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Abstract

Recently proposed deep learning systems can achieve superior performance with re-

spect to methods based on hand-crafted features on a broad range of tasks, not limited

to the object recognition/detection tasks, but also on medical image analysis and game

control applications. These advances can be credited in part to the rapid development of

computation hardware, and the availability of large-scale public datasets. The training

process of deep learning models is a challenging task because of the large number of

parameters involved, which requires large annotated training sets. A number of recent

works have tried to explain the behaviour of deep learning models during training and

testing, but the whole field still has limited understanding of the functionality of deep

learning models.

In this thesis, we aim to develop methods that allow for a better understanding of the

behaviour of deep learning models. With such methods, we attempt to improve the

performance of deep learning models in several applications and reveal promising di-

rections to explore with empirical evidence.

Our first method is a novel nonlinear hierarchical classifier that uses off-the-shelf con-

volutional neural network (CNN) features. This nonlinear classifier is a tree-structured

classifier that uses linear classifier as tree nodes. Experiments suggest that our proposed

nonlinear hierarchical classifier achieves better results than the linear classifiers.

In our second method, we use Maxout activation function to replace the common recti-

fied linear unit (ReLU) function to increase the model capacity of deep learning models.

We found that it can lead to an ill-conditioned training problem, given that the input data

is generally not properly normalised. We show how to mitigate this problem by incor-

porating Batch Normalisation. This method allows us to build a deep learning model

that surpassed the performance of several state-of-the-art methods.

In the third method, we explore the possibility of introducing multiple-size features into

deep learning models. Our design includes up to four different filter sizes to provide dif-

ferent spatial pattern candidates, and a max pooling function that selects the maximum

response to represent the unit’s output. As an outcome of this work, we combine the

multiple-size filters and the Batch-normalised Maxout activation unit from the second

work to achieve the automatic spatial pattern selection within the activation unit. The

result of this research shows significant improvements over the state-of-the-art on five

publicly available computer vision datasets, including the ImageNet 2012 dataset.
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Abstract

Finally, we propose two novel measurements derived from the eigenvalues of the ap-

proximate empirical Fisher matrix which can be efficiently calculated within the stochas-

tic gradient descent (SGD) iteration. These measurements can be obtained efficiently

even for the recent state-of-the-art deep residual networks. We show how to use these

measurements to help select training hyper-parameters such as mini-batch size, model

structure, learning rate and stochastic depth rate. By using these tools, we discover

a new way to schedule the dynamic sampling and dynamic stochastic depth, which

leads to performance improvements of deep learning models. We show the proposed

training approach reaches competitive classification results in CIFAR-10 and CIFAR-

100 datasets with models that have significantly lower capacity compare to the current

state-of-the-art in the field.
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Chapter 1

Introduction

One of the main challenges in computer vision tasks is how to effectively extract useful

visual information from an input image or a video. Many efforts have been devoted to

extract such visual information with carefully hand-crafted feature extraction processes

[1–7]. However, these hand-crafted features are usually designed for solving specific

tasks, which means that they may show generalisation issues extending them to differ-

ent tasks. Machine learning provides an alternative path through the automatic design

of features based on training a model that is adapted to a particular classification/detec-

tion/segmentation task.

Current advanced machine learning systems are mostly based on deep learning mod-

els. Deep learning has attracted huge attention lately primarily because of its superior

performance [8] on large-scale image classification and object detection challenges [9].

As a matter of fact, deep learning methods are rapidly replacing more traditional shal-

low learning methods, such as Support Vector Machine (SVM) [10] and Boosting [11].

Over the years, deeper and wider models containing millions of parameters have been

proposed, setting new limits for the current status of machine intelligence. Some of

these deep learning systems have already surpassed human performance on some spe-

cific tasks [12].

A deep learning model is a learning system trained in an end-to-end manner by mod-

elling the features and classifier simultaneously with the minimisation of a single ob-

jective function. In computer vision (CV), a deep learning model is commonly imple-

mented as a Convolutional Neural Network (CNN), which consists of several stacks of

convolution and activation layers, followed by one or more fully-connected layers and
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Chapter 1. Introduction

an objective expression layer, and trained with the stochastic gradient descend (SGD)

optimisation method.

Recent work [13] shows that deep learning models can be easily transferred between

different types of computer vision applications–for instance, a classification model pre-

trained to solve visual classification problems can be fine-tuned (i.e., fine-tuning adapts

the model parameters slightly from pre-learned parameter values) to solve detection and

segmentation tasks [14], depth estimation problems [15], or image feature extraction

tasks [16]. The popularity of deep learning can also be credited to the public avail-

ability of open-sourced deep learning libraries. Some examples of such libraries are:

Caffe [17], Torch [18], Theano [19], TensorFlow [20], and MatConvNet [21].

Even though deep learning is popular at the moment, it also faces a few limitations.

First, the training of a deep learning model is computationally expensive due to the large

number of parameters present in the model (typically deep learning models have more

than 105 parameters). A number of models have been proposed in recent years [22–25],

where the performance is positively correlated with the model size but at a sub-linear

rate. Second, a number of works have been proposed to improve the training of deep

learning models, leading to a large number of model structure/components, optimisa-

tion methods, hyper-parameters, and regularisation techniques, whose effects may be

co-variational and difficult to test in isolation. A simple example is that the conver-

gence rate of a model is subject to a change in the learning rate, but training with dif-

ferent mini-batch sizes can cause a different convergence rate with the same learning

rate, which is observed in our work in Chapter 7). Third, in the current status of deep

learning, a limited amount of tools [26] can be used to analyse the training of deep

learning models, in addition to monitor the objective function, where traditional learn-

ing analysis tools (e.g., the use of condition number of the Jacobian/Hessian to check

the numerical stability of a function) were designed for small and convex problems,

which are challenging to be used in the analysis of deep learning models.

1.1 Current State-of-the-art in Training Deep Networks

Deep learning is a broad concept, where any application that involves the use of neural

networks containing a relatively large number of hidden layers (more than five [27]) can

be classified as a deep learning work. Recent work [28] also points out that deep neural

networks are not the only type of deep learning model. For instance, it is possible to

2



Chapter 1. Introduction

train a deep decision forest as a deep learning model. The term deep neural network

model can carry similar, but different names in the literature; for instance, the following

names are used interchangeably: (very) deep networks, deep nets, and deep (learning)

models.

This section summarises the recent major developments on training deep networks:

• Increasing the depth of the model: this trend can be observed through a series

of works, starting from the Alex-net model [22], which has only 8 layers, to

VGG-CNN [23], which contains 19 layers, to GoogLeNet [29], which has over

30 layers, and to the recently proposed residual networks (ResNet) [24], which

contains more than 1000 layers. Meanwhile, the number of model parameters is

also being pushed to the limit of the hardware capacity, leading to the necessity

of multi-GPU computation. Nevertheless, recent work [25] argues that widening

(in terms of increasing the number of filters in each layer) the ResNet is a more

effective way of improving performance than increasing the model depth.

• Using small size convolutional filter: the Alex-net model [22] has 5 convolution

layers, where the first layer uses 11 × 11 convolutional filters, the second layer

uses 5 × 5 filters, and the remaining three layers use 3 × 3 filters. The OverFeat

model [30] uses 7 × 7 convolutional filters on the first layer. The Network-in-

Network (NIN) model [31] implements a micro multiple-layer perception (MLP)

network to substitute a single convolution layer, where the MLP network consists

a stack of 3 × 3 and 1 × 1 convolutional filters. Similarly, the VGG-CNN [23]

also uses stacked 3 × 3 convolution layers to substitute a single layer of larger

size filters, resulting in a network with only 1 × 1 and 3 × 3 filters. The reasons

for using small size filters are the following: 1) a stack of small size filters is able

to match the receptive field size of a large size filter but it can incorporate more

nonlinear activation functions between filter layers to make the transformation

more discriminative; and 2) a stack of small size filters uses a smaller number

of parameters compared to a single layer of large size filter, which can help the

regularisation of the training process. At the moment, most of the proposed deep

networks in the literature [24, 25, 32–37] use only small size filters.

• New architectures: FitNet [32] is a deep network that can be trained more ef-

ficiently by the guidance of a shallower teacher network. The Highway net-

work [33] has an implementation that allows the input signal to bypass several

layers, where the access to this data flow is controlled by a sub-network. The
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Chapter 1. Introduction

residual network (ResNet) [24] model is similar to the Highway network, where

the main difference is that the information flow (i.e., the residual connection) is

not controlled by a sub-network. Several studies have tried to explain the be-

haviour of ResNet and the Highway networks. One view is that the ResNet be-

haves like an ensemble of relatively shallow networks [38]. Another point of view

is the iterative approach, which characterises that the residual connection is a way

of forcing the learning blocks to refine the same feature rather than computing

new features [39]. The ResNet model has been explored in several papers [34–

37].

• Stochastic training: the Dropout [40] mechanism randomly omits a portion of

features from intermediate network layers to prevent feature co-adaptation, which

improves the generalisation of the model. The DropConnect [41] mechanism ran-

domly drops model weights instead of features to achieve a better regularisation.

Stochastic drop scheme has been used in combination with ResNet to train ResNet

with stochastic depth [42]. A integration of dropout and stochastic depth to train

ResNet can be found in [43].

• Initialisation: the vanishing/exploding gradient problem is one of the major chal-

lenges in training deep networks. On one extreme, if the gradient vanishes in the

middle of the chain rule, then the early network layers are trained at a very slow

rate, which degrades the model’s learning ability; on the other extreme, the gradi-

ent can also grow indefinitely during the chain rule, leading to convergence issues.

Carefully initialisation schemes of weights such as “Xavier” [44] and “He” [24]

can alleviate the gradient problem by regularising the scale of the weights to main-

tain adequate feature variance throughout the layer transitions.

• Normalisation: apart from the initialisation, normalisation can ensure that inter-

mediate features are well-regulated during training. The aforementioned Alex-net

uses bio-inspired local response normalisation [22]. The current widely adopted

Batch Normalisation (BN) [45] computes a channel-wise normalisation based on

the statistics computed from a mini-batch of training samples. BN is empirically

evaluated to be effective at improving convergence rate of training and to be help-

ful at regularising network layers, so its use can be found in many of the recently

proposed deep learning models [24, 25]. In addition, BN can reduce the model

sensitivity to the initialisation method. The Layer Normalisation [46] resolves

the reliance on mini-batch statistics of BN by imposing all channels in a layer to

share the same normalisation terms.
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Chapter 1. Introduction

• Activation function: the first generation of deep neural networks (e.g., LeNet [47])

used sigmoid and hyperbolic tangent activation functions. These activation func-

tions work in a small range of input values, which can cause vanishing gradient

problems because the gradient beyond the active region of the function is pushed

to zero. The rectified linear unit (ReLU) [48] simply transforms the negative acti-

vation values to zero, while linearly transferring the positive values. ReLU is effi-

cient to compute and can ease the vanishing gradient problem, so it is widely used

to train deep neural networks [49]. Several variants of ReLU have been proposed,

which includes Leaky-ReLU (LReLU) [50], Parametric-ReLU (PReLU) [51], and

Exponential Linear unit (ELU) [52], where the common goal of these methods is

to relax the constraint of ReLU to allow the existence of small negative activation

values.

Another type of activation function is piecewise linear activation function, such

as the Maxout unit [53] and the Local-winner-take-all unit (LWTA) unit [54].

Compared to the ReLU family [48, 50–52], the main difference lies in the num-

ber of linear regions formed by each unit, where the ReLU functions can form

exactly two regions, and the piecewise linear function can form a custom number

of regions depending on the input linear pieces. The piecewise linear activation

function can increase the nonlinear capacity of a computation layer in the deep

model.

• Training algorithm and training analysis: the very deep networks are gener-

ally trained with the stochastic gradient descent (SGD) method [55], or any of its

variants [56–59]. The popularity of SGD methods lies in a tolerable computa-

tion cost with acceptable convergence rate, where the second-order methods are

infeasible in the context of training very deep networks. The common charac-

teristic of the SGD variants [56–59] is to rescale the gradient estimation to avoid

saddle points and to have some degree of resistance to near-singular curvature of

the energy landscape. A number of recent works are devoted to the characterisa-

tion of the functionality of SGD optimisation in very deep networks, where the

major goal is to investigate the convergence property of deep networks in terms

of how the training proceeds around local minima and saddle points in the energy

landscape [60–64]. The exact Hessian of a small network has also been stud-

ied in [65]. Furthermore, a sensitivity measurement of loss energy landscape is

proposed in [26] to associate mini-batch size to the sharpness of local minima.
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TABLE 1.1: A selected subset of the experimental results from our first work (See
Table 1 of Chapter 4 for the complete results), where we explore the performance of a
number of nonlinear classifiers in comparison with linear SVM using the off-the-shelf
CNN features and tested on the Pascal VOC 2007 [66] object recognition task. MAP
refers to the mean Average Precision (AP) measurement over a range of object classes.

Method MAP
OverFeat-feature + Nonlinear SVM (RBF kernel) 73.42
OverFeat-feature + Linear SVM 74.26
OverFeat-feature + PBT [67] 71.60
OverFeat-feature + Our nonlinear classifier 74.43
VGG-CNN-feature + Nonlinear SVM (RBF kernel) 80.73
VGG-CNN-feature + Linear SVM 80.54
VGG-CNN-feature + PBT [67] 77.52
VGG-CNN-feature + Our nonlinear classifier 81.05

1.2 Motivation

This thesis proposes several methods that contribute to advance the understanding of

deep networks and improve the art of training deep networks with the specific goal of

solving the visual classification problem. The primary motivation of focusing on the

visual classification problem comes from the popularity of reusing the pre-trained Ima-

genet [9] classification model for: 1) extracting off-the-shelf features from images [16];

and 2) initialising the parameters of a new learning model for other image datasets

and/or applications [13]. One common observation about pre-trained models is that

the classification performance on the original ImageNet task is strongly tied to the per-

formance of the target task. For instance, in Table 1.1, we show the result of using

CNN features, from the OverFeat [30] and VGG-CNN [8] models, and different clas-

sifiers on the Pascal VOC 2007 [66] object recognition task. The observation is that

the VGG-CNN [8] feature is more informative than the OverFeat [30] feature to solve

the VOC task. This relationship is consistent with the performance on ImageNet [9],

where the classification error of the OverFeat model is 14.7% and VGG-CNN model is

13.1% (measured with the top-5 classification error on the validation set). A conclusion

that can be made from the discussion above is that improving the classification perfor-

mance of a model can also make this model more useful to solve other computer vision

problems.

We notice in previous works [8, 16, 30, 68–71] that CNN features are commonly used

with linear classifiers, such as linear SVM [10] or softmax classifier, where the nonlinear

6



Chapter 1. Introduction

FIGURE 1.1: A rank-2 (k = 2) Maxout [53] processing two different kind of inputs:
normalised (left hand side) and unnormalised (right hand side). In both cases, the
coloured point cloud shows an identical two class nonlinear classification problem.
The normalised input in the left hand side figure can ensure that the samples are more
evenly distributed across the activation regions (Region 1 and Region 2), where the
decision boundary in each region(D1 in Region 1, and D2 in Region 2) can solve a
reduced linearly separable problem. On the other hand, the unnormalised input samples
in the right hand side figure are placed in just one of the activation regions, resulting in

a sub-optimal decision boundary D3.

classifiers have not been explored. This issue may have happened due to the large

dimensionality of the CNN features, where the high computational cost of nonlinear

classifiers cannot be ignored even if it can achieve better performance in principle. This

motivated our first work (in Chapter 4) to search for a low cost nonlinear classifier that

can offer larger capacity than linear classifiers.

In our second work, we propose the combination of Batch Normalisation (BN) [45]

and Maxout [53] activation function. During our preliminarily work, we found that

piecewise linear activation functions (e.g., ReLU [48] or Maxout [53]) can degenerate

into a linear activation function when some of the linear pieces (regions) are inactive

(i.e., no inputs are available in those regions), leading to an ill-conditioned training

and a reduction of model capacity. We studied the possibility of fixing this issue by

normalising training samples so that each linear piece remains activate, which motivated

us to search for a normalisation method in our second work. The importance of the use

of normalisation in the Maxout activation function is illustrated in Figure 1.1.

In our third work, we explore the use of multiple-size filters in deep CNNs in contrast

to the state-of-the-art trend of using only small fixed-size filters [24, 25, 33–37]. The

motivation to explore multiple-size filters is to improve the robustness of deep convo-

lution neural networks (CNNs) to the scale changes of object appearances. Our work

is inspired by the GoogLeNet [29] inception module, which shows outstanding results
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in the ImageNet ILSVRC 2014 [9] challenge. One particular design of the inception

module is the concatenation of multiple-size features, which leads to a massive growth

of the number of channels of the output tensor. The consequence of this is that the

next module has to increase the number of parameters to process the large input tensor.

Therefore, the inception module implements a channel reduction sub-module [31] in

order to reduce the size of input tensor before extracting multiple-size features. This

issue motivated us to study alternative methods to integrate the multiple-size filters in

CNNs.

The understanding of training procedures for deep learning training is difficult because

of the large number of parameters and many empirically selected hyper-parameters

involved in the training. One possible way to improve the understanding is the de-

velopment of useful measurements that can be used to provide reliable guidelines on

hyper-parameter selection. In our fourth work, we introduce a novel methodology for

characterising the SGD [55] training of ResNet [24] with respect to four types of hyper-

parameters by examining the eigenvalues of the approximate Fisher matrix. Our moti-

vation to look into the eigenvalues of this matrix primarily comes from [26], where a

numerical experiment is proposed to measure the convergence of neural networks by

sampling the largest eigenvalue of the objective function within a small neighbourhood.

1.3 Research contribution of this thesis

In general, this thesis contributes to the field with a better understanding of the train-

ing of deep learning models, and reveal promising directions to explore with empirical

evidence.

Our first method is a novel nonlinear hierarchical classifier designed to work with off-

the-shelf CNN features [16]. This nonlinear classifier is a tree-structured classifier that

uses logistic regression classifiers in the internal nodes of the tree and linear SVM [10]

as the leaf classifiers. The main novelty of our approach is the loss function to learn the

hierarchical classifier, which minimizes the classification error in a non-greedy way and

at the same time delays hard classification to nodes further down the tree. Experiments

suggest that our proposed nonlinear hierarchical classifier achieves better results than

the linear SVM classifier and a group of nonlinear classifiers including kernel SVMs.

Our second work is a continuation of our first work, where we reformulate our nonlin-

ear classifier as a piecewise linear activation function to be integrated into deep models
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to achieve end-to-end training. This activation function is able to express a richer set

of nonlinearities than the commonly used ReLU [48] activation function. During the

development of this method, we found that our proposed activation unit can be replaced

by a Maxout [53] unit that can be trained faster with a comparable performance. Never-

theless, the increasing of capacity can introduce ill-conditioning given that the training

data is not properly normalised. We fix this issue with a Batch Normalisation [45] unit

inside the Maxout unit, resulting in a better pre-conditioning of the unit. This method

allows us to build a deep learning model that surpassed the performance of several state-

of-the-art methods.

In our third work, we propose a new module for deep CNNs composed of convolu-

tional filters of up to four filter sizes that are joined by a Maxout activation unit (i.e.,

channel-wise max pooling), which can promote the competition amongst these filters.

In addition, the competition promoted by the max pooling does not incur the channel

growth issue as in the Inception Module [29]. The result of this work shows signif-

icant improvements over the state-of-the-art on five commonly used computer vision

datasets, including the large-scale ImageNet [9] dataset.

Finally, we propose two novel measurements derived from the eigenvalues of the ap-

proximate empirical Fisher matrix which can be efficiently calculated within the SGD [55]

iteration. These measurements can be obtained efficiently even for the recent deep resid-

ual network (ResNet) [24] models. We show how to use these measurements to help

select training hyper-parameters such as mini-batch size, model structure, learning rate

and stochastic depth rate. By using our measurements to analyse the ResNet training,

we discover a new way to schedule the dynamic sampling and dynamic stochastic depth

which leads to improved performance while maintaining a moderate model size (in

terms of the number of parameters). We show the proposed training approach reaches

competitive classification results in CIFAR-10 [72] and CIFAR-100 [72] datasets to

other models that have significantly larger capacity.

1.4 Thesis outline

In Chapter 2, we first give an overview of machine learning and deep learning, followed

by a review of the related literature with respect to our proposed methods. In Chapter 3,

we give a detailed explanation to our proposed methods. In Chapter 4, we show the

application of our nonlinear hierarchical classifier using off-the-shelf CNN features. In

9
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Chapter 5, we explain the importance of normalisation in piecewise linear activation

units, especially in the Maxout unit. In Chapter 6, we discuss the use of multiple-

size filters in CNNs that allow the extraction of multiple-size features. Two measures

to characterise the training of ResNets with the use of the approximate Fisher matrix

are presented in Chapter 7. Finally in Chapter 8, we conclude our thesis and discuss

possible future works.
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Literature Review

In this chapter, we review the main techniques and advancements in training deep net-

works. We start with a brief overview about the field of machine learning and deep

learning in Section 2.1. We conduct a survey of the advantages and disadvantages of

various classification techniques in Section 2.2, particularly targeting their use with con-

volutional neural networks (CNN) features. In Section 2.3, we show the importance of

normalisation in the piecewise linear activation unit in order to motivate our method

in Section 3.4. In Section 2.4, we exploit the gap in the use of multiple-size filters in

current deep learning models. Finally, we show a number of works in Section 2.5 that

aim to explain the training of deep learning models and present their advantages and

disadvantages.

2.1 Machine Learning

The term Machine Learning was first coined in 1959 [73], and it is a field of study in the

computer science discipline that strives to endue computers with human-like learning

ability without explicit programming [73]. Almost six decades later, machine learning

systems are able to beat human competitors on a number of challenges, such as the re-

cent victory of the AlphaGo Go program against world top-ranked human players [74].

Machine learning falls into three major fields: supervised learning, unsupervised learn-

ing, and reinforcement learning.
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• Supervised learning is the most common problem explored in machine learning,

where the goal is to build a statistical relationship between the input and a given

target from a number of labelled training data. One of the primary applications

of supervised learning is the classification task, which is the main focus of this

thesis. A well-known challenge in supervised learning is that the learning method

can overfit the training set. However, the generalisation ability of the model can

always be improved by learning from a large annotated training set. In this sense,

the recent successes achieved by many deep learning applications can be credited

to the availability of databases with massive training data, such as ImageNet [9]

and WordNet [75].

Unsupervised learning differs from the supervised learning because it aims to

estimate the distribution of an unlabelled training data. Early applications of un-

supervised learning concentrated on statistical data analysis, such as clustering

(e.g., K-means [76]) or signal separation (e.g., PCA [77]). In addition, unsuper-

vised feature learning can estimate a feature embedding through the modelling of

a transformation that maps the input data to itself (e.g., Auto-encoder [78, 79]).

A recent application of unsupervised feature learning is the generative adversarial

network [80], which can generate realistic synthetic images that are perceptually

similar to the original training data.

Reinforcement learning consists of a learning process that attempts to interact

with a dynamic environment through a series of actions with the objective of max-

imising a pre-defined reward. Recent reinforcement learning works involve game

control [74, 81], image generation [82] and object recognition [83, 84] domains.

2.1.1 Deep Learning

Deep learning is a broad concept, where any application that involves the use of neural

networks containing a relatively large number of hidden layers (more than five [27])

can be classified as a deep learning work. The origin of using neural networks in vi-

sual recognition can be traced back to Rosenblatt’s Mark I perceptron system [85] in

1957. The neural connectively pattern found by Hubel and Wiesel [86] inspired the

early developments of the CNNs, from Neocognitron [87] to LeNet-5 [47], leading to

the popularity of neural networks at the end of the last century. In particular, the de-

velopment of the CNNs [47, 88–90] were not possible without the introduction of the

back-propagation algorithm [91].
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A CNN model is a high-capacity multiple layer nonlinear classifier, which is commonly

viewed as a convolutional feature learning model followed by a simple linear classifier.

An important assumption is that the feature learning model (i.e., the convolutional fil-

ters) is to be learned from the training data. However, due to relatively small sizes of

common object recognition datasets until 2010, CNN models were hard to train, and

therefore neglected by the computer vision community. At the same time, the Support

Vector Machine (SVM) [10] was favoured by the visual recognition field, which led to

a considerable interest in hand-crafting relevant image features. Therefore, the advanc-

ing of image understanding in the first decade of the 21st century can be credited to

the development of hand-crafted image representation, from earlier SIFT [1], HOG [2],

bag-of-word presentations [3–5] to the more recent Fisher Vector [6] and deformable

part models [7]. A common characteristic of these representations is that they are care-

fully designed low-level local image-patch based descriptors. It is arguable that the

hand-crafted feature descriptors are functionally comparable to the convolutional filters

in the first layers of a CNN [70],

With the rise of GPU computation and the appearance of large-scale datasets [9, 75],

most of the current decade has witnessed a stunning performance improvement of deep

CNNs in a wide range of visual tasks [30, 68–71]. Such resurgent popularity of CNN

has happened after the Alex-Net CNN model [22] won the 2012 ImageNet Large-Scale

Visual Recognition Challenge (ILSVRC) [9], showing significantly better results than

the competing methods. More recent deep CNN models commonly have between ten [8,

23, 25, 33, 34] to a thousand convolution layers [24], involving millions of parameters.

It can be expected that the development of computation hardware may allow much

deeper models to be designed.

2.2 Nonlinear Classification on Deep Learning Features

The current mainstream methodology to classify a new image dataset is based on the

transferring of a pre-trained CNN model [16], where the features extracted from this

model are then used to represent the images from the new dataset, and this represen-

tation is then used to train a linear SVM [10] or a softmax classifier. While the linear

classifiers can be efficiently trained and tested, the problem is that their low capacity

offers limited accuracy. On the other hand, the shallow high-capacity classifiers, such

as Boosting [11] and kernel SVMs [10], can handle more difficult classification prob-

lems than linear classifiers but at the cost of a high runtime complexity, a large memory
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footprint, and the risk of overfitting. It may be possible to achieve a good balance be-

tween these two extremes with hierarchical nonlinear classifiers that are built with low

capacity classifiers. In this section, we first survey the works that use CNN features

with linear classifiers, followed by a discussion of the advantages and disadvantages

of shallow and hierarchical nonlinear classifiers in order to motivate our proposal in

Section 3.3.

2.2.1 Background

The use of CNN as a feature extractor machine has been explored by many works [8, 16,

30, 68, 70]. Oquab et al. [70] show that the image representation learned by CNN from

a large-scale dataset can be transferred to other vision tasks containing smaller amount

of training data and produce state-of-the-art results. In this method, the parameters

of the convolution layers of a pre-trained model are retained, while the parameters of

the (fully-connected) classification layers are reinitialised. This reinitialised model is

then trained on the target dataset, which shows better performance than training a new

model from scratch. Razavian et al. [16] point out that the CNN mid-level activations

can be used off the shelf, where only a simple classifier needs to be trained on the

target task to obtain state-of-the-art performance. Chatfield et al. [8] show that the

off-the-shelf CNN features from the VGG-CNN model (a much deeper model) can

produce much more accurate classification result than the previous bag-of-features [3–

5] and Fisher vector representation [6]. Two characteristics of the CNN features may

explain why linear classifier is favoured in the above works. The first characteristic

is that the CNN model is a combination of a complex feature extraction model and

a simple classification model. The feature model is trained with a large amount of

image data from the ImageNet dataset [9], making it less prone to overfitting. This

results in a sparse localisation of data points in the feature space, which is suitable

to be used with linear classifiers. The second characteristic of CNN features is that

the dimensionality of the CNN features is usually very high (i.e., 4096 dimensions),

causing the nonlinear classifiers to be less attractive due to high memory and runtime

complexities. Nevertheless, Yosinski et al. [13] have pointed out that if the dissimilarity

between the source and target tasks is large, the performance benefits of transferring

features decrease. In this case, our hypothesis is that the transferred features are no

longer linearly separable. Therefore, a nonlinear classifier could be used to address the

nonlinearity caused by the cross task dissimilarity.
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We begin the introduction of nonlinear classifiers with the following models: Boost-

ing [11] and kernel SVMs [10]. The Boosting [11] classifier is based on the principle

that a strong classifier can be made by a combination of weak classifiers, where individ-

ual weak classifiers perform better than random guess [92]. The commonly used Ad-

aBoost [11] method iteratively adds weak classifiers to build a strong classifier, where

each new classifier focuses on correcting the mistakes made by the strong classifier from

the previous iteration. Assuming that the training of each weak classifier, e.g., a single

level decision tree, involves the estimation and comparison of low capacity classifiers

in all possible feature spaces, where the feature space has D dimensions and N training

samples are available, the complexity of training each weak classifier is O(DN). On

the other hand, if one uses all features to build a decision tree for each weak classifier,

then the runtime complexity of the full training process is O(D2N) and the testing run-

time complexity is O(D) for each weak classifier. Therefore, we can see that the main

obstacles in the use of the Boosting classifier with CNN features is the runtime com-

plexity that can grow quadratically with the feature dimensionality. Kernel SVM [10]

projects all the training samples to an infinite-dimensional kernel space, which defines

the nonlinear transformation. Two commonly used kernel functions are the polynomial

function and the radial basis function. In the kernel space, a linear SVM classifier is built

to fulfil the classification task. Due to the computational cost of the kernel, the training

has runtime complexity O(DN2) and a testing runtime complexity O(DN)–this means

that the most prominent constraint to train a nonlinear SVM with CNN features is the

number of images in the training set. For a linear SVM, the training runtime complexity

is O(DN) while testing is O(D). It is important to note that, overfitting may happen

to both types of classifiers given their large capacities, which can be alleviated with

regularisation techniques (e.g., L1/L2 regularisation).

We emphasise that the issue with shallow nonlinear classifiers is the fact that they have

a potentially large capacity that may result in training overfitting. To address this is-

sue, many works have proposed the use of hierarchical classifiers that distribute the

nonlinear capacity into several steps. The boosted cascade classifier [93] implements a

degenerate binary tree with each node being a Boosting classifier. The nodes that appear

early in the cascade filter out easily distinguishable cases with a small subset of features,

and delay the hard cases to nodes that show later in the cascade. The advantage of the

boosted cascade is a quick training and testing processes, especially when the image

dataset has imbalanced positive and negative training sample distributions. However,

the disadvantage of the boosted cascade is that it requires manual setup to control the

false-positive ratio and accuracy for each cascade level. The probabilistic boosting tree
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(PBT) [67] is a full binary tree structured classifier that also uses a Boosting classifier in

each node. Nevertheless, PBT handles hard cases (in terms of the probability of classifi-

cation) by sending them to both the positive and negative branches for re-classification.

