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Abstract 

This project seeks to advance understanding of thermo-acoustic instabilities in liquid-propellant 

rocket engines (LPREs). Unstable thermo-acoustic coupling between combustion and acoustic 

modes in a rocket engine thrust chamber can lead to high pressure oscillations and subsequent 

structural damage. Since the mechanisms involved are not yet fully understood, engine stability 

cannot be assured at the design stage. Consequently, costly ground testing is required such as that 

undertaken at the German Aerospace Centre (DLR) site in Lampoldshausen for Ariane engines. A 

deeper understanding of instabilities would reduce ground testing requirements, and allow for 

more economical rocket engine development.  

This project, conducted in conjunction with the DLR, aims to extract key parameters governing 

thermo-acoustic behaviour in rocket combustors from dynamic pressure measurements using 

stochastic signal processing techniques. These system-defining parameters are the linear thermo-

acoustic growth rate, the noise intensity of turbulence-induced stochastic heat release, and the 

coefficient of non-linear acoustic damping. In particular, knowledge of the growth rate would 

allow the efficient design of retrofitted acoustic dampers and the validation of linear thermo-

acoustic models. Current parameter extraction methods in rocket literature are limited to stable 

(linear) conditions. In these conditions, a Lorentzian fit to the power spectral density of dynamic 

(acoustic) pressure is commonly used to find the growth rate. For unstable (non-linear) cases, the 

initially linear growth of instability is not directly observed by wall sensors due to time scale 

differences between localised thermo-acoustic effects and the response of acoustic chamber 

modes. The noise intensity and non-linearity coefficient are also not readily observable at non-

linear conditions. In gas turbine literature, signal processing techniques based on the Fokker-

Planck equation have been developed to extract system parameters from the statistics of unstable 

combustor data. The project focuses on applying these techniques to rocket engine conditions.   

Fokker-Planck parameter extraction techniques have been applied to experimental data from two 

rocket combustors named 'BKH' and 'BKD', both operated at the DLR Lampoldshausen test site. 

These are representative of real rocket engine conditions; operating at sufficiently high pressures 

and flow rates with liquid oxygen/hydrogen propellants. While BKH is a rectangular and stable 

combustor, BKD is cylindrical and naturally unstable at some load points. Acoustic modes in BKH 

are purely standing, while in BKD they exhibited rotational characteristics, as occurs in real 

engines. This is significant since the parameter extraction techniques have different formulations 

for standing and rotational mode behaviour. This project has tested the two formulations of the 

Fokker-Planck techniques on BKH and BKD experimental data.  

The Fokker-Planck parameter extraction techniques have been validated for stable BKH and BKD 

load points using Lorentzian fits, while positive indications of their applicability to an unstable BKD 

load point have been obtained. These indications consist of comparing the statistical phase 

behaviour of the unstable BKD load point to that of a stable load point, and observing differences 

which support the non-linear dynamical model assumed in the techniques.  
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1. Introduction  

Combustion instabilities were first encountered in liquid-propellant rocket engines (LPREs) in the 

1930s, and since that time they have been problematic to most rocket development programs 

(Culick & Yang, 1995). Combustion inherently involves pressure fluctuations in the thrust chamber 

in the form of random noise. However, periodic pressure oscillations can also arise and are 

deemed to be combustion instabilities (CPIA, 1997). These can grow to levels that surpass the 

engine's structural integrity or that melt walls through flame undulation. High frequency (HF) 

instability, causing oscillations above 1000 Hz, is the most damaging type of instability. It occurs at 

the modal frequencies of the thrust chamber. Fuel (gaseous H2) and oxidiser (liquid oxygen or LOx) 

jets enter the combustion chamber through multiple injectors where they atomise (break up into 

droplets), vaporise and mix in order to combust effectively. The resulting hot, high-pressure gases 

are then accelerated by a nozzle to maximise thrust. These combustion processes can couple 

thermo-acoustically with chamber modes through various mechanisms to produce HF instability. 

These mechanisms are not yet fully understood since they are multiple and interdependent. A 

fundamental part of each mechanism is Rayleigh's criterion. This states that oscillatory heat 

release from combustion will amplify pressure oscillations when the two are in-phase, and 

diminish them when out of phase (Lord Rayleigh, 1945).  

Stochastic signal processing techniques to extract key parameters governing thermo-acoustic 

behaviour from the statistics of dynamic pressure data have been developed in gas turbine 

literature. These parameters are the linear thermo-acoustic growth rate, the noise intensity of 

turbulence-induced stochastic heat release, and the coefficient of non-linear acoustic damping; 

which are not directly measureable in unstable conditions. Some of the stochastic techniques have 

been successfully applied to data from a small-scale, unstable combustor representative of gas 

turbine conditions. The main motivation for the development of these techniques is that the linear 

growth rate of thermo-acoustic instability in a practical combustor, such as a gas turbine or rocket 

engine, is not directly obtainable from measurable pressure signals. This is due to a timescale 

difference between localised thermo-acoustic growth and the acoustic response of chamber 

modes (Noiray & Schuermans, IJNLM 2013). Knowledge of the growth rate is useful for the design 

of remedial dampers in industry, and for validating linear thermo-acoustic models commonly used 

for stability prediction. The stochastic techniques for extracting the growth rate and the other 

parameters have not been applied to rocket engine conditions.  

This work consists of applying the stochastic signal processing techniques to dynamic pressure 

data of representative rocket combustors. The DLR facility at Lampoldshausen, Germany is one of 

the few facilities worldwide where combustion chambers simulating rocket engines can be 

operated under realistic conditions. Two combustors, named 'BKH' and 'BKD', are used by the DLR 

Combustion Dynamics Group to investigate HF instabilities at supercritical pressures. BKH is a 

stable rectangular combustor while BKD is a cylindrical chamber and naturally unstable at some 

operating conditions. This work applies the stochastic signal processing techniques to stable load 

points from both combustors in order to extract the governing thermo-acoustic parameters. These 
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parameter values are compared with those obtained using Lorentzian fitting; a simpler method for 

linearly stable dynamics. This work also analyses the non-linear phase dynamics of an unstable 

BKD load point to obtain insight into the underlying non-linear dynamics. This serves as a basis for 

future work consisting of applying the stochastic signal processing techniques to unstable BKD 

load points, where non-linear effects are significant and there are no alternative parameter 

extraction methods.  
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2. Literature Review 

This chapter reviews literature encompassing a general background to rocket instability, the BKH 

and BKD combustors, the parameter extraction methods and their associated dynamical models.    

2.1 Background 

This section provides a general background to the literature on HF rocket instability. The most 

intensive industrial case of such instability was the development of the F-1 LPRE during the 1960's 

Apollo program. Early testing of this engine revealed acoustic oscillations equal to the mean 

pressure which caused significant internal damage (Culick & Yang, 1995).  This instability was 

solved through numerous trial-and-error iterations involving different injector and internal 

chamber designs which amounted to over 2000 full scale tests lasting a period of four years (Culick 

& Yang, 1995). Rocket engines today still rely on expensive ground testing to ensure their stability; 

such as that carried out at the DLR Lampoldshausen for the Ariane rocket family. These costs have 

motivated researchers to seek a better understanding of HF instabilities in order to reduce testing 

requirements with the use of predictive models.  

An important complication to rocket instability is the distinction between subcritical and 

supercritical fluid conditions. The critical pressures of oxygen and hydrogen are 50 and 13 bar, 

respectively. If oxygen is injected into a thrust chamber at a pressure above 50 bar, the operating 

condition is said to be supercritical.  Rocket engines often operate in these high pressures to 

maximise thrust. However, atomisation and vaporisation are absent in the supercritical regime, 

instead a flow continuum occurs.  Shadowgraph visualisation of LOx/H2 injection at subcritical and 

supercritical conditions, shown in Figure 1, was carried out at the DLR by Mayer and Tamura 

(1996). The most noticeable differences in Figure 1 are the lack of droplet formation and the 

longer extension of dense structures for the supercritical condition. Supercritical instabilities 

therefore require separate study, and have significant literature gaps due to experimental 

complications (Hardi, 2012).  

 

Figure 1: Differences in flow structure between subcritical and supercritical conditions of LOx/H2 injection can be observed with 
shadowgraph imaging (Mayer & Tamura, 1996). 

Scientific studies of HF instability focus on laboratory scale combustors that simulate LPRE 

conditions. These can be classified into two main types; forced and naturally unstable. Forced 

combustors commonly feature a nozzle wheel excitation system where a toothed wheel 
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periodically opens and closes a nozzle outlet to generate chamber pressure oscillations at a 

frequency given by the wheel's rotational speed. Three such systems are the Common Research 

Combustor (CRC) which is operated by the DLR and the French National Scientific Research Centre 

(CNRS), the Multi Injector Combustor (MIC) which is operated by the French Space Agency 

(ONERA), and BKH which is operated by the DLR.  The CRC is a thin, quasi-2D chamber with a 

circular shape that allows optical observation of transverse modes with a quartz window. It has a 

single injection element and can only be operated up to 10 bar with LOx/H2 propellants. The MIC 

has a rectangular chamber with three or five injection elements that are observable through a 

window, but it can only be operated up to 9 bar with the LOx/H2 combination (Rey et al., 2004). 

BKH is the sole forced combustor in literature with the capacity to operate at supercritical 

pressures with LOx/H2 propellants.  Further description of BKH is provided in section 2.2.  

Naturally unstable combustors do not have acoustic forcing but feature spontaneous instability. 

Three important cases in literature are the Pennsylvania State University rectangular combustor, 

the Purdue University rectangular combustor and the DLR cylindrical combustor 'BKD'.  The first 

two combustors both operate with LOx/CH4 (methane) study elements in a multi-element 

configuration. In the Pennsylvania combustor, any LOx/CH4 study element is neighboured by equal 

elements, while in the Purdue configuration there is a single LOx/CH4 study element surrounded 

by intrinsically unstable hydrogen peroxide/kerosene elements. Only the latter arrangement could 

generate high amplitude instability (Miller et al., 2005). BKD is a rocket combustor with LOx/H2 

propellants that naturally exhibits high amplitude unstable behaviour. Further description of BKD 

is in section 2.3. Hence, the BKH and BKD data available to this research project is of significant 

scientific value.  

2.2 BKH  

BKH (German: Brennkammer H or 'Combustion chamber H') is a DLR combustor designed to 

observe the acoustic response of a LOx/H2 element with optical diagnostics at pressures up to 60 

bar. Figure 2 shows a sketch of the configuration of BKH, which has chamber dimensions of 305 

mm x 200 mm x 50 mm.  

The rectangular geometry of BKH was designed to obtain resonant frequencies in the range 1-6 

kHz; representative of those found in upper stage engines (Hardi, 2012). The BKH chamber modes 

for uniform acoustic properties are shown in Figure 3. Primary injection in BKH consists of five 

shear coaxial elements in a matrix configuration. These are five liquid jets; each has a circular LOx 

core surrounded by an H2 annulus injected at a higher speed to create shear forces and effective 

mixing in the chamber since rocket combustion is non-premixed. The central jet is representative 

of real multi-element injectors where each element is bounded by others. Secondary H2 injection 

comprises of smaller H2 jets to maintain acoustic field uniformity and to prevent primary jet 

recirculation. Thus BKH features realistic resonant modes and propellant injection.  
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Figure 2: Sketch of the BKH configuration (Hardi, 2012). 

 

Figure 3: Calculated modal frequencies and shapes of acoustic chamber modes in BKH using uniform properties (Hardi, 2012). 

The BKH flames can be externally excited by the secondary nozzle-wheel system as illustrated in 

Figure 2.  Flame-acoustic interactions are then generated by exciting specific chamber modes. 

These are observed with optical windows and an extensive sensor array. Two quartz windows, 

each on a side of the combustor, provide optical access for shadowgraph and chemiluminescence 

imaging with cameras. The latter consists of using filtered ultra-violet light that is passed through 

an image intensifier to capture photon emission from the hydroxyl radical OH*; an intermediate 

species in the reaction that identifies a flame. To measure acoustic pressure, wall temperatures, 

and structural vibration, an array of dynamic pressure sensors, thermo-couples and 

accelerometers are employed. BKH thus provides insight into HF flame-acoustic interactions at 

realistic conditions.  

An important feature of BKH is the use of sectored wheels where teeth cover only a portion of the 

wheel’s perimeter su h that the ex ited mode is allowed to decay. Figure 4 shows how this decay 

can be measured directly in order to obtain the damping rate.  This method was used by Webster 

(2016) to measure the damping rate of various operating points in BKH. 
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Figure 4: Exponential decay of an acoustic mode in BKH measured with linear regression to obtain the damping rate (Webster S. 
L., 2016).   

A second method to measure the damping rate that is based on a linear ramp of nozzle wheel 

excitation through the mode of interest, as depicted in Figure 5, was also used by Webster (2016).  

This method consists of increasing the nozzle wheel rotation speed linearly (and therefore 

increasing the frequency of excitation linearly with time), such that the frequency response of the 

mode is mapped in the time domain. From this temporal response function, the damping rate was 

extracted by Webster (2016) with specialised profiles. 

 

Figure 5: Acoustic excitation with the secondary nozzle being linearly ramped through the BKH first transverse (1T) mode, such 
that the frequency response of the mode is mapped in the time domain. From this response the damping rate was extracted by 

Webster (2016) with specialised profiles. The colour plots numbered 1 to 6 show pressure distributions of the 1T mode at 
different points in time during the linear ramp of the nozzle wheel speed through the 1T modal frequency (Webster S. L., 2016). 
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The two measurement methods used by Webster (2016) provided consistent measurements of 

the damping rate. The damping was found to vary significantly with only one parameter, the 

velocity ratio (VR) of the hydrogen to oxygen injection speeds. Damping rates were found to 

change particularly at low VR, but the underlying cause of this effect has not yet been explained 

(Webster S. L., 2016). These damping rates measured by Webster (2016) can be compared against 

the linear growth (or negative damping) rates obtained with the signal processing methods 

investigated in this work. Similarly, a study of turbulent jet noise at different operating conditions 

by Webster et al. (2015) serves as a comparison for the noise intensities obtained in this work.  

2.3 BKD   

BKD (German: Brennkammer D or 'Combustion chamber D') is a DLR combustor that exhibits 

naturally occurring HF instability characterised by its first tangential (1T) mode (the cylindrical 

equivalent of the BKH first transverse mode). Unlike BKH, BKD instabilities are self-excited and 

spontaneous. BKD is also more representative of real rocket engines as it can operate at higher 

pressures than BKH, is cylindrical, and does not feature secondary hydrogen injection but three 

concentric rings of primary elements. Figure 6 shows a sketch of the configuration of BKD, which 

has a chamber diameter of 80 mm. The top left image in Figure 6 shows the main components of 

BKD namely; an injector head, a combustion chamber and an HF measurement ring fitted with 

sensors. The injector head has 42 shear coaxial injection elements arranged concentrically as 

shown at the bottom left of Figure 6. This chamber can be operated up to 80 bar.  

The measurement ring at the top right of Figure 6 measures high frequency pressure oscillations 

using 8 dynamic pressure sensors arranged axisymmetrically. Static pressure sensors and optical 

probes for OH*imaging are also housed by the ring. The sensors are positioned near the injection 

plane of the chamber in order to protect them from excessively high temperatures further 

downstream. Thus, the observability of instability mechanisms in BKD is limited to the injection 

plane. Current investigations at the DLR are focused on analysing dynamic pressure and 

OH*imaging signals from probes, while recent experimental runs have incorporated a window 

access for better visualisation of flame dynamics.  
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Figure 6: Sketch of the BKD combustor, its faceplate configuration, its measurement ring and the instability-prone first tangential 
(1T) mode (Groning et al., 2013). 

