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Abstract
Elucidation of mechanisms underlying the increased androgen receptor (AR) activity and subsequent development of
aggressive prostate cancer (PrCa) is pivotal in developing new therapies. Using a systems biology approach, we interrogated
the AR-regulated proteome and identified PDZ binding kinase (PBK) as a novel AR-regulated protein that regulates full-
length AR and AR variants (ARVs) activity in PrCa. PBK overexpression in aggressive PrCa is associated with early
biochemical relapse and poor clinical outcome. In addition to its carboxy terminus ligand-binding domain, PBK directly
interacts with the amino terminus transactivation domain of the AR to stabilise it thereby leading to increased AR protein
expression observed in PrCa. Transcriptome sequencing revealed that PBK is a mediator of global AR signalling with key
roles in regulating tumour invasion and metastasis. PBK inhibition decreased growth of PrCa cell lines and clinical specimen
cultured ex vivo. We uncovered a novel interplay between AR and PBK that results in increased AR and ARVs expression
that executes AR-mediated growth and progression of PrCa, with implications for the development of PBK inhibitors for the
treatment of aggressive PrCa.

Introduction

Prostate cancer (PrCa) is a major cancer responsible for
male fatalities worldwide [1]. The growth and survival of
PrCa is driven by the male sex hormone androgens that act
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by binding to the androgen receptor (AR) [2, 3]. Conse-
quently, androgen-deprivation therapy (ADT) is used as a
first-line therapy for the treatment of locally advanced or
metastatic PrCa. ADT comprises; luteinizing hormone-
releasing hormone (LHRH) analogues that block androgen
production, anti-androgens such as bicalutamide and enza-
lutamide that antagonise androgen binding to the AR, and
abiraterone that inhibits the androgen biosynthesis pathway
[4, 5].

ADT is initially effective but resistance is common and
this leads to the development of aggressive incurable dis-
ease known as castration-resistant prostate cancer (CRPC)
[6]. CRPC is often driven by the reactivation of AR sig-
nalling through multiple molecular mechanisms, which
include amplification and gain-of-function mutations of the
AR gene, gain-of-function mutations in the androgen sig-
nalling pathway [7], and the emergence of constitutively
active AR splice forms known as AR variants (ARVs; e.g.,
ARV7). ARVs are devoid of the ligand-binding domain
(LBD) and thus such variants cannot be targeted by ADT
[8, 9]. Notably, the AR amino terminus domain (NTD) is
the prime driver of PrCa growth, thus making it a potential
drug target [10, 11].

In addition to direct changes to the AR, another
mechanism underlying CRPC growth is increased activity
and/or expression of AR co-activators [12–14]. Yet another
hallmark of AR signalling in PrCa is the integrated feed-
forward and feedback circuits that facilitate pro-growth
signalling as exemplified by the reciprocal positive feed-
back between AR and choline kinase alpha signalling [14,
15] and reciprocal negative feedback between AR and poly
ADP-Ribose polymerase-1 signalling [16]. Androgens can
also negatively regulate AR mRNA expression by recruit-
ment of AR to a repressive element in intron 2 of the AR
gene [17, 18]. Despite decreasing AR mRNA levels,
androgens promote AR stabilisation leading to overall
increase in AR protein expression. This example highlights
the critical need to analyse the androgen-regulated proteome
in order to characterise androgen-regulated changes at
protein level in PrCa.

In order to understand how AR is stabilised and pro-
motes PrCa growth, it is imperative to identify clinically
relevant AR targets, both up- and downstream of AR sig-
nalling. Here, we generated androgen-regulated proteome
data sets to comprehensively identify effectors of androgen
signalling and identified PDZ binding kinase (PBK) as an
AR-regulated factor in vitro and in vivo in PrCa that inte-
grates AR signalling with PrCa growth. In men with PrCa,
PBK is androgen-regulated and localised in the tumour cell
nucleus. PBK overexpression is associated with poor dis-
ease outcome and clinical progression. We further uncover
PBK interactome and identify a crucial reciprocal feedback
between PBK and AR, whereby PBK interacts with both the

NTD and LBD of AR to directly regulate the stability and
function of both full-length AR and ARVs. Inhibition of
PBK activity destabilises AR and decreases PrCa growth
and metastasis. These results provide novel insights into the
role of androgen-induced pathways in PrCa revealing PBK
as a key effector through which AR manifest its oncogenic
function in PrCa.

Results

Identification of PBK as a novel AR target in PrCa

Mass spectrometry identified the AR-regulated proteome of
the CRPC cells following AR knockdown using a pre-
validated set of four different siRNAs as used earlier [14] or
AR inhibition with the AR antagonist, bicalutamide. Sup-
porting the robustness of the data, a significant correlation
was found between proteins regulated by AR knockdown
and bicalutamide treatment (Pearson r2= 0.51). The protein
levels of known androgen-upregulated targets were down-
regulated by both AR knockdown and bicalutamide treat-
ment, whereas androgen-repressed proteins were
upregulated by both AR treatments (n= 514) (Fig. 1a and
Table S1).

