
Essays in Econometrics with

Applications to Social Networks

by

Robert C. Garrard

A Thesis Submitted in Total

Fulfilment of the Requirements

for the Degree of

Doctor of Philosophy

School of Economics

University of Adelaide

September 7, 2017



Declaration

I certify that this work contains no material which has been accepted for

the award of any other degree or diploma in my name, in any university

or other tertiary institution and, to the best of my knowledge and belief,

contains no material previously published or written by another person,

except where due reference has been made in the text. In addition, I certify

that no part of this work will, in the future, be used in a submission in my

name, for any other degree or diploma in any university or other tertiary

institution without the prior approval of the University of Adelaide and

where applicable, any partner institution responsible for the joint-award of

this degree. I give consent to this copy of my thesis, when deposited in

the University Library, being made available for loan and photocopying,

subject to the provisions of the Copyright Act 1968. I also give permission

for the digital version of my thesis to be made available on the web, via the

University’s digital research repository, the Library Search and also through

web search engines, unless permission has been granted by the University to

restrict access for a period of time.

I acknowledge the support I have received for my research through the provi-

sion of an Australian Government Research Training Program Scholarship.

Signed Date 01 / 06 / 2017



Abstract

This thesis is comprised of three self-contained essays on econometrics.

The first paper illustrates how stochastic dominance criteria can be used

to rank social networks in terms of efficiency, and develops statistical in-

ference procedures for assessing these criteria. The tests proposed can be

viewed as extensions of a Pearson goodness-of-fit test and a studentized

maximum modulus test often used to partially rank income distributions

and inequality measures. We establish uniform convergence of the empirical

size of the tests to the nominal level, and show their consistency under the

usual conditions that guarantee the validity of the approximation of a multi-

nomial distribution to a Gaussian distribution. Furthermore, we propose a

bootstrap method that enhances the finite-sample properties of the tests.

The performance of the tests is illustrated via Monte Carlo experiments and

an empirical application to risk sharing networks in rural India.

The second paper considers the problem of testing a hypothesis H0 : β =

β0 where β is a vector representing the degree distribution of a graph and

the sample acquired is an induced subgraph. We propose a novel bootstrap

procedure to control the size of a test under the null hypothesis by con-

structing a graph whose degree distribution conforms to the null hypothesis

from which we may draw pseudo-samples in the form of induced subgraphs.

We investigate the properties of the bootstrap with a simulation study in

which a Wald-type statistic based on a truncated singular value estimator,

whose null distribution is approximately chi-square, serves as a benchmark.

We then discuss whether this test may be inverted to construct confidence

intervals.

The third paper presents a selective review of the Lasso estimator as it

applies to econometric inference. We survey key papers addressing proper-

ties of the Lasso of interest to the econometrician including conditions for

consistency, the asymptotic distribution of the estimator, its ability to be

bootstrapped, sample splitting for high dimensional inference, and how it

may be used to solve the many instruments problem in instrumental vari-

ables regression.
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Preface

Traditional neoclassical economic theory tends to view economic behavior

through the lens of centralized markets which are perfectly competitive and

obtain a market clearing price and quantity in equilibrium. In order to study

a richer set of phenomena, modern theory attempts to relax some of these

simplifying assumptions. Perfect competition is frequently relaxed through

the introduction of a continuum of monopolistically competitive intermedi-

ate goods firms or an increasing returns to scale production technology, and

the existence of a market clearing price and quantity may be substituted for

search and matching models (such as the Diamond-Mortensen-Pissaredes

model of labor search). The study of social networks attempts to generalize

economic exchange away from centralized markets to interactions between

sparsely connected agents. Much theoretical headway has been made toward

understanding how the structural features of social networks can affect the

underlying behaviors, but empirical techniques for measuring these features

are yet to catch up.

Of particular interest in the network theory literature has been in in-

vestigating the compatibility between networks which are stable equilibrium

outcomes and networks which are efficient in an aggregate social welfare

sense. In the event that the aggregate social welfare function in question is

increasing and concave in the degree of each agent in the network, such as for

risk sharing networks, then efficiency of one network over another may be

determined by demonstrating that the degree distribution of one network

second-order stochastically dominates the other. The first article in this

thesis contributes to econometric inference regarding whether two observed

networks may be ranked by such a stochastic dominance criterion. The key

assumption underpinning the success of the results in this paper requires

that the networks be sampled in a fashion which guarantees independent

draws from the degree distribution of a given network. An example of such

a valid sampling method is illustrated in the paper’s empirical application.

We use a data set of borrowing and lending networks from villages in rural

India. The researchers who collected this data did so by randomly selecting

households in the village and for each household asking its residents to name

all of their connections to other members of the village for a particular set

of behaviors. That is, nodes were randomly selected and the degree of each
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node was observed. This constitutes a valid i.i.d sample from the degree

distribution of a network.

However, while this is statistically the most tractable way to handle ques-

tions regarding the degree distribution, it is not the only or even the most

common method for sampling networks. Take, for example, the webgraph

of the internet. Sampling in this fashion would first require a list of every

webpage from which we may randomly select a subset, which presents an

insurmountable task. The observable internet is currently over 14 billion

pages and the Deep Web, constituting pages which have not yet been in-

dexed, is estimated to be at least 400 times larger. Instead, measurment

of the internet is done by programs called “web crawlers” which start from

a specified page, record the set of hyperlinks on that page, choose one of

those hyperlinks at random and follow it to the next page. This method,

while feasible from a measurement point of view, renders statistical inference

extraordinarily difficult.

The second article in this thesis considers a similarly challenging sam-

pling method called induced subgraph sampling. To sample an induced

subgraph, one first randomly selects a subset of nodes and includes in the

sample only links between sampled nodes. At first this might seem quite

wasteful, but it makes sense in terms of things we typically like to measure

in networks. The computation of measures of centrality, clustering, cliquish-

ness, average path length, etc, all require that links be only to other members

of the sampled network. In this article we investigate how one might test the

hypothesis that an induced subgraph sample came from a particular degree

distribution. Naturally a first best result would be a method for consis-

tently estimating the degree distribution and constructing valid confidence

intervals around the point estimate. Given the highly peculiar nature of

the sampling method, a consistent estimator for the degree distribution is

still an open question in statistics. This article presents a first pass at the

problem of constructing confidence intervals by considering the dual prob-

lem of performing a simple hypothesis test. While we are able to offer no

asymptotic results due to the intractibility of the sample distribution, we

do propose a novel bootstrap procedure to control the size of the hypothesis

test which we investigate with a monte carlo experiment.

If the degree distribution itself is not consistently estimable one might

ask if at very least the support of the degree distribution is consistently es-

timable. Induced subgraph sampling has the interesting property that the
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form of the distortion to the degree distribution is relatively easy to charac-

terize. The degree distribution of the induced subgraph is a linear mapping

of the true degree distribution into a lower dimensional subspace where the

elements of the linear map are a function of the number of nodes in the

population and the sample size. This means the problem of estimating the

degree distribution may be posed as a linear regression with fixed design.

However, since the map projects the degree distribution into a lower dimen-

sional space, the linear regression is high dimensional. That is, there are

more unknown parameters than observations.

If we hope to solve the problem of estimating the support of a network’s

degree distribution based on an induced subgraph sample, this involves de-

termining which parameters in a high dimensional linear regression are equal

to zero. This is the realm of the Lasso estimator. Aside from a potential

application to network econometrics, the Lasso has reason to be of interest

to the economic researcher in general. The Lasso simultaneously estimates a

parameter and performs model selection. By setting some of the estimated

coefficients exactly to zero, it in effect decides which of a large set of regres-

sors are important for explaining the dependent variable. In recent years

both psychology and economics have had large projects attempt to replicate

several published results and found that many of the results fail to be repro-

ducible. There are two leading explanations for this replication failure. One

is that negative results, in which a paper does not find a statistically signifi-

cant effect, is unlikely to be accepted by a journal for publication, and so the

rate of false discovery is much higher in published works. The other is that

through either deliberate or subconscious decisions a researcher will manage

to engineer statistical significance through experimenting with which vari-

ables do or do not enter the final model; so called ‘p-hacking’. If there is

any kind of model search in which many models are tried in order to find

one which fits the data well, then inferences based on the final model lose

any frequency guarantees on which confidence is based. That is, 95% confi-

dence intervals will have less than 95% coverage. The Lasso is a method in

which model selection is automated and this model selection is internalized

when conducting inferences. The third article presents a selective review of

key papers in the development of the Lasso with direct relevance to causal

econometric inference.

3





Testing for Stochastic Dominance in Social Networks

Firmin Doko Tchatoka, Robert Garrard, Virginie Masson

School of Economics, The University of Adelaide

Abstract

This paper illustrates how stochastic dominance criteria can be used to rank

social networks in terms of efficiency, and develops statistical inference pro-

cedures for assessing these criteria. The tests proposed can be viewed as

extensions of a Pearson goodness-of-fit test and a studentized maximum

modulus test often used to partially rank income distributions and inequal-

ity measures. We establish uniform convergence of the empirical size of the

tests to the nominal level, and show their consistency under the usual con-

ditions that guarantee the validity of the approximation of a multinomial

distribution to a Gaussian distribution. Furthermore, we propose a boot-

strap method that enhances the finite-sample properties of the tests. The

performance of the tests is illustrated via Monte Carlo experiments and an

empirical application to risk sharing networks in rural India.

Keywords: Networks, Tests of stochastic dominance, Bootstrap, Uniform

convergence

JEL: C12, C13, C36

1. Introduction

This paper considers the problem of assessing stochastic dominance cri-

teria in network theory. Many economic and social interactions involve
September 7, 2017



network relationships, and the role that networks play in determining eco-

nomic outcomes– such as trade and exchange of goods in non-centralized

markets (e.g., Tesfatsion (1997)), provision of mutual insurance in devel-

oping countries (e.g., Fafchamps and Lund (2003)), and job search (e.g.,

Calvo-Armengol (2004))– is now recognized. Recent statistical and econo-

metric studies in network theory have often focused on the estimation of

network relationships,1 and the identification of peer effects.2 Statistical

methods for understanding how individual incentives to form networks align

with social efficiency are yet to be developed.

This paper illustrates how stochastic dominance criteria can be used

to rank networks in terms of social efficiency, and proposes a nonpara-

metric procedure for assessing these criteria. Often, standard measures–

such as the Gini-coefficient or Lorenz curves– are used to rank income and

poverty distributions in terms of social efficiency. However, in addition to

being relative measures,3 two income or poverty distributions such that one

second-order statistically dominates the other may result in a same value

of these measures. For theses reasons, stochastic dominance criteria are

usually preferred to provide a partial ordering of inequality and poverty

measures (e.g., Atkinson (1987) and Anderson (1996)), and the concept,

as well as its connection to social welfare theory, now extends to network

theory (e.g., Goyal (2012) and Jackson et al. (2008)). To illustrate how the

1See Chandrasekhar (2015), Leung (2015), Banerjee et al. (2013), Liu (2013), Bickel
et al. (2011), and Bickel and Chen (2009) among others.

2See Hsieh and Lee (2016), Blume et al. (2015), Bursztyn et al. (2014), Goldsmith-
Pinkham and Imbens (2013), Jackson (2014), Graham (2014), and Aliprantis and Richter
(2013) among others.

3For example, changing income inequality, measured by Gini-coefficients, can be due
to structural changes in a society such as aging populations, emigration,immigration, etc.
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stochastic dominance criteria could provide a partial ordering of networks,

let N � t1, 2, . . . , nu be a finite set of n agents and GpNq be the set of

networks on N. Let Wpdgq denote the aggregate social welfare function of

network g P GpNq, where dg � pdg�1, . . . , dg�nq1 and dg�i is the degree of agent

i P N in g. Following Goyal (2012, Section 7.4), network g P GpNq is said

to be socially efficient if Wpdgq ¥ Wpdg1q for all g1 P GpNq. Therefore, if

Wpdgq is a nondecreasing and strictly concave function of dg�i for all i P N,
then second-order stochastic dominance between the degree distributions of

two networks g and g1 in GpNq is equivalent to dominance between Wpdgq
and Wpdg1q in the same direction (e.g., Rothschild and Stiglitz (1970)). 4

Therefore, the stochastic dominance criteria provide a partial ordering of

the elements of GpNq in terms of social efficiency in this setting, and de-

veloping statistical methods to establish this ordering from the observed

network relationships can be of great interest in social science.

Tests similar to that of Pearson (1900) are often used for assessing

stochastic dominance hypotheses in the literature on inequality and poverty

measures,5 but to the best of our knowledge, this study is the first to focus

on extending these procedures to network theory. Anderson (1996) suggests

a combination of Pearson-type and studentized maximum modulus (SMM)

tests6 in a single decision rule for assessing stochastic dominance of income

4A sufficient condition for a social welfare function with such properties is for the wel-
fare function to be additive in individual utilities, W � °n

i�1 ui, with individual utility
functions of the form ui � fpdiq�

°
jPN piq gpdjq, with fpdiq being an increasing and con-

cave benefit in own degree and gpdjq being the disutility in the degree of neighbor j such
that the function xgpxq is quasi-convex; for example Calv-Armengol (2004), Bramoulle
and Kranton (2007), Choi et al. (2013).

5For example, see McFadden (1989), Anderson (1996), Davidson and Duclos (2000),
Barrett and Donald (2003), Linton et al. (2005), and Barrett et al. (2014).

6See Stoline and Ury (1979) for the tabulation of the critical values of the SMM
statistics.
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distributions. His methodology is nonetheless not directly applicable in the

context of networks for the following reasons. First, both tests are derived

in his framework under the assumption that the samples are independent.

Although this may be reasonable in the literature on income distributions

and poverty measures, it is less likely to be the case in network theory, as

it excludes interesting situations where networks’ populations overlap. For

example, when comparing risk sharing networks formed by men and women

within a village (or community), it is reasonable to assume that the two

networks are independent across households, while the correlation between

the two networks is likely high within households. 7 Second, partitioning of

samples into classes is usually required to implement a Pearson-type test,

and it is well documented that such a partitioning has an influence on the

properties (size and power) of the resulting test.8 In the case where the sam-

ples are drawn from a continuous distribution, Mann and Wald (1942) and

Williams (1950) propose rules of thumb to select the number of classes and

the lengths of subsequent intervals such that the resulting test is unbiased.

These optimal rules are usually obtained by equalizing cell probabilities un-

der the null whilst maintaining an expected cell frequency of at least 5 (e.g.,

Anderson (1996)). The main difficulty in extending Mann and Wald (1942)

and Williams (1950) rules of thumb to the context of networks resides in the

finite and discrete nature of the range of a network’s degree distribution.

Our contribution in this paper is threefold. First, we propose an adjust-

ment to Mann and Wald (1942) and Williams (1950) rules of thumb that

7Strictly speaking, we are considering correlation between the random variables which
generate the degree of each node in the network data generating process.

8See Hotelling (1930), Mann and Wald (1942), Gumbel (1943), Williams (1950),
Cochran (1952), and Schorr (1974) among others.
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applies to the context of networks. We show how the optimal choice of the

number of classes can be approximated through a careful analysis of the

empirical histogram of the degree distributions of the networks. Second, we

propose a generalization of the Pearson- and SMM-type statistics in An-

derson (1996) that are valid even when the samples are correlated, thus

applicable to the context of network theory. Our statistics differ from that

of Anderson (1996) and prior literature not only through the correction to

account for the correlation between the degree distributions of the networks,

but also their direct dependence on partitioning into classes. We show that

a combination of the two modified statistics into a single decision rule is

necessary to inform us on whether stochastic dominance holds or not, once

equality between the degree distributions of the networks is rejected. As

the modified statistics depend on partitioning into classes, controlling the

size of the resulting tests uniformly over the set of all admissible partitions9

is important for the asymptotic results to give a good approximation of the

empirical size to the nominal level. Finally, we provide a bootstrap pro-

cedure that improves the finite-sample performance of both the modified

Pearson- and SMM-statistics.

We provide an analysis of both the size and power properties of the

tests under weaker assumptions than is usually the case in most applica-

tions of Pearson’s (1900) goodness-of-fit test. On level control, we establish

uniform convergence of their empirical size to the nominal level over the

set of all admissible partitions when the usual asymptotic chi-square and

SMM critical values are applied. On power, we show that test consistency

9An admissible partition is a partition in which the minimum expected number in
each cell is at least 5.
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holds no matter which admissible partition is used. Moreover, we estab-

lish uniform consistency of the bootstrap for the two modified Pearson-

and SMM-tests irrespective of whether the null hypothesis holds or not.

We present a Monte Carlo experiment that confirms our theoretical find-

ings. In particular, while the standard tests sometimes tend to over-reject

the null hypothesis if the sample size is small, the bootstrap tests have an

overall good performance in such contexts. Finally, using the data set of

Jackson et al. (2012) and Banerjee et al. (2012, 2013), we illustrate our

theory through an investigation of the households’ risk sharing networks

across 75 villages in rural India. In particular, we focus on both the goods

lending and money lending networks, and test gender differences within

these networks by applying the tests of stochastic dominance developed.

For goods lending, both the standard and bootstrap tests show that the

female network first- and second-order stochastically dominates the male

network at the 1% and 5% nominal levels. However, for money lending,

we could only find evidence of the first- and second-order dominance of the

female network at the 5% nominal level. At the 1% nominal level, neither

network dominates the other with both the standard and bootstrap tests.

These results suggest that women within these villages overall tend to form

denser risk sharing networks than do men, especially for goods lending.

Throughout this paper, for any vector x � px1, . . . , xkq1 P Rk, the nota-

tion “x ¤ 0” means xl ¤ 0 for all l � 1, . . . , k, while “x ¦ 0”(or “x § 0”)

means that there exists l and l1 in t1, . . . , ku such that xl ¥ 0 and xl1   0

or xl ¡ 0 and xl1 ¤ 0. Convergence almost surely is symbolized by “a.s.”,

“
pÑ” stands for convergence in probability, while “

dÑ” means convergence

in distribution. The usual stochastic orders of magnitude are denoted by

10



Opp.q, opp.q. Pr�s denotes the relevant probability measure and Er�s is the

expectation operator under Pr�s. P�r�s is the bootstrap analogue of Pr�s, and

similarly for E�r�s. Iq stands for the identity matrix of order q, and for any

q � q matrix A, A� is the generalized inverse of A. The notation diagpAq
is a q � q diagonal matrix with diagonal elements the pl, lqth elements of A.

}U} denotes the usual Euclidian or Frobenius norm for a matrix U . For

any set C , BC is the boundary of C and pBC qε its ε-neighborhood. Finally,

sup
ωPΩ

|fpωq| is the supremum norm on the space of bounded continuous real

functions, with topological space Ω.

The remainder of the paper is organised as follows. Section 2 defines

the relevant concepts and introduces the dominance criterion. Section 3

formulates the hypotheses tested and presents the basic notations and as-

sumptions used. Section 4 presents the derivation of the statistics and the

asymptotic theory developed. Section 5 illustrates the performance of the

tests via Monte Carlo experiments. Section 6 provides an empirical illustra-

tion of our theoretical results, and Section 7 concludes. Proofs are presented

in the appendix.

2. Preliminaries

Before introducing the concept of stochastic dominance in networks (Section

2.2) and formalizing the testing problem of interest (Section 3), we define

the basic terminologies and notations used throughout the study.

2.1. Networks

Let N � t1, 2, . . . , nu denote a finite set of agents, and GpNq be the set of

networks on N. We define a network g over N as a pair of nodes and edges
11



describing relationships (or links) between agents 1, 2, . . . , n. A network can

be represented by a graph whose n�n adjacency matrix has generic element

gii1 satisfying gii1 � 1 if there is a directed link from agent i to i1, and gii1 � 0

otherwise. By convention, we set gii � 0 for all i. The neighborhood of agent

i is the set of agents with whom i has a directed link in network g, i.e., the

set Nipgq � ti1 P N |gii1 � 1u. We refer to the number of agent i’s neighbors,

dg�i � cardrNipgqs, as the degree of agent i.10

The degree distribution of network g is a vector Pg � rP̂g�0, . . . , P̂g�k, . . . , P̂g�pn�1qs1,
where P̂g�k � cardrti : dg�i � kus{n is the proportion of nodes with degree

k; thus P̂g�k ¥ 0 for each k P Rn,
°
kPRn

P̂g�k � 1, and Rn � t0, 1, . . . , n � 1u
is the range of Pg. The empirical cumulative distribution function (cdf) of

network g is the function Fg : Rn Ñ r0, 1s such that Fgpkq �
°k

0 P̂g�l for all

k P Rn.

Example 1. Figure 1 illustrates three networks with n � 5 agents: a
“circle” network (Network g), a “directed star” network (Network g1), and
a “complete” network (Network g2).

Figure 1: Example of networks

1

23

4

5

(a) Network g

1

2

3

4

5

(b) Network g1

1

23

4

5

(c) Network g2

10Our definition of a neighborhood considers the out-degree of agent i, i.e. the number
of links which originate from agent i. However, it can also be defined using the in-degree
of agent i, in which case, Nipgq � ti1 P N |gi1i � 1u. The choice of the definition depends
mainly upon the application considered. For undirected networks, gii1 � gi1i and both
definitions coincide.
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The characteristics of each network j P tg, g1, g2u, as per the above
terminologies and definitions– neighborhood : N pjq, degree of agent: dj�i,
degree distribution: Pj, and empirical cdf : Fj –are summarized in Table 1.

Table 1: Characteristics of network j P tg, g1, g2u

characteristics Ó Network j Ñ g g1 g2

N1pjq t2, 5u t2, 3, 4, 5u t2, 3, 4, 5u
N2pjq t1, 3u ∅ t1, 3, 4, 5u
N3pjq t2, 4u ∅ t1, 2, 4, 5u
N4pjq t3, 5u ∅ t1, 2, 3, 5u
N5pjq t1, 4u ∅ t1, 2, 3, 4u
dj�1 2 4 4
dj�2 2 0 4
dj�3 2 0 4
dj�4 2 0 4
dj�5 2 0 4
Pj p0, 0, 1, 0, 0q1 p4{5, 0, 0, 0, 1{5q1 p0, 0, 0, 0, 1q1
Fj p0, 0, 1, 1, 1q1 p4{5, 4{5, 4{5, 4{5, 1q1 p0, 0, 0, 0, 1q1

2.2. Stochastic Dominance in Networks

Consider the setup described in Section 2.1, and let g and g1 denote two

networks in GpNq with empirical cdfs Fg and Fg1 , respectively. The first-

and second-order11 stochastic dominance between g and g1 are characterized

as follows.