2.4 Parameter Extraction Methods 

This section discusses methods used to extract key parameters governing thermo-acoustic 

behaviour from dynamic pressure measurements, and their associated dynamical models. The 

current state of the art for parameter extraction in unforced rocket combustors (with no external 

acoustic excitation) is limited to obtaining the damping rate of a stable acoustic mode by fitting a 

Lorentzian function to the power spectral density (PSD) of acoustic pressure. This function is given 

by Eq. (4) in section 2.4.1, and has recently been used by Schulze (2016) to find damping rates of 

stable BKD load points. The use of the Lorentzian function to find the damping rate of a linear 

acoustic system is well established (Noiray & Denisov, 2016). However, the function is limited to 

linear (stable) conditions. Since the growth of an instability cannot be directly observed by wall 
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sensors, there is no existing method in rocket engine literature to find an unstable growth rate 

from pressure signals. There is also no mathematical model for the random effects of turbulence 

on the pressure of a thermo-acoustic mode in a rocket combustor, nor a model for the non-linear 

dynamics of an unstable rotational mode in a cylindrical rocket combustor. Models for such 

dynamics in gas turbines have been developed by Noiray and Schuermans (IJNLM 2013) and 

Noiray and Schuermans (PRSA 2013), with the goal of extracting model parameters from dynamic 

pressure data using stochastic signal processing techniques.   

The stochastic signal processing techniques of Noiray and Schuermans (IJNLM 2013) have been 

successfully applied to extract system-defining parameters from experimental data of a small-

scale, unstable combustor representative of gas turbine conditions (Noiray & Denisov, 2016). This 

work tests their applicability to rocket engine conditions using BKH and BKD experimental data. 

The main motivation for the development of these methods is that the linear growth rate of 

thermo-acoustic instability in a practical combustor, such as a gas turbine or rocket engine, is not 

directly obtainable from measurable pressure signals. This is due to a timescale difference 

between localised thermo-acoustic growth and the acoustic response of chamber modes (Noiray 

& Schuermans, IJNLM 2013). Finding the growth rate of an instability from measurable data is 

useful for the efficient design of dampers, and for the validation of linear thermo-acoustic models.  

This section will discuss four growth rate extraction methods used for gas turbines described by 

Noiray and Schuermans (IJNLM 2013). Two alternative methods for linear conditions (addressed 

by the first of the four aforementioned methods) introduced by Noiray (2017) are described as 

well. Additionally, a chemiluminescence method to isolate the contribution of damping from 

thermo-acoustic driving in linear conditions is discussed; although its implementation is beyond 

the scope of this work. The fourth method described by Noiray and Schuermans (IJNLM 2013), 

which is the focus of this work, is the most complex and most broadly applicable. This method is 

based on a Fokker-Planck formulation of the acoustic dynamics and has different formulations for 

standing and rotational mode behaviour. For the latter case, a formulation is provided by Noiray 

and Schuermans (PRSA 2013) for azimuthal modes in annular combustion chambers. This 

formulation and its associated dynamical models are discussed at the end of this section.  

2.4.1   Method 1:  Power spectral density of acoustic pressure 

This method uses a linear harmonic oscillator model to determine the net damping rate (negative 

growth rate) of a stable acoustic mode in a combustor. The dynamics of a stable acoustic mode 

can be described by Eq. (1) (Noiray & Schuermans, IJNLM 2013):  

    

   
   

   

  
    

       (1) 

where    is the acoustic pressure,   is the linear growth rate,     is the natural frequency of the 

mode, and   is turbulence-induced heat release of a stochastic (random) nature. 

The growth rate   can be decomposed into separate components representing thermo-acoustic 

driving and damping in Eq. (2): 
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         (2) 
where   is the thermo-acoustic driving rate and   is the damping rate. It is noted that this 

formulation of a growth rate consisting of deterministic driving and damping contributions is 

stated by Culick and Yang (1995) as part of a harmonic oscillator model for the acoustic pressure in 

a rocket combustor. However, the stochastic effect of turbulence on a thermo-acoustic mode is 

not formulated by Culick and Yang (1995), nor by other existing rocket engine literature to the 

knowledge of the author.  

The stochastic heat release   in a combustion chamber is induced by turbulent combustion noise 

(Noiray & Schuermans, IJNLM 2013). The frequency spectrum of  , which is the 'force' driving 

acoustic pressure in Eq. (1), follows a smooth decay due to its origin in turbulent combustion noise 

(Noiray & Schuermans, IJNLM 2013). For the narrow frequency band of interest around a modal 

peak,   can be approximated as Gaussian white noise. Such noise has equal power at all 

frequencies. This simplification of   means that the specific spectral decay of   is unimportant. 

Smooth spectral decay around a modal frequency can be accurately represented by an equivalent 

white noise intensity provided that the band-pass filtering is not excessively broad (Bonciolini et 

al., 2017). Hence, this theory from gas turbine literature can be similarly applied to rocket engines 

by assuming Gaussian white noise driving.   

The PSD of a linear mode excited by   is given by Eq. (3) (Noiray & Schuermans, IJNLM 2013):  

           
 

  

 

   
             

 (3) 

where          is the two-sided PSD of    ,   is the frequency and   is the noise intensity of   

(equal to its PSD height: a detailed explanation of the noise intensity theory is given in Appendix 

A). It is noted that the name 'noise intensity' refers to the origin of   in turbulent combustion 

noise, but that   is itself a heat release term not an acoustic term.  

Eq. (3) can be derived from the analytical expression for a damped driven harmonic oscillator. If    

  <<   , the peak frequency of the measured PSD closely approximates   , and Eq. (3) can be 

simplified to a Lorentzian equation (explanation provided in Appendix A) as in Eq. (4):  

            
  

          
 (4) 

where   is the maximum of          .  

If the LHS of Eq. (3) is equated to    , it can also be shown that   equals     .  Thus the half-

width-half-maximum (HWHM) of the PSD of acoustic pressure gives the net damping rate 

(negative growth rate) for linear stability.  
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2.4.2   Method 1 alternatives:  Power spectral densities of amplitude envelope and its 

fluctuation 

There exist two alternative methods for extracting the growth rate from linear conditions (Noiray 

N. , 2017). The first relates the PSD of amplitude envelope fluctuation to the noise intensity and 

the growth rate as given by Eq. (5): 

          
 

  

 

         
 

 

   
 
  (5) 

where the          is the two-sided PSD of amplitude envelope fluctuation   .  

The second alternative method is a simple way of obtaining the growth rate from the cut off 

frequency of the PSD of the amplitude envelope  . This is given by Eq. (6): 

                           (6) 

where the        is the two-sided PSD of amplitude envelope  .  

These two alternative methods serve to verify the results obtained with method 1.  

2.4.3   Method 1 complement:  Chemiluminescence method to isolate damping rate 

The methods described in the previous sub-sections allow the extraction of the growth rate  , but 

not of its individual contributions   and  . Recent work by Boujo et al. (2016) has analysed flame 

chemiluminescence imaging from a methane-air combustor to extract the damping rate based on 

the same theoretical formulations discussed in section 2.4.1. The damping rate appears as an 

isolated variable in Eq. (7): 

    

   
   

   

  
    

            (7) 

where         is  a forcing term associated with heat release fluctuations of the flame, and       is 

the sum of random heat release fluctuations driven by turbulence and of deterministic heat 

release fluctuations driven by thermo-acoustic coupling. This equation is equivalent to Eq. (1) in 

section 2.4.1, where the effect of the deterministic heat release fluctuations is represented by   

on the LHS and the effect of random heat release fluctuations is represented by   on the RHS.  

Based on Eq. (7), the flame transfer function in the complex frequency domain is given by Eq. (8): 

     
    

    
  

  

           
  (8) 

where the pole is           The damping rate   can thus be extracted by fitting Eq. (8) to an 

experimentally obtained flame transfer function. For LOx/H2 propellants an estimate for the heat 

release can be obtained from OH* chemiluminescence data, by assuming a linear relationship 

between the measured light intensity and the heat release rate. The method's precision is limited 

by the validity of this heat release estimation, and thus requires investigation beyond the scope of 

this work.  
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2.4.4   Method 2: Power spectral density of  amplitude envelope 

When linear instability (that is   >  ) occurs, the amplitude envelope of the acoustic pressure 

grows exponentially at a rate of   (that is,      where   is in rad/s) until restrained by non-linear 

damping to a limit cycle. The amplitude envelope of this limit cycle, obtained by applying the 

Hilbert transform to    , is not constant but randomly perturbed by the stochastic heat release  .  

By assuming a physical model for these dynamics, and matching it to the observed envelope, the 

growth rate   and other parameters can be extracted.  

A van der Pol oscillator described by Eq. (9) is assumed (Noiray & Schuermans, IJNLM 2013):  

    

   
          

   

  
    

       (9) 

where   is the non-linearity coefficient. The non-linearity coefficient   is related to the constant, 

unperturbed limit cycle amplitude that the system reaches if   is negligible. This occurs if the 

stochastic heat release is small compared to deterministic heat release oscillations that arise from 

thermo-acoustic coupling in a mode; that is, associated with  . This deterministic amplitude of the 

limit cycle    is given by Eq. (10): 

      
  

 
  
   

 (10) 

Theoretical manipulations of Eq. (10) by Noiray and Schuermans (IJNLM 2013) provide a 

differential equation for the amplitude envelope of the limit cycle given by Eq. (11): 

 
  

  
       

 

 
     

 

   
  

   (11) 

where   is the amplitude envelope. 

If the van der Pol dynamics of Eq. (11) are assumed, three methods can be derived to extract the 

unstable growth rate, noise intensity and non-linearity coefficient from the amplitude envelope of 

a limit cycle. These are henceforth referred to as methods 2, 3 and 4.   

Method 2 assumes linear fluctuations of   about its mean, and consists of fitting an analytical 

function to the PSD of these fluctuations given by Eq. (12) (Noiray & Schuermans, IJNLM 2013): 

          
         

              
 (12) 

where          is the two-sided PSD of the amplitude envelope fluctuation   ,     is the mean of 

the amplitude envelope, and    is a noise intensity coefficient. The noise intensity coefficient     is 

given by Eq. (13): 

     
 

   
   

  
 (13) 

Eq. (12) can be fitted to experimental data to extract   and    if the limit cycle amplitude is linearly 

perturbed, that is if    <<         
 .  
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2.4.5   Method 3: Fokker-Planck stationary probability density function  

Method 3 employs the Fokker-Planck equation; a formulation that can describe the statistics of 

the stochastic differential equation Eq. (11). For the assumed van der Pol dynamics, there is an 

analytical solution to the probability density function (PDF) of the amplitude envelope which can 

be used to extract parameters. This is given by Eq. (14) (Noiray & Schuermans, IJNLM 2013): 

      

 
  
   

  
        

 
   

  

        
 

  
 
     

 

   
  

 

  (14) 

where      is the PDF of the amplitude envelope  .  

Method 3 consists of fitting Eq. (14) to the PDF of the experimental A to extract the ratio  
 

  
 , 

where   may be negative or positive (applies to both stable and unstable cases). To isolate  ,    

can be found independently from the autocorrelation of the acoustic pressure time signal. It is 

equal to the exponential decay rate of this autocorrelation (Noiray & Schuermans, IJNLM 2013). 

Method 3 is not restricted to linear fluctuations of A but assumes a stationary PDF. That is, it 

assumes that the PDF of A is time invariant, which is the case for an established limit cycle.  

It is noted that the original expression underlying Eq. (14) is Eq. (15) (Noiray N. , 2017): 

      
 

 
       

   
 

 
  

 

 
   

 

  
   

 

   
 
        (15) 

where   is a normalisation constant such that      is a PDF.  

2.4.6   Method 4: Fokker-Planck coefficients method  

Method 4 is the most general of the four methods and can be applied to both unstable and stable 

cases. The Fokker-Planck equation describes the time evolution of the PDF of A or        in Eq. 

(16) (Noiray & Schuermans, IJNLM 2013): 

 

  
         

 

  
              

 

   
 
 
  

   
       (16) 

where      and 
 

   
 
 are the drift and diffusion coefficients respectively, named after the 

analogous application of the Fokker-Planck equation to Brownian motion.  

The drift coefficient      can be equated to the assumed dynamics of A. For an unstable case  

     is given by the van der Pol dynamics of Eq. (11) as written in Eq. (17) (Noiray & Schuermans, 

IJNLM 2013): 

           
 

 
     

 

   
  

 (17) 

For a stable case, Eq. (17) can be used with   = 0 to consider only linear dynamics.  
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The drift and diffusion coefficients can be computed from the first and second transition moments 

of the experimental amplitude envelope as written in Eq. (18) and Eq. (19)  (Noiray & Schuermans, 

IJNLM 2013): 

         
    

  
   

     
    

 
 

 
                      
 

 

 (18) 

where   
   

 is the first transition moment, and              is the probability density function of 

amplitude a at time      given an amplitude of A at time t. This conditional probability density 

function is defined by the ratio of the joint PDF to the total PDF such that            

 
                   

           
  

 

 
    

 

   
 
     

    
  
   

     
    

 
 

  
                        
 

 

 (19) 

where   
   

 is the second transition moment.  

These coefficients are computed by first considering the range of A from Amin to Amax for the 

entire time series, and defining intermediate amplitudes a = Amin        + n   where n is an 

integer from 1 to                  and    is a change that defines the bin width of a and the 

number of bins n. For a given A value (defined by the same bin width   ), the points with this 

value for the experimental time series are identified and counted. For the identified points, a time 

shift of   is applied. From these time-shifted positions in the time series, counts can be made for 

the range of   values using defined bins         , such that              is calculated with a 

resolution of n bins. This is done for a range of   such that the time shift limit to zero can be 

approximated. Calculating the limit to zero can require a considered extrapolation based on signal 

behaviour, however there is no universal extrapolation method1. This entire procedure is repeated 

for a range of A such that plots of coefficient computations versus A are generated. From such 

plots, parameters of interest such as  ,   and    may be extracted as demonstrated in section 

2.4.7.  

A significant advantage of this fourth method is its general applicability. There are no dynamical 

assumptions behind the transition moment computations for the Fokker-Planck coefficients 

(Noiray & Schuermans, IJNLM 2013). By comparing the assumed dynamics to the computed 

coefficients, an indication can be obtained of the accuracy of the van der Pol oscillator model.  

The main disadvantage of the Fokker-Planck coefficients method is its susceptibility to a broad set 

of signal processing effects generally referred to as 'finite time effects' (Boujo & Noiray, 2017). 

These cause deviations in the computed transition moments from their theoretical limits to zero at 

small values of  . This is depicted in Figure 7 for a synthetic acoustic mode with three different 

band-pass widths. Band-pass filtering gives rise to a type of finite time effect. Increasing the band-

pass width around the resonance frequency includes faster (or higher frequency) changes from 

                                                           
1
Private communication with Prof N. Noiray 
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the resonance sinusoid in the modal time series. These fast changes must be increasingly included 

to obtain a meaningful transition moment for a decreasing   as shown in Figure 7. 

 

Figure 7: Signal collapses at low   due to finite time effects for the first transition moment   
   

 with different band-pass filters 
around a synthetic acoustic mode generated with Simulink. The black line shows an exponential extrapolation to obtain the 

correct limit to zero.  Three symbols are plotted at   = 0.02, 0.06 and 0.12 s for the 60 Hz band-pass filter. This signal begins to 
deviate from the black line between 0.02 and 0.06 s which, in this case, corresponds approximately to 2 divided by the band-
pass filter width (  ). Similar occurrences can be observed for the two other band-pass filters around their respective 2/   

values (Boujo & Noiray, 2017).  

A method to compute the Fokker-Planck drift and diffusion coefficients directly without requiring 

an extrapolation to account for finite time effects has been recently devised by Boujo and Noiray 

(2017). However, this new method has only been tested with synthetic signals. The effect of 

measurement noise on the robustness of the method is unknown (Boujo & Noiray, 2017). While 

an investigation of finite time effects and of the possible applicability of this method to rocket 

engines is beyond this project's scope, these are important directions for future work. 

It is also noted that the theory presented in this sub-section is applicable to a standing acoustic 

mode such as a BKH mode. Tangential modes in cylindrical chambers, such as the 1T mode in BKD, 

have rotational behaviour. A dynamic model for such a situation was developed by Noiray and 

Schuermans (PRSA 2013). Expressions for Fokker-Planck coefficients were derived in this work and 

can be applied to the rotational 1T mode in BKD. These expressions are provided in section 2.4.8.  