A core set of 77 AR-regulated proteins common between
AR knockdown and bicalutamide treatment was identified
that showed consistent changes in the same direction,
including known AR-regulated targets such as FKBP5 and
FASN (Figure S1A and Table S2). This analysis also pro-
vided evidence that the vesicle transport protein NIPS-
NAP3A is an AR-repressed target. Among the factors in the
proteome data that were commonly downregulated by both
AR knockdown and bicalutamide treatment was PBK (Fig.
1a and Figure S1A). Supporting these findings, PBK tran-
script and protein levels decreased following AR knock-
down (Fig. 2b, Figures S1B and S5A) and AR-binding sites
were identified at the enhancer upstream of the PBK gene
(Figure S1C). PBK expression in situ was also androgen-
regulated in a series [19] of human prostate tissue com-
prising benign prostate tissues and PrCa samples from
untreated men (n= 20) or those treated with androgen
inhibitor degarelix (a LHRH agonist that blocks testicular
androgen synthesis) for 7 days (n= 27) (Fig. 1c). Nuclear
PBK staining was significantly higher in PrCa tissues
compared with benign control tissues from untreated men
((p < 0.0001) (Fig. 1c, d). Degarelix treatment decreased the
nuclear levels of PBK in the treated tumours compared with
untreated patients (p < 0.01), with 45% of degarelix-treated
cases having no detectable expression of PBK in compar-
ison to 15% of untreated cases. Overall, cytosolic PBK
levels were lower compared to nuclear levels in all tissues
tested, whereas there was no significant difference in
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cytosolic PBK levels between tumours or benign tissue or in
response to degarelix treatment (Figures S1D, S1E).

Taken together, these novel in vitro and in vivo data
reveal that PBK is an AR-regulated factor whose expression
is elevated in PrCa by androgen signalling. Given this
knowledge and the amenability of kinases as potential drug
targets, the role of PBK was further investigated in disease
relevant models of PrCa.

PBK overexpression identifies men with aggressive
PrCa

Given the increased nuclear PBK expression in high-risk
PrCa compared with benign prostate tissues (Fig. 1c),
expression of PBK was examined in three independent
clinical cohorts of men comprising benign, primary and

metastatic PrCa [20–22]. In metastatic PrCa, tissue PBK
transcript was upregulated in all three clinical cohorts when
compared with benign and primary tumours (p= 0.0002,
Grasso; [20] p= 4.3e-14, Taylor; [21] p= 6.3e-10, Var-
ambally [22]) (Fig. 2a). The causative role of PBK in
aggressive disease was supported by the recurrence-free
survival analyses of two independent cohorts of clinical
samples [21, 23], where PrCa patients with higher PBK
levels experienced early biochemical recurrence (p= 3.2e-
05 and p= 0.05) (Fig. 2b, c).

To further investigate the role of PBK in context of
aggressive PrCa, in situ PBK expression was evaluated in a
series of adjacent benign (n= 50) and metastatic PrCa (n=
50) tissues. Whereas PBK expression was low in benign
tissue, metastatic tissue had significant higher PBK
expression, which predominantly localised in the nucleus of
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Fig. 1 Identification of androgen-stabilised proteome in prostate can-
cer (PrCa). a Scatterplot showing the relationship between protein
levels following AR knockdown and AR antagonist treatment of C4-2
cells grown in full media. Red line shows lowess regression, red points
show commonly downregulated proteins, light blue points show
commonly upregulated proteins (cor= 0.51). PBK is shown in green.
b Western blot analysis showing of expression of PBK and AR pro-
teins. C4-2 cells were transiently transfected with small interfering (si)-
RNA targeting AR (siAR) or with non-targeting control siRNA
(siNT); β-actin is the loading control for AR and the Ponceau for PBK.

c Immunohistochemical staining score (H score) of nuclear PBK
protein expression in tumours (in triplicates) and untreated benign
adjacent epithelia (in duplicates) in patients with (n= 27) or without
(n= 20) 7 days’ treatment with the LHRH analogue degarelix, sta-
tistical significance calculated by Mann–Whitney test. d Representa-
tive IHC images of corresponding tissue samples from degarelix-
treated and untreated patients. Scale bars= 50 µm. H score ranged
from 0 to 9 and converted it to a 4-point scale as 0= none, 1–3=
weak; 4–6=moderate and 7–9= strong
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tumour cells (p= 6.4e-08) (Fig. 2d, e) consistent with
increased nuclear localisation observed in high-risk primary
PrCa (Fig. 1d). No difference was found in the levels of
cytosolic PBK in benign or metastatic PrCa epithelia.
Together, these results indicate that PBK is overexpressed
in aggressive PrCa and associates with biochemical recur-
rence. PBK is primarily nuclear in tumours, where its
expression is restricted to epithelia and is significantly
enhanced in CRPC compared with matched benign prostate
tissue.

PBK is an AR-stabilising factor that regulates AR
expression

PBK is known to be an important regulator of cellular
processes such as transcription and mitosis [24–26], but its
input in PrCa is illusive. To understand the role of PBK in
PrCa, we employed rapid immunoprecipitation mass spec-
trometry (RIME)-based targeted proteomics approach [27]
to identify interaction partners of PBK in PrCa globally. We
hypothesised that identifying such interacting factors could
provide insight into the function of PBK in PrCa. RIME
assay identified multiple unique PBK peptides, validating
the target enrichment and experimental robustness in C4-2
cells (Fig. 3a, b). Proteins co-precipitating with PBK
included mitochondrial factors (ATD3A, ATD3B, ATPB,

COX2, COX41, SCO1, SCO2, SDHA), members of the
histone protein family (H2A1A, H2A2C), which are known
to be phosphorylated by PBK [28], a number of proteins
involved in cancer metabolic pathways (ACSL3, ADT2,
ADT3, PGK1) and heat-shock protein family members
(HSP76, HSPB1) (Table S3).