Definition 1. piq Network g first-order stochastically dominates net-
work g1, which we write g ¡1 g

1, if Fgpkq ¤ Fg1pkq @ k P Rn, with strict
inequality for some k.

11The characterization of stochastic dominance can easily be extended to higher-order,
but for simplicity we mainly focus on the first- and second-order dominance for the
remainder of the paper.
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piiq Network g second-order stochastically dominates g1, which we
write g ¡2 g

1, if
°k
i�0 Fgpiq ¤

°k
i�0 Fg1piq @ k P Rn, with strict inequality

for some k.

We may think of first-order stochastic dominance as describing one net-

work being much more densely connected than another. Given a degree

d, if network g has at least as many nodes of degree d than network g1,

then the average degree in network g will be higher than in g1. Second-

order dominance may be thought of in terms of mean-preserving spreads.

If two networks have the same average degree, but g has much lower spread

around that average than g1, then g second-order dominates g1. That is,

first-order dominance favors networks where each node has high degree and

second-order dominance favors more evenly distributed degrees.

It is straightforward to see from the above characterizations that first-

order stochastic dominance implies second-order stochastic dominance, but

not the other way around. We now illustrate the two concepts from the

example of Section 2.1.

Example 1 (continued). Again, consider the three networks g, g1, and g2

of Example 1. From Table 2 below, the pairwise comparisons between the
cumulative distributions of these networks show that g2 first-order stochasti-
cally dominates both g and g1. Therefore, g2 also second-order stochastically
dominates both g and g1. However, as Fgp1q   Fg1p1q and Fgp2q ¡ Fg1p2q,
there exists no first-order stochastic dominance between g and g1. Neverthe-
less, g second-order stochastically dominates g1. This reflects the fact that
network g has an average degree at least as high as network g1 but a lower
dispersion in agents’ degrees.

14



Table 2: Stochastic dominance between networks g, g1 and g2 of Example 1

k 0 1 2 3 4
p̂g�k 0 0 1 0 0
Fgpkq 0 0 1 1 1°k
i�0 Fgpiq 0 0 1 2 3

p̂g1�k 0.8 0 0 0 0.2
Fg1pkq 0.8 0.8 0.8 0.8 1°k
i�0 Fg1piq 0.8 1.6 2.4 3.2 4.2

p̂g2�k 0 0 0 0 1
Fg2pkq 0 0 0 0 1°k
i�0 Fg2piq 0 0 0 0 1

We now wish to formulate hypotheses for assessing stochastic dominance

in social networks from observed real world data.

3. Stochastic Dominance Hypothesis and As-

sumptions

We first formulate the problem of testing stochastic dominance hypotheses

in Section 3.1. Section 3.2 presents the basic notations and assumptions

that are used in the paper.

3.1. Hypothesis Formulation

Let g and g1 be two networks observed on the same population of n agents,

and let Fj denote the empirical cdf associated with the degree distribution

Pj of network j P tg, g1u. Finally, let N � t1, 2, . . .u be the set of natural

integers. Given m P N, we are interested in assessing which network mth-

order stochastically dominates the other. 12From Definition 1, this problem

12While definition 1 may be expanded to m-th order stochastic orderings, and the
hypothesis below may be tested for any m P N, it is impractical in most cases to go

15



can be formulated as a problem of testing the mth-order stochastic domi-

nance between the cdfs Fg and Fg1 , i.e.,

H0m : Fg
d� Fg1 versus H1m : Fg ¡m Fg1 ^ H2m : Fg

d

�� Fg1 , (1)

where “¡m” denotes the mth-order stochastic dominance operator, “
d�” and

“
d

��” symbolize equality and difference in distribution respectively. As can

be seen clearly from (1), H0m tests equality between Fg and Fg1 against: (i)

mth-order stochastic dominance (H1m), and (ii) no mth-order dominance

(H2m). For example when m � 2, H02 tests the equality between Fg and Fg1

against both second-order stochastic dominance (H12) and no second-order

dominance (H22). Several statistical procedures exist to assess stochastic

dominance hypotheses between two distributions, but to the best of our

knowledge, this study is the first to focus on extending these procedures to

network theory.

In order to derive a testable formulation of problem (1) from the observed

data, as well as test statistics for assessing it, it is useful to first introduce

the following notations and assumptions.

3.2. Basic Notations and Assumptions

Let tpdg�i, dg1�iquni�1 be a sample of n observations drawn from the joint

distribution of the degree of agents in networks g and g1. Let Fg and Fg1

denote the empirical cdfs of networks g and g1 respectively, constructed as

in Section 2.1. To build Pearson-type statistics for assessing H0m in (1),

we must first partition the range (support) of the degree distributions of

beyond m � 2 since for such a stochastic ordering to imply a welfare ranking we would
have to place more stringent assumptions on the higher order derivatives of the welfare
function.
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networks g and g1 into classes (or class intervals). To do this, we adapt the

methodology in Anderson (1996) to the context of social networks.

Let pdiq2ni�1 be the pooled sample of 2n observations obtained by stacking

the two sub-samples pdg�iqni�1 and pdg1�iqni�1, and let Supp(d) � Rn denote

the support of the distribution of pdiq2ni�1 , where Rn � t0, 1, 2, . . . , n � 1u
is the common range of the degree distributions of networks g and g1. Note

that Supp(d) need not be strictly equal to Rn. This is the case for example

if max
i,jPtg,g1u

tdj�iuni�1   n � 1. For some fixed k P N, let P
pkq

n pI1, . . . , Ikq �
P

pkq

n pIq :� tIlukl�1 denote a finite partition of Supp(d) into k disjoint sets,

i.e.

Supp(d) �
¤

1¤l¤k
Il : Il �� ∅, Il X Il̃ � ∅ @ l � l̃, (2)

and define a collection of such partitions by

P �
!
P

pkq

n pIq : I � tIlukl�1 satisfies (2)
)
. (3)

As Supp(d) is a discrete finite set, the collection P contains a finite number

of elements (or partitions) for a given k. Until now, we have implicitly

assumed that the number k of subsets and the division points between

subsets (subsets’ cardinality) in (2) are available to the investigator. In

practice, one has to choose k as well as the division points between the

k resulting subsets, and it is well documented that these choices have an

influence on the properties (size and power) of Pearson-type tests. For

samples generated from continuous distributions, we have Supp(d) � R

and Il, l � 1, 2, . . . , k are compact intervals in (2). In this case, there is a

number of seminal papers which provide rules to select k and the lengths of

subsequent intervals such that the resulting Pearson-type test is unbiased.
17



For example, Anderson (1996) suggests that power can be gained by locating

partition points at fractiles where it is thought that the two distributions

may intersect. Since this information is unknown, the standard advice by

Mann and Wald (1942),13 Gumbel (1943), and Williams (1950), that power

is gained by equalizing cell probabilities under the null whilst maintaining

an expected cell frequency of at least 5 is usually used in applied work.

The main difficulty in extending Mann and Wald (1942) and Williams

(1950) rules of thumb to the context of networks resides in the finite and

discrete nature of the range of a network’s degree distribution. For example,

Figure 2 shows the degree distributions of two commonly used networks:

the Poisson random graph and the Scale-free network. While in theory

the range of both distributions is the entire positive integer set N, we see

that both distributions are concentrated between: 1–20 (for the Poisson

random graph), and 1–9 (the Scale-free network). Suppose we have a joint

sample of n � 500 realizations of networks g and g1 drawn from a population

that follows one of these distributions. For a test at the α � 5% nominal

level (c � 1.64), Mann and Wald’s (1942) and Williams’s (1950) optimal

rules of thumb give k
MW

� 45 and k
W
� 23 respectively. These choices

increase to k
MW

� 59 and k
W
� 30 for a population of n � 1, 000 agents.

However, Figure 2 shows clearly that even a choice of k � k
W

� 23 in

13Mann and Wald (1942) show that the optimal choice of the number of classes is

k :� I nt

�
4 5

b
2pn�1q2

c2

�
, where n is the sample size, I ntrxs is the integer part of any

real x, and c is determined so that 2?
2π

³8
c
e�x

2{2dx is equal to the size of the critical

region under H02. One criticism of Mann and Wald’s (1942) method is that it generates
an unnecessarily large number of classes; see Schorr (1974). Williams (1950) shows that
halving this number does not substantially decrease the power of Pearson-type tests.
Although these rules of thumb are reasonable to follow, it is worth noting that they do
not imply that the resulting Pearson-type test is necessarily uniformly powerful against
all alternatives; for example, see Cochran (1952).
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(2) does not make it possible to equalize cell probabilities under the null

whilst maintaining an expected cell frequency of at least 5. Even though this

criterion may give a good approximation for Poisson random graphs in some

instances (for example when λ is large enough), this is likely not the case for

Scale-free networks. Therefore, adjustments are needed to adapt Mann and

Wald’s (1942) and Williams’s (1950) rules of thumb to the network context.

For this purpose, define kmax � maxSupppdq. Then, a practical and simple

rule of thumb could be to choose k ¤ minrk
W
, kmaxs such that Williams

(1950) rule of thumb is close to being fulfilled. This can be achieved through

a careful analysis of the empirical histogram of the degree distributions

such as in Figure 2. For example, if the realizations of networks g and

g1 are drawn from a Poisson population (Figure 2-(a)), both choices: (i)

k � 4 and I1 � t1, . . . , 7u, I2 � t8, 9u, I3 � t10, 11u, I4 � t12, . . . , 20u,
and (ii) k � 4 and I1 � t1, . . . , 9u, I2 � t10u, I3 � t11u, I4 � t12, . . . , 20u,
are acceptable. However, the former is closer to the recommendation to

equalize cell probabilities than the latter.

Figure 2: The distribution of degrees for Poisson and Scale-free networks

(a) Poisson with parameter λ � 10 (b) Scale-free with parameter γ � 2.5
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To formally address the threshold of an expected cell frequency of at least

5, we first introduce the following notations and definitions. Let p
j�il
, j P

tg, g1u be the probability that dj�i falls in Il, and p̂
j�l

denote the proportion

of observations in pdj�iqni�1 which fall in Il, i.e.

p
j�il
� Ppdj�i P Ilq, p̂

j�l
� 1

n

ņ

i�1

1pdj�i P Ilq. (4)

If tpdg�i, dg1�iquni�1 is i.i.d. across i, for given j P tg, g1u and l P t1, . . . , ku ,
the probabilities p

j�il
are the same for all i, i.e., p

j�il
� p

j�l
for all i and p̂

j�l

is a consistent estimator of p
j�l
. Then, the expected numbers in cell l for

network j is given by

nj�l :� np̂
j�l
�

ņ

i�1

1pdj�i P Ilq. (5)

To insure a valid approximation of the multinomial distribution to a multi-

variate normal distribution, (2) must also guarantee that the minimum of

the nj�l’s for all j P tg, g1u and l � 1, . . . , k is at least 5. This threshold is

usually imposed and the absence of a theory to justify its validity has raised

some concerns in several seminal papers; e.g., Cochran (1952), Lewis and

Burke (1949), and Edwards (1950). Yates (1934) provides a correction for

continuity that adjusts the formula for a Pearson-type statistic when this

threshold is violated. In this paper, we do not address the issues related to

the choice of the minimum expected number in cells. Rather, we consider

the collection of all partitions P
pkq

n pIq for which this requirement is satisfied,

and we wish to provide tests of stochastic dominance that control the size

uniformly over this collection of partitions.

To be more specific, consider the partitions P
pkq

n pIq in (2) such that

np̂
j�l
¡ 5 for all j P tg, g1u and l P t1, . . . , ku . Let P

A
be a collection of such
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partitions, i.e.

P
A
�
!
P

pkq

n pIq P P : I � tIlukl�1 satisfies np̂
j�l
¡ 5; for all j P tg, g1u and l � 1, . . . , k

)
. (6)

For the remainder of the paper, we shall refer to P
A

as a collection of

admissible partitions. Note that np̂
j�l
¡ 5 is the only restriction on the

structure of P
pkq

n pIq in (2), therefore there are many admissible partitions

P
pkq

n pIq that can be formed from the observed joint data tpdg�i, dg1�iquni�1. As

P is finite, P
A

is also a finite set of partitions. In such a context, proving

the uniform control of type-I error over P
A

of the statistics considered for

assessing H0m in (1) is important.

Now, let

uj�i � r1pdj�i P I1q, . . . , 1pdj�i P Ikqs1 , p
j�i
� Epuj�iq � rp

j�i1
, . . . , p

j�ik
s1,(7)

and p̂
j

:� rp̂
j�1
, . . . , p̂

j�k
s1 � 1

n

ņ

i�1

uj�i, j P tg, g1u, (8)

where p
j�il

and p̂
j�l

are given in (4). Each estimated vector of probabilities p̂
j

in (8) is a sample average of the realizations uj�i from a k-dimensional multi-

nomial random variable with vector of parameters p
j�i
� rp

j�i1
, . . . , p

j�ik
s1.

Let pΣj be an estimator of the covariance matrix of uj�i given by

pΣj �

�
�������

p̂
j�1
p1� p̂

j�1
q �p̂

j�1
p̂
j�2

. . . �p̂
j�1
p̂
j�k

�p̂
j�2
p̂
j�1

p̂
j�2
p1� p̂

j�2
q . . .

...
...

... . . .
...

�p̂
j�k
p̂
j�1

�p̂
j�k
p̂
j�2

. . . p̂
j�k
p1� p̂

j�k
q

�
������


: j P tg, g1u,(9)

and similarly, define

p
gg1�i,ll̃

� Ppdg�i P Il, dg1�i P Il̃q, p̂
gg1�ll̃

� 1

n

ņ

i�1

1pdg�i P Ilq1pdg1�i P Il̃q, (10)
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and let pΣgg1 be an estimator of the covariance matrix of the p2kq-dimensional

vector of joint variables pu1g�i : u1g1�iq1 given by

pΣgg1 �

�
�������

p̂
gg1�11

� p̂g�1 p̂g1�1 p̂
gg1�12

� p̂g�1 p̂g1�2 . . . p̂
gg1�1k

� p̂g�1 p̂g1�k

p̂
gg1�21

� p̂g�2 p̂g1�1 p̂
gg1�22

� p̂g�2 p̂g1�2 . . .
...

...
... . . .

...

p̂
gg1�k1

� p̂
g�k
p̂
g1�1

p̂
gg1�k2

� p̂
g�k
p̂
g1�2

. . . p̂
gg1�kk

� p̂
g�k
p̂
g1�k

�
������

.(11)

Also, let v̂m � T
mpp̂g � p̂

g1
q be the scaled vector of contrasts, where T

is a k � k lower triangular matrix of ones, Tm denotes the matrix T to the

m-th power, and define

pΩm � T
mrpΣg � pΣg1 � ppΣgg1 � pΣ1

gg1qsT1m :� rpωm�ll̃s1¤l,l̃¤k . (12)

Note that by construction, each of the k � k matrices pΣj, j P tg, g1u in (9),

pΣgg1 in (11), and pΣg�pΣg1�pΣgg1�pΣ1
gg1 in (12) have rank k�1. Therefore, pΩm

in (12) also has rank k � 1. The notation pΩ�

m thus refers to the generalized

inverse of pΩm hereinafter. From Dhrymes (1978, Proposition 3.5), there

exists a diagonal matrix pDk�1 whose diagonal elements are the nonzero

eigenvalues of pΩm (in decreasing order of magnitude), and a k � pk � 1q
matrix pPk�1 whose columns are the (orthogonal) eigenvectors corresponding

to the nonzero roots of pΩm, such that

pΩ�

m � pPk�1
pD�1
k�1

pP 1
k�1. (13)

We now make the following assumption on the joint sample tpdg�i, dg1�iquni�1 .

Assumption 1. Dn :� tpdg�i, dg1�iquni�1 is a i.i.d. random sample across i
drawn from the joint distribution of the degrees of networks g and g1.
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In the above assumption, possible dependence between the distribution

of the degrees of the two networks is allowed. The i.i.d. sampling across the

rows of the joint sample Dn preserves this dependence. In the case where

g and g1 are independent, one can draw two independent i.i.d. samples

with different sizes: one from the population of network g, say pdg�iqngi�1 ,

and the second from the population of network g1, say pdg1�iqng1i�1 . However,

this case excludes interesting situations where the populations of the two

networks overlap, as is usually the case in most empirical applications of

social networks. In such contexts, while it is reasonable to assume that

pdg�i, dg1�iq is independent of pdg�i1 , dg1�i1q for i � i1, it is likely that dg�i and

dg1�i will be correlated.

4. Test Statistics and asymptotic theory

We wish to first discuss how problem (1) can be recast in the more familiar

language of hypotheses specified on vectors of contrast. Under the i.i.d.

sampling across observations in Assumption 1, we have p
j�il

� p
j�l

in (4)

and p
j�i
� p

j
in (7) for all j P tg, g1u, i P t1, . . . , nu and l P t1, . . . , ku.

Therefore, it is straightforward to show that problem (1) can be equivalently

formulated14 as:

H0m : vm � 0 versus H1m : vm ¤ 0 ^ H2m : vm ¦ 0 and vm § 0 (14)

for any m P N, where vm � T
mppg � p

g1
q and T is given in (12). Since vm

is a k � 1 scaled vector of contrasts, testing H0m in (14) involves k mul-

tiple comparison procedures and there is a risk of size control related to

14 See Anderson (1996) for a similar formulation.
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a simultaneous testing of the significance of pairwise contrasts. To avoid

size distortions, Richmond (1982) proposes to use the studentized max-

imum modulus (SMM) type statistic whose distribution is tabulated by

Stoline and Ury (1979), and the statistic is employed by Beach and Rich-

mond (1985) to construct confidence regions for Lorenz curve ordinates. In

this paper, we combine the studentized maximum modulus statistic with

an adjusted version of Pearson’s (1900) statistic for assessing problem (14).

Anderson (1996) employed a similar method in the context of income dis-

tributions but his methodology relies on the assumption that pdg�iqni�1 and

pdg1�iqni�1 are independent, while ours is free of such a restriction.

To be more specific, suppose that Assumption 1 is satisfied. Hence,

we have p̂g
pÑ pg and p̂

g1

pÑ p
g1
, so that the estimated contrast v̂m �

T
mpp̂g � p̂

g1
q pÑ vm � T

mppg � p
g1
q. If further H0m holds, vm � 0 and v̂m

will be close to zero for a large enough sample size. However, under H1m

or H2m, neither vm nor v̂m will be close to zero. Therefore, one can detect

whether H0m is violated by looking at how far the estimated contrast v̂m is

from zero. Since the estimated contrast v̂m will not be exactly zero under

H0m due to sampling error, a conventional way to proceed is to construct

the test statistic from the distribution of v̂m. This approach is extensively

discussed in Hausman (1978) and widely used in econometrics, especially in

specification testing. Before we move on to the derivation of the statistics

for H0m, it is useful to establish the following convergence property for the

estimated contrast of probabilities p̂g � p̂
g1
, as well as its scaled variant

v̂m � T
mpp̂g � p̂

g1
q.

Lemma 1. Suppose that Assumption 1 holds. For any admissible partition
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P
pkq

n pIq P P
A
, we have:

?
nrpp̂g � p̂

g1
q � ppg � p

g1
qs dÑ N

�
0, Σg � Σg1 � Σgg1 � Σ1

gg1

	
, (15)

and
?
npv̂m � vmq dÑ Np0, Ωmq, (16)

where Σj � p lim
nÑ8

ppΣjq, j P tg, g1u, Σgg1 � p lim
nÑ8

ppΣgg1q, Ωm � T
mpΣg � Σg1 �

Σgg1 � Σ1
gg1qT1m , pΣj and pΣgg1 are defined in p9q - p11q.

Lemma 1 follows by the multivariate central limit theorem (MVCLT)

property and the proof is presented in the appendix. It states that the

estimated contrast (p̂g � p̂g1 ) and its scaled variant v̂m are root-n consistent

and asymptotically normal. Anderson (1996) assumes that Σgg1 � 0, so

we have Ωm � T
mpΣg � Σg1qT1m in his setup. In the context of correlated

samples (Σgg1 � 0), a correction to Anderson’s (1996) statistics is necessary

to avoid size distortions, and the term �pΣgg1�Σ1
gg1q on the rhs of (16) is the

adjustment needed.15 In the appendix (see Lemma 4), we show that Ωm can

be consistently estimated by pΩm � T
mppΣg � pΣg1 � pΣgg1 � pΣ1

gg1qT1m , where

pΣj, j P tg, g1u and pΣgg1 are given in (9) - (11). Observe that pΣgg1 is built

from the contingency table obtained from the partition P
pkq

n pIq (thus from

the distribution of the joint sample), while pΣj only exploits the information

from the marginal distribution of the sample of network j P tg, g1u. The

main conclusion here is that even though the cdfs (hence the pdfs) of the

two networks are equal under H0m, constructing the Pearson- or SMM-

type statistics solely based on them, as is usually done in the literature on

inequality and poverty measures, is not always the best way to go because

it does not account for the correlation structure between networks.

15 Our investigation through a Monte Carlo experiment shows that failing to adjust An-
derson’s (1996) statistics yields overly size distorted tests when the two samples pdg�iqni�1
and pdg1�iqni�1 are correlated. In order to shorten the exposition, this exercise is omitted
from this paper but it is available upon request.
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We now focus on the derivation of the test statistics for H0m.

