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ABSTRACT 

 
Multiple myeloma (MM) is a largely incurable haematological malignancy characterised 

by the aberrant proliferation of malignant plasma cells (PCs) in the bone marrow (BM). 

Next generation sequencing (NGS) studies have shown that MM patients display complex 

mutational landscapes involving intraclonal genetic heterogeneity. While intraclonal 

heterogeneity is now an established feature of MM, the genomic changes and tumour 

evolution associated with the transformation from the asymptomatic disease stages of 

Monoclonal Gammopathy of Undetermined Significance (MGUS) and Smouldering 

Multiple Myeloma (SMM) to MM remains unknown.  

 

This thesis presents a unique assessment of the genomic architecture and subclonal 

evolution associated with the natural history of disease transformation, with the analyses of 

a rare cohort of paired BM samples from patients when first diagnosed with MGUS or 

SMM, who later went on to develop MM (n = 10). Whole exome sequencing (WES) and 

bioinformatic analyses identified that clonal heterogeneity was present at the asymptomatic 

MGUS/SMM stages of disease, with a changing spectrum of acquired mutations associated 

with transition to MM. Subclonality was observed at MGUS/SMM, with the presence of 

between 5 to 11 subclones. The progression to MM was characterised by a prevailing 

model of subclonal evolution defined by clonal stability, where the transformed PC 

subclones of MM were already present at the MGUS/SMM stage. 

 

RNA sequencing (RNAseq) revealed that the patterns of expressed genes at 

MGUS/SMM to MM were found to be relatively homogeneous. Moreover, RNAseq 

revealed that mutant genes identified by WES were generally not expressed, expressed at 

low levels, with most genes showing wild-type expression. Analysis of the methylome was 

carried out using whole genome bisulphite sequencing (WGBS). Significant 

hypomethylation was observed in PCs recovered at all disease stages (MGUS, SMM and 

MM) compared to normal PCs. Interestingly, the degree of hypomethylation observed at 

MGUS was maintained with progression to SMM and MM stages.  

 

In addition, the phenomenon of RNA editing in SP140, a recurrently mutated gene 

in human MM patients, was investigated in the 5TGM1 MM PC line. A high impact C>T 

(ie. U) RNA editing change was identified in exon 2 of Sp140, resulting in an early STOP 
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codon, which was hypothesised to result in the formation of truncated Sp140 protein that 

may contribute to MM pathogenesis. In mouse cell lines, Sp140 RNA editing was not 

restricted to the 5TGM1 cell line, but editing was not observed in any human MM PC 

lines. CRISPR-Cas9 mediated mutation of the mouse Apobec1 and Apobec3 genes, 

showed that neither of these cytidine deaminases were responsible for this RNA editing 

phenomenon.  

 

These studies show that MGUS/SMM patients, that progress in a short time frame, 

appear to be sufficiently genetically complex to be on the threshold of transformation to 

MM. Furthermore, the intrinsic genomic complexity of MM is present at the asymptomatic 

stages of disease (MGUS and SMM), suggesting that extrinsic factors from the tumour 

microenvironment play an important role in mediating progression. Indeed, these studies 

suggest that early intervention at MGUS/SMM may be possible to prevent progression and 

result in durable cure for patients. 
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1.1 Biology of Multiple Myeloma  

Multiple Myeloma (MM) is a haematological malignancy resulting from the uncontrolled 

proliferation of malignant plasma cells (PCs) within the bone marrow (BM). MM is an 

age-dependent malignancy and the second most common haematological cancer (Singhal 

and Mehta 2006). Despite advances in therapy, MM remains a largely incurable disease 

with a median survival of 6 years. Notably, MM accounts for 20% of all deaths from 

haematological cancers and 2.1% of deaths from all cancers (NCI 2014, Zweegman, et al 

2014). Strategies such as chemotherapy with combinations of newly developed drugs and 

autologous stem cell transplantation (ASCT) are used to manage the disease following 

diagnosis (Palumbo and Anderson 2011). Over the last ten years, an increase in the 

spectrum of available treatment options has seen a two-fold increase in patient survival 

(Palumbo and Anderson 2011).  

 

The initiating oncogenic events that lead to the development of MM are thought to 

originate with the establishment of a founder precursor PC clone within the germinal 

centre of a peripheral lymphoid organ (Morgan, et al 2012). Healthy PCs are derived from 

B lymphocytes, which undergo rearrangement of their immunoglobulin (Ig) genes within 

the BM to generate precursor cells which express functional B cell receptors (surface 

immunoglobulins) (Shapiro-Shelef and Calame 2005). Following this, immature B cells 

migrate from the BM to the germinal centre of a peripheral lymphoid organ where they 

undergo affinity maturation in response to antigen exposure, specific for the B cell 

receptor. Somatic hypermutation (SHM) initiates point mutations in the hypervariable 

regions of the immunoglobulin heavy chain locus (IGH), resulting in the generation of 

highly specific Ig (Klein, et al 1998). Furthermore, class switch recombination (CSR) 

initiates antibody class switching, through deletional recombination of the Ig locus switch 

region, producing functional Ig of different isotype (Stavnezer 1996). Both molecular 

mechanisms of SHM and CSR are initiated by the expression of the enzyme activation-

induced cytidine deaminase (AID), which generates double stranded DNA breaks in the Ig 

loci (Morgan, et al 2012).  Maturation of B cells in the germinal centre leads to the 

development of memory B cells and plasmablasts, which are rapidly produced and short-

lived effector cells of the early antibody response (Nutt, et al 2015). Terminal 

differentiation of plasmablasts leads to the development of long-lived antibody producing 

PCs. The PCs subsequently migrate to the bone marrow and/or lymph nodes and are 

involved in the body’s immune response, producing Ig which serve to specifically bind to 

and destroy foreign antigens present in the body (Shapiro-Shelef and Calame 2005). 
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In MM however, the neoplastic PC clone, having sustained primary and potentially 

secondary mutations, migrates to the BM, where it expands in number and produces 

abundant, intact clonal Ig, known as Monoclonal (or “M”) protein or paraprotein (Wang 

and Young 2001). Abnormal PCs can also migrate to, and settle at other sites within the 

BM, where they expand in number to form myelomatous tumours at multiple sites 

(Ghobrial 2012). The myelomatous tumours disrupt normal homeostatic bone turnover, 

blood cell production and organ function leading to the clinical hallmarks of MM including 

elevated paraprotein in conjunction with suppressed immunoglobulin production and organ 

or tissue impairment. These clinical determinants of MM are known as the CRAB criteria 

(hypercalcaemia, renal insufficiency, anaemia and bone lesions) (Kyle, et al 2011). 

1.2 Development of Multiple Myeloma 

The development of MM is thought to involve a multistage transformational process, as a 

result of the acquisition of multiple genetic mutations that deregulate normal PC activity 

(Fig. 1) (Walker, et al 2014). Common initiating events in PCs include IGH translocations 

and hyperdiploidy, which result in the proliferation of monoclonal PCs, leading to 

development of a pre-cancerous, asymptomatic disease stage known as Monoclonal 

Gammopathy of Undetermined Clinical Significance (MGUS) (Bergsagel, et al 2005). 

MGUS is a slowly proliferative and relatively stable pre-myeloma stage in which 

paraprotein levels in the serum are < 30g/L and BM PC numbers account for < 10% of the 

nucleated cell count within the BM (International Myeloma Working Group 2003, 

Landgren, et al 2009). MGUS affects approximately 3% of the population aged over 50 

years and 5% of people aged over 70 years (Kyle, et al 2006). Each year, MGUS patients 

have a 0.5-1% risk of progressing to MM (Rajkumar, et al 2014). For this reason, MGUS 

patients are currently monitored but remain untreated until their condition progresses to a 

symptomatic disease stage. However the risk of progression is not uniform in all cases, 

influenced by disease biology factors such as the type and concentration of M protein, 

serum free light chain ratio, bone marrow plasmacytosis, proportion of clonal plasma cells 

and presence of immunoparesis (Rajkumar, et al 2014). Risk of progression can be 

stratified by the Mayo Clinic model based on clonal plasma cell burden with M protein 

values and skewed free light-chain ratios (Rajkumar, et al 2005) or the Spanish study 

group multiparametric flow cytometry model (Perez-Persona, et al 2007). For MGUS the 

Mayo Clinic identifies 3 important risk factors of progression: non-IgG isotype, serum M-

protein concentration > 1.5 g/dL and a skewed free light-chain ratio (< 0.26 or > 1.65) 

(Rajkumar, et al 2005). While the Spanish study group assesses the ratio of aberrant PC 
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(aPC) to normal BM PCs, where MGUS risk factors are a aPC/BMPC ratio > 95% and 

DNA aneuploidy (Perez-Persona, et al 2007). MGUS is followed by an intermediate 

asymptomatic Smouldering Multiple Myeloma (SMM) stage, where patients do not show 

evidence of Myeloma Defining Events (MDEs) or amyloidosis (Rajkumar, et al 2014). The 

SMM stage is known to have an annual risk of transition to MM of 10% in the first 5 years 

following diagnosis, 3% in the next 5 years and 1.5% in the subsequent years thereafter 

(Rajkumar 2016). For SMM, the Mayo Clinic identifies risk factors for progression being 

BM PCs > 10%, M-protein concentration > 3 g/dL and a skewed free light-chain ratio (< 

0.125 or > 8) (Dispenzieri, et al 2008). While the Spanish study group identifies risk 

factors of a aPC/BMPC ratio > 95% and immunoparesis (Perez-Persona, et al 2007). The 

transition to MM is accompanied by an increased plasmacytosis with the presence of ≥ 

10% clonal BM PCs or the presence of biopsy-proven bony or extramedullary 

plasmacytomas, and the presence of at least one of the MDEs (Rajkumar, et al 2014). The 

MDEs include evidence of CRAB features or at least one of the biomarkers of malignancy; 

including either the presence of clonal BM PCs percentage ≥ 60% or a serum free light 

chain ratio ≥ 100 or > 1 focal lesion (from MRI studies) (Rajkumar, et al 2014). In the final 

stage of the transformation process, malignant PC clones may gain independence from the 

BM, enter the peripheral circulation, leading to Plasma Cell Leukaemia (PCL), or form 

tumours in soft tissue or organs, leading to Extramedullary Myeloma (Walker, et al 2014).  
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Figure 1. The development of MM is a multistage transformational process. Common 

initiating events of IgH translocations and hyperdiploidy during B cell development 

deregulate normal PC behaviour, leading to asymptomatic MGUS. Further mutational load 

leads to the intermediate stage of SMM before final transformation to symptomatic MM. 

MGUS can take > 25 years to progress, with patients having an annual 0.5-1% risk of 

transition to MM. Whereas SMM usually takes < 5 years to progress, with an annual 10% 

risk of progressing to MM in the first 5 years. However, the risk of progression is not 

uniform, and is dependant on disease biology factors as discussed above.  
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Using karyotyping and molecular cytogenetic techniques MM PCs have been 

classified under three key subtypes; hyperdiploid, non-hyperdiploid or unclassified 

(Fonseca, et al 2009). Hyperdiploid MM cases are characterised by trisomies and account 

for 50-60% of patients with MM (Sawyer, et al 2016). Non-hyperdiploid cases exhibit 

chromosomal translocations of the IgH locus, which are present in 45% of patients with 

MM (Mikhael, et al 2013). Interestingly IgH translocations arise through the normal 

process of B cell development. As previously described, during late B cell development 

AID induced CSR leads to double stranded breaks in the IgH locus, most of which are 

repaired locally. However, error in reassembly can lead to illegitimate recombination of the 

IgH locus with double stranded breaks elsewhere in the genome, resulting in aberrant 

chromosomal translocations of the IgH locus, where partner oncogenes are put into 

proximity of strong IGH enhancers leading to the hallmark event in MM (Gonzalez, et al 

2007, Morgan, et al 2012). The three most common IgH abnormalities include the t(4;14) 

(chromosome bands p16q32), t(11;14) (chromosome bands q13q32) and t(14;16) 

(chromosome bands q32q23) (Fonseca, et al 2009) translocations. Non-hyperdiploid cases 

represent a more aggressive form of MM and are associated with poor prognosis 

(Bergsagel and Chesi 2013). Other cytogenetic abnormalities including monosomies of 

chromosome 14, and unaltered chromosome structure, are also present at a lower 

frequency of MM patients (Mikhael, et al 2013, Rajkumar 2016). Further studies have 

identified that this may represent a novel hyperhaploid subtype of high risk MM disease 

(Sawyer, et al 2016).  Risk type of active MM can be stratified based on the specific 

genetic lesions harboured by a patient into high risk (t(14;16), t(14;20) and del 17p), 

intermediate risk (t(4;14, gain 1q, hypodiploidy and del 13) and standard risk (t(11;14), 

t(6;14) and trisomies) (Mikhael, et al 2013, Rajkumar 2016). However, the early common 

primary pathogenic events of hyperdiploidy and IgH translocations are believed to be 

insufficient to cause active symptomatic MM, as asymptomatic MGUS patients can 

harbour these abnormalities and show no clinical symptoms (Chapman, et al 2011, 

Fonseca, et al 2002). The acquisition of secondary genetic events of non-synonymous 

single nucleotide variations (NS-SNVs), copy number variations (CNVs) and epigenetic 

changes are also required to initiate MGUS and PC malignancy leading to MM disease 

progression (Chesi and Bergsagel 2011, Morgan, et al 2012).  In addition to the oncogenic 

mutations occurring in the PC, there has been significant advancement in the 

understanding of an important role played by the BM microenvironment in supporting MM 

disease progression through proliferation, survival and drug resistance of MM PCs (Abe 

2011, Lawson, et al 2015, Manier, et al 2012, Mitsiades, et al 2006, Noll, et al 2012). 
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1.3 A New Paradigm In Multiple Myeloma Development 

New high-resolution Next Generation Sequencing (NGS) techniques represent an 

important advance in genomics, providing researchers with powerful tools for genetic 

analysis at single nucleotide resolution, enabling the identification of critical disease 

mutations and disease vulnerability. To date, no single gene mutation or combination of 

mutations have been identified as being common to all MMs at presentation (Weston-Bell, 

et al 2013). These findings suggest that multiple diverse genetic aberrations, and molecular 

pathways, are responsible for the onset of disease. Furthermore, the genetic abnormalities 

that are characteristic of each transformational stage of MM (MGUS, SMM and MM) have 

not been fully identified. This has been attributed to the low-resolution cytogenetic 

techniques previously used, which possess relatively low sensitivity of identification.  

 

Of particular interest is the elucidation of how these key genetic aberrations contribute 

to tumour evolution in MM. Defining these critical disease mutations will provide insight 

into the possible mechanisms underlying disease progression, and identify key biomarkers 

of disease risk and provide novel therapeutic targets. Evaluation of the available 

cytogenetic and NGS studies reveals evidence for the existence of multiple tumour 

evolution models within MM. As a result three models of tumour evolution in MM are 

postulated:  

• Linear model 

• Expansionist model 

• Intraclonal heterogeneity model 
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1.3.1 Linear Model of Tumour Evolution 

Classical cancer biology theory proposes a linear model of evolution, where tumours are 

derived from a unicellular origin with clonal growth pattern as a result of sequential 

accumulation of genetic mutations (Bahlis 2012).  

 

As discussed earlier, the development of MM is considered to be a multistage 

transformational process where patients with MGUS progress through an intermediate 

SMM transition stage before developing symptomatic MM. Initial genome analyses by 

Chapman, et al., identified MM tumour-specific mutations by comparing corresponding 

tumour to normal PCs using Whole Genome Sequencing (WGS) and Whole Exome 

Sequencing (WES) techniques.  An average of 35 NS-SNVs and 21 chromosomal 

rearrangements that disrupted protein coding regions were identified in MM (Chapman, et 

al 2011). Following this, Walker, et al., carried out the first WGS study comparing a small 

number of premalignant MM stages (MGUS n = 4, SMM n = 4) and symptomatic MM 

stages (MM n = 26, PCL n = 2) to reveal tumour acquired NS-SNVs as a function of 

disease progression, where genetic complexity increases through the stages of MM. MGUS 

PCs were found to harbour a median of 13 NS-SNVs which increased to 28, 31 and 59 

through SMM, MM and PCL, respectively (Walker, et al 2014). These findings are 

consistent with a linear model of tumour evolution in MM, where the sequential 

acquisition of NS-SNVs reaches a mutational threshold in the SMM PC, resulting in 

uncontrolled clonal proliferation leading to MM disease progression (Fig. 2). 
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Figure 2. The linear model of tumour evolution: The sequential acquisition and 

accumulation of multiple genetic mutations (represented by distinct bolts increasing 

through MGUS (red), SMM (red + black) and MM (red + black + green + yellow)) in PCs 

leads to MM disease progression. 
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1.3.2 Expansionist Model of Tumour Evolution 

The expansionist model of tumour evolution infers that all necessary genetic mutations are 

present in a subset of PCs at the MGUS disease stage, and it is their subsequent expansion 

that leads to MM disease progression.  

Studies using low-resolution molecular cytogenetic techniques have detected the 

same genetic mutations throughout all stages of MM transformation. Fluorescence in situ 

hybridisation (FISH) analysis has identified IgH translocations, chromosome 13q and 17p 

deletions and gain of 1q throughout all stages of MGUS, SMM and MM (Chiecchio, et al 

2009, Lopez-Corral, et al 2011). Interestingly, the number of PCs harbouring these specific 

genetic abnormalities increased with disease progression, suggesting that clonal PC 

expansion was due to selective advantages (Avet-Loiseau, et al 1999, Chiecchio, et al 

2009, Lopez-Corral, et al 2011). Notably also, sequential analysis of 5 patients (2 MGUS-

MM, and 3 SMM-MM) revealed a higher proportion of PC harbouring the genetic 

abnormality that was observed at MGUS/SMM diagnosis upon progression to MM 

(Lopez-Corral, et al 2011). Further high resolution CNV analysis using high density single 

nucleotide polymorphism (SNP) arrays have indicated an increasing genetic complexity as 

disease progresses towards MM, with a progressive increase in the median number of 

CNVs through MGUS, SMM and MM from 5 to 7.5 to 12, respectively (Lopez-Corral, et 

al 2012). Frequent abnormalities observed in MM include gains on chromosome 1q, 3p, 

6p, 9p, 11q, 19p, 19q and 21q together with deletions on chromosome 1p, 6q, 8p, 12p, 13q, 

14q, 16q, 17p, 17q and 22q (Lopez-Corral, et al 2012, Walker, et al 2012). Alterations of 

11q and 21q gains and, 16q and 22q deletions were previously viewed to be MM specific, 

however, it has been shown that these alterations are present within minor subclones at the 

MGUS stage (Lopez-Corral, et al 2012). Furthermore, WGS of sequential SMM-MM has 

demonstrated little difference in the median number of NS-SNVs present at both stages, 

with 28 to 31 respectively, reported (Walker, et al 2014). These findings suggest that the 

predominant PC clone may already be present at the SMM stage, and it is the outgrowth 

that leads to the initiation of MM disease progression. Interestingly, a recent WES and 

genotyping study of paired random bone marrow-focal lesion samples has revealed 

insights into spatial heterogeneity, where both similarities and differences of site specific 

SNVs and CNVs were observed to contribute to disease progression (Weinhold, et al 

2015). In some paired samples up to 90% of variants were shared between both site 

samples, and a prominent pattern of the outgrowth of subclonal bone marrow sample 

CNVs as clonal events in focal lesions samples was observed (Weinhold, et al 2015). 
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Taken together, these findings support an expansionist model of MM evolution, where a 

subpopulation of MGUS PCs harbour all the required genetic mutations, and their 

subsequent expansion results in MM disease progression (Fig. 3). 
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Figure 3. The expansionist model of tumour evolution: All necessary genetic mutations 

are present in a subpopulation of MGUS PCs (represented by all the distinct bolts (red + 

black + green + yellow) present in one), and it is their eventual expansion that leads to MM 

disease progression. 
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1.3.3 Intraclonal Heterogeneity Model of Tumour Evolution 

The intraclonal heterogeneity model of tumour evolution posits a genetically 

heterogeneous clonal structure at the asymptomatic MGUS disease stage, where 

“Darwinian” competition occurs between distinct PC subclones in response to selective 

pressures, leading to the outgrowth of dominant PC subclones and subsequent MM disease 

progression (Greaves and Maley 2012, Nowell 1976). 

 

Initial cytogenetic studies have indicated a genomic complexity where only a 

proportion of the clonal PC population carried any specific abnormalities at each stage of 

MM disease (Chiecchio, et al 2009, Lopez-Corral, et al 2011, Lopez-Corral, et al 2012). 

The advent of NGS techniques has allowed genetic analysis at single nucleotide resolution 

resulting in a higher power of detection of clonal architecture. A specific mutation being 

clonal or subclonal within a tumour sample can be determined by the proportion (of 

mutated reads) of total tumour cells that harbour the specific mutation, adjusted to any 

normal (non-tumour) contamination and the copy number of the locus. From this a 

phylogenetic tree of clonal/subclonal fractions can then be constructed to estimate the 

intraclonal evolution that may be occurring within the tumour. Initial sequencing studies 

on MM patients using WGS and WES have led to the discovery of frequent significantly 

mutated genes (“driver” genes), and the existence of a heterogeneous genetic landscape, 

where coexisting clones of differing genetic architecture arise during the evolution of MM 

(Bolli, et al 2014, Egan, et al 2012, Lohr, et al 2014, Walker, et al 2012). These “driver” 

genes are thought to influence clonal fitness (selective advantage and dominance) of 

malignant PC clones harbouring these mutants, driving MM disease progression in a 

branching manner. 

 

While MGUS is known to be a benign disease stage that is far less genetically 

complex than MM, intraclonal heterogeneity has been demonstrated through all stages of 

MM, suggesting that disease progression is mediated via competition between subclones 

and outgrowth of the fittest of these subclones from the earliest stage of MM (Bolli, et al 

2014, Egan, et al 2012, Lohr, et al 2014, Walker, et al 2012). Large cohort sequencing 

studies in MM have identified recurrently mutated genes associated with disease 

pathogenesis. The initial study of 38 MM tumours with matched normal genomes 

identified significant frequent somatic mutations occurring in MM, involving genes KRAS, 

NRAS, TP53, BRAF and IRF4, and six newly discovered cancer-associated genes; CCND1, 

FAM46C, DIS3, PNRC1, ALOX12B, HLA-A and MAGED1 (Chapman, et al 2011). Further 
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large cohort NGS studies performed by Lohr et. al. (n = 203 patients), Bolli et. al. (n = 67 

patients) and Walker et. al. (n = 463 patients) have also identified the presence of 

mutations in KRAS, NRAS, TP53, BRAF, FAM46C, DIS3, IRF4, TRAF3 and CYLD (Bolli, 

et al 2014, Lohr, et al 2014, Walker, et al 2015), of which KRAS, NRAS, TP53, BRAF, 

FAM46C and DIS3 are now believed to be “driver” genes in MM disease progression. The 

RAS/MAPK pathway is frequently observed to be deregulated in MM, with recurrent 

mutations occurring in KRAS, NRAS and BRAF (Bolli, et al 2014, Lohr, et al 2014, 

Walker, et al 2015). Mutations in KRAS and NRAS tend to mainly occur with mutual 

exclusivity, however have been observed to co-exist in 2% of patients (Walker, et al 2015). 

Interestingly, these “driver” mutations have been identified as being present in clonal 

fractions in some patients and subclonal fractions in other patients, suggesting “driver” 

events may also arise during later stages of MM tumour evolution (Bolli, et al 2014, Lohr, 

et al 2014). Furthermore, although affecting the same pathway, they have been identified 

to occur subclonally or in a nested fashion, where one mutation clone is identified as a 

subclone of another (Lohr, et al 2014). While it would be expected that these subclonal 

populations would exhibit improved survival advantage, owing to the presence of 

mutations in multiple “driver” genes, they do not appear to have sufficient selective 

advantage for outgrowth to clonality (Lohr, et al 2014). This advancement in our 

understanding of the intraclonal heterogeneity in MM illustrates the consideration required 

towards therapeutic choices, where suboptimal outcome would be observed if a patient is 

treated for a “driver” mutation that exists only subclonally. These unique findings support 

an intraclonal heterogeneity model of MM evolution, where subclones harbour differing 

combinations of mutations, with the genetic landscape of subclones changing as MM 

disease progresses (Fig. 4). 
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Figure 4. The intraclonal heterogeneity model of tumour evolution: Distinct PC 

subclones carry different combinations of genetic mutations (represented by MGUS 

subpopulations harbouring distinct combinations of coloured bolts), with the dominance of 

subclones changing with MM disease progression. Predominant subclones harbouring 

“driver” mutations, conferring increased fitness potential, are able to survive the 

microenvironment pressures and contribute to MM disease progression (represented by the 

PC subpopulation harbouring distinct bolts red + green + yellow + white). 
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1.4 Single Cell Analysis of Multiple Myeloma 

In more recent years, novel single cell analysis techniques have provided a sophisticated 

method for unravelling tumour genomics and evolution at a more detailed level. By 

unravelling clonal diversity and frequency of genetic mutations, single cell analysis is able 

to provide a greater understanding of the genomic complexity and clonal architecture that 

is present at the individual cell level within a bulk tumour. Current platforms available for 

single cell capture and subsequent genomic interrogation include Fluorescence Activated 

Cell Sorting (FACS) based automated single cell deposition and the Fluidigm C1 

integrated fluidic chip (IFC) system (Fluidigm Corporation).  

The existence of clonal heterogeneity presents a complex situation when analysing 

tumours. Distinct clonal populations of cells cannot be identified by conventional tissue 

average data analysis (Gundry, et al 2012). Furthermore, random low abundance mutations 

are currently inaccessible by standard high throughput sequencing approaches because they 

cannot be distinguished from sequencing errors (Gundry, et al 2012). At the genomic level, 

it is difficult to identify whether mutations are present in the same tumour cells or arise 

from distinct clonal populations of cells present within the bulk tumour (Yadav and De 

2014). Consequently, isolated detection of dominant clonal populations of tumour cells 

could bias classification, prognosis and treatment of disease (Yadav and De 2014).  

Application of single cell analysis techniques in MM supports the existence of 

multiple independent subclones within tumours. Single cell studies of t(11;14) MM have 

described the existence of 2 to 6 different clones, which are related by linear and branching 

phylogenies, highlighting the presence of intraclonal heterogeneity at MM diagnosis 

(Melchor, et al 2014). Melchor and colleagues demonstrated the existence of subclonal 

heterogeneity with parallel evolution of the RAS/MAPK pathway in distinct single cells, 

giving rise to divergent subclonal populations of mutant NRAS clone lineage and mutant 

KRAS clone lineage (Melchor, et al 2014). Furthermore, single cell genotyping has 

revealed a subclonal substructure in MM with 3 main clones harbouring ATM mutations 

where 2 subclones exhibited other mutually exclusive mutations (Walker, et al 2012). 

Walker and colleagues also identified intraclonal heterogeneity of mutations in “driver” 

genes NRAS (present in 32% and 96% of tumour cells) and KRAS (20% and 72% of 

tumour cells) (Walker, et al 2012). Interestingly, activating KRAS mutations were present 

as minor subclones in one case, observed in 20% and 48% of tumour cells (Walker, et al 

2012). This suggests that subclones are continually at risk of developing “driver” 

mutations that can confer a growth and survival advantage leading to clonal dominance 
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over time (Walker, et al 2012). This advancement in the understanding of the intratumour 

heterogeneity in MM illustrates the consideration required towards therapy and its clinical 

implications. A recent study using in vitro modelling of MM cell lines that are bortezomib-

sensitive or -resistant has generated a novel gene expression profiling (GEP) signature that 

can predict drug response to proteasome inhibitors (Stessman, et al 2013). The analysis of 

this GEP at the single cell level in pre-treated MM cell lines and drug naïve patient 

samples was able to identify pre-existing single cell sub populations that were resistant to 

proteasome inhibitors, demonstrating the possible requirement of therapies tailored 

towards subclonal populations within bulk tumours (Mitra, et al 2016). This has also been 

developed into the computational software package SCATTome (single-cell analysis of 

targeted transcriptome) that can predict probability of drug response of single cells based 

on the MM expression signature (Mitra, et al 2016).  

Collectively, these NGS and single cell studies support clonal heterogeneity as a 

model of MM evolution where “Darwinian” competition between heterogeneous PC 

subclones initiates non-linear accumulation of mutations and outgrowth of dominant 

subclones driving MM disease progression. 

1.5 Limitations of Published Studies in Multiple Myeloma  

To date, a limited number of NGS studies of MM have been performed, with the first 

“Initial genome sequencing and analysis of multiple myeloma” carried out by Chapman et. 

al. in 2011 (Chapman, et al 2011). The majority of these studies involved single time point 

studies of MM PC samples or have relied on the use of unpaired MGUS and MM PC 

samples. Consequently, these studies are only able to provide a detailed indication of the 

genetic landscape at the MM disease stage and an indirect indication of genetic mutations 

associated with MM disease progression.  

WES analysis of serial samples (n = 15), collected at disease progression or relapse 

post-treatment with later time point samples collected at relapse/progression after further 

lines of treatment has revealed major patterns of tumour evolution associated with MM 

progression: 1. no change in clonal composition, 2. differential clonal response, with 

proportions of subclones changing over time, 3. linear evolution, with a new subclone 

emerging over time, and 4. branching evolution, with the emergence of new clones and 

decline of other clones (Bolli, et al 2014). Only one study has investigated paired SMM-

MM samples (n = 4), finding that intraclonal heterogeneity is a typical feature in MM, 
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where SMM is a transition state where subclonal structure is evolving (Walker, et al 2014). 

Interestingly, only one unique NS-SNV was identified in MM, demonstrating that most of 

the required mutations for transition to symptomatic MM are already present. Additionally, 

comprehensive analysis of paired presentation and relapse/progression samples after 

combination high dose therapy (n = 33), using WES as well as gene expression and copy 

number profiles has revealed a majority of patients (n = 22) relapse through a branching 

tumour evolution pattern, with others showing linear evolution and differential response 

(Weinhold, et al 2016). Furthermore an increase in bi-allelic inactivation of tumour 

suppressor genes (mainly TP53 and FAM46C) was associated with relapse, with double hit 

events in TP53: del(17p)/TP53mut or del(17p)/TP53del characterising a subgroup of patients 

with worse outcome after relapse (Weinhold, et al 2016). Further serial sample studies of 

this nature and/or sampling of different sites from the same patient are required for a 

greater understanding of genetic heterogeneity in MM disease progression.  

A comprehensive approach would be to perform NGS studies of sequential paired 

MGUS-MM samples from the same patient. At present, no longitudinal progression studies 

of paired MGUS-MM PC samples have been performed. This is due, in large part, to the 

difficulty in establishing a cohort of patient samples from individuals when they were first 

diagnosed with MGUS, and subsequently symptomatic MM. Additionally due to the nature 

of premalignant disease, MGUS samples contain a low number of tumour PCs compared to 

normal healthy PCs, which results in high contamination and low yield of tumour PCs on 

isolation. The thorough genomic analysis of both bulk tumours and single cells on paired 

MGUS-MM patients represents a unique approach to identify key “driver” genes that are 

mutated and/or aberrantly expressed during disease progression. This approach would 

derive gene signatures indicative of pathways that are deregulated during the MGUS to 

MM transition. Furthermore, genomic data derived from such a study may allow for the 

identification of biomarkers that can predict which MGUS patient will progress to MM.  

1.6 Epigenetics in Multiple Myeloma Development 

Extensive studies of MM have been performed using cytogenetic and genomic approaches, 

however, relatively little is known about the role of epigenetics in driving MM disease 

progression. The rate of epigenetic change in cancers has been estimated to be orders of 

magnitude higher than that of genetic change occurring, and could be a major determinant 

of clonal evolution (Greaves and Maley 2012). The key epigenetic mechanisms known to 

alter and regulate gene expression are DNA methylation and histone modifications. 
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Changes in DNA methylation status, such as hypermethylation leading to gene 

inactivation and hypomethylation inducing genomic instability, have been observed in 

many cancer types (Kulis and Esteller 2010). Methylome studies comparing MM and its 

transition stages (MGUS, SMM and PCL) with normal PCs, have shown an increase in the 

number of differentially methylated gene loci associated with disease progression (Heuck, 

et al 2013, Salhia, et al 2010, Walker, et al 2011). The presence of genetic 

hypomethylation has been implicated as an important and early mechanism which drives 

MM disease progression (Salhia, et al 2010). Hypomethylation is associated with genomic 

instability and often coupled with altered chromatin structure, changes in DNA 

methyltransferase activity, loss of imprinting and an increased frequency of CNVs 

(Walker, et al 2011). Further studies have identified distinct profiles of epigenetic 

modifications linked with MM disease transition stages, with global hypomethylation 

occurring at MGUS-MM transition and hypermethylation occurring at MM-PCL transition 

(Walker, et al 2011). Specifically, DNA methyltransferase DNMT3A was observed to be 

underexpressed in MM due to the actions of hypermethylation, providing insight into the 

possible mechanism of hypomethylation observed in premalignant stages of MM (Heuck, 

et al 2013). Gene ontology enrichment analysis has revealed that hypomethylation in MM 

may favour bone invasion by increasing interactions with the bone marrow extracellular 

matrix, initiating adhesive interactions and the formation of lytic bone lesions (Salhia, et al 

2010). Interestingly, highlighting the heterogeneity also observed at the methylation level, 

gene-specific hypermethylation has also been associated with MGUS-MM transition, with 

77 affected genes having roles in developmental, cell cycle and transcriptional regulatory 

pathways identified (Walker, et al 2011). Further gene-specific hypermethylation has been 

identified at MM-PCL transition, with 1802 affected genes that are associated with cell 

signalling and cell adhesion pathways (Walker, et al 2011). Hypermethylation is proposed 

to deregulate adhesion of MM PCs to the bone marrow, facilitating independence of 

malignant PCs from the bone marrow niche, leading to PC egress from the marrow and 

entry into the peripheral circulation and development of PCL (Walker, et al 2011). 

Furthermore, a recent study has also identified hypermethylation of developmentally 

regulated B cell enhancers as a new type of epigenetic modification associated with the 

pathogenesis of MM (Agirre, et al 2015). 

Initial methylome analysis had revealed that methylation status is not associated 

with specific genetic alterations (Salhia, et al 2010). In contrast, other studies have 

identified specific MM cytogenetic subgroups which exhibit individual methylation 
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profiles with a t(4;14) group, two separate t(11;14) groups and two separate hyperdiploid 

groups described (Walker, et al 2011). The t(4;14) cytogenetic subgroup displays frequent 

hypermethylation, akin to that observed in PCL, signifying that the methylation status may 

influence the aggressive clinical phenotype usually observed in both cases (Walker, et al 

2011). However, the mechanisms that cause abnormal DNA methylation patterns in MM 

are yet to be determined (Dimopoulos, et al 2014). 

