably individual (instance) and
Operability individuals are treated exactly as a usability individual. In this case, the system
takes care of the prerequisites of the child classes as well, if the requested NFR is a super class

(Usability).

Rule 2: If the requested NFR is a super class then the component description that

contains all of its child prerequisites will earn a greater score.

In some cases, for NFRs such as Reliability, the component description must contain chains of
related NFR s (toward their prerequisites). This situation occurs when the requested NFR has
a series of relations. First NFR has a prerequisite and it is a super class. Second NFR is itself a
super class with some prerequisites as well, therefore, it is circular. Circular referencing
includes a series of references where the last object references the first, resulting in a closed
loop.

Page |87

Reliability

Context Coverage Satisfaction

Has_a_prerequisite Has_a_prerequisite

Figure 6-12 Circular Referencing

Rule 3: A component description is considered “matched semantically”: if a complete

chain of elements exists in the component description (the ideal case).

Rule 4: The component description with more statements (Subject, Predicate and

Object) will earn a greater score.

There are two types of prerequisites: direct, which is the prerequisite of the class itself and

indirect, which is a prerequisite of its subclass.

Rule 5: A direct prerequisite has a better weight in comparison with an indirect one.
The sum of these weights will determine the acceptable component description. The Table 6-4

and Figure 6-13 illustrate information about, and execution of, this use case:

Use Case Deatails

Goal in context Component indexing
Successful end condition Component indexing will be finished

Fail end condition The query for the best match rejected

Pre-condition Prerequisites should get found and semantic statements
should get counted. In order to have this condition,
relationship should discover

Table 6-4 Calculate Score Use Case

Page |88

I Query ComponentDescription

1: semantichatch()

[
® ..

1.1: SemanticCalculator()
T

1.2 Send ii';-r: mantics()

.:-:_: __________________

ldentifyr Chain of Semantic Paths

N VA

Count number of Statements I}]

-

1.3 Statemant Calculator()
i .,
1.4: Staterment Re sult
e ———————————————————
1.5 nfrTypeldentifier-Calculator()
T
i
1.6 TypeResul
€ ———————]
|
i
]

L]
:‘ 1.7: semantichiatchi) I
|
|
|
|
|
|
|
|
|
|
|

L
|
|
|
I

Diffrentiate between type of MIFR instances Iﬁu1

6.3.4 Generate Description Use Case

A component repository is built to test the approach advocated. The repository is populated
with RDF files. The Generate Description use case creates RDF files that act as the component

descriptions. The component descriptions provide the conceptual instance of the ontological
Page |89

model. An RDF document can contain more than one statement (subject, predicate and object).
Every component description contains a set of NFRs, which are instantiated from the NFRs
concepts predicted in the ontology and their ranges. Ranges are listed in the Table 6-1, which
acts as an important collection of data for developing the rest of the system. The Table 6-5 and

Figure 6-14 illustrate information about and execution of this use case:

Use Case Deatails

Requirement Data collection

Goal in context Provide the conceptual instance of ontological model
Successful end condition We can have a repository full of data

Fail end condition No data

Actor Application

Pre-condition Define NFRs rages

Trigger Run as Java application

Table 6-5 Generate Description Use Case

Page |90

T6| @23¢ed

ModelFactory : Model Factory

1.1: createDefaultModel{]

gt

I
1.2: createProperty(namedindividualURI)

>

|
1.3: createProperty(typeU r|1|]

>

|
1.4 createProperty (dataPropertyURI)

1.5: createProperty [‘-,'erbal*zi ngURI)

.

|
2 add Property(type, namedindividual)
|

Mode |Property :
com.hp. hpl jena.rdf model. Property

ol

1.6: CreatSpecification()

out : java.io. FileWriter

:owl
1 maing) T
® >
@<
-

Figure 6-14 Sequence diagram of Generate Description

6.3.5 Select Best Match Use Case
The aim of the Select Best Match use case is to match a component with user query. There are

some cases wWhere the system may return multiple matches (components with the same highest
score). The algorithm chooses the closest one (among the components with highest score) to
the user query. The closest component is the one whose NFRs have the minimum Euclidean
distance to the user values in comparison to other matches. In mathematics, the Euclidean
distance is a straight-line distance between two points in Euclidean space. Using the Euclidean
distance method, this use case calculates the distance between user point (vector) and the
second point in Euclidean space (NFR point). User point or vector is a value that is extracted
from the user query for the selected NFR (by user) and NFR point is the defined value of each
NFR in the designed program. The distance between these two points is the length of the path
connecting them. The Table 6-6 and Figure 5-15 illustrate information about and execution of

this use case.

Use Case Deatails

Requirement If there were more than a result, the system should be able to
choose the most qualified one
Goal in context To choose from components with the same score
Slleees it e keae e | Show the best match

Fail end condition Show group of components with same highest score

Pre-condition Component’s result should be sorted

If result list has more than one member

Table 6-6 Select best match Use Case

Page |92

1! closast]() | I I
. | |
| |
| |
= : :
for each in] } }
1.1: getvaluea() I I
|
| |
1.2: Compute(UkerVector , SystemVec }
I
|
| |
| |
| |
=S ——— | |
| |
| |

Figure 6-15 Sequence Diagram of Select Best Match

6.3.6 Search Use Case

The functionality implemented for the search use case is used as the core infrastructure for
information access and reporting in the prototype. This use case is responsible for collecting
user inputs and sending them to the use cases described above (sections 6.3.1-6.3.5). The Table

6-7 and Figure 6-16 illustrate information about and execution of this use case.

Requirement Finding the proper software component

Goal in context See the system output

Successful end condition System will be able to produce some result

Fail end condition No result

Actor User

Pre-condition User should provide pair of NFR’s name
and value

Trigger No trigger

Table 6-7 Search Use Case

Page |93

v6| 25¢ed

<cuser>
Actor

1: sendinfol)

1.13: sendinfo

: Query ' NonFunctionalReq

: Prerequisites

: ComponentDeseription

 org.apache.commens. math3.ml distance. Euclidean Distance

E 1.1: parser()

1.2 setNFRinstances()

1.3: setCompMamef)

z 14 parser()

1.5 CheckParent{)
1.8 checkType()

1.6 parser()
1.7: checkChild

3 |

1.9: parser()
E 1.10: chec|<PmrequisiIes[]

1.11: Calculator()

.

112

[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lompute(uservector, App\.fectorvﬁ]
|
|
|
i

Figure 6-16 Sequence Diagram of Search

Page |95
This chapter summarized the implementation and design of our prototype components. UML

was used to model the important objects. In addition, different parts of the architecture are

described. In the next chapter, an experimental case study is presented to validate the approach.

Page |95

Page |96

Page |96

Page |97

7 Discussion

As discussed in previous chapters, CBSD is attractive as a software development approach
because it reduces the cost and time of development and increase the quality of the produced
software system [21-24]. However, some issues still remain, in particular when focusing on
component retrieval, where there is a need for a component retrieval process based on both

functional and non-functional requirements.

Requirement satisfaction is difficult due to component selection being an iterative
process. The result of component selection depends on the success of its classification and
retrieval mechanism, where a wide variety of component repositories are considered for
performing component search. The component either might not be found or, when found, might

not perform the specific function, or fail to interoperate with other components [21].

In this thesis, a framework to address these issues is presented. The framework helps to
select and identify components semantically. A non-functional requirement ontology has been
employed as a conceptual model for reasoning about component descriptions, and a search
algorithm that matches the best component according to the reasoning process outputs has been
implemented. A research question in this thesis was whether the use of a non-functional
requirement ontology can support accurate component identification. Pursuing this further,
repositories in different sizes are created. They are populated by designing a program that
generates these component descriptions in quantities of 50, 100, 200, 400, 600, 800 and 1000
components. The component descriptions are generated in the form of RDF files due to its
machine readability. A mix of qualitative and quantitative analysis has been selected for the
data. Qualitative analysis helps to explore new knowledge and theories, while quantitative

analysis helps to test the method’s performance.

Page |97

Page |98

A prototype tool for searching and retrieving from an example component repository is
built to verify the approach. In this tool, a non-functional requirement ontology is provided and
translated into OWL. The tool is implemented in Java and the experiments are run on Windows
7 (system specification is discussed in Section 7.2). The tool has a simple interface (Figures
7.1-7.3), where the user could choose the query element from the non-functional requirements
list, and fill in the non-functional requirements’ values into the text fieclds based on the defined
ranges in the Section 6.1.5. In the back-end, the algorithm is responsible for performing the

following tasks whenever required:

e Searching the OWL document for the user’s query relationship analysis, and

e Connecting to the repository for the component descriptions inspection

The user query is classified using different ontology properties. The relationship among
ontology concepts is added semantic information to the query. The algorithm analyses each
non-functional requirement in terms of its relations (e.g. prerequisites) and types (e.g. general
or specific) during the initial step. Then, according to the analysis result, it adds the required
prerequisites to the query in order to perform a semantic search. Component descriptions are
inspected in terms of non-functional requirements and their prerequisites. Each component
description may have 1 to 32 prerequisites (non-functional requirements). Consequently, a

component not matching any of the user’s query elements and their prerequisites is eliminated.