Note that both methods use Boosting classifiers as tree nodes, hampering their gen-

eralisation abilities and increasing the training and testing costs. The discriminative

learning of relaxed hierarchy (DLRH) [94] is another binary tree classifier, where each

node has a nonlinear SVM classifier. This method is specifically designed for handling

multi-class classification problems. The gist of this method is based on a class-wise

relaxation, where the tree nodes recursively divide separable classes into two branches,

and the remaining classes that could not be properly classified are carried over to both

branches until the multi-class problem is reduced to a set of binary classification prob-

lems and the classification only happens at the leaf nodes. The intermediate nodes of

DLRH are not able to produce classification results directly like the cascading classifier

and PBT. The common characteristic amongst the above approaches is the use of high

capacity decision rules at the tree nodes, where the shallow classifiers have high run-

time complexity as mentioned above, which makes the hierarchical classifiers not ideal

to be used with the CNN features. We also point out that the common weakness of the

above methods is that any mistakes made by one of the early nodes in the tree cannot

be recovered by the nodes down the tree.

We describe the proposal of our nonlinear classifier in Section. 3.3, which is designed

to address the high runtime complexity issue of the hierarchical classifiers with the use

of linear classifiers as tree nodes, i.e., we use linear logistic regression classifiers as

intermediate tree nodes and linear SVMs as leaf nodes. Moreover, the tree nodes in

our classifier are trained by a loss function that minimises the classification error in a

non-greedy way, which postpones hard classification problems to further down the tree.

Furthermore, our training method is an iterative approach, which is able to re-configure

the tree structure based on the classification performance.

2.3 Piecewise Linear Activation Units

Activation functions of deep learning models have been developed in order to intro-

duce nonlinearities to the model and to handle vanishing gradient problems. Currently,

piecewise linear functions [27, 48, 50, 51, 53, 54, 95] have been widely used as activa-

tion units in state-of-the-art deep learning models. It has been shown in [27, 96] that

the multiple layers of piecewise linear activation units can increase model capacity by
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FIGURE 2.1: Piecewise linear activation functions: ReLU [48], LReLU [50],
PReLU [51], and a rank-4 (k = 4) Maxout [53].

breaking the input space into an exponential number of activation regions. However,

the main issue is that the exponential model capacity may be reduced if many of these

activation regions are inactive during training and inference, which wastes model ca-

pacity. Moreover, this issue also leads to ill-conditioned training because the reduced

piecewise linear activation functions act like linear activation functions that can either

diminish or amplify the gradient during back-propagation. In this section, we first con-

vey the importance of the model capacity issue, followed by a discussion of current

methodologies that deal with this issue to motivate our proposal in Section 3.4.

2.3.1 Background

The piecewise linear activation units introduce model nonlinearities through a division

of input space into several linear regions, where a linear decision boundary is placed

within each region. It has been found in [27] that a multiple layer composition of

piecewise linear units allows an exponential division of the input space with respect to

the number of the layers. Another common trait of the piecewise linear units found

by [96] is that they promote local competition amongst the activation regions within

the unit to activate for each training sample. Therefore, the modelling power of deep

learning methods that rely on piecewise linear units can be described as the ability to

activate different linear regions (sub-networks) for different patterns and also to be able

to activate similar regions to similar patterns. In addition, these sub-networks share their

parameters, so even though these sub-networks are formed and trained with a small

number of training samples, they are not prone to overfitting, resulting in an implicit

regularisation of the training process [27, 96].

To efficiently utilise the model capacity, an important assumption is that a large pro-

portion of the sub-networks should be utilised by the data samples during training and
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inference, while each data sample should active relatively small portions of the network.

This means that in a piecewise linear unit, each linear activation region should contain

sufficiently large number of training points. For example, the most widely used rectifier

linear unit (ReLU) [48], and variants (Leaky-ReLU [50], Parametric-ReLU [51], and

Randomised Leaky-ReLU [95]) maintain two set of points, one locating on the negative

side and another in the positive side of the activation function domain (marked as region

1 covering the negative side and region 2 on the positive side in ReLU and {P,L}ReLU

cases in Figure 2.1). In addition, in the Maxout [53] and the Local-winner-takes-all

(LWTA) units, k sets exist to cover the k regions of the activation function domain (see

the Maxout case in Figure 2.1). If the training samples do not fill the domain covered

by these k regions, a piecewise linear activation unit is degenerated to a linear function,

localising all points in one region. A large proportion of activation units in a learning

model acting like linear units reduces the ability to form an exponential number of ac-

tivation regions in the input space, hence reducing the model capacity. Meanwhile, the

degeneration of the piecewise linear unit can also lead to ill-conditioned training. Tak-

ing the ReLU unit as an example, let us assume that the negative region of the activation

domain contains all points, causing this unit being inactive (i.e., the “dying ReLU” prob-

lem [50]) and the training gradient to vanish; or if we assume that the positive region

contains all points, resulting in a linear shifting of training point distribution that affects

the magnitude of the gradient as all training points produce a positive gradient, which

can potentially become too large. Either way, the aforementioned issue can lead to an

ill-conditioned training

The “dying ReLU” issue has been addressed by the variants [50, 51, 95] to allow a weak

activation in the negative region so that a small non-zero gradient pushes ReLU out of

the inactive state. Batch Normalisation [45] implements a normalisation in between the

linear function and the ReLU activation, which can help keeping a balanced point distri-

bution for the two activation regions of ReLU. The same issue has been acknowledged

by Goodfellow et al. [53] for the Maxout unit, where the dropout [40] unit has been

proposed to regularise the input to the linear pieces. Nevertheless, dropout may keep

input points closer to the origin but cannot guarantee a more balanced distribution of

the points in terms of the activation function domain. Furthermore, dropout is a regu-

larisation technique that does not pre-condition the model. In conclusion, these issues

mentioned above remain with dropout. These problems can be addressed by allowing a

more balanced distribution at the input of the piecewise linear units. In this sense, we

believe that the Batch Normalisation unit should be able to pre-condition the Maxout
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activation unit, which leads to our proposal of batch-normalised Maxout activation unit

described in Section 3.4.

2.4 Multiple-size Features in Deep Learning

State-of-the-art CNNs commonly use convolution layers containing filters of small size

for reducing computation and regularising training [24, 25, 33–37], at the cost of losing

the ability to discover multi-scale features within the same layer. The use of multi-scale

features in CNNs has been studied before [15, 29, 97–99], but it is still a challeng-

ing topic. In this section, we introduce the current methodologies that use multi-scale

features.

2.4.1 Background

The scale of the feature is an important factor in designing traditional hand-crafted im-

age representation, where the common framework is to extract features from multiple

scales that are combined by a pooling operation. On the other hand, the generic CNN

architecture is not designed to take the scale of features into account, especially the

current state-of-the-art networks that rely on uniform convolutional filter sizes which

potentially reduce the ability of the model to find features at various scales. In order to

add multi-scale information, Eigen et al. [15] implement a multi-modal network, where

each model use different architecture that involves the use of different filter sizes, num-

ber of layers, and pooling operations. Another approach is to use the spatial pooling

architecture to extract multi-scale information from feature maps, such as the Spatial

Pyramid Pooling [98] and the Multi-scale Orderless Pooling [97]. The common prob-

lem with the above methods is that the multi-scale feature is hand-designed, and is

usually extracted at a quite coarse scale.

A more relevant approach is the use of multiple-size filters to discover the multi-scale

features. Based on a neuroscience model [100, 101], Serre et al. [102] proposed the use

a group of multi-size Gabor filters to handle features at multiple scales, followed by a

max-pooling operation. The recent GoogLeNet [29] model implements the inception

module, which concatenates a set of multiple-size features. One extension from [102]

to [29] is a much deeper model with learn-able filters, where the model in [102] has only

two layers while the GoogLeNet architecture has 22 layers. However, the concatenation
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design of the inception module can cause a massive growth in the number of output

channels of the module, resulting in an undesirable over-parametrisation of the module.

This issue has been acknowledged by Szegedy et al. [29] with the use of additional 1×1

convolutions (originally used as a layer that reduces computation cost, allowing for an

increase in the number of layers of the Network-in-Network (NIN) model [31]) before

the multiple-size layers to reduce the input dimensionality of the filters.

It should be pointed out that the basic structure of the Maxout unit [53] (i.e., max-

pooling a group of convolution features, mentioned in Section 2.3) resembles the afore-

mentioned neuroscience-inspired hierarchical model [102], where the main difference is

that the Maxout unit does not take the multi-size filters into account. Therefore, we fol-

low this intuition to integrate these two methods in one CNN module: the multiple-size

Maxout unit. As a variation of Maxout unit, this module is also a competitive piecewise

linear activation unit (described in Section 2.3), where we adapt the same technique

to solve the model capacity and ill-conditioned training issues that potentially could

happen to this unit. That is, we use Batch Normalisation to normalise the output of

the the multiple-size filter responses. We call this module Competitive Multiple-size

Convolution activation unit, where the details of this unit are described in Section 3.5.

2.5 Measuring the Performance of Residual Networks

The deep residual networks (ResNets) [24, 42, 103] are showing extremely accurate

performance over a broad range of visual classification tasks. ResNets (similarly to

most deep learning models) are commonly trained with the stochastic gradient descent

(SGD) method [55], or any of its variants [56–59]. The reason behind the wide use of

SGD methods is that they can produce robust training results in terms of good conver-

gence and generalisation, and at the same time requires a relatively low run-time and

memory costs. However, it is commonly the case that behind the success of the ResNet

or any of the state-of-the-art deep learning models is a set of carefully selected generic

training hyper-parameters, such as the mini-batch size, learning rate, model structure,

and a set of model parameters, such as the stochastic depth drop rate (introduced by [42]

for regularising the ResNet). However, current methods available to train deep learning

models present no reliable guidelines on how to select these hyper-parameters mostly

because classical training analyses need to look at the second order information from the

Hessian, which is computationally hard to be obtained from state-of-the-art deep learn-

ing models, such as the ResNet model. In this section, we first introduce the SGD [55]
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methods, followed by an overview of the second order (approximated) Hessian meth-

ods [55, 104–107] and the recent popular scaled gradient iterations methods [56–59].

Finally, we discuss approaches [26, 60–63, 65] that use numerical experiments to mea-

sure key aspects of SGD training.

2.5.1 Background

SGD [55] is a common first-order iterative optimisation method that has wide usage in

deep neural networks training. One of the main goals of SGD is to find a good balance

between the stochastic approach (i.e., using one random training sample to estimate the

gradient in each iteration, where the speed is faster but gradient estimation is inaccurate)

and the batch approach (i.e., using the full training set in each iteration, which is slow

but accurate) to provide a favourable trade-off with respect to per-iteration costs and ex-

pected per-iteration improvement in minimising an objective function. The popularity

of SGD in deep learning lies in the tolerable computation cost with acceptable conver-

gence speed, where second order methods are less-favoured due to the large number of

parameters in deep learning models.

Second-order methods are designed to improve the convergence speed of first order

methods by re-scaling the gradient vector in order to address the high nonlinearity and

ill-conditioning issues of the objective function. In particular, Newton’s method uses the

inverse of the Hessian matrix for rescaling the gradient vector. This operation has com-

plexity O(N3) and the storage of Hessian is O(N2) (where N is the number of model

parameters, which is usually between O(106) and O(107) for modern deep learning

models), making the method infeasible. Besides, the Hessian must be positive definite

for Newton’s method, which is not a reasonable assumption for the training of deep

learning models.

In order to avoid computational overload, several approximate second-order methods

have been developed. For example, the Hessian-free conjugate gradient (CG) [108]

is based on the fact it only needs to compute Hessian-vector products, which avoids

the explicit computation of the Hessian and can be efficiently calculated with the R-

operator [109] at a comparable cost to a gradient evaluation. This Hessian-free method

has been successfully applied to train auto-encoder networks [110]. However, as pointed

in [55], the Hessian-vector product is at least as expensive as a gradient evaluation, so

the advantage of the accurate CG gradient estimation may be shrouded by the per-

iteration overhead, rendering such method uncompetitive compared to the SGD method
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or limited memory BFGS (L-BFGS) [105] method. In [111], a stochastic Hessian-free

CG method has been proposed to reduce the computation by using a smaller sample

size. Nevertheless, Hessian-free CG methods have only been applied to medium size

networks, which means that the effect on large scale models remains unclear.

Quasi-Newton methods (e.g., the BFGS [55, 104]) take an alternative route and approx-

imate the inversion of the Hessian with only the parameter and gradient displacements

in the past gradient iterations. Nevertheless, the computation of this approximation ma-

trix is also infeasible in large optimisation problems, where the L-BFGS [105] method

is proposed to reduce the memory usage. However, the L-BFGS method is not widely

used in the deep learning context due to two main reasons: 1) similarly to the Hessian-

free CG, the accurate gradient estimation cannot justify the high per-iteration cost; 2)

small sampling size can help reduce the cost but leads to poor Hessian approxima-

tion [112, 113].

The (Generalised) Gauss-Newton method [106, 107] approximates Hessian with the

Gauss-Newton matrix. The approximation of the Gauss-Newton matrix requires the

multiplication of the Jacobian matrix to its transpose, whose row elements have already

been computed as a per-sample gradient during the SG iteration, which makes it practi-

cally free to obtain. However, this is not always true in training deep learning networks

with back-propagation, where the mini-batch gradient is implicitly averaged by under-

ling deep learning libraries. Another approximate second-order method is the natural

gradient method [114], which uses the inverse of the Fisher information matrix to make

the search quicker in the parameters that have less effect on the decision function [55].

Note that on a multinomial logistic regression model, the Fisher information matrix is

essentially equivalent to the Gauss-Newton matrix [55]. Since the Fisher information

matrix is computationally expensive to compute, it is common to compute the empiri-

cal Fisher matrix using a subset of the training samples [115, 116]. The (Generalised)

Gauss-Newton methods and natural gradient method also share the same O(N2) mem-

ory complexity as the other Hessian approximation methods do.

Without estimating the second-order curvature, some methods can avoid saddle points

and perhaps have some degree of resistance to near-singular curvature [55]. For in-

stance, AdaGrad [57] accumulates the square of the gradients of past iterations to re-

scale each element of the gradient, so that parameters that have been infrequently up-

dated are allowed to have large updates, and frequently updated parameters can only

have small updates. Similarly, RMSProp [56] normalises the gradient by the magnitude
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of recent gradients. Furthermore, Adadelta [58] and Adam [59] improve over Ada-

Grad [57] by taking more careful gradient re-scaling schemes. Even though these meth-

ods do not use the second order information, they have been reported to work well in

training deep neural networks and the additional computation cost is negligible. How-

ever, these methods depend on the assumption that the parameters should pace evenly

along the searching directions even if the actual local information may suggest other-

wise. When training very deep ResNets, several reports show that these methods do not

necessarily outperform the vanilla SGD [117, 118].

Given the difficulty of using second-order methods in training deep learning models,

there has been some interest in the implementation of approaches that can characterise

the functionality of SGD optimisation. Choromanska et al. [60] use the spin-glass model

to evaluate fully-connected networks and suggest that large size networks (in terms of

the number of units in hidden layer) contain many local minima that are equivalent in

terms of test performance. A theoretical analysis that use of the spin-glass model to

evaluate residual networks can be found in [61]. Furthermore, Lee et al. [63] show

that SGD converges to a local minimiser rather than a saddle point (with models that

are randomly initialised). Soudry and Carmon [62] provide theoretical guarantees that

local minima in multilayer neural networks loss functions have zero training error. We

emphasise that the above works characterise the loss function in terms of their local

minima, which is interesting but not useful in providing a helpful guideline for char-

acterising the training procedure from beginning to end. Furthermore, some of these

analyses [60, 62] conduct experiments on small size networks, so the SGD behaviour

and the shape of the loss function during the training of very deep networks is still

unclear.

Recently, some methods been developed to characteristic neural network training by

looking at the second order information of the eigenvalues of the Hessian. The exact

Hessian eigenvalues of a two-layer network has been studied [65] in order to assess

the complexity of the training problem and whether the system is over-parameterised.

This work suggests that the Hessian of the loss function of the network is very singu-

lar, which argues methods that assume non-singular Hessian are not to be used without

proper modification [65]. This finding is interesting but the methodology is infeasible to

be extended to modern ResNets due to the high computational complexity of processing

the Hessian. Goodfellow et al. [64] proposed a linear subspace experiment to charac-

terise the training path taken by the SGD optimisation, which shows that state-of-the-art

models do not encounter significant obstacles (local minima, saddle points, etc.) during
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the training. This method provides valuable insight and can be applied to models with

high complexity, but as Goodfellow et al. [64] state in their work, this result is obtained

only on well-performing models, so it is not possible to say whether SGD never en-

counters obstacles during training or SGD works well when it does not encounter these

structures. In [26], a new sensitivity measurement of energy landscape is used to pro-

vide empirical evidence to support the argument that training with large mini-batch size

converges to sharp minima, which in turn leads to poor generalisation. In contrast, small

mini-batch size converges to flat minima, but performance degenerates due to noise in

the gradient estimation. Though it is very relevant to our proposal, this work [26] fo-

cuses only on mini-batch size. In Section 3.6, we show that our proposed measures are

able to characterise SGD optimisation with respect to not only mini-batch size but also

to model structure, learning rate and stochastic depth rate.

2.6 Conclusion

The methodologies described in the sub-sections above cover four topics in deep learn-

ing: nonlinear classification using CNN features, piecewise linear activation function,

multi-scale feature learning, and network training analysis. In general, even though

deep learning has been widely used and has achieved stunning results in many areas, our

understanding of it still has many gaps. The nonlinear classification using CNN features

is rarely explored due to the complexity of nonlinear classifiers and the dimensionality

of the CNN features. One of the main issues of the piecewise linear activation function

is to maintain a balanced distribution of training samples across the activation domain to

fully utilise the exponential capacity of the model. Furthermore, current state-of-the-art

models focus on the implementation of deep and wide models, but they neglect many

other aspects, such as the multi-scale nature of the learned features. Also the training

of deep learning models does not have reliable guidelines, leaving the training process

to be evaluated only based on the objective function and the classification performance.

Our proposed methodologies target the above issues, and we show the performance of

our methods are competitive with the state-of-the-art methods on publicly available and

widely used datasets.
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Methodology

3.1 Overview

This chapter introduces the techniques that we use to develop our proposed methods.

Section 3.3 is devoted to the explanation of our nonlinear tree structured classifier,

which is designed to handle large dimensional input features such as the CNN fea-

tures. This classifier is built with linear classifiers and trained with a novel non-greedy

loss function that delays hard classification problems to further down the tree. In Sec-

tion 3.4, we show an extension of the Network-in-Network (NIN) [31] model by re-

placing the ReLU [48] activation unit with Maxout [53] activation unit to increase the

model capacity, and also placing a Batch Normalisation unit [45] before the Maxout unit

to maintain the model capacity and to pre-condition the model. This model is named

the Maxout Network in Maxout Network (MIM). We adopt the use of multiple-size

filters in the aforementioned batch-normalised Maxout activation unit in Section 3.5 to

allow capturing multiple-size features in a single convolutional module. We call this

new CNN module the Competitive Multiple-size Convolution module. Finally in Sec-

tion 3.6, we introduce two measures: the cumulative sum of the condition number and

the cumulative sum of the Laplacian of the approximate Fisher matrix, which can be

efficiently calculated during the training of state-of-the-art ResNet [24] model in order

to characterise the behaviour of the training of hyper-parameters.
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3.2 Datasets

In this section, we define the datasets used to evaluate the methods proposed in this

thesis.

CIFAR-10 [72] is a publicly available benchmark that is used to evaluate the perfor-

mance of the classification methods. It consists of 60000 32 × 32 RGB images, where

50000 images are for training and the rest 10000 for testing. The CIFAR-10 images are

sourced from 10 visual object categories including six animals species and four types of

vehicles, where each category has 5000 training images and 1000 testing images. The

specification of CIFAR-100 [72] is an extension of the CIFAR-10 dataset, except the

CIFAR-100 dataset has 100 classes and grouped in 20 super-classes, where each class

has 500 training images and 100 testing images. By convention, the classification per-

formance is measured on the 10 classes for CIFAR-10 and 100 classes for CIFAR-100.

In both CIFAR-10 and 100 datasets, the visual objects are well-centred in the images.

We show measures and performance evaluations of deep learning models that are trained

with the above datasets to give empirical support of our arguments and methodologies.

In Section 3.5, we use CIFAR-10 trained CNN models to illustrate the similarity be-

tween convolutional filters within competitive units. We also use CIFAR-10 pre-trained

models to test the transferability of the model by fine-tunning on the CIFAR-100 task.

In Section 3.6, we show an example of using the proposed two measures to characterise

the training procedure of ResNets by evaluating the CIFAR-10 task.

The MNIST[47] dataset is a hand-written digit recognition dataset which contains 60000

training and 10000 testing 28× 28 gray-scale images. The Street View House Number

(SVHN) [119] dataset is a real-world house number plate digit recognition dataset with

over 600000 32 × 32 RGB images, partitioned into training (∼73000 images), testing

(∼26000 images) and extra (∼530000 images) sets. The SVHN images keep the digit

of the interest at the centre and the neighbouring distracting digits on the same house

number plate. Both digit recognition datasets are used to provide additional evaluation

to our proposed batch-normalised Maxout activation unit (proposed in Section 3.4 and

evaluated in Chapter 5) and Competitive Multiple-size Convolution module (CMSC)

(proposed in Section 3.5 and evaluated in Chapter 6).

The PASCAL VOC 2007 [66] (VOC07) is another publicly available visual classifica-

tion benchmark with the goal of recognising objects from 20 visual classes (including

people, animal, vehicle and indoor objects) in high resolution realistic images, in con-

trast to the aforementioned small pre-segmented MNIST, CIFAR and SVHN images.
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Furthermore, these images are in arbitrary sizes and the objects of interest may appear

in any location on the image. In Chapter 4, we show the classification performance of

our nonlinear classifier (proposed in Section 3.3) on two types of CNN features gener-

ated from VOC07 images.

The ImageNet Large-Scale Visual Recognition Challenge [9] 2012 (ILSVR12) dataset

contains more than 1 million training images and 50000 validation images, catalogued

into 1000 object classes, where the style of the images is similar to VOC07. In addition

to evaluate top-1 accuracy (i.e., evaluating the prediction with highest confidence score

against the ground truth label), the classification performance is also measured by top-5

accuracy (i.e., the prediction is assumed to be correct if one of the top five predictions

contains the ground truth). We use the ILSVR12 dataset to evaluate the performance of

our (Competitive Multiple-size Convolution) CMSC module on large-scale dataset in

Chapter 6.

3.3 Non-greedy Hierarchical Classification

Assume that an image is represented by a feature vector x ∈ RD, the image label is

represented by the variable y ∈ {−1, 1}, and the binary tree classifier has one root node

that classifies samples using a hidden variable b ∈ {−1, 1} (which indicates the left

child by −1 and right by +1). Then the inference is defined by the following problem:

y∗ = arg max
y∈{−1,1}

∑

b∈{−1,1}
P (y|x, b, θb)P (b|x, θ1), (3.1)

where θb, θ1 ∈ RD denote the classifier parameters of the leaf and root nodes, respec-

tively. Figure 3.1-(a) shows the tree structure of this inference. This inference can be

extended to a tree with three levels (see Figure 3.1-(b)), as follows:

P (y|x,Θ) =
∑

b(1)

∑

b(2)

P (y|x, b(1), b(2), θb(1,2))P (b(2)|x, b(1), θb(1))P (b(1)|x, θ1), (3.2)

where b(1), b(2) ∈ {−1, 1}, and we assume that the classifier in the root node is rep-

resented by the variable θ1, its left child by θb(1)=−1 and right child by θb(1)=+1. The

extension to higher trees is then trivial.

For the learning procedure, assume the availability of a training set T = {(xi, yi)}Mi=1

and a validation set V = {(xi, yi)}Qi=1. The description of the learning methodology is
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FIGURE 3.1: A two-level binary tree classifier (a) described by (3.1), and a three-level
tree classifier (b) described by (3.2), where the root and intermediate nodes depend
on hidden variable b that geometrically divides the space (straight lines), and the leaf
classifiers produce label y that classify the points (dotted lines). The coloured points

represent the binary classification problem in both cases.

clearer if we assume the tree has only one parent node (the extension to larger tree is

again trivial), where the ideal learning process uses the training set T as follows:

{θ∗b , θ∗1} = arg max
{θb,θ1}

M∏

i=1

∑

bi

P (yi|xi, bi, θb)P (bi|x, θ1), (3.3)

where we assume that the training samples are i.i.d. and bi ∈ {−1, 1}. Equation 3.3 in-

volves the maximisation of two functions, which are hard to be optimised jointly, so we

break this optimisation into the following iterative algorithm containing two alternating

stages, where we assume that the parameters θ(t−1)b and θ(t−1)1 are known at stage (t):

θ
(t)
1 = arg max

θ1

M∏

i=1

∑

bi

P (yi|xi, bi, θ(t−1)b )P (bi|xi, θ1),

θ
(t)
b = arg max

θb

M∏

i=1

∑

bi

P (yi|xi, bi, θb)P (bi|xi, θ(t)1 ).

(3.4)

Essentially, this learning procedure involves the division of the training samples into

two clusters, one representing the left child samples (labelled as b = −1) and the other,

the right child samples (labelled as b = +1). After this division is performed, the

parameter θ1 of the classifier P (b|x, θ1) is estimated, and then, the classifier associated
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FIGURE 3.2: Comparison between the learning of the root node classifier parameter
θ1 (in a binary classification problem, with labels ’+’ and ’-’) using our proposed loss

function in (3.5) in comparison to the ”greedy” loss function in (3.4).

with each child can have its parameter θb estimated based on the samples belonging to

that child (which is decided based on P (b|x, θ1)). We consider this training process to

be greedy because we maximise the classification probability P (y|x, b, θb) even when

splitting the training points to the left or right children. Our main contribution in this

method is the proposal of a non-greedy loss function used for the estimation of θ1 in

(3.4), which also delays hard classification problems.

The motivation for our proposed loss function is based on the graphs shown in Fig-

ure 3.2. Assuming that both P (y|x, b, θb) and P (b|x, θ1) are represented by linear clas-

sifiers (which means that θb and θ1 are vectors denoting the normal vectors of the learned

hyperplane), notice that if we try to maximise P (b|x, θ1)P (y|x, b, θb) when estimating

θ1, using the depicted initial guess (graph on left), we will greedily label the ’+’ points

with ’+1’ (right child) and the ’-’ points with ’-1’, which generates a very difficulty

learning problem in the next iteration of the algorithm (graph on the bottom of Fig-

ure 3.2). On the other hand, our loss function has a shape depicted by Figure 3.3, which

means that

1. if the classifiers in both children generate a correct classification (or both are

incorrect), pick the one (with its respective child label) with the closest hyperplane

(which allows the hyperplanes assigned with geometrical close training samples

in the next iteration);

2. if the classifier of only one child is correct, pick the correct one as long as it is

not farther from the margin than the incorrect one (which gives a chance for the
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FIGURE 3.3: Shape of the proposed loss function (3.5), where dotted red shows the
region where classification is incorrect, solid orange displays the margin region of

Hinge loss, and dashed green depicts correct classification.

incorrect training samples to be re-classified by the geometrical closer hyperplane

in the next iteration).

This means that in addition to performing a division of the training samples without

trying to greedily minimise the classification error (item (1) above), we also delay the

hard classification problems to later stages of the binary tree [67, 94], as depicted in top

part of Figure 3.2. The loss function depicted in Figure 3.3 is defined by:

f(bi;xi, yi) =
∑

b

∆b(xi, yi)δ(bi − b), (3.5)

with δ(.) denoting the Dirac delta function and

∆b(x, y) = γmax(0, 1− y(θ>b x)) + max(0, y(θ>b x)− 1), (3.6)

where γ ∈ R+ is a scalar that weighs the relative importance of the two terms in (3.6),

and θb denotes the parameter of a linear SVM classifier learned for each child node b

using the training samples xi, yi where bi = b.

The proposed learning algorithm iterated steps 1-3 below (until convergence), assuming

that we have the estimated value for θ(t−1)b :

1). For each training sample i ∈ {1, ...,M}, determine its label bi with:

b
(t)
i = arg max

b∈{−1,+1}
f(bi;xi, yi), (3.7)

defined in (3.5) and using θ(t−1)b ;
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2). Estimate θ(t)1 , as follows:

θ
(t)
1 = arg max

θ1

M∏

i=1

P (b
(t)
i |xi, θ1),

= arg min
θ1

1

2
‖θ1‖2 + λ

M∑

i=1

log(1 + exp(−b(t)i θ>1 xi)),
(3.8)

which is a logistic regression classifier;

3). Estimate θ(t)b , with:

θ
(t)
b = arg max

θb

M∏

i=1

P (yi|xi, b(t)i , θb)δ(b(t)i − b)

= arg min
θb

1

2
‖θb‖2 + λ

M∑

i=1

max(0, 1− yi(θ>b xi)),
(3.9)

for b ∈ {−1,+1}, which is the definition for the linear SVM classifier (note that we

use the soft margin training that allows for non-separable problems).

The initialisation of this algorithm is achieved with the K-means clustering (with two

clusters) considering the set {xi|yi = +1, (xi, yi) ∈ T
⋃V}. We run this clustering 20

times and pick the labels bi for the case that minimises the loss in (3.5), and then we

run from step (2) of the algorithm above. The stopping criterion is also based on the

computation of the loss in (3.5), where when the loss difference between two iterations

is smaller than a threshold ε, then we stop iterating.

Finally, there is also a model selection problem involved in this method concerning the

structure of the binary tree, where after convergence, we verify a condition to determine

if we will backtrack to the previous structure or keep the current tree structure and thus

continue to grow the tree. The initial tree contains only the root node presented as a

linear SVM classifier (i.e., this is the original classifier found in previous works [8]),

and the condition that we use for model selection is the classification accuracy (e.g.,

mean average precision) measured in the validation set V using the latest trained tree.