4.1. Test Statistics and Decision Rule

Following Anderson (1996), we consider two statistics based on the esti-

mated vector of contrasts v̂m for assessing H0m:

WmpPpkq

n pIqq � nv̂1mpΩ�

mv̂m � nv̂1m pPk�1
pD�1
k�1

pP 1
k�1v̂m,

SmpPpkq

n pIqq � max
1¤l¤k�1

�
|?n pZml|

	
, (17)

where pZml is the lth component of pD�1{2
k�1

pP 1
k�1v̂m,

pDk�1 and pPk�1 are given

in (13).16 WmpPpkq

n pIqq in (17) is a Pearson-type statistic expressed as

a quadratic form in v̂m. It differs from that in Anderson (1996) not only

through the correction of the covariance matrix pΩm, but also its direct de-

pendence on P
pkq

n pIq. The dependence on P
pkq

n pIq underscores the importance

of controlling the size of the resulting test uniformly over the collection of

admissible partitions P
A
. Uniformity over P

A
is crucial for the asymptotic

results to give a good approximation of the empirical size of the tests to

the nominal level. SmpPpkq

n pIqq is a generalization of the SMM statistic in

Stoline and Ury (1979). Besides its dependence on P
pkq

n pIq, the expression of

SmpPpkq

n pIqq in (17) is conceptually different from those in Stoline and Ury

(1979), Beach and Richmond (1985), and Anderson (1996). For example,

Beach and Richmond (1985) and Anderson (1996) defined these statistics

as max
1¤l¤k

�pω�1{2
m�ll |

?
nv̂ml|

	
, where v̂ml is the lth component of v̂m and pωm�ll is

the pl, lqth element of pΩm. Since v̂ml and pωm�ll are not independent by con-

16The Wald statistic in equation (17) may also be written as Wm

�
PknpIq

� � npp̂g �
p̂g1q1

�
Σ̂g � Σ̂g1 � Σ̂gg1 � Σ̂1

gg1

��
pp̂g � p̂g1q. That is, it is invariant to the choice of m.
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struction,17 max
1¤l¤k

�pω�1{2
m�ll |

?
nv̂ml|

	
does not follow a SMM distribution under

H0m. By contrast, the expression of SmpPpkq

n pIqq in (17) converges to a SMM

distribution with parameter k�1 and infinite degrees of freedom under H0m

and Assumption 1 (see Lemma 2). This is because we have adjusted this

statistic as the maximum of the absolute values of k � 1 non-redundant

linear combinations of the components of
?
nv̂m, where the weights are the

elements of the pk � 1q � k matrix pD�1{2
k�1

pP 1
k�1, while max

1¤l¤k

�pω�1{2
m�ll |

?
nv̂ml|

	
is obtained as the maximum of the absolute value of the k component of

the scaled vector rdiagp pPk�1
pD�1
k�1

pP 1
k�1qs1{2

?
nv̂m. Moreover, one of the fun-

damental differences between the two statistics in (17) is that WmpPpkq

n pIqq
does not depend on either T or m (order of dominance tested),18 while

SmpPpkq

n pIqq depends on both.

Since v̂m
pÑ vm under Assumption 1, it is clear from (14) that Fg ¡m Fg1

if all components of v̂m are less or equal to zero, with a strict inequality

at least for one. Hence, the statistic WmpPpkq

n pIqq, which is a quadratic

form in v̂m, if not combined with SmpPpkq

n pIqq, tests the equality between

the cumulative distributions Fg and Fg1 and a rejection does not neces-

sary entail stochastic dominance. Meanwhile, a rejection using the statis-

tic SmpPpkq

n pIqq implies stochastic dominance. Furthermore, the test with

SmpPpkq

n pIqq asymptotically controls the “familywise” rate of type I error

in multiple comparison procedures (e.g., Richmond (1982) and Beach and

17The upper α-points of the distribution of the SMM statistic, max
1¤l¤k

�pω�1{2
m�ll |

?
nv̂ml|

	
,

in Stoline and Ury (1979, Tables 1-3) are provided under the assumption that v̂ml is
independent of pωm�ll. However, the partitioning into classes does not preserve this inde-
pendence assumption.

18As T is invertible, Tm is also invertible for all m P N so that v̂1mpΩ�

mv̂m �
v̂1Tm1

T�m1 pΩ�

T�mTmv̂ � v̂1pΩ�

v̂, i.e., WmpPpkq

n pIqq does not depend on either T nor
m.
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Richmond (1985)). A combination of the two statistics informs us on

whether ‘stochastic dominance’ holds or not, once equality between the

two distributions is rejected. Formally, as long as the two statistics are

combined, one of the following three levels of decision can be reached given

any admissible partition P
pkq

n pIq P P
A

:

1. if WmpPpkq

n pIqq ¤ ckpαq, retain H0m;

2. if WmpPpkq

n pIqq ¡ ckpαq and SmpPpkq

n pIqq ¡ skpαq, retain H1m;

3. if WmpPpkq

n pIqq ¡ ckpαq and SmpPpkq

n pIqq ¤ skpαq, retain H2m,

where for some α P p0, 1q, the cut-off points ckpαq and skpαq are determined

such that PrWmpPpkq

n pIqq ¡ ckpαqs Ñ α and PrSmpPpkq

n pIqq ¡ skpαqs Ñ α

under H0m, as n Ñ 8 (at least). Tests based on the two statistics are

not equally powerful against both alternatives H1m and H2m, especially in

small samples. Indeed, in the case where one cumulative distribution is

completely below the other, both tests have good power. However, if the

cumulative distributions cross, the test with WmpPpkq

n pIqq is more powerful

than those with SmpPpkq

n pIqq. This is because WmpPpkq

n pIqq is a quadratic

form in
?
n pZm � pD�1{2

k�1
pP 1
k�1

?
nv̂m while SmpPpkq

n pIqq is the absolute value of

the maximal component of
?
n pZm P Rk�1. Furthermore, from the functional

forms of WmpPpkq

n pIqq and SmpPpkq

n pIqq in (17), a non-rejection by the test

with WmpPpkq

n pIqq entails a non-rejection of those with SmpPpkq

n pIqq, as long

as the tests are performed at the same nominal level. Thus, retaining H0m

when the test with WmpPpkq

n pIqq fails to reject it asymptotically controls the

“familywise” rate of type I error. Hence, Bonferroni-type size correction

for multiple comparison hypotheses is not warranted in large samples. To
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enhance the small-sample performance of the test, we propose a bootstrap

method that is easy to implement from the observed data (see Section 4.3).

But before we move on to the bootstrap results, it is informative to study

the asymptotic properties of the standard tests first.

4.2. Asymptotic Properties of the tests

In this section, we characterize the large-sample properties (size and power)

of the above tests of stochastic dominance. To do this, we first study the

asymptotic behavior of WmpPpkq

n pIqq and SmpPpkq

n pIqq under both the null

hypothesis (H0m) and the alternative hypotheses (H1m and H2m). Lemma

2 presents the results.

Lemma 2. Let P
pkq

n pIq be any admissible partition in P
A
. Under Assump-

tion 1, the following convergence results hold as n goes to infinity:

paq if H0m is satisfied, we have

WmpPpkq

n pIqq dÑ χ2pk � 1q, SmpPpkq

n pIqq dÑ max
1¤l¤k�1

|Zl| � SMMpk � 1,8q,

pbq if H1m or H2m is satisfied, we have

WmpPpkq

n pIqq pÑ �8, SmpPpkq

n pIqq pÑ �8,

where Zl
i.i.d.� Np0, 1q for all l � 1, 2, . . . k � 1 and SMMpk � 1,8q is the

studentized maximum modulus distribution with parameter k�1 and infinite
degrees of freedom.

Lemma 2 - (a) shows that for any admissible partition P
pkq

n pIq in P
A
, the

asymptotic distributions under H0m of both statistics are nuisance parame-

ters free. The statistic WmpPpkq

n pIqq has the standard χ2 asymptotic distri-

bution, while that of SmpPpkq

n pIqq is non-standard but its critical values are
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tabulated in Stoline and Ury (1979). Lemma 2 - (b) indicates that the statis-

tics diverge under H1m or H2m for any admissible partition P
pkq

n pIq P P
A
.

We can now establish the following results on the uniform control of the

size over P
A

as well as test consistency for any partition P
pkq

n pIq P P
A
.

Theorem 1. Suppose that Assumption 1 is satisfied and let α P p0, 1q. As
the sample size n goes to infinity, the following convergence results holds:

paq if H0m is satisfied, then we have

lim sup
nÑ8

sup
P
A

PrWmpPpkq

n pIqq ¡ χ2
k�1
pαqs � α, lim sup

nÑ8
sup
P
A

PrSmpPpkq

n pIqq ¡ z
k�1
pαqs � α;

pbq if H1m or H2m is satisfied, then we have

lim
nÑ8

PrWmpPpkq

n pIqq ¡ χ2
k�1
pαqs � 1, lim

nÑ8
PrSmpPpkq

n pIqq ¡ z
k�1
pαqs � 1 @ P

pkq

n pIq P P
A
,

where χ2
k�1
pαq and z

k�1
pαq are the p1�αqth quantiles of a χ2pk�1q-distributed

and a SMMpk � 1,8q-distributed random variables, respectively.

Theorem 1-(a) shows that tests based on both WmpPpkq

n pIqq and SmpPpkq

n pIqq
have correct size uniformly over P

A
. Therefore, the asymptotic χ2 and

SMM critical values provide good approximations of the empirical critical

values of WmpPpkq

n pIqq and SmpPpkq

n pIqq if n is large. Theorem 1-(b) indi-

cates that both tests are consistent under H1m or H2m for any admissible

partition P
pkq

n pIq P P
A
. However, the finite-sample size and power of the

tests depend on the choice of P
pkq

n pIq P P
A
, and may not be as good as

their asymptotic properties. To address this issue, we propose a bootstrap

method to enhance the finite-sample properties of the tests. Section 4.3

presents the details.
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4.3. Bootstrap Tests

In this section, we study the validity of the bootstrap for the statistics

WmpPpkq

n pIqq and SmpPpkq

n pIqq. The usual intuition for the bootstrap requires

that the empirical distribution, from which the bootstrap sample is drawn,

be close to the distribution of the data under the null hypothesis. In our

context, the empirical distribution used in the bootstrap sampling is the

empirical distribution of the joint sample Dn � tpdg�i, dg1�iquni�1 . To be more

specific, the bootstrap pseudo-samples and statistics, as well as the decision

rule are obtained following the above steps.

1. From the observed joint sample Dn � tpdg�i, dg1�iquni�1 , obtain a par-

tition P
pkq

n pIq P P
A

and compute the realizations of the statistics

WmpPpkq

n pIqq and SmpPpkq

n pIqq.

2. For each bootstrap sample b � 1, . . . , Mb, generate the data D�
n � �

d�g�i, d
�
g1�i
�(n

i�1
, where pd�g�i, d�g1�iq are drawn independently from the

empirical distribution of the joint sample Dn. From the re-sampled

data and the partition P
pkq

n pIq, compute the realizations of the boot-

strap statistics W�pbq
m pPpkq

n pIqq, S�pbq
m pPpkq

n pIqq : b � 1, . . . , Mb :

W�pbq
m pPpkq

n pIqq � nṽ�
1

m
pΩ��
m ṽ�m, S�pbq

m pPpkq

n pIqq � max
1¤l¤k�1

�
|?n rZ�

ml|
	
,(18)

where ṽ�m � v̂�m � v̂m, rZ�
ml � pZ�

ml � pZml; and pΩ��
m , v̂�m, pZ�

ml are the

bootstrap analogues of pΩ�

m, v̂m,
pZml, respectively.

3. The decision rule of the bootstrap test is as follows:

(a) if 1
Mb

Mb°
b�1

1
�
W�pbq

m pP
pkq

n pIqq ¡ WmpP
pkq

n pIqq
�
¥ α where 1rCs � 1 if

condition C holds and 1rCs � 0 otherwise, retain H0m;
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(b) if 1
Mb

Mb°
b�1

1
�
W�pbq

m pP
pkq

n pIqq ¡ WmpP
pkq

n pIqq
�
  α^ 1

Mb

Mb°
b�1

1
�
S�pbqm pP

pkq

n pIqq ¡

SmpP
pkq

n pIqq
�
  α, retain H1m;

(c) if 1
Mb

Mb°
b�1

1
�
W�pbq

m pP
pkq

n pIqq ¡ WmpP
pkq

n pIqq
�
  α^ 1

Mb

Mb°
b�1

1
�
S�pbqm pP

pkq

n pIqq ¡

SmpP
pkq

n pIqq
�
¥ α, retain H2m.

The bootstrap statistics in (18) are expressed in terms of ṽ�m � v̂�m �
v̂m, rather than v̂�m. This re-centering is important for the validity of the

bootstrap as the expectation of v̂�m under the bootstrap data generating

process is v̂m, which is not necessarily zero under H0m. The importance of

re-centering has extensively been discussed in the bootstrap literature (e.g.,

Hall and Horowitz (1996), Hahn (1996), Andrews (2002), Brown and Newey

(2002), Inoue and Shintani (2006)).

In the remainder of the paper, the probability under the empirical dis-

tribution function of the joint sample D�
n conditional on the observed data

Dn is denoted by P�r�s, and E�r�s is its corresponding expectation operator.

Lemma 3 characterises the asymptotic behavior of the bootstrap statistics

of stochastic dominance.

Lemma 3. Let P
pkq

n pIq be any admissible partition in P
A
. Under Assump-

tion 1, the following convergence results hold as n goes to infinity:

paq if H0m is satisfied, then we have

W�
mpP

pkq

n pIqq | Dn
dÑ χ2pk � 1q a.s., S�

mpP
pkq

n pIqq | Dn
dÑ max

1¤l¤k�1
|Zl| � SMMpk � 1,8q a.s.,

pbq if H1m or H2m is satisfied, then we have

W�
mpP

pkq

n pIqq | Dn
pÑ �8 a.s. S�

mpP
pkq

n pIqq | Dn
pÑ �8 a.s.,

where Zl and SMMpk � 1,8q are defined in Lemma 2.
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Lemma 3 shows that the bootstrap provides a first-order approxima-

tion of the null limiting distributions of the statistics W�
mpPpkq

n pIqq and

S�
mpPpkq

n pIqq, and is further consistent under the alternative hypotheses H1m

and H2m. These results hold irrespective of which partition P
pkq

n pIq P P
A

is used in the computation of the statistics. We can prove the following

theorem on the consistency of the bootstrap tests.

Theorem 2. Let P
pkq

n pIq be any admissible partition in P
A
, and suppose

that Assumption 1 is satisfied. Then, the following convergence results hold
as n goes to infinity, whether H0m holds or not:

sup
wPR

���P��W�
mpP

pkq

n pIqq ¤ w
�� P

�
WmpPpkq

n pIqq ¤ w
���� Ñ 0 in probability P,

sup
zPR

���P��S�
mpP

pkq

n pIqq ¤ z
�� PpSm

�
P

pkq

n pIqq ¤ z
���� Ñ 0 in probability P.

We now study the finite-sample performance (size and power) of both the

asymptotic and bootstrap tests of stochastic dominance through a Monte

Carlo experiment.

5. Monte Carlo Experiment

In this section, we use simulation to examine the finite-sample size and

power performance of both the asymptotic and bootstrap tests of stochastic

dominance. To shorten the exposition, we only present the results for m � 2

in (1). So, the null hypothesis (H02) tests the equality between the two

networks’ distributions against second-order stochastic dominance (H12), or

no second-order stochastic dominance (H22). The data generating process

(DGP) covers the most common distributions that are used in applied work

to model the degrees of networks. Precisely, the two DGPs are specified as

follows.
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(I). pd
g�i
, d

g1�i
q1, i � 1, . . . , n, are drawn i.i.d. across i from a bivariate

Poisson distribution with mean p10, λq1 and correlation ρ. In this

setup, the null hypothesis that the cdfs of
�
d
g�i

�n
i�1

and
�
d
g1�i

�n
i�1

are

equal can be expressed as λ � 10. So, λ � 10 describes either H12 or

H22.

(II). pd
g�i
, d

g1�i
q1, i � 1, . . . , n, are drawn i.i.d. across i from a bivariate Scale-

free distribution19 with parameters p2.5, γq1 and correlation ρ. As in

design (I), the cdfs of
�
d
g�i

�n
i�1

and
�
d
g1�i

�n
i�1

are equal for a given ρ if

and only if γ � 2.5. So, the values of γ � 2.5 characterize a violation

of the null hypothesis.

In both setups, we vary ρ (correlation between the two samples) in

t�0.9,�0.5, 0, 0.5, 0.9u, but the results do not change qualitatively with al-

ternative choices of ρ. In all cases, the joint sample is generated using the

algorithm provided by Macke et al. (2009) and Bethge and Berens (2007).

As noted in Figure 2, the support of the Poisson distribution with λ � 10

is in the range 1-20, while that of the Scale-free distribution with γ � 2.5

is in the range 1-9. Hence, any admissible partition may take these ranges

into account. In order to shorten the exposition, we consider two partitions

for each setup. In design (I), the two partitions are k � 4 and k � 8,

while they are k � 3 and k � 4 in design (II). Specifically, P
p4q

n pIq :�
tI1, I2, I3, I4u � tt1, . . . , 9u, t10u, t11u, t12�uu and P

p8q

n pIq :� tI1, . . . , I8u �
tt1, . . . , 7u, t8u, t9u, t10u, t11u, t12u, t13u, t14�uu in design (I), and in de-

sign (II) we have P
p3q

n pIq :� tI1, I2, I3u � tt1u, t2u, t3�uu and P
p4q

n pIq :�
19Note that the probability density function of a random variable D that follows a

Scale-free distribution is given by P pdq � d
�γ rζpγqs�1

, d P N, where ζpγq � °�8
d�1

1
d
γ

denotes the Riemann zeta function.
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tI1, I2, I3, I4u � tt1u, t2u, t3u, t4�uu . All these partitions belong to P
pkq

n pIq P
P

A
, and are thus admissible.

For the purpose of clarity and readability, we separate the analysis on

the size from that on the power.

5.1. Size Properties

In this section, we analyze the empirical rejection frequencies of both the

asymptotic and bootstrap tests of stochastic dominance for various sample

sizes: n P t100, 200, 500u. In each design and for each partition P
pkq

n pIq
specified above, the statistics WmpPpkq

n pIqq, SmpPpkq

n pIqq, W�
mpPpkq

n pIqq, and

S�
mpPpkq

n pIqq are constructed as outlined in Sections 3.2, 4.1 & 4.3. The

nominal level for both the asymptotic and bootstrap tests is set at α � 5%

and the empirical rejection frequencies are computed with M � 10, 000

replications. The bootstrap critical values are approximated usingMb � 199

pseudo samples of size n. For the asymptotic tests, we use the p1 � αqth

quantiles of a χ2pk � 1q - distributed random variable for WmpPpkq

n pIqq and

a SMMpk � 1,8q - distributed random variable for SmpPpkq

n pIqq.
Table 3 presents the results of the two designs. The first column con-

tains the partitions P
pkq

n pIq, and the second shows both the asymptotic and

bootstrap statistics. The other columns present, for each value of network

endogeneity (ρ) and sample size n, the empirical rejection frequencies of the

tests at the 5% nominal level.

First, in design (I) (Poisson distribution), the asymptotic tests are

slightly size distorted for n P t100, 200u. Their maximal size rejection fre-

quencies is around 8.7% [for WmpPpkq

n pIqq] and 7.2% [for SmpPpkq

n pIqq] with

the partition P
p8q

n pIq, but they decrease with the partition P
p4q

n pIq (around
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6.5% and 6.2% respectively). Meanwhile, their bootstrap counterparts have

rejections close to the 5% nominal level in most cases for both partitions,

even with n � 100. However, the bootstrap tests tend to under reject when

n � 100 and ρ � 0.9, but this phenomenon disappears as the sample size

increases. On top of its overall good performance in small samples, our

results also suggest that the bootstrap tests are less sensitive to partition-

ing into classes than the asymptotic tests. Also, our results are consistent

across all values of networks’ endogeneity ρ.

Second, in design (II) (Scale-free distribution), both the asymptotic

and bootstrap tests perform quite well irrespective of the partition used and

network endogeneity ρ. However, the bootstrap tests tend to be conservative

when ρ � 0.9 and n P t100, 200u while the empirical rejection frequencies

of the asymptotic tests are consistently around the 5% nominal level for all

sample sizes. Again, the under-rejections of the bootstrap tests observed

when ρ � 0.9 and n P t100, 200u disappear as the sample size increases, as

shown in the column ρ � 0.9 and n � 500 in the bottom part of the table.

5.2. Power Properties

We now study the empirical rejections of the various tests under the alterna-

tive hypothesis (power). For simplicity, we only present the power analysis

for n P t100, 500u and ρ P t0, 0.5, 0.9u . In design (I) (Poisson distribution),

the power analysis is conducted in the direction of λ, where λ � 10 indi-

cates the empirical size and λ � 10 indicates the empirical power. Similarly,

the power analysis is conducted in the direction of γ in design (II) (Scale-

free distribution): here γ � 2.5 indicates the empirical size, and γ � 2.5

characterizes the empirical power at γ.
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Table 3: Empirical size of the asymptotic and bootstrap tests at 5%

(I): Poisson distribution
ρ �-0.9 ρ �-0.5 ρ �0 ρ �0.5 ρ �0.9

P
pkq

n pIq n Ñ 100 200 500 100 200 500 100 200 500 100 200 500 100 200 500
Wm 5.7 5.1 5.4 6.0 5.8 5.0 6.2 6.0 5.0 6.5 5.6 5.0 6.0 5.5 5.0
Sm 5.6 5.3 5.1 5.8 5.8 5.0 5.8 5.3 5.1 6.2 5.4 4.7 5.8 5.2 5.2

P
p4q
n pIq

W�
m 4.5 4.7 5.0 4.7 5.2 4.9 4.7 5.2 4.8 5.1 4.8 4.7 3.6 4.8 4.8

S�m 4.4 4.8 5.0 4.6 5.1 4.9 4.8 4.7 4.9 4.9 4.7 4.7 3.6 4.6 4.8
Wm 7.8 6.6 5.9 7.8 6.5 5.6 8.1 6.5 5.9 8.7 6.6 5.7 7.4 6.1 5.3
Sm 6.8 6.1 5.5 7.2 5.9 5.2 7.1 6.3 5.9 7.1 5.9 5.4 6.3 5.7 5.4

P
p8q
n pIq

W�
m 4.2 4.9 5.1 4.3 4.7 4.9 4.3 4.9 5.1 4.7 4.9 5.1 2.3 4.1 4.6

S�m 4.1 5.1 5.1 4.7 4.9 4.8 4.4 5.3 5.3 4.2 4.8 5.2 2.1 4.2 5.0
(II): Scale-free distribution

ρ �-0.9 ρ �-0.5 ρ �0 ρ �0.5 ρ �0.9

P
pkq

n pIq n Ñ 100 200 500 100 200 500 100 200 500 100 200 500 100 200 500
Wm 5.5 5.2 5.2 6.0 5.6 5.0 5.6 5.2 5.3 5.5 5.4 5.4 4.3 4.9 5.1
Sm 5.4 5.1 5.3 5.8 5.5 4.8 5.6 5.2 5.0 5.7 5.4 5.2 4.8 5.1 5.2

P
p3q
n pIq

W�
m 4.7 4.8 5.2 5.2 5.2 4.9 5.0 4.9 5.1 4.3 4.9 5.4 1.6 3.5 4.9

S�m 4.6 4.7 5.2 5.0 5.2 4.8 5.0 4.9 4.6 4.5 4.9 5.1 1.2 3.7 5.0
Wm 5.8 5.2 5.4 6.0 5.7 5.2 5.9 5.4 5.2 5.4 5.4 5.1 3.9 4.4 5.0
Sm 5.2 5.1 5.3 5.8 5.4 4.9 5.6 5.3 4.8 5.5 5.4 5.1 4.2 4.8 5.2

P
p4q
n pIq

W�
m 4.0 4.6 5.2 4.0 5.0 4.9 3.9 4.8 4.8 2.9 4.7 4.8 1.0 2.0 4.6

S�m 3.7 4.6 5.1 4.1 4.8 4.8 3.8 4.6 4.5 2.7 4.8 5.0 0.4 2.1 4.7
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Figures 3 - 4 show the power curves of both the asymptotic and bootstrap

tests in the two partitions for design (I), while Figures 5 - 6 present similar

graphs for design (II) (Scale-free distribution). In each figure, the sub-

figures (a), (c), and (e) contain the power curves of WmpPpkq

n pIqq and its

bootstrap version, while the the sub-figures (b), (d), and (f) display the

power curves of SmpPpkq

n pIqq and its bootstrap version. Each sub-figure

corresponds to a value of networks’ endogeneity ρ P t0, 0.5, 0.9u.
First, when n � 500 and for both designs, the asymptotic and the boot-

strap tests perform similarly, irrespective of the value of ρ and the partition

used (see Figure 4 and Figure 6). While the empirical power of all tests

converges to 100% for large values of λ (Figure 4) and γ (Figure 6), the

convergence is much lower in design (II) (Scale-free distribution) than in

design (I) (Poisson distribution). This reflects the low speed of conver-

gence in the approximation of a multinomial distribution to a multivariate

normal distribution (see Lemma 1) when the original sample Dn is drawn

from a Scale-free distribution than when it is drawn from a Poisson distri-

bution. Although from the theory, both the asymptotic and bootstrap tests

of stochastic dominance are consistent, knowing that the empirical power

of tests approaches 1 with a sample size of n � 500 is an interesting result.