2.4.7    Method 4: Validation with unstable combustor experiment using active control 

A premixed methane (CH4) and air combustor with a naturally unstable longitudinal mode was 

used by Noiray and Denisov (2016) to observe instability growth directly with active control. The 

set-up used is shown in Figure 8. 
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Figure 8: Cylindrical air and methane combustor with a premixing swirler featuring active control (Noiray & Denisov, 2016). 

Three different operating points named c1, c2 and c3 were studied with this combustor, which 

operates at atmospheric pressure and is representative of gas turbine conditions. The rms of 

acoustic pressure of these points is shown on the left of Figure 9 versus the equivalence ratio, 

while the spectral content and the PDF of acoustic pressure are shown on the right of Figure 9. 

 

Figure 9: Three operating points c1, c2 and c3 studied; on the left is the rms of acoustic pressure versus equivalence ratio, and on 
the right is the spectral content and the PDF of acoustic pressure. Instability is caused by coupling between the flame and a 

longitudinal mode of the chamber at high equivalence ratios (Noiray & Denisov, 2016). 

Points c1, c2 and c3 were classified by Noiray and Denisov (2016) as stable, semi-unstable and 

unstable, respectively. An indicator of instability is the acoustic pressure PDF as plotted on the 

right of Figure 9. For the stable c1 case a uni-modal distribution with a sharp peak is observed, for 

the semi-unstable c2 case a broadening of this profile occurs and its peak flattens, while for the 

unstable c3 case two distinct peaks are present which renders a bimodal distribution. Noiray and 

Denisov (2016) applied methods 3 and 4 to both c2 and c3 to find their unstable growth rates.  

Validation of van der Pol dynamics and of the Fokker-Planck approach by applying methods 3 and 

4 to c2 and c3 are the principal results of the study. Noiray and Denisov (2016) obtained growth 

rates of    0.5 rad/s and    10 rad/s for c2 and c3 by applying method 4. For each case, this 

consisted of first finding the diffusion coefficient using Eq. (19) to obtain the noise intensity  . The 

convection coefficient     , given by Eq. (18), is then computed for a range of A and the van der 

Pol expression in Eq. (17) is fitted onto these results to extract  the growth rate. Since   in Eq. (17) 

is known, the fit is only dependent on   and  . Physically, these represent a growing linear 

function of A and a decaying cubic of A, respectively, as illustrated in the middle row of Figure 10. 

For this known combination of   and  , a best fit can be obtained that determines their values.  
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To check method 4 results, Noiray and Denisov (2016) fed the obtained  ,   and   into the 

expression for the stationary PDF of A in method 3 and obtained a close fit to the measured PDF in 

both cases. Hence, the application of methods 4 and 3 to the data provided a clear indication that 

the assumed van der Pol dynamics are correct. These findings are shown in Figure 10. 

 

Figure 10: Top: best fits (black lines) for the diffusion (in this case twice its value 2        
  ) and drift coefficients for c2 and 

c3. Experimental coefficient values are shown in coloured dots indicating the occurrence intensity of the specific amplitude A. 
Bottom: plotted PDFs of the acoustic amplitude envelope (black lines) for c2 and c3 based on the Fokker-Planck stationary PDF 
analytical expression using parameters extracted from the coefficient fits. Experimental PDFs of A are shown in grey; a precise 

agreement can be observed with the analytical solution for the stationary PDF (Noiray & Denisov, 2016). 

An important result of this study is a direct validation of the extracted parameters by observing 

the growth of c2 and c3. The active control system allows stabilisation of c2 and c3 to linear levels 

which can then be released to observe instability, as shown in Figure 11. 



18 
 

 

Figure 11: Acoustic levels of c2 and c3 with periodic switching on/off of the active control, and corresponding PDFs of acoustic 
pressure and amplitude envelope (Noiray & Denisov, 2016). 

The uni-modal acoustic pressure PDF with control on, shown in Figure 11, identifies the reduction 

of acoustic pressure to linear levels. This active control of acoustics, after being applied for a 

length of time, can be switched off to observe the instability growth directly (Noiray & Denisov, 

2016). The evolution of the PDF of A (P(A)) with time during the transient growth stages of c2 and 

c3 was compared to the simulated PDF of A using the Fokker-Planck equation with the extracted 

parameters. These are shown in Figure 12, where the depicted experimental PDFs are constructed 

by counting A values measured over 100 iterations of the same control on/off experiment.  

 

Figure 12: Time evolution of PDF of A for c2 and c3 where t=0 is the time when control is switched off. A good fit is obtained for 
the clearly unstable case c3, with a growth rate of 10 rad/s matching the observed exponential growth (Noiray & Denisov, 2016). 

For the clearly unstable case c3, it can be seen from Figure 12 that the PDF of A is well captured 

during the growth period of 0.25 seconds until it reaches a stationary state. This directly validates 

the use of the Fokker-Planck equation and van der Pol dynamics to describe instability in the 

combustor.  
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2.4.8    Method 4: Formulation for cylindrical chamber with rotational mode behaviour 

In a cylindrical combustion chamber such as BKD, or other rocket combustors, acoustic modes can 

exhibit rotational behaviour. At any point in time, a transverse chamber mode, such as the BKD 1T 

mode, can be theoretically represented by the superposition of two standing modes. These 

theoretical standing modes, with modal amplitudes A and B, are spatially oriented at 90° to each 

other and are temporally related by an instantaneous phase difference  . A purely standing mode 

would consist of only one component (i.e. either A = 0 or B = 0), while a purely rotating mode 

would consist of equal amplitudes with a constant phase shift of  
 

 
 (i.e. A = B and    

 

 
). In 

reality, modes in cylindrical combustors can switch stochastically between standing and rotating 

behaviour such that A, B and   constantly change. A dynamical model for the thermo-acoustic 

behaviour of such modes was developed by Noiray and Schuermans (PRSA 2013) to derive 

appropriate Fokker-Planck coefficient formulations. These are described in this sub-section 

together with a modal reconstruction method which decomposes transverse modes into two 

standing modes.  

The acoustic pressure of azimuthal modes at the wall perimeter of an annular gas turbine chamber 

can be expressed as the sum of two orthogonal standing modes as in Eq. (20) (Noiray & 

Schuermans, PRSA 2013): 

           
              

            (20) 
where   is the modal index,   is the angular position along the wall perimeter,   

  is the A mode 

temporal acoustic pressure and   
  is the B mode temporal acoustic pressure.  

The temporal acoustic pressures for the A and B modes are given by Eq. (21) and Eq. (22): 

  
                        (21) 

  
                        (22) 

where      and      are the amplitude envelopes of the A and B modes which are perturbed by 

stochastic forcing.  

The phase difference between the A and B modes is given by Eq. (23): 

                (23) 
where   is the phase difference.  

The decomposition of the experimental         signal into its   
     and   

     components can be 

achieved with the reconstruction approximations given by Eq. (24) and Eq. (25) (Noiray & 

Schuermans, PRSA 2013): 
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(25) 

where K is the index for sensor positions at specific   values.  
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While these modal equations were derived for azimuthal modes in annular gas turbine 

combustion chambers, they are equally applicable for the tangential modes present in rocket 

combustors since the acoustic pressure distribution at the chamber wall perimeter are the same.  

The thermo-acoustic dynamics of the A and B modes are given by the coupled equations Eq. (26) 

and Eq. (27) (Noiray & Schuermans, PRSA 2013): 
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(27) 

 

From the dynamics in Eq. (26) and Eq. (27), relations for the amplitude envelopes and phase 

difference of the A and B modes can be obtained as written in Eq. (28), Eq. (29) and Eq. (30): 
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(30) 

where   ,    and    are uncorrelated white noises.  

From Eq. (28) and Eq. (29) analytical expressions can be obtained for the Fokker-Planck drift 

coefficients given by Eq. (31) and Eq. (32) (Noiray & Schuermans, PRSA 2013): 
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where                  and                 .  

These drift coefficients have a 2D dependency since the dynamics of the A and B modes are non-

linearly coupled.  They can be equated to the limit to zero of 2D first transition moments as 

written in Eq. (33) and Eq. (34) (Noiray & Schuermans, PRSA 2013): 

            
    

 
 

 
      

 

 

                           
(33) 
 

where                    is the 2D probability density function of   and    at time      given 

amplitudes   and    occurred at time  . This 2D conditional probability density function is defined 

by                      
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A best fit procedure can be applied to Eq. (33) and Eq. (34) with respect to the computed drift 

coefficients. From this best fit the parameters of interest   ,   ,   ,   ,   , and    can be 

extracted. Such a fit is shown for the first and second azimuthal modes of an unstable gas turbine 

combustion chamber in Figure 13.  

 

Figure 13: Fitting of theoretical Fokker-Planck drift coefficients onto experimentally computed coefficients for the a) A mode and 
b) B mode of a first azimuthal mode and the c) A mode and d) B mode of a second azimuthal mode in an unstable gas turbine 

combustion chamber. The smooth sheet is the theoretical fit while the more uneven contour is the experimental data (Noiray & 
Schuermans, PRSA 2013). 

The noise intensities    and     can also be independently found from equating the diffusion 

coefficients to the limit to zero of 2D second transition moments as in Eq. (35) and Eq. (36):  
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It is noted that the noise intensities    and    , as well as the non-linearity coefficients    and   , 

are expected to differ from each other only slightly (Noiray & Schuermans, PRSA 2013).  Due to the 

general two-dimensionality of these Fokker-Planck formulations, the parameter extraction 

equations described in this sub-section can be referred to as the 2D Fokker-Planck coefficients 

method.  
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2.4.9    Simplified dynamics for cylindrical chamber with rotational mode behaviour 

A more simplified dynamics model for rotational modes than that discussed in the previous sub-

section was also developed by Noiray and Schuermans (PRSA 2013). It originates with the 

assumption of a fixed phase difference at  
 

 
 (which constitutes a purely rotating mode if A = B). 

To understand this assumption, the equation for the phase difference dynamics, Eq. (30), can be 

expressed in potential form as written in Eq. (37) and Eq. (38).  
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where          is the phase difference potential. 

For given values of A and B, the minima of the phase difference potential are at    
 

 
. The 

accumulation of   in low potential wells at  
 

 
 and its equivalent values (at 2  spacings) is shown 

in Figure 14 for experimental data from the first and second azimuthal modes of a gas turbine 

combustion chamber.  

 

Figure 14: Phase difference potential as a function of phase difference for a) the first azimuthal mode and b) the second 
azimuthal mode in an annular gas turbine combustion chamber. Each point represents a phase difference value at point in time. 
The time series for the plot consists of 100 acoustic periods, i.e. tmax/T = 100 where T is the period (Noiray & Schuermans, PRSA 

2013).  

Although   covers the entire range of values from 0 to 2 , it remains in potential wells at  
 

 
  for 

prolonged periods before stochastic forcing shifts it to another well as seen in Figure 14. If a 

characteristic   of  
 

 
 is assumed and also that       and        then simplified versions of 

Eq. (28) and Eq. (29) are given by Eq. (39) and Eq. (40) in terms of a potential  : 
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The potential   is given by Eq. (41): 
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For this simplified system, there is an analytical solution to the Fokker-Planck stationary PDF given 

by Eq. (42): 

        
 

 
       

   
 

 
        (42) 

where   is a normalisation constant such that        is a PDF. 

A comparison of the first and second azimuthal mode PDFs given by Eq. (42) (using the parameters 

extracted with the 2D Fokker-Planck coefficients method) with the experimental PDFs of an 

unstable gas turbine chamber is presented in Figure 15. While a good agreement is obtained for 

both modes, the first azimuthal has a more precise match. This may be attributed to a clearer 

domination of   potential wells at  
 

 
 in the first azimuthal mode than in the second as can be 

observed in Figure 14.  

 

Figure 15: Experimental PDFs of   and   for a) the first azimuthal mode and c) the second azimuthal mode of an unstable gas 
turbine combustion chamber; these can be compared with analytical PDFs in b) and d) respectively. The analytical PDFs use 

parameters extracted with the 2D Fokker-Planck coefficients method (Noiray & Schuermans, PRSA 2013). 
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It is noted that Schulze (2016) attempted to match a simplified version of the 2D dynamics 

presented in this section (not the discussed 2D simplified model) to experimental data for two 

stable and two unstable BKD load points. This approach does not involve a Fokker-Planck 

formulation; consisting of simply matching the parameters to be extracted to the experimental 

dynamics, i.e. the amplitude envelope and its derivative.  However, this approach did not provide 

accurate growth rate values for the stable load points with respect to those found with Lorentzian 

fitting. Since the approach of Schulze (2016) did not yield accurate values, and is fundamentally 

different to that undertaken in this work (i.e. not based on statistical behaviour), a more detailed 

discussion of this approach is not presented. 

The good agreements between the analytical and experimental dynamics that are observed in 

Figure 15 complement the results in Figure 13. They provide a clear indication that the assumed 

dynamical model is correct. However, since there is no active acoustic control study with a gas 

turbine chamber or with a cylindrical combustor in literature, a validation of the parameter 

extraction or of the underlying dynamics is not present for the 2D Fokker-Planck coefficients 

method. For linear conditions, a comparison between the results of this advanced method and a 

simple Lorentzian fit has also not been carried out. Hence further study is required to better 

establish the reliability of the 2D Fokker-Planck coefficients method, as well as to test its 

applicability to rocket engine conditions which feature rougher, non-premixed combustion.     

2.5 Literature Gap Statements 

Two main gaps in the research literature have been identified in this review.  

 Methods to extract system-identifying parameters from dynamic pressure time series have 

been successfully applied to gas turbine conditions. These may be applicable to rocket 

engine conditions but this is yet to be tested.  

 A validation of parameters extracted with the 2D Fokker-Planck coefficients method has 

not been carried out in gas turbine literature, including linear conditions where a 

Lorentzian fit can be used to reliably find parameters.  

This project will form research objectives around the identified literature gaps.  
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3. Aim, Objectives and Methodology  

This chapter outlines the aim, objectives and methodology of this work. The aim of this work is: 

 To extract key parameters governing thermo-acoustic behaviour in rocket combustors from 

dynamic pressure measurements using stochastic signal processing techniques. 

The stated aim is broken down into three main objectives. The methodology of this work consists 

of applying the signal processing methods, as already described in detail in chapter 2, to 

experimental BKH and BKD data to achieve the three objectives. The three objectives and their 

associated signal processing techniques (methods) are: 

1. Apply the 1D Fokker-Planck coefficients method to the first longitudinal (1L) and 1T modes 

of multiple BKH load points. These are linear, stable load points since BKH is naturally 

stable at all experimented load points. Due to linearity, results can be validated by fitting a 

Lorentzian profile to the PSD of dynamic pressure data (method 1). If a good match is 

observed between the Lorentzian profile and the experimental data then the extracted 

parameters can be regarded as reliable since the Lorentzian method is well established. 

Additionally, parameters extracted using the Lorentzian method are to be fed into the 

alternative methods for linear conditions (method 1 alternatives), and into the stationary 

PDF expression (method 3). Positive comparisons of these analytical expressions with 

experimental data serve as a check that the Lorentzian-extracted parameters are correct, 

and are consistent with the models assumed for the acoustic amplitude envelope and its 

PDF at linear conditions.  

2. Apply the 2D Fokker-Planck coefficients method to the 1T mode of a stable BKD load point. 

Due to linearity, results can be validated by fitting Lorentzian profiles to the PSDs of 

acoustic pressure reconstructions of the A and B modes. Additionally, a phase difference 

analysis and a comparison of the 2D stationary PDF expression with experimental data 

provide indications of the validity of the assumed 2D linear dynamics and of the 

applicability of the 2D simplified model.  

3. Carry out a phase difference analysis of the 1T mode of an unstable BKD load point. This 

provides an indication of the applicability of the 2D simplified model, and of the associated 

2D stationary PDF expression. This expression may be useful in future work to compare a 

simulated 2D PDF, using parameters extracted from applying the Fokker-Planck coefficients 

method to an unstable case, to the experimental 2D PDF of an unstable case in order to 

gain an indication of the accuracy of parameter extraction in non-linear conditions.  