This procedure can determine whether the expansion of the tree results in overfitting of

the training set T , and the backtracking to be previous tree restores the generalisation

ability of the whole classifier.

Compared to the greedy objective function in (3.4), our method can reduce the chance

that θ1 undesirably takes over the classification responsibility, leading to the triviality of

training θb by the assigned proportion of training samples (i.e., the assigned proportion
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of training data mostly belongs to one class). This is illustrated in the example depicted

at the bottom of Figure 3.2 – the “greedy” loss function, where the red dotted line θ1
divides two clusters that aligns with the ground truth label. However, we argue that

the performance of our method may not surpass the original objective in (3.3) if the

nonlinearity in the data distribution is minimal or the volume of training samples is not

sufficiently large, in which situation the high capacity classifiers prone to overfit the

training set.

3.3.1 Complexity Analysis

For each node expansion, we train three separate linear classifiers per iteration of our

algorithm. Therefore, we need K iterations in a tree with N nodes, where N ∈ [2h −
1, 2h+1 − 1], with h =maximum tree depth, so the training complexity of our method

is O(3KNDM) (recall that D is the feature size and M is the training set size), so this

means that compared to the linear classifier, our training is 3KN slower. Fortunately,

we can control the values for K and N by constraining the number of iterations and

the tree depth, and in general we have KN << D,M , which means that our training

is significantly faster than typical shallow nonlinear classifiers (see Section 2.2.1). The

testing complexity is essentially based on running h linear classifiers, which means that

the running time complexity is O(hD), which is just marginally larger than a single

linear classifier given that h ≤ 3, typically.

3.4 Batch-normalised Deep Learning with Piecewise Lin-

ear Activation Units

In this section, we first explain the piecewise linear activation units, followed by an

introduction of how the Batch Normalisation [45] unit works. We describe the proposed

MIM model at the end the this section, including its training and inference procedures.

The nomenclature adopted in this section is the same as the one introduced by Montufar

et al. [27], where a feedforward neural network is defined by the function Fnet : Rn0 →
Rout:

Fnet(x, θ) = fout ◦ gL ◦ hL ◦ fL ◦ ... ◦ g1 ◦ h1 ◦ f1(x), (3.10)
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where f(.) represents a preactivation function, hl(.) represents a normalisation func-

tion, gl(.) is a nonlinear activation function, fout(.) denotes a preactivation function

followed by a softmax activation function, and the parameter θ is formed by the input

weight matrices Wl ∈ Rk.nl×nl−1 and bias vectors bl ∈ Rk.nl of f(.) and normalisation

parameters γl and βl in (3.12) of g(.) for each layer l ∈ {1, ..., L}. The preactiva-

tion function is defined by fl(xl−1) = Wlxl−1 + bl, where the output of the (l − 1)th

layer is xl = [xl,1, ...,xl,nl
], denoting the activations xl,i of the units i ∈ {1, ..., nl}

from layer l. This output is computed from the activations of the preceding layer by

xl = gl(hl(fl(xl−1))). Also note that fl = [fl,1, ..., fl,nl
] is an array of nl preactivation

vectors fl,i ∈ Rk, which after normalisation, results in an array of nl normalised vectors

hl,i ∈ Rk produced by hl,i(fl,i(xl−1)), and the activation of the ith unit in the lth layer

is represented by xl,i = gl,i(hl,i(fl,i(xl−1))).

3.4.1 Piecewise Linear Activation Units

By dropping the layer index l to facilitate the nomenclature, the recently proposed piece-

wise linear activation units ReLU [48], LReLU [50], PReLU [51], and Maxout [53] are

represented as follows [27]:

ReLU: gi(hi) = max{0,hi},
LReLU or PReLU: gi(hi) = max{α.hi,hi},
Maxout: gi(hi) = max{hi,1, ...,hi,k}.

(3.11)

where hi ∈ R and k = 1 for ReLU, LReLU [50], and PReLU [51], α is represented

by a small constant in LReLU, but a learnable model parameter in PReLU, k denotes

the number of regions of the Maxout activation function, and hi = [hi,1, ...,hi,k] ∈
Rk. Note the difference between a Maxout function and a max-pooling function in the

context of CNN is that the Maxout is effectively an element-wise maximum operation

over k feature maps, which is also known as “channel-wise” pooling; on the other hand,

the max-pooling refers to select the maximum value over a small receptive window

on individual feature map, and commonly used to reduce the size of feature maps. It

should also be noted that a Maxout activation function with k > 1 increases the number

of parameters.

According to Montufar et al. [27], the network structure is defined by the input dimen-

sionality n0, the number of layers L and the width nl of each layer. A linear region of

the function F : Rn0 → Rm is a maximal connected subset of Rn0 . Note from (3.11)
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that rectifier units have two behaviour types: 1) constant 0 (ReLU) or linear (LReLU or

PReLU) with a small slope when the input is negative; and 2) linear with slope 1 when

input is positive. These two behaviours are separated by a hyperplane (see Figure 2.1)

and the set of all hyperplanes within a rectifier layer forms a hyperplane arrangement,

which split the input space into several linear regions. A multi-layer network that uses

rectifier linear units with n0 inputs and L hidden layers with n ≥ n0 nodes can com-

pute functions that have Ω
(
(n/n0)

L−1nn0
)

linear regions, and a multi-layer network

that uses Maxout activation units with L layers of width n0 and rank k can compute

functions that have kL−1kn0 linear regions [27]. These results indicate that multi-layer

networks with Maxout and rectifier linear units can compute functions with a number

of linear regions that grows exponentially with the number of layers [27].

To visualise the linear regions, we show a 2-D synthetic binary classification problem

in Figure 3.4, where these linear regions can be observed as the coloured polygons in

Figure 3.4-(a) and the number of linear regions is denoted by ”# SUBNETS”. The

specification of this toy problem is listed below. First, the samples are drawn (12K

for training and 2K for testing) using a uniform distribution between [−10, 10] (in each

dimension) from the partition shown in Figure 3.4-(a) (leftmost image), with the colors

blue and yellow indicating the class labels. We train a multiple-layer perceptron (MLP)

with varying number of nodes per layer nl ∈ {2, 4} and varying number of layers

L ∈ {2, 3, 4, 5, 6}, and it is possible to place two types of piecewise linear activation

functions after each layer: ReLU [48] and Maxout [53], where for Maxout we can vary

the number of regions k ∈ {2, 4} (e.g., Figure 2.1 shows a Maxout with 4 regions).

Training is based on back propagation [91] using mini-batches of size 100, learning

rate of 0.0005 for 20 epochs then 0.0001 for another 20 epochs, momentum of 0.9 and

weight decay of 0.0001, where we run five times the training (with different training

and test samples) and report the mean train and test errors of the best architecture of all

configurations (with respect to the combination of nl and L). Finally, the MLP weights

are initialised with Normal distribution scaled by 0.01 for all layers.

The training process of networks containing piecewise linear activation units uses a

divide and conquer strategy where ∂`
∂Wl

moves the classification boundary for layer l

according to the loss function ` with respect to the points in its current linear region

(similarly for the bias term bl), and ∂`
∂xl−1

moves the offending points (i.e., points being

erroneously classified) away from their current linear regions. Dividing the data points

into an exponentially large number of linear regions is advantageous because the train-

ing algorithm can focus on minimizing the loss for each one of these regions almost

34



Chapter 3. Methodology

a) Original classification problem (left) with the liner regions found by each model (represented by the
color of each subnet) and classification division of the original space (class regions).

b) Train and test error as a function of the number of layers (L), number of nodes per layer (nl), piecewise linear
activation function, number of regions in the activation function (k), and the use of normalisation (with or without BN).

FIGURE 3.4: Toy problem with the division of the space into linear regions and clas-
sification profile produced by each model (a), and a quantitative comparison between

models (b).

independently of others - this is why we say it uses a divide and conquer algorithm.

We also say that it is an almost independent training of each linear region because the

training parameters for each region are shared with all other regions, and this helps the

regularisation of the training process. However, the initialisation of this training process

is critical because if the data points are not evenly distributed at the beginning, then all

these points may lie in only one of the regions of the piecewise linear unit. This will

drive the learning of the classification boundary for that specific linear region, where

the loss will be minimised for all those points in that region, and the boundary for the
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other linear regions will be trained less effectively with much fewer points. This means

that even the points with relatively high loss will remain in that initial region because

the other regions have been ineffectively trained, and consequently may have a larger

loss. This issue is very clear with the use of Maxout units, where in the extreme case,

only one of the k regions is active, which means that the Maxout unit will behave as a

simple linear unit. If a large amount of Maxout units behave as linear units, then this

will reduce the ability of these networks to compute functions that have an exponential

number of linear regions, and consequently decrease the capacity of the model.

3.4.2 Batch Normalisation Units

In order to force the initialisation to distribute the data points evenly in the domain of

the piecewise activation functions, such that a large proportion of the k regions is used,

we propose the use of Batch Normalisation by Ioffe and Szegedy’s [45]. This normali-

sation has been proposed because of the difficulty in initializing the network parameters

and setting the value for the learning rate, and also because the inputs for each layer are

affected by the parameters of the previous layers. These issues lead to a complicated

learning problem, where the input distribution for each layer changes continuously -

an issue that is called covariate shift [45]. The main contribution of this Batch Nor-

malisation is the introduction of a simple feature-wise centring and normalisation to

make it have mean zero and variance one, which is followed by a scaling unit and a

shifting unit that restores the representation power of the feature by shifting and scaling

the normalised value. For instance, assuming that the input to the normalisation unit is

f = [f1, ..., fnl
], where fi ∈ Rk, the BN unit consists of two stages:

Normalisation: f̂i,k =
fi,k−E[fi,k]√

Var[fi,k]

Scale and shift: hi,k = γif̂i,k + βi
, (3.12)

where the shift and scale parameters {γi, βi} are new network parameters that partici-

pate in the training procedure [45]. Another important point is that the BN unit does

not process each training sample independently, but it uses both the training sample and

other samples in a mini-batch.

We illustrate the importance of using normalisation in piecewise linear unit in the afore-

mentioned toy problem, by adding the option of placing a Batch Normalisation unit [45]

before each activation function and show the distribution of linear regions (the two bot-

tom images) in contrast to the region distribution of the unnormalised unit (the two top
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images) in Figure 3.4-(a). Analysing the mean train and test error in Figure 3.4-(b), we

first notice that all models have good generalisation capability, which is a characteristic

already identified for deep networks that use piecewise linear activation units [27, 96].

Looking at the curves for the networks with 2 and 3 layers, where all models seem to be

trained properly (i.e., they are pre-conditioned), the models containing Batch Normali-

sation units (denoted by ”with BN”) produce the smallest train and test errors, indicating

the higher capacity of these models. Beyond 3 layers, the models that do not use the

Batch Normalisation units become ill-conditioned, producing errors of 0.39, which ef-

fectively means that all points are classified as one of the binary classes. In general,

Batch Normalisation allows the use of Maxout in deeper MLPs that contain more nodes

per layer, and the Maxout function contains more regions (i.e., larger k). The best result

(in terms of mean test and train error) is achieved with an MLP of 5 or more layers,

where each layer contains 4 nodes and Maxout has 4 regions (test error saturates at

0.07). The best results with ReLU are also achieved with Batch Normalisation, using a

large number of layers (5 or more), and 4 nodes per layer, but notice that the smallest

ReLU errors (around 0.19 on test set) are significantly higher than the Maxout ones, in-

dicating that Maxout has larger capacity. The images in Figure 3.4-(a) show the division

of the input space (into linear regions) used to train the sub-networks within the MLP

model (we show the best performing models of ReLU with and without normalisation

and Maxout with and without normalisation), where it is worth noticing that the best

Maxout model (bottom-right image) produces a very large number of linear regions,

which generate class regions that are similar to the original classification problem. The

input space division, used to train the sub-networks, are generated by clustering the

training points that produce the same activation pattern from all nodes and layers of the

MLP. We also run these same experiments using dropout (of 0.2), and the relative re-

sults are similar to the ones presented in Figure 3.4-(b), but the test errors with dropout

are around 2× larger, which indicate that dropout does not pre-condition the model (i.e.,

the models that do not have the Batch Normalisation units still become ill-conditioned

when having 3 or more layers), nor does it balance the input data for the activation units

(i.e., the capacity of the model does not increase with dropout).

3.4.3 Maxout Network in Maxout Network Model

As mentioned in Section 3.4.1, the number of linear regions that networks with piece-

wise linear activation unit can have grows exponentially with the number of layers, so it
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FIGURE 3.5: The MIM model is based on the NIN [31] model. This model contains
three blocks that have nearly identical architectures, with small differences in terms of
the number of filters and stride in convolution layers. The first two blocks use max-

pooling and the third block uses average pooling.

is important to add as many layers as possible in order to increase the ability of the net-

work to estimate complex functions. For this reason, we extend the recently proposed

Network in Network (NIN) [31] model, which is based on a CNN that uses a multi-layer

perceptron (MLP) as its activation layer (this layer is called the Mlpconv layer). In its

original formulation, the NIN model introduces the Mlpconv with ReLU activation af-

ter each convolution layer, and replaces the fully connected layers for classification in

CNN (usually present at the end of the whole network) by a spatial average of the fea-

ture maps from the last Mlpconv layer, which is fed into a softmax layer. In particular,

we extend the NIN model by replacing the ReLU activation after each convolution layer

of the Mlpconv by a Maxout activation unit, which has the potential to increase even fur-

ther the model capacity. In addition, we also add the BN unit before the Maxout units.

These two contributions form our proposed model, we give it a simple name Maxout

Network in Maxout Network Model (MIM), which is depicted in Figure 3.5. Finally,

we include a dropout layer [40] between MIM blocks for regularizing the model.

38



Chapter 3. Methodology

3.5 Competitive Multiple-size Convolution Activation Units

In this section, we introduce the proposed Competitive Multiple-size Convolution acti-

vation unit to capture multiple-size features within one convolution unit.

Let us assume that an image is represented by x : Ω → R, where Ω denotes the image

lattice, and that an image patch of size (2k − 1) × (2k − 1) (for k ∈ {1, 2, ..., K})
centred at position i ∈ Ω is represented by xi+φ(k−1), where φ(j) = {−j, . . . , j}. The

models being proposed in this section follow the structure of the NIN model [31], and

is in general defined as follows:

Fnet(x, θ) = fout ◦ FL ◦ ... ◦ F2 ◦ F1(x), (3.13)

where ◦ denotes the composition operator, θ represents all the CNN parameters (i.e.,

weights and biases), fout(.) denotes an averaging pooling unit followed by a softmax

activation function [31], the network blocks are represented by l ∈ {1, ..., L}, with each

block containing a composition of nl modules with Fl(x) = Fl,nl
◦ ...◦Fl,2◦Fl,1(x), and

Fl,i(x) = gl,i(hl,i(fl,i(x))) encapsulates the preactivation f(.), normalisation g(.) and

nonlinear activation function h(.) (defined in (3.10)) of a network layer. Each module

Fl,n(.) at a particular position i ∈ Ω of the input data for block l is defined by:

Fl,n(xi) = σ
(
BNγ1,β1(W

>
1 xi), BNγ3,β3(W

>
3 xi+φ(1)), ...,

BNγ2k−1,β2k−1
(W>

2k−1xi+φ(k−1)),

BNγp,βp(W>
1 p3×3(xi+φ(1))

)
,

(3.14)

where σ(.) represents the Maxout activation function [53] (see (3.11)), the convolutional

filters of the module are represented by the weight matrices W2k−1 for k ∈ {1, ..., Kl}
(i.e., filters of size 2k − 1 × 2k − 1 × #filters, with #filters denoting the num-

ber of 2-D filters present in W), which means that each module n in block l has Kl

different filter sizes and #filters different filters, BNγ,β represent the Batch Normali-

sation transformation with scaling and shifting parameters [45] (see Section 3.4.2), and

p3×3(xi+φ(1)) represents a max-pooling operator on the 3 × 3 subset of the input data

for layer l centred at i ∈ Ω, i.e.xi+φ(1).

Using the CNN module defined in (3.14), our proposed models differ mainly in the

presence or absence of the node with the max-pooling operator within the module (i.e.,

the node represented by BNγp,βp(W>
1 p3×3(xi+φ(1))). When the module does not contain

such node, it is called Competitive Multiple-size Convolution (see Figure 3.6-(a)),
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but when the module has the max-pooling node, then we call it Competitive Inception
(see Figure 3.6-(b)) because of its similarity to the original inception module [29]. The

original inception module is also implemented for comparison purposes (see Figure 3.6-

(c)), and we call this model the Inception Style, which is similar to (3.13) and (3.14) but

with the following differences: 1) the function σ(.) in (3.14) denotes the concatenation

of the input parameters; 2) a 1× 1 convolution is applied to the input x before a second

round of convolutions with filter sizes larger than or equal to 3 × 3; and 3) a ReLU

activation function [48] is present after each convolutional layer.

An overview of all models with the structural parameters is displayed in Figure 3.6.

Note that all models are inspired by NIN [31], GoogLeNet [29], and our proposed MIM

in Section 3.4. In particular, we replace the original 5× 5 convolutional layers of MIM

by multiple-size filters of sizes 1 × 1, 3 × 3, 5 × 5, and 7 × 7. For the inception style

model, we ensure that the number of output units in each module is the same as for

the competitive inception and competitive multiple-size convolution, and we also use a

3 × 3 max-pooling path in each module, as used in the original inception module [29].

Another important point is that in general, when designing the inception style network,

we follow the suggestion by Szegedy et al. [29] and include a relatively larger number

of 3× 3 and 5× 5 filters in each module, compared to filters of other sizes (e.g., 1× 1

and 7 × 7). An important distinction between the original GoogLeNet [29] and the

inception style network in Figure 3.6-(c) is the fact that we replace the fully connected

layer in the last layer by a single 3 × 3 convolution node in the last module, followed

by an average pooling and a softmax unit, similarly to the NIN model [31]. We propose

this modification to limit the number of training parameters (with the removal of the

fully connected layer) and to avoid the concatenation of the nodes from different paths

(i.e., max-pooling, 1× 1 convolutional filter, and etc.) into a number of channels that is

equal to the number of classes (i.e., each channel is averaged into a single node, which

is used by a single softmax unit), where the concatenation would imply that some of the

paths would be directly linked to a subset of the classes. Therefore, the last two layers

of block 3 of all architectures in Figure 3.6 contain an average pooling and a softmax

unit to ensure a fair comparison amongst these networks.

40



Chapter 3. Methodology

(a) Competitive Multiple-size Convolution (b) Competitive Inception (c) Inception style

FIGURE 3.6: The proposed competitive multiple-size convolution (a) and competitive
inception (b) networks, together with the reference inception style network (c). In
these three models, we ensure that the output of each layer has the same number of
units. Also note that the inception style model uses ReLU [48] after all convolutional
layers, the number of filters per convolutional node is represented by the number in

brackets, and these models assume a 10-class classification problem.
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3.5.1 Competitive Convolution of Multiple-size Filters Prevents Un-
desirable Filter Convergence and Filter Co-adaptation

The main reason being explored in the field to justify the use of competitive activation

units [48, 53, 54, 120] is the fact that they build a network formed by multiple underlying

sub-networks [96]. More clearly, given that these activation units consist of piece-wise

linear functions, it has been shown that the composition of several layers containing

such units, divide the input space in a number of regions that is exponentially propor-

tional to the number of network layers [27], where sub-networks will be trained with

the samples that fall into one of these regions, and as a result become specialised to the

problem in that particular region [96], where overfitting can be avoided because these

sub-networks must share their parameters with one another [96]. It is worth noting that

these regions can only be formed if the underlying convolutional filters do not converge

to similar features, otherwise all input training samples will fall into only one region of

the competitive unit, which degenerates into a simple linear transform, preventing the

formation of the sub-networks.

A straightforward solution to avoid such undesirable convergence can be achieved by

limiting the number of training samples in a mini-batch during stochastic gradient de-

scent. The small batches allow the generation of “noisy” gradients during training which

can activate a smaller proportion of sub-networks, making those sub-networks more

specialised to “remember” unique patterns in each training iteration. This means that

different linear pieces of the activation unit can be fitted, allowing the formation of an

exponentially large number of regions. On the other hand, the use of a large mini-batch

size generates stable gradients and “opens” many Maxout gates, leading to a large pro-

portion of sub-networks being active and trained at the same iteration, which promotes

co-adaptation. However, the drawback of this approach lies in the determination of the

“right” number of samples per mini-batch. A mini-batch size that is too small leads to

poor convergence, and if it is too large, then it may not allow the formation of many

sub-networks. In Section 3.4, we propose a solution to this problem based on the use

of BNU [45] that distributes the training samples evenly over the regions formed by the

competitive unit, allowing the training to use different sets of training points for each

region of the competitive unit, resulting in the formation of an exponential number of

sub-networks. However, there is still a potential problem with that proposal, which is

that the underlying convolutional filters are trained using feature spaces of the same size

(i.e., the underlying filters are of fixed size), which can induce the filters to converge to

similar regions of the feature space, also preventing the formation of the sub-networks.
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TABLE 3.1: Mean orthogonality measure between pairs of filters within competitive
multiple-size convolution modules (a), and filters from competitive single-size convo-
lution modules (b), gathered from the first competitive layer of the first two blocks of

the models trained on CIFAR-10.

Multiple-size (Block 1)
1x1 3x3 5x5 7x7

1x1 1 0.12 0.15 0.13
3x3 0.12 1 0.21 0.12
5x5 0.15 0.21 1 0.12
7x7 0.13 0.12 0.11 1

Multiple-size (Block 2)
1x1 3x3 5x5 7x7

1x1 1 0.05 0.03 0.02
3x3 0.05 1 0.05 0.04
5x5 0.03 0.05 1 0.07
7x7 0.02 0.04 0.07 1

a) Mean orthogonality measure between filters within competitive multiple-size convolution modules

Single-size (Block 1)
7x7 7x7 7x7 7x7

7x7 1 0.22 0.22 0.21
7x7 0.22 1 0.19 0.20
7x7 0.22 0.19 1 0.23
7x7 0.21 0.20 0.23 1

Single-size (Block 2)
7x7 7x7 7x7 7x7

7x7 1 0.09 0.10 0.09
7x7 0.09 1 0.09 0.09
7x7 0.10 0.09 1 0.09
7x7 0.09 0.09 0.09 1

b) Mean orthogonality measure between filters from competitive single-size convolution modules

Our proposed module that promotes competition amongst filters of multiple sizes rep-

resents a way to prevent the undesirable convergence mentioned in Section 3.4. To

evaluate this hypothesis, we examine the similarity between convolutional filters within

each competitive unit by empirically showing that the multiple sizes of the convolu-

tional filters within a competitive unit promotes the learning of different features. This

demonstration is based on measuring the orthogonality between filters within the same

competitive unit, where filters that have similar responses will have orthogonality mea-

sures closer to one, and different responses will lead to orthogonality measures close

to zero. The orthogonality between two filters, represented by w1 and w2, is measured

by |w>1 w2|
‖w1‖2‖w2‖2 , where zero padding along the filter border is used in order to allow the

measure of orthogonality between filters of different sizes. We show the mean value

of the orthogonality measures between pairs of single-size and multiple-size filters in a

competitive unit in Table 3.1, where results are gathered from the first competitive layer

of the first two blocks of the models trained on CIFAR-10 (see Chapter 6 for competi-

tive single-size network architecture). The results from Table 3.1 provide evidence that

the filter responses from the competitive multiple-size modules are more orthogonal to

each other than the responses from the competitive single-size module.

Our second hypothesis is that the competition amongst multiple-size filters within a con-

volutional module prevents co-adaptation throughout the CNN model. The evidence for

such hypothesis is displayed in Figure 3.7, which shows Yosinski et al.’s test [13] that

assesses the transferability of CNN filters. The idea of this experiment is that the CNN
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FIGURE 3.7: Co-adaptation experiment that tests the transferability of the filters
learned for one dataset (CIFAR-10) to another (CIFAR-100) [13] for Competitive in-
ception (comp-inception), Single-size (comp-SS), and Multiple-size (comp-MS) net-
works. The vertical axis shows the testing error and the horizontal axis represents the
index of the first layer of the CNN to be re-trained for the new dataset, where the layers

below are fixed during the fine-tuning process that lasts 30 epochs.

with more co-adapted filters will produce larger testing errors when the higher level lay-

ers are removed because it is unlikely that the re-trained layers will be able to discover

the complex co-adaptations present in the removed layers. To conduct this experiment,

we train a model using one dataset (CIFAR-100), remove a subset of the higher level

convolutional layers (e.g., from layers 7 to the last layer, where the indexing used in

the horizontal axis of Figure 3.6 is consistent with the first two competitive/inception

layers to remove), and re-train only these layers for the CIFAR-10 dataset, while keep-

ing the remaining lower level layers fixed (i.e., we do not re-train these lower layers).

Figure 3.7 shows that the competitive modules with filters of multiple sizes have the

lowest testing error in all evaluated configurations, when compared to the single size

competitive module and the competitive inception module. This result supports our hy-

pothesis that competition amongst filters of multiple sizes in a CNN module represents

a way to prevent co-adaptation.
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3.6 Characterising the Training of Deep Residual Net-

works with Approximate Fisher Information Ma-

trix

In this section, we introduce the proposed characterisation of SGD training, which is

based on the cumulative sum of the condition number CK and the cumulative sum of

the (weighted) eigenvalues LK of the Fisher matrix. We first show empirically that CK
and LK enable a consistent characterisation of various models trained with different

mini-batch sizes, model structure, learning rate and stochastic depth rate. Figure 3.8-

(a),(b) show how the CK and LK values computed at the last epoch for the training

and testing sets of CIFAR-10 [72] vary for different types of ResNet models (notice the

skip{1, ...,12}), different mini-batch sizes (see size{8, ...,512}) and different stochas-

tic drop rates (batch-drop{0.1, ...,0.9}). In addition, these two measures are also

shown in Figure 3.8-(c) to be stable when computed during the first epochs, allow-

ing the training mechanism to be reliably characterised early on in the training process,

relative to other models, saving precious training cycles. These measures also suggest

new training procedures that dynamically increases the mini-batch size or decreases the

stochastic depth rate, allowing the training procedure to navigate in this landscape of

CK and LK measures. The dynamic increase of mini-batch size approach has been

suggested before [26, 55], but we are not aware of previous implementations.

3.6.1 Definition of the Measures

Let us assume the availability of a dataset D = {xi, yi}|D|i=1, where the ith image xi :

Ω → R (Ω denotes image lattice) is annotated with the label yi ∈ {1, ..., C}, with C

denoting the number of classes. This dataset is divided into two mutually exclusive

training set T ∈ D and testing set S ∈ D.

The ResNet model [24] and its stochastic depth extension [42] are defined by a concate-

nation of residual blocks, with each block defined by:

rl(vl) = bl ×Rl(vl,Wl) + vl, (3.15)

where l ∈ {1, ..., L} indexes the residual blocks, Wl denotes the parameters for the lth

block, vl is the input, with the image input of the model being represented by v1 =
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FIGURE 3.8: Testing (a) and training (b) errors on CIFAR-10 as a function of the
proposed measures: cumulative sum of the condition number CK and of the summed
(weighted) eigenvalues LK of the Fisher matrix at the final training epoch. The labels
represent the training method used: 1) size{8, ..., 512} denotes the mini-batch size
for training the standard ResNet, 2) batch−drop{0.1, ..., 0.9} represents the stochastic
depth rate with a fixed mini-batch size of 100, and 3) skip{1, ..., 12} indicates differ-
ent ResNet structures with residual connections involving a large or small number of
blocks. The graph in (c) shows the stability of CK and LK as a function of training

epochs.
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x, Rl(vl,Wl) represents a residual unit containing a sequence of linear and nonlinear

transforms [48], and Batch Normalisation [45], and bl ∈ {0, 1} denotes a Bernoulli

random variable indicating if the lth block is active (bl = 1) or inactive (bl = 0) [42]

(note that in the original ResNet model [24], bl = 1 for all blocks). The full model is

then defined by:

Fnet(x, θ) = fout ◦ rL ◦ ... ◦ r1(x), (3.16)

where ◦ represents the composition operator, θ ∈ RP denotes all model parameters

{W1, ...WL}
⋃

Wout, and fout(.) is a linear transform parameterised by weights Wout

with a softmax activation function that outputs a value in [0, 1]C indicating the proba-

bility of selecting each of the C classes. The training of the model in (3.16) minimises

the multi-class cross entropy loss `(.) on the training set T , as follows:

θ∗ = arg min
θ

1

|T |
∑

i∈T
` (yi, Fnet(xi, θ))) . (3.17)

The SGD training minimises the loss in (3.17) by iteratively taking the following step:

θk+1 = θk −
αk
|Bk|

∑

i∈Bk
∇`(yi, Fnet(xi, θk)), (3.18)

where Bk is the mini-batch for the kth iteration of the minimisation process. As noted by

Keskar et al. [26], the shape of the loss function can be characterised by the spectrum

of the ∇2`(yi, Fnet(xi, θk)), where a significant number of large positive eigenvalues

tend to make the training process generalise less well, and numerous small eigenvalues

are likely to lead to better generalisation. Given that the computation of the spectrum of

∇2`(yi, Fnet(xi, θk)) is infeasible, we must resort to the use of methods that can reliably

approximate such spectrum, such as the Fisher matrix [121, 122], defined by

Fk =
(
∇`(yi∈Bk , Fnet(xi∈Bk , θk))∇`(yi∈Bk , Fnet(xi∈Bk , θk))>

)
, (3.19)

where Fk ∈ RP×P .

The calculation of Fk in (3.19) depends on the Jacobian Jk = ∇`(yi∈Bk , Fnet(xi∈Bk , θk)),

with Jk ∈ RP×|Bk|. Given that Fk = JjJ
>
j ∈ RP×P scales with P = O(106) and that we

are only interested in the spectrum of Fk, we compute instead F̃k = J>j Jj ∈ R|Bk|×|Bk|

that scales with the mini-batch size |Bk| = O(102). Note that from F̃k we can compute

the largest |Bk| non-zero eigenvalues of Fk by using the Cholesky decomposition [123],

represented by the set Ek.
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The first measure we propose is the cumulative sum of the condition number of F̃k

, defined by

CK =
K∑

k=1

ck, (3.20)

where K denotes the epoch number, and ck =
(

max(Ek)
min(Ek)

) 1
2

represents the condition

number of F̃k. This measure is used to describe the ill-conditioning of the gradient

updates accumulated during the training process.