Interestingly, the PBK interactome also identified AR,
providing potential evidence for a cross-talk between the
androgen and PBK signalling pathways and supported by
the co-immunoprecipitation (Co-IP) experiments further
validating the interaction between PBK and AR (Fig. 3c and
Figure S5B). To map the domain(s) of AR that interact with
PBK, we used GST pull-down assays (Fig. 3d), which
showed that PBK physically interacts with both the amino
terminus (ARNTD) and the ligand-binding domain (ARLBD)
of AR (Fig. 3e and Figure S5C).

Given their direct interaction, we tested the impact of
PBK inhibition either by PBK knockdown using a pre-
validated pool consisting of four different siRNAs targeting
distinct regions on the PBK mRNA or its chemical inhibi-
tion using HI-TOPK32 compound (PBKi) [29] as a proof-
of-principle. A significant knockdown of PBK was
observed in C4-2 cells transfected with a pool of four dif-
ferent siRNA targeting the PBK transcript (siPBK ON-
TARGET plus) (p= 0.000; over 90% decreased PBK
transcript abundance) or treated with PBKi (p= 8.24e-06)

Fig. 2 Clinical relevance of PDZ binding kinase (PBK) in PrCa. a
Boxplots show PBK transcript expression in prostate tissues in three
independent gene expression data sets [20–22]. Gene expression
values (log2) of PBK trancript are shown. b–c Kaplan–Meier survival
curve from recursive partitioning analysis. High levels of PBK tran-
script levels are associated with poor recurrence-free survival in the b

Taylor cohort [21] and c in Glinsky data set [23]. d Representative
IHC images of prostate samples from benign prostate glands and
hormone refractory (metastatic) tumour tissue. Scale bars= 50 µm. e–f
Corresponding Boxplot showing e nuclear and f cytosolic PBK protein
levels in metastatic tumours from PrCa patients (n= 50), and benign
specimen (n= 50) (p < 6.46e-06; Wilcoxon test for IHC)
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(Figures S2A, S2B). PBK inhibition reduced androgen
(R1881)-induced AR transcriptional activity approximately
40-fold (Fig. 3f). The extent of AR inhibition by PBKi was

comparable to enzalutamide (p < 0.001) and significantly
greater compared with bicalutamide.
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PBK knockdown also decreased the androgen-induced
transcriptional activity of full-length AR in the other CRPC
model cell line CWR-R1-AD1 (p < 0.05) (Figure S2C). As
we found the interaction of PBK with the NTD of AR in
addition to its LBD, we performed reporter assay in R1-
D567 cells, that harbour the ligand-independent ARv567es
variant of AR that is exclusively activated by its NTD and
lacks a functional LBD. As expected, neither of the LBD
targeting anti-androgens bicalutamide or enzalutamide was
able to inhibit transcriptional activity of ARv567es, how-
ever both PBK knockdown (p < 0.01) and PBKi (p < 0.01)
decreased AR transcriptional activity (Figure S2D), indi-
cating its superiority over conventional anti-androgens.
PBK knockdown also decreased expression of two endo-
genous AR targets, TMPRSS2 and NKX3.1 in C4-2 cells
(Figure S2E). PBK-mediated effects on AR transcriptional
activity were not related to AR gene expression as neither
PBKi nor PBK knockdown affected AR mRNA levels or

AR promoter activity (Figures S2F, S2G). However, PBKi
decreased both basal and androgen-stabilised AR protein
levels in PrCa cells (Fig. 3g and Figures S5D, S5E), sug-
gesting that PBK inhibition decreases AR protein expres-
sion by a post-translational mechanism. As AR is activated
and stabilised by phosphorylation, we also tested the pos-
sibility of PBK-mediated AR phosphorylation by phos-
phoproteomics using PBKi but failed to identify differential
phosphorylation events on AR (data not shown). To
understand the mechanism by which PBK impacts AR
protein expression, a protease protection assay using a
recombinant ARNTD polypeptide was performed. In this
assay inclusion of a non-binding protein such as GST does
not inhibit proteolysis of recombinant AR domains, whereas
AR-binding factors significantly resist proteolysis [14]. In
line with this, in the absence of recombinant PBK, ARNTD

polypeptide was sensitive to chymotrypsin-mediated
degradation, but the presence of PBK antagonised
chymotrypsin-mediated degradation of the ARNTD and a
subset of fragments, at both low and high concentrations of
chymotrypsin, indicating that direct binding of PBK to
ARNTD confers AR stability (Fig. 3h, i). This protection of
ARNTD by PBK was not observed in the presence of trypsin,
consistent with a discrete binding site (Figures S2H, S2I).
Collectively, these experiments suggest that PBK directly
interacts with the ARNTD and ARLBD, resulting in its sta-
bilisation and enhanced transcriptional activity in PrCa.

PBK signalling regulates a distinct transcriptome in
PrCa

To test whether PBK signalling affects the AR-regulated
transcriptional programme in PrCa, we performed RNA
sequencing (RNAseq) to test the global impact of PBK
inhibition by either siPBK or PBKi. A significant overlap in
the gene transcripts affected by PBK knockdown and PBKi
was observed (false discovery rate; FDR < 0.05) for genes
downregulated following PBK inhibition (hypergeometric
p= 1.7e-9) (Figure S3A). Functional annotations for DNA
damage repair, cell cycle and many other Cancer Hallmarks
[30] pathways were enriched among the genes altered in
response to PBK inhibition or PBK knockdown (FDR-
adjusted p values shown; Figure S3B), consistent with
functions previously attributed to PBK signalling [24, 28].