The experimental data used in this work was obtained in past experiments at the DLR 

Lampoldshausen, and details of its processing are presented in Appendix B. Details of the creation 

of PSDs in this work are also presented in Appendix B, where the effects of statistical errors on 

parameter extraction are discussed and found to be negligible for the generated PSDs.  
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4. Results for Test Case 1: Rectangular Stable Combustor 

This chapter presents the data analyses of BKH load points. These analyses fulfil objective 1 as set 

out in section 3. The data analyses were carried out with measurements from the dynamic 

pressure sensor 'PCCdyn2', shown in Figure 16. This sensor is situated at the pressure anti-node of 

the BKH 1T mode, and is also removed from local disturbances generated by the secondary nozzle. 

A summary of the results of BKH data analyses is provided at the end of the chapter.  

 

Figure 16: Six dynamic pressure sensors positioned along the walls of BKH. The 'PCCdyn2' sensor measurements are used for BKH 
data analyses (Webster S. L., 2016). 

4.1 BKH Load Points and Lorentzian Parameter Extraction 

This section presents the BKH load points selected for data analyses, and their modal growth rates 

and noise intensities extracted from Lorentzian fits. Four unforced BKH load points (with no 

acoustic excitation from the secondary nozzle)  were selected for analysis. These entail two load 

points with a relatively high H2 injection temperature, or so-called gaseous hydrogen (GH2), and 

two points with low H2 injection temperature, or liquid hydrogen (LH2), which feature a low VR. 

Within the GH2 and LH2 sets there is a supercritical point at 60 bar of chamber pressure and a 

subcritical point at 40 bar. All four load points have a ratio of oxidiser-to-fuel mass flow (ROF) of 6. 

The details of the load points are specified in Table 1.  
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Table 1: Selected BKH load points and corresponding operating parameters. 

BKH load point ROF (-) VR (-) TH2 injection (K) 

GH2, 60 bar 6 36 287.8 

GH2, 40 bar 6 55 288.2 

LH2, 60 bar 6 7.6 64.1 

LH2, 40 bar 6 13 73.1 

 

For each of the operating points, the acoustic response of the 1L, 1T and first longitudinal first 

tangential (1L1T) BKH modes to noise has been measured in experiments. By applying Lorentzian 

fits to the PSDs of acoustic pressure for each of these modes the growth rate   and the noise 

intensity   can be extracted. Lorentzian fits for the three modes of each of the load points are 

shown in Appendix C. While good Lorentzian fits are obtained for all cases, the 1L mode of the LH2 

60 bar load point is considered the 'cleanest' case based on its undisturbed and precise Lorentzian 

profile. This Lorentzian fit for the LH2 60 bar 1L mode is shown in Figure 17. The time series length 

for this case is 10 seconds, and is selected from an experimental run time where the mode is 

unexcited by the secondary nozzle, as shown in Appendix C, together with the rest of the cases. 

The peak frequencies (approximately the natural frequencies   ), growth rates and noise 

intensities extracted with Lorentzian fits are presented in Table 2. The experimental PSDs 

presented in this work are one-sided, and hence when extracting   a factor of 2 is taken into 

account with respect to the equations in section 2.4.1 as detailed in Appendix A.  

 

Figure 17: BKH LH2 60 bar 1L mode Lorentzian fit. The Lorentzian fit is optimised with a least squares error algorithm. 
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Table 2: Parameters extracted with optimised Lorentzian fits for the selected BKH load points. The peak frequency of  a 
Lorentzian fit approximates the natural frequency   . 

BKH load 
point 

Time series 
length (s) 

Peak frequency 
      (Hz) 

Growth rate 
     (Hz) 

Noise intensity     
(109 bar2 s- 3) 

GH2, 60 bar     

1L 5 3250 -117 5.65 

1T 10 4378 -67.2 0.980 

1L1T 10 5432 -52.4 0.550 

GH2, 40 bar     

1L 5 3157 -129 2.32 

1T 10 4280 -73.1 0.505 

1L1T 10 5325 -61.1 0.293 

LH2, 60 bar     

1L 10 2440 -64.8 1.23 

1T 10 4095 -63.0 2.00 

1L1T 8 4958 -28.5 0.373 

LH2, 40 bar     

1L 8 2378 -61.4 0.565 

1T 10 4152 -76.6 0.403 

1L1T 10 4977 -39.9 0.118 

 

The results in Table 2 generally agree with expectations from literature. The mean net damping 

rates for the BKH 1L and 1T modes experimentally measured by Webster (2016) over many load 

points, and using both of the BKH-specific methods discussed in section 2.2, are 113 Hz and 72.4 

Hz respectively. These values agree well with the growth rate results obtained in this work for the 

GH2 cases. A significant reduction in the absolute growth rate values of the 1L and 1L1T modes is 

observed for the low VR, LH2 cases. This agrees with the observations of significant VR influence 

on damping by Webster (2016).  

The noise intensities are reduced with higher modal frequencies as would be expected from the 

turbulent energy cascade which is the origin of the stochastic noise. For the GH2 cases, the noise 

intensity is reduced by a factor of 5 from the 1L to the 1T mode, and by a factor of 2 from the 1T 

mode to the 1L1T mode.  The LH2 cases have lower noise intensities and more gradual noise 

decays than the GH2 cases, while higher noise intensities are observed at higher chamber pressure 

for both GH2 and LH2 injection. Trends consistent with these results were observed by Webster et 

al. (2015) in unforced BKH experimental data (no excitation from the secondary nozzle); greater 

noise levels for higher chamber pressure and higher VR. The only inconsistency present in the 

extracted parameters is a higher noise intensity for the 1T than the 1L mode of the LH2 60 bar 

load point. In summary, the parameters found with Lorentzian fitting exhibit general trends 

consistent with those established in prior BKH studies. 
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4.2 Alternative Methods for Linear Conditions 

The parameters extracted from Lorentzian fitting can be fed into the analytical expressions for 

alternative linear methods. This serves as a check that the Lorentzian-extracted parameters are 

correct, and consistent with the dynamical models assumed for the acoustic amplitude envelope 

and its PDF at linear conditions. For the LH2 60 bar 1L mode, good comparisons between data and 

the analytical expressions for the PSD of amplitude fluctuation, the cut-off frequency of the PSD of 

amplitude, and the Fokker-Planck stationary PDF of amplitude at linear conditions (Eq. (15) 

without the non-linear term) are shown in Figure 18, Figure 19 and Figure 20, respectively. These 

good fits, together with the Lorentzian fit of Figure 17, show that the LH2 60 bar 1L mode 

dynamics can be accurately described with the assumed linear model of Eq. (1), and the 

subsequent manipulations of Eq. (1) to describe the amplitude envelope and its PDF.  

It is noted that the random error observable in the PSDs of Figure 17 and Figure 18 is typical of 

dynamic pressure signals in rocket combustion chambers. This random error is attributable to 

significant fluctuations in the combustion noise spectrum, which are caused by the highly 

turbulent rocket flames. In reality, the spectrum of the stochastic heat release driving would not 

be perfectly flat like theoretical white noise, but significantly jagged.  

 

 

Figure 18: BKH LH2 60 bar 1L mode PSD of amplitude envelope fluctuation. The analytical expression uses parameters obtained 
from Lorentzian fitting. 
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Figure 19: BKH LH2 60 bar 1L mode PSD of amplitude envelope. The cut-off frequency expectation; the frequency at which the 
PSD begins to decay, uses the growth rate obtained from Lorentzian fitting.  

 

Figure 20: BKH LH2 60 bar 1L mode Fokker-Planck stationary PDF of amplitude envelope, compared with experimental data. The 
stationary PDF analytical expression uses parameters obtained from Lorentzian fitting. 
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4.3 1D Fokker-Planck Coefficients Method Application 

This section presents the results of applying the 1D Fokker-Planck coefficients method to the 1L 

and 1T modes of the four BKH load points presented in section 4.1. Data for the 1L1T modes was 

not considered clean enough for the application of the Fokker-Planck coefficients method as 

discussed in Appendix C, section C2. A detailed analysis of the LH2 60 bar 1L mode is presented, 

and results for the other load points are tabulated at the end of the section.  

A histogram of the amplitude envelope for the LH2 60 bar 1L mode with band-pass filtering from 

2000 to 2800 Hz (matching the Lorentzian fit width in Figure 17) is shown in Figure 21. This 

histogram has a resolution of 100 bins, which is visibly sufficient to describe the statistical 

amplitude distribution.  

 

 

Figure 21: Histogram of the amplitude envelope of the BKH LH2 60 bar 1L mode with band-pass filtering of 2000 to 2800 Hz.  
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Computations of the first and second transition moments for 10th percentile interval values of the 

LH2 60 bar 1L mode amplitude are shown in Figure 22. These use a resolution of 100 bins as in 

Figure 21. It can be observed in Figure 22 that if signal collapses at low   values (due to finite time 

effects) are ignored, the computed signals approximate the expected values of the drift and 

diffusion coefficients (plotted as dots on the y-axes of Figure 22), which are based on the 

parameters found with Lorentzian fitting, as   approaches zero.  The 80th and 90th percentile 

signals are of a visibly lower quality than the lower percentiles, which may be attributed to the 

skew of the amplitude histogram towards lower amplitudes. An evaluation of limits to zero using 

extrapolations can exclude these lower quality signals at high amplitudes.  

 

Figure 22: First   
   

  (plot on left) and second   
   

 (plot on right) transition moment computations for nine amplitudes at 10
th

 
percentile intervals using experimental data of the BKH LH2 60 bar 1L mode with band-pass filtering from 2000 to 2800 Hz. The 

limits to zero of the   
   

 and   
   

 computations correspond to the amplitude-dependent drift coefficient and the amplitude-
independent diffusion coefficient respectively. Dots on the y-axes show the expected values based on parameters found with 
Lorentzian fitting. Finite time effects cause the signals to collapse at low   values, and deviate from their true limits to zero. 

Two extrapolation methods to evaluate the limits to zero of the transition moment signals were 

examined. These are a simple exponential function and a compound exponential function given by 

Eq. (41) and  Eq. (42), respectively.  

         (41) 
where   and   are fitted to two points         and         and    is any non-zero constant. 

            (42) 
where   and   are fitted to two points         and         for a given value of the constant  .  
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The simple exponential extrapolation consists of fitting   and   to two points in a signal. The value 

of the constant   is non-effectual since any changes to   are absorbed into   and   such that the 

obtained function is the same. The only consideration in this extrapolation approach is deciding 

the signal points         and         to which the simple exponential is to be fitted. BKH 

transition moment signals, shown in Figure 22, peak at maxima or minima before collapsing 

towards zero at low   values. Hence these maxima and minima are used for        . The selection 

of         is arbitrary; it must include enough of the signal such that its overall behaviour is 

captured, but not an excessive length such that the extrapolation still focuses on low   values. A 

value of    = 0.025 s was chosen for all BKH signal extrapolations. Such an extrapolation is 

depicted in Figure 23 for the LH2 60 bar 1L mode, where smalls dots plotted in the y-axis mark the 

obtained limits to zero based on simple exponential extrapolations. It can be seen from Figure 23 

that simple exponentials do not capture signal curvatures appropriately.   

 

Figure 23: First   
   

 (plot on left) and second   
   

 (plot on right) transition moment computations for seven amplitudes at 10
th

 
percentile intervals using experimental data of the BKH LH2 60 bar 1L mode with band-pass filtering from 2000 to 2800 Hz. The 

limits to zero of the   
   

 and   
   

 computations correspond to the amplitude-dependent drift coefficient and the amplitude-
independent diffusion coefficient respectively.  Dotted lines are simple exponential extrapolations used to find the limits to zero 

of the signals. Small dots on the y-axes are the limits to zero obtained with extrapolations, while big dots are the expected 
values based on parameters found with Lorentzian fitting. 

The compound exponential function has a constant   which can be used to modify the curvature 

of exponential extrapolations to closely match signal behaviour. It is noted that this function given 

by Eq. (42) is not present in existing literature. An optimisation algorithm was implemented which 

iterates through values of   until the least squares error between the signal and the extrapolation 

is minimised. The algorithm devised was found to be sensitive to the initial guess for   and hence 

different initial guesses were tested by the author until good extrapolations were obtained. For 
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the LH2 60 bar 1L mode, an initial guess of   = -70 s-1 was found to yield good extrapolations for all 

signals (the obtained individual   values are in Appendix C). These compound exponential 

extrapolations are shown in Figure 24. It can be seen from Figure 24 that compound exponential 

extrapolations closely follow the signal curvatures. 

 

Figure 24: First   
   

 (plot on left) and second   
   

 (plot on right) transition moment computations for seven amplitudes at 10
th

 
percentile intervals using experimental data of the BKH LH2 60 bar 1L mode with band-pass filtering from 2000 to 2800 Hz. The 

limits to zero of the   
   

 and   
   

 computations correspond to the amplitude-dependent drift coefficient and the amplitude-
independent diffusion coefficient respectively.  Dotted lines are compound exponential extrapolations used to find the limits to 
zero of the signals. Small dots on the y-axes are the limits to zero obtained with extrapolations, while big dots are the expected 

values based on parameters found with Lorentzian fitting. 

After an appropriate extrapolation is used to obtain the limits to zero of transition moments, these 

limits can be equated to analytical expressions for the Fokker-Planck drift and diffusion 

coefficients as written in Eq. (18) and Eq. (19) in section 2.4.6. The noise intensity   can be found 

from taking an average of the limits to zero of the second transition moments for the considered 

amplitudes.  This average can then be equated to the diffusion coefficient 
 

   
 
.  

Since all the BKH load points have linearly stable modes (as explained in Appendix C, section C2), 

the non-linear term in Eq. (17) can be ignored and only the growth rate   remains to be found. The 

growth rate can be extracted by a least squares error optimisation of the analytical expression for 

     to fit the limits to zero of the first transition moments for the considered amplitudes. Unlike 

the extrapolation optimisation, this parameter extraction optimisation was robust (i.e. 

independent of the initial guess for  ).  

The extracted growth rate using this method is -64.6 Hz which precisely matches the Lorentzian 

growth rate of -64.8 Hz. The noise intensity found from the diffusion coefficient is 1.29 109 bar2 s-
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3 which also agrees precisely with the Lorentzian noise intensity of 1.23 109 bar2 s- 3.  Therefore, 

for the LH2 60 bar 1L mode, the Fokker-Planck coefficients method yields parameters with less 

than 5% error with respect to those found with Lorentzian fitting.  

It is of interest to investigate the effect of reducing the band-pass filter width around the LH2 60 

bar 1L mode when applying the Fokker-Planck coefficients method. This interest arises from the 

common occurrence of closely neighbouring modes in the acoustic spectrum of a combustor, 

which reduces the frequency range for band-pass filtering around the mode of interest. The first 

step of this analysis is to establish a pass band which is exactly symmetric around the Lorentzian 

peak frequency (2440 Hz), in order to eliminate any possible asymmetry effects - these can be 

considered separately. Such filtering would be from 2080 Hz to 2800 Hz (instead of the original 

2000 to 2800 Hz). The centre-to-cut-off width of this band-pass filter is 5.56   , that is 5.56 times 

the growth rate. The width of this symmetric band-pass filter can be reduced until significant 

errors in the parameter extraction are observed.  

The results of the band-pass filter analysis are presented in Table 3, where they can be compared 

to Lorentzian fit results. It can be seen from Table 3 that a minimum centre to cut-off width of 

2    is required to estimate parameters. With this filtering width, errors of 13% and 32% are 

present for the growth rate and noise intensity respectively, in comparison to Lorentzian 

parameters. It is also of interest to consider the effect of increasing the filter width 

asymmetrically. If a band-pass filter is taken from - 5    to + 2    around the peak frequency 

instead of at ± 2   , the Fokker-Planck coefficients method yields a growth rate of -53.3 Hz (18% 

error) and a noise intensity of 0.927 109 bar2 s- 3 (25% error) which is not an improvement on the 

± 2    results. Hence, according to this analysis, band-pass filtering for the Fokker-Planck 

coefficients method should have a minimum centre-to-cut-off width of 2    which can only be 

effectively improved symmetrically.  