Second, when the sample size is relatively small (here n � 100), substan-

tial differences between asymptotic and bootstrap tests appear. First, both

the asymptotic and bootstrap tests exhibit more power in design (I) (Pois-

son distribution) than in design (II) (Scale-free distribution). For example,

for independent networks (ρ � 0) or low correlated networks (ρ � 0.5),

the empirical power is low for both the asymptotic and bootstrap tests in

design (II) (see sub-figures (a), (b), (c) and (d) in Figure 5), while all
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tests exhibit more power in design (I) (see see sub-figures (a), (b), (c) and

(d) in Figure 3). Second, within partitions, the asymptotic and bootstrap

tests perform more similarly in design (I) than in design (II). The slightly

higher power of the asymptotic tests in Figure 3, especially for ρ P t0, 0.5u
in partition P

p8q

n , is due to their inability to control for the type-I error (see

Table 3). Looking at the power of the bootstrap tests, partition P
p4q

n has a

small edge over partition P
p8q

n , especially for ρ P t0, 0.5u. Mann and Wald

(1942) and Williams (1950) recommended to allocate the same expected

number in each cell, whilst maintaining a threshold of above 5 in order to

optimize test power. Although both partitions P
p4q

n and P
p8q

n are admissible

(in the sense that a threshold of above 5 is maintained in each cell), P
p4q

n is

closer to Mann and Wald’s (1942) and Williams’s (1950) recommendation

than P
p8q

n when it comes to allocate the same expected number in each cell.

Note that the power gain from using P
p4q

n over P
p8q

n decreases as: (i) ρ (net-

works’ endogeneity) increases (see sub-figures (c)-(f) in Figure 3), or (ii)

the sample size increases (see Figure 4). Finally, in design (II) (Scale-free

distribution), while the asymptotic tests perform similarly in the two par-

titions (and also outperform their bootstrap counterparts in most cases),

the power of the bootstrap tests is lower with partition P
p4q

n than with P
p3q

n .

The power gain from using P
p3q

n over P
p4q

n can even be substantial, especially

with the bootstrap test S�
mpPpkq

n pIqq (see sub-figures (d) and (f) in Figure 5).

Again, partition P
p3q

n is closer to Mann and Wald’s (1942) and Williams’s

(1950) recommendation than partition P
p4q

n .

Clearly, although bootstrapping has an overall good performance in

terms of size control irrespective of which partition in P
A

is used, our

Monte Carlo results suggest that using the partition that is closer to equal-
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izing the expected number in cells can results in a substantial power gain.

Therefore, our recommendation is to follow this rule upon adjusting for the

form of the distribution of the degrees, as discussed in (2) - (6) of Section

3.2.

As we are bootstrapping a quantity which is asymptotically pivotal, one

might expect the bootstrap to provide the usual asymptotic refinement.

However, the size and power properties illustrated here do not seem to

provide a clear benefit in using the bootstrap over the asymptotic test,

suggesting that any such refinement may be quite minor. One possible

reason for this is that the examples considered here consider distributions

in which the number of cells in the partition is quite small, allowing the

vector v to approach multivariate normality relatively quickly.
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(a) Wm with ρ � 0. (b) Sm with ρ � 0.

(c) Wm with ρ � 0.5. (d) Sm with ρ � 0.5.

(e) Wm with ρ � 0.9. (f) Sm with ρ � 0.9.

Figure 3: Power curves for n � 100



(a) Wm with ρ � 0. (b) Sm with ρ � 0.

(c) Wm with ρ � 0.5. (d) Sm with ρ � 0.5.

(e) Wm with ρ � 0.9. (f) Sm with ρ � 0.9.

Figure 4: Power curves for n � 500



(a) Wm with ρ � 0. (b) Sm with ρ � 0.

(c) Wm with ρ � 0.5. (d) Sm with ρ � 0.5.

(e) Wm with ρ � 0.9. (f) Sm with ρ � 0.9.

Figure 5: Power curves for n � 100



(a) Wm with ρ � 0. (b) Sm with ρ � 0.

(c) Wm with ρ � 0.5. (d) Sm with ρ � 0.5.

(e) Wm with ρ � 0.9. (f) Sm with ρ � 0.9.

Figure 6: Power curves for n � 500



6. Empirical Illustration

Rosenzweig and Stark (1989) illustrate the strategic role that women play

in smoothing consumption between villages whose income shocks are neg-

atively correlated. In this application, we investigate whether such a role

exists for sharing risk between households in rural India. In particular, we

focus on testing gender differences across risk sharing networks by using the

stochastic dominance criteria. Bramoulle and Kranton (2007) characterize

the conditions that insure the existence of an aggregate strictly increasing

(and even concave) social welfare function in risk sharing networks, mean-

ing that these networks could be ranked in terms of social efficiency by

applying the stochastic dominance criteria in Definition 1.

We use the data set from Banerjee et al. (2012, 2013) and Jackson et al.

(2012) that comprise a random sample of households from 75 different vil-

lages in southern India. We pool the sub-samples from these villages to

obtain one sample. The underlying assumption here is that the 75 sub-

samples are independent across villages, but not at the household level.

Each village contains on average 223 households with approximately half

being sampled. Each member of a surveyed household was asked to identify

members of the village with whom they engaged in a particular relationship,

such as whose home they visit or with whom they go to temple. Addition-

ally, a census on the socioeconomic characteristics– such as age, gender,

religion, etc– of households was used to complete the data set; see Banerjee

et al. (2012, 2013) and Jackson et al. (2012) for a detailed description of

the data.

To identify risk sharing behavior we use data on the following questions:
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Who would come to you if he (or she) needed to borrow kerosene or rice?

Who do you trust enough that if he (or she) needed to borrow 50 rupees

for a day you would lend it to him (or her)? We construct female and male

networks for each of the goods lending and money lending relationships as

follows. We remove from the sample any person who does not name at least

one connection, as it is difficult to distinguish non-response from having

zero connections. We also remove any person under the age of 18. Of the

remaining observations, we omit any household which does not contain at

least one man and one woman. The networks are then constructed with a

node representing each household. In the female money lending network,

there is a directed link from household i to household i1 if any woman in

household i has reported that she would lend money to any member (male

or female) of household i1, and similarly for the male money lending network.

This means that the male and female networks have the same set of house-

holds as nodes and the gender corresponding to the network determines the

set of directed links. The goods lending networks are constructed similarly.

As an illustration, Figure 7 shows these networks within the households of

village 1 in the data.
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Figure 7: Risk Sharing Networks for Village 1

(a) Female Goods Lending (b) Male Goods Lending

(c) Female Money lending (d) Male Money Lending

As outlined above, we conduct the tests using the pooled sample of

all 75 villages. The pooled sample has size n � 5924 households in goods

lending networks, and n � 5656 households in money lending networks. Ta-

ble 4 summarizes the out-degree distributions of these networks as well as

the correlations between male and female networks for both goods lending

and money lending. As seen, the correlation between male and female net-
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works is not small: 0.55 (for goods lending) and 0.46 (for money lending).

Furthermore, in each case (goods lending and money lending) the degree

distributions of both male and female networks are closer to the degree dis-

tribution of a Poisson random graph than that of a scale-free network (see

Figure 2). From Sections 3.2-5, we use the following admissible partition

with k � 5 based on Table 4:

P
p5q

n pIq � tIlu5
l�1 , Il � tlu for l � 1, . . . , 4 and I5 � t5�u. (19)

Table 4: Empirical Degree Distributions

Goods Money
Degree Male Female Male Female

1 527 426 962 1012
2 2554 2133 2653 2509
3 1801 1831 1270 1263
4 734 1014 460 564
5 172 306 164 194
6 94 136 82 69
7 32 46 39 21
8 7 19 17 14
9 0 5 3 3
10 2 6 2 5
11 0 2 1 1
12 0 0 0 1
13 0 0 2 0
14 1 0 1 0

Obs. 5924 5924 5656 5656
Correlation 0.55 0.46

In both the goods lending and money lending networks, we test whether

the female network first- and second-order stochastically dominates the male

network. The tests are run at the 1% and 5% nominal levels, and the
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Table 5: Stochastic dominance between female and male networks

Goods lending networks
α � 0.01 α � 0.05

Statistics Ó m Ñ 1 2 1 2
Wm 310.08 310.08 310.08 310.08
χ2

4pαq 13.28 13.28 9.49 9.49
c�Wm

pαq 11.49 12.36 9.32 10.09

Sm 16.92 17.01 16.92 17.01
z4pαq 3.02 3.02 2.49 2.49
c�Smpαq 3.17 2.93 2.64 2.60

Money lending networks
α � 0.01 α � 0.05

Statistics Ó m Ñ 1 2 1 2

Wm 19.29 19.29 19.29 19.29
χ2

4pαq 13.28 13.28 9.49 9.49
c�Wm

pαq 15.60 16.73 11.07 8.80

Sm 2.92 2.59 2.92 2.59
z4pαq 3.02 3.02 2.49 2.49
c�Smpαq 3.05 3.38 2.59 2.47

: χ2
4pαq and z4pαq are the p1 � αqth quantiles of a chi-squared distributed ran-

dom variable with 4 degrees of freedom a SMMp4,8q-distributed random variable

respectively.

; c�Wm
pαq and c�Smpαq are the p1�αqth critical values of the bootstrap statistics W�

m

and S�m respectively. Note that c�W1
theoretically equals c�W2

as Wm is invariant to

the choice of m. The differ here as they are constructed from different bootstrap

samples.
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bootstrap statistics critical values are approximated using B � 199 pseudo-

samples. The results are displayed in table 5. For goods lending, both the

asymptotic and bootstrap tests are in favor of the first- and second-order

stochastic dominance of the female network at the 1% and 5% nominal

levels. However, for money lending, we could only find evidence of the

first- and second-order dominance of the female network at the 5% nominal

level. At the 1% nominal level, neither network dominates the other using

both the asymptotic and bootstrap tests. These results suggest that women

overall tend to form denser risk sharing networks than do men, especially for

goods lending. One possible explanation for this might be a higher average

risk aversion among women, as documented by Borghans et al. (2009).
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7. Conclusion

This paper has illustrated how stochastic dominance criteria can be used to

rank networks in terms of social efficiency, and developed statistical tests for

assessing these criteria. The tests proposed can be seen as a generalization

of the Pearson-type and the studentized maximum modulus (SMM)-type

statistics usually employed for assessing stochastic dominance criteria in

the literature on income distributions, poverty and inequality measures.

Our statistics differ from the prior literature not only through a correction

to account for the correlation between the degree distributions of networks,

but also their direct dependence on partitioning into classes. We show that a

combination of the modified Pearson- and SMM-type statistics into a single

decision rule is necessary to inform us on whether stochastic dominance

holds or not, once equality between the degree distributions of the networks

is rejected. As these statistics often depend on the way class intervals are

allocated, controlling for type-I error uniformly over the set of all admissible

class allocations20 is important for the asymptotic results to give a good

approximation of their empirical size to the nominal level.

We provide an analysis of both the size and power properties of the

tests. On level control, we establish uniform convergence of their empir-

ical size to the nominal level when the usual asymptotic chi-square and

SMM critical values are applied. On power, we show that test consistency

holds no matter which admissible partition is used. Finally, we provide a

bootstrap method that enhances the finite-sample performance of the tests.

We establish uniform consistency of the bootstrap for both the proposed

20By admissible class allocation or admissible partition, we mean a partition in which
the minimum expected number in each cell is at least 5.
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Pearson- and SMM-tests irrespective of whether the null hypothesis holds

or not. We present a Monte Carlo experiment that confirms our theoreti-

cal findings. Using the data set of Jackson et al. (2012) and Banerjee et al.

(2012, 2013), the proposed tests were illustrated through an investigation of

households’ risk sharing networks across 75 villages in rural India. Both the

goods lending and money lending networks were considered, and the gender

difference within each network was our main focus. Our results suggested

that women within these villages overall tend to form denser risk sharing

networks than do men, especially for goods lending.
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Appendix A. Appendix: Proofs

In order to establish the proofs of the lemmata and theorems of the main

text, it is useful to state some basic convergence of covariance matrices

pΣj, j P tg, g1u, pΣgg1 , and pΩm given in p9q - p12q.

Lemma 4. Suppose that Assumption 1 holds. For any P
pkq

n pIq P P
A
, we

have:

pi.q p lim
nÑ8

ppΣjq � Σj :�

�
�����

pj�1p1 � pj�1q �pj�1pj�2 . . . �pj�1pj�k

�pj�2pj�1 pj�2p1 � pj�2q . . .
...

...
... . . .

...
�p

j�k
pj�1 �p

j�k
pj�2 . . . p

j�k
p1 � p

j�k
q

�
����
 @ j P tg, g1u,

pii.q p lim
nÑ8

ppΣgg1q � Σgg1 :�

�
�����

p
gg1�11

� pg�1pg1�1 p
gg1�12

� pg�1pg1�2 . . . p
gg1�1k

� pg�1pg1�k

p
gg1�21

� pg�2pg1�1 p
gg1�22

� pg�2pg1�2 . . .
...

...
... . . .

...
p
gg1�k1

� p
g�k
p
g1�1

p
gg1�k2

� p
g�k
p
g1�2

. . . p
gg1�kk

� p
g�k
p
g1�k

�
����
,

piii.q p lim
nÑ8

ppΩmq � Ωm :� T
m
pΣg � Σg1 � Σgg1 � Σ1

gg1qT
1m .

Proof of Lemma 4. pi.q Suppose that Assumption 1 holds and let

P
pkq

n pIq � tIlukl�1 P P
A
. From the i.i.d. sampling, it follows that p̂

j�l
�

1
n

°n
i�1 1pdj�i P Ilq pÑ Epdj�iq � p

j�il
� p

j�l
for all pj, lq P tg, g1u � t1, . . . , ku.

It is clear from (9) that pΣj
pÑ Σj for all j P tg, g1u. The proof of pii.q follows

the same steps and piii.q is implied by pi.q and pii.q.

Proof of Lemma 1. Let P
pkq

n pIq � tIlukl�1 P P
A

and define

p̂ � rp̂1
g

: p̂1
g1
s1, p � rp1

g
: p1

g1
s1, (A.1)

where p̂g � rp̂g�1 , . . . , p̂g�ks1 : k � 1, p̂
g1
� rp̂

g1�1
, . . . , p̂

g1�k
s1 : k � 1, pg �

rp
A�1
, . . . , p

A�k
s1 : k� 1, and p

g1
� rp

B�1
, . . . , p

B�k
s1 : k� 1, so both p̂ and p are
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2k � 1 vectors obtained by stacking p̂g and p̂
g1

together (for p̂) and pg and

p
g1

together (for p). From (7) - (8), we have p̂
j
� 1

n

°n
i�1 uj�i and for each

j P tg, g1u, uj�i, i � 1, . . . , n are i.i.d. multinomial random variables with

parameter p
j
� Epuj�iq under Assumption 1. Therefore, by the multivariate

central limit theorem (MVCLT), we have:

?
npp̂� pq � 1?

n

ņ

i�1

�
� ug�i � Epug�iq
ug1�i � Epug1�iq

�
� dÑ N p0, Σpq , (A.2)

where Σp � Avar

�
� 1?

n

°n
i�1

�
� ug�i � Epug�iq
ug1�i � Epug1�iq

�
�
�

 �

�
� Σg Σgg1

Σ1
gg1 Σg1

�
� , Σj

and Σgg1 are the limits in Lemma 4. Now, let Ik be the identity matrix of

order k. By noting that

�
Ik �Ik

�?
npp̂� pq �

�
Ik �Ik

�?
n

�
� p̂g � pg

p̂
g1
� p

g1

�
�

� ?
nrpp̂g � p̂

g1
q � ppg � p

g1
qs, (A.3)

it is straightforward to see that
?
nrpp̂g�p̂g1 q�ppg�pg1 qs

dÑ N
�
0, Σg � Σg1 � pΣgg1 � Σ1

gg1q
�

from (A.2). This completes the proof of Lemma 1.

Proof of Lemma 2. Suppose that Assumption 1 holds and let P
pkq

n pIq �
tIlukl�1 P P

A
.

paq Assume first that H0m holds, i.e., pg � p
g1
. We focus on the statistic

WmpPpkq

n pIqq. The proof for SmpPpkq

n pIqq can easily be adapted from Sto-

line and Ury (1979). From Lemmas 1 and 4, along with the expression of

WmpPpkq

n pIqq in (12), it is straightforward to see that
?
nT

mrpp̂g � p̂
g1
q �

ppg � p
g1
qs H0m� ?

nT
mpp̂g � p̂

g1
q dÑ ψm � N p0, Ωmq so that we get

WmpPpkq

n pIqq dÑ ψ1mΩ
�

mψm, (A.4)
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where Ωm � Σg�Σg1�pΣgg1�Σ1
gg1q, and Ω

�

m is the generalized inverse of Ωm.

As rankpΩmq � k � 1, there exists [see Dhrymes (1978, Proposition 3.5)] a

diagonal matrix Dk�1 whose diagonal elements are the nonzero eigenvalues

of Ωm (in decreasing order of magnitude), and a k�pk�1qmatrix Pk�1 whose

columns are the (orthogonal) eigenvectors corresponding to the nonzero

roots of Ωm, such that

Ωm � Pk�1Dk�1P
1
k�1 and Ω

�

m � Pk�1D
�1
k�1P

1
k�1. (A.5)

Hence, we have: ψ1mΩ
�

mψm � ψ1mPk�1D
�1
k�1P

1
k�1ψm � ψ̄1mD

�1
k�1ψ̄m from

the last identity in (A.5), where ψ̄m � P 1
k�1ψm. Since ψm � N p0, Ωmq ,

we have ψ̄m � N
�
0, P 1

k�1ΩmPk�1

� � N
�
0, P 1

k�1Pk�1Dk�1P
1
k�1Pk�1

� �
N p0, Dk�1q from the first identity in (A.5), where P 1

k�1Pk�1 � Ik�1. There-

fore, D
�1{2
k�1 ψ̄m � N p0, Ik�1q so that WmpPpkq

n pIqq dÑ ψ̄1mD
�1
k�1ψ̄m � χ2pk �

1q, as stated.
pbq Assume now that H1m or H2m is true. Hence, we have pg�pg1 � 0 so

that v̂m
pÑ vm � T

mppg�pg1 q � 0. Furthermore, as pΩm
pÑ Ωm, it is clear that

v̂1mpΩ�

mv̂m
pÑ ppg � pgq1Tm1

Ω
�

mT
mppg � p

g1
q ¡ 0 because rankpΩ�

mq � k � 1.

Therefore, we find WmpPpkq

n pIqq � nv̂1mpΩ�

mv̂m
pÑ �8. Similarly, we can see

that SmpPpkq

n pIqq pÑ �8. This completes the proof of Lemma 2.

Proof of Theorem 1. (a) Suppose first that H0m holds. Since P
A

is a dis-

crete and finite set of collection of partitions P
pkq

n pIq, the sequence of prob-

abilities α
pkq
1,nrPpkq

n pIq,WmpPpkq

n pIqqs � PrWmpPpkq

n pIqq ¡ χ2
k�1
pαqs P r0, 1s

and α
pkq
2,nrPpkq

n pIq,SmpPpkq

n pIqqs � PrSmpPpkq

n pIqq ¡ z
k�1
pαqs P r0, 1s can be

ordered for all possible collections P
pkq

n pIq P P
A
. Therefore, there are se-

quences rPpkq
n , P̆

pkq
n P P

A
and subsequences tπn : n ¥ 1u , tπ̌n : n ¥ 1u of
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tn : n ¥ 1u such that

lim sup
nÑ8

sup
P
A

α
pkq
1,nrP

pkq

n pIq,WmpP
pkq

n pIqqs :� lim sup
nÑ8

sup
P
A

PrWmpP
pkq

n pIqq ¡ χ2
k�1

pαqs

� lim sup
nÑ8

PrWmprPpkq
n q ¡ χ2

k�1
pαqs

� lim
nÑ8PrWmprPpkq

πn q ¡ χ2
k�1

pαqs. (A.6)

lim sup
nÑ8

sup
P
A

α
pkq
2,nrP

pkq

n pIq,SmpP
pkq

n pIqqs :� lim sup
nÑ8

sup
P
A

PrSmpP
pkq

n pIqq ¡ z
k�1

pαqs

� lim sup
nÑ8

PrSmpP̆pkq
n q ¡ z

k�1
pαqs

� lim
nÑ8PrSmpP̆

pkq
π̌n
q ¡ z

k�1
pαqs. (A.7)

But from Lemma 2-(a), we have lim
nÑ8

PrWmprPpkq
πn q ¡ χ2

k�1
pαqs � Prχ2

k�1
¡

χ2
k�1
pαqs � α and lim

nÑ8
PrSmpP̆pkq

π̌n q ¡ z
k�1
pαqs � PrSMMpk,8q ¡ z

k�1
pαqs �

α. Using (A.6)-(A.7), we get:

lim sup
nÑ8

sup
P
A

PrWmpPpkq

n pIqq ¡ χ2
k�1
pαqs � α and lim sup

nÑ8
sup
P
A

PrSmpPpkq

n pIqq ¡ z
k�1
pαqs � α.