The second measure is the cumulative sum of the square root of the trace of F̃k,
weighted by α2

k/|Bk|2:

LK =
∑

k∈K

(
α2
k

|Bk|2
Tr
(
F̃k

)) 1
2

, (3.21)

where Tr(.) defines the trace operator, and Tr
(
F̃k

)
approximates the Laplacian, de-

fined by Tr (∇2`(yi, Fnet(xi, θk))) that sums the eigenvalues of the Hessian. The sum

of such eigenvalues is generally associated with the steepness of the energy function

landscape. Note that the weighting in (3.21) is reasonable because it is the same factor

used in the SGD update rule (3.18), and it proved to be useful for measuring training

convergence and generalisation.

Different ResNet models, learning rates, mini-batch sizes and stochastic depth rates are

observed to have relatively robust values for CK and LK , as displayed in Figure 3.8-

(c). This means that models and training procedures can be reliably characterised early

on in the training process, which can significantly speed up the assessment of new

approaches. For instance, if a reference ResNet model produces a good result, and we

know its CK and LK values for various epochs, then new models must navigate close

to this reference model – see for example in Figure 3.8 that skip2 and skip3 models

produce good convergence and generalisation, so new models must try to navigate close

enough to them. In addition, new models that show very distinctive growth in CK and

LK values with respect to the reference model are unlikely to produce competitive result

– see for example in Fig. 3.8 that skip6, skip12, size8, and size512, which eventually

produce uncompetitive performance, can be identified and stopped as early as 4 epochs

to save the precious computation.
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3.6.2 Dynamic Sampling

Dynamic sampling [26, 55] is a method that is believed to improve the convergence rate

of SGD by reducing the noise of the gradient estimation with a gradual increase of the

mini-batch size over the training process (this method has been suggested before, but

we are not aware of previous implementations). It extends SGD by replacing the fixed

size mini-batches Bk in (3.18) with a variable size mini-batch. The general idea of this

method [26, 55] is that the initial noisy gradient estimations from small mini-batches

explore a relatively flat energy landscape without falling into sharp local minima. The

increase of mini-batch sizes over the training procedure provides a more robust gradient

estimation on a sharper energy landscape that is supposed to be in a region of the space

with better generalisation properties.

The most important point that dynamic sampling showed with respect to our proposed

measures CK , LK in (3.20),(3.21) is that it broke the stability observed in Figure 3.8. In

general, we note that the application of dynamic sampling allowed the curves to move

from the region with the original batch size to the region of the final batch size.

3.6.3 Dynamic Stochastic Depth Rate

The stochastic depth ResNet [42] drops a random number of residual units at each epoch

k, with probability pl to drop residual blocks (through bl in (3.15)) towards the last layer

L of the model, as follows:

pl = 1− l

L
(1− pL), (3.22)

where pL is a hyper-parameter that represents the drop probability of the Lth residual

block. The proposed dynamic stochastic depth rate follows similar intuition as dynamic

sampling of Section 3.6.2, where the runtime drop probability pL is reduced as a func-

tion of training epoch k. In effect, the initial gradient estimations with large pL are

noisy, leading to the exploration of flat energy landscapes, and in later epochs, smaller

pL produce robust gradient estimations with a sharper energy landscape.
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Chapter 3. Methodology

3.7 Conclusion

In this chapter, we presented the proposed methodologies for four fundamental deep

learning problems: nonlinear classification using CNN features, normalisation of piece-

wise linear activation units, multiple-size features and CNN with Maxout units, and

training characterisation of residual networks. The main goal of these methods is to

improve the performance of deep learning classifiers, especially the CNN classifier, on

challenging visual classification problems.
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THE USE OF DEEP LEARNING FEATURES IN A HIERARCHICAL CLASSIFIER LEARNED
WITH THE MINIMIZATION OF A NON-GREEDY LOSS FUNCTION THAT DELAYS

GRATIFICATION

Zhibin Liao Gustavo Carneiro

ARC Centre of Excellence for Robotic Vision, University of Adelaide, Australia

ABSTRACT
Recently, we have observed the traditional feature representa-

tions are being rapidly replaced by the deep learning representa-
tions, which produce significantly more accurate classification re-
sults when used together with the linear classifiers. However, it is
widely known that non-linear classifiers can generally provide more
accurate classification but at a higher computational cost involved
in their training and testing procedures. In this paper, we propose
a new efficient and accurate non-linear hierarchical classification
method that uses the aforementioned deep learning representations.
In essence, our classifier is based on a binary tree, where each node
is represented by a linear classifier trained using a loss function that
minimizes the classification error in a non-greedy way, in addition
to postponing hard classification problems to further down the tree.
In comparison with linear classifiers, our training process increases
only marginally the training and testing time complexities, while
showing competitive classification accuracy results. In addition, our
method is shown to generalize better than shallow non-linear clas-
sifiers. Empirical validation shows that the proposed classifier pro-
duces more accurate classification results when compared to several
linear and non-linear classifiers on Pascal VOC07 database.

1. INTRODUCTION

Ever since Krizhevsky and Hinton [1] published the outstanding
classification results on ImageNet [2], the attention of the com-
puter vision community has shifted from the bag of features [3]
and Fisher vector [4] representations to the deep learning represen-
tation provided by convolutional neural networks [5, 6]. Recent
results [7, 8, 9, 10, 11, 12] show that convolutional neural networks
(CNN), a high-capacity multi-layer non-linear classification frame-
work, can produce the most accurate classification results in several
databases in the field. It is generally believed the convolutional
layers of CNN are responsible for generating well-separated image
representations. For this reason, simple linear support vector ma-
chine (SVM) and softmax [1] classifier are used to classify the CNN
image representations. More complex classifiers are with higher
capacity, such as non-linear SVM [13, 14] or boosting [15], but the
main limitations are the high training and testing time complexities
and the risk of overfitting the training data. Hierarchical models
can achieve a good trade off between generalization and training
and testing complexities, and for this reason it has been explored in
computer vision in the past, such as with the probabilistic boosting
tree (PBT) [16] and the discriminative learning of relaxed hierarchy
(DLRH) [17]. In this paper, we propose a new hierarchical clas-
sifier to be used with high dimensional feature vectors (e.g., CNN

This research was supported by the Australian Research Council Centre
of Excellence for Robotic Vision (project number CE140100016)

features). The main novelty of our proposal is the loss function to
learn this hierarchical classifier, which minimizes the classification
error in a non-greedy way and at the same time delays hard classifi-
cation problems to nodes further down the tree. Our main objective
with this new training process of hierarchical classifiers is to reach a
good trade-off between generalization and complexities, particularly
when compared with linear [1, 7] , shallow non-linear [13, 15, 14]
and hierarchical classifiers [17, 16] previoulsly proposed in the field.
We test our method on the Pascal VOC07 [18, 19] database, and
show that we produce better classification results and have less
training test complexities, compared to other linear and non-linear
classifiers using the deep learning features [7, 12].

2. LITERATURE REVIEW

In this section, we briefly describe the related work in the field, by
first introducing the mid-level features extracted from convolutional
neural nets, then by discussing the classifiers that are (or can) be used
with such feature vectors.

Deep learning methods have been present in the field for several
years [20, 21], but their use as feature generators has been consid-
ered only after the outstanding result obtained on ImageNet [1]. Us-
ing millions of training images, a large number of nodes and hidden
layers and an effective implementation, Krizhevsky and Hinton [1]
produced a CNN model that integrates feature extraction and clas-
sification functionalities into an easy-to-use framework. In addition
to this, Razavian et al. [11] have found that the CNN mid-layer acti-
vations trained with ImageNet provide powerful off-the-shelf image
representations for other databases. This results have been confirmed
by Chatfield et al. [3], who showed that much deeper CNN mid-
layer activations produce much more accurate classification results
than the previous bag of features [3] and Fisher vector [4] represen-
tations.

An interesting observation about the use of these CNN features
is that the classifier is usually based on linear SVM [13] or soft-
max [1], which are relatively low-capacity models that are efficiently
trained and tested, but offer limited accuracy depending on the distri-
bution of the training set samples. In general shallow high-capacity
classifiers can handle more difficult classification problems better
than linear classifiers, but at a usually higher running time computa-
tional cost and the risk of overfitting. On the other hand, hierarchi-
cal classifiers that use low capacity classifiers in each node, usually
achieve a good trade-off between complexity and accuracy.

Boosting [15] and non-linear SVM [13] are typical examples
of high-capacity shallow classifiers that can deal with highly com-
plex classification problems. The former uses a quite large number
of features and build simple linear (weak) classifier in each one of
these feature spaces, which are then combined to form a strong clas-
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Fig. 1: Comparison between the learning of the root node classi-
fier parameter θ1 (in a binary classification problem, with labels ’+’
and ’-’) using our proposed loss function in (5) in comparison to the
”greedy” loss function in (4).

sifier. In general, the training of each weak classifier involves the
estimation and comparison of low capacity classifiers in all possible
feature spaces, which means that at least this training has complex-
ity O(DN), where D is the size of the feature space and N is the
training set size. Considering that potentially, one can use the whole
feature space, the complexity of the full training process is around
O(D2N) and the testing complexity isO(D). Non-linear SVM uses
the kernel trick to project all training samples in the kernel space
and builds a linear classifier there, which is a training process that
has complexity around O(DN2). The testing complexity of non-
linear SVM is O(ND). In addition to the complex training and
testing processes, both methods can overfit the training data given
their large capacity.

The issues presented above have been realized in several works
that propose the use of hierarchical classifiers instead of their shal-
low counterparts. The boosted cascade classifier [22] is a good ex-
ample of a hierarchical classifier, based on a degenerate binary tree
with a boosting classifier on each node, where the training involved
in each node minimizes a loss function that greedily estimates the
best decision boundary, but delays the decision about hard classifica-
tion problems. The probabilistic Boosting Tree (PBT), proposed by
Tu [16], is a full binary tree structured classifier that has a boosting
classifier in each node, which minimizes a similar loss function. One
important issue that affects the cascade and PBT classifiers is that
each node uses a high capacity boosting classifier that can overfit the
training data, hampering their generalization abilities and increment-
ing the training and testing time complexities. A more relevant work
to our proposal is the discriminative learning of relaxed hierarchy
(DLRH) [17], which consists of a binary tree, where each interior
node is trained using a loss function that delays hard classification
problems, but at the same time greedily reduces the classification
error. This greedy error reduction can again overfit the training data.

3. METHODOLOGY

Assume that an image is represented by a feature vector x ∈ RD ,
the image label is represented by the variable y ∈ {−1, 1}, and the
binary tree classifier has one root node that classifies samples using
a hidden variable b ∈ {−1, 1} (which indicates the left child by −1
and right by +1).

The inference is defined by the following problem:
y∗ = arg max

y∈{−1,1}

∑

b∈{−1,1}
P (y|x, b, θb)P (b|x, θ1), (1)

Fig. 2: Shape of the proposed loss function (5), where dotted red
shows the region where classification is incorrect, solid orange dis-
plays the margin region, and dashed green depicts correct classifica-
tion.

where θb, θ1 ∈ RD denote the classifier parameters of the leaf and
root nodes, respectively. This inference is easily extended to a tree
with three levels, as follows:

P (y|x,Θ) =
∑

b(1)

∑

b(2)

∑

b(3)

P (y|x, b(1), b(2), θb(1,2))

P (y|x, b(1), b(3), θb(1,3))P (b(2)|x, b(1), θ2)

P (b(3)|x, b(1), θ3)P (b(1)|x, θ1),

(2)

where b(1), b(2), b(3) ∈ {−1, 1}, and we assume that the classifier in
the root node is represented by the variable b(1), its left child by b(2)

and right child by b(3). The extension to higher trees is then trivial.
For the learning procedure, assume the availability of a training

set T = {(xi, yi)}Mi=1 and a validation set V = {(xi, yi)}Qi=1. The
description of the learning methodology is clearer if we assume the
tree has only one parent node (the extension to larger tree is again
trivial), where the ideal learning process uses the training set T as
follows:

{θ∗b , θ∗1} = arg max
{θb,θ1}

M∏

i=1

∑

bi

P (yi|xi, bi, θb)P (bi|x, θ1), (3)

where we assume that the training samples are i.i.d. and bi ∈
{−1, 1}. Eq. 3 involves the maximization of two functions, which
are hard to be optimized jointly, so we break this optimization into
the following iterative algorithm containing two alternating stages,
where we assume that the parameters θ(t−1)

b and θ(t−1)
1 are known

at stage (t):

θ
(t)
1 = arg max

θ1

M∏

i=1

∑

bi

P (yi|xi, bi, θ(t−1)
b )P (bi|x, θ1),

θ
(t)
b = arg max

θb

M∏

i=1

∑

bi

P (yi|xi, bi, θb)P (bi|x, θ(t)1 ).

(4)

Essentially, this learning procedure involves the division of the train-
ing samples into two clusters, one representing the left child samples
(labeled as b = −1) and the other, the right child samples (labeled
as b = +1). After this division is performed, the parameter θ1 of
the classifier P (b|x, θ1) is estimated, and then, the classifier asso-
ciated with each child can have its parameter θb estimated based
on the samples belonging to that child (which is decided based on
P (b|x, θ1)). We consider this training process to be greedy because
we maximize the classification probability P (y|x, b, θb) even when
splitting the training points to the left or right children. Our main
contribution in this paper is the proposal of a non-greedy loss func-
tion used for the estimation of θ1 in (4), which also delays hard clas-
sification problems.

The motivation for our proposed loss function is based on the
graphs shown in Fig. 1. Assuming that both P (y|x, b, θb) and
P (b|x, θ1) are represented by linear classifiers (which means that
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θb and θ1 are vectors denoting the normal vectors of the learned hy-
perplane), notice that if we try to maximize P (b|x, θ1)P (y|x, b, θb)
when estimating θ1, using the depicted initial guess (graph on left),
we will greedily label the ’+’ points with ’+1’ (right child) and
the ’-’ points with ’-1’, which generates a very difficulty learning
problem in the next iteration of the algorithm (graph on the bottom
of Fig. 1). On the other hand, our loss function has a shape depicted
by Fig. 2, which means that

1. if the classifiers in both children generate a correct classifica-
tion (or both are incorrect), pick the one (with its respective
child label) with the closest hyperplane,

2. if the classifier of only one child is correct, pick the correct
one as long as it is not farther from the margin than the incor-
rect one.

This means that in addition to performing a division of the training
samples without trying to greedily minimize the classification error
(item (1) above), we also delay the hard classification problems to
later stages of the binary tree [17, 16], as depicted in top part of
Fig. 1. The loss function depicted in Fig. 2 is defined by:

f(bi;xi, yi) =
∑

b

∆b(xi, yi)δ(bi − b), (5)

with δ(.) denoting the Dirac delta function and
∆b(x, y) = γmax(0, 1− y(θ>b x)) + max(0, y(θ>b x)− 1), (6)

where γ ∈ R+ is a scalar that weighs the relative importance of
the two terms in (6), and θb denotes the parameter of a linear SVM
classifier learned for each child node b using the training samples
xi, yi where bi = b.

The proposed learning algorithm iterated steps 1-3 below (until
convergence), assuming that we have the estimated value for θ(t−1)

b :
1). For each training sample i ∈ {1, ...,M}, determine its label
bi with:

b
(t)
i = arg max

b∈{−1,+1}
f(bi;xi, yi), (7)

defined in (5) and using θ(t−1)
b ;

2). Estimate θ(t)1 , as follows:

θ
(t)
1 = arg max

θ1

M∏

i=1

P (b
(t)
i |x, θ1),

= arg min
θ1

1

2
‖θ1‖2 + λ

M∑

i=1

log(1 + exp(−b(t)i θ>1 xi)),

(8)
which is a logistic regression classifier;
3). Estimate θ(t)b , with:

θ
(t)
b = arg max

θb

M∏

i=1

P (yi|xi, b(t)i , θb)δ(b
(t)
i − b)

= arg min
θb

1

2
‖θb‖2 + λ

M∑

i=1

max(0, 1− yi(θ>b xi)),
(9)

for b ∈ {−1,+1}, which is the definition for the linear SVM
classifier (note that we use the soft margin training that allows for
non-separable problems).

The initialization of this algorithm is achieved with the K-means
clustering (with two clusters) considering the set {xi|yi = +1, (xi, yi) ∈
T ⋃V}. We run this clustering 20 times and pick the labels bi for
the case that minimizes the loss in (5), and then we run from step
(2) of the algorithm above. The stopping criterion is also based on
the computation of the loss in (5), where when the loss difference
between two iterations is smaller than a threshold ε, then we stop
iterating. Finally, there is also a model selection problem involved

in this method concerning the structure of the binary tree, where
after convergence, we verify a condition to determine if we will
backtrack to the previous structure or keep the current tree structure
and thus continue to grow the tree. The initial tree contains only
the root node and a linear SVM classifier (i.e., this is the original
classifier found in previous works [7]), and the condition that we use
for model selection is the classification accuracy (e.g., mean average
precision) measured in the validation set V using the latest trained
tree.

3.1. Complexity Analysis

For each node expansion, we train three separate linear classifiers
per iteration of our algorithm. Therefore, we need K iterations
in a tree with N nodes, where N ∈ [2h − 1, 2h+1 − 1], with
h =maximum tree depth, so the training complexity of our method
isO(3KNDM) (recall thatD is the feature size andM is the train-
ing set size), so this means that compared to the linear classifier, our
training is 3KN slower. Fortunately, we can control the values for
K andN by constraining the number of iterations and the tree depth,
and in general we haveKN << D,M , which means that our train-
ing is significantly faster than typical shallow non-linear classifiers
(see Sec. 2). The testing complexity is essentially based on running
h linear classifiers, which means that the running time complexity is
O(hD), which is just marginally larger than a single linear classifier
given that h ≤ 3, typically.

1 50 100 150 200

Fig. 3: Sorted Pascal VOC07 [19] first 200 retrieval results by us-
ing the VGG features [7]. Note that only the incorrectly classified
images are shown, so the sparsity pattern of the correct retrieval can
be analyzed by noticing the white regions of the image. For each
presented class (see icon on the left [7]), each row is the result of
the methods PBT [16], DLRH [17], Non-linear SVM (3-poly), Non-
linear SVM (RBF), Linear SVM, and our method, respectively.

4. EXPERIMENTS

We quantitatively compare our proposed hierarchical classifier
method with linear and non-linear SVM classifiers (RBF and 3rd-
degree polynomial kernels), and also with the following hierarchical
classification methods: PBT [16] and DLRH [17]. For the compared
methods except the DLRH [17] method, which learns a single model
for all classes jointly, we adopt the one-against-all (OVA) strategy
for training each class. We re-implemented the PBT method ex-
actly as described by Tu [16], and use the publicly available training
method by Gao and Koller [17] available from their web page to train
the DLRH. The LIBLINEAR [23] and LIBSVM [24] are used for
training linear and non-linear SVMs respectively. The implemen-
tation of our method involves setting the values for the maximum
number of iterations to K = 1 and the maximum number of tree
nodes to N = 3 (see Sec. 3.1). Also, the weight γ in (5) and (6)
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Table 1: AP results on Pascal VOC07 [19] using the OverFeat [12] and VGG [7] features. The best results per class are highlighted.

O
ve

rF
ea

tf
ea

tu
re

s
[1

2] Classifier aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv MAP
Non-linear SVM (RBF) 87.59 78.64 87.72 78.76 46.61 70.11 85.34 82.44 63.81 59.61 66.37 77.27 77.82 80.92 89.11 47.06 70.77 61.46 88.41 68.66 73.42
Non-linear SVM (3-poly) 85.26 79.46 82.31 81.30 42.55 72.18 83.31 80.87 59.41 58.84 67.26 76.91 79.01 78.22 88.88 54.17 71.13 63.49 87.21 71.08 73.14
DLRH [17] 86.69 78.33 82.94 82.39 37.00 69.52 85.26 81.21 59.08 52.37 65.54 78.56 79.00 79.28 88.33 53.17 68.72 60.99 86.22 68.35 72.15
PBT [16] 85.44 78.40 82.86 80.54 40.48 69.38 84.41 78.01 55.68 59.35 63.94 75.46 81.11 77.41 89.36 49.72 71.96 56.20 85.85 66.35 71.60
Linear SVM 88.89 79.72 84.35 82.02 44.63 73.26 85.98 81.76 61.47 57.49 67.08 77.99 81.20 78.92 90.55 55.71 71.43 63.57 87.13 72.10 74.26
Our Method 88.89 80.63 84.32 82.75 43.25 73.55 85.66 81.76 61.47 59.51 67.20 79.03 81.20 78.92 90.72 55.71 71.46 63.57 86.96 72.10 74.43

V
G

G
fe

at
ur

es
[7

] Classifier aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv MAP
Non-linear SVM (RBF) 90.76 87.33 89.79 86.47 51.83 81.99 88.29 87.89 64.01 77.47 76.82 86.64 88.13 85.80 92.19 60.82 82.36 70.15 90.39 75.38 80.73
Non-linear SVM (3-poly) 90.39 84.91 88.15 86.06 53.47 79.16 85.40 86.46 62.85 73.91 78.42 84.57 84.69 81.16 89.63 59.66 81.82 70.49 90.83 73.50 79.28
DLRH [17] 93.13 85.19 88.99 86.69 51.28 78.28 87.67 87.69 60.72 71.58 72.63 85.92 85.64 84.00 90.19 58.21 80.56 70.80 91.41 71.81 79.12
PBT [16] 91.16 84.58 87.96 82.70 47.68 77.30 86.02 86.68 57.77 74.75 69.18 82.28 86.89 82.32 91.20 53.90 79.49 66.30 91.19 70.97 77.52
Linear SVM 91.44 86.31 89.54 85.93 53.16 79.74 87.74 87.93 64.79 75.97 78.05 85.14 88.20 83.83 92.33 60.16 82.52 71.59 91.84 74.57 80.54
Our Method 91.90 86.80 89.88 86.59 53.59 80.47 87.87 88.75 66.50 75.53 77.87 85.88 87.83 84.46 92.70 62.18 82.22 72.65 91.94 75.38 81.05

that controls the shape of loss function is set at γ = 1 (we reached
this value by varying γ ∈ [0.1, 100] and noticing little change in the
classification results).

We evaluate the performance of the methods on the Pascal
VOC07 [19] database, which contains 9963 images of 20 visual
classes. The performance of each class is measured by average
precision (AP), which is the standard ranking efficiency measure-
ment. The mean AP (MAP) of all 20 classes is also listed to show
the average performance. The parameter C of the SVM training
are cross-validated from the standard training-validation split of the
database. The running time of the training and testing processes
are obtained using a computer with the following configuration:
Intel(R) Xeon(R) CPU @ 2.70GHz, with 8GB of memory.

The features are extracted from two publicly available CNN
models: OverFeat [12] and VGG [7]. Both models were trained on
the ImageNet ILSVRC12 [25] database, which contains 1.2 million
images with 1000 classes. For all experiments, the extracted CNN
features are L2 normalized before being used as the input features
for the classifiers. The OverFeat [12] feature is extracted from the
first fully connected layer (layer 22) of its ‘accurate’ architecture,
which has 4096 dimensions and is the fully connected layer before
the rectification layer. No data augmentations were used to increase
the training volume. For the VGG [12], Chatfield et al. offer several
pre-trained models and data augmentation choices. We choose the
2048-dimensional feature model with the augmentation choice ‘ss’
(both training and testing are max-pooled as one sample from the
ten samples) option because this combination is reported with the
top results in [7]. In our experiments, we noticed the VGG features
are extracted after the rectification layer (note that we consider the
fact that these features are extracted after the rectification layer as
one of the major differences compared to the OverFeat features).

Table 2: Average running times (in seconds) of the training and
testing methods using the VGG features of Table 1 on Pascal
VOC07 [19]. The results is reported as the average training time
(in seconds) per visual class and the testing time per testing image.

Classifier Training time/class Testing time/image
Non-linear SVM (RBF) 36.7 36.4
Non-linear SVM (3-poly) 40.1 34.1
DLRH [17] 16.6 2.5
PBT [16] 1459.3 0.5
Linear SVM 1.4 0.6
Our method 11.7 0.1

4.1. Results

In Table 1, we show the AP results obtained with the OverFeat fea-
tures [12] and VGG features [7] on Pascal VOC07 [19] using the
studied classifiers. The running time of the training and testing pro-
cesses of these classifiers listed are shown in Table 2. We show in
Fig. 3 the sorted retrieval results, where only the wrong cases are
shown in order to assess the sparsity pattern of the detection results
for each classifier (i.e., the white regions represent correctly retrieved
samples).

5. DISCUSSION AND CONCLUSIONS

By analyzing the results, our methodology provides the best MAP
among all considered classifiers in Tables 1. We also notice to no-
tice the non-linear methods provide competitive results for some in-
dividual classes. This demonstrates that non-linear SVM methods
are relevant, particularly in cases where the database is not large
(such as the case with Pascal VOC07). On the other hand, the linear
SVM always produce robust average classification results, but rarely
presents the best per-class result. This shows that linear SVM can
generalize well but may have difficulties dealing with some of the
more complicated classification problems. Compared to the other hi-
erarchical methods [17, 16], our approach shows superior accuracy,
which, we believe, is related to the use of our proposed loss func-
tion for training the hierarchical classifier and the fact that the node
classifiers are linear methods (which provides good generalization
properties). Analyzing the sparsity pattern of the retrieval results in
Fig. 3, we see that our approach tends to have one of the most sparse
results among the studied methods. It also shows that our approach
takes longer to retrieve the first incorrectly classified images. These
two facts confirm the AP results from Tables 1.

In addition, our binary trees can grow up to N = 3 nodes lim-
its the number of vector multiplications (x>θ) to 2 times per test
image which brings the fastest testing time. For linear SVM, the
testing time is longer than our method mostly because of the over-
heads involved in running LIBLINEAR [23]. In terms of training
time, we are significantly faster than the non-linear SVM methods
and PBT [16], but comparable to DLRH [17], while the linear SVM
classifier has the fastest training time. We believe that our train-
ing time presents competitive results because we limit the number
of iterations to K = 1 and the size of the tree in N = 3 nodes
(see Sec. 3.1), which make the theoretical training complexity only
slightly larger than linear SVM.

We plan to apply this method to other databases [2, 26, 27] and
use other CNN features that will become available in the near future.
We also plan to increase the difficulty of the current database and
verify if the impact of the non-linear methods is more remarkable.
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Abstract

Deep feedforward neural networks with piecewise lin-
ear activations are currently producing the state-of-the-art
results in several public datasets (e.g., CIFAR-10, CIFAR-
100, MNIST, and SVHN). The combination of deep learn-
ing models and piecewise linear activation functions allows
for the estimation of exponentially complex functions with
the use of a large number of subnetworks specialized in the
classification of similar input examples. During the train-
ing process, these subnetworks avoid overfitting with an
implicit regularization scheme based on the fact that they
must share their parameters with other subnetworks. Us-
ing this framework, we have made an empirical observa-
tion that can improve even more the performance of such
models. We notice that these models assume a balanced ini-
tial distribution of data points with respect to the domain of
the piecewise linear activation function. If that assumption
is violated, then the piecewise linear activation units can
degenerate into purely linear activation units, which can
result in a significant reduction of their capacity to learn
complex functions. Furthermore, as the number of model
layers increases, this unbalanced initial distribution makes
the model ill-conditioned. Therefore, we propose the intro-
duction of batch normalisation units into deep feedforward
neural networks with piecewise linear activations, which
drives a more balanced use of these activation units, where
each region of the activation function is trained with a rela-
tively large proportion of training samples. Also, this batch
normalisation promotes the pre-conditioning of very deep
learning models. We show that by introducing maxout and
batch normalisation units to the network in network model
results in a model that produces classification results that
are better than or comparable to the current state of the art
in CIFAR-10, CIFAR-100, MNIST, and SVHN datasets.

1. Introduction

The use of piecewise linear activation units in deep
learning models [1–6], such as deep convolutional neu-
ral network (CNN) [7], has produced models that are
showing state-of-the-art results in several public databases
(e.g., CIFAR-10 [8], CIFAR-100 [8], MNIST [9] and
SVHN [10]). These piecewise linear activation units have
been the subject of study by Montufar et al. [1] and by Sri-
vastava et al. [11], and the main conclusions achieved in
these works are: 1) the use of a multi-layer composition of
piecewise linear activation units allows for an exponential
division (in terms of the number of network layers) of the
input space [1]; 2) given that the activation units are trained
based on a local competition that selects which region of
the activation function a training sample will use, ”special-
ized” subnetworks will be formed by the consistency that
they respond to similar training samples (i.e., samples lying
in one of the regions produced by the exponential division
above) [11] and 3) even though subnetworks are formed and
trained with a potentially small number of training samples,
these models are not prone to overfitting because these sub-
networks share their parameters, resulting in an implicit reg-
ularization of the training process [1,11].

An assumption made by these works is that a large pro-
portion of the regions of the piecewise linear activation units
are active during training and inference. For instance, in the
Rectifier Linear Unit (ReLU) [2], Leaky-ReLu (LReLU) [3]
and Parametric-ReLU (PReLU) [4], there must be two sets
of points: one lying in the negative side and another on the
positive side of the activation function domain (see region 1
covering the negative side and region 2 on the positive side
in {P,L}ReLU cases of Fig. 1). Moreover, in the Maxout [6]
and Local winner takes all (LWTA) [5] activation units,
there must be k sets of points - each set lying in one of the k
regions of the activation function domain (see Maxout case
in Fig. 1). This assumption is of utmost importance because
if violated, then the activation units may degenerate into
simple linear functions that are not capable of exponentially
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Figure 1. Piecewise linear activation functions: ReLU [2],
LReLU [3], PReLU [4], and Maxout [6].

dividing the input space or training the ”specialized” sub-
networks (i.e., the model capacity is reduced). Moreover, in
learning models that have very deep architectures, the viola-
tion of this assumption makes the model ill-conditioned, as
shown in the toy example below. In this paper, we propose
the introduction of batch normalisation units [12] before the
piecewise linear activation units to guarantee that the in-
put data is evenly distributed with respect to the activation
function domain, which results in a more balanced use of
all the regions of the piecewise linear activation units and
pre-conditions the model. Note that Goodfellow et al. [6]
have acknowledged this assumption and proposed the use of
dropout [13] to regularize the training process, but dropout
cannot guarantee a more balanced distribution of the input
data in terms of the activation function domain. Further-
more, dropout is a regularization technique that does not
help pre-condition the model. Therefore, the issues that we
have identified remains with dropout.

