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Abstract 

Cytochrome P450s are haem-monooxygenase enzymes, responsible for the catalytic 

hydroxylation of a large variety of organic molecules. The bacterium Mycobacterium 

marinum, has a larger genome than its close relatives, the causative agents of human 

tuberculosis (Mycobacterium tuberculosis) and Buruli ulcer (Mycobacterium ulcerans), 

which have undergone substantial reductive evolution. The genome of M. marinum contains 

an unusually large number of P450 genes (47). Twelve ferredoxin genes are associated with 

the CYPome and eleven of these are uncharacterised ferredoxins of the 3/4Fe-4S type. In 

their iron-sulfur cluster binding motif (CXX?XXC(X)nCP), these ferredoxins (Fdx1 – Fdx11) 

have non-standard residues at the ? position of the sequence. Instead of the cysteine residue 

expected of a [4Fe-4S] ferredoxin, or the alanine/glycine residue expected in a [3Fe-4S] 

ferredoxin, they contain histidine, asparagine, tyrosine, serine, threonine and phenylalanine 

residues. In the course of this work, they have been purified aerobically and anaerobically. 

When isolated anaerobically, three of these ferredoxins were determined, by non-denaturing 

ESI-MS and EPR to contain 3Fe-4S clusters. The reduction potentials for the three varied 

from +150 mV to -360 mV, which are highly anomalous for [3Fe-4S] ferredoxins. Similar 

ferredoxins were found to accompany P450s in the biosynthetic gene clusters of other 

bacteria, especially in Actinomycete species.  

These ferredoxins were demonstrated to support the activity of a number of the M. 

marinum P450s, some of which were from previously uncharacterised families. CYP147G1, 

in combination with the electron transfer partners Fdx3 and FdR1 was demonstrated to act as 

a ω-1 fatty acid hydroxylase. CYP147G1 selectivity favoured the ω carbon when branched 

methyl substrates were used. The same ferredoxin reductase, FdR1, was also shown to 

support the activity of CYP278A1 (with Fdx2), and CYP150A5 (with Fdx8), both of which 
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were shown to regioselectively hydroxylate β-ionone. CYP150A5 binds terpenes and 

polycyclic substrates. An additional CYP150 enzyme, CYP150A6, was crystallised and 

structurally resolved to 1.6 Å in the substrate-free form.  

CYP268A2, when reconstituted with a non-native electron transfer chain, 

hydroxylated the branched fatty acetate derivatives, pseudoionone and geranyl acetate, at the 

terminal position. The structure of CYP268A2 with trans-pseudoionone bound in the active 

site was solved by X-ray crystallography to a resolution of 2.0 Å and from this the selectivity 

of the enzyme was rationalised. 

Several M. marinum P450s that have close counterparts in M. tuberculosis were 

selected for comparison, in order to investigate whether the substrate and inhibitor binding 

affinities were preserved between species. The P450s investigated were analogues of the 

steroid metabolising P450s in M. tuberculosis. CYP125A6 and CYP125A7 have a single 

counterpart in M. tuberculosis (CYP125A1). The sequence identity and cholesterol binding 

affinity of CYP125A7 indicates it more closely resembles CYP125A1. However, CYP125A7 

interacts differently to CYP125A1 with a range of inhibitors. CYP142A3 bound sterols with 

similar affinities as the M. tuberculosis CYP142A1. CYP124A1 from M. marinum was 

structurally characterised by X-ray crystallography, and showed a very closely preserved 

active site when compared to the M. tuberculosis analogue. These results suggest that 

individual P450 enzymes have maintained similar substrate specificities and roles between 

Mycobacterium species. However, for effective inhibitor design cross-species differences 

should be noted.  
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Chapter 1: Introduction 

1.1: Cytochrome P450s 
Monooxygenases are a diverse class of enzymes, responsible for the catalytic selective 

hydroxylation of a wide range of organic molecules by molecular oxygen. Cytochrome 

P450s (CYP or P450), a family of monooxygenase enzymes, were first isolated from pig 

liver cells in 1958, by Garfinkel [1] and Klingenberg [2] and identified as a haem 

containing protein by Omura and Sato in 1964 [3]. They are named after the characteristic 

Soret absorbance band they exhibit at 450 nm when the enzyme’s haem cofactor is in the 

ferrous form and bound to a CO ligand (Figure 1). The haem cofactor consists of an iron 

centre, surrounded by four nitrogen ligands of a porphyrin ring, with the distal position 

occupied by a cysteine amino acid coordinating via the sulfur.  

 

 

Figure 1: The haem b cofactor at the centre of cytochrome P450s. The six-coordinate 

resting state is the ferric thiolate form, where the sulfur atom of the cysteine residue is not 

protonated. The 450 nm shift of the Fe(II)-CO complex is due to the π-acceptor role of 

CO, which causes a shift in the Soret band that results from the porphyrin π→π* 

transition [4]. 

Cytochrome P450s were gradually identified in many different organisms, including 

humans (which have 57 distinct P450 systems in the genome) [5], mice (102 different 
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P450s) [6] plants (457 in the tomato Solanum lycopersicum) [7], various bacteria (the 

antibiotic producing Streptomyces coelicolor has 18) [8], in some fungal strains (over 150 

individual CYP sequences in some species) [9] and even viruses [10]. Their presence 

accross all kingdoms of life indicates the enzyme family dates back to prokaryotic 

evolution [11]. Indeed, the most obvious evidence for this is the presence of analogues of 

a particular enzyme, CYP51, across kingdoms with a conserved function as a sterol α-

demethylase [11-13]. The proliferation of diversity in the human xenobiotic metabolising 

CYP enzymes is thought to have arisen from the so-called animal plant warfare 400-800 

million years ago [14]. There are now more than 350,000 unique CYP sequences known 

and the database of CYP names, maintained by Dr Nelson from University of Tennessee, 

contains over 41,000 sequences [15].  

CYP enzymes are capable of very high substrate selectivity, and the family collectively 

oxidises a wide range of substrates (Figure 2). Within cells CYP enzymes hold a wide 

variety of key physiological roles, such as fatty acid hydroxylation [16], steroid synthesis 

[17] and drug metabolism [18]. Synthesis of complex natural products in bacterial cells is 

also often CYP mediated [19]. The importance of CYP enzymes to the evolution of life 

today is hard to overstate: CYP-mediated cholesterol synthesis indirectly made 

multicellularity possible, cutins and other plant-waterproofing molecules that allowed life 

to survive on land were synthesised by CYP fatty acid hydroxylases, which were also 

necessary, via lignin synthesis, for plants to support the weight of their own growth [20]. 

In plants especially, it is established that the diversity of secondary metabolites, including 

the vast number of different oxy-functionalised terpenes, is achieved in large part via 

CYPs from various families [21]. In humans a single enzyme, CYP3A4, interacts with an 

estimated 45-50% of therapeutic drugs, while CYP enzymes collectively perform 74% of 

all drug metabolism [22].  
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Figure 2: The main substrate class of CYPs from all kingdoms of life. Structural 

examples of each are included, showing the diversity of small molecule substrates. The 

analysis excludes xenobiotic metabolism as this function often overlaps with other 

substrate classes.  Figure adapted from the analysis by Parvez et al [24] using substrate 

classes as described in [5]. 

In the early days of P450 study, individual enzymes were named based on the available 

information, which tended to be the substrate class or the species of origin. For example, 

the first bacterial CYP studied, P450cam, was named for the known substrate, camphor 

[25]. As genome sequencing was developed and enzyme numbers grew, a more 

systematic nomenclature was developed [17]. Individual CYPs are now classified into 

families and sub-families. Based on amino acid sequence, enzymes with shared sequence 

homology of > 40% are classed into a family, which is given a number, and then, where 

sequence similarity is greater than 55%, into a subfamily, which is given a letter. 

CYP147G1, for example, is a member of the 147 family, and is the first member of the G 

sub-family. Similarity above 80% is sufficient for the two enzymes to share a systematic 

name [17]. Family numbers are based on the species of origin; for example bacterial 

familes are numbered from 100 to 300 and then 1000 and above. Classifications do not 

necessarily indicate that enzyme function will be the same, as similarity is determined by 

the homology across the whole sequence, while substrate recognition is controlled by 

Fatty acids

Lignin constituents

Steroids

Alkanes

Vitamins
Eicosanoids

Terpenes
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active site residues [17]. It is therefore possible for the substrate binding site of two 

enzymes of the same family to be quite dissimilar, and functions within enzyme families 

are often quite diverse. For example, CYP107 family  members have roles including fatty 

acid cleavage (CYP107H1) [26] and erythromycin biosynthesis (CYP107L) [27]. In 

contrast, all currently known members of the CYP153 family are alkane hydroxylases 

[28].  

As the total known CYP sequences has grown, the number of conserved sequence 

elements has decreased. Highly conserved sequence elements such as the acid-alcohol 

pair in the I helix, the EXXR motif in the K helix and the haem binding motif (a Phe 

seven residues before the Cys) are all altered or missing in some CYP genes [29, 30]. 

This conserved Phe is thought to be necessary to maintain the reduction potential of the 

haem in the physiologically desirable range [31]. The last remaining conserved residue, 

the Cys residue that coordinates the haem, was found to be absent in the insect CYP408 

family [29, 32]. The overall fold of the enzymes, however, is quite tightly conserved, 

even in the absence of these residues, consisting primarily of α-helices (40% α-helix and 

10% β sheets in CYP101A1) [33, 34]. The individual helices referred to above are named 

based on a system developed using the crystal structure of CYP101A1 (Figure 3). A 

common and well-established feature of CYPs is the structural change they exhibit upon 

substrate binding [35-39]. In the ‘open’ form, the active site is solvent accessible; 

substrate binding triggers a change to the ‘closed’ state. The structural change is most 

significant in the regions of the F-G helices and the B-C loop, which together define the 

substrate binding channel. Changes to the position of these loops can alter the apparent 

shape of the active site significantly[35].  
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Figure 3: The structure of P450cam (CYP101A1). The enzyme was the first structurally 

characterised P450, demonstrating the overall fold of cytochrome P450s and the helix 

notation (PDB: 5CP4). The major helices are named A to L beginning from the N 

terminus. The prime labelled helices are those that in some P450s form a single helix (for 

example B and B´). The kink in the middle of the I helix near the haem is caused by a 

highly conserved alcohol residue (Thr252 in P450cam) involved in oxygen activation [33].  

1.2: The catalytic cycle 
While P450s predominantly catalyse hydroxylation reactions, they are often also capable 

of further oxidation, converting the alcohol product to a ketone. They are known to 

catalyse reactions as wide ranging as C-C bond cleavage, epoxidation, dehydrogenation, 

and ring coupling [40]. This versatile metabolite production makes P450s desirable for 

enzyme-catalysed synthesis. The selective insertion of an oxygen atom into a carbon-

hydrogen bond is difficult to achieve by standard synthetic methods [41].  

In order to be catalytically active, P450s require the presence of the co-enzyme NADPH 

or NADH (henceforth NAD(P)H), which supplies its reducing equivalents to electron 

carrier proteins and ultimately to the P450.  
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The overall reaction of P450s is:   

 

The catalytic cycle by which hydroxylation is achieved has been found to be consistent 

across CYP families with few exceptions (Figure 4)[42].  

 

Figure 4: The catalytic cycle of cytochrome P450s (showing steps I → VII). The 

transition from VI → II is an uncoupling pathway. Some CYPs (known as 

peroxygenases) can achieve II →VI, known as the peroxide shunt. 
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In the resting state, a water molecule is the sixth ligand to the haem (I, Figure 4). The 

substrate displaces this and binds to the active site close to the ferric iron of the haem 

group (II). The first electron is then transfered to the haem, reducing Fe(III) to Fe(II), and 

enabling a dioxygen molecule to bind as the sixth ligand (IV). This is immediately 

followed by the second electron transfer step, which is accompanied by the protonation of 

the oxygen (VI). A second protonation then occurs, leading to the cleavage of the O-O 

bond and the release of water. This gives rise to the radical cation intermediate, Fe(IV) 

(Compound I, VII)[43], which undergoes the radical rebound mechanism (Figure 5), 

resulting in the insertion of the oxygen molecule into the C-H bond. The radical cation 

intermediate abstracts a hydrogen atom from the substrate (Figure 5). The released radical 

group reacts with the oxygen of Cpd II, transferring an electron back to the Fe(IV), which 

reduces the haem back to Fe(III). The newly formed product, R-OH, is then released and 

a water molecule binds to the ferric iron regenerating the resting state of the P450.  

 

Figure 5: The radical recombination mechanism of the ferryl intermediate (Compound I) 

of the P450 (expansion of Step VII → I). 

There are several pathways by which this cycle can breakdown, leading to so-called 

‘uncoupling’, a lack of organic product and consumed reducing equivalents [44]. One 

such uncoupling pathway is shown in Figure 4, where the protonation event VI→VII 

occurs on the Fe-bound oxygen in the Fe(II)-OOH complex, leading to the release of 
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peroxide rather than water and returning the Fe to the ferric state. A subset of CYP 

enzymes can perform the reverse of this reaction, using H2O2 instead of NAD(P)H 

derived reducing equivalents to progress directly to the iron-oxo complex [45].  

The substrate binding step I→II involves a transition from a six-coordinate Fe to a five 

coordinate state (Figure 6). The removal of the σ donating H2O ligand reduces the ligand 

field splitting energy, and leads to a shift in spin state from low spin (S = ½) to high spin 

(S = 5⁄2) [46]. This shift can be monitored by UV-Visible absorbance spectroscopy as the 

Soret peak shifts (to 390 nm) [46]. 

 

Figure 6: The effect of substrate binding on the coordination state of the Fe-haem 

complex and electron configurations for the 3d orbitals of the Fe(III). The resting state of 

the enzyme is low spin (S = ½). The binding of the substrate in the active site displaces 

the sixth ligand, reducing the antibonding nature of the   
   and   

   orbitals to give 

nonbonding d orbitals [47]. The weakened ligand field decreases the spacing of the d 

orbitals and leads to a transition to a high spin state (S = 5⁄2) and a blue shift of the Soret 

peak to 390 nm. 

Ligands such as nitrogen-containing azoles, cyanide or thiolates, many of which act as 

inhibitors to CYP enzymes, produce a difference spectra known as ‘Type II’ with 
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absorbance maxima between 422 – 435 nm (maintaining the low spin state, Figure 7)[48]. 

The precise wavelength is dependent on the extent to which the ligand acts as a σ-donor 

as well as π acceptor [49]. A third binding mode exists, where the substrate coordinates in 

the place of the water ligand via a hydroxyl group, maintaining the six-coordinate Fe. 

This results in a ‘reverse type I’ spectra, with an absorbance maxima of ~420 nm (Figure 

7), which is again a low spin state [50]. With Type II and Reverse Type I binding modes 

the Fe remains in a low-spin state, which alters the reduction potential of the haem 

complex, and interrupts the subsequent electron transfer step [51]. Ligand interactions 

that interrupt critical steps in the catalytic cycle, such as the oxygen binding step (for 

example CO binding preferentially over O2) or the reduction of Fe(III) to Fe(II) (an azole 

inhibitor), can competitively inhibit the enzyme [48].  

 

Figure 7: The binding modes of ligands to the haem. The examples include Type II 

(imidazole) and Reverse Type I (alcohol containing) ligands, as well as the resting state 

(water) with the Fe-porphyrin complex. Type I substrates do not coordinate the haem.  

1.3: Electron transfer systems supporting cytochrome P450s 

The electron transfer process is tightly controlled by the relative reduction potentials of 

the CYP enzyme to the electron transfer partner proteins as well as the complementary 

interactions between the electron transfer partner and the proximal face of the CYP 

enzyme. Class I ET systems are generally found in prokaryotes, where the P450 and its 

two electron transfer partners are soluble, while eukaryotic cells tend to use Class II 
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electron transfer systems, where the P450 and its electron transfer partners are membrane 

bound (Figure 8) [52]. Class I systems, in either bacterial or mammalian mitochondrial 

systems, have three components; a flavin adenine dinucleotide (FAD) dependent 

NAD(P)H ferredoxin reductase (FdR), an iron sulfur ferredoxin (often [2Fe-2S], Fdx), 

and the P450. The electron transfer chain begins with two electrons passing from the 

NAD(P)H to the FAD cofactor of the ferredoxin reductase, and then onward transfer, one 

electron at a time, to the iron-sulfur cluster of the ferredoxin. They are then shuttled to the 

P450 in two distinct steps, at the appropriate point in the catalytic cycle (Figure 4). 

 

Figure 8: Varying electron transfer systems of P450 enzymes. Class I, III and IV are 

prokaryotic systems and Class II is eukaryotic.  

Membrane bound Class II CYP systems feature a single membrane bound electron 

transfer partner, containing both FAD and FMN domains. Class III and IV are bacterial 

systems which feature fusion between the P450 and their ET system. In Class IV systems 

the equivalent of the reductase protein typically has two domains, with a flavin 

mononucleotide (FMN) and a [2Fe-2S] domain. Class III systems, the most studied 
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example of which is the enzyme P450BM3 (CYP102A1), are comprised of the same 

components as Class II systems, but all three are fused together via a polypeptide linker 

instead of being membrane bound.   

In the CYP catalytic reaction cycle, binding of the substrate and the subsequent transition 

to the five-coordinate state triggers the first electron transfer. The thermodynamic 

explanation for the preferential reduction of the substrate-bound form is based on the 

change in formal potential of the haem when the coordination state changes from six to 

five (Figure 9) [51]. 

   

Figure 9: The formal reduction potentials (E0’) of the species involved in the catalytic 

cycle of a Class 1 CYP electron transfer system. The change in reduction potential of 

CYP101A1 (P450cam) in the substrate-free (-sub) and substrate-bound (+sub) forms 

dictates the favourability of the transition from the [2Fe-2S] ferredoxin Pdx to the 

substrate-bound form [53]. Arrows show the direction of electron transfer.  

However, Honeychurch et al considered the thermodynamic barrier to be insufficient to 

prevent electron transfer to the substrate-free enzyme, as the speed of the subsequent O2 

binding step essentially couples the two reaction steps, leading to favourable reduction 

potentials for both the substrate and substrate-free forms in the presence of dioxygen [54].  
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Instead, they suggested an alternate kinetic model, in which the higher energy of 

reorganisation necessary for the reduction of the six-coordinate substrate-free Fe(III) to 

the five-coordinate Fe(II) is more likely to be the barrier to reduction in the absence of 

substrate [54]. In either model, it is the coordination state that dictates the favourability of 

the reduction step. This then explains the inhibitory effect of molecules that bind directly, 

in a Type II or Reverse Type I manner, as they maintain the same number of ligands to 

the Fe. Without the substrate binding step, the Fdx→CYP electron transfer is generally 

unfavourable in vitro, although both Guengerich and Johnson [55] and Munro et al [56] 

report reduction of CYP enzymes in the absence of substrate. There is evidence that futile 

cycling does occur in vivo, as demonstrated by Johnston et al, who found significant 

populations of reduced haem in intact cells in the absence of substrate [57]. 

1.4: Ferredoxins in bacterial cytochrome P450 systems 

The electron transfer ability of a ferredoxin arises from the iron-sulfur cluster, which 

delocalises the electrons over the Fe and S atoms [58] before transferring them onwards 

to the P450. In each of the clusters, the iron atoms are ordinarily coordinated by the sulfur 

group of cysteine amino acids. The composition of the cluster (the variation in numbers 

of Fe and S atoms) and the ligands (in cases where they are not cysteines) can change the 

reduction potential of the protein. The cluster type varies between different ferredoxins, 

with [2Fe-2S] clusters being the most studied among those that support P450 activity 

(Figure 10) [59, 60]. [3Fe-4S] and [4Fe-4S] clusters are also known but less well 

characterised in the context of P450 electron transfer [61, 62].  
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Figure 10: The structures of ferredoxin iron-sulfur cluster variants. They include [4Fe-

4S], [3Fe-4S], [2Fe-2S] and Rieske high-potential [2Fe-2S], showing coordinating 

cysteine residues, and in the case of the Rieske [2Fe-2S], histidine residues. Iron: orange 

spheres; sulfide: yellow spheres. 

The redox couple for each of the clusters differ, with [2Fe-2S]2+/+,  [4Fe-4S]2+/+
 and [3Fe-

4S]1+/0
 being the physiologically relevant cluster oxidation state [63, 64]. In the [2Fe-2S] 

cluster this represents a transition where one of the two Fe(III) atoms is reduced to Fe(II). 

The formal charge distribution over the atoms in a [4Fe-4S] cluster is: 

    
      

                 
       

with two mixed valent Fe(II)/Fe(III) pairs in the oxidised state and one homo-valent 

Fe(III) couple and a Fe(II)/Fe(III) couple in the reduced state (S = 2 in the oxidised state, 

S = ½ when reduced). While in a [3Fe-4S] cluster it is:  

    
            

            



16
 

with one high spin Fe(III) and a mixed valent Fe(II)/Fe(III) pair in the reduced state (S = 

½ in oxidised state, S = 2 when reduced). This unsurprisingly leads to differences in 

reduction potential between ferredoxins with different cluster types (Table 1). However, 

large differences in reduction potential can be seen even in clusters of the same type (see 

Table 1), which can only be a result of the protein architecture as the cluster geometry 

and compositions are conserved. It is not well understood how the protein environment 

affects this. Surface charge, hydrogen bonding and aromatic residues near the cluster have 

all been proposed as possible causes for the variation seen in reduction potential between 

ferredoxins of the same cluster type [64]. The reduction potential of the ferredoxin has an 

important effect on the rate of CYP reduction. The second electron transfer step has been 

found to be rate limiting for most CYP reactions under physiological conditions [53, 65]. 

Variation in the reduction potential of the physiological ferredoxins might be a 

mechanism of rate control or CYP-ferredoxin specificity in the native cell system.  

Table 1: Approximate ranges of reduction potentials for iron-sulfur cluster containing 
ferredoxins. Rieske [2Fe-2S] high potential ferredoxins have histidine residues 
coordinating the Fe atoms in the cluster. 

Cluster Reduction Potential (mV) 

[2Fe-2S] -400 to -150 

[3Fe-4S] -203 to -85 

[4Fe-4S] -715 to -280 

[2Fe-2S]  high potential +100 to +400 [66] 

Ordinarily, the numbers of electron transfer partner proteins such as ferredoxins and 

ferredoxin reductases are lower than the number of CYPs in a given bacterial genome 

[67-69]. The lower numbers of electron transfer proteins infers that certain electron 

transfer systems must be able to support multiple CYPs. CYP enzymes, in particular 
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those from bacteria, often display high redox partner specificity [60]. The P450cam/Pdx 

model system has been characterised in detail and serves as one example of this. The 

ferredoxin binding site has been determined to be the proximal face of the CYP, which is 

positively charged and can interact with the negative surface of the Fdx [70]. Pdx binding 

was first hypthothesised to play an ‘effector role’ by Sligar et al who identified the Trp 

residue at the carboxylate terminus of Pdx as critical to the binding interaction to P450cam 

[71]. Pochapsky et al showed that Pdx binding to the surface of P450cam promoted a 

conformation change that prevented uncoupling [72]. Various spectral analyses 

demonstrated Pdx binding had an effect on the haem environment [73-76]. The theory has 

been further expanded on by the work of the Poulos group, who have demonstrated via 

crystal structures and analysis of the spin state that the binding of Pdx promotes the open 

form of the enzyme [70, 72]. This frees a key aspartate residue (Asp251) to participate in 

proton-coupled electron transfer. P450cam is not active when supported with Arx, another 

ferredoxin from Novosphingobium aromaticivorans [77]. However, the structurally and 

functionally similar CYP101D1 (also from N. aromaticivorans) can be supported by both 

Arx and Pdx (albeit to a lesser extent with the latter) [60, 77], suggesting this strict 

‘effector role’ may not be consistent across all CYPs [78]. There is even some suggestion 

that in rare cases the product formation of the CYP may be altered by the electron transfer 

protein pairing [79]. 

While bacterial CYP activity can sometimes be reconstituted with commercially available 

or alternative redox partners, this is almost always at low levels. Despite this, it is still 

often favoured over the process of testing large numbers of possible new CYP/Fdx/FdR 

pairings in Class I systems. Native ferredoxins in these systems are commonly used only 

when they are easily identified from the genome, for example when co-located with the 

CYP (eg. P450cam with Pdx [80]). However co-location of the component proteins is not 
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universal, such as in M. tuberculosis [81] or N. aromaticivorans [68]. There have been 

few attempts to piece together the electron transfer systems of more complex CYPomes, 

as the method of expressing and measuring the activity of all possible proteins is labour-

intensive. The work of Chun et al is one example, where the possible electron transfer 

partners of S. coelicolor A3(2) (six ferredoxins and four ferredoxin reductases) were 

tested for capacity to support CYP105D5 activity [82]. The breadth and variety of CYP 

electron transfer systems, including different components and electron sources [19], 

makes their study key to understanding P450s today as well as their evolution.  

1.5: Bacterial CYPs in natural product synthesis pathways  

Cytochrome P450s were initially thought of and studied primarily as xenobiotic 

metabolising enzymes, particularly common in animals and plants, and while P450s were 

found throughout all kingdoms of life, bacterial genomes commonly contained very few 

or none at all (for example Escherichia coli and Salmonella typhimurium both have 

none). However the sequencing of the first Streptomyces genomes involved in antibiotic 

production, S. avermitilis [83] and S. coelicolor [8], revealed larger numbers (33 and 18 

CYPs, respectively). It was found that P450s are relatively abundant in Actinomycetes, 

and in Streptomyces species in particular. P450s have been frequently identified as part of 

biosynthetic operons, where they are generally responsible for late-stage functionalisation 

of natural products, commonly adding oxygen-containing or otherwise reactive groups to 

the scaffold of the product [84].  

These natural products are sometimes referred to as secondary metabolites [85], which 

are more properly defined as any molecule that is not absolutely required for life. 

Secondary metabolites have functions such as signalling, competition, defence and 

nutrient transport. As a result of their inter- or intra-cellular roles, such natural products 
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often show biological activity when isolated, including antibiotic, antifungal and 

immunosuppressant activity [86, 87]. One example of this is himastatin, a natural product 

isolated from Streptomyces hygroscopicus which displays both antibiotic activity against 

gram-positive bacteria and antitumor activity in mice [88-90]. In the biosynthesis of 

himastatin, the CYP enzymes HmtT and HmtN both catalyse a stereoselective 

hydroxylation reaction on the cyclohexapeptide monomer (Figure 11). The HmtT 

hydroxylation triggers a subsequent cyclisation reaction promoted by neighbouring N 

group attack on the nearby C to the CYP-added electrophilic group. A third CYP, HmtS, 

catalyses the dimerisation reaction [91, 92]. The genes for these three enzymes form part 

of a 45 kbp gene cluster comprising 20 genes in total which encode a variety of other 

proteins that are involved with himastatin production [91]. The genomic location of such 

CYPs in known biosynthetic operons sometimes makes the discovery of the endogenous 

substrate more straightforward.  

 

Figure 11: The structure of himastatin. CYP catalysed additions are shown in red. 

Bacterial CYP enzymes typically perform C-H bond hydroxylations or epoxidations 

across alkene double bonds, but less common reactions have also been observed. In the 

example of himastatin, the C-N bond formation is achieved via the formation of an 

electrophilic group by HmtT hydroxylation. C-N bond formation has also been reported 



20
 

where the catalytic cycle of the CYP is altered, as performed by TxtE from pathogenic 

Streptomyces spp. Instead of proceeding via hydroxylation, NO reacts with the Fe(III)-

OO- directly to form Fe(III)-OONO which is cleaved to release NO2, followed by 

nitration mediated by the Fe(IV)=O species [93]. CYP enzymes have also been shown to 

be involved in C-S and C-C bond formation, often in the context of complexity adding 

reactions such as ring opening or closing. Uncommon P450 reactions vastly increase the 

variety of possible natural products [94] and often improve bioactivity [95].  

In order to act on such a variety substrates as bacterial natural products, corresponding 

diversity in enzyme structure is required. The flexibility in the overall fold of CYP 

enzymes is sufficient to allow large differences in substrate size and chemistry. Bacterial 

CYP enzymes work on natural products with backbones including peptides, polyketides, 

saccharides and terpenoids [84, 95, 96]. The solved structures of bacterial P450s have 

offered examples of structural differences in CYPs such as additional recognition 

domains (the PCP-domain in P450sky [97] or ACP recognition by P450BioI [98]), 180° 

flipped haem group (in CYP121A1 [99], CYP154A1 [100] and several others) and even 

secondary active sites performing non-haem catalysed reactions (terpene synthase activity 

in CYP170A1 [101]) [84]. There are also examples of key sequence features missing 

from some enzymes, for example EXXR (CYP157C1 and similar enzymes) or the 

proximal Cys (CYP107AJ1 [102]). The majority of these bacterial systems are supported 

by Class I electron transfer systems (in an network analysis of Streptomyces CYPs, >2300 

unique sequences were Class I while <400 were Class II/III [84]). The identification of 

the electron transfer partners has been more difficult as they are often remote from the 

biosynthetic gene cluster [84].  
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Consistent with their large numbers of CYPs, Streptomyces species are the source of 

many of the natural product biosynthetic gene clusters studied so far, although other 

Actinomycetes are also well represented (Figure 12) [84, 87, 103]. Natural products from 

the genus Mycobacterium include glycol-phospholipids [104, 105], non-ribosomal 

peptides [106] as well as polyketide [107] and terpene scaffolds [103]. Several of these 

synthesis pathways have been found to include CYP enzymes.  

 

Figure 12: Biosynthetic gene clusters of various Actinomycete species. The analysis by 

Doroghazi and Metcalf shows the high numbers of biosynthetic gene clusters found in 

Streptomyces species, identified by the presence of a key biosynthetic protein. Note 

Mycobacterium marinum M has an unusually large number compared to the other 

Mycobacterium species, including the soil dwelling Mycobacterium smegmatis MC2-155. 

Colour of the bar on the left indicates habitat type, on the right indicates the class of 

secondary metabolite the gene cluster encodes. TOMM, thiol/oxazole-modified microcin; 

NRPS, non-ribosomal peptide synthetase; PKS, poly-ketide synthase. Reproduced with 

modifications from [103].  
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1.6: Mycobacterial CYPs: evolution and characterisation  
Genome sequencing identified the species M. marinum as the closest genetic relative of 

M. tuberculosis outside of the Mycobacterium tuberculosis complex (MTBC), sharing 

85% sequence similarity [106]. It is also a close relative of Mycobacterium ulcerans, with 

which is shares a genetic similarity of 97% [106, 108]. M. marinum is genetically similar 

to a hypothesised most recent common ancestor of pathogenic Mycobacterium species 

such as M. tuberculosis and M. ulcerans (Figure 13). It has undergone substantially less 

genome deletion than those species and retains the broad host range and ability of 

environmental survival (primarily a pathogen of frogs and fish causing the colloquially 

known ‘fish tuberculosis’, it is also capable of opportunistic infection in humans causing 

the disease aquarium granuloma) [106, 108]. M. ulcerans is the pathogen responsible for 

the Buruli ulcer [108] (also referred to as Bairnsdale or Daintree ulcer) which is a skin 

disease mostly located in tropical areas and common in central and western Africa and 

northern Australia [109]. M. marinum is commonly used as a model organism for M. 

tuberculosis as it is a much faster growing organism (doubling in ~4 hours rather than 

>20 leading to colony formation in a few days rather than 2-3 weeks) [110]. Importantly, 

it retains key M. tuberculosis cellular features such as the dense mycolic acid cell wall 

layer (discussed below) as well as virulence features such as asymptomatic latent 

infection and granuloma formation in the infected organism [110]. Zebra fish infections 

with M. marinum have advantages over the most common alternative models; offering 

faster growth than M. bovis and more pathogenic similarity to M. tuberculosis than the 

soil-growing M. smegmatis [111].  
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Figure 13: Venn diagrams showing the number of coding sequences that are shared 

between five Mycobacterial species. These are M. tuberculosis, M. marinum, M. ulcerans, 

M. avium subsp. paratuberculosis and M. smegmatis. Note that M. marinum has the 

highest number of shared genes with M. tuberculosis. Numbers in parenthesis also 

include paralogous (duplicated) sequences. Figure reproduced from Stinear et al [106] 

without modification.  

As M. marinum is more flexible in host environment and has not relinquished the ability 

to survive outside the host, it is perhaps unsurprising that its genome offers more 

customisable virulence and survival mechanisms. As reviewed by Tobin and 

Ramakrishnan [110], genes such as the light induced β-carotene-producing crtB, which is 

important for protection from photo-oxidation damage and necessary only outside the 

host, are present in M. marinum but absent from M. tuberculosis [112, 113]. Additionally 

M. marinum has been shown to regulate polyketide lipids and sterols differently 

depending on host [114]. However, it is thought that the general mechanism of host 

colonisation is the same between M. tuberculosis and M. marinum and that pathogenicity 

evolved in the common ancestor prior to speciation [115]. Very few of the M. 

tuberculosis specific regions of the genome have been identified as fundamental to 

virulence [116, 117]. Instead, these genes, a large proportion of which were acquired via 

lateral transfer, are more likely relevant to host transmission and organ targeting [110]. M. 

marinum therefore contains the majority of genes of general importance to M. 

tuberculosis pathogenicity, as well as a large component of genetic material that was 
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discarded in specialisation (2.2 Mb) that is the key to understanding the speciation 

process. 

The publication of the genome of Mycobacterium tuberculosis H37Rv, the pathogen 

responsible for human tuberculosis, revealed 20 distinct P450 genes sequences [118], 

which have subsequently been the object of much attention and research [81, 119]. The 

CYPs of M. tuberculosis belong to 19 different families and make up a total of 0.5% of 

the genome. M. ulcerans Agy99 contains 26, with an additional 9 pseudogenes. M. 

marinum, in contrast, contains 47 CYP encoding genes (0.9% of the genome), which 

belong to 36 different families. Mycobacterium leprae (the causal agent of human 

leprosy) contains only 1 CYP. Parvez et al report that the absolute number of CYPs in 

Mycobacterial genomes decreases in the following order; saprophytes (SAP), 

Mycobacterium avium complex (MAC), Non-tuberculous mycobacteria (NTM), 

Mycobacterium chelonae-abscessus complex (MCAC), and finally Mycobacterium 

tuberculosis complex (MTBC), from average of 50 CYPs down to 19 for MTBC species 

[24]. The same pattern is reflected in the CYP content in the genome, with some SAP and 

MAC species containing > 1% CYPs. MTBC species contain an average of 0.5% CYPs.  

CYPs from M. tuberculosis and M. ulcerans are targets for inhibition of these pathogenic 

strains, as they are often involved in key metabolic roles [120, 121] rather than xenobiotic 

response. While 2018 marks 20 years since the publication of the genome of M. 

tuberculosis, progress on the characterisation of the CYPome has been relatively slow. Of 

the enzymes, five have now been structurally and functionally characterised (CYP51B1 

[122, 123], CYP121A1 [107], CYP124A1 [124], CYP125A1 [125, 126], CYP142A1 

[127]), while three (CYP126A1 [128],  CYP130A1 [39] and CYP144A1 [129]) have been 

successfully crystallised but their substrates are still uncertain. Another, CYP128A1, has 
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a proposed role but no structural or biochemical information has been reported [130]. 

This leaves 11 ‘orphan’ enzymes for which there is still little to no information about.  

Many of the CYP enzymes from M. tuberculosis have been crystallised in the substrate-

free or inhibitor bound forms (Figure 14), but this has not lead directly to their 

biochemical characterisation or determination of their physiological function. Indeed, 

since the publication of the first structure of a P450, that of P450cam in 1985 [34], there 

has been a proliferation in the number of structurally characterised CYPs. In recent years, 

the number of PDB entries for P450s has risen dramatically (numbering 855 in 2018). 

However, the conserved overall fold as well as the conformational change in the enzyme 

structure that follows substrate binding [131] often limits the use of this structural 

information.  

 

Figure 14: Overlay of the CYPs from M. tuberculosis that have been structurally 

characterised in the substrate-free state. Both distal and proximal views are shown, all 

coloured red to blue from N to C terminus. The conserved P450 fold is present in all. 

These enzymes catalyse distinct reactions such as fatty acid hydroxylation, cholesterol 

metabolism and carbon-carbon peptide cyclisation, and yet there are few obvious 

structural indicators of this diversity in the substrate-free state. PDB codes: 1H5Z, 1N40, 

2WM5, 2X5L, 2XKR, 2UUQ and 5HDI [39, 99, 122, 124, 127, 129, 132]. 
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Substrate library screening with common CYP substrates has produced some results, 

leading to the identification of a CYP130A1 catalysed N-demethylation reaction at low 

levels [133]. However, some of the enzymes catalyse highly specialised reactions, such as 

CYP121A1, which is present in M. tuberculosis and other members of the MTBC and 

forms an internal carbon-carbon bond in the cyclodipeptide cyclo(l-Tyr-l-Tyr) to generate 

a novel natural product (Figure 15) [107]. These highly specialised CYPs are difficult to 

characterise even by screening very large compound libraries. In the case of CYP121A1, 

the function was instead discovered via the characterisation of an upstream peptide 

synthetase, which produced the cyclodipeptide, after a period of initial study of the CYP 

enzyme had failed to identify a substrate [99, 134-136]. 

 

Figure 15: Products of the Mycobacterium CYP enzymes CYP140A7 from M. ulcerans 

[137], CYP121A1 [107] and CYP125A1 [125] from M. tuberculosis. Red indicates the 

bonds formed by the CYP.  

Some indication as to whether a CYP enzyme might play a specialised role can be found 

via genome analysis. According the analysis of Parvel et al, the members of the CYP121 

family are very highly conserved between Mycobacterial species (with 391 amino acid 

residues conserved between 23 Mycobacterial family members, Figure 16), second only 

to the CYP141 family [24]. When non-Mycobacterial CYP sequences were also 

considered, expanding the analysis to over 17,000 CYP sequences from 113 families, the 
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CYP121 family (now with a total of 34 members) is still high among the most strictly 

conserved CYP families, after only the CYP141, CYP51 and CYP137 families. The 

degree of sequence homology between CYP sequences ordinarily correlates with the 

variation in substrate profile between the enzymes, so it would be expected that function 

would be more strictly conserved in enzyme families ranked highly in the list. Considered 

differently, in an enzyme with a broad substrate range an individual mutation is unlikely 

to destroy all substrate activity and so less strict amino acid sequence conservation is 

necessary. Hence, substrate variety in a given enzyme family allows more sequence 

diversity (and further proliferation). When the substrate profile is narrow, as with 

CYP121 and its single substrate, a greater number of the possibly occurring mutations 

would be deleterious to activity without corresponding gains in activity with other 

substrates.  

  

Figure 16: Conserved amino acids from Mycobacterial CYP families. The variation in 

the degree of conservation between families is shown. The number of P450s analysed 

from each family is in parenthesis next to the CYP family name. Reproduced from Parvez 

et al [24].  
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Another barrier to their study is the failure to produce several of the Mycobacterial CYPs 

in common E. coli expression systems. Mycobacterial genomes are renowned for the high 

G-C content which affects E. coli recombinant expression (as the bacteria has a relatively 

low G-C content), but even codon optimized gene sequences often produce little to no 

protein in such systems. Of the 20 enzymes, some 12 have never been reported as 

expressed and purified (despite the efforts of several laboratories).  

Additionally, the reductive evolution that has decreased the number of CYPs in M. 

tuberculosis to 20 (instead of the 47 present in the NTB M. marinum) has likewise cut the 

number of associated electron transfer partners in the genome. Only two M. tuberculosis 

CYPs have closely located ferredoxins. These are CYP51, which has a [3Fe-4S] 

ferredoxin encoded by Rv0763c [123] and CYP143A1 which is close to Rv1786 [138]. 

None have a closely located ferredoxin reductase. This has lead to reliance on 

commercially available electron transfer partners or expressed non-physiological systems 

from other bacterial species. Although there have been some attempts to use M. 

tuberculosis ferredoxin systems for other CYPs (for instance Capyk et al with CYP125 

[125]) it has met with limited success and there is still a general lack of understanding as 

to how electron transfer to M. tuberculosis CYPs is achieved in vivo. While many CYPs 

have low promiscuous activity with non-physiological ferredoxins, use of non-

physiological electron transfer partners might nevertheless be the barrier to substrate 

oxidation in those that have thus far resisted characterisation.    

Despite these difficulties, the study of M. tuberculosis CYPs has so far resulted in the 

identification of several viable enzyme drug targets [120, 139]. The above mentioned 

CYP121A1 has been subjected to structure-based inhibitor design as it has been found to 

be essential for organism survival in vitro [140-142]. Further, M. tuberculosis can survive 
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in vitro on cholesterol alone, which has been demonstrated to be due to the activity of the 

enzymes CYP125A1 and CYP142A1. Together these were found to be essential for 

cholesterol breakdown [125, 127]. In dual-knockout systems the intermediate 4-

cholesten-3-one builds to toxic levels [126] and the organism can be inhibited by the 

addition of 4-cholesten-3-one synthesised with degradation resistant side chains [143].  

CYP enzymes from other related Mycobacterium species have been studied to cast light 

on the evolutionary pathway to virulence, and in particular to explain the factors that 

promoted specialisation to the human host over the broad host-independent 

Mycobacterium ancestor. For example, the work of the Ortiz de Montellano group 

demonstrated that in soil living M. smegmatis the cholesterol breakdown system is 

mediated via three enzymes: two CYP125 family members and a CYP142 enzyme [144-

146]. The system as a whole was conserved, but the third enzyme provided additional 

redundancy compared to the two in M. tuberculosis. It is particularly important to 

understand the roles of these CYPs in other Mycobacterium species, as conservation only 

in the MTBC is often taken to mean the enzyme plays a role in virulence or human 

infectivity, and vice versa [81]. However, if the roles of CYP enzymes conserved across 

species change between those species, then their conservation or lack thereof throughout 

Mycobacteria is less reliable as an indicator of their importance. Except for the M. 

smegmatis cholesterol system discussed above, CYP enzymes from non-MTBC species 

have thus far been investigated only incidentally or where they were known to belong to 

families of biocatalytic interest. The later includes the alkane hydroxylase CYP153A16 

[147] which is the only M. marinum CYP to have been studied. From M. vanbaalenii 

PYR-1 CYP150 enzymes (polycyclic aromatic hydrolases) [148] and several members of 

the CYP151 family (saturated heterocyclic amine oxidation) have also been studied [149]. 

There are a number of entirely uncharacterised enzyme families (>20) present in M. 
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marinum that, given the variability of CYP enzymes studied from Mycobacteria so far, 

offer interesting possibilities for inhibitory, biocatalytic and mechanistic studies.  

Many of the CYP families found in Mycobacterium can also be found in other 

actinobacterial species. Tracing this phylogenetic evolution of CYPs can explain 

physiological features of species, as well as the role of the CYPs themselves. For 

example, within Actinobacteria, the genera Corynebacterium, Mycobacterium and 

Nocardia form a taxon called CMN, which is characterised by the presence of the 

mycolic cell envelope (Figure 17) [150]. This is a layer of long chain branched fatty acids 

known as mycolic acids that covalently bind the peptidoglycan layer. 

Figure 17: A proposed model of the cell wall of M. smegmatis. The mycolic acid layer 

(or mycomembrane, MM) is characteristic of all Mycobacteria. This is covalently 

attached to the peptidoglycan layer (PG) by arabinogalactan (AG). The phospholipid 

bilayer forms the plasma membrane (PM) and the outer leaflet (OL) is comprised of a 

variety of proteins and lipids. Note that glycolipids such as PDIM are present in the MM 

as well as the OL. Reproduced with modifications from Chiaradia et al [151]. 
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The density of this wall in M. tuberculosis has been linked to the production of 

phthiocerol dimycicerosates (PDIM), the production of which has in turn been linked to 

the cholesterol degradation activity of CYP125A1 [152]. Analogues of this enzyme are 

found in many Mycobacterium species, as well as Nocardia (at ~70% similarity) and even 

Rhodoccocous but not Corynebacterium. Species to species analysis of the roles of these 

enzymes might rationalise such differences and explain their variant metabolisms, in 

particular those that act as human pathogens. Study of CYPs from M. marinum offers the 

possibility of insight into the evolution of the human-specific pathogens, the diversity of 

actinobacterial CYPs, as well as the identification of the roles of a number of as-yet 

uncharacterised CYP families.  

1.7: Electron transfer in Mycobacterium marinum 

The CYPome of M. marinum presents a further advantage with regards to the electron 

transfer systems.  Due to the minimal number of gene deletions, M. marinum has a greater 

number of both ferredoxin and ferredoxin reductase proteins than either M. tuberculosis 

or M. ulcerans. This makes identifying the physiological electron transfer systems of 

these bacteria more achievable. 

M. marinum has twelve ferredoxin gene sequences, of which one has been identified as 

encoding a [2Fe-2S]-type ferredoxin (Mmar_3155) [147]. This accompanies CYP153A16 

(Mmar_3154) and a ferredoxin reductase gene (encoded by Mmar_3153 and henceforth 

FdR2) [147]. A second apparent complete electron transfer system exists, with 

CYP147G1 (Mmar_2930) immediately beside both a ferredoxin and ferredoxin reductase 

FdR1 (Mmar_2932 and Mmar_2931, respectively). This system contains one of the 

eleven sequences which have similarities to [3Fe-4S] or [4Fe-4S] ferredoxins. Nine of 

these, including Mmar_2932, are closely associated with a CYP in the genome (defined 
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here as within five genes distance). The co-location of these nine ferredoxin genes 

identifies them as the expected physiological ferredoxin for those systems and provides a 

first avenue for study. Given the larger number of CYP enzymes, it is likely that these 

ferredoxins will also support additional CYPs in the organism, although determining 

these relationships is a more substantial task.  

Only three of these ferredoxins are conserved in M. tuberculosis (these are 

CYP51/Rv0763c, CYP143A1/Rv1786 and a third, Rv3503 which has no associated CYP). 

Importantly, neither of the ferredoxin reductase genes are conserved. The remainder of 

these uncharacterised, non-conserved ferredoxins in M. marinum are of greater 

importance as the electron transfer systems of CYPs from M. tuberculosis have proven 

difficult to establish in most cases. With the absence of closely located electron transfer 

partners, searching the M. tuberculosis genome has revealed other possible candidates. A 

Mycobacterial NADH-consuming FdR that couples Rv0763c and can support lanosterol 

demethylation by CYP51 has been reported [153]. There is also a NADPH-ferredoxin 

oxidoreductase with sequence homology to animal adrenodoxin reductase, FprA, which 

was shown to support both [2Fe-2S] and 7Fe ferredoxins from M. smegmatis [154] but it 

has not been established as capable of supporting CYP activity as yet. M. tuberculosis 

also has a number of other ferredoxins including the 7Fe FdxA type Rv2007c (conserved 

in M. marinum as Mmar_2080) and FdxC type Rv1177 (conserved as Mmar_4274) 

however neither are near CYP genes. Additionally two apparent fusion FdR-ferredoxin 

proteins from M. tuberculosis, FprB and FdxB (Rv0886 and Rv3554 respectively) [155], 

have analogues in M. marinum.  

The cluster type in each of the complement of 11 [3/4Fe-4S] ferredoxins in M. marinum 

is not immediately identifiable because they all contain an unusual variation on the 
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conserved sequence motif. Ordinarily, the iron-sulfur cluster binding sequence motif 

differs between [3Fe-4S] and [4Fe-4S] ferredoxins, being CXXA/GXXC(X)nCP and 

CXXCXXC(X)nCP respectively, and this is used to characterise the proteins [61]. The 

three cysteine residues in [3Fe-4S] ferredoxins and four in [4Fe-4S] ferredoxins each 

coordinate an iron residue in the iron-sulfur clusters. None of the eleven [3/4Fe-4S] 

ferredoxins of M. marinum have either a cysteine, alanine or glycine residue at the second 

conserved residue in the sequence motif (Figure 18). Rather, residues at that position 

include histidine (4), asparagine (3), tyrosine (1), serine (1), threonine (1) and 

phenylalanine (1) [156].  

                  

Figure 18: The novel ferredoxin sequences of M. marinum at the cluster binding motif. 

Typical [3Fe-4S] (Streptomyces  coelicolor [67]) and [4Fe-4S] (Thermococcus litoralis 

[157] and Clostridium thermoaceticum [158]) ferredoxin sequences included for 

comparison. The non-standard amino acid is indicated in the blue box.   

Of these residues, all bar phenylalanine could potentially coordinate an iron atom in the 

cluster. Precedent can be found for this in other systems. The [4Fe-4S] ferredoxin from 

the thermophilic Pyrococcus furiosus contains an aspartate residue that coordinates the 

fourth iron in the metal cluster and as demonstrated by Brereton et al, mutation of that 

residue to either cysteine or serine also leads to the isolation of a protein that maintained 

[4Fe-4S] 
[3Fe-4S] 
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the [4Fe-4S] cluster [159]. After cysteine, the most common residue coordinating iron in 

such clusters is histidine, as for example the histidine coordination in Rieske clusters 

(Figure 10). In the nickel-iron hydrogenase from Desulfovibrio gigas, one of the three 

iron-sulfur clusters is a [4Fe-4S] cluster with one Fe coordinated by a histidine residue 

[160]. In contrast, there are three examples of similar histidine-containing ferredoxins in 

CYP systems which have been characterised aerobically as containing [3Fe-4S] clusters. 

These are HaPuxC, from Rhodopseudomonas palustris (Figure 19) [156] and Rv0763c 

[123] and Rv1786 [138], both from M. tuberculosis.  The crystal structure of HaPuxC 

shows the histidine residue (His17) lying above a [3Fe-4S] cluster. The imidazole ring of 

the histidine is directly above the sulfur indicating the position of this residue is quite 

similar even when a cysteine is not present. A comparison of the position of the residue 

can be made with the [4Fe-4S] ferredoxin from P. furiosus which has been structurally 

characterised with the aspartate residue mutated to a cysteine (D14C variant [161]).  

Thus far histidine-containing [3Fe-4S] clusters have only been isolated under aerobic 

conditions. As Brereton et al demonstrated, the aspartate-iron coordination was highly 

sensitive to oxygen, isolated only by anerobic purification [159]. Thus it is an open 

question whether the histidine-containing ferredoxins from Mycobacterium species may 

coordinate a fourth iron. The same applies for the other amino acids at that position in the 

cluster, where no comparative studies on similar enzymes are available.  
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Figure 19: A comparison of the iron-sulfur clusters of two ferredoxins. The R. palustris 

ferredoxin HaPuxC, has a histidine residue (His17) at the CXX?XXC(X)nCP position of 

the ferredoxin binding motif, and was characterised as containing [3Fe-4S] (green, PDB: 

4OV1) [156] and the D14C (the equivalent position to His17 in HaPuxC) mutant of the 

[4Fe-4S] ferredoxin from P. furiosus (blue, PDB: 2Z8Q) [161] are overlaid. Sulfide ions 

and cysteine sulfurs are shown in gold and iron ions in orange. The distance between the 

N atom of the His17 residue and the sulfur atom is 3.6 Å (shown in red). Labels on the 

overlay of both structures are given for the coordinating residues of HaPuxC.  

However, even if these residues do not directly bind a metal ion in the cluster, they may 

have a significant effect on the thermodynamics of the cluster. The closeness of the 

residue (as seen in Figure 19) means that hydrogen bonding, differences in charge or 

hydrophobic interactions near the cluster may change the reduction potential. Indeed, 

Rv0763c, the ferredoxin from M. tuberculosis, was found to have an unusually high 
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reduction potential of -31 mV [123], more positive than previously recorded for [3Fe-4S] 

clusters coupled with CYP enzymes. In theory, this may contribute a thermodynamic 

barrier to reduction of the coupled CYP, and thus a mechanism of modulation of the rate 

of monooxygenase activity.  However, the effect of varying the residue at this position on 

the reduction potential, as well as the importance in electron transfer has not been 

determined. Characterisation of the role of the variable residue of the binding sequence, 

where it is not a cysteine, and identification of the proteins as either [3Fe-4S] or [4Fe-4S] 

ferredoxins would be beneficial to an overall understanding of the electron transfer 

mechanism and to the effect of reduction potential on P450 partner specificity.  The M. 

marinum ferredoxins, presenting six different residues at this position, a large 

accompanying CYPome and two identified ferredoxin reductases, are therefore ideal 

candidates for study.  

1.8: Summary and project goals 
CYP enzymes are diverse in function and important in many biological systems. In 

bacteria they are responsible for catabolic and anabolic metabolism. Particularly in the 

synthesis of secondary metabolites they perform scaffold functionalisation and 

complexity addition with high specificity. In Mycobacteria they have been found to 

perform critical roles, cholesterol breakdown and fatty acid oxidation. This project aims 

to build on the existing knowledge of Mycobacterium CYP enzymes via study of those 

from the non-pathogenic close relative, M. marinum. In doing so, the electron transfer 

system of the species, containing as it does two full Class I systems and a set of as yet 

uncharacterised [3/4Fe-4S] ferredoxins, will also be studied. These ferredoxins have 

unusual cluster binding motifs that might affect their electron transfer ability. Hence the 

project has a dual focus, on uncharacterised Mycobacterium CYPs and their unusual 

physiological electron transfer systems.   
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The aims of the present study include:  

- Purification of the eleven [3/4Fe-4S] ferredoxins of Mycobacterium marinum both 

aerobically and anaerobically. 

- Biophysical characterisation of the ferredoxins, including determination of the 

composition of the iron-sulfur cluster in each of the ferredoxins, and the role of 

the non-standard amino acid at the cluster binding motif.  

- Determination of the substrate and product range of M. marinum CYPs, as well as 

structural characterisation.  

- Comparative study of conserved CYPs of M. marinum and M. tuberculosis, 

including substrate and inhibitor binding analysis.   