(b) Under H1m or H2m, the results follow immediately from Lemma 2-(b).

Proof of Lemma 3. We prove the results for W�
mpPpkq

n pIqq. The proof

for S�
mpPpkq

n pIqq can be constructed in a similar way. First, we can write the

bootstrap statistic W�
mpPpkq

n pIqq as

W�
mpP

pkq

n pIqq � nṽ�
1

m
pΩ��
m ṽ�m � npv̂�m � v̂mq1pΩ��

m pv̂�m � v̂mq. (A.8)

(a) Suppose first that H0m holds and let S�m � ?
npv̂�m � v̂mq. We can

express S�m as:

S�m �
ņ

i�1

R�
m,i, where R�

m,i �
1?
n

Tm
�
pd�g�i � d�g1�iq �

1

n

ņ

i�1

pug�i � ug1�iq
�
.

Moreover, from the i.i.d. sampling under P�, we have E�pd�g�i � d�g1�iq �
1
n

°n
i�1pug�i � ug1�iq, so that R�

m,i can be expressed as R�
m,i � 1?

n
Tm

�
d�g�i �

d�g1�i � E�pd�g�i � d�g1�iq
�
, i.e., tR�

m,iuni�1 are also i.i.d under P�. We want to
verify the conditions of the Liapunov Central Limit Theorem for S�m.

paq By definition, it is straightforward to see that E�pR�
m,iq � 0.
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pbq E�pR�2
m,iq � var�pR�

m,iq � n�1pΩm   8 a.s.

pcq Finally, we need to show that lim
nÑ8

°n
i�1 E�r}R�

m,i}2�δs � 0 a.s. for

some δ ¡ 0. We have:

ņ

i�1

E�r}R�
m,i}

2�δs ¤ cn�
δ
2n�1

ņ

i�1

E�
�
}Tmpd�g�i � d�g1�iq}

2�δ � }
1

n

ņ

i�1

Tmpug�i � ug1�iq}2�δ
�

� cn�
δ
2E�

�
}Tmpd�g�i � d�g1�iq}

2�δ
�
� cn�

δ
2

��� 1

n

ņ

i�1

Tmpug�i � ug1�iq
���2�δ

for a large enough constant c P R�.

First, we have 1
n

°n
i�1 Tmpug�i� ug1�iq pÑ Tmppg � pg1 q � vm � 0 under

Assumption 1 and H0m. So, the second term of the last equality in

the above equation is such that cn�
δ
2

��� 1
n

°n
i�1 Tmpug�i � ug1�iq

���2�δ pÑ
0 since cn�

δ
2 Ñ 0 when n Ñ 8. For the first term, we note that

E��}Tmpd�g�i � d�g1�iq}2�δ� p�Ñ
��� 1
n

°n
i�1 Tmpug�i � ug1�iq

���2�δ
and we know

that
��� 1
n

°n
i�1 Tmpug�i � ug1�iq

���2�δ pÑ ��Tmppg � p
g1
q��2�δ � }vm}2�δ � 0

when H0m holds. So, we get cn�
δ
2E��}Tmpd�g�i � d�g1�iq}2�δ� pÑ 0 a.s.

As a result, we have lim
nÑ8

°n
i�1 E�r}R�

m,i}2�δs � 0 a.s. as required.

Since pΩ�
m � pΩm | Dn

a.s.Ñ 0, pΩm
pÑ Ωm, and the conditions of the Liapunov

CLT are satisfied,we have

S�m | Dn
dÑ ψm � Np0, Ωmq a.s.

Now, we want to show that W�
mpPpkq

n pIqq | Dn
dÑ χ2pk � 1q a.s. for any

P
pkq

n pIq P P
A
. From (A.8) and the fact that pΩ�

m | Dn
pÑ Ωm a.s., it is

straightforward to see that

W�
mpP

pkq

n pIqq | Dn � S�
1

m
pΩ��
m S�m | Dn

dÑ ψ1mΩ
�

mψm a.s. (A.9)

Since we have ψ1mΩ
�

mψm � χ2pk�1q by Lemma 2, it is clear that W�
mpPpkq

n pIqq |
Dn

dÑ χ2pk � 1q a.s. for all P
pkq

n pIq P P
A
, as stated.

(b) Suppose now that H0m fails, i.e., H1m or H2m holds. It is easy to

see from the proof in (a) that 1?
n
S�

1

m | Dn
pÑ vm a.s., pΩ�

m | Dn
pÑ Ωm a.s.
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so that 1
n
W�

mpPpkq

n pIqq | Dn
a.s.Ñ v1mΩ

�

mvm ¡ 0 because vm � 0 under H1m or

H2m. Therefore, we have W�
mpPpkq

n pIqq | Dn
pÑ �8 a.s. under H1m or H2m

for any P
pkq

n pIq P P
A

, as required.

Proof of Theorem 2. As in Lemma 3, we will prove the results for
W�

mpPpkq

n pIqq. The proof for S�
mpPpkq

n pIqq can be constructed in a similar
way.

(a) Suppose first thatH0m holds. We know from Lemma 3 that pΩ�
m�pΩm |

Dn
a.s.Ñ 0 and pΩm has rank k � 1 by construction. Hence, pΩ�

m also has rank
k � 1 a.s. Therefore, from Dhrymes (1978, Proposition 3.5) there exists a
diagonal matrix D̂�

k�1 whose diagonal elements are the nonzero eigenvalues

of pΩ�
m (in decreasing order of magnitude), a k � pk � 1q matrix P̂ �

k�1 whose
columns are the (orthogonal) eigenvectors corresponding to the nonzero

roots of pΩ�
m, such that

pΩ�
m � P̂ �

k�1D̂
�
k�1P̂

�1
k�1 and pΩ��

m � P̂ �
k�1D̂

��1

k�1P̂
�1
k�1, (A.10)

where P̂ �
k�1 and D̂�

k�1 satisfy the following convergence:

P̂ �
k�1 | Dn

pÑ Pk�1 a.s.. and D̂�
k�1 | Dn

pÑ Dk�1 a.s., (A.11)

where Pk�1 and Dk�1 are the matrices defined in equation (A.5) [in the proof

of Lemma 2]. Now, from the proof of Lemma 3, we can express W�
mpPpkq

n pIqq
as:

W�
mpP

pkq

n pIqq � S�
1

m
pΩ��
m S�m � rS�1m rS�m, (A.12)

where rS�m � D̂��1{2

k�1 P̂ �1
k�1S

�
m � °n

i�1
rR�
m,i and t rR�

m,iuni�1 are also i.i.d under P�.
By adapting the proof of the Liapunov Central Limit Theorem in Lemma
3, we have

rS�m | Dn
dÑ Np0, Ik�1q a.s. (A.13)

Moreover, since t rR�
m,iuni�1 are i.i.d under P� with finite second moments,

from the Berry-Esseen theorem for sums of independent random vectors,
we have

sup
xPRk�1

���P�prS�m ¤ xq � Φpxq
��� ¤ cpkq?

n

ņ

i�1

E�r} rR�
m,i}2�δs, (A.14)
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where cpkq is a constant that depends on k (= dimension of rS�m), Φp�q �
cdf of Np0, Ik�1q. Moreover, by adapting the proof of the Liapunov Central
Limit Theorem in step (c) of the proof of Lemma 3, we have

ņ

i�1

E�r} rR�
m,i}

2�δs �
ņ

i�1

E�
�
}D̂��1{2

k�1 P̂ �1
k�1R

�
m,i}

2�δ
�
¤ cn�

δ
2n�1

ņ

i�1

E�
�
}D̂��1{2

k�1 P̂ �1
k�1T

mpd�g�i � d�g1�iq}
2�δ

�}
1

n

ņ

i�1

D̂��1{2

k�1 P̂ �1
k�1T

mpug�i � ug1�iq}2�δ
�
� cn�

δ
2E�

�
}D̂��1{2

k�1 P̂ �1
k�1T

mpd�g�i � d�g1�iq}
2�δ �

cn�
δ
2

��� 1

n

ņ

i�1

D̂��1{2

k�1 P̂ �1
k�1T

mpug�i � ug1�iq
���2�δ (A.15)

for a large enough constant c P R�. However, the second term of the last
equality in (A.15) is such that:

cn�
δ
2

��� 1

n

ņ

i�1

D̂��1{2

k�1 P̂ �1
k�1T

mpug�i � ug1�iq
���2�δ pÑ 0 a.s.

because
��� 1
n

°n
i�1 D̂

��1{2

k�1 P̂ �1
k�1T

mpug�i � ug1�iq
���2�δ

a.s.Ñ
���D�1{2

k�1 P
1
k�1vm

���2�δ
� 0

under H0m and cn�
δ
2 Ñ 0 as n Ñ 8. Similarly, the first term of the last

equality in (A.15) is such that:

cn�
δ
2E�

�
}D̂��1{2

k�1 P̂ �1
k�1T

mpd�g�i � d�g1�iq}2�δ
�

pÑ 0 a.s.

because E�
�
}D̂��1{2

k�1 P̂ �1
k�1T

mpd�g�i�d�g1�iq}2�δ
�
p�Ñ

��� 1
n

°n
i�1 D̂

�1{2
k�1 P̂

1
k�1T

mpug�i�
ug1�iq

���2�δ
and

��� 1
n

°n
i�1 D̂

�1{2
k�1 P̂

1
k�1T

mpug�i� ug1�iq
���2�δ pÑ

���D�1{2
k�1 P

1
k�1vm

���2�δ
�

0 under H0m; and in addition cn�
δ
2 Ñ 0 as n Ñ 8. Therefore, we have°n

i�1 E�r} rR�
m,i}2�δs | Dn

pÑ 0 a.s. in prob-P, which entails that cpkq?
n

°n
i�1 E�r} rR�

m,i}2�δs |
Dn

pÑ 0 a.s. in prob-P. From (A.14), it is clear that we have

sup
xPRk�1

���P�prS�m ¤ xq � Φpxq
��� pÑ 0 in prob-P. (A.16)

Now, by using (A.12), we can write P�pW�
mpPpkq

n pIqq ¤ wq as: P�pW�
mpPpkq

n pIqq ¤
wq � P�prS�m P Cwq where Cw � tx P Rk�1 : x1x ¤ wu are convex
sets in Rk�1. From Bhattacharya and Rao (1976, Corollary 3.2), we have
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sup
wPR

Φ
�pBCwqε

� ¤ d.ε for some constant d and ε ¡ 0. Hence, Bhattacharya

and Ghosh (1978, Theorem 1) holds with Wn � W�
mpPpkq

n pIqq and B � Cw,
thus

sup
wPR

���P�pW�
mpP

pkq

n pIqq ¤ wq �Gk�1pwq
��� pÑ 0 in prob-P, (A.17)

where Gk�1p�q � cdf of χ2pk � 1q. Finally, we have:

sup
wPR

���P�pW�
mpPpkq

n pIqq ¤ wq � PpWmpPpkq

n pIqq ¤ wq
��� pÑ 0 in prob-P by

Lemma 2.
(b) Under H1m or H2m, the results follow straightforwardly from Lemma

2-(b) and Lemma 3-(b), so the proof is omitted.
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Inference for the Degree Distribution of a Graph

Robert Garrard

School of Economics, University of Adelaide

Abstract

We consider the problem of testing a hypothesis H0 : β = β0 where β
is a vector representing the degree distribution of a graph and the sample
acquired is an induced subgraph. We propose a novel bootstrap procedure
to control the size of a test under the null hypothesis by constructing a graph
whose degree distribution conforms to the null hypothesis from which we
may draw pseudo-samples in the form of induced subgraphs. We investigate
the properties of the bootstrap with a simulation study in which a Wald-
type statistic based on a truncated singular value estimator, whose null
distribution is approximately chi-square, serves as a benchmark.

Keywords: Networks, degree distribution, induced subgraph, singular
value decomposition, bootstrap
JEL: C12, C15, C45, D85

1. Introduction

Graphs are an increasingly popular tool used to model complex relation-
ships and interactions, such as the spread of contagion through a financial
system (Nier et al. 2007, Gai and Kapadia 2010), interhousehold risk sharing
behavior (Bramoulle and Kranton 2007), trade in the absence of markets
(Kranton and Minehart 2001), and even the interaction between proteins
within a cell (Pellegrini et al. 2004).1 One of the many salient features of a
graph is its degree distribution, which captures the pattern of direct connec-
tions between nodes. Albert et al. (2000) show that the degree distribution
is strongly tied to the ability of a graph to withstand failures of some of

Email address: robert.garrard@adelaide.edu.au
1The terms graph and network may be used interchangeably.



(a) Parent Graph (b) Induced Subgraph

Figure 1: 1a shows a parent graph representing a population of ten nodes where six nodes
have been selected through simple random sampling. 1b displays the subgraph induced
by those nodes.

its elements. Doyle et al. (2005) coined the term “robust-yet-fragile” to
refer to graphs that are robust to random failures but vulnerable to tar-
geted attacks or failures of certain key elements. This feature is common to
many real-world graphs such as the webgraph of the internet or interbank
lending networks in a financial system (Boss et al. 2004, Gai et al. 2011).
Galeotti et al. (2010) show how equilibrium outcomes of games on networks
are sensitive to changes in the degree distribution. Thus the ability to con-
duct inference regarding the degree distribution of a graph is paramount to
understanding key aspects of real-world graphs.

Since graphs are often too large to observe in their entirety, inferences
about their features must be made from sampled subgraphs. One common
sampling method, induced subgraph sampling, involves taking a random
sample of nodes and observing only the connections between those nodes
sampled. This yields a sampled subgraph for which we may compute fea-
tures of interest, such as measures of centrality, clustering, etc. However,
this sampling design distorts the degree distribution by systematically ig-
noring links to nodes not in the sample. Specifically it maps a vector rep-
resenting the degree distribution into a lower-dimension subspace in such a
way that is difficult to invert. This may be modelled as a linear regression
problem in which the regressors exhibit near multicollinearity. Figure 1
illustrates a sampled induced subgraph.

In this paper we consider how to test a simple hypothesis regarding the
degree distribution of a graph upon observing an induced subgraph sam-
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(a) True Distribution (b) Unbiased Estimator

Figure 2: Estimate of degree distribution using an unbiased estimator. Sample of size
n = 2000 drawn from a Poisson random graph on N = 10, 000 nodes with probability
parameter such that Np = 7.

ple. Our contribution is to propose a novel bootstrap procedure to control
the size of a test under the null hypothesis. This procedure exploits the
algorithm of the “configurations model” (Bender and Canfield, 1978; Bol-
lobás, 1982) to construct a graph whose degree distribution conforms to
the null hypothesis from which we may draw pseudo-samples in the form
of induced subgraphs. Bhattacharyya and Bickel (2015) develop a subsam-
pling procedure for estimating count features of a graph, but to the best
of our knowledge this is the first paper to propose a bootstrap procedure
in a setting which does not assume a form for the data generating process
governing the formation of the population graph. However, this bootstrap
procedure may only be applied to testing hypotheses regarding the degree
distribution and not other count features of a graph. We investigate the
performance of this procedure for a Wald-type statistic with a simulation
study. Under appropriate conditions the null distribution of the statistic
may be considered approximately chi-square which we use as a benchmark.

Construction of the test statistic requires choosing an estimator for the
degree distribution. Frank (1980) was the first to approch this problem for
which he constructed an unbiased estimator. However, this estimator tends
to have very large mean square error. In particular, this estimator does
not meet the basic requirement that elements of the degree distribution be
between 0 and 1 and exhibits erratic sign switching behavior, as is illustrated
in Figure 2.

Zhang et al. (2015) propose an estimator which requires that the esti-
mate be a valid probability mass by constraint and overcomes the multi-
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collinearity of the regressors with a smoothing penalty whose tuning pa-
rameter is chosen through Monte Carlo SURE (Ramani et al., 2008; Eldar,
2009). While this strategy enforces desirable behavior of the estimator, the
data-driven choice of the tuning parameter makes the distribution of any
statistic based on this estimator difficult to characterize. Additionally, the
requirement that both the tuning parameter and the estimator itself be de-
termined numerically are likely to make simulation studies of its properties
burdensome on standard computers.

We propose estimating the degree distribution by truncating the sin-
gular value decomposition (TSVD) of the design matrix (Golub and Ka-
han, 1965); that is, retaining only the singular values which are sufficiently
large. This results in an estimator whose variance is significantly smaller
than that of Frank (1980) at the expense of becoming biased. The band-
width parameter, which governs how many singular values are retained, is
chosen non-randomly; namely to minimize estimation risk under the null
hypothesis.

We conduct a simulation study to investigate the properties of this pro-
cedure under the null (size) and the alternative (power) on a Poisson ran-
dom graph with 10,000 nodes. We find that for small sample sizes the test
based on the chi-square approximation becomes significantly size distorted.
The bootstrap procedure returns the size of the test close to the nominal
level. We find that the bootstrapped test corresponding to the minimum
risk estimator enjoys up to 35 percentage points more power than the test
corresponding to the unbiased estimator.

The rest of the paper is organized as follows. Section 2 describes the
construction of the test statistic and characterizes its distribution. Section 3
describes the bootstrap procedure and how to construct a graph conforming
to the null hypothesis. Section 4 conducts a simulation study to determine
the small sample properties of the procedure. Section 5 concludes with a
discussion.

2. Setup

Consider the model

y = Xβ + ε (1)

where X is an is an n × p matrix, y ∈ Rn is vector of observations,
β ∈ Rp is an unknown vector of parameters, and ε ∈ Rn is a vector of
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noise. This model may be viewed as representing how the degree distribu-
tion of an induced subgraph, y, is on average a linear transformation of the
degree distribution of the population graph, β. The design matrix X is a
non-random matrix whose elements govern how the degree distribution is
distorted as a function of the number of nodes in the population graph and
the number of nodes sampled.

The appearance of linear regression models in network analysis is not
uncommon, especially in the literature on the identification of peer effects
(Manski, 1993; Bertrand et al., 2000; Gaviria and Raphael, 2001; Bramoull
et al., 2009; Goldsmith-Pinkham and Imbens, 2013). In that setting, y is a
vector of outcome variables and X is a matrix whose columns are random
covariates, a subset of which describe the peers each agent is linked to in a
network. The objective is to identify the effect that attributes of an agent’s
peers have on that agent’s outcome. This typically involves endogeneity of
the peer effect, since the network is formed by agents mutually agreeing to
share a link, which must be resolved either through intrumental variable
methods or structural modelling of the network formation process. Our
setting, on the other hand, is more akin to the literatures on compressed
sensing (Donoho, 2006; Candes and Tao, 2007) in which X is a matrix of
non-random elements representing some sort of sensing apparatus which is
attempting to measure β and in doing so maps β into a lower-dimensional
space, and the literature on ill-posed inverse problems (O’Sullivan, 1986;
Hansen, 1998), in which recovery of β is attempted when X experiences
extreme multicollinearity. However, following Frank (1980) and Zhang et al.
(2015), it is often convenient to assume that there is a known largest degree
in the population graph which allows us to truncate the rows and columns
of X such that it becomes square.

We are concerned with making inferences on β in (1). In particular, we
consider testing the hypothesis

H0 : β = β0 against H1 : β 6= β0 (2)

where β0 is a hypothesised degree distribution. We begin first with the
construction of an estimator for β. Section 2.1 will examine the distribution
of the sampling error ε, section 2.2 will construct a statistic against which
we will benchmark the bootstrap, and section 2.3 will discuss the choice of
tuning parameter corresponding to the estimator. Section 5 discusses the
inversion of this test to construct confidence intervals.

Using the well known singular value decomposition, X may be written
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as

X = UΣV ′ (3)

where U and V are n × n and p × p orthogonal matrices respectively,
and Σ is an n× p rectangular diagonal matrix whose elements, σ1 ≥ · · · ≥
σmin{n,p}, are called singular values. The condition number of a matrix, κ,
is the ratio of the largest singular value to the smallest.

κ(X) =
σmax(X)

σmin(X)
(4)

Matrices for which σmin = 0 are called singular and by convention have
condition number κ(X) = ∞. Matrices with a large condition number
are said to be ill-conditioned. In econometrics this is typically caused by
high multicollinearity among the columns of the design matrix. When all
singular values are non-zero, the standard Moore-Penrose pseudo-inverse
may be constructed by inverting the singular value decomposition.

X+ = V Σ−1U ′ (5)

where Σ−1 denotes a p× n rectangular diagonal matrix whose elements
are the reciprocal of each singular value. From this we may construct an
estimator for β in (1).

β̃ = X+y (6)

In the low-dimensional setting, where n > p, β̃ returns the usual Ordi-
nary Least Squares (OLS) estimator which uniquely minimizes the sum of
squared residuals. In the high-dimensional setting (p > n), a continuum of
solutions for β exist which yield perfect fit (the residual vector is zero). In
this case β̃ returns the solution with minimum `2-norm.

Construction of the Moore-Penrose pseudo-inverse requires taking the
reciprocal of each singular value. For ill-conditioned matrices, which have
singular values tending toward zero, the estimator in (6) can be highly
unstable. When y is measured with even small amounts of noise, the value
of the estimator may exhibit erratic sign switching behavior and coefficients
may differ from their true values by several orders of magnitude, recall the
unbiased estimator in Figure 2.

We may attempt to overcome this instability by inverting the singular
value decomposition of X in such a way that the reciprocals of singular
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values which are “too small” are thresholded to zero. We may construct
an estimator based on the truncated singular value decomposition (TSVD)
due to Golub and Kahan (1965) as follows.