In order to motivate our observation and the model being
proposed in this paper, we show a toy problem that illus-
trates well our points. Assume that we have a 2-D binary
problem, where samples are drawn (12K for training and 2K
for testing) using a uniform distribution between [−10, 10]
(in each dimension) from the partition shown in Fig. 2-(a)
(leftmost image), with the colors blue and yellow indicating
the class labels. We train a multi-layer perceptron (MLP)
with varying number of nodes per layer nl ∈ {2, 4} and
varying number of layers L ∈ {2, 3, 4, 5, 6}, and it is pos-
sible to place two types of piecewise linear activation func-
tions after each layer: ReLU [2] and maxout [6], where for
maxout we can vary the number of regions k ∈ {2, 4} (e.g.,
Fig. 1 shows a maxout with 4 regions). Also, before each
activation function, we have the option of placing a batch
normalisation unit [12]. Training is based on backpropa-
gation [14] using mini-batches of size 100, learning rate of
0.0005 for 20 epochs then 0.0001 for another 20 epochs,
momentum of 0.9 and weight decay of 0.0001, where we
run five times the training (with different training and test
samples) and report the mean train and test errors. Finally,
the MLP weights are initialized with Normal distribution
scaled by 0.01 for all layers.

Analysing the mean train and test error in Fig. 2-(b), we
first notice that all models have good generalization capa-
bility, which is a characteristic already identified for deep

networks that use piecewise linear activation units [1,11].
Looking at the curves for the networks with 2 and 3 lay-
ers, where all models seem to be trained properly (i.e., they
are pre-conditioned), the models containing batch normali-
sation units (denoted by ”with normalisation”) produce the
smallest train and test errors, indicating the higher capacity
of these models. Beyond 3 layers, the models that do not
use the batch normalisation units become ill-conditioned,
producing errors of 0.39, which effectively means that all
points are classified as one of the binary classes. In gen-
eral, batch normalisation allows the use of maxout in deeper
MLPs that contain more nodes per layer, and the maxout
function contains more regions (i.e., larger k). The best re-
sult (in terms of mean test and train error) is achieved with
an MLP of 5 or more layers, where each layer contains 4
nodes and maxout has 4 regions (test error saturates at 0.07).
The best results with ReLU are also achieved with batch
normalisation, using a large number of layers (5 or more),
and 4 nodes per layer, but notice that the smallest ReLU er-
rors (around 0.19 on test set) are significantly higher than
the maxout ones, indicating that maxout has larger capac-
ity. The images in Fig. 2-(a) show the division of the in-
put space (into linear regions) used to train the subnetworks
within the MLP model (we show the best performing mod-
els of ReLU with and without normalisation and maxout
with and without normalisation), where it is worth notic-
ing that the best maxout model (bottom-right image) pro-
duces a very large number of linear regions, which generate
class regions that are similar to the original classification
problem. The input space division, used to train the subnet-
works, are generated by clustering the training points that
produce the same activation pattern from all nodes and lay-
ers of the MLP. We also run these same experiments using
dropout (of 0.2), and the relative results are similar to the
ones presented in Fig. 2-(b), but the test errors with dropout
are around 2× larger, which indicate that dropout does not
pre-condition the model (i.e., the models that do not have
the batch normalisation units still become ill-conditioned
when having 3 or more layers), nor does it balance the input
data for the activation units (i.e., the capacity of the model
does not increase with dropout).

This toy experiment motivates us to propose a model
that: 1) contains a large number of layers and nodes per
layer, 2) uses maxout activation function [6], and 3) uses
a batch normalisation unit [12] before each maxout layer.
More specifically, we extend the Network in Network (NIN)
model [15], where we replace the original ReLU units by
batch normalisation units followed by maxout units. Re-
placing ReLU by maxout has the potential to increase the
capacity of the model [6], and as mentioned before, the
use of batch normalisation units will guarantee a more bal-
anced distribution of this input data for those maxout units,
which increases the model capacity and pre-conditions the
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a) Original classification problem (left) with the liner regions found by each model (represented by the
color of each subnet) and classification division of the original space (class regions).

b) Train and test error as a function of the number of layers, number of nodes per layer, piecewise linear
activation function, number of regions in the activation function, and the use of normalisation

Figure 2. Toy problem with the division of the space into linear regions and classification profile produced by each model (a), and a
quantitative comparison between models (b).

model. We call our proposed model the maxout network
in maxout network (MIM) - see Fig. 3. We assess the per-
formance of our model on the following datasets: CIFAR-
10 [8], CIFAR-100 [8], MNIST [9] and SVHN [10]. We
first show empirically the improvements achieved with the
introduction of maxout and batch normalisation units to
the NIN model [15], forming our proposed MIM model,
then we show a study on how this model provides a bet-
ter pre-conditioning for the proposed deep learning model,
and finally we show the final classification results on the
datasets above, which are compared to the state of the
art and demonstrated to be the best in the field in two of
these datasets (CIFAR-10, CIFAR-100) and competitive on
MNIST and SVHN.

2. Batch Normalised Deep Learning with
Piecewise Linear Activation Units

In this section, we first explain the piecewise linear acti-
vation units, followed by an introduction of how the batch
normalisation unit works and a presentation of the proposed
MIM model, including its training and inference proce-
dures.

The nomenclature adopted in this section is the same as
the one introduced by Montufar et al. [1], where a feedfor-
ward neural network is defined by the function F : Rn0 →
Rout:

F (x, θ) = fout ◦ gL ◦ hL ◦ fL ◦ ... ◦ g1 ◦ h1 ◦ f1(x), (1)

where f(.) represents a preactivation function, the param-
eter θ is formed by the input weight matrices Wl ∈
Rk.nl×nl−1 , bias vectors bl ∈ Rk.nl and normalisation pa-
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Figure 3. Proposed MIM model. The MIM model is based on
the NIN [15] model. This model contains three blocks that have
nearly identical architectures, with small differences in terms of
the number of filters and stride in convolution layers. The first two
blocks use max pooling and the third block uses average pooling.

rameters γl and βl in (3) for each layer l ∈ {1, ..., L}, hl(.)
represents a normalisation function, and gl(.) is a non-linear
activation function. The preactivation function is defined by
fl(xl−1) = Wlxl−1 +bl, where the output of the (l− 1)th

layer is xl = [xl,1, ...,xl,nl
], denoting the activations xl,i

of the units i ∈ {1, ..., nl} from layer l. This output is
computed from the activations of the preceding layer by
xl = gl(hl(fl(xl−1))). Also note that fl = [fl,1, ..., fl,nl

]
is an array of nl preactivation vectors fl,i ∈ Rk, which af-
ter normalisation, results in an array of nl normalised vec-
tors hl,i ∈ Rk produced by hl,i(fl,i(xl−1)), and the ac-
tivation of the ith unit in the lth layer is represented by
xl,i = gl,i(hl,i(fl,i(xl−1))).

2.1. Piecewise Linear Activation Units

By dropping the layer index l to facilitate the nomencla-
ture, the recently proposed piecewise linear activation units
ReLU [2], LReLU [3], PReLU [4], and Maxout [6] are rep-
resented as follows [1]:

ReLU: gi(hi) = max{0,hi},
LReLU or PReLU: gi(hi) = max{α.hi,hi},
Maxout: gi(hi) = max{hi,1, ...,hi,k}.

(2)
where hi ∈ R and k = 1 for ReLU, LReLU [3], and
PReLU [4], α is represented by a small constant in LReLU,
but a learnable model parameter in PReLU, k denotes the
number of regions of the maxout activation function, and
hi = [hi,1, ...,hi,k] ∈ Rk.

According to Montufar et al. [1], the network structure is
defined by the input dimensionality n0, the number of lay-
ers L and the width nl of each layer. A linear region of the
function F : Rn0 → Rm is a maximal connected subset of
Rn0 . Note from (2) that rectifier units have two behaviour

types: 1) constant 0 (ReLU) or linear (LReLU or PReLU)
with a small slope when the input is negative; and 2) linear
with slope 1 when input is positive. These two behaviours
are separated by a hyperplane (see Fig. 1) and the set of
all hyperplanes within a rectifier layer forms a hyperplane
arrangement, which split the input space into several lin-
ear regions. A multi-layer network that uses rectifier linear
units with n0 inputs and L hidden layers with n ≥ n0 nodes
can compute functions that have Ω

(
(n/n0)L−1nn0

)
linear

regions, and a multi-layer network that uses maxout activa-
tion units with L layers of width n0 and rank k can com-
pute functions that have kL−1kn0 linear regions [1]. These
results indicate that multi-layer networks with maxout and
rectifier linear units can compute functions with a number
of linear regions that grows exponentially with the number
of layers [1]. Note that these linear regions can be observed
as the colored polygons in Fig. 2-(a), where the number of
linear regions is denoted by ”# SUBNETS”.

The training process of networks containing piecewise
linear activation units uses a divide and conquer strategy
where ∂`

∂Wl
moves the classification boundary for layer l

according to the loss function ` with respect to the points
in its current linear region (similarly for the bias term bl),
and ∂`

∂xl−1
moves the offending points (i.e., points being er-

roneously classified) away from their current linear regions.
Dividing the data points into an exponentially large num-
ber of linear regions is advantageous because the training
algorithm can focus on minimizing the loss for each one of
these regions almost independently of others - this is why
we say it uses a divide and conquer algorithm. We also
say that it is an almost independent training of each lin-
ear region because the training parameters for each region
are shared with all other regions, and this helps the regular-
ization of the training process. However, the initialization
of this training process is critical because if the data points
are not evenly distributed at the beginning, then all these
points may lie in only one of the regions of the piecewise
linear unit. This will drive the learning of the classifica-
tion boundary for that specific linear region, where the loss
will be minimized for all those points in that region, and
the boundary for the other linear regions will be trained less
effectively with much fewer points. This means that even
the points with relatively high loss will remain in that ini-
tial region because the other regions have been ineffectively
trained, and consequently may have a larger loss. This issue
is very clear with the use of maxout units, where in the ex-
treme case, only one of the k regions is active, which means
that the maxout unit will behave as a simple linear unit. If
a large amount of maxout units behave as linear units, then
this will reduce the ability of these networks to compute
functions that have an exponential number of linear regions,
and consequently decrease the capacity of the model.
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2.2. Batch Normalisation Units

In order to force the initialization to distribute the data
points evenly in the domain of the piecewise activation
functions, such that a large proportion of the k regions is
used, we propose the use of batch normalisation by Ioffe
and Szegedy’s [12]. This normalisation has been proposed
because of the difficulty in initializing the network param-
eters and setting the value for the learning rate, and also
because the inputs for each layer are affected by the param-
eters of the previous layers. These issues lead to a com-
plicated learning problem, where the input distribution for
each layer changes continuously - an issue that is called
covariate shift [12]. The main contribution of this batch
normalisation is the introduction of a simple feature-wise
centering and normalisation to make it have mean zero and
variance one, which is followed by a batch normalisation
(BN) unit that shifts and scales the normalised value. For
instance, assuming that the input to the normalisation unit
is f = [f1, ..., fnl

], where fi ∈ Rk, the BN unit consists of
two stages:

Normalisation: f̂i,k =
fi,k−E[fi,k]√

Var[fi,k]

Scale and shift: hi,k = γif̂i,k + βi
, (3)

where the shift and scale parameters {γi, βi} are new
network parameters that participate in the training proce-
dure [12]. Another important point is that the BN unit does
not process each training sample independently, but it uses
both the training sample and other samples in a mini-batch.

2.3. Maxout Network in Maxout Network Model

As mentioned in Sec. 2.1, the number of linear regions
that networks with piecewise linear activation unit can have
grows exponentially with the number of layers, so it is im-
portant to add as many layers as possible in order to increase
the ability of the network to estimate complex functions.
For this reason, we extend the recently proposed Network
in Network (NIN) [15] model, which is based on a CNN
that uses a multi-layer perceptron (MLP) as its activation
layer (this layer is called the Mlpconv layer). In its original
formulation, the NIN model introduces the Mlpconv with
ReLU activation after each convolution layer, and replaces
the fully connected layers for classification in CNN (usually
present at the end of the whole network) by a spatial aver-
age of the feature maps from the last Mlpconv layer, which
is fed into a softmax layer. In particular, we extend the NIN
model by replacing the ReLU activation after each convolu-
tion layer of the Mlpconv by a maxout activation unit, which
has the potential to increase even further the model capac-
ity. In addition, we also add the BN unit before the maxout
units. These two contributions form our proposed model,
we give it a simple name Maxout Network in Maxout Net-
work Model (MIM), which is depicted in Fig. 3. Finally,

we include a dropout layer [13] between MIM blocks for
regularizing the model.

3. Experiments
We evaluate our proposed method on four common

deep learning benchmarks: CIFAR-10 [8], CIFAR-100 [8],
MNIST [9] and SVHN [10]. The CIFAR-10 [8] dataset con-
tains 60000 32x32 RGB images of 10 classes of common
visual objects (e.g., animals, vehicles, etc.), where 50000
images are for training and the rest 10000 for testing. The
CIFAR-100 [8] is an extension of CIFAR-10, where the dif-
ference is that CIFAR-100 has 100 classes with 500 train-
ing images and 100 testing images for each class. In both
CIFAR-10 and 100, the visual objects are well-centred in
the images. The MNIST [9] dataset is a standard benchmark
for comparing learning methods. It contains 70000 28x28
grayscale images of numerical digits from 0 to 9, divided as
60000 images for training and 10000 images for testing. Fi-
nally, the Street View House Number (SVHN) [10] dataset
is a real-world digit dataset with over 600000 32x32 RGB
images containing images of house numbers (i.e., digits 0-
9). The cropped digits are well-centred and the original as-
pect ratio is kept, but some distracting digits are present next
to the centred digits of interest. The dataset is partitioned
into training, test and extra sets, where the extra 530000
images are less difficult samples to be used as extra training
data.

For each of these datasets, we validate our algorithm us-
ing the same training and validation splitting described by
Goodfellow et al. [6] in order to estimate the model hyper-
parameters. For the reported results, we run 5 training pro-
cesses, each with different model initializations, and the test
results consist of the mean and standard deviation of the er-
rors in these 5 runs. Model initialization is based on ran-
domly producing the MIM weight values using a Normal
distribution, which is multiplied by 0.01 in the first layer
of the first MIM block and by 0.05 in all remaining layers.
Moreover, we do not perform data augmentation for any of
these datasets and only compare our MIM model with the
state-of-the-art methods that report non data-augmented re-
sults. For the implementation, we use the MatConvNet [16]
CNN toolbox and run our experiments on a standard PC
equipped with Intel i7-4770 CPU and Nvidia GTX TITAN
X GPU. Finally, Tab. 1 specifies the details of the proposed
MIM architecture used for each dataset.

Below, we first show experiments that demonstrate the
performance of the original NIN model [15] with the intro-
duction of maxout and BN units, which comprise our con-
tributions in this paper that form the MIM model. Then, we
show s study on how the BN units pre-conditions the NIN
model. Finally, we show a comparison between our pro-
posed MIM model against the current state of the art on the
aforementioned datasets.
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Arch. m-conv1 m-mlp1 m-conv2 m-mlp2 m-conv3 m-mlp3

CIFAR-10
CIFAR-100

SVHN

5x5x192
stride. 1, pad. 2, k. 2

BN

1x1x160
stride. 1, pad. 0, k. 2

BN
↓

1x1x96
stride. 1, pad. 0, k. 2

BN
3x-max.pool

dropout

5x5x192
stride. 1, pad. 2, k. 2

BN

1x1x192
stride. 1, pad. 0, k. 2

BN
↓

1x1x192
stride. 1, pad. 0, k. 2

BN
3x-max.pool

dropout

3x3x192
stride. 1, pad. 0, k. 2

BN

1x1x160
stride. 1, pad. 0, k. 2

BN
↓

1x1x10(100)
stride. 1, pad. 0, k. 2

BN
8x-avg.pool

MNIST
5x5x128

stride. 1, pad. 2, k. 2
BN

1x1x96
stride. 1, pad. 0, k. 2

BN
↓

1x1x48
stride. 1, pad. 0, k. 2

BN
3x-max.pool

dropout

5x5x128
stride. 1, pad. 2, k. 2

BN

1x1x96
stride. 1, pad. 0, k. 2

BN
↓

1x1x48
stride. 1, pad. 0, k. 2

B
3x-max.pool

dropout

3x3x128
stride. 1, pad. 0, k. 2

BN

1x1x96
stride. 1, pad. 0, k. 2

BN
↓

1x1x10
stride. 1, pad. 0, k. 2

BN
7x-avg.pool

Table 1. The proposed MIM model architectures used in the experiments. In each maxout-conv unit (m-conv), the convolution kernel is
defined by the first row in the block: (height)x(width)x(num of units). The second row of the block contains the information of convolution
stride (stride), padding (pad), and maxout rank (k). The third row contains the BN units. Each layer of the maxout-mlp unit (m-mlp) is
equivalent to a maxout-conv unit with 1x1 convolution kernel size. A softmax layer is present as the last layer of the model (but not shown
in this table). The model on top row is used on CIFAR-10 and 100 and SVHN, while the model on the bottom row is for MNIST.

Method Test Error (mean ± standard deviation)
NIN [15] 10.41%
NIN with maxout (without BN) 10.95± 0.21%
NIN with ReLU (with BN) 9.43± 0.21%
MIM (= NIN with maxout and BN - our proposal) 8.52± 0.20%

Table 2. Results on CIFAR-10 of the introduction of maxout and
BN units to NIN, which produce our proposed MIM model (last
row).

3.1. Introducing Maxout and Batch Normalisation
to NIN model

In this section, we use CIFAR-10 to show the contri-
bution provided by each component proposed in this pa-
per. The first row of Tab. 2 shows the published results of
NIN [15]. In our first experiment, we replace all ReLU units
from the NIN model by the maxout units (with k = 2) and
run the training and test experiments described above (test
results are shown in the second row of Tab. 2). Second,
we include the BN units before each ReLU unit in the NIN
model and show the test results in the third row of Tab. 2.
Finally, we include the maxout and BN units to the NIN
model, which effectively forms our proposed MIM model,
and test results are displayed in the fourth row of Tab. 2.

3.2. Ill-conditioning Study in Real Datasets

The study of how the BN units pre-conditions the pro-
posed model (on CIFAR-10 and MNIST) is shown in Fig. 4.
For this evaluation, we use the combination of NIN and
maxout units as the standard model, and ensure that the
learning rate is the only varying parameter. We train
five distinct models with learning rates in [10−2, 101] for
CIFAR-10, and [10−3, 101] for MNIST, and plot the error
curves with the mean and standard deviation values. From
Fig. 4, we can see that without BN, a deep learning model
can become ill-conditioned. It is also interesting to see that

Figure 4. The ill-conditioning, measured by the model’s inability
to converge as a function of the learning rate. The training error
(blue curve) and test error (orange curve) of the models trained
without BN stay at the initial error when the learning rate is above
a certain value, showing no sign of convergence (the results in
terms of these learning rates are therefore omitted).

these un-normalized models give best performance right
before the learning rate drives it into the ill-conditioning
mode.

3.3. Comparison with the State of the Art

We compare the proposed MIM model (first row of
Tab. 1) with Stochastic Pooling [17], Maxout Networks [6],
Network in Network [15], Deeply-supervised nets [18],
and recurrent CNN [19] on CIFAR-10 [8] and show the
results in Tab. 3. The comparison on CIFAR-100 [8]
against the same state-of-the-art models above, and also the
Tree based Priors [20], is shown in Tab. 4. The perfor-
mance on MNIST [9] of the MIM model (second row of
Tab. 1) is compared against Stochastic Pooling [17], Conv.
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Method Test Error (mean ± standard deviation)
Stochastic Pooling [17] 15.13%
Maxout Networks [6] 11.68%
Network in Network [15] 10.41%
Deeply-supervised nets [18] 9.69%
RCNN-160 [19] 8.69%
MIM (our proposal) 8.52± 0.20%

Table 3. Comparison between MIM and the state-of-the-art meth-
ods on CIFAR-10 [8].

Method Test Error (mean ± standard deviation)
Stochastic Pooling [17] 42.51%
Maxout Networks [6] 38.57%
Tree based Priors [20] 36.85%
Network in Network [15] 35.68%
Deeply-supervised nets [18] 34.57%
RCNN-160 [19] 31.75%
MIM (our proposal) 29.20± 0.20%

Table 4. Comparison between MIM and the state-of-the-art meth-
ods on CIFAR-100 [8].

Method Test Error (mean ± standard deviation)
Stochastic Pooling [17] 0.47%
Conv. Maxout+Dropout [6] 0.47%
Network in Network [15] 0.45%
Deeply-supervised nets [18] 0.39%
MIM (our proposal) 0.35± 0.03%
RCNN-96 [19] 0.31%

Table 5. Comparison between MIM and the state-of-the-art meth-
ods on MNIST [9].

Method Test Error (mean ± standard deviation)
Stochastic Pooling [17] 2.80%
Conv. Maxout+Dropout [6] 2.47%
Network in Network [15] 2.35%
MIM (our proposal) 1.97± 0.08%
Dropconnect [21] 1.94%
Deeply-supervised nets [18] 1.92%
RCNN-192 [19] 1.77%

Table 6. Comparison between MIM and the state-of-the-art meth-
ods on SVHN [10].

Maxout+Dropout [6], Network in Network [15], Deeply-
supervised nets [18], and recurrent CNN [19] in Tab. 5. It is
important to mention that the best result we observed with
the MIM model on MNIST over the 5 runs is 0.32%. Fi-
nally, our MIM model in the first row of Tab. 1 is compared
against the same models above, plus Dropconnect [21] on
SVHN [10], and results are displayed in Tab. 6.

4. Discussion and Conclusion
The results in Sec. 3.1 show that the replacement of

ReLU by maxout increases the test error on CIFAR-10, sim-
ilarly to what has been shown in Fig. 2. The introduction
of BN with ReLU activation units provide a significant im-
provement of the test error, and the introduction of BN units

before the maxout units produce the smallest error, which
happens due to the even input data distribution with respect
to the activation function domain, resulting in a more bal-
anced use of all the regions of the maxout units. The study
in Sec. 3.2 clearly shows that the introduction of BN units
pre-conditions the model, allowing it to use large learning
rates and produce more accurate classification. The com-
parison against the current state of the art (Sec. 3.3) shows
that the proposed MIM model produces the best result in the
field on CIFAR-10 and CIFAR-100. On MNIST, our best
result over five runs is comparable to the best result in the
field. Finally, on SVHN, our result is slightly worse than the
current best result in the field. An interesting point one can
make is with respect to the number of regions k that we set
for the MIM maxout units. Note that we set k = 2 because
we did not notice any significant improvement with bigger
values of k, and also because the computational time and
memory requirements of the training become intractable.

This paper provides an empirical demonstration that the
combination of piecewise linear activation units with BN
units provides a powerful framework to be explored in the
design of deep learning models. More specifically, our work
shows how to guarantee the assumption made in the use of
piecewise linear activation units about the balanced distri-
bution of the input data for these units. This empirical ev-
idence can be shown more theoretically in a future work,
following the results produced by Montufar, Srivastava and
others [1,11].
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Abstract

We introduce a new deep convolutional neural network (ConvNet) mod-
ule that promotes competition amongst a set of convolutional filters of mul-
tiple sizes. This new module is inspired by the inception module, where we
replace the original collaborative pooling stage (consisting of a concatena-
tion of the multiple size filter outputs) by a competitive pooling represented
by a maxout activation unit. This extension has the following two objec-
tives: 1) the selection of the maximum response amongst the multiple size
filters prevents filter co-adaptation and allows the formation of multiple sub-
networks within the same model, which has been shown to facilitate the
training of complex learning problems; and 2) the maxout unit reduces the
dimensionality of the outputs from the multiple size filters. We show that
the use of our proposed module in typical deep ConvNets produces classifi-
cation results that are competitive with the state-of-the-art results on the fol-
lowing benchmark datasets: MNIST, CIFAR-10, CIFAR-100, SVHN, and
ImageNet ILSVRC 2012.

1 Introduction
The use of competitive activation units in deep convolutional neural networks
(ConvNets) is generally understood as a way of building one network by the com-
bination of multiple sub-networks, with each one being capable of solving a sim-
pler task when compared to the complexity of the original problem involving the

70



whole dataset [1]. Similar ideas have been explored in the past using multi-layer
perceptron models [2], but there is a resurgence in the use of competitive activa-
tion units in deep ConvNets [3, 1]. For instance, rectified linear unit (ReLU) [4]
promotes a competition between the input sum (usually computed from the out-
put of convolutional layers) and a fixed value of 0, while maxout [5] and local
winner-take-all (LWTA) [3] explore an explicit competition amongst the input
units. As shown by Srivastava et al. [1], these competitive activation units allow
the formation of sub-networks that respond consistently to similar input patterns,
which facilitates training [4, 5, 3] and generally produces superior classification
results [1].

In this paper, we introduce a new module for deep ConvNets composed of
several convolutional filters of multiple sizes that are joined by a maxout activa-
tion unit, which promotes competition amongst these filters. Our idea has been
inspired by the recently proposed inception module [6], which currently produces
state-of-the-art results on the ILSVRC 2014 classification and detection chal-
lenges [7]. The gist of our proposal is depicted in Fig. 1, where we have the
data in the input layer filtered in parallel by a set of convolutional filters of multi-
ple sizes [8, 6, 9]. Then the output of each filter of the convolutional layer passes
through a batch normalisation unit (BNU) [10] that weights the importance of each
filter size and also pre-conditions the model (note that the pre-conditioning abil-
ity of BNUs in ConvNets containing piece-wise linear activation units has been
empirically shown in [11]). Finally, the multiple size filter outputs, weighted by
BNU, are joined with a maxout unit [5] that reduces the dimensionality of the joint
filter outputs and promotes competition amongst the multiple size filters. We em-
pirically show that the competition amongst filters of multiple size prevents filter
co-adaptation and allows the formation of multiple sub-networks. Furthermore,
we show that the introduction of our proposal module in a typical deep ConvNet
produces competitive results in the field for the benchmark datasets MNIST [12],
CIFAR-10 [13], CIFAR-100 [13], street view house number (SVHN) [14], and
ImageNet ILSVRC 2012 [7].

2 Literature Review
One of the main reasons behind the outstanding performance of deep ConvNets
is attributed to the use of competitive activation units in the form of piece-wise
linear functions [15, 1], such as ReLU [4], maxout [5] and LWTA [3] (see Fig. 2).
In general, these activation functions enable the formation of sub-networks that
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(a) Competitive multiple-size convolution module

(b) Competitive Inception module

(c) Original inception module

Figure 1: The proposed deep ConvNet modules are depicted in (a) and (b), where
(a) only contains multiple size convolutional filters within each module, while (b)
contains the max-pooling path, which resembles the original inception module [6]
depicted in (c) for comparison.

respond consistently to similar input patterns [1], dividing the input data points
(and more generally the training space) into regions [15], where classifiers and
regressors can be learned more effectively given that the sub-problems in each
of these regions are simpler than the original problem involving the whole train-

72



Figure 2: Competitive activation units, where the grey nodes are the active ones,
from which errors flow during backpropagation. ReLU [4] (a) is active when
the input is bigger than 0, LWTA [3] (b) activates only the node that has the
maximum value (setting to zero the other ones), and maxout [5] (c) has only one
output containing the maximum value from the input. This figure was adapted
from Fig.1 of [1].

ing set. In addition, the joint training of the sub-networks present in such deep
ConvNets represents a useful regularisation method [4, 5, 3]. In practice, ReLU,
maxout and LWTA allows the division of the input space in exponentially many
regions as a function of the number of layers and the number of input nodes to each
competitive activation unit, so this means that maxout and LWTA can estimate ex-
ponentially complex functions more effectively than ReLU because of the larger
number of sub-networks that are jointly trained. An important aspect of deep
ConvNets with competitive activation units is the fact that the use of batch nor-
malisation units (BNU) helps not only with respect to the convergence rate [10],
but also with the pre-conditioning of the model by promoting an even distribu-
tion of the input data points, which results in the maximisation of the number
of the regions (and respective sub-networks) produced by the piece-wise linear
activation functions [11]. Furthermore, training ConvNets with competitive ac-
tivation units [1, 11] usually involves the use of dropout [16] that consists of a
regularisation method that prevents filter co-adaptation [16], which is a particu-
larly important issue in such models, because filter co-adaptation can lead to a
severe reduction in the number of the sub-networks that can be formed during
training.

Another aspect of the current research on deep ConvNets is the idea of making
the network deeper, which has been shown to improve classification results [17].
However, one of the main ideas being studied in the field is how to increase the
depth of a ConvNet without necessarily increasing the complexity of the model
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parameter space [18, 6]. For the Szegedy et al.’s model [6], this is achieved with
the use of 1 × 1 convolutional filters [19] that are placed before each local filter
present in the inception module in order to reduce the input dimensionality of the
filter. In Simonyan et al.’s approach [18], the idea is to use a large number of layers
with convolutional filters of small size (e.g., 3 × 3). In this work, we restrict the
complexity of the deep ConvNet with the use of maxout activation units, which
selects only one of the input nodes, as shown in Fig, 2.

Finally, the use of multiple size filters in deep ConvNets is another important
implementation that is increasingly being explored by several researchers [8, 6, 9].
Essentially, multiple size filtering follows a neuroscience model [20] that suggests
that the input image data should be processed by filters of different sizes (which
can lead to filters of different scales) and then pooled together, so that the deeper
processing stages can become more robust to scale changes [6]. We explore this
idea in our proposal, as depicted in Fig. 1, but we hypothesise (and show sup-
porting evidence) that the multiple size of the filters prevents their co-adaptation
during training, leading to better generalisation. We also hypothesise and show
evidence that what is driving this better generalisation is the fact that the multiple
sizes of the filters promote the learning of features that are more different from
each other within competitive units when compared to the single-size filters.