- Phylogenic analysis of these CYP/ferredoxin systems across the bacterial 

kingdom.  
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Electron transfer ferredoxins with unusual cluster binding motifs 
support monooxygenase secondary metabolism in many bacteria 
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The proteins responsible for controlling electron transfer in bacterial secondary metabolism are not always known or 

characterised. Here we demonstrate that many bacteria contain a set of unfamiliar ferredoxin encoding genes which are 

associated with those of cytochrome P450 (CYP) monooxygenases and as such are involved in anabolic and catabolic 

metabolism. The model organism Mycobacterium marinum M contains eleven of these genes which encode [3/4Fe-4S] 

ferredoxins but which have unusual iron-sulfur cluster binding motif sequences, CXX?XXC(X)nCP, where ‘?’ indicates a 
variable amino acid residue. Rather than a cysteine residue, which is highly conserved in [4Fe-4S] clusters, or alanine or 

glycine residues, which are common in [3Fe-4S] ferredoxins, these genes encode at this position histidine, asparagine, 

tyrosine, serine, threonine or phenylalanine. We have purified, characterised and reconstituted the activity of several of 

these CYP/electron transfer partner systems and show all those examined contain a [3Fe-4S] cluster. Furthermore the 

identity of the variable residue affects the functionality of the monooxygenase system and has a significant influence on 

the redox properties of the ferredoxins. Similar ferredoxin encoding genes were also identified across Mycobacterium 

species, including in the pathogenic M. tuberculosis and M. ulcerans, as well as in a wide range of other bacteria such as 

Rhodococcus and Streptomyces. In the majority of instances these are associated with CYP genes. These ferredoxin 

systems are important in controlling electron transfer across bacterial secondary metabolite production processes which 

include antibiotic and pigment formation among others. 

Introduction 
Electron transfer is fundamental for all living organisms, being 

involved in respiratory processes to produce chemical energy 

within the cell, pathways to build large molecules from smaller 

substrates (anabolic) and the breakdown of molecules into 

smaller species for cellular metabolism (catabolic). The 

electron carrier proteins involved in these pathways tightly 

regulate the shuttling of electrons between the donor and 

acceptor.
1, 2

 Monooxygenases are an essential set of enzymes 

that are intrinsically involved in these anabolic and catabolic 

processes and require a supply of electrons in order to 

function. They typically catalyse the selective hydroxylation of 

a wide range of organic molecules using dioxygen (Eqn. 1).
3, 4

 

 

R–H + 2H+ + 2e– + O2 o R–OH + H2O    Eqn. 1 

In Nature, monooxygenase enzymes, including cytochrome 

P450 enzymes (CYP), show exquisite selectivity. The bacterial 

CYP family has a broad substrate spectrum yet each individual 

enzyme can be highly specific. For these reasons many 

bacteria, including Mycobacteria, have a large and highly 

evolved CYP complement (CYPome) which functions to break 

down or synthesise molecules as required by the organism.
5
 

These enzymes are valuable resources for biocatalysis and key 

targets for antibacterial drug design.
6-8

 

The two electrons required by CYP enzymes are usually 

derived from NAD(P)H and delivered by electron transfer 

proteins in two distinct steps. Bacterial CYP enzymes typically 

use class I electron transfer systems which normally consist of 

a NAD(P)H-dependent ferredoxin reductase (FdR) and an iron-

sulfur ferredoxin (Fdx).
9
 The reductase most often contains an 

FAD cofactor. The best studied ferredoxins in these systems 

are [2Fe-2S] types but [3Fe-4S], [4Fe-4S] clusters, 

combinations thereof and exceptions such as the FMN 

containing cindoxin and self-sufficient P450Bm3 are known.
7, 9-

12
 The CYP enzymes have evolved to be highly specific for their 

electron transfer partners from the same species.
13

 Yet within 

a given bacterium the electron transfer systems can support 

multiple CYP enzymes and accordingly the number of genes in 

a bacterium normally decreases in the order CYP > ferredoxin 

> ferredoxin reductase.
14-17

  

One bacterium which contains many of these systems is 

Mycobacterium marinum, a ubiquitous pathogen of fish and 

amphibians, which can infect humans causing aquarium 
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granuloma.
20, 21

 M. marinum can survive in extracellular 

environmental conditions and is used as a model organism to 

plot the evolutionary pathway of other more specialist 

Mycobacterium pathogens.
22

 It is closely related to the slower 

growing human pathogens Mycobacterium ulcerans (97% 

nucleotide sequence identity) and Mycobacterium tuberculosis 

(85%) which cause Buruli ulcer (Bairnsdale or Daintree ulcer) 

and tuberculosis, respectively.
20-23

 Tuberculosis is a global 

epidemic and a major cause of human mortality and is a 

growing problem due to the evolution of drug resistant 

strains.
24, 25 

 Buruli ulcer is a serious skin disease prevalent in 

Africa, Oceania and Asia.
26

 The mycobacterial pathogens that 

cause these more serious conditions have adapted to the 

specific host environment in which they are found and are not 

viable in other settings. In comparison to M. marinum, both M. 
tuberculosis and M. ulcerans have undergone reductive 

evolution. This occurred via genome downsizing and 

pseudogene formation, through the introduction of mutations 

or insertion sequences.
27-29

 Another human pathogen, 

Mycobacterium leprae, responsible for leprosy, has undergone 

extreme reductive evolution and contains less than half the 

number of genes of M. tuberculosis. In addition these bacteria 

have also acquired certain unique genes which encode 

proteins critical to their survival.
23, 29

 

Here we report that there are substantially more CYP encoding 

genes in M. marinum than in M. ulcerans and M. tuberculosis 
as a direct result of processes of this reductive evolution. The 

genome of M. marinum also contains many genes which 

encode atypical ferredoxins. Most of these are located close to 

CYP genes and the majority are [3/4Fe-4S] type ferredoxins 

containing unusual residues in the iron-sulfur cluster binding 

motif. Rather than having the CXXCXXC(X)nCP motif of a [4Fe-

4S] cluster ferredoxin or the CXXA/GXXC(X)nCP motif of a [3Fe-

4S] cluster ferredoxin, a different amino acid such as histidine 

replaces the second cysteine of the [4Fe-4S] motif or the 

glycine/alanine residue in the [3Fe-4S] ferredoxin motif 

(CXXHXXC(X)nCP).
18

 The majority of these have yet to be 

studied and characterised.
18, 19

 

By searching for similar electron transfer systems we find that 

other residues are commonly located at this position 

(CXX?XXC(X)nCP) in ferredoxins of this type from other 

bacteria.
15, 30-34

 For example, the ferredoxin genes of M. 
marinum encode proteins which contain histidine, asparagine, 

serine, threonine, tyrosine and phenylalanine. We identify that 

these types of ferredoxin genes are prevalent across many 

other bacterial species and isolate and characterise several of 

the M. marinum suite. We demonstrate that, in combination 

with the same ferredoxin reductase, they can support 

monooxygenase activity of their associated CYP enzymes. We 

characterise the cluster type and importance of the variable 

residue by a variety of methods and show that they 

significantly alter the properties of the iron-sulfur cluster. 

Therefore this residue has a role in controlling the behaviour 

of these electron transfer proteins. These ferredoxins have a 

critical function in the metabolism of M. marinum and other 

bacteria through their support of electron transfer to 

monooxygenase systems. 

Results 
Analysis of the CYPome and the potential electron transfer 
partners of M. marinum 

There are forty seven CYP enzyme encoding genes in M. 
marinum and these belong to thirty six different P450 families 

and thirty nine subfamilies (see Supplementary Information for 

further details; Table S1, S2 and Fig. S1). Comparatively there 

are only twenty CYP enzymes in M. tuberculosis and twenty 

four in M. ulcerans. This follows from the smaller gene 

complement of these bacteria due to reductive evolution 

(Table S1 and S3). There is one unique cytochrome P450 

encoding gene in M. ulcerans, CYP140A7, which is involved in 

the biosynthesis of Mycolactone A.
35

 There are five unique 

cytochrome P450s in M. tuberculosis, of which one, CYP121A1, 

is essential for the bacterium’s survival and is responsible for 
the formation of an intramolecular C-C bond in the 

cyclodipeptide cyclo(l-Tyr-l-Tyr).
36

 In contrast to these species, 

M. leprae contains only one CYP enzyme encoding gene, 

CYP164A1.
37

 

The CYPome of M. marinum plays a role in the bacterium’s 
anabolic and catabolic metabolism. The substrate profiles of 

several of the cytochrome P450 enzymes can be understood 

from those that have been previously studied in other 

mycobacterial species, e.g. CYP51B1 (sterol demethylase), 

CYP124A1 (phytanic acid Z-hydroxylation), CYP153A16 (alkane 

oxidation) and CYP142A3 and CYP125A7 (both cholesterol 

monooxygenases).
38-43

 The potential functions of other CYP 

enzymes from M. marinum, which are hypothesised to include 

terpene and polyketide synthesis, are discussed in the 

Supplementary Information. 

Of the proposed electron transfer partners for the CYPome of 

M. tuberculosis, (ferredoxin and ferredoxin-NAD(P)H 

reductase-like proteins) all but two ferredoxin genes, Rv0763 

and Rv1786, are located remotely from the CYP genes (Table 

S4 and S5).
5, 30, 44-46

 The two ferredoxins are located next to the 

genes of CYP51 and CYP143 (Table 1). Equivalent genes to all 

of the electron transfer partners of M. tuberculosis are also 

present in the genome of M. marinum (Table S5). In addition 

there are several other ferredoxin and ferredoxin NAD(P)H 

reductase-like proteins which are described below. 

The gene for the CYP153A16 enzyme (Mmar_3154) is in a 

cluster with genes encoding a [2Fe-2S] ferredoxin 

(Mmar_3155) and a ferredoxin reductase (FdR2, Mmar_3153) 

which completes a class I electron transfer system in M. 
marinum (FdR2/[2Fe-2S] ferredoxin/CYP153A16).

43
 A second 

gene encoding the CYP147G1 (Mmar_2930) enzyme is in a 

cluster with genes encoding a ferredoxin reductase (FdR1, 

Mmar_2931) and a ferredoxin (Fdx3, Mmar_2932) There are 

therefore two obvious complete electron transfer systems in 

M. marinum (FdR1/Fdx3/CYP147G1 and FdR2/[2Fe-2S] 

ferredoxin/CYP153A16). By analogy with other bacterial 

systems these two ferredoxin reductases are likely to be 

responsible for the reduction of ferredoxins and therefore 

support the CYP enzymes in M. marinum.
11, 13, 47, 48
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Gene name ID 

Iron Sulfur cluster 
binding motif pI 

 
AA 

 
M. ul 

 
M. tb 

 
CYP enzyme 

Mmar_2667 Fdx1 CXXHXXC(X)
n
CP 3.9 63 Mul_5 Rv1786 CYP143A4 

Mmar_2879 Fdx2 CXXTXXC(X)
n
CP 4.0 63 Mul_4 - CYP278A1 

Mmar_2932 Fdx3 CXXYXXC(X)
n
CP 4.3 70 - - CYP147G1 

Mmar_3973 Fdx4 CXXNXXC(X)
n
CP 3.7 62 Mul_6 - CYP269A1 & CYP138A4 

Mmar_4716 Fdx5 CXXHXXC(X)
n
CP 3.7 65 Mul_1 - CYP188A3 

Mmar_4730 Fdx6 CXXFXXC(X)
n
CP 4.3 97 - - CYP190A3 

Mmar_4734 Fdx7 CXXNXXC(X)
n
CP 3.8 62 - - CYP190A3 & CYP150A5 

Mmar_4736 Fdx8 CXXHXXC(X)
n
CP 4.0 61 - - CYP150A5 

Mmar_4763 Fdx9 CXXSXXC(X)
n
CP 3.9 63 Mul_2 - CYP105Q4 

Mmar_4933 Fdx10 CXXHXXC(X)
n
CP 4.4 67 Mul_3 Rv0763 CYP51B1 

Mmar_4991 Fdx11 CXXNXXC(X)
n
CP 3.9 81 Mul_7 Rv3503c - 

Mmar_3155 [2Fe-2S]  4.0 105 - - CYP153A16 

Mmar_2931 FdR1 n.a. 5.8 466 - - CYP147G1 

Mmar_3153 FdR2 n.a. 4.9 400 - - CYP153A16 

Table 1 The potential electron transfer partners of the CYPome of M. marinum (which are located close to the CYP genes). The gene name as per the databases at the National 

Center for Biotechnology Information is provided. The sequence of the iron-sulfur cluster binding motif of the [3/4Fe-4S] ferredoxins as well as the predicted pI and length of the 

amino acid chain are provided. The equivalent ferredoxin genes in M. ulcerans and M. tuberculosis are given. The neighbouring CYP genes (1-4 genes away) are also shown (Table 

S1). 

There are also several additional ferredoxin genes associated 

with the CYPome of M. marinum. Overall M. marinum contains 

a set of eleven genes encoding ferredoxins of the [3Fe-4S] type 

(Fdx1-Fdx11), which include the motif CXX?XXC(X)nCP without 

a cysteine at the ‘?’ position (Fig. 1). These include the 

equivalent ferredoxins to Rv0763 and Rv1786 of M. 
tuberculosis, Fdx1 and Fdx10 (CXXHXXC(X)nCP, Table 1) which 

are also associated with gene for CYP143 and CYP51, 

respectively (Table S3, Fig. S2). The ferredoxins, Fdx5 and Fdx8, 

also contain a histidine residue at the variable position. This 

set of ferredoxins also encompasses Fdx3, which has a tyrosine 

in its cluster binding motif (CXXYXXC(X)nCP) and is associated 

with the genes for CYP147G1 and FdR1. The other ferredoxins 

of M. marinum contain asparagine (Fdx4, Fdx7 and Fdx11), 

serine (Fdx9), threonine (Fdx2) or phenylalanine (Fdx6) 

residues at this position of the cluster binding motif (Fig. 1). All 

bar phenylalanine could potentially act as a ligand to a metal 

ion in the cluster. The M. marinum ferredoxins of this type 

range in size from 62 to 97 amino acid residues in length and 

all have predicted pI values lower than 7.0 (Table S1). Ten of 

the potential ferredoxins of M. marinum, Fdx11 being the 

exception, are located next to or close to a CYP gene (one to 

four genes away, Fig. S2). Therefore these ferredoxins are 

likely electron transfer partners which deliver reducing 

equivalents to the CYP enzymes.
33

  

Of these eleven ferredoxin genes, seven are conserved in M. 
ulcerans and only three in M. tuberculosis (Table 1 and Fig. 

3).
22, 24, 26

 The ferredoxins which are conserved in both M. 
marinum and M. ulcerans are very similar or identical showing 

97-100% sequence identity, while those of M. tuberculosis 

show more sequence divergence (78-92% identity, Fig. 2). 

Neither of the ferredoxin reductase genes (FdR1 and FdR2) are 

conserved in M. ulcerans or M. tuberculosis.  

Extending the search to include more diverse species of 

Mycobacteria and other metabolically varied bacteria revealed 

the prevalence of analogous ferredoxins (Table S6 & S7, Fig. 

S2). With the exception of the threonine containing Fdx2, 

many equivalent ferredoxin genes are found across the 

Mycobacterium genus. These are, more often than not, 

located in gene clusters with associated CYP genes (Table S6, 

Fig. S2). They are also found across other bacteria including 

the antibiotic synthesising Streptomyces (where variants in the 

motif at ‘?’ include histidine, serine and tyrosine; Table S7) and 

Rhodococcus (where variants in the motif at ‘?’ include 

histidine, asparagine and tyrosine; Table S7).
14

 They are also 

associated with the CYPome of other diverse bacterial species 

including those of R. palustris strains mentioned earlier (Table 

S7). To provide insight into the important CYP enzyme 

catalysed reactions these ferredoxins support we analysed 

biosynthetic gene cluster databases for these types of electron 

transfer partners (Table 2). The synthesis of a range of 

complex secondary metabolites was found to be supported by 

these species mainly in strains of Streptomyces bacteria (Table 

2). This gives a small snapshot of the widespread and critical 

role these types of ferredoxins have in bacterial metabolism. 

 

Reconstitution of the Activity of CYP147G1 using FdR1 and Fdx3 in 
E. coli 

Fdx3 (Mmar_2932) is the only ferredoxin of this type from M. 
marinum to have both a reductase gene (FdR1, Mmar_2931) 

as well as a CYP gene (CYP147G1, Mmar_2930) co-located in 

the genome. Of particular interest is that bacterial operon 

predictions (operondb.cbcb.umd.edu) show that the CYP147 

genes in other bacteria including Methanosarcina barkeri 
(CYP147E1), Myxococcus xanthus (CYP147A1), M. vanaabelinii 
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Figure 1. Sequence alignment of the eleven ferredoxins of M. marinum (Fdx1 – Fdx11). A structurally characterised histidine containing ferredoxin from R. palustris HaA2 (PDB: 

4ID8) is shown for reference. The three conserved cysteine residues are highlighted in red while the location of the variable residue (CXX?XXC(X)nCP) is highlighted in the blue box. 

For comparison the [3Fe-4S] ferredoxins from Streptomyces coelicolor 14
 and [4Fe-4S] ferredoxins from Clostridium thermoaceticum 49

 and Thermococcus litoralis 50,51 are also 

included.  

Table 2. Characterised gene clusters with a ferredoxin (located close to the CYP genes) which has a ferredoxin motif similar to those identified in M. marinum M.  The gene name 

as per the databases at the National Center for Biotechnology Information or the gene cluster is provided. The sequence of the iron-sulfur cluster binding motif of the [3/4Fe-4S] 

ferredoxin is provided. The neighbouring CYP genes (all next to each other with one exception which is 2 genes away) are also shown. The data was obtained from the Minimum 

Information about a Biosynthetic Gene cluster (https://mibig.secondarymetabolites.org/index.html) and DoBiscuit (http://www.bio.nite.go.jp/pks/tutorial/view). Most species are 

from strains of Streptomyces.[a] a 2-Thiosugar-Containing Angucycline-Type Natural Product 

Natural product Organism Fdx Gene name Fdx Motif CYP gene name 

Griseorhodin A Streptomyces sp. JP95 grhO4 CXXSXXC(X)nCP grhO4 

Salinomycin2 S. albus subsp. albus salF CXXTXXC(X)nCP salD 

Salinomycin3 S. albus slnE CXXTXXC(X)nCP slnF 

Tetronomycin Streptomyces sp. NRRL 11266 tmn14a CXXSXXC(X)nCP tmn14 

Rapamycin S. rapamycinicus rapO CXXSXXC(X)nCP rapN 

Phoslactomycin Streptomyces sp. HK803 plmT4 CXXTXXC(X)nCP plmT6 

Filipin S. avermitilis MA-4680 pteE CXXSXXC(X)nCP pteD 

BE-7585A[a] 
Amycolatopsis orientalis subsp. 

vinearia 
bexO CXXSXXC(X)nCP bexK 

Chrysomycin S. albaduncus chryY CXXHXXC(X)nCP chryOIII 

Enterocin S. maritimus EncQ CXXSXXC(X)nCP EncR 
Lysolipin S. tendae llpK CXXSXXC(X)nCP llpOIV 

Xantholipin S. flavogriseus xanK CXXSXXC(X)nCP xanO2 
Cinnabaramide Streptomyces sp. JS360 ORF11 CXXSXXC(X)nCP cinL 

Leinamycin S. atroolivaceus S-140 lnmB CXXSXXC(X)nCP lnmA 

https://mibig.secondarymetabolites.org/index.html
http://www.bio.nite.go.jp/pks/tutorial/view
http://www.bio.nite.go.jp/pks/cluster/view/de67a265848288d4206b41b534177d1d4b2bb5dd
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=195040
http://www.bio.nite.go.jp/pks/cluster/view/ace818f291f780c08d99a6c6c799c3e7e70d2396
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=1888
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=1081613
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Figure 2. A phylogenetic tree (phenogram) of the [3/4Fe-4S] ferredoxins from M. 
marinum (Fdx1 – Fdx11), M. ulcerans (Mul_1 – Mul_7), and M. tuberculosis (Rv0763c, 

Rv1786 and Rv3503c). The ferredoxins from S. coelicolor, S. lavendulae and the 

structurally characterised ferredoxins from R. palustris HaA2, P. furiosus C. 
thermoaceticum and T. litoralis are included for comparison (see Fig. 2). The grouping 

of the ferredoxins from M. marinum and M. ulcerans show they are closely related (97-

100% sequence identity). There is a lower yet significant similarity to the ferredoxins 

from M. tuberculosis (78-92% sequence identity, note the low 78% value is unusual and 

arises as the gene Rv3503c is shorter than Fdx11 by the equivalent of nineteen amino 

acids). For the majority of the ferredoxins there is a low similarity to those from other 

bacterial species, for example Fdx1 has only 35% sequence identity with the 

structurally charactarised R. palustris HaA2 ferredoxin (PDB: 4ID8). The threonine 

containing Fdx2 has the closest relationship with the [3Fe-4S] ferredoxins from 

Streptomyces species while the [4Fe-4S] ferredoxins from the thermophiles P. furiosus, 
C. thermoaceticum and T. litoralis cluster together.

11, 14
 

(CYP147G2, 68% sequence identity to CYP147G1) and 

Streptomyces avermitilis (CYP147B1), are all found next to a 

ferredoxin reductase encoding gene. 

All of these also have a gene present which encodes a similar 

ferredoxin to Fdx3 (Table S8) which, in the case of M. xanthus, 
is a ferredoxin-ferredoxin reductase fusion protein. All of these 

ferredoxins contain a CXXYXXC(X)nCP iron-sulfur cluster 

binding motif. Overall the data suggest that these three genes 

may form part of an operon with a similar function across 

many different species. In order to assess if the ferredoxin 

reductase (FdR1) and ferredoxin (Fdx3) electron transfer 

proteins could support the activity of the CYP147G1 enzyme, 

we constructed a whole-cell oxidation system.
33, 52

 The FdR1 

and Fdx3 genes were cloned in pETDuet to generate 

pETDuetFdx3/FdR1 and the CYP147G1 and Fdx3 genes were  

Figure 3. CYP147G1 oxidation of undecanoic acid to 10-hydroxyundecanoic acid and 

the oxidation of E-ionone to 4-hydroxy-E-ionone by CYP278A1 and CYP150A5. 

combined with pRSFDuet to construct 

pRSFDuetFdx3/CYP147G1. By transforming both vectors into E. 
coli we were able to produce all three proteins together and 

support substrate turnover by CYP147G1 utilising intracellular 

NAD(P)H. When the cells were grown and protein produced, 

the culture media took on a blue colouration indicating that 

indole generated in the growth media from tryptophan 

breakdown was being oxidised to indigo.
53

 By adding indole to 

the growth we were able to generate more indigo (Fig. S3). 

When the CYP147G1 was produced in E. coli in the absence of 

FdR1 and Fdx3 no indigo formation was observed, suggesting 

that the two electron transfer partners from M. marinum are 

required to support CYP147G1 activity. The CYP147G1 enzyme 

was produced in E. coli and purified by two ion exchange 

chromatography steps. After purification, CYP147G1 was 

tested for the characteristic absorbance of a P450, the Soret 

absorbance (Fig. S4). The binding of CO to the reduced ferrous 

form of the heme centre results in the almost complete shift of  

the Soret peak to 450 nm (a95%), indicating the viability of the 

CYP147G1 enzyme.
54

  

Investigation of the substrate range of the purified CYP147G1 

enzyme was undertaken by UV/Vis analysis of the spin state of 

the heme iron.
55

 Undecanoic acid resulted in the largest spin 

state shift (40% high-spin, compared to indole, <5%) and the 

dissociation constant was determined to be 25 ± 4 µM (Fig. 

S5). These results indicated that undecanoic acid is 

complementary to the active site of CYP147G1 and this 

substrate was chosen for product formation studies.  

Attempts at purifying the electron transfer partners, Fdx3 and 

FdR1, in a soluble form have not been successful. The yield of 

both proteins after cell lysis was insufficient for further workup 

or detailed in vitro analysis of activity. As Fdx3 and FdR1 are 

required for the creation of a native-like electron transfer  

system in vitro it was necessary to use whole-cell oxidation 

systems to investigate product formation. Undecanoic acid 

was chosen as a substrate and after extraction and 

derivatisation with BSTFA/TCMS, the turnovers were analysed 

via GC-MS (Fig. S6). The CYP147G1 turnover of undecanoic acid 

showed one peak in addition to that of the substrate. Analysis 

of the mass spectrum fragmentation pattern for the 

hydroxyundecanoic acid products displayed an increase in the 

base peak at 117.1 m/z (Fig. S6). This is consistent with 

cleavage next to the CHOSiMe3 group on the ω-1 carbon 

(forming a CH3CHOSiMe3

+
 fragment). NMR analysis confirmed 

the product of undecanoic acid turnover was the ω-1 
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hydroxylated acid (10-hydroxyundecanoic acid) from several 

diagnostic signals (Fig. S7).  

 

The importance of the Tyr residue in the iron-sulfur cluster motif 
of Fdx3 

In order to investigate the role of this tyrosine residue of Fdx3, 

mutant versions of the genes were generated in which the 

polar aromatic tyrosine was replaced with glycine or cysteine. 

These two mutations were chosen to mimic the iron-sulfur 

cluster binding motifs of a [3Fe-4S] and a [4Fe-4S] ferredoxin, 

respectively (Fig. S8). The mutant ferredoxin enzymes were 

cloned into both plasmids of the whole-cell oxidation system, 

pETDuetFdx3/FdR1 and pRSFDuetFdx3/CYP147G1, and used to 

test the activity of the CYP147G1 enzyme coupled with the 

mutant and WT forms of the ferredoxin. Samples of the 

turnovers taken at 4 hours contained a product (Fig. 4). The 

level of product formation when coupled with the WT Fdx 

partner was almost double that when coupled with either the 

Y12C or Y12G ferredoxins. Both mutant ferredoxins performed 

similarly (Fig. 4). These results show that the tyrosine amino 

acid in the ferredoxin binding sequence is important for the 

regulation of electron transfer to the CYP147G1 enzyme or for 

the stability of Fdx3.  

 

Assessing the activity of selected other ferredoxin electron 
transfer partners of M. marinum 

In order to assess an entire CYP electron transfer chain the 

ferredoxin reductase, ferredoxin and CYP enzyme have to be 

isolated and the likely substrate for the CYP enzyme has to be 

identified. For a bacterium such as M. marinum with so many 

potential combinations of CYP enzymes and electron transfer 

partners this would be impractical. We therefore chose 

pairings of CYP enzymes and ferredoxins which showed 

promising levels of protein production in E. coli and were 

coupled to ferredoxin genes with different residues at the 

variable position (?) of the iron-sulfur cluster motif (data not 

shown). Based on the protein production data the 

combinations chosen were Fdx2(Thr)/CYP278A1, 

Fdx4(Asn)/CYP269A1, Fdx8(His)/CYP150A5 and 

Fdx9(Ser)/CYP105Q4. All four CYP enzymes were produced in 

good yields.  

CYP105Q4, CYP278A1 and CYP150A5 displayed the expected 

substrate-free low spin CYP UV/Vis spectra with a Soret 

maximum at 419 nm (Fig. S4). CYP269A1 was more unusual in 

that it had a spectrum that resembled a high spin ferric heme 

spectrum with a Soret maximum at 390 nm (Fig. S5). The 

addition of the imidazole antifungal agent miconazole shifted 

the heme Soret absorbance maximum of CYP269A1 to 423 nm, 

and bound with a Kd of 0.050 ± 0.007 µM (Fig. S5). CYP105Q4, 

CYP278A1 and CYP150A5 showed the characteristic shift to 

450 nm for the ferrous-CO bound forms. In the absence of 

substrate CYP269A1 had a large peak at 420 nm with a 

shoulder at 450 nm (Fig. S4). When miconazole was added the 

peak at 450 nm, indicating the ferrous-CO bound form of the 

enzyme, was generated in greater quantity (Fig. S4).  

Figure 4. CYP147G1 product formation is reduced when supported by the mutant Fdx 

partners. (a) GC-MS chromatogram of the CYP147G1 turnover of undecanoic acid 

(black trace) after derivatisation with BSTFA/TMSCl. Derivatised undecanoic acid (RT 

9.2 min, control red trace) and the 10-hydroxyundecanoic acid (RT 13.9 min) are 

shown. The chromatogram has been offset along the x and y axes for clarity. (b) 

Quantitation of the 10-hydroxyundecanoic acid product from variant Fdx3-CYP147G1 

whole-cell turnovers of undecanoic acid. The axis shows the triplicate average of the 

area of integrated product peak divided by the area of the internal standard peak. Error 

bars show one standard deviation. 

CYP278A1 has significant sequence overlap with certain 

members of CYP109 family including CYP109D1 (Sorangium 
cellulosum, 42% sequence identity) and CYP109B1.

56
 

Norisoprenoids and fatty acids have been found to be 

efficiently oxidised by CYP109 family monooxygenases and the 

addition of β-ionone was found to shift the spin state of 

CYP278A1 to the high spin form (50%, Fig. S5). The binding 

affinity of CYP278A1 for β-ionone was also tight; Kd, 5.1 ± 1.5 

µM, Fig. S5).  

The CYP150 enzyme from Mycobacterium vanbalaanii PYR1, 

which is in the same family as CYP150A5, has been reported to 

oxidise hydrophobic aromatic compounds.
57

 Screening a range 

of aromatic compounds for their ability to bind to CYP150A5 

produced low Type I shifts in the Soret peak absorption (Fig. 

S5). However we found that addition of β-ionone induced a 

60% shift to the high spin form and the binding affinity was 

also reasonably high; Kd of 41 ± 3 µM (Fig. S5). None of the 

extensive range of substrates tested with CYP105Q4 altered 

the spin state from the low spin form. Having identified viable 

substrates for CYP150A5 and CYP278A1 and an inhibitor of 

CYP269A1 we attempted to produce and purify the associated 
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ferredoxins, Fdx8, Fdx2 and Fdx4 respectively, as well as Fdx9. 

The codon optimised genes of each ferredoxin were obtained 

and a 6xHis tag was added to the C-terminus by PCR 

(Supplementary Information). Under aerobic conditions Fdx2 

and Fdx9 (associated with CYP278A1 and CYP105Q4, 

respectively) did not produce significant levels of folded 

ferredoxin after cell lysis. However Fdx4 and Fdx8 were 

purified in significant quantities using an ion exchange step 

followed by affinity chromatography (a1 mg of purified protein 

per litre of broth, Fig. S9). The UV/Vis spectra of Fdx4 and Fdx8 

showed characteristic absorbances of [3/4Fe-4S] cluster 

containing ferredoxins (Fig. 5).
18, 30

  

We used whole-cell oxidation systems to study the 

monooxygenase activity of the FdR1/Fdx2/CYP278A1 and 

FdR1/Fdx8/CYP150A5 systems. GC and HPLC analysis of the 

turnovers of both systems showed a single product was 

formed from β-ionone oxidation. The product eluted at the 

same retention time for both systems. Co-elution experiments 

with turnovers of β-ionone using the CYP101B1 and P450Bm3 

which generate the 3- or 4-hydroxy products, respectively, 

revealed that the sole product from both CYP278A1 and 

CYP150A5 systems was 4-hydroxy-β-ionone (Fig. 6). This 

demonstrates FdR1 is able to support the activities of the 

Fdx2/CYP278A1 and Fdx8/CYP150A5 systems (Fig. 3). 

Figure 5. The UV/Vis absorbance spectra of aerobically purified Fdx4 (Mmar3963, 

black) and Fdx8 (Mmar4736, red) from M. marinum. Other spectra are included in the 

Supplementary Information. 

Further characterisation of the ferredoxins generated under 
anaerobic conditions 

The purification of a range of these ferredoxins was also 

undertaken under anaerobic conditions to assess their redox 

activity and stability to oxygen. Fdx2 and Fdx3 yielded very low 

levels of folded protein while Fdx4 (Asn), Fdx5 (His) and Fdx9 

(Ser) were isolated in good yields (Supplementary 

Information).  

The ferredoxins were characterised by UV/visible absorbance 

and CD spectroscopy (Fig. S11). Fdx4, Fdx5 and Fdx9 were 

shown to bind a [3Fe-4S] cluster by a combination of non-

denaturing ESI-MS and standard LC-MS (Fig. S12). They also 

exhibited EPR spectra characteristic of [3Fe-4S] centres (Fig 

S13) meaning that the cluster observed by mass spectrometry 

is unlikely to be the result of degradation during ionisation.
58

 A  

Figure 6. Activity of CYP150A5 and CYP278A1 when supported by native electron 

transfer partners in vivo (a) GC analysis of the whole-cell oxidation turnover of 

CYP150A5 and β-ionone: blue, β-ionone control (RT 12.3 min); magenta, CYP150A5 

turnover supported by FdR1 and Fdx8 (product RT 14.3 min); red, in vitro turnover of β-

ionone by CYP101B1 (major product 3-hydroxy-β-ionone, RT 14.4 min; minor product 

4-hydroxy-β-ionone, RT 14.3min) and black, in vitro turnover of P450Bm3 (CYP102A1) 

and β-ionone (sole product, 4-hydroxy-β-ionone). (b) Reverse phase HPLC analysis of 

the whole-cell turnover of CYP278A1 and β-ionone (black, RT 14.5 min): red, β-ionone 

control (RT 23.4 min). The chromatograms have been offset along the x- and y-axes for 

clarity. 

sample of Fdx4 purified by ion exchange and size exclusion 

methods had optical properties identical to those purified 

exploiting the poly-His tag, demonstrating that IMAC 

chromatography does not result in loss of a loosely bound Fe 

ion from the cluster. Furthermore, the CD and absorbance 

spectra of Fdx4 were unaffected by incubation with ferrous ion  

 (Fig S14). We therefore conclude that each of the ferredoxins 

binds a [3Fe-4S] cluster following expression in E. coli and that 

in vitro incubation with Fe
2+

 does not lead to incorporation of a 

fourth metal ion and reconstitution of a [4Fe-4S] cluster. The 

stability of Fdx2 and Fdx4 to oxygen was also assessed by CD 

spectroscopy with no significant cluster degradation occurring 

on exposure to 120 µM O2 for 40 minutes (Fig. S15).  

Attempts to cycle the oxidation state of the clusters bound to 

anaerobically purified Fdx4, Fdx5 and Fdx9 were suggestive of 

large differences in their midpoint potentials on variation of 

the residue at position ‘?’ in the binding motif. The CD and 
electronic absorbance spectra of Fdx4 were altered by 

incubation with either a stoichiometric equivalent of K3Fe(CN)6 

or excess EuCl2 as oxidant and reductant, respectively (Fig. 

S11). This suggests a mixed oxidation state of the cluster in the 

protein isolated under anaerobic conditions with the cluster 

being readily oxidised by K3Fe(CN)6 and reduced by EuCl2. EPR 
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spectra of the chemically poised samples (Fig S13) were also 

consistent with oxidation and reduction to the EPR active and 

EPR silent forms of the cluster, respectively. Equilibration of 

Fdx4 with a 1.5 mM solution of sodium ascorbate resulted in a 

CD spectrum readily interpreted as a 50:50 sum of those of the 

oxidised and reduced clusters, suggesting a midpoint potential 

closely matched to the ascorbate solution potential (+60 mV 

vs. SHE). The optical spectra of Fdx5 were invariant following 

incubation with EuCl2 whilst incubation with a stoichiometric 

equivalent of K3Fe(CN)6 produced significant changes that 

were reversed upon subsequent incubation with excess EuCl2 

(Fig. S11). Therefore Fdx5 isolated under identical conditions 

to Fdx4 contains clusters predominantly in the reduced state. 

Incubation of reduced Fdx5 with 1.5 mM sodium ascorbate 

had no significant effect on the CD spectrum indicating that 

the cluster remained reduced at +60 mV, suggesting a 

midpoint potential greater than +150 mV. In contrast, 

incubation with K3Fe(CN)6 had no effect on the optical spectra 

of Fdx9 whilst EuCl2 led to a reversible loss of CD intensity 

demonstrating that the protein was isolated with the cluster in 

the oxidised state (Fig S11). The EPR spectra of chemically 

poised Fdx9 samples indicated that 50% of the sample 

retained oxidised clusters following equilibration with excess 

EuCl2 (Fig. S13) suggesting a midpoint potential similar to that 

of the Eu
3+

/Eu
2+

 couple (-360 mV vs. SHE).  

Discussion 
The CYPome of M. marinum is larger than that of M. 
tuberculosis and the related M. ulcerans. There are also more 

electron transfer partner genes in M. marinum and these are 

closely associated with the genes of the CYPome. The majority 

of the ferredoxins are of the [3/4Fe-4S] type and all have a 

non-cysteine residue in their iron-sulfur cluster binding motif, 

but not an alanine or glycine residue that commonly replaces 

the second cysteine of the motif in [3Fe-4S] ferredoxins. The 

identity of this residue varies among the ferredoxins of M. 
marinum and includes histidine, asparagine, threonine, 

tyrosine, serine and phenylalanine. The character of the non-

cysteine residues would modify the environment of the iron-

sulfur cluster and would be expected to have significant effects 

on the properties and function of the ferredoxin. Many of 

these non-cysteine amino acid substitutions have the potential 

to act as ligands to metal ions and determine the cluster type 

([3Fe-4S] or [4Fe-4S]) as well as control the properties and 

redox potential of the protein. With the exception of the 

histidine containing version, these types of ferredoxins have 

not been characterised previously. Anaerobic isolation of and 

characterisation of the ferredoxins showed that all contained a 

[3Fe-4S] cluster. 

The most studied small ferredoxin of this type is that from the 

thermophile Pyrococcus furiosus in which one of the iron ions 

of the cluster coordinates to an aspartate residue 

(CXXDXXC(X)nCP).
19, 59, 60

 Replacement of the more usual 

cysteine residue with aspartate alters the properties of this 

ferredoxin, most notably the reduction potential, compared to 

typical cysteinate-ligated [4Fe-4S] ferredoxins.
51

 This 

ferredoxin is isolated as a [3Fe-4S] ferredoxin under aerobic 

conditions but can be isolated as a [4Fe-4S] ferredoxin when 

oxygen is excluded. In common with other thermophilic 

ferredoxins, it also contains an additional disulphide bond 

which is thought to take part in the redox cycling of the 

enzyme. In contrast to the ferredoxins we have identified, the 

redox partner for the aspartate containing ferredoxin from P. 
furiosus is as yet unknown. This makes an analysis of the role 

of this residue in physiological electron transfer reactions 

difficult.  

The histidine containing ferredoxins from Mycobacterium and 

Rhodopseudomonas species have also been isolated 

aerobically as [3Fe-4S] ferredoxins.
18, 30-32

 By way of contrast, 

histidine coordination to [4Fe-4S] iron-sulfur clusters has been 

observed in Ni-Fe and Fe-only hydrogenases and in [2Fe-2S] 

Rieske proteins.
61-63

 Previously, the best characterised 

mycobacterial electron transfer ferredoxin of this type is 

encoded by the gene Rv0763c and is associated with CYP51 of 

M tuberculosis.
30

 This ferredoxin has been shown to support 

the first electron transfer step of CYP51 from M. tuberculosis 
(but not the monooxygenase activity). The low activity 

observed was rationalised by the high reduction potential of 

the ferredoxin which is reported to be unfavourable for the 

reduction of the substrate bound CYP51. 

The identity of the iron-sulfur cluster, the ligands which 

coordinate to the metal ions and the surrounding environment 

can have a profound effect on the reduction potential of the 

ferredoxins. Cysteine-coordinated [2Fe-2S] containing 

ferredoxins (reduction potential -150 to -400 mV versus SHE) 

and the histidine Rieske equivalents (reduction potential +100 

to +400 mV) contain two Fe(III) ions in the oxidised form with 

one of these being reduced to Fe(II) in the reduced form.
63

 It is 

usual for [4Fe-4S] clusters to shuttle between the [4Fe-4S]
2+/+

 

state and have reduction potentials ranging from -280 to -715 

mV, though high potential iron-sulfur clusters with potentials 

of +90 to +450 mV are known ([4Fe-4S]
3+/2+

).
63

 Previously 

characterised [3Fe-4S] ferredoxins have redox potentials 

ranging from -203 to -85 mV.
51

 The histidine containing [3Fe-

4S] ferredoxin from M. tuberculosis (-31 mV) and the aspartate 

version from P. furiosus (-160 mV for 3Fe form and –375 mV 

for [4Fe-4S] form) both have significantly different reduction 

potentials compared to standard [3Fe-4S] and [4Fe-4S] 

ferredoxins. Our results show that the ferredoxins from M. 
marinum are isolated in the [3Fe-4S] form and their reduction 

potentials vary between –360 to +150 mV. Several, including 

the neutral histidine and asparagine containing ferredoxins, 

are on the positive side compared to other proteins of this 

type. The serine containing ferredoxin (Fdx9) had a 

significantly lower redox potential, similar to those of the 

cysteine containing species. One interesting observation is that 

Fdx4 is associated with an unusual P450 with substrate free 

spectra indicating it exists in the high-spin form. It seems 

probable that bacteria may use these different motifs to tune 

the redox potential in order to control electron transfer to the 

different monooxygenases present. As the relative number of 

CYP and electron transfer partner genes it is expected that 
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each electron transfer ferredoxin could support multiple CYP 

enzymes. 

Given that the majority of the types of ferredoxins found in M. 
marinum have not been reported previously, we were 

surprised to discover that they are prevalent across a range of 

bacteria in particular in Mycobacterium, Rhodococcus, 

Streptomyces and other species of actinobacteria. They are 

also found in other bacteria. For example the tyrosine 

containing ferredoxins are found in bacteria of the phylum 

Chloroflexi. It is telling that in many instances these 

ferredoxins are associated with CYP genes. It seems likely that 

they are involved in controlling the electron transfer pathways 

to enable the monooxygenase enzymes to synthesise complex 

natural products with a diverse array of biological function. 

Conclusions 
Overall we have identified, isolated and characterised these 

unusual ferredoxins from M. marinum as being [3Fe-4S] cluster 

containing proteins. We have used several of them in 

conjunction with a ferredoxin reductase to reconstitute the 

activity of their associated P450 enzyme. Similar ferredoxins 

are co-located with the CYPomes of Mycobacteria, as well as in 

many other types of bacteria. The identity of the altered 

residue of the motif was found to alter the redox potential. 

The diversity of these genes in M. marinum make it an 

excellent model organism for investigating electron transfer 

and its role in bacterial secondary metabolism. The 

observation of similar CYP systems in pathogenic bacteria such 

as M. ulcerans means these could be targets for drug design 

resulting in inhibition. The prevalence of these types of 

ferredoxins across the bacterial kingdom and their presence in 

the gene clusters of complex secondary metabolites highlights 

their importance in prokaryote secondary metabolism. Further 

study will lead to a better understanding of the role of the 

electron transfer partner proteins for efficient metabolism and 

natural product synthesis which in turn will allow the design of 

improved monooxygenase systems for applications in 

synthetic biology. 

Experimental 
Phylogenetic analysis of the P450s and ferredoxins was carried 

out using standard methodologies as described in the 

Supplementary information. The cloning, protein purification 

steps, whole-cell turnovers, metabolite characterisation and 

the aerobic and anaerobic protein analysis are described in full 

in the Supplementary information. 
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acids 

- Activity was reconstituted in vivo with  physiological electron transfer partners 

- The enzyme is regioselective for the ω-1 position for linear and ω-2 branched acids 

- Branched ω-1 methyl fatty acids alter enzyme selectivity toward the ω position 

- Closely related complete CYP monooxygenase systems were identified in other 

bacteria 
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Abstract 

Background  

Cyp147G1 is one of 47 cytochrome P450 encoding genes in Mycobacterium marinum M, a 

pathogenic bacterium with a high degree of sequence similarity to Mycobacterium 

tuberculosis and Mycobacterium ulcerans. Cyp147G1 is one of only two of these cyp genes 

which are closely associated with a complete electron transfer system.  

Methods 

The substrate range of the enzyme was tested in vitro and the activity of CYP147G1 was 

reconstituted in vivo by co-producing the P450 with the ferredoxin and ferredoxin reductase. 

Results  

The substrate range of CYP147G1 includes fatty acids ranging from octanoic to 

hexadecanoic acid. CYP147G1 catalysed the selective hydroxylation of linear and ω-2 

methyl branched fatty acids at the ω-1 position (≥ 98%). Oxidation of ω-1 methyl branched 

fatty acids generated the ω and ω-1 hydroxylation products in almost equal proportions, 

indicating altered position of hydrogen abstraction. 

Conclusions 

This selectivity of fatty acid hydroxylation inferred that linear species must bind in the active 

site of the enzyme with the terminal methyl group sequestered so that abstraction at the C-H 

bonds of the Z-1 position is favoured. With branched substrates, one of the methyl groups 

must be close to the compound I oxygen atom and enable hydroxylation at the terminal 

methyl group to compete with the reaction at the Z-1 C-H bond. 

General Significance  

Hydroxy fatty acids are widely used for industrial, food and medical purposes. CYP147G1 

demonstrates high regioselectivity for hydroxylation at a sub-terminal position on a broad 

range of linear fatty acids, not seen in other CYP enzymes.   
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Abbreviations 

2xYT, 2 x concentration yeast extract tryptophan broth; BSTFA-TMSCl, N,O-

bis(trimethylsilyl) trifluoroacetamide and trimethylsilylchloride; CYP or P450, Cytochrome 

P450 enzyme; DTT, dithiothreitol; EMM, E. coli minimal media; FAD, flavin adenine 

dinucleotide; FdR, ferredoxin reductase; Fdx, ferredoxin; GC-MS or MS, gas-

chromatography mass spectrometry or mass spectrometry; IPTG, Isopropyl β-D-1-

thiogalactopyranoside; LB, Lysogeny broth (also known as Luria or Lennox Broth), 

NAD(P)H reduced nicotinamide adenine dinucleotide (phosphate); RT, retention time; SOC, 

Super Optimal broth with Catabolite repression; TMS, trimethylsilyl; PCR, polymerase chain 

reaction. 
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1.  Introduction 

Monooxygenases are a diverse class of enzymes, involved in the selective hydroxylation of 

organic molecules using molecular dioxygen. Cytochrome P450 enzymes hold key roles in 

the physiological functioning of cells, such as fatty acid hydroxylation, [1] steroid synthesis 

[2, 3] and drug metabolism [4, 5]. Such versatility of metabolite production, combined with 

their potential for high specificity, makes them desirable catalysts for synthetic processes [6, 

7]. Various bacterial CYPs have been studied for their ability to activate fatty acids, which 

are readily available from natural sources, into more commercially useful starting materials 

by hydroxylation [8-11]. For example, the hydroxylation of fatty acids at the ω terminus 

allows further oxidation to a dicarboxylic acid, and from there to a wide range of materials 

including fragrances, polymers and adhesives [12]. Hydroxylation at any position increases 

the reactivity, viscosity and miscibility of the fatty acid, and as a result hydroxy fatty acids 

are utilised widely for both industrial and medical purposes as well as in food [13]. Fatty acid 

hydroxylases are commonly divided into carboxyl-terminal (α and β), terminal (ω) and sub-

terminal (ω-1 through γ) [14]. For example, the CYP152 family are known α/β hydroxylases 

[15], while the CYP153 family, including CYP153A16 from Mycobacterium marinum, are ω 

hydroxylases [16]. P450BM3 (CYP102A1) is a highly efficient sub-terminal fatty acid 

hydroxylase (ω-1to ω-3 are hydroxylated in roughly equal proportion) but high 

regioselectivity at sub-terminal positions is very rare. Enzymes such as P450BM3 have been 

the subject of many mutagenesis studies aiming to improve regioselectivity [14, 17].  

In order to catalyse their reactions, the majority of CYPs require a supply of electrons 

derived from the co-enzymes NADPH or NADH and delivered via electron carrier proteins. 

Bacterial CYP enzymes often display high redox partner specificity with non-physiological 

electron transfer partners only able to support low levels of activity, if at all [18]. Identifying 

the natural electron transfer partners often increases product formation. Additionally, it 
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allows detailed investigation into the mechanisms by which CYP enzymes interact with the 

ferredoxins [18, 19]. 

The Mycobacterium marinum M genome encodes 47 cytochrome P450 enzymes. It is 

a pathogenic bacterium which affects frogs and fish and in humans is the cause of aquarium 

granuloma. It has a high degree of genetic similarity to both Mycobacterium ulcerans (97% 

nucleotide identity) and Mycobacterium tuberculosis (85% nucleotide identity) the human 

pathogens responsible for the Buruli ulcer (a tropical skin disease) [20] and tuberculosis, 

respectively [21-25]. M. marinum is a less specialised pathogen than either M. tuberculosis or 

M. ulcerans, having undergone less genome reduction. Consequently more cyp gene 

sequences are present in its genome [21, 26, 27]. Due to the minimal number of gene 

deletions, M. marinum also has a greater number of ferredoxin and ferredoxin reductase 

electron transfer partner genes than either M. tuberculosis or M. ulcerans and several of these 

are located next to or close to the cyp genes [23, 28]. The larger number of CYPs present, 

similar to the average number found in soil-living Mycobacteria (50 CYPs) [29], likely 

support a more varied range of reactions than those in the specialised pathogens and 

presumably are important for the ability of the organism to survive inside and outside of its 

host. Previous study has revealed the substrate range of one such enzyme from M. marinum 

M, CYP268A2 [30]. CYPs from M. tuberculosis and M. ulcerans have been identified as 

targets for inhibition as they are often involved in key metabolic roles [31, 32].  

The number of electron transfer partner genes such as ferredoxin and ferredoxin 

reductase proteins in a given genome tends to be smaller than the number of CYPs, inferring 

they are able to support multiple CYP enzymes [33, 34]. There are 12 gene sequences 

encoding small ferredoxin proteins, each containing a single metal cluster, in the genome of 

M. marinum M. One of these encodes a [2Fe-2S] ferredoxin and is associated with genes for 

the alkane hydroxylase, CYP153A16 and a ferredoxin reductase [35]. The other 11 



 

 
71 

 

ferredoxins have sequence similarities to [3Fe-4S] or [4Fe-4S] cluster ferredoxins but have 

alternate amino acids at one position of the iron sulfur cluster motif (which is ordinarily an 

alanine or glycine residue in [3Fe-4S] clusters, CXXA/GXXC(X)nCP). As we have reported 

previously, several of the M. marinum ferredoxins have been determined to contain [3Fe-4S] 

clusters with highly variant reduction potentials [36]. In the genome, nine of the CYP genes 

from M. marinum M are associated with one of these ferredoxins. CYP147G1 (Mmar_2930) 

is the only CYP gene to have both a ferredoxin of this type (Fdx3, Mmar_2932) as well as a 

reductase gene (FdR1, Mmar_2931) co-located.  

As a result of the sequence similarity between the strains of Mycobacterium and the 

more easily interpretable electron transfer protein network, study of M. marinum CYPs could 

give insight into the metabolism of the human specific pathogens. We have previously shown 

CYP147G1 can oxidise undecanoic to 10-hydroxyundecanoic acid when supported by FdR1 

and Fdx3 [36]. This was in contrast to the only other characterised family member 

(CYP147F1), from Streptomyces peucetius, which unselectively hydroxylated dodecanoic 

acid at the ω-1, ω-2 and ω-3 positions [11]. The established native electron transfer chain 

makes CYP147G1 an ideal target for further analysis. Here we report the widespread nature 

of this system across different bacteria, characterisation of the substrate range of the enzyme 

and the investigation of its selectivity for C�H bond abstraction with fatty acids.    
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2. Experimental 

2.1 General 

All organic substrates, derivatisation agents and other general reagents, except where 

otherwise noted were purchased from Sigma-Aldrich, Alfa-Aesar, VWR International or 

Tokyo Chemical Industry. Branched fatty acids were from Larodan (Sweden). Antibiotics, 

detergents, DTT and IPTG were from Astral Scientific. The media for cell growth and 

maintenance (LB, 2xYT, SOC, EMM and trace elements) were prepared as reported 

previously [30]. Antibiotics were added to the following working concentrations; ampicillin, 

100 µg mL�1
 and kanamycin, 30 µg mL�1. UV-Visible spectra were recorded on a Varian 

Cary 5000 or Cary 60 spectrophotometer at 30 ± 0.5 °C. GC-MS analysis was performed 

using a Shimadzu GC-17A equipped with a QP5050A MS detector and DB-5 MS fused silica 

column (30 m x 0.25 mm, 0.25 µm) or a Shimadzu GC-2010 equipped with a QP2010S GC-

MS detector, AOC-20i autoinjector, AOC-20s autosampler and DB-5 MS fused silica column 

(30 m x 0.25 mm, 0.25 µm). For both, the injector was held at 250 °C and the interface at 280 

°C. Column flow was set at 1.5 mL min-1 and the split ratio was 24. For fatty acid substrates, 

the initial oven temperature was 120 °C which was held for 3 min, before increasing to 220 

°C at 7 °C min-1, where it was held for 7 min. NMR was performed using an Agilent DD2 

spectrometer at 500 MHz for 1H and 126 MHz for 13C. 

2.2 CYP147G1 production and purification 

CYP147G1 was produced and purified from E. coli as reported previously [36] and stored at -

20 °C after addition of an equal volume of 80% glycerol. Before use, glycerol in stored 

protein samples was removed via buffer exchange into 50 mM Tris (pH 7.4) using a PD-10 

desalting column (5 mL, GE Healthcare). The CYP147G1 concentration was determined 

using ε419 = 111 ± 4 mM−1 cm−1 [36]. 
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2.3 Spin-state shift assays and dissociation constant determination 

CYP147G1 was diluted to approximately 1 µM using 50 mM Tris buffer (pH 7.4) and the 

spectrum was recorded between 600 and 250 nm on a UV-Vis spectrophotometer at 30 °C. 

Aliquots (1 to 5 µL) of substrate stock solutions (50 mM to 100 mM, DMSO or EtOH) were 

added and the spectrum recorded until the shift from 420 nm to 390 nm reached a stable 

point. The ratio of high spin to low spin CYP (390 nm peak to 420 nm peak) was estimated 

(to ± 5%) as described previously [36]. 