Many classic AR-regulated genes showed altered
expression following PBK inhibition (KLK3/PSA, KLK2,
NKX3-1, SLC45A3, SPDEF, CAMKK2; Fig. 4a) and we
found enrichment of AR-regulated metabolic pathways [31]
further highlighting the interplay between AR and PBK
expression and activity. In line with PBK affecting AR
stability, there was a significant overlap between PBK-
regulated genes and known AR-regulated gene sets [31] as

Fig. 3 Interaction of PBK with AR and its effect on AR stability. a
PBK RIME summary plot showing gene ontology categories (DAVID
GO analysis) and key PBK-associated proteins identified in this
experiment (filtered using IgG RIME) in C4-2 cells. Bar heights
represent the unique peptide counts for each protein identified and the
figure was drawn using the ‘circlize’ library in the R statistical pack-
age. b Peptide coverage of the PBK and AR proteins following PBK
RIME assay in C4-2 cells. The locations of the identified peptides are
highlighted in green blocks. c Co-immunoprecipitation showing
interaction of endogenous AR with PBK. C4-2 Cell lysate were
incubated with the PBK antibody followed by Western blot analysis to
detect AR protein. A representative blot is shown (n= 3). d–e GST
pull-down assay; d Schematic representation of AR domains used in
pull-down. e GST alone and GST-tagged AR domains were incubated
with recombinant PBK for 2 h and subjected to a pull-down assay.
PBK was detected by immunoblotting with an anti-PBK antibody. The
AR-DBD-LBD was expressed, purified and incubated ± 50 μM DHT.
Fold interaction of each domain with PBK based on the intensity of the
band as calculated by Image J software, GST= 1. A representative
blot is shown (n= 2–5). f Luciferase reporter assay. AR transactiva-
tion potential in C4-2 cells transiently transfected with MMTV-
luciferase plasmid and treated with androgen (1 nM R1881), bicalu-
tamide, enzalutamide or PBKi (all 10 µM); (p < 0.001) bars show
mean ± SD (n= 3). p values for two-sided Student’s t test. ***= p <
0.001. g Western blot showing protein expression of PBK and AR in
C4-2 cells. Cells were treated with R1881 (1 nM) or PBKi (1 µM) for
48 h; Tubulin is the loading control. A representative blot is shown (n
= 3). h Representative Western blot for ARNTD digested with chy-
motrypsin in the absence or presence of recombinant PBK. Open tri-
angle represents the full-length ARNTD. Proteolysis was performed for
5 min in the presence of increasing concentrations of chymotrypsin (0–
1.2 ng). ARNTD fragments were detected by Western blot using the
anti-androgen receptor antibody ab3510 (Abcam) corresponding to
human AR amino acids 1–21 (N-terminal). i Quantitation of the
ARNTD full-length polypeptide, after digestion with chymotrypsin for
two independent experiments. PBK= PDZ binding kinase; AR=
androgen receptor; IP= immunoprecipitation; AF= activation func-
tion; NTD= amino terminal domain; DBD=DNA binding domain;
LBD= ligand-binding domain; GST= glutathione-s-transferase;
DHT= dihydrotestosterone, DMSO= dimethylsulphoxide
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37% of AR downregulated genes and 29% of AR upregu-
lated genes were reciprocally regulated by PBK knockdown
(Bonferroni corrected hypergeometric test p < 0.01; Fig. 4b,
c). Next, we assessed the enrichment of AR gene sets in the
PBK gene expression profile using gene set enrichment
analysis [32], which revealed a directional, quantitative
enrichment of AR gene expression signatures in both PBK
knockdown and PBK inhibitor expression profiles (Fig. 4d).
These focussed analyses strongly support PBK mediated
regulation of AR transcriptional output in PrCa cells.

PBK regulates PrCa growth and invasion

To understand the functional consequence of the reciprocal
feedback between AR and PBK on PrCa cell growth, cell
growth assays were performed. In AR-positive cell line
models of CRPC, such as 22Rυ1, C4-2 and LNCaP-Bic
cells, PBK knockdown decreased androgen-induced cell
growth (Fig. 5a and Figure S4A), however, the growth of
AR-null PC3 or DU145 cell lines was marginally repressed
by PBK knockdown (Figure S4B). These experiments

Fig. 4 The PBK-regulated transcriptional programme in PrCa. a
Heatmap showing differentially expressed genes from RNAseq ana-
lysis of PBK inhibitor (PBKi) and vehicle control (DMSO) treated C4-
2 prostate cancer cells. Heatmap shows z-scores and known AR-
regulated genes are highlighted in red and with arrows. b Barplot
showing significance testing of the overlaps between PBK inhibitor or

PBK knockdown and AR gene sets. Bonferroni corrected p values
from hypergeometric tests are plotted as inverse log-values. c Venn
diagrams showing the overlap between PBK and AR-regulated genes
(overlaps used to calculate p values in c. d Gene set enrichment
analysis (GSEA) plots showing the enrichment of AR gene sets in the
PBK inhibitor and PBK knockdown ranked expression profiles
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indicated the requirement of PBK for AR-driven PrCa,
which was further confirmed using clonogenic assays, in
which PBK inhibition decreased clonogenic potential of
AR-positive VCaP and DUCAP cell lines (Fig. 5b and
Figure S4C).