3 Methodology
Assume that an image is represented by x : Ω → R, where Ω denotes the image
lattice, and that an image patch of size (2k− 1)× (2k− 1) (for k ∈ {1, 2, ..., K})
centred at position i ∈ Ω is represented by xi±(k−1). The models being proposed
in this paper follow the structure of the NIN model [19], and is in general defined
as follows:

f(x, θf ) = fout ◦ fL ◦ ... ◦ f2 ◦ f1(x), (1)

where ◦ denotes the composition operator, θf represents all the ConvNet parame-
ters (i.e., weights and biases), fout(.) denotes an averaging pooling unit followed
by a softmax activation function [19], and the network has blocks represented
by l ∈ {1, ..., L}, with each block containing a composition of Nl modules with
fl(x) = f

(Nl)
l ◦ ... ◦ f (2)

l ◦ f
(1)
l (x). Each module f (n)

l (.) at a particular position
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i ∈ Ω of the input data for block l is defined by:

f
(n)
l (xi) = σ

(
BNγ1,β1(W

>
1 xi), BNγ3,β3(W

>
3 xi±1), ...,

BNγ2k−1,β2k−1
(W>

2k−1xi±(k−1)),

BNγp,βp(W>
1 p3×3(xi±1)

)
,

(2)

where σ(.) represents the maxout activation function [5]σ(x) = maxj∈{1,2,...,J} xj ,
the convolutional filters of the module are represented by the weight matrices
W2k−1 for k ∈ {1, ..., Kl} (i.e., filters of size 2k − 1 × 2k − 1 × #filters,
with #filters denoting the number of 2-D filters present in W), which means
that each module n in block l has Kl different filter sizes and #filters different
filters, BNγ,β represent the batch normalization transformation with scaling and
shifting parameters [10], and p3×3(xi±1) represents a max pooling operator on the
3 × 3 subset of the input data for layer l centred at i ∈ Ω, i.e.xi±1. The batch
normalisation transformation BNγ,β [10] is computed as

µB =
1

m

m∑

i=1

xi,

σ2
B =

1

m

m∑

i=1

(xi − µB)2,

x̂i =
xi − µB√
σ2
B + ε

,

BNγ,β(xi) = γx̂i + β,

(3)

where B = {x1, ..., xm} represents a mini-batch of inputs, γ and β are two learn-
able parameters, and ε is a small constant.

Using the ConvNet module defined in (2), our proposed models differ mainly
in the presence or absence of the node with the max-pooling operator within the
module (i.e., the node represented by BNγp,βp(W>

1 p3×3(xi±1)). When the module
does not contain such node, it is called Competitive Multiple-size Convolution
(see Fig. 3-(a)), but when the module has the max-pooling node, then we call it
Competitive Inception (see Fig. 3-(b)) because of its similarity to the original
inception module [6]. The original inception module is also implemented for
comparison purposes (see Fig. 3-(c)), and we call this model the Inception Style,
which is similar to (1) and (2) but with the following differences: 1) the function
σ(.) in (2) denotes the concatenation of the input parameters; 2) a 1×1 convolution
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is applied to the input x before a second round of convolutions with filter sizes
larger than or equal to 3×3; and 3) a ReLU activation function [4] is present after
each convolutional layer.

An overview of all models with the structural parameters is displayed in Fig. 3.
Note that all models are inspired by NIN [19], GoogLeNet [6], and MIM [11]. In
particular, we replace the original 5× 5 convolutional layers of MIM by multiple
size filters of sizes 1 × 1, 3 × 3, 5 × 5, and 7 × 7. For the inception style model,
we ensure that the number of output units in each module is the same as for the
competitive inception and competitive multiple size convolution, and we also use
a 3 × 3 max-pooling path in each module, as used in the original inception mod-
ule [6]. Another important point is that in general, when designing the inception
style network, we follow the suggestion by Szegedy et al. [6] and include a rela-
tively larger number of 3× 3 and 5× 5 filters in each module, compared to filters
of other sizes (e.g., 1 × 1 and 7 × 7). An important distinction between the orig-
inal GoogLeNet [6] and the inception style network in Fig. 3-(c) is the fact that
we replace the fully connected layer in the last layer by a single 3 × 3 convolu-
tion node in the last module, followed by an average pooling and a softmax unit,
similarly to the NIN model [19]. We propose this modification to limit the num-
ber of training parameters (with the removal of the fully connected layer) and to
avoid the concatenation of the nodes from different paths (i.e., maxpooling, 1× 1
convolution filter, and etc.) into a number of channels that is equal to the number
of classes (i.e., each channel is averaged into a single node, which is used by a
single softmax unit), where the concatenation would imply that some of the paths
would be directly linked to a subset of the classes. Therefore, the last two layers
of block 3 of all architectures in Fig. 3 contain an average pooling and a softmax
unit to ensure a fair comparison amongst these networks.

3.1 Competitive Convolution of Multiple Size Filters Prevents
Undesirable Filter Convergence and Filter Co-adaptation

The main reason being explored in the field to justify the use of competitive acti-
vation units [4, 5, 3] is the fact that they build a network formed by multiple un-
derlying sub-networks [1]. More clearly, given that these activation units consist
of piece-wise linear functions, it has been shown that the composition of several
layers containing such units, divide the input space in a number of regions that
is exponentially proportional to the number of network layers [15], where sub-
networks will be trained with the samples that fall into one of these regions, and
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(a) Competitive Multiple-size Convolution (b) Competitive Inception (c) Inception style

Figure 3: The proposed competitive multiple-size convolution (a) and competitive
inception (b) networks, together with the reference inception style network (c). In
these three models, we ensure that the output of each layer has the same number
of units. Also note that the inception style model uses ReLU [21] after all convo-
lutional layers, the number of filters per convolutional node is represented by the
number in brackets, and these models assume a 10-class classification problem.
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as a result become specialised to the problem in that particular region [1], where
overfitting can be avoided because these sub-networks must share their parameters
with one another [1]. It is worth noting that these regions can only be formed if
the underlying convolutional filters do not converge to similar features, otherwise
all input training samples will fall into only one region of the competitive unit,
which degenerates into a simple linear transform, preventing the formation of the
sub-networks.

A straightforward solution to avoid such undesirable convergence can be achieved
by limiting the number of training samples in a mini-batch during stochastic gra-
dient descent. These small batches allow the generation of “noisy” gradient direc-
tions during training that can activate different maxout gates, so that the different
linear pieces of the activation unit can be fitted, allowing the formation of an ex-
ponentially large number of regions. However, the drawback of this approach
lies in the determination of the “right” number of samples per mini-batch. A
mini-batch size that is too small leads to poor convergence, and if it is too large,
then it may not allow the formation of many sub-networks. Recently, Liao and
Carneiro [11] propose a solution to this problem based on the use of BNU [10] that
distributes the training samples evenly over the regions formed by the competitive
unit, allowing the training to use different sets of training points for each region
of the competitive unit, resulting in the formation of an exponential number of
sub-networks. However, there is still a potential problem with that approach [11],
which is that the underlying convolutional filters are trained using feature spaces
of the same size (i.e., the underlying filters are of fixed size), which can induce
the filters to converge to similar regions of the feature space, also preventing the
formation of the sub-networks.

Our proposed module that promotes competition amongst filters of multiple
sizes represents a way to prevent the undesirable convergence mentioned above [11].
To evaluate this hypothesis, we examine the similarity between convolutional fil-
ters within each competitive unit by empirically showing that the multiple sizes of
the convolutional filters within a competitive unit promotes the learning of differ-
ent features. This demonstration is based on measuring the orthogonality between
filters within the same competitive unit, where filters that have similar responses
will have orthogonality measures closer to one, and different responses will lead
to orthogonality measures close to zero. The orthogonality between two filters,
represented by w1 and w2, is measured by |w>1 w2|

‖w1‖2‖w2‖2 , where zero padding along
the filter border is used in order to allow the measure of orthogonality between
filters of different sizes. We show the mean value of the orthogonality measures
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between pairs of single-size and multiple-size filters in a competitive unit in Ta-
ble 1, where results are gathered from the first competitive layer of the first two
blocks of the models trained on CIFAR-10 (see Sec. 4.1 for competitive single-
size network architecture). The results from Table 1 provide evidence that the
filter responses from the competitive multiple-size modules are more orthogonal
to each other than the responses from the competitive single-size module.

Our second hypothesis is that the competition amongst multiple size filters
within a convolution module prevents co-adaptation throughout the ConvNet model.
The evidence for such hypothesis is displayed in Fig 4, which shows Yosinski
et al.’s test [22] that assesses the transferability of ConvNet filters. The idea of this
experiment is that the ConvNet with more co-adapted filters will produce larger
testing errors when the higher level layers are removed because it is unlikely that
the re-trained layers will be able to discover the complex co-adaptations present
in the removed layers. To conduct this experiment, we train a model using one
dataset (CIFAR-100), remove a subset of the higher level convolutional layers
(e.g., from layers 7 to the last layer, where the indexing used in the horizontal axis
of Fig. 3 is consistent with the first two competitive/inception layers to remove),
and re-train only these layers for the CIFAR-10 dataset, while keeping the remain-
ing lower level layers fixed (i.e., we do not re-train these lower layers). Fig. 4
shows that the competitive modules with filters of multiple sizes have the low-
est testing error in all evaluated configurations, when compared to the single size
competitive module and the competitive inception module. This result supports
our hypothesis that competition amongst filters of multiple sizes in a ConvNet
module represents a way to prevent co-adaptation.

4 Experiments
We quantitatively measure the performance of our proposed models Competitive
Multiple-size Convolution and Competitive Inception on five computer vision
benchmark datasets: CIFAR-10[13], CIFAR-100[13], MNIST [12], SVHN [14],
and ImageNet ILSVRC 2012 [7]. We first describe the experimental setup, then
using CIFAR-10 and MNIST, we show a quantitative analysis (in terms of classifi-
cation error, number of model parameters and train/test time) of the two proposed
models, the Inception Style model presented in Sec. 3, and two additional ver-
sions of the proposed models that justify the use of multiple-size filters, explained
in Sec. 3.1. Finally, we compare the performance of the proposed Competitive
Multiple-size Convolution and Competitive Inception with respect to the current
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Multiple-size (Block 1)
1x1 3x3 5x5 7x7

1x1 1 0.12 0.15 0.13
3x3 0.12 1 0.21 0.12
5x5 0.15 0.21 1 0.12
7x7 0.13 0.12 0.11 1

Multiple-size (Block 2)
1x1 3x3 5x5 7x7

1x1 1 0.05 0.03 0.02
3x3 0.05 1 0.05 0.04
5x5 0.03 0.05 1 0.07
7x7 0.02 0.04 0.07 1

Single-size (Block 1)
7x7 7x7 7x7 7x7

7x7 1 0.22 0.22 0.21
7x7 0.22 1 0.19 0.20
7x7 0.22 0.19 1 0.23
7x7 0.21 0.20 0.23 1

Single-size (Block 2)
7x7 7x7 7x7 7x7

7x7 1 0.09 0.10 0.09
7x7 0.09 1 0.09 0.09
7x7 0.10 0.09 1 0.09
7x7 0.09 0.09 0.09 1

Table 1: Mean orthogonality measure between pairs of filters within competitive
multiple-size convolution modules (up), and filters from competitive single-size
convolution modules (down), gathered from the first competitive layer of the first
two blocks of the models trained on CIFAR-10.

state-of-the-art results in the four benchmark datasets mentioned above.
The CIFAR-10 [13] dataset contains 60000 images of 10 commonly seen ob-

ject categories (e.g., animals, vehicles, etc.), where 50000 images are used for
training and the rest 10000 for testing, and all 10 categories have equal volume
of training and test images. The images of CIFAR-10 consist of 32 × 32-pixel
RGB images, where the objects are well-centered in the middle of the image.
The CIFAR-100 [13] dataset extends CIFAR-10 by increasing the number of cat-
egories to 100, whereas the total number of images remains the same, so the
CIFAR-100 dataset is considered as a harder classification problem than CIFAR-
10 since it contains 10 times less images per class and 10 times more categories.
The well-known MNIST [12] dataset contains 28× 28 grayscale images compris-
ing 10 handwritten digits (from 0 to 9), where the dataset is divided into 60000
images for training and 10000 for testing, but note that the number of images per
digit is not uniformly distributed. The Street View House Number (SVHN) [14] is
also a digit classification benchmark dataset that contains 600000 32×32 RGB im-
ages of printed digits (from 0 to 9) cropped from pictures of house number plates.
The cropped images is centered in the digit of interest, but nearby digits and other
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Figure 4: Co-adaptation experiment that tests the transferability of the filters
learned for one dataset (CIFAR-10) to another (CIFAR-100) [22] for Competitive
inception (comp-inception), Single-size (comp-SS), and Multiple-size (comp-
MS) networks. The vertical axis shows the testing error and the horizontal axis
represents the index of the first layer of the ConvNet to be re-trained for the new
dataset, where the layers below are fixed during the fine-tuning process that lasts
30 epochs.

distractors are kept in the image. SVHN has three sets: training, testing sets and
a extra set with 530000 images that are less difficult and can be used for helping
with the training process. We do not consider data augmentation on MNIST and
SVHN dataset but we show results with and without data augmentation (we only
use simple data augmentation, i.e., image translation and mirroring [23, 24]) on
CIFAR-10/100. Finally, the ImageNet ILSVRC 2012 [7] dataset contains more
than 1 million training images and 50000 validation images of 1000 classes. The
performance is evaluated by computing the top1 and top5 (i.e., one of the top 5
predictions is the ground truth label) accuracies on the validation set.

In all these benchmark datasets we minimize the softmax loss function present
in the last layer of each model for the respective classification in each dataset, and
we report the results as the proportion of misclassified test images. We use an ini-
tial learning rate of 0.1 and follow a multiple-step decay to a final learning rate of
0.001 (in 80 epochs for CIFAR-10 and CIFAR-100, 50 epochs for MNIST, and 40
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epochs for SVHN). For ImageNet dataset, we decay the final learning rate to 1e-5
in 90 epochs. The stopping criterion is determined by the convergence observed
in the error on the validation set. The mini-batch size for CIFAR-10, CIFAR-100,
and MNIST datasets is 100, and 128 for SVHN and ImageNet dataset. The mo-
mentum and weight decay are set to standard values 0.9 and 0.0005, respectively.
For each result reported (except the ImageNet results), we compute the mean and
standard deviation of the test error from five separately trained models, where for
each model, we use the same training set and parameters (e.g., the learning rate
sequence, momentum, etc.), and we change only the random initialization of the
filter weights and randomly shuffle the training samples. We also show the best
achieved error of the five models as in [25, 23].

We use the GPU-accelerated ConvNet library MatConvNet [26] and Torch-
7 [27] based fb.resnet.torch package [28] to perform the experiments specified in
this paper. Our experimental environment is a desktop PC equipped with i7-4770
CPU, 24G memory and a 12G GTX TITAN X graphic card. Using this machine,
we report the mean training and testing times of our models.

4.1 Model Design Choices
In this section, we show the results from several experiments that show the design
choices for our models, where we provide comparisons in terms of their test errors,
the number of parameters involved in the training process and the training and
testing times. Table 2 shows the results on CIFAR-10 and MNIST for the models
Competitive Multiple-size Convolution, Competitive Inception, and Inception
Style models, in addition to other models explained below. Note that all models
in Table 2 are constrained to have the same numbers of input channels and output
channels in each module, and all networks contain three blocks [19], each with
three modules (so there is a total of nine modules in each network), as shown in
Fig. 3. These models are trained without data augmentation.

We argue that the multiple-size nature of the filters within the competitive
module is important to avoid the co-adaptation issue explained in Sec. 3.1. We
assess this importance by comparing both the number of parameters and the test
error results between the proposed models and the model Competitive Single-
size Convolution, which has basically the same architecture as the Competitive
Multiple-size Convolution model represented in Fig. 3-(a), but with the following
changes: the first two blocks contain four sets of 7 × 7 filters in the first mod-
ule, and in the second and third modules, two sets of 3 × 3 filters; and the third
block has three filters of size 5 × 5 in the first module, followed by two modules
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with two 3 × 3 filters. Notice that this configuration implies that we replace the
multiple-size filters by the filter of the largest size of the module in each node,
which is a configuration similar to the recently proposed MIM model [11]. The
configuration for the Competitive Single-size Convolution has around two times
more parameters than the Competitive Multiple-size Convolution model and takes
longer to train, as displayed in Table 2. The idea behind the use of the largest size
filters within each module is based on the results obtained from the training of the
batch normalisation units of the Competitive Multiple-size Convolution modules,
which indicates that the highest weights (represented by γ in (2)) are placed in
the largest size filters within each module, as shown in Fig. 5. The classification
results of the Competitive Single-size Convolution, shown in Table 2, demonstrate
that it is consistently inferior to the Competitive Multiple-size Convolution model.

Another important point that we test in this section is the relevance of dropping
connections in a deterministic or stochastic manner when training the competitive
convolution modules. In particular, we are interested if the deterministic mask-
ing provided by our proposed Competitive Multiple-size Convolution module is
more effective at avoiding undesirable filter convergence and filter co-adaptation
than the stochastic masking provided by DropConnect [29]. We run a quantita-
tive analysis of the Competitive DropConnect Single-size Convolution, where
we take the Competitive Single-size Convolution proposed before and randomly
drop connections using a rate, which is computed such that it has on average the
same number of parameters to learn in each round of training as the Competitive
Multiple-size Convolution, but notice that the Competitive DropConnect Single-
size Convolution has in fact the same number of parameters as the Competitive
Single-size Convolution. Using Fig. 6, we see that the DropConnect rate is 0.57
for the module 1 of blocks 1 and 2 specified in Fig. 3. The results in Table 2 show
that it has around two times more parameters, takes longer to train and performs
significantly worse than the Competitive Multiple-size Convolution model.

We also notice that the competitive multiple-size module has better generali-
sation ability amongst the evaluated models, which is shown in Fig. 7, where the
competitive multiple-size module has the highest training error in CIFAR-10 and
CIFAR-100 (amongst competitive models), but the smallest testing error. Finally,
the reported training and testing times in Table 2 show a clear relation between
the number of model parameters and those times.
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CIFAR-10
Method No. of Params Test Error Train Time Test Time

best (mean ± std dev) (h) (ms)
Competitive Multiple-size 4.48 M 6.80 (6.87± 0.05)% 6.4 h 2.7 ms
Convolution
Competitive Inception 4.69 M 6.67 (7.13± 0.31)% 7.6 h 3.1 ms

Inception Style 0.61 M 8.42 (8.50± 0.06)% 3.9 h 1.5 ms

Competitive Single-size 9.35 M 6.98 (7.15± 0.12)% 8.0 h 3.2 ms
Convolution
Competitive DropConnect 9.35 M 8.88 (9.12± 0.17)% 7.7 h 3.1 ms
Single-size Convolution

MNIST
Method No. of Params Test Error Train Time Test Time

best (mean ± std dev) (h) (ms)
Competitive Multiple-size 1.13 M 0.29 (0.33± 0.04)% 1.5 h 0.8 ms
Convolution
Competitive Inception 1.19 M 0.38 (0.40± 0.02)% 1.9 h 1.0 ms

Inception Style 0.18 M 0.43 (0.44± 0.01)% 1.4 h 0.7 ms

Competitive Single-size 2.39 M 0.33 (0.37± 0.03)% 1.7 h 0.9 ms
Convolution
Competitive DropConnect 2.39 M 0.32 (0.35± 0.03)% 1.6 h 0.9 ms
Single-size Convolution

Table 2: Results on CIFAR-10 and MNIST of the proposed models, in addition to
the Competitive Single-size Convolution and Competitive DropConnect Single-
size Convolution that test our research questions posed in Sec. 3.1.

4.2 Comparison with the State of the Art
We show the performances of the proposed Competitive Multiple-size Convo-
lution (CMSC) and Competitive Inception Convolution models on CIFAR-10,
CIFAR-100, MNIST and SVHN, and compare them with the current state of the
art in the field. To further explore the usefulness of our module in deeper learning
models, we introduce the CMSC-V2 model which adds one more CMSC layer
with filter size up to 5 × 5 in between the two sequential 3 × 3 CMSC layers
in each block of the original CMSC design (see Fig. 3-a), resulting in a 12-layer
model with 7 million parameters.

We now give a brief introduction to the state of the art methods. Stochastic
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Figure 5: Mean and standard deviation of the learned γ values in the batch nor-
malisation unit of (2) for the Competitive Multiple-size Convolution model on
CIFAR-10. This result provides an estimate of the importance placed on each
filter by the training procedure.

Pooling [30] proposes a regularization based on a replacement of the deterministic
pooling (e.g., max or average pooling) by a stochastic procedure, which randomly
selects the activation within each pooling region according to a multinomial dis-
tribution, estimated from the activation of the pooling unit. Spectral Pooling [31]
proposes to perform pooling by truncating the representation in the frequency
domain, which preserves considerably more information than other pooling meth-
ods and enables flexible choices of pooling output dimensionality. BinaryCon-
nect [32] introduces a method to train a DNN with binary weights during the
forward and backward propagations, and the Binary Connect method acts as reg-
ularizer. Maxout Networks [5] introduces a piece-wise linear activation unit that
is used together with dropout training [16] and is introduced in Fig. 2-(c). The
Network in Network (NIN) [19] model consists of the introduction of multilayer
perceptrons as activation functions to be placed between convolution layers, and
the replacement of a final fully connected layer by average pooling, where the
number of output channels represent the final number of classes in the classifica-
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(a) Competitive Multiple-size Convolution Filter Masks

(b) Competitive Single-size DropConnect Convolution Filter Masks

Figure 6: The Competitive Multiple-size Convolution module has filters of size
1×1, 3×3, 5×5, and 7×7, which is equivalent to having four 7×7 filters (with a
total of 196 weights) with the masks in (a), where the number of deterministically
masked out (or dropped) weights is 112. Using a DropConnect rate of 112/196 ≈
0.57, a possible set of randomly dropped weights is shown in (b). Note that even
though the proportion and number of weights dropped in (a) and (b) are the same,
the deterministic or stochastic masking of the weights make a difference in the
performance, as explained in the paper.

tion problem. Deeply-supervised nets [33] introduce explicit training objectives
to all hidden layers, in addition to the back-propagated errors from the last softmax
layer. The use of a recurrent structure that replaces the purely feed-forward struc-
ture in ConvNets is explored by the model RCNN [34]. An extension of the NIN
model based on the use of maxout activation function instead of the multilayer
perceptron is introduced in the MIM model [11], which also shows that the use of
batch normalization units are crucial for allowing an effective training of several
single-size filters that are joined by maxout units. Clevert et al. [35] introduces the
exponential linear unit (ELU) which alleviates the vanishing gradient problem and
speeds up the learning, leading to better classification performance. FitNet [36]
learns a student network from the softmax output of a large teacher network or en-
semble networks. Residual network (ResNet) [23] implements a residual connec-
tion to bypass learning blocks, showing competitive results on both CIFAR [13]
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Figure 7: Training and testing errors for CIFAR-10 (up) and CIFAR-100 (down)
of the following models: Inception Style (inception) , Competitive Single-size
Convolution (comp-SS), Competitive Inception (comp-inception), and Competi-
tive Multiple-size Convolution (comp-MS).

87



Method CIFAR-10 CIFAR-100
No. of Params noAug Aug noAug Aug

CMSC 4.48 M 6.80 (6.87± 0.05)% 6.36 (6.52± 0.18)% 26.87 (27.56± 0.49)% 25.52 (25.89± 0.30)%
CMSC-V2 7.01 M 6.73 (6.80± 0.12)% 5.39 (5.61± 0.16)% 29.24 (29.63± 0.44)% 24.43 (25.37± 0.54)%
Competitive Inception 4.69 M 6.67 (7.13± 0.31)% 5.98 (6.18± 0.21)% 27.73 (28.17± 0.25)% 26.30 (26.61± 0.38)%
FractalNet-20layers [24] 38.6 M 7.27% 4.68% 29.05% 24.32%
ELU [35] - - 6.55% - 24.28%
FitNet [36] 2.50 M - 8.39% - 35.04%
MIM [11] 1.93 M 8.52± 0.20% - 29.20± 0.20% -
Spectral pooling [31] - 8.60% - 31.60% -
RCNN [34] - 8.69% 7.09% 31.75% -
Deeply-supervised nets [33] - 9.69% 7.97% 34.57% -
Network in Network [19] 0.97 M 10.41% - 35.68% -
Maxout Networks [5] - 11.68% 38.57% -
ResNets:
WideResNet [38] 36.5 M - 4.17% - 20.50%
ResNet (Stochastic depth) [37] 1.70 M 11.66% 5.25% 37.80% 24.98%
ResNet [23, 37] 1.70 M 13.63% 6.41% 44.74% 27.76%

Table 3: Comparison in terms of classification error between our proposed models
(highlighted) and the state-of-the-art methods on CIFAR-10 and CIFAR-100 [13].

datasets and Imagenet [7]. Stochastic depth [37] is a method that dynamically
drops learning blocks of the ResNet in order to improve the generalisation ability
of the ResNet model. WideResNet [38] model aims to reduce the depth of the
ResNet while increasing the capacity of each residual block. Finally, the Fractal-
Net [24] shows a network module with interactive sub-paths, which can be used
as an alternative to the residual module to compose a very deep network.

The comparison on CIFAR-10 and CIFAR-100 [13] datasets are shown in Ta-
ble 3, where we separate the results by whether they are obtained with or without
data augmentation. Our proposed methods has the best result among the state-
of-the-art methods without data augmentation and show competitive results to the
state-of-the-art methods that using data augmentation. Table 4 shows the results
on MNIST [12], where it is worth reporting that the best result (over the five
trained models) produced by our CMSC model is a test error of 0.29%, which is
better than the single result from Liang and Hu [34]. Finally, the comparison on
SVHN[14] dataset is shown in Table 5, where our CMSC model is able to achieve
the best error of 1.69%.

4.3 ImageNet Evaluation
ImageNet [7] is a large-scale image dataset that is use to benchmark several meth-
ods proposed in the field. Naively, our Competitive Multiple-size module includes
the use of large size filters, which produce a large number of parameters that do not
scale well with the input dimensionality (i.e., the number of channels of input ten-

88



Method Test Error
CMSC 0.29 (0.33± 0.04)%
RCNN [34] 0.31%
MIM [11] 0.35± 0.03%
Deeply-supervised nets [33] 0.39%
Competitive Inception 0.38 (0.40± 0.02)%
Network in Network [19] 0.45%
Conv. Maxout+Dropout [5] 0.47%
Stochastic Pooling [30] 0.47%

Table 4: Comparison in terms of classification error between our proposed models
(highlighted) and the state-of-the-art methods on MNIST [12].

Method Test Error
ResNet (Stochastic depth) [37] 1.75%
CMSC 1.69 (1.76± 0.07)%
RCNN [34] 1.77%
Competitive Inception 1.70 (1.78± 0.09)%
ResNet [23, 37] 1.80%
FractalNet-20layers [24] 1.87%
Deeply-supervised nets [33] 1.92%
Drop-connect [29] 1.94%
MIM [11] 1.97± 0.08%
BinaryConnect [32] 2.15%
Network in Network [19] 2.35%
Conv. Maxout+Dropout [5] 2.47%
Stochastic Pooling [30] 2.80%

Table 5: Comparison in terms of classification error between our proposed models
(highlighted) and the state-of-the-art methods on SVHN [14].

sor). This means that implementing a similar ConvNet structure to GoogLeNet [6]
in terms of the number of layers and number of units per layer would require more
than 70M parameters, as opposed to 7M parameters needed by GoogLeNet. To
resolve this issue, we adopt the “bottleneck” design from the ResNet [23] model
to reduce the dimensionality of the input tensor to keep Competitive Multiple-size
Convolution (CMSC) unit computation manageable. Our proposal is to replace
the second 3 × 3 ReLU activated convolution layer [4] with our CMSC mod-
ule inside the bottleneck module (See Fig. 8) to compose the bottleneck-CMSC
module. We replace all the bottleneck units in the original ResNet model with

89



Method No. of Params Top1 Top5
CMSC-ResNet-V1-5x5 (r=0.6) 23.48 M 26.22% 8.06%
CMSC-ResNet-V1-7x7 (r=0.4) 22.59 M 26.76% 8.46%
CMSC-ResNet-V2-5x5 (r=0.9) 22.23 M 25.50% 7.66%
CMSC-ResNet-V2-7x7 (r=0.9) 22.71 M 25.48% 7.59%
Baseline ResNet (r=1.0)1 22.78 M 26.63% 8.34%

Table 6: Comparison between the CMSC-ResNet and the baseline ResNet on
ILSVRC 2012 validation set, showing the top1 and top5 validation errors by eval-
uating only the center crop (224x224) of the validation images. All models have
50 layers.

the bottleneck-CMSC units and name it CMSC-ResNet-V1 model. Since a single
CMSC module contains more parameters than a 3×3 convolution module, we use
r < 1 (uniformly used in all modules) to indicate the reduction rate of the number
of channels in the input tensor of the CMSC unit (shown at bottom of Fig. 8).

In Table 6 we show that our CMSC-ResNet-V1-5x5 model outperforms the
ResNet in a well-controlled experiment setup (i.e., same number of epochs, learn-
ing rate schedule, batch size, etc.). Note that the performance of the ResNet model
surpasses the performance of GoogLeNet, so that is why we compare our method
with ResNet. In the CMSC-ResNet-V1 models, the k × k suffix means the maxi-
mum filter size (i.e., -5×5 means the CMSC module uses 1×1, 3×3, and 5×5 fil-
ters) used in each bottleneck-CMSC module. The CMSC-ResNet-V1-5x5 model
shows better result than the baseline ResNet model, which indicates the advantage
of using the Competitive Multiple-size module in very deep networks. However,
we also notice that the CMSC-ResNet-V1-7x7 does not improve the baseline per-
formance of ResNet model, where our hypothesis is that this issue is due to the
60% reduction of activating units in that model. To verify this hypothesis, we
increase the number of units (while keeping a similar number of parameters) and
introduce the CMSC-ResNet-V2 models, where the large size bottleneck-CMSC
units are only used at the bottom of the model and small bottleneck-CMSC units
(CMSC with 1×1 and 3×3 filters) at the top of the model, resulting in further im-
provements. We show that the best model (CMSC-ResNet-V2-7x7) outperforms
the baseline ResNet model by 1.15%.