To measure the binding affinity, CYP147G1 was diluted to 2 µM in a volume of 2.5 

mL in the same buffer and this sample was used to baseline the spectrophotometer. Varying 

aliquots (1 to 3 µL) of substrate stock solutions (1 mM, 10 mM or 100 mM concentrations) 

were added via a Hamilton syringe. The sample was mixed and the difference spectrum was 

recorded between 300 nm and 600 nm. Aliquots of substrate were added until no further 

change in the peak-to-trough ratio at 420 nm and 390 nm for a Type I spectrum (or 410 and 

430 nm for a Type II spectrum) was observed. The difference in absorbance versus substrate 

concentration was fitted to the hyperbolic function (Equation 1):  

∆𝐴 =  
∆𝐴 × [𝑆]

𝐾 + [𝑆]
 

where Kd is the dissociation constant, [S] is the substrate concentration, ΔA the peak-to-

trough ratio, and ΔAmax the maximum peak-to-trough absorbance. In the instances where the 

substrate exhibited tight binding (Kd < 10 µM, less than five times the concentration of the 

enzyme), the data were instead fitted to the tight-binding quadratic equation: 

∆𝐴 =  𝛥𝐴 ×
[𝐸] + [𝑆] + 𝐾 − ([𝐸] +  [𝑆] + 𝐾 ) − 4[𝐸][𝑆] 

2[𝐸]
 

where Kd is the dissociation constant, [S] is the substrate concentration, ΔA the peak-to-

trough ratio,  ΔAmax the maximum peak-to-trough absorbance and [E] is the enzyme 

concentration [37]. 
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2.4 Whole-cell oxidation turnovers 

Whole-cell turnovers with the enzymes CYP147G1, Fdx3 and FdR1 were performed in E. 

coli with the substrates added to a final concentration of 1 mM over 24 hours, as per the 

method previously reported [36]. After extraction, the fatty acid samples were derivatised 

with BSTFA/TMSCl before analysis by GC-MS. For the larger scale extraction of 

dodecanoic acid, 200 mL of the supernatant was acidified with 3 M HCl to pH 2, extracted 

three times with an equal volume of ethyl acetate. Extracts were washed with water and 

saturated brine solutions, combined and dried over MgSO4 and the solvent was removed 

under reduced pressure.  

2.5 Product analysis 

Enzyme turnover analysis was performed by GC-MS. Where GC-MS indicated a 

product:substrate ratio of ≥95%, reverse phase solid phase extraction (SPE) DSC-18 SPE 

tubes (Supelco) were used to isolate all fatty acid compounds, using the method described by 

Horak et al with minor modifications [38]. SPE columns were activated with methanol (3 

mL), washed with water (5 mL) and the extract was dissolved in the minimum amount of 

methanol and water (200 µL) and loaded onto the column. The column was washed with 5 

mL 10% v/v methanol solution followed by 5 mL of 20% v/v methanol:water. The acid 

products were eluted with 600 µL methanol and the elution was dried under a flow of 

nitrogen and dissolved in deuterated chloroform, 0.8 mL, before characterisation by NMR. 

2.6 Phylogenetic analysis 

Sequences were obtained from the databases at the National Centre for Biotechnology 

Information (NCBI) or Dr Nelson P450 homepage for bacterial P450s [39]. Sequence 

alignments were performed using ClustalW [40]. The evolutionary history was inferred by 

using the Maximum Likelihood method based on the Jones-Taylor-Thornton (JTT) matrix-

based model [41]. Initial tree(s) for the heuristic search were obtained automatically by 
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applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated 

using a JTT model, and then selecting the topology with superior log likelihood value. The 

tree is drawn to scale, with branch lengths measured in the number of substitutions per site. 

All positions containing gaps and missing data were eliminated. Evolutionary analyses were 

conducted in MEGA6 [42]. 
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3. Results and Discussion  

3.1 Phylogenetic analysis of CYP147G1 

The CYP147 family of enzymes is prevalent in bacteria with CYP147A1 being first 

identified in Myxococcus xanthus and the subsequent discovery of enzymes from other 

subfamilies; CYP147B1 (Streptomyces avermitilis), CYP147C1 (Streptomyces tubercidus), 

CYP147D1 (Magnetospirillum magnetotacticum), CYP147E1 (Methanosarcina barkeri), 

CYP147F1 (Streptomyces peucetius) and CYP147G1, the subject of this manuscript from M. 

marinum [39]. The only CYP147 family member to be characterised so far is CYP147F1, 

from Streptomyces peucetius which was reported to be a fatty acid hydroxylase [11].  

CYP147G1 shares 43% sequence identity with CYP147F1. A BLAST search revealed 

several CYP enzymes from the CYP147G subfamily, mostly from other strains of 

Mycobacteria including M. vanbaalenii PYR-1 (68% sequence identity), M. kansasii (84%), 

M. rhodesiae (72%), and M. liflandii (97%). While no copy of the gene is present in M. 

ulcerans Agy99, an enzyme of high similarity is present in the strain M. ulcerans subsp. 

shinshuense (98%). However no subfamily homologues are present in M. tuberculosis or M. 

smegmatis and CYP147G1 shares no more than 34% similarity with any enzyme from M. 

tuberculosis. Many of the CYP147 enzymes found in the BLAST search were from Nocardia 

(all had sequence similarity between 70 and 65% e.g. Nocardia vinacea 70%, Fig. 1 and 

Table S1) and Streptomyces species (all had 50% similarity and below, e.g. S. tubercidus 

50%, Fig. 1). A phylogenetic tree revealed CYP147G1 clustered mostly with other 

Mycobacterium enzymes, with the CYP147C subfamily the closest of all the others (Fig. 1). 

The closest structurally characterised CYP homologue to CYP147G1 is CYP164A2 from M. 

smegmatis (35%) which is a homologue of the only CYP gene retained in M. leprae [43]. The 

next closest structurally determined analogue is P450BioI, a fatty acid cleaving CYP enzyme 

(32%) [44].  
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Figure 1: A phylogenetic tree (phenogram) of CYP147G1 and analogous enzymes, including 
the CYP147 enzymes from M. vanbaalenii PYR-1 (Mvan_0401) and M. ulcerans subsp. 
shinshuense (Shtp_2364), and other members of the CYP147 family (Table 1, see also Fig. 
S1 and Table S1). For comparison the closest structural homologues from the Protein Data 
Bank CYP164A2 from M. smegmatis and P450BioI (CYP107H1) from Bacillus subtilis and 
CYP124A1, a branched fatty acid binding CYP enzyme from M. tuberculosis have been 
included (Table S1). The scale shows number of substitutions per site. 

 Like CYP147G1, the CYP147 genes in M. barkeri, M. xanthus, M. vanbaalenii and S. 

avermitilis are all found next to a ferredoxin reductase encoding gene (Fig. S2) [45]. All of 

these, with the exception of M. xanthus, also have a gene which encodes a similar ferredoxin 

to Fdx3 present, containing a CXXYXXC(X)nCP iron sulfur cluster binding motif. Many 

Nocardia and other Streptomyces species also have a similar arrangement of genes (Table 1, 

see also Table S2 and Fig. S3). The M. xanthus ferredoxin reductase gene is fused to a 

ferredoxin domain, which retains the Tyr residue in the cluster binding motif. The other 

exception is in M. liflandii and M. ulcerans subsp. shinshuense, where the FdR1-like gene has 

undergone a frame-shift and does not encode a full length protein (Table 1, Fig. S2). The 

retention of this operon across species, including several instances where the two 
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accompanying electron transfer proteins have fused together, indicates that it is likely that the 

CYP enzyme will demonstrate high specificity for the native electron transfer chain.  

Table 1: Sequence identities of the CYP, Fdx and FdR equivalents of the 
CYP147G1/Fdx3/FdR1 operon from Mycobacterium species and elsewhere. All the 
ferredoxins listed contain the Tyr residue replacing the seccond Cys of the iron-sulfur cluster 
motif (CXXYXXC(X)nC).  

 
Species 

CYP  
% 

identity  

CYP 
namea 

Associated 
Fdx % 
identity 

Associated 
FdR % 
 identity  

Fusion 
Fdx/FdR 

M. ulcerans subsp. shinshuense 98 - 99 -b  
M. liflandii 128FXT 97 - 99 -b  

M. bohemicum 85 - 94 90  
M. saskatchewanense 85 - 93 90  

M. kansasii ATCC 12478 84 - 94 94  
M. gastri 84 - 94 91  

Nocardia vinacea 70 - 77 79  
M. rhodesiae DSM44223 69 - 94 82  

M. aromaticivorans 69 - 93 83  
M. vanbaalenii PYR-1 68 147G2 84 81  

Nocardia fusca 67 - 78 75  
Streptomyces tubercidus 50 147C1 62 74  

Myxococcus xanthus DK 1622 47 147A1 62 61 Y 
Streptomyces avermitilis 45 147B1 66 63  

Streptomyces bingchenggensis 45 147F2 66 59  
Rhodococcus jostii RHA1 45 147B2 61 61  
Ktedonobacter racemifer 44 - 70 63  

Streptomyces bingchenggensis 44 147F3 69 60  
Frankia sp. CN3 44 - 67 60 Y 

Streptomyces peucetius 43 147F1 60 61  
M. kansasii ATCC 12478 42 - 69 60  
Methanosarcina barkeri 42 147E1 62 57  

M. gastri 41 - 72 64  
a CYP name given in accordance with the NCBI database and Dr Nelson P450 homepage for bacterial P450s 
where listed [39] b pseudogene is present in both species, sharing 99% similarity with the FdR1 gene from M. 
marinum M. 

In M. marinum, M. liflandii and M. kansasii, the CYP operon is just downstream of a PE-

PGRS protein (a family of Mycobacterial proteins with possible roles in fibronectin binding 

[46] or as antigens [47]), and a cutinase (α/β hydrolases of the plant polymer cutin, but also 

other substrates such as triaglycerol [48, 49]) (Fig. S2). The CYP147 family members retain 
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the heme binding residues (EXXR) (Table S4). In CYP147G1, CYP147G2 and other 

Mycobacterium CYP147 enzymes, the acid alcohol pair is an aspartate and serine (D261 and 

S262), instead of the glutamate and threonine residues in the rest of the CYP147 family 

analysed (Fig. S1, Table S4). The CYP147G1 enzyme does not retain the highly conserved 

phenylalanine located seven residues before the proximal cysteine, instead encoding a 

tryptophan (W361) as does CYP147G2. This change in residue is of interest as the broad sub-

terminal hydroxylase CYP267A1 from Sorangium cellulosum, contains a leucine at this 

position. Mutation of this residue to a phenylalanine shifted the hydroxylation pattern of the 

enzyme with fatty acids, and increased the selectivity for the ω-1 to ω-3 positions [50].  

3.2 Substrate binding studies 

We have previously shown that CYP147G1 can oxidise indole to indigo and undecanoic acid 

to 10-hydroxyundecanoic acid. However, the addition of indole and related substances such 

as indanone did not result in any significant shift in the spin-state of CYP147G1 (Table 2). 

Bhattarai et al. demonstrated that dodecanoic acid, myrsitic acid and palmitic acid bound to 

and were oxidised by CYP147F1. CYP147F1 displayed the strongest binding affinity to 

dodecanoic acid (with a reported spin state shift of ≥ 95% and a Kd value of 0.22 µM) [11]. 

The CYP147G1 enzyme was produced in E. coli and tested with a range of fatty acids from 

C22:0 to C8:0 (Table 2 and Scheme 1). Addition of dodecanoic acid resulted in a spin state shift 

equal to that of undecanoic (40% high spin for both). A lower shift was observed for acids 

with successively longer or shorter chain lengths. Decanoic acid induced a 30% high spin 

state, whereas only a 15% shift was observed with octanoic acid. Similarly, tetradecanoic 

acid and hexadecanoic acid, resulted in 35% and 30% shifts, respectively. Unsaturated 

substrates were equally as effective at inducing the high spin state as their saturated 

counterparts. 10-Undecenoic acid showed a spin state shift of 40%, equal to that of 
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undecanoic acid. Octadec-9-enoic acid (C18:1) and octadecanoic acid (C18:0) also recorded the 

same spin state shift (20%).  

 

Scheme 1: A selection of the substrates tested on CYP147G1. * Indicates a chiral centre in 
the substrate when R2 = Me. 

A range of methyl-branched fatty acids and derivatives were also tested with the 

enzyme, as they are known substrates of other Mycobacterial CYPs such as CYP124A1 and 

CYP268A2 [30, 51]. 10-Methylundecanoic and 11-methyldodecanoic acids both gave spin 

state shifts equal to that of the non-branched acid of the same length (40%). A methyl branch 

at the ω-2 position, as in 9-methylundecanoic and 10-methyldodecanoic acids, reduced the 

proportion of the high spin state of the enzyme induced on substrate addition (15% for both) 

relative to undecanoic and dodecanoic acid. 3,7-Dimethyloctanoic induced almost no shift 

(~5%). Longer multiply-branched substrates such as farnesol (55%) and phytol (60%) were 

also effective at displacing the coordinating water ligand, despite not having an acid 

terminus. Similarly, farnesyl acetate induced a spin state shift of 60% in CYP147G1. 

Additionally, dodecyl acetate gave a shift of 35% but dodecanol, 1-dodecene and dodecamide 

all failed to generate any spin state shift in CYP147G1. Dodecyl amine gave a red shifted 
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Soret absorbance (417 to 421 nm) and Type II difference spectrum (Fig. 2). We also tested 

aromatic benzoic and naphthoic acid substrates such as 4-isopropylbenzoic and 2-naphthoic 

acid but the binding of these substrates resulted in low shifts of CYP147G1 to the high spin 

state (Table 2). The hydrophilic terminal moiety appears to have a strong effect on the 

enzyme’s substrate affinity. 

Table 2: Substrate binding and product formation data for CYP147G1. The results are 
presented in descending order of the magnitude of the induced shift to the high spin state. 
Spin state shifts recorded as the percentage of CYP in the high spin (HS) state. The 
dissociation constants, Kd, are also reported where measured. 

 

Substrate % HS Kd (µM) Major 
product(s)a 

Farnesyl acetate 60 1.2 ± 0.3 - 
Farnesol 55 2.0 ± 0.3 - 
Phytol 50 * - 
10-Methylundecanoic acid 40 55 ± 18 ω, ω-1 
10-Undecenoic acid 40 25 ± 4 - 
11-Methyldodecanoic acid 40 57 ± 6 ω, ω-1 
Dodecanoic acid 40 19 ± 2 ω-1b 

Undecanoic acid 40 25 ± 3 ω-1b 

Dodecyl acetate 35 2.5 ± 0.3 - 
Tetradecanoic acid 35 * ω-1 
Decanoic acid  30 32 ± 6 ω-1 
Hexadecanoic acid 30 * ω-1 
Methyl laurate 20 - ω-1† 
Octadecanoic acid 20 - ω-1 
10-Methyldodecanoic acid 15 - ω-1 
9-Methylundecanoic acid 15 - ω-1 
Octanoic acid 15 - ω-1 
3,7-Dimethyloctanoic acid ~ 5 - ω, ω-1 
Dodecyl amine  Type II  1.8 ± 0.1 - 
Econazole Type II 1.0 ± 0.1 - 
Miconazole Type II 0.3 ± 0.08 - 

(*) indicates a dissociation constant could not be accurately determined. (–) not determined (†) uncertain if this 
product arose from enzyme oxidation of this substrate, see main text for details a ω-1 is present at ≥98%; ω, ω-1 
together make up ≥98% of the total product in roughly equal amounts (see main text for details) b ω-2 is present 
as the minor product (<2%). 
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Significant spin state shifts (>30%) indicated the substrate may be complementary to the 

active site of CYP147G1, and hence binding of these substrates was further investigated by 

determining the dissociation constant (Fig. 2). 

 
(a)  

(b) 

 
(c) 

 
(d) 

 
Figure 2: A selection of substrate dissociation constants for CYP147G1. The inset represents 
a typical substrate binding titration. Substrates shown are (a) dodecanoic acid (b) 11-
methyldodecanoic acid (c) decanoic acid (d) dodecyl amine. The peak to trough difference in 
absorbance was measured from 420 nm to 390 nm in each, except with dodecyl amine (410 
to 430 nm) where a Type II shift was recorded.  

Dodecanoic acid (Kd = 19 ± 2 µM) had a higher binding affinity than the C11:0 and C11:1 acids, 

undecanoic and 10-undecenoic (25 ± 3 µM [36] and 25 ± 4 µM respectively). All three had 

higher binding affinity than decanoic acid (32 ± 6 µM). The determination of an accurate 

dissociation constant for the longer hexadecanoic and tetradecanoic acids was prevented by 
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substrate insolubility at the higher concentrations necessary for an accurate fit (suggesting 

low affinity binding). Dodecyl acetate (2.5 ± 0.3 µM) bound tightly as did farnesol (2.0 ± 0.3 

µM) and farnesyl acetate (1.2 ± 0.3 µM). 11-Methyldodecanoic acid (57 ± 6 µM) bound less 

tightly than its linear C12 counterpart, as did 10-methylundecanoic acid (54 ± 18 µM).  

In addition to dodecyl amine, known azole inhibitors econazole, ketoconazole and 

miconazole were tested. While ketoconazole did not appear to bind to CYP147G1, both 

econazole and miconazole generated Type II shifts with the enzyme (the Soret absorbance 

was shifted to 423 nm and 420 nm, respectively), and were further investigated as potential 

inhibitors. Miconazole bound more tightly than econazole (0.2 ± 0.06 µM and 1 ± 0.2 µM, 

respectively), while dodecyl amine also bound with high affinity (1.8 ± 0.1 µM).  

3.3 Product characterisation 

As the electron partner proteins Fdx3 and FdR1 are not able to be produced and purified in 

significant quantities by standard procedures using E. coli, it was necessary to use whole-cell 

oxidation systems to investigate product formation. As previously reported, all three enzymes 

were produced in E. coli using Duet vectors [36]. CYP147G1 product formation was 

undertaken with the same method used previously [36]. Fatty acids varying from 8 to 16 

carbons in length were tested with the enzyme. We also tested several non-physiological 

electron transfer partners with CYP147G1 and all displayed significantly reduced or no 

metabolite formation (Fig. S4). Octanoic, decanoic and dodecanoic acids all generated a 

single major metabolite in good yield (Fig. 3). In all instances the MS indicated that this arose 

from hydroxylation (a mass of doubly-derivatised TMS metabolite -15, -Me, was observed, 

Fig. S7). As with undecanoic acid, the major product in each case can be assigned as the ω-1 

hydroxylation metabolite due to the presence of the mass spectrum peak at 117 m/z 

(corresponding to the loss of a CH3CO(SiMe3)+ cation). Furthermore, the major product of 

the turnover of dodecanoic acid was purified and characterised by NMR to confirm the 
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assignment (Fig. S14). A minor product (< 2%) was detected in the dodecanoic acid turnover 

which could be assigned as the ω-2 hydroxylation product, due to the peak at 131.05 m/z, 

indicating the loss of a terminal CH3CH2CO(SiMe3)+ 
 group. A small peak with a similar 

mass spectrum was also present in the turnover of undecanoic acid (Fig 3). Turnovers of 

tetradecanoic and hexadecanoic acid formed only a small amount of product. However GC-

MS analysis showed that tetradecanoic (RT 14.1 min, Fig. S9) was converted to 13-

hydroxytetradecanoic acid (18.2 min) and hexadecanoic (17.0 min, Fig. S10) to 15-

hydroxyhexadecanoic acid (20.7 min). CYP147G1 hence maintains its selectivity for the ω-1 

position no matter the length of the fatty acid, and is capable of oxidising acids of chain 

lengths from 8 to 16 carbon atoms (Scheme 2). There was a preference shown for those 

which were 10-12 carbons long. The level of product generated decreased with fatty acids 

above 14 carbons in size in line with the reduced spin state shift, though this could be due to 

decreased solubility and uptake by the cells during the whole-cell turnovers.  

 

Scheme 2: CYP147G1 oxidation of octanoic acid, decanoic acid, undecanoic acid and 
dodecanoic acid to 7-hydroxyoctanoic acid, 9-hydroxydecanoic acid, 10-hydroxyundecanoic 
acid and 11-hydoxydodecanoic acid, respectively. * Indicates a new chiral centre from the 
reaction.  

The selectivity of the enzyme for the ω-1 position was greatest for the shorter fatty acids (8 – 

10 carbons long), where no minor product peaks were detectable. The only other hydroxyl 

metabolite detected with any of the linear fatty acids was ω-2 (≤ 2%), with no ω, ω- 3 or ω-4 

hydroxylation products observed in any of the turnovers. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3: GC-MS chromatogram of in vivo turnovers of CYP147G1 after 4 hours with (a) 
octanoic acid, (b) decanoic acid, (c) undecanoic acid and (d) dodecanoic acid with substrate-
only controls for each. Retention times are as follows: octanoic acid substrate 4.3 min, ω-1 
product 9.1 min; decanoic acid substrate 7.5 min, ω-1 product 12.4 min; undecanoic acid 
substrate 9.25 min, ω-2 minor product 13.7 min, ω-1 major product 13.9 min; dodecanoic 
acid substrate 11.0 min, ω-2 minor product 14.5 min, ω-1 major product 15.4 min. * Indicates 
an impurity as determined by GC-MS as (a) decanoic acid (RT 7.5 min) (b) undecanoic acid 
(RT 9.25 min) (d) decanoic acid hydroxylation product (RT 12.4 min) and tetradecanoic acid 
(RT 14.1 min, Fig. S9) or unidentified. 

CYP147F1, in contrast, was found to hydroxylate fatty acids at multiple sub-terminal 

positions and the product distribution varied with the chain length. For example, dodecanoic 

acid was oxidised at ω-1, ω-2 and ω-3 (favouring the ω-2), while a greater number of 

metabolites were observed for tetradecanoic acid (ω-1 through to ω-5 in approximately equal 
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proportions). The site of oxidation changed and moved away from the ω-terminus with 

hexadecanoic acid (ω-5, ω-6 and ω-7) [11].   

 To further probe the selectivity of the enzyme for C�H bond abstraction, the methyl 

branched fatty acids were tested as substrates. 11-Methyldodecanoic and 10-

methyldodecanoic acid (ω-1 and ω-2 methyl groups) were both hydroxylated by CYP147G1 

(Fig. 4(a)). 10-Methyldodecanoic acid gave only one product, the ω-1 hydroxy metabolite, 

which was identified by GC-MS (RT 15.4 min, Fig. 4 and S7). 11-Methyldodecanoic acid 

was turned over to two products in almost equal amounts (a ratio of 47% to 53%; RT 15.35 

and 16.0 min, Fig. 4 and S7). These were determined to be the ω-1 (the characteristic 

fragment is 131.05 m/z from a CH3CCH3OSiMe3
+ fragment) and the ω (characterised by a 

103.0 m/z fragment of CHOSiMe3
+), respectively. Similar results were recorded with 10-

methylundecanoic and 9-methylundecanoic acid (Fig. 4(b) and S7). The major product of 9-

methylundecanoic acid (RT 14.1 min) was the ω-1 hydroxylation product, although a small 

peak (RT 14.4 min, < 3% total product) corresponding to a methyl hydroxy metabolite could 

be seen (note that it is not possible to determine if this is hydroxylation at the methyl branch 

or the ω terminus, which are undistinguishable by MS alone). 10-Methylundecanoic acid 

gave two products, at RT 14.0 and 14.75 min, being the ω-1 and the ω hydroxy metabolite. 

The product ratio was comparable to that found for 11-methyldodecanoic acid, with a slight 

preference for the ω position (47% to 53%). With 3,7-dimethyloctanoic acid, two product 

peaks were observed by GC-MS (RT 10.1 min and 11.0 min) compared to the sole peak 

arising from the turnover of octanoic acid. These were also characterised as the ω and ω-1 

products, respectively, with a ratio of 41% to 59% again in favour of ω-hydroxylation. 

Collectively the results demonstrate that the additional methyl group at the ω-1 position 

promoted the formation of the ω product (Scheme 3).  
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(a)   
(b)   

(b)  
 

(c)  
Figure 4: Expansion of the region where the products elute in the GC-MS chromatograms of 
the in vivo turnovers of CYP147G1 with (a) dodecanoic acid (ω-1, RT 14.7 min), 10-
methyldodecanoic acid (ω-1, RT 15.4 min) and 11-methyldodecanoic acid (ω-1 and ω, RT 
15.35 and 16.0 min), and methyl dodecanoate (ω-1, RT 14.7 min) (b) undecanoic acid (ω-2 
and ω-1, RT 13.2 and 13.4 min), 9-methylundecanoic acid (ω-1 RT 14.1, † is probable ω,  
14.4 min), 10-methylundecanoic acid (ω-1 and ω, RT 14.0 and 14.75 min) and (c) octanoic 
acid (ω-1, RT 9.2 min) and 3,7-dimethyloctanoic acid (ω-1 and ω, RT 10.1 and 11.0 min). * 
Indicates an unidentified impurity as determined by MS.  

From the regioselectivity of the enzyme with the linear fatty acids, it can be inferred 

that the ω terminus of the substrate is held close to the heme. The methyl group may be 

sequestered in a cleft, preventing ω-hydroxylation, and arranging the rest of the fatty acid 

chain to promote C-H bond abstraction at the ω-1 carbon. The lack of hydroxylation products 
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at the energetically equivalent secondary carbons along the chain (ω-2, ω-3 etc) infers that 

these are further from the heme-iron. For the methyl branched (ω-1) fatty acids, if the 

terminal methyl group is sequestered in a cleft near the Fe of the heme, the other methyl 

group would be positioned close enough to compete with the ω-1 carbon. The product 

distribution with the ω-1 methyl branched fatty acids shows a slight preference for CH3 

hydroxylation, despite the decreased reactivity of this position owing to the higher C-H bond 

strength of the primary carbon (104 kcal mol-1 compared to 92 kcal mol-1 for a tertiary carbon 

[52]). It is possible that the product distribution for these prochiral ω-1 branched fatty acids 

could be rationalised by the binding of the different terminal methyl groups in the active site 

cleft as each would place either the C-H or C-CH3 bonds of the ω-1 carbon closer to the 

heme. The ω hydroxylation products would be chiral and the determination of the 

enantioselectivity would be informative.  

 
Scheme 3: CYP147G1 oxidation of 3,7-dimethyloctanoic acid, 10-methylundecanoic acid, 9-
methylundecanoic acid, 11-methyldodecanoic acid and 10-methylundecanoic acid to their 
respective products. A methyl group at the ω-1 position on the substrate promotes the 
formation of the ω hydroxylation product by CYP147G1 while a methyl group at ω-2 does 
not alter the regioselectivity of the enzyme. * Indicates a chiral centre either in the substrate 
or introduced after hydroxylation by the enzyme. The stereoselectivity of these fatty acid 
metabolites have not yet been determined.  

In general, the yield of product formation decreased with the methyl-substrates. The 

combined integrated product peaks of 10-methyl and 9-methylundecanoic acid amounted to 

53% and 32%, respectively, of the products of undecanoic acid, while the 11-methyl and 10-

methyldodecanoic acid products totalled only 11% and 13% of the dodecanoic acid product 
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(all run on equivalent aliquots of the same cell growths and presented relative to an internal 

standard, Fig. 4).1 The reduced product formation is consistent with the increased steric 

imposition of the additional methyl group in the substrate, at what appears to be a tightly 

controlled position near the heme. The binding analysis of the ω-1 branched fatty acids 

supports this, showing weaker binding than with the linear chain acids.  

The ω-2 branched fatty acid substrates contain a stereocentre and were supplied as a 

racemic mixture. Therefore hydroxylation of these substrates at the Z-1 carbon could 

generate diastereomers (Scheme 3). The binding affinity and oxidation of one of the 

enantiomers of the Z-2 methyl branched fatty acids could be preferred over the other. Only 

one peak was visible in the GC-MS analysis of the turnovers, although it is possible that 

multiple diastereomers were present but not separated.   

A range of other substrates were tested for activity with the enzyme whole-cell 

system. Methyl dodecanoate (the methyl ester of dodecanoic acid), gave a major product 

from the in vivo turnover with the same retention time and mass spectrum as that of 

dodecanoic acid (Fig. 4(a) and S7), suggesting the methyl has been lost from the acetate 

group. However, it is not clear if it was cleaved in vivo before hydroxylation or after, during 

extraction or derivatisation. Additionally, the whole-cell system reactions with substrates 

such as 3,7,11-trimethyldodecanoic acid and dodecyl acetate (the dodecyl ester of acetic acid) 

resulted in no product formation. The turnovers of the other tightly binding substrates, 

including farnesol, farnesyl acetate and phytanic acid were attempted but no product could be 

detected. When tested in vivo there was also no evidence of any mono-oxygenation product 

from 10-undecenoic acid. Undecanoic acid and 10-undecenoic acid displayed almost 

                                                 
1 The reduced product formation of the enzyme with the methyl branched substrates was calculated by 
comparing the branched substrates to the non-branched of the same chain length (ie. 10-methyldodecanoic to 
dodecanoic acid). To account for possible decreased solubility of the branched substrates given their increased 
mass, 9-methylundecanoic and 10-methylundecanoic acid were additionally compared to dodecanoic acid. They 
generated 48% and 81% of the total products of dodecanoic acid, respectively. 
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identical binding affinities to CYP147G1 and epoxidation or allylic hydroxylation products 

often result from the oxidation of alkenes by CYPs. However, terminal alkenes have also 

been reported to act as mechanism-based inhibitors of monooxygenases such as CYPs [53].  

These data strongly suggest the ω end of the fatty acid is sequestered close by the 

heme of CYP147G1, regardless of chain length, promoting the regioselective hydroxylation 

at the ω-1 position. In the case of a tertiary ω-1 methyl branched carbon, one of the methyl 

groups remains sequestered, while the other must be positioned close to the iron-oxo 

complex, allowing hydrogen abstraction from the primary carbon and formation of the ω 

product. The strict regioselectivity of the enzyme may limit the substrate range. However, 

such selectivity for a single sub-terminal position on a saturated fatty acid is unusual, with 

few equivalents in the literature [14]. CYP2M1 and CYP2M17 hydroxylate dodecanoic acid 

solely at the ω-6 position [54]. Fungal CYP505A30 from Myceliophthora thermophila, which 

is a CPR-fused CYP similar to P450BM3, has demonstrated selectivity for the ω-1 position 

of the fatty acid chain (88% and 63% ω-1 product with dodecanoic acid and tetradecanoic 

acid, respectively) [55]. Selective oxidation of unsaturated fatty acids is more common. Two 

CYP102 enzymes from Ktedonobacter racemifer selectively hydroxylate unsaturated fatty 

acids. Krac_9955 produces only the ω-2 hydroxy metabolite of 10-undecenoic acid, while 

Krac_9936 strongly favours the ω-1 position of cis-9-hexadecenoic acid (93%) [56]. Several 

CYPs can mediate the selective hydroxylation of cis-9-octadecenoic acid to 12-hydroxy-cis-

9-octadecenoic acid, and similar unsaturated substrates [14, 57]. Terminal ω hydroxylases 

(such as the CYP153 family) are often very regioselective. CYP153A33 from Marinobacter 

aquaeolei hydroxylates C10 to C18 fatty acids with >95% selectivity for the ω position. The 

substrate range of this enzyme was increased to incorporate octanoic acid by the G307A 

variant while the L354I mutant shifted the selectivity to 76% ω-1 [16]. The equivalent 

residues in CYP147G1 are A257 and V304, respectively. P450BM3 and other CYP102 
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enzymes have been targeted with a range of methyl-branched fatty acids, which improve 

regioselectivity up to 85% for ω-1 in the case of 12-methyltetradecanoic acid with P450BM3 

[58]. CYP102A2 oxidised 13-methyltetradecanoic acid at the ω-2 position with 91% 

selectivity [59]. However, to our knowledge no CYP enzyme with selectivity for the same 

sub-terminal position across such a range of substrates as CYP147G1 demonstrates has been 

characterised previously.  
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4. Conclusions 

Members of the CYP147 family are found as part of a highly conserved operon containing a 

ferredoxin and ferredoxin reductase in many Mycobacterium and other bacterial species 

(CYP147G1, Fdx3 and FdR1). The tyrosine residue in the cluster binding motif of Fdx3 is 

highly conserved in the ferredoxins found alongside other CYP147 family members. In the 

instances where the equivalent cyp147G1 and ferredoxin genes had not been removed from 

the genome of the pathogenic Mycobacterium species, the gene for the ferredoxin reductase 

was compromised. The substrate range of CY147G1 was determined to include fatty acids. 

The CYP147G1 enzyme has an optimal substrate chain length of ~11-12 carbons. Branching 

methyl groups at the ω-2 position of the substrate disfavoured substrate binding more than 

when at the ω-1 position. The activity of fatty acid oxidation by CYP147G1 was 

reconstituted in vivo using an electron transfer system consisting of the native partners. 

Dodecanoic acid, undecanoic acid, decanoic acid and octanoic acid were selectively 

hydroxylated at the ω-1 position by CYP147G1. The regioselectivity of the enzyme differed 

with ω-1 methyl-branched substrates, with hydroxylation occurring on one of the terminal 

CH3 groups in addition to the ω-1 C-H bond. These data suggest the preferred orientation of 

the substrate in the CYP147G1 active site is with an ω methyl group sequestered near the 

heme promoting hydrogen abstraction at the ω-1 position. The hydrophilic group at the other 

terminus appears to be less rigidly bound as the enzyme can accommodate substrates ranging 

in length from 8 to 16 carbons long and with different functional groups (acid, ester, alcohol). 

In contrast to CYP147F1, the substrate range reported here for CYP147G1 is broader, and the 

demonstrated regioselectivity is not seen in the related enzyme. In addition, dodecyl amine, 

10-undecenoic acid and the azoles econazole and miconazole were all identified as potential 

inhibitors of CYP147G1. 
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Highlights 

- Two Mycobacterium marinum cytochrome P450s of the CYP150A subfamily were 
characterised 

- CYP150A5 binds a broad range of terpenoids and selectively oxidised β-ionol 
- CYP150A6 binds a narrower range of substrates and was structurally characterised to 

1.5 Å  
- Members of the CYP150A subfamily were discovered across many bacteria, 

including in pathogens 
- Azole inhibitors that bind with different affinities to CYP150A5 and CYP150A6 were 

identified 
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Abstract 

Background  

Actinobacteria, including the Mycobacteria, have a large component of cytochrome P450 

family monooxygenases. Examples include the pathogens Mycobacterium tuberculosis, M. 

ulcerans and M. marinum, and the soil-dwelling M. vanbaalenii. The ability of P450s to 

support hydroxylation of unactivated C�H bonds result in them having important roles in 

natural product biosynthesis and therefore being desirable biocatalysts.  

Methods 

Two members of the bacterial CYP150 family, CYP150A5 and CYP150A6 from M. 

marinum, were produced, purified and characterised. The substrate range of both enzymes 

were analysed and the monooxygenase activity of CYP150A5 was reconstituted using a 

physiological electron transfer partner system. CYP150A6 was structurally characterised by 

X-ray crystallography. 

Results  

CYP150A5 was shown to bind various norisoprenoids and terpenoid substrates. It could 

regioselectively hydroxylate β-ionol. The X-ray crystal structure of substrate-free CYP150A6 

was solved to 1.5 Å. The enzyme displayed an open conformation with short F and G helices, 

an unresolved F-G loop and exposed active site pocket. The active site residues could be 

identified and important variations were found with other CYP150A enzymes. Haem-binding 

azole inhibitors were identified for both enzymes.  

Conclusions 

Cyclic terpenoid compounds were identified as substrates for CYP150A5. The structure of 

CYP150A6 will facilitate the identification of physiological substrates and the design of 

better inhibitors for members of this P450 family. Based on the observed differences in 
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substrate preference and sequence variations among the active site residues, their roles are 

predicted to be different. 

General Significance  

CYP150 family members were found across many bacteria and are prevalent in the 

Mycobacteria including several human pathogens. Inhibition and structural data are reported 

here for these enzymes for the first time.  
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enzymology, electron transfer, biocatalysis, cytochrome P450, Mycobacterium 
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Abbreviations 

2xYT, 2 x concentration yeast extract tryptophan broth; CYP or P450, Cytochrome P450 

enzyme; DTT, dithiothreitol; EMM, E. coli minimal media; FAD, flavin adenosine 

dinucleotide; FdR, ferredoxin reductase; Fdx, ferredoxin; GC-MS or MS, gas-

chromatography mass spectrometry or mass spectrometry; IPTG, Isopropyl β-D-1-

thiogalactopyranoside; LB, Lysogeny broth (also known as Luria or Lennox Broth), 

NAD(P)H reduced nicotinamide adenine dinucleotide (phosphate); PDB, Protein Data Bank; 

PDR, phthalate dioxygenase reductase;  RT, retention time; SOC, Super Optimal broth with 

Catabolite repression. 
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1. Introduction 

Cytochrome P450s (CYP or P450) are a family of haem monooxygenase enzymes. They act 

with a conserved mechanism to selectively insert an oxygen atom from molecular dioxygen 

into a C-H bond of the substrate, forming an alcohol product [1]. Various CYP enzymes have 

also been found to catalyse other oxidation reactions, such as epoxidation, sulfoxidation, 

decarboxylation, hydrogenation, and carbon-carbon bond formation [2]. The catalytic cycle 

of the enzymes requires the transfer of electrons, ultimately derived from NADH or NADPH, 

to the haem via electron transfer proteins. Bacterial CYPs most frequently utilise a two 

component electron transfer system, comprised of an iron-sulfur ferredoxin and a FAD-

containing ferredoxin reductase, which is termed a Class 1 system [3]. In a given genome, the 

number of genes tends to decrease in the order CYP > ferredoxin > ferredoxin reductase [4, 

5]. The reconstruction of the native electron transfer chain for a given CYP enzyme is often 

required for optimal activity, as individual CYPs are often highly selective for a preferred 

ferredoxin [6, 7].  

In humans, CYP enzymes are responsible for a large proportion of drug interactions 

but they are also widely found across plants, bacteria and fungi, performing both anabolic and 

catabolic roles [8, 9]. Due to their diversity, CYP enzymes are categorised into families, 

given a number, and sub-families, given a letter code, based on sequence similarities [10]. 

Members of the same family share >40% sequence identity, while sub-family members share 

>55%. Above 80% identity is sufficient for two enzymes to share a name. Bacterial CYPs 

have generally been investigated either as inhibition targets in pathogenic species, or as 

biocatalysts, as they frequently catalyse the formation of synthetically valuable compounds 

[9]. C-H functionalisation is particularly difficult to achieve by chemical methods, often 

requiring harsh conditions and resulting in poor selectivity. In contrast, CYPs often display 
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very high selectivity of oxidation, and regio- and stereo- selectivity in product formation is 

widespread [11].  

Mycobacterium tuberculosis, the pathogen responsible for human tuberculosis, has 

been the target of ongoing drug development efforts as increasing levels of resistance to first 

and second-line anti-tuberculosis drugs is seen globally [12]. There are 20 CYP enzymes in 

Mycobacterium tuberculosis, several of which have been found to be essential for cell 

function or infectivity in the pathogen [13-15]. One of these, CYP121A1, which forms a 

carbon-carbon bond in the cyclic dipetide cyclo(l-Tyr-l-Tyr) has been subject to targeted 

inhibitor design [16-18]. Another, CYP128A1 has been implicated in virulence via the 

mediation of the metabolite sulfomenaquinone [19]. CYP125A1 and CYP142A1 are together 

necessary for M. tuberculosis cholesterol breakdown [20, 21]. In many other Mycobacterium 

species, the number of cyp genes is higher [22, 23]. The human pathogen Mycobacterium 

ulcerans, which causes the Buruli ulcer common in tropical areas of West Africa and 

Australia, has 24 while Mycobacterium marinum, a marine pathogen capable of opportunistic 

infection of humans, has 47 cyp genes [24, 25]. The lower number of CYPs in M. ulcerans 

and M. tuberculosis is thought to be caused by reductive evolution as they specialised 

towards pathogenicity [22-24]. M. marinum, in contrast to the two human pathogens, retains 

its ability to survive outside the host and is hypothesised to resemble the most recent common 

ancestor of M. tuberculosis and M. ulcerans, with which it shares a high degree of sequence 

identity (97% and 85%, respectively) [25]. Study of the CYP complement of M. marinum 

offers the understanding of the role and function of the additional CYPs, and hence the 

altered metabolism of the more pathogenic strains [26]. In addition, the CYPome of M. 

marinum is accompanied by a greater number of ferredoxins, with 12 single cluster 

containing species being associated with CYP enzymes in the genome [27]. Only three of 

these are retained in M. tuberculosis, while M. ulcerans retains seven.  
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M. marinum M contains two members of the CYP150 family, CYP150A5 and 

CYP150A6, which are the fifth and sixth members of the same sub-family. An analogue of 

CYP150A6 is present in M. ulcerans Agy99, but neither enzyme is conserved in M. 

tuberculosis. Other members of the CYP150 family have been identified in Mycobacteria 

including in M. vanbaalenii PYR-1 (CYP150A7). This enzyme has been characterised as 

having the potential to oxidise polycyclic aromatic hydrocarbons and is therefore of interest 

for its potential application in environmental remediation [28]. The CYP150A5 gene is 

closely associated in the genome with three ferredoxin genes, and we have previously 

reported the enzyme is able to hydroxylate the fragrance compound β-ionone when coupled 

with a native electron transfer chain [27]. Here we report the functional and structural 

characterisation of the two enzymes CYP150A5 and CYP150A6 to gain insight into their 

function in the bacterial kingdom.    
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2. Experimental 

2.1 General 

All organic substrates, derivatisation agents and other general reagents, except where 

otherwise noted were purchased from Sigma-Aldrich, Alfa-Aesar, VWR International or 

Tokyo Chemical Industry. Antibiotics, detergents, DTT and IPTG were from Astral 

Scientific. The media for cell growth and maintenance (LB, 2xYT, SOC, EMM and trace 

elements) were prepared as reported previously [26]. Antibiotics were added to the working 

concentrations listed here; ampicillin, 100 µg mL�1
 and kanamycin, 30 µg mL�1. 

UV-Visible spectra were recorded on a Varian Cary 5000 at 30 ± 0.5 °C. GC-MS 

analysis was performed using a Shimadzu GC-17A equipped with a QP5050A MS detector 

and DB-5 MS fused silica column (30 m x 0.25 mm, 0.25 µm) or a Shimadzu GC-2010 

equipped with a QP2010S GC-MS detector, AOC-20i autoinjector, AOC-20s autosampler 

and DB-5 MS fused silica column (30 m x 0.25 mm, 0.25 µm). On both instruments, the 

injector was held at 250 °C and the interface at 280 °C. Column flow was set at 1.5 mL min-1 

and the split ratio was 24. For norisoprenoid substrates, the initial oven temperature was 120 

°C (held for 3 min), before increasing to 220 °C at 10 °C min-1, where it was maintained for 7 

min.  

2.2 CYP150A6 production and purification 

CYP150A6 was purified according to the same method as reported previously for 

CYP150A5, using two ion-exchange steps [27]. Before each use, the stored protein samples 

were buffer exchanged into 50 mM Tris (pH 7.4) using a PD-10 desalting column (5 mL, GE 

Healthcare) to remove glycerol. The CYP150A5 concentration was determined using ε419 = 

111 ± 4 mM−1 cm−1 [27]. The extinction coefficient of CYP150A6 was determined by the CO 

binding assay initially developed by Omura and Sato [29] and performed as reported 

previously [26]. 



 

 
108 

 

2.3 Spin-state shift assays and dissociation constant determination 

The CYP was diluted to ~1 µM using 50 mM Tris (pH 7.4) buffer and the UV/Vis spectrum 

was recorded between 600 and 250 nm, while held at 30 °C. Aliquots (1 to 5 µL) of substrate 

stock solutions (50 mM or 100 mM, DMSO or EtOH) were added. The spectra were recorded 

until the shift reached a stable point. The ratio of high spin to low spin CYP (390 nm peak to 

420 nm peak) was estimated to ± 5% by comparison to the P450cam–camphor bound substrate 

spectra [26].  

To measure the binding affinity, CYP147G1 was diluted to ~2 µM in a volume of 2.5 

mL in 50 mM Tris (pH 7.4) buffer and used to baseline the spectrophotometer. Varying 

aliquots (1 to 3 µL) of substrate stock solutions of increasing concentrations (1 mM, 10 mM 

or 100 mM) were added via a Hamilton syringe and mixed. The difference spectrum was 

recorded between 300 nm and 600 nm. Further aliquots of substrate were added until no 

change in the peak-to-trough ratio at 420 nm and 390 nm (for a Type I spectrum) or 410 and 

430 nm (for a Type II spectrum) was observed. The difference in absorbance versus substrate 

concentration was fitted to the hyperbolic function (Equation 1):  

∆𝐴 =  
∆𝐴 × [𝑆]

𝐾 + [𝑆]
 

where Kd is the dissociation constant, [S] is the substrate concentration, ΔA the peak-to-

trough ratio, and ΔAmax the maximum peak-to-trough absorbance. Where a particular 

substrate exhibited tight binding (Kd equalling less than five times the concentration of the 

enzyme), the data were instead fitted to the tight-binding quadratic equation: 

∆𝐴 =  𝛥𝐴 ×
[𝐸] + [𝑆] + 𝐾 − ([𝐸] +  [𝑆] + 𝐾 ) − 4[𝐸][𝑆] 

2[𝐸]
 

where Kd is the dissociation constant, [S] is the substrate concentration, ΔA the peak-to-

trough ratio,  ΔAmax the maximum peak-to-trough absorbance and [E] is the enzyme 

concentration [30]. 
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2.4 Whole-cell oxidation turnovers 

Whole-cell turnovers with CYP150A5 were performed as per the method previously reported 

[26]. Briefly, a pRSF Duet vector containing the CYP and Fdx8, and a pET Duet vector 

containing the Fdx8 and FdR1 were expressed in E. coli BL21 cells and grown in LB with the 

appropriate antibiotics and trace elements (3 mL L-1) at 37 °C. Alternative pET Duet vectors 

were used containing the electron transfer partners listed in Table S1. Once the cells reached 

late log phase, the temperature was reduced to 18 °C. Benzyl alcohol (0.02% v/v), ethanol 

(2% v/v) were added and protein expression was induced after a further 30 min with IPTG 

(0.1 mM). After 16 hrs, the cells were resuspended in E. coli minimal media (EMM) and the 

substrates added to a final concentration of 1 mM and shaken for a further 24 hrs. Aliquots of 

these growths (including cells) were extracted into ethyl acetate, and analysed by GC-MS. 

2.5 Phylogenetic analysis 

Sequences were obtained either from the National Centre for Biotechnology Information 

(NCBI) database or from the Dr Nelson P450 homepage for bacterial P450s [31]. Sequence 

alignments were performed using ClustalW [32]. The evolutionary history was inferred by 

using the Maximum Likelihood method based on the Jones-Taylor-Thornton (JTT) matrix-

based model [33]. Initial trees for the heuristic search were obtained automatically by 

applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated 

using a JTT model, and then selecting the topology with superior log likelihood value. The 

tree is drawn to scale, with branch lengths measured in the number of substitutions per site. 

All positions containing gaps and missing data were eliminated. Evolutionary analyses were 

conducted in MEGA6 [34]. 

2.6 Crystallography 

CYP150A5 and CYP150A6 underwent a further purification step by size exclusion (Enrich 

SEC Column, 650 x 10 x 300 mm, 1 mL min-1) before concentration to ~30 mg mL-1  in 50 
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mM Tris (pH 7.4). Commercially available screening conditions (Hampton Research) were 

used for initial screening in 96 well sitting drop trays, using 1 µL of both protein and 

reservoir solution. Crystal conditions were then refined using the hanging drop vapour 

diffusion method, again using both 1 µL of protein and reservoir solution with a 500 µL 

reservoir. Diffraction quality crystals of CYP150A6 were obtained after 2 weeks at 16 °C 

from the condition containing 0.2 M ammonium phosphate, 20% w/v polyethylene glycol 

3,350, pH 4.7. They were harvested using a Micromount (MiTeGen) and cryo-protected by 

immersion in Parabar 10312 (Paratone-N, Hampton Research) before flash cooling in liquid 

N2. Data were collected by X-ray diffraction at the Australian Synchrotron MX1 beamline 

(360 exposures using 1° oscillations at a wavelength of 0.9357 Å). The data were processed 

into the space group P3121 using iMosflm [35], followed by truncation and addition of Rfree 

flags using Aimless [36], as part of the CCP4 package [37]. Molecular replacement phasing 

was carried out using the MrBump pipeline [38], also part of CCP4, comprising PhaserMR 

[39] and one round of Buccaneer [40] model building and refinement. The search model used 

was 3EJD, prepared for molecular replacement by MOLREP [41]. The model was rebuilt 

using Coot [42] based on initial electron density maps and refined using phenix.refine [43] 

over several iterations. The structure was deposited in the PDB (Accession code: 6DCB) and 

the data collection and refinement statistics are presented in Table 1.  
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Table 1: Crystal data collection and refinement statistics for CYP150A6 from M. marinum 
(PDB: 6DCB) 

Data collection statisticsa 

Wavelength  0.95370 

Unit cell a = 80.57 b = 80.57 c = 134.76 

α =  90 β = 90 γ = 120  

Space group  P 3 1 2 1  

Mol. in asym. unit  1 

Resolution 48.47 – 1.55 (1.57 – 1.55)b  

Unique reflections 74838 (3655) 

Completeness  100.00 (100.00) 

Redundancy 22.0 (20.7)  

(I)/[σ(I)] 11.7  

Rmerge (all I+ and I-) 0.262 (4.716) 

Rpim (all I+ and I-)  0.057 (1.056) 

CC(1/2)  0.998 (0.362) 

Rwork 0.2234 (0.3423) 

Rfree 0.2474 (0.3489) 

% solvent 53.46 

Residues modelled  406 

RMS deviation from restraint values 

Bond lengths  0.004 

Bond angles 0.80 

Ramachandran analysis 

Most favoured 97.76 

Additionally allowed 2.24 

 

a Data collected from one crystal 

b Values in parenthesis are for highest resolution shell. 
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3. Results/Discussion 

3.1 Phylogenetic analysis  

The CYP150 family has only one named subfamily at present (according to the Cytochrome 

P450 Homepage maintained by Dr Nelson of the University of Tennessee [31]). There are 15 

members of the subfamily that have been assigned CYP names so far, all of which are found 

in either Mycobacterium or Frankia species. CYP150A5 and CYP150A6 are both found in 

M. marinum M, with a CYP150A6 species also found in M. ulcerans Agy99 (98% sequence 

identity). Other Mycobacterium species such as M. vanbaalenii PYR-1, M. smegmatis MC2 

155, M. avium sp. paratuberculosis and M. kansasii ATCC 12478 contain more than one 

CYP150 family member. As such, the CYP150 family appears prolific in Mycobacterium 

species, including human pathogens M. ulcerans and M. colombiense (Table S2). A BLAST 

search revealed there are a large number (~1000 entries with >55% identity) of similar 

proteins to both CYP150A5 and CYP150A6, the vast majority of which are from 

Mycobacterium (>90% of entries found). Enzymes of this family are also found in species of 

Frankia, Streptomyces, Nocardia, and Rhodococcus (see Table S2 for more details). This 

distribution of analogous enzymes in other Actinobacteria is similar to that observed in other 

M. marinum CYP enzymes CYP268A2 and CYP147G1 [26, 27]. The analysis of Parvez et al 

placed the CYP150 family in a clan with the other Mycobacterium P450 families of CYP278, 

CYP1016, CYP269, CYP121, CYP1120, CYP1126, and CYP144 [23].  

A sequence alignment of CYP150 family members (selected enzymes shown in Fig. 

S1) showed the proximal cysteine is conserved as Cys363 (the residues numbering is given 

for CYP150A6 which coincidentally is the same for CYP150A5) as well as the nearby 

phenylalanine (Phe356). The EXXR motif is conserved in all CYP150 enzymes (Fig. S1). All 

contain an acid-alcohol pair; a glutamate (Glu255) and a threonine (Thr256). Phylogenetic 
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analysis revealed CYP150A6 clusters closer to the previously studied M. vanbaalenii PYR-1 

CYP150A7 (the polycyclic aromatic hydrolase [28]) and A8, while CYP150A9 and A10 are 

closer to CYP150A5 (Fig. 1). There appears to be two distinct CYP150 family groups; one 

containing CYP150A5 and the other with CYP150A6. However, all the CYP150 family 

members cluster together compared to the closest structurally characterised enzymes 

CYP144A1 from M. tuberculosis (32% identity to CYP150A5) and P450BioI from Bacillus 

subtilis (30% identity to CYP150A6). 

 

Figure 1: Phylogenetic tree (phenogram) of M. marinum enzymes CYP150A5 and 

CYP150A6 alongside other members of the CYP150 family from various Mycobacterium 

and other species. CYP150A7 from M. vanbaalenii has been reported to bind polyaromatic 

hydrocarbons. The CYP150 family member from Frankia sp. EuI1c (encoded by the gene 

FraEuI1c_5334) is included. The scale shows number of substitutions per site.  

The genomic context of the two CYP enzymes in M. marinum M is dissimilar (Fig. 

S2). CYP150A5 (Mmar_4737) lies near CYP190A3 (Mmar_4733) and there are three [3Fe-
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4S] ferredoxins nearby: Mmar_4730, Mmar_4734 and Mmar_4736. M. liflandii 128FXT, M. 

avium sp. paratuberculosis, M. smegmatis MC2 155 and other Mycobacterium species show 

similar gene neighbours in the region of their CYP150A subfamily analogues. These  also 

include a TetR transcriptional regular, an acyl-CoA dehydrogenase, an acyl-CoA 

acetyltransferase and an amidohydrolase. CYP150A9 from M. vanbaalenii PYR-1 has the 

most similar genomic region to that of CYP150A5 of the four CYP150 members from that 

species. In contrast, while CYP150A6 is present in M. ulcerans Agy99 (the sequence identity 

is 98%), comparison of the surrounding genomic region shows the enzyme is not part of a 

conserved operon. In M. ulcerans Agy99 CYP188A3 is nearby (three genes upstream) 

accompanied by a ferredoxin, while in M. marinum M the equivalent pair of genes are 23 

genes downstream from CYP150A6. Frankia species that contain CYP150 family members 

show very little regional genomic similarity to M. marinum M (Fig. S2). 