Table 3: Symmetric band-pass filter analysis.  

Method  
Centre-to-cut-off width of 
symmetric band-pass filter 

Growth rate 
     (Hz) 

Noise intensity 
  (109 bar2 s- 3) 

Lorentzian fit N.A. (2000, 2800 Hz) -64.8 1.23 

Fokker-Planck 
coefficients 

5.56    -64.0 1.35 

Fokker-Planck 
coefficients 

5    -65.0 1.23 

Fokker-Planck 
coefficients 

4    -64.6 1.13 

Fokker-Planck 
coefficients 

3    -66.1 1.39 

Fokker-Planck 
coefficients 

2    -56.5 0.842 

Fokker-Planck 
coefficients 

1.5    -44.4 0.539 
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The Fokker-Planck coefficients method was applied to the 1L and 1T modes of the four BKH load 

points studied in this work. The approach taken for all modes is the same as that already described 

for the LH2 60 bar 1L mode. The noise intensity is obtained from the diffusion coefficient, and the 

growth rate is obtained from a robust optimisation of the analytical expression for the drift 

coefficient. Details of the data processing and the parameter extraction results for all processed 

modes are presented in Table 4. The data used for the Fokker-Planck coefficients method was 

band-pass filtered using the original Lorentzian fit widths for all modes except for the LH2 40 bar 

1T mode.  These Lorentzian fit widths are approximately symmetric around the peak frequency 

(which cannot be precisely known until a Lorentzian fit is applied with a pre-determined width), 

except for the LH2 40 bar 1T mode. In this case, a reduction in the band-pass filtering to obtain 

symmetry around the peak frequency was found to improve the results given by the Fokker-Planck 

coefficients method. For all cases, the shorter centre-to-cut-off width of the band-pass filter is 

specified in Table 4.  

Interestingly, good results are obtained for cases with filter widths encompassing less than 2   . 

Table 4 also shows that the 80th percentile amplitude was included for the GH2 60 bar and 40 bar 

1L mode analyses, and that an initial guess of   = -150 s-1 was used for the GH2 extrapolation 

optimisations. These modifications were found to yield better results.  

Errors for parameter extraction using the Fokker-Planck coefficients method with respect to 

Lorentzian fitting are highlighted in Table 4 in italic text. It can be seen that the parameters 

extracted with the Fokker-Planck coefficients method agree well with Lorentzian values in all 

cases.  
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Table 4: Details of the data processing and the parameter extraction results for the 1L and 1T modes of the BKH load points. The 
errors of the Fokker-Planck coefficients method compared to Lorentzian fitting are highlighted in italic text.  

Variable 

BKH load point, acoustic mode 

GH2 LH2 

60 bar, 
1L 

60 bar, 
1T 

40 bar, 
1L 

40 bar, 
1T 

60 bar, 
1L 

60 bar, 
1T 

40 bar, 
1L 

40 bar, 
1T 

Lorentzian 
fit width 

(Hz) 

2800, 
3650 

4250, 
4500 

2850, 
3450 

4150, 
4400 

2000, 
2800 

3800, 
4400 

2150, 
2600 

3900, 
4300 

Fokker-
Planck  

coefficients 
band-pass 
filter (Hz) 

2800, 
3650 

 
[3.4   ] 

4250, 
4500 

 
[1.8   ] 

2850, 
3450 

 
[2.3   ] 

4150, 
4400 

 
[1.6   ] 

2000, 
2800 

 
[5.6   ] 

3800, 
4400 

 
[4.7   ] 

2150, 
2600 

 
[3.6   ] 

4000, 
4300 

 
[1.9   ] 

Maximum 
amplitude 
percentile 
considered 

80th 70th 80th 70th 70th 70th 70th 70th 

Initial 
guess for   

(s-1) 
-150 -150 -150 -150 -70 -70 -70 -70 

Lorentzian 
     (Hz) 

-117 -67.2 -129 -73.1 -64.8 -63.0 -61.4 -76.6 

Fokker-
Planck 

coefficients 
     (Hz) 

-99.5 -80.2 -102 -76.4 -64.6 -51.9 -64.3 -62.5 

Error for    15% 19% 21% 4.5% 0.3% 18% 4.7% 18% 

Lorentzian 
  (109 bar2 

s- 3) 
5.65 0.980 2.32 0.505 1.23 2.00 0.565 0.403 

Fokker-
Planck 

coefficients 
  (109 bar2 

s- 3) 

5.10 1.20 1.80 0.410 1.29 1.58 0.631 0.314 

Error for    10% 22% 22% 19% 4.9% 21% 12% 22% 
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4.4 Summary of Results for Test Case 1 

The growth rate and noise intensity of BKH acoustic modes at different operating conditions were 

extracted with Lorentzian fitting and the Fokker-Planck coefficients method.  Good Lorentzian fits 

were obtained for the 1L, 1T and 1L1T modes of four unforced BKH load points, as would be 

expected for linearly stable cases. These load points are defined by hot or cold hydrogen injection 

(GH2 vs LH2), and by supercritical or subcritical pressures (60 bar vs 40 bar). The growth rates and 

noise intensities obtained with Lorentzian fits for the three acoustic modes of the four load points 

exhibit general trends consistent with BKH studies by Webster (2016) and Webster et al. (2015).  

A detailed data analysis was presented for the LH2 60 bar 1L mode which is considered the 

'cleanest' case based on its undisturbed and precise Lorentzian profile. The Lorentzian parameters 

were fed into the analytical expressions of alternative methods for linear conditions consisting of 

the PSD of amplitude fluctuation, the cut-off frequency of the PSD of amplitude, and the Fokker-

Planck stationary PDF. These analytical expressions all compare well with experimental data. 

These comparisons serve as a check for the Lorentzian parameters and provide further indication 

that the assumed linear dynamical model is correct.   

The application of the Fokker-Planck coefficients method to the LH2 60 bar 1L mode was 

presented in detail.  A compound exponential function was found to provide appropriate signal 

extrapolations that establish the limits to zero of the transition moments. Consequently, the noise 

intensity was obtained from the diffusion coefficient (equal to the limit to zero of the second 

transition moment), while the growth rate was obtained from optimising the analytical expression 

for the drift coefficient (equal to the limit to zero of the first transition moment). This paramater 

extraction using the Fokker-Planck coefficients yielded values in close agreement with Lorentzian 

parameters, with an error of 0.3% for the growth rate and of 4.9% for the noise intensity of the 

LH2 60 bar 1L mode.  

An analysis of the effects of band-pass filtering width and symmetry was carried out with the 

experimental data of the LH2 60 bar 1L mode. Significant errors in the parameter extraction were 

found when the band-pass filter width was symmetrically reduced to a centre to cut-off width of 

2   . Asymmetric expansion of the band-pass filter width did not improve the results.  

The Fokker-Planck coefficients method was applied to the 1L and 1T modes of the four BKH load 

points. Good results were obtained for all cases with some variances in the data processing. Band-

pass filters approximately symmetric around the peak frequency were used for all the modes. 

Three cases featured a centre-to-cut-off width lesser than 2    but good results were still 

obtained with a maximum parameter error of 22%.  Analyses of the 1L modes of the GH2 cases 

included the 80th amplitude percentile, while analyses for the rest of the modes included up to the 

70th percentile. Greater extrapolation coefficients were used for the GH2 cases than for LH2 cases 

to better match signal curvatures. Overall, there is no systematic trend in the errors for the 

parameters extracted with the Fokker-Planck coefficients method, with both overpredictions and 

underpredictions being present with respect to Lorentzian results. Therefore, the Fokker-Planck 
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coefficients method yielded growth rates and noise intensities for BKH 1L and 1T modes at four 

different operating conditions with acceptable2 random errors of less than 25%.  
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5. Results for Test Case 2: Cylindrical Unstable Combustor 

This chapter presents the data analyses of BKD load points. These analyses fulfil objectives 2 and 3 

as set out in section 3. The data analyses were carried out with measurements from 8 dynamic 

pressure sensors 'DYN' 1 to 8 placed around the perimeter of the BKD chamber at 45° to each 

other, as shown in Figure 25. A summary of the results of BKD data analyses is provided at the end 

of the chapter.  

 

Figure 25: BKD sensor array illustration. The 8 dynamic pressure sensors, positioned at 45° to each other, are labelled DYN 1 to 8. 
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5.1 BKD Load Points 

This section presents the BKD load points selected for the BKD data analyses, which consist of a 

stable and an unstable load point. These load points were selected from different time segments 

of an experimental run as shown in Figure 26. The stable load point is named 'LP7' and has a 60 

bar chamber pressure and a ROF of 4. The unstable load point is named 'LP4' has an 80 bar 

chamber pressure and a ROF of 6. Both time series for these load points have a length of 2 s; LP7 

was selected from the run time segment 43 to 45 s and LP4 was selected from the run time 

segment 23 to 25 s. The LP4 instability can be clearly observed in the spectrogram of Figure 26 

where the LP4 1T mode is significantly more excited than the LP7 1T mode.  

 

Figure 26: BKD load point selection for the stable load point 'LP7' and the unstable load point 'LP4'. LP7 is selected from the run 
time segment 43 to 45 s, at a 60 bar chamber pressure and a ROF of 4, which has a stable 1T mode. LP4 is selected from the run 

time segment 23 to 25 s, at a 80 bar chamber pressure and a ROF of 6, which has an unstable 1T mode (Groning et al., 2016). 
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The acoustic pressure and amplitude envelope of LP7 and LP4 are shown in Figure 27, while their 

acoustic pressure PDFs are shown in Figure 28. The relatively high amplitudes and bi-modal PDF 

shape of LP4 clearly identify this load point as being unstable.  

 

Figure 27: Acoustic pressure and amplitude envelope of the BKD load points LP7 (stable) and LP4 (unstable) vs run time. 

 

Figure 28: Acoustic pressure PDFs of the BKD load points LP7 (stable) and LP4 (unstable).  
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5.2 Stable Load Point LP7 1T Reconstruction and Lorentzian Parameters 

This section presents the reconstruction of the LP7 1T mode and its Lorentzian parameter 

extraction.  The acoustic pressure PSD of the LP7 1T mode (averaged over the 8 sensors) is shown 

in Figure 29. The LP7 1T mode can be decomposed into two orthogonal standing modes 'A' and 'B' 

as described in section 2.4.8. Using the reference for   in Figure 25, the A mode has pressure anti-

nodes at   = 0°, 180° while the B mode has pressure anti-nodes at   =  90°. Good comparisons 

between the reconstructed and experimental signals are shown in Figure 30 and Figure 31 for the 

sensors DYN7 and DYN1 respectively. Lorentzian fits to the PSDs of the reconstructed A and B 

modes can be used to extract their growth rates and noise intensites. Such fits are plotted in 

Figure 32 and Figure 33 which show the A and B mode PSDs for DYN7 and DYN1 where either the 

A or B mode is dominant. Good agreements can be observed between these PSDs and their 

Lorentzian profiles, provided that the Lorentzian fitting avoids neighbouring modes. These 

Lorentzian profiles indicate that the LP7 1T mode is indeed linearly stable since a Lorentzian profile 

occurs only at linear conditions.  

 

 

Figure 29: BKD LP7 1T mode PSD consisting of an average of the 8 PSDs for each sensor.  
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Figure 30: BKD LP7 1T mode  experimental and reconstructed PSDs for the DYN7 sensor.  

 

 

Figure 31: BKD LP7 1T mode experimental and reconstructed PSDs for the DYN1 sensor.  
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Figure 32: BKD LP7 1T mode reconstructed PSDs of the A and B modes for the DYN 7 sensor.  Optimised Lorentzian fits to these 
PSDs are plotted in thick lines.  

 

 

Figure 33: BKD LP7 1T mode reconstructed PSDs of the A and B modes for the DYN 1 sensor.  Optimised Lorentzian fits to these 
PSDs are plotted in thick lines. 
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The growth rates and noise intensities for the A and B modes extracted with Lorentzian fitting are 

presented in Table 5, alongside the mean and maximum values of the A and B amplitude 

envelopes. The slightly higher mean amplitude for the A mode than the B mode can be attributed 

to    being slightly higher (less net damping) than   , while the higher maximum amplitude the B 

mode can be attributed to    being slightly higher than   . Therefore the Lorentzian fits yield 

parameter trends in agreement with direct observations of the reconstructed signals. The peak 

frequencies of the Lorentzian profiles for the A and B modes are 10623 Hz and 10674 Hz 

respectively; an average of 10649 Hz provides a value for       which completes the Lorentzian 

parameter extraction.  

Table 5: BKD LP7 1T mode amplitude envelope mean and maximum, and Lorentzian growth rates and noise intensities for the 
reconstructed A and B modes. 

LP7 1T amplitude envelope mean and max. Lorentzian growth rate and noise intensity  

A mode B mode A mode B mode 

mean( ) 
(bar) 

max( ) 
(bar) 

mean( ) 
(bar) 

max( ) 
(bar) 

      
(Hz) 

     (1011 

bar2 s- 3) 
      

(Hz) 
     (1011 

bar2 s- 3) 

0.162 0.555 0.159 0.611 -314 6.25 -338 6.75 
 

5.3 Stable Load Point LP7 1T A Mode Analysis  

An analysis of the A mode (and also the B mode in the next section) of the LP7 1T mode was 

carried out using the same compound extrapolation function that was applied to BKH data 

analyses. Since BKD data analyses require the use of the 2D Fokker-Planck coefficients method, 

the two-dimensionality of the Fokker-Planck coefficient computations must be considered.  

The approach taken in this work is to focus on variations of the primary variable, i.e.   in the 

evaluation of the A mode drift coefficient         , while keeping the secondary variable constant 

(in this case   ). The modal value of the secondary variable, or values close to it, provide the most 

data for transition moment computations. Hence the evaluation of 2D Fokker-Planck coefficients 

in this work consists of fixing the secondary variable based on statistical occurence, and then 

analysing signals with primary variable variations. This approach allows a detailed observation of 

the signals and of the extrapolation fits used.  

The analysis of the LP7 1T A mode encompasses seven amplitudes A1 to A7 which were selected 

from an amplitude histogram of 20 bins as shown in Figure 34. The secondary variable    was fixed 

at the modal value (or those of its neighbours) of a 20 bin histogram as depicted in Figure 35. It is 

noted that the coarser the bin resolution the greater the amount of data that is available for a 

fixed secondary variable.  Hence, a relatively coarse resolution of 20 bins is an appropriate 

baseline resolution for applying the 2D Fokker-Planck coefficients method to LP7.  For the LP7 1T A 

mode, increasing the resolution from this baseline of 20 bins was found to decrease signal quality 

as shown in Appendix D. Hence, the detailed analyses of the LP7 1T A mode presented in this 

section have an amplitude resolution of 20 bins.  
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Figure 34: BKD LP7 1T A mode selection of seven amplitudes A1 to A7. 

 

 

Figure 35: BKD LP7 modal identification for 1T A mode analysis. The 'm' indicates the modal peak, 'v2' and 'v3' are its neighbours 
(versions 2 and 3).  
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The 2D Fokker-Planck coefficients method was applied to the LP7 1T A mode using the three 

different fixed values for   : 'm' (mode), 'v2' (version 2) and 'v3' (version 3) as labelled in Figure 35. 

The transition moments and corresponding extrapolations for these three cases are shown in 

Figures 36, 37 and 38. For all cases, the time series used for transition moment computations was 

band-pass filtered from 8900 to 12200 Hz, i.e. the entire frequency range shown in Figure 32 and 

Figure 33. This filtering thus includes the neighbouring mode disturbances on the left of the 1T 

mode spectrum. Their inclusion in the analysis serves to check if weak disturbances in the modal 

spectrum are allowable in the use of the 2D Fokker-Planck coefficients method.  

