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Abstract

Human activity recognition using wearable sensors is a growing field of study in
pervasive computing that forms the basis for ubiquitous applications in areas like
health care, manufacturing, human computer interaction and sports. A new generation
of passive (batteryless) sensors such as sensor enabled RFID (Radio Frequency Identi-
fication) tags are creating new prospects for wearable sensor based applications. As
passive sensors are lightweight and small, they can be used for unobtrusive monitoring.
Furthermore, these sensors are maintenance free as they require no battery. However,
recognising activities from passive sensor enabled RFID tags is challenging due to the
sparse and noisy nature of the data streams from these sensors because they need to
harvest adequate energy for successful operation. Therefore, within this thesis, we
propose methods to recognise activities in real time using passive RFID technology by
alleviating the adverse effects of sparsity and noise. We mainly consider ambulatory
monitoring to facilitate mitigating falls in hospitals and older care settings as our
application context. Specifically, three aspects are considered: i) data acquisition from
sensor enabled RFID tags; ii) monitoring ambulatory movements using passive sensor
enabled RFID tags to recognise activities leading to falls; and iii) detecting falls using
a dense deployment of passive RFID tags.

A generic middleware architecture and a generic tag ID format to embed sensor data
and uniquely identify tag capabilities are proposed to acquire sensor data from passive
sensor enabled RFID tags. The characteristics of this middleware are established using
experiments with RFID readers and an example application scenario.

In the context of ambulatory monitoring using passive sensor enabled RFID tags,
first, an algorithm to facilitate the online interpolation of sparse accelerometer data
from passive sensor enabled RFID tags is proposed followed by an investigation of
features for activity recognition. Secondly, two data stream segmentation methods
are proposed that can segment the data stream on possible activity boundaries to
mitigate the adverse effects posed by data stream sparsity on segmentation. Thirdly,
an algorithm to model the sequential nature considering previous sensor observations
for a given time and their class labels to classify a sparse data stream in real time
is proposed. Finally, a classification algorithm based on structured prediction is



vi

proposed to both segment and classify the sensor data stream simultaneously. The
proposed methods are evaluated using four datasets that have been collected from a
passive sensor enabled RFID tag with an accelerometer and successful monitoring of
ambulatory movements is demonstrated to be possible by employing innovative data
stream processing methods, based on machine learning.

In order to detect falls, particularly long lie situation, using a dense deployment of
passive RFID tags embedded in a carpet, an efficient and scalable machine learning
based algorithm is proposed. This algorithm relies only on binary tag observation
information. First, it identifies possible fall locations using heuristics and then the falls
are identified using machine learning from features extracted considering possible fall
locations alone. From an evaluation, it is demonstrated that the proposed algorithm
could successfully identify falls in real time.
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Chapter 1

Introduction

1.1 Introduction and Motivation

In hospital and older care settings, falls are common and are detrimental to patients [1].
Most of the falls are also unwitnessed [2, 3]. A UK report examining 200,000 incident
reports over 12 months found that inpatient falls were the most common (40%) type
of safety incident reported [4]. Furthermore, according to this report, falls in hospitals
were said to be directly responsible for 26 patient deaths, 530 hip fractures, and about
1000 other fractures within a year. In addition to the physical injuries reported, the
psychological consequences of falls to the individual include anxiety, depression,
loss of confidence and fear of falling, and ultimately a downward spiral of decline in
health [5, 6]. Falls not only cause injuries but are also costly as patients then have a
longer length of stay in hospitals [7, 8]. The cost of fall-related injuries in Australia
alone is reported to be A$498.2 million in 2011 and this is estimated to increase up
to A$1375 million by 2051 [9]. Current best practice recommendations contribute
to fall prevention in hospitals [10], nevertheless falls rates still remain unacceptably
high [11].

One of the recommended fall prevention strategies to reduce falls in hospitalised
patients is to increase monitoring opportunities [9]. However, increasing monitoring
requires substantial resources such as nursing staff, equally during day and night
time. Therefore, technological interventions such as automatic monitoring of human
activities are desired [1]. The activities performed by patients while in a hospital room
include walking, lying, sitting and standing, and posture transitions such as sit-to-
stand and stand-to-sit. These activities are usually referred to as ambulatory activities
and studied under the domain of Human Activity Recognition (HAR). Recognising
activities leading to falls such as getting out of bed, getting out of a chair and walking
allows caregivers to take preventive measures once they are notified [12].
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Currently, alarm systems based on sensors attached to the furniture have been
proposed to identify patient transfers out of a bed or chair and walking [13–15]. These
alarm systems then alert caregivers with the aim of staff promptly attending to the
patient; thereby potentially reducing the risk of a fall or providing immediate assistance
in case of a fall [14, 1, 16].

More recently, as opposed to sensors attached to the environment, it has been
proposed that sensors worn on patients provide better opportunities to monitor mul-
tiple patients simultaneously [1]. Movement sensors attached to the body capture
biomechanical characteristics of a person’s movements. The use of battery pow-
ered body-worn sensors for HAR have been studied extensively in previous research
[17, 18, 16]. However, battery powered sensors are obtrusive and bulky (≈ 30grams
[16]) as well as require maintenance, which hinders their application in monitoring
older people.

According to studies that evaluate the acceptance of wearable sensors among older
people, it has been identified that they prefer small, lightweight and low maintenance
sensors [19–21]. Some people have even refused the use of sensors if they are complex
to use, e.g. requiring battery maintenance [20]. The obtrusive nature of these sensors
can be seen as a hindrance for translation of the technology to practice because older
patients regard unobtrusiveness as one of the key acceptance criteria [22].

An emerging class of sensors that can be powered wirelessly such as passive (bat-
teryless) sensor enabled Radio Frequency Identification (RFID) tags [23] is creating
new possibilities for HAR. As opposed to battery powered sensors, passive sensor
enabled RFID tags are: i) batteryless; ii) lightweight; and iii) small. Therefore, these
types of sensors are expected to be unobtrusive, easy to wear and free of mainte-
nance [24]. Consequently, such sensors possess ideal characteristics to be used as
wearable sensors for older people where inconspicuousness, wearing comfort and
ergonomic requirements are significant considerations for translation of technology
into practice [22].

Although there are the clear advantages for passive sensor enabled RFID tags to be
used as body-worn sensors, their data streams have two unique characteristics, namely
sparsity and noise, which make HAR using these sensors challenging. Sparsity, the
low data rates and variable time elapses between sensor observations, emanates from
the limited capacity of passive sensors to power up the embedded sensors to sample
data from the sensors regularly [23, 25] and data acquisition from passive sensor
enabled RFID tags are random due to the use of the ISO 18000-6C protocol [26].
Furthermore, inadequate power to the embedded sensor, as well as having to sacrifice
the accuracy and precision of sensor device measurements, for example, the use of a
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lower resolution (voltage), to achieve lower power consumption of sensing circuitry,
results in increased noise in the acquired data (measurement noise).

The main goal of this thesis is to devise methods to monitor ambulatory movements
of older people in real time using a passive sensor enabled RFID tag embedded with an
accelerometer to facilitate fall prevention in hospital settings. To this end, this thesis
proposes methods to acquire data from passive sensor enabled RFID tags and analyse
them using machine learning techniques while mitigating the challenges presented by
the unique nature of data streams from passive sensor enabled RFID tags. Previously,
machine learning techniques have shown to perform well in HAR despite the variations
among individuals when performing activities. Furthermore, timely detection of falls
is still significant as falls are unwitnessed and long lie incidents in particular are
detrimental to fallers. Therefore, this thesis also considers the use of commercially
available passive RFID technology for fall detection using machine learning methods.

1.2 Main Contribution and Thesis Outline

This thesis focuses on the use of passive RFID technology for ambulatory monitoring.
In Chapter 2, we initially provide the background in three main directions. First, we
discuss Human Activity Recognition (HAR) with a review of the existing literature,
followed by a description of common machine learning algorithms used in HAR. Sec-
ondly, an introduction to the passive sensor enabled RFID tags is presented, including
an introduction to the RFID technology. Finally, datasets utilised in this study are
presented with a description of the dataset characteristics.

The main contributions of this thesis are in the direction of mitigating the adverse
effects of the data streams from sensor enabled passive RFID tags for HAR. In
particular, these contributions focus on three aspects: i) data acquisition from passive
sensor enabled RFID tags; ii) ambulatory monitoring using machine learning from
passive sensor enabled RFID tags; and iii) use of passive RFID technology based
dense sensing for fall detection. The remainder of this section summarises the main
contributions of this thesis.

• Facilitate sensor data acquisition from passive sensor enabled RFID tags: In
Chapter 3, we look at the data collection from passive sensor enabled RFID tags.
In particular, sensor data from passive sensor enabled RFID tags are acquired
by embedding the sensor data in the tag ID [23]. However, existing middleware
for data acquisition from RFID systems and sensor networks do not support the
data acquisition method used in passive sensor enabled RFID tags. Therefore,
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existing data acquisition middleware for RFID systems and sensor networks
cannot be readily used.

We propose an extensible and generic middleware framework for managing both
ID data streams and ID and sensor data streams that occur from passive sensor
enabled RFID tags. The proposed middleware conforms to the standardised
Electronic Product Code (EPC) global architecture [27]. We also propose a
generic data format to embed sensor data in a tag ID, a new tag data model
for integrated sensor and ID data representation, and an extensible data model
to support subscription and reporting of ID and sensor data to client applica-
tions. This work has been published in proceedings of the IEEE International
Conference on RFID [28].

• Investigation of features for activity recognition from passive sensor enabled
RFID tag data streams: In Chapter 4, we conduct an investigation of features
from passive sensor enabled RFID tag embedded with an accelerometer for
machine learning based HAR. The passive sensor enabled RFID tag used in
this thesis allows the acquisition of acceleration on three axes and the RFID
infrastructure enriches the acceleration data with information such as the strength
of the received signal and antenna that captured the sensor observation. In the
case of machine learning based HAR, it is paramount to use features that provide
descriptions of the interested movement patterns present in the data stream.
Although there are evaluations of features for activity recognition using battery-
powered sensors, to the best of our knowledge such an evaluation has not been
carried out for data streams from passive sensor enabled RFID tag data streams.

We propose novel features for ambulatory monitoring by analysing the character-
istics of an older patient getting out of bed. Features were calculated from both
acceleration data and information from the RFID platform. We also propose
the dynamic sensor data augmentation algorithm to facilitate the interpolation
of sparse accelerometer data from a sensor enabled RFID tag and evaluated
five interpolants to calculate features that can be obtained using data streams
with fixed sampling rates. Finally, we investigate whether features calculated
using additional preprocessing is advantageous over the use of features read-
ily available from the unprocessed data stream. This work was published in
the International Conference on Mobile and Ubiquitous Systems: Computing,
Networking and Services proceedings [29].

• Online sensor data stream segmentation based on natural activity boundaries:
In Chapter 5, we look at online data stream segmentation for real-time activity
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recognition. It is a regular practice in the HAR domain to segment the sensor
tag stream to enable calculation of features to capture activity characteristics.
The sparsity of the sensor data streams from passive sensor enabled RFID tags
results in issues such as the inclusion of sensor observations from the distant
past for a given segment when fixed sample segmentation schemes are used.
Segmenting the data stream on activity boundaries can alleviate these issues.

We propose two data stream segmentation methods based on detecting natural
activity boundaries from sensor data streams to overcome the limitations in
using conventional data stream segmentation methods. The possible activity
boundaries are identified using the activity boundary score, which is calculated
considering the trunk rotational motion from consecutive sensor observations.
Therefore, sensor data segmentation schemes are simple, inexpensive, bear no
assumptions on sampling rates and relay only on received sensor observations
and hence are suitable for real-time applications. This work has been published
in the IEEE Sensors Journal [30].

• Real-time classification of sparse sensor data streams: In Chapter 6, we consider
sequence learning and classification using sparse data streams from passive
sensor enabled RFID tags for real-time HAR. To capture the sequential nature
of activities, sequence learning algorithms, such as Conditional Random Fields
(CRF) [31], that model the sequential nature of observations as a first-order
Markov chain have been used previously. This approach of modelling the
sequential nature of activities can cause issues with sparse sensor data streams
from passive sensor enabled RFID tags.

We propose a sequence learning algorithm that is suitable for sparse sensor
data streams from passive sensor enabled RFID tags for real-time ambulatory
monitoring. In particular, instead of relying on consecutive observations, like in
regular sequence learning algorithms, the proposed sequence learning algorithm
considers recent past sensor observations and their activity labels to model their
sequential nature, present in sparse data streams. We also provide a detailed
description of features proposed to the capture sequential nature of activities.
This work has been published in the IEEE Journal of Biomedical and Health
Informatics [32].

• Segmentation free activity classification in real time: In Chapter 7, we consider
combining the data stream segmentation and classification into a single step.
Existing HAR approaches mostly rely on fixed size segmentation schemes. The
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use of fixed size segmentation methods poses issues such as misalignment of
the activity boundaries with segment boundaries.

We propose a structured predictor based data stream classification approach that
does not require explicit segmentation. Given a sequence of sensor observations,
the structured predictor outputs a two-part structure that partitions the sequence
of sensor observations into two parts and also holds the class label of the part 1.
Then this output structure is used to classify a data stream in real time. In
contrast with previous HAR approaches, where segmentation is considered as a
step prior to data stream classification, the proposed approach simultaneously
segments the data stream and assign class labels to each sensor observation.
Thus the segmentation is performed based on a learned prediction model.

• Device free fall detection using RFID base dense sensing: In Chapter 8, we
look at an environment instrumentation approach to detect falls instead of using
body-worn sensing devices. In fact, timely detection of falls is also important
to provide immediate assistance in case of a fall to avoid long lie incidents.
Existing fall detection approaches rely on obtrusive wearable sensors, privacy
invasive video monitoring and floor based sensors that require custom made
components.

We propose the use of a smart carpet and an efficient machine learning based
approach to detect falls. The smart carpet is an embodiment of a dense deploy-
ment of commercially available passive RFID tags in a commercially available
carpet to create a 2D monitoring area. The proposed algorithm relies on binary
tag observations formulated as a binary image to identify possible fall loca-
tions considering unobserved tag patches initially and later classify them using
machine learning based classifiers to recognise falls. As this algorithm only
relies on binary tag observation, it is resilient to the noisy nature of data from
the RFID platform. This work has been published in the Pervasive and Mobile
Computing [33] journal.



Chapter 2

Human Activity Recognition and
RFID Technology

2.1 Introduction

In this chapter, we present the background related to Human Activity Recognition
(HAR), machine learning algorithms used in HAR and provide a description of RFID
technology and datasets used, as this thesis focuses on monitoring ambulatory move-
ments of older people using passive RFID technology. We have organised this chapter
into main three parts.

The first part is on HAR (see Section 2.2). Initially, we present general steps that
can be found in machine learning based HAR followed by a discussion on sensor
deployment strategies. Then we specifically review the types of sensors and activity
recognition approaches used in previous activity recognition studies in the context
of wearable sensors. As most of the discussed activity recognition approaches relied
on machine learning based activity classifiers, a description of commonly-utilised
machine learning classifiers is presented in Section 2.2.4.

The second part details the RFID and sensor technology focused on in this thesis.
Initially, we provide a brief description of RFID technology. Then we provide a
detailed description of the passive sensor enabled RFID tags, which is the sensor
platform to be used for monitoring ambulatory movements. In particular, we discuss
the passive sensor enabled RFID tag called WISP—Wireless Identification and Sensing
Platform [23]. Henceforth, we simply refer to passive sensor enabled RFID tags as
sensor tags. The information related to RFID technology and passive sensor enabled
RFID tags is important for understanding the characteristics of the sensor tag data
streams acquired from the sensor tags. m=



2.2 Human Activity Recognition 8

Sensor data
stream

Preprocessing

Data stream segmentation

Feature extraction

Classifier training Classification model

Activitiy
predictions

Training Prediction

Fig. 2.1 General steps of machine learning based activity recognition

Finally, we present the details of the three datasets that have been collected from
the passive sensor enabled RFID tags. We also present the dataset settings, as well as
the unique characteristics of the collected sensor data streams.

2.2 Human Activity Recognition

Activity recognition is a broad field of study having a wide array of applications in
areas such as human computer interaction, assisted living, medicine and manufacturing.
Much work related to human activity recognition has been carried out in the fields of
pervasive computing and computer vision. Figure 2.1 illustrates the general steps in
human activity recognition.

As illustrated in Figure 2.1, initially, data are captured by a variety of sensors. To
collect sensor data, researchers use a variety of sensor deployment strategies which
are discussed in detail in Section 2.2.1.

The data streams acquired by the sensors are, often, preprocessed to remove the
noise present in the sensor data. For instance, some researchers have utilised a three
point median filter on acceleration signals to remove noise [34, 18, 35] and some have
interpolated the signal to achieve an equal sampling rate when multiple sensors with
different sampling rates are used [18, 36–38].

Followed by preprocessing, a sensor data stream is usually segmented in order
to extract features. Commonly, fixed sized segmentation methods, such as fixed
time [39–42] or fixed sample methods [43, 17, 44, 45], are used. In fixed sized
segmentation methods, the segment size needs to be selected; while some studies
select the segment by considering the HAR performance [46, 47], others consider
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the amount of information required by the subsequent feature extraction task [17].
Furthermore, dynamic data stream segmentation approaches for activity recognition
have also been proposed [48, 49].

Features for activity recognition are extracted from data stream segments [44].
These features predominantly include time-domain statistical features and frequency
domain features. In machine learning based HAR, these extracted features are arranged
into a vector, which is usually termed as a feature vector. A detailed description of the
commonly used features, including an evaluation, is presented in Chapter 4.

Researchers have utilised a wide array of classification algorithms for activity
recognition, which are discussed in Section 2.2.3. Initially, classification models need
to be learnt using collected datasets. Then the learnt classification models can be used
to predict an activity that is represented by a feature vector, typically not seen during
the classifier learning. In this context, the dataset used for learning the classification
model is known as a training dataset and the dataset used to evaluate the performance
of the learnt classification model is referred to as a testing dataset.

It is also important to note that although most of the research follow the steps
described above in activity recognition, there are deviations which are discussed in
Section 2.2.3.

2.2.1 Sensor Deployment Strategies

Human activity recognition approaches can be broadly categorised based on the sensor
deployment approach as: i) environmental instrumentation where the sensors are
deployed in the environment; and ii) subject instrumentation where the sensors are
attached on various parts of the subject’s body; iii) hybrid methods, where both subject
instrumentation and environmental instrumentation have been used [50–52].

In the environmental instrumentation approach, researchers have used various types
of sensors such as video cameras [53, 54], motion sensors [55], activation sensors [55],
pressure sensors [15, 7], temperature sensors [55, 15] and accelerometers attached
to everyday objects [56]. Although these approaches do not require users to wear
sensors on them, they are limited by the monitoring area as the sensors are attached
to the environment. In particular, the use of cameras as sensors to recognise human
activities has been explored extensively in the computer vision domain. However,
the correctness of these methods depends on various parameters such as the level
of illumination, camera angle and subject visibility (not occluded by any object or
another person) [51, 57]. Furthermore, video monitoring is considered to be privacy
invasive [58]. These issues hinder the use of cameras in applications that require
continuous monitoring such as older care [59].



2.2 Human Activity Recognition 10

On the other hand, in the subject instrumentation approach, a wide array of sensor
types have been used. These sensor types include, accelerometers [60, 61], gyroscopes
[62, 63], acoustic sensors [64], barometric pressure sensors [18] and cameras [65]. The
main advantage of using body-worn sensors over the use of the sensors deployed in the
environment is the continuous monitoring ability provided by the body-worn sensors
because they are not limited by the location of the monitored person. Furthermore,
as opposed to using environmental sensors, body-worn approaches allow researchers
to associate data with individuals unambiguously. Therefore, multiple people can
be monitored in the same environment. Additionally, compared with vision based
approaches, body-worn sensor systems are immune to environmental parameters such
as illumination. However, the major drawback of using body-worn sensors is that
users may forget to wear the sensors, particularly if the sensor wearer is cognitively
impaired [20].

The hybrid approaches, which use both environmental sensors and body-worn
sensors, allow researchers to identify physical activities and high-level activities of
daily living using localisation as well as object usage [39, 56, 66]. However, the
limitations of using body-worn sensors as well as sensors placed in the environment
are still present in hybrid approaches.

The study presented in this thesis focuses on the use of body-worn sensors for
activity recognition, mainly due to their ability to associate the data with a specific
sensor wearer. Therefore, in the remaining sections, body-worn sensors for activity
recognition have been considered.

2.2.2 Body-Worn Sensor Systems

In this section, different types of body-worn sensors commonly used in HAR research
are discussed. Previous researchers attached a wide array of sensors to different parts
of the human body to capture information related to human motion. As mentioned
previously, these sensor types include, accelerometers [62, 17, 61], gyroscopes [62, 63],
acoustic sensors [64] and barometric pressure sensors [18]. Usually, these sensors
are assembled into sensing devices having either a single sensor or multiple sensors.
While some research use a single sensing device [34, 18, 45], others have attached
multiple sensing devices in multiple body locations [17, 67, 68] to recognise human
activities.

A single accelerometer has been used to obtain activity information in several
studies that focus on recognising activities such as such as walking, standing, sitting
and posture transitions [34, 69, 61, 70]. These studies have attached the sensor to
a participant’s waist [34, 71, 70] and chest in [69, 61]. The study presented in [72]



2.2 Human Activity Recognition 11

recognised swimming strokes and attached the sensor on the back of the participant
while activity recognition on a smart wrist watch was considered in [42].

All the studies using multiple sensors in a single sensing device have utilised
an accelerometer [60, 18, 73]. The accelerometer had been complemented with a
gyroscope and attached the compound sensing device to the chest [62], waist [73] and
thigh [45]. In fact, the work in [45] considered placing a mobile phone in a pocket
and utilised the accelerometer and the gyroscope in the mobile phone to recognise
activities. Use of the gyroscope allowed these researchers to capture the rotational
movement of the sensor wearer’s body accurately.

On the other hand, Doukas and Maglogiannis [60] used a sensing device with a
3D accelerometer and an acoustic sensor attached to a foot to identify falls. Bianchi
et al. [18] have used a single sensing device with an accelerometer and a barometric
pressure sensor to recognise falls, where the barometric pressure sensor allowed the
measuring of the vertical displacement more accurately by considering the pressure
difference. Using this sensing device, Bianchi et al. identified slow falls, which is
non-trivial using only an accelerometer.

Multiple sensing devices, each with an accelerometer, have been used to capture
activity information. For instance, studies in [74, 68] have utilised two accelerometers;
the former attaching them to the left and right waists while the later attached them
at the waist and ankle. Four sensing devices have been used in [75, 41] where both
studied selecting the chest and the thigh to attach the sensors. For other two sensors,
the study in [75] selected wrists while the study in [41] selected the hip and a side of the
body. Five sensing devices attached to the trunk and four limbs to recognise activities
have been evaluated in [17, 76, 77, 36]. To investigate the number and position of the
sensors for activity recognition Kern et al. [43] attached 12 accelerometers above all
the joints.

Some studies relied on attaching multiple sensing devices, each having two or
more sensing modalities to capture activity information. The sensing device used
in [48, 67, 47] consisted of an accelerometer and a gyroscope. Nam et al. [65]
used a smart pendant equipped with a camera and a 3D accelerometer for HAR. The
environment captured by the camera has been used to identify the relative motions such
as walking backwards and forward, which could not be identified based on kinematic
sensors. A pair of shoes with accelerometers and pressure sensors embedded insole
to recognise falls was proposed by Sazonov et al. [78]. Furthermore, accelerometers
have been used with other sensing devices such as a Global Positioning System (GPS)
device to identify speed and distance travelled [79], and ventilation sensors to estimate
energy expenditure [80]. These studies often focus on recognising a larger number of
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activities compared with the number of activities that are recognised by using only a
single sensing device.

All these studies use battery powered sensors. The use of batteries as a power
source increases the size and weight of the sensor. Most of the work uses multiple
sensors placed in different wearing positions or multi-modal sensing devices which
also contribute significantly to the overall size and weight of the sensor deployment.
Therefore, these sensors are obtrusive to be used in older patient monitoring settings,
where unobtrusiveness is identified to be one of the major user acceptance criteria
[81, 22].

Previously, our research team had employed passive sensor enabled RFID tags
embedded with an accelerometer to recognise activities [46, 61]. As opposed to
battery powered sensors, these sensors harvest energy similar to regular RFID tags
and hence no battery is required. Therefore, these sensors are lightweight and require
no maintenance, and hence ideal for unobtrusive monitoring of older patients. In
Section 2.3.2, we discuss details of the passive sensor enabled RFID tags, which are
used to collect datasets used in this thesis.

2.2.3 Activity Recognition Algorithms

In this section, we review different types of algorithms commonly used in activity
recognition research. We broadly categorise these algorithms into empirical algorithms
and machine learning based algorithms.

Empirical Algorithms

Several empirical algorithms to recognise activities have been proposed [62, 34, 16, 61].
These algorithms rely on researchers’ intuition and signal analysis techniques to
identify the motion patterns captured by the sensors.

The algorithm proposed by Najafi et al. [62] relied on movement signals from
a 2D accelerometer and 1D gyroscope segmented into 60 s segments to recognise
activities such as posture transitions (sit-to-stand and stand-to-sit), lying and walking.
The signals were processed multiple times using Discrete Wavelet Transformation
(DWT) to retain useful information at different stages. The lying state was identified
based on vertical acceleration and, later the lying condition was identified using frontal
acceleration. The sit-to-stand or stand-to-sit posture transitions were identified using
the trunk rotational angle calculated based on the gyroscope signal and determining
the vertical displacement. Najafi et al. [62] have evaluated their approach using data
collected from 9 community-dwelling older people (age 66±14 years) and achieved a
mean sensitivity of 93.6% and mean specificity of 95.1%.
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Karantonis et al. [34] proposed an algorithm that executes on a body-worn sensing
device having a 3D accelerometer to recognise activities such as falls, sitting, standing,
and lying. They initially determined the sensor wearer’s state, active or at-rest, by
specifying a threshold for the resultant acceleration and any significant peaks in the
acceleration were interpreted as falls. The identification of upright, lying, inverted,
standing and sitting were performed by specifying ranges for the trunk tilt angle
measured from the direction of the gravity. For instance, trunk angles < 60◦ were
considered to be upright and further if the trunk angle is < 20◦, then the sensor wearer
was considered to be seated. The evaluation was carried out in a laboratory setting
using six healthy participants, one with 60 years of age and rest in the age group from
22-23. They were able to achieve an accuracy of 91± 6% from this evaluation. A
later study by the same researchers [18], has incorporated a barometric pressure sensor
and improved the activity recognition performance; in particular to identify slow falls
based on the pressure difference. By evaluating the new algorithm with three datasets
collected from 30 young healthy participants they, reported an accuracy of over 90%
for detection of falls events.

Wolf et al. [16] utilised a single sensor attached to the leg of a patient to identify
falls. They have followed an approach similar to [34], where activities, such as standing
or lying on the bed, were determined by specifying a threshold to the orientation of
the leg. Although they have evaluated this in a geriatric ward, performance was not
reported.

An algorithm to identify bed-exit events using acceleration signals and received
signal strength (RSSI) of a passive sensor enabled RFID tag worn over the sternum
has been proposed in [61]. First, the data stream was segmented into 20 s segments
and identified the lying state using the acceleration signals. Then the sit-to-stand
transition was identified considering the RSSI and trunk tilt angle approximated using
the acceleration signals. From an evaluation with 10 young adults (age 26.4±2.12
years), the approach in [61] have achieved a sensitivity of 93% and specificity of
98% to recognise stand-sit-lying and a sensitivity of 90% and specificity of 94% to
recognise lying-sit-stand.

When empirical algorithms are considered, they are often based on the expertise
of the algorithm developer. They are simple and use a single sensing device, but
require repeated processing of the signal such as filtering [62, 34, 61] and application
DWT [62]. Most of these algorithms, rely on researcher specified thresholds using
heuristics and these thresholds are expected to be biased towards individuals. These
thresholds may require adjustments for individual users and can hinders large scale
deployments [82].
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Machine Learning Based Approaches

Unlike in empirical approaches, where researchers use heuristics to capture relevant
motion patterns, in machine learning approaches motion patterns are uncovered using
machine learning algorithms. In this section, some of the noted work that uses machine
learning based HAR is presented in chronological order.

Mäntyjärvi et al. [74] proposed the use of a feed-forward neural network to recog-
nise walking related activities using data from two 3D accelerometers. They have
utilised a 256-sample sliding window with 25% overlap and applied DWT on that
segment. The power of the wavelet coefficients in layers 5-8 were used as features
for their neural network. They have also evaluated the application of two feature
transformation techniques, namely Principle Component Analysis (PCA) and Inde-
pendent Component Analysis (ICA). From an evaluation using data collected from
6 participants, they were able to achieve a mean accuracy over 85% using the ICA
method.

The work in [43] utilised a Naïve Bayes (NB) classifier to recognise 8 activities
and evaluated different sensor position combinations. This approach used mean and
variance as features, calculated using a 50-sample window. From an evaluation, this
approach showed that using only lower body sensors, a good performance can be
achieved for activities involving legs. When recognising other activities such as
shaking hands, writing on the whiteboard and keyboard typing, a better performance
was obtained using all the sensors.

The study by Bao and Intille [17] evaluated a Decision Tree (DT) (C4.5), NB and
K-Nearest Neighbour (KNN) as classifiers to recognise 20 activities using a dataset
that has been annotated by users instead of an observer. They have used features based
on Fast Fourier Transformation (FFT) and the correlation between acceleration axes
of the sensors. These features were calculated using a 512-sample sliding window
with 50% overlap. The evaluation was carried out using 20 young participants (age:
21.5± 6.6 years) and the DT achieved the highest accuracies of 77± 4% for user
specific training and 73±8% for leave-one-participant-out cross validation.

The Hidden Markov Model (HMM) combined with a boosted decision stump was
used in [83] to model the temporal relationships between activities. In this study, a
boosted decision stump classifier is trained, using frequency domain features from
a 0.25 s window, for each class and its margin is fitted with a sigmoid function to
obtain the probabilistic input to the HMM. The HMM model was applied to a 15 s
sequence with 5 s overlap to obtain real-time predictions on the data stream. From
an evaluation using a dataset collected from 2 participants (12 hours of data), this
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approach achieved an overall accuracy of 92% when trained with 80% of data and
tested with the remaining 20%.

Similar to the approach in [83], Suutala et al. [75] proposed an HMM based
approach to recognise activities. However, Suutala et al. [75] utilised a Support Vector
Machine (SVM) instead of the decision stump. They have used mean and standard
deviations as features to train SVM classifiers and evaluated the approach with data
collected from 13 participants. From this evaluation, an accuracy of over 96% has
been achieved.

Doukas and Maglogiannis [60] utilised an SVM classier to recognise falls using
an accelerometer and acoustic sensor. They extracted amplitude and frequency peaks
at the current time as features from audio data. They considered the output as an
estimation of the movement type and the falls were detected based on the number of
sequential occurrences of a specific movement type. Furthermore, a Kalman filter was
also used to improve the fall detection. Based on the results using a dataset collected
from 2 participants, they claimed that the fall detection accuracy can be increased by
eliminating false predictions in walking. Specifying the threshold for the continuous
fall movement type as 10, they were able to detect all fall events and run events with
an accuracy of 97%.

Ermes et al. [79] used a custom decision tree with neural network nodes to recog-
nise sporting activities. They have used a small neural network of size 7:5:1 and the
output was thresholded at 0.5 to obtain a binary split at each node. Their approach was
evaluated using a dataset collected from 12 participants (age: 27± 9 years), which
achieved an 89% accuracy.

Junker et al. [48] utilised an HMM trained to recognise hand gestures where they
have considered separate HMMs for each activity. They have also proposed a data
stream segmentation method that uses a similarity search. The identified segments
were then classified using an HMM to recognise hand gestures. The proposed approach
was evaluated with two datasets from 4 participants aged between 25-35 years; one
contained object interactions and the other involving dilatory intake. From these
experiments, they were able to recognise gestures with 93% recall and 74% precision
for the first data set and 79% recall and 73% precision for the second dataset.

Stikic et al. [39] evaluated the use of semi-supervised approaches, namely self-
training, co-training and active learning with NB for activity recognition. In self-
training, high confidence predictions from a single classifier were incorporated into
the training dataset for the next iteration and the classifier is trained iteratively. Instead
of a single classifier, co-training requires two classifiers trained with non-overlapping
feature sets where each feature set is assumed to contain sufficient to identify each class
independently [84]. Active learning, on the other hand, queries the class label of the
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samples based on query function. They have experimented with two query strategies:
i) instances with lower prediction confidence; and ii) disarrangement between two
classifiers. They have evaluated the use of semi-supervised learning using the publicly
available PLCouple1 dataset [85], which contains data from wearable accelerometers
and infra-red motion sensors. Using this dataset, they extracted 48 features from
accelerometer data and the activation counts were taken as features for the IR sensor.
In the cases of co-training, they have utilised features from accelerometers and features
from motion sensors in the two classifiers. Their evaluation included experimenting
with various ratios of labelled data ranging from 0.3% to 12.5% and co-training
depicted better performance compared with self-training. In the case of active learning,
with the dataset having 12.5% of labelled data, the first query strategy obtained the
highest accuracy of 64.2%.