3.2 Substrate characterisation of CYP150 enzymes  

CYP150A6 was expressed in E. coli, purified and the ferrous CO bound spectrum was 

recorded (mass confirmed by SDS-PAGE, Fig. S3). The absorbance of the enzyme’s Soret 

peak shifts (>95%) to 450 nm upon reduction and CO exposure, indicating the reconstituted 

protein is a viable P450 enzyme (Fig. 2). The CYP150A6 enzyme demonstrated a 

comparable shift to CYP150A5 and the extinction coefficient was determined to be ε418=110 

± 6 mM−1 cm−1. 

In order to determine the substrate range, other members of the CYP150 family were 

considered. CYP150A7 member from M. vanbaalenii oxidises polyaromatic hydrocarbons, 

such as pyrene, dibenzothiophene, and 7-methylbenz-α-anthracene [28]. However, as Brezna 

et al reported, there is no correlation between presence of a member of the CYP150 family 

and the polycyclic aromatic degradation ability of a particular strain, suggesting this may be a 

promiscuous activity of the enzyme [28]. 
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Figure 2: CYP150A6 (black, A418), the reduced ferrous (blue, A417) and the ferrous form 

bound with CO (red, A446) showing the characteristic ~450 nm absorbance. The shoulder at 

~420 nm comprises < 5% of the total area. The extinction coefficient for the enzyme was 

determined to be ε418 = 110 ± 6 mM−1 cm−1. 

The first substrates tested with both enzymes were aromatic and polycyclic substrates. These 

included bicyclic aromatics such as naphthalene, naphthol, phenylphenol, tetralin, and 

quinoline. None disturbed the spin state of the CYP150A5 enzyme by more than 15% (see 

Table S3). Ionone derivatives such as α- and β-ionol, camphor and cineole as well as larger 

molecules such as sclareol and sclareolide were then attempted as substrates (Fig. 3). A large 

range of norisoprenoid substrates were capable of shifting the spin state shift of CYP150A5 

to the high spin state (Table 2). These substrates included α-ionol (70% HS), methyl-α-

ionone (65%), and α-ionone (45%). Interestingly, β-damascone, which differs in the location 

of the ketone group by only two carbons to the ionone substrates, shifted only 15% of the 

haem to the high spin form (compared to 60% high spin with β-ionone). (S)-(‒)-Camphor 

(60%) and other monoterpenoid substrates such as bornyl acetate and isobornyl acetate (75% 

and 70% respectively) fit into the active site of the enzyme in this initial test. The diterpene 

sclareol induced the highest spin state shift, at 90%, compared to 50% by sclareolide, which 

has an additional ring in the structure (Fig. 3). The bicyclic sesquiterpene guaiazulene shifted 
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60% of the haem to the high spin form. Both guaiazulene and 2-naphthol (70% high spin) 

were better substrates than 2-methylnapthalene (10%) suggesting the substituents around the 

aromatic ring are important to substrate recognition in CYP150A5. 

Table 2: Substrate binding data for both CYP150A5 and CYP150A6. See Figure 4 for 
dissociation constant analysis. The Supplementary Information contains binding data of 
additional substrates (Table S3). 

Substrates 
CYP150A5 Spin 
state shift (%) 

 
KD (µM) 

CYP150A6 
Spin state shift (%) 

Sclareol 90 0.8 ± 0.08 10 
Bornyl acetate 75 45 ± 6 10 

Isobornyl acetate 70 34 ± 2 20 
α-Ionol 70 17 ± 2 10 

2-Naphthol 70 1900 ± 280 <5 
Methyl-α-ionone 65 23 ± 4 10 

Guaiazulene 60 1.9 ± 0.4  <5 
β-Ionone 60 41 ± 2 [27] 15 

1,8-Cineole 60 331 ± 45 <5 
Fenchyl acetate 60 88 ± 13  10 

β-Ionol 55 64 ± 6 20 
Sclareolide 50 - 25 

(-) indicates dissociation constant was not determined due to limitations in substrate solubility 

preventing the endpoint being reached.  

Dissociation constant analyses were performed for compounds that, from the spin 

state shift, indicated they were complementary to the active site of this enzyme (defined here 

as where the shift to the high spin form was greater than 60%, Fig. 4). CYP150A5 with 

sclareol had the highest binding affinity, at 0.8 ± 0.08 µM, followed by guaiazulene with 1.9 

± 0.4 µM, which was then almost an order of magnitude tighter than the next best, α-ionol 

(17 ± 2 µM). The previously reported result with β-ionone (41 ± 2 µM [27]) was similar to 

those recorded for bornyl acetate (45 ± 6 µM) and slightly weaker than with isobornyl acetate 

(34 ± 2 µM). β-Ionol was less tightly bound (64 ± 6 µM). Despite the high spin state shifts 

recorded for naphthol and cineole with the enzyme, the dissociation constants indicated they 
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bound weakly (1900 ± 280 µM and 331 ± 45 µM for 2-naphthol and 1,8-cineole, 

respectively). The results of this binding analysis provide evidence for a substrate range for 

CYP150A5 that includes both polycyclic hydrocarbons and terpenoid substrates.  

 

 

Figure 3: Structures of selected substrates tested with CYP150A5 and CYP150A6. 

CYP150A6, in contrast, did not demonstrate any significant shifts in the spin state (all 

≤ 25%) with any substrate tested. Sclareolide (25%), 1,4-cineole (20%), isobornyl acetate 

(20%) and β-ionol (20%) were the substrates that induced the greatest spin state shifts. A 

wide range of substrates were tested, including fatty acids, benzoic acids, terpenoids, 

aromatics and steroids, however, no significant spin state shift was recorded (all ≤ 20%, 

Table S3). The CYP150A6 enzyme requires further characterisation as this screening method 

did not reveal many substrates which were able to modify the spin state. This suggests a more 

specific physiological substrate for this enzyme.   



 

 
118 

 

 
 (a) 

  
(b) 

 
(c) 

 
(d) 

Figure 4: Dissociation constant analysis of CYP150A5 with (a) sclareol, (b) guaiazulene, (c) 

β-ionol and (d) ketoconazole. The inset represents a typical substrate titration. The peak to 

trough difference in absorbance was measured for (a) and (c), from 420 to 390 nm, for (b) 

trough to baseline (420 to 600 nm) due to interfering substrate absorbance and for (d) 432 to 

411 nm. For additional dissociation constant analyses see Figure S5 and S6.  

Both enzymes were tested with a range of azole compounds, known competitive 

inhibitors of CYPs (Fig. 5). Econazole, ketoconazole and miconazole among others, 

generated Type II shifts in both enzymes indicative of N binding directly (or indirectly via a 

bridging H2O ligand) to the haem Fe (Table 3).  Both 1- and 4-phenylimidazole gave 

inhibitory shifts in both CYPs, while 2-phenylimidazole did not, similar to the results 

obtained with CYP268A2 and other enzymes [26, 44, 45]. Fluconazole bound to CYP150A5, 

shifting the absorbance in a Type II manner, while with CYP150A6 a small (HS ~5%) Type I 

shift was observed suggesting it bound the enzyme in a substrate-like manner. In general, the 

phenylimidazoles bound less tightly, with dissociation constants in the tens of µM for both 

enzymes in contrast to the nM affinity of the larger azoles.  
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Table 3: Binding data for possible inhibitors of both CYP150A5 and CYP150A6.  

Possible 

inhibitors 

CYP150A5 Spin 

state shift KD (µM) 

CYP150A6 Spin 

state shift 

 

KD (µM) 

1-Phenylimidazole type II, 423 nm 19.2 ± 5.1 type II, 423 nm 29.9 ± 13.2 

2-Phenylimidazole ~ 0% - ~ 0% - 

Clotrimazole type II, 424 nm 0.016 ± 0.01 type II, 425 nm 0.05 ± 0.02 

Econazole type II, 424 nm 0.01 ± 0.01 type II, 424 nm 1.1 ± 0.06  

Fluconazole type II, 419 nm - Type 1, ~5% - 

Ketoconazole type II, 423 nm 0.80 ± 0.14 type II, 422 nm 6.6 ± 1 

Miconazole type II, 424 nm 0.045 ± 0.01 type II, 423 nm 1.0 ± 0.09 

(-) indicates dissociation constant was not determined.  

The affinity of the azoles were higher for CYP150A5 than CYP150A6 (for example, 

with econazole KD = 0.01 ± 0.01 µM compared to 1.1 ± 0.06 µM for the respective enzymes). 

The affinity of clotrimazole for CYP150A6 was high in comparison to the other tested azoles 

with that enzyme (KD = 0.05 ± 0.02 µM, two orders of magnitude tighter than the next best) 

although the CYP150A5 affinity (0.016 ± 0.01 µM) was still tighter.  

 

(a) 

 

(b) 

Figure 5: Dissociation constants of CYP150A6 with (a) ketoconazole and (b) clotrimazole. 

The inset represents a typical substrate titration. The peak to trough difference in absorbance 

was measured from was (a) 435 to 414 nm and (b) 434 to 413 nm. For additional 

dissociations constants see Figure S8. 
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3.3 Product formation  

Reconstitution of the in vivo activity of CYP150A5 was attempted with the native ferredoxin 

Fdx8 (Mmar_4736) as it is the adjacent gene to the CYP. No reductase gene is located nearby 

so the ferredoxin reductase FdR1 (Mmar_2931), which has been demonstrated to support 

CYP147G1 activity with Fdx3, was used [27]. Additional electron transfer systems including 

Tdx/ArR [7, 46], the fused phthalate dioxygenase reductase (PDR) domain from 

Pseudomonas putida pp_1957 [47], and other native ferredoxins from M. marinum were also 

tested (see Table S1). This included the ferredoxin seven genes away from CYP150A5, Fdx6 

(Mmar_4730).  The product formation of each electron transfer system was tested with the 

substrate β-ionone. The native Fdx8 in combination with FdR1 was the best system tested. 

However product formation levels were still low. Given the [3Fe-4S] ferredoxin is located 

nearby in the genome, the most likely barrier to efficient electron transfer is the ferredoxin 

reductase.  

A range of substrates were tested with the CYP150A5 enzyme, including β-ionol and 

other terpenoids. A single hydroxylation product of β-ionol with CYP150A5 was visible by 

GC-MS analysis (Fig. 6). The mass spectrum and retention time corresponded to the 4-

hydroxy-β-ionol product previously identified from CYP101B1 (Fig. S9)[48]. This is 

consistent with the 4-hydroxy product of β-ionone with the same enzyme. Metabolites could 

not be detected with other substrates using the in vivo systems, possibly due to solubility and 

cell uptake difficulties, and further investigation is required to establish the products 

generated.  
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Figure 6: GC chromatogram of in vivo turnover of CYP150A5 with Fdx8 and FdR1 (red) 

and the alternative electron transfer system of pp_1957 from Pseudomonas putida (blue) [47] 

both with the substrate β-ionol. β-Ionol (RT 6.9 min) was turned over to single hydroxylation 

product, 4-hydroxy-β-ionol (RT 9.4 min). The physiological electron transfer partners Fdx8 

and FdR1 supported greater CYP activity than the alternative systems tested, including 

pp_1957 (shown above, see Table S1 for others). * indicates a substrate impurity.  

 

Scheme 1: CYP150A5 conversion of β-ionol to 4-hydroxy-β-ionol.  

3.4 Crystal structure 

In order to better understand the substrate range of both enzymes we attempted crystallisation 

of both CYP150A5 and CYP150A6 in a range of conditions. No crystals were obtained for 

CYP150A5, but diffraction quality crystals were obtained for substrate-free CYP150A6. Data 

for CYP150A6 were collected from one crystal and the structure solved to 1.5 Å (Table 1, 

PDB: 6DCB). The structure presented difficulties in phasing that were resolved by using a 

truncated model of P450BioI prepared by Sculptor (as CYP150A6 is lacking the Acyl-carrier 
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domain of the P450BioI structure). Several regions required full rebuilding in Coot before 

refinement (residues 67 to 76 and 350 to 360). The final structure modelled the enzyme from 

residues 3 to 424 with the exception of the residues from 180 to 195 of the F-G loop for 

which the electron density was unresolved (Fig. 7). Despite the missing 16 residues, the 

overall structure of the enzyme clearly displays the conserved fold of a P450 with an open 

structure when compared to other structures in the PDB (Fig. S10 and Fig. S11). The disorder 

in the F-G loop is relatively common in previously characterised P450 enzymes in the open 

form [49, 50]. Both the F and G helices in CYP150A6 appear to be shortened (Fig. 7(b)), 

leaving a probable 18 residue long F-G loop region (in contrast M. tuberculosis CYP144A1 

has only 3 residues between the F and G helices, Fig S11). The proline residue at the end of 

the G helix (P199) is conserved in all Mycobacterium CYP150 members, while the glycine at 

the end of the F helix (G180) is conserved in M. ulcerans CYP150A6 and M. vanbaalenii 

CYP150A7, but not in CYP150A5 and some others, inferring that in these proteins the F 

helix may be longer. The length of the F and G helices is similar to those in mammalian 

CYP3A4, which has a large degree of substrate promiscuity [51, 52]. However the F-G loop 

region in CYP3A4 contains two further helices (F´ and G´) and is 35 residues long. As a 

result of the unresolved residues in CYP150A6, however, interpreting the precise nature of 

the active site and access channel is more challenging. As modelled, the active site appears to 

be very open to solvent (Fig. S12). The F-G loop may be resolved or the F and G helices may 

reform to a length similar to those in other systems when the enzyme is crystallised in the 

presence of a substrate.  

The structure was compared to that of P450BioI (3EJD) which it was solved against, 

but the active site of the two structures present few similarities apart from the overall fold 

when overlaid (Fig. S11). An overlay with the closest structural model from M. tuberculosis, 

CYP144A1 (as identified using MrBump and also the Dali server [53]) showed two regions 
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of dissimilarity, including small α-helices (between the α-B and B´ region, and the other 

between α-L and β-5) that are not present in CYP144A1 [54]. These are referred to in this 

text as L´ and B ̋ (Fig. 7(a)). The remaining best matches as identified by the Dali server were 

Bacillus megaterium CYP109A2 (5OFQ) and M. tuberculosis CYP142A1 (2XKR). The β-

sheet region in the B-C loop of CYP144A1 was absent in CYP150A6 (Fig. S11). The B-C 

loop area was more similar to that of the M. smegmatis CYP142A2 enzyme (Fig. S11) [55].  

(a) (b)  

 (c)  

Figure 7: (a) CYP150A6 resolved to 1.5 Å with labelled α-helices according to the 

nomenclature developed in P450cam  (CYP101A1) [56]. Helices are coloured in red, β-sheets 

in yellow and the remaining backbone in green. The haem is in blue. The two additional 

helices of CYP150A6 are labelled in red. In the absence of substrate a water molecule binds 

to the distal site of the haem Fe. (b) The key residues P199 and G180 at the end of the F and 

G helices showing the short F and G loops (for comparison to other P450 structures see 

Figures S10 and S11). (c) The residues as well as the network of water molecules (hydrogen 

bonds in red) in the active site of the substrate-free CYP150A6 (green) enzyme. 
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The distal side of the haem contains an iron-bound water molecule (Wat316, Fe-O 

2.2Å). Wat316 is stabilised by a network of hydrogen bonded waters in the active site (Fig. 

7(c)). Two further water molecules (Wat110 and Wat10) are found bound in the kink of the I 

helix, forming hydrogen bonds between the A251 and T256 residues (where the T256 and 

E255 are the acid-alcohol pair of the enzyme, Fig. S13).The substrate binding pocket is 

primarily non-polar although the polar residues S301, D302 and M94 are present. The D302 

residue, however, interacts with the carboxylate group of the haem (analogous to D297 in 

P450cam [57]). These, along with A64 and L65, V99, F248, A251 and A252, V299, and I409 

can be identified as probable active site residues. The residues between 248 and 252 belong 

to the I helix (as seen in Fig. S13) while the B-C loop provides M94 and V99. As the residues 

of the F-G loop that may have formed the cap of the active site are not modelled, their 

probable interactions with a ligand cannot be seen. However, there is only limited evidence 

for direct substrate interaction with the F-G loop [58].  

Applying the sequence alignment of CYP150A5 and other CYP150 enzymes to the 

structure of CYP150A6 allows the identification of the probable active site residues of those 

species (Table 4). The residues are very dissimilar between CYP150A6 and CYP150A5. 

Instead of the A251, CYP150A5 has a serine residue (the residue numbering in both enzymes 

is aligned so will not be given) while the S301 residue of CYP150A6 is changed to a glycine. 

F248 is changed to asparagine, while both the V99 and M94 residues are replaced with a 

phenylalanine. A64 and L65 are a serine and valine respectively in CYP150A5. Of the 

residues identified above, only the acid alcohol pair (E255 and T256), V299, D302 (which 

interacts with a haem carboxylate) and I409 are conserved in both enzymes. Together the 

changes represent significant alteration of the polarity and shape of the active site between 

the enzymes, increasing the likelihood of significantly different physiological roles for the 

two.  
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Table 4: The active site residues of CYP150A6 and the aligned residues of other CYP150 
family members, including CYP150A6 from M. ulcerans, CYP150A5 from M. marinum and 
all four enzymes from M. vanbaalenii PYR-1. Bold indicates the residue matches that of 
CYP150A6, underlined indicates it matches CYP150A5. For emphasis those that are 
conserved in all are given in red.a Additional CYP150 family members are listed in Table S4.  

Mmar 

150A6 

Mulc 

150A6 

Mmar 

150A5 

Msmeg 

150A3 

Mvan 

150A7 

Mvan 

150A8 

Mvan 

150A9 

Mvan 

150A10 

A64 A64 S64 S65 A64 A64 S65 A70 

L65 L65 V65 V66 V65 I65 V66 V71 

M94 M94 F94 F96 M94 I94 F98 F100 

V99 V99 P99 P101 V99 V99 P103 P105 

F248 F248 N248 N250 F253 F250 N252 N253 

A251 A251 S251 S253 A256 A253 S255 A256 

A252 A252 A252 A254 A257 A254 A256 A257 

V299 V299 V299 V301 V304 T301 V303 I304 

I409 I409 I409 I411 I414 L411 I413 I414 

a E255 and T256 (the acid alcohol pair) are also conserved in all but are not listed here. 

This supports the phylogenetic analysis of the whole sequence and the substrate binding data 

of the CYP150A5 and CYP150A6 enzymes. The CYP150A6 enzyme in M. ulcerans Agy99, 

however, preserves all of these active site residues, so it would be expected to both perform a 

similar function and the same inhibitors would be effective. Of the M. vanbaalenii PYR-1 

enzymes, the most similar in the active site region is CYP150A7 (in which all the CYP150A6 

active site residues are conserved) while CYP150A9 is the least. However CYP150A9 shares 

the residues of CYP150A5 at these positions. CYP150A8 and CYP150A10 share some active 

site residues with both M. marinum enzymes, and potentially would have distinct roles again.   
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4. Conclusions 

Members of the CYP150 family are widely found in Mycobacterium species, as well as in 

related Actinomycetes. The only previously studied member of the family, CYP150A7 from 

M. vanbaalenii PYR-1, was found to oxidise certain polycyclic aromatic hydrocarbons which 

was linked to the activity of this species to degrade this class of compound. Here, the enzyme 

CYP150A5 is shown to bind and hydroxylate cyclic terpenes, with sclareol having the best 

binding parameter, rather than polycyclic aromatics. A physiological ferredoxin was used to 

support CYP activity in combination with a ferredoxin reductase also from M. marinum. The 

structural characterisation of CYP150A6 will facilitate future substrate identification for this 

enzyme through use of modelling and high-throughput screening methods. As both enzymes 

are found in a range of Mycobacteria, including human pathogens, the inhibitors which were 

determined for both enzymes could be used to stop CYP-related metabolism in these species 

which could form the basis of future drug design.   
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Members of the cytochrome P450 monooxygenase family CYP268 are found across a
broad range of Mycobacterium species including the pathogens Mycobacterium avium,
M. colombiense, M. kansasii, and M. marinum. CYP268A2, from M. marinum, which is
the first member of this family to be studied, was purified and characterised. CYP268A2
was found to bind a variety of substrates with high affinity, including branched and
straight chain fatty acids (C10–C12), acetate esters, and aromatic compounds. The
enzyme was also found to bind phenylimidazole inhibitors but not larger azoles, such as
ketoconazole. The monooxygenase activity of CYP268A2 was efficiently reconstituted
using heterologous electron transfer partner proteins. CYP268A2 hydroxylated geranyl
acetate and trans-pseudoionone at a terminal methyl group to yield (2E,6E)-8-hydroxy-
3,7-dimethylocta-2,6-dien-1-yl acetate and (3E,5E,9E)-11-hydroxy-6,10-dimethylundeca-
3,5,9-trien-2-one, respectively. The X-ray crystal structure of CYP268A2 was solved to a
resolution of 2.0 Å with trans-pseudoionone bound in the active site. The overall structure
was similar to that of the related phytanic acid monooxygenase CYP124A1 enzyme from
Mycobacterium tuberculosis, which shares 41% sequence identity. The active site is pre-
dominantly hydrophobic, but includes the Ser99 and Gln209 residues which form hydro-
gen bonds with the terminal carbonyl group of the pseudoionone. The structure provided
an explanation on why CYP268A2 shows a preference for shorter substrates over the
longer chain fatty acids which bind to CYP124A1 and the selective nature of the cata-
lysed monooxygenase activity.

Introduction
Cytochrome P450 (CYP) enzymes are a family of haem monooxygenases, capable of catalysing the
insertion of a single oxygen atom, derived from molecular oxygen, into an inert carbon–hydrogen
bond of a wide range of organic substrates [1]. Cytochrome P450 enzymes are ubiquitous in nature,
with genes in humans [2], other animals [3], plants, and many fungal and bacterial species. CYP
enzymes perform both anabolic (building up metabolites) and catabolic (breaking them down) pro-
cesses, making them key enzymes in secondary and xenobiotic metabolism [2] and targets for antibac-
terial drug design [4]. They have also been shown to perform a variety of reactions, most commonly
hydroxylation but also further oxidation, C–C bond formation, desaturation, and epoxidation, using
electrons ultimately sourced from NAD(P)H [reduced nicotinamide adenine dinucleotide (phos-
phate)] [5]. Individual CYPs often show high specificity for their substrate and selectivity in the site of
the target molecule where the oxidation takes place [6,7]. The catalytic activity of CYP enzymes is
dependent on the delivery of the two electrons to the haem in two separate, highly regulated steps. In
bacterial species, this is most often achieved by the combination of two cytosolic electron transfer
partners, a flavin adenine dinucleotide (FAD) containing ferredoxin reductase and an iron–sulphur
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ferredoxin, together known as a Class 1 electron transfer system [8]. CYPs are classified based on amino
acid sequence similarity, where members of a family share >40% sequence homology and subfamily members
>55% [9].
Upon sequencing of the Mycobacterium tuberculosis genome [10], the high number of CYP genes found

(20) was unprecedented for a bacterial species at the time. (In contrast, Escherichia coli has none.) As a result,
the CYPome of M. tuberculosis has been a target for inhibitory drug design in the years since [11]. Owing to
increasing numbers of drug-resistant and multi-drug-resistant strains, and a disease profile that overlaps with
that of HIV/AIDS, M. tuberculosis continues to be responsible for large-scale loss of life [12,13]. Members of
the Mycobacterium family are widespread and range from soil bacteria to human pathogens. Mycobacterium
marinum M, a pathogen of frogs and fish, is a close relative of both M. tuberculosis H37Rv (85% nucleotide
identity) and also the pathogenic species Mycobacterium ulcerans Agy99 (97%) [14]. M. ulcerans is responsible
for the Buruli ulcer (also referred to as the Daintree or Bairnsdale ulcer), which is a skin disease primarily
found in tropical areas, most often in central and western Africa [15]. M. marinum has 47 individual CYP
encoding genes in its genome, while M. ulcerans has 24. M. marinum is thought to resemble a common ances-
tor of the more pathogenic Mycobacterium species, with a genome that has not undergone the extensive reduc-
tion by gene deletion and pseudogene formation that characterises the genome of M. tuberculosis and, to a
lesser extent, M. ulcerans [14,15]. M. marinum is a more versatile pathogen, primarily affecting aquatic life but
also capable of surviving in a human host as the causal agent of aquarium granuloma, and, unlike the human
pathogens, of persisting outside of its host entirely [14,16]. It has been shown to adapt to a variety of hosts,
altering virulence mechanisms to suit, including the differential regulation of polyketide lipids, and sterol util-
isation [16]. Thus, the larger genome of M. marinum provides both increased redundancy, with a smaller per-
centage of essential genes than M. tuberculosis, but also increased adaptability. This is part of a common trend,
where the number of CYP genes in Mycobacterium species decreases as the organism environment changes
from soil living mycobacteria (average of 50 CYPs) to a human pathogen (average of 19) [17].
Where there are direct counterparts for M. marinum CYPs in M. tuberculosis, the roles of the majority are

still unknown. Several of the enzymes are reported as cholesterol oxidases, including some that are essential for
viability in vitro. The deletion of the CYP125A1 enzyme together with CYP124A1 leads to a build-up of the
intermediate cholest-4-en-3-one and the inhibition of the organism [18]. The cholesterol degradation activity
of CYP125A1 has been linked to the density of the mycobacterial cell wall, increasing the mass of phthiocerol
dimycocerosates (PDIM) [19]. The Mycobacterial cell envelope is distinguished by several features, most prom-
inently the additional layer of long-chain fatty acids known as mycolic acid covalently bound to the peptidogly-
can of the cell wall [20]. PDIM and other multiple methyl-branched long-chain fatty acids further increase the
density and thickness of this layer. Lipid metabolism is another common role of bacterial CYPs, and in M.
tuberculosis, CYP124A1 has been shown to hydroxylate phytanic acid and similar fatty acid compounds [21].
The majority of M. tuberculosis CYPs, however, have either resisted recombinant expression efforts, or have not
shown activity when screened against libraries of common substrates, leaving uncertainty about the roles of the
Mycobacterial CYPome as a whole. Even where the substrate and product is known, it is not well understood
how these play into the metabolism of the organism. For example, while M. tuberculosis is known to have no
sterol synthesis pathway, CYP51B1, a highly conserved sterol-α-demethylase, is present [22]. The current
understanding of M. tuberculosis virulence points to specialised areas such as mycolic acid synthesis, other lipid
metabolism, and cholesterol catabolism as critical [23], in the second two of which there is evidence for CYP
involvement.
Analogues of many of these characterised CYP proteins are present in other species of Mycobacteria. For

example, CYP51B1 is found in a highly conserved operon in Mycobacterium smegmatis MC2 155 and
M. tuberculosis, containing a CYP123 enzyme, a ferredoxin, a TetR regulator, and an ORF of unknown function
[24]. The same operon is conserved in M. marinum M and M. ulcerans Agy99. The conservation of various
CYPs outside of the M. tuberculosis complex (MTBC) has been taken as evidence that they perform general or
housekeeping roles, while conservation only in Mycobacterium bovis or mammalian pathogens has led to a sug-
gested role in virulence or human infectivity [25]. The characterisation of CYP enzymes present only in
non-MTBC species has been attempted for various reasons. Some were potential catalysts for reactions of bio-
synthetic interest, such as CYP153A16, from M. marinum, which was found like other members of the
CYP153 family to oxidise medium-chain alkanes [7]. CYP151A1 in M. smegmatis MC2 155 and CYP151A2
from Mycobacterium sp. strain RP1 were identified in the effort to understand the ability of the respective
organisms to utilise pyrrolidine and piperidine as sole carbon sources [26,27]. Both can oxidise secondary
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amines, catalysing ring opening and allowing further catabolism. In addition, CYP150 family members from
Mycobacterium vanbaalenii PYR-1 have been hypothesised to oxidise polycyclic aromatic hydrocarbons,
making them a catalyst of interest for environmental remediation [28].
As a result of its larger CYPome, many CYPs are found in M. marinum M that do not have direct counter-

parts in either of M. tuberculosis or M. ulcerans, and which may play a role in the different pathogenicity of the
organism. The enzyme CYP268A2 is one instance of this, with only a truncated pseudogene (cyp268A2P)
remaining in the M. ulcerans Agy99 genome, and no relative in M. tuberculosis. It is highly conserved across a
broad range of other Mycobacterium species and other bacteria. We have performed preliminary structural and
functional characterisation of this enzyme, with a view to elucidating its role in the metabolism of M. marinum
and across the Mycobacteria (Mycobacteriaceae) as a whole.

Experimental
General
All organic substrates, derivatisation agents, and general laboratory reagents, except where otherwise noted,
were purchased from Sigma–Aldrich, Alfa-Aesar, VWR International, or Tokyo Chemical Industry. Antibiotics,
detergents, DTT (dithiolthreitol), and IPTG (isopropyl β-D-1-thiogalactopyranoside) were from Astral
Scientific. Restriction enzymes used for cloning were purchased from New England Biolabs. KOD polymerase,
used for the PCR (polymerase chain reaction) steps, and the expression vectors were from Merck-Millipore.
The following were used as media for cell growth and maintenance: LB (lysogeny broth); tryptone (10 g),

yeast extract (5 g), and NaCl (10 g) per litre; 2×YT contains tryptone (16 g), yeast extract (10 g), and NaCl
(5 g) per litre; SOC (Super Optimal broth with Catabolite repression); tryptone (20 g), yeast extract (5 g), NaCl
(0.5 g), KCl (0.2 g), MgCl2 (1 g), and 5 ml of 40% glucose per litre; EMM (E. coli minimal media); K2HPO4

(7 g), KH2PO4 (3 g), Na3citrate (0.5 g), (NH4)2SO4 (1 g), MgSO4 (0.1 g), 20% glucose (20 ml), and glycerol
(1%, v/v) in 1 l; trace elements: 0.74 g CaCl2·H2O, 0.18 g ZnSO4·7H2O, 0.132 g MnSO4·4H2O, 20.1 g
Na2EDTA, 16.7 g FeCl3·6H2O, 0.10 g CuSO4·5H2O, 0.25 g CoCl2·6H2O. Antibiotics were added to the following
working concentrations: ampicillin, 100 mg ml−1 and kanamycin, 30 mg ml−1.
UV–visible spectra were recorded on a Varian Cary 5000 at 30 ± 0.5°C. GC–MS analysis was performed

using a Shimadzu GC-17A equipped with a QP5050A GC–MS detector and DB-5 MS-fused silica column
(30 m × 0.25 mm, 0.25 mm) or a Shimadzu GC-2010 equipped with a QP2010S GC–MS detector, an AOC- 20i
autoinjector, an AOC-20s autosampler, and a DB-5 MS-fused silica column (30 m × 0.25 mm, 0.25 mm). The
injector was held at 250°C and the interface at 280°C. Column flow was set at 1.5 ml min−1 and the split ratio
was 24. Solvent cut time was set to 3 min. For ionone and acetate substrates, the oven was held at 80°C for
3 min followed by an increase of 10°C min−1 up to 220°C and a final hold for 3 min. For 4-phenyltoluene, the
initial temperature and hold time were the same but the rate of increase was 12°C min−1 to a maximum of
230°C, where it was held for 5 min. Preparative HPLC analysis was carried out on a Shimadzu system equipped
with a DGU-20A5R degasser, 2× LC-20AR pumps, SIL-20AC HT autosampler, an SPD-M20A photodiode
array detector, and a CT0-20AC column oven. Separation was performed using an Ascentis Si HPLC column
(25 cm × 10 mm × 5 mm; Sigma–Aldrich). NMR was performed using an Agilent DD2 spectrometer at
500 MHz for 1H and 126 MHz for 13C.
Sequence alignment performed by ClustalW. Phylogenetic tree drawn using the maximum-likelihood

method based on the Jones–Taylor–Thornton ( JTT) model with complete deletion of missing data. Initial tree
(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a
matrix of pairwise distances estimated using a JTT model and then selecting the topology with a superior
log-likelihood value.

Recombinant protein expression and purification
The CYP268A2 gene (Mmar_3761) was amplified by PCR using oligonucleotide primers (vide supra). The
gene was amplified by 30 cycles of strand separation at 95°C for 45 s followed by annealing at 55°C for 30 s
and extension at 68°C for 80 s. The genes were cloned into the pET26 vector using the appropriate NdeI and
HindIII restriction enzymes, and the correct insertion was checked by Sanger sequencing performed by
Australian Genome Research Facility Ltd (AGRF). The plasmid was then transformed into E. coli BL21(DE3).
The transformed E. coli cells were grown on an LBkan plate and incubated in 2YTkan (1.2 l total, in six flasks) at
37°C for 5 h at 160 rpm. Following this, the temperature was reduced to 18°C, the speed to 90 rpm. Benzyl
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alcohol (0.02%, v/v), ethanol (2%, v/v) and, after 30 min, IPTG (0.1 mM) were added to induce protein expres-
sion [29]. The growths were continued for a further 16 h before harvesting of the cell pellet by centrifugation
(5000 g, 15 min). The cells were then resuspended in 50 mM Tris (pH 7.4) with 1 mM DTT (henceforth Buffer
T), with β-mercaptoethanol (1 ml), TWEEN (1 ml), and glycerol (20%, v/v), to a total volume of 200 ml. The
resuspended cells were then lysed by sonication (25 cycles of 20 : 40 s on/off, 70%, 19 mm probe, Sonics
Vibra-Cell) while kept on ice. The supernatant was isolated from the cell debris by centrifugation (40 000 g,
30 min) and then loaded onto a DEAE Sepharose column (XK50, 200 mm × 40 mm, GE Healthcare) and
eluted with a linear gradient of 100–300 mM KCl in Buffer T. The fractions containing the desired P450 were
identified by their red colour, and pooled, concentrated using a Vivacell 100 (Sartorius Stedim, 10 KD mem-
brane), and desalted using a Sephadex G-25 medium grain column (250 mm × 40 mm) with elution using
Buffer T. The protein sample was then loaded onto a further Source-Q anion exchange column (XK26,
80 mm × 30 mm, GE Healthcare) and eluted with a gradient of 0–1 M KCl in Buffer T. Collected fractions were
concentrated again by ultrafiltration and stored at −20°C in an equal volume of glycerol, after filtration with a
0.22 mM syringe filter. The final A420/A280 ratio was 1.6.
Before use, the glycerol was removed from CYP268A2 by gel filtration, using a 5 ml PD-10 column (GE

Healthcare) and elution with Buffer T (without DTT). The extinction coefficient for CYP268A2 was deter-
mined by CO difference spectra using ε450 = 91 mM−1 cm−1 for the reduced CO-bound form [30]. The
CYP268A2 concentration was determined using ε419 = 108 ± 7 mM−1 cm−1

.

Spin-state shifts and substrate-binding titrations
To determine the extent of substrate binding, CYP268A2 was diluted to ∼1 mM in 50 mM Tris (pH 7.4) to a
volume of 500 ml, and various substrates (100 mM, EtOH or DMSO) were added. The absorbance between 600
and 250 nm was recorded on the UV spectrophotometer until no further spectral change was observed. The
high spin percentage was estimated (±5%) by comparison to a set of spectra, generated by the sum of substrate-
free (>95% low spin, 418 nm Soret maximum) and camphor-bound (>95% high spin, 392 nm Soret maximum)
CYP101A1 to the appropriate percentages.
For substrate-binding titrations, CYP268A2 was diluted to 2 mM in 50 mM Tris (pH 7.4) to a volume of

2.5 ml, and 1–3 ml of substrate was added via a Hamilton syringe from either 1, 10, and 100 mM (EtOH or
DMSO) stock solution, starting from the lowest concentration. The peak-to-trough difference in absorbance,
between 600 and 250 nm, was recorded until additional aliquots caused no further spectral change in the Soret
band. The dissociation constant for that substrate was obtained by fitting the difference in absorbance against
the substrate concentration to the hyperbolic function:

DA ¼ DAmax " [S]
Kd þ [S]

where Kd is the binding constant, [S] is the substrate concentration, ΔA the peak-to-trough ratio, and ΔAmax

the maximum peak-to-trough absorbance. In the instances where the substrate exhibited tight binding (Kd <
10 mM, less than five times the concentration of the enzyme), the data were instead fitted to the tight-binding
quadratic equation:

DA ¼ DA " [E]þ [S]þ Kd $
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
([E]þ [S]þ Kd)

2 $ 4[E][S]
p

2[E]

where Kd is the binding constant, [S] is the substrate concentration, ΔA the peak-to-trough ratio, ΔAmax the
maximum peak-to-trough absorbance, and [E] is the enzyme concentration [31].

Construction of in vivo systems to support product formation
To construct whole-cell turnover systems, CYP268A2 was cloned into a pRSFDuet vector using the NdeI and
KpnI sites introduced by PCR. ArR (a ferredoxin reductase from Novosphingobium aromaticivorans) has been
cloned into pETDuet previously [32]. The terpredoxin gene was purchased (gblock; Integrated DNA
Technologies) and cloned into pETDuetArR using NcoI and HindIII sites (Supplementary Material). The two
vectors, pRSFDuet-containing CYP268A2, and pETDuet, containing Tdx [terpredoxin (a ferredoxin from
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Pseudomonas sp.)] and ArR, were transformed into E. coli BL21 cells. The transformed cells were grown over-
night on an LBamp/kan plate. A colony was picked and grown in 50 ml LBamp/kan for 6 h at 37°C and 110 rpm.
It was then cooled to 18°C and slowed to 90 rpm, with the addition of benzyl alcohol (0.02%, v/v) and ethanol
(2%, v/v), followed after 30 min by IPTG (0.1 mM). The culture was then left overnight. The cell pellet was har-
vested by centrifugation (5000 g, 10 min) before being resuspended in EMMamp/kan (100 ml). The substrate was
then added to 1 mM final concentration before shaking at 150 rpm at 30°C. After 24 h, the turnover was then
centrifuged (15 min, 5000 g) and the supernatant was isolated. Samples (1 ml) of the turnover were taken for
initial testing via GC–MS at various time points. The samples were extracted into ethyl acetate, dried over
MgSO4 before resuspension in anhydrous acetonitrile (200 ml). Where GC–MS showed product formation,
larger scale growths by the same method (200 ml EMM) were performed and extracted. The extract was dis-
solved in 5% isopropanol : hexane and purified by semi-preparative HPLC using an elution gradient of 5–10%
isopropanol. The chromatogram was monitored at 254 nm. Relevant peaks (as confirmed by GC–MS) were col-
lected, pooled, and resuspended in deuterated chloroform to allow analysis by NMR.

In vitro NADH activity assays
Purified CYP268A2 (0.5 mM) together with the ferredoxin Tdx (5 mM) and ferredoxin reductase ArR (0.5 mM)
(the purification method of these are reported elsewhere [32,33]) were mixed to a total volume of 1.2 ml in
oxygenated 50 mM Tris (pH 7.4), with added catalase (120 mg). The mixture was equilibrated for 2 min at
30°C before the addition of 320 mM NADH (A340≈ 2.0). Substrate was then added to a concentration of
0.25 mM. The reaction was monitored at 340 nm for the duration. The rate of NADH turnover was calculated
by plotting the A340 against time, using ε340 = 6.22 mM. Once the reaction was at completion, 1 ml of the turn-
over was extracted into ethyl acetate and analysed by GC–MS as above.

Crystallography, data collection, data processing, and structural determination
CYP268A2 was further purified by size-exclusion chromatography (Enrich SEC Column, 650 10 × 300 mm, 1
ml min−1 flow rate) before being concentrated to 30–35 mg ml−1 in Buffer T. The substrate pseudoionone
(100 mM EtOH, mixture of isomers) was added to the protein to a final concentration of 1 mM immediately
before crystallisation. The initial screening of crystallisation conditions was performed by the sitting-drop
method in 96-well plates with commercially available screening conditions (Hampton Research) using 1 ml of
both the protein solution and the reservoir solution. Crystal conditions were refined using the hanging drop
vapour diffusion method, and again with 1 ml of both the protein solution and the reservoir solution, equili-
brated with a 500 ml reservoir. Diffraction-quality crystals (plates with dimensions ∼150 × 140 × 20 mM,
Supplementary Figure S4) were obtained after 2 weeks at 16°C from the condition containing 0.96 M ammo-
nium phosphate and 0.3 M sodium citrate (pH 7.0). They were harvested with a Micromount (MiTeGen) and
cryo-protected by immersion in Parabar 10312 (Paratone-N, Hampton Research) before flash cooling in liquid
N2. Data were collected by X-ray diffraction at 100 K on the Australian Synchrotron MX1 beamline (360 expo-
sures using 1° oscillations at a wavelength of 0.9537 Å) [34]. The data were processed in the space group C2
using XDS [35,36]. Molecular replacement phasing was carried out using the modified search model (residues
1–23, 145–152, 322–337, and 244–253 were removed from the surface to improve the search model clashes)
from PDB entry 2WM4 [21] (CYP124A1 with phytanic acid bound, found by searching the FFAS server) with
the MRSAD (Molecular Replacement Single Wavelength Anomalous Diffraction) protocol of Auto-Rickshaw
[37,38] using the native dataset (however, SAD failed and phasing were obtained by MR only). Within the
pipeline, various programmes from the CCP4 program suite [39] were used and the model phases were
improved by model refinement using CNS [40,41] and REFMAC5 [42], density modification using PIRATE
[43], and rebuilding of the model using SHELXE [44], RESOLVE [45], and Buccaneer [46], finally refinement
of the resulting model using Phenix [47] and REFMAC5. The structure was further rebuilt using Coot [48]
based on the initial electron density maps, with multiple structural refinement iterations using phenix.refine.
Composite omit maps were generated using the Composite Omit Maps program in Phenix.

Results/discussion
Phylogenetic and sequence analysis
Alongside CYP268A2, genes encoding members of the cytochrome P450 monooxygenase CYP268 family are
primarily found in other Mycobacterium species. These include CYP268A1 from M. avium subsp.

© 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society 709

Biochemical Journal (2018) 475 705–722
https://doi.org/10.1042/BCJ20170946



paratuberculosis, A3 and B2 from M. smegmatis, and B1 and C1 from M. vanbaalenii (accession numbers and
similarities are listed in Supplementary Table S1). A single member, CYP268A4 is found in Streptomyces bing-
chengensis. A BLAST search found a large number of proteins with high sequence identity (250 results >70%),
almost exclusively from other Mycobacterium species (none of the first 250 results were from non-Mycobacteria
species). CYP268A2 is conserved in Mycobacterium liflandii (98%) and as a pseudogene in M. ulcerans Agy99
(95%, truncated after 195 residues). A similar gene without truncation is found in M. ulcerans subsp. shin-
shuense (97%), a clinical isolate from Japan [49]. Close analogues are also found in M. avium (78%), M. colom-
biense (77%), and M. kansasii (85%), among others. A M. tuberculosis strain TKK-01-0051 contained an
analogous protein with high sequence similarity (78%), although there is some suggestion that this strain may
be misclassified and is better referred to as M. colombiense [50]. M. colombiense is a member of the M. avium
complex and is known to opportunistically infect HIV-positive immuno-compromised patients [51].
The CYP268 family also shares high sequence similarity with the CYP124, CYP125, and CYP142 families, of

which members from M. tuberculosis, M. marinum, M. smegmatis, and M. vanbaalenii are known
(Supplementary Table S1). In particular, CYP268A2 has a sequence similarity above 40% with many members
of the CYP124 family. The CYP142B subfamily members cluster together (Figure 1), more closely to the 124
and 268 families than to the 142A subfamily, suggesting a high degree of overlap between the three families.
CYP124A1 from M. tuberculosis (with 41% similarity to CYP268A2) has been characterised as a lipid hydroxy-
lase [21] and additionally can oxidise vitamin D3 and other analogues [52]. CYP142A1, also from M. tubercu-
losis (33% similarity to CYP268A2), can oxidise cholesterol esters [53], and CYP125A1 (40%) is similarly a
cholesterol hydroxylase [54].
A sequence alignment (Supplementary Figure S1) revealed that of the cytochrome P450 commonly con-

served sequence elements, CYP268A2 retains the glutamate and arginine pair (Glu300, Arg303), as well as the
phenylalanine residue (Phe364) in the K helix, seven residues before the conserved proximal cysteine at Cys372
[55]. The acid alcohol pair in the enzyme is an aspartate (Asp263) and threonine (Thr264). The CYP124A1
family members contain a glutamate (Glu270 in CYP124A1) rather than the aspartate found in the CYP268
enzymes (Supplementary Figure S1).
The area surrounding putative cyp268 genes is marked by the presence of a highly conserved operon

(Supplementary Figure S2), containing a GTPase, a large ribonuclease, two regulatory proteins (AcrR and
Sir2-like), and a downstream NAD synthetase. The cyp268A2 gene is flanked on both sides by a PE-PGRS
(proline glutamate-polymorphic GC-rich sequence proteins) gene (glycine-rich proteins detected across the
Mycobacteria with possible roles as antigens [56] or fibronectin-binding [57]). The environments of the cyp124
genes (M. marinum and M. tuberculosis) do not have any of these genes, but share some similarity with each
other (Supplementary Figure S2).

Characterisation of CYP268A2 and its substrate range
The CYP268A2 enzyme was produced in E. coli and purified by two ion exchange chromatography steps. The
protein was tested for the characteristic Soret absorbance, occurring when the ferrous form of the CYP enzyme
binds CO [58]. CYP268A2 after reduction by sodium dithionite and gentle bubbling with CO shifted almost
completely from the resting state absorbance at 419–450 nm, with only a small shoulder (<5%) at 420 nm
(Figure 2). The extinction coefficient for the Soret absorbance [58], ε450 = 91 mM cm−1, was used to determine
the extinction coefficient for CYP268A2 ε419 = 108 ± 7 mM cm−1, which was henceforth used to determine the
concentration of the enzyme.
As CYP268A2 is the first member of its P450 family to be studied, previously characterised family members

are not available to give an indication as to the role of the enzyme. Based on the similarity to members of the
CYP124 lipid-hydroxylase family [21], the initial substrates tested on CYP268A2 were branched and straight
chain fatty acids and esters (Figure 3). Many of these were successful in shifting the majority of the enzyme
into the high spin form, indicating that they were accommodated by the active site of the enzyme
(Supplementary Figure S5). Geranyl acetate (80% HS) and farnesyl acetate (75% HS) both induced higher spin-
state shifts in CYP268A2 than undecanoic acid (70% HS), which was the best performing acid substrate
(Table 1). Additionally, it was discovered that a range of aromatic compounds could bind to the enzyme. 4-
Phenyltoluene (55% HS), phenyl acetate (50% HS), and phenylcyclohexane (50% HS) all successfully induced a
Type I Soret shift. The binding affinity of CYP268A2 for the substrates that gave the highest spin-state shifts
was then assessed (Figure 4). Farnesol (75% HS) bound to the enzyme with high affinity, Kd, 0.8 ± 0.2 mM.
Undecanoic acid gave Kd, 1.1 ± 0.5 mM. Pseudoionone, a linear ionone precursor, gave 80% HS and Kd, 3.6 ±
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0.6 mM (as a mixture of isomers). 4-Phenyltoluene also bound tightly, Kd, 13 ± 2.4 mM. Notably, the longer
substrates preferred by CYP124A1 such as phytanic acid failed to induce a significant spin-state shift in
CYP268A2 (Supplementary Table S2).
The enzyme did not appear to have the strict requirement for branching methyl groups at the terminus of

the substrate as shown by CYP124A1, with lauric acid (55% HS) outperforming both 11-methyllauric acid
(30% HS) and 10-methyllauric acid (20% HS), although 15-methylhexadecanoic acid (15%) was more effective
than palmitic acid (0%). The binding data suggested that the enzyme active site could better accommodate
straight chain substrates over those with longer bent chains, preferring the trans-isomer, geranyl acetate (Kd,
8.5 ± 1.9 mM), over the cis-form, neryl acetate (30% HS, Kd, 106 ± 29 mM, Supplementary Figure S7).
CYP124A1 has additionally been characterised as having cholesterol and vitamin D binding activity [52] (as do
CYP125 and CYP142 family members, [54,59]). As a result, CYP268A2 was tested with a variety of cholesterol
and vitamin D analogues, but those gave no or very little (0–5% high spin form) indication of binding. The
substrate-binding data demonstrate that the active site of CYP268A2 is versatile and can accommodate a range
of linear and aromatic hydrocarbons, terpenes, and fatty acids. Some substrates such as farnesol that have been
reported for CYP124A1 bind well with CYP268A2, but it appears to support a wider range of substrate
binding.

Figure 1. Phylogenetic tree of the CYP268 family.
Included are some members of the CYP124 and CYP142 families, both of which have been predominately found in
Mycobacterium species. The grouping shows that CYP268A2 is closely related to members of the 268 family, with significant
sequence similarity to the 124 family (all above 40%) and the 142B subfamily (43% to 142B1). CYP124G1, which does not
cluster with the remainder of the 124 family, has 41% similarity to CYP268A2. Percentage identities can be found in
Supplementary Table S1. The tree was drawn to scale, with branch lengths and scale measured in the number of substitutions
per site.
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Figure 2. Ferric CYP268A2 (black, A419), the reduced ferrous form (blue, A412), and the ferrous form bound with CO
(red, A449), showing the characteristic absorbance at ∼450 nm.
The shoulder at 420 nm in the ferrous–CO form comprises ∼5% of the total area.

Figure 3. Structures of compounds tested as potential CYP268A2 substrates.
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Many azole drugs have been reported to bind CYPs as competitive inhibitors, coordinating directly to the Fe
atom of the haem and generating Type II spectral shifts, shifting the Soret band to a higher wavelength rather
than to 390 nm which is characteristic of displacement of the distal water ligand [60,61]. These have been pro-
posed as methods for inhibiting bacterial growth, particularly in species where CYPs play essential roles [62].
Many possible azole inhibitors were tested with CYP268A2 (Table 2). CYP268A2 gave Type II shifts with two
of these, 1-phenylimidazole (shifted the Soret maximum to 421 nm) and 4-phenylimidazole (shifted the Soret
maximum to 423 nm). The binding affinity of these to CYP268A2 was assessed by determining the dissociation
constant (Figure 4). 1-Phenylimidzole bound more tightly (Kd, 0.9 ± 0.3 mM) than 4-phenylimidazole (Kd, 4.5
± 0.6 mM). The addition of 2-phenylimidazole and other larger azole inhibitors yielded a small Type I shift.

Product characterisation
As CYP268A2 has no closely located ferredoxin gene in the M. marinum genome, it was expressed in E. coli
with a variety of electron transfer partners from different organisms (Supplementary Table S3). The pair terpre-
doxin (2Fe–2S ferredoxin, from a Pseudomonas sp.) and an FAD-containing ferredoxin reductase ArR (from
N. aromaticivorans) were selected (based on levels of product formation with geranyl acetate, Supplementary
Material) to enable characterisation of the products of the enzyme. In vitro turnovers were used to analyse the
product formation rate and where product was formed, substrates were scaled up with in vivo turnovers to
allow characterisation.
The addition of geranyl acetate to CYP268A2 in vitro gave an NADH consumption rate of ∼60 nmol

nmolP450−1 min−1 and when extracted and analysed by GC–MS, it showed a major product (9.5 min,
Figure 5a) with a mass peak of 152.15 (expected mass of hydroxylation product is 214.16, 152.12 with loss of
the acetate) after 24 h. To characterise the product, large-scale in vivo turnovers were performed (Figure 5a).
The in vivo major product had a slightly different retention time at 9.4 min and the mass peaks (154.25,
136.20, and others) were two mass units higher than those of the in vitro product. The pattern of products in
the GC trace of the whole-cell turnovers over time combined with mass spectrum peaks suggests that the major
product in vivo was also hydrogenated in addition to the CYP-mediated hydroxylation (Supplementary
Figure S8). HPLC purification of the major product followed by NMR analysis identified the metabolite as the
terminal hydroxylation product (E)-8-hydroxy-3,7-dimethyloct-2-en-1-yl acetate (Figure 6 and Supplementary
Figure S15). The in vitro turnover experiment with geranyl acetate confirms that the hydroxylation is

Table 1 Spin-state shift and dissociation constants of CYP268A2
with a variety of substrates, presented in descending order of
magnitude of the type I spin-state shift.
The spin-state shifts of a range of additional substrates are listed in
Supplementary Table S2.