An initial guess of   = -800 s-1 was used for the extrapolation optimisations of all transition 

moment signals. A value of   = -550 s-1 was manually set for the   
   

 A1 signal, and of   = -500 s-1 

for the   
   

 A2, A3 and A4 signals since for these signals the optimisation procedure did not yield 

good extrapolation fits (the extrapolation optimisation algorithm was not sufficiently robust). The 

  values used for all signals are documented in Appendix D. It is noted that these relatively high   

values with respect to those used for BKH data also correspond to a shorter    length for 

extrapolation  itting o   .    s  ompared to  KH’s  .  5 s.  Good agreements can be observed 

between the expected Fokker-Planck coefficients based on Lorentzian parameters and the 

extrapolated limits to zero of 2D transition moments.  

 

Figure 36: BKD LP7 1T A mode first   
   

 (plot on left) and second   
   

 (plot on right) transition moment computations for seven 

amplitudes of   for the modal value of   . The limits to zero of the   
   

 and   
   

 computations, given by the extrapolation fits 
shown in dotted lines, correspond to the drift and diffusion coefficients respectively. Small dots on the y-axes are the limits to 
zero obtained with extrapolations, while big dots are the expected values based on parameters found with Lorentzian fitting. 
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Figure 37: BKD LP7 1T A mode first   
   

 (plot on left) and second   
   

 (plot on right) transition moment computations for seven 

amplitudes of   for the modal (v2) value of   . The limits to zero of the   
   

 and   
   

 computations, given by the extrapolation 
fits shown in dotted lines, correspond to the drift and diffusion coefficients respectively. Small dots on the y-axes are the limits 
to zero obtained with extrapolations, while big dots are the expected values based on parameters found with Lorentzian fitting. 

 

Figure 38: BKD LP7 1T A mode first   
   

 (plot on left) and second   
   

 (plot on right) transition moment computations for seven 

amplitudes of   for the modal (v3) value of   . The limits to zero of the   
   

 and   
   

 computations, given by the extrapolation 
fits shown in dotted lines, correspond to the drift and diffusion coefficients respectively. Small dots on the y-axes are the limits 
to zero obtained with extrapolations, while big dots are the expected values based on parameters found with Lorentzian fitting. 
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A robust optimisation algorithm (independent of initial guesses) was implemented to extract the 

growth rate and noise intensity of the LP7 1T A mode for each of the three considered cases using 

the 2D Fokker-Planck coefficients method.  

Two approaches were used in the application of this method. The first consists of finding the noise 

intensity from the diffusion coefficient 
  

   
  by averaging the limits to zero of second transition 

moment signals, and finding the growth rate by optimising the analytical expression for the drift 

coefficient          to fit the limits to zero of first transition moment signals. This is the same 

approach  that was used for BKH data analyses. A second approach consists of finding both the 

noise intensity and growth rate from the analytical expression for          which features both 

parameters. These two variants of the Fokker-Planck coefficients method can be abbreviated as 

F.P.C 1 and F.P.C 2 respectively.  

The parameter extraction results of applying F.P.C. 1 and 2 to the LP7 1T A mode are presented in 

Table 6 and compared with the Lorentzian parameters. From Table 6 it can be seen that the errors 

are systematic, with the 2D F.P.C. 1 method providing more accurate results than the 2D F.P.C. 2 

method. For all cases, the latter underpredicts the noise intensity and the net damping rate more 

than the former. The best result is obtained with the 2D F.P.C. 1 method for the v3 case, with an 

error of 22% for    and 11% for   . Since v3 is the least statistically rich case, error variances 

cannot be explained by data deficits. The 2D Fokker-Planck coefficients method therefore yielded 

accurate  parameters for the LP7 1T A mode, but with systematic errors of unclear origin.  

Table 6: BKD LP7 1T A mode parameter extraction results from applying Lorentzian fits and two variants of the 2D Fokker-Planck 
coefficients method.  

Method 

 LP7 1T A mode analysis cases and parameters 

   fixed to modal value    fixed to v2    fixed to v3 

      (Hz)    (1011 

bar2 s- 3) 
      (Hz)    (1011 

bar2 s- 3) 
      (Hz)    (1011 

bar2 s- 3) 

Lorentzian -314 6.25 -314 6.25 -314 6.25 

2D F.P.C. 1 
-228 

[error: 27%] 
5.45 

[error: 13%] 
-235 

[error: 25%] 
5.20 

[error: 17%] 
-245 

[error: 22%] 
5.55 

[error: 11%] 

2D F.P.C. 2 
-183 

[error: 42%] 
4.50 

[error: 28%] 
-216 

[error: 31%] 
4.82 

[error: 23%] 
-220 

[error: 30%] 
5.00 

[error: 20%] 

 

5.4 Stable Load Point LP7 1T B Mode Analysis  

The LP7 1T B mode analysis was carried out similarly to the 1T A mode analysis. The main 

difference is that a higher amplitude resolution of 2x20 bins was used since, unlike for the A mode, 

signal quality is not reduced at twice the baseline resolution. A resolution analysis of the LP7 1T B 

mode transition moments is presented in Appendix D. Seven amplitude values B1 to B7 were 

selected from the baseline resolution as shown in Figure 39. Detailed analyses were undertaken 

using these amplitudes at a 2x20 bin resolution with    fixed at its modal or neighbouring values as 

shown in Figure 40. 
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Figure 39: BKD LP7 1T B mode selection of seven amplitudes B1 to B7. 

 

 

Figure 40: BKD LP7 modal identification for 1T B mode analysis. The 'm' indicates the modal peak, 'v2' and 'v3' are its neighbours 
(versions 2 and 3). 
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2D transition moments were computed for the  LP7 1T B mode using the three different fixed 

values for   : 'm' (mode) and 'v2' (version 2) and 'v3' (version 3) as labelled in Figure 40. The quality 

of first transition moment signals is reduced as the    value is changed from the mode to v2 to v3. 

This is appreciable in Figures 41, 42 and 43 which depict the transition moments for the three 

cases. Interestingly, this is an opposite trend to that observed for the LP7 1T A mode analysis.  

The 2D Fokker-Planck coefficients method was only applied to the highest quality case shown in 

Figure 41. An initial guess of   = -800 s-1 was used for the extrapolation optimisations of all 

transition moment signals. This resulted in good extrapolation fits for all signals. In Figure 41 it can 

be seen that limit to zero extrapolations of the transition moments using compound exponential 

functions agree well with expected Fokker-Planck coefficient values based on Lorentzian 

parameters.  

 

 

Figure 41: BKD LP7 1T B mode first   
   

 (plot on left) and second   
   

 (plot on right) transition moment computations for seven 

amplitudes of   for the modal value of   . The limits to zero of the   
   

 and   
   

 computations, given by the extrapolation fits 
shown in dotted lines, correspond to the drift and diffusion coefficients respectively. Small dots on the y-axes are the limits to 
zero obtained with extrapolations, while big dots are the expected values based on parameters found with Lorentzian fitting. 
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Figure 42: BKD LP7 1T B mode first   
   

 (plot on left) and second   
   

 (plot on right) transition moment computations for seven 

amplitudes of   for the modal (v2) value of   . The limits to zero of the   
   

 and   
   

 computations correspond to the drift and 
diffusion coefficients respectively. Small dots on the y-axes are the limits to zero obtained with extrapolations, while big dots are 

the expected values based on parameters found with Lorentzian fitting. 

 

Figure 43: BKD LP7 1T B mode first   
   

 (plot on left) and second   
   

 (plot on right) transition moment computations for seven 

amplitudes of   for the modal (v3) value of   . The limits to zero of the   
   

 and   
   

 computations correspond to the drift and 
diffusion coefficients respectively. Small dots on the y-axes are the limits to zero obtained with extrapolations, while big dots are 

the expected values based on parameters found with Lorentzian fitting. 
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A robust optimisation algorithm (independent of initial guesses) was implemented to extract the 

growth rate and noise intensity of the LP7 1T B mode for the considered case using the 2D Fokker-

Planck coefficients method. Results in good agreement with Lorentzian paremeters were obtained 

with both the 2D F.P.C. 1 and 2D F.P.C. 1 methods, as shown in Table 7. The 2D F.P.C. 1 method 

underpredicts the net damping rate and the noise intensity, while the 2D F.P.C. 2 method 

overpredicts both parameters with lesser errors. This constrasts the trend observed in the LP7 1T 

A mode analysis where the 2D F.P.C. 2 method undepredicted parameter values to a greater 

extent than the 2D F.P.C. 1 method. Hence the 2D Fokker-Planck coefficients method yielded 

accurate parameters for the LP7 1T B mode, albeit with error trends inconsistent with those 

obseved in the LP7 1T A mode analysis.  

Table 7: BKD LP7 1T B mode parameter extraction results from applying Lorentzian fits and two variants of the 2D Fokker-Planck 
coefficients method.  

Method 

 LP7 1T B mode analysis case and parameters 

   fixed to modal value 

      (Hz)    (1011 bar2 s- 3) 

Lorentzian -338 6.75 

2D F.P.C. 1 
-283 

[error: 16%] 
5.45 

[error: 19%] 

2D F.P.C. 2 
-364 

[error: 8%] 
7.70 

[error: 14%] 
 

5.5 Stable Load Point LP7 Simplified Model Analysis  

This section analyses the applicability of the simplified 2D dynamical model to the LP7 1T mode. 

The simplified model assumes that       and       , and that the phase difference   is 

characterised by potential wells at    
 

 
.  Since the LP7 1T mode is linearly stable, the effect of 

the non-linear condition       is negligible. The condition        was found to be true in the 

noise intensity results obtained using both Lorentzian and Fokker-Planck coefficients methods.  

Phase difference accumulation at potential wells of    
 

 
 is the third assumption behind the 2D 

simplified model. However, since   only appears in the non-linear terms of the 2D dynamical 

equations, its effect is negligible. A PDF of   for the LP7 1T mode is shown in Figure 44, where it 

can be seen that the statistical distribution of   is uniform. This indicates that there is no coupling 

between the 1T A and B modes. Their dynamics are independent such that any value of the phase 

difference between them is equally likely to occur. This observation supports the implications 

from the 2D dynamical equations that coupling between the A and B modes only occurs at non-

linear conditions, and that the A and B modes are independent at linear amplitudes. 
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Figure 44: BKD LP7 1T mode PDF of phase difference between A and B modes.  

 

If the non-linear terms of the 2D PDF equation (Eq. (42) in section 2.4.9) are removed, what is left 

is a superposition of the 1D amplitude PDF equation (Eq. (15) in section 2.4.5) for each of the A 

and B modes. A plot of the analytical 2D PDF using the linear terms of Eq. (42) with the parameters 

extracted from Lorentzian fitting is shown in Figure 45 alongside the experimental 2D PDF. A good 

match can be observed between the analytical and experimental PDFs; this is a strong indication 

that the assumed 2D linear dynamics are correct, and that        is an appropriate 

simplification.  
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Figure 45: BKD LP7 1T mode comparison between the experimental and analytical       . On the left, the experimental 2D PDF 
of the 1T mode amplitudes   and  . On the right, the analytical expectation based on the 2D Fokker Planck stationary PDF 

expression using parameters found with Lorentzian fitting. An amplitude resolution of 25  bins was used to make the contour 
plots, which consist of 12 contour levels where the maximum contour is 0.95 times the maximum experimental PDF value.  

 

5.6 Unstable Load Point LP4 1T Frequency Analysis and Reconstruction 

This section analyses the PSD of the LP4 1T mode to establish its modal frequency, and also 

presents its modal reconstruction results. The averaged PSD (over all 8 sensors) of the LP4 1T 

mode is shown in Figure 46. Two dominant peaks at 10257 Hz and 10262 Hz are present in this 

PSD which is taken over the entire load point run time (23 to 25 s). The two peaks can be 

attributed to a natural frequency shift of the 1T mode caused by small changes in operating 

conditions during the experimental run. This shift can be seen in the PSDs of Figure 47 and Figure 

48 which are taken for two different time segments: 23 to 24 s and 24 s to 25 s respectively. 

Hence, the natural frequency       can be taken to be the average of the two peaks at 10260 Hz.  

Comparisons between the experimental and the reconstructed PSDs at the DYN7 and DYN1 

sensors are shown in Figure 49 and Figure 50 respectively. Good agreements between the 

experiment and reconstruction can be seen for both sensors, with a more precise agreement for 

DYN7 where the acoustic pressure signal is stronger.  
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Figure 46: BKD LP4 1T mode averaged PSD for the entire run time (23 to 25 s).  

 

 

Figure 47: BKD LP4 1T mode averaged PSD for the 23 to 24 s run time segment.   
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Figure 48: BKD LP4 1T mode averaged PSD for the 24 to 25 s run time segment.  

 

 

Figure 49: BKD LP4 1T mode experimental and reconstructed PSDs for the DYN7 sensor. 
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Figure 50: BKD LP4 1T mode experimental and reconstructed PSDs for the DYN1 sensor. 

The reconstruction of the LP4 1T mode using two standing modes A and B provides an indication 

of the relative strength of instability at different 1T mode orientations.  The mean and maximum 

values of the A and B amplitude envelopes are presented in Table 8. It can be seen that the LP4 1T 

A mode is significantly stronger than the B mode.  

Table 8: BKD LP4 1T amplitude envelope mean and maximum values for the A and B modes.  

LP4 1T amplitude envelope mean and maximum 

A mode B mode 

mean( ) 
(bar) 

max( ) 
(bar) 

mean( ) 
(bar) 

max( ) 
(bar) 

3.00 4.75 1.23 3.09 

5.7 Unstable Load Point LP4 Simplified Model Analysis 

This section analyses the applicability of the simplified 2D dynamical model to the LP4 1T mode. 

The normalised phase difference potential          
  

  
 given by Eq. (38) in section 2.4.9 is 

plotted vs   in Figure 51 for the entire run time of the LP4 1T mode. Each dot in this plot 

represents a normalised phase potential for a given  ,   and   at a given point in time. The 

average of these potential values over the run time is -1.8 bar2 . This is a weak negative value 

compared to potential well depths at    
 

 
 of approximately -20 bar2, which suggests that   is 

accumulating in potential wells only weakly. The PDF of   over the run time is shown in Figure 52 

at a high resolution. A thin peak close to    
 

 
 is the modal peak, but the overall PDF shape is 

bimodal with mound centres shifted from the theoretical potential wells at    
 

 
. The higher 
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occurrence and lesser shift at    
 

 
  compared to    

 

 
 may be explained by deeper 

potential wells at    
 

 
 as shown in Figure 51. The applicability of the 2D simplified model to 

the LP4 1T mode is ultimately unclear, and requires further investigation than that in this work. 

 

Figure 51: BKD LP4 1T mode normalised phase difference potential for entire run time (23 to 25 s).  

 

Figure 52: BKD LP4 1T mode PDF of phase difference between A and B modes.  
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5.8 Summary of Results for Test Case 2 

The growth rate and noise intensity of the linearly stable LP7 1T A and B modes were successfully 

extracted using the 2D Fokker-Planck coefficients method.  The 2D linear dynamics assumed were 

found to be precise, however the applicability of the 2D simplified model to the unstable LP4 1T 

mode was found to be unclear. Good quality Lorentzian fits which match the PSDs of the 

reconstructed LP7 1T A and B modes were used to find their growth rates and noise intensities. 

These were also extracted with two variants of the 2D Fokker-Planck coefficients method 

consisting of either using the second transition moment to estimate the noise intensity (2D F.P.C. 

1 method) or of using the first transition moment to estimate both the noise intensity and the 

growth rate (2D F.P.C. 2 method). Generally, the 2D Fokker-Planck coefficients underpredicted the 

net damping rate and the noise intensity with respect to the Lorentzian parameters. The best 

result for the LP7 1T A mode has an error of 22% for   and 11% for    using the 2D F.P.C. 1 

method, while the best result for the 1T B mode has an error of 8% for    and 14% for    using the 

2D F.P.C. 2 method. The compound exponential extrapolation used in BKH data analyses was 

applied to these BKD LP7 analyses with similarly good results.  