A neural network has been utilised in [35] to recognise activities that included
static activities (lying, sitting, standing), posture and activity transitions (lie-to-stand,
stand-to-lie, lie-to-sit, sit-to-lie, sit-to-stand, stand-to-sit, walk-to-stand, stand-to-walk)
and dynamic activities (walking, walking-upstairs, walking-downstairs and running).
In contrast with [74], the approach in [35] utilised linear discriminant analysis instead
of ICA. In particular, a two-stage method has been proposed in [35] to recognise
activities. First, the state of the sensor wearer was identified. Secondly, the identified
state was used for recognising activities. Both the state and activity recognition were
carried out using neural network classifiers. They evaluated their approach using a
dataset collected from 6 healthy adults (mean age 26 years) and achieved an overall
accuracy of 98%.

Liu et al. [76] utilised a DT based on C4.5 algorithms within the active learning
framework. Similar to the active learning approach proposed in [39], Liu et al. [76]
utilised two strategies to query class labels from the user: i) instances that had a
disagreement between classifiers which are trained using sensors in different locations;
and ii) instances having a lower classification confidence. By evaluating the proposed
method with the dataset used in [17], Liu et al. [76] were able to achieve an accuracy
over 75% using 50% of the annotated training data.

Wu et al. [86] used an SVM classifier to recognise activities from a sensor em-
bedded in clothing (smart garment). They have extracted features using DWT and
recognised 9 activities. They collected data from 7 participants for training the clas-
sifier. The testing data was collected from the same 7 participants and other 6 new
participants. They achieved an overall accuracy of 95% for testing data from the par-
ticipants who are in the training dataset and a 94% overall accuracy for the remaining
6 participants.
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The SVM classier has also been used in [40] to recognise activities by identifying
motion primitives. Given sensor observation sequence for an activity was segmented
using fixed size segmentation. Then statistical features were extracted from these
segments and these feature vectors were clustered. Subsequently, the cluster cen-
troids were treated as motion primitives. Given a sensor observation sequence for
classification, the approach in [40] segmented the data stream and then extracted
statistical features. Then these features were assigned to the closest motion primitive.
Subsequently, a histogram of motion primitives for a sensor observation sequence
was considered as the feature vector for classification using an SVM classifier. This
feature vector construction is similar to the bag-of-words approach used in natural
language processing [40]. An experiment has been conducted with data collected from
6 participants performing 9 activities and this approach achieved an overall accuracy
of 93%.

Wang et al. [87] attached several RFID antennas and RFID tags on the body to
recognise activities. They have extracted features from RSSI to recognise motion
patterns using a 5 s sliding window and utilised an SVM classifier. Experiments
were conducted using a dataset collected from 4 participants and achieved an overall
accuracy of 94%.

Zhang and Sawchuk [73] used a classification technique based on an over-complete
dictionary and sparse representation. Initially, they have extracted statistical and
frequency domain features using a 4 s sliding window with 50% overlap. Then the
feature vectors from each class were arranged into matrices and these matrices were
concatenated to construct the over-complete dictionary. Their main intuition here is
that any testing feature vector can be obtained using a linear combination of records in
the constructed over-complete dictionary. Therefore, the classification was done by
recovering the sparse representation using the dictionary and identifying regions of
the coefficients with higher values. However, the proposed sparse recovery method is
an optimisation problem and hence requires high computation during testing. From
an evaluation with a dataset collected from 14 participants (age 30± 7 years), the
proposed method achieved a 95% accuracy.

Conditional Random Fields (CRF) for activity recognition was used by Shin-
moto Torres et al. [46]. They also evaluated several data stream segmentation methods
to be used with sparse acceleration data streams from a passive sensor enabled RFID
tag. Furthermore, they have proposed a method for real-time inferencing in CRF. From
their evaluation using two datasets with 14 older participants (age 75±5 years) (see
Section 2.4.2), they were able to achieve accuracies of 78±7% for the first data set
and 95±4% for the second dataset.
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Use of a deep Convolutional Neural Network (CNN) to recognise activities was
proposed in [37]. This study also proposed a data stream representation, termed
as an activity image, that is the Discrete Cosine Transformation (DCT) of sensor
observations for a given interval arranged into a matrix. In cases of lower confidence
between activity classifications, this approach has utilised a series of binary SVM
classifiers trained using hand-crafted features to complement the learnt features from
the CNN. The proposed approach in [37] has been evaluated using three publicly
available datasets and achieved accuracies over 97%.

The study in [42] utilised a decision tree classifier, particularly a modified version
of the Random Forest algorithm, in an application that executes on a smart watch
to recognise activities. The modifications to the RandomF orest include replacing
CART with C4.5 and splitting criteria selection using both information gain and
feature computational cost. Since the overall computational cost involved with having
a DT ensemble is higher than a single DT, this approach selected only one DT from
the DT ensemble. This selection was made considering both the accuracy and the
computational cost of the features. This approach was evaluated using a dataset
collected from 3 participants and achieved an accuracy of 96%.

Deep learning to recognise activities using wearable sensors was also considered
in [38]. However, unlike the work in [37], a deep CNN with Long Short Term Memory
Neural Network (LSTMNN) has been used in [38]. Furthermore, the study in [38] has
used raw sensor values instead of transforming them, similar to [37], as input to their
classifier. Unlike other neural networks, LSTMNNs can model the sequential nature
of the data and their references to the history can be controlled. The approach in [38]
was evaluated using two publicly available datasets and depicted better performance.

Ronao and Cho [45] used a CNN classifier to recognise activities using smart-
phones. Similar to the study in [38], Ronao and Cho used the unprocessed sensor data
as input to their classifier. Specifically, they have utilised a 128-sample sliding window
with 50% overlap to obtain inputs to the classifier. With an evaluation using a dataset
collected from six participants, they were able to achieve 95% accuracy. Furthermore,
they were able to successfully classify typically confused activities such as walking-up
and walking-down stairs with a high accuracy (99%).

In summary, machine learning methods allow the researchers to analyse data from
multiple sensors effectively, which is impractical when devising empirical algorithms.
There are references to the use of various supervised learning approaches, such as
Naïve Bayes (NB), Decision Tree (DT), Support Vector Machines (SVM), K-Nearest
Neighbour, Hidden Markov Models (HMM), Conditional Random Fields (CRF) and
Neural Networks (NN). The most notable difference in these methods lies in how
they have used machine learning algorithms in their studies. While most of these
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researchers utilise classification algorithms for activity recognition directly [17, 41],
some researchers have incorporated heuristics with machine learning [79, 35, 88].
Furthermore, modifications to existing machine learning classifiers have also been
proposed; for instance, in [83, 75] a discriminative learning approach was utilised
to obtain observations for their HMM prior to modelling the sequential nature in
activities. On the other hand, Shinmoto Torres et al. [46], proposed a real-time
inferencing approach for linear chain CRF.

2.2.4 Common Machine Learning Algorithms Used in Activity
Recognition

In this section, a brief description of the commonly used machine learning techniques
is presented. We denote here the feature vector as x ∈ Rd and corresponding activity
as y ∈ C , where C is the set of class labels or activities having k number of classes.

Naïve Bayes (NB)

NB is a generative model that assumes features are conditionally independent. It
fits a probability distribution on input and output variables using the training dataset
and learns the underlying process. Being a traditional machine learning classifier,
NB assumes that the training pairs (xi,yi), i = 1, · · · ,m are i.i.d. (independent and
identically distributed).

Given an instance x for classification, the decision rule of this classifier can be
given as:

ŷ = argmax
y∈C

p(y)
d

∏
j=1

p(x j |y). (2.1)

where x j represents the jth component of the vector x.
In Equation Eq.(2.1), p(.) represents the respective probability functions and

they are estimated using a training dataset. This estimation depends on the selected
probability distribution function. Typically, for real-valued input, the conditional
probability distribution p(x j |y) is assumed to be normal.

Support Vector Machine (SVM)

The Support Vector Machine (SVM) is rooted on the structured risk minimisation
concept [89]. The standard SVM is a binary classification algorithm, i.e. yi ∈{+1,−1}.
Similar to NB, SVM also assumes that the training data is i.i.d. During training, the
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SVM classifier learns a hyperplane that separates the classes with the maximum
margin, which leads to a better generalisation performance by solving the following
Eq.(2.2) convex optimisation problem.

min
w,ξi

1
2
∥w∥2 +C

m

∑
i=1

ξi

subject to: ∀i yi ⟨xi,w⟩ ≥ 1−ξi

∀i ξi ≥ 0 (2.2)

In Equation Eq.(2.2), w is the learnt model (weight vector), ξis are slack variables
introduced to account for linearly inseparable datasets and C is the penalty for margin
violations. Although there are slightly different variations of SVM optimisation
problems, for instance, as in [90], all follow the same principle of structured risk
minimisation.

Then, the SVM decision function is given by:

ŷ = sign(⟨w,x⟩) (2.3)

where ŷ is the prediction for a feature vector x.
The optimisation problem Eq.(2.2) can be solved using its dual form Eq.(2.4).

max
αi

m

∑
i=1

αi−
1
2 ∑

i j
αiα jyiy j

〈
xi,x j

〉
(2.4)

subject to: 0≤ αi ≤C

∑
i

αiyi = 0

In the dual form Eq.(2.4), the variables α are called dual variables and the number
of dual variables are equal to the number of constraints in the primal form Eq.(2.2).
The xis where the corresponding αi is non-zero are termed as support vectors and only
the support vectors contribute to the final classification model. Thus, classification is
obtained by:

ŷ = sign(
l

∑
i=1

αiyi ⟨x,xi⟩). (2.5)

The inner product
〈
xi,x j

〉
here can be replaced by a kernel function k(xi,x j), which

is known as the kernel trick. In this context, a kernel function efficiently calculates
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the inner product between the inputs in a different dimensional space than the input
space. Therefore, SVM can achieve non-linear decision boundaries using kernels.
Consequently, the resulting hyperplane is a complex decision surface in the input
space.

As indicated by Eq.(2.3), SVM primal formulation performs a linear classification
in the feature space and model is represented by a single vector. When the dual
formulation is used with large training datasets (e.g. see Section 2.4), the number of
support vectors tend to increase, and consequently increases the complexity of the
classification function Eq.(2.5) when compared with the classification function of the
primal form Eq.(2.3). Therefore, primal formulation is more desirable when there are
a large number of features.

Decision Trees (DT) and Random Forest (RF)

A Decision Tree is a simple classification model that is built using a hierarchy of if-else
rules. In fact, a decision tree partitions the feature space into rectangular regions by
iteratively selecting a single feature at a time. During training, the classifier selects the
most suitable feature and the position to split the dataset based on different parameters
such as information gain and entropy. This splitting is continued, often, until all the
data points in a particular region are from a single class or the minimum number of
data points in a region is achieved. The commonly used decision tree algorithms are
CART [91] and C4.5 [92].

The most notable features in decision tree algorithms are their simplicity and
interpretability [93]. However, DT can over-fit easily and reduce the generalisation per-
formance; therefore, small changes in feature values can alter the decision significantly.
To overcome over-fitting, techniques such as Bagging [93] are used in developments
like Random Forest (RF) [94].

In RF [94], a number of decision trees (DT), B, are trained using subsets of data
sampled uniformly with replacement from the training dataset, D (i.e. bagging). In
RF, randomly selected subsets of features are evaluated at each branch to decide the
feature to be used for partitioning the subset of the data at the corresponding node (i.e.
splinting criteria), as opposed to evaluating the entire set of features as in traditional DT
learning settings. This training procedure results in a large collection of de-correlated
trees. The output from RF is obtained using the majority vote of all the trees in the
DT ensemble; thus RF achieves a higher generalisation performance than a single DT
based on the concept of the law of large numbers.
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Neural Networks(NN)

The cornerstone of neural networks is the perceptron model presented by Rosen-
blatt [95] that mimics the single neuron in the brain. Perceptron is a linear model
which is essentially represented using a hyperplane in its input space. NNs initially
gained popularity in the 1980s and 1990s. NN is essentially a layered arrangement of
neurons or units where the first layer is the input layer and the last layer is the output
layer. In between the input and output layers, there can be one or more hidden layers
with varying number of units. In classification setting, the output layer has k number
of outputs, and units in the upper layer are connected to units in the lower layer to form
a network. In NN terms, the arrangement of these units is termed the architecture of
the network. In a neural network, edges connecting nodes are associated with a weight
and the network architecture, together with these weights, define the neural network
model. Using complex network architectures neural networks can model sophisticated
functions for classification [93]. Although neural networks perform well in practice,
there is no theoretical framework as for other classifiers such as NB and SVM.

The neural networks are trained using back-propagation using gradient descent
methods [93]. Selection of an architecture is significant when using neural networks
and this is usually performed by experimentation with several architectures.

Hidden Markov Models (HMM)

The hidden Markov model is a generative probabilistic graphical model that captures
the sequential nature of observations. In HMM, it is assumed that the discrete state
of the model is hidden and it is visible through the observations. It is also assumed
that, the hidden state makes a transition at each time step. An HMM model, λ with N
states and M observation symbols is defined by its transition probabilities (A), set of
observation probabilities (B) and the initial state distribution (π):

λ = (A,B,π). (2.6)

Given a sequence of observation X = {xt}T
t=0, HMM training considers adjust-

ing the parameters in λ to maximise the probability of P(X |λ ). This is usually
performed using the Baum-Welch algorithm [96]. Once the model parameters are
determined, given a sequence of observations the most likely state path can be obtained
efficiently by using dynamic programming techniques, particularly using the Viterbi
algorithm [96].
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Conditional Random Fields (CRF)

CRF is a probabilistic graphical model and is based on the conditional probability
distribution of exponential family Eq.(2.7) [31]. Being a graphical model, CRF can
naturally model the sequential nature of activities. Given a sequence of feature vectors,
X = {xt}T

t=0, CRF predicts the corresponding sequence of labels, Y = (yt)
T
t=0.

p(Y|X;λ ) =
1

Z(X,λ )
exp

(
∑

j
λ j

T

∑
t=1

Fk(yt−1,yt ,X)

)

Z(X,λ ) = ∑
Y

exp

(
∑

j
λ j

T

∑
t=1

Fk(yt−1,yt ,X)

)
Ŷ = argmax

Y∈Y
p(Y|X;λ ) (2.7)

In this equation, Fks are feature functions, λ is the weight vector (model) and
Z(X,λ ) is a normalising constant. Feature functions Fk are used to capture the sequen-
tial nature of the activities by correlating previous, (xt−1,yt−1), and current, (xt ,yt),
training samples in a sequence.

2.3 RFID and Passive Sensor Enabled RFID Tags

We mainly focus on using data collected from sensor tags for HAR. As mentioned
in Section 1.1, sensor tags are light-weight and small compared to battery powered
sensors and hence expected to be unobtrusive, particularly for older people. In this
section we briefly discuss the Radio Frequency Identification (RFID) technology and
discuss passive sensor enabled RFID tags, particularly the Wireless Identification and
Sensing Platform (WISP).

2.3.1 RFID Preliminaries

Radio Frequency Identification (RFID) technology is used to identify objects uniquely [97,
98]. An early form of RFID technology dates back to the second world war when
British researchers invented a transceiver that sent back an identification signal when
hit by radar [97, 98]. The widespread commercial adoption of RFID technology was
due to the establishment and standardisation of the Electronic Product Code (EPC).
Organisations initially employed barcode labels to store product-related information
but these labels require line-of-sight access. Therefore, barcode labels are not possible
to read when they are covered with other materials or with dirt. The RFID technology,
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Fig. 2.2 A typical RFID system indicating the wireless communication between
RFID tags and he RFID reader using ISO 18000-6C protocol, and RFID reader
communication with the backend systems over local area network using Low Level
Reader Protocol (LLRP)

in the form of RFID label tags, was seen as an alternative to barcode labels due to the
unseen discoverability of RFID tags [97, 99].

A typical RFID system consists of several components that include: i) RFID tags;
ii) RFID readers; iii) RFID reader antennas; and iv) backend systems. Figure 2.2
illustrates how these components are arranged in an RFID system. Modern RFID tags
usually contain a non-volatile memory, often an Electrically Erasable Programmable
Read Only Memory (EEPROM) that can store the ID of the tag and other information
specified by the tag user. The portion of the tag memory where the user specified
data is stored is commonly referred to as user memory. The information from the
RFID tags are captured by RFID antennas and RFID antennas are connected to RFID
readers. RFID readers can query RFID tags and obtain the information stored in the
tag memory if required. RFID antennas also transmit Radio Frequency (RF) signals
and this transmission is controlled by the RFID reader. The backend systems obtain
the information from the RFID tags by communicating with RFID readers. In the
context of this thesis, we mainly focus on RFID technology that uses the Ultra High
Frequency (UHF) radio spectrum.

It is important to note that in RFID technology, an RFID reader initiates the com-
munication between the RFID tags in its field of view, which is defined by the number
and the arrangement of the RFID antennas connected to it. This communication is
governed according to the ISO 18000-6C protocol [26]. This is a random access proto-
col where an RFID reader first singulates a specific RFID tag in its field of view and
then acquires the tag ID to identify the tag uniquely and hence the object to which the
RFID tag is attached. If backend systems require information on the tag memory, they
are obtained by instructing the RFID reader to access a designated memory location of
the RFID tag as defined in the ISO 18000-6C protocol.

There are three main types of RFID tags: i) passive RFID tags; ii) active RFID
tags; and iii) semi-passive tags. The passive RFID tags harvest power from the RF
energy radiated by the RFID antenna and usually send data back to the RFID reader
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using a mechanism known as backscattering [99]. Unlike transmitting data that require
a considerable amount of power, backscattering requires less power as it reflects the
incoming RFID signals. In contrast, active RFID tags have a battery and transmit
signals back to the RFID reader antenna. Therefore, active RFID tags can communicate
over larger distances. Semi-passive tags combine the best of both worlds where they
contain a battery that powers the circuitry but backscatter to send data back to the
RFID reader, similar to a passive RFID tag. These tags have a higher operational range
than passive RFID tags and a higher operational life than active tags.

2.3.2 Passive Sensor Enabled RFID tags

Passive sensor enabled RFID tags or sensor tags follow the principle of passive
RFID tags, i.e. they operate using the power harvested from the incident RF energy
transmitted by RFID antennas. We utilised a WISP1 (Wireless Identification and
Sensing Platform) [23] tag, which is a passive sensor enabled RFID tag embedded
with a 3D accelerometer (ADXL330), illustrated in Figure 2.3. Unlike other passive
RFID tags, WISP is equipped with a general purpose low power micro-controller unit
(MSP430) which implements the ISO 18000-6C protocol to communicate with the
RFID Reader.

1Details of the WISP can be obtained from: https://wisp.wikispaces.com
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Fig. 2.4 Sensor data acquisition approached from passive sensor enabled RFID tags

There are two main approaches for sensor data acquisition from sensor tags:
i) reading sensor data logged in non-volatile tag memory; and ii) directly embedding
sensor data within a tag Identifier (ID). Figure 2.4a abstracts the operation of the first
approach where the sensor data is first stored in the tags’ non-volatile memory and then
read, similar to reading user data stored in a regular RFID tag using the READ command
defined in ISO 18000-6C [26] after singulating the tag using the QUERY command. As
also discussed in [28, 100], this approach requires a considerable amount of power
and incurs delays as data needs to be written to and read from a non-volatile memory.
The second approach is to embed the sensor data in a tag ID. Although embedding
sensor data in a tag ID sacrifices the range of the unique tag identifiers, this approach
eliminates the energy intensive and time consuming operation of writing sensor data
to the tags’ non-volatile memory as shown in Figure 2.4b. Therefore, sensor tags are
expected to have a longer communication range and a higher data rate compared with
the first approach. Similar to the first approach, in the second approach, the sensor
is sampled when adequate energy is harvested but is kept in the volatile memory of
the tag. During the next inventory round, which is marked by a QUERY command, the
sensor tag sends sensor data by embedding them in the tag ID.

8 bit 10 bit 16 bit8 bit10 bit 10 bit 34 bit

96  bit EPC

Tag
type

Sensor data Tag ID

X axis
Serial

number
H/W

versionY axis UnusedZ axis

Fig. 2.5 96-bit EPC tag ID format used to acquire sensor data
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Table 2.1 Summary of the datasets

Dataset Number of participants Age Number of Antenna

HYA 10 26.4±2.12 4
HOA 14 74.6±4.9 4 (Room1) and 3 (Room2)
FOA 26 84.2±5.2 3

Figure 2.5 illustrates the 96 bit Electronic Product Code (EPC) tag ID format
re-defined for sensor data acquisition. The EPC here is logically partitioned into 3
sections: i) Tag type (8 bits); ii) Sensor data (64 bits); and iii) Tag ID (24 bits). The
Tag type is used to identify the type and hence capabilities of the tag. The Sensor data
section is used to embed acquired sensor data. To embed acceleration data as shown in
Figure 2.5, only 30 bits in this section are utilised because each acceleration axis was
sampled at 10-bit resolution. The Tag ID section is composed of the WISP hardware
version and the tag serial number, and a WISP can be uniquely identified using this
Tag ID. Using this approach, when the WISP is adequately powered, a data stream
with an upper bound sampling rate of 40 Hz can be obtained.

The 5-tuple [a f ,al,av,RSSI,aID] was obtained from each datum sent by a WSIP
and received by a reader, where a f , al and av represent frontal, lateral and vertical (lon-
gitudinal) accelerations measured with respect to the acceleration sensor (Figure 2.6a),
the RSSI (Received Signal Strength Indicator) represents the strength (power) of the
radio signal of a sensor observation sent by the sensor and received by a specific
antenna and measured by an RFID reader, and aID represents the identifier of the
antenna that captured the observation.

2.4 Datasets Used in This Thesis

In this section, we present the datasets collected using the sensor tags to recognise
activities leading to falls. Three datasets from different populations are used: i) healthy
young adults [61] (HYA); ii) healthy old adults [46] (HOA); and iii) hospitalised old
adults [101] (FOA). A summary of the datasets is listed in Table 2.1 and described in
detail in the following sections. These datasets are publicly available in the project
web site2. The datasets were collected and annotated by Mr Roberto Shinamoto Torres
with the help of Dr Shailaja Nair and Mr Stephen Hoskins.

2http://autoidlab.cs.adelaide.edu.au/research/ahr
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Fig. 2.6 (a) The body-worn WISP indicating the acceleration sensor reference frame;
(b) The clinical room setting and the antenna placement used in the HYA dataset

2.4.1 Healthy Young Adult Dataset (HYA)

Ten healthy young volunteers aged between 23 and 30 years (mean 26.4 ± 2.12 years)
were recruited to participate in this study. This study was reviewed by the Human
Research Ethics Committee TQEH/LMH/MH and no ethical matters of concern were
identified. Each volunteer wore a WISP over a garment at the sternum level (Figure
2.6a). The data collection procedure was carried out in a clinical study room (Figure
2.6b), furnished with a hospital bed and a chair, at the Basil Hetzel Institute, Woodville,
South Australia. To energise and acquire data from the WISP four circularly polarised
RFID antennas were used. As illustrated in Figure 2.6b, these antennas were configured
to illuminate the entire room.

Three activity routines were defined: i) getting into bed; lying on bed and getting
out of the bed; ii) walking (between the bed and the chair); and iii) sitting down and/or
getting up from a chair. Each participant performed three separate activity scripts
where each activity script was obtained by random ordering of activity routines defined
previously. Thus, each trial contained data collected from a single volunteer using a
selected activity script. Activities were recorded and annotated while activities are
performed by an observer using an in-house software tool. This dataset contains five
ground truth labels: i) sitting-on-bed; ii) lying-on-bed; iii) standing; iv) walking; and
v) sitting-on-chair. The during annotation, the moment at which activity transition
occurs demarcated the end of the current activity. For instance, end of sitting-on-bed
is demarcated by transition to lying on bed or standing. Annotation errors have been
documented and corrected off-line.
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Fig. 2.7 (a) An older person wearing the W2ISP sensor (≈3 grams, size 18×20×2 mm),
flexible antenna (36×85×2 mm) and isolating silver fabric (230×220 mm); (b) Room1
and Room2 room and equipment configuration. All ceiling antennas (A3 in Room1
and A2 and A3 in Room2) were inclined towards the middle section of the bed.

2.4.2 Healthy Older Adult Dataset (HOA)

This dataset was collected using the Wearable WISP (W2ISP) (see Figure 2.7a) which
uses a smaller antenna designed for wearable applications [24]. The study protocol
(protocol number 2011129) was reviewed and approved by Human Research Ethics
Committee of The Queen Elizabeth Hospital, South Australia. For this study, the
participants had to be 65 years or older, living at home, able to consent to the study
and mobilise independently. The participants were recruited from geriatric clinics and
from volunteer lists from other studies. First, potential participants were contacted
over the phone and then participation information sheets were mailed. During the
trial informed consent was obtained from the participants and no honorarium was
paid. Fourteen participants responded and volunteered to participate in the study.
The study was completed over a two-month period. During the trial, participants
were informed what types of activities they were required to perform and the worn
sensor was used to monitor these activities. Similar annotation process described
in Section 2.4.1, a researcher who was present during the trial annotated the sensor
data using an annotating software developed to record sensor data. A trial with each
volunteer lasted 60 to 90 minutes.

Data collection was carried out in two different clinical room settings (Room1
and Room2 illustrated in Figure 2.7b) that differed in layout, antenna placement and
number of antennas deployed. These room settings were designed to investigate a
general hardware deployment option (i.e. antenna placement) suitable for hospital
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ward rooms furnished with a bed and armchair. Room1 antenna deployment was
designed to illuminate the whole room. In contrast, Room2 deployment was designed
to only illuminate areas where patients are likely to spend the most amount of time.
In both room configurations, RFID antennas are placed above the level of the bed
and at or near ceiling height to reduce possible obstructions of interrogation signals
from RFID reader antennas and responses from the W2ISP. Similar to HYA dataset,
circularly polarised antennas have been used in the data collection.

During the study, participants performed activities which included: i) lying on
the bed; ii) sitting on the bed; iii) getting out of the bed; iv) sitting on the chair;
v) getting out of the chair; and vi) going from A to B (A and B represent the bed,
chair or door). Each participant performed activities on two broadly scripted activity
lists. No particular order was used for selecting the scripts and the number of scripted
routines. No instructions on how to perform activities were given to the participants.

Data from 10 participants were collected from the Room1 deployment and Room2
contained data from 5 participants. One participant contributed to both datasets.
Due to a malfunctioning of the sensor prototype, data from the common participant
from Room1 was not usable, hence ignored. Data collected from Room1 and Room2
configurations are simply referred as HOA-Room1 and HOA-Room2 respectively.

2.4.3 Hospitalised Older People Dataset (FOA)

This dataset included data collected from 26 hospitalised inpatients, with a male
to female ratio of 9:17, in the geriatrics ward of the Queen Elizabeth Hospital in
Adelaide, South Australia. Participants were recruited from the hospital and no
incentive or honorarium was paid for participation. Only participants with no cognitive
impairments, who can ambulate with or without a walking aid were selected for this
trial.

The FOA dataset was also collected using the W2ISP, as in the healthy older
participant dataset (Section 2.4.2). Participants wore the W2ISP at their sternum level
over their hospital garment. Data collection was carried out in their hospital room (see
Figure 2.8) from 2 pm to 4 pm. Some patients are admitted into rooms with two beds
and some were in single bedrooms. As shown in Figure 2.8, the patient monitoring area
was equipped with three circularly polarised RFID reader antennas. This configuration
is similar to Room2 in Figure 2.7b. Antenna 1 was placed approximately 1.7 m from
the ground and facing towards the chair. Antenna 2 and Antenna 3 were placed near the
ceiling on top of the bed, approximately 2.6 m and 2.7 m from the ground respectively.

Patients performed sets of broadly scripted activity routines that included: i) walk
to the chair; ii) sit on the chair; iii) get out of the chair; iv) walk to the bed; v) lie on
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Fig. 2.8 Approximate hospital room configuration and layout

the bed; vi) get out of the bed; and vii) walk to the door. Patients were not instructed
how to perform these activities and the researchers allowed them to carry out these
activities at their own pace. They were also instructed to request to withdraw from
the study in the event of discomfort or distress. Each trial last about 20 to 25 minutes
and participants repeated the trial three to five times, depending on their comfort level.
During the trials, one of the two research team members who were present asked them
to perform the activities from the activity scripts while the other researcher annotated
the activities as and when they were performed (ground truth) which is required for
evaluation using a software tool developed to capture sensor data. Similar to the
annotation process described in Section 2.4.1, start of an activity transition was used
as the demarcation of the end of the current activity.

It is observed that during the trials patients’ head-rests on the beds were kept
either flat or inclined as they would have the head-rests when watching television or
reading. Furthermore, while patients were sitting on the bed, they did not keep their
legs straight. In addition, all the patients sat on the bed with their legs off the bed.
Therefore, multiple posture variations have been captured in this dataset.

2.4.4 Characteristics of the Datasets

In this section, characteristics of the three datasets described above are presented.
Table 2.2 shows the statistics of these datasets. From this table we can observe that for
all three datasets there is a considerable variation in the inter-sensor observation time
differences (time difference between consecutive sensor observations), as indicated
by the higher standard deviations; i.e. data streams from sensor tags are sparse.
Furthermore, when considering the inter-sensor observation time differences whose
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Table 2.2 Dataset statistics

HYA HOA-Room1 HOA-Room2 FOA

Mean of the inter-sensor observation time
difference (s)

0.18 (0.32) 0.36 (2.43) 0.79 (9.62) 0.82 (6.09)

Mean of the inter-sensor observation time
differences considering the values up to 95th
percentile (s)

0.14 (0.10) 0.20 (0.26) 0.31 (0.26) 0.36 (0.34)

Length of data per participant (s) 495 (253) 2116 (1006) 3596 (268) 763 (219)

Corresponding standard deviation values presented within parenthesis.
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Fig. 2.9 Acceleration and RSSI (for A3) signal patterns collected from W2ISP for
HOA-Room2 when a participant got out of the bed from lying on the bed (lying on
side) (A: lying-on-bed; B: sitting-on-bed; C: standing; and D: Ambulating). This also
indicates the sparsity (variable inter sensor observation time differences) of sensor
data streams.

values are less than or equal to the 95th percentile of the values, the mean and standard
deviation values are considerably less compared with the entire set of values. For
instance, in the case of HOA-Room2 and FOA datasets, mean values have been reduced
to less than half and the corresponding standard deviations are reduced significantly.
This indicates that, at times, there are significant intervals with no data from the sensor
tags.

The sparse nature of sensor tag data streams are illustrated in Figure 2.9 which
shows a data stream segment collected from Room2 of healthy older adults (Sec-
tion 2.4.2). From this figure, we can observe that while the participant is lying on the
bed, the sensor tag is responding frequently compared with other activities. Further-
more, we can see that for near the boundary between lying-on-bed and sitting-on-bed
(approximately 276 s), there are no sensor observations for a period of approximately
2 s. This sparsity is mainly due to two reasons.

First, the ability to sample inbuilt sensors and send data back to the RFID reader
depends on the successful powering and reading of the sensor tag; this is affected by
several factors. The increase of the distance between the RFID antenna and WISP
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reduces the strength of the incident radiation on the sensor tag causing less power to
be harvested. In fact, the signal strength indicated by RSSI at a point distance, d away
of an RFID antenna is RSSI ∝ 1/d4 [99, 102]. Since circularly polarised antennas
have been used during data collection, the influence on the antenna polarisation on
power harvesting with the change of RFID tag antenna orientation relative to the RFID
reader antenna was expected to be negligible. Furthermore, occlusion of the radio
signals from radio frequency opaque objects such as a human body can cause radiation
from the RFID reader antenna to be absorbed. This not only reduces the incident RF
energy on the tag but also reduce the strength of the backscattered signal hindering
its detection at the RFID reader antenna. In such instances, readability of the sensor
tag will be severely reduced or at times will not be able to be read at all. Power
harvesting is also hindered by destructive interference caused by the multipath effect
and radio signals from other devices that use the same radio spectrum (920-926 MHz
in Australia). As a result, regions where RFID tags cannot operate are formed.

Secondly, the data acquisition from passive RFID sensors is non-deterministic due
to the use of the ISO 18000-6C protocol [26]. As mentioned earlier in Section 2.3.1,
the communication is initiated by the RFID reader. Therefore, even while the tag
is adequately powered, the data streams from sensor tags have variable inter sensor
observation time differences.

2.5 Conclusion

In this chapter, we looked at Human Activity Recognition (HAR) and commonly used
machine learning algorithms used in HAR. We further presented a brief description
of the RFID technology, focusing on the passive sensor enabled RFID tags. Finally,
detailed descriptions of the datasets that have been collected from the sensor tags used
in this thesis were presented.

One of the main considerations in HAR is the selection of the sensor deployment
strategy; environmental sensor deployment and body-worn sensor deployment. As
explained in Section 2.2.1, although deploying sensors in the environment is less
intrusive to the people being monitored, monitoring can only be performed where
the sensors have been deployed. Furthermore, this method poses further challenges
to uniquely identify individuals when the monitoring area is occupied by multiple
residents. In addition, the use of cameras as environment sensors have raised privacy
concerns. In contrary, the body-worn sensor deployment is not limited by the monitor-
ing area. Furthermore, as sensors are attached to the bodies of people being monitored,
identification of individuals is a trivial task. According to the previous literature on
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body-worn sensor based HAR, most of the studies consider the use of bulky battery
powered sensors, which are obtrusive, particularly for older people. In order to take
advantage of the favourable aspects of body-warn sensors and to minimise the adverse
effects, particularly wearing discomfort, we specifically selected the passive sensor
enabled RFID tag (i.e. sensor tag) technology to acquire human motion. As sensor
tags are light-weight, small and requires no maintenance, it is expected that they are
more comfortable to wear compared to the existing battery powered sensors.