CYP268A2 substrates Spin-state shift (% HS) Kd (mM)

Geranyl acetate 80 8.5 ± 1.9

Pseudoionone 80 3.6 ± 0.6

Farnesol 75 0.8 ± 0.2

Farnesyl acetate 75 5.1 ± 1.9

10-Undecenoic acid 70 1.6 ± 0.2

Undecanoic acid 70 1.1 ± 0.5

Capric acid 65 1.1 ± 0.5

4-Phenyltoluene 55 13 ± 2.4

Geraniol 55 7.9 ± 1.6

Lauric acid 55 270 ± 36

Linalyl acetate 55 110 ± 25

Neryl acetate 30 106 ± 29
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CYP-mediated while it is likely that the hydrogenation was performed by an endogenous E. coli ene reductase
[63,64].
The in vitro turnover of pseudoionone by CYP268A2 had an NADH consumption rate of 48 nmol

nmolP450−1 min−1 and generated a single major product at 16.1 min with a mass peak at 208.1 (expected
hydroxylation product at 208.15). The addition of pseudoionone to the in vivo CYP/Tdx/ArR system generated
a single major product after 24 h with a retention time of 15.9 min (Figure 5b). Mass peaks of the in vivo
product (210.2, 195.20, and others) were again two mass units higher than the in vitro product
(Supplementary Figure S9). The major product from the whole-cell turnover was isolated by HPLC and charac-
terised by NMR to be (3E,5E)-11-hydroxy-6,10-dimethylundeca-3,5-dien-2-one (Figure 6 and Supplementary
Figure S16). Similarly to geranyl acetate, the in vivo product has been hydrogenated at the ω-2 alkene in add-
ition to ω hydroxylation. The pseudoionone was a mixture of isomers, and there are two substrate peaks at 12.0
and 12.7 min (192.15 and 192.20 m/z compared with expected molecular ion peak at 192.15), which are the cis
(3E,5Z) and trans (3E,5E) isomers, respectively. In both the in vitro and in vivo turnovers, the enzyme showed
a preference for the trans-pseudoionone isomer, which was consumed over the course of the turnover, whereas
the cis was not.
A product from the CYP268A2 catalysed oxidation of 4-phenyltoluene was also identified by GC–MS

(Supplementary Figure S10). This was assigned as 4-biphenylmethanol by MS comparison and GC co-elution
experiment with other P450 turnovers [65]. Other substrates, including undecanoic acid, neryl acetate, farnesol,
farnesyl acetate, and geraniol, were tried but no product was detected. The selectivity for trans- over
cis-pseudoionone and geranyl over neryl acetate, which aligns with the binding data, indicates that the enzyme
prefers the straight chain isomer over the bent form. The absence of product for geraniol suggests that sub-
strates with the acetate ester moiety are favoured. The catalytic turnover rate reported is expected to be limited
by the use of non-native electron transfer partners, which generally support lower levels of oxygenase activity
[66]. However, the ability of Tdx to support CYP268A2 activity is a strong indication that the physiological
electron transfer partner may be a [2Fe–2S] ferredoxin. Ideally, the native transfer partners of CYP268A2 from
M. marinum would be identified. The availability of known substrates of CYP268A2 which have demonstrated
product formation will facilitate this process.

Crystal structure of pseudoionone-bound CYP268A2
Crystallisation of both substrate-bound and substrate-free CYP268A2 was attempted. When pseudoionone was
added before crystallisation, CYP268A2 formed sharp-edged single crystals after 2 weeks and diffraction data
were collected to 2.0 Å at the Australian Synchrotron. No suitable crystals of the substrate-free form were
obtained. The solved structure consists of a single polymer chain in the asymmetric unit and the trans (3E,5E)
form of the substrate pseudoionone in the active site (PDB code: 6BLD). All residues were modelled except the
first five of the N-terminus. Refinement statistics for the structure are located in Table 2. The overall fold con-
forms closely to the canonical P450 fold (Figure 7b). A loop of residues (Pro46 to Phe61) between two β-sheet
regions forms an active site ‘cap’ similar to that of CYP124A1 [21]. The electron density map shows that the
pseudoionone is arranged with one of the ω methyl groups held directly over the haem (4.3 Å away from the
Fe atom). The carbonyl group of the substrate interacts with residues from the G helix and the B–C loop,
towards the apparent exit of the active site (Figure 7a). The residues of the active site that interact directly with
the carbonyl of pseudoionone, Gln209 and Ser99, sit close enough at 2.8 and 3.4 Å, respectively, to form hydro-
gen bonds (Figure 7c). This arrangement provides structural justification for the substrate-binding preference
for oxygen-containing groups at one end of the substrate (acetates, acids, or alcohols). Geranyl acetate, undeca-
noic acid, and other similar substrates would, in theory, have a functional group that could also interact in a
similar manner and position.
The pseudoionone molecule appears to be completely enclosed in the active site (Figure 8), suggesting that

CYP268A2 has crystallised in the ‘closed form’ of the P450 [67]. Indeed, the enzyme completely encloses the
substrate, showing no access to the substrate channel from the surface (Supplementary Figure S11a). The active
site residues (12 within 4 Å of the substrate, Figure 7c) together create a linear substrate-binding pocket which
seems likely to preferentially exclude the cis form of pseudoionone, which was also present in the crystallisation
conditions but not observed binding in the solved structure. This further supports the product formation data,
which have shown that the enzyme preferentially hydroxylates the trans isomer of pseudoionone at the ω ter-
minus from the carbonyl group. The only significant vacant space in the active site is near the haem, where
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Figure 4. Dissociation constant analysis of CYP268A2 with selected substrates.
(a) Pseudoionone, (b) geranyl acetate, (c) 4-phenyltoluene, (d) undecanoic acid, (e) 1-phenylimidazole, and (f ) 4-phenylimidazole. The inset shows
the spectral change upon titration with substrate. The peak-to-trough difference in absorbance was measured from 420 to 390 nm, except with
1-phenylimidazole (peak-to-trough 413–435 nm) and 4-phenylimidazole (414–434 nm), where Type II spectral shifts were recorded.
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there is room to accommodate a larger group which would rationalise the binding of phenyltoluene-like mole-
cules and the phenylimidazole inhibitors.
Two obvious water channels from the surface to the haem are observed, and these are similar to those found

in other CYPs. One, referred to as the ‘water channel’, approaches the coordinating cysteine from the proximal
face of the enzyme, beginning from the base of the B–C loop (Supplementary Figure S12), while the other, on
the distal side between the E, F, and I helices, is the ‘solvent channel’ [68]. Residues of the I helix, including the
acid Asp263, participate in the hydrogen-bonding network, by interacting directly with the water molecules
that comprise the solvent channel (Supplementary Figure S13). The water channel is thought to be involved in
active site solvation, and the solvent channel to be responsible for proton relay [68].
Comparison of the structure of the enzyme to the close relative CYP124A1 was made (Figure 7b). The active

site of CYP124A1 accommodates larger substrates (∼C16), and a phytanic acid-bound structure is available
(PDB code: 2WM4) [21]. This structure shows the substrate bound in a similar manner to that of pseudoio-
none close to the haem, but the carboxylate end of the phytanic acid curves into a pocket that is not available
in the CYP268A2 enzyme, as a result of the presence of a tryptophan residue, Trp90 (Figure 7d). Both the
Gln209 and Ser99 residues are not present in CYP124, replaced by a serine group (Ser216, which is shifted
further away from the active site) and a phenylalanine (Phe107), respectively, neither of which interact electro-
statically with the longer phytanic acid. Furthermore, the hydrophilic Gln100 is not present in CYP124A1
(replaced by Gly108) and the Thr264 (of the acid–alcohol pair) is flipped (Thr271 in CYP124A1). The position
of Thr264 also affects the commonly conserved hydrogen bond between the alcohol and the nearby alanine

Table 2 Crystal refinement data for CYP268A2 from M. marinum (PDB code:
6BLD).

Data collection statistics1

Wavelength 0.95370

Unit cell a = 154.76, b = 44.726, c = 57.727
α = 90, β = 100.84, γ = 90

Space group C2

Number of molecules in asymmetric unit 1

Resolution 2.00–42.91 (2.00–2.05)2

Number of unique reflections 26 452 (1743)

Completeness 99.2 (89.4)

Redundancy 7.4 (7.0)

(I)/[σ(I)] 9.7 (2.0)

Rmerge (all I+ and I−) 0.130 (0.742)

Rpim (all I+ and I−) 0.071 (0.411)

CC(1/2) 0.997 (0.768)

Rwork 19.96%

Rfree 24.79%

% solvent 42.89

Number of residues modelled 413

RMS deviation from restraint values

Bond lengths 0.002

Bond angles 0.551

Ramachandran analysis

Most favoured 98.06%

Additionally allowed 1.94%

1Data collected from one crystal.
2Values in parenthesis are for highest resolution shell.
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carbonyl (Ala260 in CYP268A2 and Ala267 in CYP124A1), with the bond distance in CYP268A2 2.7 Å com-
pared with 3.7 Å in CYP124A1 (Supplementary Figure S14). The position of the threonine in CYP268A2
matches the orientation of the equivalent residue in camphor-bound P450cam, which has a distance of 2.5 Å
[69]. The tightness of this hydrogen bond is hypothesised to affect solvent access to the active site of the
enzyme: in the closed position, solvent access is restricted, in the open form allowed [70].
The crystal structure of pseudoionone-bound CYP268A2 provides important insights into the substrate

selectivity of these enzymes. The comparison with related CYP124A1 from M. tuberculosis provides an under-
standing on how these enzymes have evolved to modify their substrate selectivity. M. marinum also contains a
gene encoding a CYP124A1 protein (84% similarity to CYP124A1 from M. tuberculosis), and both could have
evolved from a common ancestor. At some point in time, the progenitors of the CYP268A2 and CYP124A1
enzymes may have had an overlapping function, providing genetic redundancy, and hence CYP268A2 may
only be maintained in the larger genome of the less immuno-challenged organism. However, our data suggest
that CYP268A2 would support a more varied range of substrate hydroxylation in the native system than
CYP124A1. Along with other protein-encoding genes, the broad substrate range of the CYP268A2 system
potentially aids M. marinum in surviving in more diverse environments.

Figure 5. GC chromatograms of CYP268A2 catalysed substrate turnovers.
(a) GC chromatogram of the in vivo and in vitro turnovers of CYP268A2 with geranyl acetate. The retention times are as
follows: geranyl acetate 6.3 min, in vivo product 9.4 min, in vitro product 9.5 min. (b) In vivo turnover with pseudoionone
monitored over 24 h. Identification of isomer peaks was done by retention time comparison with neryl acetate (cis) and geranyl
acetate (trans), where the cis form had the shorter retention time. The retention times are: cis-pseudoionone 12.0 min,
trans-psuedoionone 12.7 min, 4 h products 15.9 min and 16.1 min, 24 h product 15.9 min.

Figure 6. Hydroxylation products of CYP268A2.
*In each, the hydroxylation at ω-terminus would generate a stereo-centre at the ω-1 carbon. However, in vivo the hydrogenation
occurred after the hydroxylation, and as a result, the stereo-selectivity of the isolated product would be dependent on the
E. coli ene reductase enzyme.
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Conclusion
The larger CYP complement of M. marinum contains several CYP families, including CYP268, which are wide-
spread across Mycobacterium species but are absent in M. tuberculosis. The characterisation of CYP268A2
demonstrates that the selectivity and versatility of these enzymes can vary significantly even where there is
structural and sequence similarity in the active site. CYP268A2 is the first member of this family to be charac-
terised, and the substrate range of the enzyme reported here is broad with several molecules binding with high
affinity. The successful hydroxylation of a long-chain branched acetate and ketone demonstrates that activity
can be efficiently reconstituted with non-native electron transfer proteins including a [2Fe–2S] ferredoxin. This

Figure 7. X-ray crystal structure of CYP268A2.
(a) The overall structure of CYP268A2 (green) from M. marinum with pseudoionone bound (yellow), showing the composite
omit 2Fo− Fc electron density at σ = 1.5 (blue mesh) of the pseudoionone in the active site and (b) CYP268A2 (green) with
pseudoionone (yellow) bound overlaid with M. tb CYP124A1 (blue) with phytanic acid (orange) bound, showing the conserved
P450 helices [55]. (c) The active site region of CYP268A2 showing side chains of amino acids within 5 Å of the pseudoionone
molecule. There are 12 residues within 4 Å: S99, Q100, L103, L187, L205, Q209, L256, V259, A260, T264, F311, and F408. The
terminal carbonyl of the pseudoionone has polar contacts (red) with the amine group of Q209 and the hydroxyl group of S99.
(d) An overlay of the active site regions of CYP268A2 and CYP124A1 showing side chains of amino acids from both enzymes
within 5 Å of the pseudoionone and phytanic acid molecules (CYP268A2 labels in black and CYP124A1 blue).
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will assist with future attempts to identify the native electron transfer proteins. The substrate binding and turn-
over data presented here may be only the first of a broader range of molecules that can be oxidised by CYP268
family members. Furthermore, the crystallisation and structural analysis rationalises the observed catalytic activ-
ity and forms the basis for any future attempt to improve it. Finally, potential azole inhibitors were identified
for the enzyme, which bind to the haem iron. As CYP268 family members are present across a range of
Mycobacterium species including human pathogens, this could form the basis of future inhibitor design against
bacterial infection.
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Highlights 

- The CYP125A, CYP142A and CYP125A enzymes of M. marinum and M. 
tuberculosis were produced and their substrate range compared 

- Significant differences were observed with CYP125 subfamily members in each 
species 

- CYP142A3 closely mimics the substrate range of CYP142A1 as did the equivalent 
CYP124A enzymes 

- CYP124A1 from M. marinum was structurally characterised and found to be similar 
to the M. tuberculosis enzyme 

- Changes in the binding affinity of inhibitors for these enzymes were observed 
between species  
  



 

 
155 

 

Abstract 

Background  

The steroid binding cytochrome P450 enzymes of Mycobacterium tuberculosis are essential 

for organism survival through metabolism of cholesterol and its derivatives. The counterparts 

to these enzymes from Mycobacterium marinum were studied to determine the degree of 

functional conservation between them.  

Methods 

Spectral analysis of the substrate and inhibitor binding for the four M. marinum enzymes 

CYP125A6, CYP125A7, CYP142A3 and CYP124A1 were performed and compared to those 

of M. tuberculosis. M. marinum CYP124 was characterised by X-ray crystallography.  

Results  

CYP125A7 of M. marinum was more similar sequentially to CYP125A1 from M. 

tuberculosis than CYP125A6, but showed biochemical differences in resting haem spin state 

and azole binding mode and affinity. CYP142A3 demonstrated similar affinity for the 

substrates of CYP142A1. The two CYP124A1 enzymes displayed strong conservation of 

active site residues, except near where the carboxylate terminal of the phytanic acid binds. 

Conclusions 

The steroid binding CYP enzymes in M. marinum demonstrate some key differences in 

substrate and inhibitor binding. The M. marinum CYP142 had 10-fold higher affinities for 

azole inhibitors, whereas CYP125A7 did not show a Type II inhibitor-like shift with any 

azoles.  

General Significance  

These enzymes in M. tuberculosis have been identified as candidates for inhibition and the 

data here demonstrates that difference in inhibitor design may be required to target CYP 

family members from different pathogenic Mycobacterium species. 
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Abbreviations 

CYP or P450, cytochrome P450 enzyme; DTT, dithiothreitol; HβCD, hydroxyl-β-

cyclodextrin; IPTG, isopropyl β-D-1-thiogalactopyranoside; LB, lysogeny broth (also known 

as Luria or Lennox Broth), NAD(P)H reduced nicotinamide adenine dinucleotide 

(phosphate); MDR, multi drug-resistant; MTBC, Mycobacterium tuberculosis complex; RT, 

retention time; SOC, Super Optimal broth with Catabolite repression; PCR, polymerase chain 

reaction; PIM, phenylimidazole; XDR, extensively drug-resistant. 
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1. Introduction 

Mycobacterium tuberculosis is the pathogen responsible for human tuberculosis [1]. 

Tuberculosis continues to be a major human health concern, resulting in the deaths of 1.6 

million people in 2016, and over six million new infections [2]. The startling rise in multi-

drug (MDR) and extensively-drug resistant (XDR) strains of this species makes tuberculosis 

a growing, rather than diminishing threat to human health, despite a yearly decrease in 

incidence of 2% [2]. There is both a lack of effective new drugs on the market and difficulties 

with existing treatment regimes (the standard treatment continues for six months), all of 

which increases the risk of substantial resistance developing, and emphasises the necessity of 

further research into this bacterial species. Many other Mycobacterium species are also 

pathogenic; for example Mycobacterium leprae is the causal agent of leprosy. 

Mycobacterium ulcerans infection results in the skin disease known as the Buruli or Daintree 

ulcer, which is common in Africa and increasingly so in northern and eastern Australia, and 

is the third most common human Mycobacterium pathogen after tuberculosis and leprosy [3, 

4]. Mycobacterium marinum is a primarily a pathogen in frogs and fish (although it can 

opportunistically infect humans, causing aquarium granuloma) [5]. It bears high sequence 

similarity to the human pathogens (85% and 97% to M. tuberculosis and M. ulcerans, 

respectively). This species is often used as a model organism for M. tuberculosis as the 

disease progression and features (such as granuloma formation) are well conserved [6]. M. 

marinum has been hypothesised to resemble a common ancestor of the more pathogenic 

Mycobacterium species [5]. Mycobacterium smegmatis is also sometimes used as a model 

species. However, this species is a non-pathogenic soil-dwelling bacteria and thus has 

limitations in usefulness [7]. 

The sequencing of Mycobacterium genomes has revealed, among other things, that 

the number of cytochrome P450 genes in many Mycobacteria is unusually high for bacterial 
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species [8, 9]. Cytochrome P450s (CYPs) are haem-thiolate monooxygenases, which perform 

the catalytic insertion of a single oxygen atom across a C-H bond. CYPs are named based on 

shared sequence similarity, where >40% similarity indicates a shared family group (denoted 

by number), greater than >55% indicates a shared subfamily (denoted by letters) [10]. 

Bacterial family groups are numbered from 100 to 300 and then from 1000 and above. For 

instance, CYP101A1 is the first member of the A subfamily in the 101 family of bacterial 

CYPs. In M. tuberculosis, there are 20 unique CYP sequences, which make up almost 0.5% 

of the genome [1]. In contrast, Escherichia coli has none. M. marinum, which has a larger 

genome that is less affected by the reductive evolution that characterises that of M. 

tuberculosis, has 47 CYP sequences (comprising almost 1% of the genome) [5]. Among the 

20 CYPs of M. tuberculosis, several have been found to be critical for in vitro or in vivo 

function. These include CYP121A1, which performs a dipeptide cyclisation reaction that 

appears to be highly specific to species in the M. tuberculosis complex (MTBC), and the 

CYP125A1 and CYP142A1 pair, which both perform cholesterol hydroxylation at the C27 

position [11, 12]. Dual knockout of the latter two CYPs produces cholesterol build-up and 

cytotoxicity [13]. An additional non-essential enzyme, CYP124A1, was first shown to bind 

branched fatty acids [14], but additional activity with cholesterol analogues has also been 

demonstrated by this enzyme [15]. The physiological relevance of this catalytic ability has 

not been demonstrated, however, this finding does serve to highlight the similarities in the 

reactions catalysed by the three; CYP125A1, CYP142A1 and CYP124A1 which all perform 

hydroxylations at the ω-terminus of branched aliphatic hydrocarbons. 

Cholesterol breakdown in M. tuberculosis is necessary for the optimal growth of M. 

tuberculosis both in vitro and in animal models [16-20]. A large portion of the M. 

tuberculosis genome is associated with cholesterol breakdown, from the transport of 

cholesterol into the cell, transcriptional regulators of this process, and the catabolic enzymes 
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themselves [1]. Many of the genes are essential for organism function [16, 21]. For example, 

the release of either acetyl-CoA or propionyl-CoA accompanies many of the steps in the 

cholesterol breakdown process [16]. One of the cellular fates of propionyl-CoA is 

incorporation into methyl-branched polyketide lipids such as phthiocerol dimycicerosates 

(PDIM) that are present in the mycomembrane layer of the M. tuberculosis cell wall [16]. 

CYP125A1 function has been connected to the density of the cell wall through PDIM via 

cholesterol breakdown [22]. 

 These steroid binding CYP enzymes are conserved across diverse Mycobacterium 

species. Small changes in sequence can significantly alter substrate recognition in CYP 

enzymes [10], which suggests that investigation into the degree of conserved function 

between enzymes of the same family species is appropriate. Work on M. smegmatis identified 

a second CYP125 family member, making at least three cholesterol metabolising enzymes in 

that species: CYP125A3, CYP125A4 and CYP142A2 [23]. M. marinum also contains two 

CYP125 isoforms, CYP125A6 and CYP125A7, as well as a CYP142 and CYP124 family 

member. However, the M. marinum CYP125A7 enzyme is closer in sequence to the M. 

tuberculosis CYP125A6. Its system of potential steroid binding enzymes offers insight into 

the recent evolution of the M. tuberculosis CYP system. Here, the steroid and fatty acid 

binding CYP enzymes of M. marinum (CYP125, CYP142 and CYP124) were purified and 

characterised and compared to the equivalent systems in M. tuberculosis. The X-ray crystal 

structure of CYP124A1 from M. marinum was determined.  
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2. Experimental 

General 

Except where otherwise noted, all organic substrates, derivatisation agents and other general 

reagents were purchased from Sigma-Aldrich, Alfa-Aesar, VWR International or Tokyo 

Chemical Industry. Antibiotics, detergents, DTT and IPTG were purchased from Astral 

Scientific. The media for cell growth and maintenance (LB, 2xYT, SOC and trace elements) 

were prepared as reported previously [24]. Appropriate antibiotics were added to working 

concentrations; 100 µg mL�1
 and 30 µg mL�1 for ampicillin and kanamycin, respectively. 

UV-Visible spectra were acquired using a Varian Cary 5000 at 30 ± 0.5 °C.  

Recombinant protein expression and purification 

The M. marinum CYP124A1, CYP125A6, CYP125A7 and CYP142A3 genes were amplified 

by PCR using oligonucleotide primers (see Supplementary Information for details). PCR was 

performed by the method reported for CYP268A2 [25]. The genes were cloned into the 

pET26 vector using the appropriate restriction enzymes and the correct insertion checked by 

Sanger sequencing performed by Australian Genome Research Facility (AGRF). The M. 

tuberculosis CYP124A1, CYP125A1 and CYP142A1 were each obtained as a gblock (IDT) 

with NdeI and HindIII restriction enzyme sites incorporated at the 5’ and 3’ termini, 

respectively. M. tuberculosis CYP124A1 (MtbCYP124A1), M. marinum CYP124A1 

(MmarCYP124A1), CYP125A1, CYP125A6, CYP125A7, CYP142A1 and CYP142A3 were 

each cloned in pET26 vectors and transformed into E. coli BL21 (DE3) cells. The growth and 

purification of each was performed using the method reported previously for CYP268A2 

[25]. After two ion-exchange steps, the purity was analysed SDS-PAGE (Fig. S1). The 

protein was stored in glycerol (50% v/v at -20°C), which was removed before use by a 5 mL 

PD-10 column (GE Healthcare) in 50 mM Tris pH 7.4. CO assays were performed according 

to the method developed by Omura and Sato [26]. Extinction coefficients were determined 
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using ε450 = 91 mM−1 cm−1 for the reduced CO bound form. Concentration was determined 

for CYP142A3 concentration using ε419 = 108 ± 11 mM−1 cm−1
 and for MmarCYP124A1 

using ε419 = 139 ± 10 mM−1 cm−1. CYP125A6 and CYP125A7 concentrations were estimated 

using the reported extinction coefficients for CYP125A3 and A4 [23, 27]. 

Spin state shifts and substrate binding titrations 

To determine the extent of substrate binding for a particular enzyme, the purified protein was 

diluted to ~1 µM in 50 mM Tris pH 7.4, to a volume of 500 µL, followed by the addition of 

various substrates. Substrate stocks were made up to 10 mM in DMSO, with the exception of 

steroids, for which stock solutions were at a concentration of 1-2 mM in 50 mM Tris pH 7.4, 

with 10% hydroxyl-β-cyclodextrin (HβCD). The absorbance between 600 nm and 250 nm 

was recorded using a UV-Visible spectrophotometer until no further spectral change was 

observed. The high spin percentage (± 5%) was estimated by comparison to a set of spectra, 

generated by the sum of substrate-free (>95% low spin) and substrate-bound (camphor, ≥95% 

high spin) CYP101A1 to the appropriate percentages as described previously [25]. For 

substrate binding titrations, the P450 was diluted to ~1 µM in 50 mM Tris pH 7.4 to a volume 

of 2.5 mL. 1-3 µL of substrate was added via a Hamilton syringe from either 0.1, 1 and 10 

mM (in DMSO or 50 mM Tris pH 7.4, 10% HβCD) stock solution, starting from the lowest 

concentration. The peak-to-trough difference in absorbance, between 600 nm and 250 nm, 

was recorded until additional aliquots caused no further spectral change in the Soret band. In 

instances where the substrate exhibited tight binding (Kd < 5 µM, less than five times the 

concentration of the enzyme), the data were fitted to the tight-binding quadratic equation: 

∆𝐴 =  𝛥𝐴 ×
[𝐸] + [𝑆] + 𝐾 − ([𝐸] +  [𝑆] + 𝐾 ) − 4[𝐸][𝑆] 

2[𝐸]
 

 where Kd denotes the binding constant, [S] the substrate concentration, ΔA the peak-

to-trough ratio,  ΔAmax the maximum peak-to-trough absorbance and [E] is the enzyme 
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concentration [28]. When substrates did not exhibit tight binding, the dissociation constant 

was obtained by fitting the difference in absorbance against the substrate concentration to the 

hyperbolic function:  

∆𝐴 =  
∆𝐴 × [𝑆]

𝐾 + [𝑆]
 

where Kd denotes the binding constant, [S] the substrate concentration, ΔA the peak-to-

trough ratio, and ΔAmax the maximum peak-to-trough absorbance. 

Crystallography, data collection, data processing and structural determination  

M. marinum CYP124A1 was further purified by size exclusion (Enrich SEC Column, 650 x 

10 x 300 mm, 1 mL min-1) before concentration to ~30 mg mL-1 in 50 mM Tris pH 7.4. 

Crystallisation was attempted in the presence and absence of 1 mM phytanic acid. 

Commercially available screening conditions (Hampton Research) were used for initial 

screening in 96 well sitting drop trays, using 1 µL of both protein and reservoir solution. 

Crystal conditions were then refined using the hanging drop vapour diffusion method, again 

using both 1 µL of protein and reservoir solution with a 500 µL reservoir. Diffraction quality 

crystals of CYP124A1 were obtained after 2 weeks at 16 °C from both substrate and 

substrate-free trays. The selected substrate-free crystals were grown in 0.26 M ammonium 

sulphate, 20% w/v polyethylene glycol 3,350, pH 6.1. The crystals were harvested using a 

Micromount (MiTeGen) and cryo-protected by immersion in Parabar 10312 (Paratone-N, 

Hampton Research) before flash cooling in liquid N2. Data was collected by X-ray diffraction 

at the Australian Synchrotron MX1 beamline (360 exposures using 1° oscillations at a 

wavelength of 0.9357 Å) [29]. The data were processed into the space group C2 using XDS, 

followed by truncation and addition of Rfree flags using Aimless [30], as part of the CCP4 

package [31]. Molecular replacement phasing was carried out by Phaser [32], also part of 

CCP4. The model was rebuilt using Coot [33] based on initial electron density maps and 
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refined using phenix.refine over several iterations. Composite omit maps were generated 

using the Composite Omit Maps program in Phenix. Data collection and refinement statistics 

are presented in Table 1 and the structure was deposited to the PDB (6CVC). Crystals from 

substrate bound conditions were solved but contained no substrate in the active site. Similar 

experiments were carried out with CYP125A6, A7 and CYP142A3 but as yet no suitable 

diffraction-quality crystals have been obtained.  
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Table 1: Crystal data collection and refinement statistics for CYP124A1 from M. marinum 
(PDB: 6CVC) 

Data collection statisticsa  

Wavelength  0.95370 

Unit cell a = 98.78 b = 72.36 c = 65.60        

α =  90 β = 109.72 γ = 90 

Space group  C2 

Molecules in asymm. unit  1 

Resolution 2.20 – 46.49 (2.20 – 2.27)b  

Unique reflections 21918 (2122) 

Completeness  98.8 (97.1)  

Redundancy  7.4(7.1)  

(I)/[σ(I)] 7.7 (3.1)  

Rmerge (all I+ and I-) 0.298 (1.135) 

Rpim (all I+ and I-) 0.118 (0.460) 

CC(1/2) 0.989 (0.855) 

Rwork 20.43% 

Rfree 25.37% 

% solvent 46.07 

Residues modelled  422 

RMS deviation from restraint values 

Bond lengths  0.002 

Bond angles 0.46 

Ramachandran analysis 

Most favoured 98.33% 

Additionally allowed 1.67% 
 

a Data collected from one crystal. 
b Values in parenthesis are for highest resolution shell. 
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3. Results/Discussion 

The CYP125A6 and A7 enzymes of M. marinum  

The M. marinum species CYP125A6 shares a sequence identity of 75% with CYP125A1, 

while CYP125A7 shares 90%, making it the closest named relative to the M. tuberculosis 

enzyme (see Fig. 1).2 Other bacteria contain CYP125 family members including M. 

smegmatis, M. ulcerans, and various Streptomyces, Nocardia and Rhodococcus strains. M. 

smegmatis encodes two CYP125 enzymes, CYP125A3 and A4, which share 78% and 71% 

identity to CYP125A1, respectively [23]. CYP125A3 is more closely related to CYP125A7 

than CYP125A6 (78% versus 69%), and vice versa (CYP125A4 is closer to CYP125A6 than 

CYP125A7, 82% compared to 71%). M. ulcerans contains CYP125A7 (99% identity with 

CYP125A7 from M. marinum) and a pseudogene of CYP125A6 (truncated after 200 

residues, 98% seqeuence identity to CYP125A6). The Rhodoccocus sp. RHA1 CYP125 

enzyme shares 69% identity with the M. tuberculosis and 79% with an analogue from 

Nocardia farcinia [34]. Some species, such as M. vanbaalenii PYR-1, contain 3 or more 

CYP125 enzymes. The analysis of Parvez et al suggested that CYP125 is conserved in the 

MTBC but also in the M. chelonae-abscessus complex (MCAC), the M. avium complex 

(MAC), nontuberculous Mycobacteria (NTM), which includes M. marinum, and Saprophytes 

(SAP), such as M. smegmatis [35].  

In order to investigate the CYP125A family in more detail we cloned the genes of, and 

produced and purified CYP125A6 and A7 from M. marinum and CYP125A1 from M. 

tuberculosis for comparison. The first obvious difference between CYP125A6 and 

CYP125A7 from M. marinum is that the resting state of both enzymes has a less high spin 

character than that observed for CYP125A1. 

                                                 
2 According to the nomenclature system for CYP names, given sequence identity is above 80%, it seems this 
should more properly be CYP125A1. It is referred to here as CYP125A7 in accordance with Dr Nelson’s 
Cytochrome P450 homepage (http://drnelson.uthsc.edu/bacterial.P450s.2011.htm). This also applies to 
CYP142A3 with respect to CYP142A1.  
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Figure 1: Phylogenetic tree showing selected members of the 125, 142 and 124 families from 

Mycobacterium and other species including Streptomyces, Frankia, and Rhodoccocus. The 

Mycobacterium members of each family cluster together, with the exception of CYP142B1 

from M. vanbaalenii. The closest relative of the M. tuberculosis enzyme in the all three 

families is from M. marinum, which is also closest to those from M. ulcerans. The closest 

structurally characterised homologue, CYP109A2 from Bacillus megaterium, is included. 

In the resting state, CYP125A6 is ~30% high spin, wheras CYP125A7 is 45% high 

spin (Fig. 2). CYP125A1 was purified using the same method and showed ~80% high spin  
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(a) Mmar124 

 
(b) Mmar125A6 

 
(c) Mmar125A7 

 
(d) Mmar142A3 

Figure 2: CO-binding spectra for the M. marinum enzymes CYP124A1, CYP125A6, 

CYP125A7 and CYP142A3. For each, the resting state (black), reduced enzyme (blue) and 

reduced CO bound (red) spectra are shown. Both CYP125 enzymes had split A450/A420 

absorbances in the CO-bound state.  

character (Fig. S5) in agreement with what is reported by others for this enzyme and similar 

to that reported for the CYP125A3 member from M. smegmatis [23]. In addition, CYP125RHA 

has been reported as >90% high spin in the resting state while CYP125A4 was 60% high spin 

[27, 34]. Both the CYP125A6 and CYP125A7 pair display more low spin character than any 

CYP125 enzymes thus far reported. Interestingly, the resting coordinate state of CYP125A1 

was connected to the position of the V267 residue of the I-helix in the crystal structure [19]. 

Two alternate conformations of this valine were observed, corresponding to the presence or 

absence of the coordinating water ligand. However this residue is highly conserved in all 

these CYP125 species including those from M. marinum (as are nearby residues, and those of 

the proximal loop around the haem iron coordinating cysteine residue, Fig. S2).  
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All three enzymes showed a significant 420 nm peak upon reduction and CO binding. 

This is in line with what was reported previously with CYP125A1, due to facile protonation 

of the proximal cysteine thiolate [19, 36]. For all three enzymes, the Reverse Type I inhibitor 

LP10 was able to fully generate a low spin type spectra, as previously demonstrated for 

CYP125A1 (Fig. 3)[37]. As a substrate, cholesterol is known to shift CYP125A1 to the high 

spin state (80% to ≥95%). Likewise, for CYP125A6 and A7, cholesterol induced shifts (from 

30% and 45% resting states) to 45% and 60% respectively (Table 2). 4-Cholesten-3-one 

binding generated slightly greater shifts, to 55% and 70% high spin, with the same enzymes.  

The binding affinity of CYP125A7 for 4-cholesten-3-one was on par with that of CYP125A1 

(Kd = 0.7 ± 0.4 compared to 1.2 ± 0.1 µM [19]).  

The inhibition of the M. tuberculosis CYP125 enzyme by azole derivatives has been 

investigated previously, as the function of CYP125A1 is essential for M. tuberculosis growth 

in some conditions [19, 21]. The range of inhibitors which bound to CYP125A7 was 

significantly altered from that of CYP125A1. While CYP125A1 displayed inhibitory shifts 

with a range of azoles, including econazole, miconazole and both 4- and 2-phenylimdazole, 

CYP125A7 did not display a Type II shift with any of these. Econazole induced a high spin 

state of 60% (Kd = 0.3 ± 0.1 µM). Surprisingly, given its lower sequence identity, CYP125A6 

bound a range of these inhibitors and so was more similar to CYP125A1. Both 1- and 4-

phenylimidazole (PIM), econazole and clotrimazole induced a Type II binding shift (although 

not 2-PIM). The binding of 2-PIM in a Type II manner to CYP125A1 is unusual given its 

structure (Fig. 3). More frequently both the 1- and 4-PIM generate Type II shifts but 2-PIM 

does not, as presumably the position of the nitrogen group on the ring is less favourable for 

haem coordination [38]. 
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Table 2: Spin state shift and dissociation constant analysis of CYP125A1 from M. tuberculosis and CYP125A6 and CYP125A7 from M. 
marinum. Data from elsewhere is noted, otherwise analyses were performed as recorded in the experimental section. Type I shifts are listed by 
high spin percentage. Type II is listed as the nm shift, unless not reported. Reverse Type I is listed as RT1.  

 M.mar 
CYP125A6 

 
Kd (µM) 

M.mar 
CYP125A7 

 
Kd (µM) 

M.tb 
CYP125A1 

 
Kd (µM) 

M.smeg 
CYP125A3 

 
Kd (µM) 

 Spin state Spin state Spin state Spin state 

Resting state 30%  45%  >80%  >80%  

Cholesterol 45% ND 60% ND ≥95% 0.11 ± 0.06c  1.01 ± 0.5 b 
4-cholesten-3-one 55% ND 70% 0.7 ± 0.4  ≥95% 1.2 ± 0.1c  2.3 ± 1.4 b 

Econazole 422nm 4.7 ± 0.4 60%  0.3 ± 0.1 ≥95%  11.7 ± 0.7a Type II† 7.38 ± 0.71 b 

Clotrimazole 423nm 1.5 ± 0.35 0% - 421nm 5.3 ± 0.6a Type II 14.53 ± 1.58 b 
Miconazole 0% - 0% - 421nm 4.6 ± 0.4a Type II 1.66 ± 0.21 b 

Ketoconazole - - 0% - 419 nm  27.1 ± 0.9 a - - 
Fluconazole 0% - 0% - 418 nm  43.1 ± 3.8 a - - 

4-phenylimdazole 423nm 47 ± 23 0% - 424nm 216 ± 5 a - - 
2-phenylimidazole 0% - 0% - 422nm 345 ± 4 a - - 
1-phenylimidazole 422nm 34 ± 5 0% - - - - - 

LP-10 RT1 0.36  ± 0.15 RT1 0.01 ±  0.002 RT1 9.86 ± 1.56‡ - - 
(ND) indicates dissociation constant was not determined due to insufficient alteration of the enzyme spin state shift by the substrate. † 

CYP125A4 from M. smegmatis also was reported to undergo a Type II shift with this substrate. Its resting state was reported as 60% high spin 
[27]. ‡ Ouellet et al give as Kd = 1.68 ± 0.08 [37]. 

a McLean et al, 2009 [19].  

b Garcia-Fernandez et al, 2013 [23]. 

c as reported by Ouellet et al, 2011 [37] but similar results were obtained by Capyk et al, 2009 [12]. 
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Figure 3: The structures of a variety of azoles which have been tested as inhibitors of the M. 

tuberculosis CYPs, as well as the Reverse Type I inhibitor LP10.  

Crystal structures of CYP125A1 with androstendione and the inhibitor econazole 

bound have been solved previously[19]. When the residues of the active site of CYP125A1 

were compared across these enzymes, CYP125A7 was found to have all these residues 

conserved except P213 (Table S2). These conserved residues include the D108-K214 salt 

bridge, which is absent in CYP125A3, and is hypothesised to govern substrate entry to the 

active site (see Fig. S8)[19, 23]. The conservation of the majority of these residues makes the 

altered interactions with econazole and other substrates and inhibitors suggestive of a 

conformational change in the structure of the M. marinum CYP125s. This could result from 

the change of the P213 residue to an alanine in CYP125A6 and A7, or alterations elsewhere 
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in the enzyme. The P213 residue is conserved in both M. smegmatis CYP125A3 and 

CYP125RHA. M. ulcerans CYP125A7 shares the active site residues of M. marinum 

CYP125A7, and so also has an equivalent proline to alanine substitution, while CYP125A4 

has a glycine at the corresponding position. The presence of this proline at the end of the G 

helix in CYP125A1 [19] disrupts the helix structure as the backbone of proline residues are 

not conducive to the α-helix secondary structure (Fig. S8). An alanine in its place would 

likely not have the same effect, and thus it is plausible that the G helix could be extended in 

CYP125A7 until the P206 residue (conserved in all CYP125A members) that forms the end 

of the small helix in the loop between the F and G helices. P213 is similarly replaced with an 

alanine in CYP125A6. The remaining active site residues of CYP125A6 are less conserved 

than in CYP125A7, with a leucine at the position of K214 in the salt bridge, among other 

changes (Table S2).  The large number of active site changes makes binding differences that 

were observed more expected in CYP125A6.  

CYP142A3 and CYP142A1 compared 

CYP142 members are similarly prolific in Mycobacteria. M. tuberculosis, M. smegmatis, M. 

marinum and M. ulcerans all contain an enzyme of this family while M. vanbaalenii contains 

two, although the second of these, CYP142B1, clusters more closely with CYP124 family 

members in the phylogenetic tree (Fig. 1).  Rhodoccocus sp. RHA1 encodes CYP142A5. 

Species from the MCAC, interestingly, appear to lack CYP142 members, but routinely 

contain 3 to 4 CYP125 enzymes [35]. CYP142A3 from M. marinum has a sequence identity 

of 91% with CYP142A1 from M. tuberculosis. CYP142A3 is also present in M. ulcerans, 

with 98% similarity to the analogue in M. marinum. CYP142A2 from M. smegmatis shares 

78% identity with both the M. tuberculosis and M. marinum CYP142 enzymes. 
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 (a)  (b) 

 
(c)  (d) 

 (e)  (f) 

Figure 4: A selection of substrate and inhibitor dissociation constants for (a) CYP125A7 

with 4-cholesten-3-one, (b) CYP142A3 with 4-cholesten-3-one, (c) CYP125A7 with 

econazole, (d) CYP125A6 with econazole, (e) MmarCYP124A1 with clotrimazole and (f) 

MtbCYP124A1 with clotrimazole. The peak to trough absorbance for (a), (b) and (c) was 

measured at 390 and 420 nm, while for (d), (e) and (f) it was 430 to 390 nm, 434 to 412 nm, 

and 433 to 393 nm respectively.  
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When cloned, produced and purified, the M. marinum CYP142A3 and M. 

tuberculosis CYP142A1 both demonstrated low spin resting states, and the Soret peak of both 

enzymes shifted almost completely to 450 nm upon binding of CO to the ferrous state (Fig. 3 

and Fig. S5). The spin state shifts of M. tuberculosis CYP142A1 with known substrates 

matched literature values (Table 3)[11]. When the substrates cholesterol and 4-cholesten-3-

one were tested with the M. marinum CYP142A3 enzyme, both induced smaller high spin 

shifts (55% compared to ≥95% for CYP142A3 versus CYP142A1, see Table 3). However, 

the affinity for cholesterol was comparable, Kd = 0.40 ± 0.1 µM for CYP142A3 and 0.34 ± 

0.20 µM [11] for CYP142A1. No significant difference in the range of effective inhibitors for 

both enzymes was observed. Miconazole and clotrimazole induced Type II shifts in both 

enzymes, while ketoconazole did not for either. Both 1- and 4-PIM also gave Type II shifts 

while 2-PIM did not. A minor difference was observed for econazole with CYP142A3, where 

Type I binding was observed to approximately 20% high spin, but further additions induced a 

Type II shift. Affinities with the azole inhibitors were consistently higher for CYP142A3 than 

those reported for CYP142A1 (for example, for miconazole, Kd = 0.39 ± 0.1 µM compared to 

4.0 ± 0.5 µM [11]).  A comparison of the active site residues of CYP142 enzymes was made, 

using the CYP142A1 crystal structure with 4-cholesten-3-one bound as a reference (Fig. 

S3)[11]. It has been previously noted that CYP142A1 has an active site which shares 

similarities (both residues and their orientation) with both CYP125A1 as well as CYP124A1 

[11]. The residues that make up the CYP142A active site are highly conserved in CYP142A3 

from M. marinum and M. ulcerans and CYP142A2 from M. smegmatis (Table S3). This 

supports the binding data, suggesting the behaviour of this enzyme would likely be similar 

across species. The small changes observed may be due to subtle differences in the 

conformation of the enzyme caused by mutations remote from the active site. Structural 

studies of CYP142A3 with substrate bound may help resolve this.  
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Table 3: Spin state shift and dissociation constant analysis of CYP142A1 from M. 
tuberculosis and CYP142A3 M. marinum. Data from elsewhere is noted, otherwise was 
performed as recorded in the experimental section.  

 M.mar142A3  M. tb142A1  
 Spin state (HS%) Kd µM) Spin state 

(HS%) 
Kd (µM) 

Cholesterol 55% 0.40 ± 0.1 ≥95% 0.34 ± 0.20 a 
4-cholesten-3-one 65% 0.2 ± 0.1 ≥95% 0.36 ± 0.04 a 

Miconazole Type II, 424 nm 0.39 ± 0.1 Type II, 424 nm 4.0 ± 0.5 a 
Clotrimazole Type II, 423 nm 0.34 ± 0.12 Type II, 424 nm 3.8 ± 0.9 a 
Fluconazole <5% - <5% 860 ± 108 a 
Econazole Type II, 424 nm† 0.9 ± 0.1 Type II, 423 nm 4.6 ± 0.2 a 

Ketoconazole <5% - <5% 21 ± 4 a 
1-Phenylimidazole Type II, 422 nm 4.6 ± 0.2 Type II - 
2-Phenylimidazole <5% - <5% - 
4-Phenylimidazole Type II, 423 nm 7.1 ± 1.0 Type II, 421 nm 12.0 ± 1.5 a 

a Driscoll et al, 2010 [11] 
† Initial 20% Type I shift before Type II shift 

CYP124 in M. marinum and M. tuberculosis 

CYP124A enzymes are also widely conserved in the Mycobacteria. Additionally, there are 

members of other subfamilies in Frankia, Rhodococcus and Streptomyces species. M. 

tuberculosis CYP124A1 is conserved in M. marinum and has a sequence identity of 84% 

(and has the same nomenclature CYP142A1; from here on these will be named 

MtbCYP124A1 and MmarCYP124A1). CYP124 ranks among the highest conserved CYP 

families when members were compared across species from different kingdoms by Parvez et 

al (above both CYP125 and CYP142)[35]. An analogue of MmarCYP124 exists in M. 

ulcerans (99% sequence identity). The M. smegmatis CYP124 enzyme, following the trend 

established with the two families discussed previously, shares 74% identity with both the M. 

marinum and M. tuberculosis members.  

MtbCYP124 has been reported to bind branched fatty acids such as phytanic acid 

[14]. MmarCYP124 was purified and when CO was added to the ferrous form the Soret peak 

shifted almost entirely to the 450 nm absorbance typical of a viable P450 (Fig. 3). 
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MmarCYP124 demonstrated similar spin state shifts to MtbCYP124 with a range of 

substrates. Both farnesol and phytanic acid shifted both enzymes to a ≥95% high spin state 

(Table 4). Spectral differences between the enzymes were observed with certain sub-

terminally branched fatty acids, 14-methylhexadecanoic acid and 15-methylhexadecanoic 

acid as well as dodecyl acetate. Both fatty acids shifted MtbCYP124A1 to a greater extent 

than MmarCYP124A1 (85% and 90% for MtbCYP142A1 compared to 55% and 70% for 

MmarCYP124A1 with 14-methyl and 15-methyl hexadecanoic acid, respectively). Dodecyl 

acetate also shifted MtbCYP142A1 to a greater extent (90%) than MmarCYP124A1 (55%). 

Differences were observed when testing inhibitors with the two enzymes. Where no shift was 

recorded with MtbCYP124 for econazole and miconazole, both induced a Type I shift in 

CYP124 (45% and 40%, respectively). Clotrimazole was the only recorded azole to induce a 

Type II shift for both (MmarCYP124, Kd= 0.34 ± 0.12 µM and MtbCYP124, 0.22 ± 0.05 

µM).  

Table 4: Spin state shift analysis of CYP124A1 from M. tuberculosis and M. marinum.   

 M.mar124 M. tb124 
 Spin state (HS%) Spin state (HS%) 

Farnesol ≥95 ≥95 
Phytanic acid ≥95 ≥95 

4,7,3-Trimethyldodecanoic acid ≥95 ≥95 
Farnesyl acetate ≥95 ≥95 
Linalyl acetate ≥95 ≥95 

15-Methylhexadecanoic acid 70 90 
Undecanoic acid 70 75 
Methyl laurate 60 70 

3,7-Dimethyloctanoic acid 60 60-70 
14-Methylhexadecanoic acid 55 85 

Palmitic acid 55 60 
Dodecyl acetate 55 90-95 

Palmitelaidic acid 50 55 
Methyl palmitate 30 55 

Econazole 45 0 
Miconazole 40 0 
Clotrimazole Type II, 426 nm Type II 

 NB: Based on the substrate range determined by Johnston et al, 2009 [14] 
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MmarCYP124A1 was crystallised in the presence of the substrate phytanic acid, in 

order to structurally compare it to the M. tuberculosis enzyme. However, while crystals 

developed from both substrate-bound and substrate-free conditions, no substrate was present 

in the solved structures from substrate-bound conditions. Accordingly, only the substrate-free 

form of the enzyme was structurally resolved, to 2.2 Å (PDB: 6CVC). Of 433 residues, 424 

were modelled, including the β-sheet loop region which was not modelled in the substrate-

free Mtb structure (2WM5) [14]. When overlaid with the Mtb124, the overall fold of the two 

enzymes are very similar (Fig. 5). Using Chimera, the RMSD for the 419 atoms which 

overlapped was calculated to be 0.663 Å [39].  

 

(a)      (b) 

Figure 5: The overlay of X-ray crystal structures of the CYP124A1 enzymes from M. 

marinum (grey, highlights in purple) and M. tuberculosis (white, highlights in blue, PDB 

code 2WM5 [14]). (a) The overall fold of the two proteins is almost indistinguishable: the 

biggest deviation is in a small unstructured region between helix B and B´ (also known as the 

B-C loop). The full loop turn region in the β-1 sheet modelled in the M. marinum enzyme but 

not in M. tuberculosis. The RMSD of the two structures is 0.663 Å across all 419 paired 

residues. (b) Zoom of the two altered regions showing the active site residues N97 and T57, 

altered to H101 and P61.  
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The active site residues are conserved for the most part. There are three active site 

residues that are altered: the MtbCYP124 residue N97 is changed for a histidine, T95 for a 

valine and T57 for a proline (Table 5). These changes are also present in the M. ulcerans 

analogue. The proline that replaces T57 (in MmarCYP124 numbering, P61) does not seem to 

substantially alter the position of the β-1 loop. The entire loop is not modelled in the 

MtbCYP124A1 structure, however, so comparison of the loop position cannot be made (Fig. 

5). The effect of the T95 alteration to a valine (and hence increased hydrophobicity of the 

active site) would be better observed in a substrate-bound structure, so substrate-free 

MmarCYP124A1 was overlaid with phytanic acid bound MtbCYP124A1 (Fig 7).  

 
(a)      (b) 

Figure 6: The residues close to the haem in the CYP124A1 active site as identified by 

Johnston et al show very tight retention in the M. marinum analogue. (a) MmarCYP124A1 

overlaid with substrate-free MtbCYP124A1 (2WM5, blue) and (b) with phytanic acid bound 

MtbCYP124A1, which shows the conformational changes due to substrate binding (2WM4, 

orange) [14]. Labels in black are for MtbCYP124 (and where they are conserved in both) and 

red indicates a MmarCYP124 residue.  

T95 and N97 were the two hydrophilic residues, identified as interacting with the carboxy 

terminus of the acid [14]. This may reduce enzyme affinity or recognition of the polar 

terminus of substrates such as fatty acids, although it does not appear to have significantly 

affected phytanic acid binding. The remaining change, N97 to H101 (in the respective 



 

 
179 

 

enzyme residue numbering), also falls within the region of most the significant structural 

change between the two enzymes (near the MtbCYP124 residues 97 – 101, shown in Fig. 5). 

This structural movement, which includes the premature end to the B´ helix, may be due to 

the alteration of N97 to H101. It is close to the active site and as a result could alter substrate 

binding if it reflects a genuine structural alteration between the M. marinum and M. 

tuberculosis enzymes rather than a crystallisation artefact (see Fig. S9 and S10).  

Table 5: Comparison of the active site residues of CYP124A1 from M. tuberculosis and M. 
marinum based on the residues identified as within 5Å of phytanic acid in the substrate-
bound form of CYP124A1 from M. tuberculosis [14]. CYP124A1 from M. smegmatis is 
included for comparison. Residues altered from MtbCYP124A1 are in red.   

Mtb 
124A1 

Mmar† 
124A1 

Msmeg 
124A1 

T57 P61 A53 
I58 I62 F54 
L60 L64 T56 
F63 L67 F60 
I94 I98 I91 
T95 V99 V92 
I96 I100 I93 
N97 H101 G94 
F107 F111 F104 
I111 I115 I108 
I197 I201 I194 
L198 L202 L195 
F200 F204 F197 
F212 F216 F209 
I262 I266 I259 
L263 L267 L260 
V266 V270 V263 
A267 A271 A264 
T271 T275 T268 
V315 V319 V312 
Y317 Y321 Y314 
M318 M322 M315 
Q415 Q419 A412 
F416 F420 F413 
I417 I421 I414 

† M. ulcerans CYP124A1 is the same as MmarCYP124A1 for every residue listed (residue 
numbering between the two is also identical).   
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4. Conclusions  

In each of the three CYP families, CYP125, CYP142 and CYP124, the M. marinum analogue 

of the enzyme was the most closely related to the M. tuberculosis, outside of the MTBC. The 

M. marinum enzymes were also closely related (≥98% identity) to the equivalent enzymes 

from M. ulcerans. In the CYP125 system, the additional redundancy present in M. smegmatis 

was replicated in M. marinum, but the sequence identities of the enzymes showed one, 

CYP125A7, offered a clearer direct analogue to CYP125A1, and thus similar activity was 

expected. However, differences in resting spin state, substrate induced haem spin state shifts 

and inhibitor binding affinities were observed with CYP125A7 compared to CYP125A1. The 

variations in sequence that might affect these changes were identified but need to be 

confirmed. These were remote from the active site and may either affect substrate recognition 

or alter the dynamics of the enzyme to modify substrate binding.  

A greater level of conservation in the substrate binding properties of the CYP142 

family isoforms was observed. CYP142A3 had similar affinity for the substrates which 

interact with CYP142A1. The recorded affinity for azole inhibitors with the M. marinum 

enzyme was higher by an order of magnitude for most of those tested. The active site 

residues, which were identical between the enzymes, did not reveal the probable cause of this 

change.  

CYP124A1 from M. marinum was also subjected to substrate and inhibitor binding 

studies, and generally displayed a high degree of conserved substrate range with the M. 

tuberculosis enzyme. The substrate-free structure of MmarCYP124A1 was solved to 2.2 Å, 

and was shown to have a very similar overall fold to the MtbCYP124A1. From the structure, 

we indentified residue changes in the region of substrate binding. The N97→H and T57→V 

changes (present in both M. marinum and M. ulcerans) are close to where the carboxylate 
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terminus of phytanic acid binds in the M. tuberculosis substrate-bound structure. However, 

despite these active site changes, the M. marinum CYP124A1 binding properties closely 

mirror that of the M. tuberculosis analogue.  