Complex epigenetic mechanisms involving histone modifications are also reported 

to contribute to the pathogenesis of cancer (Plass, et al 2013). While DNA methylation is 

relatively constant, histone modifications are dynamic in nature. The main regulatory 

mechanism of the epigenome is histone acetylation, which is maintained by the interplay of 

two enzymes; histone acetyl transferases (HATs) catalysing the addition and histone 

deacetylases (HDACs) catalysing the removal of acetyl groups on lysine residues of 

histones.  

In MM, HDAC inhibitors have been reported to have potent anti-myeloma activity 

both in vitro and in vivo (Smith, et al 2010). However, a clear understanding of which 

HDACs are expressed by MM PCs is lacking (Smith, et al 2010). Alternatively, histone 

methylation has been implicated to play an important role in MM development. For 

example, the high risk cytogenetic t(4;14) subgroup exhibits dysregulated expression of 

Fibroblast Growth Factor Receptor 3 (FGFR3) and Multiple Myeloma Set Domain 

(MMSET), a histone methyl transferase (Kalff and Spencer 2012).  Universal expression of 

MMSET in t(4;14) MM suggests that MMSET is critical for myeloma pathogenesis and/or 

progression (Marango, et al 2008). Interestingly, further to its histone methyl transferase 

activity, MMSET has been identified to enhance the activity of HDACs (HDAC1 and 

HDAC2) and therefore plays a role in altering histone acetylation. MMSET has been 

shown to be beneficial to the survival of MM PCs as in vitro MMSET knockdown affects 

genes involved in key survival processes such as cell cycle, apoptosis and adhesion (Brito, 

et al 2009). These findings reveal insights into new epigenetic therapeutic strategies in 

MM. However, further laboratory and clinical studies are required in this emerging area. 
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1.7 Current Therapies and Impacts in Multiple Myeloma 

Although MM remains a largely incurable disease, advances in clinical research have 

produced effective treatment methods for disease control. Different strategies are 

employed for asymptomatic and symptomatic disease stages where MGUS/SMM stages 

require clinical monitoring while active MM is treated immediately and, in most cases, 

aggressively to induce disease remission (Palumbo and Anderson 2011). In the past 

decade, the survival of MM patients has more than doubled due to the introduction of new 

effective drug classes including immunomodulatory drugs (lenalidomide, thalidomide, 

pomalidomide, daratumumab and elotuzumab), histone deacetylase inhibitors 

(panobinostat) and proteasome inhibitors (bortezomib, carfilzomib and ixazomib), and the 

increased use of ASCT (Gertz 2014, MMRF 2015, Palumbo and Anderson 2011). Patient 

risk status is evaluated based on the factors of age/performance, renal function and 

presence or absence of high-risk genetic abnormalities, which all plays an important role in 

the treatment selection (Gertz 2014). Treatment comprises of three phases: induction, 

consolidation and maintenance. Current induction treatments for newly diagnosed patients, 

who are eligible for ASCT, include two-drug combination therapy of dexamethasone with 

lenalidomide (Rd), thalidomide or bortezomib. Three-drug combination treatments for 

newly diagnosed patients include the use of bortezomib with: bortezomib-

cyclophosphamide-dexamethasone (VCD), bortezomib-thalidomide-dexamethasone 

(VTD) or bortezomib-lenalidomide-dexamethasone (VRD) (Rajkumar 2016). These 

combination treatment strategies are used to induce a complete response in patients before 

ASCT, followed by maintenance treatment with thalidomide or lenalidomide (Palumbo 

and Anderson 2011). For patients ineligible for transplantation, preferred treatments 

include melphalan based combinations of melphalan-prednisone-thalidomide (MPT), Rd 

(for elderly patients) or bortezomib based combinations VRD, VCD or VTD (Rajkumar 

2016). In more recent years the treatment of relapsed MM patients (who have undergone 

previous lines of treatment) has seen promising results with the clinical trials and approval 

of monoclonal antibodies daratumumab (targeting cell surface protein CD38) and 

elotuzumab (targeting cell surface protein CD319) in 2015. Daratumumab has shown great 

efficacy in clinical trials with the ability to induce a deep response as both a monotherapy 

(Lonial, et al 2016, Usmani, et al 2016) and in combination therapy with bortezomib-

dexamethosone (Palumbo, et al 2016) or lenalidomide-dexamethosone (Dimopoulos, et al 

2016). Similarly, elotuzumab has shown efficacy in its clinical trial as a combination 

therapy with lenalidomide-dexamethosone, but does not show any single-agent activity 
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(Lonial, et al 2015, Rajkumar 2016). These novel and combination therapies have been 

observed to provide a durable response and greater progression free survival for MM 

patients, although there are no current studies performed that investigate how a patient 

tumour composition may change genetically with the administration of these new 

treatments. 

 

Heterogeneity is thought to be characteristic of MM, and the administration of 

therapy acts as a potent source of artificial selection, which changes the dynamics of 

cancer clones (Fig. 5). The therapeutic strategies employed to control tumour growth are 

genotoxic and result in massive death of aggressive tumour PC clones with “driver” 

mutations, but also provides a selective pressure for the proliferation of indolent tumour 

PC clones with “passenger” mutations that may resist treatment (Brioli, et al 2014, 

Greaves and Maley 2012). Thus, therapy can initiate a selective bottleneck facilitating the 

death or survival of different subclones based on fitness (Brioli, et al 2014, Greaves and 

Maley 2012). Indolent clones surviving treatment may mutate further, acquiring “driver” 

mutations, thereby conferring improved fitness and malignant potential, which in turn, 

leads to disease relapse (Brioli, et al 2014, Greaves and Maley 2012). Clonal tiding, the 

rise and fall in dominance of subclones as selective pressures change, has been associated 

with the occurrence of MM disease relapse (Melchor, et al 2014). As a result, distinct 

clones may dominate at different times during the disease course making MM disease 

control difficult (Brioli, et al 2014, Greaves and Maley 2012).  
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Figure 5. The impact of therapy on intraclonal heterogeneity in MM: The introduction 

of treatment presents a new selective pressure on a heterogeneous MM tumour, in 

conjunction with those already existing due to the bone marrow microenvironment, 

immune system and competing clonal architecture. While therapy is effective in 

eliminating dominant PC populations harbouring critical “driver” mutations, it may be 

ineffective against indolent PC populations which do not have “driver” mutations. These 

residual PC clones surviving treatment may mutate further, acquiring “driver” mutations, 

thereby conferring improved fitness and malignant potential, which in turn leads to MM 

disease relapse. 
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In view of these new findings, the impact of therapy on clonal evolution and 

disease progression in MM should be considered at the outset of treatment. To date, a 

limited number of studies have investigated the changing clonal architecture in MM 

associated with treatment. Longitudinal WGS study of a single patient tumour through 

transformation stages - diagnosis, first relapse, second relapse and secondary PCL - has 

revealed substantial tumour heterogeneity, with clonal tiding in response to selective 

pressures from treatment, and resulting clonal evolution (Egan, et al 2012). These findings 

have been validated by WES analysis of a patient tumour at diagnosis and first relapse 

where 81 novel NS-SNVs were identified (33 shared at diagnosis and relapse, while 48 

were new) following relapse after first line therapy (Weston-Bell, et al 2013). Genomic 

analysis of paired diagnosis-relapse samples (n = 24) using the Genome-Wide Human SNP 

array has identified patients exhibiting branching, non linear evolution following therapy 

driven by the survival of a minor subclone which expanded at relapse (Magrangeas, et al 

2013). Similarly, targeted genomic mutation panel sequencing of sequential pre- and post-

therapy MM samples (n = 25) investigating the most commonly mutated genes in MM has 

revealed clonal evolution in the majority of patients, including clonal expansion, retraction 

and/or extinction (Kortum, et al 2015). To this end, the complete extinction of subclones 

(with mutations of KRAS and TP53) and emergence of new subclones (with mutations of 

FAM46C, FAT1, SPEN and TP53) was identified following therapy (Kortum, et al 2015). 

Conversely, however, WES on paired high-risk SMM-MM post-treatment samples has also 

identified that therapy is able to reduce clonal complexity of disease (Walker, et al 2014). 

These observations suggest inherent disease complexity at relapse in response to changing 

selective pressures attributed to the different chemotherapeutic agents and illustrates the 

need for tumour clones to be monitored for regressing or reappearing subclones which may 

contribute to disease aggressiveness following specific treatment regimes. 

It has been suggested that combinatory treatment regimens should be utilised for a 

deeper response to reduce both bulk tumour and eliminate clonal and subclonal 

populations. It has also been suggested that continued therapy versus selective therapy at 

specific stages of progression for disease control may provide better treatment outcomes. 

Unfortunately, there is no evidence to support the notion that continuous therapy is more 

effective than repeated therapy following disease relapse (Gertz 2014). Ultimately, 

improvements in the outcomes of future treatment will need to take into account the 

plasticity of MM PCs and altering dominance of genetically distinct subclones that occur 

as results of previous treatment (Hajek, et al 2013, Zhou, et al 2009).  
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1.8 Summary and Objectives  

In recent years, rapid advances in genomic technologies, including the application of NGS 

and single cell analysis techniques, has led to a revolution in our understanding of MM 

biology and provides direct evidence that MM is a genetically complex disease. Studies 

also suggest that MM development can be accounted for by a number of tumour 

development models including the linear model, expansionist model and intraclonal 

heterogeneity model. In addition, these methods have shown that MM development is 

associated with significant recurrent probable “driver” mutations in KRAS, NRAS, TP53, 

BRAF, FAM46C and DIS3 which are central to MM disease pathogenesis. Additionally, 

these new insights will impact current therapeutic strategies used to control MM disease. 

At this stage, research has mainly been performed on unpaired MGUS/SMM/MM samples, 

which limits our full understanding of the key “drivers” of MGUS to MM transition. 

Furthermore, few studies have examined the impact of treatment on intraclonal 

heterogeneity. With the progress of NGS technologies and the development of more cost-

effective methods, thorough analysis of paired MGUS-MM samples and analysis of post-

treatment samples should reveal the genetic and molecular mechanisms that play a central 

role in MM tumour development and disease progression. Ultimately, these insights will 

heavily influence the future therapeutic strategies used to control MM disease development 

and relapse. 

This project aims to characterise the underlying genomic complexity and tumour evolution 

associated with disease progression from MGUS/SMM to MM in paired patient samples. 

These samples were isolated from patients when they were first diagnosed with MGUS or 

SMM and subsequently when they were diagnosed at MM. 

 
The studies outlined in this thesis address the following aims: 

1. To identify the somatic variants associated with the progression of MGUS/SMM to 

MM using Whole Exome Sequencing (WES) 

2. To infer the subclonal tumour evolution model characteristic of disease progression 

from MGUS/SMM to MM 

3. To identify the transcriptomic and methylomic changes associated with the 

progression of MGUS/SMM to MM using RNA sequencing (RNAseq) and Whole 

Genome Bisulphite Sequencing (WGBS) 
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2.1 Abstract 

Multiple myeloma (MM) is a largely incurable haematological malignancy defined by the 

clonal proliferation of malignant plasma cells (PCs) within the bone marrow. Clonal 

heterogeneity has recently been established as a feature in MM, however, the subclonal 

evolution associated with disease progression has not been described. Here, we performed 

whole exome sequencing of serial samples from 10 patients, providing new insights into 

the progression from monoclonal gammopathy of undetermined significance (MGUS) and 

smouldering MM (SMM), to symptomatic MM. We confirm that intraclonal genetic 

heterogeneity is a common feature at diagnosis and that the driving events involved in 

disease progression are more subtle than previously reported. We reveal that MM 

evolution is mainly characterised by the phenomenon of clonal stability, where the 

transformed subclonal PC populations identified at MM are already present in the 

asymptomatic MGUS/SMM stages. Our findings highlight the possibility that PC extrinsic 

factors may play a role in subclonal evolution and MGUS/SMM to MM progression. 
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2.2 Introduction 

Multiple Myeloma (MM) is a haematological malignancy characterised by the 

uncontrolled proliferation of neoplastic plasma cells (PCs) within the bone marrow (BM). 

MM accounts for ~10% of all haematological malignancies1, with a median survival rate of 

5.2 years2. Although 10 new therapeutic agents for MM have been approved in the last 20 

years, and patient outcomes have improved significantly, individual responses to therapy 

and overall survival are varied3. MM remains largely incurable, with relapse being a 

common feature of disease.  

The development of MM has been classically viewed as a multistage process 

involving the acquisition of multiple genetic mutations, with immunoglobulin heavy chain 

translocations and hyperdiploidy known to be common initiating events that deregulate 

normal PC behaviour leading to the development of monoclonal gammopathy of 

undetermined significance (MGUS)4-7. Further mutational load leads to an intermediate 

stage of smouldering multiple myeloma (SMM)4,8. However, these common initiating 

events are insufficient to cause MM transformation, as MGUS/SMM patients commonly 

harbour these abnormalities and show no clinical symptoms of MM9,10. Studies have 

shown that progression to MM is associated with additional genetic changes including 

aneuploidy, chromosomal translocations, single nucleotide variants, small insertions and 

deletions, and copy number variants affecting one or more genes, with mutations present at 

a frequency of 0.1 to 10 per megabase11.  

Recent studies show that MM patients display complex mutational landscapes 

involving intraclonal genetic heterogeneity at the bulk tumour level, where mutations are 

acquired in a non-linear branching pattern12-17. Intraclonal heterogeneity has been observed 

at all stages of MM, suggesting that disease progression may be mediated through inter-

subclone competition and outgrowth of the fittest of these subclones. Genomic studies on 

large cohorts of unmatched MGUS-SMM-MM patients have led to the discovery of 

recurrently mutated genes, of which KRAS, NRAS, TP53, BRAF, FAM46C and DIS3 are 

believed to be drivers of MM transformation10,18-20. While clonal heterogeneity is now an 

established feature in MM, the subclonal evolution associated with MGUS/SMM to MM 

progression remains poorly understood.  

A comprehensive approach to identifying the key somatic mutations and infer the 

subclonal evolution associated with MM transformation, involves the longitudinal study of 

sequential MGUS-MM or SMM-MM samples from the same patient. However, because 

MGUS is often an incidental finding, it is extremely rare to have diagnostic BM samples 
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from the same patient at both the MGUS and MM stages. In addition, because there are no 

cell line or mouse models of MGUS or SMM, there has been limited opportunity to study 

the specific genetic changes and molecular mechanisms that characterise the progression 

from MGUS/SMM to MM.  

Here, we report a longitudinal genomics investigation of MM, based on paired 

MGUS-MM (n = 5) or SMM-MM (n = 5) patient samples obtained from the same patient 

when initially diagnosed at MGUS/SMM, and subsequently when they developed MM. 

Using whole exome sequencing, we have obtained a detailed description of the genomic 

complexity and subclonal evolution underlying progression from MGUS/SMM to MM. 
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2.3 Materials & Methods 

2.3.1 Clinical samples. 

Bone marrow mononuclear cell aspirates were collected from patients at MGUS/SMM, 

and subsequently at later diagnosis of MM (MGUS-MM (n = 5) and SMM-MM (n = 5)). 

The median time to progression of MGUS to MM was 3.2 years (range 1 - 13 years) and 

SMM to MM was 1.2 years (range 0.48 – 4.1 years). Where available, the cytogenetic 

status of patients is reported in Supplementary Table 1. Samples were collected from 

patients prior to treatment. All patients provided informed consent in accordance with the 

Declaration of Helsinki. Samples were cryopreserved by the South Australian Cancer 

Research Biobank (SACRB) at SA Pathology. The studies were approved by the Royal 

Adelaide Hospital Human Research Ethics Committee (HREC/13/RAH/569 No: 131133). 

Samples were collected over a period of 22 years, and we initially began this study with 

paired-samples from 18 patients. However, due to our strict criteria for sample purity and 

mutation calling resolution, final analysis was only performed on samples from 10 

patients. 

 

2.3.2 Cell sorting. 

PCs and non-tumour cells were purified using multicolour flow cytometry as previously 

described21. Briefly, approximately 1x105 mononuclear cells were prepared for single stain 

antibody control (CD138-PE (Beckman Coulter #A54190) and CD38-PE-Cy7 (Biolegend 

#303515)) and compensation/FMO tubes (1: unstained; 2: hydroxystilbamidine 

(FluoroGold; Life Technologies) only; 3: CD38-PE-Cy7+FluroGold; 4: CD138-

PE+FluroGold; and 5: CD38-PE-Cy7+CD138-PE). The sort sample was stained with 

CD138-PE and CD38-PE-Cy7 antibody at 1µL/100µL cells. Cells were stained with 

FluoroGold immediately prior to sorting. Viable PCs (CD138+CD38+ and FluoroGold 

negative) and non-tumour cells were sorted on the FACSAria Fusion sorter (BD 

Biosciences). FACS purity check was carried out on sorted cells, using 100-500 cells from 

each sample. 

 

2.3.3 DNA isolation, QC and sequencing. 

DNA was isolated from purified PC and non-tumour populations using the All Prep 

DNA/RNA Micro Kit (QIAGEN) as per manufacturers’ instructions. Yields and quality 

was assessed using the NanoDrop 8000 and Qubit 2.0 fluorometer (Thermo Fisher 

Scientific). 
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115ng of gDNA were used as input for fragmentation on the Covaris E220, followed by 

end-repair/A-tailing and ligation of SureSelect Adapter Oligos (Agilent). Pre-Capture PCR 

amplification of 10 cycles, or 12 cycles for low input samples, were performed. A total of 

750ng of each sample was hybridised to SureSelect XT Clinical Research Exome (Agilent) 

probes overnight. Captured DNA was amplified with 11 cycles of post-capture PCR 

incorporating index barcodes. Sequencing was performed on the Illumina HiSeq4000 

(2x100 bp paired-end reads) and NextSeq 500 (2x150 bp paired-end reads). Samples were 

sequenced to a minimum depth of ~140X mean coverage. Isolated non-tumour cells were 

also sequenced to a similar average depth (138x). 

 

2.3.4 Analysis of data. 

Sequencing reads were mapped to the human decoy genome (hs37d5) using Novoalign 

(v3.02.08), followed by post-processing according to GATK best practices22. Somatic 

single nucleotide and small indel variants were called using MuTect223 and multiSNV24. 

Variants were filtered based on: 10+ reads covering the variant site; 5+ reads covering the 

variant in the tumour sample. Variants were annotated with SnpEff25. 

 

R 3.3.2 was used throughout for analyses. Somatic copy number variants were called using 

CNVkit26 v0.7.11 and custom in-house methods developed to support highly aneuploid 

genomes to perform segmentation and calculate log2 changes. 

 

Clonal evolution was investigated using PhyloWGS27 and visualised using fish plot in R28. 

PhyloWGS is noted to inflate the number of subclones, thus we recognise that subclone 

numbers may be overestimated. All phylogenetic trees constructed were based on the 

assumption that there is a single founder clone.  

 

Additional information on sequencing and somatic mutation analysis is given in the 

supplementary methods. 

2.3.5 Data deposition. 

All raw sequencing reads have been deposited in the EGA repository (Accession number: 

EGAS00001002850). 

2.3.6 Code Availability. 

Custom script generated for CNV analysis is available on request from corresponding 

authors. 
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2.4 Results 

2.4.1 A changing spectrum of acquired mutations, not mutational load, is associated 

with MM progression. 

Whole exome sequencing was performed on paired MGUS/SMM to MM patients [detailed 

in Supplementary Table 1] to a minimum average depth of 140x [Supplementary Table 2]. 

A total of 1614 somatic non-synonymous single nucleotide variants (NS-SNVs) were 

identified across the MGUS/SMM samples (range 30-220) with a median 161 per patient. 

Interestingly, in the MM samples, we identified a total 1508 somatic NS-SNVs (range 59-

226), with a median 152 per patient. There was an average of 27 NS-SNVs that were 

shared between the MGUS/SMM and MM stage (range 0-53) [Supplementary Table 3]. 

We observed a moderately higher mutation load compared to previous larger cohort 

studies of MM, which identified median SNV numbers of 31 (range 15-46)4, and 52 

mutations per patient (range 2-488)18.  

 

Recent sequencing studies of unpaired MM samples have described an increasing 

median NS-SNV burden from MGUS to SMM to MM, with MGUS patients harbouring 

approximately half the number of NS-SNVs when compared to unmatched MM patients4, 

with an average of 35 at the MM stage10. Here, we observed the opposite upon progression 

from MGUS/SMM to MM, where 7 out of 10 patients showed a decrease in total 

mutational load [Figure 1a]. While the total mutational burden is not considerably 

different between MGUS/SMM and MM, the presence of intraclonal heterogeneity and 

changes in the spectrum of mutated genes between disease stages, suggests that there is 

waxing and waning of subclones over time29.  

 

We next examined the changing mutational landscape associated with 

MGUS/SMM to MM progression, to identify the genetic aberrations associated with this 

process, including both previously reported “drivers” of MM and frequently acquired 

mutations present at MM transition. To this end, we identified 2566 unique genes with 

acquired variants at MM transition across all patients. The most common genes harbouring 

mutations at MM include KRAS, KMT2D, RYR2, DNAH5, PCDH8, RP4-669P10.16, DIS3, 

FAT3, PKHD1 and SP140 [Figure 1b]. Moreover, we identified 15 previously reported 

recurrently mutated genes: KRAS, FAT3, DIS3, TRAF3, SP140, RB1, PTEN, ROBO1, 

PRDM1, NRAS, MYC, MAGED1, IRF4, HLA-A and CDK410,18-20,30 [Figure 1c], including 

mutations in 3 known “drivers” of MM: KRAS, NRAS and DIS3 [Supplementary Table 4]. 

In our samples, mutations in KRAS and NRAS, were mutually exclusive, consistent with 
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previous observations that report the rare co-occurrence of mutations in these genes (in 2% 

of patients)20.  

 

The RAS/MAPK pathway was highly mutated with 40% of patients at 

MGUS/SMM, and 70% at MM, harbouring mutations in KRAS and NRAS. DIS3 was 

mutated in 30% of patients at the MM stage only [Figure 1d]. This highlights that driver 

mutations can be acquired at both the asymptomatic stages and be maintained during 

progression to MM, or be acquired later at MM. However, we found that acquisitions of 

driver mutations are subclonal in nature. Low variant allele frequencies were identified for 

RAS pathway mutations (KRAS range 0.024 - 0.53, NRAS 0.03 - 0.28), suggesting that 

these mutations were present in subclonal PC populations during progression (P01, P02, 

P05 and P06) [Figure 1d]. Interestingly, acquisition of DIS3 mutations at the MM stage in 

patients P07 and P10 was observed to be clonal in nature31 [Figure 1d].  

 

We also characterised the copy number variation (CNV) landscape associated with 

MGUS/SMM to MM progression, finding copy changes to be widespread [Figure 2a]. 

This contrasts a recent small longitudinal study of SMM to MM transformation that 

showed that copy changes are a feature of early stage of MM disease and not associated 

with progression4. We observed that MGUS/SMM patients harbour a similar frequency of 

chromosomal loci copy gains and losses than MM patients, with a median of 70 at 

MGUS/SMM (range 19 to 114), and 67.5 at MM (range 43 to 103) [Supplementary Table 

5]. Upon progression, we observed known frequent chromosomal copy number 

abnormalities in MM, including amplifications on chromosome arms 1q, 3p, 6p, 9p, 11q, 

19p, 19q and 21q, coupled with losses on chromosome arms 1p, 6q, 8p, 13q, 16q and 22q 

across patients in the cohort [Figure 2b]. While we performed a gene level copy number 

analysis, we did not find any genes that were consistently gained or lost in our cohort upon 

progression. Interestingly, we also observed that many of the cytogenetic abnormalities 

associated with MM are present at MGUS/SMM stages and that standard cytogenetic 

methods did not accurately capture these abnormalities [Supplementary Figure 4]. 
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Figure 1. Pattern of genetic mutations in MGUS/SMM to MM progression. (a) Total 

NS-SNV mutational load associated with progression from MGUS/SMM to MM in 

individual patients (b) Waterfall diagram indicating the 10 most frequently mutated genes 

associated with progression from MGUS/SMM to MM (c) We identified mutations in 15 

reported recurrently mutated MM genes in our MGUS/SMM to MM samples. However, 

individual patients harbour a heterogeneous genetic architecture, with a combination of 

mutations in known driver (KRAS, NRAS and DIS3) and other candidate genes. Mutations 

in RAS/MAPK pathway genes are most prevalent. (d) Gradient diagram across all patients 

indicating the variant allele frequencies (VAF) of identified known cancer drivers. RAS 

mutations are observed to mainly occur subclonally. 
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Figure 2. The chromosomal copy number variation landscape associated with 

MGUS/SMM to MM progression. (a) Chromosomal copy number landscape plot 

illustrating the proportion of patients with copy amplifications (blue) and deletions (red) of 

chromosomes across all patients associated with MGUS/SMM to MM progression. Grey 

traces the average in the cohort as a whole, where below 0 indicates loss and above 0 

represents gain. (b) Frequent previously reported copy number changes of MM were 

identified, including gains on 1q, 3p, 6p, 9p, 11q, 19p, 19q and 21q; and losses on 6q, 8p, 

13q, 16q and 22q being present at the asymptomatic stages and maintained with 

progression to MM. 
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2.4.2 The subclonal architecture required for MM progression exists at MGUS/SMM 

diagnosis 

While clonal heterogeneity is an established feature in MM, the subclonal evolution 

associated with disease progression has not been well explored. Due to the nature of our 

paired longitudinal patient samples, we were able to directly examine the relationship 

between genetic variegation and clonal structure to construct evolutionary trajectories 

accompanying progression to MM in 8 individual patients. 

 

Comparisons of unpaired MGUS/SMM and MM samples have shown that 

MGUS/SMM exhibits mutational similarity with MM, but many mutations were present in 

a smaller proportion of aberrant PCs32,33. Similarly, small paired-sample studies examining 

the evolution over time of asymptomatic monoclonal gammopathies (AMGs) to MM (n = 

4)34, and high risk SMM to MM patients (n = 4)4, have also found that most somatic 

changes required for MM were present at the asymptomatic stages, with the clinically 

dominant MM subclone present at the SMM stage. Therefore, the occurrence of clonal 

evolution in MM represents a change in clonal heterogeneity over time from the 

asymptomatic stages to MM13.  

 

In both MGUS-MM (P01, P04 and P10) and SMM-MM (P02, P03, P05, P06 and 

P08) progression, we find a prevailing model of evolution defined by clonal stability. This 

is where the transformed subclonal PC populations identified at MM were already present 

in the asymptomatic MGUS/SMM stages.  Progression to MM involved subtle changes in 

the existent subclonal structure from MGUS/SMM, coupled with a degree of emergence 

and/or extinction of child subclonal branches [Figure 3, 4]. Of note, we observed that 

subclonal evolution has already begun prior to MGUS/SMM sampling. While multiple 

subclonal populations are present at MGUS/SMM diagnosis, each patient harbours unique 

set of oncogenic mutations driving MM progression. 
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2.4.2.1 Subclonal tumour evolution in MGUS-MM patients 

Three patients (P01, P04 and P10) were initially diagnosed with MGUS, and subsequently 

with MM. Typically, an average of 7 subclones were identified in MGUS sample pairs. We 

describe two examples, with the full-annotated subclonal architecture for all MGUS-MM 

patients found in Supplementary Figure 1/Appendix 1.  

 

Patient P01 exhibited a modest increase in NS-SNV mutations with progression 

and was composed of eight subclones at diagnosis. The founder clone had a copy number 

change on chromosome 1. Interestingly, while P01 mainly exhibited stable progression of 

subclones from MGUS to MM, we observed KRAS mutations to be newly acquired in 

multiple child subclones. Subclone 7 [brown] harboured a mutation causing an amino acid 

change at Q61L, with a resultant neutral growth observed. Furthermore, we identified 

mutations occurring in a nested fashion, with outgrowth of subclone 8 [grey from <1% to 

~6%] harbouring mutations at G12D and G12S, with further emergence of child subclone 

9 [green] harbouring additional change at Q61H with MM progression. This was coupled 

with the extinction of child subclonal branches of subclone 2 [purple] [Figure 3a]. 

 

Patient P04 exhibited an interesting subclonal evolution pattern, where initially one 

subclone [subclone 2 purple] evolved from the founder clone, which was followed by 

substantial branching evolution resulting in six child subclones involved in MM 

progression. The founder clone harboured mutations in MYCBP2 (F22L) and TOP2A 

(K1199N) and copy number changes on chromosomes 9, 11, 13, 14 and 18. While most of 

the child subclones exhibit stability, subclone 3 [orange from <1% to ~18%] and subclone 

9 [green from <1% to ~9%] appear to have a selective advantage and showed emergence 

towards MM [Figure 3b]. Similarly, P10 was composed of eight subclones at MGUS with 

the neutral growth of subclonal populations coupled with the emergence of multiple 

subclones [subclone 4 yellow from ~3% to ~25%, and subclone 5 blue from ~1% to ~10%] 

and extinction of child subclone 3 [orange from ~5% to <1%] with progression 

[Supplementary Figure 1c].  
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Figure 3. The subclonal tumour evolution associated with MGUS to MM progression. 

Fishtail plots illustrate the subclonal architecture in MGUS-MM of two patients (a: P01 

and b: P04), which was defined by the existence of between 5 to 8 PC subclones at MGUS 

diagnosis. These subclonal populations generally progress to MM in a stable manner, in 

combination with the coupled emergence and/or extinction of child subclones. Key 

mutations in the founder clone and subclones are highlighted, with mutations in driver 

genes identified at both the clonal and subclonal level. The full-annotated subclonal 

genetic architecture for all patients can be found in Supplementary Figure 1. 
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2.4.2.2 Subclonal tumour evolution in SMM-MM patients 

Five patients (P02, P03, P05, P06 and P08) were diagnosed for SMM, and then 

subsequently MM at a later time point. Generally, an average of 8 subclones were 

identified in SMM-MM pairs. We report two examples, with the full-annotated subclonal 

architecture for all SMM-MM patients found in Supplementary Figure 2/Appendix 1.  

 

Patient P02 was composed of eleven subclones at diagnosis and exhibited stable 

growth during progression with mainly the emergence of child subclone 5 and its branches 

[blue from ~5% to ~13%] and extinction of subclone 9 [dark green from ~6% to <1%] 

[Figure 4a]. The founder clone showed copy changes on chromosomes 6, 8 and 13, and 

mutations in HERPUD1 (STOP gain), FGFR3 (809S) and DAPK1 (K435R). Furthermore, 

we identified a KRAS mutation (A146P) in subclone 11, whose population proportion size, 

interestingly, did not change during MM progression.  

 

Patient P03 displayed an interesting evolution pattern with massive extinction of 

subclone 2 [purple] from ~47% to ~6%, and almost all of its child subclones, by MM 

diagnosis. The founder clone harboured mutations in NOD2 (STOP gain) and CNVs on 

chromosomes 1, 6, 9, 13 and 16. Furthermore, two individual subclones that contained 

distinct DIS3 mutants M566K and R689P were identified at SMM diagnosis in subclone 8 

[black] and child subclone 11 [dark purple], respectively [Figure 4b]. While recent single 

cell analysis has demonstrated parallel evolution of the RAS/MAPK pathway in MM 

through the occurrence of RAS mutations in individual clones leading to distinct subclonal 

populations35, here we uniquely identify parallel evolution of DIS3, with the resultant 

emergence of both subclonal lineages with MM progression. Additionally, subclone 13 and 

its child subclones exhibited outgrowth with a mutation in NEK2 (L39H) [light green from 

<1% to ~7%].  

 

Clonal stability in tumour evolution is also exemplified in other SMM-MM patients 

[P05, P06, and P08], which were characterised by 7, 5 and 8 subclones at diagnosis, 

respectively, and exhibited coupled emergence and extinction of child subclones in the 

progression to MM. In P05, there were initially two subclones that progressed to MM with 

the emergence and extinction of child clones from subclonal branch 5 [blue], combined 

with the neutral growth from subclonal branch 2 [purple] [Supplementary Figure 2c]. 

Similarly, in P06, with progression we observed the emergence of subclone 8 [black from 

<1% to ~23%] and its child subclone 9 [dark green from <1% to ~4%], and subclone 2 
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[purple from ~8% to ~28%] and its child subclones 6 [pink from <1% to ~10%] and 7 

[brown from <1% to ~6%]. The proportions of child subclonal population 3 [orange] 

remained unchanged between SMM and MM [Supplementary Figure 2d]. Patient P08 

exhibited neutral growth, which was coupled with the emergence of child subclone 9 

[green from <1% to ~5%] and extinction of child subclone 8 [black from ~6% to <1%] 

with MM progression [Supplementary Figure 2e]. 

 

Our analysis reveals conclusive evidence of intraclonal heterogeneity and 

subclonality from the earliest MGUS/SMM stages, where most of the transformed 

subclonal populations involved in progression to MM are already present at diagnosis. 

Notably, we do not observe a remarkable difference in the subclonality characteristic at the 

initial asymptomatic MGUS stage (average 7 subclones) and the intermediate SMM stage 

(average 8 subclones). This suggests that major subclonal remodelling is also not a 

phenomenon associated with advancement between the asymptomatic stages. 

	
	
	
	
	
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	 60	

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The subclonal tumour evolution associated with SMM to MM progression. 

Fishtail plots illustrating the subclonality in SMM-MM of two patients (a: P02 and b: 

P03), with the existence of between 5 to 11 PC subclones at the SMM stage. Notably, in 

comparison to the subclonal architecture at MGUS diagnosis, we observe a similar number 

of subclones present at SMM. Similar to the MGUS subclones, these SMM subclonal 

populations generally progress to MM in a stable manner, in combination with the coupled 

emergence and/or extinction of child subclones. Key mutations in MM genes in the 

founder clone and subclones are highlighted, where mutations in driver genes were found 

to be both clonal and subclonal in nature. The full-annotated subclonal genetic architecture 

for all patients can be found in Supplementary Figure 2. 
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2.5 Discussion 

The longitudinal investigation of MGUS/SMM to MM samples using NGS has revealed a 

new understanding of the underlying genetic architecture and subclonal evolution 

associated with MM progression. Analysis of MGUS-MM, and SMM-MM transition has 

shown that intraclonal heterogeneity is present at the asymptomatic stages. We find that 

progression is associated with an altered landscape of acquired mutations, rather than an 

increased total mutational burden.  

 

Cancer progression models propose either the sequential accumulation of key 

genetic mutations throughout progressive disease and clonal expansions (“Darwinian” 

evolution), or punctuated bursts of large-scale chromosomal alterations (“Saltationist” 

evolution)36. The current understanding of MM transformation involves a sequential nature 

of evolution from the well-defined asymptomatic stages of MGUS and SMM, 

characterised by clonal expansion of PCs, and branching “Darwinian” evolution with the 

presence of 2 to 6 subclones, highlighting clonal heterogeneity at MM presentation10,18-

20,29,30,35,37-41. In this model it is recognised that progression from the asymptomatic stages 

is dependent on the rise and fall in dominance of PC subclones based on their clonal 

fitness. The acquisition of driver mutations confers a selective advantage and facilitates 

better survival properties allowing the subclones to survive the selective pressures of the 

microenvironment/immune system and progress to symptomatic MM. 