As PBK expression was significantly upregulated in
metastatic PrCa, and the PBK-regulated transcriptome
showed pathways enriched for ‘cell migration/invasion’
(Figure S3B), hence we tested whether PBK activity

conferred an invasive phenotype to PrCa cells. Both, PBK
or AR knockdown decreased wound closure to a compar-
able extent (p < 0.001), indicating delayed migration of cells
in scratch–wound assays (Fig. 5c). Concordantly, PBK
knockdown or treatment with PBKi decreased PrCa cell
invasion in a three-dimensional matrigel-based invasion
model (p < 0.001) (Fig. 5d, e and Figures S4D, S4E). These
findings were further validated in Boyden Chamber trans
well migration assays (p < 0.001) (Figure S4F). Next, we
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interfering; NT= non-targeting; AR= androgen receptor; PBK=
PDZ binding kinase; Ctrl= control; Bic= bicalutamide; Enz= Enza-
lutamide; PBKi= PDZ binding kinase inhibitor
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assessed the relevance of PBK for PrCa growth and AR
expression in a more clinically relevant model, in which
hormone-naive primary patient tumours were treated in an
ex vivo culture assay with PBKi. In this assay, both enza-
lutamide or PBKi, but not bicalutamide resulted in
decreased tissue proliferation (~ 4 and ~ 10-fold, respec-
tively; p < 0.01) as assessed by Ki67 staining. AR levels
were reduced by bicalutamide and PBKi, in both cases to
levels approximately threefold lower than the control
treatment (p < 0.001) (Fig. 5f, g). These experiments pro-
vide robust experimental evidence for the key role of PBK
in sustaining AR levels and tumour growth, indicating that
PBK is an essential player in PrCa cell survival and
invasion.

Discussion

We performed mass spectrometry of PrCa cells to identify
AR-regulated proteome, with a view to identifying novel
effectors downstream of this key oncogene that promote
PrCa progression in response to androgen signalling.
Among these, we uncovered PBK as a novel AR-regulated
protein whose expression is directly regulated by androgens
in vitro and in men with PrCa. Interestingly, PBK expres-
sion was predominantly nuclear in PrCa and identified
aggressive disease subtype suggesting its potential as a
prognostic biomarker for cancer progression. Mechan-
istically PBK forms a feed-forward AR-PBK signalling
loop whereby PBK binding to the NTD and LBD of the AR

promotes its stability and activity. As a consequence, PBK
overexpression observed in aggressive disease could
potentially serve as a survival strategy in promoting AR
stability, stimulating growth, migration and invasion of
PrCa. These findings are summarised in Fig. 6.

PBK has emerged as a key player in multiple tumour
types, including breast cancer [33], haematological malig-
nancies [34], cervical cancer [35] and bladder carcinoma
[36]. PBK appears to represent an important nexus for
various signalling networks that promote cancer prolifera-
tion and invasion and thus pbk can exploit other oncogenic
triggers to enhance its own expression. For example, the
cytokine IL-6, which is overexpressed and promotes PrCa
progression can upregulate PBK expression [37]. Likewise,
oncogenic transcription factors such as ETS, c-Myc and
E2F, which are all activated in PrCa, have been shown to
drive PBK expression in various cancer types [38–40].

In advanced PrCa, AR is the major therapeutic target,
and its point mutations such T878A and F876L, as well as
the LBD deleted splice variants can lead to a constitutively
active AR leading to failure of ADT. There is evidence that
reducing AR protein levels may be more effective in
treating CRPC than inhibiting its activity [14, 41]. As NTD
is the major transactivation domain driving AR activity, it
has recently emerged as a novel therapeutic target [42];
however, given the intrinsically disordered nature of the
NTD, agents targeting NTD such as EPI-001 have shown to
be non-specific [43]. As PBK can directly interact with the
NTD of AR to oppose its degradation by proteases in a
chaperone-like fashion, inhibition of PBK represents an

AR

PBK

Feed-forward
stimulation

Enhanced
feed -forward

stimulation

PrCa
Progression

Increased
nuclear PBK;
Upregulation

of AR
signallingDifferentiation,

survival, growth
Survival, growth,

metastasis

Target
genes

Normal Prostate Cell Prostate Cancer Cell

PBK
PBK

AR

AR AR AR
AR

Fig. 6 Model depicting oncogenic role of PBK in PrCa. In normal
prostate epithelia, AR activity is optimally controlled by normal levels
of PBK to allow cellular differentiation, survival and growth. PBK
overexpression can result in the progression of PrCa by increasing AR
activity leading to uncontrolled growth and metastasis of PrCa cells.

PBK overexpression could also lead to AR increased AR stability and
increased AR signalling allowing more PBK production hence
hyperactivating the feed-forward stimulatory loop between AR and
PBK. AR= androgen receptor; PBK= PDZ binding kinase
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attractive therapeutic strategy to degrade NTD of AR and
thus inhibiting overall AR activity in PrCa. Indeed, PBK is
not the first kinase that interacts with the AR. Previously,
we and others have shown that a number of kinases can
interact with the AR [14, 44–47], whereby their primary
function appears to be the catalytic activation of the AR. In
addition, we recently discovered that a kinase can also act as
protein chaperone with the example of choline kinase alpha
that can directly stabilise AR LBD independent of its cat-
alytic function [14]. However, PBK exerts a unique effect
on the AR as it is the first kinase to our knowledge that can
interact with both LBD and NTD of AR and can directly
stabilise the NTD of AR in a chaperone-like fashion.
Overexpression of PBK in advanced PrCa appears to
maintain the expression and activity of both full-length
(wild-type and T878A mutant) AR and its splice variants,
both of which are driven by NTD of AR. Given the stabi-
lisation of AR protein levels by PBK, therapeutically rele-
vant PBK-targeting agents would be predicted to degrade
both full-length as well as splice variants of ARs, which are
driven by NTD of AR.