X† = V Σ†U ′ (7)

where Σ† is a p× n rectangular diagonal matrix with

Σ†ii =

{
1
σi

if i ≤ k

0 otherwise
(8)

Hence we may construct an estimator for β analogous to (6) with

β̂ = X†y (9)

Setting k = min{n, p} thresholds no singular values and retrieves the
Moore-Penrose pseudo-inverse of X. Setting k < min{n, p} gives an esti-
mator wherein the variance of the estimator is reduced, yielding smoother
estimates, at the expense of increased bias. We address the selection of the
tuning parameter k in subsection 2.3 after characterizing an approximation
for the distribution of ε.

2.1. The Degree Distribution of an Induced Subgraph

Let G = (V,E) be a graph and let V ′ ⊆ V and E ′ ⊆ E be a subset of
nodes and edges. G′ = (V ′, E ′) is said to be an induced subgraph when any
pair of nodes a, b ∈ V ′ are adjacent in G′ if and only if they are adjacent
in G.2 An induced subgraph sample is formed by simple random sampling
(SRS) a subset of nodes and constructing the subgraph induced by those
nodes.

Suppose we draw an induced subgraph sample G′ from a graph G. Let
N = |V | and n = |V ′| be the number of nodes in the population and sample
respectively, where | · | denotes cardinality. Let β ∈ RN represent the degree
distribution of G such that βi is the proportion of nodes in G with degree
i = 0, . . . , N − 1, and let y ∈ Rn be defined similarly for G′.

Proposition 1. Let n, N , y, and β be defined as above. Then

E[y] = Xβ (10)

2For further reference see Wilson (1996).
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where

Xij =

(
j

i

)(
N − 1− j
n− 1− i

)(
N − 1

n− 1

)−1
(11)

for i, j such that the binomial coefficients above are well defined and Xij = 0
otherwise.

Proof. Consider a node i ∈ G′. Let di and d′i denote the degree of i in
G and G′ respectively. For 0 ≤ x ≤ n − 1 and 0 ≤ y ≤ N − 1, consider
P(d′i = x | di = y). Conditional on i having y edges in the population graph,
to have x links in the subgraph induced on i and the remaining n− 1 nodes
requires x successes out of a possible y successes from a sample of n − 1
drawn without replacement. Thus the conditional probability that i has x
links in the subgraph is hypergeometric.

P(d′i = x | di = y) =

(
y
x

)(
N−1−y
n−1−x

)
(
N−1
n−1
) (12)

Marginalizing over di yields (10) and (11).

Thus we may model the degree distribution of an induced subgraph
under SRS of nodes with the linear model in (1).

It is noteworthy that this sampling design yields a rarity in applied
statistics, namely that the true regression function is known a priori to be
linear and that the design matrix is non-random. This typically only occurs
as a specially designed feature of a sensing apparatus, such as in medical
imaging.

As noted in Zhang et al. (2015), the design matrix in subgraph sam-
pling is severely ill-conditioned. Figure 3 shows a scree plot of the first few
singular values of a design matrix based on sampling 10% of nodes in a pop-
ulation of 10,000. We see that the singular values decay exponentially to
zero, leading to instability of the Moore-Penrose based estimator. Figure 4
shows the improved performance in estimating the degree distribution from
the same sample, but using only the first 3 singular values.

While the TSVD estimator yields significant improvement over the un-
biased estimator of Frank (1980), in order to conduct inference we first
need to characterize the distribution of the sampling error, ε. We have the
following result from Zhang et al. (2015).

Proposition 2 (Zhang et al.). For large sample size, n, and small sampling
rate, n

N
, the sampling error may be approximated by ε ∼ N(0, 1

n
diag(Xβ)).
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Figure 3: Exponential decay of singular values for a design matrix corresponding to
induced subgraph sampling of n = 1, 000 nodes from a population of N = 10, 000.

(a) True Distribution
(b) Moore-Penrose
Inverse

(c) TSVD Estimate with
k=3

Figure 4: TSVD estimate for degree distribution. Sample of n = 1, 000 drawn from a
Poisson random graph with N = 10, 000 nodes and link probability such that Np = 7.

Proof. See Zhang et al. (2015, Sec 2.3 and App B). The scaling factor 1
n

comes from the fact that we use proportions instead of counts.

Specifically, they show using the Chen-Stein method (Chen, 1975; Bar-
bour et al., 1992) that for each i, the law of yi is close in total variation
distance to a Poisson distribution with intensity µi = E[yi]. For large n
and small n

N
this may be well approximated by a normal distribution and

off-diagonal entries of the covariance matrix are approximately zero.

2.2. Test statistic

Let V , Σ be defined as in (3). Let I = {i | (Xβ0)i 6= 0, i = 1, . . . , k},
` = |I|, Ṽ be the set of I columns of V , Λ = n−1diag(Xβ0), Λ̃ be the I
rows and columns of Λ, Σ̃ be the I rows and columns of Σ, and Ω̃ = Σ̃2Λ̃−1.
Consider the statistic
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W (β0) = (β̂ −X†Xβ0)
′
[
Ṽ Ω̃Ṽ ′

]
(β̂ −X†Xβ0) (13)

Suppose we assume that the approximation in proposition 2 holds ex-
actly with ε ∼ N(0, 1

n
diag(Xβ)). Then we have that

β̂ −X†Xβ0 = X†X(β − β0) +X†ε ∼ N(X†X(β − β0),X
†ΛX†′) (14)

Thus with an appropriate scaling, a quadratic form in β̂−X†Xβ0 will
have a χ2 distribution.

Lemma 1. Under the above definitions

Ω̃1/2Ṽ ′
(
X†ΛX†′

)
Ṽ Ω̃1/2 = I` (15)

Proof is in the appendix. Therefore, under H0 : β = β0 we have that

W (β0) ∼ χ2(`) (16)

To serve as a benchmark we will use the statistic in (16) with critical
values drawn from the appropriate χ2 distribution. Note that since we are
not directly estimating diag(Xβ) but rather using its value under the null,
when in the alternative hypothesis this test statistic does not attain the
usual non-central chi-square distribution.

2.3. Selection of the tuning parameter

We now turn to the question of how many singular values should be
retained when constructing the estimator. A natural choice would be to
select k to minimize estimation risk.

R(k) = E||β̂ − β||22 (17)

where || · ||2 denotes the `2-norm. However, the estimation risk depends
on the unknown parameter β. Exploiting the Gaussian approximation in
proposition 2 we could form an unbiased estimator of the risk function using
Stein’s unbiased risk estimate (SURE), due to Stein (1981). Supposing we
have the linear model in (1) with a linear smoother S such that ŷ = Sy
and ε ∼ N(0, s2I), SURE gives the following unbiased estimate of risk.

R̂ = −ns2 + ||y −Xβ̂||22 + 2s2tr(S) (18)
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However, our setting is heteroscedastic. Since E[y] = Xβ, we may
proceed by using the unbiased estimator Λ̂ = diag(y) and conducting the
suitable reweighting to obtain ỹ, X̃ and ε̃, where ε̃ ∼ N(0, I).3 Noting
that in our setting S = XX† and

tr(XX†) = tr(UΣV ′V Σ†U ′) = tr(UΣΣ†U ′) = tr(U

[
Ik 0
0 0

]
U ′)

= tr(U ′U

[
Ik 0
0 0

]
) = tr(

[
Ik 0
0 0

]
) = k

We may choose the tuning parameter to minimize the unbiased estimate
of risk.

k = argmin
k′

||ỹ − X̃β̂(k′)||22 + 2k′ (19)

Note that this is similar to using an information criterion such as Mal-
lows’ Cp (Mallows, 1995) or AIC (Akaike, 1973, 1974).

While this approach prescribes a way to select the tuning parameter
such that the estimate of β has small risk, it happens to be data-driven,
using the random variable y to assess goodness of fit. This results in k being
chosen randomly, which makes the null distribution of a test statistic based
on k difficult to characterize. If our goal were only to have an efficient point
estimate for β, this procedure would suffice. Since our goal is inference, we
need a non-random way to choose k. While there are many options for such
a procedure, we consider choosing k to minimize estimation risk under the
null. Using the bias-variance decomposition of (17) we may write this as
follows.

k = argmin
k′

tr

(
X†

1

n
diag(Xβ0)X

†′
)

+ ||(X†′X − I)β0||22 (20)

3. Bootstrap

For relatively small n or large n
N

, the approximation of the distribution
of noise to Gaussian may be quite poor, particularly for entries i where

3This is the standard GLS weighting except that some elements of y may be zero,
causing rows of Λ̂ being entirely zero and therefore Λ̂ not positive definite. Let Λ̄ be an
` × n matrix formed by deleting the zero rows of Λ̂. Then let ỹ = Λ̄y, X̃ = Λ̄X, and
proceed as above.
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(a) ε1 (b) ε2 (c) ε3

(d) ε4 (e) ε5 (f) ε6

Figure 5: Distribution of sampling error compared to Gaussian approximation. 10,000
samples taken from a Poisson random graph with mean 7. We only display distributions
for the first 6 entries of ε since nodes of degree greater than 5 have near 0 frequency in
the induced subgraphs. Dashed lines represent the Gaussian approximation, solid lines
the simulated distribution.

(Xβ)i is close to zero. Figure 5 compares the simulated distribution of
noise for induced subgraphs drawn from a Poisson random graph to their
respective Gaussian approximations for the first few terms of the support.
This departure from normality may cause the hypothesis test to be size
distorted. The typical correction under fixed design and heteroscedasticity
is the wild bootstrap (Liu et al., 1988). However, this would appear not to be
appropriate here as the covariance matrix has low rank. Bhattacharyya and
Bickel (2015) propose a subsampling procedure for estimating variances for
count features of graphs. This procedure involves resampling subgraphs at
a much lower sampling rate. We propose a similar bootstrap-type procedure
for testing the hypothesis H0 : β = β0 in which we construct a graph whose
degree distribution conforms to β0 from which we draw pseudosamples of
size n.

Suppose we had at our disposal a “null graph” G on N nodes whose
degree distribution conformed to the null hypothesis β0. We could employ
a typical parametric bootstrap to mimic the sampling distribution of β̂.
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Algorithm 1 Graphical Bootstrap

1: β̂ = X†y, W = W (β0)
2: for i = 1 to B do
3: H ← induced subgraph of G from SRS of n nodes
4: y∗ ← degree distribution of H.
5: Construct bootstrap statistics β̂∗i and W ∗

i .
6: end for
7: P ← 1

B

∑B
i=1 I(W ∗

i >W )
8: Reject H0 if P < α.

We next address the question of how to construct such a graph G.

3.1. Sampling Graphs with a Prescribed Degree Distribution

Let d1, . . . , dN be the set of degrees of each node implied by the degree
distribution. We wish to construct a graph with this degree sequence.4 Be-
gin with a set of nodes, i = 1, . . . , N . Endow each node i, with a set of
di stubs (or half-links) emanating from the node. Now construct a ran-
dom matching on the set of stubs, and connect each pair of stubs that are
matched to form a link.

To randomly match the stubs, create a list of the node labels in which
label i appears di times, then form a random permutation of the list. To
construct the graph, start at the first entry in the permuted list and begin
pairing off the stubs of nodes with adjacent labels.

Example 1. Suppose we wish to construct a graph with degree sequence
4, 2, 2, 1, 1.

1 2 3 4 5

Figure 6: Nodes with 4, 2, 2, 1, and 1 stubs respectively.

Construct the list: 1111223345. Produce a random permutation:
51 13 21 23 14 . Connect adjacent nodes.

4The degree sequence is simply a list containing the degree of each node.
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1 2 3 4 5

Figure 7: Connect the stubs.

1

23

4 5

Figure 8: Resulting Graph

Given a degree sequence, d1, . . . , dN , We construct the adjacency matrix
of the null graph G on N nodes as follows.

Algorithm 2 Null Graph

1: Let S be a vector of labels 1, . . . , N where label i has multiplicity di
2: A← zeros(N,N)
3: P ← randperm(S)
4: for i = 1 to N − 1 Step 2 do
5: A(P (i), P (i+ 1))← 1
6: A(P (i+ 1), P (i))← 1
7: end for

This yields an adjacency matrix A from which we may sample induced
subgraphs. The adjacency matrix for the subgraph induced by the set of
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nodes J ⊂ {j | j = 1, . . . , N} may be formed from extracting the set of J
rows and corresponding columns from A.

Under this sampling method it is possible for the graph G to have self-
loops and multiple edges between nodes. This may either be ignored, as the
probability of such an occurance is declining with the number of nodes, or
the algorithm may be repeated until a simple graph is formed.

4. Simulation Study

We investigate the properties of the hypothesis test under the null (size)
and alternative (power) hypotheses with the following simulation study.
Using algorithm 2, we construct adjacency matrices for population graphs
on 10,000 nodes whose degree distribution is Poisson with means λ =
{3, 3.5, 4, . . . , 7}. For each λ we test the null hypothesis, H0 : β = β0

against the alternative HA : β 6= β0 where β0 is calculated from a Poisson
distribution with rate parameter µ = 5 at the 5% nominal level. Thus λ = 5
corresponds to the null hypothesis, while λ 6= 5 corresponds to the alter-
native. This is done for sampling rates r ∈ {2%, 5%, 10%, 15%, 20%, 30%}.
The design matrix X is constructed according to (11) for i, j ∈ 0, . . . , 18.5

For each sampling rate and each λ we calculate the rejection frequency for
the test of the null for the following procedures: (1) k is chosen to mini-
mize risk under the null with critical values drawn according to equation
(19); (2) the same choice of k with bootstrapped p-values; and (3) k = 19,
corresponding to the Wald test based on the unbiased estimator. Table 1
displays the simulation results where each rejection frequency is calculated
using 1,000 iterations and B = 200 bootstrap pseudo-samples.

Under the null (λ = 5) we can see that the regularized test experiences
significant size distortion, especially in smaller sample sizes. The bootstrap
procedure appears to correct for this quite well with rejection rates close to
the 5% nominal level. With regard to power, we see that the unbiased ap-
proach is overly conservative, even under the null. The bootstrap procedure
offers a substantial improvement in power, offering around 35 percentage
points more power under the alternative λ = 3 at the 5% sampling rate
than the procedure based on an unbiased estimator.

5Since a Poisson distribution with mean 7 has almost zero mass outside this range,
we may truncate the rows and columns of X for improved speed.
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5. Discussion

(a) 20% Sampling Rate (b) 40% Sampling Rate

Figure 9: Confidence bands based on TSVD estimator with tuning parameter chosen
according to 19 and Λ̂ = diag(y). Population graph is Poisson on N = 10, 000 nodes
with probability parameter such that Np = 7.

The natural progression would be to consider the dual problem of con-
structing a confidence region for the degree distribution. One approach
would be to construct a density estimate, for example based on the trun-
cated singular value decomposition used here together with the tuning pa-
rameter chosen according to (19). Confidence bands centered at this es-
timate may be constructed through estimating standard errors with Λ̂ =
diag(y). The estimator’s bias is quite large for even moderate sampling
rates and so this confidence region will not be appropriately centered, lead-
ing to coverage well below the advertized rate, as is illustrated in fig. 9. An
avenue for further research is to determine if the bias of this estimator may
be well approximated or reduced without inflating its variance.

An alternative approach might be to invert the hypothesis test proposed
here and take the appropriate projection of the resulting ellipsoid. Since the
design is ill-conditioned, many highly non-smooth distributions are likely to
be present in this ellipsoid such that resulting confidence bands will be
overly wide. This could be ameliorated supposing one could invert the test
only for distributions with sufficient smoothness. This paper has been pri-
marily concerned with testing a simple hypothesis, H0 : β = β0. However,
it is unlikely in an empirical setting that there will be a clear choice for
β0. A direction for further research would be in conducting hypothesis
tests regarding whether an induced subgraph sample came from a particu-
lar family of distributions. In particular, whether the population graph is a
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poisson random graph, with poisson degree distribution, or scale-free graph,
whose degree distribution follows a power law. Each of these distributions
have different implications regarding both fragility of the graph to failure of
elements and to revealing the process by which the graph may have formed.

Appendix

Proof of Lemma 1

Substituting in the definitions of Ω̃ and X†, the LHS of lemma 1 becomes

Λ̃−1/2
(
Σ̃Ṽ ′V Σ†

)
U ′ΛU

(
Σ†′V ′Ṽ Σ̃′

)
Λ̃′−1/2 (21)

Note that since Λ is diagonal and U is orthogonal, U ′ΛU = Λ. Note also
that Ṽ ′V is an ` × p matrix where the I columns form an ` dimensional
identity matrix and the remaining columns are zero. Thus Σ̃Ṽ ′V Σ† is an
` × n matrix whose I columns form an identity matrix and the remaining
columns are zero. Therefore

(
Σ̃Ṽ ′V Σ†

)
Λ
(
Σ†′V ′Ṽ Σ̃′

)
= Λ̃ (22)

and eq. (21) becomes

Λ̃−1/2Λ̃Λ̃−1/2 = I` (23)
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Abstract

This paper presents a selective review of the Lasso estimator as it applies to
econometric inference. We survey key papers addressing properties of the
Lasso of interest to the econometrician including conditions for consistency,
the asymptotic distribution of the estimator, its ability to be bootstrapped,
sample splitting for high dimensional inference, and how it may be used to
solve the many instruments problem in instrumental variables regression.

1. Introduction

Statistical and machine learning has garnered much interest lately as a
methodology well suited to the world of Big Data. In such a world, the
number of features being measured is close to, or sometimes greater than,
the total number of observations. This renders classical statistical methods
such as Ordinary Least Squares (OLS) infeasible. To regain feasibility, it
is necessary to restrict a model to only include the features relevant for
explaining a variable of interest and discard those which are irrelevant. The
difficulty lies in the set of relevant predictors being unknown to the modeller.
The Lasso (or Least Absolute Shrinkage and Selection Operator) due to
Tibshirani (1996) is the go-to estimator in this setting. It simultaneously
selects a subset of relevant features and estimates the model by solving a
convex optimization problem. The optimization problem involves the usual
least squares objective function plus a term that penalizes the `1-norm of
the coefficient vector. This penalty results in some of the coefficients being
set exactly to zero, which functions as automatic model selection. If the goal
is prediction or classification, such as determining whether an email is spam
based on the words it contains, then the parameter affecting the strength
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of the penalty is set to minimize mean square error in an independent test
data set.

The econometrician faces a similar problem but with the ultimate goal
being causal inference on a treatment effect. Careful selection of which
features enter an econometric model is important since omitting a relevant
variable leads to inconsistent parameter estimates and including irrelevant
variables leads to inflated standard errors, which weaken inference. Ap-
proaches to causal inference which require the researcher to have oracle-like
knowledge with regard to which features are relevant has been heavily crit-
icized, most notably by Leamer (1983) and Ioannidis (2005). The recent
replication crisis in psychology (Open Science Collaboration, 2015), which
has triggered similar attempts which fail to replicate experimental findings
in economics (Camerer et al., 2016; Chang and Li, 2015), has raised ques-
tions as to whether there is a widespread use of ‘p-hacking’, a process in
which a researcher selects variables to enter the model in order to engineer
statistical significance where there is none, (Head et al., 2015). This comes
despite a concerted effort to “take the con out of econometrics” (Leamer,
1983) in which applied econometrics experienced the so called credibility
revolution (Angrist and Pischke, 2010) where focus turned to the plausible
justification of correctly identifying a causal effect aided by instrumental
variable (IV) and panel data methods. The Lasso offers a way in which
econometric inference may be conducted without suspicion that a model
has been cherry-picked by providing an automated and transparent proce-
dure for model selection.

In this paper we present a selective review of studies detailing how the
Lasso may be adapted to provide valid econometric inference in which we
draw on both the statistical learning and econometrics literatures. The ob-
jective of this paper is to introduce the applied economist to Lasso methods
as they relate to causal econometric inference by examining a few key papers
addressing concepts relevant to current econometric practice.

In section 2 we define the Lasso estimator and address conditions for
its consistency. Since the Lasso serves two functions, model selection and
parameter estimation, we consider two disjoint notions of consistency. Zhao
and Yu (2006) provide necessary and sufficient conditions for the Lasso to
learn the true model; that is, which regressors have non-zero coefficients
and which are irrelevant. Meinshausen and Yu (2009) characterize the con-
ditions for the standard notion of consistency of an estimator, that the
`2-norm difference between the estimator and the true parameter converge
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in probability to zero. We also consider a third kind of consistency due to
Greenshtein and Ritov (2004), prediction consistency, which requires that
the fitted values produced by the Lasso estimator converge in probabliity
to the fitted values produced by the true parameter. We illustrate a sim-
ple proof of this kind of consistency to build intuition behind a variant of
the Lasso due to Belloni et al. (2011), the square-root Lasso. The stan-
dard Lasso requires that we choose a tuning parameter proportional to the
unknown standard deviation of the random disturbances. This can be esti-
mated by running least squares or a pilot Lasso, but this is rather difficult in
high dimensions. The square-root Lasso, with a simple modification to the
Lasso objective function, achieves pivotal recovery of the parameter vector
without requiring knowledge of the unknown standard deviation.

Section 3 discusses the construction of confidence intervals in the classi-
cal linear regression setting. Typically confidence intervals are constructed
in one of two ways, either through characterizing the limiting distribution
of an estimator and extracting the relevant quantiles, or by using the boot-
strap (Efron, 1979). In the case where the dimension p is fixed, Knight and
Fu (2000) characterize the limiting distribution of the Lasso estimator in
terms of the argmin of a random function which does not admit a simple
closed form. For a non-trivial choice of the tuning parameter the Lasso
estimator is

√
n-consistent but experiences asymptotic bias for the non-zero

elements of the true parameter vector. Furthermore, Knight and Fu (2000)
conjecture that a naive bootstrap will fail to be consistent. Chatterjee and
Lahiri (2010) prove that a residual bootstrap is in fact inconsistent but pro-
vide a modified bootstrap in Chatterjee and Lahiri (2011) which is not only
consistent but may be used to consistently estimate the asymptotic bias
and construct valid confidence intervals. For the high dimensional setting,
where p > n, we discuss sample splitting techniques based on Wasserman
and Roeder (2009).

Section 4 presents results on the use of the Lasso in instrumental vari-
able (IV) regression. The standard two stage least squares (2SLS) estimator
attempts to form an optimal combination of instruments in the first stage
of the regression which predict the endogenous regressor. Those fitted val-
ues are then substituted for the endogenous regressor in the second stage
after which OLS is performed. The many instruments problem refers to the
use of too many instruments in the first stage generating unboudedly large
variance in the second stage IV estimator. For this reason it is typically
not feasible to introduce transformations of instruments in the first stage
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to attempt to capture non-linearities in the regression function. The Lasso
benefits from producing a sparse predictor in which many of the estimated
coefficients will be exactly zero, effectively removing irrelevent instruments
from the model. Belloni et al. (2012) provide conditions under which Lasso
in the first stage yields a consistent and asymptotically efficient IV estima-
tor.