 

Notably, our study establishes MM disease progression to be characterised by the 

phenomenon of clonal stability, where substantial remoulding of the subclonal populations 

from the asymptomatic stages is not a necessary prerequisite for progression to MM. We 

found the existence of multiple PC subclones (range 5 to 11) at both MGUS and SMM that 

were intrinsic in the development and progression of MM. Furthermore, by comparing 

patients at MGUS and SMM stages we identified no significant difference in the number 

of PC subclones present at diagnosis (with an average of 7 versus 8, respectively). This is 

striking, as progression between the asymptomatic stages of MGUS and SMM is currently 

distinguished by an increased BM PC% and monoclonal protein level. We also found no 

correlation between the extent of subclonality and BM PC% at the MM stage in patients 

[Supplementary Figure 3]. Similarly, a recent study of four high risk SMM to MM 

transformation patients revealed that clonal progression was the key feature of MM onset, 

where the invasive clinically predominant clone typical of MM, was already present at 

SMM4. Similarly, in their investigation, Walker et. al. reported a shifting clonal structure 
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with the outgrowth and reduction of subclonal populations from SMM to MM4. Taken 

together, we hypothesise that patients who progress within a short time frame, 

MGUS/SMM to MM transformation does not always required the acquisition of many 

additional mutations and clonal selection. These MGUS/SMM patients appear to be 

sufficiently genetically complex to be on the threshold of transformation to MM, which 

may possibly be driven by extrinsic factors. 

 

Being able to define the crucial oncogenic events in the founder clonal population 

could facilitate treatment strategies for early intervention to arrest MM progression. 

However, as the subclones responsible for MM are evident at the asymptomatic stages this 

poses the question as to why these patients are not symptomatic. A strong possibility is that 

further to intrinsic genetic factors, extrinsic factors such as the tumour microenvironment 

may also play an important role in defining both the subclonal architecture and the overall 

tumour cell burden for progression to clinical malignancy. The complex interactions of the 

tumour microenvironment with subclones provide signals that may support tumour growth 

or dormancy, which may influence their transformation42-49. Of note, a recent study from 

our group which used the C57BL/KaLwRij mouse model of MM, demonstrated habitual 

clonal dominance, where only a few establishing MM cells subsequently contributed to 

tumour burden while most remained dormant. This illustrates the strong selection pressures 

present within the BM microenvironment which plays a role in defining the clonal 

architecture46. 

 

The current standard of care at the asymptomatic stages involves monitoring 

patients, with no treatment options until they progress to symptomatic MM. Here our study 

has demonstrated that there is no significant shift in subclonal structure associated with 

MM progression. As such, subclonal populations present at MGUS/SMM diagnosis would 

be just as amenable to treatment, and eradication of these subclonal populations prior to 

disease transformation could delay progression and may provide the prospect of a durable 

cure50. However, we recognise that intraclonal heterogeneity has been shown to be 

characteristic of MGUS/SMM/MM, with multiple subclones having differing survival 

properties, therefore the risk of further mutation and tumour evolution due to drug 

selection pressures would eventually lead to relapse. Furthermore, intraclonal 

heterogeneity with clonal selection may not be the only defining evolution associated with 

progression of MM, with a recent study illustrating the involvement of spatial 

heterogeneity with regional site seeding and outgrowth resulting in progression51. 
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Therefore, a combined longitudinal and spatial study of progression in patients would 

further elucidate genomic biomarkers of MM tumour evolution52, although the ability to 

sample from multiple sites in asymptomatic patients has significant ethical and practical 

challenges. 

 

Our findings reveal new insights into the genomic complexity and subclonal 

tumour evolution that is present from MGUS/SMM through to MM transformation. The 

existence of subclonality and clonal stability as a model of tumour evolution not only 

provides a more comprehensive understanding of the underlying biology of MM disease 

progression, but also new considerations required for patients at diagnosis and future 

therapeutic approaches to control this disease. 
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2.7 Supplementary  

2.7.1 Supplementary Methods 

2.7.1.1 Whole Exome Sequencing. 

Exome libraries were generated using the Nimblegen KAPA Hyper Library Prep kit (Kapa 

Biosystems, PN KP-KK8504) followed by the SureSelectXT Clinical Research Exome 

(CRE) (Agilent, S06588914) capture kit. 115ng of gDNA were used as input for 

fragmentation on the Covaris E220 followed End-Repair/A-Tailing and ligation of the 

SureSelect Adapter Oligos, excepting samples which had low input and required additional 

PCR cycles [Supplementary Table 6]. 10 cycles, or 12 cycles in the case low input 

samples, of Pre-Capture PCR amplification were performed to produce sufficient library 

for exome capture. Libraries were quantified on the LabChip GX II (LCGXII) using the 

5K HT DNA assay (Perkin Elmer, PN 760435 and CLS760675) and 750ng of each sample 

was input to the Agilent CRE capture workflow, hybridised to the CRE probes overnight. 

Following the capture washes and 11 cycles of Post-Capture PCR incorporating index 

barcodes, captured libraries were validated on the LCGXII using the 5K HT DNA assay 

(Perkin Elmer, PN 760435 and CLS760675).  An equimolar pool was prepared from the 

captured libraries and the pool validated on an Agilent HS DNA Bioanalyzer chip 

(Agilent, PN 5067-4626), and by qPCR using the KAPA Library Quantification Kits 

(Kapa Biosystems, PN KK4824), to assess quantity and quality of the samples ready for 

sequencing. Sequencing was performed on the Illumina HiSeq4000 (2x100 bp paired-end 

reads) and NextSeq 500 (2x150 bp paired-end reads). Samples were sequenced to a 

minimum depth of ~140X mean coverage. Isolated non-tumour cells were also sequenced 

to a similar average depth (138x). 

 

2.7.1.2 Analysis of Whole Exome Sequencing Data. 

2.7.1.2.1 Sequence alignment. 

Sequencing reads were mapped to the human decoy genome (hs37d5) using Novoalign 

(v3.02.08) followed by post-processing according to GATK best practices22.  

 

2.7.1.2.1 Somatic variant calling. 

Somatic single nucleotide and small indel variants were called using MuTect223 and 

multiSNV24. Variants were filtered using the following criteria: 10+ reads covering the 

variant site; 5+ reads covering the variant in the tumour sample. Variant annotation was 

performed with SnpEff25. 
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R 3.3.2 was used throughout for analyses. Somatic copy number variants were called using 

CNVkit26 v0.7.11 and custom in-house methods developed to support highly aneuploid 

genomes to perform segmentation and calculate log2 change between matched non-tumour 

and MGUS/SMM/MM. Log2 changes were corrected for sample purity to calculate ploidy 

at each stage. To investigate common copy number changes between MGUS/SMM and 

MM stages, for each patient and each gene the ploidy change was calculated between 

MGUS/SMM and MM, and a score generated for each gene by calculating the number of 

patients demonstrating ploidy increase minus the number of patients demonstrating ploidy 

decrease (ploidy change was threshold at 0.2 copies to reduce noise). Broad copy number 

changes were compared to cytogenetics data when available to examine concordance. 

Focal copy number changes were defined as regions < 3Mb in length53 

 

To investigate total copy number change at each stage, the CNVkit segmentation was used. 

Purity adjusted ploidy changes > 0.2 were summed for each patient. The Y chromosome, 

Immunoglobulin heavy region on chromosome 14, and T cell receptor A variable regions 

on chromosomes 7 and 14 were excluded from this analysis as they were frequently hyper-

segmented in the CNVkit analysis.  

 

2.7.1.3 Tumour heterogeneity and subclonal evolution. 

Clonal evolution was investigated using PhyloWGS27 and visualised using fish plot in R28. 

It is worth noting that PhyloWGS can inflate the number of subclones so, although we 

based our analysis on the inferred subclonal architecture, we recognise that the numbers of 

subclones may be overestimated. There are some mutation discrepancies between the 

subclonal trees and the SNVs called by MuTect2 due to threshold differences between the 

two analyses. PhyloWGS requires one time point to demonstrate that the mutation is 

present at a non trivial level, therefore a lower burden of proof is required to infer its 

existence between the two time points. However, if both time points demonstrate a low 

proportion then that mutant is not inferred in the subclonal tree. In our subclonal tumour 

evolution models, we did not consider polyclonal evolution, where multiple founder PC 

clones were present at the MGUS/SMM diagnosis stage, due to the computational 

difficulty in modeling polyclonal evolution. All phylogenetic trees constructed were based 

on the assumption that there is a single founder PC clone.  
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2.7.2 Supplementary Appendix 1 

2.7.2.1 Subclonal tumour evolution in MGUS-MM patients 

Patients P01, P04 and P10 were initially diagnosed with MGUS, and subsequently with 

MM. We observed that MGUS-MM patients exhibited an average time to progression 

(TTP) of ~5 years. All three patients showed a decrease in total non-synonymous SNVs 

associated with progression [Figure 1a]. Patients P04 and P10 were composed of eight and 

five subclones at MGUS diagnosis, respectively. Patient P04 exhibited an interesting 

subclonal evolution pattern, where initially one subclone [subclone 2 purple] evolved from 

the founder clone, which was followed by substantial branching evolution resulting in six 

child subclones involved in MM progression, and a rapid TTP of 1 year. The founder clone 

harboured mutations in MYCBP2 (F22L) and TOP2A (K1199N) and copy number changes 

on chromosomes 9, 11, 13, 14 and 18. While most of the child subclones exhibit stability, 

subclone 3 [orange] and subclone 9 [green] appear to have a selective advantage and 

showed emergence towards MM [Supplementary Figure 1b].  

 

In patient P10 we observed a decreased proportion of the founder clone, likely due 

to some normal PCs contamination [Supplementary Table 2]. We identified neutral growth 

of subclonal populations coupled with the emergence of multiple subclones [subclone 4 

yellow from ~3% to ~25%, and subclone 5 blue from ~1% to ~10%] and extinction of 

child subclone 3 [orange from ~5% to <1%] with progression. The founder clone showed 

multiple high impact mutations in DUSP27 (STOP gain), SP140 (F133I) and FAM110B 

(P339L) [Supplementary Figure 1c]. The TTP of P10 was noted to be 13 years, possibly 

representing an earlier diagnosis and sampling time for this patient.  

 

Patient P01 exhibited a slight decrease in NS-SNV mutations with progression and 

was composed of eight subclones at diagnosis. The founder clone had a copy number 

change on chromosome 1. Interestingly, while P01 mainly exhibited stable progression of 

subclones from MGUS to MM, we observed KRAS mutations to be newly acquired in 

multiple child subclones. Subclone 7 [brown] harboured a mutation causing an amino acid 

change at position Q61L, with a resultant neutral growth observed. Furthermore, we 

identified mutations occurring in a nested fashion, with outgrowth of subclone 8 [grey 

from <1% to ~6%] harbouring mutations at G12D and G12S, with further emergence of 

child subclone 9 [green] harbouring additional change at Q61H with MM progression. This 

was coupled with the extinction of child subclonal branches of subclone 2 [purple] 

[Supplementary Figure 1a].  
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2.7.2.2. Subclonal tumour evolution in SMM-MM patients 

Patients P02, P03, P05, P06 and P08 were diagnosed for SMM, and then subsequently MM 

at a later time point. SMM patients demonstrated an average TPP of 2 years. Patients were 

separated on the basis of total non-synonymous SNV burden associated with MM 

progression, where 3 patients showed a decrease (P02, P05 and P08) and 2 patients showed 

an increase (P03 and P06) [Figure 1a]. Patients P02 and P06 were composed of eleven and 

five subclones at diagnosis, respectively. Patient P02 exhibited stable growth during 

progression, with mainly the emergence of child subclone 5 and its branches [blue from 

~5% to ~13%] and extinction of subclone 9 [dark green from ~6% to <1%] 

[Supplementary Figure 2a]. The founder clone showed copy changes on chromosomes 6, 8 

and 13, and mutations in HERPUD1 (STOP gain), FGFR3 (809S) and DAPK1 (K435R). 

Furthermore, we identified a KRAS mutation (A146P) in subclone 11, whose population 

proportion size, interestingly, did not change during MM progression.  

 

Patient P06 displayed a small founder clone proportion, possibly due to variants 

such as structural changes unable to be characterised by WES, which harboured copy 

changes on chromosomes 3, 5, 6, 15, 17, 19 and 21, and point mutation in NRAS (Q61R). 

We mainly observed the emergence of subclone 8 [black from <1% to ~23%] with KLC3 

mutation (R442H) and its child subclone 9 [dark green from <1% to ~4%], and subclone 2 

[purple from ~8% to ~28%] and its child subclones 6 [pink from <1% to ~10%] with 

mutations in MYCBP2 (E730K), FGFR3 (A165T) and PRDM1 (G214R) and 7 [brown 

from <1% to ~6%] with progression. The proportions of child subclonal population 3 

[orange] remained unchanged between SMM and MM [Supplementary Figure 2d].  

 

Patient P08 exhibited neutral growth, which was coupled with the emergence of 

child subclone 9 [green from <1% to ~5%] and extinction of child subclone 8 [black from 

~6% to <1%] with MM progression. The founder clone had widespread mutations with 

CNVs in chromosome 2, 8, 9, 13, 16, 18, 19, 20 and 22, and SNVs in RB1 (G449E), 

PLEKHA7 (STOP gain), RBM4B (STOP gain), DDX55 (R222Q), CCDC105 (STOP gain), 

HIST1H3J (STOP gain) and MLIP (STOP gain) [Supplementary Figure 2e].  

 

Similar to P06, patient P05 showed a smaller founder clone proportion at diagnosis. 

There were initially two subclones present at the SMM stage, which progressed to MM 

with the emergence and extinction of child clones from subclonal branch 5 [blue], 

combined with the neutral growth from subclonal branch 2 [purple]. Subclone branch 5 
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[blue] and its child subclonal branches 9 [green] and 10 [light brown] harboured multiple 

stop mutations in genes NRG3, EZH2, KLHL20, SNX9, C8orf87, ACTL6A and MTA3. 

However, these child subclones became progressively extinct with MM progression, from 

~5% to ~2% and ~3% to <1%, respectively. While child subclones 7 [dark brown] and 8 

[black] exhibit emergence towards MM, from <1% to ~10% and <1% to ~5%, 

respectively. The founder clone harboured mutations in KRAS (G12V) and ICAM5 (R85L), 

and CNVs on chromosome 2 and 19 [Supplementary Figure 2c].  

 

Patient P03 displayed an interesting evolution pattern with massive extinction of 

subclone 2 [purple] from ~47% to ~6%, and almost all of its child subclones, by MM 

diagnosis. The founder clone harboured mutations in NOD2 (STOP gain) and CNVs on 

chromosomes 1, 6, 9, 13 and 16. Furthermore, two individual subclones that contained 

distinct DIS3 mutants M566K and R689P were identified at SMM diagnosis in subclone 8 

[black] and child subclone 11 [dark purple], respectively [Supplementary Figure 2b]. 

While recent single cell analysis has demonstrated parallel evolution of the RAS/MAPK 

pathway in MM through the occurrence of RAS mutations in individual clones leading to 

distinct subclonal populations24, here we uniquely identify parallel evolution of DIS3, 

with the resultant emergence of both subclonal lineages with MM progression. 

Additionally, subclone 13 and its child subclones exhibited outgrowth with a mutation in 

NEK2 (L39H) [light green from <1% to ~7%]. 
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2.7.3 Supplementary Figures 

 

 
 
 
 

 
 
 
 
 
 
 

 

Supplementary Table 1. Clinical cytogenetic data for MGUS/SMM to MM patients. 

Clinically recorded data at MM diagnosis for patients in the study. The median age of patients 

at MM diagnosis was 75.5 years. Molecular cytogenetics of patients was performed using 

FISH analysis on interphase spreads of bone marrow smears. Nil represents parameter not 

being present. N/A represents that data was not available. 

 
 

Supplementary Table 2. Estimated sample purity and exome sequencing coverage. Purity 

of FACS sorted patient PCs was assessed by FACS purity check post sort on sorted cells tube, 

with 100-500 cells through the flow cytometer for each sample. Mean depth of sequencing 

describing the average number of reads over bases in the targeted exome region of samples 

sequenced on the HiSeq4000 and NextSeq500. 
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Supplementary Table 3. The shared NS-SNVs between MGUS/SMM and MM, and 

unique NS-SNVs in MM patients. Analysis of the total mutational load reveals a median 

of 161 NS-SNVs at MGUS/SMM and 152 NS-SNVs at MM. The table describes the shared 

and MM unique NS-SNVs identified in each patient. 
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Supplementary Table 4. The full characterisation of driver mutations in MGUS/SMM to 

MM patients. Single nucleotide variants in previously reported driver genes were identified 

in KRAS, NRAS and DIS3. The table describes the genomic positions and subsequent impact 

on cDNA and amino acid changes. 
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Supplementary Table 5. The copy number landscape of MGUS/SMM to MM 

patients. We identified numerous CNV changes in each patient at MGUS/SMM and 

MM. MGUS/SMM patients harboured a higher median number of changes than at 

MM (70 vs. 67.5, respectively). 

	

	
	

Supplementary Table 6. Exome library preparation of low input samples requiring 

additional PCR cycles. Two samples had yields lower than the required 115ng gDNA input 

and required extra PCR amplification during library preparation to generate sufficient 

library for exome capture. 
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a               b  
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Supplementary Figure 1. The subclonal tumour evolution associated with MGUS to MM 

progression. Fishtail plots annotated with the complete subclonal genetic architecture in three 

patients (a: P01, b: P04 and c: P10) from Figure 3 of the main article. 
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a          b 

 
c          d 

 
e 

 
 
Supplementary Figure 2. The subclonal tumour evolution associated with SMM to MM 

progression. Fishtail plots annotated with the complete subclonal genetic architecture in five 

patients (a: P02, b: P03, c: P05, d: P06 and e: P08) from Figure 4 of the main article. 
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Supplementary Figure 3. The correlation of BM PC% and the subclones identified with 

progression in MGUS/SMM to MM patients. Progression to MM is characterised by an 

increase in BM PC% and monoclonal protein levels, however, we find no correlation between 

the extent of subclonality and BM PC% at MM. 
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Supplementary Figure 4. A comparison of cytogenetic abnormalities with virtual 

karyotypes. Virtual karyotypes were generated from genome-wide copy number changes 

inferred from whole exome sequencing data at both MGUS/SMM and MM stages. 

Chromosomal copy amplifications are illustrated by red, while copy deletions are shown in 

blue. Several patients exhibit very similar karyotypes at both MGUS/SMM and MM. In some 

patients, hyperdiploidy is present at MGUS/SMM and is undetected by standard cytogenetics 

even at MM (molecular cytogenetics results listed to the right of each patient figure). Nil 

represents parameter not being present. N/A represents that data was not available. 
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3.1 Abstract  
Multiple myeloma (MM) is a largely incurable haematological malignancy characterised 

by the uncontrolled proliferation of neoplastic plasma cells (PCs) within the bone marrow. 

Recent studies have focused on the investigation of the genetic landscape in MM and its 

asymptomatic stages of monoclonal gammopathy of undetermined significance (MGUS) 

and smouldering multiple myeloma (SMM). While genetic analyses of patient samples 

have identified recurrently mutated genes and clonal heterogeneity which are characteristic 

of MM, our understanding of the transcriptomic and methylomic changes associated with 

progression from MGUS/SMM to MM remains poor. Here, we have performed RNA 

sequencing (n = 6) and whole genome bisulphite sequencing (n = 4) on serial samples from 

patients who progressed from MGUS or SMM to MM, to analyse the gene expression and 

methylation changes associated with disease transformation. Our findings suggest that 

progression from MGUS/SMM to MM was accompanied by relatively few changes in 

gene expression. Of the 250 differentially expressed genes that approached statistical 

significance, the majority of genes showed down regulation upon transition to MM. The 

top 10 differentially expressed genes included, THEMIS2, BTBD19, HBB, ATP8A2, 

CELSR1, CD69, TWF2, SLC20A1, ALG1L and SLC23A3. Mutated genes, previously 

identified in whole exome sequencing analyses of the same patients, were found to be 

expressed at low levels or not at all. In most cases, only the wild type allele of a gene 

harbouring heterozygous mutation was expressed. Analysis of the methylome revealed 

significant DNA hypomethylation in MGUS, SMM and MM PCs compared to normal 

PCs. Extreme DNA hypomethylation was acquired at the initiation of MGUS, and 

maintained with progression to SMM and MM. Our study suggests that most of the 

genomic changes of MM occur during the oncogenic transition from a normal PC to a 

MGUS/SMM PC, with minimal changes in the gene expression and DNA methylation 

landscape accompanying with the progression to MM. 
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3.2 Introduction 
Multiple myeloma (MM) is a haematological malignancy characterised by the clonal 

expansion of neoplastic plasma cells (PCs) within the bone marrow. MM is a genetically 

complex disease, characterised by heterogeneity that influences the disparate treatment and 

survival outcomes of patients1-6. Despite recent advances in therapeutic strategies, MM 

remains a largely incurable disease, with relapse being a common occurrence7.  

 

The initiation of MM involves a multistep transformational process, evolving from 

the asymptomatic stages of monoclonal gammopathy of undetermined significance 

(MGUS) and smouldering multiple myeloma (SMM)6. Genomic studies of large patient 

cohorts using next generation sequencing (NGS) techniques have compared the DNA 

mutational landscape between the asymptomatic stages of MGUS, SMM, and symptomatic 

MM, identifying recurrently mutated genes (“drivers”) and establishing intraclonal genetic 

heterogeneity and clonal evolution patterns1-3,5,6. While many studies have performed 

molecular cytogenetic and NGS analysis to characterise the genetic architecture of MM, 

the role of transcriptome and methylome changes associated with disease progression are 

poorly understood. Identification of mutations in genes which alter gene expression, 

influencing molecular pathways and oncogenic signalling, could inform the treatment 

strategies used for MM patients8,9.  

 

To date, analysis of the MM transcriptome has relied on array-based technologies 

which provide a global snapshot of the gene expression profile (GEP) in individual 

tumours for risk stratification and prognosis of patients10-12. GEPs have been used to define 

molecular heterogeneity and classify patients based on common expression signatures into 

7 distinct subgroups of MM: MF [MAF/MAFB], MS [MMSET], CD-1 and CD-2 

[CCND1/CCND3], HY [hyperdiploid], LB [low bone disease] and PR [proliferation]13. 

Studies have also investigated the association of expression profiles with disease 

progression, resulting in robust GEP signatures for stratification of high-risk MM patients, 

such as the UAMS-7012 and EMC-9211. However, due to the marked heterogeneity that 

characterises MM, GEPs only provide a broad-brush insight into the disease biology and 

major clones associated with MM progression. Thus, with the rapid advances in genomic 

technologies, GEP may not represent the best methodology to identify clinically relevant 

expression changes in patients. A recent study of MM patient samples using RNA 

sequencing (RNAseq) has demonstrated allele-specific expression of mutated genes in 
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MM14. This illustrates the need for the application of more current technologies such as 

RNAseq for transcriptomic interrogation of MM samples. 

 

Epigenetic mechanisms are known to play an integral role in regulating gene 

expression15. However, the key epigenetic mechanisms of DNA methylation and histone 

modification contribute to transformation in MM is not well understood. The rate of 

epigenetic change in cancers has been estimated to be orders of magnitude higher than that 

of genetic change, and could be a major determinant of clonal evolution16. Studies 

investigating the methylome in unmatched MGUS, SMM and MM patient samples in 

comparison to normal PCs, have illustrated that initiation of disease is characterised by 

global hypomethylation, which either increases or reduces upon disease progression17-20. 

Moreover, MM PCs were observed to exhibit extreme heterogeneity in DNA methylation 

patterns compared to MGUS PCs17.  

 

As current sequencing studies have focused on the genetic changes and intraclonal 

heterogeneity in MM, what remains unknown is the expression changes of recurrently 

mutated genes and their implications for MM transformation. Here, we report an 

integrative analysis of differential DNA methylation and gene expression in paired 

MGUS/SMM to MM patient samples. These patients were also the subjects of our 

previous whole exome sequencing analysis study, which identified clonal stability as a 

model of tumour evolution in MM21.  

 

Longitudinal analysis using RNAseq was carried out on paired MGUS-MM (n = 2), 

or SMM-MM (n = 4) PCs to assess the expression changes associated with MM 

transformation. Additionally, investigation of the methylome was carried out using whole 

genome bisulphite sequencing (WGBS) on normal PCs (NPCs: n = 3), and paired MGUS-

MM PCs (n = 1) or SMM-MM PCs (n = 3) for a greater understanding of the underlying 

methylomic landscape, and regulation of transcriptome associated with the progression to 

MM. 
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3.3 Materials & Methods  
3.3.1 Clinical samples. 

Bone marrow mononuclear cell aspirates were collected from patients at MGUS/SMM, 

and subsequently at later diagnosis of MM (MGUS-MM (n = 2) and SMM-MM (n = 4)). 

Samples were collected from patients prior to treatment. All patients provided informed 

consent in accordance with the Declaration of Helsinki. Samples were cryopreserved by 

the South Australian Cancer Research Biobank (SACRB) at SA Pathology. The studies 

were approved by the Royal Adelaide Hospital Human Research Ethics Committee 

(HREC/13/RAH/569 No: 131133). 

 

3.3.2 Cell sorting. 

PCs were purified using multicolour flow cytometry as previously described22. Briefly, 

approximately 1x105 mononuclear cells were prepared for single stain antibody control 

(CD138-PE (Beckman Coulter #A54190) and CD38-PE-Cy7 (Biolegend #303515)) and 

compensation/FMO tubes (1: unstained; 2: hydroxystilbamidine (FluoroGold; Life 

Technologies) only; 3: CD38-PE-Cy7+FluroGold; 4: CD138-PE+FluroGold; and 5: CD38-

PE-Cy7+CD138-PE). The sort sample was stained with CD138-PE and CD38-PE-Cy7 

antibodies at 1µL/100µL cells. Cells were stained with FluoroGold immediately prior to 

sorting. Viable PCs (CD138+CD38+ and FluoroGold negative) were sorted on the 

FACSAria Fusion sorter (BD Biosciences). FACS purity check was carried out on sorted 

cells, using 100-500 cells from each sample. 

 

3.3.3 Nucleic acids isolation and QC. 

DNA was isolated from purified PC populations using the All Prep DNA/RNA Micro Kit 

(QIAGEN) as per manufacturers’ instructions. Yields and quality was assessed using the 

NanoDrop 8000 and Qubit 2.0 fluorometer (Thermo Fisher Scientific). 

 

RNA was isolated from purified PC using the All Prep DNA/RNA Micro Kit (QIAGEN) 

and RNAaqueous-Micro Kit (Thermo Fisher Scientific) as per manufacturers’ instructions. 

Yields and quality was assessed using the Qubit 2.0 fluorometer (Thermo Fisher Scientific) 

and BioAnalyzer 2100 (Agilent). The median RIN scores of extracted RNA samples was 

6.6. 
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3.3.4 RNA sequencing and Analysis. 

Between 33 to 380ng of RNA was used to generate RNA libraries using the NEXTflex 

Rapid RNA-Seq Kit (BIOO Scientific) according to manufacturers’ instructions. 

Sequencing was carried out on the Illumina NextSeq500 (2x75 bp paired-end reads) with 

approximately 90 million reads per sample. 

 

RNA sequencing reads were aligned to the human reference genome (hg19) using the 

STAR 2-pass method as previously described23. Variant calling was performed using the 

GATK best practices24 and were annotated using ANNOVAR25. For gene expression 

analyses, read counts were quantified using Rsubread26. The TMM method within edgeR27 

was used to normalise the expression data, and FactoMineR28 was used for principle 

component analysis. The Benjamini Hochberg method was used to assess potential false 

discovery from multiple comparison testing29. The PANTHER (Protein Analysis Through 

Evolutionary Relationships, http://www.pantherdb.org) classification system was used to 

interpret pathway level analysis30-32.  

 

3.3.5 Whole Genome Bisulphite Sequencing and Analysis 

Approximately 50ng of DNA was used for bisulphite library preparation using the Ovation 

Methyl-Seq System (NuGen) according to manufacturers’ instructions. Sequencing was 

performed on the Illumina NextSeq500 (2x150bp paired-end reads). Samples were 

sequenced to an average coverage of ~30x. 

 

Prior to alignment, reads were trimmed to a minimum of 15bp to improve mapping 

efficiency and to remove any contaminating adaptor sequences using AdapterRemoval 

v2.1.7. The human reference genome (GRCh37) was obtained from the Illumina igenomes 

link and was converted into the bisulphite sequence using Bismark v0.18.1. Trimmed reads 

were aligned to the bisulphite converted reference genome using Bismark v0.18.1 and 

Bowtie2 v2.2.5 v, which was also used for cytosine methylation calling. Differential 

methylation analyses were performed using BiSeq. Differentially methylated regions 

(DMRs) were considered to be significant if they were within clusters with a false 

discovery rate (FDR) < 0.05. Principle component analysis was performed using the 

smoothed methylation values of CpG sites within the top 100 DMRs using FactoMineR. 
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3.4 Results 
3.4.1 The progression of MGUS/SMM to MM is associated with minimal variation in 

gene expression. 

To characterise the transcriptomic landscape associated with progression to MM, we 

performed RNAseq on 6 paired MGUS/SMM to MM patient sample sets, with an average 

of approximately 90 million reads per sample. The median time to progression of MGUS 

to MM was 3.2 years (range 1 – 5.4 years), and SMM to MM was ~1 year (range 0.5 – 4.1 

years). The median age of MM diagnosis in the cohort was 79.5 years, which was higher 

than the established median of 65 years33 [Supplementary Table 1].  

 

To date, our understanding of the transcriptomic landscape of MM is derived from 

the GEP analyses of unmatched MGUS/SMM/MM samples isolated from different 

patients34-36. As such, current studies are affected by the significant intrinsic natural 

variation in gene expression patterns that exist between unrelated individuals. To 

overcome this limitation of inter-patient transcriptional “noise” and identify changes in 

gene expression associated with the natural history of disease transformation, we analysed 

matched MGUS/SMM to MM samples. Indeed, principal component analysis revealed that 

while each patient exhibited great variability in their overall expression patterns, paired 

samples from each individual patient clustered closely together [Figure 1]. Pairwise XY 

scatterplot analysis of gene expression in individual MGUS to MM, or SMM to MM 

patients demonstrated little variation between each stage of disease [Figure 2]. The median 

correlation coefficient across all MGUS/SMM to MM cases was 0.915, indicating relative 

homogeneity in gene expression pattern in each paired sample case. Overall, this shows 

that there is limited change in the expression of genes associated with the progression of 

MGUS/SMM to MM. Furthermore, this highlights the limitation of previous studies using 

unmatched patient sample comparisons, where the majority of gene expression differences 

identified would be occurring in grouped samples from MGUS/SMM/MM from different 

patients. Similarly, a previous expression study of normal PCs (NPCs) in comparison to 

PCs from MGUS and MM patient samples using microarray analysis has revealed that 

most gene expression changes occur during the initiation of MGUS (i.e. NPCs vs. MGUS). 

These studies also showed that the expression differences between MGUS and MM are 

much smaller than that between NPCs and MGUS or MM PCs, with only 74 differentially 

expressed genes distinguishing MGUS from MM36. Taken together, these data suggest that 

most of the transcriptomic changes of MM occur during the aberrant transition of NPCs to 

MGUS/SMM.  
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Figure 1. The transcriptomic landscape associated with MGUS/SMM to MM 

transformation. Principal component analysis illustrates intra-patient clustering of 

expression profiles in the progression of MGUS/SMM to MM in individual patients. 

MGUS/SMM stage is represented by circles, and MM stage is represented by triangles. 
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Figure 2. The relationship of gene expression changes associated with MGUS/SMM to 

MM progression. XY scatterplots illustrate the similarity in gene expression between the 

asymptomatic stages of MGUS/SMM and MM in paired MGUS-MM (a: P01, b: P04) and 

SMM-MM patients (c: P02, d: P03, e: P05, f: P08). The median R2 value was 0.915, 

demonstrating homogeneity in expression between disease stages. R2 correlation values are 

given for each patient above individual plots. 
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3.4.2 MGUS/SMM to MM progression is associated with specific expression changes.  

The clustering of matched samples allowed gene expression changes associated with 

transition that would otherwise be masked by inter-patient variability. Differential gene 

expression testing between MGUS/SMM and MM groups, identified 250 genes reaching 

statistical significance (i.e. raw p value < 0.05, before controlling the false discovery rate 

using the Benjamini Hochberg method29) [Supplementary Table 3]. Overall, the majority 

of differential expression changes involved a reduction in gene expression upon MM 

transformation, with only 109 genes that were upregulated [Supplementary Table 3a], and 

141 genes that were downregulated [Supplementary Table 3b]. The mean log fold change 

of upregulated genes was +1.65, while the mean log fold change of downregulated genes 

was -2.35. These findings highlight that of the group of genes that do change at transition, 

there is predominantly a downregulation in gene expression, which is consistent with 

previous GEP studies of MM36. Pathway analysis revealed gene expression signatures 

associated with the transition of MGUS/SMM to MM, with 196 differentially expressed 

genes affecting 69 biological pathways [Supplementary Figure 1]. Overall, we did not 

observe pronounced pathway enrichment due to the similar transcriptional profiles 

identified between the MGUS/SMM and MM stages. Of genes that showed highly 

increased expression (> +2 fold change) upon progression to MM, there were 5 affected 

pathways including apoptosis signalling, angiogenesis, Wnt signalling, cadherin signalling 

and Alzheimer disease-presenilin pathways [Figure 3a]. Genes that were highly down 

regulated (> -2 fold change) upon MM transition, associated with 21 affected molecular 

pathways, including Metabotropic glutamate receptor group I and III, inflammation 

mediated by chemokine and cytokine signalling and heterotrimetic G-protein signalling-Gi 

alpha and Gs alpha mediated pathways [Figure 3b].  
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Figure 3. Deregulation of molecular pathways associated with MGUS/SMM to MM 

progression. (a) The upregulation of genes with differential expression of > 2 fold, was 

associated with 5 biological pathways including apoptosis signalling [red], angiogenesis 

[yellow], Wnt signalling [blue], cadherin signalling [orange] and Alzheimer disease-

presenilin [green]. (b) Genes that were highly downregulated, with differential expression 

of > -2 fold upon MM transition, were most associated with biological pathways including 

Metabotropic glutamate receptor group I and III [dark greens], inflammation mediated by 

chemokine and cytokine signalling [red] and heterotrimetic G-protein signalling-Gi alpha 

and Gs alpha mediated pathways [orange]. 
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Investigating MGUS-MM and SMM-MM transition on an individual patient-by-

patient basis, we identified dynamic fold changes in gene expression associated with 

progression. We found genes whose expression levels demonstrated fold increases (2x), or 

fold decreases (0.5x) associated with MM progression. The top 10 genes differentially 

expressed, based on fold change and frequency, between MGUS/SMM and MM included 

THEMIS2, BTBD19, HBB, ATP8A2, CELSR1, CD69, TWF2, SLC20A1, ALG1L and 

SLC23A3 [Figure 4]. At MGUS to MM progression, we observed fold increases in 

expression of THEMIS2, BTBD19, TWF2 and SLC23A3. Conversely, fold decreases in the 

expression levels of ATP8A2, ALG1L, HBB and CELSR1 were identified. In the 

progression of SMM to MM, we identified fold increases in the expression of THEMIS2, 

BTBD19, TWF2, SLC20A1 and SLC23A3. Fold decreases were found in the expression of 

HBB, ATP8A2, CELSR1 and ALG1L. Interestingly, all SMM-MM patients exclusively 

showed fold decreases in CD69 expression. Due to the nature of our small and rare sample 

size, differentially expressed genes between MGUS/SMM and MM samples did not reach 

statistical significance. These findings reveal a number of genes and pathways deregulated 

upon MM progression, and highlight the need to perform a comprehensive larger cohort 

study with validated sample sets. 
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Figure 4. Waterfall diagram illustrating fold changes in gene expression associated 

with MGUS/SMM to MM progression. The top 10 differentially expressed genes, based 

on fold change and frequency, upon MM transition showing fold increase of at least 2x 

(THEMIS2, BTBD19, TWF2, SLC20A1 and SLC23A3) or fold decrease of at least 0.5x 

(HBB, ATP8A2, CELSR1, CD69 and ALG1L). 
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3.4.3 The progression of MGUS/SMM to MM is characterised by the maintenance of 

hypomethylation acquired at the asymptomatic disease stage. 