Our findings suggest that AR promotes PrCa growth via
upregulation of PBK and the therapeutic benefits of anti-
androgens could result from inhibition of PBK in primary
PrCa. We believe that the primary reason for the develop-
ment of CRPC could be the loss of regulatory axis whereby,
instead of AR, PBK expression is regulated by other
oncogenic transcription factors such as E2F and c-myc [38,
40] as a result of inhibition of androgen signalling initially
achieved by the anti-androgenic drugs. Upregulation of
PBK in CRPC appears to serve an important strategy to
stabilise AR expression and signalling and could provide an
explanation for the enhanced AR activity, which is asso-
ciated with poor prognosis of CRPC. In this context, our
findings that PBK stabilises AR in advanced disease pro-
vide a mechanistic basis for increased AR activity and a
rationale for therapeutic targeting of PBK for the treatment
of CRPC. Thus, we propose that therapeutically targeting of
PBK alone or its rationale combination with AR inhibitors
is a novel and attractive treatment approach for the other-
wise fatal CRPC. Small peptides-based medicinal chemistry
approaches to synthesise PBK inhibitors that can disrupt the
interaction between AR and PBK in CRPC will be ideally
suited to develop precise targeting approaches and in order
to effectively inhibit PBK-mediated AR activation and
avoid off-targets effects often observed with kinase
inhibitors-based therapy. In summary, our novel interroga-
tion of the AR-regulated proteome has identified PBK as an
novel AR-associated factor that can activate both LBD and
NTD of AR and can lead to enhanced AR signalling that
combined with its known key function in mitosis [26],
represents a new therapeutic target in advanced PrCa.

Materials and methods

Reagents/consumables

Methyltrienolone was obtained from Perkin Elmer, enza-
lutamide was obtained from Axon Medchem and bicaluta-
mide was obtained from Sigma chemicals.
Dihydrotestosterone, dimethyl sulfoxide (DMSO) were
obtained from Sigma chemicals (Dorset, UK). The PBK
inhibitor HI-TOPK-032 (PBKi) was purchased from Inter-
BioScreen, Russia. Life Technologies (Carlsbad, CA) pro-
vided cell culture media, fetal bovine serum (FBS),
antibiotics etc.

Cell lines

Genetic profiling of polymorphic short tandem repeat loci
was used to verify cell lines in accordance with ATCC
guidelines. AmpFISTR test or GenePrint10 test (Promega,
Madison, WI) was used, and data were analysed using
GeneMapper v4.0. LNCaP, C4-2, VCaP, PC3, DUCaP,
22Rυ1 and DU145 cells were procured through commercial
suppliers. These cell lines were grown in Roswell Park
Memorial Institute media that contained 10% FBS and 1%
penicillin/streptomycin in a humidified incubator at 37 °C
with an atmosphere of 5% CO2.

R1-AD1 is a CWR-R1 subline whose identity was ver-
ified using polymerase chain reaction (PCR) and Sanger
sequencing (positive for the H874Y point mutation in the
AR ligand-binding domain). Multiple ligation-dependent
probe amplification assay was used to rule out copy number
imbalances along the entire length of the AR gene. PCR and
Sanger sequencing methods were also used to verify the
identity of R1-D567 cell line to detect the transcription
activator-like effector endonuclease-based genome
engineering-induced signature break fusion junction.

SILAC labelling/mass spectrometry

C4-2 cells were labelled with either with heavy or light
amino acids, and transfected with ON-TARGET plus
siRNA pool (and non-targeting control siNT) for 72 h or
treated with anti-androgen Bicalutamide or DMSO (24 h).
Cells were washed twice with cold PBS, lifted, and were
centrifuged (300–400 g) at 4 oC. Cells were mixed together
(siNT heavy with siAR light or vice versa; DMSO heavy
with bicalutamide light or vice versa). Supernatant was
discarded and cells were lysed using lysis buffer (8 M urea,
50 mM ammonium bicarbonate, phosphatase, and a cocktail
of protease inhibitors). Protein lysates (~30 µg in 8M urea
buffer) were loaded onto one-dimensional sodium dodecyl
sulphate gel and run ~ 1.5 h to get a full-length gel with
complete separation. For in-gel digestion, the gel was cut
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into 18 pieces, which were briefly washed with ammonium
bicarbonate buffer, and further reduction was carried out
with dithiothretol and alkylation with Iodoacetamide, which
was followed by trypsin digestion (conc. 1:100, enzyme:
substrate) at 37 °C overnight. 0.4% of trifluoroacetic acid
was used to stop the digestion reaction and the supernatant
was transferred to a reaction tube following by drying using
speed vac. Peptides were re-dissolved in 6 µl of 2% acet-
onitrile/0.1% formic acid solution, and 5 µl was loaded with
auto sampler (Ultimate3000 nano RSLC HPLC, Dionex,
Thermo-Scientific, Waltham, MA) onto a trapping column
(100 µm, 2 cm, 3 µm), separation was achieved with an
Easy-spry Pep map analytical column (75 µm, 25 cm, 2 µm).
Both were packed with C18 resin (100-Å pore size; Acclaim
PepMap RSLC, Thermo-Scientific). Peptides were sepa-
rated with an Ultimate3000 nano RSLC (Dionex) HPLC
with in-line flow rates of 4.0 and 0.35 µl/min, respectively).
The LC gradient range was from 5 to 35%B in 100 min
(buffer A: 0.1%FA-5%DMSO; buffer B: 0.1%FA-75%
MeCN-5% DMSO). The eluted peptides were analysed
using the Q Exactive Hybrid Quadrupole-Orbitrap Mass
Spectrometer (Thermo-Scientific). One full MS scan (at
400–1800m/z; acquired at 70,000 resolution and automatic
gain control (AGC) target of 106) for each cycle was per-
formed. This was followed by 10 data-dependent MS/MS
spectra (AGC target, 5 × 104, 17,500 resolution). Selected
ions were dynamically excluded for 30 s and singly charged
ions were rejected using charge-state screening.