The three enzymes together offer a better model for  the cholesterol metabolising 

monooxygenases M. ulcerans than any previously studied, and highlight some possible 

changes in substrate binding and therefore potentially activity and role of these enzymes in 

that species (and M. marinum) and M. tuberculosis. The cholesterol metabolising pathway is 

a target for Mycobacterium inhibition studies. Therefore, of particular relevance is the 

demonstration that azole inhibitor affinities and the binding spectra change significantly 

between enzymes of these different Mycobacterium species and fine tuning of these azole 

molecules may be required to optimise the effects between bacteria.  
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Conclusions and future directions 

The work contained in this PhD thesis represents the beginning of a substantial task. The M. 

marinum CYPome is interesting as, being larger than that of M. tuberculosis and indeed most 

bacteria studied so far, it offers greater diversity in P450s and the single iron-sulfur cluster 

ferredoxins that support them. Nevertheless, in the purification and characterisation of nine of 

the eleven ferredoxins (Fdx1 - Fdx11) and ten P450s from this Mycobacterium (these being 

CYP147G1, CYP278A1, CYP268A2, CYP269A1, CYP150A5 and A6, CYP125A6 and A7, 

CYP124A1 and CYP142A3), substantial progress has been made towards the understanding 

of the CYPome. The first of this thesis’ objectives was the purification of the uncharacterised 

[3/4Fe-4S] ferredoxins. The aerobic purification of eight of the ferredoxins was 

straightforward and gave reasonable yields. These were the ferredoxins which contained 

histidine, phenylalanine and asparagine residues at the non-conserved position of the cluster 

binding motif. The remaining three, however, which had the hydroxyl-containing residues 

tyrosine, threonine and serine at that position, could not be purified aerobically. The well-

known oxygen sensitivity of iron-sulfur clusters led to the attempted anaerobic purification of 

several, including the successful purification of the serine-containing Fdx9. That the 

difficulties in expression and purification should be confined to those with some of the most 

unusual residues at that particular position is noteworthy. Phylogenetic analysis revealed 

ferredoxins containing the CXXTXXC(X)nCP motif were not found outside of 

Mycobacterium while histidine-containing ferredoxins were distributed most broadly. The 

phenylalanine, serine, aspargine and tyrosine containing ferredoxins were also widespread in 

Mycobacteria and other Actinomycetes.  

EPR and non-denaturing ESI-MS confirmed Fdx4, 5 and 9 (with an asparagine, histidine, and 

serine residue, respectively) contain [3Fe-4S] clusters after isolation under anaerobic 

conditions. While the cluster composition of the entire suite has not been determined, it 



 

 
 

seems likely that these ferredoxins do not contain a 4Fe-4S cluster through the direct 

coordination of a fourth Fe atom by the residue that replaces cysteine in the cluster binding 

motif. The redox properties of these ferredoxins are unusual, encompassing reduction 

potentials (between -360 and +150 mV) which fall outside the range of potentials observed 

previously with CYP-coupled ferredoxins. Earlier mutant studies with CYP147G1/Fdx3 had 

shown partial, but not complete, loss of function upon mutation of the tyrosine residue of that 

ferredoxin. This leaves the role of the residue at this position unclear. In this sense, the 

second aim of this project, the biophysical characterisation of the ferredoxins, has been 

partially achieved. The highly positive reduction potentials of Fdx4 (+60 mV) and Fdx5 

(+150 mV), in particular, raise the question of how these ferredoxins and those similar to 

them are able to support P450 activity, given that favourable thermodynamics are 

hypothesised to facilitate electron transfer between the ferredoxin and the substrate-bound 

P450 (the reduction potential of which is ordinarily below -100 mV).  

To fully test this required the achievement of the third goal of this project, the 

characterisation of the substrate range of the accompanying CYPs in the M. marinum 

genome. Among the 47 Cyp genes in the genome, those studied were selected based on their 

location near to ferredoxins of interest, coupled with the results of small-scale test 

heterologous protein production in Escherichia coli. It was apparent that the results of the 

characterisation of those as yet uncharacterised enzymes were of interest in their own right. 

Some of these P450 enzymes belong to families that are found across other bacteria, beyond 

Mycobacterium species. One of these, the CYP147G1 enzyme, demonstrated very high 

selectivity for ω-1 hydroxylation of fatty acids, and the physiological Fdx3/FdR1 full electron 

transfer system supported efficient turnover. The high expression levels of CYP268A2 and 

early indications of the substrate range made it a good candidate as a broad activity CYP, 

hindered only by the lack of a clear physiological Fdx/FdR pair. P450 activity was 



 

 
 

reconstituted with a non-native system. The crystal structure of the substrate-bound enzyme 

revealed features connected with substrate selectivity and will be the basis of future 

investigation into this CYP family. CYP150A5, which has three ferredoxins nearby in the 

genome, and a family member in M. vanbaalenii reported as a possible polyaromatic 

hydroxylase was also an obvious target. It was studied in conjunction with CYP150A6, as the 

substrate range of the two was expected to be similar. However, only CYP150A5 activity was 

reconstituted as the substrate range of the CYP150A6 enzyme proved difficult to 

characterise. CYP150A6 was, however, characterised by X-ray crystallography. The 

regioselective hydroxylation of the terpenoids β-ionone and β-ionol by CYP150A5 was 

achieved. The electron transfer ability of Fdx4 and 5 could not be studied directly, as the 

activity of the CYPs that accompany them in the genome (CYP269A1/CYP138A4 and 

CYP188A3, respectively) could not be produced. Fdx8 also contains a histidine residue at 

that position and can support CYP150A5 activity. The other two ferredoxins that accompany 

CYP150A5 in the genome, Fdx6 and Fdx7 demonstrated little to no activity with CYP150A5. 

Alongside the CYP147G1/Fdx3 and CYP278A1/Fdx2 pairs, this makes three of the eleven 

ferredoxins (with tyrosine, serine and histidine residues at that position) that have been 

demonstrated to support their accompanying CYPs. It supports the conjecture based on their 

genome position, that these ferredoxins are one of the electron transfer partners of the CYP 

enzymes, despite the unfavourable reduction potentials.  

The final standalone project goal was the comparative analysis of CYPs that are conserved 

between Mycobacterium species. The M. tuberculosis steroid binding enzymes, CYP125, 

CYP124 and CYP142, are conserved in M. marinum and many other Mycobacteria and 

bacteria. This led to the purification and analysis of the four equivalent M. marinum enzymes 

from the same families (it contains two CYP125 family members), and the crystallisation of 

the M. marinum CYP124A1. The phylogenetic, binding and structural characterisation 



 

 
 

revealed the M. marinum counterparts had key similarities and differences to those of M. 

tuberculosis. They were expected to be a closer match to the analogous enzymes from M. 

ulcerans. The altered resting state between the two M. marinum CYP125 members and the 

M. tuberculosis CYP125 enzyme infers a possible structural change despite the high levels of 

sequence identity while the CYP124 and CYP142 analogues from both species were very 

similar in activity. The differences observed here have particular relevance to the targeting of 

CYP enzymes from M. ulcerans and M. tuberculosis for inhibition as a methodology for 

developing antimicrobial medicine.  

The importance of cholesterol and fatty acids to the Mycobacterium physiology has been 

born out in the course of this study. Many of the CYP enzymes studied demonstrated high 

selectivity for such substrates. With the majority of M. tuberculosis enzymes conserved in M. 

marinum (15 of the 20), the effect of the larger M. marinum genome was reflected in the 

additional breadth of the P450 enzyme activities. For example, in addition to the fatty acid 

hydroxylase CYP124A1, M. marinum also encodes CYP147G1, which accepts shorter chain-

length fatty acid substrates, and CYP268A2, which favours branched fatty acids and acetates. 

In addition, the physiological ferredoxins allowed the characterisation of the activities of 

CYPs that appear highly selective for their electron transfer partner. While commercially 

available or non-physiological electron transfer systems have been used successfully 

elsewhere, and were used for some reactions in this project, the native system where known 

consistently outperformed these. The distribution of ferredoxins such as these in other 

bacterial secondary metabolism reactions, supporting the biosynthesis of many biologically 

active compounds, increases the relevance of their effective reconstitution here. Thus the 

suggested advantages highlighted at the beginning of this project have been confirmed; the 

breadth and interpretability of the M. marinum CYPome has led to the most relevant findings.  



 

 
 

There are still several open questions about the M. marinum system studied here and found in 

other bacteria however, which should be addressed in future work. While regioselectivity was 

demonstrated with several of the studied enzymes, the stereoselectivity of the reaction 

products remains unknown. Particularly with CYP147G1 and CYP268A2, this is of 

potentially significant interest. The biggest hurdles to the commercial application of P450s 

remain achieving binding for the desired substrate, product selectivity and the identification 

of appropriate electron transfer partners. The determination of product stereoselectivity, if 

any is present, also adds to the sum of knowledge available for engineering these enzymes, 

especially if accompanied by structural information about substrate binding as in CYP268A2.  

The second of these is whether FdR1 is the physiological reductase for all of these systems. 

Where the CYP147G1/Fdx3/FdR1 system is present in other bacteria, the Fdx3/FdR1 pair are 

often found as a single, fused protein. This seems to decrease the likelihood that FdR1 

functions as a general reductase for multiple P450 systems. Indeed, it seems possible that in 

the CYP150A5 system, the low product formation observed was due to the choice of 

ferredoxin reductase, rather than the ferredoxin or the substrate affinity. The importance of 

determining the physiological reductase is high as it has likely evolved to optimise their 

interaction with the ferredoxins and the reduction potential for electron transfer. The 

purification of the known ferredoxin reductases in the M. marinum genome, while not 

successful as yet, would allow the more precise in vitro characterisation of protein-protein 

interactions than in vivo product formation studies can achieve. However, given neither FdR1 

nor FdR2 (the latter supports the [2Fe-2S] Fdx and CYP153A16) are conserved in M. 

tuberculosis, the hypothesis that the majority of the P450s in both species are supported by 

yet another ferredoxin reductase or electron transfer partner is credible.  

The interaction between a ferredoxin and CYP pair or even between the ferredoxin and 

multiple supported CYPs has not been analysed quantitatively here. The given reduction 



 

 
 

potentials of the ferredoxins are estimations by titration with oxidising or reducing agents 

(rather than by electrochemistry) and the CYP reduction potentials have not been measured 

as yet. Further, the relative importance of protein-protein interactions versus reduction 

potential in controlling the specificity and efficiency of the transfer is still uncertain. This 

could be achieved by a combination of structural analysis and additional biophysical 

characterisation.  

Another unanswered question regards the essentiality of these enzymes. A greater overlap of 

function has been observed with the enzymes from M. marinum (CYP278A1 and CYP150A5 

with terpenes, CYP268A2 and CYP147G1 with fatty acids, and the additional CYP125 

family member), but this leads to less clarity about their intracellular roles. Here gene knock-

out, transcription or proteomic studies in M. marinum would be informative. While activity 

for fatty acids and steroid oxidation and metabolism is apparent with several enzymes, this is 

currently without cellular context, as the final metabolite and its function are unknown. As 

many of these P450s are closely related to analogues in M. ulcerans, these roles could be 

expected to be conserved in the pathogenic metabolism. Systematic analysis of the 

biosynthetic gene clusters in the organism, with a focus on the presence of P450s, might 

reveal more information about some of these enzymes. Similar ferredoxins to those that 

accompany M. marinum P450s were frequently found associated with P450s in natural 

product biosynthetic gene clusters in other organisms. The biosynthetic gene clusters of many 

antibiotics, anticancer and antifungal compounds, such as the Steptomyces products 

salinomycin, cinnabaramide and filipin, all contain ferredoxins of this type.  

In attempting the first analysis of such a large P450 complement as is presented by M. 

marinum, it was not expected that complete understanding could be achieved in the course of 

this study. However, despite encountering the common issues of protein expression, stability 

and unclear function, the work presented here has relevance both to the theoretical 



 

 
 

understanding of cytochrome P450 systems, as well as the practical applications of their 

study, inhibition and biocatalysis. By our characterisation, the nature and activity of a series 

of CYP-supporting [3Fe-4S] ferredoxins has been elucidated. These were found to be 

particularly common supporting P450s in Actinomycete biosynthetic gene clusters, which are 

still one of the predominant sources of new natural products today. Significant progress has 

been made towards comprehending the diverse CYPome of M. marinum, with findings that 

are sure to have relevance to the ongoing study of the more pathogenic strains of 

Mycobacteria. The Buruli ulcer continues to be difficult to treat and contain, and binding and 

inhibition data is given here for several enzymes that are very closely related to their M. 

ulcerans counterparts. The unique pathogenicity of many strains of Mycobacteria gives the 

study of the contribution by P450s to the physiology of M. marinum applications in human 

health and disease, especially with respect to the closely related strain M. ulcerans. The 

abundance of cytochrome P450s throughout all the kingdoms of life and the selectivity of 

their metallo-enzyme catalysis makes their study pertinent to the entire field of biological 

chemistry.  
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Appendices 

Chapter 2 Supplementary Information 

The CYPome of Mycobacterium marinum 

There are forty seven CYP enzyme encoding genes in M. marinum and these belong to thirty six 

different P450 families and thirty nine subfamilies (Table S1 and Fig. S1). Those members of the 

same family but different subfamilies are CYP123A3 and CYP123B1 (43%; sequence identity), 

CYP136A2 and CYP136B2 (46%) and CYP138A3 and A4 and CYP138B1 (47% and 45%, 

respectively). There are multiple members of several subfamilies including CYP125A6 and A7 

(75%), CYP135B3, B4 (71%) and B6 (66% to B3 and 65% to B4), CYP138A3 and A4 (62%), 

CYP143A3 and A4 (58%), CYP150A5 and A6 (55%), CYP187A4 and A5 (57%) and CYP189A6 

and A7 (58%). The proteins range from 389 to 491 amino acids in length and fourteen of the 

CYPs encoded by these genes are predicted to be positively charged at pH 7.0 with the remainder 

being negatively charged (Table S1).  

The glutamate and arginine pair (EXXR) heme binding residues, which are highly conserved in 

the K-helix of the majority of CYP enzymes, was retained in all of those from M. marinum (Table 

S1).1 The acid alcohol pair in the I helix was also conserved across most CYP members, the 

exceptions being CYP276A1 (GT) CYP135B3 (DN) and CYP51B1 (HT). Where it was 

conserved the acid residue was a mixture of aspartate and glutamate residues (18:27). The alcohol 

of this pair was predominantly threonine with only CYP144A4, CYP147G1 and CYP269A1 

containing a serine residue (Table S1).2 The phenylalanine residue which is often found seven 

residues before the conserved proximal cysteine (or eight if an additional glycine residue is 

inserted) was also mostly retained with only CYP183B1 (glutamate), CYP278A1 (leucine) and 

CYP147G1 (tryptophan) deviating from the norm (Table S1).3 
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In addition to the CYP51B1, CYP124A1, CYP153A16, CYP142A3, CYP125A6 and 

CYP125A7 enzymes mentioned in the main text, several other CYP enzymes in M. marinum have 

homologues from M. tuberculosis which have been structurally characterised and tested with 

azole inhibitors (e.g. CYP130 and CYP144).4,5 The likely substrates for some of the other CYP 

enzymes can be predicted based on their homology with other CYP enzymes e.g. CYP150 family 

members are reported to support aromatic hydrocarbon oxidation.6 Finally the function of some 

can be inferred from their neighbouring genes as they are clustered with terpene and polyketide 

synthases and peptide synthetases. For example CYP226B1, CYP271A1, CYP183B1 and 

CYP274A1 are clustered together with enzymes involved in isoprenoid synthesis, CYP185A4 is 

found next to a gene with modules predicted to be responsible for the synthesis of an eight amino 

acid metabolite and a thioesterase domain, CYP139A3 is surrounded by genes involved in 

polyketide synthases and macrolide transport and CYP108B4, CYP187A4 and CYP187A5 are 

found together with genes involved in fatty acid and lipid metabolism. CYP genes such as 

CYP123A3 and CYP51B1 and CYP142A3 and CYP125A7, are found close together in a similar 

environment to those which have been described for other Mycobacterium.7 For example the 

CYP125 and CYP142 genes are part of a conserved cholesterol metabolism gene cluster.8 

There are only twenty CYP enzymes in M. tuberculosis and twenty four in M. ulcerans (plus 

ten pseudogenes) compared to forty seven in M. marinum (Table S3). This follows from the 

smaller gene complement of these bacteria due to reductive evolution (Table S1). Twelve are 

common to all three Mycobacteria, twenty one are unique to M. marinum with eleven being 

common to M. marinum and M. ulcerans strains and three shared by M. marinum and M. 

tuberculosis (Table S3).  

 All of the CYP enzymes most closely associated with these ferredoxins have low pI values 

though other mycobacterial CYP enzymes have pI values higher than 7.0 (Table S1). The 

significance of the pI of the ferredoxin and CYP enzymes has not yet been fully established. 



 

194 
 

However, based on the number of published studies on mycobacterial CYP enzymes those with 

low pI appear to be more readily produced in a soluble form in E. coli. This trend seems to extend 

across other bacterial families where CYP enzymes with a high pI (> 7.0) are not produced as 

readily.5,9-16 

Experimental 

CYP assignments and alignments 

CYP family and subfamily assignments were made by Dr. David Nelson according to the P450 

nomenclature17,18 and are used as given in the National Centre for Biotechnology Information 

(NCBI) database. The genes and proteins from M. marinum M were compared to M. ulcerans 

Agy99, M. tuberculosis H37Rv and M. leprae TN.19,20 

Sequence alignments were performed using ClustalW. The evolutionary history was 

inferred by using the Maximum Likelihood method based on the Jones-Taylor-Thornton (JTT) 

matrix-based model.21 The tree with the highest log likelihood is shown (Fig. S1). Initial tree(s) for 

the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms 

to a matrix of pairwise distances estimated using a JTT model, and then selecting the topology with 

superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the 

number of substitutions per site. The analysis of the CYPs involved the amino acid sequences of all 

forty seven enzymes from M. marinum and selected others for comparison. The analysis of the 

ferredoxins included all similar species from M. marinum, M. ulcerans, M. tuberculosis and other 

structurally characterised ferredoxins of this type. All positions containing gaps and missing data 

were eliminated. Evolutionary analyses were conducted in MEGA6.22  

Construction of whole-cell oxidation system for CYP147G1/Fdx3/FdR1 

General DNA manipulations and microbiological experiments were carried out by standard 

methods. The pETDuet and pRSFDuet vectors and the KOD Hot start polymerase used for the PCR 
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steps were from Merck-Millipore. Enzymes for molecular biology were from New England 

Biolabs. The genomic DNA of M. marinum (ATCC 700278D-5) was obtained from Prof. Tim 

Stinear (University of Melbourne, Australia) and Prof. Lalita Ramakrishnan (University of 

Washington, USA, now at Cambridge University, UK). The genes encoding the P450 enzyme 

CYP147G1 (MMar_2930), CYP150A5 (MMar_4737), CYP269A1 (MMar_3969) CYP278A1 

(MMar_2877) and the ferredoxin reductase FdR1 (MMar_2931) were amplified by PCR using 

oligonucleotide primers (vide infra). The FdR1 and CYP genes were amplified by 30 cycles of 

strand separation at 95 ºC for 45 s followed by annealing at 55 ºC for 30 s and extension at 68 ºC 

for 80 s. The genes were cloned into the pET26 vector using the appropriate restriction enzymes. 

Codon optimised genes for Fdx2 (Mmar_2879), Fdx3  (Mmar_2932), Fdx4 (Mmar_3973), Fdx8 

(Mmar_4736), Fdx9 (Mmar_4763) and the mutants of Fdx3 encoding the putative 3/4Fe-4S 

ferredoxin were obtained from IDT in the form of a g-block with NcoI and HindIII restriction sites 

incorporated at the 5′ and 3′ termini, respectively (for primer details, vide infra). The sequence 

encoding a 6xHis tag was inserted at the 3′ end of the gene using PCR (amplification for 30 cycles 

with strand separation at 95 ºC for 30 s followed by annealing at 55 ºC for 30 s and extension at 68 

ºC for 20 s, for primers, vide infra). 

The CYP genes (CYP147G1, CYP150A5, CYP269A1 and CYP278A1) were incorporated 

into the pET26 vector (Merck-Millipore) between NdeI and HindIII (XhoI for CYP150A5) 

restriction sites. The ferredoxin genes were cut using the NcoI and HindIII restriction enzymes 

introduced by PCR and cloned into the pETDuet and pRSFDuet vectors using the same restriction 

sites to yield pETDuetFdx and pRSFDuetFdx. The pETDuetFdx constructs were used to produce 

the encoded proteins using E. coli. To generate the whole-cell oxidation systems the FdR1 and CYP 

genes were cut using NdeI and KpnI (XhoI for CYP150A5) restriction enzymes. The FdR1 gene 

was cloned into the pETDuetFdx vectors to yield the plasmid pETDuetFdx/FdR1. The CYP genes 

were cloned into the appropriate pRSFDuetFdx (NdeI/KpnI) to yield the plasmid 

pRSFDuetFdx/CYP. Successful incorporation of the genes and mutants into each vector was 
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confirmed by restriction enzyme digest followed by DNA sequencing (AGRF, Adelaide node) 

using the primers; T7 promoter, T7 terminator, pET Upstream, ACYDuetUP1, DuetUP2, 

DuetDOWN1 appropriate for each parent vector (Merck-Millipore).  

CYP enzyme production and purification 

The pET26 plasmid containing the appropriate CYP gene was transformed into BL21(DE3) 

competent E. coli and plated onto LBkan plates and left overnight. A colony was picked and grown 

in 5 mL LBkan at 37 °C and this starter culture was used to grow 2L of 2xYTkan (4 x 500 mL) at 

37 °C for 5 hours at 150 rpm. The incubator temperature was lowered to 25 °C, followed by the 

addition of IPTG (0.1 mM) and further incubation at this temperature for 16 hours at 120 rpm. The 

cells were harvested by centrifugation (5,000 g, 15 min) and resuspended in 200 mL of 50 mM Tris, 

pH 7.4, containing 1 mM DTT (henceforth Buffer T). The resuspended cells were kept on ice and 

lysed by sonication (25 cycles at 20:40 seconds on:off, 70%, 19 mm probe, Sonics Vibra-Cell). The 

supernatant, containing the desired protein, was isolated from cell debris by centrifugation (40,000 

g, 30 min). The protein was then loaded onto a DEAE Sepharose column, (XK50, 200 mm x 40 

mm, GE Healthcare) and eluted using a linear salt gradient of 100 mM to 400 mM KCl in Buffer T. 

The fractions containing the desired protein (identified by red colour of the P450 enzymes) were 

combined and the volume reduced using a Vivacell 100 (Sartorius Stedim, 10 kD membrane) aided 

by centrifugation (1,500 g). The protein was desalted using a Sephadex G-25 medium grain column 

(250 mm x 40 mm) eluted with Buffer T. The desalted protein was then further purified by loading 

it onto a Source-Q ion-exchange column (XK26, 80 mm x 30 mm, GE Healthcare) and eluted with 

a gradient of 0 to 300 mM KCl in Buffer T. The fractions were selected for purity of protein by 

measurement of A418/A280 ratio. Fractions with the highest A418/A280 ratio were retained. The 

protein was concentrated via ultrafiltration and an equal volume of 80% glycerol was added before 

filtration through a 0.22 µm syringe filter and storage at -20 °C. 
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To assess the viability of the P450 enzyme in the purified samples and determine the protein 

extinction coefficient, the enzyme was diluted to approximately 2 µM in Buffer T and the spectrum 

recorded between 300 and 700 nm on a UV/Vis spectrometer. A few flakes of sodium dithionite 

were added to reduce the iron and the spectrum recorded, then CO was gently bubbled through the 

cell and the spectrum was recorded. The extinction coefficient was determined using ε450 = 91 

mM−1 cm−1 for the reduced CO-bound form.   For CYP enzymes that did not fully shift to 450 nm, 

the concentration of the heme was determined by the pyridine hemochromagen assay as reported by 

Barr and Guo.23 
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Ferredoxin purification  

The pETDuet vectors with the incorporated genes for Fdx2 (Thr; Mmar_2879), Fdx3 (Tyr; 

Mmar_2932), Fdx4 (Asn; Mmar_3973), Fdx5 (His; Mmar_4716), Fdx8 (His; Mmar_4736), Fdx9 

(Ser; Mmar_4763) were transformed into competent E. coli BL21(DE3) and plated onto LBamp 

plates and left overnight at 37 °C. A colony was picked and grown in 5 mL LBamp at 37 °C 

overnight and this starter culture was then added across 2 L of 2xYTamp (4 x 500 mL). After 

growing at 37°C for 5 hours at 150 rpm the incubator temperature was lowered to 25 °C, followed 

by the addition of benzyl alcohol (0.02% v/v) and ethanol (2% v/v) and then IPTG (0.1 mM) after a 

further 30 min. The cultures were incubated at this temperature for 16 hours with shaking at 120 

rpm. The cells were harvested by centrifugation (5,000 g, 15 min) and resuspended in 200 mL of 50 

mM Tris (pH 7.4) with DTT (1 mM) plus 30 mL glycerol, 3 mL β-mercaptoethanol and 1 mL 

TWEEN. Lysozyme (300 mg) was added and the resuspended cells were stirred on ice for 30 min, 

before sonication. The supernatant, containing the desired protein, was isolated from cell debris by 

centrifugation (40,000 g, 30 min). The protein was then loaded onto a DEAE Sepharose column, 

(XK50, 200 mm x 40 mm, GE Healthcare) and eluted using a linear salt gradient of 150 mM to 400 

mM KCl in Buffer T. The fractions containing the desired protein (identified by brown colour of 

the Fdx enzyme) were combined and the volume reduced using a Vivacell 100 (Sartorius Stedim, 3 

kD membrane) aided by centrifugation (1,500 g). The protein was loaded onto a His-trap column 

(GE Healthcare) equilibrated with Buffer T plus 300 mM NaCl and 20 mM imidazole. The column 

was washed with a further 5 column volumes before elution of the His-tagged protein with Buffer T 

containing 300 mM NaCl and 300 mM imidazole. The protein was concentrated via ultrafiltration 

and an equal volume of 80% glycerol was added before filtration through a 0.22 µm syringe filter 

and storage at -20 °C.  
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Spin state shift assays and binding constant determination 

Glycerol in stored protein samples was removed via buffer exchange into Buffer T using a PD-10 

desalting column (GE Healthcare). The P450 was diluted to approximately 1 - 2 µM using the same 

buffer and the spectrum was recorded on a UV/Vis spectrophotometer. Aliquots (1 to 10 µL) of 

substrate stock solutions in DMSO or EtOH (50 mM - 100 mM) were added and the spectrum 

recorded until the shift from 420 nm to 390 nm reached a stable point. The ratio of high-spin P450 

to low-spin P450 (390 nm peak to 420 nm peak) was estimated (to ± 5%) by comparison to 

camphor-bound P450cam spectra. 

For binding assays varying aliquots (1 to 3 µL) of substrate stock solutions (1 mM, 10 mM 

or 100 mM concentrations) were added to 2.5 mL of protein (0.5 - 1.5 PM). The sample was mixed 

and the absorbance difference spectrum was recorded between 300 nm and 600 nm on a UV/Vis 

spectrophotometer. Further substrate was added until no difference in peak-to-trough ratio at 420 

nm and 390 nm was observed. The difference in absorbance versus substrate concentration was 

fitted to the hyperbolic function (Equation 1):  

∆𝐴 =  
∆𝐴 × [𝑆]

𝐾 + [𝑆]
 

where Kd is the binding constant, [S] is the substrate concentration, ΔA the peak-to-trough ratio, 

and ΔAmax the maximum peak-to-trough absorbance. Miconazole binding to CYP269A1 exhibited 

tight binding, with Kd < 5 µM and the data were fitted to the tight binding quadratic equation:24  

  

where ΔAmax is the maximum absorbance difference and [E] is the enzyme concentration. 
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Whole-cell oxidation turnovers 

The appropriate DNA vectors pETDuetFdx/FdR1 and pRSFDuetFdx/CYP were mixed with 

competent BL21(DE3) E. coli cells, and grown on LBamp/kan plates for 16 hours at 37 °C. Colonies 

were inoculated into 2 mL LBamp/kan and grown at 37 °C for 4 hours at 200 rpm. This starter culture 

was then added to 200 mL 2xYTamp/kan and grown at 120 rpm and 37 °C for a further 4 hours. The 

culture was cooled to room temperature, IPTG was added (to a final concentration of 1 mM) to 

induce protein expression and the growth was incubated overnight at 120 rpm. The cells were 

harvested via centrifugation (5,000 g, 10 min). The resulting cell pellet was resuspended in EMM 

(200 mL, 2% DMSO), added to a baffled flask for increased aeration and the substrate was then 

added before shaking at 150 rpm at 30 °C.  

The ability of CYP147G1 to oxidise indole (0.1 mM) to indigo was qualitatively determined 

colorimetrically via the formation of an intense blue colour when compared to the 

pET26CYP147G1 cultures as a control (Fig. S4). The cell pellet of this control was red in colour 

with no indication of any indigo formation in the cell pellet or the supernatant (Fig. S4). 

After 16 hours the turnovers with other substrates were centrifuged (15 min, 5,000 g) and 

the supernatant isolated. Samples (1 mL) of the turnover were taken for initial testing and extracted 

with ethyl acetate (400 µL). For fatty acid substrates 3 M HCl (20 µL) was added to turnovers and 

the samples were extracted into ethyl acetate, dried over MgSO4 before resuspension in anhydrous 

acetonitrile (200 µL). The acid samples were derivatised with TMCS/BSTFA before analysis by 

GC-MS. For other substrates the samples were extracted using ethyl acetate and the organic layer 

used directly for analysis. 

For larger scale extractions 200 mL of the supernatant was acidified with 3 M HCl to pH 2, 

extracted three times with an equal volume of ethyl acetate. Extracts were washed with water and 
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saturated brine solutions, combined and dried over MgSO4 and the solvent was removed under 

reduced pressure.  

To generate sufficient fatty acid product for characterisation the whole-cell oxidation system 

(200 mL) was used to convert 1 mM of the fatty acid substrates to product. The sample was 

extracted as described previously. Where GC-MS indicated a product:substrate ratio of ≥95% 

reverse phase solid phase extraction (SPE) DSC-18 SPE tubes (Supelco) were used to isolate all 

fatty acid compounds, using the method described by Horak et al with minor modifications.25 SPE 

columns were activated with methanol (3 mL), washed with water (5 mL) and the extract was 

dissolved in methanol and water (200 µL) and loaded onto the column. The column was washed 

with 5 mL 10% v/v methanol solution followed by 5 mL of 20% v/v methanol:water. The acid 

products were eluted with 600 µL methanol and the elution was dried under a flow of nitrogen and 

dissolved in deuterated chloroform, 0.8 mL, before characterisation. Full product characterisation 

was performed by NMR. 1H NMR and 2D COSY spectra were recorded at 500 MHz (Agilent DD2 

500MHz NMR). 

Product analysis 

The activity of the mutant ferredoxins of Fdx3 with CYP147G1 was tested in vivo by performing 

turnovers in triplicate according to the procedure outlined above using 1 mM undecanoic acid as the 

substrate. Comparison of product formation by the wild type Fdx3 to the mutant Tyr→Cys and 

Tyr→Gly was analysed by GC-MS as before except that an internal standard (octanoic acid) was 

added to the samples (final concentration 0.5 mM) before extraction. The product yield was 

compared using the ratio of the area of the product peak versus that of the internal standard. 

GC-MS analysis was used for enzyme turnover analysis and was performed on a Shimadzu 

GC-17A with a DB-5 MS fused silica column (30 m x 0.25 mm, 025 µm) and a QP5050A GC-MS 

detector. The injector was held at 250 °C and the interface at 280 °C. For fatty acid substrates, the 
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initial oven temperature was 120 °C which was held for 3 min, before increasing to 220 °C at 7 °C 

per minute, where it was held for 7 min. The total ion count was monitored and the MS 

fragmentation pattern was recorded. For β-ionone, the initial oven temperature was 120 °C which 

was held for 3 min, before increasing to 220 °C at 10 °C per minute, where it was held for 7 min. 

The total ion count was monitored and the MS fragmentation pattern was recorded. Analytical 

liquid chromatography was performed using an Agilent 1260 Infinity pump equipped with an 

Agilent Eclipse Plus C18 column (250 mm x 4.6 mm, 5 µm), an autoinjector and UV detector. A 

gradient, 20 – 95%, of acetonitrile (with trifluoroacetic acid, 0.1%) in water (TFA, 0.1%) was used.  

Protein mass spectrometry 

Protein mass measurements were carried out under denaturing conditions using an Agilent 6560 ion 

mobility quadrupole time-of-flight instrument with Dual AJS electrospray ionisation source, 

coupled to an Agilent 1290 Infinity II LC System. The protein was buffer exchanged into 250 mM 

ammonium acetate, concentrated to ~10 mM, then diluted 1:1 with acetonitrile. Protein sample (3 

µL) was injected and electrosprayed using 50% aqueous acetonitrile/0.01% formic acid at a flow 

rate of 0.1 mL min�1, without chromatographic separation. ESI-MS conditions were: positive-ion 

mode; capillary voltage, 3500 V; nozzle voltage 1000 V; fragmentor, 400 V; gas 8 L min�1; gas 

temperature, 300 °C; sheath gas 11 L min�1; and sheath gas temperature, 350 °C. Spectra were 

deconvoluted using BioConfirm software (Agilent). 

Characterisation of ferredoxins after anaerobic purification 

Protein was generated, using the same plasmid vectors as described above, from E. coli BL21(DE3) 

cells as follows. Culture was grown in LB to OD600 of 0.8 at 37 degrees 200 rpm shaking and cold 

shocked on ice for 18 minutes prior to induction with 50 μM IPTG. Post induction the cultures were 

supplemented with 20 μM ammonium ferric citrate and grown for a further 20 hours at 25 qC, 90 

rpm shaking, to a final OD600 ~1.5. 
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After harvesting the pellets were re-suspended in anaerobic buffer (20 mM HEPES, 100 

mM NaCl, 20 mM imidazole, pH 7.4), ruptured by sonication and centrifuged under nitrogen in gas 

tight tubes to remove debris. All subsequent steps were carried out anaerobically ([O2] < 10 ppm). 

Supernatant was loaded onto a Ni2+ charged IMAC column equilibrated with the buffer above and 

eluted using a 50 mL gradient from 0 to 100% buffer containing 500 mM imidazole. The sample 

was then exchanged into imidazole free buffer containing 1.5 M NaCl as cryoprotectant using a PD-

10 column and stored in an anaerobic chamber at -5 ˚C prior to use. 

In order to discount stripping of ferrous iron from the sample during IMAC purification a 

duplicate sample of Fdx4 was produced using the identical expression protocol as above. Pellets 

were re-suspended in 20 mM HEPES, 50 mM NaCl, pH 7.4. Following sonication and 

centrifugation the sample was loaded on to a 5 ml FF Hi-Trap Q-sepharose column (GE Healthcare) 

and eluted using 20 mM HEPES, 500 mM NaCl, pH 7.4. The cluster containing fractions were 

pooled, concentrated and loaded on to a Sephacryl S-100 size exclusion column equilibrated with 

20 mM HEPES, 500 mM, NaCl pH 7.4 and eluted using this buffer. Sample purity as judged from 

SDS-PAGE was as least equivalent to samples purified using an IMAC column (Fig. S9). Sample 

purified in this way gave an almost identical CD spectrum demonstrating that Fdx4 binds a [3Fe-

4S] cluster regardless of the purification method used. The minor differences in the CD spectra 

obtained following the two preparation methods are consistent with slightly altered ratios of 

oxidised to reduced cluster in the samples obtained (Fig. S13). 

 Native- and LC-MS spectra of Fdx4, Fdx5 and Fdx9 were recorded on a Bruker 

micrOTOF-QIII mass spectrometer (Bruker Daltonics) equipped with an UltiMate 3000 HPLC 

system (Dionex). Samples for native MS were de-salted by dilution with an equal volume of 50 

mM ammonium acetate pH 7.4 followed by exchange into the same buffer using a PD-10 column. 

Desalted samples were infused directly into the ionisation chamber at a flow rate of 300 PL min-1. 

For LC-MS 50 PL samples were diluted with 450 PL of 2% acetonitrile, 0.1% formic acid solution. 



 

204 
 

1 PL of the diluted sample was then injected onto a ProSwift reversed phase RF-1S column at 25 ˚C 

and eluted using a gradient of 2 – 100% acetonitrile, 0.1% formic acid with a flow rate of 0.2 mL 

min-1 (15 min). Instrument parameters were: dry gas flow 8 L min-1, nebuliser gas pressure 1.8 bar, 

dry gas temperature 240 ˚C and capillary voltage 4500 V (LC-MS) or dry gas flow 4 L min-1, 

nebuliser gas pressure 0.8 bar, dry gas temperature 180 ˚C and capillary voltage 3000 V (native 

MS). Collision cell energy was 5.0 eV in all cases. Neutral mass spectra were calculated by 

maximum entropy deconvolution over the mass range 6 - 9 kDa using ESI Compass version 1.3 

(Bruker Daltonics). The mass of the bound cluster was calculated from the difference in mass 

between the apo protein (deduced from LC-MS) and the cluster bound form (deduced from native 

MS) and found to be 296 Da (corresponding to the predicted mass of a [3Fe-4S] centre) in all cases.  

Redox activities of the [3Fe-4S] clusters of Fdx4, Fdx5 and Fdx9 were probed 

spectroscopically following anaerobic chemical poising. Electronic absorbance spectra were 

recorded on a Jasco V550 spectrophotometer and CD spectra on a Jasco J-810 spectropolarimeter. 

Sample concentration was estimated assuming an extinction coefficient H410nm = 9000 M-1cm-1. 250 

PL samples of ferredoxin in 1 mm pathlength anaerobic cuvettes were equilibrated with either: 5 

PL of an approximately 100 mM EuCl2 solution in 20 mM HEPES, pH 7.4 containing 1.5 M NaCl 

(reduction), an appropriate volume of a 14 mM K3Fe(CN)6 solution in water to provide a 1:1 ratio 

with estimated cluster concentration (oxidation) or a 1.5 mM solution of sodium ascorbate (to set a 

defined solution potential of +60 mV).26 Following characterisation by absorbance and CD 

spectroscopy, samples of as isolated and chemically poised proteins were loaded into EPR tubes 

and flash frozen by plunging into liquid N2. EPR spectra were recorded at 10 K using a Bruker 

EMX (X-band) EPR spectrometer equipped with an Oxford Instruments liquid helium system and a 

spherical high-quality ER 4122 SP 9703 resonator (Bruker). Instrument parameters were as follows: 

microwave frequency QMW = 9.4657 GHz, modulation frequency QM = 100 kHz, time constant W = 

82 ms, microwave power = 3.19 mW, modulation amplitude AM = 5 G, scan rate v = 22.6 Gs-1. 
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Estimated concentrations of [3Fe-4S] clusters prior to addition of chemical reagents were as 

follows; 180 PM (Fdx4 and Fdx9) and 330 PM (Fdx5). An equivalent sample of Fdx4 was 

anaerobically incubated with 180 PM (NH4)2Fe(SO4)2, subsequent characterisation (CD 

spectroscopy and redox activity) showed no evidence of incorporation of metal ion to yield a [4Fe-

4S] centre. 
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Gene fragments and oligonucleotides used in this work. 

Sequences of codon optimised ferredoxin genes; NcoI sites and HindIII sites were incorporated at 

the 5′ and 3′ ends respectively. The restriction sites NcoI and HindIII are underlined, start and stop 

codons highlighted in bold. Note that an additional codon GTG encoding a valine has been added to 

the N-terminus to allow for the incorporation of the NcoI site. A double stop codon was 

incorporated at the C-terminus. In the mutants the modified triplet codon and the amino acid are 

highlighted in red. 

Fdx3 (MMar_2932) 

tttaattccatggtgcgtctggtggttgatttaaacaaatgccaaggctacgctcagtgcgtaccactggcaccggaagttttcaagctggttggtg

aggaagctctggcttatgatccgaacccggacgactctcagcgtcagcgtgtactgcgcgcggtagcatcctgtccggttcaagcaattattctg

gaagtagacccgccggccgatcgcgacactaaataatagaagcttaattaat 

The amino acid sequence of Fdx3 with residues important in the ferredoxin binding motif 

highlighted in bold and underlined 

MVRLVVDLNKCQGYAQCVPLAPEVFKLVGEEALAYDPNPDDSQRQRVLRAVASCPVQAI

ILEVDPPADRDTK 

Fdx3 Tyr-Gly mutant 

tttaattccatggtgcgtctggtggttgatttaaacaaatgccaaggcggcgctcagtgcgtaccactggcaccggaagttttcaagctggttggt

gaggaagctctggcttatgatccgaacccggacgactctcagcgtcagcgtgtactgcgcgcggtagcatcctgtccggttcaagcaattattct

ggaagtagacccgccggccgatcgcgacactaaataatagaagcttaattaat 

The amino acid sequence of Fdx3 with residues important in the ferredoxin binding motif 

highlighted in bold and underlined 

MVRLVVDLNKCQGGAQCVPLAPEVFKLVGEEALAYDPNPDDSQRQRVLRAVASCPVQAI

ILEVDPPADRDTK 
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Fdx3 Tyr-Cys mutant 

tttaattccatggtgcgtctggtggttgatttaaacaaatgccaaggctgcgctcagtgcgtaccactggcaccggaagttttcaagctggttggtg

aggaagctctggcttatgatccgaacccggacgactctcagcgtcagcgtgtactgcgcgcggtagcatcctgtccggttcaagcaattattctg

gaagtagacccgccggccgatcgcgacactaaataatagaagcttaattaat 

The amino acid sequence of Fdx3 with residues important in the ferredoxin binding motif 

highlighted in bold and underlined 

MVRLVVDLNKCQGCAQCVPLAPEVFKLVGEEALAYDPNPDDSQRQRVLRAVASCPVQAI

ILEVDPPADRDTK 

Fdx2 (MMar_2879) 

tttaattccatggtccgcgtggctgcggaccgcgagatctgtatggccaccggcatgtgtgtgatgaccgctgacgcattcttcgaccaggacgc

cgacggcattgttgtgctggctgcgcacgaagttccggcggacgaagagcgtagagttcgtaatgcagtgaaactgtgcccgtccggcgccct

ggaactgatgtccgattaatagaagcttaattaat 

The amino acid sequence of Fdx2 with residues important in the ferredoxin binding motif 

highlighted in bold and underlined 

MVRVAADREICMATGMCVMTADAFFDQDADGIVVLAAHEVPADEERRVRNAVKLCPSG

ALELMSD 

Fdx4 (MMar_3973) 

tttaattccatggttcgcgttatcgttgacgaaactctgtgcgaggcgaacggtttctgtgaaagtctggcaccagacatctttgctctgggcgatg

ctgatgtagttcagatcgctgacggcccggttcctgccgaccgccagatcgacgtgcgtgccgctgttgatcagtgcccgaaggccgccctgc

gtctgatcgagtaatagaagcttaattaat 

The amino acid sequence of Fdx4 with residues important in the ferredoxin binding motif 

highlighted in bold and underlined 
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MVRVIVDETLCEANGFCESLAPDIFALGDADVVQIADGPVPADRQIDVRAAVDQCPKAAL

RLIE 

Fdx5 (MMar_4716) 

tttaattccatggtaaaagtttgggtggatccgcagcgttgtcaaggtcacaccctgtgtgctatgatcgcgccggacagcttccagctctctgaca

tcgacggttctagctcggcgatcagcgaaactgttccggctgatcagtgggacctggtgcgtgaagcggcgcatagctgtccggagcaggcg

atcgtcatcacctaatagaagcttaattaat 

The amino acid sequence of Fdx5 with residues important in the ferredoxin binding motif 

highlighted in bold and underlined 

MVKVWVDPQRCQGHTLCAMIAPDSFQLSDIDGSSSAISETVPADQWDLVREAAHSCPEQA

IVITDET 

Fdx8 (MMar_4736) 

tttaattccatggtcaaagtacgtgttgacgatcagcgttgccgcggccacggtatgtgcctgaccctgtgtccagaagtgttctctctgacggac

gatggttacgcagtggctatcactagcgacgtaccgatggaactggaagaggctgtgcgtgaagcgatccagtgctgcccggagcaggccat

ctccgaatcttaatagaagcttaattaat 

The amino acid sequence of Fdx8 with residues important in the ferredoxin binding motif 

highlighted in bold and underlined 

MVKVRVDDQRCRGHGMCLTLCPEVFSLTDDGYAVAITSDVPMELEEAVREAIQCCPEQAI

SES 

Fdx9 (Mmar_4763) 

tttaattccatggtgaaagtgatcgtagatgaaaatatctgcgcgtccagcggcaactgtgtgatgaatgcgccggaaattttcgaccagcgcga

cgaggacggcgtggtagtgctgcttaacgcaaatccgccagcggaactcgccgaaggtgcccgccgtgctgctgcttcttgcccggccctgg

caattaaaatcgaggagtaatagaagcttaattaat 
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The amino acid sequence of Fdx9 with residues important in the ferredoxin binding motif 

highlighted in bold and underlined 

MVKVIVDENICASSGNCVMNAPEIFDQRDEDGVVVLLNANPPAELAEGARRAAASCPALA

IKIEE 
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The primers used to insert a 6xHis Tag at the C-terminus of the ferredoxins. The NcoI and HindIII 

restriction sites and the sequence of the 6xHis are underlined and the start and stop codons are 

highlighted in bold. 

 

Mmar_2879 5' tttctatccatggtccgcgtggctgc 

Mmar_2879 3' attaattaagcttctattaatgatggtggtgatgatgatcggacatcagttccagggc 

Mmar_2932 5' tttctatccatggtgcgtctggtggttg 

Mmar_2932 3' attaattaagcttctattaatgatggtggtgatgatgtttagtgtcgcgatcggccgg 

Mmar_3973 5' tttctatccatggttcgcgttatcgttgac 

Mmar_3973 3' attaattaagcttctattaatgatggtggtgatgatgctcgatcagacgcagggcg 

Mmar_4716 5' tttctatccatggtaaaagtttgggtggatc 

Mmar_4716 3' attaattaagcttctattaatgatggtggtgatgatgggtttcatcggtgatgacgatc 

Mmar_4736 5' tttctatccatggtcaaagtacgtgttgac 

Mmar_4736 3' attaattaagcttctattaatgatggtggtgatgatgagattcggagatggcctgctc 

Mmar_4763 5' tttctatccatggtgaaagtgatcgtagatg 

Mmar_4763 3' attaattaagcttctattaatgatggtggtgatgatgctcctcgattttaattgccaggg 
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The primers used to clone the cytochrome P450 genes of CYP278A1 (Mmar_2877), CYP147G1 

(Mmar_2930), CYP269A1 (Mmar_3969), CYP150A5 (Mmar_4737), CYP105Q4 and the 

ferredoxin reductase gene (Mmar_2931). The restriction sites are underlined and the start and stop 

codons are highlighted in bold. An additional KpnI site was added to all the genes to allow 

incorporation in the Duet vectors for the whole-cell oxidation system with the exception of 

CYP150A5 where the HindIII site at the 3′ end was replaced with XhoI. 

 

CYP278A1 NdeI 5' ttaattcatatgtcaacagagaccgtttcagg 

CYP278A1 KpnI 3' ttaattaagcttggtaccctattatgacaggtgcaggggtagc 

CYP147G1 NdeI 5' ttaattcatatgaatgccgaaaccgcttgggc 

CYP147G1 KpnI 3' ttaattaagcttggtaccctattattcggtgatcgctgcgaaatc 

FdR2931 NdeI 5' ttaattcatatgaacccggggtcgttggtcg 

FdR2931 KpnI 3' ttaattaagcttggtaccctattagcctcggcggggccggaattc 

CYP269A1 NdeI 5’ ttaattcatatggcctatcctgaaaccaatac 

CYP269A1 KpnI 3’ ttaattaagcttggtaccctattaccaacgcactggcagcgacag 

CYP150A5 NdeI 5’ ttaattcatatgaatgattgtgccgagccgg 

CYP150A5 XhoI 3’ ttaattctcgagctattatgcgggcgtgaaatccaaatg 

CYP105Q4 NdeI 5’ ttaattcatatgtccgacacgctcgcaagcc 

CYP105Q4 KpnI 3’ ttaattaagcttggtaccctattaccaggtcacgggtagttcatag 
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Table S1 Chromosome features of M. marinum M compared with three other Mycobacteria. 

 
M. marinum 

M 

M. ulcerans 

Agy99 

M. tuberculosis 

H37Rv 

M. leprae 

TN 

Size of Chromosome (bp) 6,636,827 5,631,606 4,411,532 3,268,203 

Coding sequences 5424 4160 3974 1605 

Pseudogenes 65 771 17 1115 

Number of P450 genes 47 24 20 1 

Associated Fdx genes 11 6 2 0 

Associated FdR genes 2 0 0 0 
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Table S2 The CYPome of M. marinum. The gene and P450 name are assigned as per the 
databases at the National Center for Biotechnology Information. The sequences of conserved 
regions of the I-helix, K-helix and the heme binding motif as well as the predicted pI and length 
of the amino acid chain are also provided. 

Gene name Accession 
number ID I-helix K-helix Heme binding motif pI AA 

        Mmar_0122 ACC38592.1 CYP279A2 GTDTT ETMR IQTFGAGMHYCLG 4.9 411 
Mmar_0272 ACC38739.1 CYP226B1 ATDTT EGER HATFGFGTHICSG 5.1 422 
Mmar_0274 ACC38741.1 CYP271A1 GLDTV ELMR HLAFGSGIHRCLG 5.9 430 
Mmar_0281 ACC38748.1 CYP183B1 GTETT ETLR YIPEGGGARKCIG 10.5 461 
Mmar_0283 ACC38750.1 CYP274A1 ATETS ETLR FIPFGMGKHKCIG 9.6 450 
Mmar_0346 ACC38813.1 CYP138A3 GHETT EVQR WIPFGGGTRRCVG 10.2 440 
Mmar_0399 ACC38866.1 CYP191A3 GTETV EMIR SLAFGRGQHFCIG 5.2 401 
Mmar_0852 ACC39310.1 CYP185A4 GEDTT EAMR YLPFGGGGRSCLG 8.8 473 
Mmar_0928 ACC39385.1 CYP189A6 GNETT ETLR HLTFGKGVHYCLG 5.8 405 
Mmar_0938 ACC39395.1 CYP135B4 GHDTT ETLR WLPFGGGNRRCLG 9.8 462 
Mmar_1564 ACC40016.1 CYP276A1 AHGTT ESLR AVMFGAGIHYCLG 7.6 410 
Mmar_1634 ACC40084.1 CYP136A2 AHDTS ESIR FTPFGGGAHKCLG 6.6 491 
Mmar_2475 ACC40925.1 CYP139A3 GYETT ETLR FIPFSGGLHRCIG 9.8 432 
Mmar_2631 ACC41077.1 CYP143A3 GLDTV EIVR HWGFGGGTHRCLG 5.1 389 
Mmar_2654 ACC41098.1 CYP144A4 GGEST ETLR HISFGKGAHFCVG 4.8 403 
Mmar_2666 ACC41109.1 CYP143A4 GLDTV EIVR HWGFGGGPHRCLG 6.1 390 
Mmar_2768 ACC41210.1 CYP140A5 GFETT EILR HLAFSTGRHFCLG 8.4 437 
Mmar_2783 ACC41225.1 CYP125A6 GNETT EIVR VGFGGTGAHYCIG 4.8 427 
Mmar_2877 ACC41317.1 CYP278A1 GSETT ETLR HLSLGHGLHFCLG 4.8 426 
Mmar_2930 ACC41369.1 CYP147G1 GHDST EVQR HFGWGSGIHTCMG 5.0 421 
Mmar_2978 ACC41416.1 CYP135B6 GYDTS ETLR WLPFGGGARRCLG 10.3 472 
Mmar_3135 ACC41569.1 CYP136B2 AHDTS EALR WVPFGGGAHKCIG 7.2 484 
Mmar_3154 ACC41588.1 CYP153A16 GNDTT EIIR HISFGFGVHRCMG 6.0 462 
Mmar_3361 ACC41787.1 CYP124A1 GNETT EIVR VGFGGGGAHFCLG 4.9 432 
Mmar_3761 ACC42177.1 CYP268A2 GNDTT ELVR VGFGGGGVHFCLG 5.1 418 
Mmar_3969 ACC42377.1 CYP269A1 GIDST EVLR HVSFGHGRFLCPG 4.8 402 
Mmar_3976 ACC42384.1 CYP138A4 GHETT EVQR WIPFGGGTRRCIG 9.1 441 
Mmar_3996 ACC42404.1 CYP187A4 GLETT EGLR HIAFAGGIHMCLG 4.8 407 
Mmar_3999 ACC42407.1 CYP108B4 GHDTT EMIR VAFGYGVHFCMG 4.9 409 
Mmar_4008 ACC42416.1 CYP187A5 GLETT EGLR HISFAAGEHTCLG 6.3 403 
Mmar_4184 ACC42591.1 CYP130A4 GNDTV ELLR ILTFSHGAHHCLG 5.7 412 
Mmar_4430 ACC42837.1 CYP138B1 GHETT EVQR WIPFGGGIHRCIG 8.4 455 
Mmar_4483 ACC42889.1 CYP135B3 GHDNT ETLR WLPFGGGSRRCLG 10.1 456 
Mmar_4694 ACC43098.1 CYP150A6 GQETT ESLR HMAFARGVHSCPG 5.0 423 
Mmar_4717 ACC43121.1 CYP188A3 GFDTT EFLR HFSFGIGVHRCIG 4.9 453 
Mmar_4733 ACC43137.1 CYP190A3 GAETV ELLR NTLGFGYGIHSCLG 4.8 399 
Mmar_4737 ACC43141.1 CYP150A5 GQETT EALR HLSFGRGIHSCPG 4.9 422 
Mmar_4753 ACC43157.1 CYP189A7 GNETT ELLR HLTFSVGTHYCLG 4.8 399 
Mmar_4762 ACC43166.1 CYP105Q5 GHETT ELLR NVAFGYGRHQCVG 5.6 413 
Mmar_4833 ACC43238.1 CYP123B1 GHETT ELLR VAFGRGIHFCLG 4.8 402 
Mmar_4915 ACC43319.1 CYP126A3 GAETT EMVR LGFGQGVHYCLG 4.8 417 
Mmar_4930 ACC43334.1 CYP123A3 GNETT ETLR LSFGSGAHFCLG 5.0 405 
Mmar_4932 ACC43336.1 CYP51B1 GHHTS ETLR WIPFGAGRHRCVG 5.4 455 
Mmar_5002 ACC43406.1 CYP142A3 GDETT EMLR LAFGFGTHFCMG 4.5 400 
Mmar_5032 ACC43436.1 CYP125A7 GNETT EIVR VGFGGTGAHYCIG 4.6 416 
Mmar_5175 ACC43581.1 CYP137A2 GHETT ETLR WVPFGGGAKRCLG 10.4 455 
Mmar_5268 ACC43672.1 CYP164A3 GHETT ETMR HLGFGRGAHYCLG 4.7 441 
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Table S3 Analysis of the CYPomes of M. marinum, M. ulcerans and M. tuberculosis. The 
subfamily name of the M. marinum gene is given. If a pseudogene is present in M. ulcerans it has 
been highlighted in red and underlined. Ferredoxin (Fdx) and ferredoxin reductase (FdR) genes 
that are associated with CYP genes are highlighted in blue and italics. Neither of the ferredoxin 
reductase genes in M. marinum are present in M. ulcerans or M. tuberculosis. (A pseudogene is a 
dysfunctional relative of a gene which contains stop codon, frame shifts or insertions). Fdx11, 
which is not associated with a CYP gene, is conserved in all three bacterium. 