We next examined the DNA methylation landscape associated with MM transformation in 

paired MGUS/SMM to MM patient samples (n = 4) and NPCs (n = 3) [Supplementary 

Table 2]. WGBS was performed to a depth of approximately 30x to assess the methylation 

profiles of MGUS, SMM, MM and NPC samples. For disease stage specific comparison, 

additional single samples with sufficient DNA from our WES cohort were included: 1 

MGUS sample (P11), 1 SMM sample (P05), and 3 MM samples (P04, P06 and P10) 

[Supplementary Table 2]. 

 

Analysis of the methylation status of MGUS/SMM and MM PCs in comparison to 

NPCs revealed that both the asymptomatic and symptomatic stages of disease were 

characterised by extreme DNA hypomethylation. The average methylation of CpG sites 

across NPC samples was 77.5%, which is consistent with levels previously reported of 

~80% CpG methylation in mammalian cells37-39. However, a significant decrease in CpG 

methylation was observed at each stage of disease, with MGUS, SMM and MM exhibiting 

an average methylation of 43% (NPC vs. MGUS p = 0.0011), 45.6% (NPC vs. SMM p = 

0.017) and 41.7% (NPC vs. MM p = 0.000165), respectively [Figure 5]. Interestingly, we 

observed that in the progression from MGUS to SMM and MM, a similar range of 

hypomethylation was maintained as that initially acquired at MGUS. These findings are in 

stark contrast to previous studies of the MM methylome in unmatched samples, which 

have identified global hypomethylation as a key feature in the transition of MGUS to 

MM19, with disease transformation characterised by a progressive increase in 

hypomethylation17-19. A previous study of unmatched MGUS (n = 16) and MM (n = 104) 

PCs compared to NPCs (n = 3) demonstrated that 98.3% of CpG sites in MM PCs were 

hypomethylated, while 73.2% were hypomethylated in MGUS PCs17.  
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Figure 5. The initiation of MGUS is characterised by significant hypomethylation, 

which is maintained through progression to SMM and MM. Analysis of the overall 

methylome in asymptomatic MGUS/SMM and symptomatic MM in comparison to non-

disease, demonstrates disease onset and progression is characterised by significant 

hypomethylation of CpG sites. While an average of 77.5% of CpG sites were methylated 

in NPCs, an average of 43%, 45.6% and 41.7% were methylated at MGUS, SMM and 

MM, respectively (NPC vs. MGUS p = 0.0011, NPC vs. SMM p = 0.017, NPC vs. MM p 

= 0.000165). Interestingly, the range of methylation remains constant between 

MGUS/SMM and MM patients (MGUS vs. MM p = 0.0.9911, SMM vs. MM p = 0.6843). 
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CpG sites were smoothed into clusters that were then used to identify differentially 

methylated regions (DMRs) between sample groups. Differential methylation testing 

comparing NPCs with MGUS/SMM, and MM PCs, identified a total of 190,401 DMRs 

between MGUS/SMM and NPCs, and 177,535 DMRs between MM and NPCs. Thus, 

there was only a small decrease in the overall number of DMRs observed between NPCs 

and MGUS/SMM, and NPCs and MM PCs. Overall, all statistically significant DMRs 

identified between NPCs and MGUS/SMM/MM were located on chromosomes 14, 16, 17, 

18, 20, 21, 22, 3, 4, 5, 8, Y and X. Interestingly, however, upon progression from 

MGUS/SMM to MM, we found no statistically significant DMRs (MGUS vs. MM p = 

0.9911, and SMM vs. MM p=0.6843). Analysis of the change in methylation near 

promoters within 2000bp of the transcription start site of all genes found within DMRs, 

revealed that the average level of methylation decreased in MGUS/SMM/MM near the 

transcription start site of genes as it does for NPCs, whereas NPCs maintained a higher 

level of methylation [Figure 6].  

 

Investigating the methylome profile of patients on an individual basis, principal 

component analysis revealed intra-patient clustering [Figure 7]. CpG sites within the top 

100 DMRs were plotted as a representative analysis of the relationship between the 

asymptomatic stages of MGUS/SMM and MM in each patient. Pairwise XY scatterplot 

comparisons of paired MGUS/SMM to MM samples illustrated minimal variation in the 

methylation profiles associated with disease progression [Figure 8]. A median correlation 

coefficient of 0.90 was calculated, demonstrating a strong positive linear relationship and 

homogeneity in methylation patterns. Conversely, stage specific comparison of NPCs with 

MGUS, SMM or MM demonstrated considerable heterogeneity of methylation, with a 

median correlation coefficient of 0.36, highlighting the greater difference in CpG 

methylation patterns between the transition of NPCs to MGUS/SMM/MM [Supplementary 

Figure 2].  
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Figure 6. Promoter methylation analysis of all genes identified within DMRs between 

NPCs and MGUS/SMM and MM PCs. Comparison of the average level of methylation 

within 2000bp of the transcription start site of genes within DMRs, between disease stages 

and NPCs, demonstrates a similar drop in the average level of methylation towards the 

promoter of genes in MGUS, SMM and MM. BS is the transcription binding site. 
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Figure 7. The methylomic landscape associated with MGUS/SMM to MM 

transformation. Principal component analysis of the methylome profiles of MGUS/SMM 

to MM patients demonstrates clustering of paired samples from individual patients, with no 

significant differential methylation associated with progression to MM. Normal samples 

are represented by squares; MGUS/SMM group is represented by circles; MM group is 

represented by underlined circles. 
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Figure 8. The relationship in methylation landscape associated with MGUS/SMM to 

MM progression. XY scatterplots illustrate minimal variation in methylation patterns 

between the asymptomatic stages of MGUS/SMM and MM in paired MGUS-MM (a: P01) 

and SMM-MM patients (b: P02, c: P03, d: P08). The median R2 value was 0.90, 

demonstrating relative homogeneity in CpG methylation between disease stages. R2 

correlation values are given for each patient above individual plots. 
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3.4.4 Gene ontology pathways associated with the transformation to MM. 

Gene ontology (GO) analysis was performed to identify the effects of differentially 

methylated regions found between NPCs and MGUS/SMM and MM PCs. Epigenetic 

deregulation significantly affected 321 genes, with roles in cellular processes such as 

immunoglobulin complex assembly, immunoglobulin receptor binding, phagocytosis, 

complement activation and B cell receptor signalling [Figure 9].  

 

Previous study by Salhia et al., examining the pathways associated with differentially 

methylated genes in MGUS, SMM and MM, identified that extracellular matrix adhesion 

and remodelling were the most significantly affected pathways18. Associated dysregulation 

of cellular processes such as proteolysis and adhesion/extracellular matrix modifications 

suggested that hypomethylation, during myelomagenesis, may favour bone invasion by 

increasing interactions with the bone marrow extracellular matrix, initiating the required 

adhesive forces underlying bone invasion and the formation of lytic lesions18. Interestingly, 

a further study by Walker et. al., also revealed gene-specific hypermethylation associated 

with the transition of MGUS to MM, with 77 genes that have biological roles in 

development, cell cycle and transcription regulation pathways19. 
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Figure 9. Gene Ontology analysis of pathways associated with DMRs identified 

between NPCs and MGUS/SMM and MM. Gene Ontology reveals the top ranked 

cellular pathways/processes affected by differential methylation in MGUS/SMM and MM, 

compared to NPCs. There were 321 genes significantly affected by differential 

methylation. A larger –log(p) value indicates a more significant effect. 
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3.4.5 Allelic specific expression of genes associated with MGUS/SMM to MM 

progression.  

NGS studies have identified recurrently mutated genes in MM1-3,5, however ultimately, it is 

expression of these mutated genes in MM PCs that determines the phenotype of the tumour 

cells. Mutations in genes that are not expressed in PCs are more likely to be passenger 

mutations rather than driver mutations of disease. Our previous WES analysis of these 

paired samples identified 15 previously reported mutated genes. We assessed normalized 

RNAseq read counts (FPKM: Fragments Per Kilobase of transcript per Million mapped 

reads) as a measure of expression levels, finding most genes were generally not expressed, 

or expressed at low levels across all patients at both MGUS/SMM and MM. This included 

KRAS, DIS3, TRAF3, SP140, RB1, PTEN, PRDM1, NRAS, MYC, MAGED1, IRF4, HLA-A 

and CDK4. Patient-specific expression showed that, on average, most genes exhibited < 

100 transcript counts [Figure 10a]. PRDM1, MAGED1, IRF4 and HLA-A were observed to 

have high expression levels, consistently showing > 100 counts. Conversely, FAT3 and 

ROBO1, were identified to not be expressed at all. There were no DMRs identified in the 

analysis between MGUS/SMM and MM, indicating transcriptional changes are unlikely to 

be caused directly at those genes.  

 

We then assessed allelic exclusivity of expression of mutated genes in patients in 

our RNAseq data. WES analysis revealed patients that harboured mutations at the genetic 

level included KRAS (P01 MGUS-MM, P02 SMM-MM and P05 SMM-MM), DIS3 (P03 

MM), TRAF3 (P02 MM, P03 MM), RB1 (P08 SMM-MM), MYC (P01 MM), IRF4 (P03 

MM) and CDK4 (P01 MM) [Figure 10a stars]. While these genes were identified to have 

DNA mutations, it was generally observed these mutants were expressed at similar levels 

to patients that didn’t harbour the mutant. Assessing mutant allele specific expression, we 

mostly observed wild-type allele transcript expression, with only KRAS and DIS3 having 

mutant allele expression in 2 patients (KRAS: P05 MM; and DIS3: P03 MM) [Figure 11]. 

Intriguingly, one of the DIS3 transcript variants in P03 was unique to that of the two that 

were identified by WES. This suggests that this mutation was not detected in exome data 

due to the mutation residing in a minor subclone and had a low variant allele frequency 

(VAF). Furthermore, of genes with frequently acquired mutations at MM progression in 

our WES study, KMT2D was also expressed. KMT2D harboured genetic mutations in 4/6 

patients (P01, P03, P05 and P08), and was also observed to be highly expressed at both 

MGUS/SMM and MM stages [Figure 10b]. However, mutant KMT2D was only expressed 

at low levels in one patient at MM (P03). 
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Figure 10. Expression of previously reported recurrently mutated genes in MM, 

identified in our MGUS/SMM to MM cohort. (a) RNAseq transcript counts show 13 

recurrently mutated genes were expressed at both MGUS/SMM and MM. Average 

expression levels demonstrate most are expressed at low levels, or not at all (FAT3 and 

ROBO1). PRDM1, MAGED1, IRF4 and HLA-A were observed to have high expression 

levels (consistently > 100 counts). (b) Of the 10 most common genes harbouring mutations 

at MM in our WES data, only 4 genes exhibited expression including KRAS, DIS3, SP140 

and KMT2D. Stars represent mutation of a gene at specific disease stages in patients. 
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Figure 11. Correlation of WES data with RNAseq expression data. DNA mutations in 

recurrently mutated MM genes were identified in specific patients, however, these mutants 

were expressed at similar levels to patients that didn’t harbor the mutant. Alignment of 

whole exome sequencing data with transcript expression data reveals most identified 

genetic mutations were lowly expressed, with only 3 genes: KRAS, DIS3 and KMT2D 

showing patient specific mutant allele expression.  

 

 

 

 

 

 

 

 

 

 

 

 

 



	 120	

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

	
 



	 121	

3.5 Discussion 
The application of NGS technologies in genetic analyses of large cohorts of MM patient 

samples has established intraclonal genetic heterogeneity as a feature of disease. We have 

previously performed WES of longitudinal MGUS/SMM to MM patients, identifying 

clonal heterogeneity throughout all stages of disease, with progression being characterised 

by a model of clonal stability. Here, genomic analysis of a subset of these paired patient 

samples has revealed new insights into the transcriptomic and methylomic landscape 

associated with disease progression to MM. By using matched samples, we were able to 

negate any intrinsic inter-patient differences to determine the gene expression patterns 

between MGUS/SMM and MM, and methylation changes that accompany the transition of 

NPCs through to MGUS/SMM and MM. 

Overall, we found minimal variation in the expression of genes associated with the 

progression of MGUS/SMM to MM. PCA of the transcriptome of each individual patient 

clustered very closely between the MGUS/SMM and MM stages. This highlights the 

limitation of previous studies using unmatched patient sample comparisons to identify 

common gene expression changes associated with MGUS/SMM to MM transition. We 

found 250 genes that were reaching significance in differential expression testing (raw p < 

0.05), with a majority being downregulated upon MM transition. Due to the rare nature and 

small sample size of our matched cohort, gene expression changes did not reach statistical 

significance. Similarly, previous gene expression profiles of unmatched MGUS/MM 

samples have noted that MGUS can be clearly defined from NPCs, however, MGUS and 

MM samples appear to be identical at the gene expression level20,34,36,40.  Pathway analysis 

identified changes in gene expression associated with molecular processes such as 

angiogenesis41,42, Wnt signalling43,44 and cadherin signalling45,46, which are 

characteristically deregulated during MM disease progression. These pilot studies into the 

transcriptomic landscape associated with MGUS/SMM to MM progression have revealed 

an indication of the genes and pathways that are deregulated in the longitudinal 

progression to MM, and highlights the need for further, larger paired cohort studies to 

validate key changes associated with MM progression. 

Patient-by-patient analysis revealed that a number of the top 10 differentially 

expressed genes consistently exhibited at least a fold change in expression in more than 

half of the patients. THEMIS2 showed fold increase in one MGUS to MM, and two SMM 

to MM patients, and a recent study characterising its function has found that its 

overexpression results in enhanced downstream activation of MAPK kinases suggesting an 
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increase in the RAS signalling pathway47. HBB exhibited fold decrease in two MGUS to 

MM, and two SMM to MM patients and its level of expression in breast and prostate 

cancer cells has previously been correlated with adverse clinical outcomes48. CD69 was 

identified to exclusively show at least a one-fold decrease in all SMM to MM patients. 

Previous in vitro and patient data has shown that the absence, or decrease in CD69 

expression, is linked with poor prognosis and resistance to the proteasome inhibitor 

bortezomib, and thus may guide clinical therapeutic choices for these specific SMM 

patients49. Indeed, the median time to progression of SMM patients in this cohort was ~1 

year, indicating their high-risk nature and poor prognosis. 

We then sought to characterise the DNA methylation profile associated with the 

progression of MGUS/SMM to MM. Our data is partially concordant with the current 

understanding of the MM methylome during progression. To this end, previous unpaired 

studies comparing MGUS, SMM, MM or PCL samples with NPCs showed that extensive 

hypomethylation was an important early event in disease progression. The transformation 

from MGUS to MM was characterised by global hypomethylation18-20, and this was 

associated with altered chromatin structure, changes in DNA methyltransferase activity, 

loss of imprinting and increased frequencies of CNVs19. The resulting aberrant 

transcription and chromosomal instability within PC clones was postulated to contribute to 

disease progression, and is one of the critical differences distinguishing MGUS from 

MM19.  

Notably however, while these previous studies showed progressive 

hypomethylation upon MM transition, we revealed minimal variation in the methylation 

profiles of patients at the asymptomatic stages of MGUS or SMM, compared to MM. 

Moreover, the initiation of MGUS was characterized by extreme hypomethylation, a 

phenotype that was maintained with progression to SMM and MM. By contrast, one 

previous study used methylation data to clearly distinguish disease stages, where MGUS 

was defined by predominant hypomethylation and the later MM stage by acquired 

hypermethylation20. It is conceivable that global hypomethylation identified at MGUS, 

maybe relates to the need for proliferating oncogenic PCs to have open chromatin and 

active gene transcription which could facilitate the MM transformation process18,19. The 

initial investigation of the MM methylome showed increasing global hypomethylation with 

disease stages, and therefore proposed that the overall degree of methylation may have 

prognostic value18. However, our analysis shows that this may not be beneficial for 

patients that progress in a short time frame, where the levels of hypomethylation acquired 
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at MGUS is maintained during disease progression. The differences between the present 

study and previously reported findings may relate to sample dilution from non-tumour 

cells, as these previous studies have relied on CD138+ magnetic-activated cell sorting 

(MACS) sorting only. In contrast, we have used FACS to purify the CD138+ and 38++ 

tumour PC populations from MGUS/SMM/MM BM samples, to minimise any sample 

heterogeneity. 

It is possible that only subtypes of MM exhibit hypermethylation, and indeed 

heterogeneity in methylation has been shown for different cytogenetic groups of MM17,19. 

Studies of other cancer types have shown the association of hypermethylation with 

treatment resistance, via the inactivation of various cell cycles and genes involved in 

chemo-sensitivity. As such, in these patients, DNA demethylating agents could be 

proposed to be effective in reducing the methylation levels in tumour cells to levels 

comparable to normal non-tumour cells. In vitro studies in human MM cell lines have 

shown that DNA methylase inhibitor decitabine (5-aza-2-deoxycytidine) can inhibit 

proliferation; with a hypomethylating effect in hypermethylated MM without any adverse 

affects20. However, as our study, along with others, show that hypomethylation is 

maintained, or increased, with disease progression, the use of DNA methylase inhibitors 

would only be effective in hypermethylated subgroups of MM17-20.  

We assessed recurrently mutated genes in MM, finding that most mutated genes of 

MM have low or no expression in MM PCs, and in the instance where genes were 

expressed, this was generally associated with the occurrence of differential allelic 

expression. Differential and limited expression of mutant alleles has also been previously 

shown in a larger set of MM patient samples (n = 10 patients, 14 samples) analysed by 

RNAseq14. Notably, this would have significant implications when considering the use of 

targeted treatment strategies, which are solely based on driver mutations status revealed by 

genetic sequencing data only.  

In conclusion, our studies reveal new insights into the gene expression and 

methylation patterns associated with the progression of MGUS/SMM to MM. 

Interestingly, PCs from patients at the asymptomatic stages of disease, appear to be as 

genetically complex as PCs recovered from the MM stage. Further, exhibiting minimal 

variation in gene expression, with wild type allele specific expression of mutants, and 

significant hypomethylation that is acquired at MGUS/SMM. These studies highlight the 

importance of transcriptomic and epigenetic interrogation of patient PCs to inform 

prognosis and treatment stratification. 
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3.6 Supplementary  
3.6.1 Supplementary Figures 

	

	
	
	
	
	
	

	
	
	
	
	
 
 
 
 
 
 
 
 
 

	
Supplementary Table 1. Clinical cytogenetic data for MGUS/SMM to MM patients 

with RNAseq. Clinically recorded data at MM diagnosis for patients in the study. The 

median age of patients at MM diagnosis was 79.5 years old. Molecular cytogenetics of 

patients was performed using FISH analysis on interphase spreads of bone marrow 

smears. Nil represents parameter not being present. N/A represents that data was not 

available. 

 
Supplementary Table 2. Clinical cytogenetic data for MGUS/SMM to MM patients 

with WGBS. Clinically recorded data at MM diagnosis for patients in the study. 

Molecular cytogenetics of patients was performed using FISH analysis on interphase 

spreads of bone marrow smears. Nil represents parameter not being present. N/A 

represents that data was not available. 
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(a) 
	
Genes Symbol logFC logCPM LR p Value FDR 

ENSG00000130812 ANGPTL6 5.59773003 0.362576511 4.608683591 0.031810444 1 

ENSG00000213657 RPL31P44 5.094653224 0.264262573 5.020705009 0.025045969 1 

ENSG00000213901 SLC23A3 4.565223007 1.092082408 8.327880903 0.003904117 1 

ENSG00000260396 NA 4.521783271 0.628406087 4.687573004 0.030381531 1 

ENSG00000129173 E2F8 4.446364925 1.697791267 7.381120584 0.006591209 1 

ENSG00000143228 NUF2 4.081469523 1.265613637 5.107143182 0.023827524 1 

ENSG00000265218 ENSG00000265218 3.873487561 0.535305572 7.097647153 0.007718521 1 

ENSG00000106070 GRB10 3.760016403 1.625397912 4.071128404 0.043622125 1 

ENSG00000263033 ENSG00000263033 3.739649174 0.596568017 4.078834776 0.043423594 1 

ENSG00000105374 NKG7 3.716842278 5.504708007 6.441167048 0.011150537 1 

ENSG00000258891 ENSG00000258891 3.073077177 1.121849217 5.350413476 0.020717357 1 

ENSG00000235560 ENSG00000235560 3.070651553 1.06236116 4.209655004 0.040194511 1 

ENSG00000252061 RNU6-415P 3.056835205 1.836723997 4.39496998 0.036045094 1 

ENSG00000155254 MARVELD1 3.009516417 3.53762875 3.985138022 0.04590334 1 

ENSG00000267554 ENSG00000267554 2.981053864 1.546698827 5.247137875 0.021982901 1 

ENSG00000237765 FAM200B 2.740824089 1.478501314 6.894846179 0.00864446 1 

ENSG00000206650 SNORA70G 2.682573707 1.007744817 4.615122446 0.031691233 1 

ENSG00000170190 SLC16A5 2.659007198 2.659935649 6.23907012 0.012496207 1 

ENSG00000100453 GZMB 2.636159743 4.329505166 5.549395363 0.018487072 1 

ENSG00000222009 BTBD19 2.515115933 3.8061088 12.30553519 0.000451617 1 

ENSG00000260417 ENSG00000260417 2.480131459 1.246217355 5.240923471 0.02206156 1 

ENSG00000154920 EME1 2.440482556 1.915432918 4.140957832 0.041857479 1 

ENSG00000099985 OSM 2.417570983 1.494434748 4.537262615 0.033164587 1 

ENSG00000260274 ENSG00000260274 2.404916132 1.056828284 4.604203654 0.031893663 1 

ENSG00000221886 ZBED8 2.373231786 0.776523997 4.049509159 0.04418419 1 

ENSG00000163251 FZD5 2.248344449 1.852410979 4.883267943 0.02711823 1 

ENSG00000259781 HMGB1P6 2.192382482 1.871208518 4.073790972 0.043553424 1 

ENSG00000260006 NA 2.182465038 2.846382402 7.682994347 0.00557436 1 

ENSG00000241634 ENSG00000241634 2.155798765 4.074640484 5.202191131 0.022558435 1 

ENSG00000186642 PDE2A 2.155159979 1.468172633 4.501825758 0.033858684 1 

ENSG00000170160 CCDC144A 2.150131996 5.618496323 4.0111624 0.045199978 1 

ENSG00000140379 BCL2A1 2.004935153 3.53176948 5.880745842 0.015307336 1 

ENSG00000162073 PAQR4 1.967387502 2.606875637 5.657893393 0.017376982 1 

ENSG00000135378 PRRG4 1.909978623 2.521457866 5.227194951 0.022236365 1 

ENSG00000272016 NA 1.862981329 3.074052598 5.34304043 0.020805156 1 

ENSG00000156831 NSMCE2 1.831393241 3.154126284 4.576160522 0.032419779 1 

ENSG00000204519 ZNF551 1.760167606 3.45577717 5.967170679 0.014574647 1 

ENSG00000163521 GLB1L 1.755546949 2.910539378 4.0918879 0.043089487 1 

ENSG00000007384 RHBDF1 1.746786161 2.44065237 4.325874782 0.037537115 1 

ENSG00000247596 TWF2 1.673407196 3.560156351 8.723244961 0.003141784 1 

ENSG00000166592 RRAD 1.527594213 3.200898839 4.216526071 0.040032041 1 

ENSG00000185158 LRRC37B 1.526029938 3.309693689 3.865427699 0.049290629 1 

ENSG00000106991 ENG 1.525475514 3.827272591 4.378246705 0.036400422 1 

ENSG00000261474 ENSG00000261474 1.455249643 2.056027838 4.918104082 0.026576667 1 

ENSG00000141441 GAREM1 1.393411092 3.697500714 4.92204574 0.026516101 1 
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ENSG00000260065 NA 1.386707083 3.276824785 5.688229197 0.017079081 1 

ENSG00000168528 SERINC2 1.385178092 3.111496391 6.492203687 0.010834858 1 

ENSG00000059915 PSD 1.348355238 3.204416065 6.328145739 0.01188365 1 

ENSG00000159674 SPON2 1.285530958 5.196369142 5.338024476 0.020865106 1 

ENSG00000151725 CENPU 1.282862563 3.111251171 5.498284358 0.01903514 1 

ENSG00000167984 NLRC3 1.264543285 4.027507446 4.254748556 0.039140742 1 

ENSG00000166886 NAB2 1.258994642 4.239620787 8.042922978 0.004568177 1 

ENSG00000234925 ATP5HP4 1.246794796 3.153536453 4.93436922 0.02632767 1 

ENSG00000257242 LINC01619 1.231701382 4.052566143 5.499565064 0.019021204 1 

ENSG00000116514 RNF19B 1.19590434 4.648284417 4.561813684 0.032692435 1 

ENSG00000090339 ICAM1 1.166667393 6.699785553 8.281076687 0.004006037 1 

ENSG00000119403 PHF19 1.166257851 4.526416958 5.184712214 0.022786446 1 

ENSG00000184207 PGP 1.156251989 3.901283167 6.00182375 0.014291098 1 

ENSG00000128039 SRD5A3 1.117616883 3.706187836 4.946065234 0.02615012 1 

ENSG00000146757 ZNF92 1.078053681 3.869228731 3.978004628 0.046098141 1 

ENSG00000168826 ZBTB49 1.075403941 3.391477533 4.684985801 0.030427315 1 

ENSG00000162702 ZNF281 1.073593106 4.122926474 4.060181582 0.043905778 1 

ENSG00000130775 THEMIS2 1.031872191 8.13617753 13.82926278 0.000200194 1 

ENSG00000186594 MIR22HG 1.01283964 5.569450039 5.422431079 0.019879661 1 

ENSG00000197872 FAM49A 0.989629942 5.548124839 6.445291446 0.011124679 1 

ENSG00000162971 TYW5 0.987417058 3.909111358 4.529033559 0.033324432 1 

ENSG00000101445 PPP1R16B 0.966767518 6.03598865 5.766007181 0.016339117 1 

ENSG00000243317 C7orf73 0.95172681 3.841854925 3.879552073 0.048877596 1 

ENSG00000167553 TUBA1C 0.936073097 5.003187147 5.050792863 0.024614672 1 

ENSG00000181467 RAP2B 0.921544818 5.541995314 5.001715988 0.025322201 1 

ENSG00000182541 LIMK2 0.920040786 4.832437155 7.964049997 0.004771553 1 

ENSG00000120063 GNA13 0.916721676 6.574926601 6.542520044 0.010532605 1 

ENSG00000173846 PLK3 0.907355807 6.309176292 4.112954779 0.042555951 1 

ENSG00000158019 BABAM2 0.903782247 4.189787631 3.982641709 0.045971411 1 

ENSG00000263244 ENSG00000263244 0.900103969 6.521734646 6.898919526 0.008624786 1 

ENSG00000183696 UPP1 0.889747433 5.174400937 4.082448513 0.043330825 1 

ENSG00000146112 PPP1R18 0.888695895 6.8322549 6.785610064 0.009189562 1 

ENSG00000168389 MFSD2A 0.879138461 4.60020596 4.429007589 0.035333046 1 

ENSG00000189159 JPT1 0.868240646 3.708887728 3.947055711 0.046953452 1 

ENSG00000144136 SLC20A1 0.866610591 5.816218597 8.720482028 0.003146548 1 

ENSG00000020633 RUNX3 0.861212016 6.69306518 4.587644364 0.032203244 1 

ENSG00000176890 TYMS 0.859750802 4.180663644 4.183890505 0.040809917 1 

ENSG00000164615 CAMLG 0.850187442 4.15655429 4.45490277 0.034801197 1 

ENSG00000160856 FCRL3 0.846897549 4.962550147 4.286441355 0.038417496 1 

ENSG00000101365 IDH3B 0.844103263 5.61575824 8.28705444 0.00399287 1 

ENSG00000117632 STMN1 0.84105229 5.068401108 4.853227979 0.027594445 1 

ENSG00000117614 SYF2 0.814464041 5.01080814 5.441791499 0.019660494 1 

ENSG00000054967 RELT 0.802782033 5.92571288 5.781929724 0.016191755 1 

ENSG00000127554 GFER 0.76586362 4.115137122 4.23856659 0.039515516 1 

ENSG00000059728 MXD1 0.765267415 5.689713318 5.31367617 0.021158664 1 

ENSG00000034152 MAP2K3 0.763509686 6.072777207 4.411075166 0.03570633 1 

ENSG00000137193 PIM1 0.761691184 7.842099377 5.882592484 0.015291291 1 

ENSG00000196950 SLC39A10 0.755886339 4.83105715 5.424983591 0.019850622 1 
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ENSG00000070495 JMJD6 0.739648438 5.476770449 5.88673918 0.015255323 1 

ENSG00000167470 MIDN 0.734117142 7.010780925 4.042867302 0.044358394 1 

ENSG00000141543 EIF4A3 0.726748769 5.724494984 7.651092656 0.005673795 1 

ENSG00000101558 VAPA 0.719601535 6.034219757 4.875957239 0.027233332 1 

ENSG00000080371 RAB21 0.717771907 5.256629701 4.79632292 0.028520546 1 

ENSG00000154358 OBSCN 0.703502616 6.306876813 4.189430232 0.040676766 1 

ENSG00000115685 PPP1R7 0.694582031 4.98493528 4.145528404 0.041744625 1 

ENSG00000117868 ESYT2 0.691788109 6.316277694 4.830224389 0.027964991 1 

ENSG00000175376 EIF1AD 0.690428953 5.80840658 4.67764417 0.030557627 1 

ENSG00000164081 TEX264 0.680190517 5.386480396 4.023427237 0.04487244 1 

ENSG00000165609 NUDT5 0.668390669 4.713849585 4.253822407 0.039162091 1 

ENSG00000171222 SCAND1 0.634605978 5.725477751 3.934479473 0.047305778 1 

ENSG00000162413 KLHL21 0.616725409 6.014719633 4.190839969 0.040642955 1 

ENSG00000135801 TAF5L 0.597008775 4.824529436 4.392673775 0.036093667 1 

ENSG00000100664 EIF5 0.553810713 8.644360299 3.870303916 0.049147621 1 

ENSG00000023734 STRAP 0.548869638 5.434474156 4.029838467 0.044702221 1 
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(b) 
	
Genes Symbol logFC logCPM LR p Value FDR 

ENSG00000272140 ENSG00000272140 -5.952498835 1.885835518 5.287043455 0.021484665 1 

ENSG00000225796 MTND4P23 -5.908020984 0.736226569 6.320774208 0.011933152 1 

ENSG00000270878 ENSG00000270878 -5.581537232 0.2483212 7.761508681 0.005337136 1 

ENSG00000197385 ZNF860 -5.46259309 2.017194426 5.232892022 0.022163651 1 

ENSG00000228171 ENSG00000228171 -5.210151138 1.091689302 3.928802477 0.047465733 1 

ENSG00000223648 IGHV3-64 -5.092070201 3.39540472 5.641912445 0.017536069 1 

ENSG00000189366 ALG1L -5.022309004 0.473919404 8.507505761 0.003536845 1 

ENSG00000198785 GRIN3A -4.984021898 0.633707833 3.894154205 0.048454431 1 

ENSG00000128606 LRRC17 -4.919132696 0.909072344 4.364904446 0.036686541 1 

ENSG00000211950 IGHV1-24 -4.917608925 2.272410422 17.50352622 2.87E-05 0.422420029 

ENSG00000269305 NA -4.914212362 0.62749366 7.351700971 0.006699934 1 

ENSG00000260423 LINC02367 -4.776349445 0.732204719 5.297240222 0.02135924 1 

ENSG00000207770 NA -4.751101012 0.814754393 5.426290494 0.019835771 1 

ENSG00000250327 RPSAP70 -4.729113515 0.713329432 4.116640882 0.042463314 1 

ENSG00000163554 SPTA1 -4.615834282 1.751636027 3.991562758 0.045728633 1 

ENSG00000234840 LINC01239 -4.581231634 2.56883438 4.638841538 0.031256095 1 

ENSG00000211938 IGHV3-7 -4.571456261 2.984870593 5.843946071 0.015630733 1 

ENSG00000234536 NA -4.438132327 0.63957825 4.302819958 0.038049233 1 

ENSG00000171084 FAM86JP -4.433154584 1.011104527 4.404055325 0.035853577 1 

ENSG00000211659 IGLV3-25 -4.358518469 2.36349412 5.785031476 0.016163208 1 

ENSG00000238061 ENSG00000238061 -4.335698786 0.691866138 5.675683214 0.01720164 1 

ENSG00000164695 CHMP4C -4.188786663 1.444276807 6.964395709 0.008314751 1 

ENSG00000269578 ENSG00000269578 -4.094618848 0.444702767 4.712863376 0.029937747 1 

ENSG00000234709 UPF3AP3 -3.73491562 0.334353817 4.018241914 0.04501061 1 

ENSG00000225151 GOLGA2P7 -3.724560156 0.832866737 4.660441203 0.030865259 1 

ENSG00000118402 ELOVL4 -3.687809517 1.523571922 5.477522507 0.019262541 1 

ENSG00000151304 SRFBP1 -3.649866163 2.075693602 3.916218546 0.047822335 1 

ENSG00000198711 SSBP3-AS1 -3.586417747 0.793069981 6.21147422 0.012692489 1 

ENSG00000223599 ENSG00000223599 -3.516669336 0.987193931 4.541262318 0.033087184 1 

ENSG00000080224 EPHA6 -3.449710341 1.725517255 5.625815801 0.017697827 1 

ENSG00000184984 CHRM5 -3.440548036 0.948070667 4.524186708 0.033418956 1 

ENSG00000219470 ENSG00000219470 -3.433551561 0.033822024 6.071087439 0.013741234 1 

ENSG00000198513 ATL1 -3.417146908 1.46065116 4.805097119 0.028375667 1 

ENSG00000113966 ARL6 -3.369941472 1.054492685 5.224853904 0.022266317 1 

ENSG00000232233 LINC02043 -3.2854874 1.582357566 4.926557736 0.026446949 1 

ENSG00000143858 SYT2 -3.097979752 0.884021841 4.237430372 0.039541972 1 

ENSG00000226002 GTF2IP14 -2.959822123 0.960959013 3.963487913 0.046497265 1 

ENSG00000211956 IGHV4-34 -2.934554149 2.352190274 5.336977647 0.02087764 1 

ENSG00000134297 PLEKHA8P1 -2.88388571 0.519689112 5.574769694 0.018221061 1 

ENSG00000153558 FBXL2 -2.86762063 1.256166107 5.104906608 0.023858263 1 

ENSG00000125869 LAMP5 -2.866917217 6.334825109 5.148179659 0.023270756 1 

ENSG00000244734 HBB -2.82839705 3.951500023 11.63621708 0.0006468 1 

ENSG00000211949 IGHV3-23 -2.80124484 4.287558188 6.601742862 0.0101879 1 

ENSG00000160791 CCR5 -2.750873225 2.119348898 7.094637499 0.007731493 1 

ENSG00000139160 ETFBKMT -2.717965905 2.168615593 4.131744811 0.042085937 1 
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ENSG00000132932 ATP8A2 -2.697925 4.537678402 9.836896781 0.001710458 1 