Finally, the result is presented to the user in the form of non-functional requirement
name-value pairs. The name of each non-functional requirement consists of the user’s
requested non-functional requirement and their available prerequisites. Each non-functional
requirement value indicates the degree of non-functional requirements. Sometimes more than
one result is possible but the algorithm selects the one closest to the user request by the help of

Euclidean Distance formula (Section 6.3.5).

Page |98

I 66| @25¢ed
4

Scenaros: [Scenario2 [v]

INFRs List:

’Customets ry to search for books on the website, either
by author name, or by words in the fitle. A list of all
ching books is returned to the customer. A customer
does not need to be logged-in m order to search. The
Website is designed to provide the accuracy and
completeness for the searching component. Once the user|
receives a satisfied result the search function is
icompleted. The search function wil be stopped by user
whenever it returns the correct result. Search component

s been optimized to reduce the amount of time that it
Ekes to perform a search. However, it could consume
0re memory.
Operability Processing_Time ||
Performance_Efficiency Throughput
Interoperability cpu_utilization
Testability memory_utilization
(Context_Coverage Capacity
Effectiveness Compatibility
Functional_Suitability Co_Existence !
Reliability Usabiity P
Fault_Tolerance Maturity
Appropriateness_Recognizability Integrity
Efficiency Reusability
Satisfaction Modifiability
Context_Completeness Maintainability
Flxibilty Adaptabiity B
Functional_Appropriateness Customizability v
(Il [I
I Submt |

Figure 7-1 Initial Panel

Context_Coverage value [0,100]:

Efficiency value [0,100] :

Selected Scenario:

— — — —— ——— ———— ————— — ———

140

)

|

Customers try to search for books on the website, either
by author nzme, or by words in the tifle. A list of all
matching books is returned to the customer. A customer
does not need to be logged-n i order to search. The
[Website is designed to provide the accuracy and
‘completeness for the searching component. Once the user
receives a satisfied result, the search function is
completed. The search function wil be stopped by user
whenever it refurns the correct result. Search component|
‘has been optimized to reduce the amount of time that it
takes to perform a search. However, it could consume
more memory.

Figure 7-2 Value Panel

|

||

i = Repository of 50 VComponents
¢ [Ji{Component D : 28@

[y maturity = 96

D cpu_utilization=7
‘ [} operavility = 74
[} Co_Existence = 12
[Testability = 13
[y Adaptability = 49
[satisfaction = 2
[Ty Portability = 70
[y context_Coverage =73
[Processing_Time = 144241
[Reliability = 57
[y memory_utilization = 14
[y usability = 3
D Interoperability =2
[Integrity = 95
[Fault_Tolerance = 10
D Appropriateness_Recognizability = 90
[capacity = 74428683
[y Throghput = 116148179
[maintainability = 48
[y Modifiability = 48
[y compativility = 82
D Functional_Appropriateness =8
[Reusability = 24
[} Effectiveness = 15
D Performance_Efficiency = 59
[} Response_Time = 224165
[y Efficiency =79
D Functional_Suitability = 52

Result o=

Figure 7-3 Result Panel

The tools’s interface is designed with 3 pages. when executing the application, the first
page presented is the initial panel, as seen in Figure 7.1. This page allows the user to select a
scenario among the available options and then choose a set of non-functional names and
definitions that describe the quality of their desired component. The second page is the value
panel, as seen in Figure 7.2. This page collects the user selection’s values using text boxes and
then submits them to the application. These values indicate the NFRs degree that the queried
component should have. Moreover, it is able to validate user inputs against the non-functional
defined valid ranges in the Section 6.5.1. If the inputs are not valid the user will not be able to
submit the query. The third page is the result panel, as seen in Figure 7.3. This page represents

the user query result. Moreover it allows user to re-run the application (by Start Over button).

The above Figures (Figures 7.1, 7.2 and 7.3) indicate an example of proposed prototype.
Initial (Figure 7.1) and value (Figure 7.2) panels indicate that user quired a component with

the following quality characters repository that consist of 50 component desctiption:

e 40% of Context Coverage: a component that was useable in 40% of contexts
that it has been tested
e 70% of Efficiency: a component that used the required resurces efficiently in

70% of test cases while it was fully functional

The result panel (Figure 7.3) indicates the detail quality characteristics of selected
component description. It consist of queried NFRs’ prerequisites and (their prerequisites) such

as:

e Usability: it is prerequisite of Context Coverage
o Effectiveness: it is prerequisite of Usability
e Operability: it is prerequisite of Efficiency

o Performance Efficiency: It is the prerequisite of Operability
Page | 100

The above result shows the ability of system to add prerequisites to refine the search
automatically. Moreover, the system is able to add the prerequisites of NFRs’ prerequisites
whenever more than one component description matchs the user query to distinguishes between

component description with similar scores.

A key research question in this work focuses on understanding whether semantic
component indentification and selection (proposed method), i.e, is using a non-functional
requirements ontology beneficial to the software development community. This question is

addressed in the community case study discussed in Section 7.1.

Another research question addressed in this thesis is whether the use of a non-functional
requirements ontology can support component identification. To answer this question, a
repository is populated by a program which generates these component descriptions. The
component descriptions are generated in the form of RDF files due to its machine readability.
A mix of qualitative and quantitative analysis is performed on the data. Qualitative analysis
helps to identify new knowledge and theories, while quantitative analysis helps to test the

method’s performance. These are discussed in Section 7.5.

7.1 Community Case Study
To address the questions related to the perception of non-functional requirements as well as

test the tool within the software development community, a case study of component
identification and selection is performed with a number of component search useage scenarios.
The scenarios exemplify building an online store sucha as Amazon.com, and specifically, its

advanced search function. A repository, containing 50 components descriptions, is used.

Page | 101

A qualitative study involving software engineers and developers is undertaken, where
participants are able to use the tool and review it using an online questionnaire. All the
participants were familiar component-based software development and requirement
engineering process. An information sheet addressing the following questions is provided to

participants. The questions are:

e What is the complexity of software development that we are working on and its
solution?

e What is a software component and how and where to find it?

e What is the selection method based on?

e What are NFRs definitions?

e What is a scenario about?

e What is the user’s input?

e How is the result presented?

e Who is undertaking the project?

Moreover, the participants were asked to undertake the following tasks:

e Toread the information sheet.
e Torun the tool five times.
e To complete the online questionnaire in the presence of the researcher (there is no

verbal feedback).

Each session is expected to last for 30 minutes and the questionnaire takes approximately

15 minutes to complete.

Participants interacted with prototype interface by viewing a Graphical User Interface
(GUI) that contained a list of NFRs name and list of scenarios. Whenever a participant selected

Page | 102

an NFR name from the list based on a scenario, the NFR value of the selected one was collected

and validated to search the repository.

The following scenarios are presented to the participants; each involves a major book

retailer that utilizes a computer system to handle their online bookshop:

Scenario 1: The online bookshop has two types of users: website visitors and
registered users who have been given different degree of page (data) access appropriate for
their types. Visitors are limited to catalogues of books. However they are authorized to access
the secure payment page when they become a potential buyer. The online bookshop provides
a secure environment for buyers to use their credit card information. A login component

provides the registration functionality which protects user information.

Scenario 2: Customers try to search for books on the website, either by author name,
or by words in the title. A list of all matching books is returned to the customer. A customer
does not need to be logged-in in order to search. The website is designed to provide accuracy
and complete search functionality (search component). Once the user receives a result,
satisgying the search criteria the search function is completed. The search function is stopped
by the user whenever it returns the correct result. The search component is optimized to reduce

the amount of time that it takes to perform a search. However, it could consume more memory.

Scenario 3: A sneak peek panel and a few buttons are added to the catalogue Section
allowing customers to browse a few pages of the book they are interested to buy. This helps

the buyer choose the most appropriate book according to their needs. Moreover, a user guide
Page | 103

is provided to introduce this feature. To ensure good quality of this new component, website
developers advance a survey-questionnaire to get users’ feedback on their experience of using
the website. The questionnaire helps to understand why people visit the site and whether the

site meets the visitors’ needs and expectations.

Scenario 4: Search component is designed by the bookshop developers. It is a program
unit that is discrete and identifiable with respect to compiling, combining with other units, and
loading. There is the possibility of reusing it in other projects which have different contexts.
What is important here is measuring the possibility of reuse as the first step. There is a case
with zero or small probability of reuse, but the search component can be modified, in this case,
the second step is measuring the ease of modification. Developers may need to examine the
internal capability of the search component to be customized by adding or removing search
fields. The customization result shows the possibility of adapting the component to the new
environment. The final step is testing the component to make sure the transfer to a new
environment can be finalized, without negative impact on any other components or parts

(resources).

Scenario 5: A Shopping Cart component includes a set of functions (steps) that help
the user to buy a book. The component prompts for the customer’s username and password.
The customer enters these details. The component verifies the customer’s identity and retrieves
the customer’s name and address, then prompts for credit card details. The customer enters

these details. The component checks the credit card details. The component shows the customer

Page | 104

the book and the delivery cost. The customer confirms the transaction. These sets of functions
are designed in a way that meets users’ needs and cover all the specified tasks and user

objectives.

Scenario 6: The company development team have a clear idea regarding the type and
amount of resources that is required for an online bookshop. Usually, this information is stated
in a system requirement document. The following steps, describe parts of system memory
usage without any specified degree of usage: 1-) the system records all books available in the
online store, 2-) For each book, the author, title and ISBN number are recorded, 3-) The number
of each book in stock is also stored, along with the number on order by customers and the

number on order from publishers. All this information is retrievable by system functions.