Database searching and data-filtering

The RAW files were processed with Thermo Proteome
Discoverer 1.4. The MS/MS spectra were searched using
both Sequest and Mascot against a reference composite
database that contained the Human Uniprot protein database
(downloaded April/2014 from http://www.uniprot.org/).
Search parameters included partially tryptic specificity;
fragment mass tolerance of 0.05 Da; a precursor mass tol-
erance of 20 ppm; a static modification of carboxy amido-
methylation; and dynamic modifications of oxidation and de
amidation. Results were filtered to only include fully tryptic
peptides. Other cutoffs were established to achieve max-
imum sensitivity levels at < 0.1% false-positive rate (one
reversed sequence hit for every 1000 forward sequence
hits).

RIME assay

This was performed on C4-2 cells using a PBK antibody
(Novus) following a recently developed RIME method [27].

Plasmids, siRNA and transient transfections

All plasmids were sequence verified. Four different and
highly target specific siRNA sequences (ON-TARGET plus
smart pool of four-independent siRNAs) were used to
achieve potent knockdown of AR and PBK (Life technol-
ogies, Carlsbad, CA). Lipofectamine RNAiMAX transfec-
tion reagent (Life Technologies) was used to perform
transient transfections with siRNA. Lipofectamine2000
transfection reagent (Life Technologies) was used to per-
form DNA transfection following manufacturer’s protocols.
Reverse transfections were performed using 25 nM siRNA
in all knockdown experiments except for RNAseq, where
50 nM siRNA was used to attain a near complete depletion
of endogenous PBK. MMTV-Luc and AR-Luc reporter
plasmid have described earlier [14, 48].

Reporter assays

Cells treated with androgens were grown in medium con-
taining hormone-depleted (charcoal-stripped) FBS. Renilla
luciferase (Promega, Madison, WI) was used as an internal
control in all luciferase assays. Following 48 h transfection,
cells were harvested in passive lysis buffer (Promega) and
then luciferase assay buffer was used to measure both
luciferase/Renilla luciferase activity.

Real-time qPCR

Cells were transiently transfected using RNAiMAX reagent
with siRNA (25 nM) for 48 h. Cells were then grown in
androgen-deprived charcoal-treated RPMI medium and
treated with R1881 (1 nM) for 24 h. High Capacity cDNA
Reverse Transcription Kit (Applied Biosystems, Carlsbad,
CA) was form for cDNA preparation. For PCR, we used
Taqman quantitative real-time probes (Applied Biosystems)
to quantify gene expression changes in TMPRSS2 and
NKX3.1 relative to 18 S expression, which served as the
internal control. AR knockdown was used as the positive
control; experiments were carried out with nine replicates.

Cell viability and clonogenic assays

To determine cell viability, cells were incubated with 3-
(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-
(4-sulfophenyl)-2H-tetrazolium) reagent. This reaction was
followed by colorimetric assay using Promega’s cell via-
bility kit protocol. Clonogenic assays were performed using
the exact methodology, which has been described earlier
[14].
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PBK binding to the AR-NTD: stabilisation of receptor
polypeptides

AR domains were purified as described previously [14]. In
total, 25 pmoles of AR-NTD recombinant protein was
treated with chymotrypsin in the presence and absence of
PBK (25 pmoles). Proteolysis with chymotrypsin was per-
formed for 5 min in the presence of increasing concentra-
tions of chymotrypsin (0–1.2 ng). Trypsin digestion was
performed at a constant concentration of 1 ng with an
increase in time from 0 to 20 min. AR-NTD fragments were
detected on western blots using the anti-AR antibody
ab3510 (Abcam) corresponding to Human AR amino acids
1–21 (N-terminal).

GST pull-down assay and Co-IP

These experiments were performed as described earlier
[14]. For GST pull-down assay, 50 pmoles of PBK
(ab123196, Abcam) antibody was used for immunopreci-
pitation and anti-PBK (ABnova Corp. Taiwan; 1:2500
dilution) and goat-antimouse HRP antibody was used for
western blotting. For Co-Ip experiments anti-PBK Abcam
dilution 1/30; anti-AR Santa Cruz N-20 dilution 1/30 were
used. Statistical significance was calculated using two-tailed
Student’s t test when n= 3 or more.