ENSG00000112782 CLIC5 -2.685038654 2.891668225 4.655566046 0.030953025 1 

ENSG00000246273 SBF2-AS1 -2.618815409 1.189189091 3.903858138 0.048175355 1 

ENSG00000117322 CR2 -2.583033599 1.16451107 4.834473741 0.027896154 1 

ENSG00000226549 SCDP1 -2.580823945 3.337616185 4.273558498 0.038709784 1 

ENSG00000169403 PTAFR -2.579930264 5.550437296 3.868643752 0.049196261 1 

ENSG00000211898 IGHD -2.556609483 4.070314768 4.19429458 0.040560225 1 

ENSG00000110848 CD69 -2.529781658 4.358278124 8.829270831 0.002964368 1 

ENSG00000064989 CALCRL -2.525758131 3.393464976 6.963530368 0.008318773 1 

ENSG00000160539 PLPP7 -2.495545958 2.259401839 4.94660077 0.02614202 1 

ENSG00000176125 UFSP1 -2.474866362 1.347517488 5.89234079 0.015206874 1 

ENSG00000241527 CA15P1 -2.467551177 1.863774615 5.41572513 0.019956163 1 

ENSG00000167693 NXN -2.43453088 2.050326983 3.898570389 0.048327215 1 

ENSG00000233695 GAS6-AS1 -2.39540206 1.987592662 4.835110074 0.027885861 1 

ENSG00000211651 IGLV1-44 -2.377708208 3.584987505 6.526161559 0.010629911 1 

ENSG00000188191 PRKAR1B -2.343549651 3.283215504 4.073781691 0.043553663 1 

ENSG00000163794 UCN -2.329110748 1.570406646 4.165018154 0.041266971 1 

ENSG00000243466 IGKV1-5 -2.31385205 4.439275156 5.002730249 0.025307367 1 

ENSG00000233806 LINC01237 -2.266151637 2.800753973 7.932544317 0.004855348 1 

ENSG00000211959 IGHV4-39 -2.260361407 6.90392344 4.009818725 0.045236014 1 

ENSG00000075275 CELSR1 -2.25479695 4.71732946 9.620450668 0.001924225 1 

ENSG00000153140 CETN3 -2.245813645 2.306627964 3.865332661 0.049293421 1 

ENSG00000250654 ENSG00000250654 -2.236569125 1.392633527 4.098230781 0.042928112 1 

ENSG00000198477 NA -2.232627109 2.130492298 4.054868732 0.044044143 1 

ENSG00000144908 ALDH1L1 -2.1930315 3.714049151 5.570093796 0.018269782 1 

ENSG00000012124 CD22 -2.169659144 3.864959183 3.963126129 0.046507258 1 

ENSG00000268041 ENSG00000268041 -2.125264856 2.659605612 4.797994676 0.028492883 1 

ENSG00000163520 FBLN2 -2.097246847 4.926336827 7.543944366 0.006021209 1 

ENSG00000168916 ZNF608 -2.091355427 3.522837759 4.660715459 0.03086033 1 

ENSG00000187870 RNFT1P3 -2.040096722 4.557979814 4.659198899 0.0308876 1 

ENSG00000241127 YAE1D1 -1.928511982 1.832404908 4.510552852 0.033686351 1 

ENSG00000110811 P3H3 -1.89152959 4.39257172 5.69200071 0.017042414 1 

ENSG00000204248 COL11A2 -1.879514501 3.007209998 4.477083642 0.034352292 1 

ENSG00000199568 RNU5A-1 -1.818473095 4.106512986 4.811932394 0.028263335 1 

ENSG00000163126 ANKRD23 -1.786419112 2.824102778 4.650998986 0.031035481 1 

ENSG00000259712 ENSG00000259712 -1.786291136 1.458067007 3.994183505 0.045657569 1 

ENSG00000154553 PDLIM3 -1.769447687 3.872653354 5.793752614 0.016083222 1 

ENSG00000214456 PLIN5 -1.760757379 2.274869889 5.125223195 0.023580538 1 

ENSG00000129282 NA -1.746849353 2.377494774 3.943638971 0.047048898 1 

ENSG00000248996 ENSG00000248996 -1.741823284 1.637791611 4.009452404 0.045245844 1 

ENSG00000148926 ADM -1.71153944 5.917847554 4.422795963 0.035461884 1 

ENSG00000137338 PGBD1 -1.697145114 2.579139013 4.132971321 0.042055447 1 

ENSG00000112379 ARFGEF3 -1.676225349 4.610654505 6.034009692 0.014032821 1 

ENSG00000122778 KIAA1549 -1.667278508 2.968993317 4.058820985 0.043941169 1 

ENSG00000211662 IGLV3-21 -1.645088037 12.25352334 6.628454926 0.010036228 1 

ENSG00000211666 IGLV2-14 -1.639183161 5.650023863 4.122668158 0.042312295 1 

ENSG00000240041 IGHJ4 -1.576767407 3.325330077 4.498448639 0.033925619 1 

ENSG00000203814 HIST2H2BF -1.546617402 3.514633843 6.560335342 0.010427671 1 
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ENSG00000149403 GRIK4 -1.507817066 5.201427158 6.612655837 0.010125654 1 

ENSG00000117407 ARTN -1.467584203 3.847478148 5.411262018 0.020007247 1 

ENSG00000262943 ALOX12P2 -1.353814106 3.184684189 4.006832188 0.045316219 1 

ENSG00000211892 IGHG4 -1.350690295 8.517813894 5.960853562 0.014626958 1 

ENSG00000161277 THAP8 -1.340221363 2.349664214 4.321048402 0.037643723 1 

ENSG00000237638 LINC02245 -1.328971929 3.629445924 3.85837259 0.049498318 1 

ENSG00000179909 ZNF154 -1.318921941 4.240688648 4.534494647 0.033218263 1 

ENSG00000155189 AGPAT5 -1.303248593 3.200331411 4.745309845 0.029378263 1 

ENSG00000215424 MCM3AP-AS1 -1.260328798 3.25277696 4.680153558 0.030513021 1 

ENSG00000203772 SPRN -1.258429576 3.103016704 4.191139008 0.040635787 1 

ENSG00000237940 LINC01238 -1.251744801 3.328418042 5.394611304 0.020199024 1 

ENSG00000211677 IGLC2 -1.234687676 7.751354291 5.513697877 0.018868114 1 

ENSG00000187824 TMEM220 -1.215489622 2.624393088 3.930592401 0.047415239 1 

ENSG00000048162 NOP16 -1.193773706 3.834441305 5.83191734 0.015737962 1 

ENSG00000133740 E2F5 -1.139307269 4.515135523 7.838967665 0.00511318 1 

ENSG00000139737 SLAIN1 -1.133077728 3.420055415 3.944186446 0.047033591 1 

ENSG00000092096 SLC22A17 -1.115029514 6.028606206 8.132447627 0.004348001 1 

ENSG00000163534 FCRL1 -1.107910974 5.283049201 4.34092371 0.037206732 1 

ENSG00000213398 LCAT -1.099954761 4.585586113 4.12000928 0.042378846 1 

ENSG00000171444 MCC -1.069469943 7.31792472 4.210730196 0.040169042 1 

ENSG00000100154 TTC28 -1.049628994 4.863663331 4.20191939 0.040378252 1 

ENSG00000171044 XKR6 -0.995645929 3.073036969 4.03918769 0.044455215 1 

ENSG00000196562 SULF2 -0.947931233 8.515725284 7.248259759 0.007096976 1 

ENSG00000162600 OMA1 -0.930762683 4.266898095 4.041425761 0.044396299 1 

ENSG00000238164 TNFRSF14-AS1 -0.927582561 4.494708225 3.847726469 0.049813471 1 

ENSG00000253797 UTP14C -0.898538735 3.287708227 4.121031254 0.042353253 1 

ENSG00000134809 TIMM10 -0.895119223 3.479561631 4.429104376 0.035331043 1 

ENSG00000138074 SLC5A6 -0.887615885 5.432692276 6.140326571 0.013213291 1 

ENSG00000137936 BCAR3 -0.858841419 5.156230483 4.593684495 0.03208996 1 

ENSG00000197798 FAM118B -0.846777058 3.497312751 4.041443968 0.04439582 1 

ENSG00000103995 CEP152 -0.845395614 4.477584202 4.677824302 0.030554423 1 

ENSG00000144827 ABHD10 -0.833234171 3.807547552 4.119629316 0.042388365 1 

ENSG00000145088 EAF2 -0.819394884 6.300140577 3.908097283 0.048053974 1 

ENSG00000079950 STX7 -0.770904878 4.936922778 4.870972328 0.027312107 1 

ENSG00000133874 RNF122 -0.747238275 5.776211338 4.516240757 0.033574526 1 

ENSG00000178425 NT5DC1 -0.747028468 4.223160216 4.715964134 0.029883803 1 

ENSG00000117226 GBP3 -0.724020218 4.689972501 4.44398236 0.035024458 1 

ENSG00000130396 AFDN -0.718105402 5.424790542 5.339377681 0.020848915 1 

ENSG00000068654 POLR1A -0.684453578 5.947250436 5.051632511 0.024602748 1 

ENSG00000140563 MCTP2 -0.67325732 6.05901058 5.013957439 0.025143766 1 

ENSG00000066933 MYO9A -0.663896209 5.142943611 4.156665878 0.041470961 1 

ENSG00000168421 RHOH -0.663137789 6.988708035 3.875009239 0.04901004 1 

ENSG00000001631 KRIT1 -0.661329675 5.512385589 5.446314854 0.019609649 1 

ENSG00000196914 ARHGEF12 -0.648104834 6.891782884 4.749061265 0.029314282 1 

ENSG00000178764 ZHX2 -0.624249954 6.05272826 3.871665269 0.049107774 1 

ENSG00000125746 EML2 -0.608988324 6.011431403 4.617960034 0.031638845 1 

ENSG00000117899 MESD -0.551249111 5.772087115 4.043527302 0.044341051 1 

ENSG00000197943 PLCG2 -0.528799517 8.013474191 5.117448066 0.023686425 1 
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Supplementary Table 3. List of differentially expressed genes associated with MM 

progression. Differential gene expression testing between MGUS/SMM and MM groups, 

identified 250 genes approaching statistical significance (i.e. raw p < 0.05, before 

controlling the false discovery rate using the Benjamini Hochberg method29). There were 

(a) 109 genes upregulated, and (b) 141 genes downregulated upon progression to MM. NA 

represents genes IDs that did not map to any known gene symbols. 

	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
Supplementary Table 4. Normalised gene expression (FPKM) of genes differentially 

expressed at MM transition. There were 10 top differentially expressed genes, based on 

fold change and frequency, upon MM transition showing fold increase (THEMIS2, 

BTBD19, TWF2, SLC20A1 and SLC23A3) or fold decrease (HBB, ATP8A2, CELSR1, CD69 

and ALG1L) based on their normalised gene expression counts. 
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Supplementary Figure 1. Dysregulation of biological pathways associated with 

differentially expressed genes identified between MGUS/SMM to MM. Pathway 

analysis revealed gene expression signatures associated with the transition of MGUS/SMM 

to MM. There were 196 differentially expressed genes mapped, with their deregulation 

affecting 69 biological pathways. Pathways associated with genes that were highly up 

regulated, or highly down regulated at MM transition are illustrated in Figure 3. 
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Supplementary	 Figure	2.	The relationship in methylation landscape in normal PCs 

versus MGUS, SMM and MM stages. XY scatterplots illustrate great variation in the 

methylation pattern between normal and disease stages of (A) MGUS, (B) SMM and (C) 

MM, with a skewing towards greater methylation observed in NPC. The median R2 value 

was 0.36, demonstrating heterogeneity in CpG methylation between stage specific 

comparisons. R2 correlation values are given for group above individual plots. 
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4.1 Abstract 

Multiple myeloma (MM) is a largely incurable haematological malignancy characterised 

by the clonal proliferation of antibody secreting plasma cells (PCs) within the bone 

marrow. Increasingly, research has focused on the identification of key genetic mutations 

that underlie disease transformation from MGUS/SMM to MM. However to date, no single 

gene mutation, or combination of mutations, have been identified as being common to all 

MM patients at presentation1. Multiple large cohort genomic studies of MM patients have 

been carried out finding SP140 to be recurrently mutated in ~3-12% of patients. However, 

the precise role of mutated SP140 in MM development is unknown. Here, we demonstrate 

evidence of RNA editing of Sp140 in the murine MM PC line, 5TGM1. RNA-specific 

nucleotide variants were identified in exon 2, including c.166 C>T (i.e. U) non-

synonymous variant; and c.180 G>A synonymous variant. Screening of multiple non-PC 

murine cell lines determined that these editing changes were not a PC-specific 

phenomenon. Despite Sp140 exon 2 sequence being conserved at c.166 in the human 

genome, screening of human MM cell line cDNA revealed no evidence of RNA editing in 

SP140. In relation to 5TGM1 cells, the non-synonymous C>T (i.e. U) change at c.166 

predicted a STOP gain, prompting us to investigate whether the classical C>U deamination 

enzymes Apobec1 and Apobec3, were responsible for the RNA editing of Sp140. CRISPR-

Cas9 gene editing was used to generate a 5TGM1 cell line in which Apobec1 or Apobec3 

were knocked out. While Apobec1 and Apobec3 were efficiently knocked down in these 

cells, no consequent change in RNA editing of Sp140 phenotype was observed, suggesting 

other mechanisms are responsible for the RNA editing of Sp140. The discovery that RNA 

editing of Sp140 occurs in the 5TGM1 MM PC line warrants further exploration into the 

mechanisms that underlie this phenomenon, and suggests that RNA editing may influence 

the transcriptional and translational landscape of other MM associated genes. 
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4.2 Introduction 

Genomic studies of MM patient samples have demonstrated intraclonal heterogeneity as a 

feature of disease through MGUS, SMM and MM, suggesting that progression is 

characterised by the acquisition of key genetic mutations which confer a selective 

advantage to tumour cells2-5. Significantly mutated genes that were identified in these 

studies include KRAS, NRAS, BRAF, TP53, DIS3 and FAM46C, which are believed to be 

drivers of MM due to their recurrent nature2-5. Additionally, 28 novel candidate genes 

harbouring recurrent mutations associated with MM disease were also identified, including 

IRF4, CDK4, ROBO1, FAT3, EGR1, PEG3, LTB, TGDS, SNX7, RASA2, USP29, TRAF3, 

CYLD, RB1, CCND1, PNRC1, ALOX12B, HLA-A, MAGED1, PRDM1, ACTG1, MAPK, 

NF1, NFKBIA, CDKN2C, PTEN, NFKBI and SP1402,3,5. While many mutated genes have 

been identified to be associated with MM, few have been biologically interrogated for their 

causative roles in MM disease development.  

 

SP140 is a nuclear body protein involved in the antigen response of mature B 

cells2,6. Further investigation has revealed its function as a bromodomain and plant 

homeodomain containing epigenetic reader7, with single nucleotide variants (SNVs) in 

SP140 significantly associating with immune diseases such as Crohn’s disease8,9 and 

chronic lymphocytic leukaemia10. SNVs identified in SP140 resulted in aberrant mRNA 

transcription and reduced protein levels. Genomic studies of MM patients have found that 

SP140 is mutated in ~3-12% of patients, whose plasma cells (PCs) harbour a range of 

SP140 gene alterations including missense, nonsense, frameshift and splice site 

changes2,3,11,12. Two of these studies have suggested SP140 as a novel candidate tumour 

suppressor gene in MM, due to the significant frequency of inactivating mutations2,3. 

Moreover, Bolli et. al. showed that mutations in SP140 correlated with shorter relapse-free 

survival of MM patients2. 	

 

Murine models of human disease play an important role in the screening and 

characterisation of mutant candidate genes in both in vitro and in vivo preclinical settings. 

In MM, the most commonly used mouse MM PC line is 5TGM113. This well characterised 

cell line is amenable to genetic modification and can be used for both the in vitro and in 

vivo characterisation of the function of candidate genes of interest. The 5T MM models 

were originally identified in aging C57BL/KaLwRij mice that spontaneously developed 

benign B cell monoclonal proliferative disorders, which resembled human disease, 

including a monoclonal expansion of PCs within the bone marrow14. The 5TGM1 cell line 
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is a subclonal cell line of the 5T33 MM model13, a model which was developed by serial 

transplantation of bone marrow cells from aging C57BL/KaLwRij mice which displayed 

evidence of a serum monoclonal protein spike, into young recipients15. The 5TGM1-

C57BL/KaLwRij in vivo model is the main preclinical model of MM used in the laboratory 

as it replicates many of the features of human MM disease16-18. Genetically modified 

5TGM1 PCs are inoculated into 6-8 week old C57BL/KaLwRij mice, with subsequent 

effects on disease development monitored over a 4 week period. While MM is typically 

known as a single disease type in humans, recent genomic studies have demonstrated a 

marked genetic heterogeneity between patients, suggesting that MM is rather a collection 

of monoclonal gammopathies with different genetic subtypes which all share a common 

clinical phenotype19. As the 5TGM1 and C57BL/KaLwRij models are frequently used for 

in vitro and in vivo studies of MM, respectively, it would be advantageous to know which 

specific genetic subtype is being modelled in these studies for translatable outcomes in that 

patient group. 

 

RNA sequencing (RNAseq) has been used widely to examine gene expression, 

however, there are limited studies investigating variant detection. Mining transcriptome 

sequencing data of 5TGM1 MM PCs, we investigated the mutation status of mRNAs of 

genes that are recurrently mutated in MM patients. To this end, we found that Sp140 

mRNA harboured a high impact SNV mutation that induced a STOP gain in exon 2 (c.166 

C>T). Unexpectedly, validation studies of this SNV within 5TGM1 cells revealed the 

phenomenon of RNA editing, where the point mutation was identified in the screening of 

RNA but was not found in genomic DNA of 5TGM1 cells. 

 

Recent studies have shown that modifications at the transcriptomic level are linked 

with cancer20-22. Of particular interest, is the molecular mechanism of RNA editing, which 

is catalysed by two known editing enzyme families: apolipoprotein B mRNA editing 

enzyme, catalytic polypeptide like (APOBECs) and adenosine deaminases acting on RNA 

(ADARs). To date, the association of cancer and editing changes have been reported in an 

A>I context by ADARs. ADAR editing enzymes have been implicated in hepatocellular 

carcinoma23, glioblastoma24, prostate cancer25, colorectal cancer26, non-small-cell lung 

cancer27, chronic myeloid leukaemia20 and MM22. Examples in liver and lung cancers have 

shown that overexpression of ADAR1 lead to recoding changes in AZIN1 that activates 

both the development and progression of disease, thus demonstrating the oncogenic 

potential of RNA editing enzymes23,27. Similarly, APOBECs are a class of cytidine 



	 142	

deaminases known to catalyse C>U RNA editing changes, where currently APOBEC1, 

APOBEC3A and APOBEC3G are known to cause recoding changes28. In this study, we 

identified a high impact C>T (ie. U) RNA editing change of Sp140, and hypothesized that 

Apobec family enzymes are the likely enzymatic candidates inducing this phenotype.  

 

As outlined in our Whole Exome Sequencing (WES) study of serial MGUS/SMM 

to MM patients in Chapter 2, we also found that SP140 mutations were newly acquired at 

MM in 30% of patients. In Chapter 3, which details our transcriptomic and methylomic 

analysis of serial MGUS/SMM to MM patients, we found that SP140 was expressed in 

tumour PCs but did not harbour any point mutations. Here, we investigated the extent of 

RNA editing of Sp140/SP140 in 6 murine (5TGM1, NIH-3T3, NS1, BA/F3, FDCP1 and 

RAW264.7) and 9 human MM cell lines (KMS-18, MM.1R, MM.1S, NCI-H929, RPMI 

8226, U266, JJN3, MOLP-8 and EJM) to determine the tissue specificity of this RNA 

editing event and its prevalence in human MM. Moreover, CRISPR-Cas9 gene editing was 

used to generate 5TGM1 cell lines in which Apobec1 or Apobec3 were knocked out, to 

assess any subsequent changes in RNA editing of Sp140 due to loss of these deaminase 

enzymes. 
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4.3 Materials & Methods 

4.3.1 Sequencing and analysis 

RNA sequencing of 5TGM1 cells was previously performed by Dr. K. Mrozik. Briefly, 

total cellular RNA was extracted from cells using 1mL TRIzol as per manufacturer’s 

instructions (Thermo Fisher Scientific). All RNA samples were dissolved in nuclease-free 

water (30µL). Yields and quality were assessed using the Qubit 2.0 fluorometer (Thermo 

Fisher Scientific) and 2200 Tapestation System (Agilent). The range of RIN scores of 

extracted RNA samples was 8.0 – 8.3. RNA libraries were generated using the TruSeq 

Stranded mRNA Sample Preparation Kit, using the LS (low sample) protocol according to 

manufacturers’ instructions (Illumina). Sequencing was carried out on the Illumina 

NextSeq500 (2x75 bp paired-end reads) with approximately 100 million reads per sample. 

 

Gene analysis was performed by Dr. C. Kok. Quality of raw RNA sequencing reads was 

assessed using the FastQC package (Babraham Bioinformatics). Sequencing reads were 

aligned to the mus musculus mm10 genome assembly using the Subread aligner package. 

Uniquely mapped reads were retained and the number of reads that mapped were counted 

using featureCounts. Transcripts were filtered from downstream analysis if they did not 

meet the threshold of at least 1 count per million mapped reads, in at least 2 samples. 

Reads counts per gene were converted to log2 counts per million (CPM) with the voom 

function of the limma package. Single nucleotide variants were called using the Genome 

Analysis Tool Kit (GATK) best practices pipeline (Broad Institute), and variant annotation 

was performed using ANNOVAR29. 
 

4.3.2 Cell culture 

4.3.2.1 Murine cell lines 

All cell culture media was supplemented with additives consisting of 2mM L-glutamine, 

1mM sodium pyruvate, 15mM HEPES, 50 U/mL penicillin and 50µg/mL streptomycin 

(Sigma-Aldrich). The 5TGM1 MM cell line was cultured in Iscove’s Modified Dulbecco’s 

Media (IMDM) supplemented with 20% fetal calf serum (FCS) and additives. NIH-3T3, 

NS1 and RAW264.7 cell lines were cultured in Dulbecco’s Modified Eagle Medium 

(DMEM) supplemented with 10% FCS and additives. BA/F3 cells were cultured in 

Roswell Park Memorial Institute media (RPMI-1640) supplemented with 10% FCS, 

additives and 10% (v/v) conditioned media from the WEHI-3B cell line, as a source of IL-

3 (a gift from K. Asari of the SAHMRI Cancer Theme group). FDCP1 cells were cultured 

in DMEM supplemented with 10% FCS, additives and 10% (v/v) conditioned media of the 
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WEHI-3B cell line for IL-3. Cell cultures were maintained in humidified incubation 

chambers at 37°C with 5% CO2.  

 
4.3.2.2 Human MM cell lines 

All human cell lines were cultured in RPMI-1640 supplemented with 10% FCS, with the 

exception of the EJM cell line, which was cultured in IMDM supplemented with 10% 

FCS. Cell cultures were maintained in humidified incubator at 37°C with 5% CO2. 

 

4.3.3 Nucleic acids isolation 

4.3.3.1 DNA isolation 

Genomic DNA was extracted from cell lines using the DNeasy Blood & Tissue kit, 

according to the manufacturer’s instructions (QIAGEN). Quantity and quality of isolated 

DNA was determined using the Nanodrop 8000 Spectrophotometer (Thermo Fisher 

Scientific) and all samples were stored at -80°C until required. 

 

4.3.3.2 RNA isolation 

Total RNA was extracted from cell lines using TRIzol (Life Technologies). RNA yields 

and quality were assessed using the Nanodrop 8000 Spectrophotometer (Thermo Fisher 

Scientific) and all samples were stored at -80°C until required. 

 

4.3.4 Validation 

4.3.4.1 Confirming SNVs in 5TGM1 cell line 

cDNA (20µL) was generated from 1.5µg of total RNA extracted from 5TGM1 cells using 

SuperScript IV Reverse Transcriptase (Thermo Fisher Scientific). Sp140 exon 2 was then 

PCR-amplified using Sp140RT-F: 5’- CCAGAGGACCAGAATGAAGAGG -3’ and 

Sp140RT-R: 5’- TCCCGGCTAAACTTCTTCTGT -3’ primers and 2µL cDNA with 

Phusion High-Fidelity DNA Polymerase (New England BioLabs), as per manufacturers’ 

instructions for 50µL total reaction volume, on a Veriti 96-Well Thermocycler (Applied 

Biosystems) for 35 cycles with 98°C denaturation, 60°C annealing and 72°C extension. 

The PCR product was resolved on a 2% agarose gel and subsequently excised, and purified 

using the Ultra Clean PCR Purification Kit (MoBio Laboratories) before direct Sanger 

sequencing using PCR primers (as above), at the Australian Genome Research Facility 

(AGRF Adelaide Node). 
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DNA was screened by direct purified PCR product screening, as described above with 

gDNA PCR primers designed to amplify Sp140 exon 2 (F: 5’- 

CCAGCCATTGGTAGCATCTTG -3’; R: 5’- GCTTGCTGTCAGGACTGAGT -3’). 

 

Same molecule analysis of tandem editing of RNA was validated by PCR product cloning 

and colony sequencing. Sp140 exon 2 was PCR amplified using cDNA primers, before 

adenylation using AmpliTaq Gold (Thermo Fisher Scientific). Amplicons were then 

ligated into the pGEM-T vector (Promega Corporation). JM109 competent cells were 

transformed and plated onto Luria broth with ampicilin agar plates for colony growth 

overnight at 37°C. Bacterial colonies (n = 10) were randomly selected, cultured overnight 

and then plasmid minipreps were carried out using alkaline lysis miniprep (QIAGEN). 

Double digest, using restriction enzymes NdeI and SacII, was used to confirm successful 

ligation of the exon 2 PCR product into the vector. Extracted DNA was quantitated on the 

Nanodrop 8000 (Thermo Fisher Scientific), prior to direct Sanger sequencing using T7 

forward and SP6 reverse vector primers at the Australian Genome Research Facility 

(AGRF Adelaide Node). 

 

DNA and RNA of Sp140 exon 7 was screened by direct purified PCR product screening, 

as described above in 4.3.4.1 Validation: Confirming SNVs in 5TGM1 cell line, with PCR 

primers designed to exon 7 gDNA (F: 5’- CAGGATGCCTCCCTTTCTCC -3’; R: 5’- 

GAAAGACCCACAGACGCTGT -3’) and cDNA (F: 5’- 

GGCCACAACTGGTCAAAACC -3’; R: 5’- GGTTCTTTTTCATCACTCCCTTCA -3’). 

 

4.3.5 Screening 

4.3.5.1 Murine cell lines 

Screening of Sp140 exon 2 changes were carried out on 6 mouse cell lines: 5TGM1, NIH-

3T3, NS1, BA/F3, FDCP1 and RAW264.7. Nucleic acids were isolated and quantitated as 

described above. RNA and DNA were screened by direct purified PCR product 

sequencing, using gDNA and cDNA PCR primers as described above in 4.3.4.1 

Validation: Confirming SNVs in 5TGM1 cell line.  

 

4.3.5.2 Human MM cell lines 

Screening of SP140 exon 2 changes was carried out on 9 human MM cell lines: KMS-18, 

MM.1R, MM.1S, NCI-H929, RPMI 8226, U266, JJN3, MOLP-8 and EJM. Nucleic acids 

were isolated and quantitated as described above. RNA was screened by direct purified 
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PCR product screening, as described using above in 4.3.4.1 Validation: Confirming SNVs 

in 5TGM1 cell line, with cDNA PCR primers (F: 5’- GGCAAGTGGAGACAGCAATC -

3’; R: 5’- CTTGTCACTGGGACCAGGTT -3’). 

 

4.3.6 Generation of Apobec1 sgRNA expression vectors  

Plasmid vector pSpCas9(BB)-2A-GFP (also known as px458) was a gift from Feng Zhang 

and was obtained from Addgene (plasmid #48138)30. The Cerulean2 reporter was 

amplified from the LeGO-iCer2 lentiviral vector (Addgene plasmid #27346, gift of Boris 

Fehse)31 and a T2A self-cleaving peptide sequence was also added using two rounds of 

hemi-nested PCR. An initial 30 cycles of PCR using T2A-Cer2-Forward (5’-

GTCGAGGAGAATCCTGGCCCAGTGAGCAAGGGCGAGGAGCTG-3’) and EcoRI-

TdT-Cer2-Reverse (5’-GCCGGAATTCTTACTTGTACAGCTCGCTCAT-3’) primers 

was followed by another 30 cycles of PCR using EcoRI-T2A-Forward (5’- 

AAAGGAATTCGGCAGTGGAGAGGGCAGAGGAAGT-

CTGCTAACATGCGGTGACGTCGAGGAGAATCCTGGCCCA -3’) and EcoRI-TdT-

Cer2-Reverse primers. Both rounds of PCR used Phusion High-Fidelity DNA Polymerase 

(New England Biolabs) and a Tm of 58oC. The PCR product was ligated into px458 using 

the EcoRI sites, replacing the EcoRI-site-flanked T2A-GFP cassette, to generate px458-

Cer2. sgRNAs to exon 6 of mouse Apobec1 (ensembl.org transcript 

ENSMUST00000112586.7) were designed using the MIT CRISPR design software 

(http://crispr.mit.edu/).  The following oligonucleotide pairs, specific for each sgRNA, 

were ligated into px458-Cer2 using the tandem BbsI sites downstream of the U6 promoter 

as per Ran, et al.30. sgRNA emboldened. 

Apobec1_sgRNA#1_top: 5’-CACCGAAGAAGACTTCAAACTCGTG-3’  

Apobec1_sgRNA#1_bottom: 5’-AAACCACGAGTTTGAAGTCTTCTTC-3’ 

Apobec1_sgRNA#2_top: 5’-CACCGTCTCTTTCCGAAGCTCCCGG-3’  

Apobec1_sgRNA#2_bottom: 5’-AAACCCGGGAGCTTCGGAAAGAGAC-3’ 

 

4.3.6.1 Transfection of 5TGM1 cells 

4mL of 5TGM1 BMx1 cells at 2x105 per mL in IMDM (20% FCS) were transfected with 

either 4µg px458-sgRNA plasmid, or 4µg px458-empty vector (no sgRNA) plasmid and 

20µL Polyfect (QIAGEN) according to manufacturer’s recommendations. 48 hours after 

transfection, GFP+Cerulean+ cells were isolated using flow cytometry. Ten days later, 

single transfected cells (clones) were deposited into 96 well plates by flow cytometry and 

clones were expanded prior to mutation screening.  
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4.3.6.2 Mutation screening 

DNA was isolated from each clone using DNeasy Blood and Tissue kit (QIAGEN) 

according to manufacturer’s instructions. Exon 6 of mouse Apobec1 (ensembl.org 

transcript ENSMUST00000112586.7) was amplified using mApobec1.het.F (5’- 

GTCATCTCAGCCTGGAATATG -3’) and mApobec1.het.R (5’- 

GGCTCAGAAACTCTGTAATGG -3’) primers using Phusion High-Fidelity DNA 

Polymerase (New England Biolabs) at a Tm of 70oC. PCR products were purified using an 

UltraCleanTM PCR clean-up kit (MoBio Laboratories) prior to Sanger sequencing at the 

Australian Genome Research Facility (AGRF Adelaide Node). 

  

4.3.7 Generation of Apobec3 sgRNA expression vectors  

The GFP reporter gene was excised from lentiviral vector FgH1tUTG (a gift from Marco 

Herold, Addgene plasmid # 70183)32 and replaced with the Plum reporter gene using 

Gibson assembly following the Miller laboratory recommendations (http://miller-

lab.net/MillerLab/protocols/) by Yu Chinn Joshua Chen at University of Adelaide. Two 

different guide RNAs were designed using the MIT CRISPR design software 

(http://crispr.mit.edu/) to sequences just upstream of each of those encoding the two active 

sites (AS) of mouse Apobec3. The following oligonucleotide pairs were used to clone the 

sgRNAs targeting AS1 and AS2 encoded by exons 3 and 7, respectively, of mouse 

Apobec3 (ensembl.org transcript ID ENSMUST00000109620.9). The 4 bp CACC- and 

AAAC- overhangs enabled ligation into BsmBI digested FgH1UTPlum. 

AS1-antisense-F 5’ CACCGACATTCGAAACAGGGGCTCC 3’  

AS1-antisense-R 5’ AAACGGAGCCCCTGTTTCGAATGTC 3’ 

AS1-sense-F 5’ CACCGAGATCACCTGGTATATGTCC 3’ 

AS1-sense-R 5’ AAACGGACATATACCAGGTGATCTC 3’ 

AS2-antisense-F 5’ CACCGACAGTTTGGGCAGGGGCTCC 3’  

AS2-antisense-R 5’ AAACGGAGCCCCTGCCCAAACTGTC 3’ 

AS2-sense-F 5’ CACCGCAATCACCTGCTACCTCACC 3’ 

AS2-sense-R 5’ AAACGGTGAGGTAGCAGGTGATTGC 3’ 

 

4.3.7.1 Viral packaging and 5TGM1 infection 

5TGM1 cells were transduced with FUCas9Cherry (a gift from Marco Herold: Addgene 

plasmid # 70182) to constitutively express Cas9. Viral particles containing FuCas9cherry 

were generated following Lipofectamine 2000 (Invitrogen) transfection of HEK293T cells 

concomitantly with psPAX2 (gift from Didier Trono, Addgene plasmid # 12260) and 
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pECO (Clontech) packaging constructs. 5TGM1 cells were infected with lentiviral 

particles by centrifugation at 1000g for 1 hour with 8µg/ml polybrene. Forty hours later, 

cherry-positive 5TGM1 cells that had been successfully transduced with Cas9 library were 

isolated by flow cytometry. 5TGM1-FuCas9cherry were then transduced with similarly 

packaged FgH1tUTPlum-Apobec3-sgRNA or FgH1tUTPlum-empty vector lentiviral 

vectors and Cherry+Plum+ cells were isolated by flow cytometry. sgRNA expression was 

induced by the addition of doxycycline hyclate (Sigma-Aldrich) to 1µg/ml for 48 hours, 

and individual mCherry+Plum+ cells were deposited into a 96 well plate by flow cytometry. 