1Our ResNet baseline model is trained (from scratch) from the default script provided in [28]
with a few modifications to suit our computational environment: 1) we use mini-batches of size
128; and 2) we downsize the images to 256x256 and store them in an LMDB database, which
speeds up the training but at the cost of reading the same training image sequence in each epoch. In
comparison, the official script [28] uses mini-batches of size 256, full size images and randomised
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Figure 8: The comparison of the original “bottleneck” ReLU architecture (left)
used in ResNet [23] model and our proposed “bottleneck” Competitive Multiple-
size Convolution (CMSC) architecture. The width of each computation block
illustrates the number of channels of each block, where the first computation block
is a 1 × 1 convolution that is used to reduce the number of input channels for
the second computation block. The hyper-parameter r(where r < 1) is used to
indicate the reduction rate of the number of input channels (as well as the number
of CMSC units), compared to the number of input channels/units in the baseline
ResNet model. The third computation block is also a 1 × 1 convolution which
restore the number of channels/units.

5 Discussion
In terms of the model design choices in Sec. 4.1, we can see that the proposed
Competitive Multiple-size Convolution produces more accurate classification re-
sults than the proposed Competitive Inception. Given that the main difference
between these two models is the presence of the max-pooling path within each
module, we can conclude that this path does not help with the classification ac-

image reads as default.

91



curacy of the model. The better performance of both models with respect to the
Inception Style model can be attributed to the maxout unit that induces compe-
tition amongst the underlying filters, which helps more the classification results
when compared with the collaborative nature of the Inception module. Also, a
comparison with the Competitive Single-size Convolution in Tab. 2 replicates the
results from Sec. 3.1, which shows that the proposed Competitive Multiple-size
Convolution produces more accurate classification results on the test set. Con-
sidering model complexity, it is important to notice that the relation between the
number of parameters and training and testing times is not linear, where even
though the Inception Style model has 10× fewer parameters, it trains and tests
2 to 1.5× faster than the proposed Competitive Multiple-size Convolution and
Competitive Inception models.

The use of deterministic, as opposed to stochastic, mapping also appears to
be more effective in avoiding filter co-adaptation given the more accurate classi-
fication results of the former mapping. Nevertheless, the reason behind the worse
performance of the stochastic mapping may be due to the fact that DropConnect
has been designed for the fully connected layers only [29], while our test bed for
the comparison is set in the convolutional filters. To be more specific, we think
that a fully connected layer usually encapsulates hundreds to thousands of weights
for inputs of similar size of dimensions, thus a random dropping on a subset of
weight elements can hardly change the distribution of the outputs pattern. How-
ever, the convolution filters are of small dimensions, and each of our maxout unit
controls 4 to 5 filters at most, so such masking scheme over small weights matrix
could result in “catastrophic forgetting” [39] which explains why the Competi-
tive DropConnect Single-size Convolution performs even worse than Competitive
Single-size Convolution on CIFAR-10.

The use of 7×7 filters in the competitive module allows us to capture large size
spatial patterns in each computation layer. It may be argued that such large size
spatial patterns may not be necessary to obtain good classification performance.
To explore this point, we test the exclusion of the 7 × 7 filters from the proposed
Competitive Multi-size Convolution model (see Fig. 3-a), resulting in a model
of 3.68 M parameters, where the classification result is 7.21 ± 0.11%, which is
worse than the one with the 7 × 7 filters (6.87 ± 0.05%). We further show an
experiment that assesses whether filters of larger size within a competitive module
can improve the classification accuracy at the expense of having a larger number of
parameters to train. We test the inclusion of two more filters of sizes 9×9 and 11×
11 in module 1 of blocks 1 and 2, and two more filter sizes 7×7 and 9×9 in module
1 of block 3 (see Fig. 3-a). The classification result obtained is 7.36 ± 0.16%

92



on CIFAR-10, and number of model parameters is 13.11 M. These experiments
show that decreasing and increasing the number of filters of larger sizes can have
different effects in the classification results, where we may conclude that some
spatial pattern at 7 × 7 size is helpful to classify the CIFAR-10 classes. On the
other hand, the CMSC-ResNet-V2-7x7 model shows slightly better performance
to CMSC-ResNet-V2-5x5 model on ImageNet, which suggests that the 5 × 5
spatial patterns may be as expressive as the 7 × 7 patterns for ImageNet. To
conclude, the filter sizes to be included in the competitive unit is a task dependent
design choice, where the large size filters can be omitted if the performance gain
does not justify the increase in computational costs.

An important modification that can be suggested for our proposed Competitive
Multiple-size Convolution model is the replacement of the maxout by ReLU acti-
vation, where only the largest size filter of each module is kept and all other filters
are removed. One can argue that such model is perhaps less complex (in terms
of the number of parameters) and probably as accurate as the proposed model.
However, the results we obtained with such model on CIFAR-10 show that this
model has 3.28 M parameters (i.e., just slightly less complex than the proposed
models, as shown in Table 2) and has a classification test error of 8.16 ± 0.15%,
which is significantly larger than for our proposed models. On MNIST, this model
has 0.81 M parameters and produces a classification error of 0.37± 0.05%, which
also shows no advantage over the proposed models.

6 Conclusion
In this paper, we show the effectiveness of using competitive units on modules
that contain multiple-size filters. We argue that the main reason of the superior
classification results of our proposal, compared with the current state of the art
in several benchmark datasets, lies in the following points: 1) the deterministic
masking implicitly used by the multiple-size filters avoids the issue of filter co-
adaptation; 2) the competitive unit that joins the underlying filters and the batch
normalization units promote the formation of a large number of sub-networks that
are specialized in the classification problem restricted to a small area of the input
space and that are regularized by the fact that they are trained together within
the same model; and 3) the maxout unit allows the reduction of the number of
parameters in the model. It is important to note that such modules can be applied
in several types of deep learning networks, and we plan to apply it to other types
of models, such as the recurrent neural network [34].
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Abstract

In this paper, we introduce a novel methodology for
characterising the performance of deep residual networks
(ResNets) with respect to training convergence and gener-
alisation as a function of mini-batch size, model structure,
learning rate and stochastic depth rate. This methodology is
based on novel measurements derived from the eigenvalues
of the approximate Fisher information matrix, which can be
efficiently computed even for high capacity ResNet models
and can be used to manipulate the parameters of the train-
ing process to obtain faster training and improved inference
performance. Our proposed measurements are shown to en-
able a reliable estimation of training convergence and gen-
eralisation using just a few training epochs. Furthermore,
the proposed measurements also allow us to show that it
is possible to manipulate the training process with a new
dynamic sampling training approach that continuously in-
crease the mini-batch size over the training process and a
novel dynamic stochastic depth rate mechanism that contin-
uously decrease the depth drop rate. We show that this pro-
posed training approach reaches competitive classification
results in CIFAR-10, and CIFAR-100 datasets with models
of significantly lower capacity that can be trained more ef-
ficiently than current state of the art ResNets.

1. Introduction

Deep learning models, especially the recently proposed
deep residual networks (ResNets) [12, 13], are achieving
extremely accurate classification performance over a broad
range of tasks. ResNets (and most of large capacity deep
learning models) are generally trained with the stochastic
gradient descent (SGD) methods [4], or any of its vari-
ants, given that they have shown to produce robust train-
ing results (i.e., good convergence and generalisation) at a
relatively low computational cost, in terms of run-time and
memory complexity. However, a successful SGD training
of ResNets depends on a careful selection of mini-batch
size, model structure, learning rate and stochastic depth

rate, but there are currently no reliable guidelines on how
to select these hyper-parameters.

Recently, Keskar et al. [15] proposed numerical experi-
ments to show that large mini-batch size methods converge
to sharp minimisers of the objective function, leading to
poor generalisation, and small mini-batch size approaches
converge to flat minimisers. In particular, Keskar et al. [15]
proposed a new sensitivity measurement based on an explo-
ration approach that calculates the largest value of the ob-
jective function within a small neighbourhood. Even though
very relevant to our work, that paper [15] focuses only on
mini-batch size, and it does not elaborate on the dynamic
sampling training method – the paper only shows the rough
idea of a training algorithm that starts with a small mini-
batch and then suddenly switches to a large mini-batch.
Other recent works characterise the loss function in terms
of their local minima [7, 20, 27, 19], which is interesting
but does not provide a helpful guideline for characterising
the training procedure. Finally, the distribution of the Hes-
sian eigenvalues has been studied [25] in order to assess the
complexity of the training problem and whether the system
is over-parameterised, which is interesting but un-feasible
to be computed in modern ResNets due to the high compu-
tational complexity of processing the Hessian.

In this paper, we introduce a novel methodology for char-
acterising the SGD training of ResNets [12] with respect to
mini-batch sizes, model structure, learning rate and stochas-
tic depth rate [13]. These experiments are based on the ef-
ficient computation of the eigenvalues of the approximate
Fisher information matrix (hereafter, referred to as Fisher
matrix) [6, 22]. In general, the eigenvalues of the Fisher
matrix can be efficiently computed (in terms of memory and
run-time complexities), and they are usually assumed to ap-
proximate of the Hessian spectrum [6, 22], which in turn
can be used to estimate the objective function shape.

The proposed characterisation of SGD training is based
on the cumulative sum of the condition number CK and the
cumulative sum of the (weighted) eigenvalues LK of the
Fisher matrix. We show empirically that CK and LK en-
able a consistent characterisation of various models trained
with different mini-batch sizes, model structure, learning
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Figure 1. Testing (a) and training (b) errors on CIFAR-10 as a function of the proposed measures: cumulative sum of the condition number
CK and of the summed (weighted) eigenvalues LK of the Fisher matrix at the final training epoch. The labels represent the training
method used: 1) size{8, ..., 512} denotes the mini-batch size for training the standard ResNet, 2) batch−drop{0.1, ..., 0.9} represents
the stochastic depth rate with a fixed mini-batch size of 100, and 3) skip{1, ..., 12} indicates different ResNet structures with residual
connections involving a large or small number of blocks. The graph in (c) shows the stability of CK and LK as a function of training
epochs.

rate and stochastic depth rate. Fig. 1(a),(b) shows how the
CK and LK values computed at the last epoch for the train-
ing and testing sets of CIFAR-10 [18] vary for different
types of ResNet models (notice the skip{1, ...,12}), dif-
ferent mini-batch sizes (see size{8, ...,512}) and different
stochastic drop rates (batch-drop{0.1, ...,0.9}). In addi-
tion, these two measures are also shown in Fig. 1(c) to be
stable when computed during the first epochs, allowing the
training mechanism to be reliably characterised early on in
the training process, relative to other models, saving pre-
cious training cycles. These measures also suggest new
training procedures that dynamically increases the mini-
batch size or decreases the stochastic depth rate, allowing
the training procedure to navigate in this landscape of CK
and LK measures. The dynamic increase of mini-batch size
approach has been suggested before [15, 4], but we are not
aware of previous implementations. This approach has a
faster training time and a competitive accuracy result com-
pared to the current state of the art. All our experiments are
conducted on CIFAR-10, and CIFAR-100 [18], and our pro-
posed training procedure obtains competitive classification
errors using ResNet models with smaller memory require-

ments, when compared to the current state of the art.

2. Literature review
In this section, we first discuss stochastic gradient de-

scent (SGD) [4], inexact Newton and quasi-Newton meth-
ods [10, 4, 5], as well as (generalized) Gauss-Newton meth-
ods [3, 26] the natural gradient method [2], and scaled gra-
dient iterations such as RMSprop [28] and AdaGrad [9].
Then we discuss other approaches that rely on numer-
ical experiments to measure key aspects of SGD train-
ing [15, 7, 20, 27, 19, 25].

SGD training [4] is a common iterative optimisation
method that has wide usage in deep neural networks train-
ing. One of the main goals of SGD is to find a good bal-
ance between stochastic and batch approaches to provide a
favourable trade-off with respect to per-iteration costs and
expected per-iteration improvement in minimising the ob-
jective function. The popularity of SGD in deep learning
lies in the tolerable computation cost with acceptable con-
vergence speed. Second-order methods aim to improve the
convergence speed of SGD by re-scaling the gradient vec-
tor in order to compensate for the high non-linearity and ill-
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conditioning of the objective function. In particular, New-
ton’s method uses the inverse of the Hessian matrix for re-
scaling the gradient vector. This operation has complex-
ity O(N3) (where N is the number of model parameters,
which is usually between O(106) and O(107) for modern
deep learning models), which makes it infeasible. Besides,
the Hessian must be positive definite for Newton’s method
to work, which is not a good assumption for the training of
deep learning models.

In order to avoid the computational cost above, several
approximate second-order methods have been developed.
For example, the Hessian-free conjugate gradient (CG) [30]
is based on the fact it only needs to compute Hessian-vector
products, which can be efficiently calculated with the R-
operator [24] at a comparable cost to a gradient evaluation.
This Hessian-free method has been successfully applied to
train neural networks [21, 17]. Quasi-Newton methods
(e.g., the BFGS [10, 4]) take an alternative route and ap-
proximate the inversion of Hessian with only the parameter
and gradient displacements in the past gradient iterations.
However, the explicit use of the approximation matrix is
also infeasible in large optimisation problems, where the L-
BFGS [5] method is proposed to reduce the memory usage.
The (Generalized) Gauss-Newton method [3, 26] approx-
imates Hessian with the Gauss-Newton matrix. Another
approximate second-order method is the natural gradient
method [2] that uses the inverse of the Fisher matrix to make
the search quicker in the parameters that have less effect on
the decision function [4]. Without estimating the second-
order curvature, some methods can avoid saddle points and
perhaps have some degree of resistance to near-singular cur-
vature [4]. For instance, AdaGrad [9] keeps an accumula-
tion of the square of the gradients of past iterations to re-
scale each element of the gradient, so that parameters that
have been infrequently updated are allowed to have large
updates, and frequently updated parameters can only have
small updates. Similarly, RMSProp [28] normalises the gra-
dient by the magnitude of recent gradients. Furthermore,
Adadelta [32] and Adam [16] improve over AdaGrad [9] by
taking more careful gradient re-scaling schemes.

Given the issues involved in the development of (approx-
imate) second-order methods, there has been some interest
in the implementation of approaches that could characterise
the functionality of SGD optimisation. Choromanska et.
al [7] use the spin-glass model to evaluate fully-connected
networks and suggest that large size networks contain many
local minima that are equivalent in terms of test perfor-
mance. An extension of the use of the spin-glass model
to evaluate residual networks can be found in [20]. Further-
more, Lee et al. [19] show that SGD converges to a local
minimiser rather than a saddle point (with models that are
randomly initialised). Soudry and Carmon [27] provide the-
oretical guarantees that local minima in multilayer neural
networks loss functions have zero training error. In addi-
tion, the exact Hessian of the neural network has been found
to be singular, suggesting that methods that assume non-

singular Hessian are not to be used without proper modi-
fication [25]. Goodfellow et. al. [11] found the state-of-
the-art neural networks do not encounter significant obsta-
cles (local minima, saddle points, etc.) during the training.
In [15], a new sensitivity measurement of energy landscape
is used to provide empirical evidence to support the argu-
ment that training with large mini-batch size converges to
sharp minima, which in turn leads to poor generalisation.
In contrast, small mini-batch size converges to flat minima,
but performance degenerates due to noise in the gradient
estimation. Our paper can be regarded as a new approach
to characterise SGD optimisation, where our main contri-
butions are: 1) new efficiently computed measures derived
from the Fisher matrix that can be used to explain the train-
ing convergence and generalisation of ResNets, and 2) new
dynamic sampling and dynamic stochastic depth rate train-
ing algorithms.

3. Methodology
In this section, we assume the availability of a dataset

D = {xi, yi}|D|i=1, where the ith image xi : Ω → R
(Ω denotes image lattice) is annotated with the label yi ∈
{1, ..., C}, with C denoting the number of classes. This
dataset is divided into two mutually exclusive training set
T ∈ D and testing set S ∈ D.

The ResNet model [12] and its stochastic depth exten-
sion [13] are defined by a concatenation of residual blocks,
with each block defined by:

rl(vl) = bl × f(vl,Wl) + vl, (1)

where l ∈ {1, ..., L} indexes the residual blocks, Wl de-
notes the parameters for the lth block, vl is the input, with
the image input of the model being represented by v1 = x,
f(vl,Wl) represents a residual unit containing a sequence
of linear and non-linear transforms [23], and batch normal-
isation [14], and bl ∈ {0, 1} denotes a Bernoulli random
variable indicating if the lth block is active (bl = 1) or
inactive (bl = 0) [13] (note that in the original ResNet
model [12], bl = 1 for all blocks). The full model is then
defined by:

f(x, θ) = fout ◦ rL ◦ ... ◦ r1(x), (2)

where ◦ represents the composition operator, θ ∈ RP
denotes all model parameters {W1, ...WL}

⋃
Wout, and

fout(.) is a linear transform parameterised by weights Wout

with a softmax activation function that outputs a value in
[0, 1]C indicating the probability of selecting each of the
C classes. The training of the model in (2) minimises the
multi-class cross entropy loss `(.) on the training set T , as
follows:

θ∗ = arg min
θ

1

|T |
∑

i∈T
` (yi, f(xi, θ))) . (3)
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The SGD training minimises the loss in (3) by iteratively
taking the following step:

θk+1 = θk −
αk
|Bk|

∑

i∈Bk

∇`(yi, f(xi, θk)), (4)

where Bk is the mini-batch for the kth epoch of the min-
imisation process. As noted by Keskar et al. [15], the shape
of the loss function can be characterised by the spectrum of
the ∇2`(yi, f(xi, θk)), where a significant number of large
positive eigenvalues tend to make the training process gen-
eralise less well, and numerous small eigenvalues are likely
to lead to better generalisation. Given that the computation
of the spectrum of∇2`(yi, f(xi, θk)) is infeasible, we must
resort to the use of methods that can reliably approximate
such spectrum, such as the Fisher matrix [6, 22], defined by

Fk =
(
∇`(yi∈Bk

, f(xi∈Bk
, θk))∇`(yi∈Bk

, f(xi∈Bk
, θk))>

)
,

(5)
where Fk ∈ RP×P .

The calculation of Fk in (5) depends on the Jacobian
Jk = ∇`(yi∈Bk

, f(xi∈Bk
, θk)), with Jk ∈ RP×|Bk|. Given

that Fk = JjJ
>
j ∈ RP×P scales with P = O(106) and

that we are only interested in the spectrum of Fk, we com-
pute instead F̃k = J>j Jj ∈ R|Bk|×|Bk| that scales with the
mini-batch size |Bk| = O(102). Note that from F̃k we can
compute the largest |Bk| non-zero eigenvalues of Fk by us-
ing the Cholesky decomposition [29], represented by the set
Ek.

The first measure we propose is the cumulative sum of
the condition number of F̃k , defined by

CK =
K∑

k=1

ck, (6)

where K denotes the epoch number, and ck =
(

max(Ek)
min(Ek)

) 1
2

represents the condition number of F̃k. This measure is
used to describe the ill-conditioning of the gradient updates
accumulated during the training process.

The second measure is the cumulative sum of the
square root of the trace of F̃k, weighted by α2

k/|Bk|2:

LK =
∑

k∈K

(
α2
k

|Bk|2
Tr
(
F̃k

)) 1
2

, (7)

where Tr(.) defines the trace operator, and
Tr
(
F̃k

)
approximates the Laplacian, defined by

Tr
(
∇2`(yi, f(xi, θk))

)
that sums the eigenvalues of

the Hessian. The sum of such eigenvalues is generally
associated with the steepness of the energy function land-
scape. Note that the weighting in (7) is reasonable because
it is the same factor used in the SGD update rule (4), and it
proved to be useful for measuring training convergence and
generalisation, as shown later in this paper.

Different ResNet models, learning rates, mini-batch
sizes and stochastic depth rates are observed to have rel-
atively robust values for CK and LK , as displayed in
Fig. 1(c). This means that models and training procedures
can be reliably characterised early on in the training pro-
cess, which can significantly speed up the assessment of
new approaches. For instance, if a reference ResNet model
produces a good result, and we know its CK and LK values
for various epochs, then new models must navigate close to
this reference model – see for example in Fig. 1 that skip2
and skip3 models produce good convergence and generali-
sation, so new models must try to navigate close enough to
them. In addition, new models that show very distinctive
growth in CK and LK values with respect to the reference
model are unlikely to produce competitive result – see for
example in Fig. 1 that skip6, skip12, size8, and size512,
who eventually produce uncompetitive performance, can be
identified and stopped as early as 4 epochs to reduce com-
putation.

3.1. Dynamic Sampling
Dynamic sampling [15, 4] is a method that is believed

to improve the convergence rate of SGD by reducing the
noise of the gradient estimation with a gradual increase of
the mini-batch size over the training process (this method
has been suggested before, but we are not aware of previous
implementations). It extends SGD by replacing the fixed
size mini-batches Bk in (4) with a variable size mini-batch.
The general idea of this method [15, 4] is that the initial
noisy gradient estimations from small mini-batches explore
a relatively flat energy landscape without falling into sharp
local minima. The increase of mini-batch sizes over the
training procedure provides a more robust gradient estima-
tion on a sharper energy landscape that is supposed to be in
a region of the space with better generalisation properties.

The most important point that dynamic sampling showed
with respect to our proposed measures CK , LK in (6),(7) is
that it broke the stability observed in Fig. 1. In general, we
note that the application of dynamic sampling allowed the
curves to move from the region with the original batch size
to the region of the final batch size.

3.2. Dynamic Stochastic Depth Rate
The stochastic depth ResNet [13] drops a random num-

ber of residual units at each epoch k, with probability pl to
drop residual blocks towards the last layer L of the model,
as follows:

pl = 1− l

L
(1− pL), (8)

where pL is a hyper-parameter that represents the drop prob-
ability of the Lth residual block. The proposed dynamic
stochastic depth rate follows similar intuition as dynamic
sampling of Sec. 3.1, where the runtime drop probability
pL is reduced as a function of training epoch k. In ef-
fect, the initial gradient estimations with large pL are noisy,
leading to the exploration of flat energy landscapes, and in
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later epochs, smaller pL produce robust gradient estima-
tions with a sharper energy landscape.

4. Experiments
The experiments are carried out on two commonly eval-

uated benchmark datasets: CIFAR-10 [18], and CIFAR-
100 [18]. CIFAR-10 and CIFAR-100 datasets contain
60000 32×32-pixel coloured images, where 50000 are used
for training and 10000 for testing.

We use a 110-layer ResNet model [12], including 54
residual units, formed by the following operators in order:
3 × 3 convolution, batch normalisation [14], ReLU [23],
3 × 3 convolution, and batch normalisation. This residual
unit empirically shows better performance than previously
proposed residual units (also observed in [1] in parallel to
our own work). We use the simplest skip connection with
no trainable parameters. For SGD, we use 0.9 for momen-
tum, and the learning rate decay is performed in multiple
steps: the initial learning rate is 0.1, which decays by 1/10
at the 161st epoch, and by another 1/10 at the 241st epoch
– the whole training takes 320 epochs. The training uses
data augmentation, as described by [12].

For each experiment, we measure the training and testing
classification error, and the proposed measures CK (6) and
LK (7) – the reported results are actually the mean result ob-
tained from five independently trained models (each model
is randomly initialised). All experiments are conducted on
an NVidia Titan-X and K40 gpus without the multi-gpu
computation. In order to obtain F̃k, the explicit calcula-
tion of Jk is obtained with a modification of the torch [8]
NN and CUDNN libraries (convolution, batch normalisa-
tion and fully-connected modules) to acquire the Jacobian
Jk = ∇`(yi, f(xi, θk) during back-propagation. Note that
the memory complexity to store Jk scales linearly with re-
spect to the number of model parameters, which is accept-
able for the 1.7 million parameters in the 110-layer ResNet.
However, the formation of Jk is performed for each train-
ing sample, which reduces the training speed. To alleviate
this issue, we compute F̃k at intervals of 50 mini-batches,
resulting in a sampling rate of ≈ 2% of training set. Fi-
nally, our stochastic depth is slightly different from [13],
where we implement an independent stochastic depth for
each sample in the mini-batch (instead of for the whole
mini-batch [13]), which shows empirically a slightly im-
provement in terms of the classification accuracy.

4.1. Mini-batch Size and Dynamic Sampling
Mini-batch size: in Fig. 2, we show our first ex-

periment comparing different mini-batch sizes with re-
spect to the training and testing errors, and the proposed
measures CK (6) and LK (7) – please focus on re-
sults size{8,16,32,64,128,256,512}. Notice that for
CIFAR-10, small mini-batch sizes decrease CK and in-
crease LK , and the large mini-batch sizes shows the oppo-
site effect, while for CIFAR-100 mini-bath sizes appears to

vary mainly LK . Also notice that small CK and large LK
indicate poor training convergence, and large CK and small
LK show poor generalisation, so the best convergence and
generalisation requires a medium value for both measures,
which happens for mini-batch sizes between 16 and 64. For
CIFAR-10, the minimum error is obtained with mini-batch
size 32, with a test classification error of 4.78% ± 0.05%.
For CIFAR-100, the minimum error is also obtained with
mini-batch size 32 with test error 23.83%± 0.52%.

Initial learning rate: in Fig. 2, we observe that clas-
sification errors, CK and LK are affected by different val-
ues for the initial learning rate (in our experiments, the de-
fault is an initial learning rate of 0.1, as mentioned above)
– please focus on results size{16,256}−lr{0.05,0.2}.
More specifically, we tested the different initial learning
rates of 0.05 and 0.2 on for the mini-batch sizes 16 and
256, and we observe that for both cases, the smaller ini-
tial learning rate of 0.05 increases CK and decreases LK
and the larger larger learning rate 0.2 decreases CK and in-
creases LK . As a result, for the mini-batch size 16, the
initial learning rate of 0.05 pulls it towards the optimum re-
gion (of mini-batch size 32), while the initial learning rate
of 0.2 pushes it away from that region. For the mini-batch
size 256, the effect is the opposite: the larger initial learn-
ing rate of 0.2 pulls the measures towards the optimum re-
gion, and the initial learning rate of 0.05 pushes it away
from that region. The main conclusion with this experi-
ment is that the mini-batch sizes and initial learning rate are
tightly related and can be used to compensate one another,
and move the training procedure to different performance
regions. For CIFAR-10, the lowest test error (for mini-batch
size 32) of 4.78%±0.05% is matched by the mini-batch size
16 with initial learning rate 0.05 (4.78% ± 0.12%), while
mini-batch size 256 and initial learning rate 0.2 achieves
5.24% ± 0.21%. For CIFAR-100, the lowest test error
(for mini-batch size 32) of 23.83% ± 0.52% is improved
by the mini-batch size 16 with initial learning rate 0.05
(23.54% ± 0.21%), while mini-batch size 256 and initial
learning rate 0.2 achieves 25.38%± 0.19%.

Analysis: The main observations of the above experi-
ments are: 1) the mini-batch size experiments can serve
as a survey and mapping operation to set up baseline in
the measurement space and discover the optimum region
within; 2) the initial learning rate experiment shows that we
are able to move the measurement readings of one type of
hyper-parameter towards or away from the optimum region
by tweaking the value of another hyper-parameter. These
observations show that CK and LK allow the coefficient
of multiple hyper-parameters to be examined in one space
and the selection of hyper-parameters to be guided with one
unified goal–moving the measures towards the optimum re-
gion in this space. However, it can be observed from Fig. 2,
the “landscapes” of CK and LK are different with the use
of CIFAR-10 and CIFAR-100 datasets (especially in the
CIFAR-100 experiment, the mini-batch sizes has a smaller
influence on CK compared to the counterparts in CIFAR-
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Figure 2. This graph shows how varying mini-batch sizes and initial learning rate affect training performance, which is also related to the
proposed measures CK and LK . In addition, we also show the performance of dynamic sampling – please see text for more details.

10 experiments), which suggests that CK and LK values
are relative and dataset dependent, leading to the necessity
of set up the baseline experiment before the measures can
be useful to guide the selection of the hyper-parameters.

Given that the use of each mini-batch has a unique sig-
nature of CK and LK and these measures are accumulated
over the entire training procedure, we apply the dynamic
sampling method to allow the use of non-uniformed mini-
batch sizes during the training procedure with the aim to
tweak the accumulation of the measures.

Dynamic sampling: in Fig. 2, we show different
dynamic sampling alternatives, and how they affect the
classification errors, CK and LK – please focus on results
size{16,32,512}−to−{32,128,256,512}{∅,−MS}.
The first experiment involves a dynamic sampling from
mini-batch size 32 to 512, and as a control experiment,
we also run an experiment with mini-batch size from
512 to 32 – in both cases, the classification errors, CK
and LK are pushed away from the initial mini-batch size
region towards the final mini-batch size region. Additional
experiments with different initial and final mini-batch sizes
show similar results as above. Therefore, the dynamically
sampling of the training set has the effect of moving the
training procedure to different performance regions. For
CIFAR-10, the best result achieved with these experiments
is with size32-to-128, with a test error of 4.9% ± 0.05%,

which is comparable to the error of size32. However it
is important to mention that even though both training
methods achieve similar accuracy, the dynamic sampling
allows a faster training process: with our computer setup
described above, the full training for size32 takes 10.9
hours, while size32-to-128 requires 9.5 hours. For CIFAR-
100, the best result achieved with these experiments is
with size32-to-128, with a test error of 23.90% ± 0.31%.
The training time for respective models are identical to the
CIFAR-10 experiments.

4.2. (Dynamic) Stochastic Depth

Dynamic sampling for multi-step learning rate decay:
following the intuition that learning rate decay causes the
training process to focus on specific regions of the energy
landscape, we test if the dynamic sampling should be per-
formed within each particular value of learning rate, instead
of the approach above, where the sampling is done over all
training epochs and decreasing learning rates. This new ap-
proach is marked with -MS in Fig. 2, where for each learn-
ing rate value, we re-iterate through the sequence of mini-
batch sizes of the corresponding dynamic sampling policy.
In general, these -MS polices are more effective at pushing
the measurements within the optimum region of the graph.
For CIFAR-10, the best results achieved with this new pol-
icy are obtained with size16-to-256-MS and size32-to-128-
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Figure 3. This graph shows how varying the dynamic stochastic depth affects training performance, which is also related to the proposed
measures CK and LK – please see text for more details.

MS with test errors of 4.76%±0.22% and 4.76%±0.13%,
respectively, which are slightly better than the above orig-
inal dynamic sampling polices. For CIFAR-100, the best
result is obtained by size32-to-128-MS with a test error of
23.69% ± 0.34%, showing a noticeable margin to size32-
to-128.