Section 5 concludes with a discussion.

2. The Lasso

2.1. Setup

Consider the following general regression model.

y = f(X) + ε (1)

where X is an n × p design matrix, y is an n × 1 response variable, ε
is an n× 1 vector of mean zero sampling error, and f(·) is the conditional
expectation function f = E[y |X]. Given an i.i.d sample (yi,x

′
i)i=1,...,n, the

goal of regression is to estimate the conditional expectation function (CEF),
f . A typical approach is to assume that the CEF has a linear functional
form.

y = Xβ + ε (2)

In the low dimensional setting, when p � n, the standard estimator
is Ordinary Least Squares (OLS). The properties of this estimator and in-
ferences based on it are well known when a particular set of assumptions
are satisfied, most importantly that E[X ′ε] = 0. In particular, the Gauss-
Markov theorem declares the OLS estimator BLUE, the best linear unbiased
estimator. That is, no linear unbiased estimator may have smaller variance.
However, this comes with a caveat. No LUE applied to the pair (y,X)
may have smaller variance. But if some of the regressors are irrelevant,
that is they may be removed to form a design matrix X̃ while maintaining
the property that E[X̃ ′ε] = 0, then the OLS estimator applied to (y, X̃)
will have lower variance. While the estimator is still consistent with the
inclusion of irrelevant regressors, ideally we would select only the regressors
with non-zero coefficients, although this is usually not known a priori to the
researcher.

Alternatively, we may find ourselves in the high dimensional setting
where p� n. In this event the minimizer of the sum of square residuals is
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β̂OLS

β1

β2

Figure 1: Geometry of the Lasso. Ellipses represent contours of the least squares objective
function. The diamond represents the `1 constraint. Note that the constraint set has
sharp corners, allowing estimates to be set exactly to zero.

not unique and the OLS estimator cannot be formed in the usual way, since
the Gram matrix, 1

n
X ′X, is rank deficient. The event that p � n might

occur either due to the data set being of high dimensional nature or through
the researcher not wishing to assume a linear functional form for the CEF.
To capture non-linearities in the CEF the researcher may extend the design
matrix to include a set of polynomial transformations and interactions of
regressors. This can increase the dimension of the problem exponentially.
In either setting, the Lasso offers a viable option.

2.2. Lasso

The Lasso, first proposed by Tibshirani (1996) and inspired by the non-
negative garrote of Breiman (1995), solves the following convex optimization
problem.

β̂Lasso = argmin
β

||y −Xβ||22 + λ||β||1 (3)

where λ is a tuning parameter and || · ||q denotes the `q-norm. For
penalized optimization problems it is common to standardize the data so
that the solution is invariant to the choice of units. That is, the data are
recentered and rescaled such that 1

n

∑
i yi = 0, 1

n

∑
i xi,j = 0, 1

n

∑
i x

2
i,j =

1. The problem above may be thought of as the Lagrangian form of the
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Figure 2: Lasso solution path.

optimization problem that minimizes the sum of square residuals subject to
the constraint that the `1 norm of the solution is less than some amount.
This `1 penalty serves to shrink the OLS estimates toward zero, and since
the `1 ball has sharp corners, some of the entries in the solution may be set
exactly to zero. Thus the Lasso simultaneously performs model selection
and estimation. See figure 1 for the geometry of the problem.

The Lasso solution depends on the choice of the tuning parameter λ. If
λ = 0, the constraint does not bind and the OLS solution is restored. If λ is
sufficiently large, the penalty term dominates and all coefficients are set to
0. Choice of the value of the tuning parameter typically requires computing
the whole solution path; that is, the solution to the lasso problem for many
values of λ. This may be done efficiently with the LARS algorithm of Efron
et al. (2004). Define the active set, A, to be the set of coefficients that the
Lasso estimates to be non-zero

A = {i | β̂i 6= 0} (4)

and let s = |A| be the number of regressors in the active set.1 Figure 2
illustrates the Lasso solution path for a model whose regressors are i.i.d
N(0, 1

2
) random variables. In this illustration we have 50 observations and

100 regressors. The true parameter vector is β = [20, 10, 5, 2, 0, 0, 0, . . . ]′.

1Note that since both β̂ and A explicitly depend on λ they should be indexed as such.
We abuse notation here for aesthetic reasons.
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The Lasso path plots the estimated value of each parameter against the
overall `1-norm of the solution vector. The leftmost part corresponds to a
large λ such that all estimates are set to zero and the `1 norm of β̂Lasso is also
zero. The rightmost part corresponds to λ = 0 and β̂Lasso returning a least
squares solution. As we move from left to right, such that λ becomes less
restrictive on the `1-norm of the estimator, we see that β̂1, corresponding
to the variable most correlated with y, is the first to enter the active set,
followed by the second most correlated variable, and so on.

When the objective is to minimize predictive risk, λ is usually chosen
through cross-validation (Arlot and Celisse, 2010). This involves splitting
the data set into k chunks. One chunk is held out, the model trained on
the remaining k−1 chunks pooled together, and the hold out chunk is then
used to estimate mean square prediction error. This is done for each of the
k chunks being held out one at a time. The tuning parameter is chosen to
minimize average prediction error. While this method for determining the
tuning parameter is relatively simple and yields models with high predictive
accuracy, it is unclear whether or not this method results in consistent
estimation.

2.3. Consistency of the Lasso

Before discussing the conditions under which the Lasso is consistent,
we must first precisely specify what notion of consistency to which we are
referring. Note that the Lasso serves two functions: to choose a relevent
subset of regressors, and to estimate coefficients for those regressors. This
leads to two distinct notions of consistency. The former is typically called
model selection consistency, and for the latter we use the usual notion of
`2-consistency. Note that neither form of consistency implies the other.

Suppose that the true CEF is linear, as in equation (2), and denote
A0 = {i | βi 6= 0}, with s0 = |A0|.

Definition 1. An estimator β̂ is model selection consistent if

lim
n→∞

P [A = A0] = 1 (5)

This notion of consistency requires that the estimator consistently selects
the exact set of regressors whose true coefficients are non-zero. The following
condition for model selection consistency is due to Zhao and Yu (2006).
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Let X be an n × p design matrix and β be the unknown vector of
coefficients such that p and β are fixed as n → ∞. Let Cn = 1

n
X ′X be

the Gram matrix of X. Suppose, without loss of generality, that the first
s0 columns of X correspond to the true active variables and the remaining
p− s0 columns correspond to the irrelevant regressors. Then we may write
the Gram matrix in block form.

Cn =

(
Cn

11 C
n
12

Cn
21 C

n
22

)
(6)

Similarly, define β(1) to be the first s0 coefficients, which are non-zero.
Assuming C11 is invertible we may define the following condition.

Definition 2 (Irrepresentable Condition).

|Cn
21(Cn

11)−1sign(β(1))| < 1

Roughly speaking, the irrepresentable condition requires that variation
in the irrelevant regressors cannot be accurately represented by a linear
combination of relevant regressors. In other words, the irrelevant regressors
are not “too correlated” with the relevant ones. This condition happens to
be necessary and sufficient for allowing the Lasso to correctly identify the
active set.

Theorem 1 (Zhao and Yu, 2006). Let p and β be fixed as n → ∞, let
Cn → C where C is positive definite, and 1

n
max
1≤i≤n

((xni )′xni )→ 0. Further,

let the tuning parameter be selected such that λn/n→ 0 and λn/n
1+c
2 →∞

for some 0 ≤ c < 1. Then the Lasso is model selection consistent if and
only if there exists an N such that the irrepresentable condition holds for
all n > N .

Zhao and Yu (2006) also provide necessary and sufficient conditions for
model selection consistency in the case where p and s0 are allowed to grow
with n and also illustrate a few simple cases in which the irrepresentable
condition is guaranteed to hold. In general, the irrepresentable condition
is a very stringent requirement that is unlikely to hold. As such, it is
unreasonable to expect that the Lasso will recover the exact true active set
asymptotically. However, the Lasso can learn a superset of the true active
set, as we willl soon see. But first let us consider the second, and more
familiar, form of consistency: `2-consistency of the coefficient vector.
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Definition 3. An estimator β̂ is `2-consistent if

||β̂ − β||2 p→ 0 as n→∞

Note that this version of consistency does not require that the active
set contains no irrelevant regressors asymptotically, but it requires that the
estimated coefficients for these regressors go to zero. Meinshausen and Yu
(2009) provide the following conditions for `2-consistency.

Assume we have a linear model, as in equation (2), with n × p design
matrix X, unknown coefficient vector β, and errors satisfying ε ∼ N(0, σ2),
though the normality assumption may be relaxed to errors having sub-
Gaussian tails. In this setup we will allow the dimension and the number
of active regressors to grow with n. As such we will index the dimension pn
and the sparsity sn = |{i | βni 6= 0}|.

The key assumption driving the result involves the notion of sparse eigen-
values, introduced by Donoho (2006). The m-sparse minimal eigenvalue of
a matrix is the minimal eigenvalue of any m×m submatrix, and analogously
for the m-sparse maximal eigenvalue.

Definition 4. Let C = 1
n
X ′X. The m-sparse minimal and maximal eigen-

value of C are defined as

φmin(m) = min
v : ||v||0≤dme

v′Cv

v′v
φmax(m) = max

v : ||v||0≤dme

v′Cv

v′v

We may now state a sufficient condition for `2-consistency.

Theorem 2 (Meinshausen and Yu, 2009). Assume that there exist constants
0 < κmin ≤ κmax <∞ such that

lim inf
n→∞

φmin(sn log n) ≥ κmin

lim sup
n→∞

φmax(sn + min{n, pn}) ≤ κmax

Then for λ ∝ σ
√
n log pn, ∃M > 0 such that, with probability converging

to 1 for n→∞

||β̂ − β||2 ≤Mσ

√
sn log pn

n
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Therefore `2-consistency obtains if sn log pn
n
→ 0. This is satisfied in the

cases where β and p are fixed, or when β is fixed and the dimension grows
at a rate such that log pn = o(n). `2-consistency of the Lasso implies the
following screening property.

lim
n→∞

P [A0 ⊆ A] = 1 (7)

While the Lasso may not precisely recover the true active set, with
high probability it will include all relevant regressors and a few irrelevent
regressors, whose estimated coefficents will be tending to zero.

To summarize, if we choose the tuning parameter such that λ ∝ σ
√
n log pn;

the true parameter vector β is sufficiently sparse, meaning that not too
many coefficients are non-zero; and the regressors are not “too correlated”,
resulting in the above restricted eigenvalue conditions holding; then the
Lasso estimates a model containing all relevant regressors with high prob-
ability and consistently estimates the coefficient vector β. The issue here
is that selection of the tuning parameter requires knowledge of the unkown
standard deviation σ. In the low-dimensional setting, this can easily be
estimated, but when p� n this can be especially difficult.

2.4. Prediction Consistency

Before continuing on to a variant of the Lasso which does not require
estimating the unknown variance in order to choose the tuning parameter,
it will be informative to first consider an alternative notion of consistency
and an accompanying proof which is rather straightforward. This proof will
help to build intuition for the next section.

Predictive consistency, also called persistency by Greenshtein and Ritov
(2004), is similar to `2-consistency for the coefficient vector but relates to
the 2-norm of the fitted value vector.

Definition 5. An estimator β̂ is prediction consistent if

1

n
E||Xβ̂ −Xβ||22

p→ 0

This notion of consistency is much more mild than those in section 2.3.
It does not require that the Lasso learn the true coefficient vector β, it only
requires that the fitted values converge to the truth. In what follows, let us
assume that disturbances are Gaussian and homoscedastic, ε ∼ N(0, σ2).
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Supposing we possessed an oracle which knew the true active set, A0,
we could perform OLS to achieve maximum efficiency. The oracle estimator
has the following rate of convergence in the prediction norm.

1

n
E||Xβ̂oracle −Xβ||22 = σ2 s0

n
(8)

To establish prediction consistency for the Lasso, we begin with the
so-called Basic Inequality.

||y −Xβ̂||22 + λ||β̂||1 ≤ ||y −Xβ||22 + λ||β||1 (9)

This holds since by definition β̂ is the argmin of the Lasso objective
function. Rearranging

||y −Xβ̂||22 − ||y −Xβ||22 ≤ λ
(
||β||1 − ||β̂||1

)
(10)

Let Q(b) = ||y−Xb||22 be the least squares part of the objective function
and define the score function to be the gradient of this function evaluated
at the true parameter β.

S = ∇Q(β) = −2X ′(y −Xβ) = −2X ′ε (11)

Expanding the left hand side of equation (10) and rearranging gives

||Xβ̂ −Xβ||22 ≤ −S(β̂ − β) + λ
(
||β||1 − ||β̂||1

)
(12)

Using Holder’s inequality we have

||Xβ̂ −Xβ||22 ≤ ||S||∞||β̂ − β||1 + λ
(
||β||1 − ||β̂||1

)
(13)

Therefore if we choose λ such that λ > ||S||∞ with high probability,
then, applying the triangle inequality

||Xβ̂ −Xβ||22 ≤ 2λ||β||1 (14)
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To pick λ > 2||X ′ε||∞ we may note that for ε ∼ N(0, σ2) we may bound
the score by

||X ′ε||∞ ≤ 1.01σ
√
n
√

2 log p (15)

with probability tending to one. Thus we obtain

1

n
||Xβ̂ −Xβ||22 ≤ 4.04

√
2σ

√
log p

n
||β||1 (16)

for λ ∝ σ
√
n log p. Thus we obtain prediction consistency as long as the

`1-norm of the coefficient vector and the dimension do not grow too quickly.
Note that the rate of convergence for the oracle estimator, equation (8),

is O(n−1), whereas the rate of convergence for the Lasso is O(n−1/2). This
is the so-called slow rate for the Lasso, which requires very few assumptions
on the design matrix to prove. If we assume more structure on the design,
similar to the restricted eigenvalue condition in section 2.3, we can reacquire
the fast rate of O(n−1).

The key concept to take away from this derivation is that the difference
in the least squares parts of the basic inequality may be written in terms
of a score function. Appropriate selection of the tuning parameter requires
that the tuning parameter be sufficiently large so as to dominate the sup-
norm of the score function, but not so large that the inequality fails to
be tight. In this case we exploited the normality assumption to bound
the sup-norm of the score function, which is a function of σ, with high
probability. This resulting in a tuning parameter that must be selected
such that λ ∝ σ

√
n log p. The difficulty here, as for the consistency result

in section 2.3, is that σ is unknown and must be estimated.

2.5. The Square-Root Lasso

The square-root Lasso, or
√

Lasso, due to Belloni et al. (2011) is a
modification to the Lasso which allows for pivotal recovery of the parameter
vector. That is, it does not require knowledge or estimation of the unknown
standard deviation in order to choose the tuning parameter. The objective
function for the

√
Lasso takes the form

β̂√Lasso = argmin
β

√
1

n
||y −Xβ||22 +

λ

n
||β||1 (17)
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with the tuning parameter chosen such that λ = c
√
nΦ−1(1 − α/2p),

where c > 1 is a constant, α is the desired significance level, and Φ denotes
the standard normal CDF. The key difference here is that the square-root
of the least squares part of the objective function is taken. While this may
appear to be a minor modification, the resulting estimator not only achieves
`2-consistency for the parameter vector under mild conditions, but under
slightly stronger conditions may be generalized to an arbitrary distribu-
tion of noise.2 The conditions for consistency are similar to the restricted
eigenvalue conditions of Meinshausen and Yu (2009) and give the following
inequality

||β̂√Lasso − β||2 ≤Mσ

√
sn log(2p/α)

n
(18)

with probability approaching 1− α.
For intutition, let us rewrite the model to be estimated as

y = Xβ + σu (19)

where u ∼ N(0, I). Let Q(b) = ||y −Xb||22 be the usual least squares
part of the objective function. Analogous to section 2.4, we must choose λ
so as to bound the score of Q1/2. Using the chain rule

∇Q1/2(b) =
1
2
∇Q(b)

Q−1/2(b)
=
X ′(y −Xb)
||y −Xb||2

(20)

Evaluating at β and substituting in the DGP gives

∇Q1/2(β) =
−σX ′u
||σu||2

=
−X ′u
||u||2

(21)

which is pivotal with respect to σ. Thus the λ chosen to dominate the
score is not a function of the unknown variance.

There are many modifications to the standard Lasso estimator that may
be of interest to the econometrician which we do not elaborate on here.
The adaptive Lasso (Zou, 2006), which achieves asymptotic unbiasedness by
weighting each coefficient in the penalty term by its least squares estimate;

2Recall that Meinshausen and Yu (2009) required Gaussian or sub-Gaussian noise.
98



the elastic net (Zou and Hastie, 2005), which uses a penalty that is a linear
combination of the `1-norm and `2-norm of the coefficient vector achieving
better predictive properties when regressors are highly correlated; Fan and
Li (2001), which introduce the SCAD penalty (smoothly clipped absolute
deviation); the group Lasso (Yuan and Lin, 2006), which allows for cate-
gorical variables; the fused Lasso (Tibshirani et al., 2005), which allows for
regressors to be ordered; and the post-Lasso (Belloni and Chernozhukov,
2009), which discards the Lasso coefficient estimates and performs least
squares on the selected model.

3. Classical Inference

While an estimator may have desirable properties, such as consistency,
unbiasedness, or efficiency, by its nature it is a random variable which is
subject to sampling error. Were a different sample drawn, a different value
for the estimator would have been realized by the fact that we sample a
randomly selected subset of the population. The objective of statistical
inference is to quantify the uncertainty due to sampling error. Typically this
involves either conducting a hypothesis test to determine whether or not an
effect size is significantly different from zero, or constructing a confidence set
to determine a sub-region of the parameter space where the true parameter
is likely to reside. Since confidence sets and hypothesis tests are tightly
linked, where one may be inverted to construct the other, in the rest of this
section we will only consider the construction of confidence sets.

A 1− α confidence set is a set C ⊂ Rp such that

lim inf
n→∞

P (β ∈ C) ≥ 1− α (22)

That is, it is a procedure for generating a set, C, which traps the true
parameter, β, with some specified probability. For illustration, consider the
following example of a 90% confidence set. Let Y be a Bernoulli random
variable with P(Y = 1) = 0.9 and P(Y = 0) = 0.1. Construct the set C
such that

C =

{
∅ if Y = 0

Rp if Y = 1
(23)

This is a valid confidence set since it traps the true parameter with P(β ∈
C) = 0.9. This trivial example shows that having coverage as advertized
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is not the only desirable property of a confidence set. Typically we want a
confidence set which contains, or even is centered at, β̂, a point estimator for
the true parameter. This is typically accomplished in one of two ways. The
first requires us to characterize the asymptotic distribution of the estimator.

Consider the standard linear model in equation (1) with p < n so that
the standard OLS estimator may be applied.

β̂OLS = (X ′X)
−1
X ′y (24)

Substituting the DGP and rearranging gives

√
n
(
β̂OLS − β

)
=

(
1

n

∑

i

xix
′
i

)−1
1√
n

∑

i

x′iεi (25)

Assuming 1
n

∑
i xix

′
i → C, where C is invertible, and further supposing

εi are homoscedastic, by the CLT we have

√
n
(
β̂OLS − β

)
d→ N

(
0, σ2(X ′X)−1

)
(26)

Thus to construct a confidence set for βi we may use the following set

C =

(
β̂i − zα/2

σ̂(X ′X)
−1/2
ii√

n
, β̂i + zα/2

σ̂(X ′X)
−1/2
ii√

n

)
(27)

Where zα/2 is the α/2 quantile of the standard normal distribution and
σ̂ is a consistent estimator of σ. Since we know that the limiting distribu-
tion of β̂i is Gaussian, the above interval covers βi with probability 1 − α
asymptotically.

The main alternative to characterize the limiting distribution of an es-
timator is to use the bootstrap, due to Efron (1979), which attempts to
simulate the sampling distribution of β̂. Let

Hn(τ) = P
(√

n(β̂ − β) ≤ τ
)

(28)

be the unknown sampling distribution for
√
n(β̂ − β). The objective of

the bootstrap is to approximate this distribution with some function, Ĥn(τ).
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Suppose that the data are distributed according to the law (yi,x
′
i)

i.i.d∼ F .
Let F̂n be the empirical distribution of a sample of size n. The well known
Glivenko-Cantelli theorem states that

sup
x
|F̂n(x)− F (x)| a.s→ 0 (29)

That is, the empirical distribution of the sample converges uniformly to
the distribution of the true unknown data generating process. If we were
able to repeatedly draw from the unknown DGP, we could easily construct
Hn(τ) simply by taking B draws from F , constructing β̂ for each, and
looking at the distribution of

√
n(β̂−β) as B →∞. This is infeasible since

F is unknown. The ingenuity of the bootstrap is to use F̂n as a proxy for
F .

In what follows we will consider the same setup as above where β̂ is the
OLS estimator applied to the sample (yi,x

′
i), i = 1, . . . , n. Here we will

consider the residual bootstrap, which is standard for the case when the
design matrix is non-random.

Algorithm 1 Residual Bootstrap

1: Let ei = yi − x′iβ̂, ē = n−1
∑
ei, and let {ei − ē} be the set of centered

residuals
2: for j = 1 to B do
3: Draw with replacement a sample of size n from the centered residu-

als, {e∗i , i = 1, . . . , n}
4: Form the bootstrap data set y∗i = x′iβ̂ + e∗i
5: Construct the bootstrap OLS estimator β̂∗j = (X ′X)−1X ′y∗

6: end for
7: Let Ĥn(τ) = P∗

(√
n(β̂∗ − β̂) ≤ τ

)

From Freedman (1981) we have

Theorem 3. Let X be a non-random design and ei be i.i.d with E[e2
i ] = σ2

and 1
n
X ′X → V , which is positive definite. Then the residual bootstrap

attains
sup
τ
|Ĥn(τ)−H(τ)| p→ 0
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Thus if we set tα/2 = Ĥ−1
n (α/2) and t1−α/2 = Ĥ−1

n (1 − α/2), we can
construct the following approximate 1− α confidence interval for β.