A uniform PDF was observed for the phase difference   between the LP7 1T A and B modes which 

indicates their dynamical independence in the absence of non-linear coupling. A good agreement 

was found between the linear terms of the simplified model 2D PDF with Lorentzian parameters 

and the experimental 2D PDF of the LP7 1T mode. This provides a strong indication that the 

assumed linear dynamics for the LP7 1T mode are correct, and        is an appropriate 

simplification.  

Strong directionality was observed in the LP4 1T mode instability, where the A mode is clearly 

stronger than the B mode. This highlights the importance of allowing for different growth rate 

values,    and   , in the dynamical modelling.  A higher growth rate for the A mode than for the B 

mode is the only way of accounting for the stronger A mode signal provided that the non-linearity 

coefficient is not strongly directional.  

A bimodal PDF was observed for the phase difference   between the LP4 1T A and B modes. This 

is indicative of significant coupling between the A and B modes at non-linear conditions, as would 

be predicted by the assumed 2D dynamical equations. The theoretical phase difference potential 

has wells at     
 

 
 which help to explain the bimodal   PDF. Deeper potential wells at    

 

 
 

than at    
 

 
 may account for the dominance of the former in the bimodal   PDF. However, 

the modal mounds in this PDF are not precisely centred at    
 

 
, instead a shift to lower phase 

difference values can be observed in Figure 52. Hence the applicability of the 2D simplified model, 

which assumes characteristic phase differences at    
 

 
, to the LP4 1T mode is unclear and 

requires further investigation. Nonetheless, the concept of non-linear A and B mode coupling at 

characteristic phase differences of     
 

 
  helps to explain the phase difference statistics 

observed for the unstable LP4 1T mode.  
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6. Conclusions 

The aim of extracting key parameters governing thermo-acoustic behaviour in rocket combustors 

using stochastic signal processing techniques was achieved for four stable rectangular combustor 

load points and one stable cylindrical combustor load point. Significant progress was made 

analysing an unstable cylindrical combustor load point. Results supported important dynamical 

concepts assumed in the formulation of the techniques. The techniques are based on modelling 

statistics of the acoustic pressure time series of a combustor mode using the Fokker-Planck 

equation. Two formulations of the stochastic techniques were tested on rocket combustor data. A 

1D dynamics formulation was applied to data from a rectangular combustor with standing acoustic 

modes, and a 2D dynamics formulation was applied to data from a cylindrical combustor with 

rotational acoustic modes.  

The 1D Fokker-Planck coefficients method was applied to the first longitudinal (1L) and first 

transverse (1T) modes of BKH, a rectangular rocket combustor that is naturally stable. Four 

different BKH load points were considered with variations in the chamber pressure and the 

injection velocity ratio (VR). The Fokker-Planck coefficients method yielded growth rates and noise 

intensities for the 1L and 1T modes of these load points with acceptable random errors for all 

cases. The best result was obtained for the BKH 1L mode with a supercritical chamber pressure of 

60 bar and a low VR ratio of 7.6. In this case, small errors of 0.3% for the growth rate   and 4.9% 

for the noise intensity   were found with respect to the parameters obtained with Lorentzian 

fitting. The good agreements found between Lorentzian fitting and the 1D Fokker-Planck 

coefficients method to extract parameters from BKH load points are a validation of the latter 

method, at linear conditions, for the first time in rocket engine literature.  

The 2D Fokker-Planck coefficients method was applied to a stable first tangential (1T) mode of 

BKD; a cylindrical rocket combustor with an unstable 1T mode at some load points. The stable 1T 

mode of the considered load point; dubbed 'LP7', was decomposed into two standing modes 'A' 

and 'B' with orthogonal orientations to each other. The superposition of these two standing 

modes, with a phase difference   between them to describe their temporal relationship, 

represent the BKD 1T mode which can exhibit rotational behaviour in the cylindrical combustion 

chamber. Lorentzian fits to the acoustic pressure PSDs of the LP7 1T A and B modes were used to 

find their growth rates   and    and noise intensities    and   .  

The 2D Fokker-Planck coefficients method was applied to the LP7 1T A and B modes to extract 

  ,   ,    and    from the A and B acoustic pressure time series. Data analyses for each mode 

focused on primary variable variations by fixing the secondary variable in the 2D coefficient 

expressions. This allowed a detailed observation of transition moment signals. A compound 

exponential function not found in existing literature, given by Eq. (42) in section 4.3, was used for 

extrapolating the limit to zero of transition moments for both the BKH analyses and this BKD LP7 

analysis with good results. The best result was obtained for the LP7 1T B mode where the 2D 

Fokker-Planck coefficients method yielded    and    values with errors of 8% and 14% compared 

to Lorentzian parameters. Since Noiray and Schuermans (PRSA 2013) do not present a linear case 
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with Lorentzian fitting or an unstable case with active control, the linear LP7 1T mode analysis 

presented in this work is the first experimental validation of the 2D Fokker-Planck coefficients 

method in general literature. 

The BKH and BKD linear load point analyses investigated the effects of data processing parameters 

on the Fokker-Planck coefficients method. A band-pass filter analysis was carried out for the BKH 

LH2 1L mode, where significant errors in the estimated parameters arose when the band-pass 

width was reduced symmetrically around the peak frequency to   2   . At this band-pass width, 

an error of 13% was found for the growth rate and of 32% for the noise intensity compared to 

Lorentzian parameters. Asymmetric expansion of the band-pass width did not improve results. 

Hence a symmetric band-pass width of at least   2    is considered appropriate.  

The BKD LP7 1T A and B modes featured weak neighbouring modes outside the   2    region of 

their Lorentzian profiles. These were included in the LP7 1T mode analysis, and accurate 

parameter values were obtained with the 2D Fokker-Planck coefficients method. This suggests 

that weak neighbouring modes removed from the peak frequency do not greatly impact transition 

moment computations.  

The BKD LP7 1T mode analysis also showed that 2D transition moment signals are sensitive to the 

amplitude bin resolution. Relatively coarse resolutions of 20 and 40 bins were used for the LP7 1T 

A and B mode analyses, compared to the 100 bins used for 1D BKH analyses. High resolutions 

reduce signal quality for the LP7 transition moments, presumably due to a reduction in statistical 

counts which are already diminished for the analysis of a 2D data set compared to a 1D set. Band-

pass filtering and amplitude bin resolution were therefore shown to affect results significantly in 

this work.  

The A and B mode decomposition of an unstable BKD 1T mode for a load point 'LP4' provided 

important insights into BKD 1T mode instability through a comparison with the LP7 1T mode. The 

LP7 1T mode has a uniform PDF for the phase difference    between the A and B modes which can 

be attributed to their dynamical independence at linear conditions. An analytical 2D PDF for the A 

and B amplitudes, which assumes non-coupled linear dynamics and that       , well matches 

the LP7 experimental 2D PDF if Lorentzian parameters are fed into it (with an averaging of    and 

  ). This is a strong indication that the dynamics of the LP7 1T A and B modes are linear, driven by 

isotropic stochastic forcing, and independent from each other. Unlike the stable LP7 1T mode, the 

unstable LP4 1T mode has a bimodal   PDF which indicates non-linear coupling between the A 

and B modes.  

From the assumed 2D dynamics, the phase difference has potential wells at    
 

 
 where   

would theoretically accumulate. While a thin peak in the LP4 1T mode   PDF, shown in Figure 52, 

closely corresponds to    
 

 
, the mound centres in the bimodal PDF are shifted away from 

   
 

 
. These shifts could be partly caused by strong stochastic forcing that does not allow   to 

settle in potential wells. A lesser shift and greater occurrence at    
 

 
 than at    

 

 
 can be 
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explained by deeper potential wells at    
 

 
 as shown in Figure 51. Hence the observed   

statistics for the unstable LP4 1T mode can be explained with the assumed 2D dynamics, which 

account for non-linear coupling between the A and B modes.  

If phase difference dynamics are simplified to two characteristic values at    
 

 
, a simplified 2D 

dynamical model can be obtained and an analytical 2D PDF derived with the additional 

assumptions that        and      . An analytical 2D PDF would be useful in an unstable case 

analysis. It would generate a simulated 2D PDF, fed with parameters obtained using the 2D 

Fokker-Planck coefficients method, which can be compared to the experimental 2D PDF to assess 

the accuracy of the estimated parameters. However, since the PDF of   of the LP4 1T mode shows 

phase shifts away from    
 

 
 the applicability of the 2D simplified model to an unstable BKD 1T 

mode is unclear and requires further investigation.  

The A and B mode decomposition of the LP4 1T mode provided insight into the directionality of 

BKD 1T mode instability. The LP4 1T A mode was found to be significantly stronger than the B 

mode, with a mean amplitude envelope 2.4 times that of the B mode. This directionality 

demonstrates the need of having different A and B growth rates in the assumed dynamics, that is 

       generally.  

In summary, the three objectives set out in section 0 in pursuit of the aim of this work; to extract 

key parameters governing thermo-acoustic behaviour in rocket combustors using stochastic signal 

processing techniques, were achieved. The 1D Fokker-Planck coefficients method was applied to 

the stable 1L and 1T modes of multiple BKH load points. The extracted growth rates and noise 

intensities compared well with Lorentzian fitting results. Similarly, the 2D Fokker-Planck 

coefficients method was applied to a stable BKD 1T mode with parameter extraction results in 

good agreement with those from Lorentzian fitting. These BKH and BKD linear load point analyses 

fulfilled objectives 1 and 2 as set out in section 0. While the 2D Fokker-Planck coefficients method 

was not applied to an unstable BKD 1T mode in this work, significant analyses were carried out for 

the unstable LP4 1T mode which support underlying concepts in the assumed 2D dynamics. A 

bimodal PDF for the phase difference    between the A and B modes was observed for the LP4 1T 

mode, which can be explained using a theoretical   potential which has potential wells at    
 

 
 

based on the assumed dynamics. The bimodal   PDF of the unstable LP4 1T mode constrasts the 

uniform   PDF of the stable LP7 1T mode, which supports the assumption that coupling between 

the A and B modes only occurs at non-linear amplitudes. This phase difference analysis of the 

unstable LP4 1T mode fulfilled objective 3 as set out in section 0. Therefore, the three main 

objectives of this work were achieved. These established the applicability of the Fokker-Planck 

coefficients parameter extraction method to stable rocket combustor load points, and provided 

positive indications of the method’s applicability to rocket combustion instability.  
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7. Future Work 

Future work to further fulfill the aim of extracting parameters from time series data using 

stochastic signal processing techniques should focus on non-linear BKD data analyses.  

Firstly, the discrepancy in the bimodal PDF of the phase difference   between the unstable BKD 

LP4 1T A and B modes from expected accumulations at    
 

 
 should be addressed. If phase 

difference dynamics are simplified to two characteristic values at    
 

 
, a simplified 2D 

dynamical model can be obtained and an analytical 2D PDF derived with the additional 

assumptions that        and      . An analytical 2D PDF would be useful in an unstable case 

analysis. It would generate a simulated 2D PDF, fed with parameters obtained using the 2D 

Fokker-Planck coefficients method, which can be compared to the experimental 2D PDF to assess 

the accuracy of the estimated parameters. However, since the PDF of   of the LP4 1T mode shows 

phase shifts away from    
 

 
 the applicability of the 2D simplified model to an unstable BKD 1T 

mode is unclear and requires further investigation.  

A future step would be to apply the 2D Fokker-Planck coefficients method to the unstable BKD LP4 

1T mode. Since non-linear results cannot be checked with a Lorentzian fit, synthetic signals 

representing instability would provide a valuable test of non-linear parameter extractions where 

the correct answers are known.  

Synthetic signals could be generated with a Simulink model of the assumed 2D dynamics. This 

would also allow the simulation of a 2D PDF using non-simplified dynamics. For analyses of 

unstable BKD data, the experimental 2D PDF could be compared to a numerical 2D PDF generated 

with Simulink, and to an analytical 2D PDF based on simplified dynamics. This would also serve as 

an assessment of the applicability of the 2D simplified model to an unstable BKD 1T mode. 

Therefore, while significant outcomes have been achieved in this work, there is a clear and 

important body of future work to be carried out for non-linear conditions, where the stochastic 

signal processing techniques are of practical utility.  
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Appendix A 

This appendix is comprised of two sections A1 and A2 which provide details on Lorentzian profile 

theory and noise intensity theory respectively.  

A1 - Lorentzian Profile Theory 

This section presents the theory behind the use of Lorentzian fits for parameter extraction from 

experimental PSDs. This consists of the approximation of the natural frequency    using the 

experimental peak frequency, and the approximation of Eq. (3) in section 2.4.1 with the Lorentzian 

profile of Eq. (4).  

The natural frequency of a system is the frequency at which it oscillates without damping or 

driving. For a damped-driven harmonic oscillator with time-dependent variable      driven by a 

sinusoidal driving force             the dynamics are given by Eq. (A1): 

      

   
     

     

  
    

                    (A1) 

where    is the natural frequency,   is the driving frequency and   is the damping ratio. In the 

case of the thermo-acoustic dynamics of Eq. (1),          where   is the growth rate (with a 

negative value for linearly stable dynamics).  

The resonant frequency, which is the peak frequency in a white noise driven spectrum, of the 

dynamics in Eq. (A1) is given by Eq. (A2): 

               (A2) 

where      is the resonance frequency.  

Hence for   <<     the damping ratio   is sufficiently small such that           .  

The response of the system in Eq. (A1) to forcing is given by Eq. (A3) and Eq. (A4).  

                     (A3) 
where    is the amplitude response and   is the phase.  

    
   

    
            

 
(A4) 

The expression for   
  (since the PSD in Eq. (3) consists of squaring the signal) can be 

approximated by a Lorentzian equation as written in Eq. (A5).  

  
  

   
 

   
            

    
  

          
 (A5) 

where M is the maximum of the Lorentzian profile.  

The approximation in Eq. (A5) can be derived by simplifying   
     as written in Eq. (A6) : 

  
                                          (A6) 
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where         and must be relatively small compared to  . 

The approximation condition in Eq. (A6) of         being relatively small for the considered 

frequencies   (i.e. the frequencies with a significant response around the modal resonance peak) 

occurs when   <<    .  Hence, when the modal resonance profile is relatively 'thin' compared to 

the value of its peak frequency, the discussed approximations apply.  

A2 - Noise Intensity Theory 

This section presents the theoretical definition of the noise intensity, and explains its extraction 

from experimental PSDs using a Lorentzian fit. The modelling by Noiray and Schuermans (IJNLM 

2013) assumes that the stochastic heat release    is delta-correlated as according to Eq. (A7): 

                            (A7) 
where       is the autocorrelation of   for a time shift   (the mean of the time series multiplication 

of      and       ),      is the Dirac-delta function of  , and   is the noise intensity representing 

the 'strength' of the delta autocorrelation.  

The generic Dirac-delta function      is a spike defined by           and          , and 

has an area of unity such that       
 

  
    . The units of the Dirac-delta function are the 

inverse of those of its argument; in this case 1/s. The 'strength'   of a scaled Dirac-delta function 

      represents the area of the function since         
 

  
    .  

In reality,   is quasi delta-correlated and not perfectly thin nor infinite. The area covered by       is 

its noise intensity  ; as is intuitively obvious, a greater noise level raises the       profile.  

From Eq. (A7), the PSD of   can be derived using the autocorrelation definition of a two-sided PSD 

given by Eq. (A8).  

         
 

 
                 

 

 

     (A8) 

Since       is only valued at     where            , and the integration is for positive   only, 

the integration results in half of the area of      . Accordingly, the PSD of    is written in Eq. (A9) 

for radians and in Eq. (A10) for Hertz. These relations show that delta correlation   white noise.  

         
 

  
  (A9) 

            (A10) 

Hence, the noise intensity   can be thought of as the constant PSD height of the stochastic heat 

release driving; analogous to the driving force in Eq. (A5). Accordingly, in this work,   was 

extracted from the maximum   of a Lorentzian profile fitted onto an experimental one-sided PSD 

          (twice the two-sided PSD:                      ) using the relation of Eq. (A11), which is 

based on the approximation of Eq. (A5). 

         
     

            (A11) 
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Appendix B 

This appendix is comprised of two sections B1 and B2 providing details of the data processing 

during experiments, and of the data post-processing in the application of parameter extraction 

methods.  