RNAseq and comparison with the AR transcriptome

C4-2 cells were treated with PBKi for 6 h or transfected
with PBK siRNA for 72 h. Qigen Allprep kit (Qiagen,
Hilden, Germany) was used to isolate total RNA, which was
quantified using Qubit (Life technologies) and quality (RIN
> 8) was confirmed using the Bioanalyzer 2100 (Agilent).
TruSeq® mRNA HT Sample Prep Kit was used for RNA-
seq, which was performed with a 500 ng of total RNA as
input. Illumina HiSeq generated SE40 reads were aligned to
the human reference genome version GRCh37.64 using
TopHat v2.0.4 [49]. HTSeq-count v0.5.3p9 [50] to obtain
read counts, which was normalised and tested for differ-
ential gene expression using the Bioconductor package
DESeq v1.10.1 [51]. Multiple testing corrections were
applied using the Benjamini–Hochberg method [52]. Genes
were selected as differentially expressed such that FDR <
0.05. To address the impact of PBK on the AR tran-
scriptome, the mRNA sequencing data from C4-2 cells was
compared with our published androgen-regulated tran-
scriptome data set (GSE18684) [31].

Immunohistochemistry

Paraffin-embedded tissues were used to perform immuno-
histochemical staining to detect AR and Ki67. The

methodology to detect AR [14] and Ki67 [15] were detected
as described earlier, respectively. A pre-validated anti-PBK
(Sigma HPA0055753, 1:250 dilution) was used.

Human prostate tissue samples and hormone
refractory (metastatic) tissue microarray
construction

All samples were obtained from the Addenbrooke’s Cam-
bridge University Hospital from patients who attended the
Urology clinic. Hospital records were used to identify
clinical data, which were contained in a prospectively
maintained database (https://sbb.nds.ox.ac.uk/camprompt).

To obtain benign prostate tissue, holmium laser enu-
cleation of the prostate was used. Primary PrCa specimen
was obtained using Robotic assisted laparoscopic prosta-
tectomy and castrate-resistant/hormone refractory cancer
specimen was obtained using transurethral resection of the
prostate (chTURP). For histology, tissue was fixed in 10%
neutral buffered formalin. Haematoxylin and eosin (H&E)
analysis was performed by the uropathologist on 5-micron
thick sections. Patients with hormone refractory tumour/
CRPC were defined as those who had a sustained rise in
prostate specific antigen from nadir despite undergoing
ADT treatment. Benign tissues obtained from prosta-
tectomy or from primary PrCa (matched benign) was used
as control. Formalin fixed paraffin-embedded tissue
retrieved from the pathology archive was used as control for
the chTURP specimens. The original H&E sections were
reviewed by a uropathologist. Suitable areas of tumour
tissue were included in the TMA were marked on the slides
and corresponding paraffin blocks. Cores were removed
from the donor blocks using a 2 mm skin biopsy punch and
incorporated into recipient TMA blocks with pre-defined
layout. For each sample two tumour cores and one benign
adjacent core were incorporated. Immunohistochemistry
was performed on 3.5-micron sections and was also blind
reviewed blinded by the uropathologist to verify the
pathology and suitability of the included tissue cores for
scoring.

Invasion assay

Both Boyden chamber and matrigel invasion assays were
performed as previously described [14].

Ex vivo prostate explant culture

PrCa tissue was obtained with informed consent in accor-
dance with the institutional policy. Using a sterilised knife,
the tissue was cut into 1–2 mm3 pieces, which were
mounted on collagen cushions, kept on steel grids for
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3 weeks to grow as explants. The tissue was treated as
indicated with drugs in RPMI with 10% FBS, 1% penicillin,
streptomycin and gentamycin. To prepare collagen cush-
ions, 250 μl of collagen mix (rat tail collagen, RPMI med-
ium, FBS and 10 × RPMI in the ratio of 7:1:1:1) was
solidified on a nylon membrane. Tissue were harvested by
fixation in formalin for 20 h and then transferred to 70%
ethanol prior to paraffin embedding for
immunohistochemistry.

Scratch–wound assay

VCaP cells were selected for the scratch–wound assay on
account of their strong adherence to tissue culture plates.
Cells were transfected with 25 nM siRNA for 24 h using
RNAiMAX reagent, by which time nearly confluent layers
of VCaP cells had formed in a 24-well tissue culture plate.
The scratch was introduced using a wound scratch instru-
ment (Essen Bioscience) with a micropipette tip (1–2 µl
capacity). The cells were washed with PBS, given fresh
medium and treated with the indicated drugs. The culture
plate was placed inside the Incucyte instrument and mon-
itored for the required time.

Statistical analysis

Statistical analyses were reported as mean ± SEM for con-
tinuous variables. We used Student’s t test where applic-
able. P value of 0.05 or less was considered significant.
Appropriate nonparametric tests such as Mann–Whitney U
test were used to analyse various datasets. Kaplan–Meier
survival curves were generated by recursive partitioning
analysis. KM curves are predictive of recurrence-free sur-
vival (corrected for the testing of multiple cutoffs, but not
genes). *p < 0.05, **p < 0.01, ***p < 0.001.

Accession numbers

The RNA-sequencing data have been submitted to Gene
Expression Omnibus. It is available at the following
links http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=
ctgjggwqhlqbvod&acc=GSE63701 & http://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?token=cparuuusjtcnlun&acc=
GSE64341
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