These 5TGM1 clones were expanded prior to mutation screening.  

 

4.3.7.2 Mutation screening 

DNA was isolated from each clone using DNeasy Blood and Tissue kit (QIAGEN) 

according to manufacturer’s instructions. Exon 3 or exon 7 of mouse Apobec3 

(ensembl.org transcript ID ENSMUST00000109620.9) was amplified using either Exon3-

F (5’ AACAGGGCTCAGAGTGCTAG 3’) and Exon3-R (5’ 

ACACACCCTTCACCATATGG 3’) or Exon7-F (5’ TGGGAATGTGGAGTTAGTGG 

3’) and Exon7-R (5’ GGCTTGTCATATTGAGGCTG 3’) primers and Phusion High-

Fidelity DNA Polymerase (New England Biolabs) at Tms of 70oC or 67oC, respectively. 

PCR products were purified using an UltraClean PCR clean-up kit (MoBio Laboratories) 

prior to Sanger sequencing at the Australian Genome Research Facility (AGRF Adelaide 

Node).   

 

4.3.8 Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) 

cDNA was generated from RNA isolated from murine cell lines using Superscript III First-

Strand Synthesis System (Life Technologies). qPCR was performed using RT2 SYBR 

Green qPCR Mastermix (QIAGEN) on the Bio-Rad CFX Connect machine (Bio-Rad) 

using primers targeting Apobec1 (F: 5’- CTGTAGCTGTTGATCCCAC -3’; R: 5’- 

CTAAGAAGTTGACTTCAACG -3’), Apobec3 (F: 5’- CAGCAGAATCTTTGCAGG -3’; 

R: 5’- CAGAATCTCCTGAAGCTTAG -3’) and housekeeping control β-actin, ActB (F: 

5’-TTGCTGACAGGATGCAGAAG-3’; R: 5’-AAGGGTGTAAAACGCAGCTC-3’). 

Gene expression was calculated using the comparative CT method relative to ActB 

expression33. 
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4.4 Results 

4.4.1 Sp140 exhibits high impact mutations in the transcriptome of 5TGM1 cells  

Transcriptomic sequencing data of murine 5TGM1 MM PCs was examined for any 

nucleotide variants in genes that have previously been reported to be recurrently mutated in 

MM patients2-5 [Supplementary Table 1]. Genome Analysis Toolkit (GATK) annotated 

RNAseq data was filtered to reveal that 11 out of the 34 reported significantly mutated 

genes in human MM patients also harboured nucleotide variants in 5TGM1 MM PCs. This 

included KRAS, NRAS, TP53, BRAF, DIS3, SP140, RASA2, PNRC1, HLA-A, NF1 and 

PTEN, which harboured SNVs. These variants of interest were then analysed using the 

Ensembl Variant Effect Predictor tool (https://asia.ensembl.org/Tools/VEP) to determine if 

any of the identified SNVs resulted in changes to the protein synthesis sequence. To this 

end, variants in 5 genes: TP53, BRAF, SP140, HLA-A (H2-Q7) and NF1 had potential 

consequences on protein sequence [Supplementary Table 2]. Of these, Sp140 was found to 

harbour high impact base changes inducing a STOP gain [c.166C>T resulting in p.R56*] 

and STOP loss [c.478T>A resulting in *160K] in exons 2 and 7, respectively [Figure 1]. 

Of note, as this is RNA data, nucleotide Thymidine (T) should be interpreted as nucleotide 

Uracil (U). RNAseq sequencing reads were explored in the Integrative Genomics Viewer 

(IGV) to confirm the identified point mutations of interest, which showed an approximate 

50:50 ratio for each nucleotide change [Supplementary Fig. 1]. We hypothesised that the 

STOP gain mutation in exon 2 would result in the formation of a truncated Sp140 protein, 

while the STOP loss mutation in exon 7 would generate a larger than expected protein. In 

both cases, the abnormal proteins may contribute to MM pathogenesis. Due to the nature 

of our discovery in the RNAseq data, we went on to validate our findings using Sanger 

sequencing of the Sp140 exonic regions of interest. 
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4.4.2 Sp140 is a target of RNA editing in 5TGM1 PCs 

Sanger sequencing validation of the RNA SNVs was carried out on the same samples that 

were prepared for RNAseq. cDNA was generated for PCR amplification of both exon 2 

and exon 7 regions, before sequencing was performed to confirm the identified variants 

affecting Sp140. Sequence traces of the exon 2 amplicon showed heterozygous alterations 

from the reference genome at both identified SNV sites c.166C>T (i.e. U) (nonsense) and 

c.180G>A (synonymous) [Figure 2a, 2b]. Exon 7 amplicon trace showed the identified 

alterations to be homozygous at c.478T>A (STOP loss) [Figure 2c, 2d].  

 

a 

 
b 

 
Figure 1. Identification of Sp140 SNVs in the transcriptome of 5TGM1 MM PCs. (a) 

Variant Effect Predictor characterises 3 SNVs found in 5TGM1 MM PC mRNA transcripts. 

Notably, 2 variants are proposed to induce high impact consequences in Sp140 protein 

formation through STOP gain in exon 2 and STOP loss in exon 7. (b) SNV locations in 

Sp140 gene transcripts. 
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In order to assess whether the nucleotide changes were due to mutations present at 

the DNA level, genomic DNA (gDNA) sequencing was performed on PCR amplified 

gDNA from exon 2 and exon 7. While the initial VEP analysis of RNAseq data had 

detected a point mutation in exon 7 with potential consequences, validation of gDNA 

revealed it to be a homozygous SNV at the genomic level [Figure 3a].  Ensembl genome 

browser also revealed that this site is a catalogued STOP loss T/A variant in mouse 

(dbSNP rs1131936885). Subsequently, we focused our efforts on the identified STOP gain 

variant in exon 2. Notably, gDNA sequencing did not verify the identified SNVs in exon 2, 

demonstrating a clean sequencing trace supporting the reference allele at both positions 

[Figure 3b]. Moreover, we confirmed that this result was not restricted to a particular 

primer pair set, with the use of a second set of primers designed to amplify a larger region 

of exon 2 (termed Exon 2L). Sanger sequencing of these amplicons again supported the 

reference allele at both positions [Supplementary Figure 3]. Comparison of the Sanger 

sequencing data from both RNA and DNA suggests these mRNA alterations may be 

caused by RNA editing. Furthermore, clonal analysis of Sp140 exon 2 RT-PCR products 

revealed that both editing changes always occurred in cis on the same strand [Figure 4]. 

RNA editing is a process involving the post transcriptional modification of RNA transcript 

bases, which is enzymatically catalysed by deaminase enzymes of the APOBEC or ADAR 

families. As RNA editing is known to increase the complexity of expressed transcripts in 

cancer cells and may provide a selective advantage for growth28, this phenomena was 

investigated further. 

 

 

 

 

 

Figure 2. Validation of RNA modification in Sp140. Sanger sequencing confirms 

c.166C>T (i.e. U) and c.180G>A variants in (a) forward and (b) reverse sequencing traces 

of Sp140 exon 2. Both variants appear to be heterozygous. Similarly, exon 7 variant 

c.478T>A was confirmed in (c) forward and (d) reverse sequencing traces. Altered sites 

are indicated by arrows, with missense c.166C>T (i.e. U) and c.478T>A highlighted in 

yellow. 
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a	

	
b	

	
Figure 3. Validation of identified RNA modifications in Sp140 at the gDNA level. (a) 

Exon 7 is mutated at the genomic DNA level in 5TGM1 PCs. Sanger sequencing trace 

supports a prominent missense change to alternate nucleotide A (reference nucleotide is 

T) at position c.478. (b) Exon 2 of Sp140 is unmutated at the genomic level in 5TGM1 

PCs. Sanger sequencing reveals a clean sequencing trace that supports the reference 

nucleotides of C and G at positions c.166 and c.180, respectively. Sites of interest are 

indicated by arrows, with position c.166 and c.478 highlighted in yellow. 
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(a)	

	
(b)	

	
(c)	
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(d)	

	
(e)	

	
	
Figure 4. Clonal analysis demonstrates association of the two Sp140 exon 2 RNA 

editing changes. Comparative analysis of representative sequencing traces of cloned 

RT-PCR products from an edited Sp140 RNA molecule (clone 3) ((a) forward and (b) 

reverse sequence) versus an unedited Sp140 RNA molecule (clone 2) ((c) forward and 

(d) reverse sequence) illustrates that RNA editing of both c.166 and c.180 sites occur in 

cis on the same RNA molecule. Sites of interest are indicated by arrows, with position 

c.166 highlighted in yellow. (e) A total of 10 clones were sequenced, with data 

supporting cis RNA editing changes in Sp140 exon 2 with either tandem editing (6/10 

clones) or tandem non-editing (4/10 clones).  
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In view of these findings, we sought to explore whether RNA editing activity was a 

plasma cell specific phenomenon. In addition to 5TGM1, five other murine cell lines 

including NIH-3T3 (embryonic fibroblast), NS1 (B lymphocyte), BA/F3 (pro B cell), 

FDCP1 (myeloid progenitor) and RAW264.7 (macrophage) were investigated. 

Specifically, cDNA was generated from RNA isolated from each cell line and the Sp140 

exon 2 region was amplified by RT-PCR. Sanger sequencing analysis of PCR products 

revealed that both c.166 and c.180 sites were subject to varying levels of RNA editing 

across the different cell lines [Figure 5a]. With 5TGM1 cells used as an editing reference 

control, FDCP1 and NS1 cells exhibited prominent non-synonymous C>T (i.e. U) changes 

with ~57% and ~30% of c.166 edited, respectively. NIH-3T3, BA/F3 and RAW264.7 cells 

also showed editing changes, however, the occurrence of editing was at much lower 

frequency with ~12%, ~9% and ~9% of c.166 edited, respectively [Figure 5b] 

[Supplementary Table 3]. These findings suggest that site specific RNA editing alterations 

are not exclusive to cells of PC origin and are found in other murine cell lines and their 

respective different mouse strains including NIH/Swiss (NIH-3T3), BALB/c (NS1 and 

RAW264.7), C3H (BA/F3) and DBA/2 (FDCP1). While RNA editing of Sp140 was not 

unique to 5TGM1 PCs, the rates were highest with ~59% of c.166 edited. Moreover, 

SP140 has been identified to be recurrently mutated in patient derived MM PC studies and 

has been suggested to be a tumour suppressor due to recurrent inactivating nonsense 

mutations2,3,11, prompting us to examine this phenomenon further. 
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a 
5TGM1                         FDCP1 

		 	
	
NS1                 3T3 

    
 
BA/F3                  RAW264.7 

     
                
b 

	
Figure 5. RNA editing of Sp140 occurs in multiple mouse cell lines (a) Sanger 
sequencing of the exon 2 region of interest revealed Sp140 was edited at varying levels in 
other non-PC cell lines. Position c.166 is highlighted in yellow (b) Calculation of the 
percentage of altered nucleotide at RNA editing sites c.166 and c.180. Sequencing counts 
revealed that FDCP1 and NS1 cells also exhibited prominent c.166C>T (i.e. U) change. 
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4.4.3 SP140 is not a target of RNA editing in human MM PCs 

Prior to investigating the occurrence of SP140 RNA editing in human MM cell lines, the 

conservation of Sp140/SP140 gene sequence between mouse and human was examined. 

Comparison of the Sp140/SP140 exon 2 region for sequence homology between mouse 

and human demonstrated that site c.166 from mouse was cross-species conserved, 

whereas, c.180 was not [Figure 6]. Gene sequences were derived from Ensembl genome 

browser (https://asia.ensembl.org), which also revealed that site c.166 is a catalogued 

deleterious missense C/T variant in humans (dbSNP rs755024352). As RNA editing at 

c.166 was identified to lead to a high impact STOP gain change in 5TGM1 PCs, we 

similarly screened a range of human MM cell lines for this alteration. 

 
 

Utilising the human MM PC line RNA sequencing data generated by Dr Jonathan 

J. Keats laboratory (The Translational Genomics Research Institute, Phoenix, Arizona; 

http://www.keatslab.org/data-repository), the transcript counts of SP140 was assessed in 

14 human MM plasma cell lines available in our laboratory including: JIM-1, KMS-11, 

KMS-18, LP-1, MM.1R, MM.1S, NCI-H929, OPM2, RPMI 8226, U266, JJN3, KMM-1, 

MOLP-8 and EJM. We found SP140 to be expressed at variable levels across all the MM 

cell lines [Supplementary Table 4], with 9 PC lines exhibiting moderate or high SP140 

expression. These were chosen for screening on the basis of the abundance of transcript 

available for screening, and protein that would be affected by RNA editing changes. These 

MM PC lines were curated into 2 groups, namely the “high expressing” group which 

included KMS-18, MM.1R, MM.1S, U266 and JJN3; and the “moderate expressing” group 

which included RPMI-8226, NCI-H929, MOLP-8 and EJM. 

 

	
Figure 6. Comparative analysis of mouse Sp140 and human SP140 gene sequences. 

Comparison of the Sp140/SP140 exon 2 region of interest between mouse and human 

genome revealed position c.166 to be conserved, while c.180 was not.  
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For each human MM cell line, RNA was extracted for cDNA synthesis followed by PCR 

amplification of SP140 exon 2. PCR products were purified and sequenced to screen for 

the identified variant affecting SP140. Sanger sequencing trace analysis revealed that the 

c.166 site was not edited in any of the human MM PC lines examined, with prominent C 

nucleotide calls in both “high expressing” and “moderate expressing” SP140 PC lines 

[Figure 7a, 7b]. Taken together, our Sanger sequencing data revealed that RNA editing is 

unlikely to be a common event in exon 2 of SP140 in human MM PCs. 

 

 

a 
KMS-18                  MM.1R 

    
MM.1S                             U266 

    
JJN3 
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b 
RPMI-8226              NCI-H929 

   
MOLP-8                EJM 

   
 
Figure 7. RNA/cDNA sequence screening of SP140 in human MM cell lines. 

Sanger sequencing of exon 2 region revealed that SP140 is not a target of RNA 

editing, with traces supporting the reference C nucleotide in both SP140 (a) “high 

expressing”: KMS-18, MM.1R, MM.1S, U266, JJN3; and (b) “moderate expressing”: 

RPMI-8226, NCI-H929, MOLP-8 and EJM, human MM cell lines. Position c.322 is 

highlighted in yellow. 
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4.4.4 Molecular mechanisms inducing RNA editing of SP140  

While RNA editing of SP140 was not a feature in any human MM PC lines, identification 

of Sp140 as a target of editing in the mouse 5TGM1 cell line suggests a possible role of 

RNA editing as a mechanism of PC transformation in this preclinical model of MM. As we 

identified a C>T (i.e. U) change at c.166, we postulated that this was due to the action of a 

member of the Apobec family of enzymes. APOBECs are a class of cytidine deaminases 

known to catalyse C>U RNA editing changes, where currently APOBEC1, APOBEC3A 

and APOBEC3G are known to cause recoding changes28.  

 

RNAseq data showed that only Apobec1 and Apobec3 were expressed in the 

5TGM1 PC line. RT-qPCR analysis revealed that both Apobec1 and Apobec3 were 

expressed in all of the mouse cell lines that had previously been screened for Sp140 RNA 

editing levels. Notably, there was no correlation between the levels of gene expression of 

either Apobec and the frequency of RNA editing in these cell lines (R2 = 0.16 for 

Apobec1; and R2 = 0.11 for Apobec3) [Figure 8a, 8b].  

 

The Apobec family members contain a domain structure characteristic of cytidine 

deaminases34. Mouse Apobec1 contains one putative cytidine deamination domain (CDD) 

with a conserved active site (AS) that includes a H-X-E, motif followed 28 amino acids 

later by a P-C-X2-4-C motif. The His(H)-Cys(C)-Cys(C) residues of these motifs 

coordinate zinc binding and the Glu(E) residue acts as a proton shuttle during catalysis35. 

Point mutation of any of the conserved H, E, C and C amino acids of Apobec1 has been 

shown to abolish in vitro RNA editing activity36,37 and greatly reduced cytidine deaminase 

activity37. C-terminal truncated rabbit Apobec1 (66 amino acids long) also has no 

detectable RNA editing activity36. Smaller C-terminal truncated Apobec1 (181 amino acids 

long) also displayed no in vitro RNA editing activity, and point mutations in key lysine 

residues in this region (L185, L189) also greatly reduces editing activity38.  Although no 

RNA cytidine deamination activity has so far been ascribed to mouse Apobec3, critical 

residues/motifs important for its ssDNA deamination activity have been characterised. 

Mouse Apobec3 contains two putative CDDs each with a conserved AS that includes the 

H-X-E motif followed 23-28 amino acids later by a P-C-X2-4-C motif. According to Nair et 

al., the N-terminal domain appears to be the sole locus of deamination activity in mouse 

Apobec339. Replacing any of the conserved E, C and C amino acids from the N-terminal 

domain completely abolished any in vitro deamination activity39, an effect that was not 

observed following mutation of any of these amino acids in the C-terminal domain. By 
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contrast, the C-terminus of Apobec3 appeared to be necessary for the encapsidation into 

retrovirus particles39. Hakata and Landau had previously shown that mutation of the 

conserved Glu(E) of AS1, but not that in AS2, was sufficient to abolish in vitro deaminase 

activity40. Somewhat contradictory to the results of Nair et al., Hakata and Landau stated 

that mouse Apobec3 with mutations of both of the cysteines at either AS1 or AS2 also 

lacked deaminase activity, but no data was shown40. Similarly they stated that single 

mutation of either of the two cysteines of AS2 prevented deamination activity despite the 

presence of an intact AS1 catalytic domain, however, again not data was shown40. 

Together, these data suggest that mutation of the conserved P-C-X2-4-C motif within each 

AS of either Apobec1 or Apobec3 should be sufficient to inactive each putative cytidine 

deamination domain. 
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(a)          

 
(b) 

 

Figure 8. Correlation of Apobec enzyme expression with RNA editing of Sp140 exon 

2 in mouse cell lines. RT-qPCR revealed varying levels of (a) Apobec1 and (b) Apobec3 

expression in multiple mouse cell lines: 5TGM1, FDCP1, NS1, HIH-3T3, BA/F3 and 

RAW264.7. There was no correlation between the levels of expression of either Apobec 

with the percentage of altered nucleotide at RNA editing site c.166. Correlation 

coefficients R2 = 0.16 and R2 = 0.11, were calculated for Apobec 1 and Apobec3, 

respectively, illustrating a weak linear relationship. 
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Plasmid-based CRISPR-Cas9 gene editing was used to mutate Apobec1 in 5TGM1 

cells30. Two different single guide RNAs (sgRNAs) were used to target exon 6 (the largest 

coding exon) of Apobec1 with the intention of generating insertion/deletion mutations that 

would generate inactivating frameshift mutations. A total of 36 clonal 5TGM1 cell lines 

from each Apobec1-sgRNA transfection were screened for mutations. Only one Apobec1-

sgRNA2 5TGM1 clonal cell line was found to harbour two frameshift inducing mutations 

[Figure 9] [Supplementary Figure 5]. Both of the mutated alleles in Apobec1-sgRNA2-

clone#1 (Apobec1 KO cell line) were predicted to encode for severely C-terminal 

truncated proteins, lacking any of the conserved H-X-E and P-C-X2-4-C motifs that are 

required for cytidine deamination activity [Figure 10a, 10b] [Supplementary Figure 6]. 

RT-qPCR also showed a ~56% reduction of Apobec1 mRNA levels in the Apobec1 KO 

cell line compared to an empty vector clonal 5TGM1 cell line (EV11) [Figure 10c]. To 

assess the effect of Apobec1 mutation on resulting RNA editing of Sp140, cDNA was PCR 

amplified before purification and Sanger sequencing. Analysis of sequencing traces 

illustrated that the EV sample showed c.166C>U editing activity [Figure 11a]. The 

Apobec1 KO cell line also demonstrated unchanged levels of RNA recoding activity, 

suggesting that Apobec1 is not the enzyme responsible for the RNA editing of Sp140 in 

mouse [Figure 11b].  
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a	 	 	 	 	 	 		b 
Apobec1-sgRNA2-clone#1               
TTTGACC(C/G)(C/G)(C/A)GCTTCGGAAA												TTTCCGAAGC(G/T)(G/C)(G/C)GGTCAAA	

			 	
	
c	 	 	 	 	 	   d 
Empty vector (EV11)	

		 	
 
e 
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 In addition to this, a transgene consisting of Sp140 exon 2 and it surrounding exon 

1 and 3 elements (termed the Sp140 Minigene) was constructed in the pLeGO Cer2 vector, 

to assess whether exogenous Sp140 RNA could be a template for RNA editing in 5TGM1 

cells. Sequencing analysis revealed no evidence of editing, with traces supporting 

reference C and G nucleotides at position c.166 and c.180, respectively. This demonstrates 

that further elements of the Sp140 gene beyond the immediate exon 2 region, such as the 

intronic sequences are required by the RNA editing enzyme responsible for the C>T 

editing phenomenon we observed [Supplementary Figure 4]. 

 

 

 

Figure 9. Generation of Apobec1 frameshift mutant clone in 5TGM1. CRISPR-Cas9 

mediated gene editing of Apobec1 exon 6 reveals two frameshift mutations in Apobec1-

sgRNA2-clone#1 (a) forward and (b) reverse compared to empty vector (EV11) (c) 

forward and (d) reverse sequencing traces. (e) Mutation deconvolution illustrates the 

resulting 4 base pair frameshift deletions in the Apobec1-sgRNA2 5TGM1 clonal PC 

line. Full nucleotide sequences can be found in Supplementary Figure 5. 
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a	

	
b	

	
c	

 
Figure 10. Predicted effects of frameshift mutations on Apobec1 protein formation, 

and its quantitation in knockout construct Apobec1-sgRNA2-clone#1.  

CRISPR-Cas9 mediated (a) mutant allele 1 and (b) mutant allele 2 in the Apobec1 KO 

cell line are predicted to result in severely truncated Apobec1 proteins. While translation 

of unmutated Apobec1 results in a 229 amino acid protein, both mutant alleles are 

predicted to encode 65 amino acid proteins with significant truncations of the C-

terminus, lacking motifs that are required for its deaminase activity. Green highlighted 

text illustrates the wildtype protein sequence, while yellow highlighted text illustrates 

the mutated C-terminal protein sequence. Cyan highlighted text shows the altered 

protein sequence exclusive to Mutant Allele 1. Full protein sequence can be found in 

Supplementary Figure 6 (c) Reduction of Apobec1 mRNA levels in Apobec1 KO cells. 

Apobec1 expression was measured in cell lines using quantitative real-time PCR, 

confirming a ~56% knockdown in the Apobec1 KO construct (Apobec1-sgRNA2-

clone#1) compared to the empty vector control (EV11).  Data were normalised to ActB 

(mean ±�standard deviation of triplicates).  
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 Given the low targeting efficiency of this plasmid-based approach, an alternative 

lentiviral transduction methodology (with inducible sgRNA expression)32 was used to 

mutate Apobec3. Two different sgRNAs were designed to target exonic sequences just 

upstream of regions encoding the conserved P-C-X2-4-C motifs of each of the two active 

sites (AS) of mouse Apobec3 (one sense orientation sgRNA and one antisense orientation 

sgRNA at each AS). A total of 10 clonal cell lines were generated from each of the four 

Apobec3 sgRNAs and screened for putative inactivating insertion/deletion mutations. 13 

different clonal 5TGM1 cell lines were found to harbour homozygous or compound 

heterozygous frameshift mutations in exon 3 of Apobec3 [Figure 12a, 12b] 

[Supplementary Figure 7, 8]. All exon 3 mutations were predicted to encode for severely 

C-terminal truncated proteins that lack the second active site (AS2) and lack one or more 

of the cysteines within the P-C-X2-4-C motif of AS1 [Supplementary Figure 11, 12]. 

Similarly, homozygous or compound heterozygous frameshift mutations in exon 7 of 

Apobec3 were observed in a separate 13 independent clonal 5TGM1 cell lines [Figure 12c, 

12d] [Supplementary Figure 9, 10]. These exon 7 mutations were all predicted to encode 

C-terminally truncated Apobec3 proteins that lack one or more of the cysteines within the 

P-C-X2-4-C motif of AS2 [Supplementary Figure 13, 14]. Subsequently, we assessed 

whether the loss of Apobec3 function resulted in changes to the RNA editing of Sp140. 

cDNA of each clone was PCR amplified before purification and Sanger sequencing. 

a              b 
EV11              Apobec1 KO 

    
 
Figure 11. Apobec1 is not responsible for catalysing RNA editing changes in Sp140. 

Sanger sequencing of Sp140 region of interest reveals RNA editing in exon 2 is not due to 

the cytidine deaminase action of Apobec1. (a) Sequencing traces of empty vector (EV11) 

cells show both C and T nucleotides at c.166. (b) Sequencing traces from Apobec1 KO 

cells, also showed c.166 C>U RNA editing. Position c.166 is highlighted in yellow. 
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Analysis of sequencing traces illustrated that both Apobec3 AS1 and AS2 mutant clones 

showed unchanged levels of RNA editing activity at c.166C>U [Figure 13]. This suggests 

that neither Apobec1, nor Apobec3, are the enzymes responsible for the RNA editing of 

Sp140 observed in mouse. As such, the RNA editing of Sp140 is likely to be caused by 

another, as yet unknown, enzyme. 

 

 

 

 

 

a	

	
b	
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c	

 
d 

 
Figure 12. Generation of Apobec3 frameshift mutant 5TGM1 clones. An inducible 

CRISPR-Cas9 gene editing system was used to mutate two different active sites (AS) of 

Apobec3 (one sense orientation sgRNA and one antisense orientation sgRNA at each 

AS). 13 different clonal 5TGM1 cell lines were found to harbour homozygous or 

compound heterozygous frameshift mutations in exon 3 of Apobec3 using either (a) 

sense or (b) antisense sgRNAs. Sequencing traces illustrating mutations can be found in 

Supplementary Figure 7, 8. Similarly, homozygous or compound heterozygous 

frameshift mutations in exon 7 of Apobec3 were observed in a separate 13 independent 

clonal 5TGM1 cell lines using either (c) sense or (d) antisense sgRNAs. Sequencing 

traces illustrating mutations can be found in Supplementary Figure 9, 10. 
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Figure 13. Apobec3 is not responsible for catalysing RNA editing changes in Sp140.  

Sanger sequencing of the Sp140 region of interest in mutant Apobec3 clones revealed 

unchanged RNA editing of exon 2, suggesting that this is not due to the cytidine 

deaminase action of Apobec3. Sequencing traces of Sp140 in AS1 (a) sense sgRNA and 

(b) antisense sgRNA-induced double frameshift clones shows RNA editing with both C 

and T nucleotides at c.166. Similarly, sequencing traces of Sp140 in AS2 (a) sense 

sgRNA and (b) antisense sgRNA-induced double frameshift clones also demonstrate 

c.166 C>U RNA editing. Sites of interest c.166 and c.180 are indicated by arrows. 
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4.5 Discussion 

Cancer, in its many forms, is due to the deregulation of biological processes following 

mutations that affect the normal program of DNA transcription to mRNA, and mRNA 

translation to protein. RNA editing is an unconventional event that adds to the diversity of 

expressed transcripts and protein repertoire of tumour cells. Recoding changes have been 

implicated in many malignancies such as hepatocellular carcinoma23, glioblastoma24, 

prostate cancer25, colorectal cancer26 and chronic myeloid leukaemia20. In a MM context, 

there has been one study that has investigated gene-specific RNA editing, finding that 

ADAR1 recoding of GLI1 promotes malignant regeneration22. Here, we explored the novel 

identification of RNA editing in mouse Sp140, inducing STOP gain (c.166) and 

synonymous change (c.180) edits, in the 5TGM1 MM PC line.  

 

Notably, recent NGS analyses of MM patient samples have shown that SP140 is 

recurrently mutated at the genetic level in ~3-12% of patients, with a suggested role as a 

tumour suppressor2,3,12. In chapter 2, our genetic analysis of paired MGUS/SMM to MM 

using whole exome sequencing found that SP140 was mutated in 30% of our patients. 

Therefore, alteration at position c.166 was notable as it induces a nonsense STOP gain 

codon change in the transcript. Notably, RNA editing in coding regions is a rare 

occurrence, with editing normally occurring within introns or 3’ UTRs28. An early 

truncation of Sp140 would result in inactivation and possible tumorigenic consequences. 

Although this is not a classical complete loss of function of a tumour suppressor gene, it 

has previously been shown that in a haploinsufficient phenotype (where one mutant and 

one wild type allele remains), a suboptimal level of gene product can result in lower level 

of function and oncogenesis41,42.  

 

It is curious that edited Sp140 transcripts are not subject to nonsense mediated 

mRNA decay in our samples43. While we initially found RNA editing changes in 5TGM1 

cells, they were not PC-specific, with varying levels of Sp140 editing also identified in 

other mouse cell lines. Studies show that RNA editing also occurs to some degree in 

normal cells, and thus recoding is not a cancer specific event, rather cancer associated 

editing may be more dependent on quantity of edited transcript, rather than site specific 

changes28. In addition, we also screened a range of human MM PC lines finding SP140 

exon 2 site c.166 to be conserved, however, it was not subject to any RNA editing. 
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To investigate the underlying mechanism responsible for the RNA editing 

phenotype in 5TGM1 cells, we explored known RNA editing enzyme Apobec1 that 

catalyses C>U changes. Verified C>U RNA changes catalysed by APOBECs are far less 

common than A>I changes by ADARs28. APOBEC family enzymes are principally known 

for their DNA editing activity, with APOBEC1 originally the only known RNA editor. 

However, knockout of Apobec1 did not result in a decrease in RNA editing phenotype at 

c.166 in 5TGM1 cells. While Apobec1 was not found to be responsible for the observed 

RNA editing, recent studies have demonstrated that APOBEC3A and APOBEC3G can 

also induce C>U changes under physiological conditions28,44,45. APOBEC3A shows highly 

site-specific activity, targeting coding region of genes and inducing missense or nonsense 

codon changes28. Notable, while there are 7 paralogous APOBEC3 genes (A3A-H) in 

humans, the mouse genome encodes one Apobec3 gene34,46,47. Generation of Apobec3 

double frameshift mutant clones did not result in a change of Sp140 RNA editing 

phenotype at c.166 in 5TGM1 cells. This indicates there may be other unknown enzymes 

capable of catalysing site specific C>U recoding changes. Interestingly, a recent study of 

APOBEC3A in Wilms Tumour (WT1) has identified tandem cis RNA editing changes 

with C>T (i.e. U) and G>A changes48. Similarly, we identified paired RNA editing 

changes of C>T (i.e. U) and G>A within 14 nucleotides in exon 2 of Sp140. As G>A is a 

non-classical editing change, it has been proposed that this type of dual editing change may 

be a tandem event, where the lost amine group from the first position (i.e. c.166) through 

C>U deamination, is shuttled to a linked nucleotide altering a G>A (G to 2,6-

diaminopurine that mimics A) at a second position (c.180)48.  

 
Intratumour heterogeneity is a common feature in many cancers, and has been 

shown to be characteristic of MM2,3,5,49-53. Therefore, it remains intriguing as to why 

tumour cells would require further diversity through RNA editing. The answer may be the 

dynamic nature of post transcriptional modification, which may confer survival advantages 

to the tumour cell. It may be that mutations which are advantageous to a cancer cell in 

most microenvironments are hardwired in the DNA, but those mutations which provide a 

competitive advantage, either in changing environments or certain disease stages, are 

regulated by RNA editing28.  

 
The existence of RNA editing in MM represents a novel mechanism inducing post 

transcriptional changes to mRNA, conferring increased variability in proteins and cell 

survival. This suggests that RNAseq expression studies of patient samples would also need 

to consider RNA recoding. Further, they should also consider the impact of the tumour 
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microenvironment and unnatural selective pressures, such as drug exposure, on cancer 

cells and their dynamic survival adaptability. The 5TGM1 cell line is frequently used as a 

preclinical model for in vitro testing, however, as we identified no corresponding RNA 

editing changes in human MM cell lines and patient samples, it is worth noting that this 

cell line may only model those patients showing SP140 post transcriptional modifications. 

As 5TGM1 cells harboured post transcriptional changes in 50% of their transcripts, these 

cells may mimic a subset of MM patients that are heterozygous at the DNA levels for 

SP140 post transcriptional changes. 
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4.6 Supplementary  

4.6.1 Supplementary Figures 

 
Supplementary Table 1. Significantly mutated genes in MM patient studies. Large 

cohort patient sample studies (Chapman et al.5 n = 38, Lohr et al.3 n = 203, Bolli et al.2 n = 

67, Walker et al.4 n = 463) have identified 34 recurrent significantly mutated genes in MM, 

of which KRAS, NRAS, TP53, BRAF, DIS3 and FAM46C are believed to be drivers due to 

their recurrent mutation across the studies. 

 

 

 

Supplementary Table 2. Genes that are significantly mutated in MM patients that 

show nucleotide variants in 5TGM1 RNAseq data and the predicted consequences on 

protein formation. Analysis of human MM genes with variants found in 5TGM1 

transcripts using the Ensembl Variant Effect Predictor tool revealed variants in 5 genes had 

potential impacts on their protein formation. Sp140 was identified to harbour high impact 

changes inducing a STOP gain and a STOP loss. 