In contrast with the sensor data streams from battery powered sensors, as explained
in Section 2.4.4, data streams from sensor tags are noisy and intermittent. Furthermore,
occasionally, data from sensor tags can be unavailable for longer durations. This is
attributed by the power harvesting nature of sensor tags and RFID communication
protocol. Therefore, these unique characteristics pose challenges for accurate activity
recognition based on sensor tags.

In this thesis, our main focus is to devise methods to recognise activities using
sensor tag data streams by overcoming the aforementioned challenges in the data
stream to utilise the positive aspects of passive sensor enabled RFID tags, particularly
in the domain of ambulatory monitoring of older people.



Chapter 3

Sensor Data Acquisition from Passive
RFID sensors

3.1 Introduction

Previously, in Chapter 2, we highlighted that the research based on wearable sensors
mostly uses large battery-powered sensors which are uncomfortable for the wearer.
Therefore, in this thesis, we consider the use of passive sensor enabled RFID tags,
which are more comfortable for the wearer as they are lightweight and small mainly
due to not requiring a battery.

Sensor tag data streams are unique because sensor data are embedded in the
tag ID, such as the EPC (Electronic Product Code)[27] (see Section 2.3.2). Sensor
tags employ a query-only approach to sending sensor and ID data where a Query
command for a tag ID results in reading the ID from the sensor tag’s memory and
acquiring sensor data and embedding in the ID (Figure 2.4b). The alternative is to
Write sensor data to memory and subsequently, acquire the data by a Query and a Read
command [103](Figure 2.4a). However, this approach consumes more power (148 µW
for writing vs. 10 µW for reading [104]) and degrades performance because: i) the
nature of radio wave propagation (i.e. Friis Transmission Equation [102]) implies that
tags that consume more power must be activated at shorter ranges; ii) higher power
consumption results in slower sensor data update rates (i.e. duty cycling); and iii)
the two round trip times required to acquire sensor and ID data results in sensor data
acquisition delays. Therefore, new middleware (see Figure 2.2) is needed to process
data from sensor tags using the lower power query-only approach to: i) maximise the
read range of sensor tags; and ii) maximise the rate at which the tags can stream data
back to readers [23].
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Implementing middleware for managing sensor tag data requires addressing several
key issues. First, an efficient mechanism is required for discovering a sensor tag’s
capability (e.g. types of embedded sensors) so that: i) data can be extracted and
transformed correctly from a tag’s ID; and ii) appropriate filtering and aggregation
operations can be performed on the sensor data (as determined by the sensor data type
such as temperature or acceleration). Secondly, an application agnostic sensor data
and ID data subscription specification and a data model for reporting high level sensor
tag data (e.g. average temperature) to client applications are needed.

Currently for RFID, among others, both commercial [105–107] and open-source
[108–111] middleware are available. A number of middleware platforms [105, 112,
113] have the capability to gather data from wireless sensor networks where sensor
and ID (the unique object identifier) data streams are processed separately as they
are generated from different sources (e.g. RFID tags and wireless sensor networks).
However, the applications that receive data (ID and sensor data) still have the challenge
of associating sensor data (such as ambient sensors in the environment) with unique
objects (such as seafood cases in a cold chain management application). For example,
in the middleware proposed by Bade and Lamersdorf [112], sensor information is
processed to identify unacceptable environmental states and subsequent RFID reader
scans identify the objects possibly in the undesirable state. Conversely, in Gama et al.
[111] sensor data are polled from a sensor network upon receiving events from RFID
readers and are presented as a set of environmental information that corresponds to all
the observed tags. The middlware proposed in Wang et al. [110] reported sensor and ID
data separately and the data association is derived based on the sensor location. In fact,
in the case of sensor tags, sensor data and ID data integration is at the hardware layer
(since the sensor is on the same platform as the ID carrier). Therefore, these approaches
are not suitable for sensor tags due to differences in low level data collection and high
level data reporting, and sensor and ID data integration. Furthermore, the middleware
developed is not generic but application specific.

Also, from the perspective of application development and interoperability, it is im-
portant to abstract from implementation and provide a technology and implementation
agnostic specification for subscribing to and reporting of high level events. Although
the standardised Application Level Event (ALE) reporting specification [27] has been
extended by Gama et al. [111] and Wang et al. [110] for sending sensor events from
sensor networks, they do not integrate ID and sensor data at the middleware level and
are reported as separate high level events.

Although some existing middleware support sensor data acquisition from sensor
tags [105–107], they do not support the query-only approach, instead supporting
the approach shown in Figure 2.4a. However, these approaches are not agnostic to
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Header Sensor Data Tag Type Serial Number

Tag ID

1 Byte 8 Bytes 1 Byte 2 Bytes

96 bit EPC

256 bit EPC

Fig. 3.1 Proposed tag format for 96-bit and 256-bit Electronic Product Codes

tag type (ID tag, sensor tag) since the tag must be first singulated and subsequently
discovered to be a sensor tag (by way of a lookup, as in Igarashi et al. [114]) prior to
acquiring sensor data from a tag’s memory. Furthermore, as highlighted earlier, using
the approach in Figure 2.4a is detrimental to the performance of a sensor tag in terms
of power consumption and time taken to obtain sensor data.

Therefore, existing middleware have no support for data acquisition from sensor
tags that follows the query-only approach. Most of the middleware fail to integrate
ID and sensor data and report them as a single high level event. Additionally, other
middleware solutions are limited by their application specific nature. Consequently, we
were motivated to design and implement a middleware that defines a simple, flexible
and extensible tag data model for both RFID tags and sensor tags, that supports the
query-only approach and provides a generic framework for implementing, collecting,
filtering, aggregating and reporting of both ID and sensor data.

In this chapter, we develop WINDWare (Wireless Identification and Sensor Data
Management Middleware), a generic middleware framework that not only addresses
the lack of a middleware for simultaneously managing both RFID tag and sensor tag
data but also addresses the above challenges to facilitate application development in
ubiquitous computing based on sensor tags. Additionally, WINDWare will accelerate
the adoption of sensor tags such as the WISP. Furthermore, our middleware conforms
to existing standards because we extended the Application Level Event (ALE) interface
of the EPCglobal architecture framework as proposed in [103] to facilitate subscription
and reporting of data. The work presented in this chapter has been published in the
IEEE International Conference on RFID proceedings [28].

3.2 Middleware Architecture

3.2.1 Proposed Tag Data Format

We propose a tag ID format (shown in the Figure 3.1) for sensor tags based on that
used for WISPs [23]. Our proposed format uses the Electronic Product Code (EPC)
defined in the Tag Data Standard [27]. The Header field is set to 0x3D (an EPC header
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Table 3.1 Definition of RFID standards related terms

Term Description

Event Cycle Smallest unit of interaction with the ALE implementation during
which the ALE interface implementation (middleware) interacts with
one or more Readers on behalf of an ALE client

ECSpec Event Cycle Specification; data element defined in the ALE API
which defines the parameters for ECReport, ECReportSpec

ECReport Event Cycle Report; reports tag information for the current event
cycle as specified in corresponding ECReportSPec

ECReportSpec Event Cycle Report Specification; provides the content definition for
the ECReport: readers, event cycle duration, and tag filtering

ECReportOutputSpec EC Report Output Specification; specifies what information on the
final set of EPCs in ECReport is reported

ROSpec Reader Operation Specification; specifies reader operation parameters
(e.g. identifier, the boundary specification, priority) and configura-
tions such as start and end triggers, and antenna configurations

ROReportSpec Reader Operation Report Specification; appears as a sub-element
of ROSpec which describes the contents of the report sent by the
Reader and defines report trigger events

ROBoundarySpec Reader Operation Boundary Specification; defines the span of the
operation (indicating the start trigger and stop trigger)

ROSpecStartTrigger Appears as an element within ROBoundarySpec; defines the trigger
event for the reader to initiate report generation

Source: EPCglobal Inc, “Epcglobal ratified standards.” [Online]. Available:http://www.gs1.org/gsmp/kc/epcglobal/ [27]

currently unused and reserved for future use) to identify a sensor tag. This allows the
middleware to process the sensor data in addition to the ID data, as well as manage
existing EPCs from ID tags. The content and the format in the Sensor Data section
depend on the tag type. Proposed tag type definitions are based on WISP tag types.1 A
combination of the Tag Type and Serial Number are used to identify each sensor tag
uniquely. Although the serial number is two bytes for a 96-bit EPC, using a 256 bit
EPC can significantly increase the range of serial numbers, which is essential for large
scale sensor deployments. Therefore, for a specific tag, only the content of the sensor
data field is variable.

3.2.2 Architecture Overview

For seamless integration with existing applications, we base our architecture on the
EPCglobal architecture [27]. Figure 3.2 illustrates the system’s architecture of WIND-
Ware. Below, we discuss how our architecture meets a number of key requirements
identified for RFID middleware in [115] as well as the specific processing requirements
of sensor tags we identified in Section 2.4.4.

1see: https://wisp.wikispaces.com/Working+with+WISP+firmware
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Fig. 3.2 Sensor tag data management middleware architecture

Low level reader event collection A standard reader interface (such as the Low
Level Reader Protocol [27]) is used to collect tag reads from physical devices (e.g.
RFID readers).

Tag data extraction In the event of an ID tag no additional operations are required,
however, in the event of a sensor tag, data embedded in the EPC (Figure 3.1) must
be removed and the tag ID is reconstructed without the sensor data, which allows the
treatment of a sensor tag as a regular RFID tag. The sensor data and ID data are then
integrated into a single data structure defined by the Tag Data Model (see Section
3.3.1) to further maintain their association.

ID data filtering and aggregation ID data are intended to be used for unique
identification of items. Based on the reader configuration, reader may report a tag
more than once in a single event cycle. This module performs filtering (e.g. removal
of duplicate IDs) and aggregation operations (e.g. count products of the same category
as opposed to reporting tag IDs) specified by the user based on ID level data.

Sensor data grouping Since it is possible to have multiple sensor readings from the
same sensor tag, it is necessary group the sensor readings by Tag ID. Filtering is not
performed here to remove duplicates because this process can eliminate potentially
crucial sensor values.
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+addTag(tag : Tag)
+addTagToReportGroup(tag : Tag)
+getECReport() : ECReport

Report

+getTypes() : List<String>
+deembed(tag : Tag)

<<Interface>>

DataExtractor

-extractors : Map<TagType, DataExtractor>

+extractData(tag : Tag)

DataExtractionManager
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Tag
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+getMultiValue() : MultiValueData
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Operation

-type : string
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-reader : String
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-binary

-trace : String
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-tagLength : String
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Tag
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+Report(spec: ECReportSpec)

Fig. 3.3 Extensions: (a) new classes; (b) modified classes; (c) tag data model

Sensor data filtering and aggregation Commonly, applications are interested in
subsets of collected data (filtered data) [115, 116] such as temperature values above a
threshold, or the temperature of a certain product. Sensor data can also be aggregated
(e.g. in the time or space domains) based on application requirements. For instance, to
provide the average temperature or to combine temperature data from different readers
observing a physical location.

Event Cycle Report An EventCycle is constructed according to a specification
called ECReportSpec (see the ALE Specification [27]) generated by a client (see
report specification application in Figure 3.2). While the ECReportSpec specifies
several parameters, the two most important parameters are: i) the time interval during
which tag reads are collected and processed; and ii) the readers from which tags
are collected. Then Event Cycle Report module is responsible for managing the
construction and transmission of the user specified report.

3.3 Middleware Implementation

3.3.1 Proposed Tag Data Model

We have implemented our middleware by extending the Fosstrak open-source mid-
dleware [109] which only supports ID tag data management. Selection of Fosstrak
is based on: i) its conformance to the EPCglobal architecture [109]; and ii) the sup-
port for LLRP (Low Level Reader Protocol) [27], a standard Reader Interface, to
communicate with RFID readers.

The class diagram in Figure 3.3 illustrates our middleware design in Fosstrak. We
have only outlined classes added to (Figure 3.3a) or modified (Figure 3.3b) in the
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existing Fosstrak implementation to reduce the complexity of the diagram. A complete
specification of Fosstrak is available from the developer guide.2 Modifications are
made to support the specific functions outlined in Figure 3.2 for sensor tag data: i) tag
data extraction; ii) sensor data grouping; iii) sensor data filtering and aggregation; and
iv) event cycle report. Since ID management functionality is already a part of Fosstrak,
other aspects of our proposed architecture utilised existing Fosstrak capabilities.

Figure 3.3c illustrates the proposed tag data model (as an extension of the Fosstrak
tag data model) for representing sensor data. A new boolean attribute sensor is intro-
duced to the Tag class to indicate the containment of sensor data. All implementations
of a sensor tag specific data models are left to the discretion of the user/developer
and must extend the abstract class SensorData. The SensorData class defines the
attribute type to identify the type of sensor data reported by a sensor tag (Figure 3.3c).

3.3.2 Tag Data Extraction

DataExtractionManager and DataExtractor classes provide the framework for
tag data extraction where sensor data is de-embedded from the tag identifier where
the former acts as a façade and delegates the processing of the tag to the appropri-
ate DataExtractor which is identified by the tag type. For instance, acceleration
data extractor for a sensor tag with an accelerometer. The DataExtractionManager
can obtain valid tag types (e.g. 0D and 0B for acceleration tags) for an implementa-
tion of DataExtractor by calling the getTagTypes method on the corresponding
DataExtractor implementation. We have not specified data formats for various
sensors and therefore it is possible to have multiple DataExtractors for the same
sensor where the treatment of the sensor data field (Figure 3.1) is left to the discretion
of the end-user and/or developer; thus providing for a flexible and extensible design.
Finally, DataExtractionManager converts a sensor tag EPC to a Universal Resource
Indicator (URI) by only considering the tag ID portion of the EPC (see Figure 3.1), to
allow Fosstrak to apply existing ID level filtering and aggregation operations to the ID
data of sensor tags.

3.3.3 Sensor Data Grouping, Filtering, and Aggregation

Unlike with ID data, a variety of filtering and aggregation operations can be per-
formed on sensor data depending on application domain requirements and sensor
types (e.g. acceleration sensors). Report class was modified to implement sensor
data grouping based on logical readers [27]( i.e. the behaviour of a reader from the

2http://fosstrak.github.io/fc/docs/developer-index.html

http://fosstrak.github.io/fc/docs/developer-index.html
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Fig. 3.4 Interaction with Fosstrak

perspective of a report subscriber) and tag IDs. Sensor data filtering is managed by
the OperationManager, which is responsible for maintaining a list of implementa-
tions of the Operation interface. Each implementation of the Operation interface
can encapsulate specific filtering or aggregation operations to be performed on the
acquired sensor data. The operations, specified in the ECReportSpec by subscribers,
are matched against the registered operation implementations using the operation name
(see Figure 3.3a Operation interface) to support sensor data filtering and aggregation
requests.

3.3.4 Event Cycle Report

The sequence diagram in Figure 3.4 visualises the behaviour of an EventCycle (see
ALE in [27] and Table 3.1). During an EventCycle the getECReports method in the
modified Report class that returns an ECReport object is invoked to prepare a report
according to the ECReportSpec specification, which is provided as a constructor
argument to the Report class upon instantiation when subscribing to the report.

Figure 3.5a shows extensions to the ECReportSpec data model to allow clients
to subscribe not only to ID tag but also sensor tag data. The corresponding attribute
descriptions are provided in Table 3.2. Furthermore, to enable users to specify sensor
data filtering and aggregation operations with specific arguments, the new structure,
OperationType, is introduced to the ECReportSpec. The unique operationID in
OperationType allows the users to specify the same operation multiple times with
different arguments and isolate each of the returned results without ambiguity. For
instance, for an operation that performs Fast Fourier Transformation (FFT), different
arguments can be: i) first 10 FFT coefficients and ii) last 10 FFT coefficients
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Fig. 3.5 ECReportSpec and ECReport data model extensions (see Table 3.2 for
attribute descriptions)

Table 3.2 Descriptions of the attributes in extended ECReportSpec and ECReport
data models

Element Attribute Description

ECReportOutputSpec includeId If true ID data of the ID tags are included
ECReportOutputSpec includeSensor If true ID data of the sensor tags are included
OperationType name Name of the operation which should correspond to the im-

plemented operation name
OperationType operationID Uniquely identifies the operation. Operation implementa-

tions return results with this ID
Arg name Name of the argument and is dependent on the enclosing

operation
SingleValue/MultiValue name The name distinguishes the multiple outputs from a single

operation
SingleValue/MultiValue type Data type of the output (e.g. float, double, int)
SingleValue/MultiValue operationID The operationId of the operation which produce the output
SingleValue value Value returned by the operation
Value key The key provides unique identification or meta-data for a

specific value within a MultiValue element.

The ALE standard [27] defines three kinds of report sets that clients can subscribe
to: i) CURRENT (tags in the current EventCycle); ii) ADDITIONS (new tags in
the current EventCycle); and iii) DELETIONS (tags in the previous EventCycle
that are not in the current EventCycle) for ID tag filtering. In the case of sensor
data, ADDITIONS and DELETIONS are meaningless, and CURRENT is inadequate.
Therefore a new report set, SENSOR, is defined to specify filtering and aggregation
operations on sensor data within the current EventCycle and these operations are only
evaluated if they are specified along with the SENSOR report set.

A new structure for reporting sensor data to subscribers (clients) is introduced
to the ECReport while maintaining flexibility as well as extendability to support
future changes and multiple sensor types. Figure 3.5b shows the design of ECReport
extensions where the attribute descriptions are provided in Table 3.2. Two data
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structures were defined to represent single-valued (SingleValue) and multi-valued
(MultiValue) outputs from filtering and aggregation operations. Furthermore, the
optional attribute key specified in Value provides unique identification or meta-data
related to the represented value. The value of the key is determined by the operation
implementation (e.g. for operations FFT , which is the Fast Fourier Transform, and raw
sensor data reporting, the key can be the FFT component and timestamp of the reading
respectively). The ability to represent the output of any operation is a significant
advantage of this framework.

+getTypes() : List<String>

+deembed(tag : Tag)

<<Interface>>

DataExtractor +getTypes() : List<String>

+deembed(tag : Tag)

AcceletationExtractor

(a) AccelerationExtractor

-type : string

<<Abstract>>

SensorData -x : float

-y : float

-z : float

AccelerationTag

(b) AccelerationTag

Fig. 3.6 Acceleration tag implementation

3.4 Experiments and Results

Initially, the proposed design for WINDWare was implemented as specified in Sec-
tion 3.3 using the Fosstrak-1.2.0 release. We implemented the AccelerationExtractor
class which implements the DataExtractor interface and a tag data model for WISP
tags with accelerometer sensors (Figure 3.6a). The sensor data, embedded in an EPC
from a WISP, are stored in AccelerationTag which is assigned as sensor data to the
corresponding Tag (see Figure 3.3c). Figure 3.5 shows the implementation.

We have implemented five concrete implementations of Operation interface to
generate sum, average, raw sensor data representation, resultant acceleration and
FFT for a sensor tag with an acceleration sensor that reports x, y and z acceleration
components. We used SingleValue to report results from operations, which return
one value (such as sum and average operations). For operations which return multiple
values, such as the FFT, MultiValue structure was used (Section 3.3.4).

We conducted two sets of experiments: i) with the real hardware; and ii) with
an RFID emulator. Our experiments were designed to: i) evaluate ID tag filtering
functionality to confirm that existing Fosstrak functionality is not affected, and the
sensor tags are correctly processed by existing Fosstrak operations for ID tags; and ii)
evaluate sensor data filtering and aggregation operations.
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<ns2:ECSpec xmlns:ns2="urn:epcglobal:ale:xsd:1">
  <logicalReaders>... </logicalReaders>
  <boundarySpec>...</boundarySpec>
  <reportSpecs>
  <reportSpec reportName="CURRENT_Report">
    <reportSet set="CURRENT"/>
    <output includeRawHex="true" includeRawDecimal="true"
includeEPC="true" includeTag="true" includeSensor="true" 
includeId="true"/>
   </reportSpec>
   <reportSpec reportName="SENSOR_Tags_Report">
    <reportSet set="SENSOR"/>
    <output includeRawHex="true" includeRawDecimal="true"
includeEPC="true" includeTag="true"/>
    <operations>
     <Operation name="Average" operationID="average">
      <arg name="total">8</arg>
     </Operation>
     <Operation name="Sum">
      <arg name="less than">0</arg>
     </Operation>
     <Operation name="FFT">
      <arg name="less than">50000</arg>
      <arg name="greater than">10000</arg>
     </Operation>
    </operations>
   </reportSpec>
   </reportSpecs>
</ns2:ECSpec>

Report set 
CURRENT

Report set 
SENSOR

(a) Report specification (ECReportSpec)
<report reportName="CURRENT_Report">
 <group>
  <groupList>
   <member>
    <epc>urn:epc:id:wisp:90044907186256000.11.63854</epc>
    <tag>urn:epc:tag:wisp-96:90044907186256000.11.63854</tag>
    <rawHex>urn:epc:raw:96.x3D013FE75DB2AB78800BF96E</rawHex>
    <rawDecimal>urn:epc:raw:96.18880096301959612961355725166</rawDecimal>
   </member>
   <member>
    <epc>urn:epc:id:sgtin:38762147710.03.184649852029</epc>
    <tag>urn:epc:tag:sgtin-96:1.38762147710.03.184649852029</tag>
    <rawHex>urn:epc:raw:96.x302520CCEDEFC0EAFDFD247D</rawHex>
    <rawDecimal>urn:epc:raw:96.14900165622758681865587860605</rawDecimal>
   </member>

 ...
  </groupList>
  ...
 </group>
</report>

ID data from sensor tag

ID data from ID tag

(b) ECReport for report set CURRENT in (a) with ID data
from both ID tags and sensor tags
<report reportName="SENSOR_Tags_Report">
 <group>
  <groupList>
   <member>
    <epc>urn:epc:id:wisp:256866449905234665.11.35951</epc>
    <tag>urn:epc:tag:wisp-96:256866449905234665.11.35951</tag>
    <rawHex>urn:epc:raw:96.x3D039092ACDD5132E90B8C6F</rawHex>
    <rawDecimal>urn:epc:raw:96.18882895103015262493717793903</rawDecimal>
   </member>
   <Sensor_Tag>
    <SensorGroup LogicalReader="Reader1">
     <Sensor_TAG_Member Sensor_Tag="1010000001011011">
      <Sensordata operationID="average" type="float" value="-246.98047" name="x"/>
      <Sensordata operationID="average" type="float" value="-6651.5625" name="y"/>
      <Sensordata operationID="average" type="float" value="1198.5156" name="z"/>
      <MultiValue operationID="dataStream" Type="float" name="x">
       <Value key="1374396036466">-246.98047</Value>
       <Value key="1374396036465">-246.98047</Value>
       ...
      </MultiValue>
     </Sensor_TAG_Member>
   </SensorGroup>
   </Sensor_Tag>
  </groupList>
 ...
 </group>
</report>

ID data from sensor tag

Sensor data from sensor tags
Single valued output

Multi-valued output

(c) ECReport for report set SENSOR in (a) with ID and
sensor data from sensor tags

Fig. 3.7 Hardware experiment subscription and reporting
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3.4.1 Experiments With a Hardware Setting

Our aim is to test the overall functionality of WINDWare. We used an Impinj Speedway
Revolution (R420-GX11M) reader with a circularly polarised antenna, two WISPs with
acceleration sensors, and regular RFID tags. We specified two report sets (Figure 3.7a):
i) CURRENT; and ii) SENSOR. In the CURRENT report set the WINDWare reported
the ID data as expected in the original Fosstrak implementation and provided positive
evidence that existing Fosstrak functionality is not affected by our extensions and
additions (Figure 3.7b). Furthermore, with the CURRENT report set, it was able to
report the ID information of the sensor tags and confirm that the extensions to Fosstrak
were successfully able to process the sensor tag data (see Figure 3.7b). When the
report set SENSOR is used, only the ID and sensor data related to sensor tags were
reported, as shown in Figure 3.7c. Furthermore, the results of the sensor data filtering
and aggregation operations were available, which is the expected behaviour. Results
from the specification of both CURRENT and SENSOR reports demonstrate the sensor
tag data management capability of WINDWare.

3.4.2 Experiments With a Reader Emulator

Rifidi Emulator3 can emulate: i) the LLRP protocol supported RFID readers; and
ii) multiple EPC tags and tag types. Therefore, the Rifidi Emulator is employed to
emulate the functionality of one LLRP supported reader and multiple ID and sensor
tags required for the experiment. Three report sets were specified: i) CURRENT and
SENSOR; ii) CURRENT; and iii) SENSOR. In all report specifications, the report
event cycle is specified as two seconds based on a near real-time monitoring application
context (see section 3.4.3). All implemented sensor filtering operations were specified
in subscription arguments for the SENSOR report set. Tests were carried out having:
i) only ID tags; ii) only sensor tags; and iii) a mixture of ID and sensor tags (1:1 ratio
for an unbiased assessment) to evaluate the middleware against each tag type. Having
only the ID tags provides a baseline for comparing our middleware implementation, as
ID tags are processed by the existing ALE implementation in Fosstrak. We recorded the
time taken to generate the reports (duration of getECReportMethod in EventCycle)
specified in the subscribed ECReportSpec. The emulated reader was configured with
the following LLRP settings: i) for ROBoundarySpec, ROSpecStartTriggerType
(which defines the trigger event for the reader to initiate the generation of reports
according to the defined ROSpec) was specified as periodic with the period of 5000 ms;

3http://www.rifidi.org/
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and ii) for reporting tags ROReportSpec (see Table 3.1) was configured to trigger
upon each tag detection or end of ROSpec.

Figure 3.8a shows the behaviour of the middleware for report set CURRENT
specified in ECReprtSpec which reported only the ID data for both ID tags and sensor
tags. No difference in the mean time between sensor and ID tags is observed.

The graph in Figure 3.8b depicts the report generation time when the report set
SENSOR (only generate reports for sensor tags) is specified. It is observed that the
sensor operations appear to consume linearly increasing time with respect to the sensor
tags in the field of view. Where both ID and sensor tags are in the field, a report is only
generated for 50% of the tags seen by the reader, as ID tags are filtered out from the
SENSOR report set. Hence time measured reflects the time taken to process the sensor
tags and filter ID tags.

Figure 3.8c illustrates the mean report generation time when the report sets CUR-
RENT and SENSOR are requested. The SENSOR report set is requested with all the
implemented filtering operations. The resulting report contained two separate report
sections, i.e. the CURRENT report set and the SENSOR report set. The results are
similar to 3.8b but now time taken to process ID tags is also included.

3.4.3 Example Application

To demonstrate our middleware, we developed a prototype monitoring application
to identify potential damage to goods (e.g. miss-handling of fragile items such as
LCD screens) in a supply chain. The damage monitoring scenario is performed in a
laboratory environment using Impinj Speedway Revolution (R420-GX11M) reader
with two circularly polarised antennas, as shown in Figure 3.9a. WISP tags having a
3D acceleration sensor were attached to items being monitored.

Identification of potential damage is twofold: i) an item dropping onto the ground
is identified by detecting the free fall where the resultant acceleration approaches
zero; and ii) a damage due to a high impact or a shock is identified by high resultant
acceleration. In order to receive notifications on potentially damaged items, ECRe-
portSpec depicted in Figure 3.9b is used, where the Resultant Acceleration operation
with operationID threshold is specified by two arguments. These arguments takes
acceleration values in terms of gravity and a free fall is detected by less-than 0.5g
while greater-than 1.5g detecting high impacts. We have also subscribed to the
raw sensor data streams (operationID: dataStream) and the resultant acceleration
(operationID: ra) to validate the potential damage events reported by the threshold
operation.
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(c) Report sets CURRENT and SENSOR

Fig. 3.8 Report sets from the experimental results with the Rifidi Emulator
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(a) Damage monitoring scenario equipment set-up
<operations>
  <Operation name="Data" operationID="dataStream"/>
  <Operation name="ResultantAcceleration" operationID="ra"/>
  <Operation name="ResultantAcceleration" 

operationID="threshold">
    <arg name="greater_than">1.5</arg>
    <arg name="less_than">0.5</arg>
  </Operation>
</operations>

Specification to evaluate 
resultant acceleration and 
filter to select potential 
damage events

(b) ECReportSpec for damage monitoring application

(c) Screenshot of the prototyped damage monitoring application

Fig. 3.9 An application of WINDWare for real-time monitoring
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Figure 3.9c shows a screenshot of the developed monitoring application. This
application subscribes to WINDWare using the defined ECReportSpec (Figure 3.9b).
Items are dropped onto the ground to simulate free fall and high impact (upon collision
with the ground). In Figure 3.9c, we have highlighted (plotted in red) the results
reported by the filtering operation to select potential damage events based on evaluating
the resultant acceleration from the WISP attached to the item. By only subscribing to
the operation with operationID threshold, events of interest (free fall and shock) are
received. Therefore, use of sensor data management middleware such as WINDWare:
i) reduces the complexity of client applications by allowing application developers to
focus on business logic; ii) permits development of applications that are agnostic to
underlying sensing infrastructure; and iii) reduces network traffic from large volume
sensor data streams.

3.5 Discussion

In this chapter, we presented the design, implementation and evaluation of WINDWare
(Wireless Identification and Sensor Data Management Middleware), a middleware
for passive sensor enabled RFID tags. The proposed middleware (WINDWare) pro-
vides: i) extracting of sensor and ID data; ii) operations on sensor data (filtering and
aggregation); and iii) sensor data subscriptions and reporting. The generic middle-
ware architecture is implemented by extending Fosstrak. Furthermore, WINDWare
adheres to the standardised EPCglobal architecture through implementing the ALE
specification and using the extensions provisioned by the standards. The real-world
applicability of WINDWare is demonstrated through a prototype application. The
proposed middleware processes the ID data and sensor data in unison, maintaining
the important relationship between sensor data and its source. This association is
paramount, particularly for real-time applications such as human activity recogni-
tion [61].

The proposed tag data format makes extending the WINDWare trivial as there
are no modifications required to existing implementations. Similarly, as discussed
in Section 3.3, sensor data operations can be integrated seamlessly into the imple-
mentation, without modifications to the existing sensor data subscription or reporting
implementations. Thus, WINDWare facilitates the acquisition and manipulation of
sensor data from passive sensor enabled RFID tags. The WINDWare source code is
available at WINDWare GitHub page4 and was partly developed by Mr Yu Yan whilst
an undergraduate at the University of Adelaide.

4https://github.com/AdelaideAuto-IDLab/windware



Chapter 4

Features for Activity Recognition

4.1 Introduction

In Chapter 2, we observed that most of the studies on Human Activity Recognition
(HAR) using wearable sensors relied on battery powered sensors and these studies
had used a wide array of features. Broadly, these features are calculated based on the
statistical measures and frequency domain properties of sensor data streams, as well
as considering the biomechanical motion of sensor wearers [44, 51, 52].

In this thesis, we utilise a sensor tag, which is a passive acceleration sensor
embedded in an RFID platform (see Section 2.3.2) for HAR instead of a battery
powered sensor. Unlike battery powered sensors, data streams from sensor tags are
sparse, with low and variable sampling rates because passive sensors need to harvest
adequate energy prior to powering and sampling a sensor [23]. Furthermore, due to
insufficient power to the embedded accelerometer may increase the measurement noise.
As a result of this sparsity, features that require a data stream with a regular sampling
rate cannot readily be extracted. For example, frequency-domain features [17, 44, 117]
require a data stream with a regular sampling rate. More recently, autoregressive
coefficients have successfully been used as features in HAR [35]; these features also
require a data stream with a regular sampling rate to be meaningful.

In this chapter, we initially provide a brief overview of the motion patterns that
are observed in ambulatory monitoring in an older care setting (see Section 4.2). The
sensor tag used in this thesis has two data sources (see Section 2.3.2): i) frontal (a f ),
lateral (al) and vertical (av) acceleration values from the embedded accelerometer; and
ii) the information from the RFID platform. In particular, we describe the features
extracted from the acceleration signal (see Section 4.3.1) and features extracted using
the information from the RFID platform (see Section 4.3.2). Since the data streams
from sensor tags are sparse , we propose a dynamic sensor data augmentation algorithm,
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av
al

af

Fig. 4.1 Analysis of ambulating out of the lying posture

an approach to facilitate online interpolation of sparse acceleration data streams from
sensor tags to allow extraction of features that require a data stream with a regular
sampling rate (see Section 4.4). Our approach reduces interpolation errors when
interpolating sparse sensor observations that are temporally distant by augmenting the
sensor data stream using the most recent sensor observations. We implement five real-
time sensor data stream interpolation methods with an increasing order of complexity.
Finally, we provide evaluations, using the four datasets described in Section 2.4, on
the interpolation methods and different feature sets that are possible from unprocessed
and interpolated sensor tag data streams. In this chapter, we extend the work which
was published in the International Conference on Mobile and Ubiquitous Systems:
Computing, Networking and Services proceedings [29].



4.2 Motion Analysis 53

Fig. 4.2 Acceleration and RSSI signal patterns collected from W2ISP in HOA-Room2
for the motion sequence shown in 4.1, where a participant got out of the bed from
lying-on-bed (lying-on-side).