Scenario 7: There exist a number of banking systems available for the online bookshop
to facilitate its financial requirements. The current bookshop’s banking channel is selected
based on the following factors: 1-) Degree of which the system performs the banking functions
under different network status and within time constraints, 2-) Degree of which the system
avoids critical and serious failure occurrences against various failure patterns, 3-) Degree in
which, the system in the event of an interruption or a failure, can recover the company or

customers’ data that is directly affected and re-establish the desired state of the system.

Scenario 8: The bookshop specialized support staff, operational staff or business staff

might need to do some correction, improvement or adaptation on the their existing components
Page | 105

due to changes in the environment or in the requirements and functional specifications based
on the following factors that evaluates the fitness of each component:. 1-) Degree of
effectiveness and efficiency with which components can be modified, updated and upgraded
without introducing defects or degrading existing quality, 2-) Degree of effectiveness and
efficiency with which test criteria can be established for a single component and tests can be

performed to determine whether those criteria are met.

The questionnaire plays an important role in gaining further knowledge of the users’
needs. It also provides a tool for further analyses of the processes of selection, the scenarios,
the non-functional requirements based descriptions, and the non-functional requirements

values.

The survey in this study has three check boxes in the questionnaire and the reminder
are in free-form text. The reason for this style of survey is to avoid possible bias as a result of
guided responses through check box responses and to enrich the data collected. The including
free text responces give users an opportunity to state, in their own words, what they have
experienced, this often provides a richer account of the incident and the context in which the

incident occurred.

We used a group post-test experimental design in order to minimize the internal threats
to validity. The post-test is the set of questions that participants answered during the
experiment. Testing, instrumentation and statistical regression internal threats are eliminated
by not using a pre-test. The experiment did not need a control group and keeping the duration
of the experiment to under 60 minutes eliminated the history and maturation threats. The two
independent variables in this experiment are: the use of NFRs; and the use of a search tool

based.

Page | 106

The experimenter was not able to eliminate all the external threats to validity. By
conducting the experiment on the internet, we minimized the available participant threat to
population validity. We believe that the following threats to validity were not a factor in our

experiment: interaction of history and pretest-post-test sensitization.

The case study involved thirty participants who have programming experience, ranging
from beginners to experts. Information sheets are provided to reqgruite the case study
participants. Those sheets allowed them to initiate contact about the study. The expertise level
is measured by the number of years they were involved in software development. Participants
with 1 to 5 years experience are considered beginners and those with 6 years or more were
considered as experts. Out of 30 participants, 28 only specified their year of experience. The
results indicated that 31% of participants are experts and 68% are beginners. Thematic analysis
is used with the open ended responses. The systematic analysis resultes in a few key findings,

discussed below in Section 7.2.1, 7.31 and 7.4.1.

7.2 Research Question: What type of component description express all of the
information that is needed by the community?

Most component descriptions focus on the functionality of components. The aim of this
guestion is to obtain the opinion of experts about the use of descriptions for non-functional
requirements. To address this question, the user’s opinion of utilizing non-functional

requirements description is studied using the following questions:

e What do you understand non-functional requirement-based component descriptions to
be?

e What type of component description do you prefer to use? Why?

Page | 107

The first question was in free text form. The first part of the second question is in check
box form, providing answers of ‘functional requirement base’, ‘non-functional requirement
base’ and ‘other’. In the other option, however there is a free text box where respondant can
provide further information. The second part of the question i.e. ‘why?’ has a free form text

option for the respondant.

Thematic analysis is used to process the qualitative information obtained in this Section.
A list of themes or patterns in the participants’ responses are defined. Then, the number of
times these qualitative themes occurs is counted. This process allows for the qualitative

information to be translated into quantitative data.

7.2.1 Results

Generally, components are specified by their functional and non-functional capabilities
or descriptions (defined in Chapter 2). This Section summarizes the participants’ point of view

regarding these descriptions.

In regards to the description definition, 3 themes in the participants’ responses are
identified. These themes are counted as follows: 53% users (16 of the 30 users) define the
elements in the description as quality attributes and 23% (7 of 30 users) defined them as non-
functional names and values for a specific component. Therefore, 76% of users (23 of the 30
users) understood this type of description based on non-functional requirement-based

component definition in Chapter 2.

The third theme includes 23% of participants, (7 of 30) which they did not provid
related respond to the questions. However, they defined a non-functional requirements based

component description as 1-) additional information to describe the components, 2-) the degree

Page | 108

to which one component can fit the specified requirements, 3-) just simply same list of selected

requirements that had been chosen to select the best component.

For example: one user understanding of non-functional requirments is “A summary that
shows to what extent a particular function matches the non-functional requirements that I asked

for, and that includes additional useful information about the properties of the function”

There are three main responses regarding the preferred type component description.
Firstly, the majority of participants prefer to have both non-functional requirements and
functional requirements based component descriptions to achieve the best result of reuse. In

this case a user commented that:

“For the software development process we need to identify both functional and non-
functional requirements very precisely to achieve the expected goal (through well-
defined functional requirements) and the overall quality (through a rich set of non-

functional requirements descriptions like the ones provided by this tool)”.

Secondly, 16% of users (5 of 30) prefer non-functional requirements in order to have

additional information about their selected component. A user comments:

“Functional requirements can be explained better in text descriptions, but non-
functional requirements are good for a search tool such as this, as they can be used to

compare many functionally similar components”.
Moreover, another user comments:

“Both are equally important - however, the non-functional requirement’s present
options to interpret the role and associations between functional and non-functional

requirement’s relevant to the actual functionality”.

Page | 109

Thirdly, 23% (7 of 30) of users emphasized having a functional requirement based component

description due to their ease of use and understandability. In the survey a user comments that:

“I feel that as a programmer I would prefer a functional requirement base, but if [was
to be a System Architect or equivalent, having a non-functional requirement base would

be more useful.”

The survey result demonstrates that almost one quarter of users do not have a clear idea about
non-functional descriptions. Moreover, those familiar with non-functional requirements prefer

to simultanueosly have functional requirements.

7.3 Research Question: Is our approach useful for the community?

Requirements analysis and description analysis are among the key processes of component
selection. The aim of this question is to understand what the users perceive as the advantages
and disadvantages of this approach. To address this question, the user’s overall experience IS
investigated by asking the following questions, which were all in free form text with the

exception of the final question (explained later):

e If we had to build this tool again, what would you change in terms of processes?

e What are the things that you like most about this tool?

e What benefits do you expect to see from using a tool like this?

e What difficulties did you have when using this tool?

e What was your overall experience in using this tool?

e When you think about this new tool, do you think of it as something developers might

need or as something developers might want? Why?

The first part of the last question is in check box form and the second part of the question

i.e. ‘why?’ had a free form text option for the response.
Page | 110

Thematic analysis is used to process the qualitative information obtained in this Section.

Results are presented in the quantitative format.

7.3.1 Results
The user responses indicate that this tool increases their non-functional requirements

awareness. The participants believe that the tool reduces the time of component selection and
consequently the total time of software development. Moreover, they have positive experiences
and views on tool components (name selection, value selection, validation, data submission
and result presentation) based on their response to the survey questions; they referred to the
tool as interesting or good. However, there is some rooms for improvement. Firstly, users prefer
to deal with simplified processes (Name and Value selection). Their main difficulty is choosing
the non-functional requirement names and values. While the tool has provided the non-
functional requirements definition and the accepted ranges, users found the non-functional
ranges difficult to visualise and the definitions difficult to understand. Moreover, the tool is
designed to present the best result according to the query submitted but users also expressed an

interest in the second and further matches. The results are summerized below:

The user responses suggest a few changes or improvements of the tool’s processes and

GUI are warranted. For example, a user suggests that:

“Making the scenario box wider.”

The user also preferred having check boxes instead of multiple item selection by using

the control key. Moreover, a user suggested that

)

“Listing all the non-functional requirements without a scroll bar.’

Page | 111

The remainder of the user requests for improvement are in terms of non-functional
requirements range presentation, functional based scenarios, having an alternative result and

using a bigger repository. A user comments that:

“It is hard to visualize the range for non-functional requirements. Maybe it could show

’

some examples.’

Participants indicate that the non-functional requirements are choosen easily if the tool

could use a priority based search technique. Some users comment that:

“Seems like a good idea, but doesn't have a flexible priority based search when one or

more non-functional requirements are missing from the component.”

“Classify non-functional requirements in some way to make easy to select them. Maybe

some class of hierarchically organization.”

“Providing numbers for non-functional requirements. It's better to allow users to

prioritize them.”

In regards to the benefits that users can obtain from this tool, 33% (10 of 30) of
participants believe that the tool facilitates software development, especially CBD in terms of
time and cost of development. Moreover, users indicated that the tool increases awareness of
non-functional requirements, therefore, reducing the time needed for software development. A

user commented that:

“Reusable code is so great and such a tool to find the match saves a lot of time”.