 

M. marinum  
only 

M. marinum  
and M. ulcerans 

Conserved in  
all three 

 

M. marinum and  
M. tuberculosis 

CYP123B1 CYP164A3 CYP105Q4 Fdx9 CYP51B1 Fdx10 CYP135B4 
CYP125A6 CYP183B1 CYP108B4 CYP123A3 CYP137A2 
CYP135B3 CYP189A6 CYP143A3 CYP124A1 CYP139A3 
CYP135B6 CYP190A3Fdx6/Fdx7 CYP150A6 CYP125A7  
CYP136B2 CYP226B1 CYP185A4 CYP126A3 M. tuberculosis 

only 
CYP138A4 CYP268A2 CYP187A4 CYP130A4 CYP121A1 
CYP138B1 CYP271A1 CYP187A5 CYP136A2 CYP128A1 
CYP147G1 
Fdx3/FdR1 

CYP274A1 
CYP276A1 

CYP188A3 Fdx5 
CYP189A7 

CYP138A3 
CYP140A5 

CYP132A1 
CYP135A1 

CYP150A5 Fdx8 CYP278A1 Fdx2 CYP191A3  CYP142A3 CYP141A1 
CYP153A16n 
[2Fe-2S]/FdR2 

CYP279A2 CYP269A1 Fdx4 
 

CYP143A4 Fdx1 
CYP144A4 

 
 

    M. ulcerans only 
  Fdx11 CYP140A7 
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Table S4 The genes encoding the [3/4Fe-4S] ferredoxins of M. ulcerans and M. tuberculosis 
which have equivalents in M. marinum. The sequences of iron sulphur cluster binding motif of the 
[3/4Fe-4S] ferredoxins as well as the predicted pI and length of the amino acid chain are provided.  

 

 Accession 
number 

 Mycobacterium ulcerans   
Gene name ID Iron Sulfur cluster binding motif pI AA 
Mul_0316 ABL03046.1 Mul_1 CXXHXXC(X)

n
CP 3.7 65 

Mul_0334 ABL03060.1 Mul_2 CXXSXXC(X)
n
CP 3.9 63 

Mul_0472 ABL03175.1 Mul_3 CXXHXXC(X)
n
CP 4.4 67 

Mul_2873 ABL05156.1 Mul_4 CXXTXXC(X)
n
CP 4.0 63 

Mul_3090 ABL05334.1 Mul_5 CXXHXXC(X)
n
CP 3.9 63 

Mul_3830 ABL05923.1 Mul_6 CXXNXXC(X)
n
CP 3.6 62 

Mul_4066 ABL06117.1 Mul_7 CXXNXXC(X)
n
CP 4.0 81 

      
   Mycobacterium tuberculosis   

Gene name  ID Iron Sulfur cluster binding motif pI AA 
Rv0763c CCP43510.1 - CXXHXXC(X)

n
CP 4.6 67 

Rv1786 CCP44552.1 - CXXHXXC(X)
n
CP 3.7 66 

Rv3503c CCP46325.1 - CXXNXXC(X)
n
CP 3.6 62 
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Table S5 The genes encoding the other potential electron transfer proteins of M. marinum which are not closely associated with CYP enzyme genes. 
The gene name as per the databases at the National Center for Biotechnology Information is provided. The predicted pI and length of the amino acid 
chain are provided as are the names of the equivalent genes in M. ulcerans and M. tuberculosis.a Mmar_2994 is 16 genes away from CYP135B6 b 

Mmar_5043 is 11 genes away from CYP125A7. No others are within 30 genes of members of the CYPome of M. marinum. While this does not rule 
out their ability to function as electron transfer partners for a P450 enzyme they could also be involved in other metabolic processes which require 
these types of proteins. We also cannot rule out that they may have evolved to support P450 electron transfer in these other bacteria. 

  Mycobacterium Marinum     
Gene name ID Iron Sulfur cluster binding motif pI AA M. ul M. tb 
Mmar_2080 
ACC40530.1 FdxA 7Fe Ferredoxin 3.9 114 

Mul_3264 
ABL05469.1 

Rv2007c 
CCP44779.1 

Mmar_2994a 

ACC41432.1 
FdxA 7Fe Ferredoxin 4.1 113 - - 

Mmar_3421 
ACC41846.1 FdxC 7Fe Ferredoxin 3.8 107 

Mul_2700 
ABL05017.1 - 

Mmar_4274 
ACC42683.1 

FdxC 7Fe Ferredoxin 3.4 107 
Mul_1025 

ABL03633.1 
Rv1177 

CCP43933.1 
Mmar_4794 
ACC43198.1 

2Fe-2S 2Fe-2S 3.9 93 Mul_0363 
ABL03085.1 

- 

       
Mmar_1017 
ACC39474.1 

FdR3 FdR3 4.6 411 
Mul_0769 

ABL03414.1 
Rv0688 

CCP43431.1 
Mmar_1526 
ACC39977.1 FprA FprA 5.1 455 

Mul_2413 
ABL04766.1 - 

Mmar_3420 
ACC41845.1 

FprA FprA 5.3 453 
Mul_2699 

ABL05016.1 
Rv3106 

CCP45916.1 
Mmar_4646 
ACC43049.1 

FprB FprB 7.1 560 Mul_0264 
ABL02999.1 

Rv0886 
CCP43634.1 

Mmar_5043b 

ACC43447.1 FdxB FdxB 5.9 673 
Mul_4117 

ABL06161.1 
Rv3554 

CCP46376.1 
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Table S6 A list of other ferredoxin genes from strains of Mycobacterium which share the same ferredoxin cluster binding motif as those from M. 
marinum. Note the list is not exhaustive and more than one ferredoxin with the stated motif may be present in the strain listed. Ferredoxin genes with 
the CXXTXXC(X)nCP motif were only found in a few strains closely related to M. marinum e.g. M. ulcerans and M. liflandii.  

a may be a pseudogene. b a ferredoxin reductase gene is also located by the ferredoxin. Entries in red have a CYP enzyme clustered with the ferredoxin 
and those in blue have a CYP gene close by. 

cluster binding motif 
CXXHXXC(X)nCP CXXNXXC(X)nCP CXXYXXC(X)nCPb CXXFXXC(X)nCP CXXSXXC(X)nCP 

M. simiae 
WP_044508369.1 

M. xenopi 
WP_039890166.1 

M. gastri 
WP_036416246.1 

M. kansasii 
WP_023367649.1 

M. asiaticum 
WP_036365249.1 

M. colombiense 
WP_007771429.1 

M. heckeshornense 
WP_048893299.1 

M. kansasii 
WP_023364435.1 

M. gastri 
WP_036414200.1 

M. lentiflavum 
CQD20859.1 

M. kyorinense 
WP_045384657.1 

M. intracellulare 
WP_014382133.1 

M. aromaticivorans 
WP_036346035.1 

M. asiaticum 
WP_036365153.1 

M. xenopi 
WP_039891214.1 

M. kansasii 
WP_023367619.1 

M. lentiflavum 
CQD18585.1 

M. rhodesiae 
WP_005140322.1 

M. parascrofulaceum 
WP_007168606.1 

M. simiae 
WP_044512409.1 

M. lentiflavum 
CQD20693.1 

M. asiaticum 
WP_036358226.1 

M. chlorophenolicum 
WP_048472356.1 

M. avium 
WP_003877260.1 

M. avium 
WP_023876861.1 

M. xenopi 
WP_003919555.1 

M. simiae 
WP_044507197.1 

M. vanbaalenii 
ABM11247.1 

M. lentiflavum 
CQD20744.1 

M. sinense 
WP_013830364.1 

M. gastri 
WP_036414692.1 

M. genavense 
WP_025738432.1a  M. nebraskense 

WP_046181754.1 
M. heckeshornense 
WP_048890125.1 

M. parascrofulaceum 
WP_007166396.1 

M. kyorinense 
WP_045383051.1  M. europaeum 

CQD03229.1 
M. genavense 

WP_025737053.1 
M. sinense 

WP_013830530.1 
M. avium 

WP_009975858.1  M. heckeshornense 
WP_048890092.1 

M. heraklionense 
WP_047318276.1 

M. nebraskense 
WP_046186374.1 

M. parascrofulaceum 
WP_007168596.1  M. xenopi 

WP_003922631.1 
M. kansasii 

WP_036393982.1 
M. haemophilum 
WP_047316334.1 

M. europaeum 
CQD03261.1  M. vanbaalenii 

WP_041308028.1  

M. europaeum 
CQD04192.1 

M. nebraskense 
WP_046181777.1  M. gilvum 

WP_041799998.1  

M. phlei 
WP_003889324.1 

M. thermoresistibile 
WP_003927083.1  M. rufum 

WP_043411031.1 Continued overleaf 
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cluster binding motif 
CXXHXXC(X)nCP CXXNXXC(X)nCP CXXYXXC(X)nCP CXXFXXC(X)nCP CXXSXXC(X)nCP 

M. hassiacum 
WP_005630344.1 

M. iranicum 
WP_024448284.1  M. vaccae 

WP_040539836.1  

M. tusciae 
WP_006241645.1 

M. phlei 
WP_003889603.1  M. chubuense 

WP_048418201.1  

M. canettii 
WP_042914619.1 

M. heraklionense 
WP_047319309.1  M. chlorophenolicum 

WP_048473402.1  

M. smegmatis 
WP_015309433.1 

M. rhodesiae 
WP_014212260.1  M. iranicum 

WP_036465671.1  

M. thermoresistibile 
WP_003926283.1 

M. rufum 
WP_043411043.1  M. phlei 

WP_003889597.1  

M. elephantis 
WP_046752094.1 

M. gilvum 
WP_011893358.1  M. elephantis 

WP_046750099.1  

M. avium 
WP_019734709.1 

M. aurum 
WP_048631967.1  M. aurum 

WP_048631973.1  

M. heckeshornense 
WP_048889694.1 

M. chubuense 
WP_014816820.1  M. tusciae 

WP_006241377.1  

M. heraklionense 
WP_047320532.1 

M. tusciae 
WP_006241383.1  M. rhodesiae 

WP_014212266.1  

M. goodie 
WP_049744806.1 

M. vaccae 
WP_003928240.1  M. thermoresistibile 

WP_040547386.1  

M. rufum 
WP_043412685.1 

M. vulneris 
WP_036448623.1  M. smegmatis 

WP_015308293.1  

M. setense 
WP_039382128.1 

M. smegmatis 
WP_015308299.1    

M. mageritense 
WP_036434743.1     

M. aromaticivorans 
WP_036341668.1     

 

 Table S7 A list of other ferredoxin genes from other bacteria which share the same ferredoxin cluster binding motif as those from M. marinum. 
Entries in red have a CYP enzyme clustered with the ferredoxin. Note the list is not exhaustive and more than one ferredoxin with the stated motif may 
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be present in the strain listed. Ferredoxin genes with the CXXTXXC(X)nCP motif were not found in other bacteria using BLAST searches of the 
NCBI database.  

a clustered with a dioxygenase gene. b clustered close to a monooxygenase gene. c Part of a larger steroid degrading biosynthetic cluster which contains 
a P450 encoding gene. d a ferredoxin reductase gene is also located by the ferredoxin. e the ferredoxin gene is fused to the ferredoxin reductase gene. 

 

cluster binding motif 
CXXHXXC(X)nCP CXXNXXC(X)nCP CXXYXXC(X)nCPd CXXFXXC(X)nCP CXXSXXC(X)nCP 

Nocardia         
higoensis 

WP_040801623.1 

Nocardia  
pneumonia 

WP_040773457.1a,b,c 

Nocardia 
jiangxiensis 

WP_040830166.1 

Nocardia 
jiangxiensis 

WP_040825470.1 

Saccharopolyspora 
spinosa 

WP_010693449.1e 

Nocardia       farcinica 
WP_011209115.1 

Nocardia       
farcinica 

WP_011207065.1c 

Streptomyces 
avermitilis 

WP_037650459.1 

Microbacterium 
ketosireducens 
KJL44014.1a 

Saccharomonospora 
cyanea 

WP_005457293.1e 

Gordonia         
amicalis 

WP_024497964.1 

Rhodococcus   
opacus 

WP_005244549.1c 

Streptomyces 
natalensis 

WP_030064645.1 

Rhodococcus 
rhodochrous 

WP_033237125.1 

Streptomyces 
rapamycinicus  
AGP60579.1e 

Rhodococcus     
fascians 

WP_037176148.1 

Rhodococcus        
jostii RHA1  
ABG96480.1 

Streptomyces 
collinus 

WP_020940041.1 

Saccharopolyspora 
spinosa  

WP_010314919.1 

Streptomyces 
violaceusniger 

WP_014058289.1e 

Rhodococcus    opacus 
WP_015888533.1 

Nocardioides     
luteus 

WP_045549377.1 

Streptomyces 
antibioticus 

WP_053212137.1 
 

Streptosporangium 
amethystogenes 

WP_030915565.1 
Frankia                      

sp. EAN1pec 
WP_020462084.1 

Haliangium 
ochraceum 

WP_012827286.1 

Streptomyces 
virginiae 

WP_033214178.1 
 

Streptomyces 
durhamensis 

WP_031160704.1e 

Spongiibacter   
tropicus 

WP_051151222.1 

Frankia sp. 
EAN1pec 

WP_020459245.1a 

Streptosporangium 
roseum 

WP_012895195.1 
 

Saccharomonospora 
glauca 

WP_005465046.1e 

Novosphingobium 
malaysiense 

WP_039287162.1a 

Saccharomonospora 
halophile 

WP_019811873.1 

Ktedonobacter 
racemifer 

WP_052569463.1 
Continued overleaf 

Streptacidiphilus    
albus  

WP_034086903.1e 
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cluster binding motif 
CXXHXXC(X)nCP CXXNXXC(X)nCP CXXYXXC(X)nCP CXXFXXC(X)nCP CXXSXXC(X)nCP 

Streptomyces mirabilis 
WP_037736688.1 

Herbidospora 
cretacea 

WP_030456498.1 

Actinopolymorpha 
alba 

WP_020578491.1e 
 

Frankia                      
sp. CN3 

WP_007510855.1e 

Spirillospora    albida 
WP_030164411.1 

Gordonia       
amarae 

WP_005182707.1b 

Rhodococcus opacus 
WP_012689438.1   

Saccharomonospora 
marina 

WP_009157031.1 

Actinomadura 
atramentaria 

WP_019633183.1 

Methanosarcina 
barkeri 

WP_048110266.1 
  

Actinomadura 
oligospora 

WP_026414661.1 
    

Tomitella biformata 
WP_024794878.1     

Amycolatopsis 
halophile 

WP_034277668.1 
    

Streptomyces griseus 
WP_037679114.1     

Kineosporia 
aurantiaca 

WP_052531168.1 
    

Methyloferula stellate 
WP_020176888.1     

Rhodopseudomonas 
palustris BisB5 

WP_011502257.1 
    

Novosphingobium 
aromaticivorans  

ABP64540.1 
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Table S8 Conservation of the CYP147/Fdr1/Fdx3 operon across different bacterial families. 
Fusion is where the ferredoxin gene is fused to the ferredoxin reductase gene.  

a This ferredoxin gene is associated with the ferredoxin reductase and CYP147 genes. b There are 
three other ferredoxin genes with the CXXYXXC(X)nCP motif in Streptomyces avermitilis MA-4680.  

 

CYP147G1 operon  
CYP147 FdR Ferredoxin CXX?XXC(X)nCP 

Frankia sp. CN3  
WP_007510563.1 WP_007510561.1 fusion Y 

    
Methanosarcina barkeri str. Fusaro  

WP_011306930.1 WP_011306931.1 WP_011306932.1 Y 
    

Methylobacterium extorquens CM4  
WP_015952233.1 WP_015952234.1 WP_003597514.1 Y 

    
Methylobacterium radiotolerans JCM 2831  

WP_012318808.1 WP_012318807.1 WP_012318806.1a Y 
    

Mycobacterium vanbaalenii PYR-1  
ABM11249.1 ABM11248.1 ABM11247.1 Y 

    
Myxococcus xanthus DK 1622  

ABF88234.1 ABF90123.1 fusion Y 
    

Rhodococcus jostii RHA1  
WP_011595234.1 WP_009475197.1 WP_011595232.1 Y 

    
Rhodococcus opacus B4  

WP_012689440.1 WP_012689439.1 WP_012689438.1 Y 
    

Streptomyces avermitilis MA-4680b  
WP_010982022.1 WP_010982021.1 WP_010982020.1 Y 

    
Streptosporangium roseum DSM 43021  

ACZ91470.1 ACZ91469.1 ACZ91468.1 Y 
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Figure S1 A phylogenetic tree of the forty seven CYP enzymes from M. marinum. Also included 
for comparison are the mycobacterial CYP enzymes; CYP125A1, CYP51, CYP124, CYP121A1, 
CYP141A1, CYP128A1, CYP132A1 and CYP135A1 from M. tuberculosis and CYP125A7 and 
CYP140A7 from M. ulcerans. CYP101A1 (P450cam), CYP102A1 (P450Bm3), CYP108A1 
(P450terp), CYP111A1 (P450lin) and CYP176A1 (P450cin) are also included. 
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Figure S2 The genes surrounding the ferredoxin genes of Mycobacterium marinum M and comparison with other Mycobacteria and bacteria which 
contain an equivalent ferredoxin. The Microbial Genomic Context Viewer (MGcV)27 was used to compare genome regions encoding homologous 
ferredoxins. Genes are labelled by their locus tag and coloured by COG (Clusters of Orthologous Groups). The ferredoxin gene is the in the centre of 
each figure (yellow triangle) and the genes on either side are shown. 

(a) MMar_2666 (CYP143A4), associated with Fdx1 (Mmar_2667), comparison to M. ulcerans Agy99 (Mul_3091), M. liflandii 128FXT 
(MulP_04211), M. tuberculosis H37Rv (RVBD_1785c), Frankia alni CAN 14a (FRAAL3663) and Rhodococcus jostii RHA1 (RHA1_ro00423). The 
surrounding genes in the Mycobacterium species are similar while those in the Frankia and Rhodococcus species show greater variation (though the 
CYP143A4 gene is conserved). MalQ (Mmar_2663) is a 4-alpha-glucanotransferase, Mmar_2664 and Mmar_2665 gene products are predicted to be 
ESX conserved components eccB5 and eccC5. The genes from Mmar_2669 and Mmar_2677 encode PE, PPE, ESAT and ESX proteins. 
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(b) Mmar_2877 (CYP278A1), associated with Fdx2 (Mmar_2879), comparison to M. liflandii 128FXT (MulP_02643), M. rhodesiae NB83 
(MycrhN_4190), M. vanbaalenii PYR-1 (Mvan_3974). While the CYP278A1 and ferredoxin gene are conserved across the Mycobacterium as are some 
of the surrounding genes though there are differences in the surrounding region. 
Mmar_2876 encodes an unknown regulatory protein and Mmar_2875 is predicted to be an aldehyde dehydrogenase. The cluster of genes from 
Mmar_2878 to Mmar_2897 encode integral membrance proteins, Mce3 proteins believed to be involved in cell division and associated proteins. 
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(c) Mmar_3154 (CYP153A16), associated with the [2Fe-2S] ferredoxin (Mmar_3155) and the ferredoxin reductase (FdR2, Mmar_3153), 
comparison to Rhodococcus erythropolis PR4 (pREL1_0283), M. gilvum PYR-GCK (Mflv_4592), M. rhodesiae NB83 (MycrhN_5185). The ferredoxin 
reductase (FdR2) is conserved in M. gilvum PYR-GCK but not M. rhodesiae NB83 or R. erythropolis PR4. 
Mmar_3150 encodes a NAD dependent zinc-containing alcohol dehydrogenase, Mmar_3151, a medium chain fatty-acid-CoA ligase, Mmar_3152, a 
protein of unknown function. MMar_3156 encodes a transcriptional regulatory protein. 
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(d) Mmar_3969 (CYP269A1), associated with the Fdx4 (Mmar_3973), comparison to M. liflandii 128FXT (MulP_04142). The ferredoxin is  not 
conserved in M. liflandii 128FXT. 
Mmar_3962 encodes a fatty acid synthase, Mmar_3964 a subunit of a ring hydroxylating dioxygenase, Mmar_3965 a NAD-dependent aldehyde 
dehydrogenase, Mmar_3966 an acyl dehydratase. 
Mmar_3971 encodes a probable oxidoreductase and Mmar_3972 an enzyme involved in non-ribosomal peptide synthetase. 
Mmar_3974 encodes an acyl-CoA transferase. 
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(e) Mmar_4717 (CYP188A3), associated with Fdx5 (Mmar_4716), comparison to M. ulcerans Agy99 (Mul_0317), M. kansasii ATCC 12478 
(MKAN_09840), M. vanbaalenii PYR-1 (Mvan_4160) and M. smegmatis str. Mc2 155 (155 (MSMEI_4679). Several of the surrounding genes are 
highly conserved across the Mycobacterium. Of particular note is the close proximity of the CYP150A6 gene in M. ulcerans Agy99 (the equivalent gene 
in M. marinum M is Mmar_4694). 

Mmar_4705 to Mmar_4710 encode proteins in involved in MCE (mammalian cell entry), Mmar_4711 and Mmar_4712 conserved hypothetical proteins 
of unknown function, Mmar_4713 a proposed dehydratase, Mmar_4714 a NAD-dependent aldehyde dehydrogenase and Mmar_4715 a NAD-dependent 
aldehyde dehydrogenase. 

Mmar_4718 and Mmar_4719 encode acyl-CoA dehydrogenases and Mmar_4722 a membrane-associated phospholipase plcB_6 possibly involved in 
sphingomyelin and phosphatidylcholine hydrolysis. 
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(f) Mmar_4730 (Fdx6), associated with CYP190A3 (Mmar_4733), Fdx7 (Mmar_4734), Fdx8 (Mmar_4736) and CYP150A5 (MMar_4737), 
comparison to M. vanbaalenii PYR-1 (Mvan_4170), M. smegmatis str. Mc2 155 (MSMEI_4689), M. kansasii ATCC 12478 (MKAN_09910) and M. 
gilvum PYR-GCK (Mflv_2484). Many of the surrounding genes are highly conserved across the Mycobacterium. Of particular note is the close 
proximity of the genes equivalent to CYP188A3 and it associated ferredoxin in M. vanbaalenii PYR-1 and M. smegmatis str. Mc2 155  (see Fig S2(e)). 

Mmar_4724 and Mmar_4725encode hypothetical metal-dependent hydrolase, Mmar_4726, similar to a Rieske ferredoxin subunit of certain proteins, a 
Mmar_4727, a hydrolase, Mmar_4729 a protein with similarity to NADH dehydrogenase I (chain F). 

Mmar_4732 and Mmar_4732 encode a 3-ketoacyl-CoA thiolase and a thioesterase, respectively. 

Mmar_4735 encodes a PE-PGRS family protein. 

Mmar_4739 encodes a transcriptional regulatory protein, Mmar_4740 and Mmar_4741, an acetyl-CoA acetyltransferase FadA6_2 and an acyl-CoA 
dehydrogenase FadE12_1, respectively and Mmar_4742 a metal-dependent amidohydrolase. 
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(g) Mmar_4762 (CYP105Q4), associated with Fdx9 (Mmar_47633), comparison to M. ulcerans Agy99 (Mul_0333), M. vanbaalenii PYR-1 
(Mvan_4234), M. gilvum PYR-GCK (Mflv_2418), M. smegmatis str. Mc2 155 (MSMEI_4731) and Amycolatopsis mediterranei RB (B737_7119). 
Many of the surrounding genes are highly conserved across the Mycobacterium. A ferredoxin gene is also found in close proximity to the P450 gene in 
A. mediterranei RB. 

Mmar_4756 to Mmar_4760 encodes an oxidoreductase, an acyl-CoA transferase, an enoyl-CoA hydratase, EchA4_1, an aminopeptidase and a 
dipeptidase, respectively. The function of Mmar_4761 is unknown.  

Mmar_4764 may encode a transcription regulator, Mmar_4765 encodes a short chain dehydrogenase, Mmar_4766 a hypothetical protein, Mmar_4767 a 
membrane transport protein, Mmar_4768 a cysteine synthase a CysK2, Mmar_4769 a lipoprotein LpqS, Mmar_ Mmar_4770 an oxidase. 
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(h) Mmar_4932 (CYP51B1), associated with Fdx10 (Mmar_4933) and CYP123A1 (Mmar_4930), comparison to M. ulcerans Agy99 (Mul_0473), 
M. vanbaalenii PYR-1 (Mvan_5161), M. gilvum PYR-GCK (Mflv_1596), M. tuberculosis H37Rv (RVBD_0764c), M. smegmatis str. Mc2 155 
(MSMEI_5704), Rhodococcus jostii RHA1 (RHA1_ro04671) and Nocardia farcinica IFM 10152. Many of the surrounding genes are highly conserved 
across the Mycobacterium. Several of the genes are also conserved in the R. jostii RHA1 species but the genes in the vicinity of the CYP51 gene in N. 
farcinica IFM 10152 are significantly different. 

Mmar_4925 though to Mmar_4928 encode a phosphoribosylamine-glycine ligase, PurD, a 4-carboxymuconolactone decarboxylase, two 
dehydrogenase/reductases and a NAD-dependent aldehyde dehydrogenase, AldA. Mmar_4929 encodes a protein of unknown function. 

Mmar_4931 encodes a short-chain alcohol dehydrogenase. 

Mmar_4934 to Mmar_4937 encodes a conserved/hypothetical protein, a zinc-containing alcohol dehydrogenase NAD-dependent AdhB, a possible 
NADH:flavin oxidoreductase and an unknown conserved hypothetical protein containing a nuclear transport factor 2 (NTF2) domain. 
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(i) Mmar_4991 (Fdx11, which is not associated with a P450 gene), comparison to M. liflandii 128FXT (MulP_05239), M. ulcerans Agy99 
(Mul_4066), M. tuberculosis H37Rv (RVBD_3503c), M. smegmatis str. Mc2 155 (MSMEI_5744), M. kansasii ATCC 12478 (MKAN_11680), M. 
rhodesiae NB83 (MycrhN_2333) and M. gilvum PYR-GCK (Mflv_1596). Many of the surrounding genes are highly conserved across the 
Mycobacterium species. 

Mmar_4980 to Mmar_4989 encodes a conserved MCE-associated protein, a conserved hypothetical alanine and valine rich MCE-associated protein, a 
MCE-family protein Mce4F, a MCE-family lipoprotein LprN, a MCE-family protein Mce4D, a MCE-family protein Mce4C, a MCE-family protein 
Mce4B, a MCE-family protein Mce4A, a conserved hypothetical membrane protein YrbE4B and a conserved membrane protein YrbE4A, respectively. 

Mmar_4990 encodes a short-chain type dehydrogenase/reductase. 

Mmar_4992 to Mmar_4996 encodes an acyl-CoA dehydrogenase FadE26, an acyl-CoA dehydrogenase FadE27, a fatty-acid-CoA synthetase FadD17, a 
PE-PGRS family protein and a conserved protein of unknown function which contains an eta-lactamase/transpeptidase-like superfamily domain  
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Figure S3 (a) Cell pellet of E. coli containing pET26CYP147G1 showing a red colouration due to 

the CYP147G1 expression but no blue colouration due to indigo formation. (b) Cell culture of the 

whole-cell oxidation system consisting of pETDuetFdx3/FdR1 and pRSFDuetFdx3/CYP147G1 and 

the cell pellet showing the formation of a blue dye.  

 

          

 

 

 

 

 

 

(a)    (b)    
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Figure S4 The spectra of the ferrous, carbon monoxide bound forms of (a) CYP147G1, (b) 
CYP278A1, (c) CYP269A1, (d) CYP269A1 in the presence of miconazole, (e) CYP150A5 and (f) 
CYP105Q4. With the exception of CYP269A1 approximately 95% of the proteins shifted from 418 
nm (black trace, ferric state) to 450 nm (red trace, reduced CO-bound). In (d), the addition of 
miconazole to CYP269A1 (black trace before addition, green trace after) stabilised the reduced CO-
bound form of the enzyme (blue is reduced state, red is ferrous CO-bound).  

(a)                                                                                 (b) 

 
 

(c)                                                                             (d) 

 
(e)                                                                              (f) 

    

The absorbances of the ferric, ferrous and ferrous-CO bound forms and the extinction coefficients 
are provided overleaf. 
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Absorbance maxina of the Soret band for the ferric, ferrous and ferrous-CO species of each P450 
enzyme: 

CYP147G1 420 nm, 420 nm and 446 nm 

CYP278A1 418 nm, 411 nm and 446 nm 

CYP269A1 392 nm, 410 nm and 423/446 nm split peak 

CYP150A5 418 nm, 409 nm and 447 nm  

CYP105Q4 420 nm, 415 nm and 449 nm 

 

Extinction coefficients for the P450s (calculated on CO difference spectra and confirmed by the 
Pyridine hemochromagen method) * CYP269A1 was only determined by the pyridine 
hemochromagen method. 

CYP147G1 

ε417= 111 mM cm-1
  

CYP150A5 

ε418= 103 mM cm-1
  

CYP278A1 

ε417= 126 mM cm-1
  

CYP269A1*  

ε392= 114 mM cm-1
  

CYP105Q4 

ε420= 110 mM cm-1
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Figure S5 Spin-state shift and binding constants assays for (a) CYP147G1 with undecanoic acid, 

(b) CYP278A1 with β-ionone and (c) CYP150A5 with β-ionone. 
 (a) 

   
(b) 

  
(c) 

  
Figure S6 Mass spectrum of GC peaks from CYP147G1 turnovers with undecanoic acid (A) 

undecanoic acid substrate (retention time 9.2 min), (B) hydroxyundecanoic acid (13.9 min). 



 

236 
 

 

 

 

 

 

 

 

The peak at 9.2 min showed an m/z peak at 243.2 in comparison to the expected m/z of 258.2 for 

trimethylsilyl undecanoic acid (a mass loss of 15 m/z) and coeluted with the substrate standard 

(Appendix D). The product of the undecanoic acid turnover (with two trimethylsilyl protecting 

groups) has an expected m/z of 346.24. The peak at 13.9 min showed an m/z of 346.1 and a 

secondary peak of 331.1 (a mass difference of 15 m/z from the apparent molecular ion peak).  
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10-hydroxyundecanoic acid NMR data.1H NMR (500 MHz, CDCl3) δ 3.80 (tq, J = 6.3 Hz, 1H), 

2.35 (t, J = 7.4 Hz, 2H), 1.64 (tt, J = 7.4 Hz, 2H), 1.46 – 1.23 (m, 12H), 1.19 (d, J = 6.2 Hz, 3H). 
13C NMR (126 MHz, CDCl3) δ 136.81, 132.71, 68.17, 39.26, 33.66, 31.58, 30.26, 29.66, 29.63, 

29.45, 29.27, 29.06, 28.95, 25.63, 24.64, 23.45, 19.18. 

The overlapping triplet of quartets (tq) at approximately δ 3.8 ppm is distinctive for ω-1 

hydroxylation. If the acid was hydroxylated at any other sub-terminal position, the H on the 

hydroxylated carbon would be a triplet of triplets, as it would not be split by the terminal CH3 

group. Terminal hydroxylation would also be distinctive, as the CH2OH group signal would be 

observed as a triplet of 2H intensity. The 3H doublet peak at δ 1.19 ppm can be assigned to the 

terminal CH3 group, split by the single H on the CHOH group, thereby confirming the formation of 

10-hydroxyundecanoic acid.  
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1H NMR of 10-hydroxyundecanoic acid 

 
1H COSY NMR of 10-undecanoic acid 
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Figure S7 Excerpts of sequence chromatograms for Fdx3 mutants, with the successful codon 

change highlighted in blue. 

 

 
pETDuet with FdR2931 (FdR1) and Fdx2932 (Fdx3) Tyr12Gly – with  codon GGC replacing TAC 
 

 
pRSFDuet with CYP147G1 and Fdx2932 (Fdx3) Tyr12Cys – with codon TGC replacing TAC 
 

 
pRSFDuet with CYP147G1 and Fdx2932 (Fdx3) Tyr12Gly – with codon GGC replacing TAC 
 

 
pETDuet with Fdr2931 (FdR1) and Fdx2932 (Fdx3) Try12Cys – with codon TGC replacing TAC  
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Figure S8 Type II spin-state shift and binding constants assays for CYP269A1 with miconazole. 
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Figure S9 (a) SDS page of ferredoxin proteins. Note that the small highly acidic ferredoxins are 

difficult to quantitate in terms of their molecular weight via SDS page.28 

 

 

Ladder 2667 3155 3973 4716 4730 

Protein MS data of selected ferredoxins 

The average mass of the proteins was measured to be: 

2Fe-2S (Mmar_3155) 
12093.13 Da (theoretical average mass, 12216.65 Da) 

Fdx4 (Mmar_3973) 
7647.67 Da (theoretical average mass, 7642.71 Da) 

Fdx5 (Mmar_4716) 
8288 Da (theoretical average mass, 8118.77 Da) 

Fdx6 (Mmar_4730) 
11817.81 Da (theoretical average mass, 11781.52 Da) 

Fdx8 (Mmar_4736) 
7736.88 Da (theoretical average mass 7764.57 Da) 

Fdx9 (Mmar_4763)  
7662 Da (theoretical average mass, 7657.71 Da) 

Note terminal methionine cleavage (-131) was observed in the [2Fe-2S] ferredoxin and Fdx4.  
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Figure S9 (b) SDS page analysis of Fdx4 purified by IMAC or Ion exchange followed by size 

exclusion (S100) 

 

 

 

Figure S9 (c) SDS page analysis of associated CYP proteins.  
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Figure S10: Absorbance (upper) and CD (lower) spectra of Fdx4 (panels A and D), Fdx5 (panels B 
and E) and Fdx9 (panels C and F) as isolated (red traces), incubated with ferricyanide (black 
traces), incubated with ascorbate (blue traces) and Eu2+ (dark cyan traces). 
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Figure S12: Cluster identification by mass spectrometry. Native (upper) and LC (lower) mass 
spectra of Fdx4 (panel A), Fdx5 (panel B) and Fdx9 (panel C). Each of the LC-MS spectra contain 
a peak at the predicted mass of the apo protein and an additional peak 131 Da lighter than this, 
consistent with cleavage of the N-terminal methionine. The native mass spectra contain peaks 296 
Da higher in mass than each of these features (indicated by red arrows) consistent with binding of a 
[3Fe-4S] cluster by each of the ferredoxins.   
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Figure S12 :EPR of spectroscopy of Fdx4 (Panel A), Fdx5 (Panel B) and Fdx9 (Panel C). The form 
of the spectra was consistent with the oxidised form of a [3Fe-4S] cluster in each case. The black 
traces are those recorded for the proteins as isolated, red traces those following incubation with 
ferricyanide and blue traces those following incubation with Eu2+. 
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Figure S13: CD Spectra of Fdx4 isolated utilising a Ni2+ charged IMAC column (black trace) or a 
combination of anion exchange and size exclusion chromatography (red trace). Blue trace 
represents the latter sample following incubation with 1.0 stoichiometric equivalent of 
(NH4)2Fe(SO4)2  
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Figure S14: Measurement of the UV spectra (absorbance at 406 nm) of Fdx2 and Fdx4 which were 

purified under anaerobic conditions and then exposed to dioxygen. 
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Chapter 3 Supplementary Information 

Table S1. Sequence identities of CYP147G1, analogous proteins from Mycobacterium species, 
other named members of the CYP147 family and various other proteins for comparison.  

Species CYP namea % 
identity 

Query 
cover 

NCBI accession 
number  

M. ulcerans subsp. shinshuense - 98 100 WP_096370728.1 
M. liflandii 128FXT - 97 91 AGC62648.1 

M. bohemicum  - 85 100 WP_085181067.1 
M. saskatchewanense - 85 99 WP_085257246.1 

M. gastri - 84 99 WP_036416250.1 
M. kansasii ATCC 12478 - 84 96 WP_042313145.1 

Nocardia vinacea - 70 100 WP_040690456.1 
M. rhodesiae - 69 100 WP_083121537.1 

M. aromaticivorans - 69 100 WP_036340410.1 
M. vanbaalenii PYR-I 147G2 68 99 WP_011777722.1 

Nocardia fusca - 67 100 WP_063129094.1 
Streptomyces tubercidus 147C1 50 99 AAT45277.1 

Myxococcus xanthus 147A1 47 99 WP_011554130.1 
Streptomyces bingchenggensis 147F2 45 100 WP_014172979.1 

Rhodoccocus jostii RHA1 147B2 45 96 WP_011595234.1 
Ktedonobacter racemifer - 44 100 WP_007923086.1 

Streptomyces bingchenggensis 147F3 44 98 WP_014177798.1 
Streptomyces avermitilis 147B1 44 95 WP_037650463.1 
Streptomyces peucetius 147F1 43 98 WP_100110235.1 
Methanosarcina barkeri 147E1 42 99 WP_048107618.1 

Magnetospirillum magnetotacticum 147D1 42 98 b 

M. smegmatis  164A2 34 98 3R9C_A 
M. tuberculosis H37Rv 124A1 34 76 WP_003411654.1 

Bacillus subtilis 107H1  
(P450BioI) 

32 98 P53554 
 

a CYP name given in accordance with the NCBI database and Dr Nelson P450 homepage for bacterial P450s where 

listed[1]. b could not be found on NCBI so is given in accordance with the P450 homepage only[1].  

NB: Additional analogues of CYP147G1 were found in Mycobacterium species (between 82% and 98% 
similarity, and a further group between 59% and 70% which includes CYP147G2), and a number of 
Nocardia (all between 65% and 70%) and Streptomyces (40% and 50%) species. There were no analogues of 
the enzyme found between 72% and 82%. Among the analogues revealed by the BLAST search, there were 
additional species containing similar enzymes including Thermoactinospora rubra (50%), 
Saccharopolyspora shandongensis (51%), Frankia discariae (44%), Actinopolymorpha singaporensis 
(46%), Arthrobacter sp. MA-N2 (43%) and Rhodococcus koreensis (44%).  
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Table S2. Sequence identities of Fdx3 and analogous proteins from other Mycobacterium species and elsewhere. Almost all the ferredoxins listed 
contain the tyrosine residue replacing the third cysteine of the iron-sulfur cluster motif; exceptions are underlined. All of the associated CYPs share 
>40% similarity to CYP147G1. Where multiple proteins are listed from the same species, the same strain is used for all.  

Species % identity Query cover NCBI accession number Associated FdR Associated CYP 
M. liflandii 128FXT 99 100 AGC62647.1 - WP_020787308.1 

M. ulcerans subsp. shinshuense 99 100 WP_015355775.1 - WP_096370728.1 
M. kansasii ATCC 12478 94 100 AGZ49085.1 WP_023364433.1 WP_042313145.1 

M. bohemicum 94 100 ORU99153.1 WP_085181066.1 WP_085181067.1 
M. gastri 94 100 WP_036416246.1 WP_036416248.1 WP_036416250.1 

M. rhodesiae DSM44223 94 98 WP_083121535.1 WP_083121536.1 WP_083121537.1 
M. aromaticivorans 93 98 WP_036346035.1 WP_036340407.1 WP_036340410.1 

M. saskatchewanense 93 95 WP_085257248.1 WP_085257247.1 WP_085257246.1 
M. vanbaalenii PYR-1 84 98 ABM11247.1 WP_011777721.1 e WP_011777722.1 

Mycobacterium sp. 1274761.0 a 80 85 WP_066982528.1 - - 
Nocardia fusca 78 91 WP_063129092.1 WP_063129093.1 WP_063129094.1 

Nocardia vinacea 77 91 WP_040690458.1 WP_040690457.1 WP_040690456.1 
M. gastri 72 81 WP_036416270.1 WP_036416261.1 WP_036416260.1 

Ktedonobacter racemifer 70 85 WP_052569463.1 WP_007923087.1 WP_007923086.1 
M. kansasii ATCC 12478 69 85 AGZ49073.1 AGZ49074.1 AGZ49075.1 

Streptomyces bingchenggensis 69 83 ADI08329.1 WP_014177797.1 WP_014177798.1 
Frankia sp. CN3 67 85 WP_084174339.1 - c WP_007510563.1 

Streptomyces avermitilis 66 98 WP_037650459.1 WP_037650461.1 WP_037650463.1 
Streptomyces bingchenggensis 66 85 ADI03498.1 WP_014172978.1 WP_014172979.1 
Streptomyces sp. WM6378 b 64 85 WP_078966815.1 WP_014677360.1 - 

Streptomyces tubercidus 62 85 AAT45278.1 AAT45279.1 AAT45277.1 
Methanosarcina barkeri 62 84 WP_048110266.1 WP_048107620.1 WP_048107618.1 

Myxococcus xanthus DK 1622 62 81 ABF90123.1 - c ABF88234.1 
Rhodococcus jostii RHA1 61 87 WP_011595232.1 WP_009475197.1 WP_011595234.1 

Streptomyces peucetius 60 94 WP_100110237.1 WP_100110236.1 WP_100110235.1 
Rhodopseudomonas palustris 54 37 4ID8_A   
Clostridium thermoaceticum d 28 81 WP_075515755.1   

Thermococcus litoralis 27 100 WP_004067745.1   
a The tyrosine residue in the cluster binding motif is replaced with Cys (there is an associated peroxygenase, WP_066982530.1) b Tyr residue replaced with His c fusion protein (of Fdx and FdR 
domains) d species renamed Moorella thermoacetica. e has a second FdR protein co-located (WP_011777719.1) NB: There were a large number of Fdx analogues in Mycobacterium species (with 
sequence similarities from 100% down to 69%). There are two Tyr containing Fdx in several Mycobacterium species such as M. kansasii (94 and 69%) and M. gastri (94 and 72%). Rhodococcus jostii 
RHA1 also contains a second Tyr-containing Fdx (43%) while S. avermitilis contains three (66%, 59% and 56%, all with associated CYPs and the third being a fused Fdx/FdR, WP_037648248.1). 
Analogues of the Fdx found in Nocardia have similarities between at 77% and 80% while in Streptomyces were at 75% and below. In the first 250 results from the BLAST search, only two did not have 
the tyrosine residue indicating it is highly conserved. They are listed in the table.  
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Table S3: Sequence identities of FdR1 and analogous proteins from other Mycobacterium species 
and elsewhere.  

Species % 
identity 

Query 
cover 

NCBI accession 
number  

M. kansasii ATCC 12478 91 99 AGZ49084.1 
M. gastri 91 99 WP_036416248.1 

M. saskatchewanense 90 99 WP_085257247.1 
M. bohemicum 90 99 WP_085181066.1 

M. aromaticivorans 83 97 WP_036340407.1 
M. rhodesiae DSM44223 82 97 WP_083121536.1 

M. vanbaalenii PYR-1 81 98 WP_011777721.1 
Nocardia vinacea 79 98 WP_040690457.1 
Nocardia fusca 75 99 WP_063129093.1 

Thermoactinospora rubra 74 99 WP_084959902.1 
Streptomyces tubercidicus 74 99 AAT45279.1 

Saccharopolyspora antimicrobica 64 96 WP_093160449.1 
Microtetraspora niveoalba a 63 96 WP_067168930.1 

Ktedonobacter racemifer 63 95 WP_007923087.1 
Streptomyces avermitilis 63 95 WP_037650461.1 

Streptomyces olivochromogenes a 62 96 WP_067381331.1 
Arthrobacter sp. ok909 a 61 98 WP_091252245.1 

Myxococcus xanthus DK 1622 a 61 95 ABF90123.1 
M. kansasii ATCC 12478 60 98 AGZ49074.1 

Streptomyces bingchenggensis 60 97 WP_014177797.1 
M. kansasii ATCC 12478 60 96 AGZ49074.1 

Frankia sp. CN3 a 60 96 WP_084174339.1 
Streptomyces bingchenggensis 59 97 WP_014172978.1 

Methanosarcina barkeri 57 93 WP_048107620.1 
 

a The protein is a fusion of ferredoxin reductase and ferredoxin domains. Additional fusions were found in the following 

species: Arthrobacter sp. ov407, Arthrobacter sp. 49Tsu3.1M3, Streptomyces sp. NRRL S-1824 and Streptomyces sp. 

93. In all cases the Tyr residue of the ferredoxin cluster binding motif was conserved.  

NB: Similar ferredoxin reductases are found in many Mycobacterium species (down to 62%, although below 72% all 

are from M. kansasii), Nocardia species (from 75% to 78%) and Streptomyces (from 75% and below). There are two 

similar proteins in M. kansasii (91% and 60%) but only one in M. gastri and it is not present at all in M. liflandii (the 

highest similarity protein from that species is 37% according to the BLAST search, and the gene next to the ferredoxin 

in the genome is frameshifted) or any M. ulcerans strains (also 37% similarity). There are also two copies in S. 

bingchengensis (at 60% and 59% similarities) and three in S. avermitilis although they have lower sequence similarities 

(58%, 43% and 37%).  
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Table S4: Conserved domains of the CYP147 family of enzymes. The conserved residues are in 

bold, alterations to those residues are in red and underlined.   

CYP name I-helix K-helix Heme binding motif 

147A1 GHETTV ELLR FGSGIHYC 
147B1 GHETTV ELLR FGSGIHLC 
147B2 GHETTV ELLR LGSGIHSC 
147C1 GHETTV ELLR FSQGIHFC 
147D1 GHETTV ELLR FGGGLHYC 
147E1 GHETTV EFLR FGSGIHYC 
147F1 GHETTV ELLR LGSGIHSC 
147F2 GHETTV EVLR FYTGIHYC 
147F3 GHETTV EVLR FGSGIHIC 
147G1 GHDSTV EVQR WGSGIHTC 
147G2 GHDSTV EVQR WGSGIHTC 
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Table S5: Additional spin state shifts of CYP147G1 with a variety of substrates.  

Substrate  Spin state shift (% HS)  
Linoleic 30 
Behenic acid 25 
n-Propylbenzoic acid 20 
n-t-Butylbenzoic acid 20 
Octadec-9-enoic acid  20 
Eicosanoic acid 15 
2-Naphthoic acid 10 
4-Heptylbenzoic acid ≤5 
2-Indanone ≤5 
Indole ≤5 
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Figure S1: Protein sequences of CYP147G1, CYP147G2 enzyme from Mycobacterium vanbaalenii 

PYR1, CYP147A1 from Myxococcus xanthus, CYP147C1 from Streptomyces tubercidicus and 

CYP147F1 from Streptomyces peuceticus aligned to the structural elements of CYP124A1 from 

Mycobacterium tuberculosis (PDB: 2WM5)[2] using ESPript. [3] 
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Figure S2: The Microbial Genomic Context Viewer (MGcV)[4] was used to compare the 

surrounding genome regions (40 kbp) of homologous CYPs. Genes are labelled by their locus tag 

and coloured by COG (Clusters of Orthologous Groups). The genes surrounding the Mmar_2930 

gene encoding CYP147G1 (green) from M. marinum M are compared to those from M. liflandii 

128FXT (Mulp_02093), M. kansasii ATCC (Mkan_01285 and Mkan_01245), M. vanbaalenii PYR-

1 (Mvan_0401), Methanosarcina bakeri str. Fusaro (Mbar_A1945), Rhodococcus jostii RHA1 

(RHA1_ro02510), Myxococcus xanthus DK 1622 (Mxan_4127), Streptomyces bingchenggensis 

BCW-1 (Sbi_05211 and Sbi_00379) and Streptomyces avermitilis (Sav_584). While the 

surrounding gene regions show little similarity between species, the CYP147G1 is conserved in 

almost all instances alongside genes encoding an FdR (Mmar_2931) and Fdx (Mmar_2932). The 

exceptions to this are M. liflandii 128FXT which is missing the FdR gene, and M. xanthus which 

has a single, fused FdR/Fdx protein (Mxan_4126). Two proteins, a PE-PGRS family protein 

(Mmar_2933) and a cutinase (Mmar_2934) are conserved in the Mycobacterium species M. 

kansasii and M. liflandii. 
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Figure S3: A phylogenetic tree (phenogram) of Fdx3 from M. marinum, and the similar proteins 

from Mycobacterium and other species (all listed by species name, for protein sequence similarities 

and accession numbers see Table S2). Where two similar ferredoxins exist in the same genome (eg. 

M. kansasii), the percentage similarity of each to Fdx3 is shown in parentheses. The ferredoxin in 

Mxyococcus xanthus is a ferredoxin-ferredoxin reductase fusion protein. For comparison the [3Fe-

4S] ferredoxins Rhodopseudomonas palustris (His), Streptomyces coelicor (Ala), and the [4Fe-4S] 

ferredoxins from Clostridium thermoacetica and Thermococcus literalis (Cys) have been included. 

Aside from those four, all the ferredoxins shown have a tyrosine residue in the iron-sulfur cluster 

binding motif (CXXYXXC(X)nCP). The scale shows number of substitutions per site.  
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(a) 

 
(b) 

Figure S4: (a) CYP147G1-mediated indigo formation (via the hydroxylation of indole), as 

qualitatively measured by the blue colour in the cell pellet, is reduced when coupled with the 

Fdx/FdR fusion gene pp_1957 from Pseudomonas putida [5] (bottom tube) compared to expression 

with the Fdx3/FdR1 native pair (top tube) and (b) the hydroxylation of undecanoic acid by 

CYP147G1 is not supported by the Tdx/ArR pair (from Pseudomonas sp [6] and Novosphingobium 

aromaticivorans[7] respectively) used to support CYP268A2 activity [8] (RT undecanoic acid 7.5 

min, 10-hydroxyundecanoic acid 13.25 min). This highlights that CYP147G1 activity is reduced 

when coupled with non-native electron transfer partners and the selectivity of the enzyme for its 

physiological partners.   
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Figure S5: Selected spin state shifts of CYP147G1 for a variety of substrates.  
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Figure S6: Spin state shifts of various substrates with CYP147G1 including (a) dodecanoic acid, 

10-methyldodecanoic acid and 11-methyldodecanoic acid (b) undecanoic acid, 9-methylundecanoic 

acid and 10-methylundecanoic acid, (c) dodecanoic acid, dodecyl acetate and methyl dodecanoate 

and (d) octanoic acid and 3,7-dimethyloctanoic acid.  

  



 

261 
 

 

(a) 10-Undecenoic acid 

 

(b) Dodecyl acetate 

 

(c) Farnesol 

 

(d) Farnesyl acetate 

 

(e) Miconazole 

 

(f) Econazole 

Figure S7: Additional binding constants with CYP147G1. The inset represents a typical substrate 

binding titration. The peak to trough difference in absorbance was measured from 420 nm to 390 

nm in each, except with miconazole and econazole where a Type II shift was recorded (peak to 

trough 409 to 430 nm for both).   
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Figure S8: Mass spectra of TMSCl derivatised fatty acid substrates and their hydroxylated 

metabolites 

Octanoic acid Fig 3(a) 

 

 (a) MS of peak at 4.3 min – substrate octanoic acid (expected mass 216.15 m/z, -15 peak seen at 

201.15 m/z) 

  

(b) MS of peak at 9.1 min – octanoic acid product ω-1 hydroxylation (expected mass 304.19 m/z, -

15 peak seen at 289.20 as well as peak at 117.10 m/z)  

 

Decanoic acid Fig 3(b) 

 

(c) MS of peak at 7.5 min – substrate decanoic acid (expected mass 244.19 m/z, -15 peak seen at 

229.15 m/z) 

 

(d) MS of peak at 12.4 min – decanoic acid product ω-1 hydroxylation (expected mass 332.22 m/z, 

-15 peak seen at 317.20 as well as peak at 117.10 m/z) 
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Figure S8 (cont): Mass spectra of TMSCl derivatised fatty acid substrates and their hydroxylated 

metabolites 

Undecanoic acid Fig 3(c) 

 

(e) MS of peak at 9.25 min – substrate undecanoic acid (expected mass 258.20 m/z, -15 peak seen 

at 243.25 m/z) 

 

(f) MS of peak at 13.2 min – undecanoic acid minor product ω-2 hydroxylation (expected mass 

346.24 m/z, peak seen at 347.25 as well as distinctive ω-2 peaks at 317.00 m/z, -29, and 131.05 

m/z)  

 

(g) MS of peak at 13.9 min – undecanoic acid product ω-1 hydroxylation (expected mass 346.24 

m/z, -15 peak seen at 331.30 as well as peak at 117.10 m/z) 
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Figure S8 (continued): Mass spectra of TMSCl derivatised fatty acid substrates and their 

hydroxylated metabolites 

Dodecanoic acid Fig 3(d) 

 
(h) MS of peak at 11.0 min – substrate dodecanoic acid (expected mass 272.22 m/z, -15 peak seen 

at 257.25 m/z) 

 
(i) MS of peak at 14.5 min – dodecanoic acid minor product ω-2 hydroxylation (expected mass 

360.25 m/z, peak seen at 345.05 m/z as well as peaks at 330.95 m/z and 131.05 m/z) 

 
(j) MS of peak at 15.4 min – dodecanoic acid product ω-1 hydroxylation (expected mass 360.25 

m/z, -15 peak seen at 345.30 as well as peak at 117.05 m/z) 
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Figure S9: (a) GC trace of CYP147G1 with tetradecanoic acid. * indicates impurities identified from MS as 

the ω-1 hydroxylation product of dodecanoic acid (15.4 min) and hexadecanoic acid (17.0 min). Dodecanoic 

acid is also present as an impurity in both the turnover and the substrate control (11.0 min). 