4.2 Motion Analysis

Human motion analysis provides the basis for formulating features used in this thesis;
in particular, we analysed the movements involved in getting out of the bed, as shown in
Figure 4.1. Participants may lift their trunk to a vertical position using their dominant
arm when they are lying in a supine posture and then turn their body, facing the edge
of the bed to place their legs on the ground. On the other hand, they can also roll over
to the edge of the bed and then use the weight of the legs and arm to raise their trunk
to a vertical position. When the sit-to-stand posture transition is considered, as also
first shown by Najafi et al. [62], participants first bent forward (stage (ii) in sit-to-stand
transition in Figure 4.1) and then stand up.

Figure 4.2 shows the RSSI signal in HOA-Room2 for an activity sequence roll-
out-of-the-bed illustrated in Figure 4.1. These motion patterns are captured by the
accelerometer (see Figure 4.2). The measured acceleration signals (a f , al and av)
and rotational motion of the trunk on sagittal (θ ), coronal (α) and transverse (β )
planes, approximated using the acceleration signal, can be used to describe these
movement patterns. For instance, during the sit-to-stand transition, the acceleration
in the vertical direction av and the trunk rotational motion on the sagittal plane (θ )
provides a good description of the motion [62]. Furthermore, as shown in Figure 4.1,
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Fig. 4.3 Distribution of the RSSI values received at A3 in HOA-Room2 (1: sitting-on-
bed; 2: lying-on-bed; 3: out-of-bed). Boxes are drawn at the 1st and 3rd quartile, the
central mark on each box is the median and whiskers represent ≈±2.7σ

the rotational motion of the trunk on coronal (α) and transverse (β ) planes also
provide information on the getting-out-of-the-bed of a participant, apart from the
directly measured acceleration signal.

It is noteworthy that the distance between the sensor and a fixed RFID antenna
also varies as a result of human motion. For instance, during the sit-to-stand transition
illustrated in Figure 4.1, the distance from the sensor tag to the RFID antenna while
the participant is sitting on the bed (d1) is greater than the distance from the sensor tag
to the RFID antenna while the participant is standing (d2); i.e. d1 > d2. This change in
distance is reflected in the RSSI measured by the RFID platform.

The RSSI indicates the power level of the backscattered tag response detected by
the reader and this power is given by:

RSSI = PtG2
t G2

pathK (4.1)

where Pt is the output power of the reader, Gt is the gain of the reader antenna, K
is the backscatter gain of the sensor tag and Gpath is the one-way path gain of the
deterministic multipath channel, determined according to Eq.(4.2) [99].

Gpath =

(
λ

4πd0

)2

| H | (4.2)

In Equation Eq.(4.2), d0 is the direct path length, λ is the wavelength of the RF signal
and H is the channel response due to the multipath. From Eq.(4.1) and Eq.(4.2), we
can see that the RSSI is hypersensitive to distance d0 as RSSI ∝ 1/d4

0 . This indicates
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that the RSSI can be used to approximate that distance between the sensor and a given
antenna.

From Figure 4.2, we can see that when a participant is lying on the bed, there is
a lower RSSI value compared with when the participant is in a standing or seated
position because of the larger distance between the sensor tag and A3. Figure 4.3 shows
the distribution of absolute RSSI values for sensor observations collected from A3 in
HOA-Room2. From this Figure, we can see that although there are overlaps between
the distributions, each activity has a different RSSI distribution. This difference
with respect to each activity arises due to the aforementioned variation in distance
between the sensor tag and RFID antennas while performing activities. Considering
this behaviour of the RSSI, an approximation of the participant’s location within the
room relative to a fixed antenna can be made.

The following sections describe the calculation of features based on the above ob-
servations, considering the two information sources; acceleration and the information
from RFID platform.

4.3 Features from Sensor Tag Data Streams

We denote the ith sensor datum at time ti, ti > ti−1, i ∈ N, using the pair (ti,si), where
si = [a f ,av,al,RSSI,aID]. Because of the irregular nature of the data collection, the
sequence of collected data X = {(ti,si)}i≥1, i ∈ N is a non-uniformly sampled time
series. We use subscripts to denote subsequences; for instance X[a,b] denotes the sensor
data stream segment for time interval [a,b], where b > a. For this feature calculation,
we consider a fixed time sensor data stream segment of length δ t for each sensor
observation. Therefore, for the ith sensor observation, features are extracted using the
sensor data subsequence X[ti−δ t,ti].

4.3.1 Features from Acceleration Signals

As can be seen from Section 4.2, acceleration signals capture both translational motion
and rotational motion. In this section, we describe the acceleration based features used
in this thesis under three categories: i) instantaneous features; ii) time-domain features;
and iii) frequency domain features.

Instantaneous Features

Nine instantaneous features are extracted considering the most recent sensor observa-
tion. We have utilised raw acceleration values, frontal (a f ), lateral (al) and vertical
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Table 4.1 Features from statistical measures

# Feature Name # Feature Name # Feature Name

1 mean 5 standard deviation 9 maximum value
2 mode 6 mean absolute deviation 10 range
3 median 7 median absolute deviation 11 skewness
4 variance 8 minimum value 12 kurtosis

(av), from the sensor tag as features. We also approximate the angles illustrated in
Figure 4.1: i) θ—angle between the gravity vector and the coronal plane of the body
(Eq.(4.3)); ii) α—angle between the gravity vector and the sagittal plane of the body
(Eq.(4.4)); and iii) β—angle between the coronal plane and the world horizontal axis
(which it perpendicular to the gravity), particularly while the patient is lying on bed.

θ ≈ tan−1(a f /
√

a2
v +a2

l ) (4.3)

α ≈ tan−1(al/av) (4.4)

β ≈ tan−1(al/a f ) (4.5)

This approximation relies on the components of gravity on the directions of the
accelerometer axes to determine the orientation and acceleration due to human motion
is assumed to be negligible compared with the acceleration due to gravity. These
angular measurements provide a general description of the sensor wearer’s postures
and posture transitions, as illustrated in Figure 4.1. Although the angle θ has been
used previously in [62, 69, 61], the angles α , β from the acceleration signals have not
been considered previously for activity recognition.

Based on these angles (θ , α and β ), we can also estimate the acceleration due
to human motion relative to a reference frame having z-axis in the vertical in the
word and the x-axis on the frontal direction of the body by projecting the acceleration
vectors to the axes of the reference frame as follows.

ax ≈ avsin(θ)+a f cos(θ) (4.6)

ay ≈ avsin(α)+alcos(α) (4.7)

az ≈ 1+avcos(θ)cos(α)+alsin(α)+a f sin(θ) (4.8)

Time-Domain Features

Most of the previous research relied on time-domain features for HAR [34, 62, 17, 80].
We consider 12 statistical measures as features listed in Table 4.1. In addition, to
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the 12 statistical features, we consider whether the maximum value occurs prior to
the minimum value in the data stream segment and denote this as Maximum Prior to
Minimum (MPM). This information is represented as follows in Eq.(4.9).

MPM(X) =

1, if argmax xi∈X < argmin xi∈X

0, otherwise
(4.9)

.
In Equation Eq.(4.9), X is a one-dimensional vector for the sensor observation

segment for a given measure, such as a f or θ . In particular, this feature is based on
previous work by Najafi et al. [62], where they captured posture transitions using a
similar methodology.

The histogram based on the signals can be used to estimate the distribution of
the signal [117]. Therefore, we created a histogram with ten equal bins and utilised
them as features and we denoted this as hist. Furthermore, as also highlighted in
previous activity recognition research, the correlation between the acceleration axes
(corr) contains information to distinguish activities. We have also considered this
feature for our experiments [17].

The change in vertical velocity and distance using vertical acceleration have been
approximated and used as features [62, 69]. Inspired by these features, we approximate
the change in velocity (∆v) and displacement (∆d) for the body motion in all three
directions relative to the human body (anteroposterior axis-x; mediolateral axis-y; and
dorsoventral axis-z) for the motion during a given segment as given in Eq.(4.11).

∆v≈
∫

δ t

0
adt (4.10)

∆d ≈
∫

δ t

0
vdt (4.11)

The integration in the above equations were approximated using trapezoidal
integration. Furthermore, we have considered the change in the resultant veloc-
ity ∆vr calculated based on Eq.(4.11) using resultant acceleration without gravity
ar =

√
a2

x +a2
y +a2

z . Previous, this feature has been shown to possess activity infor-
mation in [69].

Coefficients of an autoregressive model (ARC) have also been considered as fea-
tures for activity recognition [35]. As shown in Section 2.4.4, the data streams from
sensor tags have a variable sampling rate. However, the ARC features need to be
extracted from a data stream with fixed sampling rate. Therefore, data streams from
sensor tags need to be interpolated in order to calculate the ARC features.
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Frequency-Domain Features

We consider frequency domain features calculated based on Fast Fourier Transfor-
mation (FFT) applied to the information within a segment. Frequency domain
features based on Fourier transformation have been used in activity recognition re-
search [17, 44, 117]. When the sensor is adequately powered, a data stream with an
upper bound sampling rate of 40 Hz can be obtained (see Section 2.3.2). Therefore,
information regarding human activities which constitute of lower frequencies can be
captured using frequency-domain features. These features were calculated with respect
to acceleration signals, a f , al , av, and the resultant acceleration signal, ar.

We have considered lower order coefficients as features [44]. This feature captures
the dominant frequency associated with each activity and we considered first 80 FFT
coefficients.

We have also calculated the signal energy (SE) based on Fourier transformation.
Given that FFT is applied to obtain n coefficients, the energy is calculated as:

SE =
n/2+1

∑
i=1

(2xi)
2 (4.12)

Here xi is the ith Fourier coefficient. In Equation Eq.(4.12), up to n/2+1, elements
are considered owing to the Nyquist frequency. In addition, we divided the frequency
spectrum into ten equal bands and calculated the energy for each band to be used as
features.

We consider the spectral density as a feature [117]. Specifically, as described
in [117], we considered the first ten FFT coefficients, excluding the zero-order compo-
nent (9 features) to calculate the spectral density.

In addition, we also consider spectral entropy (PSE) as a feature. This was
calculated using the spectral density of the entire signal, P(xi) as given in Eq.(4.13).

P(xi) =
1
N
|x2

i |

pi =
P(xi)

∑
n
i=1 P(xi)

PSE =−
n

∑
i=1

piln(pi) (4.13)
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4.3.2 Features from the RFID Platform

One of the advantages of using sensor tags is that the availability of information
from the RFID platform such as RSSI and the antenna (aID) that captured a given
sensor observation; this has been explained in Section 2.3.2. We have mentioned in
Section 4.2 that the RSSI and aID depicts variations based on the distance and location
of the sensor tag. These variations can be used to recognise activities [87].

Similar to acceleration signals, we utilise the eight statistical features that are
{1,3,5,8,9,10,11,12} listed in Table 4.1. Furthermore, we also utilise the feature
Maximum Prior to Minimum Eq.(4.9). These features are calculated considering each
antenna in the RFID deployment.

It is further observed that the RFID reader antennas that collect sensor observations
vary with the location of the participant since the RFID antenna facing the sensor is
most likely to both power and collect the response from the sensor tag. For instance,
from Figure 4.2, we can observe that while the participant is lying-on-the-bed, sensor
observations are not captured by the A1 antenna. To represent this information we
utilise a binary feature, ant ∈ {0,1}|A | where A is the set of antennas in an RFID
deployment.

Furthermore, following the work by Krishnan and Cook [49] and Shinmoto Tor-
res et al. [46], we also use a mutual information based measure to quantify this
information. We calculate the mutual information by counting the combinations of
observations originating from different antennas and dividing the counts by the total
number of observations within the sensor observation series to normalise them. The
normalisation is important to obtain a consistent representation, as the number of
observations for a given sensor observation sequence is variable. Thus a matrix of
mutual information mi can be obtained. An element mia,a′ represents the weighted
number of co-occurrences of the observations from antenna a and antenna a′, and its
value is obtained as in Eq.(4.14).

mia,a′ =
1
n

n−1

∑
i=1

1[{a,a′}={anti,anti+1}] (4.14)

In Equation Eq.(4.14), 1[x] assumes 1 if x is true and 0 otherwise, anti is the antenna
ID for the ith sensor observation and n is the number of observations in the considered
subsequence of sensor observations. The considered combination of antennas is
presented within {·, ·}.

We utilise two approaches to extract features based on mutual information from a
segment. We specifically use the approach MI2, described in [46]. We refer to this
features as the mutual information weighted sensor observation count (miW ) since
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it is obtained as a weighted count of observations where weights are retrieved from
a pre-calculated mutual information matrix considering the antenna for the current
sensor observation as the reference. Given a pre-calculated mutual information mi
according to Eq.(4.14) using available data, miWi ∈ R|A | for the ith sensor observation
is obtained as in Eq.(4.15).

miWi(a) = mianti,a
1

|X[ti−δ t,ti]|

|X[ti−δ t,ti]
|

∑
j=1

1[anti=ant j], a ∈A (4.15)

The other approach is to create a mutual information matrix per segment and
consider the combinations of different antennas as features. Thus,

(|A |
2

)
number of

features can be obtained. We refer to this feature as antenna co-occurrences (miC).

4.4 Interpolating Sparse Acceleration Signals

Although, there are methods to obtain frequency-domain features based on Non Uni-
form Fast Fourier Transform (NUFFT) from sparse data streams [118, 119], other
features such as autoregressive coefficients and discrete cosine transformation coef-
ficients [120] that requires a regular sampling rate cannot be readily extracted using
these approaches. Therefore the common approach to achieve a regular sampling rate
is to interpolate the signal. To this end, we interpolate the acceleration signals from
the sensor tags within a given segment, X[ti−δ t,ti], to obtain a data stream segment with
a regular sampling rate.

However, interpolating between sensor observations that are temporally distant
would lead to large interpolation errors due to the unavailability of sufficient infor-
mation to approximate the acceleration signal, as indicated by large temporal gaps
in our datasets (see Section 2.4.4). For example, consider a function f : [a,b] 7→ R,
where [a,b] denotes a bounded interval in R, approximated by an nth order polynomial
interpolant P using a distinct set of n+1 data points D = {x0 . . .xn} ⊂ [a,b]. Then the
interpolation error E f

n (x) = f [x0 . . .xn]∏
n
j=0(x− x j), where f [x0 . . .xn] represents the

nth order divided difference [121]. E f
n (x) clearly indicates that the interpolation error

increases with (x j+1− x j). Consequently, interpolating between sensor observations
that are temporally distant leads to extracting poor contextual information related to
the current activity.

To overcome this issue we use the dynamic sensor data augmentation algorithm in
Algorithm 1, which considers a sequence of sensor observations X[ti−2δ t,ti] to interpolate
the ith segment. Different interpolants require different numbers of minimum data
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Algorithm 1 Dynamic sensor data augmentation
Require: X // Received sensor observations, i // Current index, N // Number of sensor

observations required by an interpolant, δ t // Segment size
Ensure: X̂ int // Observations for interpolation.

1: X̂i = X[ti−δ t,ti]

2: X̂aug = { /0}
3: s = argmax

j∈{ j|t j≤ti,t j>ti−2×δ t}
ti− tk

4: if |X̂i|< N then
5: for j = 1 to N−|X̂i| do
6: ts− j = ts− j×δ t
7: X̂aug

j = (ts− j,ss)
8: end for
9: X̂ int = X̂aug∪ X̂i

10: end if

Table 4.2 Summary of interpolation methods used

Pre-processing Notation

Raw signal Raw
Linear interpolation Lin
Cosine interpolation Cos
Cubic interpolation Cub1
Cubic convolution interpolation [122] Cub2
Lagrange interpolation Lag

points, N, for successful interpolation. If there is an inadequate number of data
points for interpolation (line 4 in Algorithm 1), then the furthest sensor observation
(ts,ss) from (ti,si), where ts ≤ ti, is replicated at time steps of δ t from ts until the
required number of data points for interpolation is obtained (line 5 in Algorithm 1).
For example, if a single sensor observation needs to be augmented, then it is augmented
as (ts−1,ss−1) = (ts−δ t,ss).

We consider piecewise interpolation using five interpolation methods summarised
in Table 4.2. Figure 4.4 illustrates an example resultant signal when the aforementioned
interpolation methods are applied to a 1D sparse acceleration data stream. We select
these interpolants, considering the complexity and the number of data points required
for the interpolation. A lower number of data points results in a poor approximation
but these methods are less affected by larger sampling intervals. In contrast, a higher
number of data points, typically, provides a better approximation of a signal but these
methods are more influenced by larger sampling intervals as in our case. Both linear
and cosine interpolants require two data points. In contrast to the linear interpolation
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Fig. 4.4 Segment of the a f acceleration signal from a sensor tag interpolated to achieve
40 Hz sampling rate using different interpolation methods

method, the cosine interpolation method produces a smoother signal, as shown in
Figure 4.4. Cubic and fourth-order Lagrange polynomial interpolants require 4 and
5 data points respectively. The cubic convolution [122] interpolation method, which
was initially proposed for image data interpolation, only requires 3 data points and
produces a signal similar to the cubic interpolation method (see Figure 4.4) but with
one less data point.

4.5 Experiments

In this study, we evaluate HAR performance when different interpolation methods,
summarised in Table 4.2, are used to condition the sparse data streams from a sensor
tag prior to feature extraction. Our main aim is to identify whether the additional
features extracted using the interpolated data stream achieve a significant performance
improvement over the features possible from a raw sensor data stream in the context
of body-worn sensor tags. We also evaluate the mean time taken to generate a feature
vector when interpolation is utilised as a measure of the cost involved in the additional
processing of sensor tag data stream (see Table 4.2).

We utilise two state-of-the-art discriminative classification algorithms successfully
used in previous activity recognition studies: i) a Support Vector Machine (SVM) [63];
and ii) Conditional Random Fields (CRF) [25]. We utilise linear SVM (LSVM) [123],
non-linear SVM with Radial Basis Function (RBF) kernel (NSVM) [124] and the
linear chain CRF implementation proposed in [46] because we are interested in ap-
plications that require real-time HAR. We train activity recognition models based on
LSVM, NSVM and CRF to recognise activities: i) sitting-on-bed; ii) lying-on-bed;
iii) ambulating; and iv) sitting-on-chair, using the datasets described in Section 2.4.
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We have observed in Chapter 2, that the segment size influences classification
performance. The segment size also influences the feature extraction performance as
it increases the number of data points to be processed. Therefore, we also evaluate
different segment sizes for feature extraction and different interpolation methods.

We evaluated HAR the performance based on the mean F-score for multi-class
classification. F-score is the harmonic mean of the metrics precision (P) and recall (R)
and is calculated as F-score = 2.P.R/(P+R) where precision (P) and recall (R) are
used as per the standard definitions. In contrast with accuracy, the F-score provides a
better view of the classifier performance, especially for datasets with imbalanced class
distributions as in our case, because the F-score is not biased towards the majority
class [125]. We also present our final results using accuracy, precision, recall and
specificity for completeness.

We obtained activity recognition performance using the 10-fold cross-validation
strategy. We placed each trial (a continuous recording of a broadly scripted activity
sequence from a single participant) randomly in tandem. Then we subdivided the
dataset into 10 portions (folds) where each fold constitutes complete activity sequences,
as required by the CRF classifier. The first eight folds are used as the training data to
obtain the validation performance for parameter selection. Then testing performance
is obtained by training the classifier using the first 9 folds and testing on the 10th fold.
This process is repeated ten times by rearranging the folds by shifting circularly by
one. The set of hyper-parameters resulted in the highest mean F-score for validation is
selected for the final model.

Using the sensor tag data stream, three sets of features can be obtained: i) features
from raw acceleration signals (ACC); ii) features from the information the RFID
platform (RFID); and iii) features from interpolated acceleration signals (INT ). In
this experiment, we present HAR performance with respect to combinations of these
feature sets.

4.5.1 Evaluation of Interpolation Methods

We initially conduct an experiment to evaluate the HAR performance when using
features available from unprocessed data streams and features that can be calculated
with interpolated data streams. The main goal of this experiment is to identify a
suitable interpolation method as well as evaluate the cost of interpolation.

For this experiment, we only consider HOA-Room1 and HOA-Room2 datasets
(see Section 2.4.2). As explained in Section 2.4.2, these datasets were collected from
14 older participants. The dataset HOA-Room1 consists of four RFID antennas and
HOA-Room2 contains three RFID antennas.
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Table 4.3 Features for the evaluation of interpolants

Raw Acceleration (ACC) RFID Platform (RFID) Interpolated Acceleration (INT )

a f RSSI 80 FFT coefficients
al aID Signal Energy (SE)
av miW Spectral Density
θ Spectral Entropy (PSE)
α AR Coefficients
∆vz
∆dz

Table 4.3 lists the selected features used for this evaluation and these features are
described in detail in Section 4.3.1 and Section 4.3.2. During the experiments, we
have utilised all the features listed in Table 4.3 for each interpolant and we utilise
features possible from raw acceleration and features from RFID platform when the
unprocessed (Raw) data stream is considered.

Features from Raw and Interpolated Acceleration Signals

We obtained activity recognition performances for each interpolant (see Table 4.2),
based on segment sizes δ t ∈ {2,4,8,16} for each classifier. Figure 4.5 and Figure 4.6
present activity recognition performances for the two datasets with the three classifica-
tion models. Table 4.4 presents the highest performing classifiers for each interpolation
method for both datasets, i.e. HOA-Room1 and HOA-Room2. From these results, we
can observe that, in 4 out of 6 instances, performance (i.e. mean F-score) of Cub2
is higher but statistically insignificant compared with other interpolation methods
(excluding Raw). This general consistency is because the Cub2 interpolant can provide
a better approximation for acceleration signals when compared with Lin and Cos
interpolants. Furthermore, noisy acceleration data have a lower influence on Cub2
compared with Cub1 (N = 4) and Lag (N = 5) because Cub2 (N = 3) require a lower
number of data points. Given the sparse nature of the data stream, interpolants that
require higher numbers of data points, such as Cub1 and Lag, result in the inclusion of
temporally distant sensor observations for successful interpolation (see Section 4.4).
This also results in poor approximations of missing acceleration data as the temporally
distant observations are most likely to belong to different activities. Therefore, Cub2 is
able to produce more informative features for HAR. On the other hand, Lag depicted
the lowest performance among all the interpolants. The main reason is that Lag is more
influenced, compared with others, by data stream sparsity as it requires five data points.
Additionally, if the number of data points, N, required for interpolation is N < 5,
then sensor observations are augmented as stated in the algorithm in Algorithm 1.
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Fig. 4.5 Activity recognition performance for HOA-Room1 (Raw: ACC∪RFID; other
interpolated methods: ACC∪RFID∪ INT )
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Fig. 4.6 Activity recognition performance for HOA-Room2 (Raw: ACC∪RFID; other
interpolated methods: ACC∪RFID∪ INT )
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Table 4.4 Activity recognition performance for both datasets*

LSVM NSVM CRF

HOA-Room1

Raw 83.27±2.37 (8) 88.45±1.68 (8) 83.22±3.52 (2)

Lin 84.44±1.90 (4) 85.98±1.25 (4) 83.73±2.40 (2)
Cos 83.78±1.09 (4) 85.33±3.69 (2) 83.42±2.21 (2)
Cub1 83.70±3.41 (2) 86.17±1.83 (8) 82.39±2.90 (4)
Cub2 84.96±1.23 (4) 86.91±3.00 (2) 83.67±1.89 (2)
Lag 83.43±1.57 (2) 84.39±2.19 (8) 81.25±2.66 (2)

HOA-Room2

Raw 82.28±3.04 (8) 85.53±2.86(8) 79.99±4.76 (16)

Lin 81.92±4.32 (4) 82.97±3.02 (16) 76.61±4.24 (2)
Cos 84.05±6.21 (2) 84.48±2.76 (4) 76.48±3.95 (2)
Cub1 80.42±6.27 (2) 84.86±3.57 (2) 76.08±6.21 (2)
Cub2 84.97±3.47 (2) 84.36±3.34 (2) 77.26±3.62 (2)
Lag 79.52±4.33 (4) 82.56±5.90 (4) 74.70±2.83 (2)
* Results present the F-score [mean±SD]; the segment size

δ t for each value is shown in brackets; the highest mean
performance for each classifier and room configuration is
shown in bold face; the highest mean performance for each
classifier for interpolation methods are shown in italics.

Although sensor observation augmentation is necessary to reduce interpolation errors,
augmenting a higher number of sensor observations may significantly change the
activity patterns represented in the acceleration data. Therefore, increasing the number
of augmented sensor observations, as in the case of Lag, adversely affect extracted
features, subsequently resulting in further decreasing HAR performances.

Interpolation Cost

We consider the time required to interpolate and extract features together in contrast
with treating them separately because interpolation is necessary to condition the data
stream before extracting additional features (see Table 4.3). We obtain the mean time to
generate a feature vector for a single segment based on different segment sizes because
the number of data points to be considered for feature extraction increases linearly
with the segment size. We have investigated the interpolation methods summarised
in Table 4.2. Results in Figure 4.7 are obtained using Matlab (version: 8.2.0.701)
on a machine running the Windows 8.1 operating system with 8 GB Random Access
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Fig. 4.7 Mean time taken to extract a feature vector using a single segment for each
preprocessing method in Table 4.2 for different segment sizes.

Memory and x-64 processor with 4 cores running at 2.40 GHz (Intel Core i7-3630QM
@ 2.4 GHz).

Figure 4.7 shows the mean time taken to generate a feature vector for a single
segment using each interpolation method in Table 4.2. As expected, the time taken to
generate a feature vector using interpolated acceleration is at least five-fold greater than
that of using Raw data. Furthermore, increasing the segment size linearly increases
the mean time for generating a feature vector, and this is associated with the linear
increase in samples with the segment size.

These results (see Figure 4.7) also depict that the mean time taken by each inter-
polant depends on the complexity of the interpolant. For instance, Lag showed the
highest mean time taken as it required the most number of data points, i.e. N = 5.

4.5.2 Activity Recognition from Different Feature Sets

Given the significant cost involved with interpolating the acceleration signals, as
demonstrated in Section 4.5.1, it is interesting to evaluate the HAR performance
using above three sets of features. This experiment is conducted using the Cub2
interpolation method as it showed better performance (see Section 4.5.1) among the
other interpolates listed in Table 4.2. We utilise all datasets, i.e. HYA, HOA-Room1,
HOA-Room2 and FOA, described in Section 2.4. The dataset HYA has been collected
using ten healthy young participants using an RFID infrastructure with four RFID
antennas. The FOA dataset has been collected from frail hospitalised older people
and an RFID infrastructure with three RFID antennas. The features used for this
experiment are listed in Table 4.5. Based on these features, we evaluated the HAR
performance for seven feature set permutations.

Figures 4.8, 4.9, 4.10 and 4.11 present the activity recognition performance for the
datasets HYA, HOA-Room1, HOA-Room2 and FOA respectively. When the feature sets
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Fig. 4.8 Activity recognition performance for HYA
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Fig. 4.9 Activity recognition performance for HOA-Room1
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Fig. 4.10 Activity recognition performance for HOA-Room2
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Fig. 4.11 Activity recognition performance for FOA
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Table 4.5 Features for activity recognition evaluation

Raw Acceleration (ACC) RFID Platform (RFID) Interpolated Acceleration (INT )

a f mean(RSSIa),a ∈ A SE(s),s = {a_ f ,a_l,a_v,a_r}
al median(RSSIa),a ∈ A SE_{band}(s),s = {a_ f ,a_l,a_v,a_r}
av std(RSSIa),a ∈ A PSE(s),s = {a_ f ,a_l,a_v,a_r}
θ min(RSSIa),a ∈ A ARC_5(s),s = {a_ f ,a_l,a_v,a_r}
α max(RSSIa),a ∈ A
β range(RSSIa),a ∈ A
mean(s),s = {a f ,al,av,ar,θ ,α,β} skewness(RSSIa),a ∈ A
median(s),s = {a f ,al,av,ar,θ ,α,β} kurtosis(RSSIa),a ∈ A
std(s),s = {a f ,al,av,ar,θ ,α,β} MPM(RSSIa),a ∈ A
min(s),s = {a f ,al,av,ar,θ ,α,β} miC
max(s),s = {a f ,al,av,ar,θ ,α,β}
range(s),s = {a f ,al,av,ar,θ ,α,β}
skewness(s),s = {a f ,al,av,ar,θ ,α,β}
kurtosis(s),s = {a f ,al,av,ar,θ ,α,β}
MPM(s),s = {a f ,al,av,ar,θ ,α,β}
hist(s),s = {a f ,al,av,ar}
∆vx,∆vy,∆vz,∆vr
∆dx,∆dy,∆dz,∆dr

ACC, RFID and INT are considered, we can see a similar performance between ACC
and INT across all datasets and classifiers. The feature set RFID depicted the lowest
HAR performance. When feature set combinations are considered, in most instances,
increases in HAR performance with respect to individual feature set performances can
be observed. In particular, the ACC∪RFID feature set depicted higher performance
than ACC or RFID when considered individually. A similar observation is made for
the ACC∪ INT and RFID∪ INT . Among all the datasets, FOA generally depicted a
lower HAR performance.

The above observations can be closely analysed using Table 4.6, which present
the performance for feature set combinations for each classifier. From this table, we
can see that only a marginal performance improvement can be achieved by using
the features available from the interpolated acceleration (using Cub2). For instance,
in the HYA dataset, NSVM achieved the highest performance at 84.78% using all
the features. In this instance, the next best performance (83.08%) was achieved by
NSVM with the ACC∪RFID feature set. In the case of the FOA dataset, the highest
performance of 58.98% was achieved by NSVM using only time-domain features from
the accelerometer.

When each dataset and classier combinations is considered, in nine out of 12
instances a feature set that has features possible from interpolated acceleration signals
have shown the highest performance. Furthermore, from Table 4.6, it is observed that
for each dataset, the highest performance was achieved by a feature set having INT .
This indicates that features possible from interpolated acceleration signals provide
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Table 4.6 Activity recognition performance for feature set permutations *

LSVM NSVM CRF

YHA

ACC 80.26±3.30 (8) 82.01±4.95 (8) 80.32±4.21 (8)
RFID 51.24±3.80 (4) 62.48±7.25 (4) 61.91±7.25 (4)
INT 68.46±6.90 (2) 74.54±4.94 (2) 73.36±4.10 (1)
ACC ∪ RFID 81.73±3.16 (8) 83.08±3.90 (4) 80.83±4.47 (16)
ACC ∪ INT 79.85±4.22 (8) 82.59±4.61 (8) 81.50±4.22 (8)
RFID ∪ INT 71.92±5.63 (2) 77.64±4.74 (2) 75.92±3.54 (1)
All 80.79±3.92 (8) 84.78±3.29 (4) 82.61±3.97 (8)

HOA-Room1

ACC 68.59±9.28 (4) 73.57±7.32 (2) 71.79±6.66 (4)
RFID 53.29±4.91 (1) 59.61±5.40 (4) 66.14±7.48 (1)
INT 59.53±6.08 (2) 69.39±6.08 (4) 69.75±6.17 (1)
ACC ∪ RFID 80.07±4.15 (16) 84.28±3.02 (8) 84.65±4.30 (1)
ACC ∪ INT 72.64±7.53 (8) 73.97±7.17 (16) 71.94±5.68 (2)
RFID ∪ INT 84.48±3.19 (2) 85.48±3.11 (2) 84.82±2.97 (2)
All 84.64±2.52 (4) 85.55±3.81 (8) 84.52±3.13 (4)

HOA-Room2

ACC 73.03±9.87 (4) 73.42±10.12 (4) 70.79±14.73 (2)
RFID 45.88±6.96 (2) 51.47±7.06 (4) 55.33±12.43 (2)
INT 64.90±10.50 (2) 71.31±9.94 (2) 71.23±15.33 (2)
ACC ∪ RFID 73.79±11.46 (2) 72.71±9.88 (2) 75.08±13.62 (1)
ACC ∪ INT 72.38±9.27 (2) 73.53±9.34 (2) 72.12±12.82 (2)
RFID ∪ INT 74.15±12.71 (2) 75.06±10.82 (2) 77.74±13.31 (2)
All 75.71±8.87 (4) 74.50±12.55 (2) 76.50±11.91 (8)

FOA

ACC 58.89±9.08 (16) 58.98±12.04 (8) 58.04±10.68 (2)
RFID 28.29±6.50 (1) 36.08±6.80 (8) 37.65±5.81 (1)
INT 50.44±10.16 (8) 56.51±9.99 (1) 55.70±9.80 (1)
ACC ∪ RFID 57.79±9.59 (1) 57.94±9.89 (16) 58.84±9.43 (16)
ACC ∪ INT 57.57±9.73 (8) 59.19±12.49 (8) 58.03±10.85 (1)
RFID ∪ INT 52.54±10.11 (2) 58.70±10.81 (2) 57.61±9.80 (2)
All 57.82±10.98 (4) 58.90±11.80 (4) 58.59±10.81 (1)
* Results present F-score [mean±SD]; the segment size δ t for each value

is shown in brackets; the highest mean performance for each dataset is
shown in bold face; the highest mean performances for each classifier
for each dataset are shown in italics.
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information which are not captured by time-domain features from raw acceleration
signals.