The participants overall experience of using this tool indicates that it helps to reuse
software components and it improves the developers’ productivity. However, it is good for

developers who do not have much experience. More than half (53%, 16 of 30) of the

Page | 112

participants agreed that the tool is simple to use and it speeds up development. One of the users

comments that:

“I think that some users, who want to get straight into the task of programming would
enjoy having a component provided which would enable them to program the business
logic more quickly. Other users which are not as experienced may benefit from using

this as it provides defined components, which the user may not be aware of. ”

Most of the participant’s difficulties related to dealing with non-functional
requirements. Firstly, 36% (11 of 30) of the participants said that they had difficulty using the
tool due to their lack of non-functional requirements knowledge. Secondly, 26% (8 of 30) of
users had difficulty in choosing the right value and visualizing the ranges. Thirdly, 16% (5 of
30) users do not expect to see a long list of non-functional requirements. Finaly, 3% (1 of 30)
of users had difficulty to understand the scenarios. In comparison, the number of people who
had difficulty with understanding non-functional requirements descriptions were 10% more

than those that had difficulty choosing the values. A few users commented that:

“So many choices. Grouping them would help user to select things easier”.

“It is hard to visualize the range for non-functional requirements. Maybe it could show

’

some examples.’

“It can provide not only the non-functional requirements | have thought relevant but
also the affect from many other non-functional requirements that could affect, which |

have not foreseen.”

The validation feature that checks the submitted value(s) and the full list of non-functional

requirements obtained positive responses from participants. Two users comment that:

“Values enable one to better control the performance of the software.”
Page | 113

“It highlights any error. It specifies all the values and NFRs in relation to the selected

ones.”

Questions relating to needing or wanting this tool gained positive responses from the
participants.. Firstly, 40% (12 of 30) of participants said that they “need” this tool and, 36%
(11 of 30) said that this tool is something developers “want” for their software development
activities”. Secondly, 12% (4 of 30) of participants said that developers both ‘need’ and ‘want’

this tool. One of the users states:

“This tool would not only be beneficial for developers but it would also be a great tool

for stakeholders of software design and development process. ”

6% (2 of 30) users stated that developers’ feelings (“want” or “need”) are dependent on
the complexity of the components repository. This could be because of the current trend of
using pre-built templates (Twitter Bootstrap [128], Rails Scaffolds [129] etc.) as well as the
current surge in component based design (HTML 5 Components [130], Google Polymer [131]).
However, selecting the correct component among a large set of available components is a

difficult task.

The participants answered the benefits of using the tool in a free text form. The

responses are analysed using thematic analysis. The answers were categorized in Table 7-1:

Page | 114

Number of

Themes Participants

The tool helps participants discover potential alternatives that 0

they have not thought of 2 G E

Most of the developers think of the functionality of components 6% (2 of 30)

The tool helps to select the correct component among a large set 0

of available components At (5002
The tool_ improves non-functional requirement awareness in 16% (5 of 30)
developing software

The tool makes software development easier 13% (4 of 30)
The tool helps participants save time 36%(11 of 30)

According to the collected user feedback, the tool in this study is capable of facilitating
the software development. However, developers have difficulty to shift from traditional
functional selection to non-functional requirement-based selection. They have difficulty in
analysing the scenario and in picking the required non-functional requirements. A user

comments:

“Sometimes these non-functional requirements are vague and | prefer to corporate

some functional requirements to clear them more.”

Another user comments:

“Some of the terms that were used as non-functional requirements were quite difficult

to understand.”

Moreover, another user comments:

“Some functional requirements are easy to recognize from the description directly by
human while some are hard to analyse and hard to get reliable results by machine.

However, non-functional requirements can be discovered by machine analysis based on

Page | 115

previous experiences; but they hide in subtle patterns of the requirements and are hard

’

to discover by human beings.’

7.4 Research Question: What does the community understand non-functional
requirements to be?

The aim of this question is to investigate the way users distinguish between functional
requirements and non-functional requirements. The users’ knowledge and experience are

investigated by asking the following questions:

e What do you understand non-functional requirements to be?
e Do you think values are necessary when specifying non-functional requirements or

simply selection of non-functional requirements is sufficient?

The first question was in free text form. The second question was in check box form with an
option of ‘other’ in free text form. The answers from all thirty participants are analysed using
thematic analysis format for the free text form survey questions. Results are explained in the
following Section.

7.4.1 Results

This Section is divided into two parts: 1-) focusing on the way users deal with non-functional
requirements when they want to elicit them from scenarios and 2-) on how users deal with non-
functional requirements when they want to combine them to search for a desired component.
The results indicate that users are aware of the importance of non-functional requirements but

they are not able to pick the right ones due to lack of non-functional knowledge.

First of all, 20% (6 of 30) of participants did not have a good understanding of the non-
functional requirements. They believed non-functional requirements are:

Page | 116

“Properties that are not related to functional requirements ”

“The things we expect a software program to have (the "Nice-things" it can do) except
for real functionality ”

“It is not related to the actual program function but are more descriptive of the

environment it performs in”

Generally, the majority of participants believe that the non-functional requirements are difficult
to understand but they are necessary for quality and success of development. Firstly, 43% (13
of 30) of participants believe non-functional requirements help software components to achieve
their goals. Secondly, 26% (8 of 30) of participant indicate that it is necessary for components

to have non-functional requirements and define them as something related to quality.

The purpose of the “value selection process” is to provide each non-functional
requirement with a range. Thus, users are able to specify the degree of each non-functional
requirement. This process is viewed positively by 70% (21 of 30) of participants. They believe

that non-functional requirements’ value is necessary for component selection.

According to the feedback, developers are not familiar with the definition of non-
functional requirements. However, they have general knowledge of software quality and its

importance. The scenarios reveal the following:

An understanding of non-functional requirements definitions in necessary. Users only
need to select the non-functional requirements semantically highlighted in the scenario and
then the tool task is to improve user’s query by adding the important non-functional
requirements. Based on the analysis 73% (22 of 30) of participants believe that the scenarios
are close to real world software requirements. However, 20% (6 of 30) of the participants had

difficulty in prioritizing the non-functional requirements. Moreover, the time that participants

Page | 117

spent to analyse each scenario; 63% (19 of 30) of them spent less than six minutes on each

scenario. A participant commented that:

“I prefer to have some hints for selecting best components based on the given scenario
and quality attributes.”

7.4.2 In Summary
The community case study demonstrated that, developers are not familiar with NFR terms and
NFR based descriptions. However, they believe NFRs are essential for investigating how a
component performs. The NFR knowledge provided by the tool is considered valuable but not
critical to project success and yet the participants would like to have the functional requirement
descriptions at the same time. Thirdly, participants liked the idea of specifying a degree for
NFRs but the analysis shows that they have difficulty in deciding on and selecting, the degree
to which the NFRs must be met. Finally, participants believe this approach increases the

developers’ productivity in terms of search , and the quality of the results identified.

The above findings confirm that the software community has a generic idea regarding
NFRs but not sufficiently deep to be useful. Moreover, the combination of FR and NFR-based
descriptions is preferable to the participants. The above findings confirm that the approach is
useful for the community in terms of: developers’ productivity, time of development, NFR

awareness and ease of selection.

Page | 118

7.5 Performance Analysis

7.5.1 Runtime Analysis

In order to evaluate the efficiency of the approach used whitin thesis, the runtime of all possible
query types is examined. Two types of sampling are employed for testing the validity of the
approach’s performance, namely, probability and non-probability sampling [59]. For this

purpose, the following runtime tests are performed:

e Runtimes of individual non-functional requirements against various size of repositories
(Figure 7.4)

e Runtimes of various queries of difficulty level from basic to complex against various size
of repositories (Figure 7.5)

e Runtimes of random queries against various size of repositories (Figures: 7.7 and 7.8)

Component repositories of 50, 100, 200, 400, 600, 800, and 1000 component
descriptions are built to verify the approach using a Java application. This application generates
RDF statements (component description). Each non-functional requirement runtime depends
on 3 factors: 1-) number of prerequisites for that non-functional requirement, 2-) the content of

component descriptions and 3-) the result.

Moreover, the runtimes are an average of 10 runs and the PC OS specification for this

experiment was an Intel Core i5 CPU, 2.5 GHz and with 2GB of RAM.

Each non-functional requirement has between 0 to 6 prerequisites. As mentioned earlier

(Section 6.3.2), the non-functional requirements based search adds each element’s prerequisites

Page | 119

to the query. For a non-functional requirement with a larger number of prerequisites, the

algorithm searches for more items and therefore, the runtime is higher (Figure 7.4).

The weight assignment strategy works based on the rules described in Chapter 5. It maps the
calculated score to each component as a comparison factor in the algorithm. The rules of the
weight assignment strategy are based on the content of a description. For a component with a
larger number of non-functional requirements a longer analysis time is required. Moreover, the
algorithm reduces the search space by eliminating the components that do not satisfy the user

query for further analysis of query prerequisites.

When the system find more than one component with the same weight, the algorithm overrides
the query by calculating and adding prerequisites of the previous set of query element to the

existing ones and does the overall process of assessment again.

Figure 7.4 bar charts compare the list of 32 non-functional requirements against 7
different repositories in terms of size and content similarity. Overall, the size of the repository
has a direct effect on the length of runtime. Pursuing this further, the runtime of most non-
functional requirements against different repositories showed similar patterns, with all
gradually increasing at a steady rate from 50 components repository to 1,000 components
repository. However, the runtime of some non-functional requirements against 800 components

repository became significantly higher than the runtime of same non-functional requirements

Page | 120

against largest repository (1,000 components repository). This happens when the requested
non-functional requirements appear in more components of the smaller repository (800
components repository). Likewise, some bars of the largest repository have sharp peaks (not
increasing at a steady rate) in comparision with other bars’ normal rate. By looking at
operability, context coverage and performance efficiency as rich non-functional requirements
in term of prerequisites (5 to 6 prerequisites), it is found that as the number of prerequisites
increases the runtime of non-functional requirements increases as shown in Figure 7.4. The

runtime of these non-functional requirements are calculated based on 5 or 6 prerequisites.