B1 - Experimental Data Processing 

For both BKH and BKD experiments, the dynamic pressure signals were obtained with quartz 

cylinder pressure probes of the Kistler model 6043A60 at a 100 kHz sampling rate and with a ± 

0.04 bar uncertainty.  

The data was passed through a charge amplifier (Kistler model 5011B) with a 30 kHz low-pass filter 

for anti-aliasing. This uses a second-order Butterworth filter. This type of filter maximises the 

flatness of the amplitude response, and in this case it ensures a flat amplitude response in the 

frequency range of interest (<11 kHz). The phase response of a standard second-order low-pass 

filter is given by Eq. (B1): 

             
 

 
  

 

  
               

 

 
  

 

  
         (B1) 

where      is the phase response,    is the cut-off frequency (in this case 30 kHz) and α is the 

damping ratio (equal to the inverse of the quality factor). For a Butterworth filter,   = 1.414.  

The ideal phase response of a filter is a linear function with a negative slope, which ensures that 

the signal is not distorted in the time domain. Although Eq. (B1) is not a linear function, for the 

frequency range up to 
 

  
 = 1 and with   = 1.414 Eq. (B1) closely approximates a linear function as 

shown in Figure 53.  Hence, non-ideal phase effects in the experimental data are minimal.  

 

Figure 53: Phase response of second-order Butterworth low-pass filter until the cut-off frequency.  
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B2 - Experimental Data Post-processing 

The experimental data was post-processed to generate PSDs and filtered time series. The PSDs 

were all generated using Hanning windows without overlap. The frequency resolution for the BKH 

acoustic pressure PSDs is 1 Hz, and that for the acoustic pressure PSDs of the BKD LP7 A and B 

modes is 6 Hz. These resolutions are sufficiently fine such that bias errors in the Lorentzian PSD 

profiles are negligible.  

The normalised bias error    of an estimator    for a variable   is given by Eq. (B2): 

   
     

 
  

     

 
    (B2) 

where       is the expected value of the estimator (its mean value, independent of random error). 

A Lorentzian PSD profile is flattened at its peak and raised at its skirts due to discrete frequency 

bands that average mean square values over their range. With a coarser frequency resolution, the 

Lorentzian peak is flattened due to the decaying spectrum around the peak, while the Lorentzian 

skirts are raised due the Lorentzian profile rising closer to its peak more strongly than decaying 

away from it. The normalised Lorentzian bias error is given by Eq. (B3) (Bendat & Piersol, 2010): 

    
 

 
 
  
  
 
 

 (B3) 

where    is the bandwidth (frequency resolution), and    is the full-width half-maximum of the 

Lorentzian profile (two times its net damping rate). 

The 
  

  
 ratio for the considered Lorentzian profiles in this work is highest for the BKD LP7 A mode, 

where 
  

  
 = 0.019, which makes the bias error negligible at    = -0.012 %. Hence, in this work, 

parameter extraction using Lorentzian fits is not influenced by bias error.  

The frequency resolution of the PSDs of acoustic amplitude envelope and envelope fluctuation 

was increased until the PSDs were well-resolved and their profiles did not observably change with 

increasing resolution. Formal analyses of their bias errors is not presented since these PSDs were 

not for parameter extraction, but simply for qualitative comparison with expected profiles.  

The presence of random error in the PSDs is attributable to the highly turbulent rocket flames 

which cause the driving white noise spectrum to have significant fluctuations instead of being 

smoothly flat. However, since Lorentzian fits were applied to a relatively wide frequency range 

(compared to the frequency resolution of PSDs) the effect of this random error on fit quality is 

assumed to be negligible.  

To produce the filtered time series for data analysis with the Fokker-Planck coefficients method, 

an inbuilt Matlab function 'idealfilter' was used. This post-processing function is an ideal filter with 

no amplitude attenuation nor signal distortion.  
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Appendix C 

This appendix is comprised of three sections C1, C2 and C3 providing details of the BKH data 

analyses. The first section shows the selections of the time series for the 1L, 1T and 1L1T modes of 

the BKH load points from experimental spectrograms, the second presents the Lorentzian fits to 

these BKH acoustic modes, and the third presents the transition moments and associated 

extrapolations for the 1L and 1T modes.  

C1 - Selection of Times Series for BKH Load Points 

The time series selections for the four BKH load points are shown in Figures 54 to 57. The time 

series are selected such that external driving effects from the secondary nozzle, which are present 

in the experimental runs, are avoided.  

 

 

Figure 54: BKH GH2 60 bar time series selections for the 1L, 1T and 1L1T modes from the spectrogram of the PCCdyn2 sensor 
during an experimental run. The frequency of the secondary nozzle driving is linearly ramped during the experiment. The time 
series for the modes were selected to avoid external driving effects. Low frequency chugging can be observed at the bottom of 

the spectrogram.   

.   
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Figure 55: BKH GH2 40 bar time series selections for the 1L, 1T and 1L1T modes from the spectrogram of the PCCdyn2 sensor 
during an experimental run. The frequency of the secondary nozzle driving is linearly ramped during the experiment. The time 

series for the modes were selected to avoid external driving effects. 

 

Figure 56: BKH LH2 60 bar time series selections for the 1L, 1T and 1L1T modes from the spectrogram of the PCCdyn2 sensor 
during an experimental run. The frequency of the secondary nozzle driving is linearly ramped during the experiment. The time 

series for the modes were selected to avoid external driving effects. 
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Figure 57: BKH LH2 40 bar time series selections for the 1L, 1T and 1L1T modes from the spectrogram of the PCCdyn2 sensor 
during an experimental run. The frequency of the secondary nozzle driving is linearly ramped during the experiment. The time 

series for the modes were selected to avoid external driving effects. 

 

C2 - Lorentzian Fits to BKH Acoustic Modes 

The Lorentzian fits to the 1L, 1T and 1L1T modes of the four BKH load points are shown in Figures 

58 to 69. An optimisation algorithm which minimises the least squares error was used to fit the 

Lorentzian profile onto the experimental PSDs. It can be seen that the Lorentzian profiles for the 

1L1T mode have a reduced frequency range compared to the 1L and 1T modes, and hence the 

stochastic signal processing techniques were not applied to 1L1T mode data. The PSDs are all one-

sided and have a frequency resolution of 1 Hz.  

Strong noise forcing can make non-linear effects significant in a stable mode. However, since a 

clear Lorentzian fit was obtained for the GH2 60 bar 1L mode, which has the highest noise 

intensity of all the BKH modes studied in this work, the BKH load points studied in this work are 

considered to have linearly stable modes since a Lorentzian profile occurs only at linear conditions.  
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Figure 58: BKH GH2 60 bar 1L mode Lorentzian fit. 

 

 

Figure 59: BKH GH2 60 bar 1T mode Lorentzian fit.  
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Figure 60: BKH GH2 60 bar 1L1T mode Lorentzian fit. 

 

 

Figure 61: BKH GH2 40 bar 1L mode Lorentzian fit. 
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Figure 62: BKH GH2 40 bar 1T mode Lorentzian fit.  

 

 

Figure 63: BKH GH2 40 bar 1L1T mode Lorentzian fit. 
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Figure 64: BKH LH2 60 bar 1L mode Lorentzian fit. 

 

 

Figure 65: BKH LH2 60 bar 1T mode Lorentzian fit. 
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Figure 66: BKH LH2 60 bar 1L1T mode Lorentzian fit.  

 

 

Figure 67: BKH LH2 40 bar 1L mode Lorentzian fit.  
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Figure 68: BKH LH2 40 bar 1T mode Lorentzian fit.  

 

 

Figure 69: BKH LH2 40 bar 1L1T mode Lorentzian fit.  
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C3 - Extrapolation of Transition Moments for BKH 1L and 1T Modes 

The extrapolation coefficients used for the transition moments of the BKH 1L and 1T modes are 

specified in Table 9, and the extrapolations of transition moments are shown in Figures 70 to 77.  

Table 9: Extrapolation coefficients for the first and second transition moments of the 1L and 1T modes of the four BKH load 
points. 

BKH load  
point 

Extrapolation coefficient    (s-1) for each amplitude percentile 

10th 20th 30th 40th 50th 60h 70th 80th 

GH2, 60 bar         

1L   
   

 -89.5 -94.8 -160 -91.0 -93.6 -93.6 -93.6 -94.8 

1L   
   

 -96.9 -91.0 -87.9 -89.5 -94.8 -97.9 -95.9 -97.9 

1T   
   

 -104 -117 -102 -109 -111 -112 -115 N.A. 

1T   
   

 -111 -98.8 -101 -109 -114 -118 -121 N.A. 

GH2, 40 bar         

1L   
   

 -92.4 -97.4 -203 -93.6 -96.9 -96.9 -96.9 -99.7 

1L   
   

 -99.1 -89.5 -91.0 -93.6 -96.9 -99.7 -104 -107 

1T   
   

 -103 -112 -100 -106 -109 -110 -112 N.A. 

1T   
   

 -113 -104 -100 -104 -109 -114 -116 N.A. 

LH2, 60 bar        N.A. 

1L   
   

 -73.0 -73.0 -89.5 -73.0 -73.0 -73.0 -73.0 N.A. 

1L   
   

 -73.0 -73.0 -91.0 -93.6 -73.0 -73.0 -73.0 N.A. 

1T   
   

 -73.0 -73.0 -91.0 -73.0 -73.0 -73.0 -73.0 N.A. 

1T   
   

 -73.0 -73.0 -92.4 -73.0 -73.0 -73.0 -73.0 N.A. 

LH2, 40 bar        N.A. 

1L   
   

 -73.0 -73.0 -73.0 -73.0 -73.0 -73.0 -73.0 N.A. 

1L   
   

 -73.0 -73.0 -73.0 -73.0 -73.0 -73.0 -73.0 N.A. 

1T   
   

 -73.0 -73.0 -73.0 -73.0 -73.0 -73.0 -73.0 N.A. 

1T   
   

 -73.0 -73.0 -73.0 -73.0 -73.0 -73.0 -73.0 N.A. 

 

 

 

 

 

 

 

 

 



80 
 

 

Figure 70: BKH GH2 60 bar 1L mode transition moments and extrapolations. Small dots on the y-axis are the limits to zero of the 
transition moments obtained with extrapolations, while big dots are the expected values based on parameters found with 

Lorentzian fitting. 

 

 

Figure 71: BKH GH2 60 bar 1T mode transition moments and extrapolations. Small dots on the y-axis are the limits to zero of the 
transition moments obtained with extrapolations, while big dots are the expected values based on parameters found with 

Lorentzian fitting. 
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Figure 72: BKH GH2 40 bar 1L mode transition moments and extrapolations. Small dots on the y-axis are the limits to zero of the 
transition moments obtained with extrapolations, while big dots are the expected values based on parameters found with 

Lorentzian fitting. 

 

 

Figure 73: BKH GH2 40 bar 1T mode transition moments and extrapolations. Small dots on the y-axis are the limits to zero of the 
transition moments obtained with extrapolations, while big dots are the expected values based on parameters found with 

Lorentzian fitting. 

 



82 
 

 

Figure 74: BKH LH2 60 bar 1L mode transition moments and extrapolations. Small dots on the y-axis are the limits to zero of the 
transition moments obtained with extrapolations, while big dots are the expected values based on parameters found with 

Lorentzian fitting. 

 

 

Figure 75: BKH LH2 60 bar 1T mode transition moments and extrapolations. Small dots on the y-axis are the limits to zero of the 
transition moments obtained with extrapolations, while big dots are the expected values based on parameters found with 

Lorentzian fitting. 
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Figure 76: BKH LH2 40 bar 1L mode transition moments and extrapolations. Small dots on the y-axis are the limits to zero of the 
transition moments obtained with extrapolations, while big dots are the expected values based on parameters found with 

Lorentzian fitting. 

 

 

Figure 77: BKH LH2 40 bar 1T mode transition moments and extrapolations. Small dots on the y-axis are the limits to zero of the 
transition moments obtained with extrapolations, while big dots are the expected values based on parameters found with 

Lorentzian fitting. 
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Appendix D 

This appendix is comprised of three sections D1, D2 and D3 providing details of the BKD data 

analyses. The first section provides the extrapolation coefficient   values used for BKD data 

analyses, the second and third sections D2 and D3 provide the resolution analyses for the BKD 1T 

A and B mode analyses respectively.  

D1 - Extrapolation Coefficient Values for BKD 1T Mode Analyses 

The extrapolation coefficient   values used for BKD 1T mode analyses are presented in Table 10.  

Table 10: Extrapolation coefficient   values used for BKD data analyses. 

BKD LP7 
analysis 

case 
Extrapolation coefficient   (s-1) for each amplitude 

1T A (1x20)  A1 A2 A3 A4 A5 A6 A7 

m         

  
   

 -550 -500 -500 -500 -771 -771 -771 

  
   

 -771 -771 -771 -771 -771 -771 -771 

v2         

  
   

 -550 -500 -500 -500 -236 -771 -771 

  
   

 -771 -771 -771 -771 -771 -771 -771 

v3         

  
   

 -550 -500 -500 -500 -104 -771 -771 

  
   

 -771 -771 -771 -771 -771 -771 -771 

1T B (2x20) B1 B2 B3 B4 B5 B6 B7 

m         

  
   

 -771 -771 -771 -771 -771 -771 -771 

  
   

 -771 -771 -771 -771 -771 -771 -771 

 

 

D2 - BKD 1T A Mode Resolution Analysis 

First and second transition moments were computed for the BKD 1T A mode using two bin 

resolutions of 1x20 and 2x20 bins. Since signal quality is visibly lower for 2x20 bins, the analysis 

focused on 1x20 bins. For the 1x20 bin resolution, three cases were considered consisting of fixing  

   to its exact modal value (m) or to two neighbouring values (v2 and v3) in the    histogram. The  

transition moment signals for the 1x20, 1x20 v2, 1x20 v3 and 2x20 bin resolution cases are shown 

in Figures 78, 79, 80 and 81.  
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Figure 78: BKD LP7 1T A mode transition moments for the modal (m) value of   . Bin resolution: 1x20.  

 

 

Figure 79: BKD LP7 1T A mode transition moments for the modal (v2) value of   . Bin resolution: 1x20.  
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Figure 80: BKD LP7 1T A mode transition moments for the modal (v3) value of   . Bin resolution: 1x20.  

 

 

Figure 81: BKD LP7 1T A mode transition moments for the modal (m) value of   . Bin resolution: 2x20.  
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D3 - BKD 1T B Mode Resolution Analysis 

First and second transition moments were computed for the BKD 1T B mode using four bin 

resolutions of 1x20, 2x20, 3x20 and 4x20 bins. Signal quality is visibly lesser for the 3x20 and 4x20 

bin resolutions than for the 1x20 and 2x20 bin resolutions if the exact modal value is used for 

fixing   . The analysis focused on a resolution of 2x20 bins since it is a higher resolution than 1x20 

bins and still has good signal quality. For the 2x20 bin resolution, three cases were considered 

consisting of fixing     to its exact modal value (m) or to two neighbouring values (v2 and v3) in the 

   histogram. The transition moment signals for the 1x20, 2x20, 2x20 v2, 2x20 v3, 3x20 and 4x20 

bin resolution cases are shown in Figures 82, 83, 84, 85, 86 and 87.   

 

 

 

 

Figure 82: BKD LP7 1T B mode transition moments for the modal (m) value of   . Bin resolution: 1x20. 
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Figure 83: BKD LP7 1T B mode transition moments for the modal (m) value of   . Bin resolution: 2x20. 

 

 

Figure 84: BKD LP7 1T B mode transition moments for the modal (v2) value of   . Bin resolution: 2x20. 
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Figure 85: BKD LP7 1T B mode transition moments for the modal (v3) value of   . Bin resolution: 2x20. 

 

 

Figure 86: BKD LP7 1T B mode transition moments for the modal (m) value of   . Bin resolution: 3x20. 
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Figure 87: BKD LP7 1T B mode transition moments for the modal (m) value of   . Bin resolution: 4x20. 
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