4.6 Discussion

In this chapter, we have looked at the features that can be extracted from the sensor
tag data stream. In particular, using an example motion sequence, i.e. a participant
getting out of bed, we showed that the sensor tag captures motion patterns not only
using acceleration signals but also based on the RSSI, which varies with the sensor
wearer with respect to a fixed RFID infrastructure. We have also presented how these
motion patterns were captured by providing details of the features. Furthermore, we
proposed an online sensor data augmentation algorithm to mitigate the issues that arise
when interpolants are used to interpolate intermittent data streams from sensor tags.
Online interpolation enabled the readily computation of the features requiring data
streams with regular sampling rates. We implemented five interpolation methods and
evaluated the performance in terms of HAR as well as mean time to obtain a feature
vector to be used in real-time HAR. Finally, we evaluated combinations of feature sets
that are possible from the raw acceleration signal, interpolated acceleration signal and
features available from the RFID platform.

In this chapter, we proposed four novel features. We utilised rotational motion on
coronal (α) and transverse (β ) planes as features. Previously, researchers have only
considered the trunk rotation on the sagittal plane (θ ) [62, 61]. However, based on the
human motion analysis (see Section 4.2), we observed that the getting out of a bed
motion not only involves rotation of the trunk on the sagittal (θ ) plane, but also coronal
(α) and transverse (β ) planes. Therefore, we approximated these rotational motion
using the information from the accelerometer. In addition, we utilised maximum prior
to a minimum (MPM) as a feature. As explained in Section 4.3.1, this feature can
capture posture transitions. Furthermore, the feature miC—antenna co-occurrences—
was also introduced in this thesis. This feature captures the possible location of a
participant within an RFID based monitoring area, such as a hospital room. miC was
inspired by miW (mutual information weighted sensor observation count).

Three sets of features can be considered from sensor tag data streams. Features that
can be directly calculated from acceleration information, which captures time-domain
patterns present in motion patterns as activities that are performed by the sensor tag
wearer. The acceleration data needs to be interpolated to obtain the frequency-domain
information and other complex time-domain features such as the ARC but additional
preprocessing requires a considerable amount of time compared with calculating
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features from the raw acceleration signal. The final set of features is from the in-
formation from the RFID platform. Although these features are calculated without
preprocessing, unlike features from acceleration signals, these features depend on
the RFID deployment configuration. There are two main findings from this study.
First, when only accelerations from sensor tags are considered, features obtained using
interpolation marginally improve the activity recognition performance compared with
time-domain features from the raw acceleration data. Secondly, features based on
information from an RFID platform have a similar performance improvement for
activity recognition and achieve comparable results with activity recognition models
built using additional features possible from interpolation. This indicates that features
from the RFID platform can successfully substitute the additional features possible
from interpolated acceleration data, such as FFT based features, to achieve similar or
better activity recognition performance. On the other hand, RFID deployment agnostic
activity recognition models can be learnt using features based only on acceleration
data, while enjoying the advantages provided by sensor tags but with a considerable
real-time prediction delay (> 400% compared with Raw).

Previously, as discussed in Section 2.2.3 several activity recognition studies have
conducted using a single wearable devise. Shinmoto Torres et al. [46] have recognised
activities on HOA-Room1 and HOA-Room2 data sets using CRF classifier. Their they
have utilised features a f , av, al , sin(tan−1(

a f
av
)), RSSI, aID, ∆t, where ∆t is the time

difference between sensor observations. Using this method, they were able to achieve
F-scores of 65.1± 11.5% for HOA-Room1 and 71.6± 20.2% for HOA-Room2. In
contrast, as shown in this chapter, using an extended set of features have shown to
improve the activity recognition performance of CRF classifier achieving F-scores
of 84.8±3.0% for HOA-Room1 and 77.7±13.3% for HOA-Room2. Apart from the
study in [46], in this chapter, some of the features used in other studies [62, 83, 35, 44]
have been utilised. The work in [62] utilised an empirical algorithm that mainly uses
trunk tilt and vertical displacement to recognise posture transitions (sit-to-stand and
stand-to-sit) and three daily activities (sitting, standing + walking and lying). Using
nine older participants, the method proposed in this study achieved a mean sensitivity
of 93.6% and mean specificity of 95.1% for activities. The approach in [83], have
utilised frequency domain features such as FFT coefficients and spectral entropy to
recognise ten daily activities such as sitting standing, walking, jogging and driving car,
and obtained an accuracy of 92% using data collected from two healthy participants.
Auto regressive coefficients, tilt angle and signal magnitude area has been used in [35]
that achieved an overall accuracy of 97.9% using a data set collected from six healthy
participants. Muhammad et al. [44] evaluated the activity recognition performance of
features mean, standard deviation, spectral energy, spectral entropy, and correlation
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between axes using 6 participants. They achieved an accuracy of 85.98%. Although
the study presented in this chapter depicted a good activity recognition performance, a
direct comparison cannot be made with the existing studies due to the differences in
number of activities, sensing devise and experiment setting.

In conclusion, in this chapter, we have presented an evaluation of features that
can be extracted from the sensor tag. The main focus of this thesis is on monitoring
hospitalised older people. It is expected that given a hospital ward, all the rooms have
a similar layout and hence a similar RFID infrastructure deployment. In this context,
using features based on information from the RFID platform does not pose a significant
impact on activity recognition models. Also, considering the impact of delays with
respect to features possible from interpolated acceleration signals on real-time HAR,
the remaining chapters of this thesis consider the features extracted from unprocessed
acceleration data and the features based on information from the RFID platform for
HAR.



Chapter 5

Data Stream Segmentation on Activity
Boundaries

5.1 Introduction

Current research on activity recognition using body-worn sensors predominantly relies
on battery powered devices. In Chapter 2, we observed that passive sensor enabled
RFID tags could be used as an alternative to battery powered sensors. Despite the clear
advantages, data streams from passive sensors have two unique characteristics, namely
sparsity and noise, which adversely affect the activity recognition task.

In human activity recognition, streaming sensor data are segmented to provide
contextual information to extract features that are descriptive of the current activity
[62, 17, 49]. It is common to use fixed sized segmentation methods, such as fixed
sample and fixed time segmentation, to segment activity data streams. Nevertheless,
we can observe two main issues when fixed size segmentation methods are used to
segment sparse data streams from sensor tags. These issues are illustrated in Figure 5.1.

First, the presence of sensor observations from previous activities in a data stream
segment can over influence feature information pertaining to the current activity in
a data stream segment due to the sparse nature of the data stream [49, 46]. Usually,
fixed size segmentation methods assume that the data stream has a fixed sampling rate.
Therefore, given a fixed time segment, activity information is uniformly distributed
across the sensor data segment. However, in the case of sparse data streams, the above
assumption does not always hold true. For instance, as illustrated in Figure 5.1, fixed
sample segment S3 and fixed time segment T3 for activity A5 is dominated by sensor
observations from activity A4. This may cause the activity recognition performance to
deteriorate.
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Fig. 5.1 Illustration of different segmentation methods on sparse data streams

Secondly, fixed size segmentation methods cause segment boundaries to misalign
with the actual activity boundaries. Segmenting a sensor data stream on activity
boundaries leads to improved activity recognition performance [17, 46, 49]. Although
this is an issue common to both data streams with and without fixed sampling rates,
the resulting adverse effect is larger for sparse data streams, particularly when fixed
sample segmentation methods are used. For example, in Figure 5.1 where A2 and A3
are within T2 and S2 imply that using fixed size segmentation methods will lead to
missing the transition between activity A2 and A3.

Our overarching goal in the context of this thesis is to recognise ambulatory move-
ments leading to falls in a hospitalised older population. Typically, these movements
are activity transitions, such as getting out of the bed and getting out of the chair. Since
the activity data stream is sparse, the data stream carries little information on activity
transitions. For instance, typically an activity transition takes less than a 2 s duration
to complete. Therefore, directly recognising ambulatory movements is challenging.

In this chapter, we focus on segmenting the sparse data stream obtained from
a sensor tag worn over the sternum at approximate activity boundaries in real time
and later propose an approach to recognise ambulatory movements. Specifically, we
propose two data stream segmentation methods based on detecting natural activity
boundaries from sensor data streams to overcome the limitations in using conven-
tional data stream partitioning methods (Section 5.3). These schemes are simple,
inexpensive, bear no assumptions on sampling rates and rely only on the received
sensor observations and are therefore suitable for real-time applications. Then, we
propose an ambulatory movement recognition algorithm to identify activity transitions
to address the issues posed by inadequate sensor observations (sparsity) to recognise
ambulatory movements directly (bed-exits, chair-exits, and walking) (Section 5.5).
This algorithm relies on the recognised activities from activity prediction models
(Section 5.4) and subsequently, re-evaluating the predictions to identify ambulatory
movements. Our algorithm filters predictions from learnt activity prediction models to
reduce false alarms resulting from misclassifications caused mainly by noisy sensor
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Fig. 5.2 Ambulatory monitoring framework

measurements. We evaluated our proposed approach using data gathered from a study
with ten volunteer participants (Section 5.7). The results presented in this chapter have
been published in the IEEE Sensors Journal [30].

5.2 Ambulatory Monitoring Framework

As shown in Figure 5.2, our proposed ambulatory monitoring framework consists of
three stages:

1. Real-time segmentation of sparse data streams on approximate activity bound-
aries that not only leads to extraction of features that are not influenced by
previous activities but also ensures that we can make a prediction for each
activity.

2. Prediction of activities having sufficient sensor observations, such as in-bed,
standing, walking and in-chair, by extracting features based on segments ob-
tained from the first stage increases in activity recognition performance by only
predicting activities with sufficient information. Thus activity misclassifications
of ambulatory movements, such as transferring out of bed, due to limited sensor
observations can be reduced.

3. Re-evaluation of activity predictions to mitigate possible instances of misclassi-
fications and subsequent false alarms caused primarily because of noise in the
data stream. Detecting activities such as bed-exits and chair-exits as transitions
between predicted activities which otherwise cannot be determined directly.

We elaborate on the proposed framework in detail in the following sections.
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5.3 Real-Time Stream Segmentation

The sensor wearer’s trunk depicts various levels of inclination or tilt on sagittal (θ )
and coronal planes (α) (see Chapter 4). These trunk inclinations can be estimated
using the instantaneous acceleration data a f , al and av for each sensor observation as

θ ≈ tan−1(a f /
√

a2
l +a2

v) and α ≈ tan−1(al/av).

We represent the ith sensor observation at time ti, ti > ti−1, i ∈N on the sparse data
stream using the pair (ti,si), where si = [a f ,al,av,RSSI,aID] is a 5-tuple obtained
from the sensor and the sequence of collected data {(ti,si)}i≥1 i ∈ N is a non-uniform
time series. Given two consecutive sensor observations, si−1, and, si, we define an
Activity Boundary Score (ABS) for the sensor observation, si, as in Eq.(5.1).

ABSi = |θi−θi−1|+ |αi−αi−1| (5.1)

The ABS captures the magnitude of changes in θ and α irrespective. During activity
transitions (e.g. sitting-on-bed to standing), a sudden increase in ABS, which we refer
to as trunk tilt peaks, is observed due to rotational movements of a person’s trunk.
Therefore, trunk tilt peaks are indicative of activity transitions and hence possible
activity boundaries.

However, not all trunk tilt peaks correspond to activity boundaries. Our preliminary
experiments revealed the feasibility of using the standard deviation of ABS, ABSsd , in
a dataset to select trunk tilt peaks that are more likely to be associated with activity
boundaries. We defined a model with the condition:

(ABSi−1 < λABSsd)∧ (ABSi ≥ λABSsd) (5.2)

that detects a leading edge of the trunk tilt peak and defines an activity boundary
at time ti where λ is the segmentation parameter that controls the sensitivity of
the segmentation approach and can be found using cross validation, as discussed in
Section 5.6.

Figure 5.3 illustrates activity boundary scores, detecting activity boundaries when
λABSsd = 0.25 and the actual activities using our experimental dataset described
in Section 5.6. It is noteworthy that a majority of the sensor observations within
detected boundaries are from a single activity (class) even though activities have been
fragmented (multiple boundaries within the duration of a single activity). Therefore,
we can expect the data stream segments from our approach to contain information
related to a specific activity as opposed to multiple activities.

The proposed activity boundary detection method can be used for efficient real-
time sensor data stream segmentation because it is computationally simple and relies
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Fig. 5.3 Trunk tilt based activity boundary detection for segmentation (A: sitting-on-
bed; B: lying-on-bed; C: standing; D: walking; E: sitting-on-chair)

Algorithm 2 Non-overlapping segmentation
Require: λ , δ tmin, δ tmax, (ti,si)i≥1

1: buffer.clear()
2: for i = 0 to T do
3: if isEmpty(buffer) then // start a new segment
4: tstart ← ti
5: end if
6: buffer.add((ti,si))
7: if (isActivityBoundary(ti,λ ) and (ti− tstart > δ tmin)) or (ti− tstart ≥ δ tmax) then
8: segi← buffer
9: buffer.clear()

10: output segi and continue
11: end if
12: end for

on processing individual raw sensor observations, si. Furthermore, it is clear from
Figure 5.3 that activity boundaries that are detected in close proximity can be merged,
and we achieve this by defining a temporal constraint (minimum time interval between
boundaries) on segmentation sizes. Using our activity boundary detection method, we
define two segmentation methods: i) Non-overlapping; and ii) Overlapping.

Non-overlapping Segmentation (NS) In the non-overlapping segmentation method
presented in Algorithm 2, the data stream is partitioned into blocks based on the
detected activity boundaries. Therefore, a sensor data stream segment is defined as the
sensor observations from a detected activity boundary to the subsequently detected
activity boundary. This method may result in not generating a segment for a longer
duration, particularly while the sensor wearer is lying on bed. Furthermore, activity
boundaries can be detected in within small interval for activities such as walking. As a
solution, maximum δ tmax and minimum δ tmin segment sizes in terms of time (temporal
constraints) can be defined.
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Algorithm 3 Overlapping segmentation
Require: λ , δ tmin, δ tmax, (ti,si)i≥1

1: buffer.clear()
2: for i = 0 to T do
3: δ t← 0 k← i
4: buffer.add((ti,si))
5: while ti− tk < ∆tmax do
6: if isActivityBoundary(tk,λ ) then
7: if ti− tk < δ tmin then
8: δ t← δ tmin

9: end if
10: break
11: end if
12: δ t← ti− tk k← k−1
13: end while
14: segi← buffer.last(δ t)
15: buffer.retainRecent(∆tmax)
16: output segt and continue
17: end for

In Algorithm 2, sensor observations are collected until either: i) an activity bound-
ary is detected where the segment size is larger than δ tmin; or ii) the segment size is
δ tmax (line 7 in Algorithm 2). For NS, the delay for is bounded by δ tmax and taking
this into consideration a suitable value for δ tmax can be selected. Then, δ tmin specifies
the period at which possible activity boundaries near to each other are merged, and a
suitable value for δ tmin can be selected by considering activity transition durations.

The segment size or the level of segmentation can be altered by varying the
segmentation parameter (λ ) in the boundary detection method. Higher values of
λ will result in identification of boundaries that span multiple activities and these
will be amalgamated into one activity and subsequently deteriorate the classification
performance. Therefore, selection of an appropriate value for λ for the non-overlapping
segmentation method is important.

Overlapping Segmentation (OS) The overlapping segmentation (OS) method il-
lustrated in Algorithm 3 generates a segment for each sensor observation, (ti,si), and
therefore incurs no delays in the subsequent recognition of the associated activity. In
OS, a segment is defined as the sequence of sensor observations from previous activity
boundary to the current sensor observations. If the previous activity boundary has
been detected prior to δ tmax from ti, then sensor observations for the interval ti−δ tmax

to ti has been considered for the segment. Furthermore, δ tmin is used to constrain the
minimum size of a segment.
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Table 5.1 Features extracted from acceleration data

Feature References

Acceleration signals (a f ,al,av) [62, 61, 17]
Vertical Velocity ∆vz, Vertical Distance ∆dz [62]
Resultant Velocity vr [69]
Trunk tilt angle on sagittal plane (θ ) [62, 69, 61]
Trunk tilt angle on coronal plane (α)

5.4 Activity Prediction

We utilised a subset of features described in Chapter 4. The features based on the
acceleration signal are presented in Table 5.1. We have also considered features readily
available from RFID tags; RSSI and antenna identifiers (aID) (see Section 4.3.2). For
the overlapping segmentation (OS) method, we use the antenna ID (aID) of the most
recent sensor observation and the mean of the RSSI values for all the readings from
antenna aID within a given segment as features. For the non-overlapping segmentation
method (NS), the aID of the antenna with frequent readings within the segment is
selected and the mean RSSI is calculated accordingly. As discussed in Section 4.3.2,
researchers in [46] have also incorporated activity contextual information using Mutual
Information (MI) based features. We have also utilised the miW feature and obtained
|A | number of features, where A is the set of antennas in the RFID deployment. As
in [46], we have also used time differences between segments as a feature. In total we
have considered n = 11+ |A | features from a segment. These features are arranged to
form a vector x ∈ Rn to describe the activity represented by the segment.

We selected five machine learning algorithms that have been successfully used
in AR research: i) Naïve Bayes (NB) [17]; ii) Conditional Random Fields (CRF)
[46] iii) Random Forest (RF) [126]; iv) Linear Support Vector Machine (LSVM);
and v) Non-linear Support Vector Machine using Radial Basis Function (RBF) kernel
(NSVM) [63]. These classifiers have been discussed in Section 2.2.4 and these
algorithms differ in how they model the classification problem.

In this study, we have utilised the NB implementation provided in the Matlab
(R2014a) environment. As we are interested in real-time prediction, we use the linear
chain CRF proposed in [46]. We used libraries, LIBLINEAR [123] and LIBSVM [124],
for LSVM and NSVM classifiers. In these libraries, multi-class classification is
achieved based on the one-versus-one strategy. We use the RandomForest classifier
implementation for Matlab “randomforest-matlab”, which is a ported from the RF
implementation for R.1

1http://code.google.com/archive/p/randomforest-matlab/
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Fig. 5.4 (a) Illustration of the effect of the filtering parameter; (b) State model; (c) State
transitions

5.5 Ambulatory Movement Detection

We propose an ambulatory movement detection algorithm (see Figure 5.2) to detect
bed-exits, chair-exits and walking by re-evaluating activity predictions. Our approach
solves the problem of highly sparse activity transition information encapsulated in the
sensor data stream due to the passive nature of the sensor.

Direct use of activity predictions for ambulatory movement detection can lead to
poor performance due to activity prediction errors leading to subsequent false alarms.
This may cause alarm fatigue among caregivers and can result in the rejection of the
technology [127]. In order to address the activity prediction errors, methods of filtering
such as determining prediction consistency using subsequent predictions [18, 62] or
the use of Kalman filter [60] have been utilised. These methods depend on more than
one correctly predicted activity label. However, when the data stream is sparse and
has larger gaps, these methods can result in delays.

Our preliminary studies revealed that most of the activity misclassifications occur
around activity transitions such as sitting-on-bed to standing and the first change in
an activity prediction is typically the correct prediction for the current activity. We
incorporated our findings to moderate the consequences of activity misclassifications
on detecting ambulatory movements by defining the prediction filtering function given
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in Eq.(5.3).

f (yi; tcuto f f ) =

{
yk ; if ti− tk ≤ tcuto f f

yi ;otherwise
(5.3)

The parameter tcuto f f determines the degree of filtering (see Figure 5.4a), yi is the
current prediction at time ti, yk is the previous activity prediction at time tk, k < i,
where yi ̸= yk. As illustrated in Figure 5.4a, the filtering function outputs the same
activity for a predefined time interval, tcuto f f , immediately after a change in the
activity prediction stream is observed and thus prevents further changes in activity
predictions. The filter leads to fewer erroneous inferences of ambulatory movements.
Subsequently, the filtered activity prediction stream is utilised to identify multiple
ambulatory movements. A suitable value for the filtering parameter tcuto f f can be
selected based on activity durations.

In an ideal setting, state changes between in-bed and in-chair should not be
possible as a person needs to walk between the bed and the chair. However, it is
possible to misclassify the activities in waking state as those of in-bed or in-chair
and consequently miss an ambulatory movement. Therefore, we have also considered
transitions between states in-bed and in-chair as described in Figures 5.4b and 5.4c,
because detecting a bed-exit or chair-exit activity is regarded as transitioning into any
state other than in-bed or in-chair, respectively.

5.6 Experiments

The experiment is conducted using the healthy young adult (HYA) dataset described
in Section 2.4.1. This dataset was collected from ten healthy young volunteers aged
between 23 and 30 years (mean 26.4 ± 2.12). Each volunteer wore a WISP over
the garment at the sternum level and performed three randomly selected activity
scripts. In this experiment we consider the five ground truth labels: i) sitting-on-bed;
ii) lying-on-bed; iii) standing; iv) walking; and v) sitting-on-chair.

5.6.1 Activity Recognition Performance

In this study, we obtain precision, recall (sensitivity) and specificity. We evaluate
performance mainly using the F-score, which is the harmonic mean of precision
and recall since our aim is to improve recall (i.e. reduce false negatives) without
deteriorating precision (i.e. minimise false positives) in the context of an imbalanced
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dataset. We further present our results using G-mean, which is the geometric mean of
recall and specificity.

The evaluation is carried out using the 10-fold cross-validation strategy and all
the parameters are selected based on the validation results. Results are shown as the
mean± standard deviation (SD). Statistical significance is measured using a two-tailed
two-sample t-test at 5 % significance level.

From our preliminary experiments, we observed that a participant took approx-
imately 2 s for a transition and spent at least 4 s in each activity. Considering this
we have selected δ tmin = 1s (i.e. transition time/2) and δ tmax = 5s (i.e. δ tmin +

activity duration).

5.6.2 Recognising Ambulatory Movements

To evaluate the ability of our framework to recognise ambulatory movements shown
in Figure 5.4, we define a T P as follows. If there is a corresponding ground truth
within evaluation period, δ t, after an ambulatory movement is detected (e.g. a bed-
exit), the identified ambulatory movement is considered as a T P, otherwise as an
FP. Similarly, T N and FN ambulatory movements are identified based on detection
of a corresponding uninterested ambulatory movement (e.g. bed-entry) defined by
the transitions into a respective state as shown in Figure 5.4b. We utilised the above
definitions of T P, T N, FP, FN to obtain the F-score to analyse the performance.

Since a participant’s minimum transition time between activities was approximately
2s and at least 4s was spent in each activity, it takes at least 8s for a participant to
return to a given activity and hence we took the evaluation time, ∆t, to be 8s.

5.7 Results

5.7.1 Activity Recognition Performance

Initially, we investigate a suitable range for the segmentation parameter λ for the NS
method, because overly sized segments with NS lead to missing ambulatory movements
(see Section 5.3). We have segmented the data stream with λ ∈ {i/10}, i= 1 · · ·15, and
selected a range that retains more than 95% of each type of ambulatory movement in
the segmented data stream with respect to the ground truth. Selection of 95% is based
on the fact that we will be able to capture 95% of the ambulatory movements if an
activity prediction model is able to predict activities with 100% accuracy. Recognising
95% of ambulatory movement is still a significant achievement compared with reported
results for detecting a single ambulatory movement, particularly bed-exits [14, 15, 61].
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Fig. 5.5 Activity recognition performance (mean F-score) for segmentation methods

From this initial experiment we identified that the NS method was able to retain 95%
of each activity for λ ≤ 1.0, which we use in subsequent evaluation.

Figure 5.5 shows the performance (mean F-score) of classifiers with respect to
the segmentation parameter, λ . Based on this figure, appropriate values for the
segmentation parameter, λ , can be selected for each combination of the segmentation
method and classification algorithm. Although the best performance for each classifier
was found at different values of λ , the variation in performance observed was < 8%
for each classifier because our segmentation approach successfully partitions sensor
observations into segments related to a single activity (see Figure 5.3). However, our
results show the importance of selecting an appropriate segment size (i.e. segmentation
parameter) for each classifier.

The performance of the best activity prediction models based on the mean F-score
for each segmentation method is presented in Table 5.2. Activity prediction models
with RF have significantly (p < 0.05) outperformed all the other classifiers with both
segmentation methods. This result is consistent with findings in [126] where the RF
classifier outperformed other classifiers for HAR using acceleration sensor data. The
main reason for RF to perform better is the fact that it uses a number of de-correlated
DTs internally (Section 2.2.4) and hence it is more resilient to noisy features generated
from the WISP data stream. It is important to note that both CRF and NSVM depicted
significantly higher (p < 0.05) performance when using NS.

5.7.2 Ambulatory Movement Detection

Ambulatory movement detection is conducted using the best activity recognition
models listed in Table 5.2. Figure 5.6 highlights the importance of filtering activity
predictions prior to detecting ambulatory movements; performance without filtering is
shown at tcuto f f = 0, where all the classifiers for both segmentation methods depicted
their lowest performance. Increasing filtering (i.e. increasing tcuto f f ), raises ambulatory
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Table 5.2 Performance of best activity prediction models in Figure 5.5 based on the
mean F-score for the two segmentation methods

NB CRF RF LSVM NSVM

NS λ = 0.1 λ = 0.7 λ = 0.4 λ = 0.7 λ = 0.7
F-score 67.29±3.31 71.78±2.46 76.19±1.22 70.95±2.66 73.09±1.89
G-mean 78.03±2.49 81.88±1.72 84.72±1.03 80.74±1.79 82.68±1.44

OS λ = 1.0 λ = 1.4 λ = 1.2 λ = 1.5 λ = 1.8
F-score 64.66±3.92 67.96±4.68 76.46±1.01 70.24±1.63 69.58±3.44
G-mean 77.15±2.71 79.00±3.54 84.79±0.94 81.02±0.88 80.46±2.44
* Model parameters - NS:{CRF(λ = 10−2.2); RF(b=500); LSVM(c=4);

NSVM(c=23, γ=22)}; OS:{CRF(λ = 10−3.5); RF(b=1000); LSVM(c=4);
NSVM(c=26, γ=20)}
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Fig. 5.6 Performance of the ambulatory monitoring algorithm for different segmenta-
tion methods with filtering parameter, tcuto f f using activity prediction models given in
Table 5.2

movement detection performance but further increments in tcuto f f deteriorated the
F-score since over filtering removes ambulatory movements (i.e. activity transitions)
from the activity prediction stream.

From Figure 5.6, we can see that RF has achieved the highest mean performance
for NS. Other classifiers except NB depicted similar performances. The results in
Figure 5.6 show that in the case of OS, CRF clearly outperformed the other classifiers
on ambulatory monitoring, despite CRF being significantly outperformed by RF for
activity recognition (see Table 5.2). Since we identify ambulatory movements based
on transitions between activities, this observation indicates that although CRF mis-
classifies activities, CRF correctly predicts longer continuous sequences of activities
and results in fewer false activity transitions; consequently decreasing the recognition
of false ambulatory movements. The main reason for this observation is that CRF
considers the sequential nature of activities during inferencing and the real-time CRF
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Table 5.3 Performance of the ambulatory monitoring framework for NS with the RF
based activity prediction model and OS with the CRF based activity prediction model.

Bed-Exit Chair-Exit Walking Mean
NS (RF) OS (CRF) NS (RF) OS (CRF) NS (RF) OS (CRF) NS (RF) OS (CRF)

Accuracy 92.59±8.66 90.60±8.57 93.26±7.38 91.93±7.23 92.00±5.70 92.54±2.68 92.62 91.69
Sensitivity 94.64±9.96 93.14±9.63 93.89±6.45 92.64±6.35 93.31±6.16 93.19±2.02 93.95 92.99
Specificity 90.60±9.12 87.96±9.66 92.64±8.66 91.21±8.49 90.68±6.04 91.90±4.24 91.31 90.36
Precision 100.00±0.00 97.78±4.68 89.08±8.81 75.73±15.67 94.50±4.54 87.82±10.42 94.53 87.11
F-score 96.98±5.77 95.03±5.04 91.22±6.34 82.48±9.89 93.80±4.28 90.09±5.46 94.00 89.20
G-mean 92.51±8.73 90.41±8.57 93.24±7.42 91.90±7.27 91.96±5.71 92.52±2.72 92.57 91.61
* Each metric is presented with (mean ± SD) and the metric with the highest mean for each ambulatory movement is in bold

face (filtering parameter tcuto f f for: NS-7.5 s; OS-8 s)

implementation used in this study benefits from the relatively longer activity sequences
produced by OS compared with NS. Furthermore, LSVM has outperformed NSVM
using NS in ambulatory movement detection, despite NSVM being the better perform-
ing classifier in terms of mean F-score, as shown in Table 5.2. In general, these results
are a consequence of the different locations at which prediction errors occurred in their
respective activity prediction streams and demonstrated that the best activity prediction
model does not always yield the best model for recognising ambulatory movements.

Table 5.3 shows the performance for each ambulatory movement considered using
the prediction models for RF with NS and CRF with OS. The NS (with RF) based
approach clearly provides the highest mean F-score for all ambulatory movements.
For chair-exit, NS depicts a significantly higher (p < 0.05) F-score than OS. It is also
important to note that high precision for NS (>89%) compared with OS (>75%) for
each ambulatory movement is indicative of fewer false positives and consequently
lower false alarms. However, both segmentation methods yield higher mean sensitivity
(or recall) values indicating that the proposed ambulatory monitoring framework was
able to capture over 92% of the ambulatory movements recorded in the data stream
and thus less than 8% of ambulatory movements were missed on average.

In contrast with NS, the relatively lower performance of OS is because of the
limited sensor observations related to the current activity available for generating
features when the current sensor observation is closer in time to the previous activity
boundary. OS contain partial activity information, i.e. only samples up to the time of
the current sample from the last activity boundary or ∆tmin at the start of segments, as
opposed to the complete information related to an activity available through segments
with NS. The limited number of samples in segments at the start of activities affects
the quality of information in features and subsequently the learnt activity prediction
model and predictions. For example, features such as vertical displacement obtained
by integrating acceleration vectors are greatly influenced by the number of sensor
observations related to an activity within a segment.
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5.8 Discussion

In this chapter, we have proposed two data stream segmentation method for activity
recognition using sparse data streams available from sensor tags. We also proposed a
simple and efficient approach to recognising ambulatory movements.

Despite the challenging nature of the data stream from sensor tags (i.e. sparsity
and noise), our proposed ambulatory monitoring framework was able to successfully
recognise multiple ambulatory movements (bed-exit, chair-exit and walking) in real
time (mean F-score: NS 94% and OS 89%). In terms of the segmentation approaches,
they have their strengths and weaknesses; NS performs better (overall) but is less
responsive, and OS is highly responsive but depicts a lower performance. Therefore,
depending on the application context, a suitable segmentation approach can be selected.
Nevertheless, for bed-exit recognition, OS is preferable as it performs as well as NS
while being more responsive than NS (see Table 5.3).

We proposed the use of the Activity Boundary Score (ABS) to identify possible
activity boundaries. Although we only considered the trunk orientation of the sensor
wearer to calculate the ABS, different motion parameters can be used depending on the
application scenario, available sensors and sensor attachment position. For instance,
in a gesture recognition scenario as in [48] that uses sensors attached to arms, both
acceleration and rotational motion from an accelerometer and a gyroscope may be used
to calculate the activity boundary score and subsequently segment the data stream.

The major advantages of our framework in terms of practical usage and specially
for acceptance of the technology by caregivers and clinicians are: i) the use of a
lightweight batteryless sensor that is low cost and maintenance free; ii) highly accurate
recognition of multiple ambulatory movements with very low misses and false alarms;
and iii) low latency to alarm (maximum delay with NS is bounded by the maximum
segment size constraints ∆tmax while OS will generate an alarm immediately). Recog-
nition of multiple ambulatory movements will deliver a comprehensive fall prevention
mechanism and provide caregivers with the ability to select appropriate ambulatory
movements to monitor based on falls risk assessments of patients carried out daily as a
part of best practice guidelines for fall prevention [9].

More significantly, the batteryless ambulatory monitoring system has demonstrated
performance comparable with previous studies based on battery powered devices
attached to the waist [34] or strapped to the chest [62]. Although movement sensor
alarm systems that consider bed-exits and chair-exits [128] have been developed, we
have only found research studies that have reported results for bed-exit alarm systems
[14, 15, 61]. These approaches have also been evaluated using similar study groups,
i.e. healthy adults. Table 5.4 presents the performance of previous bed-exit movement
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Table 5.4 Performance of previous bed-exit movement alarms

Bed-exit alarm system Sensitivity Specificity Precision Participants’ age

Hilbe et al. [14] 96% 96% 18-60
Bruyneel et al. [15] 91% 100% 100% 37±9 and 45±11
Ranasinghe et al. [61] 90% 94% 26.4±2.12
Proposed framework 94% 91% 100% 26.4±2.12

alarm approaches where we can see that the proposed framework performs comparably
or better.

However, this study is not without limitations. Results for activity recognition
demonstrate that the existing features for acceleration and RFID tag data may be
inadequate to discriminate the activities successfully as shown by the relatively low
F-score (see Table 5.2). Therefore, future work should consider more features to
discriminate these activities. Furthermore, our evaluation is based on data collected
from healthy young adults (mean age 26.4±2.12), which is not representative of
the target group of older people. Even though body motions of older frail patients
in performing activities follow that of young people, their activity durations may be
different and hence our framework needs to be evaluated with data collected from older
people. During experiments (Section 5.7.2), one walking activity was not captured due
to the passive nature of the sensor; mainly the RFID tag was not adequately powered
to sample the accelerometer. This limitation can be addressed by: i) incorporating an
appropriate antenna design that is tailored to maximise energy harvesting while the
sensor is worn by a person as recently demonstrated by our group in [24]; and ii) using
multiple emitters to power tags in the presence of a single receiver as described in
[129]; or iii) using hybrid powered sensor tags as recently demonstrated in [130].