 

 

Known	Drivers
KRAS SP140 RASA2 PRDM1
NRAS IRF4 USP29 ACTG1
TP53 ROBO1 TRAF3 MAPK
BRAF FAT3 CYLD NF1
DIS3 EGR1 RB1 NFKBIA

FAM46C PEG3 CCND1 CDKN2C
LTB PNRC1 PTEN
TGDS ALOX12B NFKBI
SNX7 HLA-A CDK4

MAGED1

Novel	Candidates

Gene Chromosome Position Consequence Impact Exon CDS	Position Protein	Position Codon	(ref) Codon	(new) Amino	Acid	(ref) Amino	Acid	(new)
KRAS chr6 145246710 Synonymous	var LOW 3\3 96 32 TAT TAC Y	[Tyrosine	TYR] Y	[Tyrosine	TYR]

145246710 Synonymous	var LOW 2\6 96 32 TAT TAC Y	[Tyrosine	TYR] Y	[Tyrosine	TYR]
145246710 Synonymous	var LOW 2\5 96 32 TAT TAC Y	[Tyrosine	TYR] Y	[Tyrosine	TYR]
145246710 Synonymous	var/NMD	transcript	var LOW 2\4 96 32 TAT TAC Y	[Tyrosine	TYR] Y	[Tyrosine	TYR]

Trp53 chr3 69587616 Missense	var MODERATE 4\11 341 114 AAG ATG K	[Lysine	LYS] M	[Methionine	MET]
69587616 Missense	var MODERATE 4\11 341 114 AAG ATG K	[Lysine	LYS] M	[Methionine	MET]
69587616 Missense	var MODERATE 4\11 350 117 AAG ATG K	[Lysine	LYS] M	[Methionine	MET]
69587616 Missense	var MODERATE 4\11 350 117 AAG ATG K	[Lysine	LYS] M	[Methionine	MET]

BRAF chr6 39646740 Missense	var MODERATE 12\22 1267 423 GGC CGC G	[Glycine	GLY] R	[Arginine	ARG]

SP140 chr1 85609827 Stop	gained HIGH 2\17 166 56 CGA TGA R	[Arginine	ARG] *	[STOP]
85609841 Synonymous	var LOW 2\17 180 60 TCG TCA S	[Serine	SER] S	[Serine	SER]
85628219 Stop	lost HIGH 7\8 478 160 TAA AAA *	[STOP] K	[Lysine	LYS]

H2-Q7 chr17 35440154 Missense	var MODERATE 3\6 580 194 CAG GAG Q	[Glutamine	GLN] E	[Glutamic	Acid	GLU]

NF1 chr11 79475798 Missense	var MODERATE 35\57 4693 1565 TTC GTC F	[Phenylalanine	PHE] V	[Valine	VAL]
Missense	var MODERATE 36\58 4756 1586 TTC GTC F	[Phenylalanine	PHE] V	[Valine	VAL]

79547114 Synonymous	var LOW 41\57 6442 2078 GCG GCA A	[Alanine	ALA] A	[Alanine	ALA]
Synonymous	var LOW 42\58 6472 2099 GCG GCA A	[Alanine	ALA] A	[Alanine	ALA]
Synonymous	var LOW 2\18 249 83 GCG GCA A	[Alanine	ALA] A	[Alanine	ALA]

79547135 Missense	var MODERATE 41\57 6463 2085 TTC TTG F	[Phenylalanine	PHE] L	[Leucine	LEU]
Missense	var MODERATE 42\58 6493 2106 TTC TTG F	[Phenylalanine	PHE] L	[Leucine	LEU]
Missense	var MODERATE 2\18 270 90 TTC TTG F	[Phenylalanine	PHE] L	[Leucine	LEU]

Gene Chromosome Position Consequence Impact Exon CDS	Position Protein	Position Codon	(ref) Codon	(new) Amino	Acid	(ref) Amino	Acid	(new)
KRAS chr6 145246710 Synonymous	var LOW 3\3 96 32 TAT TAC Y	[Tyrosine	TYR] Y	[Tyrosine	TYR]

145246710 Synonymous	var LOW 2\6 96 32 TAT TAC Y	[Tyrosine	TYR] Y	[Tyrosine	TYR]
145246710 Synonymous	var LOW 2\5 96 32 TAT TAC Y	[Tyrosine	TYR] Y	[Tyrosine	TYR]
145246710 Synonymous	var/NMD	transcript	var LOW 2\4 96 32 TAT TAC Y	[Tyrosine	TYR] Y	[Tyrosine	TYR]

Trp53 chr3 69587616 Missense	var MODERATE 4\11 341 114 AAG ATG K	[Lysine	LYS] M	[Methionine	MET]
69587616 Missense	var MODERATE 4\11 341 114 AAG ATG K	[Lysine	LYS] M	[Methionine	MET]
69587616 Missense	var MODERATE 4\11 350 117 AAG ATG K	[Lysine	LYS] M	[Methionine	MET]
69587616 Missense	var MODERATE 4\11 350 117 AAG ATG K	[Lysine	LYS] M	[Methionine	MET]

BRAF chr6 39646740 Missense	var MODERATE 12\22 1267 423 GGC CGC G	[Glycine	GLY] R	[Arginine	ARG]

SP140 chr1 85609827 Stop	gained HIGH 2\17 166 56 CGA TGA R	[Arginine	ARG] *	[STOP]
85609841 Synonymous	var LOW 2\17 180 60 TCG TCA S	[Serine	SER] S	[Serine	SER]
85628219 Stop	lost HIGH 7\8 478 160 TAA AAA *	[STOP] K	[Lysine	LYS]

H2-Q7 chr17 35440154 Missense	var MODERATE 3\6 580 194 CAG GAG Q	[Glutamine	GLN] E	[Glutamic	Acid	GLU]

NF1 chr11 79475798 Missense	var MODERATE 35\57 4693 1565 TTC GTC F	[Phenylalanine	PHE] V	[Valine	VAL]
Missense	var MODERATE 36\58 4756 1586 TTC GTC F	[Phenylalanine	PHE] V	[Valine	VAL]

79547114 Synonymous	var LOW 41\57 6442 2078 GCG GCA A	[Alanine	ALA] A	[Alanine	ALA]
Synonymous	var LOW 42\58 6472 2099 GCG GCA A	[Alanine	ALA] A	[Alanine	ALA]
Synonymous	var LOW 2\18 249 83 GCG GCA A	[Alanine	ALA] A	[Alanine	ALA]

79547135 Missense	var MODERATE 41\57 6463 2085 TTC TTG F	[Phenylalanine	PHE] L	[Leucine	LEU]
Missense	var MODERATE 42\58 6493 2106 TTC TTG F	[Phenylalanine	PHE] L	[Leucine	LEU]
Missense	var MODERATE 2\18 270 90 TTC TTG F	[Phenylalanine	PHE] L	[Leucine	LEU]
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Supplementary Table 3. Differential site specific RNA editing occurring in mouse cell 

lines. Calculation of the percentage of altered nucleotide at RNA editing sites c.166 and 

c.180 in Sp140 exon 2 revealed FDCP1 and NS1 cell lines show much higher editing 

changes than other mouse cell lines analysed. 

 
 

 

Supplementary Table 4. SP140 expression in human MM cell lines. Examination of 

RNAseq data from Keats laboratory for SP140 expression demonstrates varied levels of 

expression. Two groups were portioned based on “high” expressing (orange) and 

“moderate” expressing (yellow) cell lines. 

 
 
 
 
 
 

mm10	cell	line c.166	C c.166	C>T c.180	G c.180	G>A (%)	c.166	C>T (%)	c.180	G>A
5TGM1 368 532 392 371 59.11 48.62
FDCP1 387 509 341 340 56.81 49.93
NS1 612 258 606 168 29.66 21.71

NIH	3T3 773 101 829 80 11.56 8.80
BA/F3 975 98 830 143 9.13 14.70

RAW264.7 833 82 836 39 8.96 4.46

MM	cell	line RNAseq	counts
JIM-1 16
KMS-11 9\27 (Adherent\Suspension)
KMS-18 1530
LP-1 40 High

MM.1R 1235 Mid
MM.1S 1418
NCI-H929 153
OPM2 7

RPMI	8226 485
U266 1265
JJN3 735

KMM-1 19
MOLP-8 63
EJM 151
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Supplementary Figure 1. IGV sequence trace of Sp140 Exon 2. Exploring RNAseq 

reads of Sp140 exon 2 in the 5TGM1 cell line confirms ~heterozygous C>T changes at 

c.166 and G>A changes at c.180. 

	
Supplementary Figure 2. IGV sequence trace of Sp140 Exon 7. Exploring RNAseq 

reads of Sp140 exon 7 in the 5TGM1 cell line confirms ~heterozygous T>A changes at 

c.478. 
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Supplementary Figure 3. Sequencing of identified RNA modifications in Sp140 at the 

gDNA level using Exon2L primer pair set. A secondary genomic primer pair (Exon 2L) 

was designed to amplify a larger region of Sp140 exon 2 in 5TGM1 PCs. We again found 

exon 2 of Sp140 to unmutated at the genomic level, demonstrating that this observation is 

not due to a specific primer set. Sanger sequencing revealed a clean sequencing trace that 

supports the reference nucleotides of C and G at positions c.166 and c.180, respectively. 

Sites of interest are indicated by arrows, with position c.166 highlighted in yellow. 
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(a)	

	
(b)	

	
Supplementary Figure 4. Exogenous Sp140 RNA construct (Minigene) is not edited 

in 5TGM1 cells. The Minigene consisting of Sp140 exon 2 and its surrounding elements 

of exon 1 and 3 was not sufficient as a template for RNA editing in 5TGM1 PCs. pLeGo 

Cer2 vector specific primers were used to amplify the Minigene region, and Sanger 

sequencing revealed a clean sequencing trace that supports the reference nucleotides of C 

and G at positions c.166 and c.180, respectively. This illustrates further Sp140 gene 

elements, such as intronic sequences, are needed for Apobec enzyme activity. Sites of 

interest are indicated by arrows, with position c.166 highlighted in yellow. 
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a	

	
b	

	
c	

	
	
Supplementary Figure 5. Apobec1 frameshift mutant clone in 5TGM1. (a) Full 

unmutated nucleotide sequence of Apobec1. Mutation deconvolution illustrates the 

frameshift-inducing 4bp deletions in the Apobec1-sgRNA2 5TGM1 clonal PC line 

(Apobec1-sgRNA2-clone#1) (b) mutant allele 1 and (c) mutant allele 2. Green highlighted 

text illustrates the start codon sites, while red highlighted text show the stop codon sites. 

Both mutant Apobec1 alleles are observed to harbour early stop codon sites compared to 

unmutated Apobec1. 
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(a) 
Translation of Unmutated Gene (229aa):  
MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSVWRHTSQNTSNHVEVNFLEKF 
TTERYFRPNTRCSITWFLSWSPCGECSRAITEFLSRHPYVTLFIYIARLYHHTDQRNRQGLRDLISSGVT 
IQIMTEQEYCYCWRNFVNYPPSNEAYWPRYPHLWVKLYVLELYCIILGLPPCLKILRRKQPQLTFFTITL 
QTCHYQRIPPHLLWATGLK 

(b) 
Predicted Translation of Mutant Allele 1 (65 aa):  
MSSETGPVAVDPTLRRRIEPHEFEVFFDRSFGKRPVCCMRSTGVEGTVSGDTRAKTPATTLKSTS 

(c) 
Predicted Translation of Mutant Allele 2 (65 aa): 
MSSETGPVAVDPTLRRRIEPHEFEVFFDPRFGKRPVCCMRSTGVEGTVSGDTRAKTPATTLKSTS	

Supplementary Figure 6. Predicted effects of frameshift mutations on Apobec1 

protein formation. (a) Translation of unmutated Apobec1 results in a 229 amino acid 

protein. CRISPR-Cas9 mediated mutations in Apobec1 with (b) mutant allele 1 and (c) 

mutant allele 2 predicted to encode severely truncated protein. Mutated Apobec1 results in 

65 amino acid proteins with significant truncation of C-terminus, missing the motifs that 

are required for its cytidine deaminase activity. Green highlighted text illustrates the 

wildtype protein sequence, while yellow highlighted text illustrates the mutated C-

terminal protein sequence. Cyan highlighted text shows the altered protein sequence 

exclusive to Mutant Allele 1. Emboldened text illustrates the conserved active site motifs 

of Apobec1. 



	 184	
 

Clone#1 

 
Clone#2 

 
Clone#3 

 
Clone#4 

 
Clone#5 

 
Clone#6 
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Clone#7 

 
Clone#9 

 
Supplementary Figure 7. Generation of Apobec3 AS1 sense sgRNA clones with two 

mutant alleles. Sequencing traces show induced CRISPR-Cas9 gene editing using sense 

sgRNA targeting AS1 of Apobec3 resulting in 8 different clonal 5TGM1 cell lines 

harbouring homozygous or compound heterozygous frameshift mutations in exon 3 of 

Apobec3. 
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Clone#1 

 
Clone#2 

 
Clone#3 

 
Clone#6 

 
Clone#9 

 
Supplementary Figure 8. Generation of Apobec3 AS1 antisense sgRNA clones with 

two mutant alleles. Sequencing traces show induced CRISPR-Cas9 gene editing using 

antisense sgRNA targeting AS1 of Apobec3 resulting in 5 different clonal 5TGM1 cell 

lines harbouring homozygous or compound heterozygous frameshift mutations in exon 3 

of Apobec3. 
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Clone#1 

 
Clone#2 

 
Clone#4 

 
Clone#5 

 
Clone#7 
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Clone#8 

 
Clone#9 

 
Clone#10 

 
Supplementary Figure 9. Generation of Apobec3 AS2 sense sgRNA clones with two 

mutant alleles. Sequencing traces show induced CRISPR-Cas9 gene editing using sense 

sgRNA targeting AS2 of Apobec3 resulting in 8 different clonal 5TGM1 cell lines 

harbouring homozygous or compound heterozygous frameshift mutations in exon 7 of 

Apobec3. 
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Clone#1  

 
Clone#5 

 
Clone#6 allele 1 (larger PCR product)  
(contaminated slightly with smaller PCR product) 

 
Clone#6 allele 2 (smaller PCR product) 

 
Clone#7 
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Clone#9 

 
Supplementary Figure 10. Generation of Apobec3 AS2 antisense sgRNA clones with 

two mutant alleles. Sequencing traces show induced CRISPR-Cas9 gene editing using 

antisense sgRNA targeting AS2 of Apobec3 resulting in 5 different clonal 5TGM1 cell 

lines harbouring homozygous or compound heterozygous frameshift mutations in exon 7 

of Apobec3. 
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Clone#1-allele 1 - 160 amino acids 
MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLGYAKGRKDTFLCYEVTRKDCDSPVSLH 
HGVFKNKDNIHAEICFLYWFHDKVLKVLSPREEFKITWYMLEPLFRMCRADSKVPGYTPQ 
PEPGHLQLPPLQRTGPRNPAESLQAGSGRSPGGCHGPIRI 
 
Clone#1-allele 2 - 160 amino acids 
MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLGYAKGRKDTFLCYEVTRKDCDSPVSLH 
HGVFKNKDNIHAEICFLYWFHDKVLKVLSPREEFKITWFLEPLFRMCRADSKVPGYTPQP 
EPGHLQLPPLQRTGPRNPAESLQAGSGRSPGGCHGPIRI 
 

Clone#2 – allele 1 - 158 amino acids 
MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLGYAKGRKDTFLCYEVTRKDCDSPVSLH 
HGVFKNKDNIHAEICFLYWFHDKVLKVLSPREEFKITWYMPLFRMCRADSKVPGYTPQPE 
PGHLQLPPLQRTGPRNPAESLQAGSGRSPGGCHGPIRI 
 
Clone#2 - allele 2 - 157 amino acids 
MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLGYAKGRKDTFLCYEVTRKDCDSPVSLH 
HGVFKNKDNIHAEICFLYWFHDKVLKVLSPREEFKITWFLEFRMCRADSKVPGYTPQPEP 
GHLQLPPLQRTGPRNPAESLQAGSGRSPGGCHGPIRI 

	
Clone#3 – allele 1 – 160 amino acids 
MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLGYAKGRKDTFLCYEVTRKDCDSPVSLH 
HGVFKNKDNIHAEICFLYWFHDKVLKVLSPREEFKITWYMLEPLFRMCRADSKVPGYTPQ 
PEPGHLQLPPLQRTGPRNPAESLQAGSGRSPGGCHGPIRI 
 
Clone#3 – allele 2 – 159 amino acids 
MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLGYAKGRKDTFLCYEVTRKDCDSPVSLH 
HGVFKNKDNIHAEICFLYWFHDKVLKVLSPREEFKITWFLEPLFRMCRADSKVPGYTPQP 
EPGHLQLPPLQRTGPRNPAESLQAGSGRSPGGCHGPIRI 
 

Clone#4 – allele 1 - 160 amino acids 
MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLGYAKGRKDTFLCYEVTRKDCDSPVSLH 
HGVFKNKDNIHAEICFLYWFHDKVLKVLSPREEFKITWYMVEPLFRMCRADSKVPGYTPQ 
PEPGHLQLPPLQRTGPRNPAESLQAGSGRSPGGCHGPIRI 
	
Clone#4 – allele 2 - 159 amino acids 
MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLGYAKGRKDTFLCYEVTRKDCDSPVSLH 
HGVFKNKDNIHAEICFLYWFHDKVLKVLSPREEFKITWFLEPLFRMCRADSKVPGYTPQP 
EPGHLQLPPLQRTGPRNPAESLQAGSGRSPGGCHGPIRI 

 
Clone#5 – allele 1 – 160 amino acids 
MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLGYAKGRKDTFLCYEVTRKDCDSPVSLH 
HGVFKNKDNIHAEICFLYWFHDKVLKVLSPREEFKITWYILEPLFRMCRADSKVPGYTPQ 
PEPGHLQLPPLQRTGPRNPAESLQAGSGRSPGGCHGPIRI 
	
Clone#5 – allele 2 – 111 amino acids 
MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLGYAKGRKDTFLCYEVTRKDCDSPVSLH 
HGVFKNKDNIHAEICFLYWFHDKVLKVLSPREEFKITWYMAGAPVSNVQSR 
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Clone#6 – allele 1 – 159 amino acids 
MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLGYAKGRKDTFLCYEVTRKDCDSPVSLH 
HGVFKNKDNIHAEICFLYWFHDKVLKVLSPREEFKITWYMEPLFRMCRADSKVPGYTPQP 
EPGHLQLPPLQRTGPRNPAESLQAGSGRSPGGCHGPIRI 
	
Clone#6 – allele 2 – 160 amino acids 
MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLGYAKGRKDTFLCYEVTRKDCDSPVSLH 
HGVFKNKDNIHAEICFLYWFHDKVLKVLSPREEFKITWFLLEPLFRMCRADSKVPGYTPQ 
PEPGHLQLPPLQRTGPRNPAESLQAGSGRSPGGCHGPIRI 

	
Clone#7 – allele 1 – 160 amino acids 
MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLGYAKGRKDTFLCYEVTRKDCDSPVSLH 
HGVFKNKDNIHAEICFLYWFHDKVLKVLSPREEFKITWYMLEPLFRMCRADSKVPGYTPQ 
PEPGHLQLPPLQRTGPRNPAESLQAGSGRSPGGCHGPIRI 
	
Clone#7 – allele 2 – 159 amino acids 
MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLGYAKGRKDTFLCYEVTRKDCDSPVSLH 
HGVFKNKDNIHAEICFLYWFHDKVLKVLSPREEFKITWFLEPLFRMCRADSKVPGYTPQP 
EPGHLQLPPLQRTGPRNPAESLQAGSGRSPGGCHGPIRI 

	
Clone#9 – allele 1 – 160 amino acids 
MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLGYAKGRKDTFLCYEVTRKDCDSPVSLH 
HGVFKNKDNIHAEICFLYWFHDKVLKVLSPREEFKITWYMLEPLFRMCRADSKVPGYTPQ 
PEPGHLQLPPLQRTGPRNPAESLQAGSGRSPGGCHGPIRI 
	
Clone#9 – allele 2 – 159 amino acids 
MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLGYAKGRKDTFLCYEVTRKDCDSPVSLH 
HGVFKNKDNIHAEICFLYWFHDKVLKVLSPREEFKITWFLEPLFRMCRADSKVPGYTPQP 
EPGHLQLPPLQRTGPRNPAESLQAGSGRSPGGCHGPIRI 

 
Supplementary Figure 11. Predicted effects of Apobec3 AS1 sense sgRNA double 

frameshift clones. All Apobec3 exon 3 mutant clones are predicted to encode for severely 

C-terminal truncated proteins that lack AS2 and lack one or more of the cysteines within 

the P-C-X2-4-C motif of AS1. Green highlighted text illustrates the wildtype protein 

sequence. 
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Clone#1 – homozygous? – 161 amino acids 
MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLGYAKGRKDTFLCYEVTRKDCDSPVSLH 
HGVFKNKDNIHAEICFLYWFHDKVLKVLSPREEFKITWYMSWRPLFRMCRADSKVPGYTP 
QPEPGHLQLPPLQRTGPRNPAESLQAGSGRSPGGCHGPIRI 
 

Clone#2 – allele 1 – 11 amino acids 
MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLGYAKGRKDTFLCYEVTRKDCDSPVSLH 
HGVFKNKDNIHAEICFLYWFHDKVLKVLSPREEFKITWYMSWTPVSNVQSR 
 
Clone#2 – allele 2 – 160 amino acids 
MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLGYAKGRKDTFLCYEVTRKDCDSPVSLH 
HGVFKNKDNIHAEICFLYWFHDKVLKVLSPREEFKITWYMSWALFRMCRADSKVPGYTPQ 
PEPGHLQLPPLQRTGPRNPAESLQAGSGRSPGGCHGPIRI 
 

Clone#3 – homozygous? – 158 amino acids 
MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLGYAKGRKDTFLCYEVTRKDCDSPVSLH 
HGVFKNKDNIHAEICFLYWFHDKVLKVLSPREEFKITWYTPLFRMCRADSKVPGYTPQPE 
PGHLQLPPLQRTGPRNPAESLQAGSGRSPGGCHGPIRI 
 

Clone#6 – allele 1 – 111 amino acids 
MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLGYAKGRKDTFLCYEVTRKDCDSPVSLH 
HGVFKNKDNIHAEICFLYWFHDKVLKVLSPREEFKITWYMSWAPVSNVQSR 
 
Clone#6 – allele 2 – 111 amino acids 
MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLGYAKGRKDTFLCYEVTRKDCDSPVSLH 
HGVFKNKDNIHAEICFLYWFHDKVLKVLSPREEFKITWYMSWSPVSNVQSR 
 

Clone#9 – allele 1 – 111 amino acids 
MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLGYAKGRKDTFLCYEVTRKDCDSPVSLH 
HGVFKNKDNIHAEICFLYWFHDKVLKVLSPREEFKITWYMSWAPVSNVQSR 
 
Clone#9 – allele 2 – 160 amino acids 
MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLGYAKGRKDTFLCYEVTRKDCDSPVSLH 
HGVFKNKDNIHAEICFLYWFHDKVLKVLSPREEFKITWYMSWPLFRMCRADSKVPGYTPQ 
PEPGHLQLPPLQRTGPRNPAESLQAGSGRSPGGCHGPIRI 

	
Supplementary Figure 12. Predicted effects of Apobec3 AS1 antisense sgRNA double 

frameshift clones. All Apobec3 exon 3 mutant clones are predicted to encode for severely 

C-terminal truncated proteins that lack AS2 and lack one or more of the cysteines within 

the P-C-X2-4-C motif of AS1. Green highlighted text illustrates the wildtype protein 

sequence. 
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Clone#1 – allele 1 – 372 amino acids 
MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLGYAKGRKDTFLCYEVTRKDCDSPVSLH 
HGVFKNKDNIHAEICFLYWFHDKVLKVLSPREEFKITWYMSWSPCFECAEQIVRFLATHH 
NLSLDIFSSRLYNVQDPETQQNLCRLVQEGAQVAAMDLYEFKKCWKKFVDNGGRRFRPWK 
RLLTNFRYQDSKLQEILRPCYISVPSSSSSTLSNICLTKGLPETRFWVEGRRMDPLSEEE 
FYSQFYNQRVKHLCYYHRMKPYLCYQLEQFNGQAPLKGCLLSEKGKQHAEILFLDKIRSM 
ELSQVTITCYHLEPLPKLCLATGGIQKGSSRSNSAYLHLPPVFPLEEALPEGAVFSVAIR 
DPGGRHGPPTVY 
 
Clone#1 – allele 2 – 371 amino acids 
MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLGYAKGRKDTFLCYEVTRKDCDSPVSLH 
HGVFKNKDNIHAEICFLYWFHDKVLKVLSPREEFKITWYMSWSPCFECAEQIVRFLATHH 
NLSLDIFSSRLYNVQDPETQQNLCRLVQEGAQVAAMDLYEFKKCWKKFVDNGGRRFRPWK 
RLLTNFRYQDSKLQEILRPCYISVPSSSSSTLSNICLTKGLPETRFWVEGRRMDPLSEEE 
FYSQFYNQRVKHLCYYHRMKPYLCYQLEQFNGQAPLKGCLLSEKGKQHAEILFLDKIRSM 
ELSQVTITCYLEPLPKLCLATGGIQKGSSRSNSAYLHLPPVFPLEEALPEGAVFSVAIRD 
PGGRHGPPTVY 
 

Clone#2 – allele 1 – 372 amino acids 
MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLGYAKGRKDTFLCYEVTRKDCDSPVSLH 
HGVFKNKDNIHAEICFLYWFHDKVLKVLSPREEFKITWYMSWSPCFECAEQIVRFLATHH 
NLSLDIFSSRLYNVQDPETQQNLCRLVQEGAQVAAMDLYEFKKCWKKFVDNGGRRFRPWK 
RLLTNFRYQDSKLQEILRPCYISVPSSSSSTLSNICLTKGLPETRFWVEGRRMDPLSEEE 
FYSQFYNQRVKHLCYYHRMKPYLCYQLEQFNGQAPLKGCLLSEKGKQHAEILFLDKIRSM 
ELSQVTITCYHLEPLPKLCLATGGIQKGSSRSNSAYLHLPPVFPLEEALPEGAVFSVAIR 
DPGGRHGPPTVY 
 
Clone#2 – allele 2 – 311 amino acids 
MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLGYAKGRKDTFLCYEVTRKDCDSPVSLH 
HGVFKNKDNIHAEICFLYWFHDKVLKVLSPREEFKITWYMSWSPCFECAEQIVRFLATHH 
NLSLDIFSSRLYNVQDPETQQNLCRLVQEGAQVAAMDLYEFKKCWKKFVDNGGRRFRPWK 
RLLTNFRYQDSKLQEILRPCYISVPSSSSSTLSNICLTKGLPETRFWVEGRRMDPLSEEE 
FYSQFYNQRVKHLCYYHRMKPYLCYQLEQFNGQAPLKGCLLSEKGKQHAEILFLDKIRSM 
ELSQVTITCYL 
 

Clone#4 – allele 1 – 371 amino acids 
MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLGYAKGRKDTFLCYEVTRKDCDSPVSLH 
HGVFKNKDNIHAEICFLYWFHDKVLKVLSPREEFKITWYMSWSPCFECAEQIVRFLATHH 
NLSLDIFSSRLYNVQDPETQQNLCRLVQEGAQVAAMDLYEFKKCWKKFVDNGGRRFRPWK 
RLLTNFRYQDSKLQEILRPCYISVPSSSSSTLSNICLTKGLPETRFWVEGRRMDPLSEEE 
FYSQFYNQRVKHLCYYHRMKPYLCYQLEQFNGQAPLKGCLLSEKGKQHAEILFLDKIRSM 
ELSQVTITCYLEPLPKLCLATGGIQKGSSRSNSAYLHLPPVFPLEEALPEGAVFSVAIRD 
PGGRHGPPTVY 
 
Clone#4 – allele 2 – 332 amino acids 
MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLGYAKGRKDTFLCYEVTRKDCDSPVSLH 
HGVFKNKDNIHAEICFLYWFHDKVLKVLSPREEFKITWYMSWSPCFECAEQIVRFLATHH 
NLSLDIFSSRLYNVQDPETQQNLCRLVQEGAQVAAMDLYEFKKCWKKFVDNGGRRFRPWK 
RLLTNFRYQDSKLQEILRPCYISVPSSSSSTLSNICLTKGLPETRFWVEGRRMDPLSEEE 
FYSQFYNQRVKHLCYYHRMKPYLCYQLEQFNGQAPLKGCLLSEKGKQHAEILFLDKIRSM 
ELSQVTITCYLAGAPAQTVPGNWRHSKGIVQI 
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Clone#5– homozygous? – 332 amino acids 
MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLGYAKGRKDTFLCYEVTRKDCDSPVSLH 
HGVFKNKDNIHAEICFLYWFHDKVLKVLSPREEFKITWYMSWSPCFECAEQIVRFLATHH 
NLSLDIFSSRLYNVQDPETQQNLCRLVQEGAQVAAMDLYEFKKCWKKFVDNGGRRFRPWK 
RLLTNFRYQDSKLQEILRPCYISVPSSSSSTLSNICLTKGLPETRFWVEGRRMDPLSEEE 
FYSQFYNQRVKHLCYYHRMKPYLCYQLEQFNGQAPLKGCLLSEKGKQHAEILFLDKIRSM 
ELSQVTITCYLPGAPAQTVPGNWRHSKGIVQI 
 

Clone#7 – allele 1 – 371 amino acids 
MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLGYAKGRKDTFLCYEVTRKDCDSPVSLH 
HGVFKNKDNIHAEICFLYWFHDKVLKVLSPREEFKITWYMSWSPCFECAEQIVRFLATHH 
NLSLDIFSSRLYNVQDPETQQNLCRLVQEGAQVAAMDLYEFKKCWKKFVDNGGRRFRPWK 
RLLTNFRYQDSKLQEILRPCYISVPSSSSSTLSNICLTKGLPETRFWVEGRRMDPLSEEE 
FYSQFYNQRVKHLCYYHRMKPYLCYQLEQFNGQAPLKGCLLSEKGKQHAEILFLDKIRSM 
ELSQVTITCYLEPLPKLCLATGGIQKGSSRSNSAYLHLPPVFPLEEALPEGAVFSVAIRD 
PGGRHGPPTVY 
 
Clone#7 – allele 2 – 332 amino acids 
MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLGYAKGRKDTFLCYEVTRKDCDSPVSLH 
HGVFKNKDNIHAEICFLYWFHDKVLKVLSPREEFKITWYMSWSPCFECAEQIVRFLATHH 
NLSLDIFSSRLYNVQDPETQQNLCRLVQEGAQVAAMDLYEFKKCWKKFVDNGGRRFRPWK 
RLLTNFRYQDSKLQEILRPCYISVPSSSSSTLSNICLTKGLPETRFWVEGRRMDPLSEEE 
FYSQFYNQRVKHLCYYHRMKPYLCYQLEQFNGQAPLKGCLLSEKGKQHAEILFLDKIRSM 
ELSQVTITCYLAGAPAQTVPGNWRHSKGIVQI 
 

Clone#8 – allele 1 – 371 amino acids 
MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLGYAKGRKDTFLCYEVTRKDCDSPVSLH 
HGVFKNKDNIHAEICFLYWFHDKVLKVLSPREEFKITWYMSWSPCFECAEQIVRFLATHH 
NLSLDIFSSRLYNVQDPETQQNLCRLVQEGAQVAAMDLYEFKKCWKKFVDNGGRRFRPWK 
RLLTNFRYQDSKLQEILRPCYISVPSSSSSTLSNICLTKGLPETRFWVEGRRMDPLSEEE 
FYSQFYNQRVKHLCYYHRMKPYLCYQLEQFNGQAPLKGCLLSEKGKQHAEILFLDKIRSM 
ELSQVTITCYLEPLPKLCLATGGIQKGSSRSNSAYLHLPPVFPLEEALPEGAVFSVAIRD 
PGGRHGPPTVY 
 
Clone#8 – allele 2 – 372 amino acids 
MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLGYAKGRKDTFLCYEVTRKDCDSPVSLH 
HGVFKNKDNIHAEICFLYWFHDKVLKVLSPREEFKITWYMSWSPCFECAEQIVRFLATHH 
NLSLDIFSSRLYNVQDPETQQNLCRLVQEGAQVAAMDLYEFKKCWKKFVDNGGRRFRPWK 
RLLTNFRYQDSKLQEILRPCYISVPSSSSSTLSNICLTKGLPETRFWVEGRRMDPLSEEE 
FYSQFYNQRVKHLCYYHRMKPYLCYQLEQFNGQAPLKGCLLSEKGKQHAEILFLDKIRSM 
ELSQVTITCYHLEPLPKLCLATGGIQKGSSRSNSAYLHLPPVFPLEEALPEGAVFSVAIR 
DPGGRHGPPTVY 
 

Clone#9 – homozygous? – 332 amino acids 
MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLGYAKGRKDTFLCYEVTRKDCDSPVSLH 
HGVFKNKDNIHAEICFLYWFHDKVLKVLSPREEFKITWYMSWSPCFECAEQIVRFLATHH 
NLSLDIFSSRLYNVQDPETQQNLCRLVQEGAQVAAMDLYEFKKCWKKFVDNGGRRFRPWK 
RLLTNFRYQDSKLQEILRPCYISVPSSSSSTLSNICLTKGLPETRFWVEGRRMDPLSEEE 
FYSQFYNQRVKHLCYYHRMKPYLCYQLEQFNGQAPLKGCLLSEKGKQHAEILFLDKIRSM 
ELSQVTITCYLPGAPAQTVPGNWRHSKGIVQI 
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Clone#10 – allele 1 – 332 amino acids 
MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLGYAKGRKDTFLCYEVTRKDCDSPVSLH 
HGVFKNKDNIHAEICFLYWFHDKVLKVLSPREEFKITWYMSWSPCFECAEQIVRFLATHH 
NLSLDIFSSRLYNVQDPETQQNLCRLVQEGAQVAAMDLYEFKKCWKKFVDNGGRRFRPWK 
RLLTNFRYQDSKLQEILRPCYISVPSSSSSTLSNICLTKGLPETRFWVEGRRMDPLSEEE 
FYSQFYNQRVKHLCYYHRMKPYLCYQLEQFNGQAPLKGCLLSEKGKQHAEILFLDKIRSM 
ELSQVTITCYLAGAPAQTVPGNWRHSKGIVQI 
 
Clone#10 – allele 2 – 371 amino acids 
MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLGYAKGRKDTFLCYEVTRKDCDSPVSLH 
HGVFKNKDNIHAEICFLYWFHDKVLKVLSPREEFKITWYMSWSPCFECAEQIVRFLATHH 
NLSLDIFSSRLYNVQDPETQQNLCRLVQEGAQVAAMDLYEFKKCWKKFVDNGGRRFRPWK 
RLLTNFRYQDSKLQEILRPCYISVPSSSSSTLSNICLTKGLPETRFWVEGRRMDPLSEEE 
FYSQFYNQRVKHLCYYHRMKPYLCYQLEQFNGQAPLKGCLLSEKGKQHAEILFLDKIRSM 
ELSQVTITCYLEPLPKLCLATGGIQKGSSRSNSAYLHLPPVFPLEEALPEGAVFSVAIRD 
PGGRHGPPTVY 