C =

(
β̂ − t1−α/2√

n
, β̂ − tα/2√

n

)
(30)

3.1. Limiting Distribution of the Lasso Estimator

Knight and Fu (2000) consider the limiting distribution of and a boot-
strap for the Lasso in the low dimensional setting, ie p < n, with p fixed.
Consider a linear model, as in equation (2), where ε1, . . . , εn are i.i.d vari-
ables with mean 0 and constant variance σ2. Let β̂n be the Lasso estimator
and λn be the Lasso penalty. Assume the following standard conditions on
the design matrix

Cn =
1

n
X ′X → C

1

n
max
1≤i≤n

x′ixi → 0 (31)

where C is non-negative definite.

Theorem 4. If C is non-singular and λn/n → λ0 ≥ 0, then β̂n
p→

argmin(Z) where

Z(φ) = (φ− β)′C(φ− β) + λ0

p∑

j=1

|φj|

Thus if λn = o(n), argmin(Z) = β, and so β̂n is consistent.

Therefore for consistency of the Lasso in the low dimensional setting,
it is sufficient that λn/n → 0. Constrast this with the high dimensional
setting of Meinshausen and Yu (2009) discussed in section 2.3. In that
setting it was required that λ ∝ σ

√
n log p. Thus for fixed p, λ/n→ 0, and

the requirement that C be non-singular satisfies the restricted eigenvalue
conditions. Thus theorem 4 is a special case of Meinshausen and Yu (2009).

While we require λ = o(n) for consistency, in order for the Lasso esti-
mator to converge to a non-trivial asymptotic distribution the tuning pa-
rameter must grow more slowly than λn = O(n).

Theorem 5. If C is non-singular and λn/
√
n→ λ0 ≥ 0, then

√
n(β̂n − β)

d→ argmin(V )

where
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V (u) = −2u′W + u′Cu+ λ0

p∑

j=1

[ujsgn(βj)I(βj 6= 0) + |uj|I(βj = 0)]

where W has a N(0, σ2C) distribution.

Suppose λ0 = 0. Then minimizing V (u) with respect to u yields

√
n(β̂n − β)

d→ N(0, σ2C−1) (32)

which is the asymptotic distribution of the OLS estimator. This is un-
desirable since λ0 = 0 means that the Lasso would not perform any model
selection asymptotically. So we must have λ0 > 0 for the Lasso to func-
tion as a selection operator. The tradeoff is in that large λ0 is required to
correctly select the zeros elements of β, but the bias in the non-zero ele-
ments of β̂n is proportional to λ0. Despite β̂n being consistent for β, when
scaled by

√
n the asymptotic distribution of β̂ is not centered at β. This

problem of bias not disappearing fast enough asymptotically is similar to
that found in kernel density estimation. Thus confidence intervals centered
at β̂n formed from the asymptotic distribution in theorem 5 will not attain
correct coverage. Even supposing they were centered correctly, the asymp-
totic distribution of the Lasso is still difficult to extract critical values from
since it is characterized as the argmin of a function. Closed form expres-
sions for this distribution are not available except in special cases, such as
for orthogonal design. This leaves characterizing the limiting distribution
of the Lasso estimator as an infeasible method for constructing confidence
intervals.

3.2. Bootstrapping the Lasso

The bootstrap would appear to be the prime candidate for contstructing
intervals since it does not rely on knowledge of the asymptotic distribution
of an estimator. However, Knight and Fu (2000) sketch out why the residul
bootstrap will fail to be consistent for the Lasso estimator. Letting H(·)
and Ĥn(·) be the limiting distribution and bootstrap estimator defined pre-
viously, this property was later formalized by Chatterjee and Lahiri (2010)
in the following theorem.3

3We have merged Theorem 3.1 and Corollary 3.2 from Chatterjee and Lahiri (2010)
for brevity.
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Theorem 6. Suppose that

(C.1) 1
n

∑n
i=1 x

′
ixi → C which is positive definite. Further

n−1

n∑

i=1

||xi||32 = O(1) as n→∞

(C.2) λn/
√
n→ λ0 ≥ 0

(C.3) The errors {εi}ni=1 are iid with E[εi] = 0 and Var(εi) = σ2.

If {j | βj = 0} is non-empty and λ0 > 0, then

%
(
Ĥn(·), H(·)

) p

6→ 0 as n→∞

Where % is the Prohorov metric.

While it is unfortunate that the bootstrap fails to be consistent exactly
when we need it due to the complexity of the limiting distribution, this
should come at no surprise. From Bickel and Freedman (1981) and Andrews
(1999, 2000) we know that the bootstrap will often fail to be consistent in
the event that the distribution being bootstrapped is not continuous. The
key reason to use the Lasso is for its model selection property. That is, the
limiting distribution for the zero elements of β will have a point mass at zero,
making the bootstrap distribution discontinuous. In particular, Chatterjee
and Lahiri (2010) show that failure of the bootstrap in this instance is due
to the Lasso failing to capture the sign of zero components with sufficient
accuracy. While the Lasso attains the correct sign for non-zero components
with high probability, it assigns both positive and negative signs to zero
coefficients with positive probability.

Chatterjee and Lahiri (2011) propose a modified residual bootstrap able
to consistently estimate the Lasso limiting distribution. The key modi-
fication is that coefficients are hard-thresholded in such a way that zero
coefficients are given a sign of zero with high probability. Since the Lasso
is
√
n-consistent, fluctuations of β̂ around the true value are of order n−1/2.

Thus we can achieve correct signs for zero elements with high probability
by thresholding estimates within a neighborhood of order n−1/2. Let {an}
be a sequence of real numbers such that

an +
(
n−1/2 log n

)
a−1
n → 0 as n→∞ (33)
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For example, an = cn−δ for c ∈ (0,∞) and δ ∈ (0, 1
2
). Construct the

modified Lasso estimator β̃ by hard-thresholding at an.

β̃j = β̂jI
(
|β̂j| ≥ an

)
(34)

For non-zero components the estimated coefficient will be larger than
an in absolute value with high probability, so the Lasso estimate and mod-
ified Lasso estimate will agree. However, for zero elements the estimated
coefficient will be in the interval [−an, an] with high probability and so will
be thresholded to zero. Thus for large n, the signs of the components for
the modified Lasso and the true parameter vector will agree. The modified
bootstrap proceeds as follows.

Algorithm 2 Modified Residual Bootstrap

1: Let ri = yi − x′iβ̃, r̄ = n−1
∑
ri, and let {ri − r̄} be the set of centered

residuals
2: for j = 1 to B do
3: Draw with replacement a sample of size n from the centered residu-

als, {r∗∗i , i = 1, . . . , n}
4: Form the bootstrap data set y∗∗i = x′iβ̃ + r∗∗i
5: Construct the bootstrap Lasso estimator β̂∗∗j = argmin

u
||y∗∗ −

Xu||22 + λ||u||1
6: Let T ∗∗n =

√
n(β̂∗∗ − β̃)

7: end for
8: Let H̃n(τ) = P∗ (T ∗∗n ≤ τ)

Which yields

Theorem 7. Under the same conditions as theorem 6

%
(
H̃n(·), H(·)

)
→ 0 as n→∞ with probability 1

Furthermore

Theorem 8. Under the same conditions as theorem 6

E∗[
√
n(β̂∗∗ − β̃)]→ E[

√
n(β̂ − β)]
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with probability 1.

Thus the asymptotic bias of the Lasso may be consistently bootstrapped.
Letting t̂n(1−α) denote the 1−α quantile of the bootstrap distribution of
||T ∗∗n ||2, we may set

Cn,1−α = {t ∈ Rp | ||t− β̂||2 ≤ n−1/2t̂n(1− α)} (35)

Corollary 1. Suppose that {j | βj = 0} is non-empty. Then for all α ∈
(0, 1)

P(β ∈ Cn,1−α)→ 1− α as n→∞
for all β ∈ Rp.

Thus the set in equation (35) functions as an approximate 1− α confi-
dence interval.

3.3. Sample Splitting

The two standard approaches to inference, characterizing the limiting
distribution of an estimator and bootstrapping, both fail in the high dimen-
sional setting. While there has been much headway into constructing con-
fidence intervals and conducting hypothesis tests in high dimensions, such
as Meinshausen et al. (2009), Bhlmann (2013), Zhang and Zhang (2014),
Lockhart et al. (2014), Javanmard and Montanari (2014), Van de Geer et al.
(2014) and Meinshausen (2015), in this section we will consider a method
based on sample splitting implicit in Wasserman and Roeder (2009).4 The
basic idea is quite intuitive.

Take a sample of size n, D = (yi,x
′
i)
n
i=1 which may be either high or low

dimensional in nature. For simplicity, assume n is even. Split the sample
randomly into two sets, D1 and D2, each of size n/2, such that

D1 ∩ D2 = ∅ D1 ∪ D2 = D
Use D1 to perform model selection and use D2 to conduct inference. For

example, we might run the Lasso on D1 to estimate the active set A such
that

lim
n→∞

P [A0 ⊆ A] = 1 (36)

4See Dezeure et al. (2015) for a review of high dimensional inference.
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Discard the coefficients from the Lasso and on D2 construct the OLS
estimator for the screened model

β̂OLS = (X ′AX
′
A)
−1
X ′Ay (37)

from which we may proceed with inference as usual.
We do not encounter problems with post-selection inference since the

data we use to perform inference was not used to select the model, so p-
values and confidence intervals formed will attain their advertized size and
coverage. While this concept is powerful in its simplicity and generality, it
has yet to catch on in applied econometrics. This is likely due to the feeling
that we are “throwing away” half our data, which is a big sacrifice to the
efficiency of any estimator we might wish to use. However, the gain from
doing so is that we can more directly capture non-linearities in the true CEF
by including many transformations of regressors, which would render OLS
rather inefficient, and we may automate the model selection procedure.

4. Instrumental Variables

In the classical linear regression setting, consistent estimation, and there-
fore valid inferences, relies crucially on the exogeneity assumption that dis-
turbances are uncorrelated with the regressors: E[X ′ε] = 0. While this
assumption may be reasonable in physical and medical sciences, wherein a
treatment is randomly assigned by the experimenter, in economic sciences
this is something of a tall order. An economist is typically only able to
observe a pair of outcomes and regressors, (y,X), randomly generated by
some unknown data generating process. The inability to directly control
the treatment variable in X makes the exogeneity assumption implausible
in most cases.

The method of instrumental variables allows us to regain consistent es-
timation and valid inferences despite endogenous regressors. Let us assume
that the true regression function is linear such that

y = Xβ + ε (38)

where X is an n × k matrix of endogenous regressors such that for
each i, E[x′iε] 6= 0. Without loss of generality we are assuming that all
regressors in the main equation are endogenous, since equation (38) may be
interpreted as the transformed variables after any exogenous variables have
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been partialed out with the appropriate projection. Due to endogeneity, the
usual OLS estimator will fail to be consistent.

Suppose we had at our disposal an n×p matrix of instruments, Z, with
p ≥ k such that E[Z ′ε] = 0 but E[Z ′X] 6= 0. That is, these variables
are correlated with the endogenous regressors but do not themselves belong
in the main equation. These instruments are typically variables for which
the exogeneity assumption is much more plausible, usually due to being
randomly assigned by nature (such as your date of birth).

Suppose further that we have a function G(Z) : Rn×p → Rn×k where
rank(G(Z)′X) = k.5 The standard IV estimator is

β̂IV = (G(Z)′X)
−1
G(Z)′y (39)

which has the following desirable property.

√
n
(
β̂IV − β

)
d→ N(0,Σ−1

G(Z)XΣG(Z)G(Z)Σ
′−1
G(Z)X) (40)

Where E[G(Z)′X] = ΣG(Z)X and E[G(Z)′G(Z)] = ΣG(Z)G(Z). The
optimal estimator in the minimum asymptotic variance sense is obtained
by setting G(Z) = E[X | Z], the CEF of X on Z. If we further assume
that the noise is homoscedastic, such that Var(ε |Z) = σ2I, then we obtain

√
n
(
β̂IV − β

)
d→ N(0, σ2Σ−1

G(Z)G(Z)) (41)

which is the semiparametric efficiency bound of Newey (1990). However,
the above efficient estimator is infeasible as the CEF, G(Z) = E[X | Z], is
unknown and must be estimated. As in the classical regression setting, the
standard method involves assuming that G has a linear functional form.

X = ZΠ + ν (42)

where Π is a p × k matrix of coefficients and E[ν | Z] = 0. This
approach yields the two stage least squares (2SLS) estimator. The CEF
is estimated by performing OLS in the 1st stage regression, equation (42).

5Note that when p = k typically G is the identity function, G(Z) = Z.
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The fitted values are used to approximate G, which is then used as the
optimal instrument in the 2nd stage, equation (38) to yield

β̂2SLS = (X ′PZX)
−1
X ′PZy (43)

where PZ = Z (Z ′Z)−1Z ′ is the orthogonal projector into the column
space of Z. The 2SLS estimator has limiting distribution

√
n
(
β̂2SLS − β

)
d→ N

(
0, σ2E[Z ′PZZ]−1

)
(44)

for which the asymptotic variance is consistently estimable.
The first stage of a 2SLS regression and the linear regression model in

the classical setting are analogous: they each attempt to estimate a condi-
tional expectation function by imposing a linear functional form and they
each suffer from high variance if they include too many irrelevant variables.
The tradeoff remains that the assumption of linearity is implausible, but
including too many regressors to capture non-linearity (polynomial trans-
formations and interactions) inflates the variance of the estimator to an
unacceptable level. Several attempts have been made at capturing non-
linearities without the accompanying variance inflation, such as Kloek and
Mennes (1960), Amemiya (1966), Donald and Newey (2001), Chamberlain
and Imbens (2004), Bai and Ng (2009), Caner (2009), and Okui (2011).

4.1. Lasso in the First Stage

Suppose that Z, the n × p matrix of instruments, has large dimension
p. This could either be because we are in the multiple-instrument setting,
or we may wish to include polynomial transformations of the instruments
to capture non-linearities in the CEF, G(Z). If the representation of the
CEF is sparse, that is only a few, but unknown set of elements of Π in
equation (42) are non-zero, then the natural inclination would be to use the
Lasso estimator in the first stage regression. In what follows we present the
results from Belloni et al. (2012). These results are particularly novel as
they hold for non-Gaussian heteroscedastic disturbances. We switch from
matrix notation to indexing by i and n for convenience.

Suppose we have the following linear IV model
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yi = x′iβ + εi i = 1, . . . , n (45)

xi` = z′iδ` + νi` ` = 1, . . . , k i = 1, . . . , n (46)

where x′i is a k-vector of endogenous variables, z′i is a p-vector of instru-
ments, δl is an unknown vector of coefficients for constructing an instrument
for the l-th endogenous variable, E[εi|zi] = 0 and E[νi|zi] = 0 across all i
and n. Note that the number of instruments may be much greater than the
number of observations, p > n.

The key assumption underpinning the successful operation of the Lasso
in the high-dimensional setting is that the coefficient vector exhibits spar-
sity. That is, only a few elements in each δ` are non-zero.

Condition AS - Approximately Sparse Optimal Instrument: Each optimal
instrument function is well-approximated by a function of s ≥ 1 unknown
instruments.

max
1≤l≤k

||δl||0 ≤ s = o(n) max
1≤l≤k

[
1

n

∑

i

ν2
i`

]1/2

= Op(
√
s/n) (47)

This condition requires that the true CEF for each instrument exhibits
sufficient smoothness to be well-approximated by at most s terms. Define
Tl = support(δl). Since s and p are both allowed to grow with n, we also
require the following growth condition.

s2 log2(max{p, n})
n

→ 0 (48)

These conditions are analogous to those required for `2-consistency in
section 2.3. An analogue to the restricted eigenvalue condition is also re-
quired. First define the restricted set

∆C,T = {v ∈ Rp : ||vT c ||1 ≤ C||vT ||1, v 6= 0} (49)

for some constant C. The restricted eigenvalue of the Gram matrix,
M = 1

n
Z ′Z, is

κ2
C(M) =

v∈∆C,T ,|T |≤s
s
v′Mv

||vT ||21
(50)
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which gives the following restricted eigenvalue condition.

Condition RE: For any C > 0, there exists a finite constant κ > 0, which
does not depend on n but may depend on C, such that the restricted eigen-
value obeys κC(M) ≥ κ with probability approaching 1 as n→∞.

The first stage regression uses the following version of the Lasso.

δ̂` = argmin
δ

1

n

n∑

i=1

(xi` − z′iδ)2 +
λ

n
||Υ̂`δ||1 (51)

where Υ̂` = diag(γ̂`1, . . . , γ̂`p) is a matrix of penalty loadings. These
loadings allow the Lasso to achieve consistency despite disturbances being
non-Gaussian and heteroscedastic using the moderate deviation theory for
self-normalizing sums due to Jing et al. (2003). An iterative algorithm for
generating these loadings is given in appendix A of Belloni et al. (2012)
based on residuals estimated by running a pilot Lasso.

Let Gi` = z′iδ` be the true conditional expectation function and Ĝi` =
z′iδ̂` be the Lasso fit. Then we have the following theorem.

Theorem 9 (Belloni et al., 2012). Suppose Condition AS holds, λ = 2.2
√
nΦ−1 (1− α/(2kp))

with α → 0 and log(1/α) = O(log(max{p, n})), and Υ̂` is generated as
above. Then the Lasso fit satisfies

max
1≤`≤k

1

n
||Ĝi` −Gi`||2 ≤ A

1

κC̄

√
s log(kp/α)

n

where C̄ is a function of the limiting values of the penalty loadings
and κC is the corresponding restricted eigenvalue. We omit these values
for brevity. Also omitted is an additional condition, called Condition RF,
which requires that certain moments of X and Z be bounded.

The upshot of theorem 9 is that we obtain predictive consistency of the
Lasso in the first stage with a pivotal choice of λ, despite non-Gaussian
heteroscedastic errors. That is, we can consistently estimate the value of
the unknown conditional expectation function that yields the optimal in-
strument.

4.2. Second Stage

With an estimate of the optimal instrument, we may now construct the
second stage IV estimator, equation (45), per equation (39). For consistent
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estimation of β we will need the following condition.

Condition SM:

(i) The eigenvalues of E[G(Z)G(Z)′] are bounded above and away from
zero uniformly in n.

(ii) For some q > 2 and qε > 2, uniformly in n,

max
1≤j≤p

E[|zijεj|3]+E[||Gi||q2|εi|2q]+E[||Gi||q2]+E[|εi|qε ]+E[||xi||q2] = O(1)

(iii) The following growth conditions hold.

(a) log3 p = o(n)

(b) s log(max{p,n})
n

n2/qε → 0

(c) s2 log2(max{p,n})
n

→ 0

(d) max
1≤j≤p

1
n

∑
z2
ijε

2
i = Op(1)

The first condition is a strong identification assumption requiring that
we do not have weak instruments, the second is a mild moment assumption,
and the third requires that the dimension and number of relevant regressors
grow much more slowly that n; more slowly than the usual rates required
for the Lasso.

Now we may state the key theorem.

Theorem 10 (Belloni et al., 2012). Suppose the data obey the linear model
above. Suppose conditions AS, RF, RE, and RM hold with λ = 2.2

√
nΦ−1 (1− α/(2kp)).

Then the IV estimator, β̂IV based on Lasso estimates of the optimal instru-
ment is root-n consistent and asymptotically normal.

√
n
(
β̂IV − β

)
d→ N(0,Q−1ΩQ′−1)

where Ω = E[ε2
iG(Z)G(Z)′] and Q = E[G(Z)G(Z)′].

Moreover, the asymptotic variance may be replaced with a consistent es-
timator and in the event that disturbances are conditionally heteroscedastic,
E[ε2

i |Z] = σ2, the estimator attains the semiparametric efficiency bound as
in equation (41).
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√
n
(
β̂IV − β

)
d→ N(0, σ2Q−1)

Thus inference may proceed as usual when strong identification ob-
tains. Belloni et al. (2012) further develop a sup-score test, which remains
valid in the face of weak instruments which may be inverted to produce an
identification-robust confidence set, and a Hausmann-type specification test
for the validity of a subset of instruments.

5. Discussion

The Lasso is a powerful object in an applied researcher’s toolbox. It per-
forms the simultaneous feats of model selection and parameter estimation.
While it has been a staple in the statistics and machine learning commu-
nities for at least the previous 15 years, it has yet to attract popularity
in applied economic research. This could potentially be due to the narrow
focus of econometrics on identification and causal inference. Statistical and
machine learning problems often tend to be purely predictive, such as de-
ciding if an email is spam based on the words it contains or classifying a
handwritten number based on a photograph. For these types of problems
the Lasso has a very clear advantage over ordinary least squares, which is
that the Lasso produces the best sparse linear predictor (Greenshtein and
Ritov, 2004).

For problems of causal inference OLS has a clear advantage, its asymp-
totic distribution is easy to characterize and it is unbiased, meaning that
confidence intervals are easy to construct. The Lasso on the other hand is a
biased estimator for which the asymptotic distribution has no closed form.
In low dimensions the Lasso may be bootstrapped, though with consider-
ably more difficulty than the OLS estimator, and in high dimensions we
may resort to sample splitting, which some researchers may find unpalat-
able. However, there are good arguments for choosing the Lasso even if the
objective is causal inference. The validity of inferences based on OLS come
with two important caveats.

First, the true regression function must be linear. Since it is widely
understood that this assumption is rather unlikely to hold, the linear model
is usually interpreted as a local linear approximation to the true CEF. The
Lasso can easily be used to model non-linearities in the CEF by including
transformations and interactions of the regressors.
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Second, the p-values and confidence intervals only have valid size and
coverage if the model reported was the only model estimated by the re-
searcher. If a researcher makes decisions about which variables enter a
model based on running regressions on various combinations of variables,
this constitutes a form of model selection and inferences based on the result-
ing model will fail to obtain their advertized frequency guarantees. That
is, 95% confidence intervals will have less than 95% coverage. The Lasso
automates model selection and internalizes the selection process when con-
ducting inference.

A particularly auspicious application of the Lasso in applied economics
is to instrumental variables regression. A prominent issue faced by IV re-
gression is the many instruments problem. Adding many instruments to a
model, which intuitively should improve the performance of the estimator,
can actually make the variance of the IV estimator unboundedly large. The
problem is to find the right combination of a few instruments which predict
the endogenous variable well. The Lasso has the very valuable property
that it is a sparse estimator. It can find the best linear combination of
instruments that predict the endogenous variable in the first stage while
controlling the variance of the resulting IV estimator in the second stage.
It does this by setting the weights on some of the instruments exactly to
zero, effectively removing them from the model. Were the Lasso estimator
to enter mainstream econometric practice, this setting would likely be its
beachhead.
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