In summary, in this chapter we have looked at the use of existing classification
algorithms to recognise activities from sparse data streams using features extracted
based on segments obtained from approximate activity boundaries in real time. As our
main goal within this thesis is ambulatory monitoring, we also proposed an ambulatory
movement recognition algorithm that re-evaluates the predictions from the activity
classifiers to recognise ambulatory movements. In fact, the segmentation is the first
step in machine learning based activity recognition. In Chapter 4, we looked at features
from sensor tags. In the next two chapters, we look at novel classification approaches
to classify streaming sparse sensor data in real time.



Chapter 6

Sequential Support Vector Machine
for Sparse Data Streams

6.1 Introduction

In previous chapters, we utilised classical machine learning algorithms to recognise ac-
tivities in real-time using passive sensor enabled RFID tags and subsequently recognise
ambulatory movements which can leads to falls. We have also observed in Chapter 2
that the data streams from these sensors are sparse, and they are a non-uniformly
sampled time series. In Section 4.4, we investigated the use of interpolation techniques
on acceleration data available from the sensor to obtain a uniform time series and
subsequently extract features to recognise activities. There we showed that this inter-
polation bears significant cost in real-time processing, although we can achieve good
performance using acceleration data alone.

Previously, bed-egress detection system, named Bed Exit Alarm System (BEAS)
has been proposed in [25]. BEAS employed linear chain Conditional Random Fields
(CRF) to classify segments of sensor observations and subsequently identify bed-egress
events as traditions from lying-on-bed or sitting-on-bed to out-of-bed. However, due
to the linear chain CRF implementation used, this method does not support real-time
inferencing.

Sequence learning algorithms, such as linear chain CRF learns relationships be-
tween the ith and (i+1)th elements in a sequence; in other words, these algorithms
model a sequence as a first order Markov chain [31]. Hence, regular sequential learning
algorithms’ reliance on a single previous sensor observation (which might belong to
an activity in the distant past) may result in poor recognition performance. Therefore,
modelling the sequential nature of activities using such data streams to recognise
activities should consider the non-uniform nature of the underlying data stream.



6.2 Bed-Exit Monitoring Framework 94

On the other hand, researchers have also looked at stochastic modeling of RFID
data streams using techniques such as particle filters [131] and the Partially Observable
Markov Decision Process (POMDP) [132] to address the uncertainty in RFID tag
observations, mainly due to the random access nature of ISO 18000-6C protocol [26].
In contrast to our goal, which is to assign a class label to each sensor observation from
the sensor tag, their goal is to track RFID tags, i.e. to ascertain the location of a given
tag at a given point of time when it cannot be observed by an RFID infrastructure.

In this chapter, we present a sequence learning algorithm, based on the support
vector machine (SVM) framework, suitable for sparse accelerometer and RFID data
from sensor tags and propose a monitoring framework that combines a novel sequence
learning algorithm to recognise bed-exit movements in real time. In particular, the pro-
posed sequence learning algorithm considers recent past sensor observations and their
activity labels to model the sequential nature of activities present in sparse data streams
(Section 6.3). The proposed framework utilises accelerometer and RFID data while
exploiting only time domain features to support rapid feature calculations (Section 6.4).
We further propose four types of features specifically to capture the sequential nature
of bed-exit motion from recent activity label history (Section 6.5). The implementation
of the sequence learning algorithm training is implemented following the Pegasos
algorithm [90], which solves the SVM using stochastic sub- gradient method. Finally,
we evaluate the performance of our approach using a dataset collected from 14 older
volunteers (Section 6.6). The work presented in this chapter is published in the IEEE
Journal of Biomedical and Health Informatics [32].

6.2 Bed-Exit Monitoring Framework

Human motion analysis of a participant described in Section 4.2 provides the basis for
formulating the bed-exit monitoring framework. There, we identified that participants
may lift their trunk to a vertical position using their dominant arm when they are lying
in the supine posture and then turn their body facing the edge of the bed to place their
legs on the ground. On the other hand, they can roll over to the edge of the bed and
then use the weight of the legs and arm to raise their trunk to a vertical position. When
the sit-to-stand posture transition is considered, participants first bend forward and
then stand up. Thus, bed-exit activity involves a sequence of movements which are
reflected in the sensor observations (see Figure 4.2). In this movement sequence, we
are interested in transitions from in-bed to out-bed. Therefore, we formulate bed-exit
recognition as:
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First predicting activity label sequence, in-bed or out-bed, in real time for a sequence
of sensor observations;

Then determining changes from in-bed to out-bed in the predicted activity label
sequence to recognise bed-exit movements.

For this formulation, we have considered the entire bed-exit motion including
possible variations observed to capture the contextual information of a bed-exit (see
Section 6.4). The remaining sections of the paper discuss the proposed framework in
detail.

6.3 Bed-Exit Sequence Prediction

Prediction of a sequence of activity labels (in-bed or out-bed) from a sensor observation
sequence can be modeled as a sequence learning problem. To this end, we follow
the deterministic approach proposed for sequential learning in [133] and propose the
following sequence learning algorithm suitable for sparse data streams based on the
Support Vector Machine (SVM) classifier. As opposed to considering a fixed number
of elements in a sequence, we consider elements in a fixed time interval to model the
sequential relationship; this approach mitigates past observations that belong to an
activity in the distant past from adversely affecting the prediction of the current activity.
In the following, we describe the two main steps of the algorithm, i.e. inferencing and
training.

6.3.1 Representation and Inference

We denote the ith sensor datum at time ti, ti > ti−1, i ∈ N, using the pair (ti,si), where
si = [a f ,av,al,RSSI,aID]. Because of the irregular nature of the data collection, the
sequence of collected data X = {(ti,si)}i≥1, i ∈ N is a non-uniformly sampled time
series. We denote the corresponding sequence of activities for each sensor observation
using Y = {yi}i≥1, yi ∈ C , where C is all the possible set of class labels. In this
chapter we consider only two class labels, C = {in-bed,out-bed}. We use subscripts
to denote subsequences; for instance X[a,b] denotes the sensor data stream segment
for time interval [a,b], where b > a. The notation ⟨·, ·⟩ is used to represent the vector
inner product.

Given a sensor observation sequence, X, the inference procedure assigns the class
label, yi to each corresponding sensor observation, (ti,si) considering correlations
between most recent sensor observations and labels for a fixed duration of δ t; i.e.
considering Y[ti−δ t,ti] and X[ti−δ t,ti]. In other words, when determining the class label
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for the ith sensor observation (ti,si), a sensor observations for fixed interval δ t, i.e.
X[ti−δ t,ti], and the assigned class labels for those sensor observations excluding the
label for the ith sensor are used. Use of previous class labels in the sequence essentially
captures the sequential nature. Since we are interested in real-time prediction, we
specifically focus on the greedy inference procedure discussed in [133]. We assume
here that the predictions already made are frozen, and a score function exists that
calculates a score for assigning the class label y for the ith sensor observation:

Si(w,X,Y,y) =⟨w,φ(X[ti−δ t,ti],Y[ti−δ t,ti−1],y)⟩ (6.1)

where w∈Rd is a learnt model also known as parameter vector and φ : X[ti−δ t,ti]×Y[ti−δ t,ti−1]×
y 7→ Rd is the feature mapping function that captures the sequential information in a
single feature vector.

The inference procedure determines successive class labels, yi, based on max-
imising the score function Eq.(6.1); i.e. argmax y∈C Si(w,X,Y,y). In fact, as we
have frozen the previous predictions, the prediction function can be represented as a
recursive function:

fi(w,X) = argmax
y∈C

⟨w,φ(X[ti−δ t,ti], f[ti−δ t,ti−1](w,X),y)⟩. (6.2)

where f[a,b](w,X) represents the predictions from time a to time b.
The feature function, φ , in our sequence prediction algorithm, is significant as it

essentially captures patterns in the data stream. This feature function can be consid-
ered as a concatenation of individual features extracted considering the considered
class label, y, observed information X[ti−δ t,ti] and previous labels Y[ti−δ t,ti−1]. We
specifically considered a feature function of the form φ(X[ti−δ t,ti],Y[ti−δ t,ti−1],y) =
[φI(X[ti−δ t,ti],y),φP(Y[ti−δ t,ti−1],y)] where φI calculates features based on the consid-
ered class label, y, with observed information X[ti−δ t,ti] (Section 6.4), and φP considers
the label sequence Y[ti−δ t,ti−1] and y (Section 6.5) to calculate features.

6.3.2 Training

The goal of the classifier training is to find the model w that minimises the classification
error. According to the prediction function Eq.(6.2), we can observe that the score for
a given sensor observation with the correct class label Si(X ,Y,yi) must be greater than
the score of all other class labels Si(X,Y,y),y ∈ C \ yi, i.e. Si(X,Y,yi)> Si(X,Y,y).
In the SVM setting, Si(X,Y,yi) should be at least greater than a margin, which is
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typically set to 1 [134]. Consequently, the updated constraint for minimising the error
for SVM training is Si(X,Y,yi)≥ Si(X,Y,y)+1.

Notably, as indicated by the nature of the feature function, two instances of output
vectors, φ(X[ti−δ t,ti],Y[ti−δ t,ti−1],y) and φ(X[t j−δ t,t j],Y[t j−δ t,t j−1],y), where i ̸= j, can
be considered independent of each other. This characteristic enables formulating
efficient learning algorithms as described in [133]. In this setting, labelled sensor data
stream segments from multiple sequences can be considered for learning, unlike in
other sequence learning algorithms.

The primal form of soft margin SVM formulation for the proposed sequence
learning algorithm followed the formulation of soft margin SVM presented in the
work entitled “Large Margin Methods for Structured and Interdependent Output
Variables" [134]. Specifically, we have utilised the slack rescaling method in [134] to
incorporate different costs for misclassifications. The classification model, w, is learnt
by minimising the following constrained convex objective function Eq.(6.3).

min
w,ξi

λ

2
∥w∥2 +

1
M

M

∑
i=1

ξi (6.3)

subject to ∀i ⟨w,φi(yi)⟩−⟨w,φi(yr)⟩ ≥ 1− ξi

∆(yi,yr)

∀i ξi ≥ 0

where φi(y) = φ(X[ti−δ t,ti],Y[ti−δ t,ti−1],y)

yr = argmax
y∈C \yi

⟨w,φi(y)⟩

In Equation Eq.(6.3), M is the number of samples in the training dataset, λ is
the regularisation parameter which is treated as a model parameter, and ∆(yi,yr) is a
cost function which assigns different costs based on the nature of misclassifications.
Any margin violations are treated as positive errors that are represented by ξi; as a
result the value of the objective function is increased, which subsequently updates the
classification model to reduce the objective value.

We consider cost functions of the form:

∆(yi,yr) =

1 ; i f yi = in-bed ∧ yr = out-bed

c ;otherwise
(6.4)

where c is the relative cost of misclassifying a out-bed instance as an in-bed instance
and c is also considered as a model parameter.
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We use the Pegasos algorithm [90] to solve the optimisation problem in Eq.(6.3)
directly, using its primal form. Unlike other methods such as LaRank [133] which
optimises SVMs in dual form, optimising in primal form is attractive where there are a
large number of training samples, as in our case. When using the Pegasos algorithm,
two additional parameters need to be specified; i) number of iterations, T and ii) mini-
batch size, k. In total, the proposed bed-exit sequence prediction algorithm requires
four model parameters, i.e. λ , c, T and k. These model parameters are selected using
cross-validation as described in Section 6.6.

6.4 Features based on Sensor Observation Sequences

As discussed in Section 2.3.2, we have two information sources in our data stream:
i) acceleration signals; and ii) information from the RFID platform. Using these
two information sources, we showed in Chapter 4 that a number of features can be
extracted. Features based on acceleration used in this chapter are presented in Table 6.1,
whereas features based on RFID information are listed in Table 6.2. These features
are calculated based on a segment of sensor observations for ith sensor observation,
X[ti−δ t,ti] and we set δ t = 2s to calculate these features. Although we have summarised
these features in this section, they have been described in detail in Chapter 4.

6.4.1 Features based on Acceleration

We obtain nine features using the ith sensor observation ({1, · · · ,9} in Table 6.1). These
features include acceleration signals, estimated orientation of the sensor, and approxi-
mated acceleration signals on anteroposterior (ax), mediolateral (ay) and dorsoventral
(az) axes. We extract 37 features based on a sensor data stream segment X[ti−δ t,ti]

({10, · · · ,46} in Table 6.1). We have considered common time domain statistical fea-
tures from acceleration signals and approximated orientation. We also consider the
feature MPM (Maximum Prior to Minimum) for each acceleration axis and each angle
({19,20,21} and {44,45,46} in Table 6.1), as they are indicative of posture transitions
which are discussed in Chapter 4. We have also used the change in displacements (∆d)
and velocities (∆v) in x, y and z directions relative to the body. We further utilise the
change in resultant velocity (vr).

6.4.2 Features based on the Information From RFID Platform

We obtain eight types of features using information from the RFID platform. We
calculate the time-domain statistical features of the RSSI for a segment ({1,2,3}
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Table 6.1 Features from acceleration signals

Feature # Feature

1 a f - Frontal acceleration
2 al - Lateral acceleration
3 av - Vertical acceleration
4 θ - ∡ on Sagittal plane [62, 69, 46, 61]
5 α - ∡ on Coronal plane
6 β - ∡ on Transverse plane
7 ax - Anteroposterior acceleration (using θ , a f and av)
8 ay - Mediolateral acceleration (using α , al and av)
9 az - Dorsoventral acceleration (using θ , α , a f , al and av)
10, 11, 12 mean(a f ), mean(al), mean(av) [17, 46, 63]
13, 14,15 max(a f ), max(al), max(av) [63]
16, 17, 18 min(a f ), min(al), min(av)
19, 20, 21 MPM(a f ), MPM(al), MPM(av) - Maximum Prior to Minimum
22, 23, 24 corr(a f ,al), corr(a f ,av), corr(al,av) [17]
25, 26, 27 mean(ax), mean(ay), mean(az)
28, 29, 30 ∆vx, ∆vy, ∆vz [62]
31, 32, 33 ∆dx, ∆dy, ∆dz [62]
34, ∆vr [69]
35, 36, 37 mean(θ), mean(α), mean(β )
38, 39, 40 max(θ), max(α), max(β )
41, 42, 43 min(θ), min(α), min(β )
44, 45, 46 MPM(θ), MPM(α), MPM(β ) - Maximum Prior to Minimum

in Table 6.2). To capture patterns using relative RSSI, we consider a 3δ t = 6s seg-
ment, X[ti−3δ t,ti], subdivided into three equal sub-segments based on time (S j =

X[ti− jδ t,ti−( j−1)δ t], j = 1 . . .3). Using these sub-segments, we extract mean RSSI values
and features comparing the relative magnitudes of sub-segments ({4,5} in Table 6.2).

The RFID antenna facing the sensor is most likely to both power and collect the
response from the sensor tags. We use this fact to obtain an approximation of the
sensor wearer’s location using the feature ant ∈ {0,1}|A |, where A represents the set
of RFID reader antennas in the dataset. The feature ant indicates the antennas present
in a sensor observation segment. We further use miW and miC, which are based on
mutual information obtained from antenna ID.

6.5 Features based on Label Sequences

These features are designed specifically to capture the transition of activities during
a bed-exit motion. We specifically consider four features (φp j, j = {1 · · ·4}) from
previous labels Y[ti−δ t,t(i−1)]

and the current class label y (see Table 6.3). For calculating
this set of features, we set δ t = 2×4 = 8s to obtain sufficient information relating to
transition of activities as we have identified that a participant took approximately 2s to
get out of the bed while seated during our preliminarily experiments.
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Table 6.2 Features from the RFID platform

Feature # Feature

1 mean(RSSIa), a ∈A [87]
2 max(RSSIa), a ∈A [87]
3 min(RSSIa), a ∈A [87]
4 † mean(RSSIa j) a ∈A , j = 1 · · ·3
5 † mean(RSSIa j)> mean(RSSIa j+1) a ∈A , j = 1,2
6 anta = 1[a∈Si(aID)], a ∈A [46]
7 miW ∈ R|A | [46]
8 miC ∈ Rd, d =|A | C2

† RSSIa j : RSSI values received for antenna a for the sub-
segment S j

The relationships between y and 3 previous class labels is considered as a feature,
φp1 ∈ R3|C |. We partition the output vector from φp1 into 2 and, depending on y, the
previous 3 class labels are assigned to corresponding partitions. Given the last three
class labels, Y{i−3,i−1}, feature φp1 is calculated as

φp1 =

{03,Y{i−3,i−1}} ; i f y = out-bed

{Y{i−3,i−1},03} ;otherwise
(6.5)

where 03 is a 1×3 zero vector and {·, ·} represents the concatenation of vectors.
The time-weighted count of labels is also used as a feature (φp2 ∈ R|C |). We assign

the highest weight to the class label at time ti and the weights are decreased linearly
to 0 at time ti−δ t. Weight at time t, ti−δ t ≤ t ≤ ti, is given by τt = (t− ti +δ t)/δ t2

such that
∫ ti

ti−δ t τt = 1. The value of the feature for the jth class φp2( j) is obtained as

φp2( j) =
|Y ′|

∑
k=1

1[Y ′k= j]τtk , j = {in-bed,out-bed} . (6.6)

Using this approach, emphasis is given to the recent class labels with respect to the ith

observation.
Given a sufficiently small interval δ t, typically, participants do not transition

between activities more than once, i.e. they do not get out from and get into a bed in
quick succession. Therefore, we consider the number of changes in activity labels as
a feature (φp3). As there are two classes in our setting, i.e. in-bed and out-bed, this
feature can be represented by φp3 ∈ Rd′ where d′ = |C |P2.
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Table 6.3 Features from label sequences

Feature # Feature

1 φp1 ∈ R3|C | - Relationship between y and 3 previous class labels
2 φp2 ∈ R|C | - Time-weighted label count
3 φp3 ∈ Rd′, d′ = |C |P2 - Number of changes in activity labels
4 φp4 ∈ R|C | - Last activity transition time relative to ti−δ t

We also consider the time that the last activity transition is observed relative to
ti− δ t as a feature (φp4 ∈ R|C |). Based on the transition, i.e. in-bed to out-bed or
out-bed to in-bed, the transition time is assigned to the corresponding position of the
output vector from φp4.

6.6 Experiments

The overarching goal of the bed-egress motion analysis framework is to recognise
the most number of bed-egress movements with fewer false recognitions as much as
possible to avoid alarm fatigue. It is important to exercise immediate interventions
while eliminating false bed-exit recognitions; therefore, we also evaluate the bed-exit
movement recognition in terms of latency.

We conducted experiments using the HOA dataset collected from 14 older vol-
unteers aged between 66 and 88 years as described in Section 2.4.2. This dataset
contains data from two RFID configurations which are referred to as HOA-Room1
and HOA-Room2. During the data collection, participants wore the sensor at sternum
level over the garment and performed activities listed in two activity scripts. These
activity scripts contained activities such as lying on the bed, sitting on the bed and
getting out of the bed and walking to the chair. The researcher present during the data
collection recorded 5 ground truth labels: i) sitting-on-bed; ii) lying-on-bed; iii) stand-
ing; iv) walking; and v) sitting-on-chair. In this study, the class labels sitting-on-bed
and lying-on-bed are considered as in-bed and the other class labels were considered
to be out-bed. Data from HOA-Room1 configuration contained 45922 of in-bed and
6335 out-bed samples. In the case of HOA-Room2 these values were 21782 and 864
respectively.

In order to evaluate the bed-exit recognition performance, we defined a true positive
(T P) as a bed-exit movement recognised 5 s prior to when the participant was known
to be out-bed or when the participant was known to be out-bed (i.e. they are already
out of bed). All other bed-exit movements while the participant was in-bed were
incorrect and hence counted as false positives (FPs). The missed bed-exit movements
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are treated as false negatives (FNs). We evaluated bed-exits after a δ t duration from
the start of a trial to provide sufficient information to our inference algorithm. We
present precision (positive predictive value) and recall (true positive rate) of bed-exit
movements along with the values of T Ps, FPs and the actual number of bed-exit
movements [135]. In order to evaluate the latency, we considered the time taken from
the actual bed-exit movement (i.e. based on the ground truth) to the predicted bed-exit
movement as the delay. Delays for bed-exit movements that are predicted prior to the
actual bed-exit movement are taken as zero.

Parameter selection for the sequence learning classifier was performed using G-
mean, which is the geometric mean of recall (sensitivity) and specificity (true negative
rate) that are obtained using the standard confusion matrix for binary classification
[136]. Since bed-exit movements are determined as changes from in-bed to out-
bed, optimising the sequence learning classifier on sensitivity increases the bed-exit
recognition performance.

We use leave-one-patient-out cross-validation to evaluate the performance of
our framework. Denoted a set of data collected from the ith participant as Di, the
whole dataset is defined as D = ∪n

i=1Di, where n is the number of participants in the
dataset. Given a participant, p, D is partitioned into three subsets: i) Dp ∈ D—test
set; ii) D j ∈ D\Dp—validation set; and iii) D\ (Dp∪D j)—training set, where j is
a randomly selected participant. First, classifiers are trained with different model
parameter permutations using the training sets and obtain the G-mean by evaluating
the trained models using the corresponding validation sets for all participants. Then
the set of model parameters that maximise the mean G-mean measure is selected to
train the classifiers to obtain the testing performance. Finally, we present the results
obtained using the test set Dp, using a classifier trained using D \Dp based on the
selected set of model parameters. This evaluation scheme is close to practical usage of
the framework because initially training is carried out using data collected by a subset
of the target population and then the trained framework will be used to recognise the
bed-exit movements of the other participants who are unknown to the framework.

6.7 Results

6.7.1 Sequence Prediction

In this section, we present the results for predicting in-bed and out-bed labels us-
ing the proposed sequence prediction algorithm. Table 6.4 lists the label prediction
performance for the proposed approach and the previously published approach, Bed
Exit Alert System (BEAS) [25]. Since we need real-time predictions, for BEAS, we
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Table 6.4 In-bed and Out-bed label prediction performances

HOA-Room1 HOA-Room2
Proposed Baseline Proposed Baseline

Accuracy 94.0±3.5 92.4±3.8 96.1±2.4 93.4±5.2
Sensitivity 90.6±8.1 84.5±7.9 96.3±6.3 74.2±7.7
Specificity 94.7±4.5 93.8±3.5 96.2±3.0 94.8±3.9
G-mean 92.5±4.1 89.0±4.9 96.2±3.3 83.7±3.4
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Fig. 6.1 Normalised confusion matrices for the proposed sequence learning algorithm

used the linear chain CRF algorithm that supports real-time inferencing proposed in
[46] as opposed to the batch-inferencing version used previously in [25]. The BEAS
uses three class labels, sitting-on-bed, lying-on-bed and out-bed. We compare here
the performance of predicting the out-bed class label of the baseline approach with
the proposed approach. From the results in Table 6.4, we can see that the proposed
method outperforms the baseline method in all measures for both data sets. More
importantly, the proposed sequential learning method showed statistically significantly
higher (p < 0.05) performance in terms of sensitivity and G-mean measures for HOA-
Room2. Figure 6.1 illustrates the normalised confusion matrices for predicting class
labels for two datasets. From this, we can clearly observe that the sequence prediction
algorithm predicted out-bed for both datasets with a higher accuracy.

6.7.2 Bed-Exit Movement Recognition

Table 6.5 shows the bed-exit movement recognition results for T Ps, FPs, precision
and recall for HOA-Room1 and HOA-Room2 using the proposed framework and the
previously published approach, Bed Exit Alert System (BEAS) [25] for comparison.
From these results (Table 6.5), we can observe that the proposed framework exhibits
a significantly lower number of FPs compared with BEAS but it depicts a higher
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Table 6.5 Bed-exit recognition performances (alarming performances)

Participant Gender Actual
Proposed Framework BEAS proposed in [25]

TP FP Precision Recall TP FP Precision Recall
HOA-Room1 (T : 1000, k : 100, λ : 10−8, c : 0.7)*

1 M 11 5 0 100.0 45.5 5 39 11.4 45.5
2 F 7 4 2 66.7 57.1 7 14 33.3 100.0
3 F 9 4 1 80.0 44.4 4 6 40.0 44.4
4 F 4 4 0 100.0 100.0 4 2 66.7 100.0
5 F 6 6 0 100.0 100.0 5 7 41.7 83.3
6 F 14 6 1 85.7 42.9 6 78 7.1 42.9
7 M 10 5 1 83.3 50.0 8 48 14.3 80.0
8 M 7 1 1 50.0 14.3 3 116 2.5 42.9
9 F 14 5 1 83.3 35.7 9 14 39.1 64.3
Total 82 40 7 85.1 48.8 51 324 13.6 62.2
HOA-Room2 (T : 100, k : 100, λ : 10−2, c : 5.2) *

10 F 11 11 0 100.0 100.0 10 22 31.3 90.9
11 F 13 11 1 91.7 84.6 9 16 36.0 69.2
12 M 8 8 2 80.0 100.0 8 20 28.6 100.0
13 F 10 8 2 80.0 80.0 10 92 9.8 100.0
14 F 10 7 3 70.0 70.0 10 20 33.3 100.0
Total 52 45 8 84.9 86.5 47 170 21.7 90.4
* Model parameters

number of T Ps. We conclude that the proposed framework outperforms BEAS [25],
as there is a lower number of FPs and consequently fewer false alarms.

When two room configurations are considered, we can see a similar performance in
terms of precision. However, HOA-Room1 depicts considerably lower recall compared
with HOA-Room2. Based on these observations, we can see that the HOA-Room2
configuration performs better across the two room settings.

We specifically investigated FPs and misses (i.e. number of missed bed-exit events
or false negatives, Actual−T P) in both room configurations. In the case of HOA-
Room1, there are 7 FPs and 42 misses. We identified that FPs are caused by sensor
observations received from antenna A2 oriented towards the chair (see Figure 2.7b).
These readings are from very weak signals—indicated by lower RSSI—and more
likely to be due to reflections. These FPs can be addressed by reducing the RFID
reader’s receiver sensitivity on the antenna ports; in this case reducing the receiver
sensitivity of A2’s port. It is observed that all the misses are caused by insufficient
sensor observations after a bed-exit. Out of 42, 24 misses have occurred in user trials
that ended with a bed-exit and antenna A1, facing a standing person, failed to energise
the sensor tag and capture readings. Therefore, we further evaluated the HOA-Room1
bed-exit performance excluding the sensor data for the final 4 s for each trial. We
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Table 6.6 Bed-exit recognition performance excluding final 4 s from each trial for
HOA-Room1

Participant Actual
Proposed Framework BEAS proposed in [25]

TP FP Precision Recall TP FP Precision Recall
1 6 5 0 100.0 83.3 4 39 9.3 66.7
2 4 3 2 60.0 75.0 4 14 22.2 100.0
3 4 1 1 50.0 25.0 3 6 33.3 75.0
4 3 3 0 100.0 100.0 3 2 60.0 100.0
5 5 5 0 100.0 100.0 4 7 36.4 80.0
6 9 6 1 85.7 66.7 6 78 7.1 66.7
7 6 5 1 83.3 83.3 6 48 11.1 100.0
8 5 1 1 50.0 20.0 3 116 2.5 60.0
9 10 5 1 83.3 50.0 6 14 30.0 60.0
Total 52 34 7 82.9 65.4 39 324 10.7 75.0

believe this would better reflect real-world use of the proposed method where a person
ambulating is likely to be recorded and classified, albeit with a delay; these results are
shown in Table 6.6. From these results we can see that the number of missed bed-exits
for HOA-Room1 has reduced by 24, thereby increasing recall from 48.8% to 65.4%.
Remaining misses can be mitigated by improving the sensor tag design, in particular,
by improving power harvesting by improving the antenna design, as indicated in [24]
and using a hybrid-powered WISP, which is assisted by excess harvested power stored
in a supercapacitor to prevent brownouts and improve reliability [130].

In contrast with HOA-Room1 deployment, which is designed to irradiate the entire
room, HOA-Room2 deployment is designed to illuminate the areas where a patient
is more likely to spend time, such as around the bed and the chair. In HOA-Room2
deployment, there are only 8 FPs and 7 misses. All the FPs have resulted when data is
not available for > 2s period. In such an instance, the classifier incorrectly predicts an
out-bed events. When more sensor observations are available, the correct class label
was predicted. The misses are also caused by unavailability of sensor observations,
particularly after a bed-exit.

6.7.3 Bed-Exit Movement Recognition Delays

Figure 6.2 presents the distribution of bed-exit recognition delays for the proposed
framework, and the BEAS proposed in [25]. The vertical lines in Figure 6.2 indicate
the 90th percentile in respective distributions.

From Figure 6.2 we can see that for the proposed framework >90% of the alarm
instances are within the first 8 s for HOA-Room1 and within the first 6 s for HOA-
Room2. Generally, HOA-Room2 performs better than HOA-Room1, as alarm delays
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Fig. 6.2 Distribution of bed-exit movement recognition delays. Vertical lines indicate
the 90th percentile of distributions.

are concentrated near zero, where there are virtually no delays. The main reason for
this is the rich set of location information available from the RFID infrastructure in
HOA-Room2 due to its configuration to monitor targeted areas.

Although there are higher FPs and lower TPs for BEAS, we can see that BEAS
has performed slightly better than the proposed framework in terms of delays. It is
observed that for BEAS, >90% of alarm instances are within the first 7 s for HOA-
Room1 compared with 8 s and the first 5 s for HOA-Room2, and compared with 6 s for
our proposed framework.

6.8 Discussion

In this chapter, we have devised a novel sequence classification algorithm that is
suitable for sparse data streams. Based on the sequence classification algorithm, we
have proposed a framework to analyse bed-exit movements using a sparse acceleration
and RFID data stream from a sensor tag, i.e. W2ISP. Our framework not only relies
on information from a triaxial accelerometer but also considers information from the
RFID infrastructure to recognise bed-exit movements in real time successfully while
depicting a considerable performance improvement to that of the previously published
method BEAS in [25].
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Table 6.7 Performance of previous bed-egress movement alarms

Bed-egress recognition approach Precision Recall Participants’ age (years)

Hilbe et al. [14] 96% 18-60
Bruyneel et al. [15] 100% 91% 37±9 and 45±11
Najafi et al. [62]* 93 66±14
Godfrey et al. [69]* 83 77.2±4.3
Proposed framework 85% 86% 66-86
* a sit-to-stand posture transition was considered as a bed-egress.

Recently, several bed-egress movement sensor alarms have been reported in the
literature. Most of these studies [14, 15, 62, 69] have been evaluated with healthy adult
participants as opposed to older people. Hilbe et al. [14] and Bruyneel et al. [15] used
pressure sensors attached to hospital beds. Najafi et al. [62] and Godfrey et al. [69]
used wearable sensors strapped to participants for activity recognition and evaluated
their approaches on data collected from older people, as in this chapter. Although
movement sensor alarms were not the focus of these studies, they presented results
for detecting sit-to-stand posture transitions that can be considered similar to a bed-
egress movement. Table 6.7 summaries the results of previous bed-egress movement
recognition approaches with the results obtained for HOA-Room2. Although a direct
comparison with other studies cannot be made due to the differences in data sets
and experimental settings, we can clearly see that the proposed framework performs
comparably. We have not considered specificity reported in previous studies since
the activities considered as true negative could not be clearly established across the
studies. Furthermore, our focus has been to evaluate precision and recall as motivated
in Section 6.6.

There are two major advantages arising from our approach. First, our proposed
framework for bed-exit recognition is highly responsive and reduces time delays to
alarm so that caregivers are given a better opportunity to intervene while patients
are undertaking unsupervised risky activities. In contrast, previous methods needed
pre-processing of sensor data (such as filtering) [61] or a waiting time for sensors
to reach a steady state (≈ 2 min in [15]) prior to generating an alarm. Furthermore,
approaches to handling activity label prediction inaccuracies in [62] and [18] rely on
initiating notifications (i.e. alarms) after detecting a change in predictions (i.e. from
sitting-on-bed to standing) and a subsequent fixed evaluation period (i.e. 10 s) to assess
the consistency of the predicted activity label for subsequent sensor observations; this
approach will incur a notification delay equal to the fixed evaluation period. Instead,
we notify (i.e. alarm) at the first instance of detecting a change in predictions (e.g.
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from sitting-on-bed to standing). Our method requires no pre-processing as the novel
sequence prediction algorithm accurately predicts bed-exit motion sequences using
time domain features. Secondly, although the proposed bed-exit sequence prediction
algorithm was used to predict bed-exit motion sequences, it can also be used in other
sequence prediction problems where the data stream is sparse, as in our case. However,
different features may be required, depending on the classification problem and data
available from the data stream.

In summary, in this chapter we have looked at sequence learning from sparse data
streams to recognise activities in real time and highlight that better data analysis meth-
ods can improve the activity recognition performance by alleviating the effects of noise
and the sparse nature of data streams from sensor tags. The improved performance in
activity monitoring can be seen as significant in facilitating the deployment of passive
sensor enabled RFID tags in real-world applications.



Chapter 7

Segmentation-Free Activity
Classification Using a Structured
Predictor

7.1 Introduction

In the previous chapters, we have utilised classical machine learning algorithms to
predict activity labels for sensor observations from the passive sensor enabled RFID
tag (sensor tag). In Chapter 6, we have looked at a sequence learning algorithm to
predict the activity labels by considering the sparse nature of the data stream from the
sensor tag.