Baseline stochastic depth: using drop rates
pL ∈ [0.1, 1.0] in (8) (labelled in the results as
drop{0.1, ...,1.0}) on a ResNet model trained with
mini-batch size=100, it is clear from Fig. 3 that for
CIFAR-10 and CIFAR-100 an increase of pL is associated
with a reduction in CK and an increase of LK , which in
turn leads to worse training convergence. Interestingly,
the generalisation seems stable over a fairly large rage
of drop rates (between 0.2 and 0.6). For CIFAR-10,
the best results are: drop{0.2,0.3} with a test error of
4.66% ± {0.07%, 0.13%}, drop0.4 with 4.57% ± 0.16%,
and drop{0.5,0.6} with 4.79% ± {0.07%, 0.20%}.
For CIFAR-100, the best results are: drop0.3 with
22.21% ± 0.22%, drop0.4 with 22.44% ± 0.22%, and
drop0.5 with 22.36%± 0.11%.

By analysing the baseline experiment, we can see pL
has a major influence on CK while its influence on LK
is minimal (see Fig. 1(a) for the comparison between the
lines of mini-batch sizes and stochastic depth baselines and
see Fig. 3 for the scale difference of CK over LK axes).

Therefore, the guide to select the drop rate is to focus
on tweaking CK closer to the optimum region defined by
drop{0.2,0.3}.

Dynamic stochastic depth: following a similar intu-
ition used for the dynamic sampling, we design a dy-
namic stochastic depth, which starts with high drop rate that
has poor convergence, but good generalisation (similarly
to a mini-batch of small size), and as training progresses,
this drop rate is gradually reduced. These approaches are
labelled as drop{0.4, ...,1.0}-{0.0, ...,0.4}{∅,−MS},
where the first number indicates the drop rate at the first
iteration, the second means the drop rate at the last iter-
ation, and -MS represents the multi-step learning rate de-
cay. The empirical results in Fig. 3 show that a large
value of drop rate is less favorable in terms of training con-
vergence. The two polices that are close to drop0.4 are:
drop0.7-0.3, which achieves 4.76% ± 0.13% on CIFAR-
10, and 23.01% ± 0.19% on CIFAR-100; and drop0.4-
0.0, which achieves 4.68% ± 0.16% on CIFAR-10, and
23.54% ± 0.22% on CIFAR-100. In addition, similarly to
multi-step dynamic sampling polices, the -MS polices are
proposed to gradually decay the drop rate during each pe-
riod of learning rate. The -MS policy improves the test er-
ror drop0.7-0.4-MS reaching 4.62%±0.15% on CIFAR-10
and 22.68%± 0.27% on CIFAR-100.
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Figure 4. This graph shows how different ResNet architectures affect training performance, which is also related to the proposed measures
CK and LK – please see text for more details.

4.3. Model Selection
In Fig. 4, we compare different ResNet architectures

with respect to their classification performance and our pro-
posed measurements CK and LK . The models explored
in this section are trained with mini-batches of size 100,
and are summarised as follows: 1) the baseline model that
used in the above mini-batch size and stochastic depth ex-
periments, which has 110 layers, containing residual units
with the following operators: 3 × 3 convolution, batch
normalisation, ReLU, 3 × 3 convolution, and batch nor-
malisation – this model is denoted as cbrcb; 2) baseline
skip{1,2,3,6,9,12}: each skip connection shortcuts be-
tween 1 and 12 layers, each containing batch normalisation,
ReLU, and 3 × 3 convolution [12]; and 3) a simple vari-
ation of cbrcb containing the following operators: 3 × 3
convolution, batch normalisation, ReLU, 1×1 convolution,
and batch normalisation - this model is denoted by c3brc1b
(due to the smaller number of parameters per residual unit,
the c3brc1b has 194 layers to match 1.7M parameter).

Fig. 4 shows that models skip{2,3}, cbrcb and c3brc1b
present good training convergence and good generalisation,
while skip{6,9} show good convergence, but poor gener-
alisation, and skip{1,12} have poor convergence. In gen-
eral, looking at Figures 1 and 4 for model selection, we no-
tice that, similarly to stochastic depth approaches, a mid-
range values (compared to all other approaches with dif-

ferent mini-batch sizes and stochastic drop rates) for LK
and CK appear to bring good training convergence and
generalisation. Large values of CK indicate poor conver-
gence, and small values of CK suggest poor generalisa-
tion. For CIFAR-10, the top performing three models are:
c3brc1b with 4.80% ± 0.08%, cbrcb with a test error of
5.11% ± 0.07%, and skip3 with 5.25% ± 0.19%. For
CIFAR-100, the top performing models are: c3brc1b with
23.70%±0.24%, cbrcb with a test error of 24.70%±0.18%,
and skip2 with 25.63%± 0.34%.

The top performing model of this experiment can be
characterised based on the following reasoning. Comparing
the performance of skip2 and skip3, we notice that larger
CK seems to marginally improve the results from skip2
(5.31%± 0.19%) to skip3 (5.25%± 0.19%) in the CIFAR-
10 experiment, and from skip3 (25.63%± 0.34%) to skip2
(25.90% ± 0.54%) in CIFAR-100 experiment, both with a
stable value for LK . Furthermore, the location of cbrcb
shows smallLK and much smallerCK to the optimum loca-
tion (i.e., skip2 in CIFAR-10 and skip3 in CIFAR-100). So
by analogy, if we design a model that has a similar value of
LK , but largerCK , then we can improve the test error result
of cbrcb. Unlike the other types of hyper-parameter which
can be tuned by value, the model selection can only be ex-
plored by making small structure adjustment to the model
structure of cbrcb and see how CK and LK change accord-
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ingly. During our experiment, we found that c3brc1b has
exactly these CK and LK values, which indeed improved
the results from cbrcb.

5. Discussion and Conclusion
For all the experiments above, we notice that our test

error results are quite competitive with respect to the state
of the art using models that are significantly more efficient,
particularly with respect to memory complexity. In particu-
lar, we are aware that the state of the art on CIFAR-10 and
CIFAR-100 have been pushed to 3.89% and 18.85% (re-
spectively) by Wide ResNet model [31]. However, the Wide
ResNet model contains 56 million parameters, whereas
our models contain only 1.7 million parameters (≈ 3%
of the Wide ResNet model) and show a minimum test er-
ror of 4.33% (result on five independently trained mod-
els: 4.47% ± 0.12%) and 21.36% (result of five models:
21.64% ± 0.17) on CIFAR-10 and CIFAR-100 when we
combine c3brc1b model with drop-0.4. To the best of
our knowledge, the best performing model containing 1.7
million parameter is the pre-act-ResNet [12], which shows
5.46% and 24.33% on CIFAR-10 and CIFAR-100 respec-
tively. The take-home message of this paper is the follow-
ing: training deep networks, and in particular ResNets, is
still an art, but the use a few easily computed measures from
SGD can provide substantial help in the selection of model
parameters that lead to good training convergence and gen-
eralisation.

In conclusion, we propose a novel methodology to char-
acterise the performance of deep ResNets regarding training
convergence and generalisation as a function of mini-batch
size, model structure, learning rate and stochastic depth
rate. This proposed methodology defines a space that can
be used for guiding the training of ResNets, which led us
to propose two new training mechanisms: dynamic sam-
pling and dynamic stochastic depth rate. We believe that
the newly proposed measures will help researchers make
important decisions about the ResNet structure and training
procedure. We also expect that this paper has the potential
to open new research directions on how to assess and predict
top performing ResNet models with the use of the proposed
measures (CK and LK) and perhaps new other measures
that can be proposed in the future.
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Chapter 8

Conclusion and Future Works

Deep learning has shown promising results on many computer vision problems, where

the stunning performance of deep learning methods has attracted a great deal of atten-

tion. Nevertheless, our understanding of deep learning methods is still preliminary. This

thesis contributes to a better understanding of deep learning methodologies by studying

four fundamental deep learning problems: nonlinear classification using CNN features,

normalisation of piecewise linear activation units, multiple-size features and CNN Max-

out activation units, and training characterisation of residual networks. Our proposed

methodologies in this thesis have been evaluated on challenging publicly available vi-

sual classification datasets, and shown competitive results compared to state-of-the-art

methods on these datasets.

In this chapter, we first summarise the main contributions of our work, followed by

discussions on the limitations of our methods and possible future directions.

8.1 Summary of Contributions

The main contributions of this thesis are summarised as the followings:

• In Chapter 4, we show a novel nonlinear hierarchical classifier designed to work

with features of large dimensionality, such as the CNN features. This nonlin-

ear classifier is a binary tree classifier that uses logistic regression classifiers as

internal tree nodes and linear SVM [10] as the leaf classifiers, which maintains
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low runtime and memory costs in contrast to other nonlinear classifiers. Further-

more, we introduce a novel loss function to learn this classifier, which minimises

the classification error in a non-greedy way and at the same time delays hard

classification to nodes further down the tree. Our classifier has been evaluated

on the Pascal VOC 2007 [66] dataset, and results show that the classification

performance of our classifier is better than the compared nonlinear shallow and

hierarchical classifiers, and competitive to linear SVM classifier, with the use of

features extracted from two CNN models: OverFeat [30] and VGG-CNN [8],

suggesting that our classifier is robust to different types of features (See Table 1

in Chapter 4);

• In Chapter 5, we show how to increase the model capacity of the NIN [31] model

with the use of the Maxout [53] activation function to replace ReLU [48]. We

found that the model capacity may not increase as expected and can lead to an

ill-conditioned training, if the input data to the Maxout activation function is not

properly normalised. Our main contribution of this work is to correct the normal-

isation issue with the use of a Batch Normalisation [45] unit inside the Maxout

unit, resulting in a better pre-conditioning of the unit. Experiments show that our

extension of the NIN [31] model: Maxout-network in Maxout-network model

surpasses the performance of several state-of-the-art methods on MNIST [47],

CIFAR-10/100 [72], and SVHN [119] datasets (see Section 3 in Chapter 5);

• In Chapter 6, we propose a competitive multiple-size CNN module composed of

convolutional filters of up to four filter sizes that are joined by a Maxout activation

unit, which promotes competition and reduces the co-adaptation amongst these

filters, and also addresses the channel growth issue of the Inception [29] multiple-

size CNN module. We show that the classification results produced by a number

of network architectures can be improved with the use of our module. We evaluate

our proposed module on MNIST, CIFAR-10/100, SVHN, and ImageNet ILSVRC

2012 [9] datasets (see Section 4 in Chapter 6);

• In Chapter 7, we propose two novel measures derived from the eigenvalues of

the approximate empirical Fisher matrix to evaluate the training of residual net-

works [24]. Our proposed measures can be efficiently calculated within the stochas-

tic gradient descend (SGD) iteration; hence they do not result in significant over-

head to the training process. We show that these measures can be used to guide the

selection of mini-batch size, model structure, learning rate and stochastic depth

rate. We also propose a new way to schedule dynamic sampling and dynamic
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stochastic depth, leading to competitive classification results on CIFAR-10/100

datasets compared to other state-of-the-art models that have significantly larger

capacity (See Section 4 in Chapter 7).

8.2 Future Works

As stated in the above section, our methods show competitive performance to the state-

of-the-art methods on various datasets, and they also shed light in the understanding of

deep learning models. Nevertheless, we believe that our methodologies could be further

improved by a few possible directions:

• In Chapter 4, we show the comparison of our classifier and the state-of-the-art

methods with the use of OverFeat [30] and VGG-CNN [8] feature models on

PASCAL VOC 2007 [66], where the performance of the nonlinear classifiers are

sub-optimal compared to the linear SVM. We plain to extend this evaluation with

the use of feature extracted by recently proposed CNN feature models such as

GoogLeNet [29] and ResNet [24]. We also plan to verify the results of our ap-

proach on other visual classification datasets, such as the ImageNet [9] visual

classification task.

• We intend to integrate the nonlinear classification model proposed in Chapter 4

and the CNN feature model to enable end-to-end training. One possible way to

realise this idea is to integrate the nonlinear classification model as a CNN mod-

ule in order to replace the linear layer before the softmax loss layer, and train the

classification model from scratch. The results show that this modification only

increases the model capacity at the final layer of the model, leading to marginal

improvement compared to the baseline model. This module is actually a piece-

wise linear activation unit, which can be used to replace ReLU and increase the

model capacity throughout the entire model, potentially leading to substantial im-

provements. This module motivated our work in Chapter 5, where we replace this

module by a Maxout [53] unit that can be trained faster with a comparable perfor-

mance. Note that the piecewise linear activation functions follows a greedy loss

by nature (i.e., Maxout always pick the highest activation), where we plan to ex-

plore the possibility to integrate our non-greedy loss function (3.5) with piecewise

linear activation function in the future.
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• In Chapter 5, we empirically demonstrated that the combination of Maxout acti-

vation unit and Batch Normalisation (BN) unit provides a powerful framework,

where the BN unit aims to keep a balanced distribution of the input data for

these units. We anticipate that other types of normalisation (e.g., layer normali-

sation [46]) can replace BN, and the performance of these new combinations can

be explored in the future. Furthermore, the empirical demonstration in Chapter 5

can be addressed theoretically in the future.

• In Chapter 6, we show that our competitive CNN module includes the use of

large size filters, which can induce a large number of parameters on large size

networks. Our proposal of the bottleneck-CMSC (see Section 4.3 in Chapter 6)

serves as one solution to solve this issue. We believe that the use of multiple-size

features is advantageous, so we plan to further investigate other means to solve the

parameter issue involved with the use of large filters to make it computationally

affordable to be used in large size deep learning models (i.e., one possible solution

is to use a stack of two stacks of 3 × 3 convolution layer with nonlinearities to

simulate a convolution with 5× 5 receptive field, etc.).

• In Chapter 7, we show two types of measures to characterise the training of resid-

ual networks (ResNets) [24]. Our implementation is based on a single-GPU com-

putation environment, which limits our ability to test bigger networks (i.e., in a

GTX Titan-X GPU with 12G memory, the network size is limited to 5 millions

parameters). We plan to extend our implementation to multi-GPU programming,

which can be used to test recent deep learning models (not only the ResNets) on

more challenging large-scale datasets, such as the ImageNet [9] dataset.

• We plan to further analyse the impact of other types of hyper-parameters with our

proposed measures, such as the depth of the model. One principle we followed

during the research in Chapter 7 is that we restrict the comparison of models with

similar number of parameters (i.e., within ±5% margin of the number of parame-

ters of the referenced 110-layer ResNet model) and trained these models with the

rest of hyper-parameters unchanged. This allowed the approximate Fisher matrix

and the derived CK and LK measures to be comparable among different models

and hyper-parameter settings. However, we found that if we adjust only the depth

of the networks (i.e., we do not change the number of filters per layer to com-

pensate the change of number of parameters), deeper models always show larger

CK and LK values. This brings up a question: maybe these measures are meant

to be normalised by number of parameters. Furthermore, these measures are also
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functions of the number of epochs, maybe the values should be normalised by

training epochs in order to compare training procedures with different numbers

of epochs. We plan to investigate these questions in a future work.

• We plan to explore whether applying our measures to other types of loss function

can be useful to characterise the training procedure. For instance, we shall test

if the softmax log-loss function of a model was replaced with the Hinge loss

function, then use the same methodology to calculate CK and LK values.

• Finally, an issue associated with both proposed measures is that they are relative

measures and dataset dependent, where some baseline experiments are necessary

to quantify the measurement space and discover the optimum region first. Such

practice are time consuming and may not be possible for large-scale datasets such

as the ImageNet. We plan to search for new measures which are invariant and less

dependent on prior experiments.
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Yann LeCun. Overfeat: Integrated recognition, localization and detection using

convolutional networks. In International Conference on Learning Representa-

tions (ICLR), pages 1–16, 2014.

[31] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. In International

Conference on Learning Representations (ICLR), pages 1–10, 2014.

[32] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang,

Carlo Gatta, and Yoshua Bengio. Fitnets: Hints for thin deep nets. In Interna-

tional Conference on Learning Representations (ICLR), pages 1–13, 2015.

[33] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway

networks. In Deep Learning Workshop, International Conference on Machine

Learning, pages 1–6, 2015.

[34] Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. Fractalnet: Ultra-

deep neural networks without residuals. In International Conference on Learning

Representations (ICLR), pages 1–11, 2016.

[35] Falong Shen, Rui Gan, and Gang Zeng. Weighted residuals for very deep net-

works. In International Conference on Systems and Informatics (ICSAI), pages

936–941. IEEE, 2016.

[36] Gao Huang, Zhuang Liu, Kilian Q Weinberger, and Laurens van der Maaten.

Densely connected convolutional networks. arXiv preprint arXiv:1608.06993,

2016.

[37] Ke Zhang, Miao Sun, Xu Han, Xingfang Yuan, Liru Guo, and Tao Liu. Residual

networks of residual networks: Multilevel residual networks. IEEE Transactions

on Circuits and Systems for Video Technology, pages 1–1, 2017.

120



[38] Andreas Veit, Michael J Wilber, and Serge Belongie. Residual networks behave

like ensembles of relatively shallow networks. In Advances in Neural Informa-

tion Processing Systems (NIPS), pages 550–558, 2016.

[39] Klaus Greff, Rupesh K Srivastava, and Jürgen Schmidhuber. Highway and resid-

ual networks learn unrolled iterative estimation. In International Conference on

Learning Representations (ICLR), pages 1–14, 2017.

[40] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-

lan Salakhutdinov. Dropout: a simple way to prevent neural networks from over-

fitting. Journal of Machine Learning Research (JMLR), 15(1):1929–1958, 2014.

[41] Li Wan, Matthew Zeiler, Sixin Zhang, Yann L Cun, and Rob Fergus. Regulariza-

tion of neural networks using dropconnect. In Proceedings of the International

Conference on Machine Learning (ICML), volume 28, pages 1058–1066, 2013.

[42] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep

networks with stochastic depth. In Proceedings of the European Conference on

Computer Vision (ECCV), pages 646–661. Springer, 2016.

[43] Saurabh Singh, Derek Hoiem, and David Forsyth. Swapout: Learning an ensem-

ble of deep architectures. In Advances in Neural Information Processing Systems

(NIPS), pages 28–36, 2016.

[44] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep

feedforward neural networks. In Proceedings of the International Conference on

Artificial Intelligence and Statistics (AISTATS), volume 9, pages 249–256, 2010.

[45] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep

network training by reducing internal covariate shift. In Proceedings of the Inter-

national Conference on Machine Learning (ICML), volume 37, pages 448–456,

2015.

[46] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization.

arXiv preprint arXiv:1607.06450, 2016.
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[65] Levent Sagun, Léon Bottou, and Yann LeCun. Singularity of the hessian in deep

learning. arXiv preprint arXiv:1611.07476, 2016.

[66] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman.

The PASCAL Visual Object Classes Challenge 2007 (VOC 2007) Results. The

PASCAL Visual Object Classes Challenge 2007 (VOC 2007) Results [Online].

[67] Zhuowen Tu. Probabilistic boosting-tree: Learning discriminative models for

classification, recognition, and clustering. In Proceedings of the IEEE Inter-

national Conference on Computer Vision (ICCV), volume 2, pages 1589–1596.

IEEE, 2005.

[68] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric

Tzeng, and Trevor Darrell. Decaf: A deep convolutional activation feature for

generic visual recognition. In Proceedings of the International Conference on

Machine Learning (ICML), volume 32, pages 647–655, 2014.

123

http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html
http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html


[69] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolu-

tional networks. In European Conference on Computer Vision, pages 818–833.

Springer, 2014.

[70] Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. Learning and trans-

ferring mid-level image representations using convolutional neural networks. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pages 1717–1724, 2014.

[71] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature

hierarchies for accurate object detection and semantic segmentation. In Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 580–587, 2014.

[72] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from

tiny images. Technical report, 2009.

[73] Arthur L Samuel. Some studies in machine learning using the game of checkers.

IBM Journal of research and development, 3(3):210–229, 1959.

[74] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George

Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-

vam, Marc Lanctot, et al. Mastering the game of go with deep neural networks

and tree search. Nature, 529(7587):484–489, 2016.

[75] Christiane Fellbaum. WordNet. Wiley Online Library, 1998.

[76] James MacQueen et al. Some methods for classification and analysis of multi-

variate observations. In Proceedings of the fifth Berkeley Symposium on Math-

ematical Statistics and Probability, volume 1, pages 281–297. Oakland, CA,

USA., 1967.

[77] Ian Jolliffe. Principal component analysis. Wiley Online Library, 2002.

[78] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algo-

rithm for deep belief nets. Neural Computation, 18(7):1527–1554, 2006.

[79] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of

data with neural networks. Science, 313(5786):504–507, 2006.

124



[80] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversar-

ial nets. In Advances in Neural Information Processing Systems (NIPS), pages

2672–2680, 2014.

[81] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep re-

inforcement learning. In NIPS Deep Learning Workshop, pages 1–9, 2013.

[82] Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan

Wierstra. Draw: A recurrent neural network for image generation. In Proceed-

ings of the International Conference on Machine Learning (ICML), volume 37,

pages 1462–1471, 2015.

[83] Jimmy Ba, Volodymyr Mnih, and Koray Kavukcuoglu. Multiple object recogni-

tion with visual attention. In International Conference on Learning Representa-

tions (ICLR), pages 1–10, 2015.

[84] Volodymyr Mnih, Nicolas Heess, Alex Graves, et al. Recurrent models of visual

attention. In Advances in Neural Information Processing Systems (NIPS), pages

2204–2212, 2014.

[85] Frank Rosenblatt. The perceptron: A perceiving and recognizing automaton.

Technical Report 85-460-1, Project PARA, 1957.

[86] David H Hubel and Torsten N Wiesel. Receptive fields of single neurones in the

cat’s striate cortex. The Journal of physiology, 148(3):574–591, 1959.

[87] Kunihiko Fukushima and Sei Miyake. Neocognitron: A self-organizing neural

network model for a mechanism of visual pattern recognition. In Competition

and Cooperation in Neural Nets, pages 267–285. Springer, 1982.

[88] Kevin J Lang and Geoffrey E Hinton. A time-delay neural network architecture

for speech recognition. Carnegie Mellon University, Computer Science Depart-

ment, 1988.

[89] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E

Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to

handwritten zip code recognition. Neural Computation, 1(4):541–551, 1989.

125



[90] Patrice Y Simard, David Steinkraus, John C Platt, et al. Best practices for con-

volutional neural networks applied to visual document analysis. In Proceedings

of International Conference on Document Analysis and Recognition, volume 3,

pages 958–962. Citeseer, 2003.

[91] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning repre-

sentations by back-propagating errors. Cognitive modeling, 5(3):1, 1988.

[92] Robert E Schapire. The strength of weak learnability. Machine learning, 5(2):

197–227, 1990.

[93] Paul Viola and Michael Jones. Rapid object detection using a boosted cascade

of simple features. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), volume 1, pages 1–1. IEEE, 2001.

[94] Tianshi Gao and Daphne Koller. Discriminative learning of relaxed hierarchy for

large-scale visual recognition. In IEEE International Conference on Computer

Vision (ICCV), pages 2072–2079. IEEE, 2011.

[95] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rec-

tified activations in convolutional network. arXiv preprint arXiv:1505.00853,

2015.

[96] Rupesh Kumar Srivastava, Jonathan Masci, Faustino Gomez, and Jürgen Schmid-

huber. Understanding locally competitive networks. In International Conference

on Learning Representations (ICLR), pages 1–11, 2015.

[97] Yunchao Gong, Liwei Wang, Ruiqi Guo, and Svetlana Lazebnik. Multi-scale

orderless pooling of deep convolutional activation features. In Proceedings of

the European Conference on Computer Vision (ECCV), pages 392–407. Springer,

2014.

[98] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial pyramid

pooling in deep convolutional networks for visual recognition. In Proceedings of

the European Conference on Computer Vision (ECCV), pages 346–361. Springer,

2014.

[99] Sergey Zagoruyko and Nikos Komodakis. Learning to compare image patches

via convolutional neural networks. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages 4353–4361, 2015.

126



[100] Maximilian Riesenhuber and Tomaso Poggio. Hierarchical models of object

recognition in cortex. Nature Neuroscience, 2(11):1019–1025, 1999.

[101] Thomas Serre, Minjoon Kouh, Charles Cadieu, Ulf Knoblich, Gabriel Kreiman,

and Tomaso Poggio. A theory of object recognition: computations and circuits

in the feedforward path of the ventral stream in primate visual cortex. Technical

report, DTIC Document, 2005.

[102] Thomas Serre, Lior Wolf, Stanley Bileschi, Maximilian Riesenhuber, and

Tomaso Poggio. Robust object recognition with cortex-like mechanisms. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 29(3), 2007.

[103] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings

in deep residual networks. In Proceedings of the European Conference on Com-

puter Vision (ECCV), pages 630–645. Springer, 2016.

[104] Roger Fletcher. Practical methods of optimization. John Wiley & Sons, 2013.

[105] Richard H Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A limited mem-

ory algorithm for bound constrained optimization. SIAM Journal on Scientific

Computing, 16(5):1190–1208, 1995.

[106] Dimitri P Bertsekas. Incremental least squares methods and the extended kalman

filter. SIAM Journal on Optimization, 6(3):807–822, 1996.

[107] Nicol N Schraudolph. Fast curvature matrix-vector products. In International

Conference on Artificial Neural Networks, pages 19–26. Springer, 2001.

[108] Stephen Wright and Jorge Nocedal. Numerical optimization. Springer Science,

35:67–68, 1999.

[109] Barak A Pearlmutter. Fast exact multiplication by the hessian. Neural computa-

tion, 6(1):147–160, 1994.

[110] James Martens. Deep learning via hessian-free optimization. In Proceedings

of the International Conference on Machine Learning (ICML), pages 735–742,

Haifa, Israel, 2010. Omnipress.

[111] Ryan Kiros. Training neural networks with stochastic hessian-free optimization.

In International Conference on Learning Representations (ICLR), pages 1–11,

2013.

127



[112] Jiquan Ngiam, Adam Coates, Ahbik Lahiri, Bobby Prochnow, Quoc V Le, and

Andrew Y Ng. On optimization methods for deep learning. In Proceedings of the

International Conference on Machine Learning (ICML), pages 265–272. ACM,

2011.

[113] Jascha Sohl-Dickstein, Ben Poole, and Surya Ganguli. Fast large-scale optimiza-

tion by unifying stochastic gradient and quasi-newton methods. In Proceedings

of the International Conference on Machine Learning (ICML), volume 32, pages

604–612, 2014.

[114] Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural compu-

tation, 10(2):251–276, 1998.

[115] Hyeyoung Park, S-I Amari, and Kenji Fukumizu. Adaptive natural gradient

learning algorithms for various stochastic models. Neural Networks, 13(7):755–

764, 2000.

[116] Gaétan Marceau-Caron and Yann Ollivier. Practical riemannian neural networks.

arXiv preprint arXiv:1602.08007, 2016.

[117] Training and investigating residual nets. Training and investigating Residual Nets

[Online]. Accessed: 2017-03-13.

[118] Cifar: Alternate training strategies (rmsprop, adagrad, adadelta). CIFAR: Al-

ternate training strategies (RMSPROP, Adagrad, Adadelta) [Online]. Accessed:

2017-04-21.

[119] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and An-

drew Y Ng. Reading digits in natural images with unsupervised feature learn-

ing. In NIPS workshop on Deep Learning and Unsupervised Feature Learning,

page 5, 2011.

[120] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural

networks. In Proceedings of the International Conference on Artificial Intelli-

gence and Statistics (AISTATS), volume 15, pages 315–323, 2011.

[121] Pratik Chaudhari, Anna Choromanska, Stefano Soatto, and Yann LeCun.

Entropy-sgd: Biasing gradient descent into wide valleys. In International Con-

ference on Learning Representations (ICLR), pages 1–19, 2017.

[122] James Martens. New insights and perspectives on the natural gradient method.

arXiv preprint arXiv:1412.1193, 2014.

128

http://torch.ch/blog/2016/02/04/resnets.html
http://torch.ch/blog/2016/02/04/resnets.html
https://github.com/gcr/torch-residual-networks/blob/master/README.md#cifar-alternate-training-strategies-rmsprop-adagrad-adadelta
https://github.com/gcr/torch-residual-networks/blob/master/README.md#cifar-alternate-training-strategies-rmsprop-adagrad-adadelta


[123] James Hardy Wilkinson. The algebraic eigenvalue problem, volume 87. Claren-

don Press Oxford, 1965.

129


	List of Figures
	List of Tables
	Abstract
	Declaration
	Publications
	Acknowledgements
	1 Introduction
	1.1 Current State-of-the-art in Training Deep Networks
	1.2 Motivation
	1.3 Research contribution of this thesis
	1.4 Thesis outline

	2 Literature Review
	2.1 Machine Learning
	2.1.1 Deep Learning

	2.2 Nonlinear Classification on Deep Learning Features
	2.2.1 Background

	2.3 Piecewise Linear Activation Units
	2.3.1 Background

	2.4 Multiple-size Features in Deep Learning
	2.4.1 Background

	2.5 Measuring the Performance of Residual Networks
	2.5.1 Background

	2.6 Conclusion

	3 Methodology
	3.1 Overview
	3.2 Datasets
	3.3 Non-greedy Hierarchical Classification
	3.3.1 Complexity Analysis

	3.4 Batch-normalised Deep Learning with Piecewise Linear Activation Units
	3.4.1 Piecewise Linear Activation Units
	3.4.2 Batch Normalisation Units
	3.4.3 Maxout Network in Maxout Network Model

	3.5 Competitive Multiple-size Convolution Activation Units
	3.5.1 Competitive Convolution of Multiple-size Filters Prevents Undesirable Filter Convergence and Filter Co-adaptation

	3.6 Characterising the Training of Deep Residual Networks with Approximate Fisher Information Matrix
	3.6.1 Definition of the Measures
	3.6.2 Dynamic Sampling
	3.6.3 Dynamic Stochastic Depth Rate

	3.7 Conclusion

	4 The Use of Deep Learning Features in a Hierarchical Classifier Learned with the Minimization of a Non-greedy Loss Function that Delays Gratification
	5 On the Importance of Normalisation Layers in Deep Learning with Piecewise Linear Activation Units
	6 A Deep Convolutional Neural Network Module that Promotes Competition of Multiple-size Filters
	7 Approximate Fisher Information Matrix to Characterise the Training of Deep Residual Networks
	8 Conclusion and Future Works
	8.1 Summary of Contributions
	8.2 Future Works

	Bibliography