Time (Second)

Individual NFR's Runtime

200

T e T T N R L I A O
S S I & & & W & e & & F F F ¥ & F & & &
& & P &L & < P R & o F 5 & o & & &S
& & Pl & P o & & & & & e = @ &5 o
& < & - & ®

& & o o @‘*‘9

< &

Figure 7-4 Runtime for single Non-functional requirements queries with repositories of various sizes

Figure 7.5 charts compare 8 different groups of non-functional requirements in terms
of size and NFRs’ complexity against 7 different repositories in terms of size and content
similarity. Overall, the runtime is longer whenever an extra non-functional requirement is
added to a group. Groups of non-functional requirements are selected in order to obtain some

basic and complex queries. Based on the graph for each non-functional requirement group,
Page |121

group 5 showed a runtime increase due to the complexity of the query. This group contains 5
non-functional requirements such as portability, performance efficiency and context coverage.

The total prerequisites’ number for this group is 16, which makes the query more complex to

analyse.
Runtime Comparison
3000
2500 n=-1000
n=800
2000
£
c
<]
(%]
% 1500 o y N=600
[}
E
[n =400
1000
- — =200
k_/‘/‘_—*,"/‘—_’rm .
. * * & &+ —& n=50
0 v
0 2 4 b 8 10 12
Number of NFRs

Figure 7-5 Runtime for predefined grouped Non-functional requirements queries with repositories of various sizes

Figures 7.7 and 7.8 compare 8 different sized groups, which contain random members
against 7 different repositories in terms of size and content similarity. Overall, the runtime of
most groups against different repositories showed similar patterns, with all gradually increasing
at a steady rate from a 50 component repository to a 1000 component repository. However,
two changes from group 3 to 4 and group 5 to 6 are shown due to the distribution of non-

functional requirements with a higher number of relationships in groups 4 and 6. Moreover,

Page | 122

both charts show that the runtime of groups 4 and 5 are almost similar. However, group 5 has
one more non-functional requirements to analyse but fewer queries to analyse and calculate.
According to the rules defined in Chapter 5, for the purpose of weight assignment, the
algorithm needs to check the type of concept (super and sub concepts) for each non-functional
requirement. A set that contains fewer super concepts requires less analysis and calculation.

The following sample checks the type of Functional Suitability:

"SELECT ?super WHERE { "

"BIND(ont:"functional_suitability" as
concept)"

"?concept rdfs:subClassOf ?super ."
"OPTIONAL{"

"?concept rdfs:subClassOf ?inbetweener .

"?inbetweener rdfs:subClassOf ?super .
"FILTER(?inbetweener I=?concept
&&?inbetweener I= ?super &&
lisBlank(?super))"}"
"FILTER(!BOUND(?inbetweener) && ?super !=
?concept && !isBlank(?super))"}"

Figure 7-6 Sample query to check the type of NFR

Both Figures (7.7 and 7.8) indicate that the sampling was random.

Page | 123

3500
3000
2500
m50
£}
§ 2000 = 100
.‘?_’_ m 200
g 1500 = 400
Z
H 600
1000
= 800
500 = 1000
0 -
Random Groups
Figure 7-7 Runtime for random grouped Non-functional requirements queries with repositories of various sizes
3500
3000 © h=1000

2500

/ n =800
2000 / / n =600

Time (Second)

0 2 4 6 8 10 12
Random Groups

Figure 7-8 Runtime for random grouped Non-functional requirements queries with repositories of various sizes

One of the findings of this study is that the complexity of NFRs depends on the number
of operations (defined rules to be checked in order to extract knowledge), which are required

Page | 124

for their analysis. The main operation is the interdependency check among NFRs, which
requires identification of their prerequisites. As the number of computation increases, the

runtime increases.

Moreover, based on this study, the runtime on each NFR (evaluation) depends on its
meaning. The more queries sent to the ontology, the more time requires to complete the
computation. This is as a result of having a single thread of execution, where all rules and
relations were computed one-by-one to generate a score. This score was used in retrieving the
best match. This limitation can be addressed in future by using multi thread of execution. This

will be much more efficient and can cope with the complexity of NFRs analysis.

7.5.2 Summary

Participant feedback and runtime comparisons of non-functional requirements are presented in
this chapter. The aim of the experiments is to analyse the usability of the tool based on the
software developers’ views. However, the usability of the algorithm is tested by running
various queries (simple, complex) against different repositories. The findings of this approach
are limited by the random component descriptions. Using real component descriptions that
contain pair of non-functional requirements names/values is out of the scope of this study. The
distribution of non-functional requirements, their quantity and values (among defined ranges)
are completely random. The process for the experiential tool increased the non-functional
requirements awareness among users. A new format for a component description (non-
functional requirement / quality attributes and their values) is introduced. To overcome the
complexities of non-functional requirements, the manual reasoning is transformed to the

automatic reasoning.

Page | 125

8 Conclusions and Future Work

The analysis demonstrates the utility of the approach as a successful use of ontologies to
enhance component selection. However, there is still room for further work. This chapter
discusses the contributions and possible extensions of this work. In this thesis, the new concepts
and background definitions discussed in Chapter 1 and 2 provide the evidence for the absence
of a similar approach through the literature review in Chapter 3. Having then identified the
challenges that face the component selector in Chapter 4, a methodology is developed in
Chapter 5 to address the identified challenges. This leads to details of implementation and
design in Chapter 6 and, description of the experiments and discussion of results in Chapter 7.
This chapter explores how the approach can be extended and summarizes the key conclusions

of the work.

The retrieval of software components is a fundamental issue within the component-
based software development (CBSD) where components are retrieved for a system to build by
locating (identifying) existing components in the repository. Developers mainly search for
components based on their functional requirements, and less so based on non-functional
requirements. This is due to the difficulty of identifying and analysing the non-functional
requirements. With regards to functional requirements, there are different frameworks that
automated component identification, using domain knowledge ontologies. With regards to non-
functional requirements, there are manual or semi-automated approaches that introduce a group
of techniques to analyse and choose non-functional requirements correctly. Though they are
sufficient for non-functional requirements analysis, they are expensive to perform. In order to
reduce the cost of non-functional requirements analysis, an automated component selection
mechanism is required, which provides the non-functional requirements knowledge and
definitions.

Page | 126

This research studies issues such as a review of the quality models from the quality
relationship and definition perspective. Moreover, component retrieval techniques from
component search and specification perspective are reviewed. This research also includes the
study of techniques to address how component software requirements knowledge can be shared

and reused.

8.1 Contribution

This thesis has documented the development of an automated component selection framework
based on non-functional requirements. To analyse non-functional requirements, this
framework is powered by an ontology of 32 non-functional requirements that each might have
among 0 to 6 prerequisites. The ontology is designed to share the non-functional requirements
knowledge among different processes such as query analysis, query reformulation and
component description analysis. The knowledge is used for interpreting different properties of
non-functional requirements individually or in comparison with others. This study
demonstrates that non-functional requirements based ontology supports component
identification. Reuse of this ontology in the functional based approaches can augment the
functional aspect of the search in order to reduce the number of potential components
identified. Previously, the non-functional requirements knowledge produced through a manual
or semi-automated techniques, such as group discussion, questionnaires and brainstorming.

Those techniques were costly and complex.

The demonstrated framework is unique in that its input and output are constructed based
on a set of non-functional requirements names and values, which are based on the quality
attributes of the system features. In previous works, queries and component specifications are
constructed based only on functional requirements i.e. input-output relation, natural language,

pre-conditions / post-condition, component profile, conceptual graph and mathematical

Page | 127

analysis. The framework used in this study results in the reduction of inconsistency and in
reducing incompleteness in requirements specification. Therefore, it supports the component’s

elicitation based on non-functional requirements specification.

The findings demonstrate the benefit obtained from using an ontology by minimizing the cost
and complexity of analysing non-functional requirements. The algorithm runs a complex query
that has 5 non-functional requirements with a total 16 prerequisites against a repository of 1000
components in 1750 seconds. It is impossible for a field expert to compute a complex query in
a this amount of time. However, 20% of users had difficulty in choosing the required set of
non-functional requirements from the high satisfactory scenarios (90%). Moreover, the
ontology addresses the complexity of the requirement descriptions in a way that the missing
prerequisites automatically are added to the query. 75% of participants only have a clear idea
about non-functional descriptions and this group prefers to have functional descriptions at the
same time to facilitate their component selection. Furthermore, the runtime of the system, when
selecting components based on individual non-functional requirements, is reduced by using an
ontology. This improves the efficiency of the resultant system. Lastly, 75% of participants

mentioned that there is a need for such a tool in the software development community.