The machine learning method proposed in Chapter 6, as well as most of the
previous activity recognition methods listed in Chapter 2, require the data stream
to be segmented, typically using fixed size segmentation methods, such as fixed-
time or fixed-sample, prior to extracting features to be used with machine learning
classification models [17, 63, 46]. Furthermore, application of sequence learning
methods, such as HMM still require segmenting the data stream prior to calculating
features [83, 75]. As highlighted in Chapter 5, such data stream segmentation methods
result in sensor observations related to previous activities to be considered in the data
stream segment pertaining to the current activity. This results in calculation of features
that are not representative of the activities which can degrade the activity recognition
performance. The sparse and variable sampling rate of the sensor data stream from
sensor tag aggravates this issue because for a sensor data stream segment, majority
of the sensor observations can be from the previous activity despite they represent a
smaller duration within the segment.
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In Chapter 5, we have proposed data stream segmentation methods to segment
the data stream on natural activity boundaries, and this is evaluated using the dataset
collection from healthy young participants (HYA). The proposed data stream segmen-
tation methods were based on heuristics of the sensor wearers’ trunk rotational motion
between consecutive sensor observations and alleviates issues discussed above related
to fixed size segmentation methods. Nevertheless, explicitly recognised segments
using the natural boundaries needs to be presented for a machine learning classifier
to recognise the respective activities. Data collected from older participants depicts
a higher sparseness, i.e. they have larger inter-sensor observation time differences
as shown in Table 2.2. Consequently, the method proposed in Chapter 5 cannot be
successfully applied to data streams with higher sparsity due to its reliance on the
change in the values of consecutive sensor observations.

In this chapter, we propose a real-time sensor data stream classification method that
does not require any explicit segmentation prior to classification, hence it overcomes
the issues related to explicit segmentation posed by previous HAR approaches. In
particular, we propose a structured predictor to predict a structure for a data stream
subsequence, thereby utilising the structure to assign class labels to the sensor obser-
vation stream. The predicted structure on a given subsequence of sensor observations
consists of two parts (see Section 7.2). Given a sensor data subsequence, the two-part
structure includes the location of the boundary of the parts and the activity class
label for Part 1. Taking advantage of the structured output, we propose six ways to
measure dissimilarity between output structures, which are utilised during the training
phase of the proposed structured predictor. Finally, we show the performance of the
proposed structured predictor based data stream classification approach by conducting
experiments with three datasets, described in Section 7.6.

7.2 Representation and Inferencing

We denote the ith sensor data at time ti, ti > ti−1, i ∈ N, using the pair (ti,si), then the
sequence of collected data X = {(ti,si)}i≥1, i ∈N is a time series. We use the notation
X[a,b] to denote the sensor data stream segment for the time interval [a,b], where b > a.

Our goal is to assign an activity label or a class label for each and every sensor
observation. Given a subsequence of sensor observations, this task can be modelled
as a structured prediction problem. As opposed to regular prediction problems which
have real-value output in case of regression and categorical outputs in case of classifi-
cation, the output of a structured prediction problem contains some form of a complex
structure, such as trees, graphs, sequences and other structures.
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Fig. 7.1 The two-part structure is defined on a given sensor data subsequence. Part 1 is
assumed only to have sensor observations from a single activity and Part 2 can contain
sensor observations from all the activities. This part can be represented by the pair
(τ,c), where τ is the time offset to the part boundary and c is the class label associated
with Part 1.

Given a subsequence of sensor observations X[t,t+δ t] of time length δ t, we assume
that X[t,t+δ t] has a two-part structure as illustrated in Figure 7.1. We denote the time
offset from t to the boundary of the parts as τ and consider that Part 1, i.e. X[t,t+τ],
which has sensor observations towards the beginning of the subsequence, belongs to a
single activity. Part 2, i.e. X[t+τ,t+δ t], contains the remaining sensor observations, and
we assume that they may belong to different activities or the same activity, as in Part 1.
We denote this two-part structure using the pair Y = (c,τ), where c is the class label
associated with Part 1.

In the context of real-time predictions, the proposed approach proceeds as follows:
sensor observations are buffered as and when they become available. When the contents
of the buffer reach a pre-defined time length, δ t, then the output structure, Y , for the
buffer content is predicted. The output, Y , is represented by the pair (τ,c) where τ is
the boundary offset and c is the activity label for Part 1. Then, the sensor observations
pertaining to Part 1 are assigned the class label c and Part 1 is removed from the
buffer while retaining sensor observations relating to Part 2. This process repeats
until data the stream continues. The proposed structured predictor can determine the
output structure that includes both the part boundary offset and the activity label of
Part 1, and therefore, the requirement for explicit segmentation prior to classification
is eliminated.

Based on the above definitions, our structured prediction problem is to predict the
output structure Y for the presented input sequence of sensor observations X[t,t+δ t] of
length δ t. This task can be cast into learning a score function f : X×Y 7→R, such that



7.2 Representation and Inferencing 112

given a subsequence, X j, the two-part structure Y j can be obtained using:

Yj =argmax
Y∈Y j

f (X j,Y ) (7.1)

where Y j is the possible set of structures for X j. Essentially, Eq.(7.1) represents the
classification function and it is important to note that, as in many structured prediction
problems, we assume the information in a given subsequence X j is sufficient to predict
its structure Yj.

For f , we consider functions that are linear in some feature representation φ [133,
137]. Such a linear function allows representing the classification model using a vector.
Therefore, as mentioned in Section 2.2.4, inferencing using such a linear function is
efficient as the score for prediction can be obtained efficiently using the inner-product
between the classification model (w) and the feature representation φ (see Eq.(7.2)).

f (X,Y ;w) =⟨w,φ(X,Y )⟩ (7.2)

In Equation Eq.(7.2),classification model w is learnt following the training procedure
described in Section 7.3. Similar to the method described in Chapter 6, the feature
representation captures the relationships between the input Xi and an output structure
Y into a vector. This has been explained in detail in Section 7.4.

In Equation Eq.(7.1), generating the set Y j is important to predict a suitable
structure, Yi, accurately. A given subsequence, X j, can be partitioned in a number of
ways to obtain a comprehensive Y j. However, this approach will hinder the runtime
performance as the number of evaluations are linear to the |Y j|, where |·| denote the
cardinality of a set. Given X j has a time length of δ t, we create a set of time offsets
T j for partitioning, as in Eq.(7.3),

T j =
{

τ
k
j : τ

k
j = tshi f t× k, τ

k
j <= δ t

}
(7.3)

where k ∈ N+ and tshi f t is the time difference between two partitioning positions. As
can be seen from Eq.(7.3), the number of partitions can be controlled using tshi f t .
Additionally, the output structure also contains the class label c j ∈ C of the first part,
where C represents the set of class labels considered in this study. During inferencing,
we consider all possible pairs of class labels, C and partition offsets T j.
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7.3 Training

The goal of the classifier training is to find the model w that minimises the classification
error. We take a similar approach to that has been taken in Chapter 6 to train the
classifier. According to the prediction function Eq.(7.1), we can observe that the score
for a given sensor observation with the most similar structure, f (X j,Y j) must be greater
than the score of all other structures f (X j,Y ),Y ∈ Y j \Yj, i.e. f (X j,Yj)> f (X j,Y ).

Using the generic framework for structured prediction proposed in [134], we can
learn the function f , particularly, the classification model w. As also explained in
Section 6.3.2, in the SVM training setting, f (X j,Yj) should be at least greater than
a margin, which is typically set to 1 [134]. Consequently, the constraint f (X j,Y j)≥
f (X j,Y )+1 is used for minimising the classifier training error.

As we focused on predicting the structure of a given subsequence, we created the
training dataset from data streams by first segmenting the data streams using a δ t sized
sliding window with tshi f t slide length and then assigning the structure based on the
ground truth. Here δ t is the length of the buffer. Given a training dataset containing
subsequences X j and the corresponding structure Yj, D = (X j,Yj)

M
j=1 where M is the

length of the dataset, as described in [134], we learn the classification model w by
solving the primal form of the constrained convex optimisation problem in Eq.(7.4).

min
w,ξ j

λ

2
∥w∥2 +

1
M

M

∑
j=1

ξ j (7.4)

subject to ∀ j ⟨w,φ(X j,Yj)⟩−⟨w,φ(X j,Yr)⟩ ≥ 1−
ξ j

∆(Yj,Yr)

∀ j ξ j ≥ 0

where Yr = argmax
Y∈Y j \Y j

⟨w,φ(X j,Y )⟩

In Equation Eq.(7.4), λ represents the regularisation parameter, ∆(Yj,Yr) is the
cost function and ξ js are positive slack variables, which are introduced to capture
margin violations during training. We follow the same procedure to generate the set
Y j, as described for inferencing in Section 7.2. The cost function, ∆(Yj,Yr) essentially
measures the dissimilarity between structures Yj and Yr, and we specifically used the
slack rescaling approach described in [134] as this behaves better when compared
with the other alternative, margin rescaling. In this study, different ways of measuring
dissimilarity are considered, and they are described in Section 7.5.

The optimisation problem Eq.(7.4) can be converted to an unconstrained optimi-
sation problem as in Eq.(7.5) and can be solved using Stochastic Gradient Descent
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(SGD) approaches.

min
w

λ

2
∥w∥2 +

1
M

M

∑
j=1

max
(
∆(Yj,YR)(1+ ⟨w,φ(X j,Yr)−φ(X j,Yj)⟩),0

)
(7.5)

We use the Pegasos algorithm [90] to solve the unconstrained optimisation problem
in Eq.(7.5) directly using its primal form. We specifically consider the mini-batch
version of Pegasos, given in Eq.(7.6), to reduce the training time as we have a large
number of training samples.

min
w

λ

2
∥w∥2 +

1
k

k

∑
j=1

max
(
∆(Yj,YR)(1+ ⟨w,φ(X j,Yr)−φ(X j,Yj)⟩),0

)
(7.6)

In Equation Eq.(7.6), k is the mini-batch size and the Pegosos algorithm iterated
T times and drawing k number of training data points uniformly with replacement
from the training dataset. We use the learning rate η = 1/(T λ ) to attain the same
convergence rate specified in [90].

Unlike other methods, such as LaRank [133] which optimise SVMs in dual form,
optimising in primal form is attractive where there are a large number of training
samples, as in our case.

7.4 Feature Representation

Based on the output structure that consists of two parts shown in Figure 7.1, we
extract features considering: i) subsequence sensor observations; and ii) location of
the boundary between Part 1 and Part 2 (i.e. the boundary offset). These features are
then correlated with the class associated with Part 1 of the output structure.

7.4.1 Features from Sensor Subsequences

Based on the output structure, we can consider three subsequence; i) sensor observa-
tions for the entire subsequences—X[t,t+δ t]; ii) sensor observations for Part 1—X[t,t+τ];
and iii) sensor observations for Part 2—X[t+τ,t+δ t]. For each subsequence, we extract
statistical features using the acceleration signal and RSSI information available from
the sensor tag employed in this study.

Features from Acceleration

Acceleration signals are obtained relative to the reference frame of the sensor, and we
considered the acceleration on the frontal axis (a f ), lateral axis (xl) and the vertical
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Table 7.1 Features from acceleration signals

Feature

1 mean(x)
2 mode(x)
3 median(x)
4 range(x)
5 var(x)—variance
6 std(x)—standard deviation
7 mean(|(x−mean(x))|)—mean absolute deviation
8 median(|(x−median(x))|)—median absolute deviation
9 max(x)
10 min(x)
11 MPM(x)—Maximum Prior to Minimum

x represents the sequence of values for each variable.

Table 7.2 Features from the RFID platform

Feature

1 mean(RSSIa) [87]
2 std(RSSIa)
3 max(RSSIa) [87]
4 min(RSSIa) [87]
5 MPM(RSSIa)

RSSIa represents the RSSI values for sensor obser-
vations captured by antenna a

axis (av). From the acceleration signals, as described in Chapter 4, rotational angles
on the sensor wearer’s reference frame on the sagittal (θ ), coronal (α) and transverse
(β ) planes are approximated. Consequently, we consider 11 statistical features listed
in Table 7.1, considering the aforementioned six variables. Thus we have extracted 66
features from a sequence of acceleration signals.

Features from RSSI

Statistical features listed in Table 7.2 are extracted using RSSI available from the RFID
platform (Section 2.3.2). As described in Chapter 4, given the set of antennas in the
RFID platform as A , features from RSSI are extracted considering sensor observations
captured by each antenna RSSIa where a ∈A .
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7.4.2 Features based on the Part Boundary

We use the location of the boundary between Part 1 and Part 2 as a feature. Specifically,
we use an indicator vector to represent the location. As mentioned in Section 7.2, the
boundary τ ∈ T is defined by T =

{
τk : τk = tshi f t× k, τk <= δ t

}
. A zero vector

of length δ t/tshi f t , i.e. v = {0}δ t/tshi f t , is created, and the kth element of the vector is
assigned a value of 1, considering the location of the boundary, i.e. vk = 1.

7.5 Measuring Dissimilarity

As mentioned earlier, the output structure is represented by the pair (τ,c). In this
structured prediction problem, we measure the dissimilarity between the correct output,
Yj and another Yl based on two aspects, the class label associated with Part 1, c and
the location of the part boundary, τ . Specifically, we consider a cost function in
the form presented in Algorithm 4. In line 2 of Algorithm 4, MM (a,b) is a square
matrix M ∈ R|C |×|C | containing costs for misclassification of the class a as the class
b. The function almt(a,b) (line 4 in Algorithm 4) measures the alignment of the part
boundary. As evident from this algorithm, we first evaluate the class labels for Part 1,
and if the class labels are equal, then the boundary alignment is considered. If the
sensor observations in Part 1 of the considered structures belong to different classes,
then a comparison on the part boundary cannot be considered as different activities
usually have different lengths.

Algorithm 4 Cost function
Require: Yj and Yl

1: if Yj.c ̸= Yl.c then
2: return M (Yj.c,Yl.c)
3: else
4: return almt(Y j.τ,Yl.τ)
5: end if

7.5.1 Cost for Misclassification of Part 1

We have considered three approaches to obtain the matrix M that defines the cost for
assigning the class label b instead of the correct class label a for part 1.

As the first approach, we assign equal costs for misclassification by using a matrix
of ones as M ; thus M 1 = {1}|C |×|C | We denote this first approach as M 1.

The second approach, referred to as M 2, considers different penalisations for
addressing imbalance [125]. The cost for misclassifying a is obtained by considering
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the ratio of classes in the training dataset, and the same cost is assigned irrespective of
the other class. Denoting m as the number of training samples and ma as the number
of training samples for class a, we obtain M 2 as in Eq.(7.7).

M 2
′
(a, ·) = m/ma (7.7)

M 2(a, ·) = M 2
′
(a, ·)/min(M 2

′
(a, ·))

The third approach is inspired by the nature of the optimisation problem Eq.(7.4)
for training the classifier. In the objective function Eq.(7.4), the constraint only
considers the correct output structure Yj and the output structure, Yr, resulting in the
highest score except Yj to obtain the loss. Therefore, in order to define the cost of
misclassifying class a as class b, we use the ratios between the two classes in the
training dataset. We denote this approach as M 3 and it is obtained as given in Eq.(7.8).

M 3(a,b) =
mb

ma×min(ma
mb
, mb

ma
)

(7.8)

7.5.2 Cost Based on the Part Boundary

We have considered two forms of the function almt(a,b) to measure the dissimilarity
between alignments of the boundary offset.

The first approach, referred to as almt1, uses the absolute difference between the
given boundary offsets, a and b.

almt1(a,b) =
|a−b|

δ t
(7.9)

In Equation Eq.(7.9), δ t is used to scale the output value to the range [0,1] so that
more emphasis is given to the misclassification instead of the alignment.

In the second approach, the square of the first approach is used, and it is denoted
as almt2(a,b).

almt2(a,b) =
(
almt1(a,b)

)2
=

(
a−b

δ t

)2

(7.10)

7.6 Experiment and Statistical Analysis

We have conducted experiments using the two datasets. We utilised the dataset
collected from 14 older volunteers aged between 66 and 88 years, as described in
Section 2.4.2. This dataset contains data from two RFID configurations, HOA-Room1
and HOA-Room2. We also utilised the data collected from 24 hospitalised older
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volunteers, FOA, described in Section 2.4.3. During the data collection, participants
wore the sensor at sternum level over the garment and performed activities listed in
two activity scripts. These activity scripts contained activities such as lying on the bed,
sitting on the bed, get out of the bed and walk to the chair. The researcher present
during the data collection recorded five ground truth labels: i) sitting-on-bed; ii) lying-
on-bed; iii) standing; iv) walking; and v) sitting-on-chair. For this study, standing
and walking classes were combined into ambulating as there were a small number
of sensor observations. Therefore, we considered four class labels: i) sitting-on-bed;
ii) lying-on-bed; iii) ambulating; and iv) sitting-on-chair.

As mentioned in Section 7.5, there are six combinations of dissimilarity measure-
ments can be obtained and we evaluated these six combinations. We compared our
method with two linear multi-class classifiers, as we are interested in linear decision
functions to reduce the training time with larger datasets and to reduce the runtime
complexity during inferencing. We utilised linear SVM provided by LibLinear [123]
and our implementation of a multi-class linear classifier similar to that presented in
[90]. The main difference between these two classifiers is that LibLinear uses the one-
against-one approach to achieve multi-class classification while our implementation of
multi-class SVM uses a score function and obtains the class label similar to Eq.(7.1).
For both these classifiers, we extracted features for a sensor subsequence described in
Section 7.4.1, for a segment of δ t which is sided by tshi f t .

During the evaluation, we set δ t = 5s and tshi f t = 0.5s. This is based on the
general observation from the datasets that each participant took approximately 2 s to
perform an activity transition such as sitting-on-bed to get-out-of-bed; thus the buffer
will be able to capture adequate motion information to determine its structure. For
the proposed structured predictor and the implemented multi-class baseline SVM we
set the number of iterations T = 1000 and mini-batch size k = 100. The remaining
parameter λ and the cost parameter (c) for LibLinear has been selected based on
leave-one-participant-out cross-validation as described below.

We use the cross-validation procedure described in Section 6.6. Given a participant,
p, D is partitioned into three subsets: i) Dp ∈ D—test set; ii) D j ∈ D\Dp—validation
set; and iii) D\ (Dp∪D j)—training set, where j is a randomly selected participant.
We trained the classifier using the training sets and obtained the F-score by evaluating
the trained models using the corresponding validation sets to select a set of model
parameters that maximise the mean F-score measure. Finally, we present the results
obtained using the test set Dp, using a classifier trained using D \Dp based on the
selected set of model parameters.
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Table 7.3 Classification results for HOA-Room1

Classifier Sensitivity PPV F-score Parameters

Proposed

M 1+almt1 85.8±4.4 87.7±8.5 83.8±10.0 λ = 10−3.6

M 2+almt1 84.5±7.1 83.5±7.1 83.4±6.7 λ = 10−0.8

M 3+almt1 84.9±8.9 84.0±7.9 83.8±8.1 λ = 10−1.2

M 1+almt2 85.3±4.3 86.5±7.8 83.6±8.8 λ = 10−3.2

M 2+almt2 84.9±6.9 84.1±6.2 83.8±6.0 λ = 10−0.8

M 3+almt2 85.5±6.4 84.7±6.6 84.5±6.0 λ = 10−1.2

Baseline

LibLinear 81.2±10.0 85.0±9.7 81.7±10.5 c = 25.0

Milti-class SVM 80.9±8.3 85.3±9.4 81.9±8.8 λ = 10−3.0

7.7 Results

The activity classification results using the aforementioned datasets from the sensor tag
are presented in Table 7.3, Table 7.4 and Table 7.5. When the mean F-score is consid-
ered, the proposed real-time data stream classification approach, based on a structured
predictor, depicted higher performance compared with the baseline approaches for
all the three datasets HOA-Room1, HOA-Room1 and FOA. The main reason for this
performance improvement is the capability of the structured predictor to assign a class
label to a part of a data stream with a higher confidence (see Section 7.2); this is
in contrast with assigning a single class label for an entire sensor data segment, as
commonly performed in classification approaches, such as the baseline.

When the proposed combinations of dissimilarity measures are considered (see
Section 7.5), we can observe that three different combinations have depicted a higher
performance for each dataset. For HOA-Room1, the M3+almt2 combination depicted
the highest performance while the M1+almt1 combination showed the highest perfor-
mance for HOA-Room2. In the case of the FOA dataset, the M2+almt2 combination
demonstrated the highest performance. Although the structured prediction approach
depicted a good performance, the dissimilarity measures used during training affects
the final classification performance. Therefore, the most appropriate dissimilarity
measure needs to be selected, based on the dataset.

We further analysed the results based on the normalised confusion matrices for the
best performing classifiers. The confusion matrices for the three datasets are shown
in Figures 7.2 and 7.4. In these Figures, the class labels are represented as follows:
A–sitting-on-bed; B–lying-on-bed; C–ambulating; and D–sitting-on-chair.
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Table 7.4 Classification results for HOA-Room2

Classifier Sensitivity PPV F-score Parameters

Proposed

M 1+almt1 76.3±5.8 79.0±13.4 75.5±10.7 λ = 10−3.2

M 2+almt1 74.6±6.6 72.1±6.2 70.6±7.0 λ = 10−1.6

M 3+almt1 76.4±4.0 71.9±4.1 73.4±4.0 λ = 10−2

M 1+almt2 75.9±4.3 75.4±7.7 74.6±5.4 λ = 10−3.2

M 2+almt2 72.9±5.9 70.8±5.0 69.7±5.4 λ = 10−0.8

M 3+almt2 74.2±11.2 70.8±11.8 71.7±11.2 λ = 10−2.8

Baseline

LibLinear 77.2±4.9 73.1±16.6 72.4±10.5 c = 22

Milti-class SVM 78.4±2.7 75.4±15.7 74.0±9.6 λ = 10−3

Table 7.5 Classification results for FOA

Classifier Sensitivity PPV F-score Parameters

Proposed

M 1+almt1 55.9±16.5 55.6±18.9 51.4±17.7 λ = 10−2.6

M 2+almt1 57.4±17.1 58.5±17.0 51.7±16.2 λ = 10−2.0

M 3+almt1 57.0±18.0 57.5±15.0 52.7±16.9 λ = 10−2.0

M 1+almt2 56.1±13.3 58.4±16.6 52.7±15.1 λ = 10−2.4

M 2+almt2 59.6±20.9 59.7±16.9 56.6±19.2 λ = 10−1.8

M 3+almt2 60.1±19.8 60.7±16.8 56.2±18.3 λ = 10−2.0

Baseline

LibLinear 57.6±13.8 62.0±16.3 54.2±15.7 c = 23.5

Milti-class SVM 54.7±12.5 56.2±13.2 50.0±14.0 λ = 10−2.6
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Fig. 7.2 Normalised confusion matrix for HOA-Room1. A: Sitting-on-bed; B: Lying-
on-bed; C: Ambulating; D: Sitting-on-chair.

Figure 7.2a represents the normalised confusion matrix for the HOA-Room1 dataset
using the M3+almt2 combination as the dissimilarity measure. Figure 7.2b is the
normalised confusion matrix for Multi-class SVM, which depicted the highest perfor-
mance for the HOA-Room1 dataset among the baseline classifiers. It is interesting to
note that the Multi-class SVM only classified 51% of the ambulating (C) instances
correctly, while the proposed structured predictor with M3+almt2 was able to clas-
sify 74% of them correctly. However, the proposed classifier misclassified 6% of
sitting-on-bed instances as ambulating but that case for the baseline is only 1%.

Figure 7.3a represents the normalised confusion matrix for proposed classifier using
the M 1+almt1 combination as the dissimilarity measure for the HOA-Room2 dataset.
The Multi-class SVM depicted the highest performance among baseline classifiers for
the HOA-Room2 dataset, hence its confusion matrix for comparison with the proposed
classifier in Figure 7.2b. From these Figures, we can see that for both classifiers, there
are higher values on the main diagonal of each confusion matrix, which indicates the
good classification performance. It is important to note that the proposed structured
predictor had classified 49% of the ambulating (C) instances into sitting-on-bed (A).
The Multi-class classifier had also misclassified 29% of ambulating (C) instances as
sitting-on-bed (A). Furthermore, the Multi-class SVM had misclassified 18% of the
ambulating instances as sitting-on-chair (D) while this percentage for the proposed
classifier is only 9%. Apart from the classification for ambulating (C), the proposed
classifier depicted higher correct classifications compared with the baseline for all the
classes.
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Fig. 7.3 Normalised confusion matrix for HOA-Room2. A: Sitting-on-bed; B: Lying-
on-bed; C: Ambulating; D: Sitting-on-chair.

Confusion matrices for the FOA dataset using the M 2+almt2 combination for
the proposed classifier and the LibLinear classifier are illustrated in Figure 7.4a and
Figure 7.4b respectively. From these Figures, we can see that both classifiers failed
to classify correctly sitting-on-bed (A). The proposed structured predictor correctly
classified 24% of the sitting-on-bed instances while the baseline method, LibLinear,
only classifying 7% of the instances correctly. A possible reason for this confusion
may be due to the shorter distance between the chair and the patient’s bed. As a
result, patients were also able to transfer to the chair without straightening their trunk.
Furthermore, when the classification of ambulating (C) is considered, the proposed
approach was able to classify 75% of the instances correctly, but LibLinear was only
able to classify 58% of the ambulating (C) instances correctly.

We can observe that all the classifiers face a difficulty in classifying the ambulating
(A) class. This is mainly due to two reasons. First, as discussed in Section 2.4, the
sensor was attached to the garment at the sternum level over the garment. Therefore, it
is difficult to distinguish ambulating or sitting-on-bed by observing the acceleration
signal because, during these postures, the participants’ trunks remain upright. The
other compounding fact is the limited number of sensor observations for the ambulating
activity in all datasets. In fact, in all the datasets, ambulation had the least number of
sensor observations. Consequently, these factors attributed to the lower classification
performance for ambulation.
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Fig. 7.4 Normalised confusion matrix for FOA. A: Sitting-on-bed; B: Lying-on-bed; C:
Ambulating; D: Sitting-on-chair.

7.8 Discussion

In this chapter, we proposed a real-time classification approach, based on a structured
predictor, to classify activity data streams. The structured predictor is capable of
predicting a two-part structure, including the location of the boundary of the parts,
as well as the activity class label for Part 1 for a given sensor data subsequence. We
extracted statistical features based on acceleration signals, as well as RSSI information
available from the sensor tag, considering three sensor data subsequences defined by
the structure (see Section 7.4.1). Features were also extracted considering the part
boundary (see Section 7.4.2). Thus, these features capture the patterns represented
by the output structure in a format suitable for learning and prediction using machine
learning approaches. Finally, from the experiment conducted with three data sets
collected from older people, we show that the proposed structured predictor based
activity stream classification method performed better when compared with the multi-
class classifiers used as the baseline.

Previous, as explained in Section 2.2.3 real-time activity recognition studies had
relied on explicit segmentation of the data stream to extract features [17, 48, 46, 83,
75]. Studies such as in [17, 63, 73] utilised fixed size segments to extract features
for recognising activities using machine learning based classifies. The fixed size
segmentation method is simple to implement suited for real-time activity recognition
as it can easily be implemented using a buffer. Although Lester et al. [83] and
Suutala et al. [75] utilised HMM with discriminative classifiers to model activity
sequences, they relied on fixed size data stream segments to train their discriminative
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classifiers. Furthermore, the application of HMM, particularity the use forward-
backward algorithm during inferencing, can be seen as a limitation on real-time
activity recognition. In general, dynamic segmentation methods seek to segment the
data stream on activity boundaries (see Chapter 5). Junker et al. [48] investigated
dynamic segmentation based on the sliding-window and bottom-up algorithm, where
and later used HMM to classify the activities. This segmentation method required
significant number of iterations (≈ 350) over a data stream buffer to identify segments.
Shinmoto Torres et al. [46] evaluated several sensor data segmentation methods,
including a dynamic segmentation method for sensor data streams from sensor tags and
utilised linear chain CRF to assess the performance. In contrast to previous methods,
the work presented in this chapter, considers segmentation and classification as a single
task and segmentation is driven by a trained model instead of using heuristics.

Two notable advantages arise from our proposed approach. First, the proposed
structured predictor based classifier does not require any explicit segmentation step in
real-time prediction as in other data stream segmentation methods. As mentioned in
Section 7.2, Part 1 of the output structure is assumed to contain sensor observations
from a single activity and so the issues discussed with the use of fixed size segmentation
methods in Chapter 5 are not present in our proposed approach. Secondly, the proposed
structured predictor: i) does not rely on heuristics on the dataset; and ii) does not require
the sensor to be worn on a specific location, as in the natural boundary segmentation
proposed in Chapter 5 and the study in [48]. The methods proposed in Chapter 5 and
[48], relied on specific sensor data stream characteristic as a result of the position
of the sensor to segment the data stream. When using these methods for a different
activity recognition task, a suitable data stream characteristic needs to be selected.
Therefore, the method proposed in this chapter can be considered as a generic approach
to activity classification. However, when using the proposed method in a different
activity recognition task, a set of features suitable to the sensors used need to be used.
For instance, as all the datasets we evaluated are from a sensor tag, and as sensor tag
data streams are sparse, we only considered time domain statistical features. However,
for battery powered sensors, frequency domain features can be used instead of features
from the RFID platform.

From the data stream classification perspective, the proposed approach results in a
delay no longer than the buffer length, i.e. delay < δ t. This is due to the structured
predictor predicting the activity label of Part 1 of the output structure. Based on
the definition of the output structure, sensor observations in Part 1 is older compared
to the sensor observations in Part 2. Predicting the activity for Part 1 can also be
viewed as modelling the sequential nature of the activities based on future information
with respect to the predicted activity instead of using the prior activity information as
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discussed in Chapter 6. Therefore, as future work, it would be interesting to model
the sequential nature of activity data streams by combining the sequential learning
approach discussed in Chapter 6 and the structured predictor proposed in this chapter.



Chapter 8

Recognition of Falls Using Dense
Sensing in an Ambient Assisted
Living Environment

8.1 Introduction

The main focus of this thesis has been fall prevention, particularly to recognise
activities leading to falls such as getting out of the bed and getting out of the chair.
Recognising activities that may result in falls can be as useful in creating warnings
with the aim of staff promptly attending to the patient and thereby potentially reducing
the risk of a fall or providing immediate care in case of a fall [138]. Although fall
prevention is a growing area of study [25, 139] and is more desirable as opposed to
systems focused on fall detection; there is still the need to detect falls timely, as they
occur.

Until recently, falls were reported in the literature to be mostly unwitnessed [2, 3].
However, a significant recent and study by Robinovitch et al. [140], conducted over
three years, determined the main causes of falls for people in long term facilities and
recorded falls from real subjects in a video for analysis. This evidence is valuable
as now researchers can study different ways of actual falls occurrences focusing on
improving fall prevention and detection. In fact, Robinovitch et al. identified the main
causes of falls as: i) incorrect weight shifting (41%); ii) tripping or stumbling (21%);
iii) hit and bump (11%); and iv) loss of support (11%).

Based on the sensing method applied, present fall detection approaches in the
literature can be categorised into two categories: i) body-worn approaches; and ii)
environmental sensor based approaches. In addition there are a limited number of
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hybrid approaches that use both body-worn sensors as well as sensors deployed in the
environment [64].

The studies relying on body-worn sensors often utilise encasings of battery powered
devices that use straps to secure the device to the body of the user [18, 141–143].
However, use of such devices has been reported as an inconvenience, in particular, if
the target population is older people [22].

In relation to environmental sensor approaches, the use of video images for monitor-
ing as in Qian et al. [144] can raise privacy concerns from users [58]. The functionality
of methods using instrumented objects such as walking canes [145] depends on the
person carrying or effectively using the targeted object, which is not the case for people
suffering from dementia or delirium—a condition that is common in older people.
Alternatively, multiple approaches using floor based ambient sensing technologies
have been developed and studied. In Klack et al. [146], several sensors and micro-
controllers were embedded in the solid floor to monitor movements and detect falls.
Similarly, Braun et al. [147] introduced an arrangement of capacitive sensors on floor
mats to detect a person lying on the floor. Aud et al. [148] proposed the use of foils as
a sensor to detect the presence of a foot and developed a smart carpet. Although these
studies have described how their proposed hardware can be used to detect falls, they
have not evaluated the detection of falls. On the other hand, Werner et al. [149] and
Alwan et al. [150] exploited floor vibration on a impact to detect falls. In particular,
Werner et al. [149] utilised accelerometers to capture floor vibrations while Alwan et al.
[150] utilised a piezo transducer. However, these studies were tested with mannequins,
which fall according to gravity as opposed to following the falling motion of a human.
Furthermore, SensorFloor [151], a commercially available smart floor, uses specially
built radio modules and proximity sensors to detect falls by identifying the shape of
the covered area. However, SensorFloor is a wired solution that needs to be connected
to an electrical power outlet since the sensors are active devices and its performance
on the detection of falls has not been presented.

In contrast, we instrument the floor using passive Radio Frequency Identification
(RFID) tags to detect falls. As opposed to the use of battery powered sensors, these
tags are batteryless and can report their unique identifier (tag ID) wirelessly and almost
indefinitely, without maintenance, to an RFID reader. Previously, we proposed a smart
carpet embedded with multiple paper thin RFID tags, arranged to form a 2D grid that
is interrogated using an RFID reader connected to two RFID antennas [152]. Our
previous approach relied on exploiting the RSSI and binary tag observation data as
well as their temporal variations of all the tags from our smart carpet grid collected by
both antennas to provide a description of activities occurring on the carpet. Although
we have demonstrated the ability of a dense deployment of RFID tag embedded smart
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carpet using a broadly scripted set of simulated falls and limited walking over the
smart carpet, the method is influenced by the noise in the RSSI data; for instance
movement of people in the environment. This method is also not scalable to a larger
monitoring area as it requires information to be collected from all the tags in an entire
monitoring area to detect falls.