 

(b) MS of peak of (a) at 14.1 min – substrate tetradecanoic acid (expected mass peak at 300.25 m/z 

seen, -15 peak seen at 285.30 m/z) 

 

(c) MS of peak at 18.2 min – tetradecanoic acid product ω-1 hydroxylation (expected mass 388.28 

m/z, -15 peak seen at 373.25 as well as peak at 117.10 m/z) 
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Figure S10: (a) GC trace of CYP147G1 with hexadecanoic acid. * indicates an impurity identified 

from MS as octadecanoic acid.   

 

(b) MS of peak of (a) at 17.0 min – substrate hexadecanoic acid (expected mass peak at 328.28 m/z 

seen, -15 peak seen at 313.35 m/z) 

 

(c) MS of peak at 20.7 min – hexadecanoic acid product ω-1 hydroxylation (expected mass 416.31 

m/z, -15 peak seen at 401.35 as well as peak at 117.05 m/z.) 
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Figure S11: Mass spectra of TMSCl derivatised linear and branched dodecanoic acid substrates and 

their hydroxylated metabolites 

Dodecanoic acid, 10-methyldodecanoic acid, 11-methyldodecanoic acid, Fig. 4(a) 

 
 (a) MS of GC peak at 14.7 min – dodecanoic acid ω-1 hydroxylation product (expected mass 

360.25 m/z, -15 peak seen at 345.00 as well as peak at 117.05 m/z) 

 
(b) MS of GC peak at 15.4 min –10-methyldodecanoic acid ω-1 hydroxylation product (expected 

mass 374.27 m/z, -15 peak seen at 359.05 as well as peak at 117.05 m/z) 

 
(c) MS of GC peak at 15.35 min –11-methyldodecanoic acid ω-1 hydroxylation product (expected 

mass 374.27 m/z, -15 peak seen at 359.10 as well as peak at 131.05 m/z,  indicating the ω-1 product 

in a methyl branched substrate as the fragment is now CH3CCH3OSiMe3
+) 

 
 (d) MS of GC peak at 16.0 min –11-methyldodecanoic acid ω hydroxylation product (expected 

mass 374.27 m/z, -15 peak seen at 359.00 as well as peak at 103.00 m/z) 

 
(e) MS of GC peak at 14.7 min – methyl dodecanoate acid ω-1 hydroxylation product (expected 

mass 360.25 m/z if the acetate group is cleaved in derivatisation, -15 peak seen at 345.05 as well as 

peak at 117.05 m/z) 
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Figure S12: Mass spectra of TMSCl derivatised linear and branched undecanoic acid substrates and 

their hydroxylated metabolites 

Undecanoic acid, 9-methylundecanoic acid, 10-methylundecanoic acid, Fig. 4(b) 

 
 (a) MS of GC peak at 13.4 min – undecanoic acid ω-1 hydroxylation product (expected mass 

346.24 m/z, -15 peak seen at 331.00 as well as peak at 117.15 m/z) 

 
(b) MS of GC peak at 14.1 min – 9-methylundecanoic acid ω-1 hydroxylation product (expected 

mass 360.25 m/z, -15 peak seen at 345.05 as well as peak at 117.05 m/z) 

 
 (c) MS of GC peak at 14.4 min – 9-methylundecanoic acid ω hydroxylation product (expected 

mass 360.25 m/z, -15 peak seen at 345.00 as well as peak at 103.00 m/z) 

 
(d) MS of GC peak at 14.0 min –10-methylundecanoic acid ω-1 hydroxylation product (expected 

mass 360.25 m/z, -15 peak seen at 345.05 as well as peak at 131.05 m/z,  indicating the ω-1 product 

in a methyl branched substrate) 

 
 (e) MS of GC peak at 14.75 min – 10-methylundecanoic acid ω hydroxylation product (expected 

mass 360.25 m/z, -15 peak seen at 345.00 as well as peak at 103.00 m/z) 
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Figure S13: Mass spectra of TMSCl derivatised linear and branched octanoic acid substrates and 

their hydroxylated metabolites 

Octanoic acid, 3,7-dimethyloctanoic acid, Fig. 4(c) 

 
 (a) MS of GC peak at 9.2 min – octanoic acid ω-1 hydroxylation product (expected mass 304.19 

m/z, -15 peak seen at 289.20 as well as peak at 117.10 m/z) 

 
(b) MS of GC peak at 10.1 min –3,7-dimethyloctanoic acid ω-1 hydroxylation product (expected 

mass 332.22 m/z, -15 peak seen at 317.00 as well as peak at 131.05 m/z,  indicating the ω-1 product 

in a methyl branched substrate) 

 
(c) MS of GC peak at 11.0 min –3,7-dimethyloctanoic acid ω hydroxylation product (expected mass 

332.22 m/z, -15 peak seen at 317.00 as well as peak at 103.00 m/z) 
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Figure S14: (a) 1H NMR of the product of the CYP147G1 turnover with dodecanoic acid, showing 

an expansion of the diagnostic triplet of quartets at δ 3.8 ppm (b) COSY-NMR of the product. 

 

Scheme S1: Dodecanoic acid hydroxylation product of CYP147G1. 1H NMR (500 MHz, CDCl3) δ 

3.8 (tq, J = 6.2 Hz, 1H, H11), 2.35 (t, J = 7.4 Hz, 2H, H2), 1.64 (tt, J = 7.4 Hz, 2H, H3), 1.42 (m, 

2H, H10), 1.27 (broad m, 12H, H4-9), 1.19 (d, J = 6.2 Hz, 3H, H12). 13C NMR (126 MHz, CDCl3) 

δ 68.23, 39.32, 33.55, 29.71, 29.52, 29.44, 29.26, 29.12, 28.99, 25.70, 24.67, 23.50. 

The triplet of quartets at approximately δ 3.8 ppm is distinctive for ω-1 hydroxylation (Figure S13). 

The 3H doublet peak at δ 1.19 ppm confirms the hydroxylation of the substrate at the ω-1 position, 

as it can be assigned by COSY as the terminal CH3 group, split by the single H on the CHOH 

group.  
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Chapter 4 Supplementary information 

Table S1: Alternative electron transfer partners paired with CYP150A5 for whole-cell 
product formation assays. The ability of all to support turnover was assessed with the 
substrate β-ionone.    

pRSF vector pET vector 
CYP150A5 Adx/AdR (from bovine mitochrondria)[1, 2] 
CYP150A5 HaPux/HaPuR (Rhodopseudomonas palustris)[3] 
CYP150A5 Arx/ArR (Novosphingobium aromaticivorans)[4] 
CYP150A5 Tdx/ArR (Pseudomonas sp and N. aromaticivorans)[5, 6] 
CYP150A5 pp1957 (Pseudomonas putida KT2440)[7] 
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Table S2: Comparison of the sequence identities of CYP150A5 and CYP150A6 and 
analogous proteins from other Mycobacterium species, other named members of the CYP150 
family and various other proteins.  

Species CYP 
namea 

% 
identity 
to A5 

Query 
cover 

% 
identity 
to A6 

Query 
cover 

NCBI accession 
number 

M. marinum M 150A5 - - 55 100 WP_012396275.1 
M. liflandii 128FXT - 99 99 55 100 WP_015357170.1 
M. ulcerans subsp. 

shinshuense 
- 99 99 54 100 WP_096369782.1 

M. kansasii ATCC 12478 - 89 97 56 92 AGZ50574.1 
M. avium subsp. 
paratuberculosis 

- 85 99 56 99 WP_010948947.1 

M. gastri - 85 99 55 100 WP_085105105.1 
M. colombiense - 83 99 53 99 WP_064882548.1 

M. vanbaalenii PYR-1 150A9 74 98 55 97 WP_011781335.1 
M. smegmatis MC2 155 150A3 74 98 55 91 AFP41148.1 
Frankia sp. EAN1pec 150A11 71 99 58 95 WP_020462178.1 
Frankia sp. EAN1pec 150A13 70 99 58 99 WP_020461226.1 
Frankia sp. EAN1pec 150A12 69 98 54 98 WP_020461462.1 
M. vanbaalenii PYR-1 150A10 63 98 54 98 WP_011781472.1 

M. smegmatis MC2 155 150A2 58 95 72 98 AFP41107.1 
M. kansasii ATCC 12478 - 57 99 85 99 AGZ50528.1 

Norcadia vinacea - 57 98 74 99 WP_040701857.1 
M. colombiense - 56 96 81 99 WP_007777258.1 

Frankia sp. EAN1pec 150A14 56 99 61 98 WP_020458249.1 
M. marinum M 150A6 55 100 - - WP_020726567.1 

M. ulcerans Agy99 150A6 55 99 98 99 WP_011738669.1 
M. liflandii 128FXT - 55 99 98 99 WP_015357135.1 

M. vanbaalenii PYR-1 150A7 55 99 71 99 WP_011781296.1 
Mycobacterium sp. FM10 150A1 55 99 70 100 AAC97519.1 

Frankia sp. EuI1c - 55 99 50 100 WP_013426440.1 
Frankia sp. EAN1pec 150A15 53 83 59 83 ABW10161.1 

M. smegmatis MC2 155 150A4 49 100 64 100 AFP42303.1 
M. vanbaalenii PYR-1 150A8 48 99 61 99 WP_011782311.1 

Streptomyces himastatinicus HmtT 33 80 34 94 4GGV_A 
M. tuberculosis 144A1 32 99 31 90 5HDI_A 

M. marinum 144A4 32 95 31 97 WP_085979817.1 
Bacillus subtilis P450BioI 28 95 30 95 3EJB_B 

 

a CYP name given in accordance with the NCBI database and Dr Nelson P450 homepage for bacterial P450s 

where listed [8].  
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Table S3: Additional substrate spin state shifts for CYP150A5 and CYP150A6 

Substrates 
 

CYP150A5 
Spin state 
shift (%) 

CYP150A6 
Spin state shift 

(%) 
(S)-(‒)-Camphor 60 <5 

1-Naphthol 60 <5 
Cyclohexyl butyrate 55 <5 

Borneol 45 10 
α-Ionone 45 <5 

Nopol 45 5 
Ambroxide 35 5 
Fenchone 35 - 

1,4-Cineole 30 20 
α-Santonin 30 15 
cis-Jasmone 20 - 

Tetralin 15 10 
β-Damascone 15 <5 
Pseudoionone 15 5 

p-Cymene 15 <5 
Undecanoic acid 15 <5 

4-Phenylcyclohexanone 10 <5 
Lidocaine 10 <5 

Progesterone 10 <5 
Quinoline 10 - 

4-Biphenylmethanol 10 - 
2-Methylnapthalene 10 - 

Naphthalene <5 <5 
Nootkatone <5 <5 

4-Phenylphenol <5 - 
4-n-Heptylbenzoic acid - 20 

Testosterone - <5 
1-Indanone - <5 
Diclofenac - <5 

4-Hydroxybenzoic acid - <5 

(-) indicates the substrate was not tested with the enzyme. 
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Table S4: The active site residues of additional CYP150 family members, compared to 
CYP150A6 and CYP150A5 from M. marinum. Bold indicates the residue matches that of 
CYP150A6, underlined indicates it matches CYP150A5. For emphasis those that are 
conserved in all those listed in the main text (Table 4) are given in red.a Abbreviations in the 
table are as follows: M. marinum (Mmar), Mycobacterium sp. (Msp), M. smegmatis 
(Msmeg), Frankia sp. (Fran).  

Mmar 

150A6 

Mmar 

150A5 

Msp 

150A1 

Msmeg 

150A2 

Msmeg 

150A4 

Fran 

150A11 

Fran 

150A12 

Fran 

150A13 

Fran  

150A14 

FraEb 

150 

A64 S64 A64 A76 A64 S64 S64 S64 S64 I64 

L65 V65 V65 V77 I65 V65 V65 V65 V65 I65 

M94 F94 M94 M106 I94 M94 M94 M94 M94 Q96 

V99 P99 V99 V111 V99 P99 P99 P102 V99 V101 

F248 N248 F250 F261 F254 N250 N250 N253 F249 N248 

A251 S251 A253 A264 A257 S253 S253 S257 S253 F251 

A252 A252 A254 A265 A258 A254 A254 A258 A254 A252 

V299 V299 V301 V312 T305 V301 V301 V305 V300 I300 

I409 I409 I411 I422 I415 I414 I411 I415 I410 L410 

 

a E255 and T256 (the acid alcohol pair) are also conserved in all but are not listed here. 

b Indicates the Frankia sp. EuI1c CYP150A enzyme (WP_013426440.1) listed in Table 1. 
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Figure S1: Sequence alignment of CYP150A6 from M. marinum, CYP150A6 (M. ulcerans), 

CYP150A5 (M. marinum), CYP150A7 (M. vanbaalenii) and CYP144A1 (M. tuberculosis) to 

the structural elements of CYP150A6 using ESPript [9].  
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Figure S2: The surrounding genome regions of homologous CYPs of CYP150A5 (listed as 1 
above) and CYP150A6 (7) prepared using the Microbial Genomic Context Viewer [10]. 
Colour indicates COG (Clusters of Orthologous Groups) and the genes are labelled with their 
locus tag. CYP150A5 (Mmar_4737, light green) has a closely located Fdx (Mmar_4736) 
similar to M. liflandii 128FXT (2, Mulp_4959 and Mulp_4958). The arrangement of 
surrounding genes is similar in these species and also M. avium subsp. paratuberculosis (3). 
The conserved genes include an amidohydrolase (Mmar_4742), an acyl-CoA dehydrogenase 
and an acetyl-CoA acyl transferase (Mmar_4741 and Mmar_4740). Another CYP gene, 
CYP190A3 (Mmar_4733) is nearby in these species. Limited similarity is also shared by the 
M. vanbaalenii enzyme CYP150A9 (5, Mvan_4180). CYP150A6 (7, Mmar_4694) has an 
analogue in M. ulcerans Agy99 (8, Mul_0314) but there is little wider genomic similarity.   
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Figure S3: SDS-PAGE of CYP150A6 after ion exchange chromatography. Expected mass of 

CYP150A6 is 47.72 kDa.  
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Figure S4: Selected spin state shifts of substrates and possible inhibitors with CYP150A5 



 

281 
 

  

  

  

  
Figure S4 (continued): Selected spin state shifts of substrates and possible inhibitors with 
CYP150A5 
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Figure S4 (continued): Selected spin state shifts of substrates and possible inhibitors with 

CYP150A5 
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Methyl-α-ionone 

 

Figure S5: Dissociation constants of additional substrates with CYP150A5  
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Miconazole  

 
Clotrimazole 

 
1-Phenylimidazole 

  
Econazole  

Figure S6: Dissociation constants of possible inhibitors with CYP150A5. Peak to trough 

difference in absorbance was measured at the following wavelengths: micoazole, 1-

phenylimidazole and econazole, 433 to 413 nm; clotrimazole, 432 to 412 nm. 
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Figure S7: Selected spin state shifts of substrates with CYP150A6 
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Figure S7 (continued): Selected spin state shifts of substrates and inhibitors with CYP150A6 
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Ketoconazole 

 

Clotrimazole 

 

Econazole 

 

Miconazole 

 

Figure S8: Additional binding constants of possible inhibitors with CYP150A6. Peak to 

trough difference in absorbance was measured at the following wavelengths: miconazole, 

clotrimazole and miconazole, 434 to 414 nm; econazole, 430 to 408 nm; 
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Figure S9: Mass spectra of the GC chromatogram of β-ionol with CYP150A5.  

 

(a) MS of peak at 6.8 min – identified as substrate β-ionol (expected mass 194.3 m/z). 

 

(b) MS of peak at 9.4 min – 4-hydroxy-β-ionol product (expected mass of single 

hydroxylated product 210.3 m/z). 

 

(c) MS of substrate control for β-ionol (RT 6.8 min) 

 

 (d) MS of the CYP101B1 product 4-hydroxy-β-ionol [11]  
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(a)  

(b)  

Figure S10: Superimposition of CYP150A6 (green) with the (a) open (white, 3L62) and (b) 

closed (blue, 3L63) form of P450cam (CYP101A1) [12] demonstrating that the CYP150A6 

enzyme is in a more open conformation. In both the view is centred on the I helix, showing 

the alteration to the F-G helix loop is the primary structural change between the open and 

closed structures. The C helix of CYP150A6 is closer to the haem than in either of the P450-

cam structures. The change in B-C region is discussed further in the Fig S11. 
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   (a)       (b) 

 
   (c)       (d) 

 
   (e)       (f) 

Figure S11: (a) CYP150A6 (green) overlay with M. tuberculosis CYP144A1 (blue, 5HDI) 

[13], (c) with M. smegmatis CYP142A2 (orange, 3ZBY)[14] and (e) with P450BioI (pink, 

3EJD)[15] all showing the two apparently non-conserved helices in CYP150A6 in red (L´ 

and B ̋ ). Panels (c), (d) and (f) show the F-G region and B-C loop of the same enzymes with 

the B ̋  helix marked in red. The β-sheet region in the loop of CYP144A1 is not present in 

CYP150A6, which shows more similarity with CYP142A2.    
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(a)       (b)

 

(c) 

Figure S12: (a) Proximal and (b) distal surface model of CYP150A6 with applied protein 

contact potential (negatively charged shown in red, positively charged in blue). The substrate 

binding site is mostly non-polar (not shown). Note the missing residues of the F-G loop make 

the surface model of the distal side of the enzyme less reliable, particularly the degree to 

which the substrate binding site is exposed to the surface. The proximal surface (ordinarily 

the binding site for electron transfer partners) is strongly positively charged. (c) A surface 

model of CYP150A6 showing the active site cavity from (b) as a slice-through. The missing 

residues of the F-G loop make the cavity very large at the opening.  
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Figure S13: The water molecule (W110) bound in the kink in the I-helix and the network of 

stabilising hydrogen bonds (red). 
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   (a)       (b) 

Figure S14: The active site overlay of CYP150A6 (green) and (a) CYP144A1 (blue, 5HDI) 

[13] and (b) P450BioI (pink, 3EJD) [15] showing the active site residues in both. The region of 

CYP150A6 that contains M94 is not closely matched in either structure. The active site 

residues are not similar to those of either: for example the CYP144A1 F321 and H324 side 

chains identified as key active site residues are replaced in CYP150A6 with V299 and D30. 

In P450BioI residues M283 and T281 are S301 and V299, respectively.  
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Chapter 5 Supplementary Information 
Gene fragments and oligionucleotides used in this work 

The CYP268A2 gene was cloned using the following primers: 

CYP268A2 NdeI 5’ 

5’ – TTAATTCATATGACGGCAATTTCGGCGAGCG-3’ 

CYP268A2 KpnI 3’ 

5’ – TTAATTAAGCTTGGTACCCTATTAGAAGGTGCAGGGCATGCTGCG-3’ 

             HindIII  KpnI 

 
A NdeI site was incorporated at the 5′ and HindIII and KpnI at the 3′ end. The restriction sites 

are underlined, start and stop codons highlighted in bold. A double stop codon has been 

inserted at the C terminus. 

Terpredoxin  

The terpredoxin gene was obtained as a gblock: 

TTATTATCCATGGCCCCACGCGTTGTGTTCATCGACGAACAGTCCGGTGAATATG

CGGTCGATGCCCAGGACGGTCAGAGTCTGATGGAAGTCGCAACCCAAAACGGTG

TGCCGGGCATTGTGGCCGAATGCGGTGGATCGTGCGTCTGTGCTACTTGTCGTAT

CGAAATCGAGGACGCTTGGGTTGAAATCGTAGGCGAAGCGAATCCGGATGAAAA

CGACTTACTGCAGAGTACGGGTGAGCCGATGACCGCCGGCACCCGTCTCAGTTGT

CAAGTGTTCATTGATCCTTCGATGGATGGACTGATTGTACGGGTGCCTCTGCCGG

CGTAATAGAAGCTTTAATAA 

NcoI sites and HindIII sites were incorporated at the 5′ and 3′ ends respectively. The 

restriction sites NcoI and HindIII are underlined, start and stop codons highlighted in bold. A 

double stop codon has been inserted at the C terminus. Note that an additional GGC codon 

encoding an alanine residue has been inserted to incorporate the NcoI site.  

Modified Terpredoxin amino acid sequence: 

MAPRVVFIDEQSGEYAVDAQDGQSLMEVATQNGVPGIVAECGGSCVCATCRIEIED

AWVEIVGEANPDENDLLQSTGEPMTAGTRLSCQVFIDPSMDGLIVRVPLPA  
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Table S1:  Details including sequence identities of analogous and similar proteins to 
CYP268A2.  

Species CYP namea % identity Query 
cover 

NCBI accession number  

Mycobacterium liflandii - 98 100 WP_015356535.1 
M. ulcerans subsp. shinshuense - 97 99 BAV42537.1 

M. ulcerans Agy99b 268A2P 98 100 NC_008611.1 

M. kansasii - 85 99 WP_063470951.1 
M. avium subsp. paratuberculosis 268A1 79 98 AAS04578.1 

M. yongenense - 79 98 WP_065500185.1 
M. avium  - 79 75 WP_038863172.1 

M. smegmatis 268A3 78 98 WP_003895997.1 
M. tuberculosis TKK-01-055 - 78 98 KBZ61308.1 

M. colombiense - 77 99 WP_077092567.1 
Streptomyces. bingchengensis 268A4 54 99 WP_014180281.1 

M. smegmatis 268B2 51 99 WP_011728434.1 
M. vanbaalenii PYR-1 268C1 51 96 WP_011781149.1 
M. vanbaalenii PYR-1 268B1 49 99 WP_011779461.1 

M. smegmatis 124A1 44 97 AFP39933.1 
M. vanbaalenii PYR-1 142B1 43 99 WP_011777337.1 
M. vanbaalenii PYR-1 124A1 43 97 ABM13832.1 

S. griseus 124G1 42 96 WP_042498075.1 
M. marinum M 124A1 41 97 WP_012395007.1 

M. tuberculosis H37Rv 124A1 41 97 WP_003411654.1 
M. ulcerans Agy99 124A1 41 97 ABL03846.1 

M. sp JLS 142B2 41 97 WP_011855908.1 
M. tuberculosis H37Rv 125A1 40 89 WP_003419304.1 

M. ulcerans Agy99  125A7 40 89 ABL06152.1 
M. marinum M 125A6 40 87 WP_012394490.1 
M. marinum M  125A6 40 86 WP_012396556.1 

M. smegmatis MC2 155 125A3 38 90 WP_003897396.1 
M. tuberculosis H37Rv 142A1 33 96 WP_003900082.1 

M. smegmatis 142A2 33 96 AFP42192.1 
M. marinum M 142A3 32 96 WP_012396527.1 

M. ulcerans Agy99 142A3 32 96 ABL06126.1 

NB: A large number of Mycobacterium analogues were found, of which a selected few are presented here. The 
first ~300 results were solely from Mycobacterium species, with sequence identities > 70%. There were no 
analogues found with identity between 72% to 65%. Many non-Mycobacterial species were found with a 
sequence identity lower than 65%. These include Nocardia violaceofusca, Nocardia yamanashiensis and other 
Nocardia strains, Cryptosporangium aurantiacum, Cryptosporangium arvum and others, Rhodococcus 
erythropolis, Rhodococcus sp. ACS1 and other strains, Pseudonocardia spinosispora, Pseudonocardia 
ammonioxydans and others, Saccharomonospora sp. CUA-673, Blastococcus aggregatus, Corynebacteriales, 
Skermania piniformis, Sporichthya polymorpha, Frankia coriariae, Streptomyces sp. NBS 14/10, Streptomyces 
bingchenggensis (listed above), Gordonia sp. HS-NH1, Gordonia westfalica and other strains, Haloechinothrix 
alba, Williamsia herbipolensis, and Patulibacter americanus before sequence identity drops below 50%.  
a CYP name given in accordance with the NCBI database and Dr Nelson P450 homepage for bacterial P450s 
where listed [1].  
b full sequence used, despite truncation, with the large nucleotide insertion removed. As the protein is not 
expected to exist, the accession number given here is for the gene.   
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Table S2: Additional spin state shifts of CYP268A2 with a variety of substrates.  

CYP268A2 substrates Spin state 
shift  

(% HS) 

CYP268A2 substrates Spin state 
shift  

(% HS) 
cis-Nerolidol 55 Bornyl acetate 10 
3-Phenyltoluene 55 Biphenyl  10 
Indane  55 Dodecyl acetate 10 
1-Napthol 50 Linoleic acid 10 
Nopol  50 Menthyl acetate 10 
Phenyl acetate 50 Myristic acid 10 
Phenylcyclohexane 50 Octanoic acid 10 
Linoleic acid 50 Quinoline  10 
α-Bisabolol 40 α-Santonin  10 
Palmitelaidic acid 35 4-Cholest-3-one 10 
4-Phenylcyclohexanone 30 1-Dodecanol  5 
p-Cymene  30 α-Ionone <5 
Palmitoleic acid 30 Cholesterol <5 
11-Methyl dodecanoic acid 30 Cholesterol acetate <5 
Indole  20 7-Dehydrocholesterol <5 
Methyl laurate 20 Palmitic acid <5 
Phytanic acid 20 Progesterone  <5 
10-Methyl dodecanoic acid 20 Stigmasterol <5 
15-Methyl hexadecanoic acid 15 Estriol  <5 
4-n-Heptyl benzoic acid 10 Estrone  <5 
Arachidic acid 10 Calciferol <5 
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Table S3: Binding of possible inhibitors to CYP268A2  

CYP268A2 substrates Type I or II %HS Shift (nm) Kd (µM) 
1-Phenylimidazole II - 421 0.9 ± 0.3 
4-Phenylimidazole II - 423 4.5 ± 0.6 
Econazole I 20 -  
Miconazole I 20 -  
2-Phenylimidazole I 10 -  
Clotrimazole I 10 -  
Fluconazole I 10 -  
Ketoconazole I 10 -  

 

 

 

  



 

299 
 

Table S4: Potential electron transfer partners for CYP268A2, screened with various 

substrates.*  

pRSF vector pET vector 
CYP268A2 Adx/AdR (from bovine mitochrondria)[2, 3] 
CYP268A2 HaPux/HaPuR (Rhodopseudomonas palustris)[4] 
CYP268A2 Arx/ArR (Novosphingobium aromaticivorans)[5] 
CYP268A2 Tdx/ArR (Pseudomonas sp and N. aromaticivorans)[6] 
CYP268A2 pp1957 (Pseudomonas putida KT2440)[7] 

 

*Tdx/ArR best supported CYP268A2 activity with geranyl acetate, followed by pp1957, with 

very little to no product formation when supported by Adx/AdR, Arx/ArR and 

HaPux/HaPuR.  
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Figure S1: Alignment of CYP268A2 from M. marinum, CYP268A2P from M. ulcerans, 

CYP124A1 from M. tuberculosis, CYP124A1 from M. marinum, CYP268A1 from M. avium 

and CYP268A3 from M. smegmatis to the structural elements of CYP268A2 (PDB: 6BLD) 

using ESPript [8].  
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Figure S2: The Microbial Genomic Context Viewer (MGcV) [9] was used to compare the 

surrounding genome regions (40 kbp) of homologous CYPs. Genes are labelled by their locus 

tag and coloured by COG (Clusters of Orthologous Groups). The genes surrounding the 

Mmar_3761 gene encoding CYP268A2 (green) from Mycobacterium marinum M are 

compared to those from Mycobacterium liflandii 128FXT (Mulp_04016), Mycobacterium 

kansasii ATCC (Mkan_05310), Mycobacterium yongonense (OEM_15960), Mycobacterium 

avium subsp. paratuberculosis (Map2261c), Mycobacterium smegmatis (Msmeg_4619) and 

Streptomyces bingchengensis (SBI_07711). For reference Mmar_3361 from M. marinum and 

RVBD_2266 from Mycobacterium tuberculosis H37Rv both encoding CYP124A1 are also 

included. The highly conserved operon present in M. kansasii, M. youngonense, M. avium 

and M. smegmatis, has a gamma-glutamyl kinase (COG0263, green), a GTPase (COG0536, 

grey), a large ribonuclease gene (COG1530, red) and two other ribosomal proteins 

(COG0261 and COG0211, red) upstream. This is present in M. marinum further upstream 

from the cyp268 gene (within 20 kbp, Mmar_3764 to Mmar_3772). In M. marinum the 

cyp268A2 gene is flanked on both sides by a PE-PGRS gene (Mmar_3758 and Mmar_3763, 

COG4907), and similar to the other strains, has an NAD synthetase (COG0171, blue) and 

two regulatory proteins (AcrR and Sir2-like, COG1309 and COG0263, orange) nearby. The 

cyp268 gene in S. bingchenggensis has none of those genes from the Mycobacteria nearby, 

the only similarity being the presence of a regulatory protein directly upstream.   
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Figure S3: SDS page of CYP268A2 after ion exchange chromatography 

Mass spectrometry was used to confirm the mass of CYP268A2. Protein mass measurements 

were carried out under denaturing conditions using an Agilent 6560 ion mobility quadrupole 

time-of-flight instrument with Dual AJS electrospray ionisation source, coupled to an Agilent 

1290 Infinity II LC System.  The protein was buffer exchanged into 250 mM ammonium 

acetate, concentrated to ~10 mM, then diluted 1:1 with acetonitrile. 3 µL of sample was 

injected and electrosprayed using 50% aqueous acetonitrile/0.01% formic acid at a flow rate 

of 0.1 mL.min-1, without chromatographic separation.  ESI-MS conditions were: positive-ion 

mode; capillary voltage, 3500 V; nozzle voltage 1000 V; fragmentor, 400 V; gas 8 L/min; gas 

temperature, 300 °C; sheath gas 11 L/min; and sheath gas temperature, 350 °C.  Spectra were 

deconvoluted using BioConfirm software (Agilent). 

Mass determined 45871.21 (Expected mass 45975.25) 
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Figure S4: Crystals of CYP268A2 before optimization of crystal conditions  
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Figure S5: Spin state shifts of selected substrates with CYP268A2   
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Figure S6: Spin state shifts of selected potential inhibitors with CYP268A2  
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A) Capric acid 

 
B) Farnesol  

  
C) Farnesyl acetate 

 
D) Geraniol  

  
E) Lauric acid 

 
F) Linalyl acetate 

 
G) Neryl acetate 

 
H) 10-Undecenoic acid 

  
Figure S7: Additional binding constant analysis of CYP268A2 with various substrates  
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Figure S8: (a) GC trace of the extracted in vivo turnover of CYP268A2 with geranyl acetate. 

The major product at 4hrs is consumed to produce the 24hr major product.*   

 
(b) MS of peak at 9.9 mins – substrate (expected mass 196.15) 

 
 (c) MS of the peak in (a) at 13.25 mins – major product at 24 hrs  
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(d) MS of the peak in (a) at 13.5 mins – major product at 4 hrs 

 

 

(e) MS of Figure 5 peak 9.5 mins – major product in vitro (expected mass of hydroxylation 

product is 214, peak at 152 (-acetate) is present but not labelled) *equivalent to peak at 13.5 

mins in Figure S8 

 

(f) MS of Figure 5 peak at 9.4 mins – major product in vivo *equivalent to peak at 13.25 mins 

in Figure S8 

* At 4 hours the major product is at 13.5 mins, and has an m/z of 152.15. By 24 hours, this 

peak has disappeared in favour of the peak at 13.25 min, which has mass peaks two mass 

units higher (154.15), suggesting hydrogenation followed hydroxylation. 

Additionally three minor in vivo products appear at 12.9, 13.0 and 14.1 mins, which 

combined form less than 15% of the total product. From m/z values they also appear to be 

further oxidation products but were not produced in sufficient yield to allow purification. 
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Figure S9: (a) GC trace of the in vitro and in vivo turnovers of CYP268A2 with 

pseudoionone showing the change in product distribution over time. 

 

(b) MS of peak at 12.0 mins – cis substrate (expected mass 192.15) 

 

(b) MS of peak at 12.7 mins – trans substrate (expected mass 192.15) 

 

(c) MS of peak at 16.1 mins – major product in vitro (expected mass 208, peak at 208.15 
present)  
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(d) MS of the GC peak of Figure 5b at 15.9 mins – major in vivo product at 24 hrs  

 
(e) MS of the GC peak of Figure 5b at 16.1 mins – major in vivo product at 4 hrs 
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Scheme S1: Geranyl acetate oxidation product  

1H NMR (500 MHz, CDCl3) δ 5.41 – 5.28 (tq, J = 7.25, 1.25 Hz , 1H, H4), 4.59 (d, J = 7.25 

Hz, 2H, H3), 3.55 – 3.38 (m, 2H, H12), 2.06 (s, 3H, H1), 2.13 – 1.98 (m, 2H, H7), 1.70 (s, 

3H, H6), 1.68 – 1.59 (m, 1H, H10), 1.55 – 1.37 (m, 2H, H8), 1.45 – 1.35 (m, 2H, H9), 1.14 – 

1.05 (m, 2H, H9), 0.93 (d, J = 6.7 Hz, 3H, H11). 

13C NMR (126 MHz, CDCl3) δ 171.21 (C2), 142.43 (C5), 118.36 (C4), 68.37 (C12), 61.48 

(C3), 39.77 (C7), 35.71 (C10), 32.75 (C9), 24.95 (C8), 21.14 (C1), 16.60 (C11), 16.42 (C6). 

 

Scheme S2: Pseudoionone oxidation product  

1H NMR (600 MHz, CDCl3) δ 7.42 (ddd, J = 15.3, 11.4, 5.4 Hz, 1H, H4), 6.08 (d, J = 15.3 

Hz, 1H, H3), 6.00 (d, J = 11.4 Hz, 1H, H5), 3.60 – 3.32 (m, 2H, H13), 2.27 (d, J = 5.2 Hz, 

3H, H2), 2.15 (m, 2H, H8), 1.89 (d, J = 9.7 Hz, 3H, H7), 1.69 – 1.59 (m, 1H, H11), 1.54 (s, 

6H, water), 1.59 – 1.41 (m, 2H, H9), 1.46 – 1.37 (m, 2H, H10), 1.17 – 1.06 (m, 2H, H10), 

0.93 (m, 3H, H12). 

13C NMR (126 MHz, CDCl3) δ 201.46 (C1), 154.27 + 153.90 (C6), 142.20 + 141.70 (C4), 
131.08 + 130.85 (C3), 127.18 + 126.36 (C5), 70.86 + 70.85 (C13), 43.29 (C8), 38.28 + 38.26 
(C11), 35.64 (C2), 35.48 + 35.38 (C10), 30.43 + 30.17 (C2), 28.34 + 27.70 (C9), 27.15 + 
20.06 (C7), 19.16 (C12). 
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Figure S10: (a) GC trace of the extracted turnover of CYP268A2 with 4-phenyltoluene  

 
(b) 10.8 mins – substrate 4-phenyltoluene 

 
(c) 13.7 mins – product (4-biphenylmethanol) 

 

(d) 4-biphenylmethyl product of 101B1 with 4-phenyltoluene [10]  
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Figure S11: The (a) distal and (b) proximal surface of CYP268A2 (to the heme), with an 

applied protein contact potential (negatively charged in red, positively charged in blue). Note 

there is no visible access to the substrate binding site in the distal face.   
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Figure S12:  CYP268A2 (green) showing a proximal water channel (waters red, hydrogen 

bonds black), leading from the surface of the protein to the proximal face of the heme. 
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Figure S13: (a) CYP268A2 (green with I-helix (residues 247- 278) in yellow and the 

unstructured region of the C terminus in orange (residues 393 – 419), pseudoionone also in 

yellow) showing internal solvent channel (b) external surface of the protein showing solvent 

access channel (c and d) residues of the I helix and C-terminal end in a network of hydrogen 

bonds to solvent molecules, including D263 (the acid of the acid-alcohol pair). 
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Figure S14: CYP268A2 (green) and CYP124A1 (blue) region of the I-helix loop containing 

the threonine alcohol residue showing hydrogen bond (red) to the alanine four residues earlier 

in both enzymes. The flipped threonine residue in CYP124A1 increases the putative 

hydrogen bond distance from 2.7 Å in CYP268A2 to 3.7 Å.  
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Chapter 6 Supplementary Information  
Gene frangments and oligonucleotides used in this work. 

Primers used to clone the cytochrome P450 genes of MmarCYP124A1, CYP125A6, 

CYP125A7, and CYP142A3. The restriction sites are underlined and the start and stop 

codons are highlighted in bold. Cloned into pEt26 NdeI HindIII, (CYP124A1), NdeI XhoI 

(CYP142A3 and CYP125A6) and NdeI EcoRI (CYP125A7). 

CYP125A6 NdeI 5’ 
5’ – TTAATTCATATGCCAGCTGCCGAGCCAACC- 3’ 
CYP125A6 XhoI 3’ 
5’ – TTAATTCTCGAGCTATTAGTGCGCGACAGGACATTTCCC – 3’ 

Cannot use KpnI or HindIII therefore ferredoxin must be cloned first for in vivo system 

 

CYP124A1 NdeI 5’ 
5’ – TTAATTCATATGGACCTCAGCACGAACCTCAAC- 3’ 
CYP124A1 KpnI 3’ 
5’ – TTAATTAAGCTTGGTACCCTATTAACGGCTCCACGCGACTGGATC–3’ 

 

CYP125A7 NdeI 5’ 
5’ – TTAATTCATATGCCTTGCCCCAACCTTCCGC- 3’ 
CYP125A7 KpnIEcoRI 3’ 
5’ – TTAATTGAATCCGGTACCCTATTAATGTGAAACCGGGCACTTG–3’ 

Has a HindIII site present and must go into the in vivo system second 

 

CYP142A3 NdeI 5’ 
5’ – TTAATTCATATGACTAAGCCGTTGATCAAACC-3’ 
CYP142A3 XhoI 3’ 
5’ – TTAATTCTCGAGCTATTAGCTCAGTGGCCGGCTGGGAGTG-3’ 
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MtbCYP124A1, CYP125A1 and CYP142A1 were each obtained as a gblock. NdeI and 

HindIII sites were incorporated at the 5’ and 3’ ends, respectively. A double stop codon has 

been inserted at the C terminus. Start and stop codons are underlined, and restriction enzyme 

sites of NdeI and HindIII are in bold. 

 

M. tuberculosis CYP124A1 Mtb NdeI - HindIII 

TCTGATCATATGGGCCTGAACACGGCCATAGCTACACGTGTCAATGGCACTCCA
CCACCGGAAGTTCCAATCGCTGATATTGAGTTAGGCTCCCTTGATTTCTGGGCGT
TGGACGACGACGTTAGAGACGGTGCTTTCGCCACACTGCGCAGAGAGGCACCAA
TTTCATTTTGGCCTACAATAGAATTACCGGGTTTTGTAGCCGGGAACGGACATTG
GGCTCTGACCAAATACGACGATGTTTTCTACGCTAGTCGGCACCCCGATATTTTT
TCGAGCTATCCCAATATCACGATAAACGACCAGACACCTGAGCTTGCAGAATAC
TTTGGCAGTATGATTGTTCTGGATGACCCTCGCCACCAGAGACTTCGCTCCATTG
TGTCGAGAGCGTTTACGCCCAAGGTAGTGGCACGTATAGAGGCCGCAGTGAGAG
ACCGCGCTCATAGACTTGTAAGTTCAATGATCGCAAACAATCCGGACCGGCAGG
CGGACCTGGTAAGTGAATTAGCGGGTCCATTACCCCTGCAGATtATATGCGATAT
GATGGGTATTCCAAAGGCCGACCATCAACGGATTTTCCATTGGACAAATGTCATA
TTGGGGTTCGGGGATCCTGATCTGGCGACTGATTTCGATGAGTTCATGCAAGTTT
CAGCTGACATCGGAGCCTATGCAACCGCGCTGGCAGAGGACAGAAGAGTAAATC
ACCATGACGACTTAACTTCCTCTCTTGTTGAAGCCGAGGTAGATGGTGAAAGACT
GTCATCACGCGAAATTGCCTCCTTTTTTATATTGTTGGTTGTAGCGGGGAATGAA
ACTACTCGTAACGCCATCACACACGGAGTACTGGCTCTTAGTAGATACCCTGAGC
AGCGGGACCGCTGGTGGTCAGATTTCGATGGCCTTGCACCGACGGCGGTGGAAG
AAATAGTAAGATGGGCCTCCCCCGTAGTCTATATGAGACGCACACTTACTCAAG
ACATTGAGCTTCGCGGTACTAAAATGGCTGCGGGTGACAAAGTTAGTCTTTGGTA
CTGCAGTGCAAACCGGGACGAGTCTAAGTTCGCTGATCCTTGGACCTTCGATTTA
GCCCGCAACCCGAATCCGCACTTAGGGTTCGGTGGTGGTGGAGCTCACTTCTGCT
TGGGCGCCAATCTTGCGAGACGCGAGATACGTGTGGCTTTTGACGAATTACGTCG
TCAGATGCCCGATGTGGTCGCAACCGAGGAACCTGCGCGGCTTTTATCCCAGTTT
ATCCACGGTATTAAGACTTTGCCTGTGACGTGGTCCCATCATCACCACCATCATT
AATGAGGTACCAAGCTTTTATGC 

 

M. tuberculosis CYP125A1 Mtb NdeI - HindIII 

TCTGATCATATGAGTTGGAACCACCAGTCGGTTGAAATAGCAGTTCGTCGTACC
ACGGTCCCATCCCCTAACTTGCCTCCGGGCTTCGATTTCACTGATCCTGCTATTTA
CGCTGAGCGTCTGCCGGTGGCAGAATTCGCAGAGTTGCGGTCAGCAGCCCCCAT
CTGGTGGAATGGACAGGACCCGGGCAAGGGTGGCGGCTTCCATGACGGAGGTTT
TTGGGCGATCACAAAACTTAACGATGTGAAGGAGATAAGTCGTCATTCGGACGT
ATTTAGCTCCTATGAAAACGGCGTAATCCCACGCTTTAAGAATGATATTGCGCGC
GAAGACATTGAGGTCCAACGGTTTGTGATGCTTAATATGGACGCGCCCCATCATA
CACGGCTTCGGAAGATTATATCAAGAGGGTTCACGCCACGCGCGGTCGGGAGAC
TTCACGATGAGCTTCAAGAACGCGCACAGAAAATAGCTGCAGAAGCAGCGGCTG
CTGGATCGGGTGACTTTGTTGAGCAAGTCAGTTGTGAGCTTCCCCTTCAGGCAAT
AGCGGGTTTGCTGGGAGTACCTCAGGAAGACCGGGGGAAGTTGTTCCACTGGTC
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GAACGAAATGACTGGGAACGAGGACCCGGAGTACGCTCATATAGACCCGAAGG
CTTCGTCAGCAGAATTAATTGGGTACGCAATGAAGATGGCGGAGGAGAAGGCCA
AGAACCCGGCAGATGATATAGTAACACAGTTAATACAAGCAGATATAGACGGGG
AGAAaCTTTCGGACGACGAATTCGGTTTCTTCGTTGTCATGCTTGCGGTAGCCGG
GAACGAGACCACACGTAACTCGATCACCCAAGGGATGATGGCTTTTGCGGAGCA
CCCGGATCAGTGGGAGCTGTATAAAAAAGTCCGTCCGGAAACCGCAGCAGATGA
AATAGTGCGCTGGGCGACCCCTGTAACAGCCTTTCAGCGGACAGCGCTTAGAGA
TTACGAATTGAGCGGCGTACAAATTAAAAAGGGACAACGCGTGGTCATGTTTTAT
CGCTCGGCCAATTTTGACGAGGAGGTATTCCAGGACCCATTTACATTCAATATTC
TGCGGAATCCTAACCCACACGTGGGCTTCGGGGGGACGGGAGCCCATTATTGCA
TAGGCGCGAATCTGGCGCGTATGACCATCAATCTGATTTTCAACGCGGTCGCCGA
TCACATGCCCGATCTGAAACCTATATCGGCTCCTGAACGCCTGCGCTCTGGGTGG
CTGAACGGAATTAAGCATTGGCAGGTTGATTATACGGGTAGATGCCCGGTGGCT
CATCATCACCACCATCATTAATGAGGTACCAAGCTTTTATGC 

 

M. tuberculosis CYP142A1 NdeI-HindIII 

TCTGATCATATGACCGAAGCCCCCGATGTAGATTTGGCAGATGGGAACTTCTAC
GCAAGCCGTGAAGCGAGAGCTGCGTATCGCTGGATGCGTGCGAACCAACCTGTA
TTCAGAGACCGTAATGGCTTAGCAGCAGCCTCCACATACCAAGCAGTCATCGAT
GCAGAGCGTCAGCCGGAGTTGTTCTCCAACGCTGGGGGCATCAGACCCGACCAA
CCGGCATTGCCCATGATGATAGACATGGACGACCCTGCACACCTGCTTCGCCGCA
AGTTGGTAAATGCAGGTTTCACTCGTAAAAGAGTTAAGGACAAAGAAGCCTCTA
TTGCCGCTCTTTGTGACACTCTGATTGATGCCGTGTGCGAGCGTGGCGAATGCGA
CTTCGTAAGAGATTTAGCCGCCCCATTGCCGATGGCCGTAATTGGGGATATGCTT
GGTGTGCGCCCAGAACAACGCGATATGTTCCTGAGATGGAGTGATGACCTTGTG
ACATTTTTATCAAGCCACGTAAGCCAAGAAGACTTTCAAATCACtATGGACGCGT
TTGCCGCTTACAACGATTTTACTCGCGCTACCATAGCCGCCCGGCGCGCAGACCC
TACGGATGATCTTGTTAGCGTTCTTGTCAGCAGTGAGGTGGACGGCGAACGTCTT
AGTGATGATGAACTTGTGATGGAGACACTTTTAATCCTGATCGGCGGCGACGAA
ACGACTAGACACACTTTGAGTGGCGGGACCGAGCAGTTGCTGCGCAACCGGGAC
CAGTGGGACCTGCTTCAGCGGGATCCGAGCTTGCTGCCTGGGGCGATTGAAGAG
ATGTTGCGGTGGACAGCACCAGTAAAAAATATGTGTCGCGTGTTGACGGCAGAT
ACTGAGTTCCACGGgACCGCGCTTTGCGCGGGGGAGAAAATGATGTTGTTGTTCG
AGAGCGCCAACTTTGACGAGGCCGTCTTCTGCGAACCTGAAAAGTTCGACGTGC
AACGTAACCCTAACTCGCATTTGGCATTCGGGTTTGGCACACATTTTTGCCTGGG
AAACCAGCTGGCACGGCTTGAGCTTTCTCTGATGACGGAGCGTGTCCTGAGACGT
CTTCCTGACCTGCGCCTTGTAGCGGATGACTCAGTATTACCACTTAGACCAGCTA
ACTTCGTTTCCGGTCTGGAATCCATGCCAGTTGTTTTCACACCATCGCCTCCCCTG
GGCCATCATCACCACCATCATTAATGAGGTACCAAGCTTTTATGC 
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Table S1: Active site residues of CYP125 enzymes from M. marinum, M. smegmatis and 

Rhodococcus sp. RHA1 compared to the identified active site residues of M. tuberculosis [1]. 

Where the CYP125A1 residue is conserved, it is indicated in bold and underlined.  

Mtb 
125A1 

Mmar 
125A6 

Mmar 
125A7 

Mulc 
125A7 

RHA 
125 

Msmeg 
125A3 

Msmeg 
125A4 

I97 I I I I I L 
F100 T F F F W Y 
D108 Q D D N A Q 
V111 R V V M L Q 
Q112 G Q Q Q Q G 
V115 V V V I V V 
M200 M M M M M M 
G202 G G G G A G 
P213  A A A P P G 
K214 L K K Q A A 
S217 S S S S S A 
I221 I I I I I I 
F260 F F F F F F 
V263 I V V I V V 
V267 V V V V V V 
W414 W W W W W W 

 

NB: residues that interact with androstenedione: V263, M200, G202, V111, V115, Q112, 

I97, F100, W414, P213, K214, S217. Residues that interact with econazole: V115 F260, 

V263, V267, I97, I221, M200, S217, V111, D108, Q112. The acid-alcohol pair are not 

included in this assessment but are conserved as a glutamate/threonine pair in all.  
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Table S2: Additional spin state shifts for CYP142A3 and CYP142A1 with selected steroids. 

 M.mar142A3 M. tb142A1 
 Spin state (HS%) Spin state (HS%) 

Stigmasterol >5 0 
Estriol >5 0 

Lanosterol 50 90 
Calciferol >5 - 

Pregnenolone 0 - 
Progesterone 0 - 
Testosterone >5 - 
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Table S3: Active site residues of CYP142 enzymes from M. marinum, M. smegmatis and 

Rhodococcus sp. RHA1 compared to the identified active site residues of M. tuberculosis [2]. 

CYP125A1 and CYP124A1 from M. tuberculosis are included for comparison.  

Mtb 
142A1 

Mmar 
142A3 

Mulc 
142A3 

Msmeg 
142A2 

RHA 
142 

Mtb 
124 

Mtb 
125 

I65 I68 I70 I68 I69 I94 V96 
I76 I79 I81 I79 I83 I111 L117 

V160 V163 V165 V163 M167 L198 T201 
L226 L229 L231 L229 L230 L263 M264 
I229 I232 I234 I232 I236 V266 V267 
G230 G233 G235 G233 G237 A267 A268 
T234 T237 T239 T237 T241 T271 T272 
V277 V280 V282 V280 I284 V315 V313 
M280 M283 M285 M283 M287 M318 F316 
F380 F383 F385 F382 F386 F416 W414 
V381 V384 V386 V381 V387 I417 L415 
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Table S4: Additional spin state shifts for CYP124 from M. marinum and M. tuberculosis. 

Data from elsewhere is noted, otherwise was performed as recorded in the experimental 

section. 

 M.mar124 M. tb124  
 Spin state 

(HS%) 
Spin state 

(HS%) 
KD (µM) 

Lauric acid 65 75 >100 a 

26.57 ± 4.51b 

Palmitic acid 55 60 >100 a 
Arachidic acid 50 55 - 

Palmitoleic acid 55 55 - 
Palmitic acid 55 60 >100 a 

15-methyl hexadecanoic acid 70 90 1.01 ± 0.07 a 
Farnesol 100 100 1.04 ±0.05 a 

Phytanic acid 100 100 0.22 ±0.006a 

Geraniol 30 <5 25 ±1.8 a 

Clotrimazole Type II, 426 nm Type II 0.22 ± 0.05 
 

a Johnston et al, 2009 [3] 

b Vasilevskaya et al, 2017 [4]  



 

325 
 

 

Figure S1: SDS-PAGE of purified M. marinum CYP125A6, CYP125A7 and CYP142A3  
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Figure S2: Sequence alignment of CYP125 family members from M. tuberculosis, M. 

marinum, M. smegmatis and Rhodoccocus RHA  
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Figure S3: Sequence alignment of CYP142 members from Mycobacterium species, 

including M. tuberculosis CYP142A1, M. smegmatis CYP142A2, M. marinum CYP142A3 

and others.   
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Figure S4: Sequence alignment of CYP124A family members from M. tuberculosis, M. 

marinum, M. ulcerans, M. smegmatis and M. vanbaalenii. 
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(a) Mtb124A1 

 

(b) Mtb125A1 

 

(c) Mtb142A1 

 

 

Figure S5: CO binding spectra for the M. tuberculosis enzymes CYP124A1, CYP125A1 and 

CYP142A1.For each, the resting state (black), the reduced enzyme (red) and the reduced CO 

bound (blue) spectra are shown. The CYP125A1 enzyme had split A450/A420 peak in the CO-

bound state. 
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Figure S6: Selected spin state shifts with CYP125 enzymes  
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CYP125A1 with LP10 

 
CYP125A6 with LP10 

CYP125A7 with LP10  
CYP125A6 with 1-phenylimidazole 

 
CYP125A6 with 4-phenylimidazole 

 
CYP125A6 with clotrimazole 

 
CYP142A3 with 1-phenylimidazole CYP142A3 with 4-phenylimidazole 

Figure S7: Additional dissociation constants with M. marinum and M. tuberculosis CYPs. The peak 
to trough for LP10 with CYP125A1 was recorded at ~422 to 388 nm; CYP125A6 was 423 to 389nm; 
CYP125A7 was 432 to 391 nm. Peak to trough with azole substrates varied by enzyme: for 
CYP125A6, 428 to 390 nm;  CYP125A7, 422 to 387 nm; most others 434 to 414 nm. 
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CYP142A3 with cholesterol CYP142A3 with econazole 

CYP142A3 with miconazole CYP142A3 with clotrimazole 
 

Figure S7: (continued) Additional dissociation constants with M. marinum and M. 

tuberculosis CYPs.  
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(a)       (b) 

Figure S8: For reference, the CYP125A1 structure (PDB: 2X5L [1]) showing (a) the entire 

structure and (b) position of the key residues (the D108-K241 salt bridge and P213) discussed 

in the text.   
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(a) 

 

(b) 

Figure S9: Visualisation of the active site of (a) substrate-free MmarCYP124 (purple) with 

the internal surface cavities showing, and for comparison (b) substrate-free MtbCYP124 

(blue, PDB: 2WM5 [3]). The active site of MmarCYP124 appears to be more closed toward 

the exit due to the movement of the residues 101-104.  
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(a) 

 

(b) 

Figure S10: Overlay of MmarCYP124 (purple, with red labels) and MtbCYP124 (PDB: 

2WM5 [3], blue cartoon and labels) shows (a) alterations in the position of the B-C loop (b) 

The interaction of the H101 residue with a bound SO4 molecule, and the movement away by 

Q103 are highlighted. The equivalent residue pairs are N97/H101, D98/D102 and Q99/Q103.   
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