8.2 Future work

The component description model used in this study consists of two elements, namely, the non-
functional requirements names and values. To evaluate the number of non-functional
requirements in a description and assign a value to them, a testing framework is needed for
non-functional requriremtns mesurments. This framework should be able to test a software

component and provide a machine-readable description file. The file should contain the

Page | 128

component’s non-functional requirements and their calculated values. In order to evaluate a
component’s non-functional requirements or quality, the testing framework needs to be
equipped with component based metrics and measurement methods. In the introduction
(Chapter 1) and methodology chapters (Chapter 6), the way that component descriptions are
generated for the purpose of this study is discussed. A testing framework design and
development would be one of the extensions of this study. The 1ISO 25020 and 25021 standards
[47, 48] provide some recommended quality measures for software development and testing.
Moreover, the ISO standard provide some metrics and measurement methods for general use
that they are not suitable for CBD. Thus, a testing framework is required to design, implement
and evaluate the component-based interpretation and validation. The testing framework may
be able to predict or estimate the non-functional requirements. So, this possibility needs to be
investigated. The prediction (of NFRs) would be possible when the framework uses data related
to non-functional requirements. On the other hand, estimation (of NFRs) would be possible
when the framework uses facts about non-functional requirements, such as interdependencies

among them.

In conclusion, this thesis shows that the use of component selection tools with a focus
on non-functional requirements can benefit from an ontological representation of the non-
functional requirements. The ontology model is domain-independent, defined through a
process of analysis, and customization of existing quality models. This study suggests the use
of domain-independent mechanisms to support ease of component selection across domains,
supported by domain-specific mechanisms where necessary, to assist in refining the selection

process.

Page | 129

References

1. Whnuk, K., B. Regnell, and B. Berenbach, Scaling up requirements engineering—exploring the
challenges of increasing size and complexity in market-driven software development, in
Requirements Engineering: Foundation for Software Quality. 2011, Springer. p. 54-59.

2. Irshad, M., et al. Capturing cost avoidance through reuse: systematic literature review and
industrial evaluation. in Proceedings of the 20th International Conference on Evaluation and
Assessment in Software Engineering. 2016. ACM. p. 35.

3. Sametinger, J., Software engineering with reusable components. 1997: Springer Science &
Business Media.

4, Varnell-Sarjeant, J., A.A. Andrews, and A. Stefik. Comparing reuse strategies: An empirical
evaluation of developer views. in Computer Software and Applications Conference Workshops
(COMPSACW), 2014 IEEE 38th International. 2014. |EEE. p. 498-503.

5. Mohagheghi, P. and R. Conradi, Quality, productivity and economic benefits of software reuse:
A review of industrial studies. Empirical Software Engineering, 2007. 12(5): p. 471-516.

6. Doerr, J., et al. Non-functional requirements in industry-three case studies adopting an
experience-based NFR method. in Requirements Engineering, 2005. Proceedings. 13th IEEE
International Conference on. 2005. |IEEE. p. 373-382.

7. Chung, L. and K. Cooper, Defining goals in a COTS-aware requirements engineering approach.
Systems Engineering, 2004. 7(1): p. 61-83.

8. Mylopoulos, J., L. Chung, and B. Nixon, Representing and using nonfunctional requirements: A
process-oriented approach. IEEE Transactions on Software Engineering, 1992. 18(6): p. 483-
497.

9. Franch, X. and J.P. Carvallo, Using quality models in software package selection. Software,

IEEE, 2003. 20(1): p. 34-41.

10. Wagner, C., Model-driven software migration: A methodology: Reengineering, recovery and
modernization of legacy systems. 2014: Springer Science & Business Media.

11. Kay, R., QuickStudy: System development life cycle. Computerworld, 2002. 14: p. 18.

12. Radack, S., The system development life cycle (sdic). Computer Security Division Information
Technology Laboratory 2009.

13. Control and Audit, Information Systems. SDLC. Institute Of Chartered Accountant Of India,
2013: p. 5.28.
14. Krueger, C.W., Towards a taxonomy for software product lines. Software Product-Family

Engineering, 2004: p. 323-331.

Page | 130

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

Robey, D., R. Welke, and D. Turk, Traditional, iterative, and component-based development: A
social analysis of software development paradigms. Inf. Technol. and Management, 2001.
2(1): p. 53-70.

Voas, J., Maintaining component-based systems. |EEE Software., 1998. 15(4): p. 22-27.

Krueger, C., Easing the transition to software mass customization, in Software Product-Family
Engineering. 2002, Springer. p. 282-293.

Tiwari, A. and P.S. Chakraborty. Software component quality characteristics model for
component based software engineering. in Computational Intelligence & Communication
Technology (CICT), 2015 IEEE International Conference on. 2015. IEEE. p. 47-51.

Iribarne, L. and A. Vallecillo. Searching and matching software components with multiple
interfaces. in Proc. of the TOOLS Europe’2000 Workshop on Component-Based Development.
2000.

Barros-Justo, J.L., et al., What software reuse benefits have been transferred to the industry?
A systematic mapping study. Information and Software Technology, 2018.

Mahmood, S., R. Lai, and Y.S. Kim, Survey of component-based software development.
Software, The Institution of Engineering and Technology (IET), 2007. 1(2): p. 57-66.

Crnkovic, I., M. Chaudron, and S. Larsson. Component-based development process and
component lifecycle. 2006. |IEEE Computer Society, Proceedings of the International
Conference on Software Engineering Advances. p. 44.

Crnkovic, I. Component-based software engineering for embedded systems. in Proceedings of
the 27th international conference on Software engineering. 2005. ACM. p. 712-713.

Gan, G.G.G., W.K. Yen, and M. Toleman, Software component reuse in information systems
development: a review of challenges and strategies. Han Chiang College, 2005. 3: p. 83-95.

Sharma, S. and P. Shirisha, An Intelligible Representation Method For Software Reusable
Components, in Innovations and Advances in Computer Sciences and Engineering. 2010,
Springer. p. 221-225.

Prieto-Diaz, R., Implementing faceted classification for software reuse. Communications of the
ACM, 1991. 34(5): p. 88-97.

Ravichandran, T., Special issue on component-based software development. ACM SIGMIS
Database, 2003. 34(4): p. 45-46.

Prieto-Diaz, G.J.a.R. Building and managing software libraries. in COMPSAC 88. 1998. Chicago,
IL, USA IEEE Xplore. p. 228-236

Gill, N.S., Reusability issues in component-based development. ACM SIGSOFT Software
Engineering Notes, 2003. 28(4): p. 4-4.

Frakes, Software reuse as industrial experience. American Programmer, 1993. 6(9): p. 27-33.

Page | 131

31.

32.

33.

34,

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

Frakes, W.B. and T.P. Pole, An empirical study of representation methods for reusable software
components. |IEEE Transactions on Software Engineering, 1994. 20(8): p. 617-630.

Alves, C. and J. Castro. CRE: A systematic method for COTS components selection. in XV
Brazilian Symposium on Software Engineering (SBES). 2001. Rio de Janeiro, Brazil.

Zulzalil, H., et al., A case study to identify quality attributes relationships for web-based
applications. 1JCSNS, 2008. 8(11): p. 215.

Kaur, K. and H. Singh, Candidate process models for component based software development.
Journal of Software Engineering, 2010. 4(1): p. 16-29.

Wiegers, K.E., Software requirements. 2009: O'Reilly.
Andrew Stellman, J.G., Applied Software Project Management. 2005: O'Reilly.

Chung, L. and J. do Prado Leite, On non-functional requirements in software engineering.
Conceptual modeling: Foundations and applications, 2009: p. 363-379.

Berander, P., et al.,, Software quality attributes and trade-offs. Blekinge Institute of
Technology, 2005.

Rahman, M. and S. Ripon, Elicitation and modeling non-functional requirements-a pos case
study. arXiv preprint:1403.1936, 2014.

Zowghi, D. and C. Coulin, Requirements elicitation: A survey of techniques, approaches, and
tools, in Engineering and managing software requirements. 2005, Springer. p. 19-46.

Mylopoulos, J., L. Chung, and E. Yu, From object-oriented to goal-oriented requirements
analysis. Communications of the ACM, 1999. 42(1): p. 31-37.

Nixon, B.A., Management of performance requirements for information systems. |EEE
Transactions on Software Engineering, 2000. 26(12): p. 1122-1146.

Chung, L., B.A. Nixon, and E. Yu. Using non-functional requirements to systematically support
change. in Requirements Engineering, 1995., Proceedings of the Second IEEE International
Symposium on. 1995. IEEE. p. 132-139.

Berenbach, B. and M. Gall. Toward a unified model for requirements engineering. in Global
Software Engineering, 2006. ICGSE'06. International Conference on. 2006. IEEE. p. 237-238.

Morisio, M., M. Ezran, and C. Tully, Success and failure factors in software reuse. |EEE
Transactions on software engineering, 2002. 28(4): p. 340-357.

ISO, I. and T. IEC, 25051: Software engineering -- Software Product Quality Requirements and
Evaluation (SQuaRE) -- Requirements for quality of Commercial Off-The-Shelf (COTS) software
product and instructions for testing. 2006, Geneva, Switzerland: International Organization for
Standardization.

ISO, I., IEC 25020 Software and System Engineering—Software Product Quality Requirements
and Evaluation (SQuaRE)-Measurement Reference Model and Guide, in International
Organization for Standarization. 2007, Geneva, Switzerland: International Organization for
Standardization.