In this chapter we propose a novel fall detection methodology which only relies
on binary tag observation information—presence or absence of tags–and carries out
a comprehensive evaluation that includes a rich set of broadly scripted walking pat-
terns in addition to the scenarios described and evaluated in [152]. In particular, we
formulate tag observations as a binary image (Section 8.3), which enabled us to detect
falls by focusing on a region of unobserved tags as a possible location of a fall. This
formulation not only removes the constraints on scalability in terms of the monitored
area in our previous approach [152] but also makes the proposed approach agnostic to
noise in RSSI. We also create 7 feature types and extracted 8 individual features using
only binary tag observations. We use data from a possible region indicating a fall on
the smart carpet to extract these features as opposed to 758 features extracted from
all tags in the smart carpet as in our previous approach in [152] (Section 8.3.2). The
fall detection algorithm proposed in this chapter is based on heuristics and machine
learning (Section 8.3.1). Initially, the algorithm preselects the possible falls instances
based on the area of unobserved tag regions. Then, the preselected tag regions are
classified using machine learning to detect falls. Thus, the proposed algorithm is
scalable in terms of the monitored areas, since it relies on specific regions of interest
and the related tag observations in that region. Finally, we evaluate simulated falls in
a setting that included a comprehensive set of walking activities with healthy young
adults (Section 8.4.1). Evaluating with a comprehensive set of walking patterns is
important because a significant amount of information from a real-world deployment
will be related to walking instead of falls and other activities. The work presented in
this chapter has been published in the journal of Pervasive and Mobile Computing [33].

8.2 Smart Carpet

The smart carpet showcases RFID tags integrated into the floor carpet as its core
component (see Figure 8.1). Passive RFID tags are batteryless and use the RF energy
radiated from the RFID reader antennas to power its circuitry (energise) and return a
signal encoded with a digital identification code.

The smart carpet has a three-layered structure (see Figure 8.1(b)) where an array
of RFID tags are sandwiched between a commercially available 3 mm nylon carpet



8.2 Smart Carpet 129

Fig. 8.1 Overall scheme of the experimental setting using a 4×2 m smart carpet: (a)
Smartrack FROG 3D RFID tag indicating dimensions; (b) Smart carpet showing its
three layers showing back of the carpet, the tag grid and base layer underneath; and (c)
Temperature map of average RSSI readings per tag for a 4 hour trial without external
interaction (empty room) demonstrating the different levels of power received from
the smart carpet.

and a 3 mm anti-slip polyester sheet. The tag array is placed in between two sheets of
0.5 mm plastic to secure their position. This design allows the concealment of the tags
as in a real-world deployment and protects the tags from impacts caused by footsteps
as well as falls.

The RFID tag selection depends on certain conditions such as compliance with
RFID communication protocols such as ISO 18000-6C [26] and the operational range
that allows the maximisation of the area covered by an RFID reader antenna. Hence,
we selected the commercially available Smartrack FROG 3D1 tag (see Figure 8.1(a))
due to its operational range (> 6 m when covered by 3 mm plastic) and its orientation
insensitivity with respect to the RFID reader antenna.

The tag density determines the information content available for identifying falls
and the time required to inventory all the tags in the smart carpet, thereby determining
the latency of our approach. We placed tags in a grid, shown in Figure 8.1(b), with a
15 cm separation between tag centres on both directions. Given that the average width
of a person (chest depth) is ≈ 24 cm [153], this layout ensures that at least one tag
is occluded by a person’s body even when lying on their side. Moreover, our dense
sensor deployment requires 378 (27×14) tags to monitor an 8 m2 (4 m×2 m) carpet
area.

1https://www.smartrac-group.com/frog-3d.html
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Fig. 8.2 Overview of the proposed methodology

We used two RFID reader antennas placed 2.65 m above the ground in opposing
directions for data collection as shown in Figure 8.1(c). The antennas are inclined
at approximately 30◦ to the horizontal plane, directed towards the smart carpet and
connected to an Impinj Speedway R-420 (Firmware version: 5.2.1) RFID reader.
Using this setup, we were able to inventory over 95% of tags within 0.5 s.

The RFID data from the smart carpet consists of two data sources: i) binary tag
observation—unique tag ID of an observed tag; and ii) the antenna that observed the
tag and the RSSI. However, these data sources are noisy. The tag observation noise
arises as a result of the RFID reader not being able to interrogate all the RFID tags
in its field in a single read cycle. The main reason for this is that the communication
between the RFID reader and RFID tags is carried out using ISO 18000-6C based
on the non-deterministic slotted Aloha random access protocol [26]. Furthermore, as
explained in Section 2.4.4 for sensor tags, RSSI is affected by several factors such
as [154, 155]: i) channel multipath propagation; ii) variations in incident power on
tags; iii) interference from objects and equipment; and iv) thermal noise at the RFID
reader receiver [155]. Consequently, for example, thermal noise can cause RSSI data
to fluctuate in the absence of any changes in the environment. Furthermore, multipath
propagations lead to changes in the RSSI, becoming dependent on the deployment and
environment in which the RFID readers and tags operate, for instance, the dimensions
of the corridor.

8.3 Methods

Figure 8.2 presents the overview of our proposed methodology. The RFID reader and
antennas here are the main hardware components other than the proposed smart carpet.
The RFID Reader Communication Driver and Fall Detection Algorithm are software
components. RFID data from the smart carpet is captured by the RFID reader. The
RFID Reader Communication Driver communicates with the RFID reader using an
LLRP protocol [156] over a local area network and data obtained for 0.5 s intervals
are forwarded to the Fall Detection Algorithm. The Fall Detection Algorithm, which
is described in detail in Section 8.3.1, processes tag observation information from
the smart carpet and recognises falls by first selecting possible falls locations using
heuristics and subsequently classifying them using machine learning algorithms. In
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Empty Walking Walking Walking Fall Fall Fall

Fig. 8.3 Tag observation data as a sequence of images; top row R0.5
i and bottom row

R1.5
i . The rectangle in each image is the bounding box of the connected region with

the maximum area.

future, we envision the fall detection algorithm to be completely integrated with the
RFID reader firmware.

8.3.1 Fall Detection Algorithm

Given a set of readings for a 0.5 s period from the RFID reader S0.5
i , we can for-

mally represent the presence and absence of tags in a 27×14 binary matrix, R0.5
i ∈

{0,1}27×14. Here, presence of a tag is represented by 1 and 0 otherwise. The data
represented by R0.5

i can be treated as a binary image. Figure 8.3 shows a sequence of
binary images which represents a scenario of a person entering into the monitoring
area (smart carpet) and subsequently falling.

The top sequence of images in Figure 8.3 were generated from R0.5
i . From these

images, we can see that a fall event can be identified by considering the properties of the
shape of the unobserved tags while the person is lying on the ground. Furthermore, we
can also see that some tags are unobserved randomly as a result of the tag observation
noise described in Section 8.2. In our setting, the probability of a tag being unobserved
given it is exposed to an RFID antenna (P0.5) is at most 0.05; i.e. P0.5 < 0.05. The
probability of a tag being unobserved can be reduced by considering a longer duration
than 0.5 s. Therefore, we considered data for a 1.5 s period (R1.5

i ) by aggregating
three consecutive sets of tag readings, S0.5

j , S1.5
i =

⋃i
j=i−2 S0.5

j , in order to lower the

probability of a tag being not read significantly to P1.5 < (P0.5)
3
= 1.25×10−4. The

sequence of images in the bottom row in Figure 8.3 shows the corresponding images
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Fig. 8.4 Proposed fall detection algorithm that utilises binary tag observation informa-
tion available from the smart carpet

to the top row in Figure 8.3 created based on R1.5. Based on these observations, we
proposed a novel algorithm to detect falls using data represented in R1.5

i .
The proposed fall detection algorithm is illustrated in Figure 8.4. This algorithm

receives S0.5
i , which is the tag observation data for the ith instance. The algorithm

obtains R1.5
i using S0.5

i and past data over a 1 s period. By treating R1.5
i as a binary

image, connected regions are obtained by using standard computer vision techniques
and the region with the maximum area, ri, only is retained. In the case of a fall, the
area of ri, area(ri), should be sufficiently large, as shown in Figure 8.3. Therefore, the
algorithm makes an initial classification based on this heuristic, where, for instance,
area(ri)< 15 is classified as no-fall. The value 15 is selected considering the posture
of a person lying on their side on the floor. Specifically, the average chest depth
of an individual is 24 cm [153]. At least two tags will be covered across the body
when a person is lying on their side on the smart carpet because the spacing between
consecutive RFID tags in the smart carpet is 15 cm. Then, considering a person with a
height of 1.5 m, at least 20 tags are expected to be covered while a person is lying on the
ground on their side. Therefore, the value 15 is selected because 15 = 20×0.75 where
we expected a minimum of 75% of the tags out of 20 tags to be covered considering
the person with a smaller physical size. Our observations also confirm that for all the
cases of falls area(ri)> 15.
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If area(ri)≥ 15 then ri is classified using a standard machine learning classifier to
determine whether ri represents a fall or not. This classification is carried out using
features derived from the binary tag observation data from the connected region, ri.
This algorithm continues until data is available from an RFID reader.

It is important to note that the proposed fall detection algorithm reduces the adverse
effects of noise, typically present in RFID data, in three ways. First, it only relies on
binary tag observation information instead of considering noisy RSSI information,
which is highly dependent on channel characteristics and the deployment environment.
Secondly, only the information from a possible fall location is considered instead
of utilising information from the entire smart carpet. This prevents the decision
being affected by tag observation noise from other parts of the smart carpet. Thirdly,
as shown in Figure 8.3, we use data for 1.5 s from the smart carpet to reduce the
probability of a given tag not being observed randomly due to the nature of the random
access protocol IS0 18000-6C used for interrogating RFID tags.

8.3.2 Feature Calculation

As stated previously, we rely on binary tag observation information alone for our
falls classifier. Given a tag observation matrix R1.5

i , we calculate 7 feature types that
result in 8 individual features. These features are calculated based on the region with
the maximum area ri in R1.5

i and using only binary tag observation information for
a possible falls location (ri); therefore, they are more robust against environmental
factors, unlike RSSI based features, and tag observations outside ri. We denote the
width and height of the bounding box of ri as wi and hi respectively. The centre of the
smart carpet where the antennas are placed is denoted as (cx,cy) (see Figure 8.1).

Area of ri (area(ri)) Area of ri represents the number of tags that are occluded, possi-
bly due to the human body.

Area of the bounding box of ri The area is calculated as wi×hi and provides infor-
mation relating to the nearby area of a possible fall.

Extent This represents the ratio of area(ri) to the area of the bounding box and is
obtained as ai

wi×hi
.

Ratio of the lengths of sides of the bounding box This is calculated as max(wi,hi)
min(wi,hi)

. In
case of a fall, based on the human physique, it is expected that one side of the
bounding box be larger than the other.
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Fig. 8.5 Eight triangles within the bounding box considered for obtaining the value for
the feature triangular region.

Centroid of ri ((xi,yi)) Centroid represents the location of a possible fall on the smart
carpet. We use both x and y coordinate values (with reference to the smart carpet
shown in Figure 8.1) to generate two features.

Distance from the centre of the smart carpet to the centroid (d) We obtain the Eu-
clidean distance as d =

√
(xi− cx)2 +(yi− cy)2.

Triangular region Considering n number of triangular areas, t j, this feature specif-
ically relates ri with a triangular area t j within the bounding box. By con-
sidering n number of triangular areas, we obtain the maximum of the ra-
tio between the area of intersection of ri and t j (ri ∩ t j) and area(ri); i.e.
maxn

j=1area(ri∩ t j)/area(ri).

The feature triangular region specifically tries to capture the standing positions.
When a participant is standing still, a large number of RFID tags are occluded as the
human body attenuates the RF radiation to a significant extent and in such instances,
unobserved tags are seen as a triangular region. Figure 8.5 shows the 8 triangle areas
considered for calculating the triangular region. This feature provides information to
discriminate falls from standing.

8.3.3 Machine Learning Classifier

We use four machine learning classifiers: i) Naïve Bayes—NB; ii) Linear Support
Vector Machines (SVM)—LSVM; iii) Non-linear SVM with Radial Basis Function
(RBF) kernel—NSVM; and iv) Random Forest—RF. All these classifiers can model
i.i.d. classification problems and can perform in real time. For this study, NB imple-
mentation in Matlab 2015b was used. We utilised the linear SVM from the LibLinear
package [123] for LSVM and SVM with the RBF kernel from LibSVM package [124]
for NSVM. The RF classier utilised the TreeBagger in the Matlab 2015b environment.

In contrast to our previous method [152], machine learning classifiers are only
used to classify a subset of R1.5

i s. Therefore, it is important to select a subset of R1.5
i s

from the training dataset to achieve a good performance. To this end, given a training
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(a)

(b)

(c)

(d)

Fig. 8.6 Four types of falls as captured by Robinovitch et al. [140] to the left and as
performed by young volunteers following the corresponding falls pattern in the dense
sensing environment, depicted to the right. Red circles indicate the body motion that
causes the fall, as reported in Robinovitch et al. [140]. (a) Fall 1: fall backwards after
body rotation and incorrect weight shifting, (b) Fall 2: fall sideways after narrowing
support base form by feet, (c) Fall 3: fall sideways after tripping over the other leg and
(d) Fall 4: fall forwards after tripping over an object.

data set D1.5 = R1.5
i i = 1 · · ·T , we only select R1.5

i s with area(ri)> 10. The condition
area(ri)> 10 ensures that there are sufficient non-fall instances for training.

8.4 Experiments and Analysis

8.4.1 Experiment Description

Thirteen adult participants (average age of 30.6±8.2 years old) and male to female ratio
of 8:5 participated in the study. They were asked to follow broadly scripted activity
routines on the smart carpet, and a researcher annotated the collected data in real time.
The broadly scripted activity routines allowed us to capture a sufficient number of
activities for classifier training and evaluation as well as capture natural variations
of individual participants such as walking speed and stride length. We collected
two datasets: i) simulated falls; and ii) walking patterns. During the evaluation, we
combined both datasets into a single dataset. In total, we recorded 72 falls instances.
These datasets are publicly available at the project website.2
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Simulated Falls

Eight of the participants performed a series of broadly scripted simulated falls (back,
sideways and forward) following the falls sequences as captured and described by
Robinovitch et al. [140]. Specifically, the following types of falls were performed:

Fall 1: Fall backwards by rotating the body performing a weight shift as shown in
Figure 8.6(a).

Fall 2: Fall sideways by narrowing the support base and incorrectly shifting weight
as shown in Figure 8.6(b).

Fall 3: Fall sideways by tripping over one’s leg shown in Figure 8.6(c).

Fall 4: Fall forwards by tripping over one leg with an obstacle on the path as shown
in Figure 8.6(d).

Each participant fell two to four times per each type of fall over the smart carpet.
A participant was free to start the fall and land anywhere in the carpet but had to fall at
least once on both sides (left and right) of the wooden frame supporting the antennas.
We labelled the data as a fall when the first part of the body other than the feet touched
the floor rather than waiting for the person to be flat on the floor as we are interested
in providing a prompt response. In addition to falls, these participants also performed
a limited number of other activities including: i) walking across the smart carpet; and
ii) walking into the smart carpet, squatting down to pick-up an object and leaving.

Walking Patterns

The main purpose of the walking dataset is to evaluate the fall detection algorithm
with a set of comprehensive walking patterns. In a real-world deployment, falls are
limited, and it is expected that a significant portion of information from the smart
carpet will relate to walking activity. Ten participants walked across the smart carpet
in eight paths. The first seven paths are illustrated in Figure 8.7. As the eighth path, we
asked each participant to enter into the smart carpet at preferred locations, walk within
the smart carpet in any preferred direction and leave the smart carpet at a preferred
location. Furthermore, they were asked to stop and stand without moving at a random
location on their path. In the study, none of the participants were instructed on how to
walk, such as the walking speed or the stride length.

2Project website:http://autoidlab.cs.adelaide.edu.au/densesensing
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Fig. 8.7 Walking paths on the smart carpet performed by ten participants

8.4.2 Statistical Analysis

For fall detection, True Positives (TP) were defined to be at least a single prediction
as a fall during an actual fall event recorded in the ground truth. All the incorrectly
detected falls were treated as False Positives (FP). We considered true falls events that
were missed by the fall detection algorithm as Falls Negatives (FN). For comparison
between approaches, we utilised metrics:

Precision(P) = T P/(T P+FP) (8.1)

Recall (R) = T P/(T P+FN) (8.2)

F-score = 2.P.R/(P+R) (8.3)

Evaluation of these metrics was performed using a leave-one-participant-out cross-
validation procedure. Classifier training is carried out using the training data created
as explained in Section 8.3.3. For parameter evaluation, given a set of training data
for a participant, we randomly selected 80% from that dataset to train the classifier
and obtain the classifier performance on the remaining 20% of the data set. The set of
model parameters that maximises the F-score (which is obtained based on the standard
binary classification performance) is selected. The final performance is obtained by
analysing the entire dataset for a specific participant using the trained classification
model for that participant. We report results for each participant independently as the
model is trained without the data from the test participant.

8.5 Results

Table 8.1 compares the fall detection performance between the proposed algorithm
with different classifiers and our previously published algorithm in [152] using the
combined dataset described in Section 8.4.1. From these results, we can clearly
observe that the recall for the proposed algorithm is at least 4% higher than our
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Table 8.1 Overall fall detection performances

Method TP* FP* FN* Precision Recall F-score
NB 70 21 2 81% 97% 90%
LSVM† 70 23 2 75% 97% 85%
NSVM† 69 8 3 90% 96% 93%
RF† 70 12 2 85% 97% 91%
Previous algorithm in [152] 66 6 6 92% 92% 92%
* Precision, Recall and F-score are obtained based on the total number of

TPs, FPs and FNs.
† Model parameters: LSVM-c:24.5; NSVM-c:23, g:22; RF-B:1000

Table 8.2 Fall detection performances

Participant # 1 2 3 4 5 6 7 8 9 10 11 12 13 Total
# of falls 11 8 0 9 8 8 0 0 10 10 8 0 0 72
Proposed algorithm
TP 11 8 0 8 8 8 0 0 9 9 8 0 0 69
FP 1 0 0 4 1 0 0 1 0 0 1 0 0 8
FN 0 0 0 1 0 0 0 0 1 1 0 0 0 3
Previous algorithm described in [152]
TP 9 8 0 9 6 8 0 0 10 8 8 0 0 66
FP 2 1 0 0 2 0 0 0 0 0 1 0 0 6
FN 2 0 0 0 2 0 0 0 0 2 0 0 0 6

previous algorithm. However, classifiers except NSVM depicted a higher number of
FPs and consequently lower precision. Based on the F-score, the proposed algorithm
with NSVM depicted a higher performance compared with other classifiers and we
use this for comparison with our previous method.

We can observe that the proposed algorithm with NSVM depicts 3 more TPs and
2 more FPs when compared with our previous algorithm. Despite the increase in the
number of FPs, the overall F-score has been improved. The main reason for this overall
improvement is the ability of the proposed set of features to represent the information
relating to falls events as shown by good classification performance, while being more
immune (see Figure 8.3) to the noise present in the RFID data. Consequently, as
denoted by the reduction in false negatives (misses) without adversely increasing false
positives, the NSVM classifier is able to discriminate more falls instances successfully.
Table 8.2 presents the results in terms of each participant. In particular, we can observe
that there are 4 FPs under participant 4. To gain further insight we analysed the
distribution of FPs with respect to each activity category as shown in Table 8.3. In
Table 8.3, the actual column represents the number of episodes under each category.
From Table 8.3, we can clearly see that the number of uninterested activities, i.e.,
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Table 8.3 Distribution of false positives for different activities

Participant #
Empty Walking Standing Pick Total
Actual FP Actual FP Actual FP Actual FP Actual FP

1 103 0 100 1 10 0 2 0 215 1
2 96 0 88 0 3 0 2 0 189 0
3 77 0 70 0 0 0 0 0 147 0
4 113 0 112 1 16 3 2 0 243 4
5 21 0 20 0 4 1 2 0 47 1
6 19 0 19 0 6 0 2 0 46 0
7 52 0 48 0 0 0 0 0 100 0
8 82 0 79 0 5 1 0 0 166 1
9 113 0 112 0 14 0 2 0 241 0
10 20 0 20 0 5 0 2 0 47 0
11 104 0 100 0 9 1 2 0 215 1
12 77 0 70 0 0 0 0 0 147 0
13 81 0 80 0 5 0 0 0 166 0
Total 958 0 918 2 77 6 16 0 1969 8
* Actual column under each category represents the continuous episodes of the particular

category that consist of a sequence of sets of tag observations with the same class
label.

activities except falls, (1969) is significantly higher than the number of falls (72) and
the number of FPs (8) compared with the uninterested activities are negligible.

It is important to note that there are no FPs when the smart carpet is empty and
while an object is picked up. However, two walking instances and six standing
instances have been incorrectly classified as falls. Close observations on these FPs
revealed that the FP for participant 4 while walking and the FP for participant 8 while
standing occurred just after a picking-up activity, but no instance due to a picking-up
activity has been misclassified as a fall. During picking-up, the occluded set of tags is
different form the set of tags occluded while the participant is standing and walking.
When a participant stands up quickly, tags which were previously covered respond
with a delay because they are not sufficiently energised to perform communication at
the first instance they are exposed. Then, together with the unobserved tags during
standing and walking, a larger number of tags were unobserved and hence incorrectly
classified as falls. A similar observation is made regarding the FP for participant 8;
where the participant starts walking after standing still for a long period of time (>5 s).

When remaining FPs for standing are considered, they cover a large rectangular
area of tags, which is similar to a fall. It is also observed that, in all these instances,
misclassified regions are close to a boundary of the smart carpet. As evident from
Figure 8.1(c), tags near the smart carpet boundaries receive less RF energy, mainly
because they are far away from an RFID reader antenna. When a participant is near a
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Table 8.4 Performance of previous fall detection approaches

Fall detection study Accuracy Recall (Sensitivity) Specificity Precision

Bianchi et al. [18] 90%
Bourke et al. [141] 100% 100%
Li et al. [142] 91% 92%
He et al. [143] 92% 92%
Qian et al. [144] 98%
Method proposed in this chapter 96% 90%

boundary, the RF energy incident on tags near the boundary is further reduced as the
human body absorbs RF energy. This causes a larger set of tags to be unobserved and
subsequently unobserved regions are classified as a fall.

8.6 Discussion

In this chapter, we have presented a dense sensing method for the recognition of falls
using batteryless RFID tags embedded into a carpet—a smart carpet—as opposed to in-
strumenting a person. In particular, we proposed a fall detection algorithm, which only
relies on the binary image based on binary tag observations from the smart carpet. The
novel algorithm performed better when compared with our previous algorithm [152]
depicting a nearly 5% increase in performance in terms of TPs. Additionally, the pro-
posed algorithm showed an overall F-score improvement compared with the previously
proposed algorithm [152].

As mentioned in Section 8.1, fall detection have been approached using a wide array
of technologies with varying success (see Table 8.4). Although, several research [146–
151] have looked at embedding various sensors on a floor to capture falls and lying
on the ground, none of them have conducted experiments on fall detection. These
studies only demonstrate the technical feasibility of using the respective proposed
technologies. On the other hand, studies in [18, 141–143] have utilised body-worn
sensors (accelerometers and gyroscopes) to detect falls. Qian et al. [144] have utilised
a wall mounted video camera to detect falls by identifying lying on ground. These
methods have demonstrated good performance as listed in Table 8.4. Although we
cannot make direct comparison with the previous methods, the prosed fall detection
method presented in this chapter depicted comparable performance.

The proposed algorithm differs from our previously published algorithm [152]
in four aspects. First, in our previous algorithm we have relied on information from
the RSSI. As described in Section 8.2, the RSSI is noisy and is dependent on the
environment. Therefore, the proposed algorithm is expected to be agnostic to the de-
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ployment environment. Secondly, the new formulation of the problem, i.e. considering
tag observations as a binary image, allows us to focus only on information related
to a possible fall. As described in Section 8.3.1, our proposed algorithm uses the
connected region with the maximum area in the binary image to detect a fall event. In
contrast, our previous algorithm considered the data from the entire smart carpet for
fall detection. The proposed approach makes the fall detection algorithm robust as fall
detection is not affected by noise in other parts of the smart carpet. Furthermore, this
allows the monitoring area to be scaled without significantly increasing the complexity
of the fall detection approach. Thirdly, the machine learning classifier is trained using
only 8 features, in contrast to the 758 features used in our previous algorithm. These
features capture the visual appearance of a region that may represent a possible fall
and are calculated efficiently using standard computer vision techniques. Finally, as
described in Section 8.3.1, initial heuristic based classification to eliminate no-fall
events and to preselect potential falls events for classification by the learnt model
reduce the processing burden further. The significantly reduced number of features and
preselection using a heuristic reduce both the memory and computational complexity
of our proposed fall detection algorithm.

The present research was evaluated against a set of data collected from young
volunteers because it is not feasible to collect data, particularly falls, using a population
of older people. The proposed approach relies on the shape and size of the unobserved
tag patch as a result of rags being covered after a fall on the carpet. The shape of
the unobserved tag patch is determined by the physical dimensions, such as height,
and therefore it is not influenced by age or weight. In fact, the features accommodate
variations of physical dimensions because they are calculated as ratios instead of raw
values. Therefore, we expect feature values not to vary significantly with the people,
but a detailed analysis of the effect of physical dimensions needs to be conducted in
the future. Furthermore, the proposed approach needs to be evaluated with multiple
people as well as with pets, because there will be multiple regions of unobserved tags.
In such cases, we expect a similar performance to that demonstrated in this study
because, as described in Section 8.3, the proposed approach only relies on binary tag
observation information for possible falls locations instead of the data from the entire
smart carpet to recognise falls. In the case of furnished environments, it is expected
that stationary furniture will result in static unobserved regions on the smart carpet,
which will be able to remove by comparing it with readings obtained only having
furniture. In instances where furniture is mobile, such as wheeled hospital beds, the
unobserved tag regions are expected to be significantly larger compared to a person
lying on the ground. Furthermore, since the RFID tags in the proposed smart carpet
is covered by a carpet and not directly exposed, we believe that they are less likely
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to get damaged by wheelchairs and wheeled hospital beds, walking sticks, and other
furniture.

In conclusion, the presented approach provides high performance with an F-score
of 93% and higher recall performance than previous work for the recognition of
falls, as tested with young volunteers, using evidence from previous research on real
older patients [140]. Our proposed method uses features only based on binary tag
information and provides a response after 0.5 s of data collection and has a maximum
response delay of up to 1.5 s to the occurrence of a fall event. Although the current
approach is representative of and can be realised in carpeted halls, walkways and
open spaces, further studies must include the use of walking aids and wheelchairs
as well as expanding the monitoring environment to a home environment containing
various pieces of furniture. In addition, the reduction of false positives should also be
considered, without increasing the possibility of missing falls.



Chapter 9

Conclusion and Future Work

This thesis presents the use of passive RFID technology for monitoring ambulatory
movements of older people. In particular, we focus on the use of an accelerometer em-
bedded passive sensor enabled RFID tag (sensor tag) to capture movement information
from hospitalised older patients to facilitate the development of wearable sensor based
technological fall prevention interventions. Unlike battery powered sensors, passive
sensor enabled RFID tags are expected to be unobtrusive for older people as they are
small and lightweight. However, the main challenges of using passive sensor enabled
RFID tags for activity recognition are sparsity and noise in the data stream. Therefore,
several approaches have been proposed to monitor ambulatory movements accurately
by tackling the aforementioned challenges.

Initially, in Chapter 2, we provided a background on Human Activity Recognition
(HAR), common machine learning algorithms used in HAR and passive sensor enabled
RFID tags. There we also presented the datasets, which have been collected from
sensor tags, used in this thesis and their characteristics.

The work carried out in terms of sensor data acquisition from sensor tags has
been presented in Chapter 3. A generic tag data format to identify sensor capabilities
was initially proposed. Then we presented the generic middleware architecture that
conforms to the EPC global architecture and an implantation to acquire sensor data
from the sensor tags. Finally, performance of the middleware was demonstrated using
an emulated experiment and through an application scenario.

In Chapter 4, we have proposed novel features for ambulatory monitoring based
on human motion analysis. We also proposed a dynamic sensor data augmentation
algorithm to facilitate the application of interpolation methods on sparse data streams.
Initially, we extracted acceleration based features that require a data stream with a
fixed sampling rate by interpolating the acceleration data from sensor tags using five
interpolation methods with varying complexity and subsequently evaluated the activity
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recognition performance. There the cubic convolution interpolation method [122]
depicted better activity recognition performance among other interpolants. Finally,
activity recognition performances for combinations of the three feature sets from:
i) the raw acceleration signal; ii) information from the RFID platform; and iii) the
interpolated acceleration signal, were investigated. The inclusion of features avail-
able from the interpolated acceleration signal only resulted in marginal performance
improvement over the use of the features possible from the raw data stream but at a
significant computational cost.

In Chapter 5, we have proposed two real-time segmentation methods (non-overlapping
and overlapping) that can segment the data streams on possible natural activity bound-
aries to mitigate the issues resulting from the use of sparse sensor data streams from
sensor tags. The natural activity boundaries were detected based on heuristic analysis
of the activity boundary score that is obtained based on the sensor wearer’s trunk
rotational motion. An ambulatory movement recognition algorithm to recognise multi-
ple ambulatory movements by re-evaluating predictions from machine learning based
activity classifiers was also proposed. The non-overlapping segmentation method
performs better but is less responsive. The overlapping segmentation method is highly
responsive but depicted lower performance. Despite the sparsity and noise present in
the data streams from sensor tags, the proposed ambulatory monitoring framework
was able to recognise multiple ambulatory movements successfully in real time.

We have proposed two real-time data stream classification algorithms in Chapter 6
and Chapter 7. These classifiers were trained using algorithms based on the Pegasos
algorithm [90] and hence, they support online learning. The sequence learning algo-
rithm proposed in Chapter 6 relied on the previous sensor observations for a specified
interval and their predicted class labels to model the sequential nature of the sparse
data stream. A data stream classification algorithm that does not require explicit
segmentation was proposed in Chapter 7. Given a sensor data stream subsequence, the
proposed algorithm predicts a two-part structure that divides the sensor data stream
subsequence into two parts and activity associated with Part 1 that contains the initial
set of sensor observations. Both sensor data stream classification algorithms were
able to recognise activities successfully from data streams from sensor tags. More
importantly, since these classifiers do not hold any assumptions on the nature of the
data streams, they are expected to be used effectively in other data stream classification
scenarios.

Finally, in Chapter 8, as opposed to using body-worn sensors, a dense sensing
approach to detect falls using a smart carpet embedded with passive RFID tags was
proposed. The proposed algorithm only uses binary tag information as RSSI is more
susceptible the environment factors. To mitigate tag observation noise present in RFID
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data, the proposed fall detection algorithm first identifies a possible fall location and
subsequently, the possible fall location is classified using a machine learning based
classifier to recognise a fall using features extracted, which only consider the possible
fall location. The proposed method provides a response after 0.5 s of data collection
and has a maximum response delay of up to 1.5 s to the occurrence of a fall event.

There are three main future directions that stem from this thesis. First, this
thesis used two broadly scripted activity datasets from older participants. Although
the methods proposed in this thesis were able to recognise activities successfully
using these datasets, future studies should consider a longitudinal monitoring study
with unscripted activities to confirm the performance of the proposed methods and
acceptability of sensor tags. In particular, the longitudinal monitoring study should be
conducted in the day time as well as at night time. Although FOA dataset contained
data collected from different rooms with similar RFID deployment configuration, cross-
validation with different rooms will be important to establish a generalise performance
under varying room settings.

Secondly, Chapters 6 and 7 presented two novel classification algorithms to classify
sensor data streams. While the sequence learning algorithm presented in Chapter 6
considers past information, the use of data from Part 2, which arrived after the data in
Part 1, for predicting the activity in Part 1 in the classification algorithm in Chapter 7
can be considered as relying on future activity information with respect to Part 1.
Therefore, it is interesting to consider both previous and future information in a data
stream classification algorithm to recognise activities. Such an algorithm is expected
to depict better activity recognition performance when compared with the methods
presented in Chapters 6 and 7.

Thirdly, modern RFID readers are capable of reporting the phase and the frequency
of the received signal apart from the received signal strength. More recently, features
extracted from the phase have been used in gesture recognition studies based on
commercially available passive RFID tags [157, 158]. Therefore, the evaluation of
features presented in Chapter 4 can be further extended by incorporating features
calculated using phase information available from the RFID readers.

In summary, the contribution made in this thesis is a significant step towards
human activity recognition, particularly using passive RFID technology. In this
thesis, we show that despite the challenging nature of the data streams from passive
sensor enabled RFID tags, human activities can be recognised accurately by utilising
innovative data stream processing and classification methods. Finally, we believe
the methods proposed in this thesis will facilitate the development of ambulatory
monitoring systems to mitigate falls in hospitals and other older care settings.
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