Supplementary Figure 13. Predicted effects of Apobec3 AS2 sense sgRNA double 

frameshift clones. All Apobec3 exon 7 mutant clones are predicted to encode for C-

terminally truncated proteins that lack one or more of the cysteines within the P-C-X2-4-C 

motif of AS2. Green highlighted text illustrates the wildtype protein sequence. 
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Clone#1 – allele 1 – 332 amino acids 
MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLGYAKGRKDTFLCYEVTRKDCDSPVSLH 
HGVFKNKDNIHAEICFLYWFHDKVLKVLSPREEFKITWYMSWSPCFECAEQIVRFLATHH 
NLSLDIFSSRLYNVQDPETQQNLCRLVQEGAQVAAMDLYEFKKCWKKFVDNGGRRFRPWK 
RLLTNFRYQDSKLQEILRPCYISVPSSSSSTLSNICLTKGLPETRFWVEGRRMDPLSEEE 
FYSQFYNQRVKHLCYYHRMKPYLCYQLEQFNGQAPLKGCLLSEKGKQHAEILFLDKIRSM 
ELSQVTITCYLTWAPAQTVPGNWRHSKGIVQI 
	
Clone#1 – allele 2 – 373 amino acids 
MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLGYAKGRKDTFLCYEVTRKDCDSPVSLH 
HGVFKNKDNIHAEICFLYWFHDKVLKVLSPREEFKITWYMSWSPCFECAEQIVRFLATHH 
NLSLDIFSSRLYNVQDPETQQNLCRLVQEGAQVAAMDLYEFKKCWKKFVDNGGRRFRPWK 
RLLTNFRYQDSKLQEILRPCYISVPSSSSSTLSNICLTKGLPETRFWVEGRRMDPLSEEE 
FYSQFYNQRVKHLCYYHRMKPYLCYQLEQFNGQAPLKGCLLSEKGKQHAEILFLDKIRSM 
ELSQVTITCYLTWMPLPKLCLATGGIQKGSSRSNSAYLHLPPVFPLEEALPEGAVFSVAI 
RDPGGRHGPPTVY 

	
Clone#5 – allele 1 – 332 amino acids 
MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLGYAKGRKDTFLCYEVTRKDCDSPVSLH 
HGVFKNKDNIHAEICFLYWFHDKVLKVLSPREEFKITWYMSWSPCFECAEQIVRFLATHH 
NLSLDIFSSRLYNVQDPETQQNLCRLVQEGAQVAAMDLYEFKKCWKKFVDNGGRRFRPWK 
RLLTNFRYQDSKLQEILRPCYISVPSSSSSTLSNICLTKGLPETRFWVEGRRMDPLSEEE 
FYSQFYNQRVKHLCYYHRMKPYLCYQLEQFNGQAPLKGCLLSEKGKQHAEILFLDKIRSM 
ELSQVTITCYLTWAPAQTVPGNWRHSKGIVQI 
	
Clone#5 – allele 2 – 373 amino acids 
MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLGYAKGRKDTFLCYEVTRKDCDSPVSLH 
HGVFKNKDNIHAEICFLYWFHDKVLKVLSPREEFKITWYMSWSPCFECAEQIVRFLATHH 
NLSLDIFSSRLYNVQDPETQQNLCRLVQEGAQVAAMDLYEFKKCWKKFVDNGGRRFRPWK 
RLLTNFRYQDSKLQEILRPCYISVPSSSSSTLSNICLTKGLPETRFWVEGRRMDPLSEEE 
FYSQFYNQRVKHLCYYHRMKPYLCYQLEQFNGQAPLKGCLLSEKGKQHAEILFLDKIRSM 
ELSQVTITCYLTWMPLPKLCLATGGIQKGSSRSNSAYLHLPPVFPLEEALPEGAVFSVAI 
RDPGGRHGPPTVY 

Clone#6 – allele 1 – 373 amino acids 
MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLGYAKGRKDTFLCYEVTRKDCDSPVSLH	
HGVFKNKDNIHAEICFLYWFHDKVLKVLSPREEFKITWYMSWSPCFECAEQIVRFLATHH 
NLSLDIFSSRLYNVQDPETQQNLCRLVQEGAQVAAMDLYEFKKCWKKFVDNGGRRFRPWK 
RLLTNFRYQDSKLQEILRPCYISVPSSSSSTLSNICLTKGLPETRFWVEGRRMDPLSEEE 
FYSQFYNQRVKHLCYYHRMKPYLCYQLEQFNGQAPLKGCLLSEKGKQHAEILFLDKIRSM 
ELSQVTITCYLTWKPLPKLCLATGGIQKGSSRSNSAYLHLPPVFPLEEALPEGAVFSVAI 
RDPGGRHGPPTVY 
	
Clone#6 – allele 2 – 310 amino acids 
MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLGYAKGRKDTFLCYEVTRKDCDSPVSLH 
HGVFKNKDNIHAEICFLYWFHDKVLKVLSPREEFKITWYMSWSPCFECAEQIVRFLATHH 
NLSLDIFSSRLYNVQDPETQQNLCRLVQEGAQVAAMDLYEFKKCWKKFVDNGGRRFRPWK 
RLLTNFRYQDSKLQEILRPCYISVPSSSSSTLSNICLTKGLPETRFWVEGRRMDPLSEEE 
FYSQFYNQRVKHLCYYHRMKPYLCYQLEQFNGQAPLKGCLLSEKGKQHAEILFLETVPGN 
WRHSKGIVQI 
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Clone#7 – allele 1 – 371 amino acids  
MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLGYAKGRKDTFLCYEVTRKDCDSPVSLH 
HGVFKNKDNIHAEICFLYWFHDKVLKVLSPREEFKITWYMSWSPCFECAEQIVRFLATHH 
NLSLDIFSSRLYNVQDPETQQNLCRLVQEGAQVAAMDLYEFKKCWKKFVDNGGRRFRPWK 
RLLTNFRYQDSKLQEILRPCYISVPSSSSSTLSNICLTKGLPETRFWVEGRRMDPLSEEE 
FYSQFYNQRVKHLCYYHRMKPYLCYQLEQFNGQAPLKGCLLSEKGKQHAEILFLDKIRSM 
ELSQVTITCYLTWMPKLCLATGGIQKGSSRSNSAYLHLPPVFPLEEALPEGAVFSVAIRD 
PGGRHGPPTVY 
	
Clone#7 – allele 2 – 373 amino acids  
MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLGYAKGRKDTFLCYEVTRKDCDSPVSLH 
HGVFKNKDNIHAEICFLYWFHDKVLKVLSPREEFKITWYMSWSPCFECAEQIVRFLATHH 
NLSLDIFSSRLYNVQDPETQQNLCRLVQEGAQVAAMDLYEFKKCWKKFVDNGGRRFRPWK 
RLLTNFRYQDSKLQEILRPCYISVPSSSSSTLSNICLTKGLPETRFWVEGRRMDPLSEEE 
FYSQFYNQRVKHLCYYHRMKPYLCYQLEQFNGQAPLKGCLLSEKGKQHAEILFLDKIRSM 
ELSQVTITCYLTWRPLPKLCLATGGIQKGSSRSNSAYLHLPPVFPLEEALPEGAVFSVAI 
RDPGGRHGPPTVY 

Clone#9 – allele 1 – 332 amino acids 
MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLGYAKGRKDTFLCYEVTRKDCDSPVSLH 
HGVFKNKDNIHAEICFLYWFHDKVLKVLSPREEFKITWYMSWSPCFECAEQIVRFLATHH 
NLSLDIFSSRLYNVQDPETQQNLCRLVQEGAQVAAMDLYEFKKCWKKFVDNGGRRFRPWK 
RLLTNFRYQDSKLQEILRPCYISVPSSSSSTLSNICLTKGLPETRFWVEGRRMDPLSEEE 
FYSQFYNQRVKHLCYYHRMKPYLCYQLEQFNGQAPLKGCLLSEKGKQHAEILFLDKIRSM 
ELSQVTITCYLTWTPAQTVPGNWRHSKGIVQI 
	
Clone#9 – allele 2 – 372 amino acids  
MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLGYAKGRKDTFLCYEVTRKDCDSPVSLH 
HGVFKNKDNIHAEICFLYWFHDKVLKVLSPREEFKITWYMSWSPCFECAEQIVRFLATHH 
NLSLDIFSSRLYNVQDPETQQNLCRLVQEGAQVAAMDLYEFKKCWKKFVDNGGRRFRPWK 
RLLTNFRYQDSKLQEILRPCYISVPSSSSSTLSNICLTKGLPETRFWVEGRRMDPLSEEE 
FYSQFYNQRVKHLCYYHRMKPYLCYQLEQFNGQAPLKGCLLSEKGKQHAEILFLDKIRSM 
ELSQVTITCYLTWPLPKLCLATGGIQKGSSRSNSAYLHLPPVFPLEEALPEGAVFSVAIR 
DPGGRHGPPTVY 

Supplementary	 Figure	 14.	 Predicted effects of Apobec3 AS2 antisense sgRNA 

double frameshift clones. All Apobec3 exon 7 mutant clones are predicted to encode for 

C-terminally truncated proteins that lack one or more of the cysteines within the P-C-X2-4-

C motif of AS2. Green highlighted text illustrates the wildtype protein sequence. 
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5.1 General Discussion 

Multiple myeloma (MM) is a blood cancer characterised by the aberrant proliferation of 

malignant plasma cells (PCs) in the bone marrow (BM). MM is a rare disease, accounting 

for 1.8% of all new cancer cases, and 2.1% of all cancer deaths per year1. Each year there 

are approximately 1800 and 31,000 newly diagnosed patient cases in Australia2 and the 

United States of America3, respectively. Despite the development of effective new 

therapies, which have led to improved outcomes, patients inevitably relapse and require 

further treatment. The mechanisms underlying MM initiation, therapeutic resistance and 

disease recurrence are complex and associated with intraclonal genetic heterogeneity4-7. 

 

The advent of Next Generation Sequencing (NGS) technologies has revolutionised 

our understanding of the genetic heterogeneity and key driver mutations in genes 

associated with MM disease development. The ‘Initial genome sequencing and analysis of 

multiple myeloma’ in 38 patients was carried out by Chapman and colleagues in 2011, 

identifying the first set of significantly mutated genes believed to be drivers of MM5. In 

addition to previously reported mutant genes, such as KRAS, NRAS and TP53, NGS 

identified new unexpected candidates such as DIS3 and FAM46C. Following this seminal 

study, 3 further large cohort studies of patients were carried out using patient samples of 

MM and its pre malignant stages of monoclonal gammopathy of undetermined significance 

(MGUS) or smouldering multiple myeloma (SMM)4,6,7. These studies demonstrated 

intraclonal heterogeneity as a hallmark of MM, where distinct PC populations carry 

differing mutations, with the rise and fall in dominance of clonal populations as disease 

progresses. The most recurrently mutated genes identified in these studies include KRAS, 

NRAS, BRAF, TP53, DIS3 and FAM46C, which are believed to be drivers of MM due to 

their recurrent nature4,6,7. Moreover, intraclonal heterogeneity has been observed at both 

the earliest stages of disease and also at MM, where the dynamics of progression are 

thought to be characterised by “Darwinian” evolution. In this model, the acquisition of 

driver mutations is suggested to confer an improved clonal fitness (i.e. selective advantage 

and dominance) allowing clones to survive and progress to MM. However, as these studies 

relied on the comparison of genetic changes between MGUS, SMM and MM samples 

isolated from different individuals, it remains unknown whether the genetic heterogeneity 

that was present at MM was also present at the asymptomatic MGUS and SMM stages.  

 

Intraclonal genetic heterogeneity is viewed as one of the main reasons for the 

disparate outcomes for MM patients. As different clonal populations within a tumour carry 
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differing combinations of mutations they exhibit diversified survival properties, therefore, 

treatment impacts the death or survival of clonal populations based on their clonal fitness. 

While standard treatment strategies kill off aggressive dominant clones with driver 

mutations, they leave indolent clones that resist the effects of treatment. Moreover, as 

treatment represents an unnatural selective pressure on indolent clones may cause them to 

mutate further and acquire driver mutations, facilitating an improved clonal fitness and 

subsequent dominance, leading to MM relapse. To date, few studies have investigated the 

changing clonal composition of MM in response to treatment using array and NGS 

techniques, finding substantial tumour heterogeneity with the acquisition of new mutations 

and resulting clonal tiding at relapse in response to therapy8-13. 

 

Our current knowledge of the genomic complexity in MM has been established on 

the examinations of unmatched samples isolated from different patients at MGUS, SMM, 

MM and PCL, and how genetic heterogeneity is observed to be related between stages4-7,14-

20. However, two very small studies have investigated the tumour evolution associated with 

the natural history of disease transformation from SMM to MM, using paired SMM-MM 

samples from the same patient (n = 4 in both studies)17,20. These studies found the majority 

of genetic changes required for MM were present from the asymptomatic stage of SMM. 

These initial studies have suggested that progression to MM does not involve many new 

mutations, where clonal progression is a key feature of transformation17. While these 

studies characterised the clonal heterogeneity present from the SMM stage, the subclonal 

evolution associated with disease progression was poorly understood. 

 

Due to the rare nature and difficulty in collecting paired samples from treatment 

naïve patients when first diagnosed with MGUS/SMM and then subsequently at MM, the 

studies presented in this thesis constitute the first genetic analysis of the changes associated 

with MM transformation. Based on the matched nature of our samples, we hypothesised 

that analyses of MM patients in a paired setting would reveal commonly mutated genes 

that represent key drivers of disease progression. To investigate this hypothesis, in Chapter 

2 we performed whole exome sequencing (WES) analysis of matched samples from 10 

patients, who progressed from MGUS to MM (n = 5) or SMM to MM (n = 5). Similar to 

previous NGS studies on large cohorts of unmatched MGUS-SMM-MM patient samples, 

we confirmed clonal heterogeneity is a common feature at diagnosis. However, in contrast, 

we identified that the driving events involved with disease progression are more subtle that 

previously reported. To this end, we found a changing spectrum of acquired mutations, not 
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total mutational load, to be associated with MGUS/SMM to MM progression. 

Interestingly, slightly higher somatic single nucleotide variant (SNV) and copy number 

variant (CNV) frequency were identified at the asymptomatic stages of MGUS/SMM 

compared to MM (SNVs: median 161 versus 152 per patient, respectively; CNVs: median 

70 versus 67.5 per patient, respectively). We found the RAS/MAPK pathway to be highly 

mutated in our study, with 40% of patients at MGUS/SMM and 70% of patients at MM 

harbouring mutations in KRAS and NRAS. These were identified to be mutually exclusive, 

consistent with previous observations that report the rare co-occurrence of mutations in 

these genes. Notably, we revealed that MGUS/SMM to MM progression is characterised 

by a prevailing model of tumour evolution defined by clonal stability, where the 

transformed PC subclones of MM were already present at the MGUS/SMM stage. 

Subclonality was evident at the earliest stages of disease, with the presence of between 5 to 

11 subclones at MGUS/SMM which progress to MM with subtle changes in the degree of 

emergence and/or extinction of child subclonal branches. These findings suggest that 

patients who progress in a short time frame are already sufficiently genetically complex at 

MGUS/SMM to be on the threshold of transformation to MM; a process that may be 

driven by PC-extrinsic selective pressures imparted by the tumour microenvironment. 

 

While Chapter 2 focused on the characterisation of the genetic architecture and 

subclonal evolution in PCs as a function of disease progression, Chapter 3 examined the 

changes in the transcriptomic and methylomic landscape associated with disease evolution. 

To date, little is known about the role of the transcriptomic changes associated with the 

progression to MM in a matched longitudinal setting. Current understanding of the MM 

transcriptome is derived from gene expression profiling (GEP) studies using array-based 

technologies, which provide a broad ranging insight into the transcriptomic landscape of 

MM at a single point. These insights have led to the generation of robust risk stratification 

models for the prognosis of patients, such as the UAMS-7021 and EMC-9222 gene 

signatures. However, these tools are not yet routinely utilised in the clinic, as further 

supporting evidence is required before they become commercially available for use in a 

clinical setting. The clinical precision of GEPs in MM prognostication is hampered by the 

presence of intraclonal heterogeneity throughout all stages of disease. As GEP provides a 

snapshot of expression patterns, it is only able to account for the dominant clones of a 

tumour, thus missing important information on subclonal changes such as possible driver 

genes and associated deregulated pathways in minor subclones. Interestingly, it has been 

shown that minor subclones that resist treatment are able to further mutate, gaining 
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selective fitness and malignant potential, leading to MM relapse10. With the advent of NGS 

technologies, such as RNA sequencing (RNAseq) and its progressive affordability, GEP 

may not represent the best methodology for detailed interrogation of the MM 

transcriptome. RNAseq is a highly sensitive technology, which is able to provide a deeper 

insight into the transcriptomic complexity of a cell as it assesses RNA transcripts with 

single base resolution in a high throughput manner23. Therefore, as RNAseq provides a 

quantitative measure of each RNA fragment from a cell, it can accurately detect both 

highly and lowly expressed genes, as would be found in a heterogeneous tumour.  

 

Gene expression is known to be regulated by epigenetic mechanisms such as DNA 

methylation. The rate of epigenetic change in cancers has been estimated to be orders of 

magnitude higher than that of genetic change, and could be a major determinant of clonal 

evolution24. Studies investigating the methylomic changes in MM have demonstrated that 

disease initiation is characterised by global hypomethylation25-28. Interestingly, however, 

analysis of disease progression has yielded conflicting results, with some studies 

identifying increased hypomethylation25,27,28, while another study showed decreasing 

hypomethylation due to progressive hypermethylation26. In Chapter 3, we investigated the 

transcriptomic and DNA methylation changes associated with the progression of 

MGUS/SMM to MM using RNAseq and whole genome bisulphite sequencing (WGBS), 

respectively. Interestingly, there was minimal variation in gene expression between the 

MGUS/SMM and MM stages. There were 250 genes approaching statistical significance in 

differential expression testing, with the top 10 genes including:  THEMIS2, BTBD19, HBB, 

ATP8A2, CELSR1, CD69, TWF2, SLC20A1, ALG1L and SLC23A3. Mutated genes of MM, 

found in WES analyses of the same patients described in Chapter 2, were expressed at low 

levels or not at all. In most cases, only the wild type allele of a gene harbouring 

heterozygous mutation was expressed. Analysis of the methylome using WGBS revealed 

the initiation and progression of MGUS, to SMM and MM, was associated with extreme 

hypomethylation. While an average of 77.5% of CpG sites were methylated in NPCs, an 

average of 43%, 45.6%, 41.7% of CpG sites methylated were methylated in MGUS, SMM 

and MM, respectively. Notably, compared to NPCs, there were 190,401 differentially 

methylated regions (DMRs) at MGUS/SMM, and 177,535 DMRs at MM. However, we 

found no DMRs between MGUS/SMM and MM. These findings indicate that PCs from 

the asymptomatic MGUS/SMM stages appear to be as genetically complex as the MM 

stage, with the majority of transcriptomic and methylomic changes occurring during the 

aberrant transition of NPCs to MGUS/SMM.  
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The initiating oncogenic events of MM are known to occur in a maturing B cell, 

when present within the germinal centre. The resultant PCs re-enter the BM, leading to the 

asymptomatic condition of MGUS. Common initiating events include IgH translocations 

and hyperdiploidy. Generation of highly specific Ig, through the somatic hypermutation 

process in the hypervariable region of the IgH locus is induced by the expression of 

activation-induced cytidine deaminase (AID). AID is a member of the APOBEC family of 

DNA/RNA editing enzymes. Genomic studies of patients have identified the enrichment of 

a mutational signature characterised by C>T transitions at CpG sites, which is 

hypothesised to be due to the aberrant activity of APOBEC enzymes4,29. Subsequently, a 

study has shown the association of the APOBEC mutational signature with the t(14;16) 

and t(14;20) translocation subgroups in MM that exhibit poor prognosis30. 

 

In Chapter 4, we investigated the phenomenon of RNA editing in SP140, a gene 

recurrently mutated in human MM patient studies4,6,9, in the 5TGM1 murine MM PC line. 

In addition to DNA, APOBECs also catalyse RNA editing, inducing C>U RNA changes, 

where currently APOBEC1, APOBEC3A and APOBEC3G are known to cause recoding 

changes31. Here, we identified a high impact C>T (ie. U) RNA editing change in exon 2 

(c.166) of Sp140, resulting in an early STOP codon, and hypothesize that Apobec enzymes 

are the likely candidates inducing this phenotype. In vitro studies revealed site specific 

RNA editing of Sp140 was present in the 5TGM1 cell line, with ~59% of exon 2 (c.166) 

edited. In addition, Sp140 RNA editing was not unique to murine PCs, but present in other 

mouse cell lines to a varying degree, with exon 2 (c.166) edited at a frequency of ~57%, 

~30%s, ~12%, ~9% and ~9% in FDCP1, NS1, NIH-3T3, BA/F3 and RAW264.7 cells, 

respectively. While the exon 2 region of interest was conserved between the mouse and 

human genome, Sanger sequencing revealed this site was not edited in a range of SP140 

expressing human MM PC lines. Moreover, in studies investigating the underlying 

mechanism of C>U RNA editing in 5TGM1 cells, we showed that Apobec1 and Apobec3 

were not responsible in this process. This suggests there may be other novel 

uncharacterised enzyme candidates present in 5TGM1 PCs, which can cause dynamic 

RNA editing changes. 

 

The 5TGM1 cell line and the 5TGM1-C57BL/KaLwRij model are commonly used 

in vitro and in vivo preclinical models of MM as they reproduce many of the features of 

human MM disease32-34. However, as recent genomic studies have demonstrated a marked 

genetic heterogeneity between patients, it would be valuable to ascertain which specific 
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clinical subtype(s) of MM are being represented by this mouse model, to better translate 

findings to the appropriate genetic subgroup(s) of MM patients. As we identified no 

corresponding RNA editing changes in human MM cell lines and patient samples, it is 

worth noting this in vitro model may replicate those MM patients with post transcriptional 

modifications resulting in STOP codons and truncated protein formation. Moreover, 

further large cohort studies of MM patients concurrently using WES and RNAseq will 

enable the potential to study RNA editing changes throughout MM, which may be 

widespread in disease. 

 

Intratumour heterogeneity is a common feature of MM4-7,17, therefore it remains 

intriguing why tumour cells would require further diversity through RNA editing. The 

answer may be the dynamic nature of post transcriptional modification, which may confer 

survival advantages to the tumour cell. It may be that mutations advantageous for a cancer 

cell in most microenvironments are hardwired in the DNA, but those advantageous only in 

changing environments or certain disease stages are regulated by RNA editing31. As such, 

future transcriptomic studies of patient samples should also consider RNA recoding and 

the impact of the tumour microenvironment and unnatural selective pressures, such as drug 

exposure, on cells and their dynamic survival adaptability.  

 

The studies presented in this thesis represent a unique examination the genomic 

complexity and tumour evolution associated with the progression of MGUS/SMM to MM 

in a longitudinal nature. Our data supports a clonal stability model of tumour progression 

in MM. While initial unmatched studies of patient samples illustrated “Darwinian 

evolution”, with the rise and fall in dominance of clonal populations based on selective 

advantages, our analysis of matched samples generally demonstrates clonal cooperation, 

not competition, of transformed clones from MGUS/SMM to MM. Similarly, we observed 

minimal variation in the transcriptomic and methylomic landscape associated with 

progression to MM. Taken together, these studies highlight that the genomic architecture 

of MGUS/SMM patients could be prognostic of transformation to MM. However, it 

remains unknown why patients harbouring transformed PC populations at MGUS/SMM 

are not symptomatic. It has been noted that that both intrinsic (genetic architecture) and 

extrinsic (immune cells and bone marrow microenvironment) factors may regulate tumour 

subclones and their subsequent symptomatic evolution35. The data in this thesis points to a 

more pronounced role of the tumour microenvironment in the development and 

progression of MM disease. Notably, it has previously been shown in a haematological 
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setting of myelodysplasia that changes in the microenvironment can create a 

“promalignant” niche which precedes the acquisition of any tumorigenic genetic 

aberrations, highlighting the concept of niche induced oncognesis36,37. The complex 

interactions of the tumour microenvironment with subclones can provide signals that may 

support tumour growth or restriction, which influences their transformation. Indeed in 

MM, a recent in vivo study has demonstrated microenvironment dependent disease 

progression; with xenograft of MGUS patient derived CD138+ bone marrow mononuclear 

cells into a genetically humanized MIS(KI)TRG6 mice model exhibiting progressive growth 

over an 8 - 12 week period38. Humanisation was achieved through a genetic knock-in of 6 

genes important for innate immune cell and MM cell development, including IL-6, CSF1, 

IL-3, CSF2, SIRPA and TPO38. This preclinical model further supports the notion that 

strong selective pressures are existent within the tumour microenvironment, which mediate 

clonal stability at asymptomatic disease, and subsequent progression to MM. Conversely, 

tumour subclones may modify the host-mediated growth control to influence their 

progression35. Furthermore, interaction of MM PCs with the microenvironment has been 

shown to influence dormancy of tumour cells, where dormant MM PCs are resistant to 

standard therapies and contribute to minimal residual disease (MRD), that can be 

reactivated at a later time point leading to disease progresion39. Supporting the importance 

of the microenvironment, is the observation that failure to control disease long-term in the 

MRD setting could reflect a damaged microenvironment40. The current standard of care at 

the asymptomatic stages involves monitoring patients, with no treatment options until they 

display evidence of progress towards symptomatic MM. To fully realise personalised 

medicine strategies that target “at risk patients” who would benefit from earlier therapeutic 

intervention, further large cohort longitudinal and spatial sequencing studies of both 

treatment-naïve and post-treatment patients are required to characterise the response of 

both clonal drivers and subclonal architecture to current MM treatments. 
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5.2 Towards A Cure for MM 

The marked intraclonal genetic/cytogenetic heterogeneity that characterises MM is thought 

to be the main obstacle to finding a unifying cure for patients. As MM presents as a 

heterogeneous disease with a heterogeneous clinical course, it can otherwise be considered 

not as a single disease entity, rather a collection of monoclonal gammopathies which all 

share similar clinical symptoms41. Current treatments are given based on mechanistic 

purposes such as proteasome inhibition, immune modulation (anti-inflammatory and 

antineoplastic) and induced cell death42, with the objective of managing MM as a chronic 

disease. NGS has significant potential to be implemented in the clinical assessment of risk 

stratification and mutation specific treatment strategies for patients; however, currently it is 

primarily used for research purposes only. As illustrated in Chapter 2, the main hurdle 

surrounding the use of NGS in the clinical setting for targeted treatment is not only the 

presence of intraclonal genetic heterogeneity, but also the occurrence of driver mutations 

within subclonal populations. As such, administration of selected drug would only 

eliminate a subpopulation of tumour cells, resulting in only a partial response. 

Alternatively, NGS could be used to screen and select only patients who would respond to 

established targeted therapies (in a combination therapy setting) against known drivers, 

such as vemurafenib for activating BRAF V600E mutations42,43. However, it should be 

noted that treatment targeted to mutated genes would only be effective if the mutant is 

expressed. A recent study by Rashid et al. has demonstrated that most mutated genes in 

MM are lowly expressed or not expressed at all44. This finding was confirmed in the 

studies described in Chapter 3, where our transcriptomic analysis revealed that genetic 

mutations that were acquired at MM in our cohort were only expressed at low levels or not 

at all. 

 

Currently, there are no approved target based treatment strategies for MM patients, 

however, recent clinical trials of the small molecule BCL-2 inhibitor, Venetoclax, as a 

monotherapy45 or in combination46, in the t(11;14) subgroup of MM has shown good 

efficacy and safety. The t(11;14) cytogenetic alteration is the most prevalent subgroup in 

MM (~15-20% patients)47, and PCs from these patients are known to overexpress the anti-

apoptotic factor BCL-2 which promotes tumour cell survival. Thus, drug administration 

facilitates activation of pro-apoptotic pathways to induce cell death of malignant PCs. In 

light of these findings, Venetoclax may be the first targeted treatment for a specific 

subgroup of genetically defined MM, thus beginning the personalised medicine revolution 

in MM48.  
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Notably however, as demonstrated in our longitudinal investigation of progressive 

patients, and in studies from Zhao et al20 and Walker et al17, most of the genetic 

complexity and subclonal architecture of MM is present at the asymptomatic stages of 

disease. This proposes the question as to whether MGUS should be considered the real 

“disease”, as it is the earliest stage of disease where subclonality and clonal heterogeneity 

originates, evolving under selective pressures to give rise to clonal evolution associated 

with development and progression to MM. As such, should patients be treated at the 

asymptomatic stages to eradicate subclones for the prevention of progression and possible 

cure in MM?49 Currently, this is not routine practice as MGUS and SMM are 

asymptomatic conditions therefore patients remain untreated. The standard of care involves 

a careful “watch and wait” strategy in which patients are monitored for signs of 

progression to MM. The risk-benefit ratio of early treatment needs to be considered, as 

therapeutic strategies are highly toxic to patients, such as current induction therapies using 

the proteasome inhibitor bortezomib that is known to cause peripheral neuropathy in ~55-

67% of patients50-53. Moreover, in the case of MGUS, only 20% of patients actually go on 

to develop MM, therefore it may be considered more beneficial to leave patients to only be 

monitored at this stage54.  

 

In the case of SMM however, there has been an urge for early treatment of patients 

before they progress to MM due to the armamentarium of new classes of effective drugs. 

SMM is an intriguing disease stage where two subsets of patients have been identified, one 

group exhibits indolent disease akin to MGUS, while another group displays a more 

aggressive disease course described as “early myeloma”49. In 2014, the International 

Myeloma Working Group reclassified these “early myeloma” SMM patients as being overt 

MM, through the addition of criteria assessing Myeloma Defining Events (MDEs) into the 

clinical classification system, which is designed to look beyond just end organ damage 

(from CRAB features) as a marker of MM onset55. Very recent data from NGS studies of 

high risk SMM presented at The American Society of Hematology Annual Meeting and 

Exposition 2017, have suggested that these patients are characterized by a higher 

mutational load (average 1.44 mutations/Mb compared to 0.73 mutations/Mb for low risk 

SMM patients)56, mutations in the MAPK and NFkB pathways56, and MYC-IgH structural 

variation, which predicts a rapid progression to MM in < 2 years57. Notably, this high 

mutational load is comparable to that of the median somatic mutation rate of MM, which is 

observed to be 1.6 mutations/Mb47. Indeed the first clinical trial (QuiRedex Phase III trial) 

investigating the early treatment of high risk SMM patients, using induction therapies 



	 213	

lenalidomide and dexamethasone, has shown significant survival advantage of patients 

treated early (vs. standard of care monitoring) with an increased median time to 

progression (TTP) (median not reached vs. 21 months) and overall survival (OS) (94% vs. 

80%)58. Notably, toxic effects were mainly restricted to moderate/mild side effects (grade 

2 or lower). Long term follow up of patients after 6 years, demonstrated continued 

significant benefit to high risk SMM patients treated early with a prolonged effect on TTP 

and OS59. Another recent clinical trial in intermediate and high risk SMM (CENTAURUS 

Phase II trial), investigating single agent activity of the new FDA approved treatment 

Daratumumab (Darzalex), a human anti-CD38 monoclonal antibody, has shown significant 

activity with approximately 50% of patients in both intermediate and long dosing 

schedules displaying a partial response (PR) or better and increased 12-month progression 

free survival (PFS) rates60.  

 

Although, it should be again noted that clonal heterogeneity adds an extra layer of 

complexity and not all patients fall into defined groups. Currently the diagnosis of 

MGUS/SMM is an incidental process when an individual visits the clinic for a routine 

blood test. Identification of asymptomatic disease is largely based on increased clonal 

immunoglobulin in the blood (i.e. paraproteinemia), using relatively insensitive assays 

such as serum protein electrophoresis35. As it has been shown mutational load increases 

towards MM, it may be suggested that future diagnostic methods could be based on 

mutational burden and specific cytogenetic/mutational events, allowing patients to be 

stratified to a course of clinical care that is specific for that subgroup. In this sense, it may 

also be recommended that NGS can be implemented to assess patients at regular intervals 

(along current guidelines of 3 – 6 months) to track mutational load, gene expression 

signatures and acquisition of known driver mutations61. However, serial bone marrow 

biopsies are an intrusive and painful procedure (with possible secondary complications 

such as bleeding or infection), and thus regular NGS assessment may not be a feasible 

option for all patients. This is especially true in MM, which is a disease affecting the 

elderly, with a median age of diagnosis of 65 years old62. Recent studies have investigated 

the merits of non-invasive measures such as simple blood tests that can measure cell free 

DNA (cfDNA) or circulating tumour cells (CTCs) as a marker of MM disease 

development. Initial studies performing NGS analysis of matched peripheral blood and 

BM biopsies, have demonstrated the ability of blood samples to successfully capture the 

clonal genetic mutations and heterogeneity of MM, similar to that detected in standard BM 

biopsy sample analysis alone63-67. A high concordance in the presence of clonal somatic 
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NS-SNVs (in MM driver genes) and CNV mutations was identified between liquid and 

BM biopsy samples. These findings suggests that quantitative disease monitoring of 

patients in the clinic at regular intervals may be a real possibility in the near future. As 

MM is a blood cancer, this has significant potential for clinical applicability compared to 

solid tumours due to: 1) the ability of tumour PCs to be repeatedly sampled, as the original 

tumour is not resected; and 2) the yield of enriched tumour PCs that can be captured for 

analysis (solid tumours yield ~1-10 cells per/mL of blood, whereas in MM, samples can 

yield 10-100x this)65. Moreover, blood biopsy has the ability to capture the spatial 

heterogeneity of MM, which otherwise would be impossible due to the practical challenges 

of sampling patients at multiple sites. Indeed recent NGS analysis of BM samples from 

newly diagnosed MM patients has illustrated that intraclonal heterogeneity with clonal 

selection may not be the only defining evolutionary feature associated with progression to 

MM, with the involvement of spatial heterogeneity and regional site seeding and 

outgrowth of advanced clones leading to progression68. Taken together, liquid biopsies 

may provide improved detection of the temporal and spatial nature of acquired mutations 

in MM patients, while also reducing the effects of bias due to single BM site sampling, 

which may not always reveal the full spectrum of genetic heterogeneity. 

 

As health technologies continue to mature, it is viewed that larger throughput sequencing 

studies of patients in a longitudinal, spatial and treatment response setting will be carried 

out in order to derive a comprehensive understanding of MM as a disease and its 

heterogeneity, ultimately resulting in therapeutic strategies for early intervention and cure 

for patients. 
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5.3 Conclusion 

Using NGS techniques of WES, RNAseq and WGBS to analyse a rare collection of paired 

patient samples, the data presented in this thesis reveals a new understanding of the 

underlying genomic complexity and tumour evolution model involved in disease 

progression of MM. Here, it has been demonstrated that MGUS/SMM patients that 

progress, appear to be sufficiently genetically complex to be on the threshold of 

transformation to MM; a process that may be driven by PC extrinsic factors such as the 

tumour microenvironment. The existence of subclonality and clonal stability as a model of 

tumour evolution provides new considerations required for patients at diagnosis and the 

subsequent treatments that are employed. This work should underpin further longitudinal 

patient sample studies and the consideration of genomic and subclonal architecture with 

risk stratification. Ultimately, comprehensive knowledge of the underlying biology 

involved in MM gained from NGS studies will significantly influence our understanding of 

disease development, relapse and the required clinical strategies for a cure. 
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