Page | 132

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

ISO, I. and T. IEC, 25021: Software Engineering-Software Product Quality Requirements and
Evaluation (SQuaRE)-Quality Measure Elements. 2007, Geneva, Switzerland: International
Organization for Standardization.

ISO, 1., IEC25010: 2011 Systems and Software Engineering—Systems and Software Quality
Requirements and Evaluation (SQuaRE)-System and Software Quality Models, in International
Organization for Standardization. 2011, Geneva, Switzerland: International Organization for
Standardization. p. 34.

ISO, I. and W. IEC, 25023, in System and Software Engineering—System and Software Product
Quality Requirements and Evaluation (SQuaRE)-Measurement of System and Software
Product Quality. 2011, Geneva, Switzerland: International Organization for Standardization.

ISO, I., 25022, in System and Software Engineering—System and Software Product Quality
Requirements and Evaluation (SQuaRE)-Measurement of Quality in Use. 2012, Geneva,
Switzerland: International Organization for Standardization.

Wagelaar, D., D2. 1 Component-Based Frameworks. 2004.

Girardi, M. and B. lbrahim, Using English to retrieve software. Journal of Systems and
Software, 1995. 30(3): p. 249-270.

Lung, C.-H. and J.E. Urban. An approach to the classification of domain models in support of
analogical reuse. in ACM SIGSOFT Software Engineering Notes. 1995. ACM. p. 169-178.

Podgurski, A. and L. Pierce, Retrieving reusable software by sampling behavior. ACM
Transactions on Software Engineering and Methodology (TOSEM), 1993. 2(3): p. 286-303.

Zaremski, A.M. and J.M. Wing, Signature matching: A key to reuse. Vol. 18. 1993: ACM.

Jeng, J.-J. and B.H. Cheng, Specification matching for software reuse: A foundation. ACM
SIGSOFT Software Engineering Notes, 1995. 20(Sl): p. 97-105.

Prieto-Diaz, R. and P. Freeman, Classifying software for reusability. |EEE software, 1987. 4(1):
p. 6.

Dusink, L.M. and P.A. Hall, Software Re-use, Utrecht 1989: Proceedings of the Software Re-use
Workshop, 23-24 November 1989, Utrecht, The Netherlands. 2013: Springer Science &
Business Media.

Park, Y., Software retrieval by samples using concept analysis. Journal of Systems and
Software, 2000. 54(3): p. 179-183.

Dusink, L. and J. van Katwijk. Reuse dimensions. in ACM SIGSOFT Software Engineering Notes.
1995. ACM. p. 137-149.

Zaremski, A. and J. Wing, Specification matching of software components. ACM Transactions
on Software Engineering and Methodology (TOSEM), 1997. 6(4): p. 369.

Goguen, J., et al., Software component search. Journal of Systems Integration, 1996. 6(1-2): p.
93-134.

Page |133

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

Bowen, J.P. and M.G. Hinchey, Ten commandments of formal methods. Computer, 1995.
28(4): p. 56-63.

Ben Khalifa, H., O. Khayati, and H. Ghezala. A behavioral and structural components retrieval
technique for software reuse. in Advanced Software Engineering and Its Applications, 2008.
ASEA 2008. 2008. IEEE. p. 134-137.

Inoue, K., et al., Ranking significance of software components based on use relations. |EEE
Transactions on Software Engineering, 2005. 31(3): p. 213-225.

Geisterfer, C.M. and S. Ghosh. Software component specification: a study in perspective of
component selection and reuse. in Commercial-off-the-Shelf (COTS)-Based Software Systems,
2006. Fifth International Conference on. 2006. IEEE. p. 9 pp.

Fischer, B., Specification-based browsing of software component libraries. Automated
Software Engineering, 2000. 7(2): p. 179-200.

Lindig, C. Concept-based component retrieval. in [JCAI95 Workshop on Formal Approaches to
the Reuse of Plans, Proofs, and Programs. 1995.

Qiang, J.X., Organizing imperative programs for execution-based retrieval for reuse. Electronic
Theses and Dissertations, 2000.

Podgurski, A. and L. Pierce. Behavior sampling: a technique for automated retrieval of reusable
components. 1992. ACM, Proceedings of the 14th international conference on Software
engineering. p. 349-361.

Hall, R.J. Generalized behavior-based retrieval. 1993. IEEE Computer Society Press. p. 371-380.

Park, Y. and P. Bai, Retrieving software components by execution. Component-Based Software
Engineering, 1998: p. 39.

Schumann, J. and B. Fischer, NORA/HAMMR: Making deduction-based software component
retrieval practical. Proceedings of Automated Software Engineering (ASE-97), 1997: p. 246.

Hemer, D. Specification matching of state-based modular components. in In Software
Engineering Conference Tenth Asia-Pacific. 2003. IEEE Computer Society. p. 446.

Penix, J. and P. Alexander, Automated component retrieval and adaptation using formal
specifications. University of Cincinnati, Cincinnati, OH, 1998.

Zaremski, A.M. and J.M. Wing, Signature matching: a tool for using software libraries. ACM
Transactions on Software Engineering and Methodology (TOSEM), 1995. 4(2): p. 146-170.

Liddy, E.D., Natural language processing. Encyclopedia of Library and Information Science
2001.

Henninger, S., Using iterative refinement to find reusable software. Software, |IEEE, 1994.
11(5): p. 48-59.

Sugumaran, V. and V.C. Storey, A semantic-based approach to component retrieval. ACM
SIGMIS Database, 2003. 34(3): p. 8-24.

Page | 134

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

Yao, H. and L. Etzkorn. Towards a semantic-based approach for software reusable component
classification and retrieval. 2004. ACM,Proceedings of the 42nd annual Southeast regional
conference. p. 115.

Antoniol, G., et al. Information retrieval models for recovering traceability links between code
and documentation. in Software Maintenance, 2000. Proceedings. International Conference
on. 2000. IEEE. p. 40-49.

Jarvelin, K. and J. Kekaldinen, Cumulated gain-based evaluation of IR techniques. ACM
Transactions on Information Systems (TOIS), 2002. 20(4): p. 422-446.

Salton, G. and C. Buckley, Improving retrieval performance by relevance feedback. Readings in
information retrieval, 1997. 24(5).

Breitman, K.K., and Julio Cesar Sampaio do Prado Leite. Ontology as a requirements
engineering product. in Requirements Engineering Conference,. 2003. 11th IEEE International.
p. 309-319.

Nuseibeh, B. and S. Easterbrook. Requirements engineering: a roadmap. in Proceedings of the
Conference on the Future of Software Engineering. 2000. ACM. p. 35-46.

Castafieda, V., et al., The use of ontologies in requirements engineering. Global Journal of
Research In Engineering, 2010. 10(6).

Ruiz, F. and J.R. Hilera, Using ontologies in software engineering and technology, in Ontologies
for software engineering and software technology. 2006, Springer. p. 49-102.

Kalfoglou, Y. and M. Schorlemmer, Ontology mapping: the state of the art. The knowledge
engineering review, 2003. 18(01): p. 1-31.

Flrber, C., Semantic Technologies, in Data Quality Management with Semantic Technologies.
2016, Springer. p. 56-68.

McGuinness, D.L. and F. Van Harmelen, OWL Web Ontology Language Overview. W3C
Recommendation. Latest version is available at http://www. w3c. org/TR/owl-features, 2004.
10(10): p. 2004.

Davis, R., H. Shrobe, and P. Szolovits, What is a knowledge representation? Al magazine, 1993.
14(1): p. 17.

Gu, T., H.K. Pung, and D.Q. Zhang, A service-oriented middleware for building context-aware
services. Journal of Network and computer applications, 2005. 28(1): p. 1-18.

Dzung, D.V. and A. Ohnishi. A verification method of elicited software requirements using
requirements ontology. in 2012 19th Asia-Pacific Software Engineering Conference. 2012. p.
553-558.

Al Balushi, T.H., et al. ElicitO: a quality ontology-guided NFR elicitation tool. in International
Working Conference on Requirements Engineering: Foundation for Software Quality. 2007.
Springer: Berlin, Heidelberg. p. 306-319.

Page | 135

http://www/

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

Kassab, M., O. Ormandjieva, and M. Daneva. An Ontology based approach to non-functional
requirements conceptualization. in ICSEA'0S. Fourth International Conference on Software
Engineering Advances. 2009. IEEE. p. 299-308.

Jung, H.-W., S.-G. Kim, and C.-S. Chung, Measuring software product quality: A survey of
ISO/IEC 9126. |EEE software, 2004. 21(5): p. 88-92.

Borst, W.N., Construction of engineering ontologies for knowledge sharing and reuse. 1997:
University Twente.

Dobson, G., S. Hall, and G. Kotonya. A domain-independent ontology for non-functional
requirements. in e-Business Engineering, 2007. ICEBE 2007. IEEE International Conference on.
2007. IEEE. p. 563-566.

Lopez, C., L.M. Cysneiros, and H. Astudillo. NDR ontology: Sharing and reusing NFR and design
rationale knowledge. in Managing Requirements Knowledge, 2008. MARK'08. First
International Workshop on. 2008. IEEE. p. 1-10.

Wang, X., F. Fang, and L. Fan. Ontology-Based Description of Learning Object. in International
Conference on Web-Based Learning. 2008. Springer. p. 468-476.

IEC, I, 9126-1 (2001). Software Engineering Product Quality-Part 1: Quality Model.
International Organization for Standardization, 2001.

Grau, G., et al. DesCOTS: a software system for selecting COTS components. in Euromicro
Conference, 2004. Proceedings. 30th. 2004. |EEE. p. 118-126.

Bhaumik, S.S. and R. Rajagopalan, Elicitation techniques to overcome knowledge extraction
challenges in 'as-is' process modelling: perspectives and practices. International Journal of
Process Management and Benchmarking, 2009. 3(1): p. 47-59.

Christensen, E., et al., Web services description language (WSDL) 1.1. 2001.

Guha, R., R. McCool, and E. Miller. Semantic search. in Proceedings of the 12th international
conference on World Wide Web. 2003. ACM. p. 700-709.

Li, C., R. Pooley, and X. Liu, Ontology-Based Quality Attributes Prediction In Component-Based
Development. International Journal of Computer Science & Information Technology (IJCSIT),
2010. 2(5): p. 12-29.

Newell, D., et al. Models for an Intelligent Context-Aware Blended m-Learning System. in
Advanced Information Networking and Applications Workshops (WAINA), 2015 IEEE 29th
International Conference on. 2015. |IEEE. p. 405-410.

Mohamed, A., G. Ruhe, and A. Eberlein. COTS selection: past, present, and future. in
Engineering of Computer-Based Systems, 2007. ECBS'07. 14th Annual IEEE International
Conference and Workshops on the. 2007. IEEE. p. 103-114.

Mens, T., Introduction and roadmap: History and challenges of software evolution, in Software
evolution. 2008, Springer. p. 1-11.

Page | 136

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

Pérez, F. and P. Valderas. Allowing end-users to actively participate within the elicitation of
pervasive system requirements through immediate visualization. in Requirements Engineering
Visualization (REV), 2009 Fourth International Workshop on. 2009. IEEE. p. 31-40.

Wilson, W.M., L.H. Rosenberg, and L.E. Hyatt. Automated analysis of requirement
specifications. in Proceedings of the 19th international conference on Software engineering.
1997. ACM. p. 161-171.

Berry, D.M. and E. Kamsties, Ambiguity in requirements specification, in Perspectives on
software requirements. 2004, Springer. p. 7-44.

Subramanyam, R. and M.S. Krishnan, Empirical analysis of ck metrics for object-oriented design
complexity: Implications for software defects. Software Engineering, IEEE Transactions on,
2003. 29(4): p. 297-310.

Osborne, M. and C. MacNish. Processing natural language software requirement
specifications. in Proceedings of the Second International Conference on Requirements
Engineering. 1996. IEEE. p. 229-236.

Glinz, M. On non-functional requirements. in Requirements Engineering Conference, 2007.
RE'07. 15th IEEE International. 2007. IEEE. p. 21-26.

Mairiza, D., D. Zowghi, and N. Nurmuliani. An investigation into the notion of non-functional
requirements. in Proceedings of the 2010 ACM Symposium on Applied Computing. 2010. ACM.
p.311-317.

Lassila, O. and R.R. Swick, Resource description framework (RDF) model and syntax
specification. 1999.

Decker, S., et al., The semantic web: The roles of XML and RDF. |EEE Internet computing, 2000.
4(5): p. 63-73.

Prud, E. and A. Seaborne, SPARQL query language for RDF. W3C recommendation, 2006.
Fernandez, M., et al., Semantically enhanced information retrieval: An ontology-based
approach. Web semantics: Science, services and agents on the world wide web, 2011. 9(4): p.

434-452.

Moraes, R., et al.,, Component-based software certification based on experimental risk
assessment, in Dependable Computing. 2007, Springer. p. 179-197.

Dickinson, I, Jena ontology api. On the WWW, at http://jena. sourceforge.
net/ontology/index. html [accessed 10/12/2015], 2009.

Seaborne, A., ARQ-A SPARQL Processor for Jena. Obtained through the Internet: http://jena.
sourceforge. net/ARQ/, [accessed 10/12/2015], 2010.

Booch, G., The unified modeling language user guide. 2005: Pearson Education India.

Inc, B., Systems Development Lifecycle: Objectives and Requirements. New York: Queensbury,
2003.

Math, C., The apache commons mathematics library. Np, nd Web, 2016. 9.

Page | 137

http://jena/
http://jena/

128. Otto, M. and J. Thornton, Bootstrap. Twitter Bootstrap, 2013.
129. Hansson, D.H., Ruby on rails. Website. Projektseite: http://www. rubyonrails. org, 2009.

130. Hickson, I. and D. Hyatt, HTML5: A vocabulary and associated APIs for HTML and XHTML. W3C
Working Draft edition, 2011.

131. Overson, J. and J. Strimpel, Developing Web Components: Ul from jQuery to Polymer. 2015: "
O'Reilly Media, Inc.".

Page | 138

http://www/

Appendix

The following form has been shared with the experiment participants.

Experiment Questions

Component Selection Tool
* Required
What do you understand NFRs to be? *

Do you think values are necessary when specifying NFRs or is simply
selection of NFRs sufficient ? *

o Values
o NFRs
o Other:

Overall, describe your experiences in using this tool? *
What difficulties did you have when using this tool ? *
What benefits do you expect to see from using a tool like this? *

When you think about this new tool, do you think of it as something developers
might NEED or as something developers might WANT? *

o NEED
o WANT
o Other:

Please explain your reason for the answer to previous question. *
What are the things that you like most about this tool? *

If we had to build this tool again, what would you change in terms of processes
? *

What do you understand NFR-based Component descriptions to be? *

What type of component description do you prefer to use ? *

o Functional Requirement base
o Non Functional Requirement base

o Other:
Please explain your reason for the answer to previous question. *

For each scenario :

Page | 139

How long did it take to analyse the scenario? *

How close are the scenarios to real world ones? *

What difficulties did you have in analysing the scenario? *

Education: What is the highest degree or level of school you have completed?
Education: What is your major (specialisation)?

Work: How many years' work experience do you have?

Powered by Google

Page | 140

	Contents
	1 Introduction
	1.1 Component Selection
	1.2 Motivation
	1.3 Problem Statement & Research Question
	1.4 Contributions
	1.5 Thesis Structure

	2 Background
	2.1 Introduction
	2.2 Component Retrieval
	2.3 Requirement Engineering
	2.4 Quality Model

	3 Related work
	3.1 System Requirements through Goal-Orientation
	3.2 Component Selection using Quality Models
	3.3 Ontology-base Selection of Components
	3.3.1 Ontology for Non-functional Requirements

	3.4 Summary

	4 Challenges in Developing Component-Based Software
	5 Methodology
	5.1 Refine Existing Quality Models and Quality Definitions
	5.2 Baseline Ontology Model
	5.3 Supplementary Ontology Model
	5.4 Automate the Reasoning Based on the Main NFRs Ontology Model
	5.5 Algorithm Development
	5.6 Combination of Query and Semantic Approaches

	6 Design and Implementation
	6.1 Design
	6.1.1 Architecture
	6.1.1.1 Ontological Model
	6.1.1.2 Query Processing Layer
	6.1.1.3 Data Model

	6.1.2 Algorithm
	6.1.3 Ontology
	6.1.4 Taxonomy
	6.1.5 Non-Functional Requirements
	6.1.5.1 Effectiveness
	6.1.5.2 Efficiency
	6.1.5.3 Satisfaction / Trust / Usability
	6.1.5.4 Context Coverage / Context completeness
	6.1.5.5 Flexibility
	6.1.5.6 Functional suitability
	6.1.5.7 Functional appropriateness
	6.1.5.8 Performance Efficiency
	6.1.5.9 Time Behaviour
	6.1.5.10 Resource utilization
	6.1.5.11 Capacity
	6.1.5.12 Compatibility
	6.1.5.13 Co-existence
	6.1.5.14 Interoperability
	6.1.5.15 Appropriateness recognisability
	6.1.5.16 Operability
	6.1.5.17 Reliability
	6.1.5.18 Maturity
	6.1.5.19 Fault tolerance
	6.1.5.20 Recoverability
	6.1.5.21 Integrity
	6.1.5.22 Reusability
	6.1.5.23 Modifiability
	6.1.5.24 Testability
	6.1.5.25 Maintainability
	6.1.5.26 Portability
	6.1.5.27 Adaptability

	6.2 Implementation
	6.2.1 Tools and Techniques
	6.2.2 Object-Oriented Analysis

	6.3 Use-Cases
	6.3.1 Reasoning Use Case
	6.3.2 Reformulate Query Use Case
	6.3.3 Calculate Score Use Case
	6.3.4 Generate Description Use Case
	6.3.5 Select Best Match Use Case
	6.3.6 Search Use Case

	7 Discussion
	7.1 Community Case Study
	7.2 Research Question: What type of component description express all of the information that is needed by the community?
	7.2.1 Results

	7.3 Research Question: Is our approach useful for the community?
	7.3.1 Results

	7.4 Research Question: What does the community understand non-functional requirements to be?
	7.4.1 Results
	7.4.2 In Summary

	7.5 Performance Analysis
	7.5.1 Runtime Analysis
	7.5.1.1 Prerequisite dependency
	7.5.1.2 Component description dependency
	7.5.1.3 Result dependency

	7.5.2 Summary

	8 Conclusions and Future Work
	8.1 Contribution
	8.2 Future work

	References
	Appendix

